
Towards Believable Augmented Reality:
Combining the Real and Virtual Worlds

Dissertation

von
Anna Katharina Hebborn, M.Sc.

Koblenz, März 2018

Vom Promotionsausschuss des Fachbereichs 4: Informatik der Universität
Koblenz-Landau zur Verleihung des akademischen Grades Doktor der

Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation.

Vorsitzender des Promotionsausschusses: Prof. Dr. Ralf Lämmel
Vorsitzender der Promotionskommission: Prof. Dr. Harald F.O. von Korflesch
1. Berichterstatter: Prof. Dr.-Ing. Stefan Müller
2. Berichterstatter: Prof. Dr.-Ing. Didier Stricker

Datum der Einreichung: 21.03.2018
Datum der wissenschaftlichen Aussprache: 03.02.2021

Abstract

Augmented reality (AR) applications typically extend the user’s view of the real world

with virtual objects. In recent years, AR has gained increasing popularity and attention,

which has led to improvements in the required technologies. AR has become available to

almost everyone.

Researchers have made great progress towards the goal of believable AR, in which the real

and virtual worlds are combined seamlessly. They mainly focus on issues like tracking,

display technologies and user interaction, and give little attention to visual and physical

coherence when real and virtual objects are combined. For example, virtual objects should

not only respond to the user’s input; they should also interact with real objects. Generally,

AR becomes more believable and realistic if virtual objects appear fixed or anchored in

the real scene, appear indistinguishable from the real scene, and response to any changes

within it.

This thesis examines on three challenges in the field of computer vision to meet the goal of

a believable combined world in which virtual objects appear and behave like real objects.

Firstly, the thesis concentrates on the well-known tracking and registration problem. The

tracking and registration challenge is discussed and an approach is presented to estimate

the position and viewpoint of the user so that virtual objects appear fixed in the real world.

Appearance-based line models, which keep only relevant edges for tracking purposes,

enable absolute registration in the real world and provide robust tracking. On the one

hand, there is no need to spend much time creating suitable models manually. On the

other hand, the tracking can deal with changes within the object or the scene to be

tracked. Experiments have shown that the use of appearance-based line models improves

the robustness, accuracy and re-initialization speed of the tracking process.

Secondly, the thesis deals with the subject of reconstructing the surface of a real envi-

ronment and presents an algorithm to optimize an ongoing surface reconstruction. A

complete 3D surface reconstruction of the target scene offers new possibilities for creating

more realistic AR applications. Several interactions between real and virtual objects, such

i

as collision and occlusions, can be handled with physical correctness. Whereas previous

methods focused on improving surface reconstructions offline after a capturing step, the

presented method de-noises, extends and fills holes during the capturing process. Thus,

users can explore an unknown environment without any preparation tasks such as moving

around and scanning the scene, and without having to deal with the underlying technology

in advance. In experiments, the approach provided realistic results where known surfaces

were extended and filled in plausibly for different surface types.

Finally, the thesis focuses on handling occlusions between the real and virtual worlds

more realistically, by re-interpreting the occlusion challenge as an alpha matting problem.

The presented method overcomes limitations in state-of-the-art methods by estimating

a blending coefficient per pixel of the rendered virtual scene, instead of calculating only

their visibility. In several experiments and comparisons with other methods, occlusion

handling through alpha matting worked robustly and overcame limitations of low-cost

sensor data; it also outperformed previous work in terms of quality, realism and practical

applicability. The method can deal with noisy depth data and yields realistic results in

regions where foreground and background are not strictly separable (e.g. caused by fuzzy

objects or motion blur).

ii

Zusammenfassung

Typischerweise erweitern Augmented Reality (AR)-Anwendungen die Sicht des Benutzers

auf die reale Welt um virtuelle Objekte. In den letzten Jahren hat AR zunehmend an

Popularität und Aufmerksamkeit gewonnen. Dies hat zu Verbesserungen der benötigten

Technologien geführt. AR ist dadurch für fast jeden zugänglich geworden.

Forscher sind dem Ziel einer glaubwürdigen AR, in der reale und virtuelle Welten nahtlos

miteinander verbunden sind, einen großen Schritt näher gekommen. Sie konzentrieren sich

hauptsächlich auf Themen wie Tracking, Anzeige-Technologien und Benutzerinteraktion

und schenken der visuellen und physischen Kohärenz bei der Kombination realer und

virtueller Objekte wenig Aufmerksamkeit. Beispielsweise sollen virtuelle Objekte nicht nur

auf die Eingaben des Benutzers reagieren, sondern auch mit realen Objekten interagieren.

Generell wird AR glaubwürdiger und realistischer, wenn virtuelle Objekte fixiert oder

verankert in der realen Szene erscheinen, sich nicht von der realen Szene unterscheiden

und auf Veränderungen dieser Szene reagieren.

Diese Arbeit untersucht drei Herausforderungen im Bereich Maschinelles Sehen um dem

Ziel einer glaubwürdig kombinierten Welt näher zu kommen, in der virtuelle Objekte wie

reale erscheinen und sich ebenso verhalten.

Diese Dissertation konzentriert sich als erstes auf das bekannte Tracking- und Registrie-

rungsproblem. Hierzu wird die Herausforderung von Tracking und Registrierung disku-

tiert und ein Ansatz vorgestellt, um die Position und den Blickpunkt des Benutzers zu

schätzen, so dass virtuelle Objekte in der realen Welt fest verankert erscheinen. Linienmo-

delle, die dem Erscheinungsbild entsprechen und nur für Trackingzwecke relevante Kanten

beinhalten, ermöglichen eine absolute Registrierung in der realen Welt und ein robustes

Tracking. Einerseits ist es nicht notwendig, viel Zeit in die manuelle Erstellung geeig-

neter Modelle zu investieren, andererseits ist das Tracking in der Lage mit Änderungen

innerhalb des zu verfolgenden Objekts oder Szene umzugehen. Versuche haben gezeigt,

dass die Verwendung von solchen Linienmodellen die Robustheit, Genauigkeit und Re-

initialisierungsgeschwindigkeit des Tracking-Prozesses verbessert haben.

iii

Zweitens beschäftigt sich diese Dissertation mit dem Thema der Oberflächenrekonstruk-

tion einer realen Umgebung und präsentiert einen Algorithmus zur Optimierung einer

laufenden Oberflächenrekonstruktion. Vollständige 3D-Oberflächenrekonstruktionen einer

Szene eröffnen neue Möglichkeiten um realistischere AR-Anwendungen zu erstellen. Ver-

schiedene Interaktionen zwischen realen und virtuellen Objekten, wie Kollisionen und

Verdeckungen, können physikalisch korrekt behandelt werden. Während sich die bishe-

rigen Methoden darauf konzentrierten die Oberflächenrekonstruktionen nach einem Auf-

nahmeschritt zu verbessern, wird die Rekonstruktion während der Aufnahme erweitert,

Löcher werden geschlossen und Rauschen wird reduziert. Um eine unbekannte Umgebung

zu erkunden muss der Benutzer keine Vorbereitungen treffen. Das Scannen der Szene oder

eine vorhergehende Auseinandersetzung mit der zugrundeliegenden Technologie ist somit

nicht notwendig. In Experimenten lieferte der Ansatz realistische Ergebnisse, bei denen

bekannte Oberflächen für verschiedene Oberflächentypen erweitert und Löcher plausibel

gefüllt wurden.

Anschließend konzentriert sich diese Dissertation auf die Behandlung von realistischen

Verdeckungen zwischen realer und virtueller Welt. Hierzu wird die Herausforderung der

Verdeckung als Alpha Matting Problem formuliert. Die vorgestellte Methode überwindet

die Grenzen moderner Methoden, indem ein Überblendungskoeffizienten pro Pixel der

gerenderten virtuellen Szene schätzt wird, anstatt nur deren Sichtbarkeit zu berechnen.

In mehreren Experimenten und Vergleichen mit anderen Methoden hat sich die Verde-

ckungsbehandlung durch Alpha Matting als robust erwiesen und kann mit Daten, die

durch preiswerte Sensoren aufgenommen wurden, umgehen. Hinsichtlich der Qualität,

des Realismus und der praktischen Anwendbarkeit übertrifft die Methode die Ergebnisse

von bisherigen Ansätzen. Des Weiteren kann die Methode mit verrauschten Tiefendaten

umgehen und liefert realistische Ergebnisse in Regionen, in denen Vorder- und Hinter-

grund nicht strikt voneinander trennbar sind (z.B. bei Objekten mit einer undeutlichen

Kontur oder durch Bewegungsunschärfe).

