
A Methodology for
Secure Interactive Systems

Gerd Beuster

Gerd Beuster

A Methodology for Secure Interactive Systems

Vom Promotionsausschuss des Fachbereichs 4: Informatik der Universität Kob-
lenz-Landau zur Verleihung des akademischen Grades Doktorder Naturwissen-
schaften (Dr. rer. nat.) genehmigte Dissertation. Die wissenschaftliche Aussprache
fand am 22. April 2008 statt.

Vorsitzender des Promotionsausschusses: Prof. Dr. DieterZöbel
Vorsitzender der Promotionskommission: Prof. Dr. Gianfranco Walsh
Berichterstatter: Prof. Dr. Bernhard Beckert

Dr. Antonio Cerone

c©2007 Gerd Beuster, some rights reserved.
This work is licensed under the Creative Commons License
Attribution-ShareAlike 2.0 Germany.
http://creativecommons.org/licenses/by-sa/2.0/de/deed.en

http://creativecommons.org/licenses/by-sa/2.0/de/deed.en

Acknowledgments

This thesis is the result of my work at University of Koblenz Artificial Intelligence
Research Group. I want to thank my doctoral advisor Prof. Dr.Bernhard Beckert
for the deep discussions about the topic of the thesis and uncountable valuable
comments on early drafts of this work. I also want to thank Prof. Dr. Ulrich
Furbach, and all other friends and colleagues from the AI Research Group. It was
a pleasure to work with you. I want to thank especially those with whom I worked
closely in various projects over the years, namely Bernd Thomas, Christian Wolff,
Vladimir Klebanov, Pia Breuer, Markus Wagner, Niklas Henrich, and Thorsten
Bormer. Dr. Roman Neruda provided me with the opportunity tospend part of my
PhD studies at Czech Academy of Sciences.

Apart from my colleagues, I want to thank my parents Margret Bauer and Peter
Beuster for supporting me in all my scientific (and not-so-scientific) endeavors. I
am most grateful to my partner Eva-Maria Kahrau, who supported me in all the
years.

Abstract

This dissertation introduces a methodology for formal specification and verifica-
tion of user interfaces under security aspects. The methodology allows to use for-
mal methods pervasively in the specification and verification of human-computer
interaction. This work consists of three parts. In the first part, a formal methodol-
ogy for the description of human-computer interaction is developed. In the second
part, existing definitions of computer security are adaptedfor human-computer in-
teraction and formalized. A generic formal model of human-computer interaction
is developed. In the third part, the methodology is applied to the specification and
verification of a secure email client.

Zusammenfassung

In dieser Dissertation wird eine Verfahrensweise für die formale Spezifikation
und Verifikation von Benutzerschnittstellen unter Sicherheitsaspekten vorgestellt.
Mit dieser Verfahrensweise könnenbeweisbar sichereBenutzerschnittstellen re-
alisiert werden. Die Arbeit besteht aus drei Teilen. Im ersten Teil wird eine
Methodologie für die formale Beschreibung von Mensch-Maschine-Interaktion
entwickelt. Im zweiten Teil werden gängige Computersicherheitskonzepte für die
Mensch-Maschine-Interaktion angepasst und mit den im ersten Teil entwickelten
Methoden formalisiert. Dabei wird ein generisches formales Modell von Mensch-
Maschine-Interaktion erstellt. Im dritten Teil wird die Methodologie, die in den
ersten beiden Teilen entwickelt wurde, an einem sicheren Email-Client als exem-
plarischen Anwendungsprogramm demonstriert.

Contents

1 Introduction 1
1.1 Goals and Structure . 1
1.2 Main Contribution . 5

2 Related Work 7
2.1 Formalisms for Describing HCI 7
2.2 Tools . 10
2.3 Design Methods . 10
2.4 Summary . 11
2.5 GOMS . 11

I Foundations 15

3 Overview of Part I 17

4 IOLTS and CTL 19
4.1 IOLTS . 19
4.2 User and Application Models . 26
4.3 Example . 28

5 Formalized GOMS 29
5.1 Formal Semantics for GOMS User Models 29

5.1.1 Assumptions as Selection Rules 35
5.1.2 Formal HCI Model: Summary 36

5.2 Completing the eVoting Model 36

6 Hierarchical Models 39
6.1 Hierarchical GOMS . 39
6.2 Abstraction . 42

6.2.1 E-Voting Example (Correct) 42

ix

x CONTENTS

6.2.2 E-Voting Example (with erroneous user behavior) 56

7 Integration with Hoare Logic 63

8 Summary 69

II Formalization of HCI Security 71

9 System Model 73
9.1 Messages . 73
9.2 Environment . 77

10 The Common Criteria 83
10.1 Introduction to CC . 83
10.2 Paths and Identification . 86

10.2.1 Core Definitions . 86
10.2.2 Definitions of CC Concepts 90

10.3 Privacy and Confidentiality . 100
10.3.1 Overview . 100
10.3.2 Core Definitions . 100
10.3.3 Definitions of CC Concepts 101

11 Confidentiality–Integrity–Availability 105
11.1 Definitions . 105
11.2 Defining Confidentiality by CC Sub-Concepts 108

12 Summary 117

III Specification and Verification of Secure Applications 119

13 Secure Email System 121
13.1 Introduction . 121

13.1.1 The Academic System 122
13.2 Related Projects . 124

14 Secure Interaction 127
14.1 Introduction . 127

14.1.1 The Problem . 127
14.1.2 Plan of This Chapter . 128

14.2 Guaranteeing Integrity . 129

CONTENTS xi

14.3 Improved Main Execution Loop 136
14.3.1 Notation . 137
14.3.2 Main Execution Loop 137
14.3.3 Editor Component . 139

15 Authentication and Secure Channels 143
15.1 Confidentiality . 143
15.2 Authenticity . 147

16 Availability 151
16.1 Writing, Signing, Sending Email 151

16.1.1 CTL Part . 153
16.1.2 Hoare Part . 156

16.2 Receiving, Checking, Reading Email161
16.2.1 CTL Part . 161
16.2.2 Hoare Part . 163

17 Conclusions 165

IV Appendices 167

A First eVoting Example 169
A.1 SMV File . 169
A.2 Refutation Generated by NuSMV 170
A.3 Message Trace Example . 171

B Perl Program converting GOMS to IOLTS 173

C Basic Main Execution Cycle Model 179
C.1 Logic Components . 179

C.1.1 Application Logic Component 179
C.1.2 User Logic Component 180

C.2 Execution Loop Components . 180
C.2.1 Basic Application Execution Loop Component 180
C.2.2 Basic User Execution Loop Component 181

C.3 Other Components . 182
C.3.1 Screen . 182

C.4 Models . 182
C.4.1 Direct Connection of Logic Components 182
C.4.2 Basic System Model without Screen 183
C.4.3 Basic System Model with Screen 183

xii CONTENTS

C.5 Refutation of System Model with Screen 184

D Improved Main Execution Cycle Model 187
D.1 Logic Components . 187
D.2 Execution Loop Components . 187

D.2.1 Improved Application Execution Loop Component 187
D.2.2 Improved User Execution Loop Component 188

D.3 Other Components . 189
D.3.1 Screen . 189

D.4 Model . 189
D.4.1 Improved System Model with Screen 189

E Writing, Signing, Sending Email 191

F Receiving, Checking, Reading Email 195

Chapter 1

Introduction

1.1 Goals and Structure

Off-the-shelf computer systems are regularly used for security-critical applica-
tions. In applications like home banking, the main task of the user’s computer is
to provide an interface to the computer system of his bank. The security of home
banking and similar applications critically depends on thesecurity of the inter-
face provided to the user. Attackers actively try to exploitsecurity weaknesses
in graphical user interfaces of email programs and web browsers. This leads to
an increasing demand for formal methods which are able toguaranteesecurity in
human-computer interaction.

While formal methods are used extensively in many fields of computer secu-
rity, they are rarely used in Human-Computer-Interaction (HCI)—even for secu-
rity critical systems. The reason is that HCI does not deal with the interaction of
two machines but with the interaction of a machine and a human.

Countering human-computer interaction security threats by traditional soft-
ware engineering methods suffers from two weaknesses: The first problem is that
possible security holes may be overlooked. The second problem lies in the nature
of human-computer interaction. Established methods for software specification,
verification, and testing depend on explicit and exhaustivedefinitions of the in-
terfaces and the behavior of software components. Since exhaustive descriptions
of human behavior are generally impossible, rigorous formal methods are rarely
used in human-computer interaction engineering. Most methods for describing
human behavior in human-computer interaction are rather psychological and not
well integrated in the software engineering process.

User models are routinely used in computer system usabilitystudies. Such
user models usually draw on psychological models of the user. They model the
user’s tasks, goals, motivations, etc. While this is essential under a usability point

1

2 CHAPTER 1. INTRODUCTION

of view, it makes a comprehensive formal modeling of the effects of user actions
infeasible because complex psychological activities can be modeled to a limited
extent only. From a usability point of view, this is not necessarily a severe draw-
back. To guarantee a certain level of usability, it suffices to give plausible evidence
that an application’s interface is usable, assuming certain goals and behaviors of
the user. Security, however, requires a stricter notion of human-computer inter-
action. While a usability glitch in some dialog window may decrease the general
usability of the application a bit, a security glitch can have more severe conse-
quences. Even worse, a security glitch will encourage attackers to seek methods
to actually exploit the glitch. The different view on the user and the different goals
of usability and security make it possible and advisable to apply formal methods
to security aspects of user interfaces with user models adapted to the particular
needs of security. In this work we introduce such a formal methodology. Our
methodology is based on the pervasive application of formalmethods to the de-
velopment and evaluation of human-computer interaction. It is able toguarantee
that user interfaces do not contain security-critical errors.

The limits of the methodology introduced in this thesis lie in the general limits
of formal methods for software engineering: Security is guaranteed only if the
specification is an adequate representation of reality. While the formal specifica-
tion of the behavior of computer systems can be achieved relatively easily, formal
specification of user behavior is tricky. In the general case, we can notknowthat
all users will always behave as modeled. We can, however makereasonable as-
sumptions about user behavior, and we can provide explicit instructions for users.
On the user’s side, our methodology is based on simple, plausible, and explicit
assumptions about user behavior. This allows to give an explicit description of the
user behavior required toguaranteesecure HCI.

In order to formally specify and verify the security of a userinterface, it is
necessary to bring together formal methods, human computerinteraction, and
computer security. All three of these are established fieldsof research. There are
also works combining each two of the fields. Formal methods have been used
to specify human computer interaction. User interfaces have been designed and
evaluated under security aspects. System security has beentreated with formal
methods. In order to guarantee secure human-computer interaction by use of for-
mal methods, allthreefields have to be combined. This is the topic of this work.
The structure of this work is as follows:

The formal methodology is defined in the first part. In the second part, a
generic system model and a formal definition of human-computer interaction se-
curity is developed. Parts of the Common Criteria for Information Technology
Security Evaluation (CC) (Common Criteria Evaluation Board (CCEB), 2006)
are formalized. The methodology and security requirementsdeveloped in the first
two parts are applied to a real-world application, a secure email client, in the third
part.

1.1. GOALS AND STRUCTURE 3

The formal methodology introduced in the first part is generic for all appli-
cations and users. All kinds of application and user behaviors can be formally
modeled with the methodology from this part of the thesis. The formal definitions
of HCI security introduced in the second part are generic as well. A system de-
signer can either choose a bottom-up approach and pick suitable formal security
requirements from the formalized CC criteria defined in Chapter 10, or choose a
top-down approach by designing the system in compliance with the formal defi-
nitions of HCI Confidentiality, Integrity, and Availability given in Chapter 11. In
the third part of the thesis, the generic modeling methods and security requirement
definitions are applied to a concrete application. While thethird part of the thesis
deals with one concrete application, the security measuresdeveloped in this part
are applicable to similar applications, too. For all keyboard-driven applications
with text output, the main event loop developed in Chapter 14is applicable. The
measures to guarantee confidentiality in Chapter 15 are generic for all applica-
tions with keyboard input and screen output. While the concrete definitions of
desirable and undesirable states in the Chapter 16 depend onthe actual applica-
tion, the method to guarantee availability is generic.

Part I In the first part, the formal methods used in this work are introduced. In
Chapter 4, we start with Input-Output Labeled Transition Systems (IOLTS) and
Computational Tree Logic (CTL), the core formal methods used. Based on this,
a formal method for user modeling is developed in Chapter 5. The user mod-
eling methodology presented is based on the well-established GOMS methodol-
ogy (John and Kieras, 1996). GOMS is extensively used for themodeling of user
behavior. For our purposes, however, it has two weaknesses:A strict formal se-
mantics is missing, and GOMS models the user behavior independently of the
behavior of the system. Both of these short-comings are overcome in Chapter 5.
In Section 5.1, we develop a formal semantics for GOMS modelsand illustrate
it with an example. In Section 5.2, the example is completed by adding compo-
nents representing the application and the user’s assumptions about the applica-
tion. Throughout the first part, a simple eVoting application serves as an example
for the methodology.

For the pervasive verification of human-computer interaction, it is necessary
to model HCI at all levels of detail. In Chapter 6, our approach is extended to
hierarchical models. We show how the chosen modeling mechanism allows to
model HCI from the highest to the lowest level while maintaining model sizes
suitable for automated reasoning. This supports thepervasivedescription of HCI
security and to prove security for all aspects of a user interface—from the pixel
level up to high-level functionality of the user interface.

IOLTS and CTL are suitable methods to describe the concurrent behavior of

4 CHAPTER 1. INTRODUCTION

components, but they operate on abstractions of the actual program, not on the
program itself. For the formal specification of computer programs on the level of
individual procedures, different formal methods like Hoare logic (Hoare, 1969)
are used. In order to make pervasive specification and verification of interactive
applications possible, Hoare logic is integrated into our methodology in Chapter 7.
Chapter 8 summarizes the result of the first part.

Part II Typically, HCI security requirements are informal and written for spe-
cific areas of applications. For example, the BSI’s1 protection profile for signature
creation devices does not use formal methods to specify userinterface require-
ments. The signature creation protection profile uses informal descriptions like
“the data to be signed (DTBS) [has] to be displayed correctly”(SSCD-PP). In the
second part of this work, we show how this kind of informal andspecific require-
ments can be subsumed under generic and formal concepts. Formal definitions of
human-computer interaction security criteria are developed and basic mental be-
haviors of the user (goal-orientation, mental representation of system states, etc.)
are included in our formal methodology.

Generic models of the user, the computer system, and the processes running
on the computer system are introduced in Chapter 9. The Common Criteria for
Information Technology Security Evaluation (CC) (Common Criteria Evaluation
Board (CCEB), 2006) are an international standard for computer security evalua-
tion. In Chapter 10, they are analyzed in respect to user interface security. A set of
core concepts is developed and formalized. Based on these core concepts, Com-
mon Criteria security criteria definitions are formalized.We show which combi-
nations of criteria must be satisfied in order to guarantee secure human-computer
interaction.

In Chapter 11, formal definitions of the basic security conceptsConfidentiality,
Integrity, andAvailability, are developed for HCI. We show how these concepts
relate to the Common Criteria core concepts developed in theprevious chapter.
With the results of part one and two, it becomes possible to pervasively specify
and verify human-computer interaction under security aspects.

Part III Throughout the first two parts a simple eVoting application is used to
demonstrate our methodology. In part three, the feasibility of our methodology is
demonstrated on a real application. We apply our methodology to the specification
and verification of a simple, text-based email client. An email client is a suitable
exemplary application for a number of reasons. Email clients are one of the most
popular applications on personal computers. The core feature of an email client

1Bundesamt für Sicherheit in der Informationstechnik / Federal Office for Information Secu-
rity; Germany’s government agency for information technology security

1.2. MAIN CONTRIBUTION 5

is to provide a user interface for displaying and editing email. For both of these
core features user interface security is essential. Interpreting an email incorrectly,
or sending an email with the wrong content or the wrong receiver poses security
risks. Typical examples for this are phishing attacks, where the user thinks an
email contains valid information from a legitimate source like his bank, while the
actual source is an attacker and the data is malicious. The email client makes use
of all basic types of user interface elements, and typical user behavior patterns are
taken into consideration.

Chapter 13 describes the scenario of the email client application as part of
the Verisoft project (Beuster et al., 2006). Based on the formal security require-
ments ofConfidentiality, Integrity, andAvailability, a specification of a secure
email client satisfying the security requirements from Part II is developed in Chap-
ters 14, 15, and 16.

1.2 Main Contribution

Each of the three parts constitutes a contribution to the field of formal methods for
secure human-computer interaction:

Part I In the first part formal semantics for GOMS are developed, andGOMS
is extended such that pervasive specification of human-computer interaction, in-
cluding human error, becomes possible. The hierarchical approach to user inter-
face and user behavior modeling introduced in this part allows a pervasive formal
treatment of human-computer interaction on all levels, from a most abstract view
of general application behavior and user’s intentions and goals, down to lowest-
levels of application and user behavior. The integration ofHoare logic for specifi-
cation of procedures allows for the complete formal specification and verification
of program behavior, while at the same time it is possible to describe the abstract
concurrent behavior of components by IOLTS and CTL.

Part II The second part presents a systematic adaptation of the coreprinciples
of computer security to human-computer interaction security and its translation
from informal definitions to formal definitions suitable forautomated reasoning.
Parts of the Common Criteria for Information Technology Security Evaluation
(CC) (Common Criteria Evaluation Board (CCEB), 2006) are formalized for user
interface security.

Part III In the third part, we present a prototypical application that has been
pervasively specified and verified under user interface security considerations. In

6 CHAPTER 1. INTRODUCTION

contrast to other areas of application of formal methods, the prototypical appli-
cation is not highly specialized for a specific security or safety relevant area. It
is a prototype for applications typically used on a daily basis by end-users on
open networks like the Internet. Proofs are given showing which combinations
of components and behavioral traits satisfy the security criteria developed in part
two. The results of the third part provides system builders with a realistic set of
building blocks for the specification and evaluation of userinterfaces for security
critical applications.

We provide a formal methodology for the pervasive specification and verifica-
tion of human-computer interaction based on and derived from the fundamental
principle of computer security. Our work contributes to computer science by de-
veloping new methods for formal specification of secure userinterfaces, and by
formalizing security requirements of user interfaces. These areas are highly rel-
evant for practical software development. Formal methods for security of user
interfaces are applicable to a large number of applications, e.g. e-banking appli-
cations, ATMs, email clients, but also safety critical systems like medical devices.
A number of governmental organizations have issued security criteria catalogs and
for applications deployed in security sensitive areas. These standards are adapted
by private industry as well. Since neither formal methods todescribe security
aspects of user interfaces were available until now, nor formal criteria to evaluate
security of interfaces, these catalogs make little use of formal methods and in gen-
eral do not require verification at all. In this work, we get user interface security
into the realm of formal specification and verification.

Parts of Chapters 4, 5 and 6 have been published in Beckert andBeuster
(2006b). Parts of Chapters 11 and 13 have been published in Beuster et al. (2006).
Parts of Chapter 14 have been published in Beckert and Beuster (2006a, 2007).
Parts of Chapter 15 have been published in Beckert and Beuster (2004). Parts of
Chapter 16 have been published in Beckert et al. (2007).

Chapter 2

Related Work

We build upon work on formal methods for developing computing systems, hu-
man-computer interaction (HCI) research, and secure system design. Abowd et al.
(1989) and Jain (1994) give a survey of formal languages for the description of
user interfaces. More overviews are given in two (different) books calledFormal
Methods in Human-Computer Interaction(Harrison, 1990; Palanque and Paternò,
1998).

There are three main areas of research in formal methods for human-computer
interaction. The first area develops and analyzes formalisms for the description of
interfaces and human-computer interaction. The second area investigates the inte-
gration of user interface components in the formal softwaredevelopment process.
The third area is the development of tools for formal description and development
of interfaces. In the following, we review existing approaches in these three areas.

2.1 Formalisms for Describing HCI

We distinguish between “black box” and “white box” methods for describing in-
terfaces. “Black box” methods describe the behavior of a component by its input
and output interfaces. When describing HCI, the output interface is typically the
screen and the input interface consists of a keyboard and a mouse. The internal
structure of a component is not relevant from this point of view. “White box”
methods describe the internal structure of the component.

A good formalism for user interface design supports multiple levels of ab-
straction both for the black box and for the white box view. For the black box
view, it should be possible to describe user interface elements on different lev-
els of aggregation. For screen output, this ranges from pixel-level description of
screen elements to aggregated descriptions of sets of widgets. For keyboard in-
put, it should be possible to capture single keystrokes and their timings as well as

7

8 CHAPTER 2. RELATED WORK

aggregated sets of keystrokes representing commands. Another important feature
of techniques suitable for modeling human computer interaction is the ability to
deal with concurrency.

An early contribution to formal methods for the descriptionof user interaction
is the PIE model, developed by Dix and Runciman (1985). PIE and its more
recent variations (e.g. Dix and Abowd (1996)) allow to describe the interaction of
the system and a user formally, but they focus on describing the computer system’s
side of the interaction. In PIE, the behavior of a user interface is described by a
sequence of commands (issued by the user) leading to a sequence of effects. In
this model, system behavior is defined as a function from commands issued by the
user to effects produced by the system. In case of a text-based user interface, the
input is a sequence of keystrokes and the output are characters displayed on the
screen.

PIE and similar formalisms put an emphasis on describing theI/O behavior
of a computer system and are suitable for automated reasoning, e.g. with model
checkers. Rushby (2002) uses model checking in order to detect potential discrep-
ancies between system behavior and the mental models of system users. The main
weakness of PIE is that it focuses on the behavior of the computer system. It does
not provide advanced mechanisms for user modeling.

Carr (1997) introduces Interaction Object Graphs (IOG), anextension of stat-
echarts for modeling elements of graphical user interfacesand their interactions.
IOG allow a description both on the pixel-level and on an aggregated level. IOG fo-
cuses on graphical user interfaces, and the language used todescribe them is di-
rectly executable. The formalism of IOG allows basic reasoning tasks like testing
for reachability of all states. Sucrow (1997) uses graph grammars to describe
graphical user interface elements. Changes in the GUI are modeled by re-write
rules. The main weakness of both approaches is that they are primarily languages
for formal specification of user interfaces, but not for the formal description and
analysis of human-computer interaction.

Palanque et al. (1995) use hierarchical Petri nets to combine user and sys-
tem models of interactive systems. Berstel et al. (2005) developed “Visual Event
Grammars” (VEG), a formal method for the specification and validation of graph-
ical user interfaces. They describe complex graphical userinterface as commu-
nicating automata. Interactive Cooperative Objects (ICO)(Palanque and Bastide,
1994) are a specialization of High Level Petri Nets (HLPN) for user interface de-
scription. The approach by Palanque et al. is similar to the approach presented in
this thesis, but in contrast to Palanque we do not use Petri nets for modeling, but
IOLTS.

In a number of works, formal specification methods like Z havebeen applied
to user interface design. One of the first formal specifications of interactive com-
ponents was the specification of a text editor in Z presentd inFormal specification

2.1. FORMALISMS FOR DESCRIBING HCI 9

of a display editorby Sufrin (1982). Based on Sufrin’s specification, Booth and
Jones (1994) implemented an editor in the Miranda functional programming lan-
guage. Goldson (2000) and Hussey and Carrington (1998) provide more case
studies in using Z for user interface specification. In Part III, we present the spec-
ification of a secure email client including an interactive editor.

Most formalisms use variants of state transition diagrams for the white box
model and process algebras for the black box model of interactive systems. Ex-
ceptions include XTL (Brun, 1998), which uses temporal logics, hybrid meth-
ods and non-standard methods like MAL and interactors (Palanque and Paternò,
1998). Process algebras for the black box view are used by Cabrera et al. (1995)
and Kuhn and Frank (1991). Communicating Sequential Processes (CSP) (Smith
and Duke, 1999) and LOTOS (van Eijk et al., 1989) have also been used to specify
human computer interactions.

While PIE and similar formalisms put an emphasis on describing the I/O be-
havior of a computer system and are suitable for automated reasoning (e.g., with
model checkers), other approaches like Task Knowledge Structures (TKS) (Hamil-
ton, 1996), (Extended) Task Action Grammar ((E)TAG) (de Haan, 2000), and
Goals Operators Methods Selection-rules (GOMS) (John and Kieras, 1996) focus
on providing cognitive models of the user. TKS provides an explicit representa-
tion of the cognitive model of the user. TAG allows a precise formal description
of the user actions, the user’s knowledge and the user’s internal representation
of the system (what the user thinks about the system.) ETAG isan extension of
Task-Action-Grammar. ETAG’s formal model represents the knowledge of the
user about the user interface. In ETAG, the interface provided by the machine to
the user is described as a “User’s Virtual Machine” (UVM). Ituses object oriented
design with precondition/action/postcondition style specifications of actions. The
mental model used by ETAGs is restricted in the way that it does not have an ex-
plicit model of the user’s internal mental states. It does, however, make assump-
tions about the user’s knowledge. For our approaches, ETAG is too high-level,
because it “does not describe the details of the presentation of information on the
display screen and the specific knowledge of particular users and the strategies
they use” (de Haan, 1995). Another disadvantage of ETAG is that “it does not ad-
dress the presentation interface. [. . .] elements of the presentation interface [. . .]
are named or mentioned, but these are only included insofar they are needed to
completely describe the non-graphical aspects of the interface” (de Haan, 1995).

A general weakness of formal HCI methods like TKS and (E)TAG is that
they require detailed models of the user behavior in order tomodel the interaction
between a computer system and a user. While computer systemscan (and should)
be formally specified, a formal user model is always based on assumptions about
the user which may or may not be true. The approach presented in this thesis
requires minimal assumptions about the user.

10 CHAPTER 2. RELATED WORK

Harrison (1990) develops the concept of “State Display Conformance” which
is closely related to the integrity requirement developed in Chapter 11 of this
work. It should be noted that Grudin’s argumentagainstuser interface consis-
tency requirements (Grudin, 1989) does not apply to the workpresented here. He
argues that consistency defined as having similar user interface elements for sim-
ilar functionality can not be generalized, because similarity depends on context.
Our work however does not address consistency within a user interface, but con-
sistency between a user’s mental representation of a systemstate and the actual
system state.

2.2 Tools

Most tools for formal user interface design support declarative methods. Tools
like MASTERMIND (Browne et al., 1997), TADEUS (Schlungbaum and Elwert,
1995) and VEG (Berstel et al., 2005) aid the user in the formaldescription of
user interfaces. MASTERMIND focuses on static description of user interface el-
ements, while TADEUS uses graph notation to describe the behavior of user in-
terfaces. TADEUS is embedded in a method for developing applications based
on the separation of the functional core of an application from its user interface.
MASTERMIND and VEG do not only support the formal design of user interface,
but also proves about properties of user interfaces by modelchecking.

2.3 Design Methods

PAC-Amodeus (Calvary et al., 1997) is a typical design method for applications
with user interfaces. It separates the functional parts of asoftware from the inter-
active components. User interface elements are represented as agents. Adialog
controller provides the interface between the user interface part of a system and
the functional part. Although a system design like this seems to be a natural view
when constructing a software system from components, it hasmajor drawbacks
from a security point of view. Security usually concerns allaspects of a system,
and the security of an element from the functional core may depend directly on
properties of the user interface. Even worse, security may depend on the interac-
tion of different parts of the system, both from the functional core and the user
interface.

2.4. SUMMARY 11

2.4 Summary

Most existing formal methods for specification of user interfaces describe user
interfaces on an abstract, high level. They define properties of a (most times
fixed) sets of widgets, and the interactions of these widgets. In general, they do
not take (potentially undesirable) effects caused by interaction of different user
interface elements into account. This is a problem, becausedata may come from
non-trustworthy sources. We want to show that it is not possible to bring the user
interface into a configuration where the user is deceived about the state of the
system. For example, a common trick by advertisers on the World Wide Web is to
mimic the appearance and behavior of system status windows in order to get the
attention of the user. This trick works by using low-level functionality (showing
a bitmap supplied by the attacker) to mimic high level functionality (making the
bitmap look like a status window).

Therefore, we need a modeling language suitable for analysis of interactions
between “high level” properties (“the widget showing the system state should al-
ways be on top of all other widgets”) and “low level” properties (“The colors and
fonts used to show the warning message should be legible.”) of the interface.

2.5 GOMS

GOMS is similar to (E)TAG. While TAG describes user activities in categories of
“tasks” and “actions”, GOMS breaks HCI down intoGoals, Operators, Methods,
andSelection rules(John, 1995). Goals are the tasks the user wants to accomplish.
In order to do so, he issues commands to the computer system via operators. This
can be text input, mouse movements, etc. Methods are strategies to accomplish
(sub-)tasks available to the user, e.g. moving a text block,coloring a box, etc.
Methods can be further decomposed into sequences of sub-goals and operators
utilized to achieve the sub-goal. Selection rules must be employed by the user if
there is more than one method to accomplish a task.

GOMS is a well established formal method for the descriptionof HCI from
a user’s perspective. It is based on the solid ground of psychological research.
GOMS, like most other methods for user modeling, are geared towards studying
usability. It has some weaknesses that are particularly problematic in the context
of security: GOMS has no means to describe concepts like userfatigue, individual
difference between users, etc. (Olson and Olson, 1995).

There are different flavors of GOMS. KLM-GOMS (Keystroke-Level-Model
GOMS) describes user activity on the lowest level (John, 1995). As the name
suggests, user behavior is described by measuring the time it takes an experienced
user to press keys, move the mouse to certain areas of the screen, etc. In KLM-

12 CHAPTER 2. RELATED WORK

GOMS, the user executes a fixed sequence of operators in orderto achieve a task.
There are no selection rules. KLM-GOMS is used to measure thetime it takes an
experienced user to accomplish a known task.

“The Rationality Principle asserts that users will developmethods that
are efficient, given the structure of the task environment (i.e., the de-
sign of the system) and human processing abilities and limitations.
Thus, human activity with a computer system can be viewed as ex-
ecuting methods to accomplish goals, and because humans strive to
be efficient, these methods are heavily determined by the design of
the computer system. This means that the user’s activity canbe pre-
dicted to a great extent from the system design. Thus, constructing
a GOMS model based on the task and the system design can predict
useful properties of the human interaction with a computer.”(John and
Kieras, 1996, p. 10)

GOMS is oriented at psychological analysis of user behaviorand timed measure-
ment of user activity. A major weakness of GOMS is that it is limited to sequential
user plans, and that it does not provide means to generate application specifica-
tions from user models. This rather Tayloristic approach toHCI has drawn critique
for not being mentally adequate and not taking inexperienced users and users who
may make mistakes from time to time into account. Newell (1994), one of the
creators of GOMS has developed an advances cognitive modeling methodology,
called SOAR. The aim of SOAR is to create an architecture suitable to model all
kinds of intelligent behaviors. Since our goal is to model the user as simple and as
general as possible, the sophisticated modeling methods provided by SOAR are
not required. We base our user modeling technique on GOMS.

CMN-GOMS augments KLM-GOMS with selection rules and sub-goals. We
use the CMN-GOMS, because selection rules are essential to our approach, More-
over CMN-GOMS (John and Kieras, 1996) allows to describe user models hierar-
chically. This is an important property for modeling a user interface under secu-
rity aspects because of the large variety of errors in human-computer interaction.
Some of these errors are on a very low level (for example, the user may push
the mouse button twice instead of once), while others are on avery high level of
abstraction (e.g., the user may misinterpret the meaning ofan error message). A
hierarchical modeling mechanism allows to model all kinds of errors within one
formalism. CMN-GOMS models are semi-formal. We provide formal seman-
tics for CMN-GOMS models in Chapter 5. The formal CMN-GOMS model is
augmented by formal models of the application and formal models of the user’s
assumptions about the application. With a formal definitionof secure human-
computer interaction, this allows to determine the security of a user interface by
automated reasoning.

2.5. GOMS 13

Another advantage for our purpose is that GOMS description method is very
close to the State Transition Diagrams that we use to formalize user behavior:

“[. . .] CMN-GOMS is based on two of the MHP ‘Principles of Op-
eration’, theRationality Principleand theProblem Space Principle
[. . .]. The Problem Space Principle postulates that a user’sactivity
can be characterized as applying a sequence of actions, calledopera-
tors, to transform an initial state into a goal state.”(John and Kieras,
1996, p. 10)

14 CHAPTER 2. RELATED WORK

Part I

Foundations

15

Chapter 3

Overview of Part I

The application of formal methods to problems of secure human-computer inter-
action requires a common foundation for the formal modelingof human-computer
interaction. A common formal language is required as the base for the description
of human behavior, application behavior, human-computer interaction, and secu-
rity criteria definition. This formal language must allow anadequate modeling
of the components involved in human-computer interaction,namely the user(s),
the application(s), and the channels of communication between them. In order
to keep our methodology as generic as possible, the languageshould allow for
“block box” modeling, i.e. it should be possible to describecomponents by the
messages sent and received, without having to know about theinternal structure of
the components. Also, the formal methods should be suitablefor automated rea-
soning. Input-Output Labeled Transition Systems (IOLTS) as a suitable method
are introduced in Chapter 4.

In Chapter 5, the language defined in Chapter 4 is used to develop a formal
methodology for the description of user behavior. The user modeling methodol-
ogy presented in this chapter is based on the well-established GOMS methodol-
ogy (John and Kieras, 1996). GOMS describes user behavior inthe categories
of the user’sGoals, the Operatorsavailable to the user, themethodsemployed
by the user, and theSelection Rulesused by the user to choose if more than one
method is available to achieve a goal. GOMS is extensively used for the modeling
of user behavior. For our purposes, however, it has two weaknesses: Strict formal
semantics are missing, and GOMS models the user behavior independently of the
behavior of the system. Both of these short-comings are overcome in Chapter 5.

Chapter 6 extends our methodology to hierarchical models. With hierarchical
models, it becomes possible to model human-computer interaction on an arbi-
trary level of details, ranging from a coarse-grained view of interaction of abstract
concepts like the user’s general goals and the logical structure of the application,
down to a low-level model of technical details like the visualization of individual

17

18 CHAPTER 3. OVERVIEW OF PART I

elements on the screen. An abstraction method for hierarchical models is intro-
duced in order to allow automated reasoning even for highly complex models with
large state spaces.

Chapter 4

IOLTS and CTL

4.1 IOLTS

As we have seen in Chapter 2, most work on formal methods for user interface
specification and human-computer interaction makes use of graph-based meth-
ods or of methods that can be reduced to graph-based formalisms. We follow
this line of work and base our methodology on Input-Output Labeled Transition
System (IOLTS) and Computation Tree Logic (CTL). Labeled Transition Sys-
tems are commonly used to define the semantics of formal methods like process
algebras. Tools like model checkers are usually based on LTS, where more com-
plex formalisms are translated to LTS in a pre-processing step. The extension of
LTS to IOLTS allows to describe behavior of LTS by traces of input- and output-
symbols. We describe properties of IOLTS in Computational Tree Logic (CTL)
formulae. Automated tools like the NuSMV model checker are able to check if
CTL formulae are satisfied by models given as LTS. In Chapter 5, we develop a
methodology for the formal description of and reasoning about GOMS that make
use of Input-Output Labeled Transition Systems (IOLTS) andComputational Tree
Logic (CTL). Below, we define these concepts and some relatednotions used in
the next chapters.

Definition 4.1 (LTS). A Labeled Transition System(LTS) is a tuple
L = (S ,Σ,s0,→) whereS is a set ofstates, s0 ∈ S is an initial state, Σ is a set of
labels, and→⊆ S ×Σ×S is a transition relation. We use the notationp

σ
−→ q for

(p,σ ,q) ∈→. The special labelε ∈ Σ indicates a silent transition from one state
to the next.

Definition 4.2 (IOLTS). An Input-Output Labeled Transition System(IOLTS) is
an LTSL = (S ,Σ,s0,→) with Σ = Σ?∪Σ!. We callΣ? the input alphabetand
Σ! theoutput alphabet.

19

20 CHAPTER 4. IOLTS AND CTL

We use state transition diagrams to visualize IOLTS. An example is shown in
Figure 4.1.

Σ? Σ!
s0

s2 s3s1

σ ! σ !
s4 s5 s6

σ !σ !

σ?

σ?

Figure 4.1: State Transition Diagram representation of an IOLTS.

A B
Σ?bΣ!aΣ?a Σ!b

Figure 4.2: Composition of two IOLTS.

A linear compositionis the concatenation of two IOLTSLa andLb where the
output ofLa is input forLb as shown in Figure 4.2:

Definition 4.3 (Linear Composition). LetLa = (Sa ,Σa ,s0a ,→a),
Lb = (Sb,Σb ,s0b ,→b) be two IOLTS withΣ?a ∩Σ?b = {} andΣ!a ∩Σ!b = {}. The
composition(La .Lb) = (S ,Σ,s0,→) of La andLb is defined as:

S = S0×S1

Σ? = Σ?a

Σ! = Σ!a ∪Σ!b
s0 = (s0a ,s0b)

→ = {((sa ,sb),σ ,(s ′a,sb)) | sa
σ
−→a s ′a with σ ∈ Σ?a ∪Σ!a}∪

{((sa ,sb),σ ,(sa,s
′
b)) | sb

σ
−→b s ′b with σ ∈ Σ?b ∪Σ!b}∪

{((sa ,sb),ε,(s ′a ,s
′
b)) | sa

σ
−→a s ′a andsb

σ
−→b s ′b with σ ∈ Σ!a ∩Σ?b}

Intuitively, a linear composition acts like incoming labels are processed by
the first IOLTS producing some output, which in turn is processed by the second
IOLTS. In common definitions of composition, the output alphabet of the first
IOLTS must be identical to the input alphabet of the second IOLTS, and the output

4.1. IOLTS 21

of the first IOLTS is completely consumed by the second IOLTS,i.e. output of the
first IOLTS does not show up in the output of the composed component. This
alternative definition of linear composition is not suited for our purposes, because
the output of the first IOLTS is sometimes processed by more than one other
IOLTS and must therefore be preserved. A small example is given in Figures 4.3
and 4.4.

A B

C

Σ?bΣ!aΣ?a Σ!b

Σ!a

Σ?c

Σ!c

Figure 4.3: Before linear composition of A and B.

C

Σ?a Σ!b

Σ!a

Σ?c

Σ!c

BA

Figure 4.4: After linear composition of A and B.

Our definition takes this into account by adding{((sa ,sb),σ ,(s ′a ,sb)) | sa
σ
−→a

s ′a with Σ!a} to the transitions of the composed IOLTS. In difference to common

22 CHAPTER 4. IOLTS AND CTL

definitions of linear composition, in our definition the output from the first IOLTS
is forwarded and becomes output of the composed component. Chapter 6 makes
extensive use of this kind of composition.

Often, components are combined byparallel composition. In parallel compo-
sition, the output ofLa serves as input forLb , and the output ofLb serves as input
of La (see Figure 4.5).

Definition 4.4 (Parallel Composition). LetLa = (Sa ,Σa ,s0a ,→a) and
Lb = (Sb,Σb ,s0b ,→b) be IOLTS.

We assume the input and output alphabets ofLa andLb to consist of internal
and external subsets, where the internal input is denoted with Σ?I, the external
input withΣ?E, the internal output withΣ!I, and the external output withΣ!E. And
we require that these subsets are chosen such thatΣ!Ia = Σ?Ib andΣ!Ib = Σ?Ia .

Theparallel composition(La ‖ Lb) = (S ,Σ,s0,→) of La andLb is defined as:

S = S0×S1

Σ? = Σ?Ea ∪Σ?Eb

Σ! = Σ!Ea ∪Σ!Eb

s0 = (s0a ,s0b)

→ = {(sa ,sb),σ ,(s ′a,sb)) | sa
σ
−→a s ′a with σ ∈ Σ?Ea ∪Σ!Ea ∪ΣIa}∪

{(sa ,sb),σ ,(sa,s
′
b)) | sb

σ
−→b s ′b with σ ∈ Σ?Eb ∪Σ!Eb ∪ΣI b}∪

{(sa ,sb),ε,(s ′a,s
′
b)) | sa

σ
−→a s ′a andsb

σ
−→b s ′b with

σ ∈ Σ!Ia ∪Σ!I b}

Σ!Ia

B

Σ?Ea Σ?Eb

A

Σ!EbΣ!Ea

Σ!Ib

Figure 4.5: Parallel composition of IOLTS.

