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Abstract

This dissertation introduces a methodology for formal gption and verifica-

tion of user interfaces under security aspects. The metbggallows to use for-

mal methods pervasively in the specification and verificatibhuman-computer
interaction. This work consists of three parts. In the fiest pa formal methodol-
ogy for the description of human-computer interaction igedigped. In the second
part, existing definitions of computer security are adafsetiuman-computer in-
teraction and formalized. A generic formal model of humamputer interaction

is developed. In the third part, the methodology is appleetthe specification and
verification of a secure email client.

Zusammenfassung

In dieser Dissertation wird eine Verfahrensweise fir dienfale Spezifikation
und Verifikation von Benutzerschnittstellen unter Sicle@daspekten vorgestellt.
Mit dieser Verfahrensweise konnéeweisbar sicher8enutzerschnittstellen re-
alisiert werden. Die Arbeit besteht aus drei Teilen. Im emsteil wird eine
Methodologie fur die formale Beschreibung von Mensch-thase-Interaktion
entwickelt. Im zweiten Teil werden gangige Computersibkeéskonzepte fur die
Mensch-Maschine-Interaktion angepasst und mit den ineerBeil entwickelten
Methoden formalisiert. Dabei wird ein generisches formé®dell von Mensch-
Maschine-Interaktion erstellt. Im dritten Teil wird die khedologie, die in den
ersten beiden Teilen entwickelt wurde, an einem sichereaiE@iient als exem-
plarischen Anwendungsprogramm demonstriert.
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Chapter 1

Introduction

1.1 Goals and Structure

Off-the-shelf computer systems are regularly used for sigecritical applica-
tions. In applications like home banking, the main task eftiser's computer is
to provide an interface to the computer system of his bank. SEturity of home
banking and similar applications critically depends on $keurity of the inter-
face provided to the user. Attackers actively try to expsaturity weaknesses
in graphical user interfaces of email programs and web beosvsThis leads to
an increasing demand for formal methods which are abigitmanteesecurity in
human-computer interaction.

While formal methods are used extensively in many fields ofjpater secu-
rity, they are rarely used in Human-Computer-Interactid@)—even for secu-
rity critical systems. The reason is that HCI does not de#i ie interaction of
two machines but with the interaction of a machine and a human

Countering human-computer interaction security thregtsréditional soft-
ware engineering methods suffers from two weaknesses: it@foblem is that
possible security holes may be overlooked. The secondgmolés in the nature
of human-computer interaction. Established methods ftivaoe specification,
verification, and testing depend on explicit and exhaustenitions of the in-
terfaces and the behavior of software components. Sincauskilie descriptions
of human behavior are generally impossible, rigorous fommethods are rarely
used in human-computer interaction engineering. Most au=tior describing
human behavior in human-computer interaction are rathgrhmdogical and not
well integrated in the software engineering process.

User models are routinely used in computer system usablilitglies. Such
user models usually draw on psychological models of the. uBeey model the
user’s tasks, goals, motivations, etc. While this is esaskimder a usability point

1



2 CHAPTER 1. INTRODUCTION

of view, it makes a comprehensive formal modeling of theafef user actions
infeasible because complex psychological activities cambdeled to a limited
extent only. From a usability point of view, this is not nezasly a severe draw-
back. To guarantee a certain level of usability, it sufficegive plausible evidence
that an application’s interface is usable, assuming cegaals and behaviors of
the user. Security, however, requires a stricter notionushdn-computer inter-
action. While a usability glitch in some dialog window maycdease the general
usability of the application a bit, a security glitch can éanore severe conse-
guences. Even worse, a security glitch will encourage kétacto seek methods
to actually exploit the glitch. The different view on the uaed the different goals
of usability and security make it possible and advisableptayaformal methods
to security aspects of user interfaces with user modelstaddp the particular
needs of security. In this work we introduce such a formalhoétlogy. Our
methodology is based on the pervasive application of formethods to the de-
velopment and evaluation of human-computer interactiois. dble toguarantee
that user interfaces do not contain security-critical irro

The limits of the methodology introduced in this thesis ti¢he general limits
of formal methods for software engineering: Security isrgageed only if the
specification is an adequate representation of reality.l&\the formal specifica-
tion of the behavior of computer systems can be achievetivellaeasily, formal
specification of user behavior is tricky. In the general casecan noknowthat
all users will always behave as modeled. We can, however megigonable as-
sumptions about user behavior, and we can provide expigituctions for users.
On the user’s side, our methodology is based on simple, iplaysand explicit
assumptions about user behavior. This allows to give anaxgéscription of the
user behavior required fguaranteesecure HCI.

In order to formally specify and verify the security of a usaerface, it is
necessary to bring together formal methods, human commitnaction, and
computer security. All three of these are established fieldesearch. There are
also works combining each two of the fields. Formal methode ieeen used
to specify human computer interaction. User interface® lmeen designed and
evaluated under security aspects. System security hastiesgad with formal
methods. In order to guarantee secure human-computeadtitan by use of for-
mal methods, althreefields have to be combined. This is the topic of this work.
The structure of this work is as follows:

The formal methodology is defined in the first part. In the secpart, a
generic system model and a formal definition of human-coepateraction se-
curity is developed. Parts of the Common Ciriteria for Infatimn Technology
Security Evaluation (CC)_(Common Criteria Evaluation Bb4€CEB),| 2006)
are formalized. The methodology and security requiremaensloped in the first
two parts are applied to a real-world application, a secuorailclient, in the third
part.
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The formal methodology introduced in the first part is geméor all appli-
cations and users. All kinds of application and user belmawian be formally
modeled with the methodology from this part of the thesise fidrmal definitions
of HCI security introduced in the second part are generic elt v system de-
signer can either choose a bottom-up approach and pickokifiarmal security
requirements from the formalized CC criteria defined in Gadfi0, or choose a
top-down approach by designing the system in compliande thi¢ formal defi-
nitions of HCI Confidentiality, Integrity, and Availabilitgiven in Chaptef 1. In
the third part of the thesis, the generic modeling methodssaourity requirement
definitions are applied to a concrete application. Whiletkine part of the thesis
deals with one concrete application, the security measieesloped in this part
are applicable to similar applications, too. For all keyigdriven applications
with text output, the main event loop developed in Chalpiéislapplicable. The
measures to guarantee confidentiality in Chapiér 15 arerigefoe all applica-
tions with keyboard input and screen output. While the cetecdefinitions of
desirable and undesirable states in the Chdpller 16 depetie @ctual applica-
tion, the method to guarantee availability is generic.

Part | In the first part, the formal methods used in this work areoiticed. In
Chaptei#t, we start with Input-Output Labeled Transitiost8gns (IOLTS) and
Computational Tree Logic (CTL), the core formal methodsdudgased on this,
a formal method for user modeling is developed in Chajgter Be iser mod-
eling methodology presented is based on the well-estadiSOMS methodol-
ogy (John and Kieras, 1996). GOMS is extensively used fontbeeling of user
behavior. For our purposes, however, it has two weaknegssgict formal se-
mantics is missing, and GOMS models the user behavior imakpely of the
behavior of the system. Both of these short-comings arecovee in Chaptdrl5.
In Section®l, we develop a formal semantics for GOMS modetkillustrate
it with an example. In Sectidn 3.2, the example is completeddding compo-
nents representing the application and the user’s assonspabout the applica-
tion. Throughout the first part, a simple eVoting applicatserves as an example
for the methodology.

For the pervasive verification of human-computer inteoaxtit is necessary
to model HCI at all levels of detail. In Chaptér 6, our apploé extended to
hierarchical models. We show how the chosen modeling mésimaallows to
model HCI from the highest to the lowest level while maintaghmodel sizes
suitable for automated reasoning. This supportgptreasivedescription of HCI
security and to prove security for all aspects of a user fater—from the pixel
level up to high-level functionality of the user interface.

IOLTS and CTL are suitable methods to describe the concubemavior of




4 CHAPTER 1. INTRODUCTION

components, but they operate on abstractions of the actagtgm, not on the
program itself. For the formal specification of computergyeons on the level of
individual procedures, different formal methods like Hodogic @8@9)
are used. In order to make pervasive specification and \agrdit of interactive
applications possible, Hoare logic is integrated into oatirodology in Chaptél 7.
Chaptef B summarizes the result of the first part.

Part Il Typically, HCI security requirements are informal and venit for spe-
cific areas of applications. For example, the @ﬁieotection profile for signature
creation devices does not use formal methods to specifyinsaface require-
ments. The signature creation protection profile uses nmébidescriptions like
“the data to be signed (DTBS) [has] to be displayed corr( ). In the
second part of this work, we show how this kind of informal apecific require-
ments can be subsumed under generic and formal conceptsaFaefinitions of
human-computer interaction security criteria are devetiopnd basic mental be-
haviors of the user (goal-orientation, mental represemtatf system states, etc.)
are included in our formal methodology.

Generic models of the user, the computer system, and thegses running
on the computer system are introduced in Chagter 9. The Con®niteria for
Information Technology Security Evaluation (CC) (CommantéZia Evaluation
Board (CCEB)IEG) are an international standard for caemmecurity evalua-
tion. In Chapte[1l0, they are analyzed in respect to usefat security. A set of
core concepts is developed and formalized. Based on theseaoncepts, Com-
mon Criteria security criteria definitions are formalizétle show which combi-
nations of criteria must be satisfied in order to guarantearsehuman-computer
interaction.

In ChapteEIlL, formal definitions of the basic security cats€onfidentiality
Integrity, andAvailability, are developed for HCI. We show how these concepts
relate to the Common Criteria core concepts developed iptéeous chapter.
With the results of part one and two, it becomes possible tegsé/ely specify
and verify human-computer interaction under security eispe

Part Il Throughout the first two parts a simple eVoting applicat®mnised to
demonstrate our methodology. In part three, the feasitwfiour methodology is
demonstrated on a real application. We apply our methogdtothe specification
and verification of a simple, text-based email client. An gicleent is a suitable
exemplary application for a number of reasons. Email cliemé one of the most
popular applications on personal computers. The corereatuan email client

1Bundesamt fiir Sicherheit in der Informationstechnik / &radl Office for Information Secu-
rity; Germany’s government agency for information teclogyl security
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is to provide a user interface for displaying and editing gnfeor both of these
core features user interface security is essential. Iregng an email incorrectly,
or sending an email with the wrong content or the wrong resgdoses security
risks. Typical examples for this are phishing attacks, whée user thinks an
email contains valid information from a legitimate sounée lhis bank, while the
actual source is an attacker and the data is malicious. Tlad elent makes use
of all basic types of user interface elements, and typioal behavior patterns are
taken into consideration.

Chapterl”IB describes the scenario of the email client agfit as part of
the Verisoft projectl(Beuster etlal., 2006). Based on thenfdrsecurity require-
ments ofConfidentiality Integrity, and Availability, a specification of a secure
email client satisfying the security requirements fromt s developed in Chap-
tersl14[1b, and16.

1.2 Main Contribution

Each of the three parts constitutes a contribution to the éeformal methods for
secure human-computer interaction:

Part | In the first part formal semantics for GOMS are developed, @@iMS
is extended such that pervasive specification of human-atennteraction, in-
cluding human error, becomes possible. The hierarchigaoggh to user inter-
face and user behavior modeling introduced in this partella pervasive formal
treatment of human-computer interaction on all levelanfleomost abstract view
of general application behavior and user’s intentions avallgy down to lowest-
levels of application and user behavior. The integratioHadre logic for specifi-
cation of procedures allows for the complete formal speatific and verification
of program behavior, while at the same time it is possiblegscdbe the abstract
concurrent behavior of components by IOLTS and CTL.

Part Il The second part presents a systematic adaptation of thgdoogples
of computer security to human-computer interaction sécamd its translation
from informal definitions to formal definitions suitable fautomated reasoning.
Parts of the Common Criteria for Information Technology 8ég Evaluation

(CC) (Common Criteria Evaluation Board (CCEB), 2006) amrfalized for user

interface security.

Part Il In the third part, we present a prototypical applicatiort tias been
pervasively specified and verified under user interfacerggaonsiderations. In
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contrast to other areas of application of formal methods,itototypical appli-
cation is not highly specialized for a specific security desarelevant area. It
is a prototype for applications typically used on a dailyibdsy end-users on
open networks like the Internet. Proofs are given showinglwlombinations
of components and behavioral traits satisfy the securitgrea developed in part
two. The results of the third part provides system buildeith & realistic set of
building blocks for the specification and evaluation of uségrfaces for security
critical applications.

We provide a formal methodology for the pervasive specificeand verifica-
tion of human-computer interaction based on and derivea fitte fundamental
principle of computer security. Our work contributes to garter science by de-
veloping new methods for formal specification of secure usterfaces, and by
formalizing security requirements of user interfaces. Sehareas are highly rel-
evant for practical software development. Formal methadssécurity of user
interfaces are applicable to a large number of applicatiergs e-banking appli-
cations, ATMs, email clients, but also safety critical gyss like medical devices.
A number of governmental organizations have issued sgauriieria catalogs and
for applications deployed in security sensitive areas.sétsandards are adapted
by private industry as well. Since neither formal methodsléscribe security
aspects of user interfaces were available until now, non&bcriteria to evaluate
security of interfaces, these catalogs make little userofi& methods and in gen-
eral do not require verification at all. In this work, we geeumterface security
into the realm of formal specification and verification.

Parts of ChapterEl 4] 5 afid 6 have been published_in BeckerBanstdr
(2006b). Parts of Chaptdisl11 40d 13 have been publishedist@eet dl[(2006).
Parts of Chaptdi_14 have been published in Beckert and B: 12007).
Parts of Chaptdi_15 have been published in Beckert and B ). Parts of
Chaptefb have been published.i tal. (2007).




Chapter 2
Related Work

We build upon work on formal methods for developing compgigystems, hu-

man-computer interaction (HCI) research, and securergﬂMl

(1989) and_Jain (1994) give a survey of formal languagestferdescription of

user interfaces. More overviews are given in two (diffeydrmioks calledormal

I%gods in Human-Computer Interacti@idarrison, 1990; Palanque and Paternd,
).

There are three main areas of research in formal methodsifoah-computer
interaction. The first area develops and analyzes formalfenthe description of
interfaces and human-computer interaction. The secordmrestigates the inte-
gration of user interface components in the formal softvadgneslopment process.
The third area is the development of tools for formal desienipand development
of interfaces. In the following, we review existing apprbas in these three areas.

2.1 Formalisms for Describing HCI

We distinguish between “black box” and “white box” methods dlescribing in-
terfaces. “Black box” methods describe the behavior of agamment by its input
and output interfaces. When describing HCI, the outputiate is typically the
screen and the input interface consists of a keyboard andugend he internal
structure of a component is not relevant from this point @&wi “White box”
methods describe the internal structure of the component.

A good formalism for user interface design supports mudtilglvels of ab-
straction both for the black box and for the white box view.r e black box
view, it should be possible to describe user interface etesnen different lev-
els of aggregation. For screen output, this ranges from-pexel description of
screen elements to aggregated descriptions of sets of isidger keyboard in-
put, it should be possible to capture single keystrokes lagid timings as well as

7



8 CHAPTER 2. RELATED WORK

aggregated sets of keystrokes representing commandshémptportant feature
of techniques suitable for modeling human computer inteyads the ability to
deal with concurrency.

An early contribution to formal methods for the descriptadiuser interaction
is the PIE model, developed hy Dix and Runciman_(1985). PI issxmore
recent variations (e.g. Dix and Abowd (1996)) allow to désethe interaction of
the system and a user formally, but they focus on describi@gomputer system’s
side of the interaction. In PIE, the behavior of a user iatezfis described by a
sequence of commands (issued by the user) leading to a smEgokeffects. In
this model, system behavior is defined as a function from cantsissued by the
user to effects produced by the system. In case of a texthas interface, the
input is a sequence of keystrokes and the output are chesatitplayed on the
screen.

PIE and similar formalisms put an emphasis on describing/théehavior
of a computer system and are suitable for automated reagonig. with model
checkersmg@OZ) uses model checking in order tetgséential discrep-
ancies between system behavior and the mental models efsysters. The main
weakness of PIE is that it focuses on the behavior of the coengystem. It does
not provide advanced mechanisms for user modeling.

Carr @7) introduces Interaction Object Graphs (IOG)xension of stat-
echarts for modeling elements of graphical user interfacestheir interactions.
IOG allow a description both on the pixel-level and on an aggted level. 10G fo-
cuses on graphical user interfaces, and the language uskedddbe them is di-
rectly executable. The formalism of IOG allows basic reasgiasks like testing
for reachability of all statesljab@%) uses graphmgnars to describe
graphical user interface elements. Changes in the GUI adelad by re-write
rules. The main weakness of both approaches is that theyiarargy languages
for formal specification of user interfaces, but not for therial description and
analysis of human-computer interaction.

Palanque et all (1995) use hierarchical Petri nets to combser and sys-
tem models of interactive systems. Berstel et al. (2005¢ki@ed “Visual Event
Grammars” (VEG), a formal method for the specification andiasion of graph-
ical user interfaces. They describe complex graphical igerface as commu-
nicating automata. Interactive Cooperative Objects (I(E2lanque and Bastide,

) are a specialization of High Level Petri Nets (HLPN)dser interface de-
scription. The approach by Palanque et al. is similar to gpF@ach presented in
this thesis, but in contrast to Palanque we do not use Pagifoemodeling, but
IOLTS.

In a number of works, formal specification methods like Z hiagen applied
to user interface design. One of the first formal specificestiof interactive com-
ponents was the specification of a text editor in Z presenkgimal specification
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of a display editorby|§i]ffiﬁ [iéélg) Based on Sufrin’s specification, Booth and
Jonesi(1994) implemented an editor in the Miranda functipr@agramming lan-
guage. | Goldson (2000) and Hussey and Carrington (1998)d@auore case
studies in using Z for user interface specification. In B@ride present the spec-
ification of a secure email client including an interactidger.

Most formalisms use variants of state transition diagraongtie white box
model and process algebras for the black box model of irieeasystems. Ex-
ceptions include XTL r‘l,__]_9_b8) which uses temporal ¢sgihybrid meth-
ods and non-standard methods like MAL and interactors fleake.and Paterho,
11998). Process algebras for the black box view are uséd bye€aét al.[(1995)
and Kuhn and Frank (1991). Communicating Sequential Psesg&CSP) (Smith
and Duke@% and LOTOW ‘ 89) have alsa bsed to specify
human computer interactions.

While PIE and similar formalisms put an emphasis on desugilthe 1/0 be-
havior of a computer system and are suitable for automatesbreng (e.g., with
model checkers), other approaches like Task Knowledgetbnes (TKS) (Hamil-
ton,[1995), (Extended) Task Action Grammar ((E)TAG) (de #a2000), and
Goals Operators Methods Selection-rules (GOMS) (John amcs| 1996) focus
on providing cognitive models of the user. TKS provides apliek representa-
tion of the cognitive model of the user. TAG allows a preciserfal description
of the user actions, the user’'s knowledge and the user’snateepresentation
of the system (what the user thinks about the system.) ETA#® iextension of
Task-Action-Grammar. ETAG’s formal model represents thevidedge of the
user about the user interface. In ETAG, the interface pexvioly the machine to
the user is described as a “User’s Virtual Machine” (UVMuges object oriented
design with precondition/action/postcondition style@peations of actions. The
mental model used by ETAGs is restricted in the way that isduo® have an ex-
plicit model of the user’s internal mental states. It doesyéver, make assump-
tions about the user’'s knowledge. For our approaches, EBAGaA high-level,
because it “does not describe the details of the presentatimformation on the
display screen and the specific knowledge of particularsuard the strategies
they use” mm&. Another disadvantage of ETAGas"thdoes not ad-
dress the presentation interface. [...] elements of thegmtation interface [...]
are named or mentioned, but these are only included in dre needed to
completely describe the non-graphical aspects of thefﬁuem 5).

A general weakness of formal HCI methods like TKS and (E)TAGhat
they require detailed models of the user behavior in orderddel the interaction
between a computer system and a user. While computer sysgengand should)
be formally specified, a formal user model is always basedssaraptions about
the user which may or may not be true. The approach presemttdsi thesis
requires minimal assumptions about the user.
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Harrison @O) develops the concept of “State Display Gon&nce” which
is closely related to the integrity requirement developedChaptel_ Il of this
work. It should be noted that Grudin’s argumexgfainstuser interface consis-
tency requirement@i@%) does not apply to the woekented here. He
argues that consistency defined as having similar usefasteelements for sim-
ilar functionality can not be generalized, because siitylaepends on context.
Our work however does not address consistency within a ngenface, but con-
sistency between a user's mental representation of a sysmand the actual
system state.

2.2 Tools

Most tools for formal user interface design support detileganethods. Tools

like MASTERMIND (Browne et al.| 1997), TADEUS (Schlungbaum and Elwert,
[1995) and VEG|(Berstel et lal., 2005) aid the user in the fordesicription of
user interfaces. MSTERMIND focuses on static description of user interface el-
ements, while TADEUS uses graph notation to describe thawehof user in-
terfaces. TADEUS is embedded in a method for developingiegtpns based
on the separation of the functional core of an applicatiomfits user interface.
MASTERMIND and VEG do not only support the formal design of user interfac
but also proves about properties of user interfaces by nubalking.

2.3 Design Methods

PAC-Amodeusl(Calvary et al., 1997) is a typical design metlow applications
with user interfaces. It separates the functional partssafftavare from the inter-

active components. User interface elements are represastagents. Alialog
controller provides the interface between the user interface part gé@ms and
the functional part. Although a system design like this se@rbe a natural view
when constructing a software system from components, ineger drawbacks
from a security point of view. Security usually concernsaalpects of a system,
and the security of an element from the functional core maedd directly on
properties of the user interface. Even worse, security neggdd on the interac-
tion of different parts of the system, both from the funcéiboore and the user
interface.
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2.4 Summary

Most existing formal methods for specification of user ifdees describe user
interfaces on an abstract, high level. They define propedfea (most times
fixed) sets of widgets, and the interactions of these widgetgeneral, they do
not take (potentially undesirable) effects caused by autgon of different user
interface elements into account. This is a problem, becdatemay come from
non-trustworthy sources. We want to show that it is not gmdego bring the user
interface into a configuration where the user is deceiveditathe state of the
system. For example, a common trick by advertisers on thédMdide Web is to
mimic the appearance and behavior of system status windomsler to get the
attention of the user. This trick works by using low-levehétionality (showing
a bitmap supplied by the attacker) to mimic high level fuoieslity (making the
bitmap look like a status window).

Therefore, we need a modeling language suitable for asabfsnteractions
between “high level” properties (“the widget showing theteyn state should al-
ways be on top of all other widgets”) and “low level” propedi(“The colors and
fonts used to show the warning message should be legibleHeanterface.

2.5 GOMS

GOMS is similar to (E)TAG. While TAG describes user actegiin categories of
“tasks” and “actions”, GOMS breaks HCI down inBoals Operators Methods
andSelection ruIe@@S). Goals are the tasks the user wants to accdmplis
In order to do so, he issues commands to the computer systeopgrators. This
can be text input, mouse movements, etc. Methods are sgateEgaccomplish
(sub-)tasks available to the user, e.g. moving a text bloolqring a box, etc.
Methods can be further decomposed into sequences of sub-@ud operators
utilized to achieve the sub-goal. Selection rules must beleyed by the user if
there is more than one method to accomplish a task.

GOMS is a well established formal method for the descripgdbRCI from
a user’s perspective. It is based on the solid ground of pdggical research.
GOMS, like most other methods for user modeling, are geaedrds studying
usability. It has some weaknesses that are particularlyl@naatic in the context
of security: GOMS has no means to describe concepts likdaisgue, individual
difference between users, elc. (Olson and Olson,/1995).

There are different flavors of GOMS. KLM-GOMS (Keystrokevieé Model
GOMS) describes user activity on the lowest Iem JOAs the name
suggests, user behavior is described by measuring thettiales an experienced
user to press keys, move the mouse to certain areas of thensete. In KLM-
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GOMS, the user executes a fixed sequence of operators intordehieve a task.
There are no selection rules. KLM-GOMS is used to measurértieeit takes an
experienced user to accomplish a known task.

“The Rationality Principle asserts that users will devetogthods that
are efficient, given the structure of the task environmeat,(the de-
sign of the system) and human processing abilities anddtroits.
Thus, human activity with a computer system can be viewedas e
ecuting methods to accomplish goals, and because humareststr
be efficient, these methods are heavily determined by thigres
the computer system. This means that the user’s activitypegore-
dicted to a great extent from the system design. Thus, amistg

a GOMS model based on the task and the system design cantpredic
useful properties of the human interaction with a comgi(fetn and
Kieras , p- 10)

GOMS is oriented at psychological analysis of user behanortimed measure-
ment of user activity. A major weakness of GOMS is that itnsited to sequential
user plans, and that it does not provide means to generalieajgm specifica-
tions from user models. This rather Tayloristic approadd@ has drawn critique
for not being mentally adequate and not taking inexperiémsers and users who
may make mistakes from time to time into accodgmvmw@ne of the
creators of GOMS has developed an advances cognitive ngdaiethodology,
called SOAR. The aim of SOAR is to create an architectureablégtto model all
kinds of intelligent behaviors. Since our goal is to modeltiser as simple and as
general as possible, the sophisticated modeling methandsded by SOAR are
not required. We base our user modeling technique on GOMS.

CMN-GOMS augments KLM-GOMS with selection rules and suladgoWe
use the CMN-GOMS, because selection rules are essentiat epproach, More-
over CMN-GOMS [(John and Kiefids, 1996) allows to describe merlels hierar-
chically. This is an important property for modeling a usgerface under secu-
rity aspects because of the large variety of errors in huotanputer interaction.
Some of these errors are on a very low level (for example, & may push
the mouse button twice instead of once), while others arevamahigh level of
abstraction (e.g., the user may misinterpret the meanirag @rror message). A
hierarchical modeling mechanism allows to model all kinflsroors within one
formalism. CMN-GOMS models are semi-formal. We provideniat seman-
tics for CMN-GOMS models in Chaptéf 5. The formal CMN-GOMSdabis
augmented by formal models of the application and formal e®df the user’s
assumptions about the application. With a formal definimdrsecure human-
computer interaction, this allows to determine the segwita user interface by
automated reasoning.
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Another advantage for our purpose is that GOMS descriptiethod is very
close to the State Transition Diagrams that we use to fommaiser behavior:

“[...] CMN-GOMS is based on two of the MHP ‘Principles of Op-
eration’, theRationality Principleand theProblem Space Principle
[...]- The Problem Space Principle postulates that a usetisity
can be characterized as applying a sequence of actionsg opkra-

tors, to transform an initial state into a goal state.”(John arner#Gs,
1996, p. 10)
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Chapter 3

Overview of Part |

The application of formal methods to problems of secure hiowmputer inter-
action requires a common foundation for the formal modedifguman-computer
interaction. A common formal language is required as the barsthe description
of human behavior, application behavior, human-compuieraction, and secu-
rity criteria definition. This formal language must allow adequate modeling
of the components involved in human-computer interact@amely the user(s),
the application(s), and the channels of communication éetwthem. In order
to keep our methodology as generic as possible, the langlageéd allow for
“block box” modeling, i.e. it should be possible to descrdmmponents by the
messages sent and received, without having to know aboturtéreal structure of
the components. Also, the formal methods should be suifableutomated rea-
soning. Input-Output Labeled Transition Systems (IOLTSpasuitable method
are introduced in ChaptEl 4.

In Chapteib, the language defined in Chapier 4 is used toaeaeformal
methodology for the description of user behavior. The usedeting methodol-
ogy presented in this chapter is based on the well-esta&ai§OMS methodol-
ogy (John and Kieras, 1996). GOMS describes user behavitheirategories
of the user'sGoals the Operatorsavailable to the user, theethodsemployed
by the user, and th8election Rulessed by the user to choose if more than one
method is available to achieve a goal. GOMS is extensivedd tigr the modeling
of user behavior. For our purposes, however, it has two wesdes: Strict formal
semantics are missing, and GOMS models the user behaviependently of the
behavior of the system. Both of these short-comings arecowee in Chaptdr]5.

Chaptefb extends our methodology to hierarchical modeith Kierarchical
models, it becomes possible to model human-computer ctteraon an arbi-
trary level of details, ranging from a coarse-grained viémteraction of abstract
concepts like the user’s general goals and the logical tstreof the application,
down to a low-level model of technical details like the vikzetion of individual

17
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elements on the screen. An abstraction method for hieiakthiodels is intro-
duced in order to allow automated reasoning even for hightgex models with
large state spaces.



Chapter 4
IOLTS and CTL

4.1 IOLTS

As we have seen in Chapfdr 2, most work on formal methods fer interface
specification and human-computer interaction makes useaphgbased meth-
ods or of methods that can be reduced to graph-based fomsali¥Ve follow
this line of work and base our methodology on Input-Outputdlad Transition
System (IOLTS) and Computation Tree Logic (CTL). Labeledngition Sys-
tems are commonly used to define the semantics of formal metiiiee process
algebras. Tools like model checkers are usually based onwh&re more com-
plex formalisms are translated to LTS in a pre-processieg.sthe extension of
LTS to IOLTS allows to describe behavior of LTS by traces giutr and output-
symbols. We describe properties of IOLTS in ComputatiorraeTLogic (CTL)
formulae. Automated tools like the NuSMV model checker die @& check if
CTL formulae are satisfied by models given as LTS. In Chdftevesdevelop a
methodology for the formal description of and reasoningulé&aOMS that make
use of Input-Output Labeled Transition Systems (IOLTS)@onchputational Tree
Logic (CTL). Below, we define these concepts and some reladéidns used in
the next chapters.

Definition 4.1 (LTS). A Labeled Transition Systefh.TS) is a tuple
L=(S,Z,s,—) whereS is a set ofstates sop € S is aninitial state X is a set of

labels and— C S x  x S is atransition relationWe use the notation = ¢ for
(p,0,q) € —. The special labet € ¥ indicates a silent transition from one state
to the next.

Definition 4.2 (IOLTS). An Input-Output Labeled Transition Systgf®LTS) is
an LTSL= (5,2, syp,—) with Z=3?U2!. We callZ? the input alphabetand
2! theoutput alphabet

19
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We use state transition diagrams to visualize IOLTS. An gdans shown in
Figure[4].

@@ ")
I)

O
2? 2!
—> (%0) —

ag?

Figure 4.1: State Transition Diagram representation oA S.

22, 5, 2 5!
— A » B -

Figure 4.2: Composition of two IOLTS.

A linear compositionis the concatenation of two IOLTS, and L, where the
output of L, is input for L, as shown in Figurg-4.2:

Definition 4.3 (Linear Composition)Let L, = (S4,Z4, S04s—a),
Ly = (Sp, %, 505, —» ) be two IOLTS witlE?,N=?, = {} andx!,NZ!, = {}. The
compositionL,.L;) = (S, Z, sp,—) of L, and Ly is defined as:

S = SyxSi
5?2 = 372,
SIo= 3l,Usl,
SO = (50(17501))

— = {((s4,%),0 % st witho e 22, U3, } U
{((Sa,55), 0, (5a,55)) | 55— s With g € T2, UZ!;,} U
),€ 2. sk ands, =, sp with o e 51,N22}

Intuitively, a linear composition acts like incoming labedre processed by
the first IOLTS producing some output, which in turn is presesby the second
IOLTS. In common definitions of composition, the output apht of the first
IOLTS must be identical to the input alphabet of the second&) and the output
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of the first IOLTS is completely consumed by the second IOLES putput of the
first IOLTS does not show up in the output of the composed carapb This
alternative definition of linear composition is not suited éur purposes, because
the output of the first IOLTS is sometimes processed by mose tine other
IOLTS and must therefore be preserved. A small example sngiv Figure§ 413
andZ.4.

32, S, T2 sl

TZ!c
C
Ti?:
A

Figure 4.3: Before linear composition of A and B.

4,

C

2?2
2!,

2?2 A B 2l

Figure 4.4: After linear composition of A and B.

Our definition takes this into account by addif(@s., s), 7, (s, 53)) | $a —a
sl with Z1,} to the transitions of the composed IOLTS. In difference toomn
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definitions of linear composition, in our definition the outfrom the first IOLTS
is forwarded and becomes output of the composed componeapt€6 makes
extensive use of this kind of composition.

Often, components are combinedgrallel composition. In parallel compo-
sition, the output of., serves as input fok;, and the output of., serves as input
of L, (see Figur&4ls).

Definition 4.4 (Parallel Composition)Let L, = (54,24, S04, —a) &nd
Ly = (Sb,Zb,sob,—>b) be IOLTS.

We assume the input and output alphabets pénd L, to consist of internal
and external subsets, where the internal input is denoteéd X4, the external
input withZ?E, the internal output witlx!l, and the external output with! E. And
we require that these subsets are chosen suchthat= 2?1, andZ!l, =7 ,.

Theparallel compositio L, || Ly) = (5, Z, so, —) of L, and L; is defined as:

S = Sox5
52 — $9E,US%E,
2! = 2IE,U2IEy
so = (S0a,50p)

— = {(54:%),0,(5",5)) | $a —q s, With o € 2B, USIE, U3, } U
{(5a,),0,(sa,55)) | 55 —p s With 0 € S2E, UZIE, U3l } U

{(50,55), &, (55, 55)) | 80 —>a s, andsy —p s} with
o€ usll,}

TZ!Ea T SIE,

S,

A ] B

21

T S?E, T S?E,

Figure 4.5: Parallel composition of IOLTS.

Below, we additionally use a variant of IOLTS called Symnuweimput Output
Labeled Transition Systems (SIOLTSs), where each tramsfiroduces both an
input and an output symbol. SIOLTS play an important rolehie integration
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of IOLTS-based specification and specifications in Hoarecldg Chaptefl7, we
associate the labels of SIOLTSs with procedure calls, thatisymbols with input
variables, and the output symbols with output variablefefdrocedure calls.

Definition 4.5. An LTSL = (S5,Z, so, —) with £ = (£? x X!), for aninput alpha-
betZ?and anoutput alphabel!, is calledSymmetric Input Output Labeled Tran-
sition Systen(SIOLTS).

The input/output behavior of a component is describedrbyes which are
(possibly infinite) sequences of elements from the alphabandpaths which
are corresponding sequences of states.

Definition 4.6 (Traces and Paths) et L = (5,Z, sp,—) be an IOLTS. Then, a
pathis a sequenceésy, s1,...) of states fromS with s; — s;,1 for all i >0. A
trace(of L) is a sequenceoy, 01, ...) of elements ok such that there is a path
(s0,51,...) with s; 25 5,41 (i > 0). Given a path: = (s, s1,...), by ¢! we denote
the sub-path ot starting ats;.

We describe properties of components in temporal logic.dbaice of tempo-
ral logic is based on two criteria: The logic of choice musepressive enough
for the description of security properties of HCI. Tools &artomated reasoning
(e.g. model checking) should be available. Computatione¢ Togic (CTL) sat-
isfies these requirements. Model checkers typically sugpbk and Linear Tem-
poral Loglc (LTL). In this work, we have used the free modedcker NuUSMV 2

.12002). LTL is not suitable for the securityoperties formalized
in this thesis. It does not allow existential quantificatorer paths. As we will
see in Chaptelfs]10 a@dl11, existential quantification ovidrspa required to for-
malize parts of the common criteria and to formalize avilitgtrequirements.
NuSMV 2 and other model checkers support propositional CHawever, for
the definition of security requirements and for the spedificaof component it
IS more convenient to use first-order logic. For example, ve@two quantify
over all users of a system, or all messages send by an appiicdn this the-
sis, we assume domains are finite. This makes it possibleab FO-CTL like
propositional CTL. SeéMrmESO) for reduction oftendomain FOL to PL
(propositionalization).

Definition 4.7 (FO-CTL). Let P be a set ofn-ary relation symbols,V a set of
variables, C' a set of constants, anfl a set of functions. The set of termss
defined as

ri=clo|f(ty,... t)

withc e C, vE V,feF,andty,...,t, €T



24 CHAPTER 4. IOLTS AND CTL

FO-CTL formulaep are constructed inductively by:

pi=p(tr,....tn) @V Q| QNP @|Vz.0| 2.0 | EY[AY
withp e P,z € V,and#;...t, €T

Y=Xep|pUp|Gp|Fo

Intuitively, X @ means thatp holds in the next stegpU¢@ means thatp holds
from now on untilg holds, Gg means thatp holds forever andc¢ means that
¢ will hold eventually. E¢y means that there exists a path wherénolds, and
Ay means thaty holds on all paths. For exampl&G likes(Bob, Soccej means
that whatever the future may be, Bob will always like soceed EG likes(Bob,
Soccer)means that it is possible that in the future Bob will alwake lsoccer.

Now, we can use IOLTS to interpret FO-CTL formula—in combioa with
valuation functionsA from the set of states of an IOLTS to the set of interpre-
tations over a domain. In the following chapters, we use ISItd model the
high-level behavior of users and applications. We assumeédmain is constant
and finite.