iv

Contents

1 Introduction 1

1.1 Augmented Reality and Challenges . 1

1.2 Overview and Contributions . 4

2 Robust Model-based Tracking using Appearance-based Line Models 7

2.1 Registration and Tracking Challenge . 8

2.2 Background of Model-based Tracking . 10

2.2.1 Taxonomy Model, Line and Edge 11

2.2.2 Edge-based Methods and Challenges 12

2.3 Related Work on Line Model Generation 15

2.4 Appearance-based Line Models based on Mapping and Refinement 22

2.5 Method Overview . 24

2.6 Line Model . 24

2.6.1 Keyposes . 25

2.6.2 Lines and Confidences . 27

vii

viii CONTENTS

2.7 Line Management . 27

2.7.1 Line states . 28

2.7.2 Re-initialization . 28

2.8 Edge-based Tracking . 29

2.9 Line Mapping and Refinement . 31

2.9.1 Extracting Lines . 33

2.9.2 Establishing Correspondences . 33

2.9.3 Adding New Lines and Updating Confidences 34

2.10 Experimental Results . 35

2.10.1 Synthetic Image Sequences . 35

2.10.2 Real Image Sequences . 38

2.11 Conclusion and Future Work . 40

3 Optimizing 3D Reconstructions 43

3.1 3D Reconstruction Challenge . 44

3.2 Background to KinectFusion . 47

3.2.1 Truncated Signed Distance Function 47

3.2.2 Overview of the Pipeline . 49

3.2.3 Limitations and Improvements . 51

3.3 Related Work on Optimizing 3D Surface Reconstructions 52

3.3.1 Plane Segmentation and Fitting . 53

CONTENTS ix

3.3.2 Hole Filling, De-noising and Propagating Surfaces 57

3.4 Propagating Surfaces, Hole Filling and De-noising during the 3D Recon-

struction . 59

3.5 Method Overview . 60

3.6 TSDF Volume . 63

3.7 Local Plane Prior Estimation . 64

3.8 Planar Surface Propagation from Local Plane Priors 66

3.9 De-noising and Refinement through Local Plane Priors 68

3.10 Non-Planar Surface Propagation and Hole Filling via Diffusion 69

3.11 Volume Integration . 71

3.12 Collisions and Occlusions with the TSDF 72

3.12.1 Collision Detection and Response 73

3.12.2 Occlusion Handling . 75

3.13 Experimental Results . 75

3.13.1 Surface Propagation without using Plane Priors 76

3.13.2 Surface Propagation using Plane Priors 77

3.13.3 Implementation Details and Runtime Performance 80

3.14 Conclusion and Future Work . 82

4 Occlusion Matting: Realistic Occlusion Handling 85

4.1 Occlusion Handling Challenge . 86

x CONTENTS

4.2 Related Work on Occlusion Handling . 87

4.2.1 Object-based Occlusion Handling 87

4.2.2 Model-based Occlusion Handling 89

4.2.3 Depth-based Occlusion Handling 92

4.3 Occlusion Matting . 94

4.3.1 Idea and Motivation . 94

4.3.2 Occlusion as an Alpha Matting Problem 95

4.4 Related Work on Alpha Matting . 97

4.4.1 Natural Image Matting . 97

4.4.2 Real-time Natural Image Matting and Video Matting 99

4.4.3 Depth-based Trimap Generation and Matting 100

4.5 Method Overview . 102

4.6 Adaptive Trimap Generation . 102

4.6.1 Coarse Segmentation . 104

4.6.2 Labeling of Unknown Regions . 105

4.6.3 Adaptive Dilation . 106

4.7 Foreground and Background Propagation 107

4.8 Alpha Estimation . 110

4.9 Experimental Results . 111

4.9.1 Implementation Details and Runtime Performance 112

4.9.2 Evaluation of the Algorithm . 113

4.9.3 Comparison with Edge-aware Filtering Methods 114

4.9.4 Comparison with Edge Snapping-Based Method 117

4.9.5 Comparison of Runtime Performance 120

4.10 Limitations . 120

4.11 Optimizing Sensor Data with 3D Reconstruction 121

4.12 Conclusion and Future Work . 122

5 Conclusion 125

5.1 Summary and Achievements . 125

5.2 Future Work . 127

Own Publications 135

Bibliography 139

xi

Chapter 1

Introduction

This chapter introduces the concept of augmented reality (AR). Fundamental challenges

are discussed in Section 1.1. Section 1.2 presents an overview and explains the contribution

of this thesis.

1.1 Augmented Reality and Challenges

AR extends the real environment with virtual information. Typically, the user’s view

or a camera image is extended with virtual objects. AR supports the user’s interaction

with the real world and helps them to perform real-world tasks [Azu97]. Thus, AR holds

potential for several areas and applications, such as medicine (guidance and training

for surgery), education, design and entertainment. For example, AR can assist users

during maintenance or repair tasks. Instructions to complete a task or to identify a

component can be overlaid on the real world so that the user can perform without looking

at a manual. Because users do not have to switch between the task and an instruction

document, they can focus on completing the task. AR applied to interior design can

help to evaluate how a new piece of furniture would fit with the existing interior decor

and find an appealing configuration. AR systems also help people to fulfill or solve tasks

1

2 Chapter 1. Introduction

collaboratively. For example, a co-located user can see the real environment in which

another user interacts. Thus, the co-located user can help the user on site with additional

information by annotating the user’s view of the real environment. An example would be

showing a route through a city (as shown in a game-based scenario in [HDD+15]).

Azuma [Azu97] provides a commonly used and widely accepted definition of an AR system.

The following three characteristics are identified:

1. Combination of real and virtual content. The real scene is augmented with

virtual objects.

2. Interactivity. Virtual content reacts to the user’s input and to changes in the

environment in real-time.

3. 3D registration. Virtual content appears fixed in the real world, even if the user

or the camera changes the point of view.

Ideally, the combination must be as realistic as possible to give the user the illusion

that the virtual and real worlds co-exist in the same space [Azu97]. Therefore, virtual

objects should be seamlessly integrated into the real scene. They should be fixed in their

placement and appear indistinguishable from the real surrounding. Moreover, virtual

objects should interact with the real scene in a physically plausible manner: they should

collide with real objects, they should occlude or be occluded by real objects, and they

should cast shadows on real objects and vice versa [Kli00].

In recent years, AR has succeeded remarkably and has become more readily available to

all people. Technologies take advantages of this trend and much progress has been made to

fulfill the vision of AR as a system where virtual and real worlds co-exist. However, several

technical challenges remain and some of the to current solutions could be optimized.

Fundamental computer vision tasks entail 1) tracking the user to fix virtual objects in

space; 2) realistic rendering of virtual objects with correct illumination, shadows and

occlusions; and 3) the 3D reconstruction of the real environment.

1.1. Augmented Reality and Challenges 3

Registration and Tracking is an essential problem in AR. To register virtual objects

in the user’s surroundings, the position and orientation of the user’s head or camera with

respect to the real world need to be continuously estimated and tracked. In addition

these extrinsic data, intrinsic data of the camera are needed to project virtual objects

realistically. The intrinsic data can be obtained through a calibration procedure before

the tracking process starts. Ideally, the registration and tracking system should fulfill the

following requirements: 1) the is accurate and robust even if the user moves rapidly, 2)

no interventions are required in the real environment. Even small errors like jitter or lags

between real and virtual objects, or placing markers as references reduce the illusion of

co-existence.

Illumination and Shadows are also fundamentally important to seamlessly combine

virtual objects with the real environment. The illumination between real and virtual

world should be consistent. Real objects should cast shadows on virtual objects and vice

versa. Shadows improve the impression that virtual objects appear as part of the real

scene and give the user an idea of correct distances between objects. In addition, the

shading of virtual objects in relation to the real world is essential for achieving consistent

illumination [NS09].

Occlusions in AR have always posed a challenge. Sometimes virtual objects are partially

or totally occluded by opaque or even transparent real objects. Currently, many AR ap-

plications suffer from inadequate occlusion handling, such that virtual objects are always

in front of real objects regardless of the spatial relationship. Incorrect and inaccurate oc-

clusion handling not only breaks the illusion of co-existence between the real and virtual

worlds, it also results in wrong depth perception. User interactions, such as grabbing a

virtual object, result in misunderstanding and confusion.

3D Surface Reconstruction of the real environment is fundamental to many AR ap-

plications. The geometry of the real scene must be known to simulate interaction be-

tween real and virtual components. For example, moving virtual objects should not move

4 Chapter 1. Introduction

through real objects; they should collide instead. If a surface representation (also called

world model) is available, it can be registered to the real scene and used to handle collisions

through standard computer graphic algorithms. The same representation can be used to

solve the occlusion problem in static scenes. Ideally, the model should be as complete

and detailed as possible. Such a model can be modeled manually, which is highly labor

intensive and only useful for static and known scenes. Therefore, the common solution is

to reconstruct the scene in an offline step before the application starts or the reconstruc-

tion is generated during the runtime of the application. Generally, the reconstruction of

arbitrary scenes is an important issue and many approaches have already been proposed.

The results of these methods are mostly dense and accurate but the reconstructions re-

main incomplete. This is due to the fact that parts of the scene are non-visible during

the capturing process (e.g. occluded by another object). Moreover, precise models of

cluttered and dynamic scenes are hard to generate.

Furthermore, collision handling and occlusion handling both depend on the registration

and tracking process. Accurate registration and tracking allow exact alignment of the

model with the real world, resulting in realistic collisions and occlusions.

Shading and shadows are not the focus of this thesis, but accurate reconstruction as well

as registration and tracking are helpful to solve this illumination problem. The model

can be used to cast shadows on virtual objects [HDH03] or to recover the illumination

distribution of a scene [SSI03]. The reconstruction can be extended with reflectance

and illumination information to enable a realistic and seamless integration of correctly

illuminated synthetic objects in the real world [GHH01].

1.2 Overview and Contributions

This thesis focuses on three challenges in computer vision to meet the goal of co-existence

in AR, namely: registration and tracking, complete 3D reconstruction, and occlusions.

1.2. Overview and Contributions 5

As discussed in Section 1.1, these tasks are fundamental to realize geometrical consistency

and to create physically plausible AR applications in which virtual objects act like real

objects.

The main contributions of this thesis can be summarized as follows:

• An approach to optimizing registration and tracking using significant and appearance-

based edges. The algorithm estimates the camera pose in relation to the real world,

and extends a 3D line model of the real environment or object. The algorithm adds

new lines to the model and considers their appearance and the current view of the

camera, to decide which lines are more likely to be visible in the camera image.

• An algorithm to de-noise and complete a 3D surface reconstruction of the real

environment. It fills holes and gaps in the actual observed surfaces of the real

environment and extends the surface during the capturing process. By considering

the structure of the surface (flat or curved) the algorithm can obtain appealing

results for several types of surfaces and overcomes limitations of previous approaches.

• A new depth-based approach, named occlusion matting, to handle occlusions be-

tween real and virtual worlds more realistically. This algorithm effectively solves

the occlusion problem by formulating it as an alpha matting problem. It overcomes

limitations of previous work on occlusion handling and can deal with different types

of occlusions that have sharp and smooth transitions.

• A novel algorithm for high-quality alpha matting to solve the occlusion matting in

real-time. It automatically estimates a trimap based on a depth sensor image and

the virtual objects, and effectively calculates an alpha value for each unknown pixel.

• An approach to extend the obtained depth images by considering the 3D surface

reconstruction to obtain complete depth maps of the real scene. This approach

improves the quality of depth maps from low-cost depth sensors, thereby ensuring

a precise occlusion matting. Holes and gaps which occur because of well-known

6 Chapter 1. Introduction

problems like reflections or limited sensor ranges are likely to be filled in with the

reconstruction data.

This thesis is structured as follows. Chapter 2, discusses the theoretical background of

model-based tracking and describes the approach for improving tracking results by using

appearance-based line models. Chapter 3 starts with a discussion of 3D surface recon-

struction using implicit surfaces. Thereafter, the algorithm to de-noise and extend an

ongoing reconstruction and its results for several surfaces are presented. Chapter 4 intro-

duces and presents the approach to handle occlusions as an alpha matting problem. Each

chapter gives a short introduction, summarizes recent work on this topic, and presents an

approach to overcome state-of-the-art problems. The thesis is concluded in Chapter 5.