Below, we additionally use a variant of IOLTS called Symmetric Input Output
Labeled Transition Systems (SIOLTSs), where each transition produces both an
input and an output symbol. SIOLTS play an important role in the integration

4.1. IOLTS 23

of IOLTS-based specification and specifications in Hoare logic. In Chapter 7, we
associate the labels of SIOLTSs with procedure calls, the input symbols with input
variables, and the output symbols with output variables of the procedure calls.

Definition 4.5. An LTSL = (S ,Σ,s0,→) with Σ = (Σ?×Σ!), for an input alpha-
betΣ?and anoutput alphabetΣ!, is calledSymmetric Input Output Labeled Tran-
sition System(SIOLTS).

The input/output behavior of a component is described bytraces, which are
(possibly infinite) sequences of elements from the alphabetΣ, andpaths, which
are corresponding sequences of states.

Definition 4.6 (Traces and Paths). Let L = (S ,Σ,s0,→) be an IOLTS. Then, a
path is a sequence〈s0,s1, . . .〉 of states fromS with si → si+1 for all i ≥ 0. A
trace(of L) is a sequence〈σ0,σ1, . . .〉 of elements ofΣ such that there is a path

〈s0,s1, . . .〉 with si
σi−→ si+1 (i ≥ 0). Given a pathc = 〈s0,s1, . . .〉, byci we denote

the sub-path ofc starting atsi .

We describe properties of components in temporal logic. Ourchoice of tempo-
ral logic is based on two criteria: The logic of choice must beexpressive enough
for the description of security properties of HCI. Tools forautomated reasoning
(e.g. model checking) should be available. Computational Tree Logic (CTL) sat-
isfies these requirements. Model checkers typically support CTL and Linear Tem-
poral Logic (LTL). In this work, we have used the free model checker NuSMV 2
(Cimatti et al., 2002). LTL is not suitable for the security properties formalized
in this thesis. It does not allow existential quantificationover paths. As we will
see in Chapters 10 and 11, existential quantification over paths is required to for-
malize parts of the common criteria and to formalize availability requirements.
NuSMV 2 and other model checkers support propositional CTL.However, for
the definition of security requirements and for the specification of component it
is more convenient to use first-order logic. For example, we want to quantify
over all users of a system, or all messages send by an application. In this the-
sis, we assume domains are finite. This makes it possible to treat FO-CTL like
propositional CTL. See (Gilmore, 1960) for reduction of finite domain FOL to PL
(propositionalization).

Definition 4.7 (FO-CTL). Let P be a set ofn-ary relation symbols,V a set of
variables,C a set of constants, andF a set of functions. The set of termsτ is
defined as

τ ::= c | v | f (t1, . . . , tn)
with c ∈ C , v ∈ V , f ∈ F , andt1, . . . , tn ∈ τ

24 CHAPTER 4. IOLTS AND CTL

FO-CTL formulaeφ are constructed inductively by:

φ ::= p(t1, . . . , tn) | φ ∨ φ | φ ∧ φ | ¬ φ | ∀x .φ | ∃x .φ | Eψ | Aψ
with p ∈ P , x ∈ V , andt1 . . . tn ∈ τ

ψ ::= Xφ | φUφ | Gφ | Fφ

Intuitively, Xφ means thatφ holds in the next step,φUφ means thatφ holds
from now on untilφ holds,Gφ means thatφ holds forever andFφ means that
φ will hold eventually. Eψ means that there exists a path whereψ holds, and
Aψ means thatψ holds on all paths. For example,AG likes(Bob,Soccer) means
that whatever the future may be, Bob will always like soccer,andEG likes(Bob,
Soccer)means that it is possible that in the future Bob will always like soccer.

Now, we can use IOLTS to interpret FO-CTL formula—in combination with
valuation functionsλ from the set of states of an IOLTS to the set of interpre-
tations over a domain. In the following chapters, we use IOLTS to model the
high-level behavior of users and applications. We assume the domain is constant
and finite.

Definition 4.8 (IOLTS Semantics). Given an IOLTSL = (S ,Σ,s0,→), a domain
D , and a set of interpretationsI a valuationλ is a mapping fromS to I . L,λ ,c0 |=
φ denotes thatφ holds in statec0 with valuation functionλ . L,λ ,x |= φ denotes
that φ holds for all pathsx = 〈c0,c1, . . .〉 with valuation functionλ . λ is defined
inductively as as follows:

L,λ ,c0|= p(t1, . . . , tn) if (I (t1), . . . ,I (tn)) ∈ I (p) with I = λ(c0)
L,λ ,c0|= p(t1, . . . , tn) if (I (t1), . . . ,I (tn)) ∈ I (p) with I = λ(c0)
L,λ ,c0|= ¬ φ if not L,λ ,c0 |= φ
L,λ ,c0|= φ ∧ ψ if L,λ ,c |= φ andL,λ ,c0 |= ψ
L,λ ,c0|= φ ∨ ψ if L,λ ,c0 |= φ or L,λ ,c0 |= ψ
L,λ ,c0|= ∀x .φ if L,λ ,c0 |= φ[x/y] for all y ∈ D

L,λ ,c0|= ∃x .φ if L,λ ,c0 |= φ[x/y] for at least oney ∈ D

L,λ ,x |= φ if L,λ ,c0 |= φ
L,λ ,x |= Aφ if L,λ ,x |= φ for all pathsx in L starting withc0

L,λ ,x |= Eφ if L,λ ,x |= φ for at least one pathx in L starting withc0

L,λ ,x |= Xφ if L,λ ,x1 |= φ
L,λ ,x |= φUψ if (a) L,λ ,c0 |= ψ or

(b) there is somei ≥ 1 s.t.L,λ ,x i |= ψ
andL,λ ,x k |= φ for all 0≤ k < i

L,λ ,x |= Gφ if L,x i |= φ for all i ≥ 0
L,λ ,x |= Fφ if L,x i |= φ for somei ≥ 0

4.1. IOLTS 25

eVoting Application

Choose
‘‘Bob’’

locked
Un−

Confirm
Vote

CancelVote
Idle

‘‘Bob’’

Vote
Cast Vote Conf.

‘‘Bob’’

Figure 4.6: Application Model for the eVoting example (basic version).

We use an eVoting application as a running example throughout this thesis.
The user is asked to select a candidate. After choosing, the eVoting application
asks the user to confirm his vote. If he confirms, the voting process finishes. If he
cancels, he can change the vote. An IOLTS modeling the simplest version of this
application is shown in Figure 4.6. “Bob” is the only candidate in the example. A
user operating the application is modeled in Figure 4.7.

eVoting User

Choose
‘‘Bob’’

Confirm
Vote

CancelVote

Start IdleChosen firmed
Con−

Figure 4.7: User Model for the eVoting example (basic version).

As an example we evaluate if it is possible that the final state“vote con-
firmed” is never reached. First, we give a valuation functionλ for the IOLTS
shown in Figure 4.6 withλ (s) = {p | (λ (s))(p) = true}. In order to formalize the
desired property, we only need an atomic propositionfinal which holds in state
“Vote ConfirmedBob”:

λ (Locked) = ∅

λ (Unlocked) = ∅

λ (Vote CastBob) = ∅

λ (Vote ConfirmedBob) = {final}

The requirement that a final state is always reached is definedin CTL as
AFfinal. A refutation of this proposition using NuSMV is given in Appendix A.

26 CHAPTER 4. IOLTS AND CTL

In the refutation, the user always cancels his vote, votes again for “Bob”, cancels
the vote, and so on. It is, however, possible to reach a final state: EFfinal. Even
more, it is always possible to reach a final state:AGEFfinal.

4.2 User and Application Models

IOLTS as shown in Figure 4.8 are used to model the behavior of applications.
We use FO-CTL formulae to describe properties of the applications. In order to
develop a generic methodology for the description of security properties of appli-
cations, we use some pre-defined predicates in all our models. In the following,
we give a list of these predicates. Each predicate is accompanied with a short ex-
planation. The reader is referred to Chapters 10 and 11 for anin-depth discussion
of these predicates.

In a number of situations it is necessary to refer explicitlyto the application
state as given in the IOLTS. For this, we define predicates with the same names as
the states of the IOLTS which hold iff the IOLTS is in the corresponding state:

Definition 4.9 (State Predicate). Let L = (S ,Σ,s0,→) be an IOLTS. Letλ be a
valuation function. The model(L,λ) containsstate predicatesif the valuation
functionλ has the following properties:

L,λ ,s |= state(s)
L,λ ,s ′ 6|= state(s) if s 6= s ′

In Section 11.1 security requirements for applications arebased on special
properties of certain states in the application model. We distinguish between
four kinds of application states.Successstates are the states where the user has
achieved his goal.Fatal states are states undesirable for the user. The decisions
about which states are the success states and which states are fatal are part of the
model. The definitions of the other two kinds of states,critical states andsafe
states, follow from the definition ofsuccessandfatal states. If at least one transi-
tion from a state immediately leads into afatal state then it is acritical state. All
states neithercritical, norsuccess, nor fatal, aresafestates1.

We define two predicates for each of the special states. States success, fatal,
critical, safehold iff the IOLTS is in the respective state. Predicatessuccess(s),
fatal(s), critical(s), safe(s) hold if IOLTS states is of type success, fatal, critical,
safe, respectively.

1Depending on the application, one may want to extend the definition of fatal states as follows:
If from a given state nosuccessstate is reachable, then it is afatal state.

4.2. USER AND APPLICATION MODELS 27

Definition 4.10 (Core Predicates). Let L = (S ,Σ,s0,→) be an IOLTS modeling
an application. Let successStates be the set of success states, and let fatalStates
be the set of fatal states. The model containscritical, success, safe, and fatal state
predicatesif success, fatal, critical and safe∈ P and the valuation functionλ has
the following properties:

coreAppPreds(L,λ) ≡
L,λ ,s |= success iffs ∈ successStates
L,λ ,s |= fatal ∈ λ (s) iff s ∈ fatalStates
L,λ ,s 6|= success∧ fatal
critical ≡ EX fatal
safe ≡¬ success∧ ¬ critical ∧ ¬ fatal
L,λ |= success(s) if success∈ λ (s)
L,λ |= fatal(s) if fatal ∈ λ (s)
L,λ |= critical(s) if critical ∈ λ (s)
L,λ |= safe(s) if safe∈ λ (s)

Definition 4.11(Assumption Predicates). The predicates given in Definition 4.10
are mirrored byassumption predicateson the user’s side, an assumption predicate
indicates whether the user assumes that a certain property holds for the applica-
tion. LetL = (S ,Σ,s0,→) be an IOLTS modeling a user. Let

asmSuccessStates be the set of states where the user as-
sumes that the application is in a success
state,

asmFatalStates be the set of states where the user as-
sumes that the application is in a fatal
state,

asmCriticalStates be the set of states where the user as-
sumes that the application is in a critical
state,

asmSafeStates be the set of states where the user as-
sumes that the application is in a safe
state.

A model containsassumption predicatesif asmSuccess, asmFatal, asmCritical
and asmSafe∈ P and

coreAppPreds(L,λ) ≡
L,λ ,s |= asmSuccess iffs ∈ asmSuccessStates
L,λ ,s |= asmFatal iffs ∈ asmFatalStates
L,λ ,s |= asmCritical iffs ∈ asmCriticalStates
L,λ ,s |= asmSafe iffs ∈ asmSafe

28 CHAPTER 4. IOLTS AND CTL

4.3 Example

High−Level App. Behavior

locked
Un−

Choose
[Cand.]

Locked

WaitForUnlock

Cancel

Confirm
Vote

[Cand.]

Vote
Cast Vote Conf.

[Cand.]

Figure 4.8: Application Model for the eVoting example.

We continue with the eVoting example from Section 4.1, in a slightly more
detailed, parametrized version. We assume that the eVotingmachine is initially
in a locked state. After some time, the machine is unlocked and the user can cast
his vote. After he has selected a candidate, the machine shows the user’s choice
and asks for confirmation. If he confirms, the voting process finishes. If he can-
cels, he can change the vote. Figure 4.8 shows an IOLTS modeling the voting
machine. Forn candidates, “Vote Cast [Candidate]” and “Vote Confirmed [Can-
didate]” representn states each, one for each candidate, “Choose [Candidate]”
represents then transitions to the states associated with the candidates. The input
alphabet is identical to the output alphabet of the user model IOLTS, i.e., the op-
erators available to the user. The output alphabet is an abstract representation of
the application’s output2. In this example, the sets of critical, fatal, success, and
safe states are modeled as follows. Letc be the candidate of choice of the user:

fatal ∈ λ (“Vote Confirmed [i]”) for all i 6= c

success ∈ λ (“Vote Confirmed [c]”)

From the definition ofcritical it directly follows that

critical ∈ λ (“Vote Cast [i]”) for all i 6= c

and from the definition ofsafeit follows that

safe(“Vote Cast [c]”)
safe(“Locked”)
safe(“Unlocked”)

2For now, we model only the top level behavior of the application. In Chapter 6 we introduce
hierarchical models which allow to model all details of human-computer interaction.

Chapter 5

Formalized GOMS

5.1 Formal Semantics for GOMS User Models

We base our formalization on GOMS, because GOMS is a well established for-
malism, and—in the incarnation CMN-GOMS (John and Kieras, 1996)—it allows
to describe user models hierarchically. This is an important property for model-
ing a user interface under security aspects because of the large variety of errors
in human-computer interaction. Some of these errors are on avery low level (for
example, the user may push the mouse button twice instead of once), while others
are on a very high level of abstraction (e.g., the user may misinterpret the mean-
ing of an error message). A hierarchical modeling mechanismallows to model
all kinds of errors within one formalism. GOMS models are semi-formal. In this
chapter, however, formal semantics for GOMS are defined based on the formal
methods defined in Chapter 4. In Section 5.1.1, the formal semantics are extended
by defining semantics of selection criteria. In combinationwith the formal model
of the application (Section 5.2), and the formal definition of HCI security devel-
oped in the second part of this work, automated reasoning about the security of a
HCI interaction model becomes possible.

GOMS describes human behavior in categories of

Goals The user’s goals
Operators Atomic actions available to the user
Methods Sequences of operators and sub-goals
Selection Rules Rules to decide between alternative methods

In CMN-GOMS, methods for achieving a goal consist of sequences of sub-
goals and atomic operators (the only difference between sub-goals and atomic
operators is that operators cannot be further decomposed).If there is more than
one way to reach a goal, a selection rule is used to choose between alternatives.

29

30 CHAPTER 5. FORMALIZED GOMS

GOAL: VOTE FOR CANDIDATE(“Bob”)
OPERATOR: WAIT FOR UNLOCK OF VOTING MACHINE
OPERATOR: CHOOSE CANDIDATE(“Bob”)
GOAL: REVIEW VOTE
SELECT:

OPERATOR: CONFIRM VOTE. . . if candidate “Bob” selected
GOAL: CHANGE VOTE . . . otherwise

OPERATOR: CANCEL VOTE
OPERATOR: CHOOSE CANDIDATE(“Bob”)
GOAL: REVIEW VOTE(2)
SELECT:

OPERATOR: CONFIRM VOTE. . . if candidate “Bob” selected
OPERATOR: FAIL . . . otherwise

Figure 5.1: GOMS model for eVoting.

Example Figure 5.1 gives an example. It models the user of an eVoting ma-
chine. In order to achieve the goal “VOTE FOR CANDIDATE(‘Bob’),” the user
executes the method consisting of the atomic operations “WAIT FOR UNLOCK
OF VOTING MACHINE” and “CHOOSE CANDIDATE(‘Bob’)”. Then he re-
views his vote. The sub-goal “REVIEW VOTE” can be achieved intwo ways:
(1) If the user has selected the right candidate, he confirms.(2) If he has selected
the wrong candidate, he pursues sub-goal “CHANGE VOTE.” Changing the vote
leads to the sub-goal “REVIEW VOTE(2).” If the user has selected the right can-
didate this time, he confirms; otherwise, voting fails.

Definition We give formal semantics for GOMS models using the notion of
IOLTS traces. That is, an IOLTS corresponds to a GOMS model ifthe traces of
the IOLTS are identical to the possible sequences of user decisions (selections)
and operations. In order to formally define which IOLTS correspond to a given
GOMS model, we use the following formal syntax for GOMS models:

Definition 5.1 (Formal GOMS Model). Given a GOMS model, the corresponding
formal GOMS modelis

T = (G ,O ,M ,R,C ,g0)

where

• G is the set of (sub-)goals;

• O is the set of operators;

5.1. FORMAL SEMANTICS FOR GOMS USER MODELS 31

• C is the set of selection criteria;

• M is a function mapping goals to their sequences of sub-goals/operators.

• A functionR : G×C →G . R represents the selection rules. IfR(g ,c)= g ′,
then goalg is achieved by sub-goal/operatorg ′ in case criteriac holds;

• g0 is the top-level goal.

The formal GOMS model corresponding to the eVoting GOMS model from
Figure 5.1 is shown in Figure 5.2.

T = (G ,O ,M ,R,C ,g0) with

G = {VOTE FOR CANDIDATE, REVIEW VOTE,
CHANGE VOTE, REVIEW VOTE(2)}

O = {WAIT FOR UNLOCK, CHOOSECANDIDATE,
CONFIRM VOTE, CANCEL VOTE, FAIL}

C = {Candidate “Bob” selected,¬ (Candidate “Bob” selected)}

g0 = VOTE FOR CANDIDATE

M (g) =















〈WAIT FOR UNLOCK,CHOOSECANDIDATE,
REVIEW VOTE〉 if g = VOTE FOR CANDIDATE
〈CANCEL UNLOCK,CHOOSECANDIDATE,
REVIEW VOTE(2)〉 if g = CHANGE VOTE

R(g ,c) =















































CONFIRM VOTE if g = REVIEW VOTE and
c = Candidate “Bob” selected

CHANGE VOTE if g = REVIEW VOTE and
c = ¬ (Candidate “Bob” selected)

CONFIRM VOTE if g = REVIEW VOTE(2) and
c = Candidate “Bob” selected

FAIL if g = REVIEW VOTE(2) and
c = ¬ (Candidate “Bob” selected)

Figure 5.2: Formal GOMS model for the eVoting model from Figure 5.1.

We define a formal semantics for GOMS models by translating the formal
GOMS model into an IOLTS. The idea is to represent operators as elements of
the output alphabet, selections as elements from the input alphabet, and methods
as (sub-)paths. Selection rules are branching points in theIOLTS. Figure 5.3
illustrates this representation.

32 CHAPTER 5. FORMALIZED GOMS

Selection

Operator

[Operator]

[Operator]

Method

[Operator] [Operator]

[Operator]

User

[Operator]

[Selection]

[Selection]

Figure 5.3: Translating GOMS categories to state transition diagrams.

Definition 5.2 (IOLTS for GOMS Model). LetT = (G ,O ,M ,R,C ,g0) be a for-
mal GOMS model. Let(S ,Σ,S0,→) be the (generalized) IOLTS constructed forT

by the algorithm shown in Algorithm 1. Then(S ,Σ,s0,→) is the IOLTS corre-
sponding toT .

Algorithm 1 This algorithm calls the the algorithm for constructing an IOLTS
corresponding to a given GOMS model (Algorithm 2) with the correct arguments.

Require: GOMS modelT = (G ,O ,M ,R,c,g0)
Ensure: (Generalized) IOLTSL = (S ,Σ,S0,→) for T

1: Execute Algorithm 2 with GOMS modelT = (G ,O ,M ,R,c,g0), andS0 = {s0}

Algorithm alg:algo just calls Algorithm 2 with the correct arguments. Algo-
rithm 2 creates the IOLTS recursively. The algorithm gets two inputs: a GOMS
model and a set of initial states. When the algorithm is executed, the set of initial
states containsg0 only. The algorithm is split into three conditional parts. The
part executed depends on the type of the top-level goalg0. If the top-level goal
is an atomic operator, lines 2 to 8 are executed. If the top-level goal is a method,
lines 10 to 23 is executed. If the top-level goal is a selection rule, lines 25 to 36
are executed.

If the goal is an atomic operator In case the goal is in atomic operator, a new
state is created, and all elements from the set of initial states are connected to the

5.1. FORMAL SEMANTICS FOR GOMS USER MODELS 33

Algorithm 2 Algorithm for constructing an IOLTS corresponding to a given
GOMS model.

Require: GOMS modelT = (G ,O ,M ,R,c,g0), and a setS0 of
initial states

Ensure: (Generalized) IOLTSL = (S ,Σ,S0,→) and setF of states,
s.t.Σ?= C , Σ! = O , andF contains the final states ofL

1: if g0 ∈ O then
2: {initial goal is an atomic operator}
3: create new states1

4: S := S0∪{s1}
5: Σ? := ∅

6: Σ! := {g0}
7: → := {(s0,g0,s1) | s0 ∈ S0}
8: F := {s1}
9: else ifM (g0) = 〈m1, . . . ,mn〉 then

10: {initial goal has sub-goalsm1, . . . ,mn}
11: S := ∅

12: Σ? := ∅

13: Σ! := ∅

14: → := ∅

15: F := S0

16: for i = 1. . .n do
17: create an IOLTSLi = (Si ,Σi ,S

i

0,→i) with final statesFi

for Ti = (G ,O ,M ,R,c,mi) and setS i

0 := F of initial states
by recursion

18: S := S ∪Si

19: Σ? := Σ?∪Σ?i

20: Σ! := Σ!∪Σ!i
21: → := →∪→i

22: F := Fi

23: end for
24: else
25: {initial goal is a selection point}
26: for all gi ,ci such thatR(g0,ci) = gi do
27: create a new statesi
28: S := S ∪{si}
29: → := →∪{(s0,ci ,si) | s0 ∈ S0}
30: create an IOLTSLi = (Si ,Σi ,si ,→i) with final statesFi

for Ti = (G ,O ,M ,R,c,gi) and setS i

0 := {si} of initial state
by recursion

31: S := S ∪Si

32: Σ? := Σ?∪Σ?i

33: Σ! := Σ!∪Σ!i ∪{ci}
34: → := →∪→i

35: F := F ∪Fi

36: end for
37: end if

34 CHAPTER 5. FORMALIZED GOMS

new state with labelg0, andg0 is added to the list of output symbols. Thus, the
IOLTS resulting from the transformation outputs atomic operatorg0.

If the goal is a method In case the goal is a method, the algorithm is called
recursively for each element of its sequence of the sub-goals, where the final states
of a sub-IOLTS are the initial states of the next sub-IOLTS.

If the goal is a selection rule In case the goal is a selection rule, a new state
is introduced. For each of the potential sub-goals an IOLTS is constructed re-
cursively. The newly created state is connected to the initial state of each of the
sub-IOLTS, and the edge is labeled with the input symbol representing the se-
lection criteria for the sub-IOLTS. Thus, depending on the selection criteria, the
resulting IOLTS transits into the initial state of the corresponding sub-IOLTS.

WAIT_FOR_UNLOCK
Σ? Σ!

s0

s7

s8

FAIL

s9

CHOOSE CANDIDATE “Bob”

“Bob” selected ¬ “Bob” selected

CONFIRM VOTE

s10

s11

s1

“Bob” selected ¬ “Bob” selected

CONFIRM VOTE

s2

CHOOSE CANDIDATE “Bob”

s3

CANCEL VOTE

s4

s5

s6

Figure 5.4: IOLTS corresponding to the eVoting GOMS model.

5.1. FORMAL SEMANTICS FOR GOMS USER MODELS 35

Set of initial states Algorithm 2 gets a set of initial states as an input param-
eter. These states are the connection points between the recursively generated
sub-IOLTS. Algorithm 1 calls Algorithm 2 with the correct arguments to start
recursion.

The Perl program given in Appendix B implements the algorithm. It has been
used for constructing the example IOLTS presented in this thesis. Applying the
algorithm to the eVoting example results in the IOLTS shown in Figure 5.4.

5.1.1 Assumptions as Selection Rules

Selection rules in GOMS models require decision criteria. In GOMS, these cri-
teria are only specified in an informal way. Since our goal is to provide a formal
semantics for GOMS models suitable for automated reasoning, a methodology for
the formal description of selection criteria is required.

If a user is in the situation to choose between multiple options, his decision
will be based on the current system configuration or, more precisely, on hisper-
ceptionof the system configuration. In the eVoting example, the decision whether
to confirm his vote or to change it, depends on the candidate selection shown
by the voting machine and the user’s corresponding perception of the machine’s
internal configuration.

Following our component-based approach, we define the user’s assumption
about the system configuration as a component. This component is combined with
the (IOLTS corresponding to the) formal GOMS model by mutualcomposition.
The rational behind mutual composition is that not only do the user’s presump-
tions about the application state influence his behavior buthis assumptions about
the state of the application are influenced by his actions as well. For example,
when the user pushes the “confirm vote” button, he will assumethat the voting
process is completed, even if it takes some time before the next message appears
on the screen. The other input for the assumption component—besides the users
actions, i.e., the operators in the GOMS model—comes from the output of the
application (application output is defined in Section 5.2).Figure 5.5 illustrates the
composition of an interactive formal user model.

Definition 5.3 (User Assumption IOLTS). Let L = (S ,Σ,s0,→) be an IOLTS.L
is a user assumption IOLTS, if

Σ = Σ?∪Σ!,

Σ?= Σ?D ∪Σ?A whereΣ?D consists of atomic application (device) output
andΣ?A contains GOMS operators,

Σ! consists of GOMS selection criteria.

36 CHAPTER 5. FORMALIZED GOMS

OperatorDevice Output

SelectionInterpretation

Operator

GOMS Model

Figure 5.5: Combination of GOMS model and user’s interpretation of the appli-
cation’s configuration.

An interactive formal user modelL = (LA ‖ LI) is the mutual composition of
the IOLTSLU corresponding to a formal GOMS model and a user assumption
IOLTSLI .

5.1.2 Formal HCI Model: Summary

We have defined formal semantics for GOMS models and for selection criteria.
Selection criteria are defined by a component modeling the user’s assumptions
about the application. The combination of a formal GOMS model of the user
and a model of the user’s assumptions allows the formal description of human
behavior.

In order to reason about security of HCI, a formal application model and a
formal definition of HCI security are additionally required. In Section 5.2, we
complete the eVoting example with the application model from Section 4.2 and
two alternative user assumption components.

5.2 Completing the eVoting Model

In order to apply automated reasoning to human-computer interaction, we need
three components: (1) A formal GOMS model and its corresponding IOLTS; (2) a
component representing the assumptions of the user about the application; and
(3) a component representing the application itself. The example eVoting appli-
cation has been introduced in Section 4.2. For the completion of the example,
we still need a model of the user’s assumptions. As defined in Section 5.1.1, a
user assumption component has an input alphabet consistingof the application’s
output and the user’s operators, and an output alphabet consisting of the user’s
selection criteria.

Figure 5.6 shows a user selection component for the eVoting example. In or-
der to keep the example simple, the user assumption component takes only the
application’s output as input. Selection rules are used at two points in the GOMS

5.2. COMPLETING THE EVOTING MODEL 37

“Bob”

Σ? Σ!

¬ “Bob”
selected

sc sb

Cast (“Bob”)

s0

c 6= “Bob”
Vote Cast (c),

selected

Vote

Figure 5.6: Correct user assumption component for eVoting example.

model: When the user reviews his voting decision for the firsttime, and when
he reviews his voting decision for the second time. The user’s assumption is
that the eVoting application works correctly. Therefore, the assumption compo-
nent will output “candidate ‘Bob’ selected” for the input “Vote cast(‘Bob’)”, and
“¬(Candidate ‘Bob’ selected)” for the input “Vote cast(c)” with c 6= “Bob”. This
“error-free” model corresponds to the following user assumption IOLTS:

S = {s0,sb,sc}

Σ = Σ?∪Σ!

Σ? = {locked,unlocked}∪
⋃

c∈Candidates{Vote cast(c),Vote confirmed(c)}

Σ! = {Candidate ‘Bob’ selected, ¬ (Candidate ‘Bob’ selected)}

→ = {(s0,σ ,s0) | σ 6= Vote cast(c) for all candidatesc}∪
{(s0,Vote cast(‘Bob’),sb)}∪
{(s0,Vote cast(c),sc) | c 6= “Bob”}∪
{(sb,Candidate ‘Bob’ selected,s0)}∪
{(sc,¬ (Candidate ‘Bob’ selected),s0)

c 6= “Bob”
Vote Cast (c),

Σ!

¬ “Bob”
selected

Vote Cast (c), Vote
sc sb

Cast (“Bob”)

selected

s0

c 6= “Bob”

“Bob”

Σ?

Figure 5.7: Erroneous user assumption component for eVoting example.

38 CHAPTER 5. FORMALIZED GOMS

While standard GOMS does not allow to model user errors, our component-
based approach does. As an example, we model a user who may think the system
is in a state where he voted for “Bob” while in fact he voted forsomeone else.
Figure 5.7 depicts this component. The changed relation→ is shown below:

→ = {(s0,σ ,s0) | σ 6= Vote cast(c) for all candidatesc}∪
{(s0,Vote cast(c),sb) | c ∈ Candidates}∪
{(s0,Vote cast(c),sc) | c 6= “Bob”}∪
{(sb ,Candidate ‘Bob’ selected,s0)}∪
{(sc,¬ (Candidate ‘Bob’ selected),s0)

Application

Operator

State

User BehaviorUser’s Interpretation of App.

OperatorDevice Output

Figure 5.8: Basic system model.

In this section, we showed how system models are created fromformal GOMS
models, user assumption components, and application models. The mutual com-
positions of these three components—as shown in Figure 5.8—provide a complete
model. With this complete formal modeling of human-computer interaction be-
comes possible. In difference to traditional methods, our method also allows to
model erroneous user behavior.

In Chapter 11, we define HCI security properties as CTL formulae. Combined
with a formal GOMS model of the user and a formal specificationof the applica-
tion, formal methods can be used for reasoning about security of human-computer
interaction.

Chapter 6

Hierarchical Models

6.1 Hierarchical GOMS

In the models introduced so far, the application, the user’sactions, and the user’s
assumptions are modeled as monolithic components. When we start to add more
details to our models—for example, when application outputand user perception
is modeled in more detail—the components become unwieldy. We introduce hier-
archical models to counter this problem. In a model of hierarchical components,
components of different levels of abstraction are layered above each other. This
allows to describe user interfaces and human-computer interaction at all levels of
detail, while keeping each individual component small enough to be manageable
by humans and computers.

User

Model

View Controller

Application

Figure 6.1: Model-View-Controller Design Pattern

Both in the construction of graphical user interfaces and inthe perception
(and interpretation) of graphical user interfaces, there are generic abstraction lev-

39

40 CHAPTER 6. HIERARCHICAL MODELS

els shared over a large class of interfaces. By identifying these abstraction levels
and modeling user interfaces along these lines, it becomes possible to model com-
plex user interfaces (and potential error sources in complex user interfaces) while
preserving maintainability of the models.

The seminal Model-View-Controller (MVC) design paradigm (Krasner and
Pope, 1988) has been introduced using object-oriented programming for the pro-
gramming language Smalltalk. MVC introduces a separation of an application
model (the program logic or the data to be represented), the view on the model
shown to the user, and the controller mechanisms to change the data or the state
of the application, as shown in Figure 6.1.

SymbolsOp

Symbols

WidgetOp

Widget

StateOp

State

User Behavior

Window Manipulation

Symbol Op.

Pixels

Symbols

Widgets

Windows

Widget Op.

Window Op.

Atomic Op.

Assumptions about Windows

Assumptions about App.

Assumptions about Widgets

Assumptions about Symbols Symbol Manipulation

Widget Manipulation

Sem.WidgetOp

Sem.Widget

Figure 6.2: Generic Hierarchical User Model

Based on this, the controller and the viewer component can besplit into sub-
components of a finer granularity. On the abstract level, a user interface allows
the user to manipulate certain aspects of the program or the data. Each relevant
data object is associated with a certain view object (window/ screen area). Ma-
nipulation of the data object is achieved via sub-components of the screen objects
(widgets) which themselves can contain widgets. On the lowest level, widgets are
build from elementary symbols who themselves are constructed from pixels.

The model-view-controller pattern mirrors the distinction of formal GOMS
model component and user’s assumption component in the usermodel. On the
user’s side, there is a formal GOMS model governing the behavior of the user,
and a model of the user’s assumption’s about the current state of the application.
On the application’s side, this is mirrored by component(s)modeling the func-
tional behavior of the application, and component(s) visualizing the application’s
state. Applying the hierarchical GUI design pattern to usermodeling results in a
hierarchical model of human-computer interaction where each component repre-
sents one level of abstraction. This makes it possible to model typical errors on

6.1. HIERARCHICAL GOMS 41

their respective levels. For example, the typical error that a user misses the correct
button and pushes a different (wrong) one instead is modeledon a low level, while
the error that a user misinterprets a screen is modeled on a high level. The user’s
side of this design pattern is shown in Figure 6.2.

GOAL: VOTE FOR CANDIDATE(“Bob”)
OPERATOR: WAIT FOR UNLOCK OF VOTING MACHINE
OPERATOR: CHOOSE CANDIDATE(“Bob”)
GOAL: REVIEW VOTE
SELECT:

OPERATOR: CONFIRM VOTE. . . if candidate “Bob” selected
OPERATOR: FAIL . . . otherwise

Figure 6.3: GOMS model for eVoting (simplified).

WAIT
FOR
UNLOCK

CHOOSE

Σ?

Σ? Σ!

Σ!

ΣI

s0s3

s1

s5

s4

REVIEW
VOTE

s0 s1
“BOB”
CANDIDATE

s2

REVIEW
VOTE

s3

CONFIRM
VOTE

“Bob”
selected

¬ “Bob”
selected

s2

FAIL

Figure 6.4: Hierarchical IOLTS corresponding to the eVoting GOMS model.

As an example, a hierarchical IOLTS for the excerpt of the eVoting GOMS
model given in Figure 6.3 is shown in Figure 6.4. Note that thedefinition of
component composition (Definition 4.3) ensures “Wait for Unlock”, and “Choose
Candidate ‘Bob’” are part of the composed output although they are not in the al-
phabet of the second component. For the same reason, input “‘Bob’ selected”, and
“¬‘Bob’ selected” are evaluated by the second component although they are not
part of the alphabet of the first component. A complete hierarchical system model
consisting of user behavior components, user interpretation components, applica-

42 CHAPTER 6. HIERARCHICAL MODELS

tion behavior components, and application visualization components is given in
the next section.

6.2 Abstraction

The methodology developed in Section 6.1 allows the construction of hierarchical
user and application models. A system designer can choose the level of gran-
ularity freely. The user interface can be modeled down to thepixel level, and
user behavior can be modeled down to the smallest details. This makes pervasive
specification and verification of human-computer interaction possible. However,
in practice we face the problem of state space explosion. If we want to model
the system down to the bitmap level, even a small monochrome display of size
320·200 pixels, as they are used e.g. in cell phones nowadays has 2320·200 states
on the lowest level. Therefore it is necessary to reduce the size of the state space.
An effective method for reducing the state space is to createabstractions as de-
fined in Definition 6.1.

Definition 6.1 (Abstraction). Given componentsA andB , a componentA is an
abstraction ofB if all traces ofB are also traces ofA.

Lemma 6.1. Given IOLTSLa = (Sa ,Σa ,s0a ,→a) andLb = (Sb,Σb ,s0b ,→b), A

is an abstraction ofB if Sa ⊂ Sb , Σa = Σb and there exist an abstraction function
f such that

• s0a = f (s0b)

• f (s)
σ
−→a f (s ′) if s

σ
−→b s ′

Abstraction is possible on all components and all hierarchies of components. It
works best if the hierarchy of components in the specification of the user matches
the hierarchy of components of the application. In these cases, components on the
same hierarchical level can be joined together to one abstract component. This
way, the lower levels of both the user behavior specificationand the application
specification can be successively replaced by abstract components, until the ef-
fects of human-computer interaction can be described on thetop-level only.

6.2.1 E-Voting Example (Correct)

In Figure 6.5, the eVoting example is extended to a hierarchical model. The user
and application behavior components consists of three layers of components each,
and the user interpretation and the application visualization components consists
of two layers each. We limit the number of hierarchy levels and the size of the

6.2. ABSTRACTION 43

OPERATOR: WAIT FOR UNLOCK OF VOTING MACHINE
GOAL: VOTE “Bob”

GOAL: SELECT “Bob”
SELECT:

OPERATOR: PUSH BUTTON 0 if “Bob” is zeroth candidate
OPERATOR: PUSH BUTTON 1 if “Bob” is first candidate
...
OPERATOR: PUSH BUTTONn if “Bob” is nth candidate

Figure 6.5: GOMS model for hierarchical eVoting Model.

example in order to keep the model simple enough for illustration purposes, while
interesting enough to demonstrate our methodology. The general strategy of the
user is to vote for “Bob” once the machine is unlocked. He knows that in order
to cast his vote, he has to select the right candidate from a list. When he sees the
list, he looks for the entry for his candidate and pushes the corresponding button.
In the example, we want to verify if the user will always cast his vote for the
correct candidate, or if an error may occur, leading to a votefor a wrong candidate.
We use abstraction to reduce the state space until only one state remains. If the
remaining state is an abstraction of stateab0“Bob′′ and not an abstraction ofab0x

for x 6= “Bob′′, we are guaranteed that no error can occur in the voting process.
Figure 6.6 shows the combined user and application model. Onthe upper-

most levels (UB0 and AB0), the user and the application show the behavior that
we already know from the example. The hierarchical GOMS model is given in
components UB0 to UB2, and the corresponding criteria interpretation compo-
nents in UI1 and UI2. The application is structured in the same way. When the
voting computer is unlocked, it shows the list of candidates. In component AV2,
the input symbol “Show Candidates” is expanded to the actuallist of candidates,
which are shown on the screen. Depending on the elements and the order of the
list, the button pressed by the user is mapped to the corresponding candidate. In
components, nodes with subscripts containing square brackets represent multiple
states. In UB2, nodeub2[i] stands for statesub20, . . . ,ub2n−1 with n the number
of candidates. Transitions to and from stateub2[i] occur only if Bob is thei th
candidate on the list:

(ub2b ,Bob:i,ub2i) ∈→UB2 for 0≤ i < |Candidates|
(ub2b ,Bob:j,ub2i) ∈→UB2 → i = j

(ub2i ,PushButton:i,ub2a) ∈→UB2 for 0≤ i < |Candidates|
(ub2i ,PushButton:j,ub2a) ∈→UB2 → i = j

44 CHAPTER 6. HIERARCHICAL MODELS

Behavior

Application

User

Interpretation Behavior

Visualization

Unlock? Vote Bob!

Push
Button:i?

VoteCastFor:
Cand?

Show Candidates!

Unlock?
AV1

AB2

UB1

Select Bob!

Vote Bob?

UB2

Select Bob?

UB0

AB0

UI2

UI1

Unlock!

Unlocked!

AV2
Show Candidates?

[Candidates]?

[Candidates]!

Bob:i?

Bob:i! (with Candidates(i)=Bob)

Bob:i?

Push Button:i!

[Candidates]?

Selected:Cand!

AB1

VoteCastFor:Cand!