Definition 4.8 (IOLTS Semantics)Given an IOLTS. = (S,Z, sg,—), a domain
D, and a set of interpretationsa valuationA is a mapping fromb' to 7. L,A, o =
@ denotes thatp holds in staterg with valuation functiom. L,A, z = ¢ denotes
that @ holds for all pathsr = (co, c1, . ..) with valuation functiom. A is defined
inductively as as follows:

LA co=p(ta, ... ty) if (I(t1),...,1(t,)) € I(p) with I = A(co)
LA co=p(ta, ... ty) if (I(t1),...,1(ty)) € I(p) with I = A(co)
LA co=— @ ifnot L,A,co =@

LA, co=EQ@N Y if L,LA,cE=@andL,A,cof=y

LA, co=0V Y if L,A,coE=@or LA, co=

LA co=Vir.@ if LA, co = @y forally € D

LA co=3z.9 if L,A, co = @/, for at least oney € D

LA zEo@ if L,A,co=@

LAz =AQ if L,A,z = ¢@for all pathsz in L starting withcg

LA,z =Eg@ if L,A,z = @for at least one path in L starting with cg
LA,z =X if LA,z = ¢

LAz = @Uy if (@) L,A,co = @ or

(b) there is someé > 1s.t.L,A,z' = ¢
andL,A,z" = @forall 0<k < i
LA,z =G if L,2' |=¢@forall i >0
LA,z =Fg if L, 2" = ¢ for somei >0
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|

eVoting Application

CancelVote

Idle

' Choose
@ o

Figure 4.6: Application Model for the eVoting example (lzagersion).

Confirm
Vote Vote Conf.

“Bob”

We use an eVoting application as a running example througtnigi thesis.
The user is asked to select a candidate. After choosing,\ibng application
asks the user to confirm his vote. If he confirms, the voting@ss finishes. If he
cancels, he can change the vote. An IOLTS modeling the sstypégsion of this
application is shown in Figuie4.6. “Bob” is the only cand&lan the example. A
user operating the application is modeled in Fiduré 4.7.

eVoting User

CancelVote

Confirm

Vote Idle

Choose
@ -

Figure 4.7: User Model for the eVoting example (basic vearsio

As an example we evaluate if it is possible that the final statée con-
firmed” is never reached. First, we give a valuation functdofor the IOLTS
shown in Figuré&4l6 witi (s) = {p | (A (s))(p) = true}. In order to formalize the
desired property, we only need an atomic proposifinal which holds in state
“Vote_ConfirmedBob™:

A(Locked = o
A(Unlocked = o
A(Vote CastBob) = @

A (Vote_ConfirmedBob) = {final}

The requirement that a final state is always reached is defi@&iIl'L as
AFfinal. A refutation of this proposition using NuSMV is given in Agpdix[A.
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In the refutation, the user always cancels his vote, votasdgr “Bob”, cancels
the vote, and so on. It is, however, possible to reach a fiagg:dEFfinal. Even
more, it is always possible to reach a final st&&&EFfinal.

4.2 User and Application Models

IOLTS as shown in Figure—4.8 are used to model the behaviopplications.
We use FO-CTL formulae to describe properties of the appioa. In order to
develop a generic methodology for the description of sécprioperties of appli-
cations, we use some pre-defined predicates in all our mottetbe following,
we give a list of these predicates. Each predicate is accoiegavith a short ex-
planation. The reader is referred to Chapiels 10dahd 11 for-dapth discussion
of these predicates.

In a number of situations it is necessary to refer explidithe application
state as given in the IOLTS. For this, we define predicates thié same names as
the states of the IOLTS which hold iff the IOLTS is in the c@pending state:

Definition 4.9 (State Predicate)Let L = (S,Z, sp,—) be an IOLTS. LeA be a
valuation function. The modé€lL,A) containsstate predicates the valuation
functionA has the following properties:

LA,s |=statds)
LA, s (statds) if s # s

In SectionCITIl security requirements for applicationstased on special
properties of certain states in the application model. VWirdjuish between
four kinds of application statesSuccesstates are the states where the user has
achieved his goalFatal states are states undesirable for the user. The decisions
about which states are the success states and which statesahiare part of the
model. The definitions of the other two kinds of statestical states andgafe
states, follow from the definition cfuccessndfatal states. If at least one transi-
tion from a state immediately leads intdadal state then it is &ritical state. All
states neithecritical, nor successnorfatal, aresafestate8.

We define two predicates for each of the special states. s3tateessfatal,
critical, safehold iff the IOLTS is in the respective state. Predicagascesss),
fatal(s), critical(s), safd s) hold if IOLTS states is of type success, fatal, critical,
safe, respectively.

1Depending on the application, one may want to extend theitlefirof fatal states as follows:
If from a given state nguccesstate is reachable, then it idatal state.
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Definition 4.10 (Core Predicates)Let L = (5,Z, sp,—) be an IOLTS modeling
an application. Let successStates be the set of success,stai let fatalStates
be the set of fatal states. The model contairitscal, success, safe, and fatal state
predicatesf success, fatal, critical and safe P and the valuation functioa has
the following properties:

coreAppPred&l,A) =

L,A,s |=success iff € successStates

L, A, s |= fatal € A(s) iff s € fatalStates

L, A, s [~ success\ fatal

critical = EXfatal

safe = — successg\ — critical A — fatal
L,A = succests) if successe A(s)

L, = fatal(s) if fatal € A (s)

L,A = critical(s) if critical € A(s)

L,A = safds) if safec A (s)

Definition 4.11 (Assumption PredicatesYhe predicates given in Definiti@n4]10
are mirrored byassumption predicates the user’s side, an assumption predicate
indicates whether the user assumes that a certain propeitstor the applica-
tion. LetL = (5,Z, so, —) be an IOLTS modeling a user. Let
asmSuccessStates be the set of states where the user as-
sumes that the application is in a success
state,
asmFatalStates be the set of states where the user as-
sumes that the application is in a fatal
state,
asmCriticalStates be the set of states where the user as-
sumes that the application is in a critical
state,
asmSafeStates be the set of states where the user as-
sumes that the application is in a safe
state.
A model containassumption predicatésasmSuccess, asmFatal, asmCiritical
and asmSafe P and

coreAppPred&l,A) =
L,A, s |=asmSuccess iffec asmSuccessStates
L,A, s = asmFatal iffs € asmFatalStates
L,A, s =asmCritical iffs € asmCriticalStates
L,A, s = asmSafe ift € asmSafe
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4.3 Example

High-Level App. Behavior

Cancel

WaitForUnlock Choose
[Cand.]

Figure 4.8: Application Model for the eVoting example.

Confirm
Vote Vote Conf.
[Cand.] )’

We continue with the eVoting example from Sectlonl 4.1, inighély more
detailed, parametrized version. We assume that the eVotexhine is initially
in a locked state. After some time, the machine is unlocketithe user can cast
his vote. After he has selected a candidate, the machinessth@iuser’s choice
and asks for confirmation. If he confirms, the voting procassties. If he can-
cels, he can change the vote. Figlid 4.8 shows an IOLTS mmodétle voting
machine. Fom candidates, “Vote Cast [Candidate]” and “Vote ConfirmedriCa
didate]” represent: states each, one for each candidate, “Choose [Candidate]
represents the transitions to the states associated with the candidatesinput
alphabet is identical to the output alphabet of the user M@id'S, i.e., the op-
erators available to the user. The output alphabet is anaabsepresentation of
the application’s outpEt In this example, the sets of critical, fatal, success, and
safe states are modeled as follows. L&t the candidate of choice of the user:

fatal € A(“Vote Confirmed []”) forall i # ¢
success € A (“Vote Confirmed []”)

7

From the definition otritical it directly follows that
critical € A (“Vote Cast [[]") forall i +# ¢

and from the definition o$afeit follows that

safg“Vote Cast [c]")
safg“Locked”)
safg“Unlocked”)

2For now, we model only the top level behavior of the applmatiln Chaptefl6 we introduce
hierarchical models which allow to model all details of hum@mputer interaction.



Chapter 5
Formalized GOMS

5.1 Formal Semantics for GOMS User Models

We base our formalization on GOMS, because GOMS is a welbksited for-
malism, and—in the incarnation CMN-GOMS (John and Kidra86)—it allows
to describe user models hierarchically. This is an impamaoperty for model-
ing a user interface under security aspects because ofrthe Variety of errors
in human-computer interaction. Some of these errors arevemyaow level (for
example, the user may push the mouse button twice insteattej,ovhile others
are on a very high level of abstraction (e.g., the user maynieipret the mean-
ing of an error message). A hierarchical modeling mecharmiows to model
all kinds of errors within one formalism. GOMS models are sérmal. In this
chapter, however, formal semantics for GOMS are defineddbasdhe formal
methods defined in Chapfdr 4. In Secfion3.1.1, the formahséos are extended
by defining semantics of selection criteria. In combinatietin the formal model
of the application (Sectidn8.2), and the formal definitidrH&| security devel-
oped in the second part of this work, automated reasoningtdabe security of a
HCI interaction model becomes possible.
GOMS describes human behavior in categories of

Goals The user’s goals
Operators Atomic actions available to the user
Methods Sequences of operators and sub-goals

Selection Rules  Rules to decide between alternative methods

In CMN-GOMS, methods for achieving a goal consist of seqasraf sub-
goals and atomic operators (the only difference betweergsals and atomic
operators is that operators cannot be further decompo#fethere is more than
one way to reach a goal, a selection rule is used to choosebptalternatives.

29
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GOAL: VOTE FOR CANDIDATE(“Bob”)
OPERATOR: WAIT FOR UNLOCK OF VOTING MACHINE
OPERATOR: CHOOSE CANDIDATE(“Bob”)
GOAL: REVIEW VOTE
SELECT:
OPERATOR: CONFIRM VOTE.. .if candidate “Bob” selected
GOAL: CHANGE VOTE ... otherwise
OPERATOR: CANCEL VOTE
OPERATOR: CHOOSE CANDIDATE(“Bob”)
GOAL: REVIEW VOTE(2)
SELECT:
OPERATOR: CONFIRM VOTE.. . if candidate “Bob” select
OPERATOR: FAIL ... otherwise

9%
o

Figure 5.1: GOMS model for eVoting.

Example Figure[®1 gives an example. It models the user of an eVoting m
chine. In order to achieve the goal “VOTE FOR CANDIDATE(‘Babthe user
executes the method consisting of the atomic operationsITWZOR UNLOCK
OF VOTING MACHINE” and “CHOOSE CANDIDATE(‘Bob’)". Then he &-
views his vote. The sub-goal “REVIEW VOTE” can be achievedwo ways:
(1) If the user has selected the right candidate, he config2)df he has selected
the wrong candidate, he pursues sub-goal “CHANGE VOTE.’ @iy the vote
leads to the sub-goal “REVIEW VOTE(2).” If the user has sedddhe right can-
didate this time, he confirms; otherwise, voting fails.

Definition We give formal semantics for GOMS models using the notion of
IOLTS traces. That is, an IOLTS corresponds to a GOMS modeékiftraces of
the IOLTS are identical to the possible sequences of usesidas (selections)
and operations. In order to formally define which IOLTS cepend to a given
GOMS model, we use the following formal syntax for GOMS madel

Definition 5.1 (Formal GOMS Model) Given a GOMS model, the corresponding
formal GOMS models

T: (G7 O7M7R7 C?go)
where
e (5 isthe set of (sub-)goals;

e O isthe set of operators;



5.1. FORMAL SEMANTICS FOR GOMS USER MODELS 31

e (' isthe set of selection criteria;
e M is a function mapping goals to their sequences of sub-guadsators.

e AfunctionR: G x C — G. R represents the selection rules Afg, c) = ¢/,
then goalg is achieved by sub-goal/operatgtin case criteriac holds;

e (o is the top-level goal.

The formal GOMS model corresponding to the eVoting GOMS rhérden
Figure[5.1 is shown in Figufe3.2.

T=(G,0,M,R,C,g) with

G = {VOTE_.FORCANDIDATE, REVIEW_VOTE,
CHANGE_VOTE, REVIEW_VOTE(2)}

O = {WAIT_FORUNLOCK, CHOOSECANDIDATE,
CONFIRM_LVOTE, CANCEL_VOTE, FAIL}

C = {Candidate “Bob” selectee (Candidate “Bob” selectedl

g0 = VOTE_.FORCANDIDATE

([ (WAIT_FOR UNLOCK, CHOOSECANDIDATE,
REVIEW_VOTE) if ¢=VOTE_FOR CANDIDATE

M(g) = (CANCEL_UNLOCK, CHOOSE CANDIDATE,
REVIEW_VOTE(2)) if ¢ = CHANGE VOTE

( CONFIRMLVOTE if ¢=REVIEW_VOTE and
¢ = Candidate “Bob” selected
CHANGE_VOTE if ¢=REVIEW_VOTE and
¢ = - (Candidate “Bob” selected

R(g.:¢) = | CONFIRM.VOTE if ¢— REVIEW.VOTE(2)and
¢ = Candidate “Bob” selected
FAIL if ¢=REVIEW_VOTE(2) and

¢ = - (Candidate “Bob” selected

Figure 5.2: Formal GOMS model for the eVoting model from FajG.1.

We define a formal semantics for GOMS models by translatiegfdhmal
GOMS model into an IOLTS. The idea is to represent operatomslements of
the output alphabet, selections as elements from the ipldbet, and methods
as (sub-)paths. Selection rules are branching points in@h&S. Figure[5.B
illustrates this representation.
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Selection l
User T T~ Method
- [Operator]

-/ [Selection]

[Operator]
(Operator QM

Operator l

[Selection]

Figure 5.3: Translating GOMS categories to state tramsdiagrams.

Definition 5.2 (IOLTS for GOMS Model) Let T'= (G, O, M, R, C, go) be a for-
mal GOMS model. L€tS, %, So,—) be the (generalized) IOLTS constructed for
by the algorithm shown in Algorithfd 1. Th¢f,Z, sp, —) is thelOLTS corre-
sponding toT'.

Algorithm 1 This algorithm calls the the algorithm for constructing &1L.TS
corresponding to a given GOMS model (Algorithin 2) with thereot arguments.

Require: GOMS modelT = (G,0,M, R, c, go)
Ensure: (Generalized) IOLTS. = (S5,Z, Sy, —) for T
1. Execute AlgorithniR with GOMS moddél' = (G, O, M, R, ¢, o), andSo = {so}

Algorithm alg:algo just calls Algorithril2 with the correatgaments. Algo-
rithm[2 creates the IOLTS recursively. The algorithm gets tmputs: a GOMS
model and a set of initial states. When the algorithm is etegl;uhe set of initial
states containgg only. The algorithm is split into three conditional partsher
part executed depends on the type of the top-level ggalf the top-level goal
is an atomic operator, lines 2 to 8 are executed. If the teptigoal is a method,
lines 10 to 23 is executed. If the top-level goal is a selectide, lines 25 to 36
are executed.

If the goal is an atomic operator In case the goal is in atomic operator, a new
state is created, and all elements from the set of initis&¢stare connected to the
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Algorithm 2 Algorithm for constructing an IOLTS corresponding to a give
GOMS model.

Require: GOMS modelT = (G,0,M,R,c, go), and a set of
initial states
Ensure: (Generalized) IOLTS. = (5,Z, So,—) and setF’ of states,
s.t.2?=C, 2! = O, andF contains the final states &f
1: if go € O then

2:  {initial goal is an atomic operatpr
3:  create new state
4. S = 5SU {51}
5. 2X?=0
6: 2= {go}
70— ={(50,90,51) | 50 € So}
8: F = {51}
9: else if M (go) = (ma,...,m,) then
10:  {initial goal has sub-goalsy, ..., m,}
11: S=0o
12:. 2?7 =0
13: 2l'=o
14. — =0
5. F =5
16: fori=1...ndo
17: create an IOLTY,; = (S;,%;, 54, —) with final statesF;

for T, = (G,0,M,R,c,m;) and setS} := F of initial states
by recursion
18: S :=5US¢;

19: 3?7 =3?2U%%
20: Jh=31uzl;
21: — =—=U—y
22: F . =F,

23:  end for

24: else

25:  {initial goal is a selection poift
26: forall g;,c; such thatR(go,c;) = g; do

27: create a new state

28: S =5uU {SZ‘}

29: —1=—=U{(s0,¢,8) | s0€ So}

30: create an IOLTS; = (S;,Z;, s;,—;) with final statesF;

for T, = (G,0,M,R,c,g;) and setS§ := {s;} of initial state
by recursion
31: S:=95US;

32: 3?7 =3?2U%%

33: =3luzl,u{ce}
34 — =—=U—y

35: F:=FUF;

36: end for

37: end if
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new state with labefp, and go is added to the list of output symbols. Thus, the
IOLTS resulting from the transformation outputs atomicraper go.

If the goal is a method In case the goal is a method, the algorithm is called
recursively for each element of its sequence of the subsgadlere the final states
of a sub-IOLTS are the initial states of the next sub-IOLTS.

If the goal is a selection rule In case the goal is a selection rule, a new state
is introduced. For each of the potential sub-goals an IOl 8onstructed re-
cursively. The newly created state is connected to theairstate of each of the
sub-IOLTS, and the edge is labeled with the input symbolesgmting the se-
lection criteria for the sub-IOLTS. Thus, depending on tekestion criteria, the
resulting IOLTS transits into the initial state of the capending sub-IOLTS.

WAIT_FOR_UNLOCK

2? 3!

o

CHOOSE_CANDIDATE “Bob"

l

“Bob" selected

CONFIRM_VOTE

“Bob" selected — “Bob" selected
CONFIRM_VOTE FAIL

— “Bob" selected

CANCEL_VOTE

CHOOSE_CANDIDATE “Bob”

Figure 5.4: IOLTS corresponding to the eVoting GOMS model.
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Set of initial states Algorithm[2 gets a set of initial states as an input param-
eter. These states are the connection points between thesikedy generated
sub-IOLTS. AlgorithmL calls Algorithnill2 with the correctgaiments to start
recursion.

The Perl program given in Append® B implements the algonitfit has been
used for constructing the example IOLTS presented in thasigh Applying the
algorithm to the eVoting example results in the IOLTS showfigurd 5.4,

5.1.1 Assumptions as Selection Rules

Selection rules in GOMS models require decision criterrmGOMS, these cri-
teria are only specified in an informal way. Since our goabiprovide a formal
semantics for GOMS models suitable for automated reaspaimgthodology for
the formal description of selection criteria is required.

If a user is in the situation to choose between multiple asjdiis decision
will be based on the current system configuration or, moreigedy, on hisper-
ceptionof the system configuration. In the eVoting example, thesieniwhether
to confirm his vote or to change it, depends on the candidd¢etsmn shown
by the voting machine and the user’s corresponding pemeoti the machine’s
internal configuration.

Following our component-based approach, we define thesuassumption
about the system configuration as a component. This compm®mmbined with
the (IOLTS corresponding to the) formal GOMS model by mut@hposition.
The rational behind mutual composition is that not only de tiser’'s presump-
tions about the application state influence his behaviohlmuassumptions about
the state of the application are influenced by his actionselk Wwor example,
when the user pushes the “confirm vote” button, he will asstimethe voting
process is completed, even if it takes some time before tkienmessage appears
on the screen. The other input for the assumption componkeesides the users
actions, i.e., the operators in the GOMS model—comes framothtput of the
application (application output is defined in Secfiod SRyurelL.b illustrates the
composition of an interactive formal user model.

Definition 5.3 (User Assumption IOLTS)Let L = (5, %, s, —) be an IOLTS.L
is auser assumption IOLT, S
>=2?U2!,

>?=23?puUZ?, whereX?p consists of atomic application (device) output
andx?, contains GOMS operators,

2! consists of GOMS selection criteria.
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Interpretation Selection GOMS Model

Operator

Device Output Operator

Figure 5.5: Combination of GOMS model and user’s intergieteof the appli-
cation’s configuration.

Aninteractive formal user modél = (L, || L;) is the mutual composition of
the IOLTSL corresponding to a formal GOMS model and a user assumption
IOLTSL;.

5.1.2 Formal HCI Model: Summary

We have defined formal semantics for GOMS models and for Setecriteria.
Selection criteria are defined by a component modeling tleeuassumptions
about the application. The combination of a formal GOMS nhadehe user
and a model of the user’'s assumptions allows the formal getgor of human
behavior.

In order to reason about security of HCI, a formal applicatimodel and a
formal definition of HCI security are additionally require¢th Section[5.R, we
complete the eVoting example with the application modemfrdectiol 4P and
two alternative user assumption components.

5.2 Completing the eVoting Model

In order to apply automated reasoning to human-computeraation, we need
three components: (1) A formal GOMS model and its correspmnidDLTS; (2) a

component representing the assumptions of the user abewpiblication; and
(3) a component representing the application itself. Treargde eVoting appli-
cation has been introduced in Sectlonl 4.2. For the completfahe example,
we still need a model of the user’'s assumptions. As definecati@[E. 11, a
user assumption component has an input alphabet considtthg application’s
output and the user’s operators, and an output alphabetstiogsof the user’s
selection criteria.

Figure[5.6 shows a user selection component for the eVokagple. In or-

der to keep the example simple, the user assumption comptaiess only the
application’s output as input. Selection rules are usedafints in the GOMS
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- “Bob” “Bob”
59 selected selected 5
— —
g Vote Cast (c), Y Vote -
c # “Bob” Cast (“Bob")

Figure 5.6: Correct user assumption component for eVotkagnple.

model: When the user reviews his voting decision for the firme, and when
he reviews his voting decision for the second time. The ssassumption is
that the eVoting application works correctly. Therefolee assumption compo-
nent will output “candidate ‘Bob’ selected” for the inputdié cast(‘Bob’)”, and
“=(Candidate ‘Bob’ selected)” for the input “Vote cast{with ¢ # “Bob”. This
“error-free” model corresponds to the following user asptiom IOLTS:

S - {807813786}

2 = 2?uzl
2? = {lockedunlocked Ul .ccandidates VOte castc), Vote confirmedc) }
2! = {Candidate ‘Bob’ selected- (Candidate ‘Bob’ selected
— = {(s0,0,%) | 0 # Vote castt) for all candidates } U
{(s0, Vote cast'Bob’), s;)} U
{(s0, Vote castc), s.) | ¢ # “Bob” } U
{(sp,Candidate ‘Bob’ selectedy) } U
{(s¢,— (Candidate ‘Bob’ selectedsp)
- “Bob” “Bob”
59 selected I selected 5
— —
fe)= Vote Cast (c), & Vote -

c # "Bob” Cast (“Bob")

Vote Cast (c),
c # “Bob”

Figure 5.7: Erroneous user assumption component for eyettample.
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While standard GOMS does not allow to model user errors, oorponent-
based approach does. As an example, we model a user who mkyttaisystem
is in a state where he voted for “Bob” while in fact he voted $omeone else.
Figure[5.Y depicts this component. The changed relatias shown below:

— = {(s0,0, ) | 0 # Vote cast¢) for all candidates } U
(s0, Vote castc), s) | ¢ € CandidatesuU
(s0, Vote castc), s.) | ¢ # “Bob” } U
(s
(

sp, Candidate ‘Bob’ selectedp) } U

{
%
{(s.,— (Candidate ‘Bob’ selectgdsy)

State

User’s Interpretation of App. |« | User Behavior
Operator

A
Device Output Operator

Application -

Figure 5.8: Basic system model.

In this section, we showed how system models are createdftnonal GOMS
models, user assumption components, and application siof@lkeé mutual com-
positions of these three components—as shown in Figure pr8vicle a complete
model. With this complete formal modeling of human-compinéeraction be-
comes possible. In difference to traditional methods, oathod also allows to
model erroneous user behavior.

In ChapteETlL, we define HCI security properties as CTL foemmulCombined
with a formal GOMS model of the user and a formal specificatibtihe applica-
tion, formal methods can be used for reasoning about sgaiftituman-computer
interaction.



Chapter 6

Hierarchical Models

6.1 Hierarchical GOMS

In the models introduced so far, the application, the usat®ns, and the user’s
assumptions are modeled as monolithic components. Whetantdsadd more

details to our models—for example, when application ougmat user perception
is modeled in more detail—the components become unwiel&dinfbduce hier-

archical models to counter this problem. In a model of hireal components,
components of different levels of abstraction are layetsalva each other. This
allows to describe user interfaces and human-computeaitien at all levels of

detail, while keeping each individual component small ejgioto be manageable
by humans and computers.

Application

Model [

View Controller
A

- User

Figure 6.1: Model-View-Controller Design Pattern

Both in the construction of graphical user interfaces anthan perception
(and interpretation) of graphical user interfaces, theesganeric abstraction lev-

39
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els shared over a large class of interfaces. By identifyimegé¢ abstraction levels
and modeling user interfaces along these lines, it becowsskge to model com-
plex user interfaces (and potential error sources in coxryser interfaces) while
preserving maintainability of the models.

The seminal Model-View-Controller (MVC) design paradigirgsner and
Pope| 1988) has been introduced using object-orientedamuoging for the pro-
gramming language Smalltalk. MVC introduces a separatioanoapplication
model (the program logic or the data to be represented), idve @n the model
shown to the user, and the controller mechanisms to chamgeéstia or the state
of the application, as shown in Figurel6.1.

State

Assumptions about App. - | User Behavior
StateOp
T Windows l Window Op.
Sem.Widget
Assumptions about Windows | _| Window Manipulation
Sem.WidgetOp
T Widgets l Widget Op.
Widget .
Assumptions about Widgets - _ Widget Manipulation
WidgetOp
T Symbols l Symbol Op.
Symbols _
Assumptions about Symbols - _| Symbol Manipulation
SymbolsOp

T Pixels l Atomic Op.

Figure 6.2: Generic Hierarchical User Model

Based on this, the controller and the viewer component caplieinto sub-
components of a finer granularity. On the abstract level,ea uderface allows
the user to manipulate certain aspects of the program ordteze dach relevant
data object is associated with a certain view object (windeareen area). Ma-
nipulation of the data object is achieved via sub-companefithe screen objects
(widgets) which themselves can contain widgets. On the $olesel, widgets are
build from elementary symbols who themselves are congduitom pixels.

The model-view-controller pattern mirrors the distinatiof formal GOMS
model component and user’s assumption component in thenuséel. On the
user’s side, there is a formal GOMS model governing the behaf the user,
and a model of the user’s assumption’s about the currerg sfahe application.
On the application’s side, this is mirrored by componentigdeling the func-
tional behavior of the application, and component(s) Vigiray the application’s
state. Applying the hierarchical GUI design pattern to usedeling results in a
hierarchical model of human-computer interaction whehe&mmponent repre-
sents one level of abstraction. This makes it possible toeitygical errors on
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their respective levels. For example, the typical errot ghaser misses the correct
button and pushes a different (wrong) one instead is moagiedow level, while
the error that a user misinterprets a screen is modeled aghdével. The user’s
side of this design pattern is shown in Figlrd 6.2.

GOAL: VOTE FOR CANDIDATE(“Bob”)
OPERATOR: WAIT FOR UNLOCK OF VOTING MACHINE
OPERATOR: CHOOSE CANDIDATE(“Bob”)
GOAL: REVIEW VOTE
SELECT:
OPERATOR: CONFIRM VOTE.. . if candidate “Bob” selects
OPERATOR: FAIL ... otherwise

9%
o

Figure 6.3: GOMS model for eVoting (simplified).

5o WAIT  CHOOSE

— CANDIDATE REVIEW 5!
ONL OTE .

UNLOCK —.BOB” Vv
(so——()—(——(%9)

REVIEW

3? CONFIRM VOTE

—» VOTE

TFAIL 3!

“Bob” - “Bob”
selected selected

Figure 6.4: Hierarchical IOLTS corresponding to the eMptOMS model.

As an example, a hierarchical IOLTS for the excerpt of thetedoGOMS
model given in Figuré_8l3 is shown in Figurel6.4. Note that dieénition of
component composition (Definitidn4.3) ensures “Wait foldék”, and “Choose
Candidate ‘Bob’ are part of the composed output althougly tre not in the al-
phabet of the second component. For the same reason, igmid’ “Selected”, and
“—'Bob’ selected” are evaluated by the second component adtindhey are not
part of the alphabet of the first component. A complete hatriaal system model
consisting of user behavior components, user interpogtadmponents, applica-
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tion behavior components, and application visualizatiomgonents is given in
the next section.

6.2 Abstraction

The methodology developed in Sectlonl6.1 allows the coastmu of hierarchical
user and application models. A system designer can choeske\vkl of gran-
ularity freely. The user interface can be modeled down topiixel level, and
user behavior can be modeled down to the smallest detaiis.nfdkes pervasive
specification and verification of human-computer inte@cfossible. However,
in practice we face the problem of state space explosion.elfmant to model
the system down to the bitmap level, even a small monochrasptag of size
320- 200 pixels, as they are used e.g. in cell phones nowadays>H¥8Pstates
on the lowest level. Therefore it is necessary to reduceitteecs the state space.
An effective method for reducing the state space is to crastractions as de-
fined in DefinitionG.1.

Definition 6.1 (Abstraction) Given componentd and B, a component is an
abstraction ofB if all traces of B are also traces ofd.

Lemma 6.1. Given IOLTSL, = (S4, 24, S04, —a) @nd Ly = (Sp, Z4, 50, —p), A
is an abstraction of3 if S, C Sp, 2, = Z; and there exist an abstraction function
f such that

® s0, = f(50p)
o f(s) af(s)if s Sy s

Abstraction is possible on all components and all hierasbf components. It
works best if the hierarchy of components in the specificabiothe user matches
the hierarchy of components of the application. In thesessaomponents on the
same hierarchical level can be joined together to one absteamponent. This
way, the lower levels of both the user behavior specificatiod the application
specification can be successively replaced by abstract @oemps, until the ef-
fects of human-computer interaction can be described ototiv#evel only.

6.2.1 E-Voting Example (Correct)

In Figure[&5, the eVoting example is extended to a hieraattmodel. The user
and application behavior components consists of thregdayfecomponents each,
and the user interpretation and the application visuaimatomponents consists
of two layers each. We limit the number of hierarchy leveld &me size of the
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OPERATOR: WAIT FOR UNLOCK OF VOTING MACHINE
GOAL: VOTE “Bob”
GOAL: SELECT “Bob”
SELECT:
OPERATOR: PUSH BUTTON 0 if “Bob” is zeroth candidate
OPERATOR: PUSH BUTTON 1 if “Bob” is first candidate

OPERATOR: PUSH BUTTON: if “Bob” is nth candidate

Figure 6.5: GOMS model for hierarchical eVoting Model.

example in order to keep the model simple enough for illtistngourposes, while
interesting enough to demonstrate our methodology. Thergéstrategy of the
user is to vote for “Bob” once the machine is unlocked. He ksithat in order
to cast his vote, he has to select the right candidate frost.aWhen he sees the
list, he looks for the entry for his candidate and pushes tiheesponding button.
In the example, we want to verify if the user will always cagt ¥ote for the
correct candidate, or if an error may occur, leading to a fata wrong candidate.
We use abstraction to reduce the state space until only ate rgmains. If the
remaining state is an abstraction of stab®-g,,» and not an abstraction a0,
for z # “Bob”, we are guaranteed that no error can occur in the voting psoce

Figure[6.6 shows the combined user and application modelth®mpper-
most levels (UBO and ABO), the user and the application sh@ibehavior that
we already know from the example. The hierarchical GOMS rhizdgiven in
components UBO to UB2, and the corresponding criteria pmégation compo-
nents in UI1 and UI2. The application is structured in the samy. When the
voting computer is unlocked, it shows the list of candidatascomponent AV2,
the input symbol “Show Candidates” is expanded to the adistadf candidates,
which are shown on the screen. Depending on the elementharatder of the
list, the button pressed by the user is mapped to the comespyp candidate. In
components, nodes with subscripts containing square étackpresent multiple
states. In UB2, nodeb2; stands for stategb2y, ..., ub2,_1 with n the number
of candidates. Transitions to and from state;; occur only if Bob is theith
candidate on the list:

(ub2y,Bobi, ub2;) €—yp2 for 0 < i < |Candidates
(ub2y,Bobj, ub2;) €— yp2 — 1=

(ub2;,PushButton;iub2,) €e—yp, for 0 < i < |Candidatels
(ub2;,PushButton:jub2,) E—pyp2 —i=7j
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? UBO
@ Unlock? @ Vote Bob! @

Interpretation l Behavior
Uil uB1
Bob:i? Vote Bob?
Unlocked! Select Bob!
ul2 uB2
[Candidates]? i
Select Bob?, Bob:i?
O Q)| S O O
Bob:i! (with Candidates(i)=Bob) Push Button:i!
User
A I
o I L]
Application , AV2 . Push AB2
pp Show Candidates? [Candidates]? Button:i?
B ) el T
[Candidates]! Selected:Cand!
AV1 AB1
Unlock? Selected:Cand?
Show Candidates! VoteCastFor:Cand! J
‘ '
ABO
VoteCastFor:
4 ?
o, ) Unlock! @Cand. o0
Visualization Behavior

Figure 6.6: Hierarchical eVoting Model
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Interpretation Behavior
UBO‘

i A

UBl‘

c
=
|—| |—|

usz‘

User 77 77 77
Application | /// ///% /// 7

|
v

ABZ‘

>
<
L]

ABl‘

|— | —

ABO‘

Visualization Behavior

Figure 6.7: UlI2 and AV2 are composed to CI2

The goal of joining components and abstraction is to redheestate space.
We start by joining the lowest level user interpretation poment Ul2 with the
lowest level application visualization component AV2 taned component CI2
as shown in Figure8.7. AV2 consists of two nodes connectad/bydges, while
UI2 consists of 1 n nodes with H n! edges, given there are candidates on
the list. The reason for this is the presence of one extra @atgeach possible
permutation of the list of candidates, and one extra nodes&mh position of
“Bob” in a list of candidates, i.e. we assume that whateverdtder of the list
may be, the user will identify the position of “Bob.” Sinceetlist (and thus
the position of “Bob”) is given by the output of AV2, joininhe two components
results in a component with— 1 less nodes ana! — 1 less edges. AV2 is defined
as

L(wZ = (S(wZazaUZ, 50(11127_>av2) with
Sawz2  ={av2,,av2,}
Z(wZ = Z?(wZ u2! av2

2?2 = {Show Candidatgs

>l 2 = {[Candidately

SOz = av2,

—aw2 = {(av2,,Show Candidatesv2;), (av2;, [Candidatesav2,)}
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and UI2 as

Ly = (Sui27 zui27 S0ui2s HUZ'Z) with

Suiz  ={wui2,}U{ui2; | 0 < i < |[Candidates}
2ui2 = 22U 2Zl 0

2?2 = {permCandidates}

22 ={Bob:i|0< i< |[Candidates}

SOuiz = Ui,

w2 =

{(ui24, ¢, av2;) | For all ¢ € permCandidatesandc(i) = “Bob” }
The hierarchical compositioho2 = Lgy2. Ly results in the following IOLTS:

Lera = Lay2-Luiz = (S, Z, so, —) with

S - SavZ X SuiZ

2 =2?7uzlu

>? = {Show Candidatgs

px = {Bob :70 < i < |[Candidate$, [Candidatelg
3 = {permCandidatep}

S0 = (av24,ui2,)

N
{((ui24, av2,),Show Candidate$ui2,, av2;)) }U
{((ui2;, av2,),Show Candidate$ui2;, av2y))

| for all 0 < i < |[Candidatel}U
{((ui2;, av2,),Bob: i, (ui2,, av2,)) | for all 0 < i < |[Candidatel$}U
{((ui2;, av2;),Bob: i, (ui2,, av2y)) | for all 0 < i < |[Candidate$}U
{((ui2;, av2y), [Candidates (ui2;, av2,)) | for Candidate§] = “Bob” }

Show .
Candidates? '0\69\

6\6
\\y
\C’a Show

Figure 6.8: Hierarchical Composition of UI2 and AV2
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From the elements of the set of nodes
{(ui2;,av2,) | for all 0 < i < |[Candidate$}

only the node with(u:2;, av2,) with Candidate§] = “Bob” has an incoming
edge. Therefore, all other nodes from the set can be omittad.reduced IOLTS
is shown in Figur€®l8. We call this component CI2. For thiofeing abstraction
steps, we will use the shorter state names written rightledsie nodes.

Interpretation Behavior
| UBO
"
uIL ‘ UBl‘
[} I
ci2 1
L __j uB2
User | Lol |
Application
L __% AB2
Z
[} y
AVl‘ ‘ ABl‘
A l
[ ABO
\
Visualization Behavior

Figure 6.9: UB2 and AB2 are composed to CB2

In the next step, we compose UB2 and AB2 to CB2 as shown in E[G.
UB2 is defined as:

Lup2 = (Sub2, Zup2; S0ub2: —up2) With
Sup2 = {ub2,,ub2y} U{ub2; | 0 < i < |[Candidates}
Sz = 2Z2u2U2Z 0

2?42 = {SelectBojuU{Bob::|0< i< |[Candidates}

2l.p2 = {PushButtoni |0 < i < |[Candidate3}

Soup2 = ub2q

—uw2 = {(ub2,,Select Bobub2;)}
U{(ub2y,Bob:i, ub2;) | 0 < i < |[Candidate}
U{(ub2;,Push Buttori, ub2,) | 0 < i < |[Candidatel$}

Since the only output of CI2 i8ob:i! for somei, only one of the states
ub2o,...,ub2,_1 (represented by meta-staté2; in the component diagram of
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UB2), is reachable. We can reduce UB2 to

Lup2 = (Sub2> Zup2, S0up2: —up2) With
SubZ = {ubza, ube, ubZZ-}
22 = 222U 0

2?42 = {Select BobBob :i}

2 = {Push Button i}

Soup2 = ub2q

—u2 = {(ub2,,Select Bobub2;), (ub2;,Bob:i, ub2;),
(ub2;,Push Buttor, ub2,)}

We reduce the state space of AB2 in the same way. Since the afrdan-
didates is fixed for a given eVoting setup, and UB2 will outpaly one specific
Push Button:iwe can reduce AB2 to

Lap2 = (Sab2, Zab2, S0ab2: — ab2) With
Sap2  ={ab2,,ab2;,ab2.}
22 = 2?2U2 o

2?42 = {[Candidates]Push Buttorv, }

212 = {Selected:“Bob}

S0ab2 = ab2q

— a2 = {(ab2,,[Candidates]ab2;), (ab2;, Push Button, ab2,),
(ab2.,Selected:"Bob}ab2,)}

Now we can compute the compositidp,o = L,p2.Lap2 @S

Lz = (Sev2, Zeb2, S0ch2, — cb2) With
Sev2 = Sup2 X Sap2
22 = 2Z202UZl g0

2?42 = {Select BobBob:i,[Candidates]

>l 42 = {Selected:"Bob}

S0ch2 = (ub2,,ab2a)

b2 —
{((ub24, ab2

o), Select Bob(ub2y, ab2,)),
ube, sza)

(( ,Bobi, (ub2;,ab2,)),

((ub2,, ab2;),Select Bob(ub2y, ab2;)),

((ubzb, abzl), BObZi, (ubZi, ab21)),

((ub24,ab2.),Select Bob(ub2y, ab2.)),

((ube, abZCl), Bob:i, (ubZZ, abZd)),
((ub2;,ab2;),0,(ub2,),ab2.)}

((z,ab2,),[Candidates)(z, ab2;)) | z € {ub2,, ub2y, ub2;}}

U{
U{((z, ab2.),Selected:"Bob}(z, ab2,)) | x € {ub2,, ub2;,ub2;}}
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CB2

Selected: Bob  Bob:i?

o e
g

[Candidates] Select Bob?