Chapter 2

Robust Model-based Tracking using

Appearance-based Line Models

This chapter focuses on the registration and tracking challenge and presents an approach

to overcome limitations of commonly used model-based tracking methods. Most results

presented in this chapter were peer-reviewed and presented at a conference [HEM15].

Section 2.1 discusses the registration and tracking problem in the context of AR and

provides definitions and related taxonomy in this field. Section 2.2 describes the theoret-

ical background to model-based tracking using edge features and discusses the benefits of

model-based tracking in AR, and examines fundamental problems in the common meth-

ods. Section 2.3 provides an overview of existing work and highlights the differences from

the presented method. Section 2.4 describes the idea of the proposed approach and Sec-

tion 2.5 gives an overview. The following sections (Sections 2.6 to 2.9) explain the method

in detail, and Section 2.10 presents the experimental results. The final section (Section

2.11) summarizes the contribution of this work and discusses future possibilities.

7

8 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

2.1 Registration and Tracking Challenge

To register virtual objects in the surroundings of the user, the position and orientation

of the user’s head or camera (called pose) with respect to the real world or an object

in the real environment which serves as an anchor must be known [BCL15]. Billinghurst

et al. [BCL15] describe this process as comprising one or two stages: 1) a registration stage

which determines the pose in relation to the anchor; and 2) a tracking stage which updates

the pose relative to the previously estimated pose. In this thesis, the term tracking refers

to both stages.

Tracking with respect to an object or an environment is a well-studied and widely discussed

task in several computer vision applications (e.g. in robotics or virtual reality). Thus,

several solutions exist to solve the tracking problem, which use various types of sensors

such as cameras, mechanical encoders, magnetometers, and gyroscopes.

For AR applications a high-quality tracking is required. Virtual content is precisely

aligned with the real world only if the tracking is robust and accurate. Almost all AR ap-

plications currently use visual tracking approaches, sometimes in combination with other

sensors like gyroscopes and magnetometers. Generally, visual tracking enables robust

registration without the need for any other sensor, simply by using a cheap video camera.

Typically, the camera of a smart phone or a camera attached to a head-mounted display

is used. To estimate the camera pose in relation to the real world, natural or pre-placed

features are localized, identified and tracked in the incoming camera stream.

A simple and still commonly used strategy is to place artificial markers in the scene which

serve as anchors. Specific characteristics of these markers, such as geometry or color, en-

able the use of simple and potentially more robust tracking algorithms [SH15]. However,

placing markers to simplify the tracking task requires interventions in the natural environ-

ment and sometimes is not possible [LF05]. Marker-based tracking in large environments

like corridors, living rooms or factory halls requires the use of multiple markers, with

2.1. Registration and Tracking Challenge 9

known relations among the markers. In this scenario the use of markers is impractical

and requires a long setup time. In addition, markers might have annoying effects for the

end users [LF05] and can reduce the illusion of co-existence.

This thesis focuses on markerless tracking sometimes called natural feature tracking which

exclusively uses existing natural features in the scene. Markerless approaches can be clas-

sified into two categories: model-based and model-free tracking [SH15]. In model-based

methods the environment or the object to be tracked is known. These techniques use a 3D

model of the object or scene to be tracked. In contrast, model-free methods do not require

any knowledge. The model to be tracked is created during runtime and extended while

the user moves within the scene. This challenge is known as simultaneous localization

and mapping (SLAM) and is well-studied in computer vision. SLAM is fundamental for a

wide range of applications, including robotics and autonomous driving. These algorithms

build a map of an unknown environment and simultaneously estimate the pose of the

camera related to the map. SLAM systems are not limited to the visibility of a known

model. However, a significant drawback of these systems and their use in AR applications

is they cannot provide an absolute reference. Virtual objects have to be placed by the

user spontaneously [SH15]. Model-based tracking systems, by contrast, virtual content

to be registered in the coordinate system of the known model. Recent systems combine

the advantages of both model-based and model-free tracking [SH15] by using the model

to initialize the tracking procedure. Generally, most SLAM techniques (e.g. Klein et al.

[KM07]) use landmarks (such as point features) to create a sparse representation of the

environment as a point cloud. The point cloud representation is useful to estimate the

camera pose, but is not useful to handle occlusions or collisions between the real and

virtual worlds. To handle such interactions between real and virtual components the ge-

ometrical structure of the scene is needed. In model-based systems, this is often given

by a surface model (like a polygonal representation). It can also be generated rapidly by

using dense SLAM techniques. This reconstruction challenge is discussed in Chapter 3.

10 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

2.2 Background of Model-based Tracking

Model-based tracking methods can be categorized by the features that are used. Edge-

based methods match projections of objects’ 3D lines to sharp edges in the intensity image.

Other techniques use textural information and estimate the pose of the camera through

optical flow, template matching algorithms, or keypoints [LF05; CC10]. Many approaches

use edges because they provide computationally efficiency and simple implementation.

Furthermore, edges are naturally stable despite lighting changes [LF05; CC10]. Keypoints

do not work well if the difference among viewpoints between consecutive frames is too

large; hence, edges are more stable despite viewpoint changes. It is true that keypoints can

deal with illumination, orientation, scale, and partial viewpoint changes as well. However,

the description of features to obtain local textural or orientation information around stable

points is very expensive [CC10]. Generally, edges work well in poorly textured scenes and

they are able to deal with objects having specular materials [LF05]. Thus, they are useful

in urban environments or industrial scenarios where not many planar and textured objects

can be observed, and other techniques such as keypoint-based methods fail.

Model-based tracking methods can be categorized into two classes [LSF+10]. These

classes are recursive tracking, in which the previous camera pose is used to estimate

the current pose; and tracking-by-detection, in which allows the estimation of the camera

pose without a previous pose estimation. In contrast to recursive methods, which follow

a frame-to-frame tracking, tracking-by-detection allows an automatic initialization and

re-initialization if the tracking algorithm fails. However, tracking-by-detection methods

suffer from jitter and less accuracy [LSF+10]. In the context of AR, current techniques

retain the best elements of these two approaches by using the tracking-by-detection to

initialize a recursive tracking procedure (e.g. see [CC10]). This thesis focuses on recursive

tracking by using edge features. Further information about methods based on keypoints

or tracking-by-detection is available in the literature [LSF+10; LF05].

2.2. Background of Model-based Tracking 11

2.2.1 Taxonomy Model, Line and Edge

Various definitions exist for the terms line and edge. In the context of model-based

tracking, line is often used to define line segments of the model to be tracked. Thus, lines

are geometrically defined by two endpoints, either in 3D space or projected in 2D space.

The term edge is often used to define significant discontinuities in an image. Edges can

be detected by calculating derivatives (as described in [RN17]) and lines or line segments

can be extracted using algorithms (e.g. [GJM+10; HHM14]).

Edges arise as consequence of the geometrical and photometric conditions within a scene

[KA08]. The term edge is also used in the field of computer graphics to define line segments

of a polygon mesh. Each edge connects two vertices of a polygon [FDF+90].

Generally, edges can be categorized by their causes, which are specific properties in the

scene. In the context of model-based tracking, edges are of interest which occur because of

the specific properties of the object to be tracked. According to the classification systems

in [Pan11; KA08], edges are categorized into four classes with regard to the object to be

tracked (approximately labeled in Figure 2.1):

1. Orientation edges (sometimes called object edges or crease edges) arise because

of strong discontinuities between surface orientations. These edges are independent

of the view; the corresponding line segments can be calculated in a pre-processing

step from a surface representation.

2. Texture and material edges (also called reflectance edges) occur because of dis-

continuity of the surface material, such as textural characteristics of the model.

3. Silhouette and depth edges (also called step edges or occlusion edges) are the

boundaries between the object and the background or the object itself. They connect

parts of the surface that face toward the viewpoint and parts that face away from

the viewpoint. Such edges can be calculated by identifying front and back faces

12 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

based on the surface normal and viewing direction of the user. These types of edges

are view dependent and must be calculated during runtime.

4. Non-physical edges are unstable in their appearance and location; they might

have a negative effect on tracking results. They cannot be associated with a physical

property of an object. They occur because of illumination, such as shadow edges or

specular edges.

Figure 2.1: Classes of edges. Different types of edges are shown; they arise because
of the illumination or specific model properties and structures. (Image modified and
extended from [KA08].)

2.2.2 Edge-based Methods and Challenges

Historically, edge-based approaches estimate the camera pose by registering the 3D line

model onto the image edges. The model lines can be registered onto the edges with

or without explicit line extraction [LF05]. Early approaches using explicit extraction

[Low92; KDN93] gathered straight 2D line segments from the image gradient (defined by

two endpoints) and minimized the distance between observed and projected lines of the

model to adjust the camera pose. Given the fast extraction of lines from image edges,

the challenge is to correctly match lines of the model with lines extracted from the image.

Edges are less differentiable than point features [GM06] and offer only few number of

description and matching techniques.

2.2. Background of Model-based Tracking 13

Hence most model-based methods avoid complex or computationally expensive explicit

extraction, description, and matching of edges. They use information from prior frames

and follow a recursive scheme, known as frame-to-frame tracking.

Real-time attitude and position determination (RAPiD) [HS90; Har93] is an early and

well-known 3D model tracker that runs in real-time. The idea is to simplify the lines

of the model to a set of sample points, called control points. To obtain 2D-3D point

correspondences, image space is searched for each projected control point. Finally, the

camera pose is estimated by a distance minimization between observed correspondences.

Generally, RAPiD-like methods are fast, relatively simple to implement and provide good

results [LVT+03]. Because of this simplicity and low computation effort, several improve-

ments of the algorithm already exist [DC02; WVS05]. Today, improved variants can run

in real-time even on relatively slow computers such as mobile devices. Hence, they are

often used in industrial environments where significant edges are available [LVT+03].

After an initialization step, a RAPiD-like system performs the following steps for each

frame. First, it uses a predicted pose (which can be the estimated pose of the previous

frame) to decide which lines or control points are visible and to find their location in image

space. Control points can be obtained by sampling the 3D lines of the model; or they

can also be generated sampling the projected 2D lines. After the projection procedure, a

search for significant image gradients along the perpendicular direction for each control

point is performed. A gradient can be accepted as a match if, for example, its magnitude

is larger than a predefined threshold. Lastly, the pose of the camera is calculated by

projecting the 3D control points and minimizing the distance to their corresponding 2D

image points, using the least squares method (often called re-projection error).