Selected:Cand?

ub2a ub2b

ab2a ab2[l] ab2[c,l]

ab1a ab1[c]

ab0a ab0b

av1a av1b

av2a av2b

ui2a

ui1a ui1b

ub0a ub0b ub0c

ub1a ub1b

ui2[c]
ub2i

ab0[c]

Figure 6.6: Hierarchical eVoting Model

6.2. ABSTRACTION 45

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

AB2

UB2

UI1

AV1

AB0

AB1

UB1

UB0

BehaviorInterpretation

Visualization Behavior

CI2

AB2

UB2

Application
User

Figure 6.7: UI2 and AV2 are composed to CI2

The goal of joining components and abstraction is to reduce the state space.
We start by joining the lowest level user interpretation component UI2 with the
lowest level application visualization component AV2 to joined component CI2
as shown in Figure 6.7. AV2 consists of two nodes connected bytwo edges, while
UI2 consists of 1+ n nodes with 1+ n! edges, given there aren candidates on
the list. The reason for this is the presence of one extra edgefor each possible
permutation of the list of candidates, and one extra node foreach position of
“Bob” in a list of candidates, i.e. we assume that whatever the order of the list
may be, the user will identify the position of “Bob.” Since the list (and thus
the position of “Bob”) is given by the output of AV2, joining the two components
results in a component withn−1 less nodes andn!−1 less edges. AV2 is defined
as

Lav2 = (Sav2,Σav2,s0av2,→av2) with
Sav2 = {av2a ,av2b}
Σav2 = Σ?av2∪Σ!av2

Σ?av2 = {Show Candidates}
Σ!av2 = {[Candidates]}
s0av2 = av2a

→av2 = {(av2a ,Show Candidates,av2b),(av2b, [Candidates],av2a)}

46 CHAPTER 6. HIERARCHICAL MODELS

and UI2 as

Lui2 = (Sui2,Σui2,s0ui2,→ui2) with
Sui2 = {ui2a}∪{ui2i | 0≤ i < |[Candidates]|}
Σui2 = Σ?ui2∪Σ!ui2
Σ?ui2 = {perm(Candidates)}
Σ!ui2 = {Bob : i | 0≤ i < |[Candidates]|}
s0ui2 = ui2a

→ui2 =
{(ui2a ,c,av2i) | For all c ∈ perm(Candidates) andc(i) = “Bob”}

The hierarchical compositionLCI 2 =Lav2.Lui2 results in the following IOLTS:

LCI 2 = Lav2.Lui2 = (S ,Σ,s0,→) with
S = Sav2×Sui2

Σ = Σ?∪Σ!∪ΣI
Σ? = {Show Candidates}
Σ! = {Bob : i0≤ i < |[Candidates]| , [Candidates]}
ΣI = {perm(Candidates)}
s0 = (av2a ,ui2a)
→ =
{((ui2a ,av2a),Show Candidates,(ui2a ,av2b))}∪
{((ui2i ,av2a),Show Candidates,(ui2i ,av2b))

| for all 0≤ i < |[Candidates]|}∪
{((ui2i ,av2a),Bob: i ,(ui2a ,av2a)) | for all 0≤ i < |[Candidates]|}∪
{((ui2i ,av2b),Bob: i ,(ui2a ,av2b)) | for all 0≤ i < |[Candidates]|}∪
{((ui2i ,av2b), [Candidates],(ui2i ,av2a)) | for Candidates[i] = “Bob”}

Show
Candidates?

Show
Candidates?

CI2

Bob:i!

Bob:i!

[Candidates]!

ui2a

av2a

ui2a

av2b

ui2i

av2b

ui2i

av2a

ci2a

ci2c ci2d

ci2b

Figure 6.8: Hierarchical Composition of UI2 and AV2

6.2. ABSTRACTION 47

From the elements of the set of nodes

{(ui2i ,av2a) | for all 0≤ i < |[Candidates]|}

only the node with(ui2j ,av2a) with Candidates[j] = “Bob” has an incoming
edge. Therefore, all other nodes from the set can be omitted.This reduced IOLTS
is shown in Figure 6.8. We call this component CI2. For the following abstraction
steps, we will use the shorter state names written right beside the nodes.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

UI1

AV1

AB0

AB1

UB1

UB0

BehaviorInterpretation

Visualization Behavior

AB2

UB2
CB2CI2

User
Application

Figure 6.9: UB2 and AB2 are composed to CB2

In the next step, we compose UB2 and AB2 to CB2 as shown in Figure 6.9.
UB2 is defined as:

Lub2 = (Sub2,Σub2,s0ub2,→ub2) with
Sub2 = {ub2a ,ub2b}∪{ub2i | 0≤ i < |[Candidates]|}
Σub2 = Σ?ub2∪Σ!ub2
Σ?ub2 = {Select Bob}∪{Bob : i | 0≤ i < |[Candidates]|}
Σ!ub2 = {Push Button :i | 0≤ i < |[Candidates]|}
s0ub2 = ub2a

→ub2 = {(ub2a ,Select Bob,ub2b)}
∪{(ub2b ,Bob:i ,ub2i) | 0≤ i < |[Candidates]|}
∪{(ub2i ,Push Button:i ,ub2a) | 0≤ i < |[Candidates]|}

Since the only output of CI2 isBob:i! for somei , only one of the states
ub20, . . . ,ub2n−1 (represented by meta-stateub2i in the component diagram of

48 CHAPTER 6. HIERARCHICAL MODELS

UB2), is reachable. We can reduce UB2 to

Lub2 = (Sub2,Σub2,s0ub2,→ub2) with
Sub2 = {ub2a ,ub2b ,ub2i}
Σub2 = Σ?ub2∪Σ!ub2
Σ?ub2 = {Select Bob,Bob : i}
Σ!ub2 = {Push Button :i}
s0ub2 = ub2a

→ub2 = {(ub2a ,Select Bob,ub2b),(ub2b,Bob:i ,ub2i),
(ub2i ,Push Button:i ,ub2a)}

We reduce the state space of AB2 in the same way. Since the order of can-
didates is fixed for a given eVoting setup, and UB2 will outputonly one specific
Push Button:i, we can reduce AB2 to

Lab2 = (Sab2,Σab2,s0ab2,→ab2) with
Sab2 = {ab2a ,ab2l ,ab2cl}
Σab2 = Σ?ab2∪Σ!ab2
Σ?ab2 = {[Candidates],Push Button:i ,}
Σ!ab2 = {Selected:“Bob”}
s0ab2 = ab2a

→ab2 = {(ab2a , [Candidates],ab2l),(ab2l ,Push Button:i ,ab2cl),
(ab2cl ,Selected:“Bob”,ab2a)}

Now we can compute the compositionLcb2 = Lub2.Lab2 as

Lcb2 = (Scb2,Σcb2,s0cb2,→cb2) with
Scb2 = Sub2×Sab2
Σcb2 = Σ?cb2∪Σ!cb2
Σ?cb2 = {Select Bob,Bob:i , [Candidates]}
Σ!cb2 = {Selected:“Bob”}
s0cb2 = (ub2a ,ab2a)
→cb2 =
{((ub2a ,ab2a),Select Bob,(ub2b ,ab2a)),
((ub2b,ab2a),Bob:i ,(ub2i ,ab2a)),
((ub2a ,ab2l),Select Bob,(ub2b ,ab2l)),
((ub2b,ab2l),Bob:i ,(ub2i ,ab2l)),
((ub2a ,ab2cl),Select Bob,(ub2b,ab2cl)),
((ub2b,ab2cl),Bob:i ,(ub2i ,ab2cl)),
((ub2i ,ab2l),σ ,(ub2a),ab2cl)}

∪{((x ,ab2a), [Candidates],(x ,ab2l)) | x ∈ {ub2a ,ub2b ,ub2i}}
∪{((x ,ab2cl),Selected:“Bob”,(x ,ab2a)) | x ∈ {ub2a ,ub2b ,ub2i}}

6.2. ABSTRACTION 49

[Candidates] Select Bob?

Bob:i?Selected: Bob
CB2

cb2a

Figure 6.10: Component CB2’, an abstraction of CB2

Note thatPush Button:iis not in the output alphabet. We were able to replace
it by an ε-transition, because UB2 has no outgoing connections. The number
of nodes and edges inLcb2 is becoming unwieldy, therefore we abstractLcb2 to
a simpler componentLcb2′ . The behavior ofLcb2 can be roughly described as
follows: It takesSelect Bob, Candidates, andBob:i as inputs and produces the
outputSelected:“Bob”. We replaceLcb2 by the simpler IOLTSLcb2′ and prove
thatLcb2′ as shown in Figure 6.10 is an abstraction ofLcb2.

Lcb2′ = (Scb2′,Σcb2′ ,s0cb2′ ,→cb2′) with
Scb2′ = {cb2a}
Σcb2′ = Σ?cb2′ ∪Σ!cb2′

Σ?cb2′ = {Select Bob,Bob:i , [Candidates]}
Σ!cb2′ = {Selected:“Bob”}
s0cb2′ = cb2a

→cb2′ = {(cb2a ,Select Bob,cb2a),(cb2a ,Bob:i ,cb2a),
(cb2a , [Candidates],cb2a),(cb2a,Selected:“Bob”,cb2a)}

Proof
To show:Lcb2′ is an abstraction ofLcb2.
Let abstraction functionf : Scb2 → Scb2′ be:

f (s) = cb2a for all s ∈ Scb2

• s0cb2′ = f (s0cb2) ⇐⇒ cb2a = cb2a

• f (s)
σ
−→a f (s ′) if s

σ
−→b s ′

Sincef (s)= cb2a for all s andcb2a
σ
−→ cb2a for all σ ∈Σcb2, f (s)

σ
−→a f (s ′)

if s
σ
−→b s ′ holds. �

50 CHAPTER 6. HIERARCHICAL MODELS

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

CB2

UB1

Application
User

AV1

AB0

AB1

Visualization Behavior

CI2

UI1

UB0

BehaviorInterpretation

CU1

Figure 6.11: UB1 and CB2 are composed to CU1

We continue by computing the composition ofLcu1 = Lub1.Lcb2 (shown in
Figure 6.11) as

Lcu1 = (Scu1,Σcu1,s0cu1,→cu1) with
Scu1 = Sub1×Scb2
Σcu1 = Σ?cu1∪Σ!cu1
Σ?cu1 = {Vote Bob}
Σ!cu1 = {Select Bob,Bob:i , [Candidates],Selected:“Bob”}
s0cu1 = (ub1a ,cb2a)
→cu1 = {((ub1a ,cb2a),Vote Bob,(ub1b,cb2a)),

((ub1a ,cb2a),Selected Bob,(ub1a ,cb2a)),
((ub1a ,cb2a),Bob:i ,(ub1a ,cb2a)),
((ub1a ,cb2a), [Candidates],(ub1a ,cb2a)),
((ub1b,cb2a),ε,(ub1a ,cb2a)),
((ub1b,cb2a),Selected Bob,(ub1b ,cb2a)),
((ub1b,cb2a),Bob:i ,(ub1b,cb2a)),
((ub1b,cb2a), [Candidates],(ub1b,cb2a))}

Joining the states connected by theε-transition and renaming the name of the

6.2. ABSTRACTION 51

remaining state, we get

Lcu1 = (Scu1,Σcu1,s0cu1,→cu1) with
Scu1 = cu1a

Σcu1 = Σ?cu1∪Σ!cu1

Σ?cu1 = {Vote Bob}
Σ!cu1 = {Select Bob,Bob:i , [Candidates],Selected:“Bob”}
s0cu1 = cu1a

→cu1 = {(cu1a ,Vote Bob,cu1a),
(cu1a ,Selected: “Bob”,cu1a),
(cu1a ,Bob:i ,cu1a),
(cu1a , [Candidates],cu1a)}

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

Application
User

AV1

AB0

Visualization Behavior

CI2

UI1

UB0

BehaviorInterpretation

AB1

CU1

CB1

Figure 6.12: CU1 and AB1 are composed to CB1

Computing CB1 as the composition of CU1 and AB1 (see Figure 6.12) results
in (theε-transition has already been eliminated and the state name renamed):

Lcb1 = (Scb1,Σcb1,s0cb1,→cb1) with
Scb1 = cb1a

Σcb1 = Σ?cb1∪Σ!cb1
Σ?cb1 = {Vote Bob}
Σ!cb1 = {Bob:i , [Candidates],VoteCastFor:“Bob”}
s0cb1 = cb1a

→cb1 = {(cb1a ,Vote Bob,cb1a),(cb1a ,VoteCastFor:“Bob”,cb1a),
(cb1a ,Bob:i ,cb1a),(cb1a , [Candidates],cb1a)}

52 CHAPTER 6. HIERARCHICAL MODELS

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

Application
User

AB0

Visualization Behavior

CI2

UI1

UB0

BehaviorInterpretation

CA1

AV1

CB1

Figure 6.13: AV1 and CI2 are composed to CA1

In the same way, AV1 and CI2 are composed to CA1 (see Figure 6.13:

Lca1 = (Sca1,Σca1,s0ca1,→ca1) with
Sca1 = Sav1×Sci2

Σca1 = Σ?ca1∪Σ!ca1

Σ?ca1 = {Unlock}
Σ!ca1 = {Bob:i , [Candidates]}
s0ca1 = (av1a ,ci2a)
→ca1 = {(av1a ,x),Unlock,(av1b,x) | x ∈ {ci2a ,ci2b,ci2c,ci2d}}

∪{((av1a ,ci2d),Bob:i ,(av1a,ci2c)),
((av1a ,ci2c), [Candidates],(av1a ,ci2b)),
((av1a ,ci2b),Bob:i ,(av1a,ci2a)),
((av1b,ci2d),Bob:i ,(av1b,ci2c)),
((av1b,ci2c), [Candidates],(av1b,ci2b)),
((av1b,ci2b),Bob:i ,(av1b,ci2a)),
((av1b,ci2a),ε,(av1a,ci2c)),
((av1b,ci2b),ε,(av1a ,ci2d))}

6.2. ABSTRACTION 53

Again, we create an abstraction and prove correctness of it:

Lca1′ = (Sca1′ ,Σca1′ ,s0ca1′ ,→ca1′) with
Sca1′ = {ca1a}
Σca1′ = Σ?ca1′ ∪Σ!ca1′

Σ?ca1′ = {Unlock}
Σ!ca1′ = {Bob:i , [Candidates]}
s0ca1′ = ca1a

→ca1′ = {(ca1a ,Unlock,ca1a),(ca1a ,Bob:i ,ca1a),
(ca1a , [Candidates],ca1a)}

Proof
To show:Lca1′ is an abstraction ofLca1.
Let abstraction functionf : Sca1 → Sca1′ be:

f (s) = ca1a for all s ∈ Sca1

• s0ca1′ = f (s0ca1) ⇐⇒ ca1a = ca1a

• f (s)
σ
−→a f (s ′) if s

σ
−→b s ′

Sincef (s) = ca1a for all s andca1a
σ
−→ ca1a for all σ ∈ Σca1, f (s)

σ
−→a

f (s ′) if s
σ
−→b s ′ holds. �

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

AB0

Visualization Behavior

UI1

CA1

Application
User

UB0

BehaviorInterpretation

CB1
C2

Figure 6.14: CA1 and CB1 are composed to C2

54 CHAPTER 6. HIERARCHICAL MODELS

Next, we compose CA1’ and CB1 to C2 (see Figure 6.14):

Lc2 = (Sc2,Σc2,s0c2,→c2) with
Sc2 = {c2a}
Σc2 = Σ?c2∪Σ!c2

Σ?c2 = {Unlock,Vote Bob}
Σ!c2 = {Bob:iVote Cast For: “Bob”}
s0c2 = c2a

→c2 = {(c2a ,Unlock,c2a),(c2a ,Bob:i ,c2a),
(c2a ,Vote Cast For: “Bob”,c2a),
(c2a ,Vote Bob,c2a)}

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

AB0

Visualization Behavior

UI1

UB0

BehaviorInterpretation

Application
User C2

C1

Figure 6.15: C2 and UI1 are composed to C1

C2 and UI1 are composed to C1 (see Figure 6.15):

Lc1 = (Sc1,Σc1,s0c1,→c1) with
Sc1 = {ca1a}
Σc1 = Σ?c1∪Σ!c1

Σ?c1 = {Unlock,Vote Bob}
Σ!c1 = {ReadyVote Cast For: “Bob”}
s0c1 = ca1a

→c1 = {(c1a ,Unlock,c1a),(c1a ,Ready,c1a),
(c1a ,Vote Cast For: “Bob”,c1a),(c1a,Vote Bob,c1a)}

UB0 and C1 are composed to CU0 (see Figure 6.16):

Lc1 = (Sc1,Σc1,s0c1,→c1) with
Sc1 = {c1a}
Σc1 = Σ?c1∪Σ!c1

Σ?c1 = {Unlock}
Σ!c1 = {Vote Cast For: “Bob”}
s0c1 = c1a

→c1 = {(c1a ,Unlock,c1a),(c1a ,Vote Cast For: “Bob”,c1a)}

6.2. ABSTRACTION 55

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

Application
User

UB0

AB0

C1

CU0

Figure 6.16: UB0 and C1 are composed to CU0

In the last step, CU0 and AB0 are composed. Since the output alphabet of CU0
is restricted to{Vote Cast For: “Bob”}, all ab0c for c 6= “Bob” are unreachable.
Therefore, we can reduce AB0 to

Lab0 = (Sab0,Σab0,s0ab0,→ab0) with
Sab0 = {ab0a ,ab0b,ab0c}
Σab0 = Σ?ab0∪Σ!ab0
Σ?ab0 = {Vote Cast For: “Bob”}
Σ!ab0 = {Unlock}
s0ab0 = ab0a

→ab0 = {(ab0a ,Unlock,ab0b),(ab0b,Vote Cast For: “Bob”,ab0c)}

Finally, C as the composition of CU0 and AB0 is computed as

Lc = (Sc,Σc,s0c ,→c) with
Sc = {ca}
Σc = Σ?c ∪Σ!c
Σ?c = {}
Σ!c = {}
s0c = ca

→c = {}

In Section 4.2 we defined

fatal ∈ λ (“Vote Confirmed [i]”) for all i 6= c

success ∈ λ (“Vote Confirmed [c]”)

Stateca is a result of applying the composition rule to stateab“Bob” and a number
of other states, but non of the other state was the final votingstate for a candidate
other than “Bob.” Therefore, we have shown that in the given model, asuccess
final state is always reached, and afatal final state is never reached. We have
shown that the model represents the intended functionality.

56 CHAPTER 6. HIERARCHICAL MODELS

6.2.2 E-Voting Example (with erroneous user behavior)

Next, we apply our methodology to a model with erroneous userbehavior. In this
example, we model a user with a shaky hand. He may accidently push the button
directly above or below the intended button. This potentialerror is modeled on
the symbol manipulation level by the GOMS sub-model for goal“Select Bob”
(UB2). A changed GOMS model for this sub-goal is shown in Figure 6.17. Here,
the selection of the right or wrong button is non-deterministic.

GOAL: SELECT “Bob”
SELECT:

OPERATOR: PUSH BUTTON 0 if “Bob” is zeroth candidate
OPERATOR: PUSH BUTTON 1 if “Bob” is zeroth candidate
OPERATOR: PUSH BUTTON 0 if “Bob” is first candidate
OPERATOR: PUSH BUTTON 1 if “Bob” is first candidate
OPERATOR: PUSH BUTTON 2 if “Bob” is first candidate
...
OPERATOR: PUSH BUTTONn −1 if “Bob” is nth candidate
OPERATOR: PUSH BUTTONn if “Bob” is nth candidate

Figure 6.17: GOMS model for hierarchical eVoting model witherroneous user
behavior

With this definition, UB2 is defined as

Lub2 = (Sub2,Σub2,s0ub2,→ub2) with
Sub2 = {ub2a ,ub2b}∪{ub2i | 0≤ i < |[Candidates]|}
Σub2 = Σ?ub2∪Σ!ub2
Σ?ub2 = {Select Bob}∪{Bob : i | 0≤ i < |[Candidates]|}
Σ!ub2 = {Push Button :i | 0≤ i < |[Candidates]|}
s0ub2 = ub2a

→ub2 = {(ub2a ,Select Bob,ub2b)}
∪{(ub2b ,Bob:i ,ub2i) | 0≤ i < |[Candidates]|}
∪{(ub2b ,Bob:i ,ub2i+1) | 0≤ i < |[Candidates]|−1}
∪{(ub2b ,Bob:i ,ub2i−1) | 0 < i < |[Candidates]|}
∪{(ub2i ,Push Button:i ,ub2a) | 0≤ i < |[Candidates]|}

Without loss of generality, we assume that Bob is neither thefirst nor the last
candidate on the list. Since the only output of CI2 isBob:i! for somei , only three
of the statesub20, . . . ,ub2n−1 (represented by meta-stateub2i in the component

6.2. ABSTRACTION 57

diagram of UB2) are reachable. We can reduce UB2 to

Lub2 = (Sub2,Σub2,s0ub2,→ub2) with
Sub2 = {ub2a ,ub2b ,ub2i}
Σub2 = Σ?ub2∪Σ!ub2
Σ?ub2 = {Select Bob,Bob : i}
Σ!ub2 = {Push Button :i −1,Push Button :i ,Push Button :i +1}
s0ub2 = ub2a

→ub2 = {(ub2a ,Select Bob,ub2b),(ub2b,Bob:i ,ub2i),
(ub2i ,Push Button:i −1,ub2a),(ub2i ,Push Button:i ,ub2a),
(ub2i ,Push Button:i +1,ub2a)}

We apply the same technique to AB2. Since the order of the candidates is
fixed for a given eVoting setup, and UB2 will possibly output only Push Button:i-
1,Push Button:i, or Push Button:i+1, we can reduce the composed model to these
three possibilities. Without loss of generality, we assumethe candidate in the
list above “Bob” is “Alice” and the candidate below “Bob” is “Charlie.” We can
reduce AB2 to

Lab2 = (Sab2,Σab2,s0ab2,→ab2) with
Sab2 = {ab2a ,ab2l ,ab2c l}
Σab2 = Σ?ab2∪Σ!ab2
Σ?ab2 = {[Candidates],Push Button:i ,Push Button:i −1,

Push Button:i +1,}
Σ!ab2 = {Selected:“Alice”,Selected:“Bob”,Selected:“Charlie”}
s0ab2 = ab2a

→ab2 = {(ab2a , [Candidates],ab2l),
(ab2l ,Push Button:i −1,ab2cl ′),
(ab2l ,Push Button:i ,ab2cl),
(ab2l ,Push Button:i +1,ab2cl ′′),
(ab2cl ′,Selected::“Alice”,ab2a),
(ab2cl ,Selected::“Bob”,ab2a),
(ab2cl ′′,Selected::“Charlie”,ab2a)}

We constructLcb2 = Lub2.Lab2 as in Section 6.2.1 (see Figure 6.9) and apply

58 CHAPTER 6. HIERARCHICAL MODELS

the same abstraction step, resulting in

Lcu1 = (Scu1,Σcu1,s0cu1,→cu1) with
Scu1 = {cu1a}
Σcu1 = Σ?cu1∪Σ!cu1

Σ?cu1 = {Vote Bob}
Σ!cu1 = {Select Bob,Bob:i , [Candidates],Selected:“Alice”,

Selected:“Bob”,Selected:“Charlie”}
s0cu1 = cu1a

→cu1 = {(cu1a ,Vote Bob,cu1a)
(cu1a ,Selected: “Alice”,cu1a),
(cu1a ,Selected: “Bob”,cu1a),
(cu1a ,Selected: “Charlie”,cu1a),
(cu1a ,Bob:i ,cu1a),
(cu1a , [Candidates],cu1a)}

We continue by computing the composition ofLcu1 = Lub1.Lcb2 (see Fig-
ure 6.11). Joining the states connected by theε-transition and renaming the re-
maining state, we get

Lcu1 = (Scu1,Σcu1,s0cu1,→cu1) with
Scu1 = {cu1a}
Σcu1 = Σ?cu1∪Σ!cu1

Σ?cu1 = {Vote Bob}
Σ!cu1 = {Select Bob,Bob:i , [Candidates],Selected:“Alice”,

Selected:“Bob”,Selected:“Charlie”}
s0cu1 = cu1a

→cu1 = {(cu1a ,Vote Bob,cu1a),(cu1a ,Selected: “Alice”,cu1a),
(cu1a ,Selected: “Bob”,cu1a),
(cu1a ,Selected: “Charlie”,cu1a),(cu1a ,Bob:i ,cu1a),
(cu1a , [Candidates],cu1a)}

Computing CB1 as the composition of CU1 and AB1 (see Figure 6.12) results
in (theε-transition has already been eliminated and the state name renamed) the

6.2. ABSTRACTION 59

[Candidates]!

Vote Bob?

CB1

cb1a

Bob:i !

VoteCastFor:“Bob”!

VoteCastFor:“Alice”!VoteCastFor:“Charlie”!

Figure 6.18: Component CB1

IOLTS shown in Figure 6.18:

Lcb1 = (Scb1,Σcb1,s0cb1,→cb1) with
Scb1 = cb1a

Σcb1 = Σ?cb1∪Σ!cb1
Σ?cb1 = {Vote Bob}
Σ!cb1 = {Bob:i , [Candidates],VoteCastFor:“Alice”,

VoteCastFor:“Bob”,VoteCastFor:“Charlie”}
s0cb1 = cb1a

→cb1 = {(cb1a ,Vote Bob,cb1a)
(cb1a ,VoteCastFor:“Alice”,cb1a),
(cb1a ,VoteCastFor:“Bob”,cb1a),
(cb1a ,VoteCastFor:“Charlie”,cb1a),
(cb1a ,Bob:i ,cb1a),
(cb1a , [Candidates],cb1a)}

Vote Bob?

Unlock?
C2

Bob:i !

VoteCastFor:“Bob”!

VoteCastFor:“Alice”!VoteCastFor:“Charlie”! c2a

Figure 6.19: Component C2

60 CHAPTER 6. HIERARCHICAL MODELS

The composition of CA1’ and CB1 to C2 (see Figure 6.14) leads to the IOLTS
shown in Figure 6.19:

Lc2 = (Sc2,Σc2,s0c2,→c2) with
Sc2 = {c2a}
Σc2 = Σ?c2∪Σ!c2
Σ?c2 = {Unlock,Vote Bob}
Σ!c2 = {Bob:i ,Vote Cast For: “Alice”,

Vote Cast For: “Bob”,Vote Cast For: “Charlie”}
s0c2 = c2a

→c2 = {(c2a ,Unlock,c2a),(c2a ,Bob:i ,c2a),
(c2a ,Vote Cast For: “Alice”,c2a),
(c2a ,Vote Cast For: “Bob”,c2a),
(c2a ,Vote Cast For: “Charlie”,c2a),
(c2a ,Vote Bob,c2a)}

C2 and UI1 are composed to C1 (see Figure 6.15):

Lc1 = (Sc1,Σc1,s0c1,→c1) with
Sc1 = {ca1a}
Σc1 = Σ?c1∪Σ!c1

Σ?c1 = {Unlock,Vote Bob}
Σ!c1 = {Ready,Vote Cast For: “Alice”,Vote Cast For: “Bob”,

Vote Cast For: “Charlie”}
s0c1 = ca1a

→c1 = {(c1a ,Unlock,c1a),(c1a ,Ready,c1a),
(c1a ,Vote Cast For: “Alice”,c1a),
(c1a ,Vote Cast For: “Bob”,c1a),
(c1a ,Vote Cast For: “Charlie”,c1a),(c1a ,Vote Bob,c1a)}

UB0 and C1 are composed to CU0 (see Figure 6.16):

Lc1 = (Sc1,Σc1,s0c1,→c1) with
Sc1 = {c1a}
Σc1 = Σ?c1∪Σ!c1

Σ?c1 = {Unlock}
Σ!c1 = {Vote Cast For: “Alice”,Vote Cast For: “Bob”,

Vote Cast For: “Charlie”}
s0c1 = c1a

→c1 = {(c1a ,Unlock,c1a),
(c1a ,Vote Cast For: “Alice”,c1a),
(c1a ,Vote Cast For: “Bob”,c1a),
(c1a ,Vote Cast For: “Charlie”,c1a)}

6.2. ABSTRACTION 61

In the last step, CU0 and AB0 are composed. Since the output alphabet of
CU0 is restricted to{ Vote Cast For: “Alice”, Vote Cast For: “Bob”, Vote Cast
For: “Charlie” }, only ab0c with c = “Alice”, c = “Bob”, or c = “Charlie” are
reachable. Therefore, we can reduce AB0 to

Lab0 = (Sab0,Σab0,s0ab0,→ab0) with
Sab0 = {ab0a ,ab0b,ab0c,ab0′c,ab0′′c}
Σab0 = Σ?ab0∪Σ!ab0
Σ?ab0 = {Vote Cast For: “Alice”,Vote Cast For: “Bob”,

Vote Cast For: “Charlie”}
Σ!ab0 = {Unlock}
s0ab0 = ab0a

→ab0 = {(ab0a ,Unlock,ab0b),
(ab0b,Vote Cast For: “Alice”,ab0c′),
(ab0b,Vote Cast For: “Bob”,ab0c),
(ab0b,Vote Cast For: “Charlie”,ab0c′′)}

Finally, C as the composition of CU0 and AB0 is computed as

Lc = (Sc,Σc,s0c ,→c) with
Sc = {ca}
Σc = Σ?c ∪Σ!c
Σ?c = {}
Σ!c = {}
s0c = ca

→c = {}

In difference to C from Section 6.2.1, this time the only resulting stateca is not
only composed from thesuccessfinal stateab“Bob” and a number of non-fatal
states. Thefatal final statesab“Alice” andab“Charlie” are also part of the com-
posed stateca . Therefore,fatal final states are reachable, i.e. in the given model it
is possible that the user votes for “Alice” or “Charlie” although he wanted to vote
for “Bob.”

In this chapter, we have introduced a methodology to create hierarchical user
and application models. This methodology allows to model HCI at any chosen
level of granularity, down to the most basic operations. Creating local composi-
tions and abstractions of components allows pervasive evaluation of models with-
out suffering from state-space explosion.

62 CHAPTER 6. HIERARCHICAL MODELS

Chapter 7

Integration with Hoare Logic

In previous chapters, we modeled the abstract behavior of applications using la-
beled transition systems, where nodes represent states of the application. For
example, the basic version of the eVoting application modelshown in Chapter 4
(Figure 4.6) contains the states “Unlocked”, “Vote Cast ‘Bob’”, and “Vote Con-
firmed ‘Bob’”. Edges represent transitions from one state tothe next. These
states are abstractions of the actual system configurations, which are much richer
in detail. (IO)LTS and temporal logics are suitable methodsto specify the ab-
stract behavior of concurrent components of a system. Modelchecking can be
used to verify that an abstract model has the desired properties. For a pervasive
specification of an application, it is also necessary to prove that a concrete pro-
gram is a refinement of the abstract model. That requires a specification of a con-
crete program’s procedures using pre- and post-conditions. Methods like Hoare
logic (Hoare, 1969) and Dynamic Logic (Harel, 1984) can thenbe used verify the
concrete implementation.

The pre-/post-condition-based specification and the state-based IOLTS/CTL
methods have to be integrated in order to provide a unified methodology for the
pervasive specification and verification of secure interactive systems. A relation-
ship between the nodes, edges, and labels of the IOLTS on the one hand, and
the pre-conditions, post-conditions, and procedure implementations on the other
hand has to be established. The intuitive relationship between a IOLTS and pro-
gram functionality is that nodes represent abstractions ofprogram states, while
pre- and post-conditions refer to properties of concrete states (and each condition
defines a state set, namely the set of all states where the condition is true). Labeled
edges between nodes represent program function calls and their input and output.

In the following definitions, we assume that a setH of formulas is given that
can be used as pre-/post-conditions and invariants in Hoare-style specifications
and proofs, as well as a setP of procedures used in concrete implementations and
a setM of messages sent and received by these procedures. For our purposes it

63

64 CHAPTER 7. INTEGRATION WITH HOARE LOGIC

is not necessary to fix a particular logic and a programming language. In Part III,
we show how our methodology has been used in the Verisoft project (Paul, 2005).
In the Verisoft project, we used Isabelle/HOL (Schirmer, 2005) for H and C0 (a
subset of the C programming language (Leinenbach et al., 2005)) for procedures
in P .

Definition 7.1 (Pervasive model). LetH be the set of all formulas that can be used
as pre-/post-conditions and invariants. LetP be the set of all procedures that take
exactly one input and one output parameter. And letM be the set of input/output
potentially sent or received by procedures inP .

Then, apervasive model

PM = (L, inv,proc,msg)

consists of

• an IOLTS

L = (S ,Σ,s0,→L) ,

• a mapping

inv : S → H

assigning to each state inS a state invariant fromH ,

• a mapping

msg: Σ → 2M

associating labels of the IOLTS with actual procedure input/output,

• a mapping

proc : (S ×Σ?) → P

from state/input pairs to procedures.

Intuitively, the concrete implementation of an application is correct w.r.t. a
pervasive modelPM if

1. it is a refinement of the IOLTS part ofPM, i.e., its control flow corresponds
to the IOLTS,

2. its procedures are correct w.r.t. the state invariants ofPM.

65

Algorithm 3 Preliminary main event loop
1: repeat
2: cmd := getKeystroke()

3: updateScreen(cmdResult)

4: cmdResult := execute(state,cmd)

5: state := nextState(state,cmd,cmdResult)

6: until cmd = QUIT

The Hoare logic specification depends on a correct “execution” of the IOLTS
representing the application. In the following, we take a first step towards bridging
the gap between the abstract state-based model of an application and the specifica-
tion of the concrete program’s with pre-/post-conditions.We do this by providing
a template for a main execution loop that “executes” the highlevel model by call-
ing the proceduresupdateScreen, getKeystroke, execute, andnextState.
A generic template for a main execution loop that executes anIOLTS is given in
Algorithm 3. Please note that this algorithm is preliminary. It will be improved in
Section 14.3.2. In this template, the procedurenextState implements the state
transitions of the IOLTS. The actual state is stored in program variablestate.
Procedureexecute implements execution of the procedures associated with la-
beled transitions.

ProceduregetKeystroke gets the next keystroke, and procedureupdate-

Screen shows the result of command execution on the screen. The actual im-
plementation of these procedures depends on the concrete problem. We will give
examples for an email client in Part III of this thesis.

The procedurenextState must guarantee that the application “executes” the
IOLTS. It gets the old states as an input parameter and returns the new state as
its result. The transition from the old to the new state must represent a valid

state transition, i.e. there must exist a transitionoldState
(σ?/σ !)
−−−−→ result in the

IOLTS. The input command must be in the message set represented byσ?, and
the result of the command execution must be in the message setrepresented byσ !.
The transition relation may be non-deterministic.

Definition 7.2 (Specification of procedurenextState).

contextnextState(oldState,cmd,cmdResult)
pre True

post ∃σ?,σ ! : oldState
(σ?/σ !)
−−−−→ result

∧ cmd ∈ msg(σ?)
∧ cmdResult ∈ msg(σ !)

66 CHAPTER 7. INTEGRATION WITH HOARE LOGIC

The procedureexecute is called by the main execution loop to invoke the
concrete procedures associated with edges of the application logic IOLTS. The
command given by the user related to an IOLTS input symbolσ? by functionmsg,
and the procedure to be called is identified by the functionproc. The output of the
procedure call is related to an IOLTS output symbolσ !. The state invariant of the
pre-state holds beforeexecute is called, and the state invariant of the successor
state must hold afterexecute returns.

Definition 7.3 (Specification of procedureexecute).

contextexecute(state, command)

pre inv(state)

post ∃σ?,σ !,s : state@pre
(σ?/σ !)
−−−−→ s ∧ inv(s) ∧

cmd ∈ msg(σ?) ∧ result ∈ msg(σ !)

The specification ofexecute does not refer explicitly to the procedures as-
sociated with edges. It only guarantees that the invariantsof states hold in its
postcondition.

Next, we define the relationship between the functionproc andexecute. We
start by definingedge procedure correctnessfor proc. Mappingproc associates
edges with procedures. The result of functionproc(i.e. the procedure to be called)
depends on the current state of the application, and the input σ? for which the
input commandcmd ∈ σ?. In the definition of a pervasive model (Definition 7.1),
invariants are associated with states. Whenever the systemis in a given state, the
invariant of the state must be satisfied. Therefore, the precondition for a procedure
call must be implied by the invariant of the state in which theprocedure is called,
and the postcondition of the procedure must imply the invariant of the succeeding
state:

Definition 7.4 (Edge procedure correctness). Let

PM = (L, inv,proc,msg)

be a pervasive model.Edge procedure correctnessis guaranteed if for all values
of σ?, s andcmd, there existsσ ! ands ′ such that

{inv(s) ∧ cmd ∈ msg(σ?)}

proc(s,σ?)(cmd)

{result ∈ msg(σ !) ∧ s
(σ?/σ !)
−−−−→ s ′ ∧ inv(s ′)}

67

From these definitions follows thatexecute is correct ifexecute(state,
cmd) calls proc(state,σ?) for all state ∈ S and all commandscmd related to
someσ?.

In Hoare-style specifications, only sequential aspects of aprogram are speci-
fied. We assume that changes in the configuration do only result from procedure
calls specified in Hoare logic.

To conclude, the implementation of an application is correct w.r.t. a pervasive
model if all of the following holds:

1. The main event loop follows Algorithm 4,

2. nextState satisfies the specification from Def. 7.2,

3. execute satisfies the specification from Def. 7.3,

4. the invariantinv(s0) of the initial state holds before any message is sent or
received (i.e., immediately after initialization).

Following our approach, the correctness argument for an application is split
into three parts:

• The high level IOLTS specification guarantees the desired properties (i.e., it
has to satisfy the requirements).

• The main execution loop follows the template given in Algorithm 4,next-
State implements the particular IOLTS, andexecute call s the procedures
associated with labeled edges in the IOLTS.

• The pervasive model satisfies Edge procedure correctness (Definition 7.4).

Differences to Software Model Checking. Our approach to use model check-
ing for actual C code differs from software model checking approaches like the
ones used in the SLAM project (Ball and Rajamani, 2001) or CEGAR, which is
implemented in the MAGIC tool (Chaki et al., 2004). Softwaremodel check-
ing reduces the state space of an actual implementation in order to apply model
checking techniques to guarantee program properties. These techniques allow to
find certain classes of errors in existing programs. In difference to this, our ap-
proach provides a methodology for the specification of applications which takes
both sequential aspects of the program and parallel aspectsinto account. In our
approach, the state space of a program is not automatically reduced in order to
make it suitable for model checking. We expect the system designer to provide
an explicit model both of the high-level system design (usedwith model check-
ing), and the low-level design (used with Hoare logic). By defining constraints

68 CHAPTER 7. INTEGRATION WITH HOARE LOGIC

on these design steps, we are able to provide apervasivemethod for the formal
specification and verification of both high-level temporal properties of a system,
and low-level sequential properties.

Chapter 8

Summary

We laid the foundations of a methodology for formalizing, analyzing, and verify-
ing user interfaces and human-computer interaction under computer security as-
pects. The main contributions of this part are a formal semantics for an extended
version of GOMS, a generic user and application model suitable for the perva-
sive specification of human-computer interaction, and the integration of temporal
specifications based on IOLTS/CTL with Hoare-style procedure specifications.

• We have introduced a formal semantics for GOMS models describing user
behavior, which is based on input/output labeled transition systems (IO-
LTS).

• We showed how the component-based formalization of GOMS canbe aug-
mented with components modeling the user’s assumptions about the appli-
cation. This allows to model HCI both in absence and in presence of human
errors.

• The method used to formalize GOMS models and the user’s assumption
can be applied to model the application as well. Combining all three com-
ponents leads to a complete model of human-computer interaction suited
for automated reasoning.

• We have introduced a methodology to formally describe hierarchical user
interfaces. This makes the pervasive modeling of all aspects of user inter-
face security possible.

• Component specifications based on IOLTS abstract from the actual program
code. We developed a methodology integrating the specification and veri-
fication of high-level application behavior using IOLTS andtemporal logic
with specification and verification of low-level application behavior using

69

70 CHAPTER 8. SUMMARY

Hoare-style pre-/postconditions. This makes pervasive verification of appli-
cations possible.

We have developed a generic formal model of human-computer interaction
with security critical applications. This formal model is the base for a systematic
formalization of user interface security requirements. Our methodology can be
used both for system design and for the analysis of properties of existing systems.
It is applicable both to restricted specialized system as well as to generic, off-the-
shelf systems. In the Verisoft project (http://www.verisoft.de), this approach
has been used to prove human-computer interaction securityof an email client
application in the context of a pervasively verified computer system.

http://www.verisoft.de

Part II

Formalization of HCI Security

71

Chapter 9

System Model

9.1 Messages

The methodology introduced so far allows to describe the internal behavior of
components. For the formal specification of human-computerinteraction, it is
also necessary to explicitly describe properties of the messages exchanged be-
tween components, i.e. properties of the communication protocol. A wide range of
formal methods are used in protocol analysis. Meadows (2003) gives an overview
of formal methods used for cryptographic protocol analysis. For cryptographic
protocols, the Dolev-Yao model (Dolev and Yao, 1981) and itsvarious variants
are widely used. Burrows et al. (1989) developed BAN logic, alogic for the de-
scription of the belief’s of message agents about their communication partners
and about the messages exchanged between them. BAN logic is decidable, and
automated reasoning tools for BAN logic are available (Brackin, 1998). Other ap-
proaches use the standardized formal description techniques (FDTs) Estelle, SDL
and LOTOS (Turner, 1993). Model checkers like FDR and theorem provers like
Isabelle have been used for cryptographic protocol analysis (Lowe, 1996; Paulson,
1998).