T

Figure 6.10: Component CB2’, an abstraction of CB2

Note thatPush Button:is not in the output alphabet. We were able to replace
it by an e-transition, because UB2 has no outgoing connections. Tineber
of nodes and edges ih.;, is becoming unwieldy, therefore we abstrdgj, to
a simpler componenkt ;. The behavior ofL.;, can be roughly described as
follows: It takesSelect BopCandidates andBob:i as inputs and produces the
outputSelected:“Bob’” We replacel, ;> by the simpler IOLTSL,,» and prove
that L.,» as shown in Figure.8.10 is an abstraction.gfs.

Loy = (Sev2, Zev2', S0cb2s — cb2) With
Sevzr  =1{cb2,}
22 =222 UZl gy

>?.,» = {Select BobBob:,[Candidates]

2l 42 = {Selected:"Bob}

Soch2 = €b2q

— a2 ={(cb2,,Select Bobcb2,), (cb2,,Bobi, cb2,),
(cb2,,[Candidates]cb2,), (cb2,, Selected:"Bob’ cb2,)}

Proof
To show: L, is an abstraction of ;5.
Let abstraction functioifi : S.;» — S, be:

f(s)=cb2,forall s € Sepp

® SQcp2 :f<500b2) — Cbza = Cbza

o f(s)Duf(s)if s Sy s

Sincef (s) = cb2, forall s andcb2, = cb2, forall o € 0, f(s) =4 f(s')
if s, s holds. 0
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Interpretation Behavior
=} UBO‘
7775
‘ uu‘ UB1
User CI2—» % CB2
Applicationg{ |
T 7
‘ AVJ.‘ ‘ ' ABl‘
A
'
ABO‘
Visualization | Behavior

Figure 6.11: UB1 and CB2 are composed to CU1

We continue by computing the composition bf,1 = Lyp1.Lcp2 (Shown in
Figure[6.11) as

Lcul - (Sculazcula SOCulv_)cul) with
Seur = Supt X Sep2
zcul - z’?cul Uzl cul

>?.,1 = {Vote Bob}
>l..1 = {Select BobBob:i, [Candidates]Selected:“Bob}
S0cur = (ubly, cb2a)

Joining the states connected by thwransition and renaming the name of the

—e1 = {((ubly, cb2,)
ubly, cb2,)
ubly, cb2,)
ubly, cb2,)
ubly, cb2,)
ubly, cb2,)
ubly, cb2,)

a)

((
((
((
((
((
((
((ubly, cb2

Y
Y
Y
Y
Y

Y
Y
Y

\ote Boh (ub1y, cb2,)),
Selected Bol(ubl,, ¢b2,)),
Bob:, (ubl,, cb2,)),
[Candidates](ubl,, cb2,)),
€, (ubly, cb2,)),

Selected Bol(ub1y, cb2,)),
Bob:i, (ubly, ¢b2,)),
[Candidates](ubl;, cb2,))}
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remaining state, we get

Loy = (Scul,zcula 50cu17_)cu1> with
Seur = culy
2 cul - Z?cul U2l
2?1 = {Vote Bob}
2l.,1 = {Select BohBob:i,[Candidates|Selected:“Bob}
Socu1l = cul,
—e1 = {(culy,Vote Boh cul,),
(cul,,Selected: “Bob!cul,),
(cul,y,Bobii, cul,),
(cul,,[Candidates]cul,)}

Interpretation Behavior
UBO

7 N Bl
‘ U|l‘ cul

!
ApplicaltJisﬁ% CI2 r:f i

‘ AVI‘ AB1

[ ABO‘

Visualization Behavior

Figure 6.12: CU1 and AB1 are composed to CB1

Computing CB1 as the composition of CU1 and AB1 (see Figui8)Gesults
in (the e-transition has already been eliminated and the state nanaened):

Leyn = (Seb1, Zeb1s S0cb1, — cb1) With
Scbl = Cbla
21 =2741U2Zl

>?.1 = {Vote Bob}

>!.1 = {Bob:,[CandidatesMoteCastFor:“Bob}

Soep1 = cbl,

—ea1 = {(cbl,,Vote Boh cbl,), (cbl,, VoteCastFor:“Bob} chl,),
(¢bl,,Bobi, cbl,), (cbl,,[Candidates]cbl,)}
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Interpretation Behavior
| UBO
o
ui1 CcB1
User | CI2 = L
Application
AV].E
[ ABO
\
Visualization Behavior

Figure 6.13: AV1 and CI2 are composed to CAl

In the same way, AV1 and CI2 are composed to CA1 (see FIgug: 6.1

Legr = (Scalazcala 50ca17_>cal) with
Scal = Pavl X SciZ
2001 =220 U2Zl a1
2?41 = {Unlock}
>l = {Bob:i,[Candidates]
S0car = (avlg, ci2a)
—e1 = {(avl,,x),Unlock (avly,z) |z € {ci2q, ci2y, ci2.,ci2q}}
U{((avl,, ci24),Bobi, (avl,, ci2.)),
((avlg, ci2.), [Candldates](avla, ci2yp)),
((avlg, ci2y),Bobi, (avl,, ci2,)),
((avly, ci2y),Bobi, (avly, ci2.)),
((avly, ci2.),[Candidates](avly, ci2p)),
((avly, ci2y),Bobi, (avly, ci2,)),
(( a),€:(avly, ci2)),
(( ):€

,(avl,, ci2g))}

avly, ci2
avly, ci2y,
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Again, we create an abstraction and prove correctness of it:

Lear
S ={caly}
=220 U2l cr
= {Unlock}

2 cal
Z?ca r

2!, = {Bob:,[Candidates]

S0cqr = cal,

—

Proof

To show: L,y is an abstraction of .,1.

Let abstraction functioii : S.u1 — S, be:

f(s) = cal, forall s € Se1

® S0¢q :f(socal) > cal, = cal,

o f(s)Duf(s)if s Sy s

Sincef(s) = cal, for all s and cal, =

F(s") if s 5y s’ holds.

Interpretation

= (Scal’a 2 01/ 50cal s _>ca1’) with

= {(caly,Unlock cal,),(cal,,Bobi, cal,),
(cal,,[Candidates]cal,)}

cal, forall o € 21, f(s) S
Ol

Behavior

i A

UBO

. 752

Ull‘

User |
Application

CAl1 %

CB1

Visualization

ABO‘

Behavior

Figure 6.14: CA1 and CB1 are composed to C2
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Next, we compose CA1’ and CB1 to C2 (see Fidurel.14):

Lo = (5027 2.2, 50¢2; _>c2> with

Se2  =A{c2,}

2o =2?,UZ2l

3?2 = {Unlock Vote Bob}

>l., = {Bob:Vote Cast For: “Bob}

$0¢2 — c2,

—c2 ={(c24,Unlock c2,),(c2,,Bobi,c2,),
(c2,,Vote Cast For: “Bob!'c2,),
(c2,,Vote Boh ¢2,)}

Interpretation Behavior

UBO

i
User | Ui é/g c2
Application

[ ABO

Visualization Behavior

Figure 6.15: C2 and Ul1 are composed to C1

C2 and UI1 are composed to C1 (see Fidurel6.15):

La = (Scla zcl7 S0c1, Hcl) with

Sea =A{cal,}

21 =2724U2la

>?.1 = {Unlock Vote Bob}

>!.1 = {ReadyVote Cast For: “Bol§”

50c1 = calq

—ca ={(c14,Unlock c1,),(cl,,Readycl,),

(¢1,,Vote Cast For: “Bob;'cl,), (¢1,,Vote Boh ¢1,)}

UBO and C1 are composed to CUO (see Fidurel6.16):

Lcl = (Scla ch, S0c1) Hcl) with
S = {Cla}

2 =274U2l.

>?.1 = {Unlock}

>!.1 = {Vote Cast For: “Bob}
S$0c1 = cl,

—a ={(c14,Unlock c1,),(cl,,Vote Cast For: “Bob'cl,)}
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% % 0
UBO

W77
s

User | C1
Application

‘ ABO‘

Figure 6.16: UBO and C1 are composed to CUOQ

In the last step, CUO and ABO are composed. Since the outplbét of CUO
is restricted tof Vote Cast For: “Bob}, all b0, for ¢ # “Bob” are unreachable.
Therefore, we can reduce ABO to

Lapo = (Sab0, Zab0s S0ab0s — ab0) With
Sao = {ab0g, ab0y, ab0.}
20 = Z?00U 2! 40

2?40 = {Vote Cast For: “Bob}

2o = {Unlock}

S0a4b0 — abOa

—a0 = {(ab0y,Unlock ab0y), (ab0,, Vote Cast For: “Bob}ab0,)}

Finally, C as the composition of CUO and ABO is computed as

L. = (SC,ZC,SOC,—>C> with

Se =A{ca}

2., =2?2.UZl,
27 = {}

2. = {}

S0, = Cq

—c ={}

In Sectiof4.P we defined

fatal € A (“Vote Confirmed []”) foralli # ¢
success € A (“Vote Confirmed []”)

Statec, is a result of applying the composition rule to stabeso,» and a number
of other states, but non of the other state was the final vatiaig for a candidate
other than “Bob.” Therefore, we have shown that in the givexdeh, asuccess
final state is always reached, andagal final state is never reached. We have
shown that the model represents the intended functionality
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6.2.2 E-Voting Example (with erroneous user behavior)

Next, we apply our methodology to a model with erroneous bsbavior. In this
example, we model a user with a shaky hand. He may accidemsly fhe button
directly above or below the intended button. This potergrabr is modeled on
the symbol manipulation level by the GOMS sub-model for g&slect Bob”

(UB2). A changed GOMS model for this sub-goal is shown in Fe§@i1T. Here,
the selection of the right or wrong button is non-deterntiais

GOAL: SELECT “Bob”

SELECT:
OPERATOR: PUSH BUTTON 0 if “Bob” is zeroth candidate
OPERATOR: PUSH BUTTON 1 if “Bob” is zeroth candidate
OPERATOR: PUSH BUTTON 0 if “Bob” is first candidate
OPERATOR: PUSH BUTTON 1 if “Bob” is first candidate
OPERATOR: PUSH BUTTON 2 if “Bob” is first candidate

14

14

OPERATOR: PUSH BUTTON: — 1 if “Bob” is nth candidatg
OPERATOR: PUSH BUTTON: if “Bob” is nth candidate

Figure 6.17: GOMS model for hierarchical eVoting model wétlioneous user
behavior

With this definition, UB2 is defined as

Lup2 = (Sub2, Zub2, S0up2: —up2) With
Supz = {ub2,,ub2} U{ub2; | 0< i < |[Candidatel$}
22 = 2Z2u2U2 0

2?52 = {Select BohU{Bob:i|0< i< |[Candidates}

22 = {PushButtoni|0< i < |[Candidates}

Soupz = ub2qg

—uw2 = {(ub2,,Select Bobub2;)}
U{(ub2,,Bob:i, ub2;) | 0 < i < |[Candidatels}
U{(ub2;,Bob:i, ub2,,1) | 0 < i < |[Candidatels — 1}
U{(ub2y,Bob:i, ub2,_1) | 0 < i < |[Candidates}
U{(ub2;,Push Button, ub2,) | 0 < i < |[Candidate}

Without loss of generality, we assume that Bob is neithefiteenor the last
candidate on the list. Since the only output of CIB@b:i! for somei, only three
of the statesib2y,...,ub2, 1 (represented by meta-staié2; in the component
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diagram of UB2) are reachable. We can reduce UB2 to

Lupz = (Sub2, Zub2, S0up2: —ub2) With
Subz = {ubZa, ube, ubZi}
22 = 2Z2up2U2Z 0

2?42 = {Select BobBob ::}
>l.p2 = {Push Button i — 1, Push Button i, Push Button i + 1}
Soupz = ub2q
—u2 = {(ub2,,Select Bobub2;), (ub2;,Bob:i, ub2;),
(ub2;,Push Button: — 1, ub2,), (ub2;, Push Buttor, ub2,),
(ub2;,Push Button:+ 1, ub2,)}

We apply the same technique to AB2. Since the order of theidates is
fixed for a given eVoting setup, and UB2 will possibly outpatyoPush Button:i-
1,Push Button:jor Push Button:i+1 we can reduce the composed model to these
three possibilities. Without loss of generality, we assuhe candidate in the
list above “Bob” is “Alice” and the candidate below “Bob” iharlie.” We can
reduce AB2 to

Lap2 = (Sap2, Zab2, S0ab2: — ab2) With
Sapz  ={ab2,,ab2;,ab2.1}
Zop2 = L2 UZ! 0

2?42 = {[Candidates]Push Buttor, Push Buttorn:— 1,
Push Button:+ 1, }

>l 2 = {Selected:"Alice’ Selected:“Bob;'Selected:“Charlie}

Soab2 = ab2q

—a2 = {(ab2,,[Candidates]ab2;),
(ab2;,Push Button:— 1, ab2,y),
(ab2;,Push Button, ab2,;),
(ab2;,Push Button:+ 1, ab2 ),
(ab2.,Selected::"Alice’ ab2,),
(ab2.;,Selected::“Bob!ab2,),
(ab2.n,Selected::“Charlie’ab2,)}

We constructl;» = Ly2-Lap2 @s in Sectiof 6211 (see Figurel6.9) and apply
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the same abstraction step, resulting in

Leyi = (Sculazcula 30cu17_)cu1) with
Seul = {CUla}
Zcul - Z‘?cul U2l cul

2?1 = {Vote Bob}

21,1 = {Select BobBob:i,[Candidates|Selected:“Alice’]
Selected:"Bob;Selected:“Charlief

Socur = cul,

—e1 = {(cul,,Vote Boh cul,)
(cul,, Selected: “Alice’ cul,),
(cul,,Selected: “Bob} cul,),
(cul,,Selected: “Charlie’cul,),
(cul,,Bobi, cul,),
(cul,,[Candidates]cul,)}

We continue by computing the composition bf,1 = L,1.Lep2 (See Fig-
ure[@&71). Joining the states connected bygtignsition and renaming the re-
maining state, we get

Loy = (Sculazcula Socula_)cul) with

Seul = {CUla}

201 =220aU2la

>?.,1 = {Vote Bob}

21,1 = {Select BobBob:i,[Candidates|Selected:“Alice’]
Selected:"Bob;Selected:“Charlief

Socur = cul,

—e1 = {(cul,,Vote Boh cul,), (cul,, Selected: “Alice’ cul,),
(cul,,Selected: “Bob}cul,),
(cul,,Selected: “Charlige’cul,), (cul,,Bob, cul,),
(cul,,[Candidates]cul,)}

Computing CB1 as the composition of CU1 and AB1 (see FiguiB)6esults
in (the e-transition has already been eliminated and the state nanaaed) the
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T

[Candidates]! Bob:4!

VoteCastFor: “Charlie” ! .@‘ VoteCastFor: “Alice”!

CB1

Vote Bob?  VoteCastFor: “Bob™!

T

Figure 6.18: Component CB1

IOLTS shown in Figur€&.18:

Levn = (Seb1, Zeb1s S0cb1, — cb1) With
Scbl = Cbla
21 =2201U2! 1

2?41 = {Vote Bob}

>lp1 = {Bob:,[CandidatesMoteCastFor:“Alice’]
VoteCastFor:“Bob;VoteCastFor:“Charlie}

soepr = cblg

—ea1 = {(cbl,,Vote Boh cb1,)
(¢bl,, VoteCastFor:“Alice’ cbl,),
(¢bl,, VoteCastFor:“Bob) c¢bl,),
(¢bl,,VoteCastFor:“Charlie’cbl,,),
(¢bl,,Bob:i, cbl,),
(¢bl,,[Candidates]cbl,)}

T

Unlock? Bob:3!

VoteCastFor: “Charlie” ! .@‘ VoteCastFor: “Alice”!

Cc2

Vote Bob?  VoteCastFor: “Bob™!

T

Figure 6.19: Component C2
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The composition of CA1’ and CB1 to C2 (see Figlire 6.14) leadbe IOLTS

shown in Figuré®.19:

Lo = (Sc.Za 22,8025 H02) with

Se2 = {Cza}

22 = Z?CZ U!e

>?.2 = {Unlock Vote Bob}

>l.» = {Bob:,Vote Cast For: “Alice’
Vote Cast For: “Bob;Vote Cast For: “Charlie}

S0c2 = C2q

—c2 ={(c24,Unlock c2,),(c2,,Bobi,c2,),
(c2,,Vote Cast For: “Alice’ c2,),
(c2,,Vote Cast For: “Bob'c2,),
(c2,,Vote Cast For: “Charlie’c2,),
(c2,,Vote Boh c2,)}

C2 and UI1 are composed to C1 (see Fidurel6.15):

L = (5017 21,501, _>cl> with
S ={cal,}
2.1 = Z?cl U2l
>?.1 = {Unlock Vote Bob}
>!.1 = {ReadyVote Cast For: “Alice’ Vote Cast For: “Bob}
Vote Cast For: “Charlie}
s0c1 = calg
—c1 ={(c14,Unlock cl,),(cl,,Readycl,),
(¢1,,Vote Cast For: “Alice’ c1,),
(¢1,,Vote Cast For: “Bob’'cl,),
(c1,,Vote Cast For: “Charlie’c1,), (c1,, Vote Boh ¢1,)}

UBO and C1 are composed to CUO (see Fidurel6.16):

La = (Scla 21,8015 Hcl) with

Sa1 = {Cla}

21 = Z?cl U2l

>?.1 = {Unlock}

21,1 = {\Vote Cast For: “Alice’;Vote Cast For: “Bob;
Vote Cast For: “Charlie}

soc1 = clq

el = {(cla,UnIock Cla)7
(c1,,Vote Cast For: “Alice’ c1,),
(c1,,Vote Cast For: “Bob’'cl,),
(c1,,Vote Cast For: “Charlie’c1,)}
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In the last step, CUO and ABO are composed. Since the outpbabét of
CUO is restricted td Vote Cast For: “Alice”, Vote Cast For: “Bob”, Vote Cast
For: “Charlie” }, only ab0, with ¢ = “Alice”, ¢ =*“Bob”, or ¢ = “Charlie” are
reachable. Therefore, we can reduce ABO to

Lavo = (Sab0s Z b0, 50450, — ab0) With
Sawo = {ab0y,, ab0y, ab0., ab0,, b0}
20 = 22a0UZ! o

2?40 = {Vote Cast For: “Alice’ Vote Cast For: “Bob}
\ote Cast For: “Charlie}
2l = {Unlock}
soap0 = ab0q
— a0 = {(abOa, Unlock, abOb),
(ab0y, Vote Cast For: “Alice’; ab0,),
(ab0y, Vote Cast For: “Bob! ab0,),
(ab0y, Vote Cast For: “Charlie’ab0,./) }

Finally, C as the composition of CUO and ABO is computed as

L. = (SC,ZC,SOC,HC) with

Se =A{ca}

>, =2?.Uxl,
27 = {}

2. = {}

S0, = Cq

e =0

In difference to C from Section 8.2.1, this time the only téeg statec, is not
only composed from theuccessinal stateab«gy» and a number of non-fatal
states. Thdatal final statesubup|ice” andab«charlie” are also part of the com-
posed state,. Thereforefatal final states are reachable, i.e. in the given model it
is possible that the user votes for “Alice” or “Charlie” adtigh he wanted to vote
for “Bob.”

In this chapter, we have introduced a methodology to creiatatchical user
and application models. This methodology allows to model HiCany chosen
level of granularity, down to the most basic operations.afing local composi-
tions and abstractions of components allows pervasiveiatiah of models with-
out suffering from state-space explosion.
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Chapter 7

Integration with Hoare Logic

In previous chapters, we modeled the abstract behaviorpicagions using la-
beled transition systems, where nodes represent statdé® apiplication. For
example, the basic version of the eVoting application mstielwn in Chaptdd4
(Figure[4®) contains the states “Unlocked”, “Vote CastbBpand “Vote Con-
firmed ‘Bob™. Edges represent transitions from one statéht next. These
states are abstractions of the actual system configuratdmneh are much richer
in detail. (IO)LTS and temporal logics are suitable methtwspecify the ab-
stract behavior of concurrent components of a system. Mddetking can be
used to verify that an abstract model has the desired priepefffor a pervasive
specification of an application, it is also necessary to @ribnat a concrete pro-
gram is a refinement of the abstract model. That requires@fggion of a con-
crete program’s procedures using pre- and post-conditidethods like Hoare
logic dﬁb 9) and Dynamic Log@ 84) can themised verify the
concrete implementation.

The pre-/post-condition-based specification and the -t@ased IOLTS/CTL
methods have to be integrated in order to provide a unifiethogetiogy for the
pervasive specification and verification of secure intéradystems. A relation-
ship between the nodes, edges, and labels of the IOLTS onntadnand, and
the pre-conditions, post-conditions, and procedure impl&ations on the other
hand has to be established. The intuitive relationship éetwa IOLTS and pro-
gram functionality is that nodes represent abstractionsrofram states, while
pre- and post-conditions refer to properties of concrettest(and each condition
defines a state set, namely the set of all states where théioonsltrue). Labeled
edges between nodes represent program function calls amdrjput and output.

In the following definitions, we assume that a $ebf formulas is given that
can be used as pre-/post-conditions and invariants in Higke specifications
and proofs, as well as a setof procedures used in concrete implementations and
a setM of messages sent and received by these procedures. Forrposes it
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is not necessary to fix a particular logic and a programminguage. In Paftll,
we show how our methodology has been used in the VerisofemﬁlllmS).
In the Verisoft project, we used Isabelle/HOL (Schirmer)®0for H and CO (a

subset of the C programming language (Leinenbach! et al5)268r procedures
in P.

Definition 7.1 (Pervasive model)Let H be the set of all formulas that can be used
as pre-/post-conditions and invariants. Ll2te the set of all procedures that take
exactly one input and one output parameter. Andifebe the set of input/output
potentially sent or received by proceduresfin

Then, apervasive model

PM = (L,inv, proc,msg
consists of
e an IOLTS

L:(S7Z7807_)L) )

e a mapping
inv:S — H
assigning to each state il a state invariant fron¥,
e a mapping
msg: = — 2M
associating labels of the IOLTS with actual procedure ihquiput,
e a mapping
proc: (S x%?) — P
from state/input pairs to procedures.

Intuitively, the concrete implementation of an applicatis correct w.r.t. a
pervasive moddPM if

1. itis arefinement of the IOLTS part &M, i.e., its control flow corresponds
to the IOLTS,

2. its procedures are correct w.r.t. the state invarianB\bf
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Algorithm 3 Preliminary main event loop
1: repeat
2:  cmd = getKeystroke()
3: updateScreen(cmdResult)
4: cmdResult := execute(state,cmd)
5
6:

state = nextState(state,cmd, cmdResult)
until cmd = QUIT

The Hoare logic specification depends on a correct “exectitibthe IOLTS
representing the application. In the following, we take st Btep towards bridging
the gap between the abstract state-based model of an dgpliaad the specifica-
tion of the concrete program’s with pre-/post-conditio& do this by providing
a template for a main execution loop that “executes” the hegal model by call-
ing the procedurespdateScreen, getKeystroke, execute, andnextState.

A generic template for a main execution loop that executd©ams is given in
Algorithm[3. Please note that this algorithm is prelimindtyvill be improved in
SectionI4.312. In this template, the procedusetState implements the state
transitions of the IOLTS. The actual state is stored in progwariablestate.
Proceduresxecute implements execution of the procedures associated with la-
beled transitions.

ProceduregetKeystroke gets the next keystroke, and procedugelate-
Screen shows the result of command execution on the screen. Thalaotu
plementation of these procedures depends on the concodikepr. We will give
examples for an email client in ParilIll of this thesis.

The proceduraextState must guarantee that the application “executes” the
IOLTS. It gets the old states as an input parameter and ethennew state as
its result. The transition from the old to the new state megresent a valid

? |
state transition, i.e. there must exist a transit@State M result in the

IOLTS. The input command must be in the message set repessbyo?, and
the result of the command execution must be in the messaggsesented by!.
The transition relation may be non-deterministic.

Definition 7.2 (Specification of procedungextState).

contextnextState(oldState, cmd, cmdResult)
pre True

2/0!
post d0? 0! oldState M result

A emd € msgo?)
A cmdResult € msgo!)
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The procedureexecute is called by the main execution loop to invoke the
concrete procedures associated with edges of the apphciatyic IOLTS. The
command given by the user related to an IOLTS input syrot®dby functionmsg
and the procedure to be called is identified by the fungti@a. The output of the
procedure call is related to an IOLTS output symbal The state invariant of the
pre-state holds beforexecute is called, and the state invariant of the successor
state must hold aftesxecute returns.

Definition 7.3 (Specification of procedurexecute).

contextexzecute(state, command)
pre inv(state)

?/o!
post Jo0?0!,s: state@re 199, o A inv(s) A

cmd € msgo?) A result € msgal)

The specification oéxecute does not refer explicitly to the procedures as-
sociated with edges. It only guarantees that the invariah&ates hold in its
postcondition.

Next, we define the relationship between the funcporc andexecute. We
start by definingedge procedure correctneés proc. Mappingproc associates
edges with procedures. The result of functprac (i.e. the procedure to be called)
depends on the current state of the application, and the impuor which the
input commandmnd € g?. In the definition of a pervasive model (Definition]7.1),
invariants are associated with states. Whenever the systena given state, the
invariant of the state must be satisfied. Therefore, thegmeition for a procedure
call must be implied by the invariant of the state in which pinecedure is called,
and the postcondition of the procedure must imply the irrdrof the succeeding
state:

Definition 7.4 (Edge procedure correctnestpt
PM = (L,inv, proc,msg

be a pervasive modeEdge procedure correctnassgguaranteed if for all values
of 0?, s and cmd, there existe! and s’ such that

{inv(s) A ecmd € msqo?)}
proc(s,0?)(cmd)

(o?/a!)
_—

{result e msga!) As s Ainv(s’)}
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From these definitions follows thaixecute is correct ifexecute(state,
cmd) callsproc(state, 0?) for all state € S and all commandsnd related to
someo?.

In Hoare-style specifications, only sequential aspectspybgram are speci-
fied. We assume that changes in the configuration do onlytrgeui procedure
calls specified in Hoare logic.

To conclude, the implementation of an application is cdrvect. a pervasive
model if all of the following holds:

1. The main event loop follows Algorithid 4,

2. nextState satisfies the specification from DELT.2,
3. execute satisfies the specification from DEL7.3,
4

. the invarianinv(sp) of the initial state holds before any message is sent or
received (i.e., immediately after initialization).

Following our approach, the correctness argument for aticgpion is split
into three parts:

e The high level IOLTS specification guarantees the desiredgaties (i.e., it
has to satisfy the requirements).

e The main execution loop follows the template given in Algfom[4,next-
State implements the particular IOLTS, ardecute call s the procedures
associated with labeled edges in the IOLTS.

e The pervasive model satisfies Edge procedure correctnesisiion7.4).

Differences to Software Model Checking. Our approach to use model check-
ing for actual C code differs from software model checkingrapches like the
ones used in the SLAM project (Ball and Rajamani, 2001) or 8RGwhich is
implemented in the MAGIC tool (Chaki et lal., 2004). Softwanedel check-
ing reduces the state space of an actual implementatiorder ¢o apply model
checking techniques to guarantee program properties.eTtieebniques allow to
find certain classes of errors in existing programs. In teffiee to this, our ap-
proach provides a methodology for the specification of &agibns which takes
both sequential aspects of the program and parallel aspgotaccount. In our
approach, the state space of a program is not automatieallyced in order to
make it suitable for model checking. We expect the systengdesto provide
an explicit model both of the high-level system design (usétl model check-
ing), and the low-level design (used with Hoare logic). Byimiag constraints
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on these design steps, we are able to provigeraasivemethod for the formal
specification and verification of both high-level temporadgerties of a system,
and low-level sequential properties.



Chapter 8

Summary

We laid the foundations of a methodology for formalizingagzing, and verify-

ing user interfaces and human-computer interaction unai@pater security as-
pects. The main contributions of this part are a formal seit&for an extended
version of GOMS, a generic user and application model sigthdy the perva-

sive specification of human-computer interaction, and itegiration of temporal
specifications based on IOLTS/CTL with Hoare-style procedypecifications.

We have introduced a formal semantics for GOMS models daagruser
behavior, which is based on input/output labeled transisgstems (10-
LTS).

We showed how the component-based formalization of GOM®eaug-
mented with components modeling the user’'s assumptions ahe appli-
cation. This allows to model HCI both in absence and in presefhuman
errors.

The method used to formalize GOMS models and the user’s getgum
can be applied to model the application as well. Combinihtha¢e com-
ponents leads to a complete model of human-computer inienasuited
for automated reasoning.

We have introduced a methodology to formally describe hoftiaal user
interfaces. This makes the pervasive modeling of all aspafctiser inter-
face security possible.

Component specifications based on IOLTS abstract from tiualgarogram
code. We developed a methodology integrating the specdicand veri-
fication of high-level application behavior using IOLTS aedporal logic
with specification and verification of low-level applicatibehavior using
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Hoare-style pre-/postconditions. This makes pervasivieation of appli-
cations possible.

We have developed a generic formal model of human-compnteraction
with security critical applications. This formal model igetbase for a systematic
formalization of user interface security requirements.r @ethodology can be
used both for system design and for the analysis of progestiexisting systems.
It is applicable both to restricted specialized system dbagedo generic, off-the-
shelf systems. In the Verisoft projeitttp: //www.verisoft.de), this approach
has been used to prove human-computer interaction seaifrayp email client
application in the context of a pervasively verified compgiestem.


http://www.verisoft.de

Part |l

Formalization of HCI Security
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Chapter 9

System Model

9.1 Messages

The methodology introduced so far allows to describe thermal behavior of
components. For the formal specification of human-compateraction, it is
also necessary to explicitly describe properties of thesagss exchanged be-
tween components, i.e. properties of the communicatiotopobd. A wide range of
formal methods are used in protocol analysis. MeaHows [P§i08s an overview
of formal methods used for cryptographic protocol analysisr cryptographic
protocols, the Dolev-Yao model (Dolev and Yao, 1981) and/ésous variants
are widely used. Burrows etlal. (1989) developed BAN logilgic for the de-
scription of the belief’s of message agents about their camaoation partners
and about the messages exchanged between them. BAN logcigablle, and
automated reasoning tools for BAN logic are availam ). Other ap-
proaches use the standardized formal description tecasi@DTs) Estelle, SDL
and LOTOS ML_lQ_bB). Model checkers like FDR and theqgpeovers like
Isabelle have been used for cryptographic protocol ars(izsive | 1996 Paulsbn,
1998).

Temporal logic based methods are rarely used for proto@ipation, be-
cause temporal logic has no means to identify unique messagestream, and
components are not composable, i.e. in order to guarangeediiectness of
a specification, all component specifications must be adailalt is not possi-
ble to evaluate the correctness of components indepenéieath 0ther|fﬁ|el
@1) introduces a method to overcome both weaknesses:c@gring mes-
sages” unique messages can be identified. By introducingnzontation chan-
nels and the semantics of operators on channels, compbsabitomponents is
achieved. In this work, we have adapted this idea to our ambréor modeling
HCI. Our approach differs from Jmaiel’s in two ways. Whilealel uses LTL, we
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use CTL, because CTL is more suitable for the formal desonpif HCI secu-
rity requirements. Jmaiel defines the semantics of tramsglystems via traces of
messages. Our definition of transition system semanticassdon the states of
the transition system. We associate transition systemsstath the messages that
lead into the states. This allows us to use the same defirafitansition system
semantics both for the internal working of the componentst@box view), and
the communication behavior of the components (black bow)ielhis way, it
becomes possible to apply our approach to individual corapts and to define
properties of communication protocols in our approach.

In Sectior 411, linear and parallel composition (Definig@h3 andZ}4) have
been used in order to deduce properties of the system. Anmgdor this ap-
proach has been given in Sectlon®.2.1. In order to deduqeepies of the sys-
tem, a complete specification of all components was requivéel would, how-
ever, like to describe components separate from each othdescribing their
input/output behavior by logical formulae. In order to dédse the messages sent
and received by a component, we have to define logical propesithat hold
whenever a message is send or received. The IOLTS semaafingedlin Sec-
tion[41 are based on the state of the IOLTS. Valuation foncti takes the cur-
rent state of the IOLTS as its argument. In order to descrimponents by the
messages input and output of the component, we give an aitegrdefinition of
IOLTS semantics based on traces instead of paths (see efidi in Chap-
ter[4).

Definition 9.1 (Trace Semantics)Given an IOLTSL = (5, %, sp, —), a domain
D, and a set of interpretations a trace valuatiom is a mapping fronk to /.
L, A, 0p = @ denotes thap holds in stategp with valuation functiom. LAz =
@ denotes that holds for all paths: = (0, 01, . ..) with valuation functiom . A
is defined inductively as as follows:

LA, 00 = p(ta,... ty)if (I(t1),...,1(ty)) € I(p) with I = A(0p)
LA,op=—@ifnot L,A,00 = @

LA, ooE=E@oAYif LLA,c=@andL,A,00 = Y

LA,ool=@V yYif LLA,op=@or LA, 00 =Y

LA, 00 EVz.@if L,A,00 = @, forally e D

LA 00 =3z.@if L,A, 00 = @/, for at least oney € D

LAz E=@if LA,og =@

LA,z =A@if LA,z |= @for all pathsz in L starting with gy

LA,z =E@if LA,z = @for at least one path in L starting withop
LA,z =XQif LAzt =@
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LAz E@Uy if (@) L,A, 00 =Y
or (b) there is someé > 1s.t.L,A,z' = ¢
andL,A,zF =@forall 0<k < i

LA,z |=Geif L,z' |=@forall i >0
LA,z =Foif L,z" = @ for somei >0

Temporal logic statements about messages become po$sidliedtion func-
tion A providesexplicit message passingVe definemessage predicatas the
same way we defined state predicates (see Defirfifidn 4.9 tro8EER):

Definition 9.2 (Message Predicatelet L = (5,Z, s, —) be an IOLTS. LeA be
a trace valuation function. The model contaimessage predicatéfsthe trace
valuation functiom has the following properties:

messagePred$,A) =LA, 0 =0
LA, 00 ifo+#0o

With these definitions, it becomes possible to prove tenpogé statements
about message input and output of the application. For elamg can show
that it is possible that the component from Figlird 4.6 (Cédg) never receives
“CancelVote” immediately followed by “ConfirmVote”. Appéix A3 shows the
changes to the file given in AppendixX’A.1 in order to check fingperty with
NuSMV.

Now, we introduce the approach@a@%@ for complesatimponent
definitions. With this approach, it becomes possible to @noroperties of com-
ponents independently of other components. When compasimgponents, the
output symbols of one component are identical to the inpotisys of the other
component and both systems are run synchrond@r@ltalls the (uni-
directional) connection between systeaf@nnels In Jmaiel’'s approach, chan-
nels are named. For two componerdtsand B, connected by a communication
channelX, transfer of a message is represented by predicatessnd m on X],
[X xmt m], and[B rcv m on X]. We assume that communication channels are
fixed and messages are not lost on tranmerefore

[Asndmon X]|=[X xmt m]=[Brcv mon X]

if A and B are connected by . In Jmaiel's approach],S xmt m| are atomic
propositions for all componentsand for all messages. We link this approach
to our modeling method by defining a relationship betweentigutput symbols
and message transfers:

1Lossy channels can by modeled as lossy components in betwestommunication chan-
nels.
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Definition 9.3 ( xmt -syntax) Let L = (5,2, sp,—) be an IOLTS.L is in xmt -
syntaxif

e the set of input and output symbols is split int@etsy,...,2, with < =
Uz, andNZ; = 2.

e there exist channel names, ..., C, and a set of messagdg such that
[C; xmtm] € Z; forall m € M and C;.