Generally, outliers tend to occur because edges in the scene are close to model edges and

are thus used during pose estimation. Significant edges in the background, non-physical

edges or aspect changes lead to incorrect correspondences between edges [LVT+03]. Out-

liers reduce the quality of the tracking procedure significantly. Hence recent approaches

14 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

[DC02; WVS05] minimize the distances between correspondences using the iterative re-

weighted least squares method. This allows the use of an M-estimator, which is more

robust to outliers than a simple least square procedure. In this thesis the tracking ap-

proach [WVS05] is used; further details are provided in Section 2.8.

An assumption of this approach is that the camera does not move fast and thus a change

between two consecutive poses is considered as small. The tracking works only if the

projection of the line model is very close to the edges in the camera image. Reitmayr

and Drummond [RD06], for example, reduced failure under fast motion by using inertial

sensors to predict a camera pose. Alternatively, motion models that describe plausible

movements of the camera or of the object to be tracked between subsequent frames can

be used to predict a pose (as described in [MKS+11; KMB+14].

Most RAPiD-like systems require manual initialization by the user. The user must overlay

the model to be tracked with its real counterpart. This is time-consuming and means that

no automatic re-initialization is possible if the tracking is lost. Manually re-initialization

is needed. In addition, RAPiD-like methods and their various improvements remain

sensitive to interference such as background clutter or texture on the object itself.

It is worth mentioning that tracking failures occur more often when very simple objects

are tracked, compared with relatively complex ones. Complex objects offer more control

points so that points corrupted by noise can easily be ignored by a robust estimator

[LVT+03]. Accordingly, it is advantageous if models of simple objects (e.g. rectangular

boxes) possess not only geometrical edges but also textural edges.

A significant drawback can be identified in that all these approaches need a precise and

complete line model, which, at best, contains only relevant lines for the tracking process.

Such models are often generated manually in an offline step. The manual creation of

well-designed models is time-consuming and the modeler should understand the tracking

algorithm to select suitable edges, in an optimum manner.

2.3. Related Work on Line Model Generation 15

2.3 Related Work on Line Model Generation

At present, only a few approaches deal with the automatic generation of suitable line

models. The main topic of research in this area remains the improvement of the tracking

process. Because most objects in man-made environments are manufactured such as

furniture, polygonal models are available from the production procedure [CC10] and can

be used to generate a line model. The easiest method is to extract lines directly from a

polygonal model of the object to be tracked.

Choi et al. [CC10] used an object-space method to create a line model in an offline pro-

cedure. Their approach identifies sharp edges from the triangle mesh representation. The

angle between the surface normals of attached faces is used as an indicator for sharpness.

In other words, the algorithm analyzes the mesh and identifies sharp edges by a simple

thresholding of the inner product of two normals. During runtime, extracted lines are

used in a RAPiD-like tracking approach.

A disadvantage of object-space methods is that the generated models contain no texture,

depth and silhouette edges. Object-space silhouettes, however, can be obtained during

runtime by identifying edges of the model that connect a front-face with a back-face.

Moreover, if the object has a complex 3D structure or the user moves around the object

and observes it from different sides it is likely that some lines will be occluded by the object

itself. That is why visible parts of the line model should first be identified. Otherwise

the pose can be heavily affected by incorrect control points on non-visible lines. So called

hidden-line removal is performed by a rendering a binary space partition tree [DC02] or

more easily by using OpenGL occlusion queries [CC10].

Platonov and Langer [PL07] pursued an image-space method instead; their method

creates a contour model by a rendering procedure. The polygonal model is rendered from

different viewpoints and under different lighting conditions. The most stable edges in

terms of illumination invariance and view independence are extracted. For each rendering,

16 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

a 2D edge detection is performed, edge points are back-projected in 3D space, and visibility

statistics are saved. The back-projection uses color-coded rendering of the polygonal

model, in which each face of the model is shown in an unique color. After the rendering,

the algorithm identifies the corresponding face for each 2D edge point based on the color.

The 3D points are then estimated by calculating the intersection between the identified

face and a geometric ray (from the center of the camera through the edge point). Finally,

all 3D points that are visible under different perspectives and illuminations are merged

to contours, approximated either by a B-Spline or a sequence of line segments.

Clearly, the quality of contours depends strongly on the quality of the model and the ren-

derings; the renderings should represent the object as realistically as possible. Processing

time of up to several hours is needed to generate a suitable model, but this processing

is performed only once. However, curved objects are problematic to describe using this

algorithm. Silhouette and depth edges of non-curved objects do not change their 3D po-

sition if they are obtained from multiple similar viewpoints. In contrast, silhouette and

depth edges of curved objects change their 3D positions if the viewpoint is even sightly

changed. An example is shown in Figure 2.2. This limitation means the algorithm is not

capable of describing curved objects well.

(a) Object without curved structures (b) Object with curved structures

Figure 2.2: Problem of silhouette edges. (a) Silhouette edges of non-curved objects
do not change their position. (b) Silhouette edges of curved objects change their positions
even if the viewpoint is changed.

2.3. Related Work on Line Model Generation 17

Alternatively, view-dependent 3D lines or control points can be generated during the

tracking process using an image-space strategy. For each frame, control points are ob-

tained by performing a rendering of the polygonal model, followed by detection of 2D

edges and a back-projection.

Reitmayr and Drummond [RD06] generated suitable line models for outdoor urban

environments. First, their system renders a coarse textured polygonal model of the object

to track, based on a prediction of the pose. Using a standard edge detector edgels (pixels

with a significant gradient magnitude) are extracted which are used as control points in

a RAPID-like tracking approach. To calculate the 3D coordinates for each control point,

the system uses the depth information of the rendered model.

The rendering of textured models automatically culls details so that only edges are de-

tected that are likely to be visible at the current scale. Pure and complex line models, in

contrast, work well in regions nearby the object being tracked. In large outdoor environ-

ments where the user can move far away from the object to tracked, such as a building, a

projection of detailed line models results in clusters (e.g. dense clusters of facade edges).

Edges in clusters are no longer distinguishable and this leads to incorrect correspondences

and incorrect pose estimation.

Wuest et al. [WS07] presented a similar approach which is additionally able to deal

with untextured surface models. If no or incorrect material properties are given, their

algorithm generates a line model exclusively based on the geometric properties of the

object. Therefore, it renders the model with a predicted pose into the depth-buffer and

normal-buffer. By applying edge detection on these rendered maps different types of edges

are obtained. Silhouette and depth edges are extracted by identifying discontinuities in

the depth map. Orientation edges are detected in the normal map as they presented an

edge between surfaces having different orientations.

Generally, the rendering of polygonal models enables the extraction of view-dependent

line models. The benefits of a view-dependent line model can be summarized as follows:

18 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

1) it does not contain occluded line segments and thus avoids the task of hidden-line

removal; 2) it contains silhouette edges (also at the boundaries of curved objects where

offline object-space methods fail) and; 3) it always consists of lines with an appropriate

level of detail [WS07].

However, these methods depend strongly on the quality of the model. The texture of

coarse models (as in Reitmayr and Drummond [RD06]) must be as accurate as possible

to generate well-positioned lines. Inaccuracy in the position of a line reduces the quality of

the pose estimation. With untextured models it is the same: if the geometry is inaccurate

or incorrect, incorrect lines are produced, and the pose estimation is no longer accurate.

Alternatively, the line model can be generated without rendering the 3D model. The

approach, presented by Neubert et al. [NPD07], creates an appearance-based edge

model directly from a recorded image sequence of the object to be tracked. To obtain

the camera pose for each image, the approach passes them through a SLAM system.

The user then indicates planar regions, for example, by drawing polygons around them.

After reconstructing of the polygons and identifying the images in which the polygons

are visible, the algorithm creates so called edge frames. Each edge frame contains a list

of edgels extracted from the region of the projected polygon. Lastly, the system selects a

small subset of edge frames and uses them as keyframes in a real-time tracking approach.

Generally, this approach creates useful line models for objects having significant planar

regions, but does not work well for objects with complex 3D structures or curved surfaces.

Furthermore, user input for the pre-selection of planar regions is required.

Shimizu et al. [NSS+16] proposed another two phase method: offline model generation

and online tracking. The model generation phase is used to obtain the 3D geometry of

a textureless scene, represented as line segments. Therefore, the system uses a set of

RGB-D image sequences as input. For each frame, the system detects 2D line segments

represented by two endpoints using a fast detector algorithm. In the next step, the system

back-projects the endpoints of the line segments into the 3D space via the corresponding

2.3. Related Work on Line Model Generation 19

depth value from the depth image. Depth images captured by low-cost sensors are mostly

noisy, especially at the boundaries of objects, and often do not register well with the RGB

data. To overcome this problem the approach performs a plane segmentation and fit line

segments onto planar structures. A 2D line segment matching between two frames is

later achieved using a line descriptor to create 2D-3D line segment correspondences. The

correspondences are then used to solve the perspective-n-lines (PnL) problem to estimate

the camera pose.

The online tracking phase works only on RGB data. To track the camera online, the

system detects 2D lines and extracts the corresponding line descriptors. Matching these

descriptors against the database from the previous model generation, the system can

identify correspondences to estimate the current camera pose.

As mentioned before, methods that generate a line model in an offline procedure are

unable to deal with curved objects and dynamic scenes in which the objects are movable

or non-rigid. Moreover, all methods presented so far work only if the model to be tracked

is visible.

Alternative methods reconstruct a model while the user explores the scene, as SLAM

approaches do. In the context of AR, it is helpful to use a known and static object as

an anchor point such as a marker or a model of an object and extend the model while

the camera moves in the scene. Methods that do so can be called extensible model-based

tracking [KM07]. Problems of SLAM approaches and their use in AR applications, like

unknown scale or location of the coordinate system are simply solved by using the model

as an anchor.

The approach, presented by Bleser et al. [BWS06], uses a model to initialize the tracking.

In the tracking stage, the user can move freely and is not restricted to the known part of

the scene because the algorithm recovers the structure of the scene automatically. The

tracking is realized by a detection and tracking of point features from frame-to-frame.