Temporal logic based methods are rarely used for protocol specification, be-
cause temporal logic has no means to identify unique messages in a stream, and
components are not composable, i.e. in order to guarantee the correctness of
a specification, all component specifications must be available. It is not possi-
ble to evaluate the correctness of components independent of each other. Jmaiel
(1994) introduces a method to overcome both weaknesses: By “coloring mes-
sages” unique messages can be identified. By introducing communication chan-
nels and the semantics of operators on channels, composability of components is
achieved. In this work, we have adapted this idea to our approach for modeling
HCI. Our approach differs from Jmaiel’s in two ways. While Jmaiel uses LTL, we

73

74 CHAPTER 9. SYSTEM MODEL

use CTL, because CTL is more suitable for the formal description of HCI secu-
rity requirements. Jmaiel defines the semantics of transition systems via traces of
messages. Our definition of transition system semantics is based on the states of
the transition system. We associate transition system states with the messages that
lead into the states. This allows us to use the same definitionof transition system
semantics both for the internal working of the components (white box view), and
the communication behavior of the components (black box view). This way, it
becomes possible to apply our approach to individual components, and to define
properties of communication protocols in our approach.

In Section 4.1, linear and parallel composition (Definitions 4.3 and 4.4) have
been used in order to deduce properties of the system. An example for this ap-
proach has been given in Section 6.2.1. In order to deduce properties of the sys-
tem, a complete specification of all components was required. We would, how-
ever, like to describe components separate from each other by describing their
input/output behavior by logical formulae. In order to describe the messages sent
and received by a component, we have to define logical propositions that hold
whenever a message is send or received. The IOLTS semantics defined in Sec-
tion 4.1 are based on the state of the IOLTS. Valuation function λ takes the cur-
rent state of the IOLTS as its argument. In order to describe components by the
messages input and output of the component, we give an alternative definition of
IOLTS semantics based on traces instead of paths (see Definition 4.6 in Chap-
ter 4).

Definition 9.1 (Trace Semantics). Given an IOLTSL = (S ,Σ,s0,→), a domain
D , and a set of interpretationsI a trace valuationλ is a mapping fromΣ to I .
L,λ ,σ0 |= φ denotes thatφ holds in stateσ0 with valuation functionλ . L,λ ,x |=
φ denotes thatφ holds for all pathsx = 〈σ0,σ1, . . .〉 with valuation functionλ . λ
is defined inductively as as follows:

L,λ ,σ0 |= p(t1, . . . , tn) if (I (t1), . . . ,I (tn)) ∈ I (p) with I = λ (σ0)

L,λ ,σ0 |= ¬ φ if not L,λ ,σ0 |= φ
L,λ ,σ0 |= φ ∧ ψ if L,λ ,c |= φ andL,λ ,σ0 |= ψ
L,λ ,σ0 |= φ ∨ ψ if L,λ ,σ0 |= φ or L,λ ,σ0 |= ψ
L,λ ,σ0 |= ∀x .φ if L,λ ,σ0 |= φ[x/y] for all y ∈ D

L,λ ,σ0 |= ∃x .φ if L,λ ,σ0 |= φ[x/y] for at least oney ∈ D

L,λ ,x |= φ if L,λ ,σ0 |= φ
L,λ ,x |= Aφ if L,λ ,x |= φ for all pathsx in L starting withσ0

L,λ ,x |= Eφ if L,λ ,x |= φ for at least one pathx in L starting withσ0

L,λ ,x |= Xφ if L,λ ,x1 |= φ

9.1. MESSAGES 75

L,λ ,x |= φUψ if (a) L,λ ,σ0 |= ψ
or (b) there is somei ≥ 1 s.t.L,λ ,x i |= ψ

andL,λ ,x k |= φ for all 0≤ k < i

L,λ ,x |= Gφ if L,x i |= φ for all i ≥ 0

L,λ ,x |= Fφ if L,x i |= φ for somei ≥ 0

Temporal logic statements about messages become possible if valuation func-
tion λ providesexplicit message passing. We definemessage predicatesin the
same way we defined state predicates (see Definition 4.9 in Section 4.2):

Definition 9.2 (Message Predicate). LetL = (S ,Σ,s0,→) be an IOLTS. Letλ be
a trace valuation function. The model containsmessage predicatesif the trace
valuation functionλ has the following properties:

messagePreds(L,λ) ≡ L,λ ,σ |= σ
L,λ ,σ ′ 6|= σ if σ 6= σ ′

With these definitions, it becomes possible to prove temporal logic statements
about message input and output of the application. For example, we can show
that it is possible that the component from Figure 4.6 (Chapter 4) never receives
“CancelVote” immediately followed by “ConfirmVote”. Appendix A.3 shows the
changes to the file given in Appendix A.1 in order to check thisproperty with
NuSMV.

Now, we introduce the approach of Jmaiel (1994) for composable component
definitions. With this approach, it becomes possible to prove properties of com-
ponents independently of other components. When composingcomponents, the
output symbols of one component are identical to the input symbols of the other
component and both systems are run synchronously. Jmaiel (1994) calls the (uni-
directional) connection between systemschannels. In Jmaiel’s approach, chan-
nels are named. For two componentsA andB , connected by a communication
channelX , transfer of a messagem is represented by predicates[A sndm on X],
[X xmt m], and[B rcv m on X]. We assume that communication channels are
fixed and messages are not lost on transport1, therefore

[A sndm on X] ≡ [X xmt m] ≡ [B rcv m on X]

if A and B are connected byX . In Jmaiel’s approach,[S xmt m] are atomic
propositions for all componentsS and for all messagesm. We link this approach
to our modeling method by defining a relationship between input/output symbols
and message transfers:

1Lossy channels can by modeled as lossy components in betweentwo communication chan-
nels.

76 CHAPTER 9. SYSTEM MODEL

Definition 9.3 (xmt -syntax). Let L = (S ,Σ,s0,→) be an IOLTS.L is in xmt -
syntaxif

• the set of input and output symbols is split inton setsΣ0, . . . ,Σn with Σ =
⋃

Σi and
⋂

Σi = ∅.

• there exist channel namesC0, . . . ,Cn and a set of messagesM such that
[Ci xmt m] ∈ Σi for all m ∈ M andCi .

We define an equivalence relationship on the set of messages.Relationship
“=” indicates that two messages have the same contents:

Definition 9.4. For all messagem andm ′, m = m ′ iff m andm ′ have identical
contents.

The definition of “=” is not sufficient for the definition of communication pro-
tocols, because it does not allow to discriminate between message with the same
content, i.e. it does not allow to uniquely identify messages on a stream, as shown
by Koymans (1992). Jmaiel uses “colors” to overcome this problem. Each mes-
sage has a distinct color. He uses a hierarchy of indexed congruence relation-
ships on the set of colors∼0,∼1, . . . ,∼n forming an inclusion chain∼n⊂∼n−1⊂
. . . ⊂∼0 for this, i.e. the following axioms hold:

Definition 9.5 (Congruence Axioms).

m ∼ m for all ∼∈ {∼0, . . . ,∼n }
m1 ∼ m2 ∧ m2 ∼ m3 → m1 ∼ m3 for all ∼∈ {∼0, . . . ,∼n }
m1 ∼ m2 → m2 ∼ m1 for all ∼∈ {∼0, . . . ,∼n }
m ∼i+1 m ′ → m ∼i m ′

We define that all incoming messages are distinct in respect to relationship∼:

Definition 9.6 (Distinct Coloration).

distCol(s,∼) ≡
∀m,m ′.[s xmt m] ∧ EXEF[s xmt m ′] → m 6∼ m ′

As an example for this methodology, we give the definition of ascreen com-
ponent. The component introduced here is part of the genericsystem model de-
scribed in Section 9.2. The screen component takes input from an application and
presents the data to the user. A screen is an “asynchronous” component. Once it
received some input, it will continuously output it until different input is provided.

9.2. ENVIRONMENT 77

Let d be an output device with input channels and output channelr . The
property of distinctively colored messages makes it possible to uniquely identify
all message ever sent on a path:

distCol(s,∼0)

Incoming messages are output by the component. For every incoming message,
there is an outgoing message from the same congruence class in respect to∼0:

∀m,m ′.[s xmt m] → AX [r xmt m ′] ∧ m ∼0 m ′

Finally, we define that the same message is continuously output until the screen
receives new input:

∀m ′,m ′′.(∀m.¬[s xmt m]) ∧ [r xmt m ′] → AX [r xmt m ′′] ∧ m ′ ∼0 m ′′

This leads to the following definition in one formula:

Definition 9.7 (Screen). Letd be an output device with input channels and output
channelr . d is a Screenif

distCol(s,∼0) ∧ ∀m,m ′.[s xmt m] → AX[r xmt m ′] ∧ m ∼0 m ′

∧ ∀m ′,m ′′.(∀m.¬[s xmt m]) ∧ [r xmt m ′] →
AX[r xmt m ′′] ∧ m ′ ∼0 m ′′

We assume that all incoming messages of the screen componentare distinct in
respect to relationship∼0. Outgoing messages are not distinct in this respect. If
one wants to compose screen with a subsequent component, it is desirable to be
able to discriminate between outgoing messages as well. Forthis, a new congru-
ence relationship∼1 can be defined asdistCol(d ,∼1). With these definitions, we
can uniquely identify incoming messages of the first component via relationsim0,
and uniquely identify incoming message of the second component via relation∼0.

9.2 Environment

The generic system model described in this chapter serves asa blueprint for the
definition of application models, user models, and securityrequirements. The
requirements for the application and the user model are as follows:

1. Be as generic as possible.

We are not interested in special purpose applications or in users with a spe-
cific goal in mind. The goal is to find models fitting large classes of appli-
cations and users.

78 CHAPTER 9. SYSTEM MODEL

2. Be as simple as possible.

The methodology for guaranteeing secure HCI should be suitable for auto-
mated reasoning techniques. Therefore, there should be as few components
with as few states as possible in the model.

3. Abstract from everything not relevant for security

Formal methods in HCI are usually used for usability studies. In these stud-
ies, a sophisticated an highly specialized user model is required. We use
formal methods to model HCI security. This allows to reduce the complex-
ity of the application and the user’s mental model to those aspects which
are relevant from a security point of view. It becomes possible to use simple
and generic user and application models and we can avoid the complexity
of models focusing on functionality and usability.

4. Build upon established methods

The system model should benefit from previous work on formal models for
human-computer interaction.

input
I

output
O

system
S

user
U

Figure 9.1: Abowd and Beale’s Interaction Framework (adapted from (Dix et al.,
1998))

In general, human-computer interaction can be described asa dialog between
two parties: A user and an application. Interactions can be described as traces
of message passing between user and application. Our template for a generic
system model follows Abowd and Beale’sInteraction Framework. Abowd and
Beale (1991) describe human computer interaction as a communication process
between four parties: The system (S), a user (U), an input interface (I), and an
output interface (O), as shown in Figure 9.1. The interaction framework model of
HCI describes all relevant parts of human-computer interaction while providing
an abstraction that is both suitable to encompass large classes of applications and
to describe security-relevant properties of human-computer interaction.

9.2. ENVIRONMENT 79

.

.

.

.

.

.

.

.

.

.

.

.

Application m

Device p Device p+1

Device 0 Device q

User 0

Application 0

User n

Figure 9.2: Generic System Model

80 CHAPTER 9. SYSTEM MODEL

Abowd and Beale’s interaction framework models a system, a user, and the in-
terfaces between them. In modern HCI environments, this model is only a special
case of a more general model of human-computer interaction.Our generic model
models a generic scenario, where a user may interact with a number of applica-
tions (the system is multi-tasking), and a number of users may have access to the
system (the system is multi-user.) This leads to the interaction model depicted in
Figure 9.2.

There is a number of users, a number of applications, a numberof devices
for user input (e.g. a keyboard, a mouse, a dedicated keypad for PIN entry), and
a number of devices for application output (e.g. screen, loudspeaker, dedicated
screen for PIN entry).

In our environment model, all users can send messages to all input devices,
all applications can receive messages from all input devices, all applications can
send messages to all output devices, and all users can receive messages from all
output devices. A communication path consists of a sender, areceiver, a device,
and two communication channels; one communication channelfrom the sender to
the device, and one communication channel from the device tothe receiver. We
refer to these channels asc(s,d) andc(d ,r), wherec refers to the channel,s refers
to the sender, andr refers to the receiver.

Definition 9.8 (Environment). LetU be the set of users withu = (su ,Σu ,s0u ,→u)
and Σu = Σ?u ∪Σ!u for all u ∈ U . Let A be the set of applications witha =
(sa ,Σa ,s0a ,→a) and Σa = Σ?a ∪Σ!a for all a ∈ A. Let D be the set of devices
withd = (sd ,Σd ,s0d ,→d) andΣd = Σ?d ∪Σ!d for all d ∈D . Let the set of devices
be divided into a set of input devicesI and output devicesO : D = I ∪O and
I ∩O = ∅. LetM be a set of messages. Theenvironmentenv(U ,A, I ,O ,M) is
defined a

• All elements of U,A,I, and O are inxmt -syntax with

– Σ?u ′ = {[c(o,u ′) xmt m] | o ∈ O ,m ∈ M } for all u ∈ U .

– Σ!u ′ = {[c(u ′,i) xmt m] | i ∈ I ,m ∈ M } for all u ∈ U .

– Σ?a ′ = {[c(i ,a ′) xmt m] | i ∈ I ,m ∈ M } for all a ∈ A.

– Σ!a ′ = {[c(a ′,o) xmt m] | o ∈ O ,m ∈ M } for all a ∈ A.

– Σ?i ′ = {[c(u,i ′) xmt m] | u ∈ U ,m ∈ M } for all i ∈ I .

– Σ!i ′ = {[c(i ′,a) xmt m] | a ∈ A,m ∈ M } for all i ∈ I .

– Σ?o′ = {[c(a,o′) xmt m] | a ∈ A,m ∈ M } for all o ∈ O .

– Σ?o = {[c(o′,u) xmt m] | u ∈ U ,m ∈ M } for all o ∈ O

9.2. ENVIRONMENT 81

We refer to communication paths by triples(s,d ,r). In our model, communi-
cation paths exists from the user via an input device to the application, and from
the application via an output device to the user

Definition 9.9 (Path). Let env(U ,A, I ,O ,M) be an environment. The set of paths
t(env(U ,A, I ,O ,M)) in the environment is defined as

(paths(U ,A, I ,O ,M))≡ {(u, i ,a) | u ∈ U , i ∈ I ,a ∈ A}
∪{(a,o,u) | u ∈ U ,o ∈ O ,a ∈ A}

With the environment model defined in Definition 9.8, we can describe the
following typical scenarios in a multi-user, multi-tasking environment:

Single user, single applicationThe traditional scenario of the interaction of one
user with one application is modeled by restricting the number of users and
applications to 1. This scenario is suitable to model typical dedicated de-
vices for secure human-computer interaction, like voting computers, where
authorized access to the machine is secured by external means:

singleUserSingleAppEnv≡
env(U ,A, I ,O ,M) and |U | = 1 and|A| = 1

Single users, multiple applicationsIn an environment where each workplace is
accessible to one user only (e.g. an office environment wherephysical locks
prevent employees to access the workspaces of other employees), but the
user may interact with a number of applications, the number of users (n) is
limited to 1, but multiple applications (m) may access the keyboard and the
screen.

singleUserSingleAppEnv≡
env(U ,A, I ,O ,M) and |U | = 1

Multiple users, single or multiple applications In the most open scenario, mul-
tiple users have access to the computer system, which may runa single or
multiple applications. One can further distinguish between scenarios where
one user has access to the keyboard, but multiple users have access to the
screen (one user is using the computer, but others may look over his shoul-
ders), and full multi-user access to the system.

Next, we can define the system model used to describe HCI security by com-
bining the environment model with the user and application model. A system
model is an environment model with a distinguished user (u) and a distinguished

82 CHAPTER 9. SYSTEM MODEL

application (a). These are the user and application that we are modeling under
security aspects, while all other users and applications are third parties.

In Section 4.2, we defined core application predicates (Definition 4.10) and
core user predicates (Definition 4.11). The purpose of thesedefinitions was to de-
fine a fixed set of predicates that are used in all models of users and applications.
These generic predicates provide a generic framework for the formal statements
of application and user behavior. In the same way, we define core message pred-
icates. The core message predicates ensure that all incoming messages of appli-
cation input and output devices are distinctively colored.Distinct coloration is
required for the discrimination between messages passed bya component. Sec-
ondly, the core message predicates define predicatessecretandlegitimate. These
predicates respectively indicate if a message is secret, i.e. if it may be received by
authorized parties only, and who is legitimated to send and receive a message.

Definition 9.10(Secret and Legitimate Predicates). Let env(U ,A, I ,O ,M) by an
environment. LetL = (S ,Σ,s0,→) be an IOLTS modeling an application. Let
λ be a valuation function. The model containssecret and legitimate predicates
if secret and legitimate are inP and the valuation functionλ has the following
properties:

secretLegitimatePreds(L,λ) ≡
L,λ ,s |= secret(s,d ,r ,m) if s needs legitimization

when sendingm to r via deviced
L,λ ,s |= legitimate(s,d ,r ,m) iff s is legitimized to send

messagem to r via channeld

Definition 9.11 (System Model). Let env(U ,A, I ,O ,M) be an environment.
system(U ,A, I ,O ,M ,u,a,λ) is a system model iff

• u ∈ U

• a ∈ A

• coreAppPreds(a,λ)

• coreUserPreds(u,λ)

• secretLegitimatePreds(L,λ)

• For all usersx and input channelsi : distCol(c(x ,i),∼0)

• For all applicationsy and input channelso: distCol(c(y ,i),∼0)

Chapter 10

The Common Criteria

In this chapter, we investigate existing security catalogsfor their applicability to
user interface security. Our goal is to adapt the security requirement definitions of
the security catalogs to user interface security. By combining the formal concepts
developed from the Common Criteria with the formalizationsof the generic con-
cepts of information security developed in Chapter 11, we create a comprehensive
and systematic definition of human-computer interaction security.

10.1 Introduction to CC

Security catalogs are (more or less structured) collections of security require-
ments. They define properties of secure systems and provide avaluable resource
for the evaluation of security threats. The best known security book is the “De-
partment of Defense Trusted Computer System Evaluation Criteria” from 1985,
also known as the “Orange Book” (DoD 5200.28-STD). Althoughseminal, the
Orange Book is obsolete nowadays. Various national and international organiza-
tions adapted and enhanced computer security catalogs in the following decades,
leading to the Common Criteria for Information Technology Security Evaluation
(CC) (Common Criteria Evaluation Board (CCEB), 2006). The Common Crite-
ria are the most important attempt to formalize informationsystem security. The
Common Criteria have been developed by the governmental computer security
organizations of Canada, France, Germany, The Netherlands, The United King-
dom, and The United States. It has become the international standard ISO/IEC
15408:1999 and is one of the most comprehensive computer security catalogs.
On the downside, the Common Criteria provide a large number of functions to
pick from, without too much structure.

Security guidelines like the Common Criteria do not only define criteria for
security functionality, but also criteria for the design and evaluation process of

83

84 CHAPTER 10. THE COMMON CRITERIA

TOE target of evaluation (TOE) — a set of software, firmware and/or hard-
ware possibly accompanied by guidance.

TSF TOE Security Functionality (TSF) — a set consisting of all hardware,
software, and firmware of the TOE that must be relied upon for the
correct enforcement of the SFRs.

SFR security functional requirement
PP Protection Profile (PP) — an implementation-independent statement

of security needs for a TOE type.
SFP security function policy (SFP) — a set of rules describing specific

security behavior enforced by the TSF and expressible as a set of
SFRs.

Table 10.1: Glossary of Common Criteria terminology and abbreviations (Com-
mon Criteria Evaluation Board (CCEB), 2006, pages 16–18, 27)

applications. The highest evaluation level is EAL 7. EAL 7 requires a formal
presentation of the functional specification and high-level design, and a formal and
semi-formal demonstration of the correspondence between the high-level and the
low-level design. The correspondence with the actual implementation is shown by
extensive testing only. In this chapter, the parts of the Common Criteria relevant
to human-computer interaction are identified and formalized in CTL.

The Common Criteria define the following classes:

– Class FAU: Security audit

– Class FCO: Communication

– Class FCS: Cryptographic support

– Class FDP: User data protection

– Class FIA: Identification and authentication

– Class FMT: Security management

– Class FPR: Privacy

– Class FPT: Protection of the TSF

– Class FRU: Resource utilisation

– Class FTA: TOE access

– Class FTP: Trusted path/channels

Table 10.1 contains a glossary of Common Criteria terminology and abbrevia-
tions used in this thesis. In this chapter, we identify thoseelements of the Common
Criteria which are relevant to HCI security and formalize these. In order to link

10.1. INTRODUCTION TO CC 85

the formal definitions of Common Criteria concepts developed in this chapter to
the generic IT security requirements defined in the next chapter, we structure the
classes of the Common Criteria along the lines of Paths and Identification (Sec-
tion 10.2) and Privacy and Confidentiality (Section 10.3). Only classes relevant
to HCI security are taken into consideration. We start with aset of core defini-
tions. The core definitions are subsequently used to assign formal definitions to
Common Criteria concepts.

From the classes provided by the Common Criteria, the three classes Security
Audit (FAU), Cryptographic Support (FCS) and Security Management (FMT) are
not covered in this thesis, because they are not directly related to user interface
security. While Security Management (FMT), i.e. assignment and revocation
of security attributes, is not subject of this work, it can bemodeled by defining
temporal properties on legitimate communication (see Section 10.3).

From the other classes, the most important one for HCI security is class FTP,
because it defines security requirements for communicationchannels between par-
ties. In Section 10.2, we define the core concepts for the formalization of FTP and
the related classes FIA and FTA. We provide formal definitionof the concept
of a trusted path in Definition 10.1. FIA requirements are defined in respect to
the identification of communicating parties in HCI and authentication procedures.
Class FTA defines restrictions on the number of concurrent sessions per user and
locking of devices is formalized.

While classes Resource Utilisation (FRU) and Communication (FCO) are also
relevant for the definition of secure communication paths between the user and
an application, they are not addressed in Section 10.2. Resource utilisation and
resource allocation are already specified in the context of class FTAMCS and
FTA SSL. Fault tolerance of I/O devices is discussed in the formalization of class
FTA. For the access to I/O resources (FRUPRS and FRURSA) sophisticated for-
mal models of distribution and prioritizing shared resources are not required in the
context of HCI security, because typical user I/O resourceslike keyboard, mouse,
and screen can inherently be used by one user only at a time. Class Communi-
cation (FCO) deals with “assuring the identity of a party participating in a data
exchange” (Common Criteria Evaluation Board (CCEB), 2006,part 2, page 43).
We cover the identification of communicating parties in Section 10.2

Based on the core definitions of trusted paths, the relevant concepts of classes
User data protection (FDP) and Privacy (FPR) are formalizedin Section 10.3. In
the formalization of class Protection of the TSF (FPT), the core concepts required
for the definition of integrity and availability constraints are defined.

86 CHAPTER 10. THE COMMON CRITERIA

10.2 Paths and Identification (FTP, FIA, FTA, FRU,
FCO)

The first group of classes addresses the definition of communication paths, the
establishment, maintenance and closing of communication paths, and the identifi-
cation of communicating parties. The core of these classes is class FTP, defining
trusted paths and channels. Class Identification and Authentication (FIA) pro-
vides requirements for establishing authenticity of communication parties. Class
TOE access (FTA) defines requirements for establishing and maintaining com-
munication channels. Class Resource Utilisation (FRU) defines requirements for
allocation of resources. In the context of HCI, we are interested in resources for
the communication between the user and an application only.Class Communi-
cation (FCO) defines requirements for non-repudiability oforigin and receipt of
messages.

We start by developing a set of underlying core definitions inSection 10.2.1.
These core definitions are used in Section 10.2.2 in the formal definition of Com-
mon Criteria concept definitions, and in Chapter 11 as a common basis for Com-
mon Criteria definitions and the generic information security concepts of Confi-
dentiality, Integrity, and Availability.

Each of the definitions of the core conceptsC (. . .) is accompanied by a def-
inition of asmC(x , . . .), indicating if entityx assumes thatC (. . .) is true. These
definitions become important when we model the beliefs of theuser about the
state of the system.

10.2.1 Core Definitions

In this chapter we develop formal definitions of communication paths. The core
concept definitions build upon the generic system model fromChapter 9. In Com-
mon Criteria subclass FTPTRP, a trusted path is defined as

“FTP TRP.1.1: The TSF shall provide a communication path be-
tween itself and [selection: remote, local] users that is logically dis-
tinct from other communication paths and provides assured identifi-
cation of its end points and protection of the communicated data from
modification or disclosure.” (Common Criteria Evaluation Board (CCEB),
2006, part 2, page 171–172)

This is translated to the following formal definition:

Definition 10.1 (Trusted Path). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model. Let(s,d ,r) be a path. The path is trusted, if the parties are authenti-

10.2. PATHS AND IDENTIFICATION 87

cated (each party knows the identity of the other party), andmessages are neither
modified nor leaked:

trusted((s,d ,r)) ≡ authenticated((s,d ,r)) ∧ ¬leaks((s,d ,r))

∧ ¬modifies((s,d ,r))

PredicateasmTrustedis introduced to formalize if a party assumes that a path
is trusted:

Definition 10.2 (Assumptions about Trusted Path).
Let system(U ,A, I ,O ,M ,u,a,λ) be a system model. Let(s,d ,r) be a path.
Predicate asmTrusted(x ,(s,d ,r)) holds wheneverx assumes that property trusted
(Definition 10.1) holds.

The definition oftrustedmakes use of the predicateauthenticated. A chan-
nel is authenticated if both the assumptions of the sender about the receiver, and
the assumptions of the receiver about the sender are correct. We formalize these
assumptions by predicateasmIdentity(x ,(s,d ,r),s ′,d ′,r ′), indicating that user or
applicationx , that the channel(s,d ,r) connectss ′ via d ′ to r ′. The assumption
of x is correct ifs = s ′, d = d ′, andr = r ′.

Definition 10.3 (Assumptions about Identities).
Let system(U ,A, I ,O ,M ,u,a,λ) be a system model. Let(s,d ,r) be a path.
asmIdentity(x ,(s,d ,r),s ′,d ′,r ′) holds if x assumes that path(s,d ,r) connects
s ′ to r ′ via deviced ′.

A channel is successfully authenticated if both the assumptions of the sender
about the receiver, and the assumptions of the receiver about the sender are cor-
rect. For a sending partys and a receiving partyt , this is the case when both
asmIdentity(s,(s,d ,r),s,d ,r) and
asmIdentity(t ,(s,d ,r),s,d ,r) hold:

Definition 10.4 (Authentication). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model. Let(s,d ,r) be a path.

authenticated((s,d ,r)) ≡ asmIdentity(s,(s,d ,r),s,d ,r)

∧ asmIdentity(t ,(s,d ,r),s,d ,r)

A channel leaks messages if messages may end up with a non-intended re-
ceiver. The definition of a system model (Definition 9.11), require distinct col-
oration (Definition 9.6) for all messages on input channels of the user and the
application, i.e. for any two messagesm andm ′ on any of the input channels,

88 CHAPTER 10. THE COMMON CRITERIA

m 6∼m ′. If a messagem ′ on an output channel has the same color as a messagem

on an input channel (m ∼m ′), it is the same messages. We use these properties in
the definition of leaking. On a path(s,d ,r), all messages send on channelc(s,d)

should by received on channelc(d ,r). The path is leaking if a message send on
c(s,d) may be received on a channelc(d ′,r ′) with d 6= d ′ or r 6= r ′:

Definition 10.5 (Leaks). Let system(U ,A, I ,O ,M ,u,a,λ) be a system model.
Let (s,d ,r) be a path. The pathleaksif

leakes((s,d ,r)) ≡ ∃m,m ′,d ′,r ′.

[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′]

∧ m ∼ m ′ ∧ (d 6= d ′ ∨ r 6= r ′)

Definition 10.6 (Assumptions about Leaks). Let system(U ,A, I ,O ,M ,u,a,λ)
be a system model. Let(s,d ,r) be a path. Predicate asmLeak(x ,(s,d ,r)) holds
wheneverx assumes that property leaks (Definition 10.5) holds.

Messages on a channel may be modified if the channel introduces messages
(messages not sent by the sender are received by the receiver), if messages change
during transport, if the order of messages may change, or if messages may get
duplicated.

Definition 10.7 (Modifies).

modifies((s,d ,r)) ≡ intro((s,d ,r)) ∨ duplicates((s,d ,r))
∨ changes((s,d ,r)) ∨ mixes((s,d ,r))

Conceptintro describes that new messages may get introduced into a channel,
either by a third party, or by spontaneous creation in the device. On a channel
(s,d ,r), messages are introduced if there exists a message such thatmessagem
is received, but no messagem ′ of the same color has been sent before:

Definition 10.8(Introduction of Messages). Let system(U ,A, I ,O ,M ,u,a,λ) be
a system model. Let(s,d ,r) be a path. New messages are created on path(s,d ,r)
if

intro((s,d ,r)) ≡ ∃m.∀m ′.

A(¬([c(s,d) xmt m ′] ∧ m ∼ m ′))U[c(d ,r) xmt m]

Definition 10.9 (Assumptions about Introduction).
Let system(U ,A, I ,O ,M ,u,a,λ) be a system model. Let(s,d ,r) be a path.
Predicate asmIntro(x ,(s,d ,r)) holds wheneverx assumes that property intro
(Definition 10.8) holds.

10.2. PATHS AND IDENTIFICATION 89

Message are duplicated if a two messages of the same color mayoccur on an
output channel.

Definition 10.10 (Duplication). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model. Let(s,d ,r) be a path. A message on path(s,d ,r) is duplicated if

duplicates((s,d ,r)) ≡
∃m,m ′ : [c(d ,r) xmt m] ∧ EXEF[c(d ,r) xmt m ′] ∧ m ∼ m ′

Definition 10.11(Assumptions about no duplication).
Let system(U ,A, I ,O ,M ,u,a,λ) be a system model. Let(s,d ,r) be a path.
Predicate asmDuplicate((s,d ,r)) represents if the sender (the receiver) assumes
that propertyno duplicationholds on path(s,d ,r).

The content of messages may change on a path if two messages have the same
color (m ∼ m ′), but not the same content (m 6= m ′):

Definition 10.12(Changes).
Let system(U ,A, I ,O ,M ,u,a,λ) be a system model. LetM = (P ,LP ,D ,T) be
a model, and let(s,d ,r) be a path in modelM . A messages is changed on path
(s,d ,r) if

changes((s,d ,r)) ≡ ∃m,m ′.

[c(s,d) xmt m] ∧ EF[c(d ,r) xmt m ′]

∧ m ∼ m ′ ∧ m 6= m ′

Definition 10.13(Assumptions about Changes).
Let system(U ,A, I ,O ,M ,u,a,λ) be a system model. Let(s,d ,r) be a path.
Predicate asmChanges(x ,(s,d ,r)) holds wheneverx assumes that property
changes (Definition 10.12) holds.

Messages are mixed on a channel if a messagem is send before a messagen,
but messagesm ′ (with m ∼ m ′) is received aftern ′ (with n ∼ n ′):

Definition 10.14(Mixes). Let system(U ,A, I ,O ,M ,u,a,λ) be a system model.
Let (s,d ,r) be a path. Letm andn be messages on channelc(s,d), and letm ′, n ′

be messages on channelc(d ,r). Messages on path(s,d ,r) are mixed if

mixes((s,d ,r)) ≡
∃m,m ′,n,n ′ : [c(s,d) xmt m] ∧ EXEF[c(s,d) xmt n]

∧ EF([c(d ,r) xmt m ′] ∧ EF[c(d ,r) xmt n ′])

∧ m ∼ m ′ ∧ n ∼ n ′

∧ E(¬[c(d ,r) xmt m ′])U[c(d ,r) xmt n ′]

90 CHAPTER 10. THE COMMON CRITERIA

Definition 10.15(Assumptions about mixing). Let system(U ,A, I ,O ,M ,u,a,λ)
be a system model. Let(s,d ,r) be a path. Predicate asmMixes((s,d ,r)) rep-
resents if the sender (the receiver) assumes that propertymixes holds on path
(s,d ,r).

Note that losslessness isnot a required property. As we will see in the CC
concept definitions in Section 10.2.1, formal definitions ofconcepts relying on
trusted paths can be given without requiring losslessness.

Definition 10.16(Assumptions about Modifications).
Let system(U ,A, I ,O ,M ,u,a,λ) be a system model. Let(s,d ,r) be a path.
Predicate asmModifies(x ,(s,d ,r)) holds wheneverx assumes that property mod-
ifies((s,d,r)) (Definition 10.5) holds.

Note that these assumptions and properties may change. For example, a user
may assume that he is communicating with applicationA via the keyboard for
some time, while later on—after switching to a different application—he may
assume that he is communicating with applicationB now. We call thisopening,
maintaining, andclosinga communication path. Opening a communication path
(s,d ,r) means that a trusted path is established. Closing a communication path
means that the path is no longer trusted.

Definition 10.17 (Opening, Maintaining, and Closing a Communication Path).
Let system(U ,A, I ,O ,M ,u,a,λ) be a system model. Let(s,d ,r) be a path.

opening((s,d ,r)) ≡ ¬trusted((s,d ,r))
∧ AXtrusted((s,d ,r))

maintaining((s,d ,r)) ≡ trusted((s,d ,r))
∧ AXtrusted((s,d ,r))

closing((s,d ,r)) ≡ trusted((s,d ,r))
∧ AX¬trusted((s,d ,r))

10.2.2 Definitions of CC Concepts

The core definitions from Section 10.2.1 allow to formalize relevant subclasses of
Common Criteria classes FTP, FIA, FTA, FRU, and FCO.

• Class FTP: Trusted path/channels

This class cataloguizes requirements for trusted paths within a system (TSF-
ITC), and in the communication of a system with a user (FTPTRP). Only

the latter is relevant for HCI security.

10.2. PATHS AND IDENTIFICATION 91

“Families in this class provide requirements for a trusted com-
munication path between users and the TSF, and for a trusted
communication channel between the TSF and other trusted IT
products. Trusted paths and channels have the following general
characteristics:

– The communications path is constructed using internal and
external communications channels (as appropriate for the
component) that isolate an identified subset of TSF data and
commands from the remainder of the TSF and user data.

– Use of the communications path may be initiated by the user
and/or the TSF (as appropriate for the component)

– The communications path is capable of providing assurance
that the user is communicating with the correct TSF, and
that the TSF is communicating with the correct user (as ap-
propriate for the component)” (Common Criteria Evaluation
Board (CCEB), 2006, part 2, page 168)

“FTP TRP.1.2: The TSF shall permit [selection: the TSF, lo-
cal users, remote users] to initiate communication via the trusted
path.”(Common Criteria Evaluation Board (CCEB), 2006, part 2,
page 172)

We assume that requests to open a trusted path((x ,d ,r)) are issued by
sending messages. In the following definition, we assume that predicate
reqOpenholds when a message request the opening of a channel. If sucha
message send on a given path(s ′,d ′,r ′), then a trusted path(s,d ,r) shall
eventually be opened:

Definition 10.18 (FTP TRP.1.2). Let system(U ,A, I ,O ,M ,u,a,λ) be a
system model.

Let(s,d ,r) be the path that should become a trusted path, and let(s ′,d ′,r ′)
be the path for requesting opening of the trusted path. Let reqOpen(m) be
true if messagem requests opening of the trusted path. Then

FTP TRP.1.2((s,d ,r),(s ′,d ′,r ′)) ≡
∀m.[c(s ′,d ′) xmt m] ∧ reqOpen(m) → AFopening((s,d ,r))

“FTP TRP.1.3: The TSF shall require the use of the trusted path
for [selection: initial user authentication, [assignment: other ser-
vices for which trusted path is required]].”(Common Criteria Eval-
uation Board (CCEB), 2006, part 2, page 171)

92 CHAPTER 10. THE COMMON CRITERIA

In Section 9.2, the formal conceptssecretand legitimatehave been intro-
duced (Definition 9.10). These are used in the formal definition of FTP-
TRP.1.3. In the definition of FTPTRP.1.3,X (m) indicates thatm is part
of a service requiring a trusted path. FTPTRP.1.3 is defined as

Definition 10.19 (FTP TRP.1.3). Let system(U ,A, I ,O ,M ,u,a,λ) be a
system model. LetX be a predicate indicating if a message is part of the
service for which the trusted path is required. Then

FTP TRP.1.3(s,d ,r ,X)≡
∀m.X (m) ∧ [c(s,d) xmt m] → trusted((s,d ,r))

• Class FIA: Identification and authentication

An important aspect of trusted paths is the identification ofthe parties in-
volved in the communication. The Common Critiera dedicate awhole class
to this, FIA: Identification and authentication. Correctness of the actual pro-
tocols used for authentication is not the subject of this thesis. We assume
the authentication protocols are correct, and give formal definitions of the
Common Criteria subclasses related to authentication.

“FIA AFL.1.1: The TSF shall detect when [assignment: num-
ber] unsuccessful authentication attempts occur related to [as-
signment: list of authentication events].”(Common Criteria Eval-
uation Board (CCEB), 2006, part 2, page 89–90)

Authentication was succesful if a state of non-authentication is followed by
a state of authentication. We assume predicateauthenticatedholds on suc-
cessful authentication, and predicateauthFailedholds if an authentication
attempt failed. A counterauthAttemptsCounteris defined as follows: If au-
thentication was successful , thenauthAttemptsCounter(0) holds in the next
step. If authentication failed, thenauthAttemptsCounteris increased by 1
in the next step. If neither a successful nor an unsuccessfulauthentication
attempt happened, theauthAttemptsCounterstays the same.

Definition 10.20(Counting Authentication Attempts).
Let system(U ,A, I ,O ,M ,u,a,λ) be a system model. Let authenticated
hold when an authentication attempt was succesful, and let authFailed hold
when an authentication attempt failed. A counter numFailedAuth(n) for the

10.2. PATHS AND IDENTIFICATION 93

number of failed attempts is defined as

authAttemptsCounter≡
(authenticated→

AXnumFailedAuth(0)
∧ ∀m.AX(m 6= 0→¬numFailedAuth(m)))

∧ (authFailed∧ numFailedAuth(n) →
AXnumFailedAuth(n +1)
∧ ∀m.AX(m 6= n +1→¬numFailedAuth(m)))

∧ (¬authFailed∧ ¬authenticated∧ numFailedAuth(n) →
AXnumFailedAuth(n)
∧ ∀m.AX(m 6= n →¬numFailedAuth(m)))

“FIA AFL.1.2: When the defined number of unsuccessful au-
thentication attempts has been met or surpassed, the TSF shall
[assignment: list of actions].”(Common Criteria Evaluation Board
(CCEB), 2006, part 2, page 90)

Definition 10.21 (FTP AFL.1.2). Let system(U ,A, I ,O ,M ,u,a,λ) be a
system model. Letn be the maximal number of authentication attempts. Let
maxAuthExceededAction hold when the actions assigned to anexcess of the
maximum number of authentication attempts are executed. Then

FTP AFL.1.2(n) ≡
authAttemptsCounter∧
(numFailedAuth(n) → AXmaxAuthExceededAction)

“FIA ATD.1.1: The TSF shall maintain the following list of
security attributes belonging to individual users: [assignment:
list of security attributes].”(Common Criteria Evaluation Board
(CCEB), 2006, part 2, page 91)

User security attributes are defined by predicates. The actual predicates
depend on the application. In the context of confidentialityrequirement we
defined predicatesecretandlegitimate(Definition 9.10).

From the type of authentication mechanisms defined in FIAUAU, FIA -
UAU.1/FIA UID.1 and FIA UAU.2/FIA UID.2 deal with operations possi-
ble before authentication:

“FIA UAU.1 Timing of authentication, allows a user to perform
certain actions prior to the authentication of the user’s identity.

94 CHAPTER 10. THE COMMON CRITERIA

“FIA UAU.2 User authentication before any action, requires that
users authenticate themselves before any action will be allowed
by the TSF.”(Common Criteria Evaluation Board (CCEB), 2006,
part 2, page 94)

We define legitimate actions vialegitimate. If a message may be send prior
authentication, then it is always legitimate to send the message:

Definition 10.22(FIA UAU.1). Let system(U ,A, I ,O ,M ,u,a,λ) be a sys-
tem model. Letd be the device, andl the set of set of messages allowed to
be communicated before authentication. Then

FIA UAU.1(d , l) ≡
AG∀s,m.m ∈ l → legitimate(s,d ,a,m)

If the user must be authenticated before sending any message, then sending
a message is legitimate only if the path is authenticated:

Definition 10.23(FIA UAU.2). Let system(U ,A, I ,O ,M ,u,a,λ) be a sys-
tem model. Letd be the device. Then

FIA UAU.2(d) ≡
∀m.legitimate(u,d ,a,m) → authenticated((u,d ,a))

FIA UAU.3 requires unforgeable authentication, FIAUAU.4 single-use au-
thentication, FIAUAU.5, multiple authentication mechanisms, and FIA-
UAU.7 defines requirements for feedback in the authentication process.
These are not subject of this thesis, because we treat the authentication pro-
cess as a “black box”; we do not model the actual method used for authen-
tication.