We define an equivalence relationship on the set of messdgationship
“=" indicates that two messages have the same contents:

Definition 9.4. For all messagen andm/, m = m/ iff m and m’ have identical
contents.

The definition of “=" is not sufficient for the definition of camunication pro-
tocols, because it does not allow to discriminate betweessage with the same
content, i.e. it does not allow to uniquely identify message a stream, as shown
by IKoymans|(1992). Jmaiel uses “colors” to overcome thibem. Each mes-
sage has a distinct color. He uses a hierarchy of indexedregenge relation-
ships on the set of colorsg, ~1,. .., ~, forming an inclusion chaif-,, C~,, _1C
... C~q for this, i.e. the following axioms hold:

Definition 9.5 (Congruence Axioms)

m o~ m forall ~€ {~0q,...,~p }
mip~ mp /\ mp~ mg— mi~ m3 fOI’a"NE{No,...,Nn}
mp~ m — mp~ mq fOI’a"NE{No,...,Nn}

me~ij1m — me~;m

We define that all incoming messages are distinct in respeetationship~:

Definition 9.6 (Distinct Coloration)

distCol(s,~) =
Vm,m'.[s xmt m] A EXEF[s xmt m'] — m & m/

As an example for this methodology, we give the definition steeen com-
ponent. The component introduced here is part of the gesgsiem model de-
scribed in Sectioh @ 2. The screen component takes inputdroapplication and
presents the data to the user. A screen is an “asynchronoogianent. Once it
received some input, it will continuously output it untifféirent input is provided.
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Let d be an output device with input channelnd output channet. The
property of distinctively colored messages makes it pdssdouniquely identify
all message ever sent on a path:

distCol(s, ~o)

Incoming messages are output by the component. For evesyning message,
there is an outgoing message from the same congruencertl&Espect tovo:

Vm,m'.[s xmt m] — AX[r xmt m'] A m ~gm’

Finally, we define that the same message is continuouslyubutgil the screen
receives new input:

V!, m".(Vm.=[s xmt m]) A [r xmt m'] — AX[r xmt m”] A m’ ~g m”
This leads to the following definition in one formula:

Definition 9.7 (Screen) Let d be an output device with input chansednd output
channelr. d is a Screenf

distCol(s,~0) A Vm,m'.[s xmt m]| — AX[r xmt m'] A m ~g m’
AYm' m”. (VY m.=[s xmtm]) A [r xmtm/] —
AX[r xmtm” | A m’ ~g m”

We assume that all incoming messages of the screen compeatfistinct in
respect to relationshipg. Outgoing messages are not distinct in this respect. If
one wants to compose screen with a subsequent componentigsirable to be
able to discriminate between outgoing messages as welthisa new congru-
ence relationship-1 can be defined adistCol(d, ~1). With these definitions, we
can uniquely identify incoming messages of the first compowia relationsimo,
and uniquely identify incoming message of the second compiona relation~g.

9.2 Environment

The generic system model described in this chapter serva$hegeprint for the
definition of application models, user models, and secustyuirements. The
requirements for the application and the user model arellasvi

1. Be as generic as possible.

We are not interested in special purpose applications csensuwith a spe-
cific goal in mind. The goal is to find models fitting large cles®f appli-
cations and users.
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2. Be as simple as possible.

The methodology for guaranteeing secure HCI should beldaitar auto-
mated reasoning techniques. Therefore, there should lesvasimponents
with as few states as possible in the model.

3. Abstract from everything not relevant for security

Formal methods in HCI are usually used for usability studieshese stud-
ies, a sophisticated an highly specialized user model igimed, We use
formal methods to model HCI security. This allows to redueed¢omplex-
ity of the application and the user’'s mental model to thogeeets which
are relevant from a security point of view. It becomes pdegibuse simple
and generic user and application models and we can avoidothelexity

of models focusing on functionality and usability.

4. Build upon established methods

The system model should benefit from previous work on formadehs for
human-computer interaction.

Figure 9.1: Abowd and Beale’s Interaction Framework (agatom m
)

In general, human-computer interaction can be describeddegsog between
two parties: A user and an application. Interactions candsziibed as traces
of message passing between user and application. Our tenfptaa generic
system model follows Abowd and Bealdisteraction Framework Abowd and
Beale @1) describe human computer interaction as a caonmeation process
between four parties: The systesi)( a user (/), an input interfacel(), and an
output interface ), as shown in Figule9.1. The interaction framework model of
HCI describes all relevant parts of human-computer intevaavhile providing
an abstraction that is both suitable to encompass largsedas applications and
to describe security-relevant properties of human-coerateraction.
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Figure 9.2: Generic System Model
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Abowd and Beale’s interaction framework models a systensea, @nd the in-
terfaces between them. In modern HCI environments, thisafisanly a special
case of a more general model of human-computer interacflangeneric model
models a generic scenario, where a user may interact withmdauof applica-
tions (the system is multi-tasking), and a number of userng maae access to the
system (the system is multi-user.) This leads to the intenaenodel depicted in
Figure[9.2.

There is a number of users, a number of applications, a nuofb@evices
for user input (e.g. a keyboard, a mouse, a dedicated keypd@l¥ entry), and
a number of devices for application output (e.g. screenddpeaaker, dedicated
screen for PIN entry).

In our environment model, all users can send messages topall devices,
all applications can receive messages from all input deyiak applications can
send messages to all output devices, and all users caneeuessages from all
output devices. A communication path consists of a sendegceiver, a device,
and two communication channels; one communication chdrorelthe sender to
the device, and one communication channel from the devitieetoeceiver. We
refer to these channels ag ;) andc, ., Wherec refers to the channe, refers
to the sender, andrefers to the receiver.

Definition 9.8 (Environment) Let U be the set of users with= (s, 2, 504, —u)
andxz, =x?,UZ!, forall w € U. Let A be the set of applications withh =
(SasZa, 504, —a) @NdZ, = 2?2, UZ!, for all a € A. Let D be the set of devices
with d = (s4,24, S04, —¢) @andZ,; =Z?;UZ!; forall d € D. Letthe set of devices
be divided into a set of input devicésand output device®): D =1U O and
INO =@. Let M be a set of messages. Téxvironmenen U, A,1,0,M)is
defined a

e All elements of U,A,l, and O are immt -syntax with

— 2?2 = {[¢(o,w) Xmtm] [0 € O,m e M} forall u € U.
— 2y ={lc s xmtm] i€ l,me M} forallue U.
— 2?2 ={lcgi,oy xmtm] | i€ [,m e M} forall a € A.
=y ={lc(a,0) xmtm] |0 € O,m e M} forall a € A.
— 2% ={[cqu,iy Xmtm] |u € U,m e M} forall i € I.
— 2y ={[c@ra) Xmtm] [ a € A,m e M} forallie [
— 2?2 = {[c(g,0n Xmtm] | a € A,m € M} forall o € O.
— 2?2 ={[c(or) Xmtm] [u € U,me M} forall o€ O
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We refer to communication paths by triples d, r). In our model, communi-
cation paths exists from the user via an input device to tipéiGgiion, and from
the application via an output device to the user

Definition 9.9 (Path) Leteny U, A, I, O, M) be an environment. The set of paths
t(en( U, A,1,0,M))inthe environment is defined as

(paths U, A, 1,0,M))= {(u,i,a)|uec U,icl,ac A}
U{(a,o0,u) |ue U,oe O,a € A}

With the environment model defined in Definitibn19.8, we casatibe the
following typical scenarios in a multi-user, multi-tasgienvironment:

Single user, single applicationThe traditional scenario of the interaction of one
user with one application is modeled by restricting the nend$ users and
applications to 1. This scenario is suitable to model tyipiealicated de-
vices for secure human-computer interaction, like votiognputers, where
authorized access to the machine is secured by externakmean

singleUserSingleAppEny
en(U,A,I,0,M)and|U|=1and|A| =1

Single users, multiple applicationsIn an environment where each workplace is
accessible to one user only (e.g. an office environment witersical locks
prevent employees to access the workspaces of other enegloymut the
user may interact with a number of applications, the numbasers @) is
limited to 1, but multiple applications:{) may access the keyboard and the
screen.

singleUserSingleAppEny
en(U,A,I,0,M)and|U|=1

Multiple users, single or multiple applications In the most open scenario, mul-
tiple users have access to the computer system, which mag sungle or
multiple applications. One can further distinguish betwseenarios where
one user has access to the keyboard, but multiple users besssato the
screen (one user is using the computer, but others may |loarkhis shoul-
ders), and full multi-user access to the system.

Next, we can define the system model used to describe HCligebyrcom-
bining the environment model with the user and applicaticydeh. A system
model is an environment model with a distinguished usg¢ilafd a distinguished
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application ¢). These are the user and application that we are modelingrund
security aspects, while all other users and applicatiomsrard parties.

In Section[Z.R, we defined core application predicates (RefimZ.10) and
core user predicates (Definitibn4l11). The purpose of tHefritions was to de-
fine a fixed set of predicates that are used in all models ofwset applications.
These generic predicates provide a generic framework fdimal statements
of application and user behavior. In the same way, we defire m@ssage pred-
icates. The core message predicates ensure that all ingon@assages of appli-
cation input and output devices are distinctively color&istinct coloration is
required for the discrimination between messages passedcbynponent. Sec-
ondly, the core message predicates define predisatgstandlegitimate These
predicates respectively indicate if a message is seaetf it may be received by
authorized parties only, and who is legitimated to send andive a message.

Definition 9.10(Secret and Legitimate Predicatekpteny U, A, I, O, M) by an
environment. Lefl. = (S5,Z,s9,—) be an IOLTS modeling an application. Let
A be a valuation function. The model contasecret and legitimate predicates
if secret and legitimate are i and the valuation functiod has the following
properties:

secretLegitimatePreds, A ) =
LA, s |=secrets,d,r,m) if s needs legitimization
when sendingn to r via deviced
L,A,s = legitimate s, d, r,m) iff s is legitimized to send
messagen to r via channeld

Definition 9.11 (System Model) Leteny U, A, I, O, M) be an environment.
systemiU, A, 1,0, M ,u,a,A) is asystem model iff

e ucU

e oc A

coreAppPred&s, A)

coreUserPredgu, A)

secretLegitimatePred$, A )

For all usersz and input channels: distCol(c(, ;), ~o)

For all applicationsy and input channels: distCol(c(, ;),~0)



Chapter 10

The Common Criteria

In this chapter, we investigate existing security catalieggheir applicability to
user interface security. Our goal is to adapt the securgyirement definitions of
the security catalogs to user interface security. By compithe formal concepts
developed from the Common Criteria with the formalizatiohghe generic con-
cepts of information security developed in Chapiér 11, weatsr a comprehensive
and systematic definition of human-computer interacti@ussy.

10.1 Introductionto CC

Security catalogs are (more or less structured) collestiminsecurity require-
ments. They define properties of secure systems and prowideiable resource
for the evaluation of security threats. The best known sgchook is the “De-
partment of Defense Trusted Computer System Evaluatiaer@ri from 1985,
also known as the “Orange Book” (DoD 5200.28-$TD). Althowsgiminal, the
Orange Book is obsolete nowadays. Various national andnatienal organiza-
tions adapted and enhanced computer security cataloge foltbwing decades,
leading to the Common Criteria for Information TechnologcGrity Evaluation
(CC) (Common Criteria Evaluation Board (CCEB), 2006). Ther@non Crite-
ria are the most important attempt to formalize informaggatem security. The
Common Criteria have been developed by the governmentapatansecurity
organizations of Canada, France, Germany, The NethetldindsUnited King-
dom, and The United States. It has become the internatitaadlard ISO/IEC
15408:1999 and is one of the most comprehensive computaritsecatalogs.
On the downside, the Common Criteria provide a large numbéuractions to
pick from, without too much structure.

Security guidelines like the Common Criteria do not only wiefcriteria for
security functionality, but also criteria for the desigrdagvaluation process of
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TOE | target of evaluation (TOE) — a set of software, firmware andé&rd-
ware possibly accompanied by guidance.

TSF | TOE Security Functionality (TSF) — a set consisting of alidvaare,
software, and firmware of the TOE that must be relied uponHer t
correct enforcement of the SFRs.

SFR | security functional requirement

PP | Protection Profile (PP) — an implementation-independeatestent|
of security needs for a TOE type.

SFP | security function policy (SFP) — a set of rules describingcfic
security behavior enforced by the TSF and expressible as af se
SFRs.

Table 10.1: Glossary of Common Criteria terminology andrabiations (Com-
mon Criteria Evaluation Board (CCEMO& pages 16-18, 27

applications. The highest evaluation level is EAL 7. EAL quies a formal
presentation of the functional specification and high4ldesign, and a formal and
semi-formal demonstration of the correspondence betweehigh-level and the
low-level design. The correspondence with the actual imglatation is shown by
extensive testing only. In this chapter, the parts of the @om Criteria relevant
to human-computer interaction are identified and formdlineCTL.

The Common Criteria define the following classes:

— Class FAU: Security audit

— Class FCO: Communication

— Class FCS: Cryptographic support

— Class FDP: User data protection

— Class FIA: Identification and authentication

— Class FMT: Security management

— Class FPR: Privacy

— Class FPT: Protection of the TSF

— Class FRU: Resource utilisation

— Class FTA: TOE access

— Class FTP: Trusted path/channels

Table[I0.1 contains a glossary of Common Criteria termigybnd abbrevia-

tions used in this thesis. In this chapter, we identify theleenents of the Common
Criteria which are relevant to HCI security and formalizedé. In order to link
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the formal definitions of Common Criteria concepts devetbpethis chapter to

the generic IT security requirements defined in the nexti&nawe structure the
classes of the Common Criteria along the lines of Paths agwtifccation (Sec-

tion[I0.2) and Privacy and Confidentiality (Sectlon10.3nlyCclasses relevant
to HCI security are taken into consideration. We start wieaof core defini-

tions. The core definitions are subsequently used to assigmaf definitions to

Common Criteria concepts.

From the classes provided by the Common Criteria, the tHesses Security
Audit (FAU), Cryptographic Support (FCS) and Security Mgeaent (FMT) are
not covered in this thesis, because they are not directffaelto user interface
security. While Security Management (FMT), i.e. assigntranrd revocation
of security attributes, is not subject of this work, it canrbedeled by defining
temporal properties on legitimate communication (seei@ed0.3).

From the other classes, the most important one for HCI sgasrclass FTP,
because it defines security requirements for communicabiannels between par-
ties. In Sectiof 1012, we define the core concepts for thedbration of FTP and
the related classes FIA and FTA. We provide formal definitaérihe concept
of a trusted path in Definition—10.1. FIA requirements arerd&fiin respect to
the identification of communicating parties in HCI and autieation procedures.
Class FTA defines restrictions on the number of concurressiges per user and
locking of devices is formalized.

While classes Resource Utilisation (FRU) and Communica#CO) are also
relevant for the definition of secure communication pathsvben the user and
an application, they are not addressed in Sedfion 10.2. Resaitilisation and
resource allocation are already specified in the contextadscFTAMCS and
FTA_SSL. Fault tolerance of 1/0 devices is discussed in the fomai@on of class
FTA. For the access to I/O resources (FRRS and FRURSA) sophisticated for-
mal models of distribution and prioritizing shared res@sgrare not required in the
context of HCI security, because typical user 1/O resouligekeyboard, mouse,
and screen can inherently be used by one user only at a tinass Clommuni-
cation (FCO) deals with “assuring the identity of a partytiggrating in a data
exchange” iteri ' EB), 2Q6t 2, page 43).
We cover the identification of communicating parties in 8edf0.2

Based on the core definitions of trusted paths, the releartapts of classes
User data protection (FDP) and Privacy (FPR) are formaliaegectiorZIOB. In
the formalization of class Protection of the TSF (FPT), theeconcepts required
for the definition of integrity and availability constrasrdire defined.
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10.2 Paths and Identification (FTP, FIA, FTA, FRU,
FCO)

The first group of classes addresses the definition of contation paths, the
establishment, maintenance and closing of communicattmspand the identifi-
cation of communicating parties. The core of these classelass FTP, defining
trusted paths and channels. Class Identification and Atidagion (FIA) pro-
vides requirements for establishing authenticity of comroation parties. Class
TOE access (FTA) defines requirements for establishing amidteining com-
munication channels. Class Resource Utilisation (FRUnéefrequirements for
allocation of resources. In the context of HCI, we are irgté in resources for
the communication between the user and an application @igss Communi-
cation (FCO) defines requirements for non-repudiabilitpogin and receipt of
messages.

We start by developing a set of underlying core definitionSectiorlZI0.2]1.
These core definitions are used in Secfion 10.2.2 in the fadefanition of Com-
mon Criteria concept definitions, and in Chajifdr 11 as a comimasis for Com-
mon Criteria definitions and the generic information sagwoncepts of Confi-
dentiality, Integrity, and Availability.

Each of the definitions of the core concepts...) is accompanied by a def-
inition of asmQGz,...), indicating if entityz assumes thaf’(...) is true. These
definitions become important when we model the beliefs ofuber about the
state of the system.

10.2.1 Core Definitions

In this chapter we develop formal definitions of communmatpaths. The core
concept definitions build upon the generic system model f@draptefD. In Com-
mon Criteria subclass FTIPRP, a trusted path is defined as

“FTP_TRP.1.1: The TSF shall provide a communication path be-
tween itself and [selection: remote, local] users that gsdally dis-
tinct from other communication paths and provides assudtedtifi-
cation of its end points and protection of the communicatgd &iom

modification or disclosure.| (Common Criteria Evaluationg®d (CCEE),

2006, part 2, page 171-172)

This is translated to the following formal definition:

Definition 10.1 (Trusted Path)Let systerqU, A, 1,0, M,u,a,A) be a system
model. Let(s,d,r) be a path. The path is trusted, if the parties are authenti-
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cated (each party knows the identity of the other party), muedsages are neither
modified nor leaked:

trusted(s,d,r)) = authenticateds,d,r)) A —leakg(s,d,r))
A —modifie$(s, d,))

PredicateasmTrusteds introduced to formalize if a party assumes that a path
IS trusted:

Definition 10.2 (Assumptions about Trusted Path)

Let systertU/, A,1,0,M,u,a,A) be a system model. Lét, d,r) be a path.
Predicate asmTrustéd, (s, d, r)) holds whenevet assumes that property trusted
(DefinitionIO1) holds.

The definition oftrustedmakes use of the predicaéeithenticated A chan-
nel is authenticated if both the assumptions of the sendmrtdhbe receiver, and
the assumptions of the receiver about the sender are coWéectormalize these
assumptions by predicaésmldentityz, (s, d,r),s’,d’, '), indicating that user or
applicationz, that the channg(s, d,r) connectss’ via d’ to . The assumption
of z is correctifs = s', d = d’, andr = 1.

Definition 10.3 (Assumptions about Identities)

Let systertU, A,1,0,M,u,a,A) be a system model. Lét, d,r) be a path.
asmldentityz, (s, d,r),s’,d’,r’) holds if z assumes that patfs, d,r) connects
s’ to r' via deviced'.

A channel is successfully authenticated if both the assiamgbf the sender
about the receiver, and the assumptions of the receivelt éi@sender are cor-
rect. For a sending party and a receiving party, this is the case when both
asmldentitys, (s,d,r),s,d,r) and
asmldentityt, (s, d,r),s, d,r) hold:

Definition 10.4 (Authentication) Let systeraU, A, I, O, M, u,a,A) be a system
model. Lef(s, d,r) be a path.

authenticate(s,d,r)) = asmldentitys,(s,d,r),s,d,r)
A asmldentityt, (s, d,r),s,d,r)

A channel leaks messages if messages may end up with a reméad re-
ceiver. The definition of a system model (Definition 9.11)Quiee distinct col-
oration (Definition[2.B) for all messages on input channélthe user and the
application, i.e. for any two messagesandm’ on any of the input channels,
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m « m'. If a messagen’ on an output channel has the same color as a message
on an input channel{ ~ m’), it is the same messages. We use these properties in
the definition of leaking. On a patls, d,r), all messages send on channgly
should by received on channel; ). The path is leaking if a message send on
¢(s,4) May be received on a channg}, ., with d # d’ or r # r".

Definition 10.5 (Leaks) Let systert/, A,1, 0, M, u,a,A) be a system model.
Let (s, d,r) be a path. The patteaksif

leake$(s,d,r)) = Im,m' d' 1.
[C(s7d) xmt m] A EF[C(d/ﬂn/) xmt m']
Ame~m' A(d#d NV r#r)

Definition 10.6 (Assumptions about Leaks) et systerU, A, 1, O, M, u,a,A)
be a system model. Lét, d,r) be a path. Predicate asmLe@ak (s, d,r)) holds
whenever: assumes that property leaks (Definitlon10.5) holds.

Messages on a channel may be modified if the channel intreduessages
(messages not sent by the sender are received by the rg@céinerssages change
during transport, if the order of messages may change, oeffsages may get
duplicated.

Definition 10.7 (Modifies).

modifie$(s,d,r)) = intro((s,d,r)) V duplicate$(s, d,r))
V changes§(s,d,r)) v mixeg(s, d,r))

Concepintro describes that new messages may get introduced into a dhanne
either by a third party, or by spontaneous creation in thacgevOn a channel
(s,d,r), messages are introduced if there exists a message suchabsagen
is received, but no message of the same color has been sent before:

Definition 10.8(Introduction of Messages) et systerqil, A, I, O, M, u,a,A) be
asystem model. Lét, d, ) be a path. New messages are created on pati, )
if
intro((s,d,r)) = Im.Vm'
A(=([c(s,ay xmtm/] A m ~m'))U[cq,,) Xxmtm]

Definition 10.9 (Assumptions about Introductian)

Let syster/, A,1,0,M,u,a,A) be a system model. Lét, d,r) be a path.
Predicate asmintrpr, (s,d,r)) holds whenever: assumes that property intro
(DefinitionI0.8) holds.
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Message are duplicated if a two messages of the same coloocgay on an
output channel.

Definition 10.10 (Duplication) Let systerqU,A,1,0, M ,u,a,A) be a system
model. Let(s, d,r) be a path. A message on pdthd, r) is duplicated if

duplicate$(s,d,r)) =
Im,m": [c(q, Xmtm] A EXEF[c(g ) xmtm/] A m ~ m/

Definition 10.11(Assumptions about no duplication)

Let systeriU,A,1,0,M,u,a,A) be a system model. L&k, d,r) be a path.
Predicate asmDuplicatés, d, r)) represents if the sender (the receiver) assumes
that propertyno duplicatiorholds on path(s, d, ).

The content of messages may change on a path if two messagethbsdame
color (m ~ m/), but not the same contenti(= m’):

Definition 10.12(Changes)

Let systerqU, A, I, O, M,u,a,A) be a system model. Léf = (P,Lp,D, T) be

a model, and lets, d, ) be a path in model/. A messages is changed on path
(s,d,r)if

change§(s,d,r)) = Im,m’.
[¢(s,a) Xmtm] A EF[c(g ) xmtm/]

Am~m' Am#m'

Definition 10.13(Assumptions about Changes)

Let systeriU, A, 1,0, M,u,a,A) be a system model. L&k, d,r) be a path.
Predicate asmChangeés, (s, d, 7)) holds whenever assumes that property
changes (DefinitionZI0.12) holds.

Messages are mixed on a channel if a messagesend before a message
but messages’ (with m ~ m’) is received after’ (with n ~ n'):

Definition 10.14(Mixes). Let systertU, A, 1, O, M, u,a,A) be a system model.
Let(s,d,r) be a path. Letn andn be messages on channg) ;, and letm’, n’
be messages on channg} ,,. Messages on patfs, d, r) are mixed if

mixeg(s,d,r)) =
Im,m',;n,n’ 1 e q) Xmtm] A EXEF[c(s 4) Xmt n]
VAN EF([C(d,r) xmt m’] A EF[C(d,r) xmt n’])
Am~m' An~n'
A E(ﬁ[C(dﬂn) xmt m’])U[c(dﬂ,) xmt Tll]
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Definition 10.15(Assumptions about mixing)et systerU, A, I, O, M ,u, a,A)

be a system model. Lét,d,r) be a path. Predicate asmMixgs, d,r)) rep-

resents if the sender (the receiver) assumes that propetgs holds on path
(s,d,r).

Note that losslessness ot a required property. As we will see in the CC
concept definitions in Sectidn 10.P.1, formal definitionscofcepts relying on
trusted paths can be given without requiring losslessness.

Definition 10.16 (Assumptions about Modifications)

Let systetiU, A, 1,0, M,u,a,A) be a system model. Lét, d,r) be a path.
Predicate asmModifi¢s, (s, d, r)) holds whenever assumes that property mod-
ifies((s,d,r)) (DefinitiofI0I5) holds.

Note that these assumptions and properties may changex&woipée, a user
may assume that he is communicating with applicatiomia the keyboard for
some time, while later on—after switching to a different liggiion—he may
assume that he is communicating with applicatbmow. We call thisopening
maintaining andclosinga communication path. Opening a communication path
(s,d,r) means that a trusted path is established. Closing a comatigrigpath
means that the path is no longer trusted.

Definition 10.17 (Opening, Maintaining, and Closing a Communication Path)
Let systertU, A, I, O, M, u,a,A) be a system model. L&t, d, ) be a path.

opening(s,d,r)) = -trusted(s,d,r))

A AXtrusted(s, d,))
trusted (s, d, r))

A AXtrusted(s, d,))
trusted (s, d,r))

A AX=trusted(s, d,r))

maintainind (s, d,r))

closing (s, d,r))

10.2.2 Definitions of CC Concepts

The core definitions from Secti@n_10.P.1 allow to formaligkevant subclasses of
Common Criteria classes FTP, FIA, FTA, FRU, and FCO.

e Class FTP: Trusted path/channels

This class cataloguizes requirements for trusted patlngmatsystem (TSF-
_ITC), and in the communication of a system with a user (HIFP). Only
the latter is relevant for HCI security.
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“Families in this class provide requirements for a trustethe
munication path between users and the TSF, and for a trusted
communication channel between the TSF and other trusted IT
products. Trusted paths and channels have the followingrgén
characteristics:

— The communications path is constructed using internal and
external communications channels (as appropriate for the
component) that isolate an identified subset of TSF data and
commands from the remainder of the TSF and user data.

— Use of the communications path may be initiated by the user
and/or the TSF (as appropriate for the component)

— The communications path is capable of providing assurance
that the user is communicating with the correct TSF, and
that the TSF is communicating with the correct user (as ap-
propriate for the component)” (Common Criteria Evaluation
Board (CCEB)IE6 part 2, page 168)

“FTP_TRP.1.2: The TSF shall permit [selection: the TSF, lo-
cal users, remote users] to initiate communication vianhstéd

path."{Common Criteria Evaluation Board (CCEB), 20061 ar

page 172)

We assume that requests to open a trusted fathl,r)) are issued by
sending messages. In the following definition, we assumepteicate
reqOpenholds when a message request the opening of a channel. lasuch
message send on a given péth d’, '), then a trusted patts, d, r) shall
eventually be opened:

Definition 10.18 (FTP-TRP.1.2) Let systeriU,A,I,0,M,u,a,A) be a
system model.
Let(s, d,r) be the path that should become a trusted path, an@let’, ')

be the path for requesting opening of the trusted path. LgDper{m) be
true if messagen requests opening of the trusted path. Then

FTP_.TRP.1.2(s,d,r),(s',d',r")) =
Vm.[c(y a1y Xmt m] A reqOperim) — AFopenind(s, d,))

“FTP_TRP.1.3: The TSF shall require the use of the trusted path
for [selection: initial user authentication, [assignmaegther ser-
vices for which trusted path is required]].”(Common Crigdval-
uation Board (CCEB 6, part 2, page 171)
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In SectionQ.R, the formal conceptecretandlegitimatehave been intro-
duced (Definitio.8.70). These are used in the formal dedimitf FTP -
TRP.1.3. In the definition of FTHRP.1.3,X (m) indicates thatn is part
of a service requiring a trusted path. ETRP.1.3 is defined as

Definition 10.19 (FTP.TRP.1.3) Let systerqU, A,I,0,M,u,a,A) be a
system model. LeX be a predicate indicating if a message is part of the
service for which the trusted path is required. Then

FTP_.TRP.1.3s,d,r,X) =
Vm. X (m) A [c(s,q) Xmt m] — trusted(s, d, 7))

Class FIA: Identification and authentication

An important aspect of trusted paths is the identificatiothef parties in-
volved in the communication. The Common Critiera dedicatale class
to this, FIA: Identification and authentication. Correcsef the actual pro-
tocols used for authentication is not the subject of thisithheWe assume
the authentication protocols are correct, and give forneéihdions of the
Common Criteria subclasses related to authentication.

“FIA_AFL.1.1: The TSF shall detect when [assignment: num-
ber] unsuccessful authentication attempts occur relaigds-
signment: list of authentication events].”(Common Cradtval-
uation Board (CCEBLZ_Q_‘)& part 2, page 89-90)

Authentication was succesful if a state of non-autheritaas followed by
a state of authentication. We assume predieatbenticatecolds on suc-
cessful authentication, and predicaigthFailedholds if an authentication
attempt failed. A countesiuthAttemptsCountes defined as follows: If au-
thentication was successful , theathAttemptsCountéd) holds in the next
step. If authentication failed, theauthAttemptsCountes increased by 1
in the next step. If neither a successful nor an unsucceastbhentication
attempt happened, tlaithAttemptsCountestays the same.

Definition 10.20(Counting Authentication Attempts)

Let systertU, A,1,0,M,u,a,A) be a system model. Let authenticated
hold when an authentication attempt was succesful, andittailed hold
when an authentication attempt failed. A counter numFaileti ) for the
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number of failed attempts is defined as

authAttemptsCountet

(authenticated—
AXnumFailedAut0)
AV m.AX(m # 0 — —numFailedAutlim)))

A (authFailedA numFailedAutfn) —
AXnumFailedAutfn + 1)
AYm.AX(m # n+ 1 — —numFailedAutfim)))

A (—authFailedA —authenticated\ numFailedAutkn) —
AXnumFailedAutfin)
AN m.AX(m # n — —-numFailedAutfim)))

“FIA_AFL.1.2: When the defined number of unsuccessful au-
thentication attempts has been met or surpassed, the T8F sha
[assignment: list of actions].”(Common Criteria EvaloatBoard
(CCEB),120085, part 2, page 90)

Definition 10.21 (FTP-AFL.1.2). Let systerqU,A,1,0,M,u,a,A) be a
system model. Let be the maximal number of authentication attempts. Let
maxAuthExceededAction hold when the actions assignedarass of the
maximum number of authentication attempts are executesh Th

FTPAFL.1.Qn) =
authAttemptsCounter
(numFailedAutfin) — AXmaxAuthExceededActipn

“FIA_ATD.1.1: The TSF shall maintain the following list of
security attributes belonging to individual users: [asgignt:

list of securitg attributes].”(Common Criteria Evaluati®oard
(CCEB), , part 2, page 91)

User security attributes are defined by predicates. Theabpredicates
depend on the application. In the context of confidentiaktyuirement we
defined predicateecretandlegitimate(Definition[3.10).

From the type of authentication mechanisms defined in.B&XU, FIA_-
UAU.1/FIA_UID.1 and FIA.UAU.2/FIA_UID.2 deal with operations possi-
ble before authentication:

“FIA _UAU.1 Timing of authentication, allows a user to perform
certain actions prior to the authentication of the useesnidy.
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“FIA _UAU.2 User authentication before any action, requires that
users authenticate themselves before any action will logvad

by the TSF.(Common Criteria Evaluation Board (CCEB), 2006

part 2, page 94)

We define legitimate actions viegitimate If a message may be send prior
authentication, then it is always legitimate to send thesags:

Definition 10.22(FIA_UAU.1). Let systeriU, A, I, O, M ,u,a,A) be a sys-
tem model. Letl be the device, antithe set of set of messages allowed to
be communicated before authentication. Then

FIA_ UAU.1(d, ) =
AGYs,m.m € | — legitimate s, d, a, m)

If the user must be authenticated before sending any medbsagesending
a message is legitimate only if the path is authenticated:

Definition 10.23(FIA_UAU.2). Let systerqU, A, I, O, M ,u,a,A) be asys-
tem model. Let be the device. Then

FIA_LUAU.2(d) =
V'm.legitimat€ u, d, a, m) — authenticatef{u, d, a))

FIA_UAU.3 requires unforgeable authentication, FUXAU.4 single-use au-
thentication, FIAUAU.5, multiple authentication mechanisms, and FIA
UAU.7 defines requirements for feedback in the authentioafirocess.

These are not subject of this thesis, because we treat therditation pro-

cess as a “black box”; we do not model the actual method usealitben-

tication.

“FIA_UAU.6 Re-authenticating, requires the ability to specify
events for which the user needs to be re-authenticated.”

If the system is in a state requiring re-authenticatiom tifie path between
user and application will not be authenticated in the nesq:st

Definition 10.24(FIA_UAU.6). Let systeriU, A, I, O, M ,u,a,A) be a sys-
tem model. Let/ be an input device and letbe the set of states for which
re-authentication is required.

FIA_UAU.6(d, ) =
Vz.statdz) A z € t — AX—authenticate@u, d, a)
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User-subject binding is defined in FIASB as:

“FIA_USB.1.1: The TSF shall associate the appropriate user se-
curity attributes with subjects acting on behalf of thatrti€@ommon
Criteria Evaluation Board (CCE |06, part 2, page 101)

This is achieved by associating users with paths. This iseaetl by Def-
inition [L0.4 (Authentication). In the definition dégitimate the security
attributes are defined on combinations of users, paths,esivers.

e Class FTA: TOE access

Class FTA: TOE access deals with session management. lrotitext of
HCI, sessions are closely related to the access to I/O ressul herefore,
the relevant parts of this class are similar to the relevartspf the classes
dealing with 1/O resource allocation. Class FBSL (Session locking) ad-
dresses the question of maintaining and re-establishimgstéet session.
From the subclasses of class FTA (TOE Access), MBS (Limitation on
multiple concurrent sessions (FIMCS) is relevant for HCI security:

“FTA_MCS.1.1: The TSF shall restrict the maximum number of con-
current sessions that belong to the same user.

“FTA_MCS.1.2: The TSF shall enforce, by default, a limit of [assig
ment: default number! sessions per user.”(Common Critevedua-
tion Board (CCEB) 6, part 2, page 161)

This is achieved by enforcing a maximal number of authetdtt@aths asso-

ciated with a user at all times:

Definition 10.25 (Set of trusted paths).et systeraU, A,1, O, M, u,a,A) be a
system model. The set of trusted paths (paths) is defined as

paths= {(u, d, a) | trusted(u, d, a)) for somed}
We formalize FTAMCS.1:

Definition 10.26 (FTA_MCS.1) Let m be the maximal number of sessions per
user. FTAMCS.1 is satisfied if

FTAMCS.1m) = |pathg < m

FTA_SSL:
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“This family defines requirements for the TSF to provide thpabil-
ity for TSF- initiated and user-initiated locking and urkatg of inter-

active sessions!"(Common Criteria Evaluation Board (C{EPB06,

part 2, page 162)

If a device (path) is locked, all incoming messages will becdrded, i.e. all
input arriving on a locked device is discarded; also, messadpich arrived before
the device was locked will not be send while the device is éockThe formal
specification ofPath Lockingconsists of two conjuncts. The first conjunction
defines that if a message is send while the path is locked, then no message
of matching color {» ~ m') will ever be received, even if the path is unlocked
later on. The second conjunct defines that no message isedoghile the path
is locked.

Definition 10.27 (Path Locking) Let systerU, A, I, O, M, u,a,A) be a system
model. Locking of a paths, d, r) is defined as

locked (s, d,r))= Vm,m',m".
[C(s7d) xmt m] —
~(EF[c(q,r) xmtm'] A m ~m’)
A _‘[C(d,r) xmt m”]

If a path is completely locked, no interaction is possiblde ™efinition of
FTA_SSL.1.1 however requires that operations for unlockingpath are still
possible. The formal definition dPartial Path Lockingis very similar to the
definition of Path Locking The only difference is that messages which satisfy
propertyauthMesgmay be communicated on partially locked paths:

Definition 10.28 (Partial Path Locking)Let systeraU, A,1, O, M, u,a,A) be a
system model. Let authMsg) hold whenever a messageis part of the authen-
tication protocol. Then partial locking is defined as

partLocked(s,d,r)) = Vm,m’',m".
[¢(s,ay Xmtm] A —authMsdm) —
~(EF[c(q,r xmtm'] Am ~m’)
A =[ega,ry Xxmtm”] v authMsgm”)

“FTA_SSL.1.1: The TSF shall lock an interactive session after [as
signment: time interval of user inactivity] by:

- clearing or overwriting display devices, making the catreontents
unreadable;

- disabling any activity of the user’s data access/dispyaks other
than unlocking the session.”(Common Criteria Fvaluatioai (CCEH),
m, part 2, page 162)
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In our framework, time is represented as time steps. Theegptppf the user
not making an input fom-time steps is formalized in a way very similar to the
formalization of the counter of failed authentication atfgs (DefinitiorZL10.20).
When the user sends a messdgg, (;,) Xmt m]), the countenolnputis set to zero
in the next step. If the user does not send a messagentieputis increased by
one in the next step:

Definition 10.29 (Time without User Input) Let systerqU, A, 1,0, M, u,a,A)
be a system model. The time without user input on a path, ) is defined as

noUserInputCountéfu, d,r)) =
(Fm.[c(y,q) Xmt m]) —
AXnolnpu{(u, d,r),0)
AV p.AX(p # 0— —nolnput(u,d,r),p)))
AV m' . (=[cqy,q)y Xmtm'] A nolnput(u, d,r),n) —
AXnolnput(u,d,r),n+1))
AV p.AX(p # n+1— —nolnpui(u,d,r),p)))

With the definition ofnolnputit is possible to FTASSL.1.1. In the formal-
ization of FTA.SSL.1.1, we assume that two paths should be locked afteraro us
activity: The path from the user to the application via aruingeeviced, and the
path from the application to the user via an output device

Definition 10.30.