20 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

However, most of these approaches (e.g. [DMM03; SMG05; BWS06]) use point features

and are thus often unsuitable in industrial or man-made environments. Gee et al. [GM06]

presented a model-based approach to vision-based SLAM that uses edges features as land-

marks. Starting from a simple model, new lines are extracted and automatically added

to the model during a SLAM mapping process. These lines are used within a RAPiD-like

model-based tracking approach. Because new lines continually extend the model, silhou-

ette edges of curved surfaces or non-physical edges (like shadow edges) may be added to

the model. To eliminate such lines from the model, a RANSAC procedure (see Section

3.3.1) is used during the pose estimation. Each edge keep a count of how often it was

detected as an inlier during the past frames. Lines which were consistently detected as

an outlier are removed from the model. Additionally, the counter is used to optimize the

camera pose estimation using a weighting factor. Generally, this approach does not offer

information about the surface structure available, so that hidden-line removal cannot be

performed. For the sake of completeness, it should be noted that SLAM-based approaches

exist which use edge features and work without a reference for initialization, as in tradi-

tional SLAM techniques. Whereas point features are often used in this research area, edge

features are not often considered as landmarks. However, the use of edge features offers

significant advantages. Edge features can build richer maps with a high degree of geomet-

ric information, and can overcome the problem of insufficient point features available for

tracking [ED06]. Moreover, edges features are more robust under fast motions and can

deal with motion blur [KM08]. Nevertheless, edges are difficult to use in a SLAM context

because of their selection, observation, initialization, and data association [ED06].

Hirose and Saito [HS12] also used line segments as landmarks in a monocular SLAM

approach. They presented a line descriptor called line-based eight-directional histogram

feature (LEHF), which offers a fast and efficient way of describing features of detected line

segments. They demonstrated that line segment matching was more robust than point

matching with regard to partial occlusion and viewpoint changes.

2.3. Related Work on Line Model Generation 21

Gomez-Ojeda et al. [GMS+17] proposed a stereo visual SLAM system, called PL-

SLAM, that combines points and line segments to work robustly in different scenarios.

Their system is especially useful for scenarios in which point features are scarce or not

well-distributed. While the system tracks point and line segments along sequences of

stereo frames, it builds a map to keep detected landmarks. Line segments are handled

like point features and stored in a list with the most representative descriptors to enable

frame-to-frame tracking.

Alternative approaches, described below, do not try to define edges by a patch around a

detected line segment; they save edge points directly. Eade and Drummond [ED06]

used edge features as landmarks and called them edgelets. An edgelet represents a local

straight segment of an edge having a significant intensity change in the image. In this

way curved objects can be represented by linear segments. An edgelet is defined by its

center and a unit vector representing the direction of the edgelet in the 3D scene.

To find an edgelet in an image, the system predicts its 2D location and detected all

edgels in a region around the predicted edgelet. Then edgels having a similar gradient

direction to that of the edgelet are identified. Identified edgels that formed a straight edge

segment are merged and used as possible observations of the edgelet. Because edgelets

are described only by the direction of their intensity change (from low to high), there

might be several possible observations in the considered image region. Hence the system

processes a maximum-likelihood data association to choose the most likely hypothesis

and to be robust against outliers. (For more details see [ED06].) Generally, Eade and

Drummond showed that edgelets can be successfully tracked and mapped. However, the

computational cost of locating an edglet in an image is very high.

Klein and Murray [KM08] extended a point feature and keyframe-based SLAM ap-

proach with edge features. They used the edglet representation from Eade and Drummond

[ED06] to improve the tracking results during fast motions.

22 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

Bose and Richards [BR16] presented an edge-feature-based SLAM using an RGB-D

sensor. Their approach builds a 3D point cloud which represented the edge structure of

the target scene. Each pixel belonging to both the depth or color edges of an observed

RGB-D image is back-projected using the depth component. The registration between

two sets of edge points is achieved using the well-known iterative closest point (ICP)1

algorithm. Point clouds of edges consist of significantly fewer points than usual for point

clouds because they describe only the main structure of the scene, such as geometric

discontinuities and discard points on flat surfaces. Thus, the registration process is less

computationally expensive.

2.4 Appearance-based Line Models based on

Mapping and Refinement

Several solutions exists to generate a line model automatically, as presented in Section

2.3. Some approaches generate the line model based on a surface model in an offline

procedure, whereas others use the surface model to create a view-dependent line model

during the tracking process. Overall, the results of these methods depend strongly on

the quality of the input model. Extracted line models are not always suitable for the

realization of a robust and precise edge-based tracking algorithm. At worst, line models

contain lines that are not detected in the camera stream or are not well positioned, for

example, because of impreciseness in the texture.

Ideally, the line model contains only lines that are robust and relevant for the tracking

procedure. Good lines to track should result in sharp and significant edges (edgels) in

the camera frame, so that, the corresponding image edges are easy to detect by standard

edge detection algorithms. Lines should appear continuously and should be stable in their

position. Moreover, only lines that are likely to be visible in the current view should be
1The ICP algorithm is explained in Section 3.2.2.

2.4. Appearance-based Line Models based on Mapping and Refinement 23

used for tracking. To decide which lines are suitable, it is helpful to follow a SLAM-like

procedure and update the model generate view-dependent and appearance-based lines.

To fulfill the above requirements, the presented approach in this thesis creates a suitable

line model by mapping new lines to the model and refining existing ones. The method

works with relatively few 3D lines and utilizes a surface model (ideally a surface model of

the complete scene) as input. Starting from the coarse line model, the model is extended

and refined by a mapping procedure as the user moves around the object. New lines are

generated from the incoming camera frame and thus it is likely that they will appear in

subsequent frames.

To overcome the problems of previous methods the mapping step collects reference poses,

called keyposes. A keypose consists of a camera pose in relation to the model and a

set of view-dependent and appearance-based lines. It covers possible camera poses for a

relatively small area around the object and keeps the lines which are likely to be visible

for these views. To eliminate drift each keypose is initialized with the lines of the coarse

input model.

The mapping process extracts line segments from the current frame and extends and re-

fines the set of lines for the closest keypose. In contrast,tracking uses the lines of the

closest keypose to select good edges to track depending on a predicted view. Hence, a

level of detail-based culling is performed automatically, as is hidden-line removal. Thus,

the tracking always uses view-dependent and appearance-based lines that possess an ap-

propriate level of detail and are not occluded. Keyposes are also useful for performing

automatic re-initialization if tracking fails. Manual initialization procedures are no longer

needed; the user only needs to go back to an already visited point of view.

Generally, newly added edges are refined during the tracking and are completely removed

from the edge model if they are not constantly detected in the 2D image, or if their

appearance varies often. As a result, non-relevant edges which could arise from dynamic

objects or shadows, are removed from the model.

24 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

2.5 Method Overview

A concise overview of the method is shown in Figure 2.3. The system consists of three

main components:

1. Line Management takes care of the line model. Depending on the pose it estimates

the closest keypose of the model and decides which lines are used during the tracking

step and in the mapping and refinement step.

2. Tracking uses the selected subset of line segments and follows a RAPiD-like scheme

to estimate the pose of the camera. This is done by fitting 3D points of the line

segments to strong image gradients.

3. Mapping & Refinement extracts new 3D line segments and adds new keyposes

to the model, if the quality of the pose is good and it differs enough from existing

keyposes. If the estimated pose is close to an existing one, the mapping and re-

finement component identifies existing 3D lines for the selected keypose and refines

them.

In the following pages, Section 2.6 describes the line model that is administrated by the

line management system. Sections 2.7 to 2.9 explain the three components and their

functionality in detail.

2.6 Line Model

The line model is formed by the line segments of the input model and a set of keyposes

that are generated during the tracking process. These keyposes approximate possible

camera poses in the already visited environment around the known 3D object. A keypose

keeps information about the 3D camera pose and a collection of 3D lines. These lines

2.6. Line Model 25

Figure 2.3: Schematic overview of the proposed method. The line management
takes care of the administration of the line model and its keyposes. The model-based
tracking system estimates a camera pose by fitting a selection of robust 3D lines to strong
image gradients. If the quality of the pose is good and keypose is new, the mapping and
refinement component adds new 3D lines to the model. Otherwise, if the pose is similar
to a keypose, the 3D lines are refined for the current keypose.

are created and refined when the camera pose, estimated by the tracking component, is

similar to a stored pose.

2.6.1 Keyposes

Depending on the input, the line model initially contains only edges that describe a

relatively small part of the object or describe its contours. When the tracker is initialized

the first keypose is added. If the current camera pose differs substantially from the initial

pose or previous keyposes, a new keypose is added. Each generated keypose stores the

26 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

Figure 2.4: Schematic visualization of different keyposes. These keyposes are gen-
erated from three camera poses and their corresponding lines (blue). Basic lines (black)
are defined by the coarse input model.

following information: a 3D camera rotation and translation with respect to the object,

and a set of 3D lines extracted from the input images. The idea of keyposes is shown in

Figure 2.4. At first, 2D line segments are extracted from the current frame to create a

keypose. The 2D segments are then back-projected based on the surface model to obtain

3D edges. These observed lines are refined, and new 3D lines are mapped and added to

the keypose if the estimated camera pose is close to a stored one.

Keyposes are added whenever the following conditions are met: the tracking quality

is good; most of the object is visible; and the camera has a minimum distance from

each existing keypose in the model. The calculation of tracking quality is based on the

covariance matrix and the number of detected edges in the current frame. The distance

between two camera poses is calculated by the translation distance and the angle difference

between the viewing directions (currently set to 10◦). The translation distance between

two camera poses depends on the size of the model. An appropriate threshold is calculated

by taking the size of the bounding box into account. The minimum translation distance

is given as a percentage of the radius of the bounding sphere; experiments showed that

15% is an adequate value. In most cases the camera moves slowly, so it is sufficient to

compare the distance between the current pose and the last active keypose. At worst, all

keyposes are compared to check whether a new keypose is required.

2.7. Line Management 27

2.6.2 Lines and Confidences

Starting from the input, the model keeps only the basic lines that are represented by

their two endpoints. New lines are added to the model as the camera moves around the

object or the first keypose is initialized, and it is very likely that some of these lines

are incorrect because of the detection of non-physical edges in the image. As mentioned

in Section 2.2.1, these edges are detected in the camera image, but are not associated

with a physical object edge. Due to instability in their observation they are not suited

for tracking. Moreover, some lines are incorrectly initialized in their 3D positions (e.g.

wrong back-projected edges due to uncertainties).