“FIA UAU.6 Re-authenticating, requires the ability to specify
events for which the user needs to be re-authenticated.”

If the system is in a state requiring re-authentication, then the path between
user and application will not be authenticated in the next step:

Definition 10.24(FIA UAU.6). Let system(U ,A, I ,O ,M ,u,a,λ) be a sys-
tem model. Letd be an input device and lett be the set of states for which
re-authentication is required.

FIA UAU.6(d , t) ≡
∀x .state(x) ∧ x ∈ t → AX¬authenticated(u,d ,a)

10.2. PATHS AND IDENTIFICATION 95

User-subject binding is defined in FIAUSB as:

“FIA USB.1.1: The TSF shall associate the appropriate user se-
curity attributes with subjects acting on behalf of that user.”(Common
Criteria Evaluation Board (CCEB), 2006, part 2, page 101)

This is achieved by associating users with paths. This is achieved by Def-
inition 10.4 (Authentication). In the definition oflegitimate, the security
attributes are defined on combinations of users, paths, and receivers.

• Class FTA: TOE access

Class FTA: TOE access deals with session management. In the context of
HCI, sessions are closely related to the access to I/O resources. Therefore,
the relevant parts of this class are similar to the relevant parts of the classes
dealing with I/O resource allocation. Class FTASSL (Session locking) ad-
dresses the question of maintaining and re-establishing a trusted session.
From the subclasses of class FTA (TOE Access), FTAMCS (Limitation on
multiple concurrent sessions (FTAMCS) is relevant for HCI security:

“FTA MCS.1.1: The TSF shall restrict the maximum number of con-
current sessions that belong to the same user.

“FTA MCS.1.2: The TSF shall enforce, by default, a limit of [assign-
ment: default number] sessions per user.”(Common CriteriaEvalua-
tion Board (CCEB), 2006, part 2, page 161)

This is achieved by enforcing a maximal number of authenticated paths asso-
ciated with a user at all times:

Definition 10.25 (Set of trusted paths). Let system(U ,A, I ,O ,M ,u,a,λ) be a
system model. The set of trusted paths (paths) is defined as

paths≡ {(u,d ,a) | trusted((u,d ,a)) for somed}

We formalize FTAMCS.1:

Definition 10.26 (FTA MCS.1). Let m be the maximal number of sessions per
user. FTAMCS.1 is satisfied if

FTA MCS.1(m) ≡ |paths| ≤ m

FTA SSL:

96 CHAPTER 10. THE COMMON CRITERIA

“This family defines requirements for the TSF to provide the capabil-
ity for TSF- initiated and user-initiated locking and unlocking of inter-
active sessions.”(Common Criteria Evaluation Board (CCEB), 2006,
part 2, page 162)

If a device (path) is locked, all incoming messages will be discarded, i.e. all
input arriving on a locked device is discarded; also, messages which arrived before
the device was locked will not be send while the device is locked. The formal
specification ofPath Lockingconsists of two conjuncts. The first conjunction
defines that if a messagem is send while the path is locked, then no messagem ′

of matching color (m ∼ m ′) will ever be received, even if the path is unlocked
later on. The second conjunct defines that no message is received while the path
is locked.

Definition 10.27 (Path Locking). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model. Locking of a path(s,d ,r) is defined as

locked((s,d ,r)) ≡ ∀m,m ′,m ′′.
[c(s,d) xmt m] →

¬(EF[c(d ,r) xmt m ′] ∧ m ∼ m ′)

∧ ¬[c(d ,r) xmt m ′′]

If a path is completely locked, no interaction is possible. The definition of
FTA SSL.1.1 however requires that operations for unlocking thepath are still
possible. The formal definition ofPartial Path Lockingis very similar to the
definition of Path Locking. The only difference is that messages which satisfy
propertyauthMesgmay be communicated on partially locked paths:

Definition 10.28 (Partial Path Locking). Let system(U ,A, I ,O ,M ,u,a,λ) be a
system model. Let authMsg(m) hold whenever a messagem is part of the authen-
tication protocol. Then partial locking is defined as

partLocked((s,d ,r)) ≡ ∀m,m ′,m ′′.
[c(s,d) xmt m] ∧ ¬authMsg(m) →

¬(EF[c(d ,r) xmt m ′] ∧ m ∼ m ′)
∧ ¬[c(d ,r) xmt m ′′] ∨ authMsg(m ′′)

“FTA SSL.1.1: The TSF shall lock an interactive session after [as-
signment: time interval of user inactivity] by:
- clearing or overwriting display devices, making the current contents
unreadable;
- disabling any activity of the user’s data access/display devices other
than unlocking the session.”(Common Criteria Evaluation Board (CCEB),
2006, part 2, page 162)

10.2. PATHS AND IDENTIFICATION 97

In our framework, time is represented as time steps. The property of the user
not making an input forn-time steps is formalized in a way very similar to the
formalization of the counter of failed authentication attempts (Definition 10.20).
When the user sends a message ([c(u,d ,) xmt m]), the counternoInputis set to zero
in the next step. If the user does not send a message, thennoInputis increased by
one in the next step:

Definition 10.29 (Time without User Input). Let system(U ,A, I ,O ,M ,u,a,λ)
be a system model. The time without user input on a path(u,d ,r) is defined as

noUserInputCounter((u,d ,r)) ≡
((∃m.[c(u,d) xmt m]) →

AXnoInput((u,d ,r),0)
∧ ∀p.AX(p 6= 0→¬noInput((u,d ,r),p)))

∧ ∀m ′.(¬[c(u,d) xmt m ′] ∧ noInput((u,d ,r),n) →

AXnoInput((u,d ,r),n +1))
∧ ∀p.AX(p 6= n +1→¬noInput((u,d ,r),p)))

With the definition ofnoInput it is possible to FTASSL.1.1. In the formal-
ization of FTA SSL.1.1, we assume that two paths should be locked after no user
activity: The path from the user to the application via an input deviced , and the
path from the application to the user via an output deviced ′.

Definition 10.30.
Let system(U ,A, I ,O ,M ,u,a,λ) be a system model. Let(u,d ,a) be the input
path and(a,d ′,u) be the output path. Letn be the time after which the paths
shall be locked in case of no user input. Then

FTA SSL.1.1(d ,d ′,n) ≡
noInput((u,d ,a),m) ∧ n ≤ m →

partLocked((u,d ,a)) ∧ partLocked((u,d ′,a))

In our definitions oflockedand partLocked, no messages are output on a
blocked device. Therefore, explicitly cleaning the screenis not necessary. In
Section 14.2 we show how a realistic screen component is modeled and how it
affects system security.

FTA SSL.2 and FTASSL.3 require that locking can be initiated by the user
(FTA SSL.2) and the application (FTASSL.3). We assume there is a predicate
lockIt which holds for messages requesting locking. When a messagesatisfying
lockIt is send, then the path from the user to the application ((u,d ,a)), and the
path from the application to the user ((a,d ′,u)) shall be locked in the next step:

98 CHAPTER 10. THE COMMON CRITERIA

Definition 10.31 (FTA SSL.2). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model. Let(u,d ,a) be the input path and(a,d ′,u) be the output path. Let predi-
cate lockIt(m) indicate ifm is a message requesting locking. Then

FTA SSL.2(d ,d ′) ≡
∀m.[c(u,d) xmt m] ∧ lockIt(m) →

AX(partLocked((u,d ,a)) ∧ partLocked((a ′,d ,u ′)))

“FTA TAB.1.1 Before establishing a user session, the TSF shall dis-
play an advisory warning message regarding unauthorised use of the
TOE.”(Common Criteria Evaluation Board (CCEB), 2006, part2,
page 165)

We assumebanner(m) holds ifm is a message showing the advisory message.
If a trusted channel is opened, an advisory message should beshown in the next
step:

Definition 10.32(FTA TAB.1.1). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model. Let banner(m) be true if messagem is a banner. Letd be the device where
the banner shall be shown.

FTA TAB.1.1(d) ≡
∃m.banner(m) ∧
opening((a,d ,u)) → AX[c(d ,u) xmt m])

“FTA TAH.1.1 Upon successful session establishment, the TSF shall
display the [selection: date, time, method, location] of the last suc-
cessful session establishment to the user.”(Common Criteria Evalua-
tion Board (CCEB), 2006, part 2, page 166)

The formal definition of FATTAH.1.1 is very similar to the definition of
FTA TAB.1.1. We assumeest(m) holds if m is a message showing the infor-
mation about last successful session establishment. If a trusted channel is opened,
an information message should be shown in the next step:

Definition 10.33(FTA TAH.1.1). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model. Let est(m) be true if messagem displays the relevant information. Letd

be the device where the information shall be shown.

FTA TAH.1.1(d) ≡
∃m.est(m) ∧
opening((a,d ,u)) → AX[c(d ,u) xmt m])

10.2. PATHS AND IDENTIFICATION 99

“FTA TAH.1.2 Upon successful session establishment, the TSF shall
display the [selection: date, time, method, location] of the last unsuc-
cessful attempt to session establishment and the number of unsuccess-
ful attempts since the last successful session establishment.”(Common
Criteria Evaluation Board (CCEB), 2006, part 2, page 166)

The formal definition of FTATAH.1.2 is very similar to FTATAB1.1 and
FTA TAH.1.1. In the definition of FTATAB1.1, banner(m) is true for messages
showing a banner. In the definition of FTATAH1.1, est(m) is true for messages
showing the relevant information about session establishment. In the definition of
FTA TAH1.2, failedAttempts(m) is true for messages showing information about
the number of failed authentication attempts.

Definition 10.34(FTA TAH.1.2). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model. Let failedAttempts(m) be true if messagem displays the relevant informa-
tion about failed authentication attempts. Letd be the device where the informa-
tion shall be shown.

FTA TAH.1.2(d) ≡
∃m.failedAttempts(m) ∧
opening((a,d ,u)) → AX[c(d ,u) xmt m])

“FTA TAH.1.3 The TSF shall not erase the access history information
from the user interface without giving the user an opportunity to re-
view the information.”(Common Criteria Evaluation Board (CCEB),
2006, part 2, page 166)

Since we have a integrated view on HCI security, we strengthen FTA TAH.1.3
to the requirement that the user has recognized the system state. If a messagem
with the information about failed authentication attempts(mifailedAttempts(m)
holds) is send on the path, then a messagem ′ of the same color (m ∼m ′) will hold
until the user’s assumption about failed attempts is identical to the information in
messagem (miasmFailedAttempts(u,m)) holds.

Definition 10.35(FTA TAH.1.3). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model. Let failedAttempts(m) be true if messagem displays the relevant informa-
tion. Let asmFailedAttempts(m) hold if the user assumes that the access history
information is identical to the information in messagem. Let d be the device
where the information shall be shown.

FTA TAH.1.3(d) ≡
∃m.failedAttempts(m) ∧ ([c(a,d) xmt m]) →

AXA(([c(d ,u) xmt m ′]) ∧ m ∼ m ′)UasmFailedAttempts(u,m)

TOE session establishment (FTATSE) (Common Criteria Evaluation Board
(CCEB), 2006, part 2, page 167) is not specific to user interface security.

100 CHAPTER 10. THE COMMON CRITERIA

10.3 Privacy and Confidentiality (FDP, FPR)

10.3.1 Overview

Privacy and confidentiality requirements are covered in twoclasses of the Com-
mon Criteria. Class FDP defines user data protection requirements. Class FPR
defines privacy requirements. Class FDP (User data protection) is described as
follows:

“This class contains families specifying requirements related to pro-
tecting user data. FDP: User data protection is split into four groups
of families (listed below) that address user data within a TOE, dur-
ing import, export, and storage as well as security attributes directly
related to user data.”(Common Criteria Evaluation Board (CCEB),
2006, part 2, page 54)

Only some of the sub-classes of FDP are relevant for HCI security. Classes
FDP ACC and FDPIFC define access and information flow control policies.
FDP RIP deals with secure information deletion. FDPROL defines requirements
for returning to a previous state. The other classes of this sub-set are not relevant
to human-computer interaction: FDPITT is concerned with data transfer within
a system. This is not relevant for our work, because we only model data flow
between the user and the application. Also, FDPSDI is not relevant because it
defines requirements for stored data integrity. FDPACF and FDPIFF provide a
list of requirement definitions for fine-grained information control policies. Since
this is not directly relevant to HCI security, we do not formalize FDP ETC,which
governs the export of data outside the TSF. FDPDAU defines requirements for
guaranteeing authenticity of data. FDPUCT defines confidentiality requirements
and class FDPUIT integrity requirements

10.3.2 Core Definitions

In the Common Criteria, privacy is understood as Anonymity (non-disclosure of
user’s identity), Pseudonymity (non-disclosure of user’sidentity while still being
accountable), Unlinkability (multiple uses of resources can not be linked by third
parties), and Unobservability (third parties can not observe if a user is using a
service).(Common Criteria Evaluation Board (CCEB), 2006,part 2, page 118–
125) The Common Criteria definition of privacy is concerned with protecting data
from disclosure, like in the following example:

“In FPR ANO.2.2 the PP/ST author should identify the list of ser-
vices which are subject to the anonymity requirement, for example,

10.3. PRIVACY AND CONFIDENTIALITY 101

‘the accessing of job descriptions’”. (Common Criteria Evaluation
Board (CCEB), 2006, part 2, page 268)

In the context of HCI interaction, we are only interested in the privacy of
the communication channels between the user and the application. Therefore,
Common Criteria class FPR is not formalized here.

For HCI privacy, all information send via a path(s,d ,r) is received by the
legitimate receiver only, i.e. if somebody gets a delivery,it must come from the
correct device and sender. If a messagem send on the path ([c(s,d) xmt m]) and a
message of the same color is eventually received somewhere else
(EF[c(d ′,r ′) xmt m ′] ∧ m ∼ m ′), then it should be received on the same path, i.e.
d = d ′ ∧ r = r ′:

Definition 10.36(Private). Let system(U ,A, I ,O ,M ,u,a,λ) be a system model,
and let(s,d ,r) be a path in modelM . The path isprivateif

private((s,d ,r)) ≡
[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ∼ m ′ →

d = d ′ ∧ r = r ′

Definition 10.37(Assumptions about privacy). Let system(U ,A, I ,O ,M ,u,a,λ)
be a system model. Let(s,d ,r) be a path. Predicate asmPrivate(x ,(s,d ,r)) holds
wheneverx assumes that property private((s,d ,r)) (Definition 10.36) holds.

10.3.3 Definitions of CC Concepts

“FDP IFC.1.1 The TSF shall enforce the [assignment: information
flow control SFP] on [assignment: list of subjects, information, and
operations that cause controlled information to flow to and from con-
trolled subjects covered by the SFP].”(Common Criteria Evaluation
Board (CCEB), 2006, part 2, page 66)

We usesecretandlegitimate(Definition 9.10) in the definition of FDPIFC.1.1.
FDP IFC.1.1 is satisfied if all messagesm declared secret if send froms to r via
d (secret(s,d ,r ,m)) are send only if sending is legitimate (legitimate(s,d ,r ,m)):

Definition 10.38 (FDP IFC.1.1). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model.

FDP IFC.2.1≡
∀s,d ,r ,m.[c(s,d) xmt m] ∧ secret(s,d ,r ,m) →

legitimate(s,d ,r ,m)

102 CHAPTER 10. THE COMMON CRITERIA

“FDP IFC.2.2 The TSF shall ensure that all operations that cause any
information in the TSC to flow to and from any subject in the TSC
are covered by an information flow control SFP.”(Common Criteria
Evaluation Board (CCEB), 2006, part 2, page 66)

Message flow is covered by an information control flow policy if the message
is declared secret. In order to satisfy FDPIFC.2.2 all messages which may be
potentially send on any device from the user to the application or from the appli-
cation to the user must be declared secret:

Definition 10.39 (FDP IFC.2.2). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model.

FDP IFC.2.2≡
∀d ,m,r .
(d ∈ I → secret(u,d ,r ,m))
∧ (d ∈ O → secret(a,d ,r ,m))

FDP RIP (Residual information protection) deals with data deletion: “This
family addresses the need to ensure that deleted information is no longer accessi-
ble, and that newly created objects do not contain information that should not be
accessible.”(Common Criteria Evaluation Board (CCEB), 2006, part 2, page 77).

The only requirement in this class is FDPRIP.1.1:

“FDP RIP.1.1 The TSF shall ensure that any previous information
content of a resource is made unavailable upon the [selection: al-
location of the resource to, deallocation of the resource from] the
following objects: [assignment: list of objects].”(Common Criteria
Evaluation Board (CCEB), 2006, part 2, page 77).

In respect to the user interface, we have to make sure that data coming from
and going to the I/O devices is securely deleted. For example, sensitive data
should be deleted from the keyboard buffer before a different application gets ac-
cess to it, and from the screen before a different user gets access to it. When output
devices like the screen are updated asynchronously, it may happen that logically
deleted information is still present on the screen. For human-computer interac-
tion, this is identical to the locking requirement of FTASSL.1 and FTASSL.2
for screen and keyboard. See Definitions 10.27 to 10.31.

FDP IFF (Information Flow control functions) requires a fine grained infor-
mation flow policy including hierarchical security attributes. In this work, we are
content with security attributes defined bylegitimate.

We do not formalize classes FDPITC (Import from outside TSF control),
FDP ITT (Internal TOE transfer), FDPUCT (Inter-TSF user data confidentiality

10.3. PRIVACY AND CONFIDENTIALITY 103

transfer protection), and FDPUIT (Inter-TSF user data integrity transfer protec-
tion), because we only consider data flow between the user andthe application,
not in between applications and systems.

Rollback operations (FDPROL) allow to return to previous states of the sys-
tem.

“FDP ROL.1.1 The TSF shall enforce [assignment: access control
SFP(s) and/or information flow control SFP(s)] to permit theroll-
back of the [assignment: list of operations] on the [assignment: list of
objects].”(Common Criteria Evaluation Board (CCEB), 2006, part 2,
page 79–80)

In our system model, states of the system are represented as states of IOLTS.
Predicatestate(x) indicates if a system component is in statex (Definition 4.9).
We assume there are two statesx andy and a messagem. The application shall
rollback from statey to statex if messagem is send. For this, two conditions
have to be satisfied. First, the application must be in statex and will eventually be
in statey (state(x) ∧ EFstate(y)). Second, whenever the application is in statey

in the future, and messagem is send, then the application will be in statex again,
eventually, and until the application is in statex again, it will never be in a fatal
state (AG(state(y) ∧ [c(u,d) xmt m] → (A(¬fatal)Ustate(x)))).

Definition 10.40(FDP ROL.1.1). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model. Letx and y be states, and let(u,d ,a) be a path from the user to the
application. Letm be a message which, if send on path(u,d ,a), initiates rollback
from statey to statex . Then

FDP ROL.1.1(x ,y ,(u,d ,a),m) ≡
state(x) ∧ EFstate(y) →

AG(state(y) ∧ [c(u,d) xmt m] →

(A(¬fatal)Ustate(x)))

“FDP ROL.1.2 The TSF shall permit operations to be rolled back
within the [assignment: boundary limit to which rollback may be per-
formed].”(Common Criteria Evaluation Board (CCEB), 2006,part 2,
page 80)

For this, we define a relationrollbackPossible(x ,y), indicates that rollback
from statey to statex is possible. Furthermore, letrollbackCommandbe a func-
tion from a tuple of states to a message, indicating that the message initiates a
rollback from the second element of the tuple to the first element of the tuple.
Then FDPROL.1.2 is satisfied if FDPROL.1.1 holds for allx andy for which
rollback is possible with rollback commandrollbackCommand(x ,y):

104 CHAPTER 10. THE COMMON CRITERIA

Definition 10.41(FDP ROL.1.2). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model. Let(u,d ,a) be a path from the user to the application. Let rollbackPossible
be a relation with two states as arguments, and let rollbackCommand be a map-
ping from tuples of states to messages. Then

FDP ROL.1.2((u,d ,a), rollbackPossible, rollbackCommand) ≡
∀x ,y ,m.rollbackPossible(x ,y) →

FDP ROL.1.1(x ,y ,(u,d ,a), rollbackCommand(x ,y))

FDP DAU defines requirements for guaranteeing authenticity of data:

“Data authentication permits an entity to accept responsibility for the
authenticity of information (e.g., by digitally signing it).”(Common
Criteria Evaluation Board (CCEB), 2006, part 2, page 61)

Digital signature methods are not subjects of HCI security,but guaranteeing that
the user knows what he is signing is. When the user takes responsibility for some
data (e.g. by signing it), the data stored in the system should correspond to the
user’s opinion about the data. We discuss this in the contextof methods for guar-
anteeing data integrity in Chapter 11. Sub-concepts FDPUCT and FDPUIT
require a definition of data privacy:

“FDP UCT.1.1 The TSF shall enforce the [assignment: access control
SFP(s) and/or information flow control SFP(s)] to be able to [selec-
tion: transmit, receive] objects in a manner protected fromunautho-
rised disclosure.”(Common Criteria Evaluation Board (CCEB), 2006,
part 2, page 83)

“FDP UIT.1.1 The TSF shall enforce the [assignment: access control
SFP(s) and/or information flow control SFP(s)] to be able to [selec-
tion: transmit, receive] user data in a manner protected from [selec-
tion: modification, deletion, insertion, replay] errors.”(Common Cri-
teria Evaluation Board (CCEB), 2006, part 2, page 85)

This is identical to our definition of the definitions of trusted paths (Definition 10.1)
in Section 10.2.1.

Chapter 11

Confidentiality–Integrity–
Availability

11.1 Definitions

In the last chapter, the Common Criteria concepts relevant to HCI security have
been formalized. The Common Criteria are a collection of security requirements.
Developers and evaluators of secure systems have to decide which parts of the
Common Criteria are relevant for their projects, and which parts are not. There
is no guarantee that the developer/evaluator has chosen theright elements of the
Common Criteria, and that no relevant aspects have been omitted. Furthermore,
the Common Criteria provide a criteria catalog for computersystems only. It does
not define user behavior requirements.

The Common Criteria are a “bottom up” approach to computer security. In
this chapter, we accompany the formal definitions of Common Criteria concepts
by a “top down” approach. We start by formalizing the well-established definition
of computer security asConfidentiality, Integrity, andAvailability (also known as
the CIA-model) for HCI security. In Section 11.2, we show that the core con-
cepts developed for the formal definition of Common Criteriarequirements can
also be used to formalize the generic CIA requirements. The CIA-based formal
requirement definitions for computer systems are accompanied by requirement
definitions for user behavior. This allows to prove that suitable combinations of
application and user behavior components guarantee that nosecurity breaches oc-
cur. The joined approach of “bottom up” Common Criteria concepts on the one
hand and “top down” CIA concepts on the other hand allows for the pervasive
specification of secure human-computer interaction.

In the field of information security, the basic security threats are identified as
Data Leaking, Data Manipulation, andProgram Manipulation(see e.g. Clark and

105

106 CHAPTER 11. CONFIDENTIALITY–INTEGRITY–AVAILABILITY

Wilson (1987); ITS; Dierstein (2004)). These are counteredby the core security
requirements, usually abbreviated asCIA:

Confidentiality Information is available to authorized parties only.
Integrity Neither the system nor services provided by and data pro-

cessed by the system can be manipulated. Third parties
accessing the system can not assume the identity of a le-
gitimate user.

Availability Accessibility of services and data is guaranteed.
We adapt these concepts to user interface security by restricting these defini-

tions to the aspects involving the user interface and human-computer interaction.
For Confidentiality, this means that eavesdropping on the input/output facilities
must not be possible. Integrity of the user interface is guaranteed if manipulation
of the user interface is not possible, i.e. if the user’s assumptions about the state
of the application, gained by observing and manipulating the application via the
user interface, corresponds to the actual state of the application. Availability of
the user interface means that an attacker can not get the userinterface into a state
where the full functionality is no longer accessible.

Confidentiality A third party can not gain information from observing
human-computer interaction.

Integrity Whenever the user issues a command, all relevant infor-
mation, most notably the state of the program and the data
processed, is shown on the screen correctly.

Availability The functionality provided by the user interface is always
accessible.

We bridge the gap between the abstract concept definitions ofCIA and con-
crete security requirements specification for applications by breaking down CIA
concepts into sub-concepts. In the definition of sub-concepts, we make use of the
core concepts developed for the formalization of Common Criteria requirements.
This way, we create a common base for security specificationsbased on CIA, and
security specifications based on CC. This last step serves two purposes: It shows
that the concepts of the Common Criteria are suitable for a pervasive specifica-
tion of HCI security, and it breaks down generic concepts of CIA into suitable
requirement specifications of applications and users.

• Confidentiality

Confidentiality is given if no secret information is leaked,i.e. whenever se-
cret information is send, it either reaches a legitimate receiver or no receiver
at all:

Definition 11.1 (Confidentiality).
Let system(U ,A, I ,O ,M ,u,a,λ) be a system model. Channel(s,d ,r) is

11.1. DEFINITIONS 107

confidentialif

Confidentiality≡
∀s,d ,r ,d ′,r ′,m,m ′.
[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ∼ m ′ ∧ secret(s,d ′,r ′,m ′)
→
legitimate(s,d ′,r ′,m ′)

• Integrity

HCI integrity is defined as a relation between the state of theapplication and
the user’s representation of the state of the application. The user’s opinion of
the state should correspond to the actual state whenever theuser makes crit-
ical decisions. We formalize this concept by defining attributesa0, . . . ,an

representing the relevant aspects of the system configuration and attributes
u0, . . . ,un representing the user’s opinion about the system configuration.
Furthermore, we assume that predicateappCritical holds whenever the ap-
plication is in a critical state.

Definition 11.2 (Integrity). Let system(U ,A, I ,O ,M ,u,a,λ) be a system
model.

Let a0, . . ., an be the attributes representing the configuration of the appli-
cation, and letu0, . . ., un be the user’s representation of these attributes. Let
appCritical hold whenever the application is in a critical state. Integrity is
guaranteed if

Integrity≡
appCritical→ ((a0 ↔ u0) ∧ (a1 ↔ u1) ∧ . . . ∧ (an ↔ un))

• Availability

Availability is commonly defined as reachability of desirable states and
avoidability of undesirable states. Transfered to user interface security, this
definition is not sufficient. It should not only be possible for some user
to reach desirable states and avoid undesirable states. Fora given formal
user model, desirable states should always be reached and undesirable states
should never be reached. This leads to the following definition:

Definition 11.3 (Availability). Let system(U ,A, I ,O ,M ,u,a,λ) be a sys-
tem model. Availability is guaranteed if

Availability≡ AG(¬fatal→ AFsuccess)

108 CHAPTER 11. CONFIDENTIALITY–INTEGRITY–AVAILABILITY

11.2 Defining Confidentiality by CC Sub-Concepts

In Chapter 10, Common Criteria concepts relevant to HCI havebeen formalized.
In Section 11.1 we formalized the generic security conceptsof Confidentiality,
Integrity, and Availability. In this chapter, we show how Confidentiality is de-
composed in sub-concepts using core concepts from the Common Criteria. In
Chapters 14 to 16, this approach is used to show that the emailclient developed
in the Verisoft project satisfies Confidentiality, Integrity, and Availability.

Confidentiality means that information is available to authorized parties only.
The definition of a confidential channels is based on the definition of trusted paths
(Definition 10.1). In Section 10.2, the concept of trusted paths is one of the core
concepts for the definition of various Common Criteria concepts. We show that
confidentiality as defined in Definition 11.1 is guaranteed ifthe user sends con-
fidential messages only if he is communicating via a confidential channel with a
legitimate recipient. We call this theConfidentiality Condition(ConfCond).

Definition 11.4 (Confidentiality Condition).
Let S = system(U ,A, I ,O ,M ,u,a,λ) be a system model. S satisfies the confi-
dentiality condition if

M ,λ |= ConfCond

with

ConfCond≡ ∀s,d ,r ,m. [c(s,d) xmt m] ∧ secret(s,d ,r ,m)→

legitimate(s,d ,r ,m) ∧ trusted((s,d ,r))

We need two lemmas to show thatConfidentialityis implied byConfCond.
The first lemma asserts that if a channel sends a message, and this message is
received by somebody, and the channel does not leak, then themessage is received
by the intended recipient:

Lemma 11.1.

[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′]

∧ m ∼ m ′ ∧ ¬leaks((s,d ,r)) → r = r ′ ∧ d = d ′

Proof
Insert definition ofleak(Definition 10.5 in Section 10.2.1):

[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ∼ m ′

∧ (¬∃m,m ′,d ′,r ′. [c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′]

∧ m ∼ m ′ ∧ (d 6= d ′ ∨ r 6= r ′))
→ r = r ′ ∧ d = d ′

11.2. DEFINING CONFIDENTIALITY BY CC SUB-CONCEPTS 109

Moving quantifiers to begin of formula, renaming bound variables and, apply-
ing De Morgan’s laws:

∀m ′′,m ′′′,d ′′,r ′′.
[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ∼ m ′

∧ (¬[c(s,d) xmt m ′′] ∨ ¬EF[c(d ′′,r ′′) xmt m ′′′]

∨ m ′′ 6∼ m ′′′ ∨ (d = d ′′ ∧ r = r ′′))
→ r = r ′ ∧ d = d ′

Sincem ′′, m ′′′, d ′′, andr ′′ are universally quantified, we can setm ′′ = m,
d ′′ = d ′, r ′′ = r , m ′′′ = m ′:

[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ∼ m ′

∧ (¬[c(s,d) xmt m] ∨ ¬EF[c(d ′,r ′) xmt m ′]

∨ m 6∼ m ′ ∨ (d = d ′ ∧ r = r ′))
→ r = r ′ ∧ d = d ′

�

The second lemma asserts that if the channel does not change messages, than
every message send will be received unchanged:

Lemma 11.2.

[c(s,d) xmt m] ∧ EF[c(d ,r) xmt m ′] ∧ m ∼ m ′

∧ ¬changes((s,d ,r)) → m = m ′

Proof
Insert definition ofchanges(Definition 10.12 in Section 10.2.1):

[c(s,d) xmt m] ∧ EF[c(d ,r) xmt m ′] ∧ m ∼ m ′

∧ ¬(∃m,m ′.[c(s,d) xmt m] ∧ EF[c(d ,r) xmt m ′]

∧ m ∼ m ′ ∧ m 6= m ′)
→ m = m ′

Moving quantifiers to begin of formula, applying De Morgan’slaws:

∀m ′′,m ′′′.
[c(s,d) xmt m] ∧ EF[c(d ,r) xmt m ′] ∧ m ∼ m ′

∧ (¬[c(s,d) xmt m ′′] ∨ ¬EF[c(d ,r) xmt m ′′′]
∨ m ′′ 6∼ m ′′′ ∨ m ′′ = m ′′′)

→ m = m ′

Sincem ′′ andm ′′′ are universally quantified, we can setm ′′ = m, m ′′′ = m ′:

110 CHAPTER 11. CONFIDENTIALITY–INTEGRITY–AVAILABILITY

[c(s,d) xmt m] ∧ EF[c(d ,r) xmt m ′] ∧ m ∼ m ′

∧ (¬[c(s,d) xmt m] ∨ ¬EF[c(d ,r) xmt m ′]

∨ m 6∼ m ′ ∨ m = m ′)
→ m = m ′

�

Now we can show that the confidentiality condition guarantees confidentiality:

Theorem 11.1(Confidentiality Condition guarantees Confidentiality).

ConfCond→ Confidentiality

Proof
Insert definitions:

∀s,d ,r ,m.
[c(s,d) xmt m] ∧ secret(s,d ,r ,m)→

legitimate(s,d ,r ,m) ∧ trusted((s,d ,r)) →
∀s,d ,r ,d ′,r ′,m,m ′.
[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ∼ m ′ ∧ secret(s,d ,r ,m)→
legitimate(s,d ′,r ′,m ′)

Renaming bound variables and moving all quantifiers to beginof formula:

∀s,d ,r ,m,s ′,d ′,r ′,m ′,s ′′,d ′′,r ′′,m ′′.
[c(s,d) xmt m] ∧ secret(s,d ,r ,m)→

legitimate(s,d ,r ,m) ∧ trusted((s,d ,r)) →
[c(s ′′,d ′′) xmt m ′′] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ′′ ∼ m ′ ∧ secret(s ′′,d ′′,r ′,m ′′)
→
legitimate(s ′′,d ′,r ′,m ′)

This holds trivially if¬([c(s ′′,d ′′) xmt m ′′] ∧ EF[c(d ′,r ′) xmt m ′] ∧m ′′ ∼ m ′ ∧
secret(s ′′,d ′′,r ′,m ′′)).

In the other case, we move[c(s ′′,d ′′) xmt m ′′] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ′′ ∼
m ′ ∧ secret(s ′′,d ′′,r ′,m ′′) into premise:

∀s,d ,r ,m,s ′,d ′,r ′,m ′,s ′′,d ′′,r ′′,m ′′.
[c(s,d) xmt m] ∧ secret(s,d ,r ,m)→

legitimate(s,d ,r ,m) ∧ trusted((s,d ,r))
∧ [c(s ′′,d ′′) xmt m ′′] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ′′ ∼ m ′ ∧ secret(s ′′,d ′′,r ′,m ′′)

→
legitimate(s ′′,d ′,r ′,m ′)

11.2. DEFINING CONFIDENTIALITY BY CC SUB-CONCEPTS 111

Since[c(s ′′,d ′′) xmt m ′′]∧ secret(s ′′,d ′′,r ′,m ′′), it also holds thatlegitimate(s ′′,d ′′,r ,m ′′)∧
trusted((s ′′,d ′′,r)):

∀s,d ,r ,m,s ′,d ′,r ′,m ′,s ′′,d ′′,r ′′,m ′′.
[c(s,d) xmt m] ∧ secret(s,d ,r ,m)→

legitimate(s,d ,r ,m) ∧ trusted((s,d ,r))
∧ [c(s ′′,d ′′) xmt m ′′] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ′′ ∼ m ′ ∧ secret(s ′′,d ′′,r ′,m ′′)

∧ legitimate(s ′′,d ′′,r ,m ′′) ∧ trusted((s ′′,d ′′,r))
→
legitimate(s ′′,d ′,r ′,m ′)

Drop no longer required conjuncts:

∀s,d ,r ,m,s ′,d ′,r ′,m ′,s ′′,d ′′,r ′′,m ′′.
[c(s ′′,d ′′) xmt m ′′] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ′′ ∼ m ′

∧ legitimate(s ′′,d ′′,r ,m ′′) ∧ trusted((s ′′,d ′′,r))
→
legitimate(s ′′,d ′,r ′,m ′)

Insert definition oftrusted(page 10.1, Definition 10.1) and subsequently defi-
nition of modifies(page 10.7, Definition 10.7):

∀s,d ,r ,m,s ′,d ′,r ′,m ′,s ′′,d ′′,r ′′,m ′′.
[c(s ′′,d ′′) xmt m ′′] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ′′ ∼ m ′

∧ legitimate(s ′′,d ′′,r ,m ′′) ∧ authenticated((s ′′,d ′′,r))
∧ ¬leaks((s ′′,d ′′,r)) ∧ ¬intro((s ′′,d ′′,r))
∧ ¬changes((s ′′,d ′′,r)) ∧ ¬mixes((s,d ′′,r))
∧ ¬duplicates((s ′′,d ′′,r))
→
legitimate(s ′′,d ′,r ′,m ′)

Apply Lemma 11.1:

∀s,d ,r ,m,s ′,d ′,r ′,m ′,s ′′,d ′′,r ′′,m ′′.
[c(s ′′,d ′) xmt m ′′] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ′′ ∼ m ′

∧ legitimate(s ′′,d ′,r ,m ′′) ∧ authenticated((s ′′,d ′,r))
∧ ¬leaks((s ′′,d ′,r)) ∧ ¬intro((s ′′,d ′,r))
∧ ¬changes((s ′′,d ′,r)) ∧ ¬mixes((s,d ′,r))
∧ ¬duplicates((s ′′,d ′,r))
→
legitimate(s ′′,d ′,r ′,m ′)

Apply Lemma 11.2:

112 CHAPTER 11. CONFIDENTIALITY–INTEGRITY–AVAILABILITY

∀s,d ,r ,m,s ′,d ′,r ′,m ′,s ′′,d ′′,r ′′,m ′.
[c(s ′′,d ′) xmt m ′] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ′ ∼ m ′

∧ legitimate(s ′′,d ′,r ,m ′) ∧ authenticated((s ′′,d ′,r))
∧ ¬leaks((s ′′,d ′,r)) ∧ ¬intro((s ′′,d ′,r))
∧ ¬changes((s ′′,d ′,r)) ∧ ¬mixes((s,d ′,r))
∧ ¬duplicates((s ′′,d ′,r))
→
legitimate(s ′′,d ′,r ′,m ′)

�

We have shown that the confidentiality condition guaranteesconfidentiality.
The confidentiality condition asserts that secret messagesare send only if commu-
nicating the message is legitimate and if the channel is trusted. In Section 10.2.1
we introduced assumption predicates to model the assumptions of a user/applica-
tion about a communication path. Next, we show which assumptions have to be
correct in order to guarantee the confidentiality condition. We take recourse on
the assumption predicates defined in Section 10.2 (Definitions 10.2, 10.9, 10.13,
10.15, 10.11). We introduce the concept of anattentive party. An attentive party
is aware of (i.e. has the right assumptions) about the state of the communication
channel in respect to possible altering of messages, and privacy of the channel.
He will send messages only if the channel is private, messages are not altered, and
the message is legitimate.

Definition 11.5 (Attentive Party).

AttentiveParty(s) ≡
∀d ,r ,m.[c(s,d) xmt m] ∧ secret(s,d ,r ,m) →

∧ (asmModifies(s,(s,d ,r)) ↔ modifies((s,d ,r)))
∧ (asmPrivate(s,(s,d ,r)) ↔ private((s,d ,r)))
∧ asmIdentitiy(s,(s,d ,r),s,d ,r)
∧ ¬asmModifies(s,(s,d ,r))
∧ asmPrivate(s,(s,d ,r))
∧ legitimate(s,d ,r ,m)

Intuitively, attentiveness means that secret messages aresend only if

- it is legitimate to send them,

- the assumptions about the channel in respect to modification of messages,
privacy of the channel, and identity of the communicating party are correct,

- and the channel is private and not modifying data.

We show that the confidentiality condition is satisfied if both the user and the
application are attentive.

11.2. DEFINING CONFIDENTIALITY BY CC SUB-CONCEPTS 113

Theorem 11.2.LetS = system(U ,A, I ,O ,M ,u,a,λ) be a system model.