Let systerU, A, 1,0, M, u,a,A) be a system model. Lét,d,a) be the input
path and(a,d’,u) be the output path. Let be the time after which the paths
shall be locked in case of no user input. Then

FTASSL.1.1d,d’, n) =
nolnput (v, d,a),m) An<m —
partLocked(u, d, a)) A partLocked(u,d’, a))

In our definitions oflocked and partLocked no messages are output on a
blocked device. Therefore, explicitly cleaning the screenot necessary. In
Section[I4R we show how a realistic screen component is ieda@ad how it
affects system security.

FTA_SSL.2 and FTASSL.3 require that locking can be initiated by the user
(FTA_SSL.2) and the application (FTASL.3). We assume there is a predicate
locklt which holds for messages requesting locking. When a messdpéying
locklt is send, then the path from the user to the applicatiend; «)), and the
path from the application to the usérn(d’, )) shall be locked in the next step:
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Definition 10.31 (FTA_SSL.2) Let systerqU,A,1,0,M,u,a,A) be a system
model. Let(u, d, a) be the input path an¢la, d’, u) be the output path. Let predi-
cate lockl{m) indicate if m is a message requesting locking. Then

FTASSL.2d,d) =
V'm.[c(y,q) Xmt m] A locklt(m) —
AX(partLocked(u, d, a)) A partLocked(d’, d,u")))

“FTA_TAB.1.1 Before establishing a user session, the TSF shall di
play an advisory warning message regarding unauthorisedfuse

TOE.”(Common Criteria_Evaluation Board (CCEB), 2006, part
page 165)

We assuméanne(m) holds if m is a message showing the advisory message.
If a trusted channel is opened, an advisory message showddven in the next
step:

Definition 10.32(FTA_TAB.1.1). Let systertU, A,I, O, M, u,a,A) be a system
model. Let bannérmn) be true if message: is a banner. Let/ be the device where
the banner shall be shown.

FTATAB.1.1d) =
Im.banne(m) A
opening(a, d,u)) — AX[c(q ) Xmt m])

“FTA_TAH.1.1 Upon successful session establishment, the TSF sha
display the [selection: date, time, method, location] & tast suc-
cessful session establishment to the user.”(Common Gritemalua-
tion Board (CCEB)@G, part 2, page 166)

The formal definition of FATTAH.1.1 is very similar to the definition of
FTA_TAB.1.1. We assumes{m) holds if m is a message showing the infor-
mation about last successful session establishment.usgett channel is opened,
an information message should be shown in the next step:

Definition 10.33(FTA_TAH.1.1). Let systertU/, A,1, O, M, u,a,A) be a system
model. Let estn) be true if message: displays the relevant information. Lét
be the device where the information shall be shown.

FTATAH.1.1d) =
Im.es{m) A
openind(a, d,u)) — AX[c(q,4) XMt m])
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“FTA_TAH.1.2 Upon successful session establishment, the TSF sha
display the [selection: date, time, method, location] &f ldst unsuc-
cessful attempt to session establishment and the numbesotoess-

ful attempts since the last successful session establigiiii@ommon
Criteria Evaluation Board (CCEMO& part 2, page 166)

The formal definition of FTATAH.1.2 is very similar to FTATAB1.1 and
FTA_TAH.1.1. In the definition of FTATAB1.1, bannefm) is true for messages
showing a banner. In the definition of FTRAH1.1, es{m) is true for messages
showing the relevant information about session estabksttmn the definition of
FTA_TAH1.2,failedAttemptén) is true for messages showing information about
the number of failed authentication attempts.

Definition 10.34(FTA_TAH.1.2). Let systerU, A, I, O, M, u,a,A) be a system
model. Let failedAttemp(ts:) be true if message: displays the relevant informa-
tion about failed authentication attempts. LEbe the device where the informa-
tion shall be shown.

FTA-TAH.1.2d) =

Im.failedAttempt&m) A

opening(a, d,u)) — AX[c(q,,) XMt m])

“FTA_TAH.1.3 The TSF shall not erase the access history infoonati
from the user interface without giving the user an oppottuta re-

view the information.’(Common Criteria Fvaluation BoaGEB),
2006, part 2, page 166)

Since we have a integrated view on HCI security, we stremgffié\_TAH.1.3
to the requirement that the user has recognized the systen #ta message:
with the information about failed authentication attem(pts failed Attempts(m)
holds) is send on the path, then a messagef the same color ~ m’) will hold
until the user’s assumption about failed attempts is idahto the information in
messagen (miasmFailedAttempts(u, m)) holds.

Definition 10.35(FTA_TAH.1.3). Let systerU, A, I, O, M, u,a,A) be a system
model. Let failedAttemp(ts:) be true if message: displays the relevant informa-
tion. Let asmFailedAttempts:) hold if the user assumes that the access history
information is identical to the information in message Let d be the device
where the information shall be shown.

FTATAH.1.3d) =
Im failedAttemptém) A ([c(q,q) XMt m]) —
AXA(([e(a,uy Xmtm']) A m ~ m')UasmFailedAttempts, m)

TOE session establishment (FTESE) (Common Criteria Evaluation Board
(CCEB),@B, part 2, page 167) is not specific to user intergaecurity.
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10.3 Privacy and Confidentiality (FDP, FPR)

10.3.1 Overview

Privacy and confidentiality requirements are covered in ¢l@sses of the Com-
mon Criteria. Class FDP defines user data protection regemés. Class FPR
defines privacy requirements. Class FDP (User data protgds described as
follows:

“This class contains families specifying requirementated to pro-
tecting user data. FDP: User data protection is split into froups
of families (listed below) that address user data within &EJQur-
ing import, export, and storage as well as security attebualirectly

related to user data."(Common Criteria Evaluation Boar@€K8),

, part 2, page 54)

Only some of the sub-classes of FDP are relevant for HCI ggculasses
FDP_ACC and FDPIFC define access and information flow control policies.
FDP_RIP deals with secure information deletion. FIR®L defines requirements
for returning to a previous state. The other classes of tiisset are not relevant
to human-computer interaction: FOFT is concerned with data transfer within
a system. This is not relevant for our work, because we onlgehdata flow
between the user and the application. Also, EBPI is not relevant because it
defines requirements for stored data integrity. EBR®F and FDPRIFF provide a
list of requirement definitions for fine-grained informaticontrol policies. Since
this is not directly relevant to HCI security, we do not folrm@ FDP_ETC,which
governs the export of data outside the TSF. HDARU defines requirements for
guaranteeing authenticity of data. FRFCT defines confidentiality requirements
and class FDRJIT integrity requirements

10.3.2 Core Definitions

In the Common Criteria, privacy is understood as Anonymiiyn-disclosure of
user’s identity), Pseudonymity (non-disclosure of uset&ntity while still being
accountable), Unlinkability (multiple uses of resourcas oot be linked by third
parties), and Unobservability (third parties can not obsef a user is using a
service)(Common Criteria Evaluation Board (CCEB), 20086t 2, page 118-
125) The Common Criteria definition of privacy is concernethyrotecting data
from disclosure, like in the following example:

“In FPR_ANO.2.2 the PP/ST author should identify the list of ser-
vices which are subject to the anonymity requirement, faneple,
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‘the accessing of job descriptions™. (Common Criteria Engion
Board (CCEB)i 5656 part 2, page 268)

In the context of HCI interaction, we are only interested hie privacy of
the communication channels between the user and the ajmticarherefore,
Common Criteria class FPR is not formalized here.

For HCI privacy, all information send via a pathk, d,r) is received by the
legitimate receiver only, i.e. if somebody gets a delivéryust come from the
correct device and sender. If a messagsend on the patﬂo{(s’d) xmt m]) and a
message of the same color is eventually received somewisere e

(EF[c(ar,+y xmt m/] A m ~ m’), then it should be received on the same path, i.e.
d=d Nr=r1"

Definition 10.36(Private) Let systerqU, A, 1,0, M ,u,a,A) be a system model,
and let(s, d,r) be a path in modeM . The path iprivateif

private((s, d,r)) =
[C(s,d) xmt m] A EF[c(d/J/) xmtm/] Am ~m/ —
d=d Nr=1'

Definition 10.37(Assumptions about privacy) et systerqU, A, I, O, M ,u, a,A)
be a system model. L&t, d, ) be a path. Predicate asmPrivate (s, d,r)) holds
whenever: assumes that property privdie, d, r)) (Definition[10.36) holds.

10.3.3 Definitions of CC Concepts

“FDP_IFC.1.1 The TSF shall enforce the [assignment: information
flow control SFP] on [assignment: list of subjects, inforimat and
operations that cause controlled information to flow to andifcon-
trolled subjects_covered by the SFP]."(Common Criterial&aon
Board (CCEB)@.G, part 2, page 66)

We usesecretandlegitimate(Definition[@.I0) in the definition of FDRFC.1.1.
FDP_IFC.1.1 is satisfied if all messagesdeclared secret if send frosto r via
d (secrets, d,r,m)) are send only if sending is legitimateditimate s, d, v, m)):

Definition 10.38(FDP-IFC.1.1) Let systeraU, A,1,0, M, u,a,A) be a system
model.

FDP_IFC.2.1=
Vs, d,r,m.[c(s q) XMt m] A secrets, d,r,m) —
legitimate s, d, r,m)
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“FDP_IFC.2.2 The TSF shall ensure that all operations that cauge a
information in the TSC to flow to and from any subject in the TSC
are covered by an information flow control SFP.”(Common &2
Evaluation Board (CCEB 06, part 2, page 66)

Message flow is covered by an information control flow polidye message
is declared secret. In order to satisfy FIFC.2.2 all messages which may be
potentially send on any device from the user to the appboadr from the appli-
cation to the user must be declared secret:

Definition 10.39 (FDP_IFC.2.2) Let systerqU, A,1,0, M ,u,a,A) be a system
model.

FDP_IFC.2.2=

Vd,m,r.

(d € I — secretu,d,r,m))

A (d € O — secreta,d,r,m))

FDP_RIP (Residual information protection) deals with data tlefe “This
family addresses the need to ensure that deleted informiatimo longer accessi-
ble, and that newly created objects do not contain inforonathat should not be

accessible."(Common Criteria Evaluation Board (CCEB)@(art 2, page 77).

The only requirement in this class is FOFIP.1.1:

“FDP_RIP.1.1 The TSF shall ensure that any previous information
content of a resource is made unavailable upon the [setecab
location of the resource to, deallocation of the resouroenfrthe
following objects: [assignment: list of objects].”(CommgEriteria
Evaluation Board (CCEB), 2006, part 2, page 77).

In respect to the user interface, we have to make sure thatcdating from
and going to the 1/O devices is securely deleted. For exangaesitive data
should be deleted from the keyboard buffer before a diffeseplication gets ac-
cesstoit, and from the screen before a different user ge¢sado it. WWhen output
devices like the screen are updated asynchronously, it mpgen that logically
deleted information is still present on the screen. For ig@amputer interac-
tion, this is identical to the locking requirement of FI#SL.1 and FTASSL.2
for screen and keyboard. See Definitibns I0.4710 10.31.

FDP_IFF (Information Flow control functions) requires a fine igied infor-
mation flow policy including hierarchical security attriles. In this work, we are
content with security attributes defined legitimate

We do not formalize classes FOFPC (Import from outside TSF control),
FDPITT (Internal TOE transfer), FDRJCT (Inter-TSF user data confidentiality
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transfer protection), and FDBIT (Inter-TSF user data integrity transfer protec-
tion), because we only consider data flow between the usethendpplication,
not in between applications and systems.

Rollback operations (FDIRROL) allow to return to previous states of the sys-
tem.

“FDP_ROL.1.1 The TSF shall enforce [assignment: access control
SFP(s) and/or information flow control SFP(s)] to permit thé-
back of the [assignment: list of operations] on the [assigmimlist of
objects]."{Common Criteria Evaluation Board (CCEB), 20part 2,
page 79-80)

In our system model, states of the system are representé¢ates sf IOLTS.
Predicatestatd ) indicates if a system component is in statéDefinition[4.9).
We assume there are two stateandy and a message:.. The application shall
rollback from statey to statez if messagemn is send. For this, two conditions
have to be satisfied. First, the application must be in stated will eventually be
in statey (statdz) A EFstatey)). Second, whenever the application is in state
in the future, and messageis send, then the application will be in statagain,
eventually, and until the application is in stateagain, it will never be in a fatal
state AG (statey) A [c(,,q) Xmt m] — (A(—fatal)Ustatéz)))).

Definition 10.40(FDP-ROL.1.1) Let systertU/, A,1,0, M, u,a,A) be a system
model. Letr and y be states, and letu, d,a) be a path from the user to the
application. Letm be a message which, if send on péihd, «), initiates rollback
from statey to statez. Then

FDP_ROL.1.Xz,y,(u,d,a),m) =
statdz) A EFstatdy) —
AG(statdy) A [c(y,q) Xmt m] —
(A(—fatal)Ustatdz)))

“FDP_ROL.1.2 The TSF shall permit operations to be rolled back
within the [assignment: boundary limit to which rollback yrtze per-

formed].”"(Common Criteria Evaluation Board (CCEB), 2006t 2,

page 80)

For this, we define a relatiorollbackPossiblér, y), indicates that rollback
from statey to stater is possible. Furthermore, latllbackCommandbe a func-
tion from a tuple of states to a message, indicating that tessage initiates a
rollback from the second element of the tuple to the first elenof the tuple.
Then FDPROL.1.2 is satisfied if FDAROL.1.1 holds for alk: andy for which
rollback is possible with rollback commamnalibackCommangtz, y):
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Definition 10.41(FDP_ROL.1.2) Let systerqiU, A,1, O, M, u,a,A) be a system
model. Letu, d, a) be a path from the user to the application. Let rollbackPolesi
be a relation with two states as arguments, and let rollbank@and be a map-
ping from tuples of states to messages. Then

FDP_ROL.1.2(u, d, a),rollbackPossiblerollbackCommang=
Vz,y, m.rollbackPossibléz, y) —
FDP_ROL.1.Xz,y, (u,d, a),rollbackCommangz, y))

FDP_DAU defines requirements for guaranteeing authenticityabéd

“Data authentication permits an entity to accept respalitgibor the
authenticity of information (e.g., by digitally signing.i{fCommon
Criteria Evaluation Board (CCEMOG part 2, page 61)

Digital signature methods are not subjects of HCI secuoity,guaranteeing that
the user knows what he is signing is. When the user takesme#platy for some
data (e.g. by signing it), the data stored in the system shooirespond to the
user’s opinion about the data. We discuss this in the coofaxiethods for guar-
anteeing data integrity in Chapterl11. Sub-concepts EQH and FDRPUIT
require a definition of data privacy:

“FDP_UCT.1.1 The TSF shall enforce the [assignment: accessatontr
SFP(s) and/or information flow control SFP(s)] to be ablestdc-
tion: transmit, receive] objects in a manner protected frorautho-

rised disclosure.(Common Criteria Evaluation Board (@J,2006,
part 2, page 83)

“FDP_UIT.1.1 The TSF shall enforce the [assignment: accessaontr
SFP(s) and/or information flow control SFP(s)] to be ablestdc-
tion: transmit, receive] user data in a manner protecteah fizelec-
tion: modification, deletion, insertion, replay] erro€bmmon Cri-
teria Evaluation Board (CCEHEOG, part 2, page 85)

This is identical to our definition of the definitions of tradtpaths (Definitiof 10l 1)
in SectiorZT0.Z]1.



Chapter 11

Confidentiality—Integrity—
Avallability

11.1 Definitions

In the last chapter, the Common Criteria concepts relevaht@l security have
been formalized. The Common Criteria are a collection ofisgcrequirements.
Developers and evaluators of secure systems have to debidé warts of the
Common Criteria are relevant for their projects, and whiahtgare not. There
is no guarantee that the developer/evaluator has choseigthtelements of the
Common Criteria, and that no relevant aspects have beeeomiEurthermore,
the Common Criteria provide a criteria catalog for compsyatems only. It does
not define user behavior requirements.

The Common Criteria are a “bottom up” approach to computeursty. In
this chapter, we accompany the formal definitions of Commuotefa concepts
by a “top down” approach. We start by formalizing the welladdished definition
of computer security aSonfidentiality Integrity, andAvailability (also known as
the CIA-mode) for HCI security. In Sectioh 1112, we show that the core con-
cepts developed for the formal definition of Common Criteégguirements can
also be used to formalize the generic CIA requirements. TiReb@sed formal
requirement definitions for computer systems are accorepaoy requirement
definitions for user behavior. This allows to prove thatalé combinations of
application and user behavior components guarantee thsgawity breaches oc-
cur. The joined approach of “bottom up” Common Criteria agpts on the one
hand and “top down” CIA concepts on the other hand allows lfier pervasive
specification of secure human-computer interaction.

In the field of information security, the basic security thiseare identified as
Data Leaking Data Manipulation andProgram Manipulatior(see e.g. Clark and

105



106 CHAPTER 11. CONFIDENTIALITY-INTEGRITY-AVAILABILITY

Wilson (1987)]ITS| Dierstein (2004)). These are countdrgdhe core security

requirements, usually abbreviatedGig\:
Confidentiality Information is available to authorized parties only.
Integrity Neither the system nor services provided by and data pro-
cessed by the system can be manipulated. Third parties
accessing the system can not assume the identity of a le-
gitimate user.
Availability Accessibility of services and data is guaranteed.

We adapt these concepts to user interface security byatstrithese defini-
tions to the aspects involving the user interface and hucaamputer interaction.
For Confidentiality, this means that eavesdropping on tpetfioutput facilities
must not be possible. Integrity of the user interface is gui@ed if manipulation
of the user interface is not possible, i.e. if the user’s sgdions about the state
of the application, gained by observing and manipulatirggapplication via the
user interface, corresponds to the actual state of thecapioin. Availability of
the user interface means that an attacker can not get theteséace into a state
where the full functionality is no longer accessible.

Confidentiality A third party can not gain information from observing
human-computer interaction.

Integrity Whenever the user issues a command, all relevant infor-
mation, most notably the state of the program and the data
processed, is shown on the screen correctly.

Availability The functionality provided by the user interface is always
accessible.

We bridge the gap between the abstract concept definitio@3/Afnd con-
crete security requirements specification for applicatioy breaking down CIA
concepts into sub-concepts. In the definition of sub-cotscege make use of the
core concepts developed for the formalization of Commote@Ga requirements.
This way, we create a common base for security specificatiassd on CIA, and
security specifications based on CC. This last step sen@piwposes: It shows
that the concepts of the Common Criteria are suitable forraageve specifica-
tion of HCI security, and it breaks down generic concepts I @to suitable
requirement specifications of applications and users.

e Confidentiality

Confidentiality is given if no secret information is leaked, whenever se-
cret information is send, it either reaches a legitimateik&s or no receiver
at all:

Definition 11.1 (Confidentiality)
Let systerU, A,1,0,M,u,a,A) be a system model. Chanr{@l d,r) is
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confidentialif

Confidentiality=

Vs, d,r,d v, m,m.

[c(s,q) XMt m] A EF[c(g oy Xmtm/] A m ~ m' A secrets, d’, ', m’)
ﬁ

legitimate s, d’, ', m’)

e Integrity

HCI integrity is defined as a relation between the state cagication and
the user’s representation of the state of the applicatibe.user’s opinion of
the state should correspond to the actual state whenevesénenakes crit-
ical decisions. We formalize this concept by defining atti@s ap, . . ., a,
representing the relevant aspects of the system configoratid attributes
up, - . ., Uy representing the user’'s opinion about the system configarat
Furthermore, we assume that predicapgCritical holds whenever the ap-
plication is in a critical state.

Definition 11.2 (Integrity). Let systerqU, A, 1,0, M,u,a,A) be a system
model.

Let ap,... a, be the attributes representing the configuration of the appl
cation, and letu, .. . u, be the user’s representation of these attributes. Let
appCiritical hold whenever the application is in a criticabge. Integrity is
guaranteed if

Integrity =
appCritical — ((ag <> up) A (a1 <> ug) A ... A (an, < uy))

o Availability

Availability is commonly defined as reachability of desielstates and
avoidability of undesirable states. Transfered to useriate security, this
definition is not sufficient. It should not only be possible fmme user
to reach desirable states and avoid undesirable statesa @iwen formal
user model, desirable states should always be reached deditable states
should never be reached. This leads to the following dedimiti

Definition 11.3 (Availability). Let systerqU, A, 1,0, M,u,a,A) be a sys-
tem model. Availability is guaranteed if

Availability = AG(—fatal — AFsuccess
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11.2 Defining Confidentiality by CC Sub-Concepts

In ChaptefZID, Common Criteria concepts relevant to HCI len formalized.
In Section[ITH we formalized the generic security conceptSonfidentiality,
Integrity, and Availability. In this chapter, we show how i@mlentiality is de-
composed in sub-concepts using core concepts from the Can@riteria. In
Chapter§ 14 tf16, this approach is used to show that the etieait developed
in the Verisoft project satisfies Confidentiality, Integriand Availability.
Confidentiality means that information is available to auired parties only.
The definition of a confidential channels is based on the dieimof trusted paths
(Definition[I0.1). In Sectioh10.2, the concept of trustethpas one of the core
concepts for the definition of various Common Criteria cqise We show that
confidentiality as defined in Definitidn 11.1 is guaranteethé user sends con-
fidential messages only if he is communicating via a confideohannel with a
legitimate recipient. We call this théonfidentiality ConditiorfConfCond.

Definition 11.4 (Confidentiality Condition)
Let S = system\U,A,1,0,M,u,a,A) be a system model. S satisfies the confi-
dentiality condition if

M, A = ConfCond
with
ConfCond=V's,d,r,m. [c. q) Xmtm] A secrets,d,r,m)—
legitimate s, d, v, m) A trusted (s, d, r))
We need two lemmas to show th@bnfidentialityis implied by ConfCond
The first lemma asserts that if a channel sends a messagehianddssage is

received by somebody, and the channel does not leak, themetbsage is received
by the intended recipient:

Lemma 11.1.

[C(s,d) xmt m] VAN EF[C(d/ﬂn/) xmt m’]
Am~m'A-leakg(s,d,r)) —=r=r"ANd=4d

Proof
Insert definition ofeak (Definition[I05 in Sectioh 10.2.1):

[c(s,q) Xmt m] A EF[c(gr ) xmt m'] A m ~m’
A (=3m,m’ d' 1’ [egs, gy XMt m] A EF[c(gr .y xmt m/]
Ame~m/N(d#£d Vr#£r"))
—r=r"ANd=d
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Moving quantifiers to begin of formula, renaming bound Viales and, apply-
ing De Morgan’s laws:

1 " i 1/
vm",m", d",

[c(s,q) XMt m] A EF[c(gr oy XMt m'] A m ~ m’
A (_'[C(s,d) xmt m"] V ﬁEF[C(d//m//) xmt m'"]

v m" Vv (d=d"Nr=1"))
—r=r"ANd=4d

Sincem”, m'”, d”, andr” are universally quantified, we can set’' = m,
n

d"=d,r"=r,m"=m"
[¢(s,q) XMt m] A EF[c(gr oy XMt m'] A m ~ m’
A (_'[C(s,d) xmt m] V ﬁEF[C(d/ﬂa/) xmt m’]
Vmogm'V(d=d Nr=r1"))
—r=r"ANd=d

U
The second lemma asserts that if the channel does not chasggages, than
every message send will be received unchanged:

Lemma 11.2.

[¢(s,q) XMt m] A EF[cg ) xmtm'] A m ~ m’
A —change§(s,d,r)) — m =m’

Proof
Insert definition othangegDefinition[I0.I2 in Section 10.4.1):

[¢(s,q) XMt m] A EF[c(g ry Xmt m'] A m ~ m/
/\—|(E|mm [c sd)xmt m] A EF[c(q,,) xmt m/]
Am~m' Am#m)

—m=m'

Moving quantifiers to begin of formula, applying De Morgalass:

\v/m// m///‘

[¢(s,q) XMt m] A EF[c(g ry Xmt m'] A m ~ m/

A (_'[C(s d) xmt m”] V ﬁEF[C(d r) xmt m’”]
V; m/; 76 m/// V; m// — m///) ’

—m=m'

Sincem” andm’” are universally quantified, we can set = m, m"”" = m/':
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[c(s,q) Xmt m] A EF[c(g ) xmt m'] A m ~ m/

A _'[C(s7d) xmt m] vV ﬁEF[C(dﬂ,) xmt m’]
Vmgtm'Vm=m')

—m=m'

]
Now we can show that the confidentiality condition guarasmtammfidentiality:

Theorem 11.1(Confidentiality Condition guarantees Confidentiality)
ConfCond— Confidentiality

Proof
Insert definitions:

Vs,d,r,m.

[¢(s,a) XMt m] A secrets,d,r,m) —

legitimate s, d, r, m) A trusted(s, d,r)) —

Vs, d,r,d r’",m,m.

[c(s,q0) Xmt m] A EF[c(gr ) xmt m'] A'm ~ m' A secrets, d,r,m) —
legitimate s, d’, ', m’)

Renaming bound variables and moving all quantifiers to befjiarmula:

Vs, d,r,m,s' d r',m' s" d" " m".

[c(s,a) Xmt m] A secrets,d,r,m) —

legitimate s, d, r, m) A trusted (s, d,r)) —

cigr g Xmt m”] A EF[c gy Xxmt m'] A m” ~ m' A secrets”, d”, ', m”
[ (s",d") (d',r") &t

ﬁ

legitimate s”, d’, r', m’)

This holds trivially if =([c g gry xmt m”] A EF[c(gr oy Xmt m'] A m” ~m’ A
secrets”, d"”,r',m")).

In the other case, we move,» g xmt m”] A EF[c g,y xmt m/] A m” ~
m' A secrets”, d”,r',m”) into premise:

Vs,d,r,m,s',d,r'\m' s" d" " m".

[¢(s,a)y XMt m] A secrets,d,r,m) —

legitimate s, d, r, m) A trusted(s, d,r))

A legor army xmt m"] A EF[cqgr ) xmt m'] A m"” ~m’ A secregs”, d”,r',m")
N

legitimate s”, d’, r', m’)
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Since|cgr gy xmt m"] Asecrets”, d", ', m"), italso holds thategitimate s”, d", r, m") A
trusted(s”,d”,r)):

Vs,d,r,m,s d ' ,m' " d" " m".

[¢(s,a) XMt m] A secrets, d,r,m) —

legitimate s, d, v, m) A trusted(s, d,))

A legor amy xmt m"] A EF[cqgr ) xmt m'] A m” ~m’ A secrets”, d”,r',m")
A legitimatd s”, d”,r,m”) A trusted (s”, d",r))

-

legitimate s”, d’, r’', m’)
Drop no longer required conjuncts:

Vs, d,r,m,s' d',r"\m' s" d" " m".

[C(s”,d”) xmt m”] A EF[C(d/ﬂa/) xmt m’] Am" ~m!
A legitimatd s”, d”, r,m") A trusted(s”,d", r))
H

legitimate s”, d’, ', m’)

Insert definition oftrusted(page 101, Definitioh10.1) and subsequently defi-
nition of modifiespagd 1017, Definition10.7):

Vs, d,r,m,s’ . d v ,m' s" d" r m".

[c(sn,amy Xmt m"] A EF[c(g ,n xmt m/] A m” ~m/

A legitimatd s”, d”,r,m”) A authenticatetls”, d”, r))
A —leakg(s”,d" r)) A —intro((s”,d",r))

A —change§(s”,d",r)) A —-mixeg(s,d"”,r))

A —duplicates(s”,d",r))

-

legitimate s”, d’, ', m’)
Apply LemmaI1l:

Vs,d,r,m,s’ . d v ,m' s" d" " m".

[C(s”,d’) xmt m”] VAN EF[C(d/ﬂn/) xmt m’] Am" ~m

A legitimatd s”, d’, r,m”) A authenticated(s”, d’, r))
A —leakg(s”,d’,r)) A —intro((s”,d’,r))

A —change§(s”,d’,r)) A —-mixeg(s,d’,r))

A —duplicates(s”, d’,r))

-

legitimate s”, d’, r', m’)

Apply Lemma11.P:



112 CHAPTER 11. CONFIDENTIALITY-INTEGRITY-AVAILABILITY

Vs, d,r,m,s’ d r',m' s" d" " m.

[e(sm,any Xmt m/] A EF[c(qr ) Xmt m'] A m/ ~ m/

A legitimatd s”, d’,r,m’) A authenticated s”, d’, r))
A —leakg(s”,d’,r)) A —intro((s”,d’,r))

A —change§(s”, d’,r)) A —-mixeg(s,d’,r))

A —duplicates(s”, d’,r))

.

legitimate s”, d’, r', m’)

]

We have shown that the confidentiality condition guarantsegidentiality.
The confidentiality condition asserts that secret messagesend only if commu-
nicating the message is legitimate and if the channel isedudn Sectiof . I0.211
we introduced assumption predicates to model the assunsptica user/applica-
tion about a communication path. Next, we show which assiamghave to be
correct in order to guarantee the confidentiality conditidve take recourse on
the assumption predicates defined in Sedfionl10.2 (Defirsfi®. 2 [T0, 1013,
IOTI%[T0.I1). We introduce the concept ofatentive party An attentive party
is aware of (i.e. has the right assumptions) about the stdateecommunication
channel in respect to possible altering of messages, auwdcyrof the channel.
He will send messages only if the channel is private, messagenot altered, and
the message is legitimate.

Definition 11.5 (Attentive Party)

AttentivePartys) =
Vd,r,m.[c q) Xmtm] A secrets, d,r,m) —
A (asmModifiets, (s, d, 7)) < modifie$(s, d, )))
A (asmPrivatés, (s, d, r)) < private((s,d,r)))
A asmldentitiys, (s, d,r),s, d, )
A —masmModifiegs, (s, d, ))
A asmPrivatés, (s, d,r))
A legitimate s, d, r, m)

Intuitively, attentiveness means that secret messagesaceonly if

- itis legitimate to send them,

- the assumptions about the channel in respect to modifitafimnessages,
privacy of the channel, and identity of the communicatingyare correct,

- and the channel is private and not modifying data.

We show that the confidentiality condition is satisfied iftbtite user and the
application are attentive.
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Theorem 11.2.Let S = system\U, A, I, O, M, u,a,A) be a system model.
AttentivePartyu) A AttentivePartya) — ConfCond

Proof
Insert definition ofConfCond

AttentivePartyu) A AttentivePartya) —
Vs,d,r,m. [csq) Xmt m] A secrets,d,r,m) —
legitimate s, d, r,m) A trusted (s, d,r))

Sincesecrets, d,r,m) is true only fors = u A r = a Of s = a A r = u, we can
restricts andd to u anda, respectively. We further restristandrtos =u A r =
a, because the proof for=a A r = w is identical. Inserting = a A r = u:

AttentivePartyu) A AttentivePartya) —
Vd,m. [cq,q) Xmtm]Asecretu,d,a,m)—
legitimatg u, d, a, m) A trusted (u, d, a))

Insert definition ofAttentivePartyu):

Vd,r,m:[cy,q) Xmt m] A secretu, d, a,m) —
A (asmModifie6s, (u, d, 7)) <« modifie$(u, d,r)))
A (asmPrivatés, (u, d,r)) < private((u, d,r)))
A asmldentitiyu, (u, d, a),u,d, a)
A —~asmModifiegs, (u, d, r))
A asmPrivatés, (u, d,r))
A legitimate u, d, r, m)

A AttentivePartya) —

Vd,m. [cq,q)Xmtm]Asecretu,d,a,m) —
legitimatg v, d, a, m) A trusted (u, d, a))

FromasmModifieés, (u, d, r)) < modifie$(u, d, r))) and—asmModifiess, (u, d,r))
it follows that—modifie$(u, d,r))). From(asmPrivatés, (u, d,r)) < private(u, d,r)))
andasmPrivatés, (u, d, 7)) it follows thatprivate((u, d,r))):

Vd,r,m.[c,q) Xmt m] A secretu, d, a, m) —
A asmldentitiyu, (u, d,a),u,d, a)
A —-modifie$(u, d,r))
A private((u, d,r))
A legitimate u, d, r,m)

A AttentivePartya) —

Vd,m. [cq,q)Xmtm]Asecretu,d,a,m) —
legitimatg v, d, a, m) A trusted (u, d, a))
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Moving quantifiers, renaming bound variables, and moving'mux:tion[c(u’d) xmt m] A
secretu, d, a, m) into premise:

Vd,r,m,d,m'.
[C(u,ary Xmt m'] A secretu, d’, a,m’)
A ([¢(u,ay Xmt m] A secretu, d, a,m) —
A asmldentitiyu, (u, d,a),u,d, a)
A —modifie$(u, d,r))
A private((u, d,r))
A legitimat€ u, d,r,m))
A AttentivePartya) —
legitimate u, d’, a, m’) A trusted (u,d’, a))

It remains to be shown that

asmldentitiyu, (u,d,a),u,d, a)
A —modifie$(u, d, a))

A private((u, d, a))

A AttentivePartya)

—

trusted (u, d, a))
Inserting definition otrusted(Definition[I0.1in Sectiol 10.2.1):
asmldentitiyu, (u,d, a),u,d, a)
A —modifie$(u, d, a))
A private((u, d, a))
A AttentivePartya)

—
authenticatef{(u, d, a)) A —leakg(u, d, a))
A —modifie$(u, d, a))

We show separately that

asmldentitiyu, (u, d, a),u, d, a) N\ AttentivePartya) —
authenticatet( u, d, a))

and
private((u, d,a)) — —leakg(u, d, a))

First proof:
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asmldentitiyu, (u, d, a),u,d, a) A AttentivePartya) —
authenticate(u, d, a))

From the definition ofAttentivePartya) follows
asmldentitiya, (u, d, a), u, d, a). Inserting definition outhenticate( «, d, a)):

asmldentitiyu, (u, d, a),u,d, a) A asmldentitiya, (u, d,a),u,d,a) —
asmldentitiyu, (u, d, a),u,d, a) A asmldentitiya, (u, d,a),u,d, a)

Second proof:
private((u, d, a)) — —leakg(u, d, a))
Inserting definitions oprivateandleaks

[¢(s,q) XMt m] A EF[c(qr oy Xmt m'] A m ~m' —
d=d Nr=1'
_
=( IAm,m’,d’ .
[¢(s,q) Xmt m] A EF[c(qr ry Xmt m’]
Am~m'AN(d#d Vr#£r"))

Applying De Morgan’s law:

[¢(s,q) XMt m] A EF[c(qr oy Xmt m'] A m ~m' —

d=d Nr=1'

_

Vm, m/, dl; rl. _'[C(s,d) xmt m] V ﬁEF[C(d/Jn/) xmt m’]
Vam~m'V(d=d ANr=1")
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Chapter 12

Summary

In this part of the thesis, the formal methodology developeRartl]l has been
used to develop formal definitions of security in Human-Catep Interaction.
A generic system model has been introduced in Chépter 9. &herig system
model defines the basic components of our formal modelingoagp and the
ways in which these basic components can possibly inteltastflexible enough
to describe a large class of human-computer interactiontb®one hand, while
on the other hand it contains enough structure to model Idethiinteraction.
The formal methodology introduced in PErt | has been extéhgeolored mes-
sages With colored messages, it becomes possible to specify ocoermg behavior
in terms of message traces. In Chajfier 9, a generic formaéhabdnteractive
systems has been introduced. The model introduced allowsttel interaction
between multiple users and applications, using multigbeliand output devices.
The core predicatesntroduced in Section 9.2 provide a set of predicates for the
specification of security properties in the generic systeodeh Based on the
generic system model and the core predicates, the condejts Gommon Cri-
teria for Information Technology Security Evaluation (C@)evant for human-
computer interaction have been formalized. The formabpavf Common Cri-
teria concepts was achieved in two steps: For each cate§@gromon Criteria
concepts, first a number of core concepts were identified.f@itmeal definitions
of these core concepts served as building locks for the fod®anition of the
Common Criteria concepts.

The Common Criteria are a collection of security requirentiinitions. A
software engineer selects the relevant concepts for thiecappn at hand. The
Common Criteria are a valuable collection of security c@t€eand provide a
(semi-formal) methodology for the certification of secyniroducts against an
international standard. It does not contain the provisfonguaranteeing perva-
sive security in human-computer interaction, becausedmas not guarantee that
all aspects of security are covered, and b) it does not redbe& pervasive use
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of formal methods even at the highest evaluation level EALL iequire a formal
presentation of the functional specification and highlleesign and a formal and
semiformal demonstration of the correspondence betweehigh-level and the
low-level design, but correspondence with the actual iTigletation is shown by
extensive testing only.