To solve these problems, the first assumption is that a 3D line that occurs often in a

2D image is a good line to track. Therefore, new initialized lines are associated with a

confidence factor. This factor increases through each successful observation and gives an

indication of the robustness of a line in relation to the corresponding keypose. The second

assumption is that a line that frequently changes its appearance or often corresponds to

nearby edges in the image, such as parallel edges or background clutter, is an unsuitable

line to track. These lines are unstable in their positions and thus the confidence is de-

creased. To deal with these lines, each new initialized edge is updated if the tracking

quality is good. Furthermore, variance is calculated for the endpoints to obtain a mea-

surement of the uncertainty of the 3D position. During tracking, the confidence factor in

combination with the variance of the 3D position helps to identify good lines to track.

2.7 Line Management

The edge management component of the system takes care of the administration of the

current model and the selection of lines for the tracking, mapping and refinement step.

Different line states are used to determine which lines are good to track, which lines

28 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

should be used only during the mapping and refinement process, and which lines should

be eliminated.

2.7.1 Line states

Each line of the model is assigned to one of the following edge states: truth, robust or

under control. All lines of the input model are marked as truth. These lines are correctly

positioned, correspond to a real edge of the scene, and are therefore continuously used for

tracking. Furthermore, these lines are useful for initializing a new keypose and thus for

drift avoidance. In contrast, new initialized lines are not used for tracking immediately.

They are marked as under control and are used only during the refinement step, which is

processed in every frame. As described in Section 2.6.2, the endpoints of these lines are

updated, and the confidence increases with every subsequent frame after initialization if

the line occurs. If the number of detections reaches a threshold and the variance of the

endpoints remains low, the line is assigned to robust and is used for the tracking procedure

for that keypose. If the occurrence count does not increase within a specified number of

frames or the variance becomes too high, the edge can be classified as a non-physical edge

and is then eliminated from the associated keypose.

2.7.2 Re-initialization

In some cases, the tracking step fails. This can occur, because of fast camera movements,

or because the object to be tracked is no longer visible. For this reason the tracking quality

is observed in every frame. If the tracking quality is very low, the tracking continues

for a few frames but the system does not allow any further steps, such as adding new

keyposes or mapping and refinement. If the quality remains poor after the additional few

frames, the tracking is considered as lost and a re-initialization process is begun. This re-

initialization is realized based on the previously collected keypose information. Starting

2.8. Edge-based Tracking 29

from the last pose, keyposes with corresponding robust edges are selected and the system

tries to re-initialize the tracking process.

Ideally, the object should be visible and tracked for a while at the beginning of a tracking

phase. In this way new keyposes are initialized and good lines to track can be classified.

2.8 Edge-based Tracking

In this research, a RAPiD-like tracker [WVS05] was used. Wuest et al. [WVS05] ap-

proach improves the standard RAPiD algorithm’s robustness and accuracy. The focus

is on reducing incorrect point correspondences. Wrong correspondences may arise from

background clutter or other edges that lie near to the searched ones. Because there exists

more than one potential candidate multiple hypothesis are considered to estimate the

camera pose.

The tracking system uses as input the surface model and a subset of lines that are good to

track. Once initialized, the camera pose is updated for each frame through the following

steps:

A) Create a set of 3D control points via uniform sampling in image space. The

number of sample points per line is determined by the length of the projected line.

B) Perform a visibility test to identify visible control points of the lines from the

initial line model. This step is required because some lines might be occluded

by the object itself. The search for correspondences to occluded control points

can result in false matches, which leads to inaccurate pose estimation. To discard

occluded control points, the surface model is rendered off-screen with regard to the

camera pose into the z-buffer. Non-visible points are then automatically identified

by rendering them into the same z-buffer and using occlusion queries; a depth test

is automatically performed using the graphics processing unit (GPU) hardware.

30 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

Because the visibility of control points of the initial lines is constant, this step is

performed only once if a new keypose is added.

C) A gradient maxima search projects each sample point onto the image plane

and searches for significant edges in a direction perpendicular to the correspond-

ing line. The method considers each significant gradient maximum as a possible

correspondence.

D) Pose estimate with a single hypothesis. This step estimates a coarse pose by

taking for each sample point the correspondences with the strongest gradient mag-

nitude as the match. Based on these correspondences, the camera pose is estimated

by non-linear minimization. In this way a pose close to the searched one is quickly

estimated without interference from other hypotheses.

E) Pose estimation with multiple hypotheses. This step appends several of the

most significant gradients and applies the minimization again based on the estimated

pose guess from the previous step. This process greatly improves the results.

As described by Wuest et al. [WVS05] in detail, the initial pose is estimated by minimizing

the distance between control points and their correspondences, for a single hypothesis, as

follows:

err =
m∑

i=0
ρT uk(∆(pi, qi)), (2.1)

where m is the number of control points for all lines currently considered; pT uk describes

the Tukey estimator function; and ∆ is the distance function between two points in image

space. The Tukey estimator function is defined by:

pT uk(x) =


c2

6 [1− (1− (x
c
)2)3] if |x| ≤ c

c2

6 otherwise
(2.2)

2.9. Line Mapping and Refinement 31

The threshold is defined by c = k · σ, where σ is the standard deviation of the estimation

error and the constant k. The distance between a projected control point pi and it’s

corresponding hypothesis qi in the image can be obtained by:

∆(pi, qi) = |(qi − pi) · ni|, (2.3)

where ni indicates the normal of the projected line. The pose refinement via multiple

hypotheses by minimizing the following error:

err =
n∑

i=0
ρT uk(min

j
∆(pi, qi,j)), (2.4)

This refinement ensures that the hypothesis with the closest distance is used. To maintain

real-time performance, only a fixed number of hypothesis per control point are considered.

2.9 Line Mapping and Refinement

This section describes the process by which the model is updated if an accurate camera

pose, estimated by the tracking component, is available. Existing lines are refined and

new edges are added. This procedure is summarized by the following steps, shown in

Figure 2.5. (Sections 2.9.1 to 2.9.3 explain steps A to C in greater detail.)

A) Extracting lines extracts straight line segments, represented by two 3D points in

world coordinates out of the current camera image.

B) Establishing correspondences identifies existing lines and adds new 3D lines to

the keypose closest to the estimated one.

C) Adding new lines and updating confidences updates all lines that were iden-

tified in the previous step and updates their confidence. New lines are added to the

current keypose.

32 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

(A) Extracting Lines

(B) Establishing Correspondences

(C) Adding New Lines and  
Updating Confidences

Gauss and Sobel

Extract straight 3D  
lines

Camera image

Gradients

Depth IDs

3D lines,
occurred IDS

Line model

1. Extracting edges

3D edges IDs per edge

3. Updating edge confidences

3D edge model

Gauss and Sobel filter

Gradient Map

Extraction of straight edges

Offscreen Rendering

Depth and ID Map

New 3D edges

2. Establishing edge correspondence

3D edge correspondence

1. Extracting edges

3D edges IDs per edge

3. Updating edge confidences

3D edge model

Gauss and Sobel filter

Gradient Map

Extraction of straight edges

Offscreen Rendering

Depth and ID Map

New 3D edges

2. Establishing edge correspondence

3D edge correspondence

1. Extracting edges

3D edges IDs per edge

3. Updating edge confidences

3D edge model

Gauss and Sobel filter

Gradient Map

Extraction of straight edges

Offscreen Rendering

Depth and ID Map

New 3D edges

2. Establishing edge correspondence

3D edge correspondence

1. Extracting edges

3D edges IDs per edge

3. Updating edge confidences

3D edge model

Gauss and Sobel filter

Gradient Map

Extraction of straight edges

Offscreen Rendering

Depth and ID Map

New 3D edges

2. Establishing edge correspondence

3D edge correspondence

1. Extracting edges

3D edges IDs per edge

3. Updating edge confidences

3D edge model

Gauss and Sobel filter

Gradient Map

Extraction of straight edges

Offscreen Rendering

Depth and ID Map

New 3D edges

2. Establishing edge correspondence

3D edge correspondence

3D Rendering

1. Extracting edges

3D edges IDs per edge

3. Updating edge confidences

3D edge model

Gauss and Sobel filter

Gradient Map

Extraction of straight edges

Offscreen Rendering

Depth and ID Map

New 3D edges

2. Establishing edge correspondence

3D edge correspondence

1. Extracting edges

3D edges IDs per edge

3. Updating edge confidences

3D edge model

Gauss and Sobel filter

Gradient Map

Extraction of straight edges

Offscreen Rendering

Depth and ID Map

New 3D edges

2. Establishing edge correspondence

3D edge correspondence

Line correspondences

Polygon model  
(e.g. from the complete scene)

Figure 2.5: Schematic pipeline of the line mapping and refinement. The camera
image is convolved with a Gauss and Sobel mask to create significant edge points and
straight line segments (Step A). A depth map is used for a back-projection process and
an ID map is used to establish line correspondence (Steps A and B). New lines are added
to the current line model and existing lines are updated (Step C).

2.9. Line Mapping and Refinement 33

2.9.1 Extracting Lines

First, a gradient image is created by applying a simple Gauss and Sobel filter mask. The

algorithm then walks along the gradient image, applies a non-maximum suppression and

creates a structured representation of significant and connected 3D edge points.

To create structured 3D edge points efficiently, an offscreen rendering step is performed.

This step uses the estimated camera pose and renders the surface model at the same image

resolution as the input image. The resulting output image provides depth values (distances

to the camera) per pixel. The depth values are used to perform a back-projection proce-

dure of 2D gradient points with high values. At this step, all of the points are discarded

which do not lie on the surface of the 3D model or have a large discrepancy in depth to

previous connected points. Large differences in depth values are caused by uncertainties

of the 2D edge detection, mostly in case of a silhouette or depth edges. Silhouette edges

are located at the border of the object surface and the background, whereas depth edges

are located within the object region (e.g. caused by self-occlusion). It may happen that

the wrong depth value is selected.

The connected 3D edge points are then subdivided into straight line segments represented

by two endpoints. The resulting 3D segments are described in the camera coordinate

system. For further processing, line segments are transformed to the coordinate system

of the model by applying inverse rotation and translation of the current camera pose.