AttentiveParty(u) ∧ AttentiveParty(a) → ConfCond

Proof
Insert definition ofConfCond:

AttentiveParty(u) ∧ AttentiveParty(a) →
∀s,d ,r ,m. [c(s,d) xmt m] ∧ secret(s,d ,r ,m)→

legitimate(s,d ,r ,m) ∧ trusted((s,d ,r))

Sincesecret(s,d ,r ,m) is true only fors = u ∧ r = a or s = a ∧ r = u, we can
restricts andd to u anda, respectively. We further restricts andr to s = u ∧ r =
a, because the proof fors = a ∧ r = u is identical. Insertings = a ∧ r = u:

AttentiveParty(u) ∧ AttentiveParty(a) →
∀d ,m. [c(u,d) xmt m] ∧ secret(u,d ,a,m) →

legitimate(u,d ,a,m) ∧ trusted((u,d ,a))

Insert definition ofAttentiveParty(u):

∀d ,r ,m : [c(u,d) xmt m] ∧ secret(u,d ,a,m) →

∧ (asmModifies(s,(u,d ,r)) ↔ modifies((u,d ,r)))
∧ (asmPrivate(s,(u,d ,r)) ↔ private((u,d ,r)))
∧ asmIdentitiy(u,(u,d ,a),u,d ,a)
∧ ¬asmModifies(s,(u,d ,r))
∧ asmPrivate(s,(u,d ,r))
∧ legitimate(u,d ,r ,m)

∧ AttentiveParty(a) →
∀d ,m. [c(u,d) xmt m] ∧ secret(u,d ,a,m) →

legitimate(u,d ,a,m) ∧ trusted((u,d ,a))

FromasmModifies(s,(u,d ,r))↔modifies((u,d ,r))) and¬asmModifies(s,(u,d ,r))
it follows that¬modifies((u,d ,r))). From(asmPrivate(s,(u,d ,r))↔ private((u,d ,r)))
andasmPrivate(s,(u,d ,r)) it follows thatprivate((u,d ,r))):

∀d ,r ,m.[c(u,d) xmt m] ∧ secret(u,d ,a,m) →

∧ asmIdentitiy(u,(u,d ,a),u,d ,a)
∧ ¬modifies((u,d ,r))
∧ private((u,d ,r))
∧ legitimate(u,d ,r ,m)

∧ AttentiveParty(a) →
∀d ,m. [c(u,d) xmt m] ∧ secret(u,d ,a,m) →

legitimate(u,d ,a,m) ∧ trusted((u,d ,a))

114 CHAPTER 11. CONFIDENTIALITY–INTEGRITY–AVAILABILITY

Moving quantifiers, renaming bound variables, and moving conjunction[c(u,d) xmt m]∧
secret(u,d ,a,m) into premise:

∀d ,r ,m,d ′,m ′.
[c(u,d ′) xmt m ′] ∧ secret(u,d ′,a,m ′)

∧ ([c(u,d) xmt m] ∧ secret(u,d ,a,m) →
∧ asmIdentitiy(u,(u,d ,a),u,d ,a)
∧ ¬modifies((u,d ,r))
∧ private((u,d ,r))
∧ legitimate(u,d ,r ,m))

∧ AttentiveParty(a) →
legitimate(u,d ′,a,m ′) ∧ trusted((u,d ′,a))

It remains to be shown that

asmIdentitiy(u,(u,d ,a),u,d ,a)
∧ ¬modifies((u,d ,a))
∧ private((u,d ,a))
∧ AttentiveParty(a)
→
trusted((u,d ,a))

Inserting definition oftrusted(Definition 10.1in Section 10.2.1):

asmIdentitiy(u,(u,d ,a),u,d ,a)
∧ ¬modifies((u,d ,a))
∧ private((u,d ,a))
∧ AttentiveParty(a)
→
authenticated((u,d ,a)) ∧ ¬leaks((u,d ,a))
∧ ¬modifies((u,d ,a))

We show separately that

asmIdentitiy(u,(u,d ,a),u,d ,a) ∧ AttentiveParty(a) →
authenticated((u,d ,a))

and

private((u,d ,a)) →¬leaks((u,d ,a))

First proof:

11.2. DEFINING CONFIDENTIALITY BY CC SUB-CONCEPTS 115

asmIdentitiy(u,(u,d ,a),u,d ,a) ∧ AttentiveParty(a) →
authenticated((u,d ,a))

From the definition ofAttentiveParty(a) follows
asmIdentitiy(a,(u,d ,a),u,d ,a). Inserting definition ofauthenticated((u,d ,a)):

asmIdentitiy(u,(u,d ,a),u,d ,a) ∧ asmIdentitiy(a,(u,d ,a),u,d ,a) →
asmIdentitiy(u,(u,d ,a),u,d ,a) ∧ asmIdentitiy(a,(u,d ,a),u,d ,a)

�

Second proof:

private((u,d ,a)) →¬leaks((u,d ,a))

Inserting definitions ofprivateandleaks:

[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ∼ m ′ →
d = d ′ ∧ r = r ′

→
¬(∃m,m ′,d ′,r ′.

[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′]
∧ m ∼ m ′ ∧ (d 6= d ′ ∨ r 6= r ′))

Applying De Morgan’s law:

[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ∼ m ′ →

d = d ′ ∧ r = r ′

→
∀m,m ′,d ′,r ′. ¬[c(s,d) xmt m] ∨ ¬EF[c(d ′,r ′) xmt m ′]

∨ ¬m ∼ m ′ ∨ (d = d ′ ∧ r = r ′)

�

116 CHAPTER 11. CONFIDENTIALITY–INTEGRITY–AVAILABILITY

Chapter 12

Summary

In this part of the thesis, the formal methodology developedin Part I has been
used to develop formal definitions of security in Human-Computer Interaction.
A generic system model has been introduced in Chapter 9. The generic system
model defines the basic components of our formal modeling approach and the
ways in which these basic components can possibly interact.It is flexible enough
to describe a large class of human-computer interactions onthe one hand, while
on the other hand it contains enough structure to model details of interaction.
The formal methodology introduced in Part I has been extended by colored mes-
sages. With colored messages, it becomes possible to specify component behavior
in terms of message traces. In Chapter 9, a generic formal model of interactive
systems has been introduced. The model introduced allows tomodel interaction
between multiple users and applications, using multiple input and output devices.
Thecore predicatesintroduced in Section 9.2 provide a set of predicates for the
specification of security properties in the generic system model. Based on the
generic system model and the core predicates, the concepts of the Common Cri-
teria for Information Technology Security Evaluation (CC)relevant for human-
computer interaction have been formalized. The formalization of Common Cri-
teria concepts was achieved in two steps: For each category of Common Criteria
concepts, first a number of core concepts were identified. Theformal definitions
of these core concepts served as building locks for the formal definition of the
Common Criteria concepts.

The Common Criteria are a collection of security requirement definitions. A
software engineer selects the relevant concepts for the application at hand. The
Common Criteria are a valuable collection of security concepts and provide a
(semi-formal) methodology for the certification of security products against an
international standard. It does not contain the provisionsfor guaranteeing perva-
sive security in human-computer interaction, because a) itdoes not guarantee that
all aspects of security are covered, and b) it does not require the pervasive use

117

118 CHAPTER 12. SUMMARY

of formal methods even at the highest evaluation level EAL 7.It require a formal
presentation of the functional specification and high-level design and a formal and
semiformal demonstration of the correspondence between the high-level and the
low-level design, but correspondence with the actual implementation is shown by
extensive testing only.

These shortcomings are overcome in Chapter 11. A computer system is con-
sidered secure if it guaranteesConfidentiality, Integrity, andAvailability. These
generic concepts are adapted to human-computer interaction and formalized. In
a second step, we show how the core definitions developed for the formaliza-
tion of Common Criteria concepts are also suitable as building locks for breaking
down CIA concepts into sub-concepts. We have shown that the same building
locks can be used to describe formal computer security concepts both in terms of
the Common Criteria and in terms of Confidentiality, Integrity, and Availability.
The break-down of the Confidentiality concepts developed inSection 11.2 will
be used in Chapter 15 in the specification and verification of confidentiality of a
secure email client. In Chapters 14 and 16, we show for the email client that it
satisfies integrity and availability as defined in Section 11.1, too.

Part III

Specification and Verification of
Secure Applications

—
The Verisoft Email Client

119

Chapter 13

Specifying and Verifying a Secure
Email System

13.1 Introduction

In this part, the methodology developed in Parts I and II is applied to the specifica-
tion of a secure email client. We show how compliance of the specification of an
email client to the security requirements defined in Part II can be guaranteed. In
the Verisoft project, an actual implementation of the secure email client has been
written and verified. In this part, we do not only show that themethodology from
the previous parts is applicable to real-world software systems. We also develop
a set of design patterns which can be used in other applications. In Chapter 14,
we develop a design pattern for text-based, interactive application and show that
application specifications following the pattern satisfy the security requirement of
system integrity. This design pattern is applicable to all text-based, interactive ap-
plications. The confidentiality condition developed in Chapter 15 is applicable to
all user and application models; independent of a concrete system, confidential-
ity is guaranteed if the confidentiality condition is satisfied by the communicating
parties.

The methodology developed in this thesis has been applied tothe development
of a secure email client as part of the Verisoft project. Verisoft is a long term re-
search project funded by the German Federal Ministry of Education and Research
(BMBF). With 12 partners from German industry and academia and a funding of
20 million Euro for seven years, Verisoft and its successor Verisoft XT is one of
the biggest software verification projects in Germany.

The goal of the Verisoft project was to create the tools and methods to allow
the pervasive formal verification of computer systems, and to show that verifica-
tion of real world systems is viable (Paul, 2005). In Verisoft, formal methods and

121

122 CHAPTER 13. SECURE EMAIL SYSTEM

verification technology have been used throughout all aspects of system devel-
oping, including verified hardware, verified development tools, and verified op-
erating systems and verified application programs. Four concrete systems were
developed in Verisoft. Of these four systems, three were developed by or in
cooperation with partners from industry, and one is developed by the academic
partners. The industry projects include anEmergency Call Systemdeveloped in
cooperation with the BMW group, aBiometric Identification Systemin cooper-
ation with T-Systems, andHardware verificationdeveloped in cooperation with
Infineon Technologies. The academic project develops a secure email system. In
this part of the thesis, we show how our methodology for the development of se-
cure interactive systems has been used in the specification and verification of that
system.

13.1.1 The Academic System

Networking /
Communication

Application
Software

Software
System

Hardware

Tools

TCP/IP

Mail Server (SMTP)

Memory
Manage−
ment

Email Client
(User Interface)

Signature
Module

Operating
System

Micro−
kernel

Processor

Host System

Com−
piler

Keyboard
Screen
Network

File System

Figure 13.1: Components of the academic system (Beuster et al., 2006)

The goal of the academic subproject was to show that common desktop tech-
nology can be formally specified and verified. For this reason, the technology
used in the academic system stays as close to off-the-shelf desktop systems, tech-
nologies, and standards as possible. The academic system ismade up of different
parts, as depicted in Figure 13.1. The verified compiler accepts programs written
in the C dialect C0 by Leinenbach et al. (2005). The machine code is run on fully
verified hardware (processor) by Ayewah et al. (2005). Threelayers of software
build upon the hardware. The first layer consists of a fully verified micro-kernel,

13.1. INTRODUCTION 123

Figure 13.2: Vericlient prototype running: The numbers indicate the following
screen areas: (1) Status / current state of the email client (2) Editing area (3) Public
key (4) Commands available (Beuster et al., 2006)

memory management unit and an accompanying operating system calledSim-
ple Operating System, developed by Gargano et al. (2005). The networking and
communication layer consists of a fully verified SMTP mail server using a fully
verified TCP/IP stack. This allows the academic Verisoft system to interconnect
with the real world like intranets or the Internet. The application software sits on
top of the system software and the communication layer.

As part of the Academic Verisoft System, the subproject carried out at Uni-
versity Koblenz-Landau developed a completely verified email client. The for-
mal specification of the email client includes all informal requirements and secu-
rity goals. Compliance to the formal specification has been proven for the com-
plete source code. The Verisoft Email Client consists of approximately 100 pro-
cedures, totaling 4000 lines of code. The formal specification and verification
in Isabelle/HOL (Schirmer, 2005) consists of approximately 16.000 lines. The
Verisoft email client has been developed and verified in three man years. Speci-
fication, source code, and proof scripts are freely downloadable from the Verisoft
Repository athttp://www.verisoft.de/VerisoftRepository.html.

Within the academic part of the Verisoft project, the Verisoft email client, for
shortVericlient, provides the interface to the user. When a user accesses theaca-

http://www.verisoft.de/VerisoftRepository.html

124 CHAPTER 13. SECURE EMAIL SYSTEM

demic system, he interacts with the email client. The email client itself has internal
interfaces to four components: The I/O facilities (via the operating system), the
SMTP server for delivery and reception of emails, and the signature component
for generation and checking of signatures. For its internaloperation, the email
client makes use of data structures of a C library developed by Starostin (2006).

Providing a user interface is the core functionality of the email client. The
design goal of the Verisoft email client was to provide the core functionality of an
email client, plus the possibility to handle digital signatures. The Verisoft email
client provides a full screen text editor for reading and writing email, and for
editing the public keys used for checking signatures. An interfaces to the SMTP
component of the Verisoft email system allows to send and receive mail. An
interface to the Verisoft signature component allows to generate public/private key
pairs, sign messages with the generated private key, insertthe generated public key
into the message (in order to send it to a recipient), and to check email messages
against public keys entered by the user. All functionality is accessible via a TTY
interface. The email client has two modes: In command mode, certain characters
entered via the keyboard are interpreted as commands. For example, key ‘a’ signs
a message, and key ‘f’ fetches the next unread email from the server. In edit
mode, the email message and the public key are edited in a fullscreen editor. The
email client does not provide means for managing email folders. There is only
one email in the system at any point in time. The user interface provided by the
Verisoft email client is shown in Figure 13.2. Details of theinterface are explained
in the next chapters.

Both functional correctness and security have been proven for the secure email
client. In the following three chapters, we show how correctness of the Verisoft
email client specification in respect to the three core principles of Confidential-
ity, Integrity, and Availability, as defined in Chapter 11, has been established.
Section 14 shows how Integrity (Definition 11.2 in Chapter 11) is guaranteed.
Chapter 15 shows that the specification of the Verisoft emailclient satisfies Confi-
dentiality as defined in Definition 11.1 in Chapter 11. Finally, Chapter 16 ensures
Availability (Definition 11.3 in Chapter 11) of the email client.

13.2 Related Projects

Another important fundamental research project in the areaof verification and
analysis is the Transregional Collaborative Research Center “Automatic Verifi-
cation and Analysis of Complex Systems” (AVACS), which is funded by the
Deutsche Forschungsgemeinschaft (DFG). About 70 scientists of the Universities
of Oldenburg, Freiburg and Saarbrücken as well as the Max-Planck-Institute for
Computer Sciences in Saarbrücken are working on the improvement of techniques

13.2. RELATED PROJECTS 125

for mathematically precise verification, including the development of tools. The
goal of their work is to automate safety analyses of criticalembedded systems
which are used for example in aircrafts, motor vehicles or railway transportation
(Damm et al., 2004).

Significant prior projects are DAEDALUS and VERIFIX. The DEADALUS
consortium was a research and technology development project in the Fifth Frame-
work Programme (FP5) of the European Union. With the contributions of univer-
sities from France, Germany, Denmark, and Israel, the project developed methods
and tools to support the industrial validation of critical concurrent software by
static analysis and abstract testing (Goubault, 2001; Cousot and Cousot, 2002).
The goal of VERIFIX, another project funded by DFG, was the construction
of mathematically correct compilers, which included the development of for-
mal methods for specification and implementation of a compiler. One of the
project’s results was a fully verified LISP interpreter (Goos and Zimmermann,
1999). The scope of Verisoft goes beyond DAEDALUS and VERIFIX. In differ-
ence to DAEDALUS, the systems developed in Verisoft are pervasively verified.
In difference to VERIFIX, not only a compiler, but complete systems are verified.

In project Bang 3, we have used formal method for the specification of compo-
nents of multi-agent systems (MAS), and for reasoning aboutproperties of MAS
(Beuster et al., 2003, 2004; Beuster and Neruda, 2006).

126 CHAPTER 13. SECURE EMAIL SYSTEM

Chapter 14

Secure Interaction and Information
Display

Wrong assumptions about the state of the computer system area main source
of error in human-computer interaction (HCI). In this chapter, we show how In-
tegrity (as defined in Definition 11.2 in Chapter 11) is guaranteed. We show how
consistency requirements between the state of a computer system and the user’s
assumptions about the state can be defined formally. We show that the main exe-
cution loop introduced in Algorithm 3 in Chapter 7 violates integrity constraints.
A improved main execution loop is introduced. We show that the improved execu-
tion loop satisfies the integrity constraints. Furthermore, we give first definitions
of the main execution loop functionsupdateScreen andexecute. These defini-
tions, which are refined in the next chapters, close the gap between the high-level
application specification with IOLTS and CTL on the one hand,and the low level
specification of program procedures on the other hand, as described in Chapter 7.

14.1 Introduction

14.1.1 The Problem

Informally, a system is consistent if the user’s assumptions about the system cor-
respond to the actual system state whenever he interacts with the system. There
are two main sources for wrong assumptions about the system state:

Inconsistency during updates.Human-Computer Interaction (HCI) is inherently
asynchronous. Execution of user commands and updates of thedata dis-
played by the output device take time. Due to the inherently asynchronous
character of Human-Computer Interaction, the user may err about the sys-
tem state; either because commands have not been executed yet, or because

127

128 CHAPTER 14. SECURE INTERACTION

the screen has not been updated.

Insufficient data or wrong interpretation of data.The system may not provide
enough information to determine the system state, or the user may interpret
application output wrongly. A large part of the specification of interac-
tive applications is concerned with the relation between user input and the
information shown to the user. For example, when editing a text, the cur-
rent (internal) state of the text should be shown to the user,and user input
should cause corresponding changes to the text. Usually, the specification
of user input and system output is rather informal. Specifications declare
that something (e.g., a text) “is shown on the screen” and theuser “enters
a text.” In most cases, this informal description is sufficient. However, in
critical applications, a precise and formal definition is desirable.

The latter source of inconsistencies, wrong interpretation of data, has been ad-
dressed frequently. For example, Reeder and Maxion (2005) analyzed the problem
of representing NTFS file permissions on Windows XP systems and developed the
design principle of “anchor-based subgoaling” in order to mitigate the problem.

Here, we concentrate on the former of the mentioned sources of errors, namely
inconsistencies during updates. Most user interface security requirements are
highly application-specific. However, there are also some generic requirements.
We show that for a large class of applications, it is possibleto define generic re-
quirement in a formal way. In this chapter, we focus on one of these generic
requirements: The user should always be aware of the system state when issu-
ing a command. We show how consistency during updates can be guaranteed for
text-based applications.

14.1.2 Plan of This Chapter

In Section 14.2, we show that the common approach to modelinginteractive ap-
plications does not guarantee consistency. We provide an alternative model for
which consistency can be guaranteed.

Integrity is defined in CTL, and model checking is used to showthat a com-
ponent given as an IOLTS satisfies the Integrity constraint.In order to pervasively
specify and verify a critical application, it is also necessary to describe program
behavior with pre- and post-conditions for concrete procedures that are part of the
system. We use Hoare logic for this. In two steps, we close thegap between the
more abstract state-based modeling on the one hand and more concrete pre-/post-
condition-based modeling on the other hand. Based on the IOLTS of the main
execution loop developed in Section 14.2 we provide a generic code template for
the concrete implementation of the main execution loop of abstract state-based

14.2. GUARANTEEING INTEGRITY 129

Application

User

CMDScreen

AppOut

AppOut

Figure 14.1: Basic system model (user + application).

models in Section 14.3. A method for the integration of state-based formal mod-
eling methods and pre-/postcondition based methods has been proposed in Chap-
ter 7. In Sections 14.3.2 and 14.3.3 this integration methodis demonstrated in the
specification ofexecute andupdateScreen for the editor sub-component.

14.2 Guaranteeing Integrity

In Chapter 9, a generic system model has been developed. Other applications
and users are relevant for guaranteeing confidentiality between the user and the
application, but they are not relevant for integrity. Therefore, we start by using
a simplified version of the system model from Figure 9.2 (Section 9.2). In the
simplified version, shown in Figure 14.1, the user interactsdirectly with the ap-
plication. Since the keyboard component just relays input from the user to the
application component, it is not relevant for the integrityproperties. The screen
device, however, is relevant, because it is an “asynchronous” component.

Two types of messages are used to exchange information between the user
and the application:AppOutis the data type for information shown on the screen.
CMD is the data type for input given by the user. The generic system model
can be further structured without losing generality. All well-designed applica-
tions (and all reasonable models of user behavior) split up the components into a
generic execution loop, governing the general behavior of the application (or the
user), and an application (task) specific component. The separation of a generic
execution loop and a task specific component serves two purposes: Firstly, it fol-
lows established system design practice and therefore allows realistic modeling of
applications. Secondly, the separation into a generic and an application-specific

130 CHAPTER 14. SECURE INTERACTION

Screen

AppOut

AppOut

User Logic
AppOut

CMD

Application Execution Cycle

AppOut

CMD

Application Logic

CMD

User Execution Cycle

CMD?

AppOut?

CMD!

AppOut?

AppOut!

CMD?

Cmd.
Exec-
uted

Cmd.
Got

AppOut! Result
Shown

Got
Result

cided
De-

End
Classify

Start
Classify

CMD!

Wait

Figure 14.2: Basic model of user and application.

component allows to deduce properties that hold for all applications with this de-
sign, independently of the concrete application’s task andapplication logic.

A basic model following this approach is shown in Figure 14.2. In this model,
AppOutandCMD are variables representing all possible command input and ap-
plication output. Question marks after variable names indicate reading of an input
value, and exclamation marks indicate writing of an output value. Thus, in one
cycle of application execution, the following steps are taken (note that the same
message, e.g. a command, can be passed between different components):

1. The application accepts a command from the user:

ResultShown
CMD?
−−−→ GotCommand

2. The command is passed to the application logic for processing:

GotCommand
CMD!
−−−→ CommandExecuted

AppOut?
−−−−−→ GotResult

3. The result of the computation is forwarded to the output device:

GotResult
AppOut!
−−−−−→ ResultShown

14.2. GUARANTEEING INTEGRITY 131

Screen_No_Mail?

Screen_New_Mail?

Screen_No_Mail!

Screen_No_Mail?

Screen_No_Mail?

Screen_New_Mail?

Screen_New_Mail?

Screen_New_Mail!

AppOut

Screen

AppOut
No Mail

Screen

N

Screen

New Mail

Figure 14.3: Screen component for the email system example.

In a similar way, the user reads an application output, evaluates which command
should be issued next, and enters the command into the input device.

The Screen component is an explicit part of the model (see Fig. 14.2). It takes
input from the application and presents it to the user. Sincethe screen is constantly
refreshed, there is no simple one-to-one relation between messages sent by the
application and messages received by the user. The screen outputs its current
content until the content changes. A formal definition of theScreen component is
given below, and a graphical representation is given in Figure 14.3.

Definition 14.1 (Screen Component). Let La = (Sa ,Σa ,s0a ,→a) be an IOLTS
specifying an application. A IOLTSLs = (Ss ,Σs ,s0s ,→s) is aScreencomponent
if the following holds, wheren is a new symbol withn 6∈ Σ!:

• Ss = Σ!a ∪{n}

• s0s = n

• Σ?s = Σ!a

• Σ!s = Σ!a

• For all s,s ′ ∈ Ss : s
s ′?
−→ s ′

• For all s ∈ Ss\{n}: s
s!
−→ s

The screen component has one state for each possible application output mes-
sage; in this case,ScreenNoMail andScreenNewMail. Whenever the applica-
tion updates the screen, the screen components enters the state associated with the
current message. The component repetitively outputs this message (“refreshs the
screen”) until a new message arrives.

132 CHAPTER 14. SECURE INTERACTION

CMD_Check!
Screen_No_Mail?/

Screen_New_Mail?/
CMD_Check!

CMD_Check?/
Screen_No_Mail!

CMD_Check?/
Screen_New_Mail!Screen_No_Mail!

CMD_Check?/

CMD_Check!
Screen_No_Mail?/

CMD_Check!
Screen_New_Mail?/

CMD_Check?/
Screen_New_Mail!

AppOut

CMD

User Logic

AppOut

CMD

Application Logic

No New

Mail

No New

Mail

Mail

New

Mail

New

Figure 14.4: Simple user logic and application logic components.

Our basic model already allows to deduce interesting properties with respect
to integrity constraints. This is illustrated by the following simple example.

For our example, we make the (reasonable) assumption that the critical states
are exactly those where the user makes a decision, i.e.:

λ (critical) = {End Classify}

Critical properties of an application and user assumptionsabout such proper-
ties, of course depend on the user logic and the application logic components.
The specification of the application logic component is introduced in Chapter 16.
Here, we use an excerpt of the full model given in Figure 14.2.The excerpt al-
lows to deduce the relevant properties for guaranteeing integrity while the model
checker input and output are still human-readable.

The application starts in a configuration represented by thestate “No New
Mail.” When the command “Check Mail” (CMDCheck) is received by the appli-
cation, it may either transit into the state “New Mail” or stay in the state “No New

14.2. GUARANTEEING INTEGRITY 133

Mail.” In the same way, the command “Check Mail” in state “NewMail” may ei-
ther lead into the state “No New Mail” or into the state “New Mail.” Whether new
mail arrived or not is outside of the scope of the component. Therefore, the ap-
plication logic component switches nondeterministicallybetween statesNewMail
andNoNewMail. We assume the user uses the same logic (i.e., we assume that the
user “knows” how the application works). The two logic components are shown
in Figure 14.4. Since the state names are identical in both components, we use
the notionApplicationLogic.〈state〉 when referring to states of the application
logic component, andUserLogic.〈state〉when referring to states of the user logic
component. As a security relevant property, we define that the user should always
know whether new mail has arrived or not:

λ (a0) = {ApplicationLogic.NewMail}

λ (u0) = {UserLogic.NewMail}

Representations of the components suitable for model checking with model
checker NuSMV (Cimatti et al., 2002) are given in Appendix C.1. If the user
logic component and the application logic component are directly connected, both
modules are always in corresponding states. This is shown bymodel checking the
system given in Appendix C.4.1.

Integrity isnotguaranteed if the connection between the user logic component
and the application logic component is mediated by the user execution component
and the application execution component given in Figure 14.4 (NuSMV code for
this component is provided in Appendix C.1.1 and C.1.2).

The problem lies in the lack of consistency, as the trace given in Figure 14.5
shows: When the user decides about the next command for the second time, he
does not recognize that the screen output does not reflect thecurrent configuration
of the application, but the previous one. In step 1, the application outputs that no
new mail has arrived. This is shown on the screen in step 2, where the user sees
it. In steps 3 to 4, the user decides to check for new mail. The command is issued
by the user and received by the application in step 5. The application checks for
new mail again in step 6. New mail has arrived, therefore the application logic is
in state “New mail” in step 7. In step 8, the user is not aware that the screen has
not been updated yet. Therefore, he still assumes that no newmail has arrived in
step 9 and also in step 10.

It should be noted that the IOLTSs we use for modelling are still synchronous
automata. The asynchronicity effect leading to inconsistency comes from the way
the screen output component is modeled (it is explicitly modeled using a syn-
chronous formalism).

134 CHAPTER 14. SECURE INTERACTION

Step Application User Application User
Execution Execution Logic Logic

1 Got Result Wait No new mail No new mail

App. Exec: Got Result
ScreenNo Mail!

−−−−−−−−−−−−−−−−−−−−−−−−−→ Result Shown

Screen: N
ScreenNo Mail?

−−−−−−−−−−−−−−−−−−−−−−−−−→ Screen No Mail
2 Result Shown Wait No new mail No new mail

Screen: Screen No Mail
ScreenNo Mail!

−−−−−−−−−−−−−−−−−−−−−−−−−→ Screen No Mail

User Exec.: Wait
ScreenNo Mail?

−−−−−−−−−−−−−−−−−−−−−−−−−→ Start Classify
3 Result Shown Start Classify No new mail No new mail

User Exec.: Start Classify
ScreenNo Mail!

−−−−−−−−−−−−−−−−−−−−−−−−−→ End Classify

User Logic: No new mail
ScreenNo Mail?/CMD Check!

−−−−−−−−−−−−−−−−−−−−−−−−−→ No new mail
4 Result Shown End Classify No new mail No new mail

User Exec.: End Classify
CMD Check?

−−−−−−−−−−−−−−−−−−−−−−−−−→ Decided
5 Result Shown Decided No new mail No new mail

User Exec.: Decided
CMD Check!

−−−−−−−−−−−−−−−−−−−−−−−−−→ Wait

App. Exec.: Result Shown
CMD Check?

−−−−−−−−−−−−−−−−−−−−−−−−−→ Got Command
6 Got Command Wait No new mail No new mail

App. Exec.: Got Command
CMD Check!

−−−−−−−−−−−−−−−−−−−−−−−−−→ Cmd. Executed

App. Logic: No new mail
CMD Check?/ScreenNew Mail!
−−−−−−−−−−−−−−−−−−−−−−−−−→ New mail

7 Cmd. Executed Wait New mail No new mail

App. Exec: Cmd. Executed
ScreenNew Mail?

−−−−−−−−−−−−−−−−−−−−−−−−−→ Got Result
8 Got Result Wait New mail No new mail

Screen: Screen No Mail
ScreenNo Mail!

−−−−−−−−−−−−−−−−−−−−−−−−−→ Screen No Mail

User Exec.: Wait
ScreenNo Mail?

−−−−−−−−−−−−−−−−−−−−−−−−−→ Begin Classify
9 Got Result Begin Classify New mail No new mail

User Exec.: Begin Classify
ScreenNo Mail!

−−−−−−−−−−−−−−−−−−−−−−−−−→ End Classify

User Logic: No new mail
ScreenNo Mail?/CMD Check

−−−−−−−−−−−−−−−−−−−−−−−−−→ No new mail
10 Got Result End Classify New mail No new mail

Figure 14.5: Excerpt of a trace refuting consistency of the basic model (see
Fig. 14.2).

14.2. GUARANTEEING INTEGRITY 135

In Definition 11.2 (Chapter 11), Integrity has been defined as

Integrity≡
appCritical→ ((a0 ↔ u0) ∧ (a1 ↔ u1) ∧ . . . ∧ (an ↔ un))

with a0, . . ., an the attributes representing the configuration of the application,
u0, . . ., un the user’s representation of these attributes, andappCritical whenever
the application is in a critical state.

The system model does not satisfy the integrity constraint,because the user
may decide about which command to issue based on the screen output of an older
state of the application logic. The user may then choose a wrong command. In
particular, if he does not know whether a previous command has already been
executed, he may be tempted to re-issue the same command. In the worst case, this
can lead to a security problem, for example when the user accidentally confirms a
critical action twice.

Next, we show how the synchronization problem illustrated by the above ex-
ample can be solved.

User Logic

Screen

AppOut

AppOut

‘‘Ready!’’
AppOut?=

End
Wait

‘‘Processing’’
AppOut!=

Esc−
aped

Busy

Begin
Wait

‘‘Processing’’
AppOut?=

Application Execution Cycle

AppOut

CMD

Application Logic

User Execution Cycle
AppOut

CMD

CMD

AppOut!AppOut?

CMD?

AppOut!

CMD!

Got
Result Shown

ResultCmd.

uted
Exec−

ESC
ESC

End
Classify

Start
Classify

Escape

CMD!

‘‘ESC’’!

‘‘Pro−
cessing’’

De−
cided

Got
Cmd.

‘‘Ready’’
AppOut!=

CMD? 6=
CMD?=

AppOut? 6=

Figure 14.6: Improved model with states for synchronization.

The problem can be solved by introducing new states for synchronization, as
shown in Figure 14.6. In this model, the application gives visual feedback in-
dicating whether it is waiting for user input or processing user input. Once the

136 CHAPTER 14. SECURE INTERACTION

application has received a user command, it shows “processing” on the screen.
When processing is finished, the new application status is shown. However, just
showing the message “processing” while executing user commands is not suffi-
cient. Depending on execution speed, the user may not recognize the message
“processing” at all (because it was shown only for a very short time), or it may
take a long time before the message is shown (in case the system is slow). In order
to give the user the ability to distinguish between the two cases, an escape com-
mand is introduced. If the user gives the escape command, themessage “Ready!”
is shown. This way, if the user does not know about the state ofthe input process,
he can press “escape” and wait for the message “Ready!” to show up.

One can verify using model checking, that the improved modelgiven in Fig-
ure 14.6 satisfies the integrity constraint. Definitions of the improved application
execution component, user execution component, and systemcomponent suitable
for model checking with NuSMV are given in Appendix D.

We have shown that the naı̈ve model of user and application interaction is not
sufficient to guarantee consistency. While we presented an improved model guar-
anteeing consistency for the given application logic and user logic components,
we did not—and can not—show that the consistency constraintholds forall pos-
sible application and user logic components. Consistency does not solely rely
on the application and user execution loops. The user must also make the right
assumptions about the application model. He must have knowledge about (an ab-
straction of) the inner workings of the application, and about the consequences
of his actions. This knowledge is represented in the user logic component. Just
like the user’s and the application’s execution loop, the logic components can be
modeled as IOLTSs. This requires a state-based representation of the application,
and of the user’s knowledge about the application.

While it is perfectly fine to improve the specification of the application, one
may ask whether it is acceptable to change the user model, i.e., our assumptions
about the user, as the user cannot be “re-implemented.” To a certain degree, how-
ever, that is possible. It is common practice to train the user on how to operate a
system. For this, a formal user model allows to explicit state what a user has to
know in order to operate the system.

14.3 Improved Main Execution Loop

In Section 14.2, simple application logic and user logic components were used
in the refutation of the naı̈ve basic model. These example components (given
in Figure 14.4) each have only two configurations: “New Mail”and “No New
Mail.” In actual TTY-based applications, we have screens with multiple rows
and columns, where each cell can contain an alphanumeric character. Even on a

14.3. IMPROVED MAIN EXECUTION LOOP 137

moderately sized screen, the set of all possible combinations of output characters
is too large to be modeled explicitly. Therefore, it is necessary to find a suitable
abstraction of application states, application output, and user assumptions about
application states in order to make models of real-world applications suitable for
automated model checking.

14.3.1 Notation

Notation We use the Object Constraint Language (OCL) for specification. The
OCL constraints given here should be understandable without deeper knowledge
of OCL.1 In a post-condition,x refers to the value of attribute or variablex after
execution of the procedure, andx@pre refers to the value ofx when the procedure
was entered. In this, we follow the common OCL syntax. OCL hasthe shortcom-
ing that it does not make any assumptions about system properties that are not
explicitly modeled (frame problem). To solve this problem,we (implicitly) add
the following to our specifications: All functions cause only those effects explic-
itly mentioned. See (Warmer and Kleppe, 1999, 1998) for moreinformation on
OCL and (Object Modeling Group) for the current language specification.

As usual in OCL, we refer to the result of a function call by “result” in post-
conditions. When functions refer to one- or two-dimensional lists or strings, we
use the usual []-notation to refer to elements. That is,string [0] is the first charac-
ter of string , string [1] is the second, and so on.

14.3.2 Main Execution Loop

We assume that in the concrete program, the current state is represented by the
variablestate. User commands (usually corresponding to keystrokes) trigger
command execution. Depending on the current state, the command, and the result
of a command, the system changes to a new state. The actual specification of the
commandexecute is application-dependent. The relationship between the high-
level IOLTS model and the specifications ofnextState andexecute is defined
in Chapter 7. Pseudo code for a main event loop implementing the Application
Execution Cycle model from Figure 14.6 is given in Algorithm4.

Under the assumption that the user knows the program state ifit is always
given explicitly on the screen, the screen update functionupdateScreen can be
specified with the following auxiliary functions:

1To make the constraints easier to understand for readers notfamiliar with OCL, we sometimes
use the standard mathematical notation instead of the OCL notation. For example, we usex ∈ list

instead oflist → contains(x).

138 CHAPTER 14. SECURE INTERACTION

Algorithm 4 The main event loop
1: repeat
2: {Show Result}
3: updateScreen(status, waiting, cmdResult)

4: {Get Command}
5: repeat
6: cmd := getKeystroke()

7: if cmd= ESCthen
8: {Escaped}
9: updateScreen(status, waiting, cmdResult)

10: end if
11: until cmd 6= ESC
12: {Busy}
13: updateScreen(status, processing, cdmResult)

14: {Execute & Get Result}
15: cmdResult := execute(state,cmd)

16: state := nextState(state,cmd,cmdResult)

17: until cmd = QUIT

• stateAsString(state) is a string that allows the user to identify the state of
the application.

• screenOutput(cmdResult) is a two-dimensional array of characters. It con-
tains the correct screen output corresponding to the current configuration of
the application. The actual definition ofscreenOutput is under the discre-
tion of the application at hand.

• stringAt(x ,y) is the string shown on screen position(x ,y).

We require that the current state of the application logic component plus optionally
the additional information “ready” or “processing” are shown in the first line of the
screen. A specification of functionupdateScreen in OCL is given in Table 14.1.
The specification ofupdateScreen is a generic template. It fits every applications
requiring a secure, text-based user interface. The application specific part is of the
specification is provided by mathematical functionscreenOutput. An excerpt2 of
the definition ofscreenOutputfor the Verisoft email client is given in the next
Section.

2We only show the part ofscreenOutputrelevant to showing the email message. The reader is
referred to (Beckert et al., 2007) for a complete specification ofscreenOutput.

14.3. IMPROVED MAIN EXECUTION LOOP 139

contextupdateScreen(status, flag, cmdResult)

post stringAt(0,0) = stateAsString(status) and
if flag = waiting then

stringAt(0,1) = “Ready”
else

stringAt(0,1) = “Processing”
end if
and
∀k ∈ {2, . . . ,screenHeight−2} :

stringAt(0,k) =
screenOutput(cmdResult)[k −2]

Table 14.1: Specification of the application’s function forupdating the screen
contents

14.3.3 Editor Component

Not only the state of the system, but also the data has to be displayed correctly.
Defining “correct” display of an email under security aspects is a challenging
task. In the real world, “phishing” attacks are a major form of electronic fraud
(Bachfeld, 2005). Many of these attacks are based on exploitation of incorrect or
ambiguous display of email messages. For the Verisoft emailclient, these attacks
are prevented by restricting the way emails are displayed. The Verisoft email
client shows the pure ASCII representation of the email.

In the following, we present an excerpt of the specification of the Verisoft
email client. This allows us to demonstrate how an interactive user interface com-
ponent can be specified. The email viewing and editing component has the fol-
lowing characteristics: It is a full screen editor; the usercan roam freely over the
text using the cursor keys. The text edited may not fit the screen. In that case, the
editor will scroll when the cursor reaches the screen borders.

The email message editing field is represented by a data structure m := (st,
cx, cy, co, ro)with s a list of strings where each element represents a line of the
text, (cx ,cy) the cursor position and(ro,co) row and column offsets. If the text
is larger than the size of the screen, the offsets indicate which part of the email are
shown.

The part of the main execution loop’supdateScreen responsible for showing
the email (with(x ,y) a position on the screen) is defined as:

Definition 14.2 (screenOutputof Verisoft Email Client). Let s be a list of strings
representing the email message. Let strings by lists of datatypechar, and let
blank ∈ char be the blank. Letco be the column offset, and letro be the row

140 CHAPTER 14. SECURE INTERACTION

offset. Letw be the width of the screen andh be the height of the screen. Then
function

screenOutput: (x ,y) → char with 0≤ x < w and0≤ y < h

is defined as

screenOutput[y ,x] =






s[y + ro][x + co] if length(s) < y + ro and
length(s[y + ro]) < x + co

blank otherwise

contextexecute(cmd, m)

pre cmd ∈ { CURSOR LEFT, CURSOR RIGHT, CURSOR UP,
CURSOR DOWN, INSERT CHAR, DELETE CHAR,
QUIT }

post if cmd = CURSOR LEFT then
cursorLeftPostconditionand
result =CURSOR MOVED

else ifcmd = CURSOR RIGHT then
cursorRightPostconditionand
result =CURSOR MOVED

else ifcmd = CURSOR UP then
cursorUpPostconditionand
result =CURSOR MOVED

else ifcmd = CURSOR DOWN then
cursorDownPostconditionand
result =CURSOR MOVED

else ifcmd ∈ INSERT CHAR then
insertCharPostconditionand
result =CHAR INSERTED

else ifcmd = DELETE CHAR then
deleteCharPostconditionand
result =CHAR DELETED

else
result =QUIT

end if

Table 14.2: Command execution function

While the main execution loop is generic, the specification of execute de-
pends on the actual implementation. The part of the Verisoftemail client’s spec-

14.3. IMPROVED MAIN EXECUTION LOOP 141

ification of execute relevant to editing email is defined by the OCL specifica-
tion given in Table 14.2.executetakes a command (cmd) and am, a represen-
tation of the email as input. For the commandsCURSOR LEFT, CURSOR RIGHT,
CURSOR UP,CURSOR DOWN, INSERT CHAR, DELETE CHAR, it guarantees that value
of m after execution represents the application byinsertCharPostcondition, delete-
CharPostcondition, cursorLeftPostcondition, cursorRightPostcondition, cursor-
UpPostcondition, cursorDownPostcondition,respectively. These definitions de-
scribe the desired results of the respective operations.

As an example, we provide a definition forcursorRightPostcondition. We will
come back to this in Chapter 16. The reader is referred to Chapter 16 for an for
definitions of auxillary functionflatCPos.