These shortcomings are overcome in Chajpter 11. A compusézmyis con-
sidered secure if it guarante€onfidentiality Integrity, andAvailability. These
generic concepts are adapted to human-computer intemaatio formalized. In
a second step, we show how the core definitions developedéoformaliza-
tion of Common Criteria concepts are also suitable as mgltbhcks for breaking
down CIA concepts into sub-concepts. We have shown thatatree duilding
locks can be used to describe formal computer security gaad®th in terms of
the Common Criteria and in terms of Confidentiality, Integrand Availability.
The break-down of the Confidentiality concepts develope8entionCZTTR will
be used in Chapt&r1l5 in the specification and verificatioroafidentiality of a
secure email client. In Chaptdrs|14 4nd 16, we show for thel @lent that it
satisfies integrity and availability as defined in Secfiadlllfoo.



Part Il

Specification and Verification of
Secure Applications

The Verisoft Email Client
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Chapter 13

Specifying and Verifying a Secure
Email System

13.1 Introduction

In this part, the methodology developed in PHrts I@hd Il @ieg to the specifica-
tion of a secure email client. We show how compliance of trexdjgation of an
email client to the security requirements defined in ParaH be guaranteed. In
the Verisoft project, an actual implementation of the se@mail client has been
written and verified. In this part, we do not only show thatinethodology from
the previous parts is applicable to real-world softwardesys. We also develop
a set of design patterns which can be used in other applisatim Chaptel14,
we develop a design pattern for text-based, interactivéicgtion and show that
application specifications following the pattern satisfg security requirement of
system integrity. This design pattern is applicable toeadt-based, interactive ap-
plications. The confidentiality condition developed in @tealI5 is applicable to
all user and application models; independent of a conckedies, confidential-
ity is guaranteed if the confidentiality condition is sa@sfby the communicating
parties.

The methodology developed in this thesis has been applibe tevelopment
of a secure email client as part of the Verisoft project. &eiftiis a long term re-
search project funded by the German Federal Ministry of Btlon and Research
(BMBF). With 12 partners from German industry and academahafunding of
20 million Euro for seven years, Verisoft and its successaiséft XT is one of
the biggest software verification projects in Germany.

The goal of the Verisoft project was to create the tools anthous to allow
the pervasive formal verification of computer systems, anshbw that verifica-
tion of real world systems is viablﬁlaﬁb%). In Veristdrmal methods and
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verification technology have been used throughout all aspacsystem devel-
oping, including verified hardware, verified developmermispand verified op-
erating systems and verified application programs. Foucreb@ systems were
developed in Verisoft. Of these four systems, three weresldeed by or in
cooperation with partners from industry, and one is dewdopy the academic
partners. The industry projects include Bmergency Call Systedeveloped in
cooperation with the BMW group, Biometric Identification System cooper-
ation with T-Systems, andHardware verificationdeveloped in cooperation with
Infineon Technologies. The academic project develops asetnail system. In
this part of the thesis, we show how our methodology for theeldgpment of se-
cure interactive systems has been used in the specificattbwaaification of that
system.

13.1.1 The Academic System

Email Client Signature Application
(User Interface) Module Software Com-—
piler
Networking /

Mail Server (SMTP)

Communication

TCP/IP

Operating Memory System
System Manage-— Software Tools
ment
Network Hard
Screen Processor araware
Keyboard
File System

Host System

Figure 13.1: Components of the academic system (Beustér 20a6)

The goal of the academic subproject was to show that commskiajetech-
nology can be formally specified and verified. For this reasba technology
used in the academic system stays as close to off-the-stsdfap systems, tech-
nologies, and standards as possible. The academic systeatdesup of different
parts, as depicted in Figure IB.1. The verified compiler ptscgrograms written
in the C dialect CO by | einenbach ef al. (2005). The machimke é®run on fully
verified hardware (processor) by Ayewah et @al. (2005). Thagers of software
build upon the hardware. The first layer consists of a fullgifieel micro-kernel,
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PID 16329 locks keyboard | PID 16329 locks screen | Waiting... (:)
Current state: Email signed
Command result: Signature generated

X-Signature: 08d14134c34059e1356add588b9221cd (:)
To: Gerd.Beuster@uni-koblenz.de
Subject: Vericlient

Hi Gerd!
I want do discuss some changes.
Do you have time tomorrow?

Niklas

Public Key: b,d-)%+LXIV+mzT?X_/80g\)9{GDY"tq 96C tkIEixOF/ @
edit (m)ail or (p)ublic key used for checking | (s)end or (f)etch mail (;)
(g)enerate keys and (e)xtract own public key | (a)dd a signature or (c)heck i

Figure 13.2: Vericlient prototype running: The numbersicate the following
screen areas: (1) Status/ current state of the email cB¢giditing area (3) Public

key (4) Commands available (Beuster €tlal., 2006)

memory management unit and an accompanying operatingnsystted Sim-

ple Operating Systendeveloped b@b A_I__%)OS). The networking and
communication layer consists of a fully verified SMTP maihv& using a fully
verified TCP/IP stack. This allows the academic Verisoftaysto interconnect
with the real world like intranets or the Internet. The apalion software sits on
top of the system software and the communication layer.

As part of the Academic Verisoft System, the subprojectiedrout at Uni-
versity Koblenz-Landau developed a completely verified ieoient. The for-
mal specification of the email client includes all informatjuirements and secu-
rity goals. Compliance to the formal specification has beewgn for the com-
plete source code. The Verisoft Email Client consists ofraxmately 100 pro-
cedures, totaling 4000 lines of code. The formal specificatind verification
in Isabelle/HOL [(Schirmét, 2005) consists of approximate.000 lines. The
Verisoft email client has been developed and verified inghman years. Speci-
fication, source code, and proof scripts are freely dowrdbslfrom the Verisoft
Repository ahttp://www.verisoft.de/VerisoftRepository.html.

Within the academic part of the Verisoft project, the Veftigmail client, for
shortVericlient provides the interface to the user. When a user accessasdhe
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demic system, he interacts with the email client. The eniaihtitself has internal
interfaces to four components: The 1/O facilities (via thpe@ating system), the
SMTP server for delivery and reception of emails, and theadigre component
for generation and checking of signatures. For its inteoparation, the email
client makes use of data structures of a C library developegtarostinl(2006).

Providing a user interface is the core functionality of timead client. The
design goal of the Verisoft email client was to provide theedoinctionality of an
email client, plus the possibility to handle digital sigmats. The Verisoft email
client provides a full screen text editor for reading andtwg email, and for
editing the public keys used for checking signatures. Aarfates to the SMTP
component of the Verisoft email system allows to send andivecmail. An
interface to the Verisoft signature component allows tcegate public/private key
pairs, sign messages with the generated private key, ihesgenerated public key
into the message (in order to send it to a recipient), and éclckmail messages
against public keys entered by the user. All functionaktaccessible viaa TTY
interface. The email client has two modes: In command mael¢aio characters
entered via the keyboard are interpreted as commands. &onae, key ‘a’ signs
a message, and key ‘f’ fetches the next unread email froméhees In edit
mode, the email message and the public key are edited in schaélén editor. The
email client does not provide means for managing email fsld&@here is only
one email in the system at any point in time. The user interfaovided by the
Verisoft email clientis shown in FigufeZIB.2. Details of theerface are explained
in the next chapters.

Both functional correctness and security have been prardhé secure email
client. In the following three chapters, we show how comess of the Verisoft
email client specification in respect to the three core [ipies of Confidential-
ity, Integrity, and Availability, as defined in Chapter]11ashbeen established.
Section[I# shows how Integrity (DefinitidnTIL.2 in Chafie) klguaranteed.
ChaptefIb shows that the specification of the Verisoft eatiaiht satisfies Confi-
dentiality as defined in Definitidn 1.1 in Chapliet 11. FipalthapteEIb ensures
Availability (Definition[I1.3 in Chaptdr11) of the email efit.

13.2 Related Projects

Another important fundamental research project in the afeeerification and
analysis is the Transregional Collaborative ResearcheCéAutomatic Verifi-
cation and Analysis of Complex Systems” (AVACS), which isidied by the
Deutsche Forschungsgemeinschatft (DFG). About 70 scismiishe Universities
of Oldenburg, Freiburg and Saarbriicken as well as the MameR-Institute for
Computer Sciences in Saarbriicken are working on the ingonewt of techniques
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for mathematically precise verification, including the ei®pment of tools. The
goal of their work is to automate safety analyses of criteabedded systems
which are used for example in aircrafts, motor vehicles dwegy transportation

(Damm et al., 2004).

Significant prior projects are DAEDALUS and VERIFIX. The DBALUS
consortium was a research and technology developmentpnoghe Fifth Frame-
work Programme (FP5) of the European Union. With the coatigms of univer-
sities from France, Germany, Denmark, and Israel, the prdgveloped methods
and tools to support the industrial validation of criticancurrent software by
static analysis and abstract testing (Goubault, 2001; Gcarsd Cousot, 2002).
The goal of VERIFIX, another project funded by DFG, was thastouction
of mathematically correct compilers, which included theredlepment of for-
mal methods for specification and implementation of a coenpilOne of the

roject’s results was a fully verified LISP interpreter (@aand Zimmermann,

). The scope of Verisoft goes beyond DAEDALUS and VERIFh differ-
ence to DAEDALUS, the systems developed in Verisoft are qavely verified.
In difference to VERIFIX, not only a compiler, but completestems are verified.

In project Bang 3, we have used formal method for the spetiicaf compo-
nents of multi-agent systems (MAS), and for reasoning apoajperties of MAS

(Beuster et 2l[, 2008, 2004; Beuster and Nérlida,|2006).
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Chapter 14

Secure Interaction and Information
Display

Wrong assumptions about the state of the computer systera arain source
of error in human-computer interaction (HCI). In this clepive show how In-
tegrity (as defined in Definitio11.2 in Chaplef 11) is guéead. We show how
consistency requirements between the state of a compugtansyand the user’s
assumptions about the state can be defined formally. We dtaivthie main exe-
cution loop introduced in Algorithrl 3 in Chapfdr 7 violatessgrity constraints.
A improved main execution loop is introduced. We show thatthproved execu-
tion loop satisfies the integrity constraints. Furthermare give first definitions
of the main execution loop functionpdateScreen andexecute. These defini-
tions, which are refined in the next chapters, close the gapeea the high-level
application specification with IOLTS and CTL on the one haard the low level
specification of program procedures on the other hand, asided in Chaptdrl7.

14.1 Introduction

14.1.1 The Problem

Informally, a system is consistent if the user’s assumjtalmout the system cor-
respond to the actual system state whenever he interadtghwaitsystem. There
are two main sources for wrong assumptions about the systgen s

Inconsistency during updatesHuman-Computer Interaction (HCI) is inherently
asynchronous. Execution of user commands and updates ofathalis-
played by the output device take time. Due to the inherersiynehronous
character of Human-Computer Interaction, the user maylerutathe sys-
tem state; either because commands have not been exectjtedlyecause

127
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the screen has not been updated.

Insufficient data or wrong interpretation of data.The system may not provide
enough information to determine the system state, or themag interpret
application output wrongly. A large part of the specificatiof interac-
tive applications is concerned with the relation betweesr ugput and the
information shown to the user. For example, when editingkg the cur-
rent (internal) state of the text should be shown to the wset,user input
should cause corresponding changes to the text. Usuad\sglcification
of user input and system output is rather informal. Spec¢iboa declare
that something (e.g., a text) “is shown on the screen” andiiee “enters
a text.” In most cases, this informal description is suffitieHowever, in
critical applications, a precise and formal definition isidable.

The latter source of inconsistencies, wrong interpretaticdata, has been ad-
dressed frequently. For example, Reeder and Makion (20@#yzed the problem
of representing NTFS file permissions on Windows XP systemdsiaveloped the
design principle of “anchor-based subgoaling” in order tbgate the problem.

Here, we concentrate on the former of the mentioned soufersars, namely
inconsistencies during updates. Most user interface gga@quirements are
highly application-specific. However, there are also soemegc requirements.
We show that for a large class of applications, it is posdibléefine generic re-
quirement in a formal way. In this chapter, we focus on oneheké generic
requirements: The user should always be aware of the systmwghen issu-
ing a command. We show how consistency during updates candrargeed for
text-based applications.

14.1.2 Plan of This Chapter

In Section I4P, we show that the common approach to modeltegactive ap-
plications does not guarantee consistency. We providetamative model for
which consistency can be guaranteed.

Integrity is defined in CTL, and model checking is used to slioat a com-
ponent given as an IOLTS satisfies the Integrity constrémnbrder to pervasively
specify and verify a critical application, it is also neaaysto describe program
behavior with pre- and post-conditions for concrete proceslthat are part of the
system. We use Hoare logic for this. In two steps, we closgé#pebetween the
more abstract state-based modeling on the one hand and oraneete pre-/post-
condition-based modeling on the other hand. Based on th&3$Qif the main
execution loop developed in Sectiobn14.2 we provide a gewede template for
the concrete implementation of the main execution loop stralot state-based
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Application

AppOut"

Screen CMD

AppOut"

User

Figure 14.1: Basic system model (user + application).

models in SectiohI4.3. A method for the integration of stateed formal mod-
eling methods and pre-/postcondition based methods hasgreposed in Chap-
ter. In Sections14.3.2 ahd 1413.3 this integration methdeémonstrated in the
specification okxecute andupdateScreen for the editor sub-component.

14.2 Guaranteeing Integrity

In Chapte P, a generic system model has been developed.r &ipkcations
and users are relevant for guaranteeing confidentialitywéxt the user and the
application, but they are not relevant for integrity. THere, we start by using
a simplified version of the system model from Figlire 9.2 (®ad®.2). In the
simplified version, shown in Figufe14.1, the user interdatsctly with the ap-
plication. Since the keyboard component just relays inpunfthe user to the
application component, it is not relevant for the integptpperties. The screen
device, however, is relevant, because it is an “asynchrginmmponent.

Two types of messages are used to exchange information éetthe user
and the applicationAppOultis the data type for information shown on the screen.
CMD is the data type for input given by the user. The generic systedel
can be further structured without losing generality. Allllgesigned applica-
tions (and all reasonable models of user behavior) splihegcomponents into a
generic execution loop, governing the general behavionefapplication (or the
user), and an application (task) specific component. Tharagpn of a generic
execution loop and a task specific component serves two pespdirstly, it fol-
lows established system design practice and therefonestiealistic modeling of
applications. Secondly, the separation into a generic anapglication-specific
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Application Execution Cycle Application Logic

AppOut?@ AppOut! CMD - @ ;

] OO

B CMD
AppOut? -

g O—C

AppOut] Classify

User Execution Cycle User Logic

Figure 14.2: Basic model of user and application.

component allows to deduce properties that hold for alliappbns with this de-
sign, independently of the concrete application’s taskaglication logic.

A basic model following this approach is shown in Figlure IL4nthis model,
AppOutandCMD are variables representing all possible command input pnd a
plication output. Question marks after variable namescaigi reading of an input
value, and exclamation marks indicate writing of an outmltig. Thus, in one
cycle of application execution, the following steps arestaknote that the same
message, e.g. a command, can be passed between differgraroams):

1. The application accepts a command from the user:
ResultShown2? GotCommand

2. The command is passed to the application logic for pracgss
GotCommand™™P%, CommandExecuteéM GotResult

3. The result of the computation is forwarded to the outputaie

AppOut!
GotResuItM ResultShown
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Screen

Screen_No_Mail? Screen_New_Mail?

Screen_No_Mail? Screen_New_Mail?

Screen_No_Mail?

AppOut AppOut

Screen_New_Mail?

Screen_No_Mail! Screen_New_Mail!

Figure 14.3: Screen component for the email system example.

In a similar way, the user reads an application output, etakiwhich command
should be issued next, and enters the command into the iepided

The Screen component is an explicit part of the model (se4IBid). It takes
input from the application and presents it to the user. Sinescreen is constantly
refreshed, there is no simple one-to-one relation betweessages sent by the
application and messages received by the user. The scréeuatits current
content until the content changes. A formal definition of §#oeeen component is
given below, and a graphical representation is given infeidi4.3.

Definition 14.1 (Screen Component)let L, = (54,24, 504, —4) be an IOLTS
specifying an application. A IOLTE; = (Ss, 25, s0,, —s) IS @ Screercomponent
if the following holds, where is a new symbol with ¢ >!:

o S;=2l,U{n}

® S0, ="
o 27, =721,
o 2!, =21,

2
e Forall s,s' € S: s =5 &

e Forall s € S;\{n}: s s

The screen component has one state for each possible dgplicatput mes-
sage; in this caseScreenNoMail andScreenNewMail. Whenever the applica-
tion updates the screen, the screen components enteratihassociated with the
current message. The component repetitively outputs thssage (“refreshs the
screen”) until a new message arrives.
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Screen_No_Mail?/
CMD_Check!

CMD

Screen_No_Mail?/ Screen_New_Mail?/

CMD_Check! CMD_Check!
AppOut
Screen_New_Mail?/
CMD_Check!
User Logic

CMD_Check?/
Screen_No_Mail!

AppOut
-—
CMD_Check?/ CMD_Check?/
Screen_No_Mail! Screen_New_Mail!
CMD

CMD_Check?/
Screen_New_Mail!

Application Logic

Figure 14.4: Simple user logic and application logic congus.

Our basic model already allows to deduce interesting pt@sewith respect
to integrity constraints. This is illustrated by the follmg simple example.

For our example, we make the (reasonable) assumption tatitical states
are exactly those where the user makes a decision, i.e.:

A (critical) = {End_Classify}

Critical properties of an application and user assumptinsut such proper-
ties, of course depend on the user logic and the applicatigic kcomponents.
The specification of the application logic component isddtrced in Chaptér16.
Here, we use an excerpt of the full model given in FidurellZRe excerpt al-
lows to deduce the relevant properties for guaranteeirgiity while the model
checker input and output are still human-readable.

The application starts in a configuration represented bysthte “No New
Mail.” When the command “Check Mail” (CMDBCheck) is received by the appli-
cation, it may either transit into the state “New Mail” orgia the state “No New
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Mail.” In the same way, the command “Check Mail” in state “N#&ail” may ei-
ther lead into the state “No New Mail” or into the state “NewiMaNhether new
mail arrived or not is outside of the scope of the componehieréfore, the ap-
plication logic component switches nondeterministicakyween stateifewMail
andNoNewMail. We assume the user uses the same logic (i.e., we assumiegthat t
user “knows” how the application works). The two logic compats are shown
in Figure[IZ¥. Since the state names are identical in bathpooents, we use
the notionApplicationLogic.(state when referring to states of the application
logic component, andserLogic. (Staté when referring to states of the user logic
component. As a security relevant property, we define tieatiier should always
know whether new mail has arrived or not:

A(ap) = {ApplicationLogicNewMail}
A(up) = {UserLogicNewMail}

Representations of the components suitable for model aingekith model
checker NuSMV |(Cimatti et all, 2002) are given in Append.CIf the user
logic component and the application logic component arectly connected, both
modules are always in corresponding states. This is showmdalel checking the
system given in Appendix’C4.1.

Integrity isnotguaranteed if the connection between the user logic conmpone
and the application logic component is mediated by the usamgion component
and the application execution component given in Figurd {duSMV code for
this component is provided in Appendix Cl1.1 and G.1.2).

The problem lies in the lack of consistency, as the tracengind=igure[14.b
shows: When the user decides about the next command for tbeadé&me, he
does not recognize that the screen output does not reflectitrent configuration
of the application, but the previous one. In step 1, the appbn outputs that no
new mail has arrived. This is shown on the screen in step 2renthe user sees
it. In steps 3 to 4, the user decides to check for new mail. Dimencand is issued
by the user and received by the application in step 5. Thaagtn checks for
new mail again in step 6. New mail has arrived, therefore pgptieation logic is
in state “New mail” in step 7. In step 8, the user is not awaee the screen has
not been updated yet. Therefore, he still assumes that nanahhas arrived in
step 9 and also in step 10.

It should be noted that the IOLTSs we use for modelling atksstnchronous
automata. The asynchronicity effect leading to inconeisteomes from the way
the screen output component is modeled (it is explicitly eled using a syn-
chronous formalism).
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Step | Application User Application | User
Execution Execution Logic Logic
| 1| GotResult [ Wait | No new mail| No new mail |
App. Exec: Got Result ScreenNo_Mailt Result Shown
Screen: N ScreenNo_Mail’? Screen No Mail

| 2| Result Shown | Wait

\ No new mail\ No new mail

Screen:

User Exec.:

Screen No Mail

ScreenNo_Mail!

Wait

ScreenNo_Mail?

Screen No Mall
Start Classify

| 3| Result Shown | Start Classify | No new mail| No new mail

ScreenNo_Mail!

End Classify

No new mail

Decided

Wait

User Exec.: Start Classify
. . ScreenNo_Mail?/CMD_Check!
User Logic: No new mait
| 4| Result Shown | End Classify | No new mail| No new mail
I)
User Exec.: End Classify CMD_Check
| 5| Result Shown | Decided | No new mail| No new mail
|
User Exec.: Decided CMD_Check!
I)
App. Exec.: Result Shown CMD_Check?

Got Command

| 6| Got Command| Wait

| No new mail| No new mail

|
App. Exec.:  Got Command CMD_Check! Cmd. Executed
. . CMD_Check?/ScreemNew_Mail! .
App. Logic: No new mail New mail
| 7| Cmd. Executed Wait | New mail | No new mail
i?
App. Exec:  Cmd. Executed ScreenNew Mai Got Result
| 8| GotResult [ Wait | New mail | No new mail
il
Screen: Screen No Ma# ScreenNo_Mail Screen No Mail
i1?
User Exec.: Wait ScreenNo_Mail Begin Classify
| 9| GotResult | Begin Classify] New mail | No new mail
il
User Exec.: Begin Classify ScreenNo_Maill End Classify
. .. ScreenNo_Mail?/CMD_Check .
User Logic: No new mait No new mail
| 10| GotResult | End Classify | New mail | No new mail

Figure 14.5: Excerpt of a trace refuting consistency of tasid model (see
Fig.[142).
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In Definition[II.2 (Chaptedr11), Integrity has been defined as

Integrity =
appCritical — ((ag <> up) A (a1 <> u1) A ... A (ay < uy))

with ap,... a, the attributes representing the configuration of the appba,
ug, - . ., un, the user’s representation of these attributes, gpCritical whenever
the application is in a critical state.

The system model does not satisfy the integrity constramtause the user
may decide about which command to issue based on the scrgart otian older
state of the application logic. The user may then choose agvcommand. In
particular, if he does not know whether a previous commargdah@ady been
executed, he may be tempted to re-issue the same commahd.wotst case, this
can lead to a security problem, for example when the usedewtally confirms a
critical action twice.

Next, we show how the synchronization problem illustratgdHh®z above ex-
ample can be solved.

Application Execution Cycle Application Logic
(E:)r(net(i: AppOut?@

uted @

CMD?
ESC #

AppOut!=
“ Iggady”

fBfcessing
AppOut

AppOut '

AppOut?= |
C?dee_d CMD! @ Igrocessmg y
Wait CMD
AppOut?# B
“Pro-
CMD? @ AppOut?= | cessing”

“Ready!”

End,
Classi

AppOut!
User Execution Cycle User Logic

Figure 14.6: Improved model with states for synchronizatio

The problem can be solved by introducing new states for symiration, as
shown in Figurd_IZ16. In this model, the application givesuai feedback in-
dicating whether it is waiting for user input or processirgguinput. Once the
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application has received a user command, it shows “praogssn the screen.
When processing is finished, the new application statusag/shHowever, just
showing the message “processing” while executing user camasis not suffi-
cient. Depending on execution speed, the user may not rexme message
“processing” at all (because it was shown only for a very shiore), or it may
take a long time before the message is shown (in case thersigsséow). In order
to give the user the ability to distinguish between the tweesaan escape com-
mand is introduced. If the user gives the escape commandeksage “Ready!”
is shown. This way, if the user does not know about the statieeohput process,
he can press “escape” and wait for the message “Ready!” tw spo

One can verify using model checking, that the improved mgdein in Fig-
ure[I4.6 satisfies the integrity constraint. Definitionshaf improved application
execution component, user execution component, and systerponent suitable
for model checking with NuSMV are given in Appendix D.

We have shown that the naive model of user and applicatteraction is not
sufficient to guarantee consistency. While we presentetharoved model guar-
anteeing consistency for the given application logic arel lsgic components,
we did not—and can not—show that the consistency constnaidt forall pos-
sible application and user logic components. Consistency doesalely rely
on the application and user execution loops. The user msstradke the right
assumptions about the application model. He must have latmel about (an ab-
straction of) the inner workings of the application, and @thihe consequences
of his actions. This knowledge is represented in the usec logmponent. Just
like the user’s and the application’s execution loop, ttgd@womponents can be
modeled as IOLTSs. This requires a state-based represendéthe application,
and of the user’s knowledge about the application.

While it is perfectly fine to improve the specification of thagpéication, one
may ask whether it is acceptable to change the user modeluleassumptions
about the user, as the user cannot be “re-implemented.” €otaic degree, how-
ever, that is possible. It is common practice to train the osehow to operate a
system. For this, a formal user model allows to explicitestehat a user has to
know in order to operate the system.

14.3 Improved Main Execution Loop

In Section[I4PR, simple application logic and user logic poments were used
in the refutation of the naive basic model. These exampfepoments (given
in Figure[I4}) each have only two configurations: “New Mailid “No New
Mail.” In actual TTY-based applications, we have screenthwnultiple rows
and columns, where each cell can contain an alphanumeniactea Even on a
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moderately sized screen, the set of all possible combimad output characters
is too large to be modeled explicitly. Therefore, it is nesegyg to find a suitable
abstraction of application states, application outputl aper assumptions about
application states in order to make models of real-worldiegfions suitable for
automated model checking.

14.3.1 Notation

Notation We use the Object Constraint Language (OCL) for specifinafidne
OCL constraints given here should be understandable witheeper knowledge
of OCLAIna post-conditionx refers to the value of attribute or variabieafter
execution of the procedure, ardpre refers to the value of when the procedure
was entered. In this, we follow the common OCL syntax. OCLthashortcom-
ing that it does not make any assumptions about system piegpdnat are not
explicitly modeled (frame problem). To solve this problene (implicitly) add
the following to our specifications: All functions cause pittose effects explic-
ity mentioned. See (Warmer and Kleppe, 1999, 1998) for niwi@mation on
OCL and (Object Modeling Grolip) for the current languagecjsation.

As usual in OCL, we refer to the result of a function call bysué” in post-
conditions. When functions refer to one- or two-dimensldisés or strings, we
use the usual [J-notation to refer to elements. Thattigng[0] is the first charac-
ter of string, string[1] is the second, and so on.

14.3.2 Main Execution Loop

We assume that in the concrete program, the current stagpliesented by the
variablestate. User commands (usually corresponding to keystrokesyerig
command execution. Depending on the current state, the emahpand the result
of a command, the system changes to a new state. The actodicgi®n of the
commancexecute is application-dependent. The relationship between the-hi
level IOLTS model and the specificationsmafxtState andexecute is defined
in Chaptell’. Pseudo code for a main event loop implementiegApplication
Execution Cycle model from FiguteI#.6 is given in Algoritdin

Under the assumption that the user knows the program st#tésitilways
given explicitly on the screen, the screen update funaii@tateScreen can be
specified with the following auxiliary functions:

1To make the constraints easier to understand for readefamiiar with OCL, we sometimes
use the standard mathematical notation instead of the O@ltian. For example, we usec list
instead oflist — contains(zx).
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Algorithm 4 The main event loop
1: repeat
2 {Show Result
updateScreen(status, waiting, cmdResult)
{Get Commang
repeat
cnd (= getKeystroke ()
if cmd= ESCthen
{Escaped
updateScreen(status, waiting, cmdResult)
10: end if
11:  until cmd+# ESC
12:  {Busy}
13: updateScreen(status, processing, cdmResult)
14:  {Execute & Get Resujt
15:  cmdResult := execute(state,cmd)
16: state :=nextState(state,cmd,cmdResult)
17: until cmd = QUIT

©CoN O kr®

e stateAsStringstate) is a string that allows the user to identify the state of
the application.

e screenOutpytmdResult) is a two-dimensional array of characters. It con-
tains the correct screen output corresponding to the ducogriiguration of
the application. The actual definition 8freenOutput is under the discre-
tion of the application at hand.

e stringAt(z, y) is the string shown on screen positian y).

We require that the current state of the application logmgonent plus optionally
the additional information “ready” or “processing” are shmoin the first line of the
screen. A specification of functiarpdateScreen in OCL is given in Tabl&T4]1.
The specification ofipdateScreen is a generic template. It fits every applications
requiring a secure, text-based user interface. The apiplicspecific part is of the
specification is provided by mathematical functgoreenOutputAn excer;ﬂ of
the definition ofscreenOutputor the Verisoft email client is given in the next
Section.

2We only show the part afcreenOutputelevant to showing the email message. The reader is
referred tol(Beckert et hl.. 2007) for a complete specificatif screenOutput
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contextupdateScreen(status, flag, cmdResult)
post  stringAt0,0) = stateAsStringstatus) and
if flag = waitingthen
stringAt0, 1) = “Ready”
else
stringAf0, 1) = “Processing”
end if
and
Ve {2,...,screenHeight- 2} :
stringAt0, k) =
screenOutpytmdResult)[k — 2]

Table 14.1: Specification of the application’s function tgrdating the screen
contents

14.3.3 Editor Component

Not only the state of the system, but also the data has to Ipéaglesd correctly.

Defining “correct” display of an email under security asgeist a challenging
task. In the real world, “phishing” attacks are a major forfretectronic fraud

(Bachfeld) 2005). Many of these attacks are based on eafitmitof incorrect or

ambiguous display of email messages. For the Verisoft echeilt, these attacks
are prevented by restricting the way emails are displayelde Werisoft email

client shows the pure ASCII representation of the email.

In the following, we present an excerpt of the specificatidrihe Verisoft
email client. This allows us to demonstrate how an intevaaiser interface com-
ponent can be specified. The email viewing and editing corapbhas the fol-
lowing characteristics: It is a full screen editor; the us@n roam freely over the
text using the cursor keys. The text edited may not fit theescrin that case, the
editor will scroll when the cursor reaches the screen bsrder

The email message editing field is represented by a datasteun = (st,
CX, cy, co, ro)with s a list of strings where each element represents a line of the
text, (cz, cy) the cursor position an@o, co) row and column offsets. If the text
is larger than the size of the screen, the offsets indicatehwgart of the email are
shown.

The part of the main execution loopipdateScreen responsible for showing
the email (with(z, y) a position on the screen) is defined as:

Definition 14.2 (screenOutpubf Verisoft Email Client) Let s be a list of strings
representing the email message. Let strings by lists oftgagechar, and let
blank € char be the blank. Leto be the column offset, and let be the row
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offset. Letw be the width of the screen aridbe the height of the screen. Then
function

screenOutput(z,y) — char with0O<z <wand0<y<h

is defined as

screenOutpuy, z] =
sly+rollz+ co] iflength(s) < y+ro and
length(s[y + ro]) < 2+ co
blank otherwise

contextexecute(cmd, m)
pre cmd € { CURSOR_LEFT, CURSOR_RIGHT, CURSOR_UP,
CURSOR_DOWN, INSERT_CHAR, DELETE_CHAR,
QUIT }
post if cmd = CURSOR_LEFT then
cursorLeftPostconditioand
result =CURSOR_MOVED
else ifcmd = CURSOR_RIGHT then
cursorRightPostconditioand
result =CURSOR_MOVED
else ifcmd = CURSOR_UP then
cursorUpPostconditioand
result =CURSOR_MOVED
else ifcmd = CURSOR_DOWN then
cursorDownPostconditioand
result =CURSOR_MOVED
else ifcmd € INSERT_CHAR then
insertCharPostconditioand
result =CHAR_INSERTED
else ifcmd = DELETE_CHAR then
deleteCharPostconditioand
result =CHAR_DELETED
else
result =QUIT
end if

Table 14.2: Command execution function

While the main execution loop is generic, the specificatibr:ecute de-
pends on the actual implementation. The part of the Vermswiil client’s spec-
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ification of execute relevant to editing email is defined by the OCL specifica-
tion given in Tabld_14]2.executetakes a commandfd) and am, a represen-
tation of the email as input. For the commar@i®SOR_LEFT, CURSOR_RIGHT,
CURSOR_UP,CURSOR_DOWN, INSERT_CHAR, DELETE_CHAR, it guarantees that value
of m after execution represents the applicationrisertCharPostconditiordelete-
CharPostcondition cursorLeftPostconditioncursorRightPostconditigncursor-
UpPostcondition cursorDownPostconditignespectively. These definitions de-
scribe the desired results of the respective operations.

As an example, we provide a definition fmursorRightPostconditiariVe will
come back to this in Chapterll6. The reader is referred to €hdg for an for
definitions of auxillary functiorilatCPos

Definition 14.3(cursorRightPostconditign

cursorRightPostconditios
flatCPogm. st,m. cz,m. cy) =
flatCPogm. st@pre, m. cx@pre, m. cy@pre) + 1
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Chapter 15

Authentication and Secure Channels

15.1 Confidentiality

In this chapter, we show how the definitions and theorems fehvapte 11l relat-
ing to Confidentiality are used to specify confidentialityuegement for an email
client.

According to the system model developed in Chapter 9, thel system is a
multi users, multi application system. Without loss of gatigy, we assume the
legitimate user of the email systemug, and the legitimate email application is
ap- We further assume there are exactly two devices, the keglbdantified as
do, and the screen identified dg.

In ChaptefIll confidentiality of a channel Chanfield, ) in a system model
systeniU, A, 1,0, M, u,a,A) has been defined (Definitign_Il.1) as

Confidentiality=

Vs, d,r,d v, m,m.

[e(s,a) Xmt m] A EF[c(g ny xmt m'| A m ~m' A secrets, d’,r',m’) —
legitimate s, d’, ', m’)

Confidentiality is guaranteed if all secret messages whial be eventually re-
ceived EF[c(y -y xmt m'] Asecrets, d’,r’,m')) have been senfd, ;) xmt m] A
m ~ m') by a legitimate sendetggitimate s, d’, 7', m’)).

Furthermore, we showed that confidentiality is satisfiedmderret messages
are sent only on trusted and legitimate paths to legitimatgients, defined as
ConfCond(Definition[ITT3):

ConfCond=Vs,d,r,m. [c. q) Xmt m] A secrets,d,r,m) —
legitimate s, d, r, m) A trusted(s, d,r))

The confidentiality condition defines that secret messagesent to legitimate
receivers on trusted paths only. We have shown that the @ontiadity condition
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is satisfied if both the user and the application are atterfiveoreni_I1]2), with
being attentive defined in Definitidn11.5 as

AttentivePartys) =
Vd,r,m.[c. q) xmt m] A secrets,d,r,m) —
A (asmModifiets, (s, d, 7)) < modifie$(s, d, r)))
A (asmPrivatés, (s, d, r)) < private((s,d,r)))
A asmldentitiys, (s, d,r),s,d,r)
A —masmModifiegs, (s, d, ))
A asmPrivatés, (s, d,r))
A legitimate s, d, r, m)

Intuitively, attentiveness means that secret messagesaceonly if

- itis legitimate to send them,

- the assumptions about the channel in respect to modificafimnessages,
privacy of the channel, and identity of the communicatingyare correct,

- and the channel is private and not modifying data.

In the email application, there are two channels: One ugertichannel, con-
necting the user via the keyboard to the application, andappdication output
channel, connecting the application to the user via theescréd/e assume that all
communications on both of these channels are bethetandlegitimate i.e. the
user and the application are free to share all informatidh @ach other, but they
are not allowed to share information with anybody else.

Definition 15.1(Email System Model)Let S = systemiU, A, 1,0, M, u,a,A) be
a system modelt’ = emailSyste/, A, 1,0, M, u,a, Ak, t)withk € I, t € O,
and

Vs,d,r,m.secret(s,d,r,m)

vV 'm.legitimate(u, k,a, m)

AV m.legitimate(a,t,u, m)

ANV r,m.r# aV d# k — —legitimate(u,d,r,m)
AVs,m.t #uV d#t— —legitimate(t,d,a,m)

is an email system model. In this modekepresents the keyboard andepre-
sents the screen.

Since we model HCI only, sending and receiving email on the/ork is not
subject of the definitions fecretandlegitimate

From the definition ofAttentivePartyit follows trivially (and has been shown
in Proof[I1.2) that whenever a message is send by the usee @ptblication,
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the path has to be private, the message must not be modifieaegpath, and
the receiver of the message is correct. Additionally thelsemust always know
when these conditions hold. This leads to the following nesuent specifications
for screen and keyboard:

Definition 15.2 (Confidentiality Requirement Specification Screen)
Let £ =emailSystef/, A, 1,0, M, u,a,A, k,t) be an email system model. Screen
component satisfies the confidentiality requirement if

FE = AG(—modifie$(a,t,u)) A private((a,t,u)))

Definition 15.3 (Confidentiality Requirement Specifications Keyboald®t £ =
emailSystef/, A, I, O, M, u,a,A,k,t) be an email system model. Keyboard
component satisfies the confidentiality requirement if

E = AG(—modifie$(u, k, a)) A private((u, k, a))

If screen and keyboard satisfy their confidentiality reguients, the user and
the application must know that the channel is private and s modify mes-
sages, and that they are sending on the right channel. Thevilkese the key-
board to enter messages and no other input deA&({/m.[c(,, q) Xmt m] —

d = k)), and he assumes that

- the keyboard device is private:
asmPrivat¢u, (u, k, a)),

- the keyboard device is not modifying messages:
—asmModifiebu, (u, k, a))

- and the correct application is listening to the keyboandaie
asmldentitiyu, (u, k, a), u, k, a)

Definition 15.4 (Confidentiality Requirement Specification for Uselet £ =
emailSystef/, A, I, O, M, u,a,A,k,t) be an email system model. Usesatis-
fies the confidentiality requirement if

EEAG(Ym.[c(y,q) Xmtm] — d = k) A
AG(—asmModifiegu, (u, k,a)) A asmPrivatéu, (u, k, a))
asmldentitiyu, (u, k,a),u, k, a))

The confidentiality requirement definition for the applioatis similar to the
requirement definition for the user, with the device in gioesbeing the screen
rather than the keyboard:
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Definition 15.5 (Confidentiality Requirement Specification for Applicat)o Let
E =emailSystef/, A, 1,0, M, u,a,A, k,t) be an email system model. Applica-
tion a satisfies the confidentiality requirement if

EEAG(Y m.[cq,q) Xmtm] — d = t) A
AG(—asmModifiega, (a, t,u)) A asmPrivatéa, (a,t,u))
asmldentitiya, (a,t,u), a,t,u))

Next, we show that a system guaranteeing the componentfispéons for
screen, keyboard, user, and application is confidential.