2.9.2 Establishing Correspondences

In the system it is necessary to decide if a 3D line exists in the current edge model or must

be added. According to the ID method described by Lima et al. [LSF+10], a matching

procedure between the existing and newly created 3D line segments is processed. The

original method is often used to perform hidden-line removal but can be easily transferred

to the matching problem if the camera rotation and translation are known.

34 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

Therefore, a unique identifier (ID) is assigned to each 3D line in a keypose. In the same

manner as the depth map is rendered, each existing line with its ID encoded as color is

rendered. This is done simply, in one rendering pass, using OpenGL frambuffers. To map

the IDs to RGB and vice versa, a simple RGB coding scheme is used. With this scheme

the maximum number of lines per keypose is 232− 1. The line count per keypose depends

on the complexity of the scene or object and on the threshold values for the difference

between two keyposes. However, it will never reach this maximum.

To identify existing lines in the keypose, the line extraction algorithm (described in Section

2.9.1) is extended. Connected points are split to straight segments, and the ID image at

the corresponding 2D point is evaluated and the occurrences per ID are counted. If an

ID occurs more often than a threshold (currently set to half the length of the segment),

it can be assumed that the ID already exists. The corresponding edge is then identified

by decoding the ID and is updated. If many different IDs occur, it is quite likely that

background clutter surrounds the line; such lines are ignored. Otherwise, a new 3D line

is added to the current keypose. Lines are only updated or added when a certain number

of edges are detected. Otherwise, it is assumed that the quality of the estimated pose is

not accurate enough for the mapping and refinement step.

2.9.3 Adding New Lines and Updating Confidences

The confidence of a line per keypose is calculated by considering the occurrence and the

appearance. If the number of detections in the 2D image n reaches a certain threshold t

(with t > 0), the variance σ2 for each endpoint is calculated by:

σ2 = (1
n

n∑
i=0

(pi − µ)2)/l, (2.5)

where µ is the current position of the considered endpoint, {p1, p2, . . . , pn} are posi-

tions already observed, and l is the length of the line in 3D space. The division by l

2.10. Experimental Results 35

Figure 2.6: Effectiveness of dividing by length. Two observations of line segments
with different lengths. The segments in (a) are more equal than in (b). Dividing of the
variance by the length results in a higher value for segment (b) than segment (a).

assures equality of σ2 for different edge lengths, as sketched in Figure 2.6. If the variance

constantly grows, the line is classified as non-robust, as discussed in Section 2.7.

2.10 Experimental Results

In this section, the results of evaluating the method through several experiments are

presented. The experiments were performed with different objects in a set of synthetic

and real image sequences. The used models are differed in complexity and characteristics,

as shown in the following sections.

2.10.1 Synthetic Image Sequences

A set of synthetic sequences was used to compare the proposed method with the stan-

dard edge tracker without any mapping or refinement step. These image sequences were

generated by moving a virtual camera around a static object and storing ground truth

pose data for each image. The model of the chopping board was placed in a kitchen

model, as in Figure 2.7. This made the scene more realistic, for example with background

clutter. The surface models of the chopping board and the kitchen are taken from 3D

Warehouse [War]. The corresponding coarse edge models of the chopping board were

generated manually using Blender [Ble].

36 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

Figure 2.7: Tracking results of a synthetic generated scene. Results with the
proposed mapping and refinement step (orange edges) and without this step (green edges)
are shown in the synthetic sequence of the chopping board. The white edges were used
only during the mapping and refinement step; they were not used for tracking.

Figure 2.7 shows the tracking results and Figure 2.8 shows the corresponding 6 degrees

of freedom (DOF) camera pose plots for one image sequence. The tested image sequence

started with a slow camera movement, which was rather easy to track. After some time,

around frame 350, tracking became more complicated and the translation velocity in-

creased. Based on the line plots, the proposed method consistently showed similar or

better robustness and accuracy than the method without mapping and refinement step.

Standard tracking was able to track only 56.4% of the images, whereas tracking with the

mapping was able to track 92%. The method with mapping and refinement did not lose

the camera pose easily and recovered faster if tracking was lost. Re-initialization was

easily performed by finding the best matching keypose as described in Section 2.7.2. The

camera simply needed to move close to any stored keypose. By contrast, tracking without

the extension needed a camera pose close to the most recently tracked pose to reinitialize

the tracking process.

2.10. Experimental Results 37

Figure 2.8: 6 DOF camera pose plots of the chopping board in a synthetic
generated image sequence. The line plots below the diagrams indicate successfully
tracked frames. In general, the presented approach (orange) consistently achieved better
results than tracking without mapping and refinement (green).

Moreover, tracking without a mapping and refinement step depends strongly on the qual-

ity of the input edges. There is no general statement about the selection of good edges

38 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

to track. Increasing the number of input edges, for example, does not necessarily mean

that the accuracy or robustness increases. By the way of demonstration, the root mean

square (RMS) errors were calculated for the sample sequence with different numbers of

input edges, as shown in Table 2.1. The generality of the presented system for different

input edges can be seen. It was able to track the scene with different input edges with

similar results in terms of accuracy and robustness.

Method Edges (#) Frames (%) RMS (root mean square) error

Rx (degree) Ry (degree) Rz (degree) tx (mm) ty (mm) tz (mm)

With 5 90.9 0.59211 0.51526 0.59501 0.56182 1.19744 2.17623
Without 35.7 0.54594 0.43345 0.22434 0.59579 0.64225 3.20885

With 7 100 0.56358 1.30319 0.77255 1.20516 1.39944 5.42438
Without 100 1.10871 1.83799 1.03849 1.78927 1.23728 6.76075

With 8 100 0.94687 1.68201 0.93394 1.66943 1.31145 6.05157
Without 100 1.26483 2.06454 1.23755 2.12224 1.32286 7.64757

With 9 94.6 0.54248 0.84202 0.55344 0.90416 0.294224 5.09546
Without 73.1 1.22008 2.11999 1.03555 2.23612 0.563874 8.63815

With 10 92 0.31508 0.36303 0.45056 0.38775 0.86188 1.74504
Without 56.4 0.34329 0.32387 0.19249 0.24481 0.50929 2.01651

Table 2.1: Root mean square (RMS) error in a synthetic generated sequences.
The upper rows show the results of the proposed method; the lower rows show the results
of the method without any refinement or mapping procedure. The number of input edges
is shown in the second column. The third column shows the percentage of tracked frames.

2.10.2 Real Image Sequences

The method was tested with real image sequences, which represented a much greater

challenge than the synthetically generated scenes. Real image scenes contain noise, motion

blur and different lighting conditions. A simple model of a house with many planar

surfaces and textures was used. The surface model of this object and the coarse edge

model were generated manually using a standard modeling tool. Only the surface model

of the object to be tracked was available. Therefore, new edges were mapped to the

edge model only if these lay on the polygon model. Figure 2.9 shows the tracking results

2.10. Experimental Results 39

with and without mapping and refinement. The tracking with mapping and refinement

benefited from stored keyposes for re-initialization, as seen before in the synthetic scenes.

Tracking with refinement and mapping achieved 98% tracked frames. Tracking without

this procedure only achieved 83% tracked frames.

Figure 2.9: Tracking results of a real scene. The effectiveness of the keyposes for
re-initialization is shown. Results with the proposed mapping and refinement step (orange
edges) and without this step (green edges) are shown in the real sequence. The white
edges were used only during the mapping and refinement step. They were not used for
tracking. The markers were used only to initialize the tracking step.

40 Chapter 2. Robust Model-based Tracking using Appearance-based Line Models

2.11 Conclusion and Future Work

Model-based tracking using appearance-based line models presents a suitable approach

to realize robust tracking for AR applications. This approach achieves sufficient runtime

performance (≥ 30 frames per second) at a standard image resolution of 640× 480 pixels.

The main advantage of the algorithm is that it does not require extensive pre-processing

steps, such as modeling a suitable line model. It also offers the advantages of model-based

tracking in the context of AR: 1) no modification of the scene is required; 2) collision and

occlusion handling can be realized by the surface model; 3) in contrast to well-known SfM

approaches, virtual content can be registered in the coordinate system of the model; and

4) drift-free tracking.

Starting from a coarse line model, existing lines are refined and new lines are added as the

user moves around in the scene or around the object to be tracked. New lines are detected

and extracted from the incoming camera stream so that they are likely to appear in the

next frames. So called keyposes enable the selection of view-dependent and appearance-

based lines and make the tracking process more robust. The method uses lines that are

likely to be visible and thereby good to track depending on the predicted viewpoint; in

other words, it improves the accuracy of the correspondences. For example, the model is

more detailed if the user is very close to it whereas the model becomes more coarser if

the user moves away from it.

Generally, the approach can deal with several types of scenes or objects. It performs well

in poorly textured scenes, but also performs well in textured scenes in which only sparse

geometric structures are found. Moreover, in contrast to state-of-the-art approaches it

adapts to changes in the environment or object to be tracked. The approach benefits

from the use of keyposes that enable a semi-automatic re-initialization procedure after

tracking failures. It outperforms the standard edge-based trackers which often require

manual re-initialization. However, the user still has to go back to a previously visited

2.11. Conclusion and Future Work 41

view. The option to perform initialization and re-initialization steps automatically offers

the use of tracking-by-detection approaches. Lines of the model could be enhanced by line

descriptors that describe either a patch around their 2D projection in the camera stream

(as in [HS12; LZL+13; NSS+16]) or their geometric structure in 3D, for example, if these

represent orientation or texture edges.

Currently, the tracking process fails if the model to be tracked is non-visible. To overcome

this limitation, future work should concentrate on the enhancement of the model beyond

the known part. For example, special sensors like depths sensors or stereo cameras could

be useful to obtain the 3D coordinates of line endpoints within areas of the camera image

where the surface structure is unknown. Thus, tracking would no longer be limited to

regions in which the model is visible, and the user would be able to move freely within

the scene.

Chapter 3

Optimizing 3D Reconstructions:

Propagating Surfaces, Filling Holes

and De-noising

This chapter deals with the 3D reconstruction challenge in AR. An approach that extends,

fills holes, and de-noises an ongoing surface reconstruction is presented. The presented

algorithm is integrated in the well-known KinectFusion pipeline [NDI+11].