Definition 14.3 (cursorRightPostcondition).

cursorRightPostcondition≡
flatCPos(m.st,m.cx,m.cy) =
flatCPos(m.st@pre,m.cx@pre,m.cy@pre)+1

142 CHAPTER 14. SECURE INTERACTION

Chapter 15

Authentication and Secure Channels

15.1 Confidentiality

In this chapter, we show how the definitions and theorems fromChapter 11 relat-
ing to Confidentiality are used to specify confidentiality requirement for an email
client.

According to the system model developed in Chapter 9, the email system is a
multi users, multi application system. Without loss of generality, we assume the
legitimate user of the email system isu0, and the legitimate email application is
a0. We further assume there are exactly two devices, the keyboard identified as
d0, and the screen identified asd1.

In Chapter 11 confidentiality of a channel Channel(s,d ,r) in a system model
system(U ,A, I ,O ,M ,u,a,λ) has been defined (Definition 11.1) as

Confidentiality≡
∀s,d ,r ,d ′,r ′,m,m ′.
[c(s,d) xmt m] ∧ EF[c(d ′,r ′) xmt m ′] ∧ m ∼ m ′ ∧ secret(s,d ′,r ′,m ′) →

legitimate(s,d ′,r ′,m ′)

Confidentiality is guaranteed if all secret messages which may be eventually re-
ceived (EF[c(d ′,r ′) xmt m ′]∧ secret(s,d ′,r ′,m ′)) have been sent ([c(s,d) xmt m]∧
m ∼ m ′) by a legitimate sender (legitimate(s,d ′,r ′,m ′)).

Furthermore, we showed that confidentiality is satisfied when secret messages
are sent only on trusted and legitimate paths to legitimate recipients, defined as
ConfCond(Definition 11.4):

ConfCond≡ ∀s,d ,r ,m. [c(s,d) xmt m] ∧ secret(s,d ,r ,m) →

legitimate(s,d ,r ,m) ∧ trusted((s,d ,r))

The confidentiality condition defines that secret messages are sent to legitimate
receivers on trusted paths only. We have shown that the confidentiality condition

143

144 CHAPTER 15. AUTHENTICATION AND SECURE CHANNELS

is satisfied if both the user and the application are attentive (Theorem 11.2), with
being attentive defined in Definition 11.5 as

AttentiveParty(s) ≡
∀d ,r ,m.[c(s,d) xmt m] ∧ secret(s,d ,r ,m) →

∧ (asmModifies(s,(s,d ,r)) ↔ modifies((s,d ,r)))
∧ (asmPrivate(s,(s,d ,r)) ↔ private((s,d ,r)))
∧ asmIdentitiy(s,(s,d ,r),s,d ,r)
∧ ¬asmModifies(s,(s,d ,r))
∧ asmPrivate(s,(s,d ,r))
∧ legitimate(s,d ,r ,m)

Intuitively, attentiveness means that secret messages aresend only if

- it is legitimate to send them,

- the assumptions about the channel in respect to modification of messages,
privacy of the channel, and identity of the communicating party are correct,

- and the channel is private and not modifying data.

In the email application, there are two channels: One user input channel, con-
necting the user via the keyboard to the application, and oneapplication output
channel, connecting the application to the user via the screen. We assume that all
communications on both of these channels are bothsecretandlegitimate, i.e. the
user and the application are free to share all information with each other, but they
are not allowed to share information with anybody else.

Definition 15.1(Email System Model). LetS = system(U ,A, I ,O ,M ,u,a,λ) be
a system model.E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) with k ∈ I , t ∈ O ,
and

∀s,d ,r ,m.secret(s,d ,r ,m)
∀m.legitimate(u,k ,a,m)
∧ ∀m.legitimate(a, t ,u,m)
∧ ∀r ,m.r 6= a ∨ d 6= k →¬legitimate(u,d ,r ,m)
∧ ∀s,m.t 6= u ∨ d 6= t →¬legitimate(t ,d ,a,m)

is an email system model. In this model,k represents the keyboard andt repre-
sents the screen.

Since we model HCI only, sending and receiving email on the network is not
subject of the definitions ofsecretandlegitimate.

From the definition ofAttentivePartyit follows trivially (and has been shown
in Proof 11.2) that whenever a message is send by the user or the application,

15.1. CONFIDENTIALITY 145

the path has to be private, the message must not be modified on the path, and
the receiver of the message is correct. Additionally the sender must always know
when these conditions hold. This leads to the following requirement specifications
for screen and keyboard:

Definition 15.2 (Confidentiality Requirement Specification Screen).
LetE = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model. Screen
componentt satisfies the confidentiality requirement if

E |= AG(¬modifies((a, t ,u)) ∧ private((a, t ,u)))

Definition 15.3 (Confidentiality Requirement Specifications Keyboard). LetE =
emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model. Keyboard
componentk satisfies the confidentiality requirement if

E |= AG(¬modifies((u,k ,a)) ∧ private((u,k ,a))

If screen and keyboard satisfy their confidentiality requirements, the user and
the application must know that the channel is private and does not modify mes-
sages, and that they are sending on the right channel. The user will use the key-
board to enter messages and no other input device (AG(∀m.[c(u,d) xmt m] →
d = k)), and he assumes that

- the keyboard device is private:
asmPrivate(u,(u,k ,a)),

- the keyboard device is not modifying messages:
¬asmModifies(u,(u,k ,a))

- and the correct application is listening to the keyboard device:
asmIdentitiy(u,(u,k ,a),u,k ,a)

Definition 15.4 (Confidentiality Requirement Specification for User). Let E =
emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model. Useru satis-
fies the confidentiality requirement if

E |=AG(∀m.[c(u,d) xmt m] → d = k) ∧

AG(¬asmModifies(u,(u,k ,a)) ∧ asmPrivate(u,(u,k ,a))
asmIdentitiy(u,(u,k ,a),u,k ,a))

The confidentiality requirement definition for the application is similar to the
requirement definition for the user, with the device in question being the screen
rather than the keyboard:

146 CHAPTER 15. AUTHENTICATION AND SECURE CHANNELS

Definition 15.5 (Confidentiality Requirement Specification for Application). Let
E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model. Applica-
tion a satisfies the confidentiality requirement if

E |=AG(∀m.[c(a,d) xmt m] → d = t) ∧

AG(¬asmModifies(a,(a, t ,u)) ∧ asmPrivate(a,(a, t ,u))
asmIdentitiy(a,(a, t ,u),a, t ,u))

Next, we show that a system guaranteeing the component specifications for
screen, keyboard, user, and application is confidential.

Theorem 15.1.LetE = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email sys-
tem model satisfying definitions 15.2 to 15.5. Then the following holds:

E |= ConfCond

Proof
Insert definition ofConfCond:

E |= ∀s,d ,r ,m. [c(s,d) xmt m] ∧ secret(s,d ,r ,m) →

legitimate(s,d ,r ,m) ∧ trusted((s,d ,r))

ConfCondholds trivially unless messages are transmitted. For message trans-
mission (i.e.[c(s,d) xmt m]), we distinguish three cases:

1. s 6= u ands 6= a

2. s = u

3. s = a

First case: s 6= u and s 6= a From the definition of the email system model
(Definition 15.1), it follows thatsecret(s,d ,r ,m) is never true. Therefore the
theorem trivially holds.

Second case:s = u

E |= ∀d ,r ,m. [c(u,d) xmt m] ∧ secret(u,d ,r ,m) →

legitimate(u,d ,r ,m) ∧ trusted((u,d ,r))

From the confidentiality requirement specification for the user (Definition 15.4)
it follows that the user sends messages to the keyboard only.Therefore

E |= ∀r ,m. [c(u,k) xmt m] ∧ secret(u,k ,r ,m)→

legitimate(u,k ,r ,m) ∧ trusted((u,k ,r))

15.2. AUTHENTICITY 147

From Definition 15.4 it also follows that the user knows aboutthe identity of
the receiving party. Therefore

E |= ∀m. [c(u,k) xmt m] ∧ secret(u,k ,a,m) →

legitimate(u,k ,a,m) ∧ trusted((u,k ,a))

∀m.secret(u,k ,a,m)→ legitimate(u,k ,a,m) follows from the email system
definition. It remains to be shown that

E |= trusted((u,k ,a)

Insert definition of trusted:

E |= authenticated((u,k ,a)) ∧ ¬leaks((u,k ,a))

∧ ¬modifies((u,k ,a))

With private((u,k ,a))→¬leaks((u,k ,a)) and the keyboard requirement spec-
ification (Definition 15.3), it remains to be shown that

E |= authenticated((u,k ,a))

Insert definition of authenticated (Definition 10.4):

E |= asmIdentity(s,(s,d ,r),s,d ,r)

∧ asmIdentity(t ,(s,d ,r),s,d ,r)

This follows directly from the requirement specifications for the user and the ap-
plication.

Third case The third case is proven in the same way as the second case.�

15.2 Authenticity

We have shown that confidentiality is guaranteed if the keyboard device, the
screen device, the application, and the user satisfy the confidentiality requirement
(Definitions 15.3 to 15.5.) For the keyboard and the screen, the only requirements
are that they are private and do not modify the content of the message. Measures
to ensure these requirements are partly technical and underthe responsibility of
the operating system, and partly organizational. For example, the workspace must
be set up in such a way that no non-authorized party can read the screen. The

148 CHAPTER 15. AUTHENTICATION AND SECURE CHANNELS

requirements for the user and application components require that the user and
the application do know about the identity of the other party. On the applica-
tion’s side, guaranteeing authenticity of the user is underthe responsibility of the
operating system, which uses an authenticity procedure as described in Common
Criteria Class FIA (Identification and Authentication), which has been formalized
in Section 10.2.

It is not sufficient that the authenticity of the user is guaranteed. The authentic-
ity of the application must be guaranteed as well. Since screen output is the only
input source for the user, the information about the authenticity of the application
must be shown on the screen. In Section 14.3, a screen output function specified
in OCL has been developed. In the following, the specification is adapted to carry
the information needed to identify the application.

Locking a resource is not sufficient to guarantee security. The user must also
knowwhich process locks a resource and whether the system is busyor not. There-
fore, the operating system configuration must be shown to theuser represented by
a string of characters. We assume this string representation to be given by the
function

OSConfString: OSConf→ String ,

which we do not further specify here. It must return a string that allows the user
to determine the exact operating system configuration. Its actual implementation
depends, for example, on the language(s) the user is supposed to understand.

contextupdateScreen(status, flag, cmdResult)

post stringAt(0,1) = stateAsString(status) and
if flag = waiting then

stringAt(0,2) = “Ready”
else

stringAt(0,2) = “Processing”
end if
and
∀k ∈ {3, . . . ,screenHeight−3} :

stringAt(0,k) =
screenOutput(cmdResult)[k −3]

Table 15.1: Refined specification of the application’s function for updating the
screen contents, taking into account that the first line is under control of the oper-
ating system.

We assume that the first line of the screen is reserved for information on the
operating system configuration, i.e. the first line should beidentical toOSConf-

15.2. AUTHENTICITY 149

String(OSConf). By not allowing processes (other than the operating system) ac-
cess to row 0, the changed specifications ofsetChar andsetCursor given below
assure that the configuration information can be overwritten neither by any user
applications nor by any attacking processes.

We specify the correct display of the operating configuration resources as an
invariant ofOSConf:

contextOSConf
inv stringAt(t)[0,0] = OSConfString(OSConf)

Note that the operating system invariant guaranteeing thatthe application name
is shown in the status line is not part of the specification ofupdateScreen, be-
cause it is under the responsibility of the operating systemto guarantee this prop-
erty. If the status line were under control of the application, a malicious program
could write wrong information in the line, making users believe they are inter-
acting with a different application. The specification ofupdateScreen given in
Table 14.1 does not take into account that the first line of thescreen is under
control of the operating system. A refined specification is given in Table 15.1.

150 CHAPTER 15. AUTHENTICATION AND SECURE CHANNELS

Chapter 16

Availability

In Chapter 11, the common definition of availability as reachability of desirable
states and avoidability of undesirable states has been adapted to user interface
security. Availability is guaranteed if for a given user andapplication model,
desirable states are always reached and undesirable statesare never reached. This
led to Definition 11.3:

Availability≡ AG(¬fatal→ AFsuccess)

In this Chapter, we use this definition to define availabilityrequirements for
a secure email client. We specify concrete application and user components and
show that a model constructed from the components satsifies the availability re-
quirement. Based on the application logic component specification, a pervasively
verified email client has been developed in project Verisoft. The concrete compo-
nent definitions developed in this chapter are specific to thesecure email client
developed in Verisoft. We present it as an example for an application of the
methodology developed in Parts I and II.

Figure 16.1 gives a state chart model of the email client. Theemail client
has two functionalities: First, it should be possible to write, sign, and send email.
Second, it should be possible to receive email, check a signature, and read the
email. In the following we provide suitable user models for both scenarios.

16.1 Writing, Signing, Sending Email

In this scenario, the user first writes an email, then signs it, and finally sends it.
The proof of availability of this functionality is split into two parts. One part of
the proofs uses model checking to show that certain abstractstates are reached.
This part proves the temporal aspects of the theorem based onthe abstract state
chart model of the email client. The second part of the proof uses Hoare logic to

151

152 CHAPTER 16. AVAILABILITY

H

typing

Edit Pub. Key

Not Changed

Changed

H

move cursor

Edit Email

typing

Changed

Not Changed

H

poll / new email arrived

Checked

Not Checked

Sent

Unsigned

Signed

Command Mode

Run Mode

move cursor

check
[SUCCESS]

send

sign

[SUCCESS]

[SUCCESS]

[out of memory]

Receive Mode

Send Mode

generate key pair

insert pub. key
quit viewing

edit|view

quit editing

edit|view

quit

quit viewing | editing

Exit

Figure 16.1: Statechart of email client applications. State transitions represent
execution of program functions.

16.1. WRITING, SIGNING, SENDING EMAIL 153

prove properties of the actual state transitions. In order to proof the theorem, both
parts are needed: The model checking based proofs allow to express properties
like “state ‘sent’ is always reachable”, or “state ‘email changed’ can be reached
an arbitrary number of times.” However, since these proofs operate on an abstract
state model of the application, and not on the actual states,it is not possible to
show that “an arbitrary email can be entered”, because the actual email is not part
of the model. Properties of the actual state space of the system are proven in Hoare
logic.

16.1.1 CTL Part

GOAL: WRITE SIGN SEND
GOAL: WRITE

OPERATOR: EDITMAIL
GOAL: MOVE TO BEGIN OF MAIL

OPERATOR: MOVECURSORLEFT
OPERATOR: MOVECURSORLEFT
. . .

GOAL: DELETE ALL CHARACTERS
OPERATOR: DELETECHAR
OPERATOR: DELETECHAR
. . .

GOAL: TYPE MAIL
OPERATOR: INSERTCHAR
OPERATOR: INSERTCHAR
. . .

OPERATOR: SIGN
OPERATOR: SEND

Figure 16.2: GOMS model for writing, signing, sending mail.Repeated opera-
tions are indicated by “. . . ”.

Figure 16.2 gives a GOMS model of a user writing, signing, andsending
email. The user first moves to the begin of the mail. Then he deletes all the
old content of the mail. Finally, he types the intended message, signs and send
it. An IOLTS of the GOMS model1 is given in Figure 16.3. The email system
should guarantee that it is always possible to execute thesesteps, resulting in the

1Some states have been joined; see Definition 6.1.

154 CHAPTER 16. AVAILABILITY

sending of the intended message, signed by the sender. Furthermore, it should
not be possible to send a message without signing it. Formal definitions of these
concepts are given in the following theorems.

Init
EditMail!

MoveCursor!

InsertChar! DeleteChar!

QuitEditing!

Send!

Sign!
Editing Signing Sending

Figure 16.3: User Model for Writing, Signing, and Sending Email

The first theorem states that it is possible to enter edit modeand move the
cursor an arbitrary number of times while staying in statemailNotChanged:

Theorem 16.1(Arbitrary number of cursor moves).
Let E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 andu corresponding to the
IOLTS given in Figure 16.3. Then the following holds:

EF(EG((user.action= moveCursor) ∧ (client.state= mailNotChanged)))

In combination with the Hoare specification from Section 16.1.2, it follows
that it is always possible to reach the beginning of the emailby repeatedly issuing
commandcursorLeft.

The next theorem states that if the client is in statemailNotChanged, it is
possible to transit to statemailChanged in the next step:

Theorem 16.2(Transition frommailNotChanged to mailChanged).
Let E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 andu corresponding to the
IOLTS given in Figure 16.3. Then the following holds:

EF((client.state= mailNotChanged)
∧ EX(client.state= mailChanged))

If the client is in state mailChanged, an arbitrary number ofcharacters can be
deleted:

16.1. WRITING, SIGNING, SENDING EMAIL 155

Theorem 16.3(Deleting an arbitrary number of characters).
LetE = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 andu corresponding to the
IOLTS given in Figure 16.3. Then the following holds:

EF(EG((user.action= deleteChar)
∧ (client.state= mailChanged)))

In combination with the Hoare logic proofs from Section 16.1.2, it follows
from Theorems 16.1 to 16.3 that the user can get the application in a state where
the email message is empty.

The next theorem states that an arbitrary number of characters can be inserted:

Theorem 16.4(Inserting arbitrary characters).
Let E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 andu corresponding to the
IOLTS given in Figure 16.3. Then the following holds:

EF(EG((user.action= insertChar)
∧ (client.state= mailChanged)))

In combination with Hoare logic proof about inserting characters from Sec-
tion 16.1.2, it follows that the user can enter an arbitrary email into the applica-
tion.

The last two theorems ensure that sending the email is possible, and that no
unsigned messages are send:

Theorem 16.5(Sending Possible).
Let E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 andu corresponding to the
IOLTS given in Figure 16.3. Then the following holds:

EF((client.state= mailChanged)
∧ EX(E[(client.state! = mailChanged)U(client.state= sent)]))

Theorem 16.6(No Unsigned Messages Sent).
Let E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 andu corresponding to the
IOLTS given in Figure 16.3. Then the following holds:

AG((EX(client.state= sent)) →
(client.state= signed))

Proof
Appendix E gives the conjunction of theorems 16.1 to 16.6 in the input format

of theNuSMV (Cimatti et al., 2002) model checker. Correctness has been proven
in NuSMV 2.3.0. �

156 CHAPTER 16. AVAILABILITY

16.1.2 Hoare Part

We want so show that the user can enter an arbitrary email. We show this in three
steps: First, we show that the user can always move the cursorto the beginning
of the current email message by repeatedly giving commandcursorLeft. Sec-
ond, we show that the user can delete the current email message if he is at the
begin of the message and gives commanddeleteChar repeatedly. Finally, we
show that the user can create an arbitrary text by typing the characters of the text
successively, starting with an empty email.

The user can always reach the beginning of a message by repeatedly issuing
commandcursorLeft. In Section 16.1.1, we have shown that the user can ex-
ecute commandcursorLeft an arbitrary number of times. Now, we show that
the user will reach the beginning of the email eventually if he gives command
cursorLeft repeatedly. A Hoare specification2 of commandcursorLeft is given
in Figure 16.4.m is the data structure storing the email text as a list of strings,
where strings are lists of characters. The list of strings isaccessed viam.st. The
cursor x and y positions are accessed viam.cx, mail.cy, respectively. The proce-
dure specification ofcursorLeft, cursorRight, insertChar, anddeleteChar
make use of auxiliary functionsflatCPos, flatten, flattenUntilPos, and flatten-
FromPos, which themselves use auxiliary functionstakeanddrop. These func-
tions are defined in Definitions 16.1 to 16.6. Functionflattenflattens a two di-
mensional string. FunctionflattenUntilPosflattens a two dimensional string up
to a given(x ,y) position. FunctionflattenFromPosflattens a two dimensional
string starting at a given(x ,y) position. Functiontake takes the first characters
of a string, anddrop removes the first characters from a string. FunctionflatCPos
translates a two-dimensional cursor position into the position of the cursor in a
one-dimensional string. In the definition of these functions, we use the function
head, which gives the first element of a list,tail, which gives the last element of a
list, andconcat, which concatenates two or more lists.

Definition 16.1 (flatten). Let s be a list of strings. flatten is defined as

flatten(s) =

{

”” If |s| = 0
concat([head(s)],flatten(rest(s)) otherwise

Definition 16.2 (flattenUntilPos). Let s be a list of strings, and letx and y be
natural numbers such that the position(x ,y) exists in list of stringss, i.e.0≤ y <

2The Hoare specifications given here forcursorLeft, cursorRight, insertChar, and
deleteChar are somewhat simplified, because the actual data structuresof the email client are
more complex than the data structures shown here. See Beckert et al. (2007) for the actual speci-
fications.

16.1. WRITING, SIGNING, SENDING EMAIL 157

|s| and0≤ x < |s[y]|. flattenUntilPos is defined as

flattenUntilPos(x ,y ,s) =






take(x ,head(s)) If y = 0
flatten(head(s),

flattenUntilPos(x ,y −1, tail(s)))
Otherwise

Definition 16.3(take). Let l be a list, and letx be a position in listl , i.e.0≤ x < |l |
take is defined as

take(x , l) =
{

”” If x = 0
flatten(head(l), take(x −1, tail(l))) Otherwise

Definition 16.4 (flattenFromPos). Let s be a list of strings, and letx and y be
natural numbers such that the position(x ,y) exists in list of stringss, i.e.0≤ y <
|s| and0≤ x < |s[y]|. flattenFromPos is defined as

flattenFromPos(x ,y ,s) =
{

flatten(drop(x ,head(s)), tail(s)) If y = 0
flattenFromPos(x ,y −1, tail(s)) Otherwise

Definition 16.5(drop). Let l be a list, and letx be a position in listl , i.e.0≤ x <
|l | drop is defined as

drop(x , l) =
{

l If x = 0
drop(x −1, tail(l)) Otherwise

Definition 16.6 (flatCPos). Let s be a list of strings, and letx andy be natural
numbers such that the position(x ,y) exists in list of stringss, i.e.0≤ y < |s| and
0≤ x < |s[y]|. flatCPos is defined as

flatCPos(s,x ,y) =







x If y = 0
flatCPos(tail(s),x ,y −1) otherwise

+len(head(m))

With these auxiliary functions, procedurecursorLeft of the email client can
be specified. The specification uses functionflatCPosto translate the position of
the cursor in the two-dimensional list of strings into the same position in a flat,

158 CHAPTER 16. AVAILABILITY

contextcursorLeft(m)
post if flatCPos(m.st,m.cx,m.cy) > 0 then

flatCPos(m.st,m.cx,m.cy) =
flatCPos(m.st@pre,m.cx@pre,m.cy@pre)−1

result = RESULTCURSORMOVED
else

result = RESULTMOVE CURSORFAILED
end if

Figure 16.4: Specification ofcursorLeft

one-dimensional string. It ensures that after execution ofcursorLeft, the lo-
cation of the cursor in the flat string is decreased by one. Thespecification of
cursorLeft is given in Figure 16.4. In the specification ofcursorLeft, m is
a data structure representing the current configuration of the mail editing com-
ponent. m.st is a list of strings representing the email, andm.cx andm.cy are
the (x ,y) positions of the cursor. Reachability of position(0,0) by repeatedly
executing commandcursorLeft follows trivially from the specification.

contextdeleteChar()
post flatten(m.st) =

concat(flattenUntilPos(m.cx,m.cy,m.st@pre),
tail(flattenFromPos(m.cx,m.cy,m.st@pre)))

Figure 16.5: Specification ofdeleteChar

Definition 16.5 specifiesdeleteChar. Like cursorLeft, deleteChar is
specified on the flat representation of the list of strings provided byflatten. It
ensures that the flat representation of the list of strings after execution of the pro-
cedure is identical to the flat representation of the original list of strings up to the
current cursor position, concatenated to the flat representation of the list of strings
from the current cursor position with the first character removed.

Next, we show that the email message can be deleted under the assumption
that the cursor is at position(0,0) and the user gives commanddeleteChar re-
peatedly.

Theorem 16.7.
Let E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 anddeleteChar as specified
in Figure 16.5. Letm.st be the list of strings representing the email,m.cx thex

position of the cursor andm.cy they position withm.cx = 0 andm.cy = 0

16.1. WRITING, SIGNING, SENDING EMAIL 159

Then

|m.st| = 0

if deleteChar is executed sufficiently often.

Proof
We proof the proposition by induction over the length of the message.

Base case: |m.st| = 0
In the base case, the mail is already empty

Induction step:
We know that|m.st|= n +1∧ m.x= 0∧ m.y = 0 and that the theorem holds for
|m.st|= n. Since the cursor is at position(0,0), the following equations are true:

flatten(flattenUntilPos(m.cx,m.cy,m.st@pre) = []

flatten(flattenFromPos(m.cx,m.cy,m.st@pre) = m.st@pre

With the specification ofdeleteChar it follows that m.st = tail(m.st@pre).
From the definition oftail it follows that |m.st| = tail(m.st@pre)−1 and finally
|m.st| = n. �

contextinsertChar(char c)

post flatten(m.st) =
concat(flattenUntilPos(m.cx,m.cy,m.@pre),c,

flattenFromPos(m.cx,m.cy,m.st.row@pre))
and flatCPos(m.st,m.cx,m.cy) =

flatCPos(m.st@pre,m.cx,m.cy)+1

Figure 16.6: Specification ofinsertChar

Finally, we show that the user can enter an arbitrary email message by inserting
characters if the message is empty. The specification ofinsertChar given in
Figure 16.6 is very similar to the specification ofdeleteChar. It ensures that the
resulting flat string is identical to the concatenation of original flat string up to
the cursor position, the new character, and the original flatstring from the cursor
position to the end. Additionally the cursor has been moved one character to the
right.

160 CHAPTER 16. AVAILABILITY

Theorem 16.8.
LetE = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model witha

corresponding to the IOLTS given in Figure 16.1 andinsertChar as specified in
Figure 16.6. Letm.st be the list of strings representing the email withm.st = [],
m.cx the x position of the cursor andm.cy the y position withm.cx = 0 and
m.cy = 0 Let message be the message the user wants to enter.

Then

flatten(m.st) = message

if insertChar is executed sufficiently often.

Proof
The theorem is proven by induction over the length of the messages, with the

induction hypothesis that after enteringn characters, the firstn characters of the
message and the mail are identical and the cursor is at the last position of the mail.

Base case: n = 0
take(message,n) = [] = flatten(m.st)
and furthermoreflatCPos(m.st,m.cx,m.cy) = |flatten(m.st)|

Induction step
From the induction hypothesis we know that
take(message,n) = flatten(m.st@pre)
andflatCPos(m.st@pre,m.cx@pre,m.cy@pre) = n +1
From
flatCPos(m.st@pre,m.cx@pre,m.cy@pre) = flatten(m.st@pre)+1
It follows that
flattenUntilPos(m.cx,m.cy,m.@pre) = flatten(m.st@pre)
andflattenFromPos(m.cx,m.cy,m.@pre) = [].
With the specification ofinsertChart it follows that

m.st = flatten(flatten(m.st@pre),message[n +1])

= take(message,n +1)

and

flatCPos(m.st,m.cx,m.cy) = len(flatten(m.st@pre)+1

= flatten(m.st)

�

16.2. RECEIVING, CHECKING, READING EMAIL 161

16.2 Receiving, Checking, Reading Email

16.2.1 CTL Part

GOAL: POLL CHECK READ
GOAL: POLL FOR NEW MAIL

OPERATOR: POLL
SELECT:

GOAL: POLL FOR NEW MAIL. . . if no new mail arrived
GOAL: CHECK AND READ

OPERATOR: CHECKSIGNATURE
GOAL: READ MAIL

OPERATOR: MOVECURSORRIGHT
. . .

Figure 16.7: GOMS model for polling email, checking asignature, and reading a
mail. Repeated operations are indicated by “. . . ”.

The theorems and proofs in this section are closely related to the theorems
from Section 16.1. Again, we start with the CTL part. Figure 16.7 gives a GOMS
model of a user polling for new email, checking the signatureof a newly arrived
email, and reading it. The user polls email until new email arrives. Then he
checks the signature. After checking the signature, he reads the mail. Here, we
define reading mail as “moving the cursor over the email text.” An IOLTS of the
GOMS model3, is given in Figure 16.8.

We want to guarantee that email is received eventually if theuser repetitively
polls for new mail. If new mail arrived, the user should be able to read the mail,
i.e. it should be possible to move the cursor over all characters of the email. It
should also be guaranteed that the user checks the signatureof newly arrived mail.
These requirements are formalized in the following theorems:

If the system is in the initial state and new mail is available, then both the new
mail will have arrived in the next step and the user will know about.

Theorem 16.9(Successful Polling).
Let E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 andu corresponding to the

3Some states have been joined; see Definition 6.1.

162 CHAPTER 16. AVAILABILITY

Edit
Mail!

Poll! /

Poll! /
notChecked? CheckSig.!

Move
Cursor!

ReadingGotNew
Mail Checked

Sig.
Polling

¬ notChecked?

Figure 16.8: User Model for Receiving Email, Checking the Signature, and Read-
ing the Email

IOLTS given in Figure 16.8. Then the following holds:

(AG(((client.state= unsigned) ∧ client.newMailAvailable) →
AX((client.state= notChecked) ∧ AX(user.state= got new mail))))

If the system is in the initial state and no mail is available,then both the system
and the user will remain in their initial states in the next step.

Theorem 16.10(Unsuccessful Polling).
Let E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 andu corresponding to the
IOLTS given in Figure 16.8. Then the following holds:

(AG(((client.state= unsigned) ∧ ¬client.newMailAvailable) →
AX((client.state= unsigned) ∧ AX(user.state= endpolling))))

The user will continue polling for new mail while the system is in its initial
state

Theorem 16.11(Continuous Polling).
Let E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 andu corresponding to the
IOLTS given in Figure 16.8. Then the following holds:

(AG((client.state= unsigned) → (user.action= poll)))

If mail has arrived, the user will not poll for new mail until the email client is
in mail read mode.

Theorem 16.12(Stop Polling).
Let E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with

16.2. RECEIVING, CHECKING, READING EMAIL 163

a corresponding to the IOLTS given in Figure 16.1 andu corresponding to the
IOLTS given in Figure 16.8. Then the following holds:

(AG((client.state= notChecked) →
AX(A[(¬(user.action= poll))U(client.state= mailNotChanged)])))

Once the user is reading mail, he will be moving the cursor forever.

Theorem 16.13(Moving Cursor When Reading).

(AG((client.state= mailNotChanged) →
AG(user.action= moveCursor)))

If new mail has arrived and the signature of the current mail has not been
checked, the user will not poll for new mail until the signature has been checked

If the user is in read email mode, he either was already reading email in the
step before, or the signature had been checked.

Theorem 16.14(Signature Checked Before Reading).
Let E = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model with
a corresponding to the IOLTS given in Figure 16.1 andu corresponding to the
IOLTS given in Figure 16.8. Then the following holds:

AG((EXclient.state= mailNotChanged) →
((client.state= mailNotChanged) ∨ (client.state= checked)))

Proof
Appendix F gives the conjunction of theorems 16.9 to 16.14 inthe input format

of theNuSMV (Cimatti et al., 2002) model checker. Correctness has been proven
in NuSMV 2.3.0. �

16.2.2 Hoare Part

We want so show that the user can read an arbitrary email. For this, we show
that it is always possible for the user to move the cursor overthe whole email
message. The idea behind this is that if the user will have seen each character
of the message in the correct order, he has understood the email message. In
Section 16.1.1 we have already shown that it is possible to reach the first position
of the email by repeatedly issuing commandcursorLeft. Here, we show that the
user will have traversed all characters of the email messagein the right order if he
repeatedly issues commandcursorRight starting from cursor position(0,0). A
specification of procedurecursorRight is given in Figure 16.9.

164 CHAPTER 16. AVAILABILITY

contextcursorRight()
post if flatCPos(m.st,m.cx,m.cy) < len(flatten(m.st))

then
flatCPos(m.st,m.cx,m.cy) =

flatCPos(m.st@pre,m.cx@pre,m.cy@pre)+1
result = RESULTCURSORMOVED

else
result = RESULTMOVE CURSORFAILED

end if

Figure 16.9: Specification ofcursorRight

Theorem 16.15.
LetE = emailSystem(U ,A, I ,O ,M ,u,a,λ ,k , t) be an email system model witha

corresponding to the IOLTS given in Figure 16.1 andinsertChar as specified in
Figure 16.6. Letm.st be the list of strings representing the email withm.st = [],
m.cx the x position of the cursor andm.cy the y position withm.cx = 0 and
m.cy = 0 Let message be the message the user wants to enter.

If the user executescursorRight sufficiently often, then the cursor will move
over all elements of flatten(m.st) consecutively.

Proof
We prove the theorem by induction over the length of email messagem.st

with the induction hypothesis that the user has read the email up to thenth char-
acter

Base case: n = 0 This case is trivally true.

Induction step: The user has read the email up to positionn, and flatCPosis
n From the definition ofcursorRight it follows that the cursor is at position
n +1 in the next step. Since the user has read the firstn characters in order and
reads the(n +1)th character next, he has readn +1 characters in order. �

Chapter 17

Conclusions

We have successfully applied the formal methodology developed in Parts I and II
to the specification and verification of a secure email client. In the project Verisoft
(http://www.verisoft.de), an actual email client satisfying the specification
has been developed, and correctness has been proven. With this example applica-
tion, we have shown how formal methods can be used to guarantee a fundamental
requirement of user interface security. Our approach provides both formal defi-
nitions of HCI security and a formal method for the pervasivespecification and
verification of interactive applications. Developing a methodology for the perva-
sive specification of secure interactive applications posed a number of challenges:

• A formal methodology for the description of human-computerinteraction
had to be developed.

• Security requirements for HCI had to be developed and formalized.

• Theorems proven in different formal methods had to be integrated.

In Part I, the formal methodology for the description of HCI has been devel-
oped. Our methodology is based on IOLTS as a formal modeling method, and
GOMS as a method for the description of user interfaces. We have developed a
formal semantic for GOMS. By introducing hierarchical models, it becomes pos-
sible to describe HCI on any level of granularity. In order toallow for the pervasive
formal description of human-computer interaction, the IOLTS based methodology
has been integrated with Hoare logics procedure descriptions.

In Part II, formal security criteria for human-computer interaction have been
developed. The formal criteria are based on the Common Criteria, a standardized
international computer security requirement catalog, andthe established defini-
tion of computer security as Confidentiality, Integrity, and Availability (CIA). We
adapted both the Common Criteria and CIA to user interface security, formalized

165

166 CHAPTER 17. CONCLUSIONS

the relevant concepts, and evaluated the relationships between concepts from the
Common Criteria and CIA concepts.

In Part III, the methodology has been applied to the specification and verifica-
tion of a secure email client. We have shown how Confidentiality, Integrity, and
Availability are guaranteed for the email client. In the Verisoft project, an imple-
mentation of the email client has been developed and the procedural correctness
has been proven. The results from Part III are not only relevant for the Verisoft
email client. The design pattern in Chapters 14 and Chapter 15 are generic. If
a specification follows the design pattern, then integrity and confidentiality are
guaranteed.

Part IV

Appendices

167

Appendix A

First eVoting Example

The SMV file in Section A.1 implements the basic version of theeVoting applica-
tion and user model as given in Chapter 4. The trace given in Section A.2 shows
that in the given model, it is possible that a final state is never reached, i.e. the
basic model is faulty. In the trace, the user continously selects a candidate and
cancels the selection in the next step. A final state is never reached.

A.1 SMV File

MODULE voterComponent

VAR

state: { start, chosen, confirmed, error} ;

action: { chooseBob, cancelVote, confirmVote, idle } ;

ASSIGN

init(state) := start;

next(state) :=

case

state = start : chosen ;

state = chosen & (action = confirmVote) : confirmed ;

state = chosen & (action = cancelVote) : start ;

state = confirmed : confirmed ;

1 : error ;

esac;

init(action) := chooseBob ;

next(action) :=

case

state = start : { confirmVote, cancelVote } ;

state = chosen & (action = confirmVote) : idle ;

state = chosen & (action = cancelVote) : chooseBob ;

169

170 APPENDIX A. FIRST EVOTING EXAMPLE

1 : idle ;

esac;

MODULE votingComputerComponent(userInput)

VAR

state: { unlocked, voteCastBob, voteConfirmedBob, error} ;

ASSIGN

init(state) := unlocked;

next(state) :=

case

(state = unlocked) & (userInput = chooseBob)

: voteCastBob ;

(state = voteCastBob) & (userInput = cancelVote)

: unlocked ;

(state = voteCastBob) & (userInput = confirmVote)

: voteConfirmedBob ;

state = voteConfirmedBob : voteConfirmedBob ;

1 : error ;

esac;

DEFINE

final := state = voteConfirmedBob ;

MODULE main

VAR

voter : voterComponent();

votingComputer : votingComputerComponent(voter.action);

SPEC

AG (votingComputer.state != error)

& AG (voter.state != error)

& AF (votingComputer.final)

A.2 Refutation Generated by NuSMV

-- specification ((AG votingComputer.state != error &

AG voter.state != error)

& AF votingComputer.final) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-- Loop starts here

-> State: 1.1 <-

A.3. MESSAGE TRACE EXAMPLE 171

voter.state = start

voter.action = chooseBob

votingComputer.state = unlocked

votingComputer.final = 0

-> State: 1.2 <-

voter.state = chosen

voter.action = cancelVote

votingComputer.state = voteCastBob

-> State: 1.3 <-

voter.state = start

voter.action = chooseBob

votingComputer.state = unlocked

A.3 Message Trace Example

This example from Chapter 9 shows how temporal properties about messages are
formalized. The specification guarantees that the action “cancelVote” is never
immediately followed by the action “confirmVote.” The NuSMVcode is identical
to the code in Appendix A.1, except for the SPEC declaration:

SPEC

AG (votingComputer.state != error)

& AG (voter.state != error)

& AG (voter.action = cancelVote ->

AX voter.action != confirmVote)

172 APPENDIX A. FIRST EVOTING EXAMPLE

Appendix B

Perl Program converting GOMS to
IOLTS

This Perl program implements Algorithms 1 and 2 from Chapter5. It takes for-
mal GOMS models (Definition 5.1 in Chapter 5) and generates a corresponding
IOLTS.