Theorem 15.1.Let £ = emailSystet/, A, I, O, M, u, a,A, k,t) be an email sys-
tem model satisfying definitiobsT5.210 15.5. Then thevatig holds:

FE = ConfCond

Proof
Insert definition ofConfCond

EEVs,d,r,m. [cg,q) Xmt m| A secrets,d,r,m) —
legitimate s, d, r, m) A trusted(s, d,r))

ConfCondholds trivially unless messages are transmitted. For ngedsans-
mission (i.e.[c(s,¢) XMt m]), we distinguish three cases:

1. s#wands # a
2. s=u
3.5s=a
First case: s # v and s # a From the definition of the email system model

(Definition[I51), it follows thatsecrets, d,r, m) is never true. Therefore the
theorem trivially holds.

Second cases = u
EEYd,r,m. [cy,q) xmt m] Asecretu,d,r,m) —
legitimate u, d, r, m) A trusted(u, d,r))

From the confidentiality requirement specification for tsen(Definitior . IZH)
it follows that the user sends messages to the keyboard Diméyefore

EEYr,m. [cqr Xmt m] A secretu, k,r,m) —
legitimate u, k, 7, m) A trusted (u, k, 7))
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From Definition[I5} it also follows that the user knows ahtat identity of
the receiving party. Therefore

EEYm. [cyr Xmt m] A secretu, k,a,m) —
legitimate u, k, a, m) A trusted (u, k, a))

Vm.secretu, k, a, m) — legitimatéu, k, a, m) follows from the email system
definition. It remains to be shown that

E =trusted(u, k, a)

Insert definition of trusted:

E | authenticate{u,k, a)) A —leakg(u, k, a))
A —modifie$(u, k, a))

With private((u, k, a)) — —leakg(u, k, a)) and the keyboard requirement spec-
ification (Definition[I&.B), it remains to be shown that

FE |= authenticate u, k, a))

Insert definition of authenticated (Definitibn10.4):

E = asmldentitys, (s,d,r),s,d,r)
A asmldentityt, (s, d,r),s,d,r)

This follows directly from the requirement specifications the user and the ap-
plication.

Third case The third case is proven in the same way as the second casé€l

15.2 Authenticity

We have shown that confidentiality is guaranteed if the kaythalevice, the
screen device, the application, and the user satisfy thiedemiality requirement
(DefinitionsI5.B t&_I515.) For the keyboard and the scréenohly requirements
are that they are private and do not modify the content of thesage. Measures
to ensure these requirements are partly technical and theeesponsibility of
the operating system, and partly organizational. For exantipe workspace must
be set up in such a way that no non-authorized party can readctieen. The
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requirements for the user and application components nedat the user and
the application do know about the identity of the other pa®n the applica-
tion’s side, guaranteeing authenticity of the user is unigeresponsibility of the
operating system, which uses an authenticity proceduresgitded in Common
Criteria Class FIA (Identification and Authentication), iefnhas been formalized
in Sectior I0P.

It is not sufficient that the authenticity of the user is gudead. The authentic-
ity of the application must be guaranteed as well. Sinceescoaitput is the only
input source for the user, the information about the autbignof the application
must be shown on the screen. In Secfionl14.3, a screen outmpeitdn specified
in OCL has been developed. In the following, the specificaiscadapted to carry
the information needed to identify the application.

Locking a resource is not sufficient to guarantee securitye dser must also
knowwhich process locks a resource and whether the system iobasy. There-
fore, the operating system configuration must be shown tasgberepresented by
a string of characters. We assume this string representtdibe given by the
function

OSConfString. 0SConf — String

which we do not further specify here. It must return a strimgt @allows the user
to determine the exact operating system configuration.clisshimplementation
depends, for example, on the language(s) the user is supfmeaderstand.

contextupdateScreen(status, flag, cmdResult)
post  stringAf0, 1) = stateAsStrin@gstatus) and
if flag = waiting then
stringAf0, 2) = “Ready”
else
stringAt 0, 2) = “Processing”
end if
and
Vk e {3,...,screenHeight- 3} :
stringAt0, k) =
screenOutpytmdResult)[k — 3]

Table 15.1: Refined specification of the application’s fiorcfor updating the
screen contents, taking into account that the first line deugontrol of the oper-
ating system.

We assume that the first line of the screen is reserved fornrEbon on the
operating system configuration, i.e. the first line shoulddeatical toOSConf-
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String(0SConf). By not allowing processes (other than the operating sysée-
cess to row 0, the changed specificationsefChar andsetCursor given below
assure that the configuration information can be overwritteither by any user
applications nor by any attacking processes.

We specify the correct display of the operating configuratesources as an
invariant of0SConf:

context0SConf
inv stringAt(t)[0,0] = OSConfStrin@@SConf)

Note that the operating system invariant guaranteeingtieatpplication name
is shown in the status line is not part of the specificationm@fateScreen, be-
cause it is under the responsibility of the operating sysdteguarantee this prop-
erty. If the status line were under control of the applicati@ malicious program
could write wrong information in the line, making users beé they are inter-
acting with a different application. The specificationuptiateScreen given in
Table[I4.]l does not take into account that the first line ofsitreen is under
control of the operating system. A refined specificationvegiin Tabld_I5]1.
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Chapter 16

Avallability

In Chaptei1ll, the common definition of availability as reslity of desirable
states and avoidability of undesirable states has beerteati&p user interface
security. Availability is guaranteed if for a given user aapoplication model,
desirable states are always reached and undesirableatatesver reached. This
led to Definition I1.B:

Availability = AG (—fatal — AFsuccess

In this Chapter, we use this definition to define availabiteguirements for
a secure email client. We specify concrete application a®il components and
show that a model constructed from the components satdieavailability re-
quirement. Based on the application logic component sgatifin, a pervasively
verified email client has been developed in project Veristifie concrete compo-
nent definitions developed in this chapter are specific tosdaire email client
developed in Verisoft. We present it as an example for aniegtn of the
methodology developed in Pafis | dod Il

Figure[I61 gives a state chart model of the email client. &imeail client
has two functionalities: First, it should be possible toteyrsign, and send email.
Second, it should be possible to receive email, check a signaand read the
email. In the following we provide suitable user models fottbscenarios.

16.1 Writing, Signing, Sending Email

In this scenario, the user first writes an email, then sigrsnidl finally sends it.
The proof of availability of this functionality is split inttwo parts. One part of
the proofs uses model checking to show that certain absttatgs are reached.
This part proves the temporal aspects of the theorem bas#teabstract state
chart model of the email client. The second part of the preelsiHoare logic to
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[out of memory]

Command Mode

Not Changed
Unsigned Changed

Checked

Not Changed
Changed

H) Not Checked

poll / new email arrived

Figure 16.1: Statechart of email client applications. &taansitions represent
execution of program functions.
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prove properties of the actual state transitions. In or@roof the theorem, both
parts are needed: The model checking based proofs allowpi@ex properties
like “state ‘sent’ is always reachable”, or “state ‘emaibclged’ can be reached
an arbitrary number of times.” However, since these propésate on an abstract
state model of the application, and not on the actual stéatesnot possible to
show that “an arbitrary email can be entered”, because tiualkeemail is not part
of the model. Properties of the actual state space of thersyate proven in Hoare
logic.

16.1.1 CTL Part

GOAL: WRITE_SIGN_-SEND
GOAL: WRITE
OPERATOR: EDITMAIL
GOAL: MOVE_TO_BEGIN_OF_MAIL
OPERATOR: MOVECURSORLEFT
OPERATOR: MOVECURSORLEFT

GOAL: DELETE.ALL _CHARACTERS
OPERATOR: DELETECHAR
OPERATOR: DELETECHAR

GOAL: TYPE_MAIL
OPERATOR: INSERICHAR
OPERATOR: INSERICHAR

OPERATOR: SIGN
OPERATOR: SEND

Figure 16.2: GOMS model for writing, signing, sending mdlepeated opera-
tions are indicated by “...".

Figure[I&P gives a GOMS model of a user writing, signing, aadding
email. The user first moves to the begin of the mail. Then hetdglall the
old content of the mail. Finally, he types the intended mgssaigns and send
it. An IOLTS of the GOMS mod8lis given in Figurd_16I3. The email system
should guarantee that it is always possible to execute steps, resulting in the

1Some states have been joined; see Definffich 6.1.
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sending of the intended message, signed by the sender.eFRudte, it should
not be possible to send a message without signing it. Forefalitions of these
concepts are given in the following theorems.

MoveCursor!

EditMail!

InsertChar! DeleteChar!

Figure 16.3: User Model for Writing, Signing, and Sendingddm

The first theorem states that it is possible to enter edit nasdemove the
cursor an arbitrary number of times while staying in stat€lNotChanged:

Theorem 16.1(Arbitrary number of cursor moves)

Let F = emailSystef/, A, 1, O, M, u,a,A,k,t) be an email system model with
a corresponding to the IOLTS given in Figure16.1 amd@orresponding to the
IOLTS given in Figur&I6l3. Then the following holds:

EF (EG((user.action= moveCursoy A (client.state= mailNotChangey)

In combination with the Hoare specification from SectionITh, it follows
that it is always possible to reach the beginning of the emaibpeatedly issuing
commandcursorLeft.

The next theorem states that if the client is in stei@1NotChanged, it iS
possible to transit to stateailChanged in the next step:

Theorem 16.2(Transition frommailNotChanged t0 mailChanged).

Let £ = emailSystef/, A, 1, O, M, u,a,A,k,t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 am@orresponding to the
IOLTS given in Figur&I6l3. Then the following holds:

EF((client.state= ma%lNotChanged)
N EX(client.state= mai lChanged))

If the client is in state mailChanged, an arbitrary numbecharacters can be
deleted:
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Theorem 16.3(Deleting an arbitrary number of characters)

Let £ = emailSystei/, A, 1,0, M, u,a,A, k,t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 am@orresponding to the
IOLTS given in Figur€I&l3. Then the following holds:

EF (EG((user.action= deleteChar)
A (client.state= mailChanged)))

In combination with the Hoare logic proofs from Section 18, 1t follows
from Theorem§&1611 10 18.3 that the user can get the applicatia state where
the email message is empty.

The next theorem states that an arbitrary number of chasacd@ be inserted:

Theorem 16.4(Inserting arbitrary characters)

Let F = emailSysteft/, A,1, O, M, u,a,A,k,t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 am@orresponding to the
IOLTS given in Figur&I6l3. Then the following holds:

EF (EG((user.action= insertChar)
A (client.state= mailChanged)))

In combination with Hoare logic proof about inserting cleeas from Sec-
tion[I6. 1.2, it follows that the user can enter an arbitrana# into the applica-
tion.

The last two theorems ensure that sending the email is pessihd that no
unsigned messages are send:

Theorem 16.5(Sending Possible)

Let £ = emailSystei/, A, 1,0, M ,u,a,A,k,t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 amdorresponding to the
IOLTS given in Figur€I6l3. Then the following holds:

EF((client.state= mazlChanged)
A EX(E](client.staté = mai l1Changed)U(client.state= sent)|))

Theorem 16.6(No Unsigned Messages Sent)

Let £ = emailSystei/, A, 1,0, M ,u,a,A,k,t) be an email system model with
a corresponding to the IOLTS given in Figure116.1 am@orresponding to the
IOLTS given in Figur€I&l3. Then the following holds:

AG((EX(client.state= sent)) —
(client.state= signed))

Proof

Appendi{E gives the conjunction of theorems16.LT0116.G@input format
of theNuSMV [Cimatti et dl), 2002) model checker. Correstnbeas been proven
in NuSMV 2.3.0. O
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16.1.2 Hoare Part

We want so show that the user can enter an arbitrary email hdig this in three
steps: First, we show that the user can always move the ctorgsbe beginning
of the current email message by repeatedly giving commamndorLeft. Sec-
ond, we show that the user can delete the current email mes#shg is at the
begin of the message and gives commaatleteChar repeatedly. Finally, we
show that the user can create an arbitrary text by typinghheacters of the text
successively, starting with an empty email.

The user can always reach the beginning of a message by repedly issuing
commandcursorLeft. In SectioI6.1]1, we have shown that the user can ex-
ecute commandursorLeft an arbitrary number of times. Now, we show that
the user will reach the beginning of the email eventuallyefdives command
cursorLeft repeatedly. A Hoare specificaﬁcm commandcursorLeft is given

in Figure[I&¥.m is the data structure storing the email text as a list of g#in
where strings are lists of characters. The list of stringecisessed via.st. The
cursor x and y positions are accessedtwiax, mail . cy, respectively. The proce-
dure specification ofursorLeft, cursorRight, insertChar, anddeleteChar
make use of auxiliary functionatCPos flatten flattenUntilPos and flatten-
FromPos which themselves use auxiliary functiotake anddrop. These func-
tions are defined in Definitiorls_16.1 o 16.6. Functftaitenflattens a two di-
mensional string. FunctioftattenUntilPosflattens a two dimensional string up
to a given(z,y) position. FunctiorflattenFromPodlattens a two dimensional
string starting at a givefr, y) position. Functiortaketakes the first characters
of a string, anddrop removes the first characters from a string. FunctiatCPos
translates a two-dimensional cursor position into the tpwsiof the cursor in a
one-dimensional string. In the definition of these funcsiome use the function
head which gives the first element of a ligail, which gives the last element of a
list, andconcat which concatenates two or more lists.

Definition 16.1 (flatten). Let s be a list of strings. flatten is defined as

flatten(s) = { It |s| =0

concat [head(s), flatter(rest(s)) otherwise

Definition 16.2 (flattenUntilPo3. Let s be a list of strings, and let and y be
natural numbers such that the position y) exists in list of strings, i.e.0 < y <

2The Hoare specifications given here feursorLeft, cursorRight, insertChar, and
deleteChar are somewhat simplified, because the actual data struatfites email client are
more complex than the data structures shown herel_See Betkdr (20017) for the actual speci-
fications.
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|s| and0 < z < |s[y]]. flattenUntilPos is defined as

flattenUntilPos(x,y,s) =
take(z, head(s)) If y=0
flatten(head(s), Otherwise
flattenUntilPos(z,y — 1, tail(s)))

Definition 16.3(takg. Let! be alist, and let: be a positionin list, i.e.0 <z < |{|
take is defined as

takg(z, () =

If 2=0
{ flatten(head(l),takez — 1, tail(l))) Otherwise

Definition 16.4 (flattenFromPos Let s be a list of strings, and let and y be
natural numbers such that the positior, y) exists in list of strings, i.e.0< y <
|s| and0 < z < |s]y]|. flattenFromPos is defined as

flattenFromPos(z,y,s) =
flatten(drop(z, head(s)), tail(s)) 1f y=0
flattenFromPos(x,y — 1, tail(s)) Otherwise

Definition 16.5(drop). Let! be a list, and let: be a positionin list, i.e.0 <z <
|l| drop is defined as

drop(z,l) =

[ Ifz=0
drop(z — 1, tail(l)) Otherwise

Definition 16.6 (flatCPog. Let s be a list of strings, and let and y be natural
numbers such that the position, y) exists in list of strings, i.e.0 < y < |s| and
0 <z < |s[y]|. flatCPos is defined as

x Ify=0
flatCPogs,z,y) = flatCPostail(s),z,y —1) otherwise
+len(headm))

With these auxiliary functions, procedutersorLeft of the email client can
be specified. The specification uses funcfil@tCPosto translate the position of
the cursor in the two-dimensional list of strings into thensaposition in a flat,
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context cursorLeft (m)
post if flatCPogm.st,m.cx,m.cy) > 0then
flatCPogm.st,m.cx,m.cy) =
flatCPogm.st@pre,m.cx@pre,m.cy@pre) — 1
result = RESULTCURSORMOVED
else
result = RESULTMOVE_CURSORFAILED
end if

Figure 16.4: Specification afursorLeft

one-dimensional string. It ensures that after executionuetorLeft, the lo-

cation of the cursor in the flat string is decreased by one. Sgeeification of
cursorLeft is given in Figurd_I6]4. In the specification efirsorLeft, m is

a data structure representing the current configuratiomeinail editing com-
ponent.m.st is a list of strings representing the email, andx andm.cy are

the (z,y) positions of the cursor. Reachability of positiot 0) by repeatedly
executing commandursorLeft follows trivially from the specification.

contextdeleteChar ()
post flattenm.st) =
concatflattenUntilPogm. cx,m. cy,m. st@pre),
tail (flattenFromPogn. cx,m. cy,m.st@pre)))

Figure 16.5: Specification @feleteChar

Definition [I&% specifiesleleteChar. Like cursorLeft, deleteChar is
specified on the flat representation of the list of strings/jpled by flatten It
ensures that the flat representation of the list of strintgs akecution of the pro-
cedure is identical to the flat representation of the oridistof strings up to the
current cursor position, concatenated to the flat reprasentof the list of strings
from the current cursor position with the first character oged.

Next, we show that the email message can be deleted undesshenption
that the cursor is at positiof®, 0) and the user gives commaddleteChar re-
peatedly.

Theorem 16.7.

Let £ = emailSystefl/, A, 1,0, M ,u,a,A,k,t) be an email system model with
a corresponding to the IOLTS given in Figlre16.1 adud eteChar as specified
in Figure[I&5. Letn. st be the list of strings representing the email,cz the =
position of the cursor ana. cy the y position withm. cz=0andm.cy =0
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Then
|m.st|=0
if deleteChar is executed sufficiently often.

Proof
We proof the proposition by induction over the length of thessage.

Base case: |m.st|=0
In the base case, the mail is already empty

Induction step:
We know thafm.st| =n+1Am.x=0Am.y =0 and that the theorem holds for
Im.st| = n. Since the cursor is at positidf, 0), the following equations are true:

flatten(flattenUntilPo$m . cx,m.cy,m.st@pre) = ]
flatten(flattenFromPogn. cx,m.cy,m.st@pre) = m.st@pre

With the specification ofleleteChar it follows thatm.st = tail(m.st@pre).
From the definition ofail it follows that |m.st = tail(m.st@pré — 1 and finally
|m.st = n. O

contextinsertChar (char c)
post  flattenm.st) =
concatflattenUntilPo$m. cx,m. cy,m.@pre), c,
flattenFromPogn. cx,m. cy,m.st.row@pre))
and flatCPogm. st,m.cx,m.cy) =
flatCPogm.st@pre,m.cx,m.cy)+1

Figure 16.6: Specification dihsertChar

Finally, we show that the user can enter an arbitrary emaskage by inserting
characters if the message is empty. The specificatiolmeértChar given in
FigureI&.b is very similar to the specificationdafleteChar. It ensures that the
resulting flat string is identical to the concatenation afjimal flat string up to
the cursor position, the new character, and the originasttatg from the cursor
position to the end. Additionally the cursor has been movesgl@haracter to the
right.
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Theorem 16.8.
Let F = emailSystef/, A, I, O, M ,u,a,A, k,t) be an email system model with
corresponding to the IOLTS given in Figure 116.1 ahertChar as specified in
Figure[I&.%. Letn. st be the list of strings representing the email withst = [|,
m. cz the z position of the cursor and. cy the y position withm. cz = 0 and
m. cy = 0 Let message be the message the user wants to enter.

Then

flatten(m. st) = message

if 2nsertCharis executed sufficiently often.

Proof

The theorem is proven by induction over the length of the augss, with the
induction hypothesis that after enteringcharacters, the first characters of the
message and the mail are identical and the cursor is at thy@dsision of the mail.

Base case: n =0
takg messagen) = [| = flattenm. st)
and furthermordlatCPogm.st,m.cx,m.cy) = |flattenm. st)|

Induction step

From the induction hypothesis we know that

takg messagen) = flattenm. st@pre)

andflatCPogm. st@pre,m. cx@pre,m.cy@pre) = n+1

From

flatCPogm. st@pre,m.cx@pre,m. cy@pre) = flattenm. st@pre) 4 1
It follows that

flattenUntilPo$m. cx,m.cy,m. @pre) = flattenm. st@pre)
andflattenFromPogn. cx,m. cy,m.@pre) = [].

With the specification oinsertChart it follows that

m.st = flatten(flattenm.st@pre), message + 1)
takg messager + 1)
and
flatCPogm.st,m.cx,m.cy) = len(flattenm.st@pre)+1

= flattenm.st)
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16.2 Receiving, Checking, Reading Email

16.2.1 CTL Part

GOAL: POLL.CHECK.READ
GOAL: POLL_LFOR.NEW_MAIL
OPERATOR: POLL
SELECT:
GOAL: POLL_LFOR.NEW_MAIL...if no new mail arrived
GOAL: CHECK_.AND_READ
OPERATOR: CHECKSIGNATURE
GOAL: READ_MAIL
OPERATOR: MOVECURSORRIGHT

Figure 16.7: GOMS model for polling email, checking asigmet and reading a
mail. Repeated operations are indicated by “...".

The theorems and proofs in this section are closely relatatid theorems
from Sectior.I&I1. Again, we start with the CTL part. Figuéedlgives a GOMS
model of a user polling for new email, checking the signatira newly arrived
email, and reading it. The user polls email until new emaiivas. Then he
checks the signature. After checking the signature, hesrda®mail. Here, we
define reading mail as “moving the cursor over the emailteéxt. IOLTS of the
GOMS mode, is given in Figuré1618.

We want to guarantee that email is received eventually iLider repetitively
polls for new mail. If new mail arrived, the user should beeatnl read the mail,
i.e. it should be possible to move the cursor over all charaaf the email. It
should also be guaranteed that the user checks the sigoahewly arrived mail.
These requirements are formalized in the following the@em

If the system is in the initial state and new mail is availabhen both the new
mail will have arrived in the next step and the user will kndvoat.

Theorem 16.9(Successful Polling)
Let F = emailSysteft/, A, 1,0, M, u,a,A,k,t) be an email system model with
a corresponding to the IOLTS given in Figure16.1 amdorresponding to the

3Some states have been joined; see Definffich 6.1.
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Polll / Edit
notChecked ChecksSig.! Sig. Mail!
Checked QReading

Cursor!

Poll! /
- notChecked?

Figure 16.8: User Model for Receiving Email, Checking thgraiture, and Read-
ing the Email

IOLTS given in Figur&I6l8. Then the following holds:

(AG(((client.state= unsigned A client.newMailAvailablg —
AX((client.state= notChecke@l A AX(user.state= got new.mail))))

If the system is in the initial state and no malil is availabiten both the system
and the user will remain in their initial states in the nexfpst

Theorem 16.10(Unsuccessful Polling)

Let £ = emailSystefl/, A, 1,0, M ,u,a,A,k,t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 am@orresponding to the
IOLTS given in Figur&Zgl8. Then the following holds:

(AG(((client.state= unsigned A —client.newMailAvailable —
AX((client.state= unsigned A AX(user.state= end,olling))))

The user will continue polling for new mail while the systesnin its initial
state

Theorem 16.11(Continuous Polling)

Let ¥ = emailSystef/, A, 1, O, M, u,a,A,k,t) be an email system model with
a corresponding to the IOLTS given in Figure16.1 am@orresponding to the
IOLTS given in Figur&I6l8. Then the following holds:

(AG((client.state= unsigned — (user.action= poll)))

If mail has arrived, the user will not poll for new mail untilé¢ email client is
in mail read mode.

Theorem 16.12(Stop Polling)
Let £ = emailSystef/, A, 1, O, M, u,a,A,k,t) be an email system model with
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a corresponding to the IOLTS given in Figure16.1 amdorresponding to the
IOLTS given in Figur&16l8. Then the following holds:

(AG((client.state= notChecked —
AX(A[(—(user.action= poll))U(client.state= mailNotChangey ) ))

Once the user is reading mail, he will be moving the cursaver.
Theorem 16.13(Moving Cursor When Reading)

(AG((client.state= mailNotChanged—
AG(user.action= moveCursoy))

If new mail has arrived and the signature of the current mad hot been
checked, the user will not poll for new mail until the signathas been checked

If the user is in read email mode, he either was already regasimail in the
step before, or the signature had been checked.

Theorem 16.14(Signature Checked Before Reading)

Let £ = emailSystei/, A, 1,0, M ,u,a,A,k,t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 am@orresponding to the
IOLTS given in Figur€I&l8. Then the following holds:

AG((EXclient.state= mailNotChangef—
((client.state= mailNotChangeflV (client.state= checked))

Proof

AppendiXF gives the conjunction of theorelms16 010 16. *Aérinput format
of theNuSMV [Cimatti et dl), 2002) model checker. Correstnbas been proven
in NuSMV 2.3.0. O

16.2.2 Hoare Part

We want so show that the user can read an arbitrary email. Hirwe show
that it is always possible for the user to move the cursor tverwhole email
message. The idea behind this is that if the user will hava seeh character
of the message in the correct order, he has understood thié reessage. In
Sectio I6.T]1 we have already shown that it is possiblestchréhe first position
of the email by repeatedly issuing commanasorLeft. Here, we show that the
user will have traversed all characters of the email messeie right order if he
repeatedly issues commandrsorRight starting from cursor positio(D,0). A
specification of procedureursorRight is given in Figurd_1819.
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context cursorRight ()
post if flatCPogm.st,m.cx,m.cy) < len(flatteNm.st))
then

flatCPogm.st,m.cx,m.cy) =
flatCPogm. st@pre,m. cx@pre,m. cyGpre) + 1
result = RESULTCURSORMOVED
else
result = RESULTMOVE_CURSORFAILED
end if

Figure 16.9: Specification @fursorRight

Theorem 16.15.
Let ¥ =emailSystef/, A, I, O, M, u,a,A, k,t) be an email system model with
corresponding to the IOLTS given in Figure116.1 antertChar as specified in
Figure[I&.%. Letn. st be the list of strings representing the email withst = ||,
m. cz the z position of the cursor ana. cy the y position withm. cz = 0 and
m. cy = 0 Let message be the message the user wants to enter.

If the user executesursorRight sufficiently often, then the cursor will move
over all elements of flattén. st) consecutively.

Proof

We prove the theorem by induction over the length of emailsagen. st
with the induction hypothesis that the user has read thelempao thenth char-
acter

Base case: n =0 This case is trivally true.

Induction step: The user has read the email up to positiom, and flatCPosis
n  From the definition okursorRight it follows that the cursor is at position
n+ 1 in the next step. Since the user has read thesidtaracters in order and
reads then + 1)th character next, he has read- 1 characters in order. O
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Conclusions

We have successfully applied the formal methodology d@ezlon Part§l | antlll
to the specification and verification of a secure email clienthe project Verisoft
(http://www.verisoft.de), an actual email client satisfying the specification
has been developed, and correctness has been proven. Wigx@imple applica-
tion, we have shown how formal methods can be used to guararitendamental
requirement of user interface security. Our approach ges/both formal defi-
nitions of HCI security and a formal method for the pervasipecification and
verification of interactive applications. Developing a hwdology for the perva-
sive specification of secure interactive applications g@eumber of challenges:

e A formal methodology for the description of human-computéeraction
had to be developed.

e Security requirements for HCI had to be developed and fazeal

e Theorems proven in different formal methods had to be iiiegk.

In Partl, the formal methodology for the description of H@istbeen devel-
oped. Our methodology is based on IOLTS as a formal modeliathoad, and
GOMS as a method for the description of user interfaces. We Haveloped a
formal semantic for GOMS. By introducing hierarchical misgé& becomes pos-
sible to describe HCI on any level of granularity. In ordealow for the pervasive
formal description of human-computer interaction, theTSlbased methodology
has been integrated with Hoare logics procedure desangtio

In Part(l, formal security criteria for human-computerdrdction have been
developed. The formal criteria are based on the Commonr@ite standardized
international computer security requirement catalog, tedestablished defini-
tion of computer security as Confidentiality, Integritydafwvailability (CIA). We
adapted both the Common Criteria and CIA to user interfacergg, formalized

165



166 CHAPTER 17. CONCLUSIONS

the relevant concepts, and evaluated the relationshipgekeatconcepts from the
Common Criteria and CIA concepts.

In PartIl, the methodology has been applied to the spetificand verifica-
tion of a secure email client. We have shown how Confidetyjdhtegrity, and
Availability are guaranteed for the email client. In the igeft project, an imple-
mentation of the email client has been developed and theeguval correctness
has been proven. The results from Halt Il are not only refef@ the Verisoft
email client. The design pattern in Chapter$ 14 and Chaferd generic. If
a specification follows the design pattern, then integritgd aonfidentiality are
guaranteed.
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Appendices
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Appendix A

First eVoting Example

The SMV file in Sectiof A1l implements the basic version ofdketing applica-
tion and user model as given in Chafikr 4. The trace givendtid®®¢A.d shows
that in the given model, it is possible that a final state issnegached, i.e. the
basic model is faulty. In the trace, the user continouslgasla candidate and
cancels the selection in the next step. A final state is neasired.

A.1l SMV File

MODULE voterComponent
VAR

state: { start, chosen, confirmed, error} ;

action: { chooseBob, cancelVote, confirmVote, idle } ;
ASSIGN

init(state) := start;
next(state) :=
case
state = start : chosen ;
state = chosen & (action = confirmVote) : confirmed ;
state = chosen & (action = cancelVote) : start ;
state = confirmed : confirmed ;
1 : error ;
esac;
init(action) := chooseBob ;
next(action) :=
case
state = start : { confirmVote, cancelVote } ;
state = chosen & (action = confirmVote) : idle ;

state chosen & (action = cancelVote) : chooseBob ;

J
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1 : idle ;
esac;

MODULE votingComputerComponent (userInput)
VAR

state: { unlocked, voteCastBob, voteConfirmedBob, error} ;
ASSIGN

init(state) := unlocked;
next(state) :=
case
(state = unlocked) & (userInput = chooseBob)
: voteCastBob ;
(state = voteCastBob) & (userInput = cancelVote)
: unlocked ;
(state = voteCastBob) & (userInput = confirmVote)
: voteConfirmedBob ;
state = voteConfirmedBob : voteConfirmedBob ;
1 : error ;
esac;
DEFINE
final := state = voteConfirmedBob ;
MODULE main
VAR
voter : voterComponent();

votingComputer : votingComputerComponent(voter.action);

SPEC
AG (votingComputer.state != error)
& AG (voter.state != error)

& AF (votingComputer.final)

A.2 Refutation Generated by NuSMV

—-- specification ((AG votingComputer.state != error &
AG voter.state != error)
& AF votingComputer.final) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-- Loop starts here
-> State: 1.1 <-
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voter.state = start
voter.action = chooseBob
votingComputer.state
votingComputer.final
-> State: 1.2 <-
voter.state = chosen
voter.action = cancelVote
votingComputer.state = voteCastBob
-> State: 1.3 <-
voter.state = start
voter.action = chooseBob
votingComputer.state = unlocked

unlocked
0

A.3 Message Trace Example

This example from Chapt&l 9 shows how temporal propertiestainessages are
formalized. The specification guarantees that the acti@amcel\Vote” is never
immediately followed by the action “confirmVote.” The NuSMMde is identical
to the code in Appendix’/Al1, except for the SPEC declaration:

SPEC
AG (votingComputer.state != error)
& AG (voter.state != error)

& AG (voter.action = cancelVote —>
AX voter.action != confirmVote)
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Appendix B

Perl Program converting GOMS to
IOLTS

This Perl program implements Algorithrils 1 ddd 2 from Chaftelt takes for-
mal GOMS models (Definitioi 8.1 in Chap{dr 5) and generatesri@sponding
IOLTS.

#!/usr/bin/perl -w

use strict;

# Define GOMS model

my @G_c = ("VOTE_FOR_CANDIDATE_c", "CHANGE_VOTE",

my

my

my

my

my
my
my
my
my
my

@0_c

Om_c_

Om_c_

Om_c_

Q@M_c
@C_c

Qr_c_
Or_c_
Or_c_
Or_c_

0

1

2

0
1
2

3 =

"CHANGE_VOTE_2", "REVIEW_VOTE_2", "REVIEW_VOTE_3");
("WAIT_FOR_UNLOCK", "CHOOSE_CANDIDATE_c",
"CONFIRM_VOTE", "CANCEL_VOTE", "FAIL");

("VOTE_FOR_CANDIDATE_c", "WAIT_FOR_UNLOCK",

"CHOOSE_CANDIDATE_c", "REVIEW_VOTE");

("CHANGE_VOTE", "CANCEL_VOTE",

"CHOOSE_CANDIDATE_c", "REVIEW_VOTE_2");

("CHANGE_VOTE_2", "CANCEL_VOTE",

" "CHOOSE_CANDIDATE_c", REVIEW_VOTE_3");

(\@m_c_0, \@m_c_1, \@m_c_2);

("c_selected", "not_c_selected");
= ("REVIEW_VOTE", "c_selected", "CONFIRM_VOTE");
("REVIEW_VOTE", "neg_c_selected", "CHANGE_VOTE");
("REVIEW_VOTE_2", "c_selected", "CONFIRM_VOTE");
("REVIEW_VOTE_2", "neg_c_selected",
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"CHANGE_VOTE_2") ;
my Or_c_4 ("REVIEW_VOTE_3", "c_selected", "CONFIRM_VOTE");
my O@r_c_5 ("REVIEW_VOTE_3", "neg_c_selected", "FAIL");
my @R_c = (\@r_c_0, \@r_c_1, \@r_c_2, \@r_c_3, \Qr_c_4,
\@r_c_5);
my $g_O_c = "VOTE_FOR_CANDIDATE_c";

# Start recursion

my $state_counter = 0;
my @s_O = (&new_state("s",0));
my ($S, $Sigma_in, $Sigma_out, $transition, $s_last) =
&sub_goms_to_iolts (\@G_c, \@0_c, \@M_c, \@R_c, \@C_c,
$g_0_c, \@s_0, "s");
for(my $i = 0; defined ($transition->[$i]); $i++){
print "(" . $transition->[$i]->[0] . ", "
. $transition->[$il->[1] . ", "
. $transition—>[$i]l->[2] . ")\n";

e e e e
#

# sub sub_goms_to_iolts($$$$$)

#

HEHS R R R R R R R R

sub sub_goms_to_iolts($$$3$$){

my ($G’ $O, $M’ $R" $C, $g—o, $S—O’
$state_name_prefix) = O_;
my (@S, @Sigma_in, @Sigma_out, @transition, @s_last);

# \IF{$g_0 \in 0%}

if (&is_element($g_0, $0)){
# Operator
my $s_next = new_state($state_name_prefix,0);
for(my $i = 0; (defined $s_0->[$i]); $i++){

push @transition, [$s_0->[$i], $g_0, $s_next];

}
©@s_last = ( $s_next );
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else{
# Goal
my $m = &find_matching_method ($g_0,$M);
if (defined $m){
my $s_last_i;
for(my $i = 1; (defined $m->[$i]); $i++){
my ($S_i, $Sigma_in_i, $Sigma_out_i, $transition_h_i);
($S_1, $Sigma_in_i, $Sigma_out_i, $transition_h_i,
$s_last_i) =
&sub_goms_to_iolts($G, $0, $M, $R, $C, $m->[$i],
$s_0, "${state_name_prefix}_${i}");
for(my $1 = 0; defined($transition_h_i->[$1]); $1++){
push Q@transition, $transition_h_i->[$1];

$s_0

}
for(my $i = 0; (defined $s_last_i->[$i]); $i++){
push @s_last, $s_last_i->[$i];

$s_last_i;

}

}

else{
# Selection
@s_last = O;

for(my $i = 0; (defined $R->[$i]); $i++){
my $g = $R->[$i]->[0];
my $c = $R->[$il->[1];
my $g_prim = $R->[$i]->[2];
if($g eq $g_0){
my O@s_next = (new_state($state_name_prefix,$i));
for(my $i = 0; (defined $s_0->[$i]); $i++){
push Qtransition, [$s_0->[$i], $c, $s_next[0]];
}
my ($S_i, $Sigma_in_i, $Sigma_out_i,
$transition_h_i, $s_last_i) =
&sub_goms_to_iolts($G, $0, $M, $R, $C, $g_prim,
\@s_next,
"${state_name_prefix}_${i}");
for(my $1 = 0; defined($transition_h_i->[$1]); $1++){
push Qtransition, $transition_h_i->[$1];
}
for(my $i = 0; (defined $s_last_i->[$i]); $i++){
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push @s_last, $s_last_i->[$i];

+
}
}
}

}

return (\@S, \@Sigma_in, \@Sigma_out, \@transition,
\@s_last );

}

sub is_element ($$){
my ($e, $a) = @_;
my $i;
for($i = 0; (defined($a->[$i]l) && (($a->[$i]) ne $e));
$i++){ };
return (defined($a->[$i]));

#HHHHHHHHH RS R R R R
#

# sub new_state($$)

#

#HHHHHHHHHH RS R R R R

sub new_state(){
my ($prefix, $num) = @_;

return ($prefix . "_" . $num);

, -

HHHHH A H R R R R R R R R R
#

# sub find_matching _method($$)

#
R

sub find_matching method ($3$){
my ($g, $M) = @_;
my $1i;
for($i = 0;
(defined ($M->[$i]) && (($M->[$i]->[0]) ne $g));
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$i++){ };
return ($M->[$i]);
}
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Appendix C

Basic Main Execution Cycle Model

This chapter provides NuSMV code of the models using theaaiecution loops
developed in Chaptérll4. All system models in Chalpiér 14hesedame user and
application logic components, and the same screen compofasse are given in
SectiofCll and Secti@nT.3, respectively. Sedfioh C.2aammnthe naive user and
application execution loops. In Section1C.4, the compaarg combined to three
models. In the first model (Sectign Cl4.1), the user and egipdin logic compo-
nents are connected directly to each other. For this systenmtegrity constraint
is satisfied. In the second model (Section G.4.2), the usgapplication logic
components are connected via user and application exadoti@ components.
The output of the application execution component conndicestly to the input
of the user execution component; there is no screen in batwes this system,
the integrity constraint is satisfied. Finally, the seconodel is extended by a
screen component in Sectibn"Cl4.3. The asynchroneitydatred by the screen
component leads to a model which does not satisfy the inyegonstraint. A
refutation trace generated by NuSMV is given in Sedfiogd C.5.