#!/usr/bin/perl -w

use strict;

Define GOMS model

my @G_c = ("VOTE_FOR_CANDIDATE_c", "CHANGE_VOTE",

"CHANGE_VOTE_2", "REVIEW_VOTE_2", "REVIEW_VOTE_3");

my @O_c = ("WAIT_FOR_UNLOCK", "CHOOSE_CANDIDATE_c",

"CONFIRM_VOTE", "CANCEL_VOTE", "FAIL");

my @m_c_0 = ("VOTE_FOR_CANDIDATE_c", "WAIT_FOR_UNLOCK",

"CHOOSE_CANDIDATE_c", "REVIEW_VOTE");

my @m_c_1 = ("CHANGE_VOTE", "CANCEL_VOTE",

"CHOOSE_CANDIDATE_c", "REVIEW_VOTE_2");

my @m_c_2 = ("CHANGE_VOTE_2", "CANCEL_VOTE",

" "CHOOSE_CANDIDATE_c", REVIEW_VOTE_3");

my @M_c = (\@m_c_0, \@m_c_1, \@m_c_2);

my @C_c = ("c_selected", "not_c_selected");

my @r_c_0 = ("REVIEW_VOTE", "c_selected", "CONFIRM_VOTE");

my @r_c_1 = ("REVIEW_VOTE", "neg_c_selected", "CHANGE_VOTE");

my @r_c_2 = ("REVIEW_VOTE_2", "c_selected", "CONFIRM_VOTE");

my @r_c_3 = ("REVIEW_VOTE_2", "neg_c_selected",

173

174 APPENDIX B. PERL PROGRAM CONVERTING GOMS TO IOLTS

"CHANGE_VOTE_2");

my @r_c_4 = ("REVIEW_VOTE_3", "c_selected", "CONFIRM_VOTE");

my @r_c_5 = ("REVIEW_VOTE_3", "neg_c_selected", "FAIL");

my @R_c = (\@r_c_0, \@r_c_1, \@r_c_2, \@r_c_3, \@r_c_4,

\@r_c_5);

my $g_0_c = "VOTE_FOR_CANDIDATE_c";

Start recursion

my $state_counter = 0;

my @s_0 = (&new_state("s",0));

my ($S, $Sigma_in, $Sigma_out, $transition, $s_last) =

&sub_goms_to_iolts (\@G_c, \@O_c, \@M_c, \@R_c, \@C_c,

$g_0_c, \@s_0, "s");

for(my $i = 0; defined ($transition->[$i]); $i++){

print "(" . $transition->[$i]->[0] . ", "

. $transition->[$i]->[1] . ", "

. $transition->[$i]->[2] . ")\n";

}

###

#

sub sub_goms_to_iolts($$$$$)

#

###

sub sub_goms_to_iolts($$$$$$){

my ($G, $O, $M, $R, $C, $g_0, $s_0,

$state_name_prefix) = @_;

my (@S, @Sigma_in, @Sigma_out, @transition, @s_last);

\IF{$g_0 \in O$}

if(&is_element($g_0, $O)){

Operator

my $s_next = new_state($state_name_prefix,0);

for(my $i = 0; (defined $s_0->[$i]); $i++){

push @transition, [$s_0->[$i], $g_0, $s_next];

}

@s_last = ($s_next);

}

175

else{

Goal

my $m = &find_matching_method($g_0,$M);

if(defined $m){

my $s_last_i;

for(my $i = 1; (defined $m->[$i]); $i++){

my ($S_i, $Sigma_in_i, $Sigma_out_i, $transition_h_i);

($S_i, $Sigma_in_i, $Sigma_out_i, $transition_h_i,

$s_last_i) =

&sub_goms_to_iolts($G, $O, $M, $R, $C, $m->[$i],

$s_0, "${state_name_prefix}_${i}");

for(my $l = 0; defined($transition_h_i->[$l]); $l++){

push @transition, $transition_h_i->[$l];

}

$s_0 = $s_last_i;

}

for(my $i = 0; (defined $s_last_i->[$i]); $i++){

push @s_last, $s_last_i->[$i];

}

}

else{

Selection

@s_last = ();

for(my $i = 0; (defined $R->[$i]); $i++){

my $g = $R->[$i]->[0];

my $c = $R->[$i]->[1];

my $g_prim = $R->[$i]->[2];

if($g eq $g_0){

my @s_next = (new_state($state_name_prefix,$i));

for(my $i = 0; (defined $s_0->[$i]); $i++){

push @transition, [$s_0->[$i], $c, $s_next[0]];

}

my ($S_i, $Sigma_in_i, $Sigma_out_i,

$transition_h_i, $s_last_i) =

&sub_goms_to_iolts($G, $O, $M, $R, $C, $g_prim,

\@s_next,

"${state_name_prefix}_${i}");

for(my $l = 0; defined($transition_h_i->[$l]); $l++){

push @transition, $transition_h_i->[$l];

}

for(my $i = 0; (defined $s_last_i->[$i]); $i++){

176 APPENDIX B. PERL PROGRAM CONVERTING GOMS TO IOLTS

push @s_last, $s_last_i->[$i];

}

}

}

}

}

return (\@S, \@Sigma_in, \@Sigma_out, \@transition,

\@s_last);

}

sub is_element($$){

my ($e, $a) = @_;

my $i;

for($i = 0; (defined($a->[$i]) && (($a->[$i]) ne $e));

$i++){ };

return (defined($a->[$i]));

}

###

#

sub new_state($$)

#

###

sub new_state(){

my ($prefix, $num) = @_;

return ($prefix . "_" . $num);

}

###

#

sub find_matching_method($$)

#

###

sub find_matching_method($$){

my ($g, $M) = @_;

my $i;

for($i = 0;

(defined($M->[$i]) && (($M->[$i]->[0]) ne $g));

177

$i++){ };

return ($M->[$i]);

}

178 APPENDIX B. PERL PROGRAM CONVERTING GOMS TO IOLTS

Appendix C

Basic Main Execution Cycle Model

This chapter provides NuSMV code of the models using the naı̈ve execution loops
developed in Chapter 14. All system models in Chapter 14 use the same user and
application logic components, and the same screen component. These are given in
Section C.1 and Section C.3, respectively. Section C.2 contains the naı̈ve user and
application execution loops. In Section C.4, the components are combined to three
models. In the first model (Section C.4.1), the user and application logic compo-
nents are connected directly to each other. For this system,the integrity constraint
is satisfied. In the second model (Section C.4.2), the user and application logic
components are connected via user and application execution loop components.
The output of the application execution component connectsdirectly to the input
of the user execution component; there is no screen in between. For this system,
the integrity constraint is satisfied. Finally, the second model is extended by a
screen component in Section C.4.3. The asynchroneity introduced by the screen
component leads to a model which does not satisfy the integrity constraint. A
refutation trace generated by NuSMV is given in Section C.5.

C.1 Logic Components

C.1.1 Application Logic Component

MODULE applicationLogicComponent(CMD)

VAR

state: { NoNewMail, NewMail} ;

AppOut: { ScreenNoMail, ScreenNewMail, idle } ;

ASSIGN

init(state) := NoNewMail;

next(state) :=

179

180 APPENDIX C. BASIC MAIN EXECUTION CYCLE MODEL

case

(CMD = idle) : state;

1 : {NoNewMail, NewMail} ;

esac;

init(AppOut) := ScreenNoMail;

next(AppOut) :=

case

(next(state) = NoNewMail) : ScreenNoMail ;

(next(state) = NewMail) : ScreenNewMail ;

esac ;

C.1.2 User Logic Component

MODULE userLogicComponent(appOut)

VAR

state: { NoNewMail, NewMail} ;

CMD: { CMD_Check } ;

ASSIGN

init(state) := NoNewMail;

next(state) :=

case

(next(appOut) = ScreenNoMail) : NoNewMail ;

(next(appOut) = ScreenNewMail) : NewMail ;

1 : state ;

esac ;

C.2 Execution Loop Components

C.2.1 Basic Application Execution Loop Component

MODULE simpleAppExecComponent(CMDIn, AppOutIn)

VAR

state: { CmdExecuted, GotResult, ResultShown, GotCmd } ;

AppOutOut: { ScreenNoMail, ScreenNewMail, idle, Ready,

idle } ;

CMDOut: { CMD_Check, idle } ;

ASSIGN

init(state) := GotResult;

next(state) :=

case

C.2. EXECUTION LOOP COMPONENTS 181

(state = CmdExecuted) & (next(AppOutIn) != idle)

: GotResult ;

(state = GotResult) : ResultShown ;

(state = ResultShown) & (next(CMDIn) != idle)

: GotCmd ;

(state = GotCmd) : CmdExecuted ;

1 : state;

esac ;

init(CMDOut) := idle ;

next (CMDOut) :=

case

(state = GotCmd) : CMDIn ;

1 : idle;

esac;

init(AppOutOut) := idle;

next (AppOutOut) :=

case

(state = GotResult) : AppOutIn ;

1 : idle;

esac;

C.2.2 Basic User Execution Loop Component

MODULE simpleUserExecComponent(CMDIn, AppOutIn)

VAR

state: { Decided, Wait, StartClassify, EndClassify } ;

AppOutOut: { ScreenNoMail, ScreenNewMail, Processing,

Ready, idle } ;

CMDOut: { CMD_Check, idle } ;

ASSIGN

init(state) := Wait;

next(state) :=

case

(state = Wait) & (next(AppOutIn) != idle)

: StartClassify ;

(state = StartClassify) : EndClassify ;

(state = EndClassify) & (next(CMDIn) != idle)

: Decided ;

(state = Decided) : Wait ;

1 : state;

esac ;

182 APPENDIX C. BASIC MAIN EXECUTION CYCLE MODEL

init(CMDOut) := idle ;

next (CMDOut) :=

case

(state = Decided) : CMDIn ;

1 : idle;

esac;

init(AppOutOut) := idle;

next (AppOutOut) :=

case

(state = StartClassify) : AppOutIn ;

1 : idle;

esac;

C.3 Other Components

C.3.1 Screen

MODULE screenComponent(ScreenIn)

VAR

ScreenOut: { ScreenNoMail, ScreenNewMail, Processing,

Ready, idle } ;

ASSIGN

init(ScreenOut) := ScreenNoMail;

next(ScreenOut) :=

case

(ScreenIn = idle) : ScreenOut;

1 : ScreenIn;

esac;

C.4 Models

C.4.1 Direct Connection of Logic Components

-- The model connects the user logic component and the

-- application logic component directly to each other.

#include "../logics/app_logic.smv"

#include "../logics/user_logic.smv"

MODULE main

C.4. MODELS 183

VAR

appLogic : applicationLogicComponent(userLogic.CMD);

userLogic : userLogicComponent(appLogic.AppOut);

SPEC

AG (appLogic.state = userLogic.state)

C.4.2 Basic System Model without Screen

-- This model implements the basic execution loop with

-- the user and application logic components. The

-- integrity constraint is satisfied, because screen

-- output is directly relayed to the user, without a

-- screen in between.

#include "../logics/app_logic.smv"

#include "../logics/user_logic.smv"

#include "../execs/simple_app_exec.smv"

#include "../execs/simple_user_exec.smv"

MODULE main

VAR

appLogic : applicationLogicComponent(appExec.CMDOut);

appExec : simpleAppExecComponent(userExec.CMDOut,

appLogic.AppOut);

userLogic : userLogicComponent(userExec.AppOutOut);

userExec : simpleUserExecComponent(userLogic.CMD,

appExec.AppOutOut);

SPEC

AG ((userExec.state = EndClassify) ->

(appLogic.state = userLogic.state))

C.4.3 Basic System Model with Screen

-- This model implements the basic execution loop with

-- the user and application logic components. A screen

-- is in between the output of the application and the

-- other. The integrity constraint is not satisfied.

184 APPENDIX C. BASIC MAIN EXECUTION CYCLE MODEL

#include "../logics/app_logic.smv"

#include "../logics/user_logic.smv"

#include "../execs/simple_app_exec.smv"

#include "../execs/simple_user_exec.smv"

#include "../other/screen.smv"

MODULE main

VAR

appLogic : applicationLogicComponent(appExec.CMDOut);

userLogic : userLogicComponent(userExec.AppOutOut);

appExec : simpleAppExecComponent(userExec.CMDOut,

appLogic.AppOut);

userExec : simpleUserExecComponent(userLogic.CMD,

screen.ScreenOut);

screen : screenComponent(appExec.AppOutOut);

SPEC

AG ((userExec.state = EndClassify) ->

(appLogic.state = userLogic.state))

C.5 Refutation of System Model with Screen

-- specification AG (userExec.state = EndClassify ->

-- appLogic.state = userLogic.state) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

appLogic.state = NoNewMail

appLogic.AppOut = ScreenNoMail

userLogic.state = NoNewMail

appExec.state = GotResult

appExec.AppOutOut = idle

appExec.CMDOut = idle

userExec.state = Wait

userExec.AppOutOut = idle

userExec.CMDOut = idle

screen.ScreenOut = ScreenNoMail

userLogic.CMD = CMD_Check

-> State: 1.2 <-

C.5. REFUTATION OF SYSTEM MODEL WITH SCREEN 185

appExec.state = ResultShown

appExec.AppOutOut = ScreenNoMail

userExec.state = StartClassify

-> State: 1.3 <-

appExec.AppOutOut = idle

userExec.state = EndClassify

userExec.AppOutOut = ScreenNoMail

-> State: 1.4 <-

userExec.state = Decided

userExec.AppOutOut = idle

-> State: 1.5 <-

appExec.state = GotCmd

userExec.state = Wait

userExec.CMDOut = CMD_Check

-> State: 1.6 <-

appExec.state = CmdExecuted

appExec.CMDOut = CMD_Check

userExec.state = StartClassify

userExec.CMDOut = idle

-> State: 1.7 <-

appLogic.state = NewMail

appLogic.AppOut = ScreenNewMail

appExec.state = GotResult

appExec.CMDOut = idle

userExec.state = EndClassify

userExec.AppOutOut = ScreenNoMail

186 APPENDIX C. BASIC MAIN EXECUTION CYCLE MODEL

Appendix D

Improved Main Execution Cycle
Model

In Chapter 14.2, we have shown that the naı̈ve user and application execution
components may lead to violations of the integrity constraint. NuSMV code gen-
erating a refutation has been given in Appendix C. Here, we provide NuSMV code
implementing the improved user and application execution components developed
in Chapter 14.2. With these components, the integrity constraint is satisfied.

D.1 Logic Components

The user logic component and the application logic component are identical to the
ones from Appendix C.1.

D.2 Execution Loop Components

D.2.1 Improved Application Execution Loop Component

MODULE appExecComponent(CMDIn, AppOutIn)

VAR

state: { CmdExecuted, GotResult, ResultShown, GotCmd,

Busy, Escaped } ;

AppOutOut: { ScreenNoMail, ScreenNewMail, Processing,

Ready, idle } ;

CMDOut: { CMD_Check, ESC, idle } ;

ASSIGN

init(state) := GotResult;

next(state) :=

187

188 APPENDIX D. IMPROVED MAIN EXECUTION CYCLE MODEL

case

(state = CmdExecuted) & (next(AppOutIn) != idle)

: GotResult ;

(state = GotResult) : ResultShown ;

(state = ResultShown) & (!(next(CMDIn) in {idle, ESC}))

: Busy ;

(state = ResultShown) & (next(CMDIn) = ESC)

: Escaped ;

(state = Escaped) : ResultShown ;

(state = Busy) : GotCmd ;

(state = GotCmd) : CmdExecuted ;

1 : state;

esac ;

init(CMDOut) := idle ;

next (CMDOut) :=

case

(state = Busy) : CMDIn ;

1 : idle;

esac;

init(AppOutOut) := idle;

next (AppOutOut) :=

case

(state = GotResult) : AppOutIn ;

(state = Busy) : Processing ;

(state = Escaped) : Ready ;

1 : idle;

esac;

D.2.2 Improved User Execution Loop Component

MODULE userExecComponent(CMDIn, AppOutIn)

VAR

state: { Decided, BeginWait, EndWait, StartClassify,

EndClassify, Escape } ;

AppOutOut: { ScreenNoMail, ScreenNewMail, Processing,

Ready, idle } ;

CMDOut: { CMD_Check, ESC, idle } ;

ASSIGN

init(state) := EndWait;

next(state) :=

case

D.3. OTHER COMPONENTS 189

(state = EndWait)

& (!(next(AppOutIn) in {idle, Processing}))

: StartClassify ;

(state = StartClassify) : EndClassify ;

(state = EndClassify) & (next(CMDIn) != idle)

: Decided ;

(state = Decided) : BeginWait ;

(state = BeginWait) & (next(AppOutIn) = Processing)

: EndWait ;

(state = BeginWait) : Escape ;

(state = Escape) & (next(AppOutIn) = Ready)

: StartClassify ;

1 : state;

esac ;

init(CMDOut) := idle ;

next (CMDOut) :=

case

(state = Decided) : CMDIn ;

(state = BeginWait) & (next(state) = Escape) : ESC ;

1 : idle;

esac;

init(AppOutOut) := idle;

next (AppOutOut) :=

case

(state = StartClassify) : AppOutIn ;

1 : idle;

esac;

D.3 Other Components

D.3.1 Screen

The screen component is identical to the one from Appendix C.3.1.

D.4 Model

D.4.1 Improved System Model with Screen

-- In the improved model, the integrity constraint is

-- satisfied for the model including a screen, too.

190 APPENDIX D. IMPROVED MAIN EXECUTION CYCLE MODEL

#include "../logics/app_logic.smv"

#include "../logics/user_logic.smv"

#include "../execs/user_exec.smv"

#include "../execs/app_exec.smv"

#include "../other/screen.smv"

MODULE main

VAR

appLogic : applicationLogicComponent(appExec.CMDOut);

userLogic : userLogicComponent(userExec.AppOutOut);

appExec : appExecComponent(userExec.CMDOut,

appLogic.AppOut);

userExec : userExecComponent(userLogic.CMD,

screen.ScreenOut);

screen : screenComponent(appExec.AppOutOut);

SPEC

AG ((userExec.state = EndClassify) ->

(appLogic.state = userLogic.state))

Appendix E

Writing, Signing, Sending Email

In Chapter 16, two availability requirements for the email client have been de-
fined. The user should be able to write, sign, and send email, and the user should
be able to poll for new email, check the signature of receivedemail, and read re-
ceived email. Here, we provide NuSMV code to show that the first availability
requirement is satisfied. The model makes use of the application logic component
and the screen component defined in Appendix C, and the user and application ex-
ecution components defined in Appendix D. The model presented here introduces
a model of a user writing, signing, and sending email.

-- User model to show that it is possible to write,

-- sign and send email.

MODULE emailUserComponent

VAR

state: {initialize, editing, signing, sending } ;

action: { sign, send, insertPubKey, generateKeyPair,

editMail, moveCursor, insertChar, deleteChar,

quitEditing, checkSig, poll, editPubKey, idle } ;

ASSIGN

init(state) := initialize ;

next(state) :=

case

(state = initialize) : editing ;

(state = editing) : {editing, signing } ;

(state = signing) : sending ;

(state = sending) : initialize ;

esac;

init(action) := editMail ;

191

192 APPENDIX E. WRITING, SIGNING, SENDING EMAIL

next(action) :=

case

(next(state) = editing) : { moveCursor, insertChar,

deleteChar} ;

(next(state) = signing) : { quitEditing } ;

(next(state) = sending) : { sign } ;

(next(state) = initialize) : { send } ;

esac;

#include "email_client.smv"

MODULE main

VAR

user : emailUserComponent();

client : emailClientComponent(user.action);

SPEC

-- From the initial state, the cursor can be

-- moved an arbitrary number of times while being in

-- state mailNotChanged,

EF (EG ((user.action = moveCursor)

& (client.state = mailNotChanged)))

-- and if the client is in state mailNotChanged,

-- it is possible to transit to state mailChanged in

-- the next step,

& EF ((client.state = mailNotChanged)

& EX (client.state = mailChanged))

-- and if the client is in state mailChanged, an

-- arbitrary number of characters can be deleted,

& EF (EG ((user.action = deleteChar)

& (client.state = mailChanged)))

-- and if the client is in state mailChanged, an

-- arbitrary number of characters can be inserted,

& EF (EG ((user.action = insertChar)

& (client.state = mailChanged)))

-- and if the client is in state mailChanged, state sent

-- is reachable without transiting through mailChanged

-- again,

& EF ((client.state = mailChanged) &

EX (E [(client.state != mailChanged)

193

U (client.state = sent)]))

-- and if sent is reached, then the previous state must

-- be signed.

& AG ((EX (client.state = sent)) ->

(client.state = signed))

194 APPENDIX E. WRITING, SIGNING, SENDING EMAIL

Appendix F

Receiving, Checking, Reading Email

In Chapter 16, two availability requirements for the email client have been de-
fined. The user should be able to write, sign, and send email, and the user should
be able to poll for new email, check the signature of receivedemail, and read re-
ceived email. Here, we provide NuSMV code to show that the second availability
requirement is satisfied. The model makes use of the application logic component
and the screen component defined in Appendix C, and the user and application ex-
ecution components defined in Appendix D. The model presented here introduces
a model of a user polling for new email, checking the signature, and reading the
email.

-- User model to show that it is possible to receive email,

-- check signatures, and read email.

MODULE emailUserComponent(clientOutput)

VAR

state: {Polling, got_new_mail, signature_checked,

readingMail } ;

action: { sign, send, insertPubKey, generateKeyPair,

editMail, moveCursor, insertChar, deleteChar,

quitEditing, checkSig, poll, editPubKey, idle } ;

ASSIGN

init(state) := Polling ;

next(state) :=

case

(state = Polling) & (clientOutput = notChecked)

: got_new_mail ;

(state = Polling) & (clientOutput != notChecked)

: Polling ;

195

196 APPENDIX F. RECEIVING, CHECKING, READING EMAIL

(state = got_new_mail) : signature_checked ;

(state = signature_checked) : readingMail ;

(state = readingMail) : readingMail ;

esac;

init(action) := poll ;

next(action) :=

case

(state = Polling) & (clientOutput = notChecked)

: checkSig ;

(state = Polling) & (clientOutput != notChecked)

: poll ;

(state = got_new_mail) : editMail ;

(state = signature_checked) : moveCursor ;

(state = readingMail) : moveCursor ;

esac;

#include "email_client.smv"

MODULE main

VAR

user : emailUserComponent(client.state);

client : emailClientComponent(user.action);

SPEC

-- If the system is in the initial state and new

-- mail is available, then both the new mail will have

-- arrived in the next step and the user will know about.

(AG (((client.state = unsigned) & client.newMailAvailable)

-> AX ((client.state = notChecked)

& AX (user.state = got_new_mail))))

-- If the system is in the initial state and no mail is

-- available, then both the system and the user will

-- remain in their initial states in the next step.

& (AG (((client.state = unsigned) & !client.newMailAvailable)

-> AX ((client.state = unsigned)

& AX (user.state = Polling))))

-- The user will continue polling for new mail while the

-- system is in its initial state

& (AG ((client.state = unsigned) -> (user.action = poll)))

-- If mail has arrived, the user will not poll for new mail

197

-- until the email client is in mail read mode.

& (AG ((client.state = notChecked) ->

AX (A [(!(user.action = poll))

U (client.state = mailNotChanged)])))

-- Once the user is reading mail, he will be moving the

-- cursor forever.

& (AG ((client.state = mailNotChanged) ->

AG (user.action = moveCursor)))

-- If the user is in read email mode, he either

-- was already reading email in the step before, or the signature

-- had been checked.

& AG ((EX client.state = mailNotChanged) ->

((client.state = mailNotChanged) | (client.state = checked)))

198 APPENDIX F. RECEIVING, CHECKING, READING EMAIL

Bibliography

G. D. Abowd and R. Beale. Users, systems and interfaces: A unifying framework
for interaction. In D. Diaper and N. Hammond, editors,HCI’91:People and
Computers VI, pages 73–87. Cambridge University Press, 1991.

G. D. Abowd, J. P. Bowen, A. J. Dix, M. D. Harrison, and R. Took.User interface
languages: A survey of existing methods. Technical Report PRG-TR-5-89,
Oxford University Computing Laboratory, October 1989.

Nathaniel Ayewah, Sven Beyer, Nikhil Kikkeri, and Peter-Michael Seidel. Chal-
lenges in the formal verification of complete state-of-the-art processors. In
International Conference on Computer Design, San Jose, 2005.

Daniel Bachfeld. Nepper, Schlepper, Bauernfänger — Risiken beim Online-
Banking.c’t magazin f̈ur Computertechnik, 22:148–153, 2005.

Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety
properties of interfaces. InSPIN ’01: Proceedings of the 8th international SPIN
workshop on Model checking of software, pages 103–122, New York, NY, USA,
2001. Springer-Verlag New York, Inc. ISBN 3-540-42124-6.

Bernhard Beckert and Gerd Beuster. Formal specification of security-relevant
properties of user interfaces. InProceedings, 3rd International Workshop on
Critical Systems Development with UML, Lisbon, Portugal, Munich, Germany,
2004. TU Munich Technical Report TUM-I0415.

Bernhard Beckert and Gerd Beuster. Guaranteeing consistency in text-based
human-computer interaction. InPre-event Proceedings of the 1st International
Workshop on Formal Methods for Interactive Systems (FMIS 2006), Macao
SAR China. The United Nations University, 2006a. UNU-IIST Report No.347.

Bernhard Beckert and Gerd Beuster. Guaranteeing consistency in text-based
human-computer interaction.Special Issue of Innovations in System and Soft-
ware Engineering (Submitted), 2007.

199

200 BIBLIOGRAPHY

Bernhard Beckert and Gerd Beuster. A method for formalizing, analyzing, and
verifying secure user interfaces. In Zhiming Liu and JifengHe, editors,Formal
Methods and Software Engineering, 8th International Conference on Formal
Engineering Methods, ICFEM 2006, Macao, China, November 1-3, 2006, Pro-
ceedings, volume 4260 ofLecture Notes in Computer Science. Springer, 2006b.
ISBN 3-540-47460-9.

Bernhard Beckert, Gerd Beuster, and Pia Breuer. TR #2: EmailClient Specifica-
tion. Technical report, Verisoft Konsortium, 2007.

Jean Berstel, Stefano Crespi Reghizzi, Gilles Roussel, andPierluigi San Pietro. A
scalable formal method for design and automatic checking ofuser interfaces.
ACM Transactions on Software Engineering and Methodology (TOSEM), 14
(2):124–167, April 2005.

Gerd Beuster and Roman Neruda. Description and generation of computational
agents. InProceedings of the First International Conference on Knowledge
Science, Engineering and Management (KSEM’06). Springer, 2006.

Gerd Beuster, Pavel Krušina, Petra Kudová, Roman Neruda,and Pavel Rydvan.
Towards building computational agent schemes. InProceedings of the Interna-
tional Conference on Genetic Algorithms and Artificial Neural Networks 2003
(ICANNGA 2003), Roanne, France, 2003.

Gerd Beuster, Pavel Krušina, Petra Kudová, Roman Neruda,and Pavel Rydvan.
Bang 3: A computational multi-agent system.IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT’04), 00:563–564, 2004.

Gerd Beuster, Niklas Henrich, and Markus Wagner. Real worldverification —
experiences from the verisoft email client. InProceedings of the Workshop on
Empirical Succesfully Computerized Reasoning (ESCoR 2006), 2006.

Simon P. Booth and Simon B. Jones. A screen editor written in the miranda
functional programming language. Technical Report TR-116, Department of
Computing Science and Mathematics, University of Stirling, February 1994.

S. Brackin. Evaluating and improving protocol analysis by automatic proof. In
CSFW ’98: Proceedings of the 11th IEEE Computer Security Foundations
Workshop, page 138, Washington, DC, USA, 1998. IEEE Computer Society.
ISBN 0-8186-8488-7.

Thomas Browne, David Dávila, Spencer Rugaber, and Kurt Stirewalt. Using
declarative descriptions to model user interfaces with mastermind. In F. Pa-
terno and P. Palanque, editors,Formal Methods in Human Computer Interac-
tion. Springer-Verlag, 1997.

BIBLIOGRAPHY 201

P. Brun. Xtl: A temporal logic for the formal development of interactive systems.
In Philippe Palanque, editor,Formal methods in human computer interaction.
Springer, New York, London,. . . , 1998.

M. Burrows, M. Abadi, and R. Needham. A logic of authentication. InSOSP ’89:
Proceedings of the twelfth ACM symposium on Operating systems principles,
pages 1–13, New York, NY, USA, 1989. ACM Press. ISBN 0-89791-338-8.

M. Cabrera, M. Gea, F. Gutierrez, and J.C. Torres. Algebraicspecification of user
interfaces. In1st ERCIM Workshop on “User Interfaces for All”, Heraklion,
Crete, Greece, 30–31 October 1995.

Gaelle Calvary, Joelle Coutaz, and Laurence Nigay. From single-user architectural
design to PAC*: a generic software architecture model for CSCW. In CHI,
pages 242–249, 1997.

David A. Carr. Interaction object graphs: an executable graphical notation for
specifying user interfaces. In Philippe Palanque and FabioPaternò, editors,For-
mal methods in Human-Computer Interaction, pages 141–155. Springer, 1997.

Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Mod-
ular verification of software components in C.IEEE Transactions on Software
Engineering (TSE), 30(6):388–402, June 2004.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for
Symbolic Model Checking. InProc. International Conference on Computer-
Aided Verification (CAV 2002), volume 2404 ofLNCS, Copenhagen, Denmark,
July 2002. Springer.

David D. Clark and David R. Wilson. A comparison of commercial and military
computer security policies.sp, 00:184, 1987. ISSN 1540-7993.

ITS. Information Technology Security Evaluation Criteria (ITSEC) — Provisional
Harmonised Criteria. Commission of the European Communities, June 1991.
ISBN 92-826-3004-8.

Common Criteria Evaluation Board (CCEB).Common Criteria for Information
Technology Security Evaluation (CC) — Version 3.1, 2006.

Patrick Cousot and Radhia Cousot. Modular static program analysis. In N. Hor-
spool, editor,Proceedings of the International Conference on Compiler Con-
struction (CC 2002), LNCS 2304, pages 159–178, Grenoble, France, April 6–
14 2002.

202 BIBLIOGRAPHY

W. Damm, H. Hungar, and E.-R. Olderog. On the verification of cooperating
traffic agents. In F.S. de Boer, M.M. Bonsangue, S. Graf, and W.-P. de Roever,
editors,Proc. FMCO ’03: Formal Methods for Components and Objects, LNCS
3188, pages 78–110, 2004.

Geert de Haan.ETAG, A Formal Model of Competence Knowledge for User-
Interface Design. PhD thesis, Vrije Universiteit, Amsterdam, 2000.

Geert de Haan. Extended task-action grammar (ETAG): the psy-
chological basis of a formal model for user interface design.
http://home.tiscali.nl/gdehaan/etag.html, June 2005, 1995.

Rüdiger Dierstein. Sicherheit in der informationstechnik — der begriff it-
sicherheit.Informatik Spektrum, 27(4), August 2004.

A. Dix and G. Abowd. Modelling status and event behaviour of interactive sys-
tems.Software Engineering Journal, 11(6):334–346, 1996.

A. J. Dix and C. Runciman. Abstract models of interactive systems. In P. Johnson
and S. Cook, editors,HCI’85: People and Computers I: Designing the Inter-
face, pages 13–22. Cambridge: Cambridge University Press, 1985.

Alan Dix, Janet Finley, Gregory Abowd, and Russell Beale, editors. Human-
computer interaction, chapter 3. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1998. http://www.hcibook.com/hcibook/downloads/pdf/slides.3.pdf.

DoD 5200.28-STD.Department of Defense Trusted Computer System Evaluation
Criteria, December 1985.

Danny Dolev and Andrew C. Yao. On the security of public key protocols. Tech-
nical report, Stanford University, Stanford, CA, USA, 1981.

Mauro Gargano, Mark Hillebrand, Dirk Leinenbach, and Wolfgang Paul. On the
correctness of operating system kernels. InProceedings, 18th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 2005),
LNCS 3603, pages 2–16. Springer, 2005.

P.C. Gilmore. A proof method for quantification theory.IBM Journal of Research
and Development, 4:28–35, 1960.

Doug Goldson. Formal modelling of interactive systems. InProceedings of
APAQS 2OOO, the First Asia-Pacific Conference on Quality Software, IEEE
Conference Proceedings. IEEE Computer Society Press, 2000.

BIBLIOGRAPHY 203

Gerhard Goos and Wolf Zimmermann. Verification of compilers. In Correct
System Design, pages 201–230, 1999.

Éric Goubault. Static analyses of floating-point operations. In P. Cousot, editor,
SAS’01, LNCS 2126, pages 233–258, Paris, July 2001.

Jonathan Grudin. The case against user interface consistency. Communications of
the ACM, 32(Issue 10):1164–1173, October 1989.

F. Hamilton. Predictive evaluation using task knowledge structures. InCompanion
proceedings of CHI’96, Vancouver, April 1996.

D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook of
Philosophical Logic Volume II — Extensions of Classical Logic, pages 497–
604. D. Reidel Publishing Company: Dordrecht, The Netherlands, 1984.

Michael Harrison, editor.Formal methods in human-computer interaction. Cam-
bridge Univ. Press, Cambridge, Mass., 1990.

C. A. R. Hoare. An axiomatic basis for computer programming.Commun. ACM,
12(10):576–580, 1969.

A. Hussey and D. Carrington. Specifying a web browser interface using object-z.
In Philippe Palanque, editor,Formal methods in human computer interaction,
chapter 8. Springer, New York, London,. . . , 1998.

Vipul Jain. User interface description formalisms. Technical report, McGill Uni-
versity School of Computer Science, Montréal, Canada, 1994.

M. Jmaiel. Specifying communication protocols with temporal logic. Technical
Report Technical Report 1994/16, Technische UniversitätBerlin, Fachbereich
Informatik, 1994.

Bonnie E. John. Why GOMS?interactions, 2(4):80–89, October 1995. ACM
Press, New York, NY, USA.

Bonnie E. John and David E. Kieras. The goms family of user interface analysis
techniques: comparison and contrast.ACM Trans. Comput.-Hum. Interact., 3
(4):320–351, 1996. ISSN 1073-0516.

Ron Koymans.Specifying Message Passing and Time-Critical Systems withTem-
poral Logic. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1992. ISBN
0387562834.

204 BIBLIOGRAPHY

Glenn E. Krasner and Stephen T. Pope. A cookbook for using themodel-view con-
troller user interface paradigm in smalltalk-80.J. Object Oriented Program., 1
(3):26–49, 1988. ISSN 0896-8438.

W. Kuhn and A.U. Frank. A formalization of metaphors and image-schemas in
user interfaces. In D. M. Mark and A. U. Frank, editors,Cognitive and Linguis-
tic Aspects of Geographic Space, NATO ASI Series. Kluwer Academic Press,
Dordrecht, The Netherlands, 1991.

Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towardsthe formal ver-
ification of a c0 compiler. InProceedings, 3rd International Conference on
Software Engineering and Formal Methods (SEFM 2005), Koblenz, Germany,
2005.

Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. InTools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), volume 1055, pages 147–166. Springer-Verlag, Berlin Germany,
1996.

Catherine Meadows. Formal methods for cryptographic protocol analysis: emerg-
ing issues and trends.IEEE Journal on Selected Areas in Communications, 21
(1):44–54, January 2003.

Allen Newell. Unified theories of cognition. Harvard University Press, Cam-
bridge, MA, USA, 1994. ISBN 0-674-92101-1.

Object Modeling Group. Unified Modelling Language Specifica-
tion, version 1.5. Object Modeling Group, March 2003. URL
http://www.omg.org/cgi-bin/doc?formal/03-03-01.

Judith Reitman Olson and Gary M. Olson.Human-computer interaction: toward
the year 2000, chapter The growth of cognitive modeling in human-computer
interaction since GOMS, pages 603–625. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1995. ISBN 1-55860-246-1.

P. Palanque and R. Bastide. Petri net based design of user-driven interfaces using
the cooperative object formalism. In F. Paternó, editor,Design, Specification
and Verification of Interactive Systems ’94, pages 383–400, Heidelberg, 1994.
Springer-Verlag.

Philippe Palanque and Fabio Paternò, editors.Formal methods in human computer
interaction. Springer, New York, London,. . . , 1998.

http://www.omg.org/cgi-bin/doc?formal/03-03-01

BIBLIOGRAPHY 205

Philippe Palanque, Remi Bastide, and Valerie Senges. Validating interactive sys-
tem design through the verification of formal task and systemmodels. InEngi-
neering for Human-Computer Interaction. Chapman & Hall, August 1995.

Wolfgang Paul. Towards a worldwide verification technology. In Proceedings of
the Verified Software: Theories, Tools, Experiments Conference (VSTTE 2005),
Zurich, Switzerland, October 2005.

Lawrence C. Paulson. The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security, 6:85–128, 1998.

Robert W. Reeder and Roy A. Maxion. User interface dependability through goal-
error prevention. InDSN ’05: Proceedings of the 2005 International Confer-
ence on Depen dable Systems and Networks (DSN’05), pages 60–69, Washing-
ton, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2282-3.

John Rushby. Using model checking to help discover mode confusions and other
automation surprises.Reliability Engineering and System Safety, 75(2):167–
177, February 2002.

Norbert Schirmer. A verification environment for sequential imperative programs
in Isabelle/HOL. In F. Baader and A. Voronkov, editors,Logic for Program-
ming, Artificial Intelligence, and Reasoning, volume 3452 ofLNAI, pages 398–
414. Springer, 2005.

E. Schlungbaum and T. Elwert. Modellierung von graphischenBenutzung-
soberflächen im Rahmen des TADEUS-Ansatzes. In H.-D. Böcker, editor,
Software-Ergonomie’95: Mensch-Computer-Interaktion Anwendungsbereiche
lernen voneinander, pages 331–348. Teubner, Stuttgart, 1995.

S. Smith and D. Duke. Using csp to specify interaction in virtual environments.
Technical report, University of York, 1999.

SSCD-PP.Protection Profile — Secure Signature-Creation Device Type3, Version
1.05, 2001. http://www.bsi.bund.de/cc/pplist/PP0006b.pdf.

Artem Starostin. Formal verification of a c-library for strings. Master’s thesis,
Saarland University, 2006.

Bettina Sucrow. Formal specification of human-computer interaction
by graph grammar s under consideration of information resources.
In Automated Software Engineering, pages 28–35, 1997. URL
citeseer.ist.psu.edu/sucrow97formal.html.

citeseer.ist.psu.edu/sucrow97formal.html

206 BIBLIOGRAPHY

B. Sufrin. Formal specification of a display editor.Science of Computer Program-
ming, 1:157–202, 1982.

Kenneth J. Turner.Using Formal Description Techniques — An Introduction to
Estelle, LOTOS and SDL. John Wiley and Sons Ltd., 1993.

Peter H. J. van Eijk, Chris A. Vissers, and Michel Diaz, editors. The Formal
Description Technique LOTOS: Results of the Esprit SEDOS Project. Elsevier
Science, Amsterdam, Netherlands, 1989.

Jos Warmer and Anneke Kleppe. OCL: The constraint language of the UML.
Journal of Object-Oriented Programming, 12(1):10–13,28, March 1999.

Jos B. Warmer and Anneke G. Kleppe.The Object Constraint Language: Precise
Modeling With UML. Addison-Wesley Professional, 1998.

Lebenslauf

Geboren am: 24. November 1972
Geburtsort: Dortmund
Eltern: Peter Beuster

Margret Bauer

Abschluss: Abitur
Jahr: 1992
Institution: Geschwister-Scholl-Gesamtschule
Ort: Dortmund
Note: 1,4

Abschluss: Diplom-Informatiker
Jahr: 2001
Institution: Universität Koblenz-Landau
Ort: Koblenz
Note: 1,1

Tätigkeit: Wissenschaftlicher Mitarbeiter
Zeitraum: April 2001 – August 2002 und April 2003 – April 2007
Arbeitgeber: Universität Koblenz-Landau
Ort: Koblenz

Stipendium: Doktoranden-Stipendium
Zeitraum: Oktober 2002 – März 2003
Förderer: DAAD
Ort: Tschechische Akademie der Wissenschaften

Prag, Tschechische Republik

Tätigkeit: Consultant
Zeitraum: Seit Dezember 2007
Arbeitgeber: T-Systems Enterprise Services GmbH
Ort: Bonn

	Introduction
	Goals and Structure
	Main Contribution

	Related Work
	Formalisms for Describing HCI
	Tools
	Design Methods
	Summary
	GOMS

	I Foundations
	Overview of Part I
	IOLTS and CTL
	IOLTS
	User and Application Models
	Example

	Formalized GOMS
	Formal Semantics for GOMS User Models
	Assumptions as Selection Rules
	Formal HCI Model: Summary

	Completing the eVoting Model

	Hierarchical Models
	Hierarchical GOMS
	Abstraction
	E-Voting Example (Correct)
	E-Voting Example (with erroneous user behavior)

	Integration with Hoare Logic
	Summary

	II Formalization of HCI Security
	System Model
	Messages
	Environment

	The Common Criteria
	Introduction to CC
	Paths and Identification
	Core Definitions
	Definitions of CC Concepts

	Privacy and Confidentiality
	Overview
	Core Definitions
	Definitions of CC Concepts

	Confidentiality--Integrity--Availability
	Definitions
	Defining Confidentiality by CC Sub-Concepts

	Summary

	III Specification and Verification of Secure Applications
	Secure Email System
	Introduction
	The Academic System

	Related Projects

	Secure Interaction
	Introduction
	The Problem
	Plan of This Chapter

	Guaranteeing Integrity
	Improved Main Execution Loop
	Notation
	Main Execution Loop
	Editor Component

	Authentication and Secure Channels
	Confidentiality
	Authenticity

	Availability
	Writing, Signing, Sending Email
	CTL Part
	Hoare Part

	Receiving, Checking, Reading Email
	CTL Part
	Hoare Part

	Conclusions

	IV Appendices
	First eVoting Example
	SMV File
	Refutation Generated by NuSMV
	Message Trace Example

	Perl Program converting GOMS to IOLTS
	Basic Main Execution Cycle Model
	Logic Components
	Application Logic Component
	User Logic Component

	Execution Loop Components
	Basic Application Execution Loop Component
	Basic User Execution Loop Component

	Other Components
	Screen

	Models
	Direct Connection of Logic Components
	Basic System Model without Screen
	Basic System Model with Screen

	Refutation of System Model with Screen

	Improved Main Execution Cycle Model
	Logic Components
	Execution Loop Components
	Improved Application Execution Loop Component
	Improved User Execution Loop Component

	Other Components
	Screen

	Model
	Improved System Model with Screen

	Writing, Signing, Sending Email
	Receiving, Checking, Reading Email