C.1 Logic Components

C.1.1 Application Logic Component

MODULE applicationLogicComponent (CMD)
VAR
state: { NoNewMail, NewMail} ;
AppOut: { ScreenNoMail, ScreenNewMail, idle } ;
ASSIGN
init(state)
next(state)

NoNewMail;
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case
(CMD = idle) : state;
1 : {NoNewMail, NewMail} ;
esac;
init (AppOut)
next (AppOut)
case
(next(state) = NoNewMail) : ScreenNoMail ;
(next (state) NewMail) : ScreenNewMail ;
esac ;

ScreenNoMail;

C.1.2 User Logic Component

MODULE userLogicComponent (appOut)

VAR
state: { NoNewMail, NewMail} ;
CMD: { CMD_Check } ;

ASSIGN
init(state)
next (state)

case
(next (appOut)
(next (appOut)
1 : state ;
esac ;

NoNewMail;

ScreenNoMail) : NoNewMail ;
ScreenNewMail) : NewMail ;

C.2 Execution Loop Components

C.2.1 Basic Application Execution Loop Component

MODULE simpleAppExecComponent (CMDIn, AppOutIn)

VAR
state: { CmdExecuted, GotResult, ResultShown, GotCmd } ;
AppOutOut: { ScreenNoMail, ScreenNewMail, idle, Ready,

idle } ;
CMDOut: { CMD_Check, idle } ;
ASSIGN
init(state) := GotResult;

next(state)
case
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(state = CmdExecuted) & (next(AppOutIn) != idle)

GotResult ;
(state = GotResult) : ResultShown ;
(state = ResultShown) & (next(CMDIn) != idle)
: GotCmd ;
(state = GotCmd) : CmdExecuted ;
1 : state;

esac ;
init (CMDOut) := idle ;
next (CMDOut) :=

case
(state = GotCmd) : CMDIn ;
1 : idle;

esac;

init (AppOutOut) := idle;
next (AppOutQOut) :=

case
(state = GotResult) : AppOutln ;
1 : idle;

esac;

C.2.2 Basic User Execution Loop Component

MODULE simpleUserExecComponent (CMDIn, AppOutIn)
VAR
state: { Decided, Wait, StartClassify, EndClassify } ;
AppOutOut: { ScreenNoMail, ScreenNewMail, Processing,
Ready, idle } ;
CMDOut: { CMD_Check, idle } ;

ASSIGN
init(state) := Wait;
next(state) :=
case
(state = Wait) & (next(AppOutIn) != idle)
StartClassify ;

(state = StartClassify) : EndClassify ;
(state = EndClassify) & (next(CMDIn) != idle)

: Decided ;
(state = Decided) : Wait ;
1 : state;

esac ;



182 APPENDIX C. BASIC MAIN EXECUTION CYCLE MODEL

init (CMDOut) := idle ;
next (CMDOut) :=
case
(state = Decided) : CMDIn ;
1 : idle;
esac;
init (AppOutOut) := idle;
next (AppOutOut) :=
case
(state = StartClassify) : AppOutIn ;
1 : idle;
esac;

C.3 Other Components

C.3.1 Screen
MODULE screenComponent (ScreenIn)
VAR

ScreenOut: { ScreenNoMail, ScreenNewMail, Processing,
Ready, idle } ;

ASSIGN
init (ScreenOut) := ScreenNoMail;
next (ScreenOut) :=
case
(ScreenIn = idle) : ScreenQut;
1 : Screenln;
esac;
C.4 Models

C.4.1 Direct Connection of Logic Components

—-— The model connects the user logic component and the
-- application logic component directly to each other.

#include "../logics/app_logic.smv"
#include "../logics/user_logic.smv"

MODULE main
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VAR
appLogic : applicationLogicComponent (userLogic.CMD);
userLogic : userLogicComponent (appLogic.AppOut);

SPEC
AG (appLogic.state = userLogic.state)

C.4.2 Basic System Model without Screen

-- This model implements the basic execution loop with
—-- the user and application logic components. The

-- integrity constraint is satisfied, because screen
-—- output is directly relayed to the user, without a
-- screen in between.

#include "../logics/app_logic.smv"

#include "../logics/user_logic.smv"
#include "../execs/simple_app_exec.smv"
#include "../execs/simple_user_exec.smv"

MODULE main

VAR
appLogic : applicationLogicComponent (appExec.CMDOut) ;
appExec : simpleAppExecComponent (userExec.CMDOut,

appLogic.AppOut) ;
userLogic : userLogicComponent (userExec.AppOutOut) ;
userExec : simpleUserExecComponent(userLogic.CMD,

appExec.AppOutOut) ;

SPEC
AG ((userExec.state = EndClassify) ->
(appLogic.state = userLogic.state))

C.4.3 Basic System Model with Screen

-- This model implements the basic execution loop with
—-- the user and application logic components. A screen
-- is in between the output of the application and the
-— other. The integrity constraint is not satisfied.
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#include "../logics/app_logic.smv"

#include "../logics/user_logic.smv"
#include "../execs/simple_app_exec.smv"
#include "../execs/simple_user_exec.smv"
#include "../other/screen.smv"

MODULE main

VAR
applLogic : applicationLogicComponent (appExec.CMDOut) ;
userLogic : userLogicComponent (userExec.AppOutOut) ;

appExec : simpleAppExecComponent (userExec.CMDOut,
appLogic.AppOut) ;
userExec : simpleUserExecComponent (userLogic.CMD,
screen.ScreenOut) ;
screen : screenComponent (appExec.AppOutQOut) ;
SPEC

AG ((userExec.state = EndClassify) ->
(appLogic.state = userLogic.state))

C.5 Refutation of System Model with Screen

-- specification AG (userExec.state = EndClassify ->
--  applogic.state = userLogic.state) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
appLogic.state = NoNewMail
appLogic.AppOut = ScreenNoMail
userLogic.state = NoNewMail
appExec.state = GotResult
appExec.AppOutOut = idle
appExec.CMDOut = idle
userExec.state = Wait
userExec.AppOutOut = idle
userExec.CMDOut = idle
screen.Screenfut = ScreenNoMail
userLogic.CMD = CMD_Check
-> State: 1.2 <-
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appExec.state = ResultShown
appExec.AppOutOut = ScreenNoMail
userExec.state = StartClassify

-> State: 1.3 <-
appExec.AppOutOut = idle
userExec.state = EndClassify
userExec.AppOutOut = ScreenNoMail

-> State: 1.4 <-
userExec.state = Decided
userExec.AppOutOut = idle

-> State: 1.5 <-
appExec.state = GotCmd
userExec.state = Wait
userExec.CMDOut = CMD_Check

-> State: 1.6 <-
appExec.state = CmdExecuted
appExec.CMDOut = CMD_Check
userExec.state = StartClassify
userExec.CMDOut = idle

-> State: 1.7 <-
appLogic.state = NewMail
appLogic.AppOut = ScreenNewMail
appExec.state = GotResult
appExec.CMDOut = idle
userExec.state = EndClassify
userExec.AppOutOut = ScreenNoMail
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Appendix D

Improved Main Execution Cycle
Model

In ChaptelI412, we have shown that the naive user and afpiphicexecution
components may lead to violations of the integrity conattdluSMV code gen-
erating a refutation has been given in Apperidix C. Here, weige NuSMV code
implementing the improved user and application executionmonents developed
in ChaptefZI4]2. With these components, the integrity camtis satisfied.

D.1 Logic Components

The user logic component and the application logic compbaenidentical to the
ones from AppendikC]1.

D.2 Execution Loop Components

D.2.1 Improved Application Execution Loop Component

MODULE appExecComponent (CMDIn, AppOutIn)
VAR
state: { CmdExecuted, GotResult, ResultShown, GotCmd,
Busy, Escaped } ;
AppOutOut: { ScreenNoMail, ScreenNewMail, Processing,
Ready, idle } ;
CMDOut: { CMD_Check, ESC, idle } ;
ASSIGN
init(state) := GotResult;
next (state)
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case
(state = CmdExecuted) & (next(AppOutIn) != idle)
GotResult ;
(state = GotResult) : ResultShown ;
(state = ResultShown) & (!(next(CMDIn) in {idle, ESC}))

: Busy ;

(state = ResultShown) & (next(CMDIn) = ESC)
: Escaped ;

(state = Escaped) : ResultShown ;

(state = Busy) : GotCmd ;
(state = GotCmd) : CmdExecuted ;
1 : state;
esac ;
init (CMDOut) := idle ;
next (CMDOut) :=
case
(state = Busy) : CMDIn ;
1 : idle;
esac;
init (AppOutOut) := idle;
next (AppOutQOut) :=
case
(state = GotResult) : AppOutln ;
(state = Busy) : Processing ;
(state = Escaped) : Ready ;
1 : idle;
esac;

D.2.2 Improved User Execution Loop Component

MODULE userExecComponent (CMDIn, AppOutIn)

VAR
state: { Decided, BeginWait, EndWait, StartClassify,

EndClassify, Escape } ;
AppOutOut: { ScreenNoMail, ScreenNewMail, Processing,
Ready, idle } ;
CMDOut: { CMD_Check, ESC, idle } ;

ASSIGN
init(state)
next(state)

case

EndWait;
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(state = EndWait)
& (!(next(AppOutIn) in {idle, Processing}))
: StartClassify ;
(state = StartClassify) : EndClassify ;
(state = EndClassify) & (next(CMDIn) != idle)
: Decided ;
(state = Decided) : BeginWait ;
(state = BeginWait) & (next(AppOutlIn) = Processing)
: EndWait ;
(state = BeginWait) : Escape ;
(state = Escape) & (next(AppOutIn)
: StartClassify ;
1 : state;
esac ;
init (CMDOut) := idle ;
next (CMDOut) :=

Ready)

case
(state = Decided) : CMDIn ;
(state = BeginWait) & (next(state) = Escape) : ESC ;
1 : idle;

esac;

init (AppOutOut) := idle;
next (AppOutOut) :=

case
(state = StartClassify) : AppOutIn ;
1 : idle;

esac;

D.3 Other Components

D.3.1 Screen

The screen component is identical to the one from AppdndxIC.

D.4 Model

D.4.1 Improved System Model with Screen

-- In the improved model, the integrity constraint is
-- satisfied for the model including a screen, too.
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#include "../logics/app_logic.smv"

#include "../logics/user_logic.smv"
#include "../execs/user_exec.smv"
#include "../execs/app_exec.smv"
#include "../other/screen.smv"

MODULE main

VAR
applLogic : applicationLogicComponent (appExec.CMDOut) ;
userLogic : userLogicComponent (userExec.AppOutOut) ;

appExec : appExecComponent (userExec.CMDOut,
appLogic.AppQOut) ;
userExec : userExecComponent (userLogic.CMD,
screen.ScreenOut) ;
screen : screenComponent (appExec.AppOutQOut) ;
SPEC

AG ((userExec.state = EndClassify) ->
(appLogic.state = userLogic.state))



Appendix E
Writing, Signing, Sending Emaill

In ChapterIb, two availability requirements for the eméigrt have been de-
fined. The user should be able to write, sign, and send ennailthee user should
be able to poll for new email, check the signature of receamail, and read re-
ceived email. Here, we provide NuSMV code to show that thé¢ &vailability
requirement is satisfied. The model makes use of the appiciatyic component
and the screen component defined in Appehdiix C, and the udexpgtication ex-
ecution components defined in Appendix D. The model preddmdee introduces
a model of a user writing, signing, and sending email.

-- User model to show that it is possible to write,
-- sign and send email.

MODULE emailUserComponent
VAR
state: {initialize, editing, signing, sending } ;
action: { sign, send, insertPubKey, generateKeyPair,
editMail, moveCursor, insertChar, deleteChar,
quitEditing, checkSig, poll, editPubKey, idle } ;
ASSIGN
init(state)
next (state)
case
(state = initialize) : editing ;
(state = editing) : {editing, signing } ;
(state = signing) : sending ;
(state = sending) : initialize ;
esac;
init(action) := editMail ;

initialize ;
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next(action) :=

case
(next(state) = editing) : { moveCursor, insertChar,
deleteChar} ;
(next(state) = signing ) : { quitEditing } ;
(next(state) = sending ) : { sign } ;
(next(state) = initialize) : { send } ;
esac;

#include "email_client.smv"

MODULE main
VAR
user : emailUserComponent();
client : emailClientComponent (user.action);

SPEC
—-— From the initial state, the cursor can be
-- moved an arbitrary number of times while being in
-- state mailNotChanged,
EF (EG ((user.action = moveCursor)
& (client.state = mailNotChanged)))
-- and if the client is in state mailNotChanged,
-- 1t is possible to transit to state mailChanged in
-- the next step,
& EF ((client.state = mailNotChanged)
& EX (client.state = mailChanged))
-- and if the client is in state mailChanged, an
—-- arbitrary number of characters can be deleted,
& EF (EG ((user.action = deleteChar)
& (client.state = mailChanged)))
-- and if the client is in state mailChanged, an
—-- arbitrary number of characters can be inserted,
& EF (EG ((user.action = insertChar)
& (client.state = mailChanged)))
-- and if the client is in state mailChanged, state sent
-- 1s reachable without transiting through mailChanged
-- again,
& EF ((client.state = mailChanged) &
EX (E [(client.state != mailChanged)
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U (client.state = sent)]))

-- and if sent is reached, then the previous state must
-- be signed.

& AG ((EX (client.state = sent )) —->
(client.state = signed))
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Appendix F

Receiving, Checking, Reading Email

In ChapterIb, two availability requirements for the eméigrt have been de-
fined. The user should be able to write, sign, and send ennailthee user should
be able to poll for new email, check the signature of receamail, and read re-
ceived email. Here, we provide NuSMV code to show that thersg@@vailability

requirement is satisfied. The model makes use of the appiciatyic component
and the screen component defined in Appehdiix C, and the udexpgtication ex-

ecution components defined in Appendix D. The model preddmdee introduces
a model of a user polling for new email, checking the sigregtand reading the
email.

-- User model to show that it is possible to receive email,
—-- check signatures, and read email.

MODULE emailUserComponent (clientOutput)
VAR
state: {Polling, got_new_mail, signature_checked,
readingMail } ;
action: { sign, send, insertPubKey, generateKeyPair,
editMail, moveCursor, insertChar, deleteChar,
quitEditing, checkSig, poll, editPubKey, idle } ;
ASSIGN
init(state)
next (state)
case
(state = Polling) & (clientOutput = notChecked)
: got_new_mail ;
(state = Polling) & (clientOutput != notChecked)
: Polling ;

Polling ;
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(state = got_new_mail) : signature_checked ;
(state = signature_checked) : readingMail ;
(state = readingMail) : readingMail ;
esac;
init(action) := poll ;
next(action) :=
case
(state = Polling) & (clientOutput = notChecked)
checkSig ;

(state = Polling) & (clientOutput != notChecked)
: poll ;
(state = got_new_mail) : editMail ;
(state = signature_checked) : moveCursor ;
(state = readingMail) : moveCursor ;
esac;

#include "email_client.smv"

MODULE main

VAR
user : emailUserComponent(client.state);
client : emailClientComponent (user.action);

SPEC
-- If the system is in the initial state and new
-- mail is available, then both the new mail will have
-- arrived in the next step and the user will know about.
(AG (((client.state = unsigned) & client.newMailAvailable)
-> AX ((client.state = notChecked)
& AX (user.state = got_new_mail))))
-- If the system is in the initial state and no mail is
-- available, then both the system and the user will
-- remain in their initial states in the next step.
& (AG (((client.state = unsigned) & !client.newMailAvailable)
-> AX ((client.state = unsigned)
& AX (user.state = Polling))))
-- The user will continue polling for new mail while the
-- system is in its initial state
& (AG ((client.state = unsigned) -> (user.action = poll)))
-- If mail has arrived, the user will not poll for new mail
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-— until the email client is in mail read mode.
& (AG ((client.state = notChecked) ->
AX (A [ (!(user.action = poll))
U (client.state = mailNotChanged)])))

—-— Once the user is reading mail, he will be moving the
-- cursor forever.
& (AG ((client.state = mailNotChanged) ->

AG (user.action = moveCursor)))
—— If the user is in read email mode, he either
-- was already reading email in the step before, or the signature
-- had been checked.
& AG ((EX client.state = mailNotChanged) ->

((client.state = mailNotChanged) | (client.state = checked)))



198 APPENDIX F. RECEIVING, CHECKING, READING EMAIL



Bibliography

G. D. Abowd and R. Beale. Users, systems and interfaces: #ingiframework
for interaction. In D. Diaper and N. Hammond, editoHCI'91:People and
Computers VJlpages 73—-87. Cambridge University Press, 1991.

G. D. Abowd, J. P. Bowen, A. J. Dix, M. D. Harrison, and R. Toblser interface
languages: A survey of existing methods. Technical RepBGHR-5-89,
Oxford University Computing Laboratory, October 1989.

Nathaniel Ayewah, Sven Beyer, Nikhil Kikkeri, and Peterelihel Seidel. Chal-
lenges in the formal verification of complete state-of-tmeprocessors. In
International Conference on Computer Desi@an Jose, 2005.

Daniel Bachfeld. Nepper, Schlepper, Bauernfanger — Risikeim Online-
Banking.c’'t magazin @ir Computertechnik22:148-153, 2005.

Thomas Ball and Sriram K. Rajamani. Automatically validgttemporal safety
properties of interfaces. BPIN '01: Proceedings of the 8th international SPIN
workshop on Model checking of softwapages 103—-122, New York, NY, USA,
2001. Springer-Verlag New York, Inc. ISBN 3-540-42124-6.

Bernhard Beckert and Gerd Beuster. Formal specificatioreotirsty-relevant
properties of user interfaces. Rroceedings, 3rd International Workshop on
Critical Systems Development with UML, Lisbon, Portugéinich, Germany,
2004. TU Munich Technical Report TUM-10415.

Bernhard Beckert and Gerd Beuster. Guaranteeing coneysiantext-based
human-computer interaction. RPre-event Proceedings of the 1st International
Workshop on Formal Methods for Interactive Systems (FMIGGEZ0Macao
SAR ChinaThe United Nations University, 2006a. UNU-IIST Report 1847.

Bernhard Beckert and Gerd Beuster. Guaranteeing coneysiantext-based
human-computer interactiorSpecial Issue of Innovations in System and Soft-
ware Engineering (Submitted)007.

199



200 BIBLIOGRAPHY

Bernhard Beckert and Gerd Beuster. A method for formalizamgalyzing, and
verifying secure user interfaces. In Zhiming Liu and Jiféfey editorsFormal
Methods and Software Engineering, 8th International Crmarfee on Formal
Engineering Methods, ICFEM 2006, Macao, China, Novemb&y 2006, Pro-
ceedingsvolume 4260 of_ecture Notes in Computer Scien&pringer, 2006b.
ISBN 3-540-47460-9.

Bernhard Beckert, Gerd Beuster, and Pia Breuer. TR #2: Ebtigiht Specifica-
tion. Technical report, Verisoft Konsortium, 2007.

Jean Berstel, Stefano Crespi Reghizzi, Gilles RousselPartligi San Pietro. A
scalable formal method for design and automatic checkingsef interfaces.
ACM Transactions on Software Engineering and MethodoldySEM) 14
(2):124-167, April 2005.

Gerd Beuster and Roman Neruda. Description and generatioongputational
agents. InProceedings of the First International Conference on Krexlgle
Science, Engineering and Management (KSEM'@®yinger, 2006.

Gerd Beuster, Pavel KruSina, Petra Kudova, Roman Nemmud Pavel Rydvan.
Towards building computational agent schemed?roceedings of the Interna-
tional Conference on Genetic Algorithms and Artificial Neudetworks 2003
(ICANNGA 2003)Roanne, France, 2003.

Gerd Beuster, Pavel KruSina, Petra Kudova, Roman Nemmi Pavel Rydvan.
Bang 3: A computational multi-agent systenEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT,®0:563-564, 2004.

Gerd Beuster, Niklas Henrich, and Markus Wagner. Real weglification —
experiences from the verisoft email client. Pnoceedings of the Workshop on
Empirical Succesfully Computerized Reasoning (ESCoR)22066.

Simon P. Booth and Simon B. Jones. A screen editor writterhénnhiranda
functional programming language. Technical Report TR;l€partment of
Computing Science and Mathematics, University of Stirlirgbruary 1994.

S. Brackin. Evaluating and improving protocol analysis byomatic proof. In
CSFW '98: Proceedings of the 11th IEEE Computer Securityn8ations
Workshop page 138, Washington, DC, USA, 1998. IEEE Computer Saciety
ISBN 0-8186-8488-7.

Thomas Browne, David Davila, Spencer Rugaber, and Kurewélt. Using
declarative descriptions to model user interfaces withtemasnd. In F. Pa-
terno and P. Palanque, editoFgrmal Methods in Human Computer Interac-
tion. Springer-Verlag, 1997.



BIBLIOGRAPHY 201

P. Brun. Xtl: A temporal logic for the formal development aferactive systems.
In Philippe Palanque, editoFormal methods in human computer interaction
Springer, New York, London,..., 1998.

M. Burrows, M. Abadi, and R. Needham. A logic of authentioatiin SOSP '89:
Proceedings of the twelfth ACM symposium on Operating sysf@inciples
pages 1-13, New York, NY, USA, 1989. ACM Press. ISBN 0-89338-8.

M. Cabrera, M. Gea, F. Gutierrez, and J.C. Torres. Algelsagcification of user
interfaces. Inlst ERCIM Workshop on “User Interfaces for AllHeraklion,
Crete, Greece, 30-31 October 1995.

Gaelle Calvary, Joelle Coutaz, and Laurence Nigay. Frogieinser architectural
design to PAC*: a generic software architecture model foC@& In CHI,
pages 242-249, 1997.

David A. Carr. Interaction object graphs: an executablglgicl notation for
specifying user interfaces. In Philippe Palanque and Haaierno, editorssor-
mal methods in Human-Computer Interactipages 141-155. Springer, 1997.

Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, andui®eith. Mod-
ular verification of software components in (EEE Transactions on Software
Engineering (TSE)30(6):388—-402, June 2004.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. $#ore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV Version 2. An Opem&adool for
Symbolic Model Checking. IfProc. International Conference on Computer-
Aided Verification (CAV 2002yolume 2404 o NCS Copenhagen, Denmark,
July 2002. Springer.

David D. Clark and David R. Wilson. A comparison of commekaiad military
computer security policiesp, 00:184, 1987. ISSN 1540-7993.

ITS. Information Technology Security Evaluation Criteria (HS) — Provisional
Harmonised Criteria Commission of the European Communities, June 1991.
ISBN 92-826-3004-8.

Common Criteria Evaluation Board (CCEBZommon Criteria for Information
Technology Security Evaluation (CC) — Version, 2006.

Patrick Cousot and Radhia Cousot. Modular static prograatyais. In N. Hor-
spool, editor,Proceedings of the International Conference on Compilen-Co
struction (CC 2002)LNCS 2304, pages 159-178, Grenoble, France, April 6—
14 2002.



202 BIBLIOGRAPHY

W. Damm, H. Hungar, and E.-R. Olderog. On the verification @bperating
traffic agents. In F.S. de Boer, M.M. Bonsangue, S. Graf, an®We Roever,
editors,Proc. FMCO '03: Formal Methods for Components and ObjectéCS
3188, pages 78-110, 2004.

Geert de Haan.ETAG, A Formal Model of Competence Knowledge for User-
Interface DesignPhD thesis, Vrije Universiteit, Amsterdam, 2000.

Geert de Haan. Extended task-action grammar (ETAG): the- psy
chological basis of a formal model for wuser interface design
http://home.tiscali.nl/gdehaan/etag.html, June 200951

Rudiger Dierstein. Sicherheit in der informationsteéhr- der begriff it-
sicherheit.Informatik Spektrum27(4), August 2004.

A. Dix and G. Abowd. Modelling status and event behaviourrm&ractive sys-
tems. Software Engineering Journgl1(6):334—-346, 1996.

A. J. Dix and C. Runciman. Abstract models of interactivdasyss. In P. Johnson
and S. Cook, editordICI'85: People and Computers I: Designing the Inter-
face pages 13-22. Cambridge: Cambridge University Press,.1985

Alan Dix, Janet Finley, Gregory Abowd, and Russell Bealatogs. Human-
computer interactionchapter 3. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1998. http://www.hcibook.com/hcibook/downloadH/plides.3.pdf.

DoD 5200.28-STDDepartment of Defense Trusted Computer System Evaluation
Criteria, December 1985.

Danny Dolev and Andrew C. Yao. On the security of public kegtpcols. Tech-
nical report, Stanford University, Stanford, CA, USA, 1981

Mauro Gargano, Mark Hillebrand, Dirk Leinenbach, and Watig Paul. On the
correctness of operating system kernels. Phaceedings, 18th International
Conference on Theorem Proving in Higher Order Logics (TPHQO005)
LNCS 3603, pages 2—-16. Springer, 2005.

P.C. Gilmore. A proof method for quantification theol$M Journal of Research
and Developmeny:28-35, 1960.

Doug Goldson. Formal modelling of interactive systems. Phoceedings of
APAQS 2000, the First Asia-Pacific Conference on Qualityv&oé IEEE
Conference Proceedings. IEEE Computer Society Press, 2000



BIBLIOGRAPHY 203

Gerhard Goos and Wolf Zimmermann. Verification of compileta Correct
System Desigrpages 201-230, 1999.

Eric Goubault. Static analyses of floating-point operatiom P. Cousot, editor,
SAS'01LNCS 2126, pages 233-258, Paris, July 2001.

Jonathan Grudin. The case against user interface congys@mmmunications of
the ACM 32(Issue 10):1164-1173, October 1989.

F. Hamilton. Predictive evaluation using task knowledgedtires. IlCompanion
proceedings of CHI'96Vancouver, April 1996.

D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editBlandbook of
Philosophical Logic Volume 1l — Extensions of Classical icogpages 497—
604. D. Reidel Publishing Company: Dordrecht, The Netimei$a1984.

Michael Harrison, editorFormal methods in human-computer interacti@am-
bridge Univ. Press, Cambridge, Mass., 1990.

C. A. R. Hoare. An axiomatic basis for computer programmi@gmmun. ACM
12(10):576-580, 1969.

A. Hussey and D. Carrington. Specifying a web browser iatsfusing object-z.
In Philippe Palanque, editoFormal methods in human computer interaction
chapter 8. Springer, New York, London,. .., 1998.

Vipul Jain. User interface description formalisms. Tecahreport, McGill Uni-
versity School of Computer Science, Montréal, Canada4199

M. Jmaiel. Specifying communication protocols with terrgddogic. Technical
Report Technical Report 1994/16, Technische Univer8&itin, Fachbereich
Informatik, 1994.

Bonnie E. John. Why GOMSMteractions 2(4):80-89, October 1995. ACM
Press, New York, NY, USA.

Bonnie E. John and David E. Kieras. The goms family of userfate analysis
technigues: comparison and contra8CM Trans. Comput.-Hum. InteracB
(4):320-351, 1996. ISSN 1073-0516.

Ron Koymans Specifying Message Passing and Time-Critical Systemsleftiz
poral Logic Springer-Verlag New York, Inc., Secaucus, NJ, USA, 19BN
0387562834.



204 BIBLIOGRAPHY

Glenn E. Krasner and Stephen T. Pope. A cookbook for usingndael-view con-
troller user interface paradigm in smalltalk-8D.0Object Oriented Programl
(3):26—49, 1988. ISSN 0896-8438.

W. Kuhn and A.U. Frank. A formalization of metaphors and iea&ghemas in
user interfaces. In D. M. Mark and A. U. Frank, editaZsgnitive and Linguis-
tic Aspects of Geographic Spade¢ATO ASI Series. Kluwer Academic Press,
Dordrecht, The Netherlands, 1991.

Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Tow#ndsformal ver-
ification of a cO compiler. IrProceedings, 3rd International Conference on
Software Engineering and Formal Methods (SEFM 208®blenz, Germany,
2005.

Gavin Lowe. Breaking and fixing the Needham-Schroeder ptkay protocol
using FDR. InTools and Algorithms for the Construction and Analysis &-Sy
tems (TACAS)olume 1055, pages 147-166. Springer-Verlag, Berlin Geym
1996.

Catherine Meadows. Formal methods for cryptographic patanalysis: emerg-
ing issues and trend$EEE Journal on Selected Areas in Communicatj@is
(1):44-54, January 2003.

Allen Newell. Unified theories of cognitian Harvard University Press, Cam-
bridge, MA, USA, 1994. ISBN 0-674-92101-1.

Object Modeling Group. Unified Modelling Language Specifica-
tion, version 1.5 Object Modeling Group, March 2003. URL
http://www.omg.org/cgi-bin/doc?formal/03-03-01.

Judith Reitman Olson and Gary M. Olsdduman-computer interaction: toward
the year 2000chapter The growth of cognitive modeling in human-compute
interaction since GOMS, pages 603-625. Morgan Kaufmantighglos Inc.,
San Francisco, CA, USA, 1995. ISBN 1-55860-246-1.

P. Palanque and R. Bastide. Petri net based design of ugen-dnterfaces using
the cooperative object formalism. In F. Paterno, edib®sign, Specification
and Verification of Interactive Systems ,9#ages 383-400, Heidelberg, 1994.
Springer-Verlag.

Philippe Palanque and Fabio Paterno, edittosmal methods in human computer
interaction Springer, New York, London,. .., 1998.


http://www.omg.org/cgi-bin/doc?formal/03-03-01

BIBLIOGRAPHY 205

Philippe Palanque, Remi Bastide, and Valerie Senges. ataligl interactive sys-
tem design through the verification of formal task and systadels. InEngi-
neering for Human-Computer InteractioBhapman & Hall, August 1995.

Wolfgang Paul. Towards a worldwide verification technololyyProceedings of
the Verified Software: Theories, Tools, Experiments Cenfax (VSTTE 2005)
Zurich, Switzerland, October 2005.

Lawrence C. Paulson. The inductive approach to verifyirygptagraphic proto-
cols. Journal of Computer Securit$:85-128, 1998.

Robert W. Reeder and Roy A. Maxion. User interface depetitiathirough goal-
error prevention. IlDSN '05: Proceedings of the 2005 International Confer-
ence on Depen dable Systems and Networks (DSNJ@ges 60-69, Washing-
ton, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2382

John Rushby. Using model checking to help discover modeustoris and other
automation surprisesReliability Engineering and System Safet$(2):167—
177, February 2002.

Norbert Schirmer. A verification environment for sequéritigperative programs
in Isabelle/HOL. In F. Baader and A. Voronkov, editoksgic for Program-
ming, Artificial Intelligence, and Reasoningplume 3452 ot NAI, pages 398—
414. Springer, 2005.

E. Schlungbaum and T. Elwert. Modellierung von graphiscBemutzung-
soberflachen im Rahmen des TADEUS-Ansatzes. In H.-D. Bgocgditor,
Software-Ergonomie’95: Mensch-Computer-Interaktiorw@ndungsbereiche
lernen voneinandegipages 331-348. Teubner, Stuttgart, 1995.

S. Smith and D. Duke. Using csp to specify interaction inugttenvironments.
Technical report, University of York, 1999.

SSCD-PPProtection Profile — Secure Signature-Creation Device Bjpéersion
1.05 2001. http://www.bsi.bund.de/cc/pplist/PP0O006b.pdf.

Artem Starostin. Formal verification of a c-library for sigs. Master’s thesis,
Saarland University, 2006.

Bettina Sucrow. Formal specification of human-computererauttion
by graph grammar s under consideration of information ressu
In Automated Software Engineeringpages 28-35, 1997. URL
citeseer.ist.psu.edu/sucrow97formal.html.


citeseer.ist.psu.edu/sucrow97formal.html

206 BIBLIOGRAPHY

B. Sufrin. Formal specification of a display edit&cience of Computer Program-
ming 1:157-202, 1982.

Kenneth J. TurnerUsing Formal Description Techniques — An Introduction to
Estelle, LOTOS and SDLJohn Wiley and Sons Ltd., 1993.

Peter H. J. van Eijk, Chris A. Vissers, and Michel Diaz, editoThe Formal
Description Technique LOTOS: Results of the Esprit SEDQ@§Er Elsevier
Science, Amsterdam, Netherlands, 1989.

Jos Warmer and Anneke Kleppe. OCL: The constraint languédgleeoUML.
Journal of Object-Oriented Programming2(1):10-13,28, March 1999.

Jos B. Warmer and Anneke G. KleppEhe Object Constraint Language: Precise
Modeling With UML Addison-Wesley Professional, 1998.



Lebenslauf

Geboren am:

Geburtsort:
Eltern:

Abschluss:
Jahr:
Institution:
Ort:

Note:

Abschluss:
Jahr:
Institution:
Ort:

Note:

Tatigkeit:
Zeitraum:

Arbeitgeber:

Ort:

Stipendium:
Zeitraum:
Forderer:
Ort:

Tatigkeit:
Zeitraum:

Arbeitgeber:

Ort:

24. November 1972
Dortmund
Peter Beuster
Margret Bauer

Abitur

1992
Geschwister-Scholl-Gesamtschule
Dortmund

1,4

Diplom-Informatiker

2001

Universitat Koblenz-Landau
Koblenz

1,1

Wissenschaftlicher Mitarbeiter

April 2001 — August 2002 und April 2003 — April 2007
Universitat Koblenz-Landau

Koblenz

Doktoranden-Stipendium
Oktober 2002 — Marz 2003
DAAD
Tschechische Akademie der Wissenschaften
Prag, Tschechische Republik

Consultant

Seit Dezember 2007

T-Systems Enterprise Services GmbH
Bonn



	Introduction
	Goals and Structure
	Main Contribution

	Related Work
	Formalisms for Describing HCI
	Tools
	Design Methods
	Summary
	GOMS

	I Foundations
	Overview of Part I
	IOLTS and CTL
	IOLTS
	User and Application Models
	Example

	Formalized GOMS
	Formal Semantics for GOMS User Models
	Assumptions as Selection Rules
	Formal HCI Model: Summary

	Completing the eVoting Model

	Hierarchical Models
	Hierarchical GOMS
	Abstraction
	E-Voting Example (Correct)
	E-Voting Example (with erroneous user behavior)


	Integration with Hoare Logic
	Summary

	II Formalization of HCI Security
	System Model
	Messages
	Environment

	The Common Criteria
	Introduction to CC
	Paths and Identification
	Core Definitions
	Definitions of CC Concepts

	Privacy and Confidentiality
	Overview
	Core Definitions
	Definitions of CC Concepts


	Confidentiality--Integrity--Availability
	Definitions
	Defining Confidentiality by CC Sub-Concepts

	Summary

	III Specification and Verification of Secure Applications
	Secure Email System
	Introduction
	The Academic System

	Related Projects

	Secure Interaction
	Introduction
	The Problem
	Plan of This Chapter

	Guaranteeing Integrity
	Improved Main Execution Loop
	Notation
	Main Execution Loop
	Editor Component


	Authentication and Secure Channels
	Confidentiality
	Authenticity

	Availability
	Writing, Signing, Sending Email
	CTL Part
	Hoare Part

	Receiving, Checking, Reading Email
	CTL Part
	Hoare Part


	Conclusions

	IV Appendices
	First eVoting Example
	SMV File
	Refutation Generated by NuSMV
	Message Trace Example

	Perl Program converting GOMS to IOLTS
	Basic Main Execution Cycle Model
	Logic Components
	Application Logic Component
	User Logic Component

	Execution Loop Components
	Basic Application Execution Loop Component
	Basic User Execution Loop Component

	Other Components
	Screen

	Models
	Direct Connection of Logic Components
	Basic System Model without Screen
	Basic System Model with Screen

	Refutation of System Model with Screen

	Improved Main Execution Cycle Model
	Logic Components
	Execution Loop Components
	Improved Application Execution Loop Component
	Improved User Execution Loop Component

	Other Components
	Screen

	Model
	Improved System Model with Screen


	Writing, Signing, Sending Email
	Receiving, Checking, Reading Email