This chapter is organized as follows. The challenge of reconstructing a suitable model of

the environment for AR applications is discussed in Section 3.1, followed by a description

of the KinectFusion pipeline and the technical background in Section 3.2. Section 3.3

provides an overview of the related work. Section 3.4 describes the idea of the algorithm

and Section 3.5 outlines the pipeline of it. Sections 3.6 to 3.11 describe the algorithm in

detail. Section 3.12 explains an easy way to realize occlusions and collisions on the implicit

representation of the scene. The results are presented in Section 3.13 and the conclusion

follows in Section 3.14. Parts of the work presented in this chapter were peer-reviewed

and presented at a conference [HHM16].

43

44 Chapter 3. Optimizing 3D Reconstructions

3.1 3D Reconstruction Challenge

In addition to an accurate tracking system, an accurate and complete reconstruction of

the environment is fundamental in AR. While it is true that virtual objects can only

be positioned precisely by an accurate tracking approach, such objects should be able

to interact with the real scene. For example, virtual objects in motion should not move

through real objects but should collide with them.

Generally, an accurate 3D model of the real environment offers many possibilities for

creating a believable and realistic AR application. Registration of the 3D model often

called phantom so that it precisely matches its real counterpart, and hiding the phantom

from the user, allows interactions between the real and virtual components to be realized.

Beside collision detection and handling via standard computer graphics algorithms, the

model can be used to realize occlusions in static scenes. The model can also be used to

determine the spatial relationships between virtual and real objects, so that virtual objects

can be occluded by real objects instead of constantly appearing in front of them, regardless

of the relationship. By considering both real and virtual objects in the virtual scene,

a realistic rendering with shadows, lightings and reflections can be realized [IKH+11].

For example, researchers [HDH03; KBS16] used a phantom to cast shadows from virtual

objects onto real objects and vice versa (Figure 3.1). Virtual objects appear more realistic

and give a better perception of depth; the immersion of the AR experience is improved.

In addition to offering several interaction opportunities, phantoms are useful for creating

special effects in AR applications, such as reality diminishing [CGB+09], rearranging

real world objects [KSW+11], x-ray visualizations [KSW+11], and re-texturing [BRF01;

MNZ+15]. For example, Cosco et al. [CGB+09] used a phantom model to determine the

region of the real scene (a haptic device) to be diminished.

Accurate tracking is a prerequisite for realizing types of interactions decribed above.

The phantom model must be well-registered with the real one. Moreover, ideally the

3.1. 3D Reconstruction Challenge 45

(a) (b) (c)

Figure 3.1: An example of using a phantom model for shadowing. (a) shows the
model of the virtual object (torus) and the phantom model of the real object (can), (b)
shows a shadow cast onto the real can and (c) shows a shadow cast from the can onto the
torus. Image source: [HDH03]

model should be complete and accurate. Phantom models can be modeled manually using

standard modeling software. However, reconstructing the scene before the AR application

starts, or while it is running, takes far less work.

Reconstruction of the environment is a fundamental task in several computer vision areas,

such as in path planning to navigate robotic devices on surfaces [BS12]. Hence, this

become an important field of research. Currently algorithms can reconstruct a mostly

dense and accurate surface model. Nevertheless, the results are often incomplete as parts

of the scene are non-visible because of phenomena such as occlusion by other objects

[SSG+14], self-occlusion, or other issues in the field of reconstruction such as specular

reflectance (as described in [WC07b]). Incomplete models of a scene, for example as

visualized in Figure 3.2, are unsuitable for detecting and handling collision in a plausible

manner. For instance, a rolling virtual sphere moves through the wall behind the chairs

instead of colliding with it (see Figure 3.2a).

Currently, it is common to perform an offline capturing step to create a suitable re-

construction to be used as a phantom. The Vuforia AR SDK [SDKb] or the Microsoft

HoloLens SDK [SDKa], for example, allow developers to create applications in which the

user can scan the target objects or the environment before the main applications starts.

During the capturing process gaps and holes can be filled if the user moves the sensor

46 Chapter 3. Optimizing 3D Reconstructions

(a) Coffee scene (b) Kitchen scene

Figure 3.2: Examples of incomplete 3D surface reconstructions. (a) and (b)
show two different incomplete reconstructions obtained by the well-known KinectFusion
algorithm (described in Section 3.2). The small holes are mainly caused by occlusions.

slightly so that the scene is recorded from different viewpoints. This method is time con-

suming and impractical, and a precise and complete model can be generated only if every

object in the scene is obtained from different viewpoints using this procedure. A user who

lacks expert knowledge will find it very complicated to fulfill this task. For example, due

to the upright posture of the user, the area below the table is often not captured; which

results in large holes and gaps in the surface.

That is why the reconstruction usually requires an optimization and a post-processing

step. Occluded and unobserved regions are filled and this enables an almost realistic

collision detection and handling in static environments. However, this technique cannot

deal with dynamic environments. If new objects are placed in the observed scene, they are

not part of the phantom model and virtual objects cannot collide with them. Moreover,

the interaction between the real and virtual worlds is limited to the captured region of

the user’s surroundings. The user and the virtual objects cannot move freely.

Instead of acquiring a suitable model in an offline procedure the goal should be to generate

the model during runtime of the AR application. Holes and gaps should be filled during

the reconstruction procedure. In this way no preceding capturing step is required. Fur-

3.2. Background to KinectFusion 47

thermore, the user can explore a dynamic environment without restriction. Reconstruct-

ing the environment during runtime of the AR applications leads to two other problems.

The reconstruction changes with every new observation which results in wobbling surfaces

and topology changes. Moreover, the reconstructions are noisy especially at the beginning

[DSM+17]. Noise can impair the collision handling because of noisy surface normals, and

rapid changes in geometry lead to problems during physical simulations. For example, if

a planar surface changes with each observation, a static sphere will roll continuously.

3.2 Background to KinectFusion

KinectFusion [NDI+11] realizes a dense surface mapping and tracking algorithm for com-

plex room-sized scenes, using a Kinect depth sensor. The pipeline reconstructs a single

dense surface model by integrating incoming depth data from multiple viewpoints into

the reconstruction, which is stored in a uniform voxel grid. The volume represents the

surface by a truncated signed distance function (TSDF). The 6 DOF sensor pose is simul-

taneously tracked using the depth data. Therefore, the incoming depth data are aligned

to the global model of the scene using a coarse-to-fine iterative closest point algorithm

(ICP). In this way, frame-to-model tracking is realized that is more suitable for AR than

mapping and tracking algorithms that perform frame-to-frame tracking. Frame-to-model

approaches eliminate drift whereas frame-to-frame tracking approaches are sensitive to

drift [NDI+11].

3.2.1 Truncated Signed Distance Function

The KinectFusion pipeline represents the surface by an implicit function, the truncated

signed distance function (TSDF). Generally, signed distance functions (SDF) define the

surface by the zero-crossing. The SDF values represent the distances to the nearest point

on the surface (the closest zero-crossing). The sign indicates the location of the point in

48 Chapter 3. Optimizing 3D Reconstructions

relation to the surface. As shown in Figure 3.3, negative values are inside the surface and

positive values are outside the surface.

Figure 3.3: Example of a TSDF volume. The figure visualizes the TSDF values F
of a slice (left) from a reconstruction volume (right). The slice shows the interpolated
distances to the surface from positive values (white) F > µ over negative values (black)
to unmeasured values F < −µ (gray). Image source: [NDI+11]

KinectFusion uses a discretization and clamped variant of the SDF. The environment is

represented by a uniform and fixed-sized 3D voxel grid allocated on the GPU. Each voxel

contains the clamped signed distance to the surface and a weight. Hence, for a global

point p ∈ R3 within the 3D volume Sk, the current truncated signed distance value Fk(p)

and the weight Wk(p) can be obtained by:

Sk(p) = [Fk(p),Wk(p)]. (3.1)

As shown in Figure 3.4, the distance is truncated at ±µ and scaled to [−1, 1]. In addition,

values increase for visible parts of the captured scene from the surface to free-space, with

Fk(x) = 1, and decrease for non-visible parts until Fk(x) = −1 is reached. The weight

indicates the confidence of an observed TSDF value and is used to integrate incoming

TSDF values by a weighted average. Voxels where the state is unknown are clearly

defined by zero {p ∈ R3|Wk(p) = 0} and should be filled to generate a watertight surface.

3.2. Background to KinectFusion 49

(a) (b) (c)

Figure 3.4: Schematic visualization of the function Sk in a 2D voxel grid rep-
resentation for three consecutive observations. Panels (a) to (b) show different
observations for consecutive frames k with k ∈ {0, 1, 2}. The upper voxel grids show the
status of the TSDF value (Fk) schematically for each frame k. The surface to be observed
is black and the distance is coded as color: a sign change is green; positive distances
increase from blue to green and negative distances decreases from green to red. The lower
voxel grids visualize the weights (Wk) for each frame k. The weights are normalized for
current maximum weight in the whole volume.

Generally, signed distance fields are attractive for surface reconstruction in AR applica-

tions enhanced with virtual content. Collision detection algorithms for rigid bodies or

deformable objects can be realized easily, as shown by Fisher and Lin [FL01] and Brid-

son et al. [BMF03]. Moreover, occlusions between the real and virtual objects can be

achieved by ray casting. There is no need to transform the volume to an explicit surface

representation. Section 3.12 demonstrates efficient collision detection as well as occlusion

with the TSDF representation.

3.2.2 Overview of the Pipeline

The KinectFusion pipeline is first initialized by placing the volume and its origin of the

coordinate system into the real scene. After initialization, the pipeline uses the depth

50 Chapter 3. Optimizing 3D Reconstructions

data obtained from the Kinect device and processes the following four steps (as described

in [NDI+11; IKH+11]):

A) Surface measurement applies a bilateral filter to the raw depth data to reduces

the noise while preserving depth discontinues and calculates a dense vertex and

normal map for a given frame k. The vertex map Vk is obtained through a back-

projection process for the filtered depth frame. The calculation of the corresponding

normal map Nk is based on the cross product of neighboring vertices.

B) Pose estimation performs a projective ICP to estimate the pose of the camera.

This step aligns the surface measurements (Vk, Nk) of the current frame k against the

surface prediction from the previous frame (V̂k−1, N̂k−1) to realize frame-to-model

tracking. Generally, the ICP algorithm aligns 3D shapes by minimizing the distance

between two point clouds. It iteratively adjusts the camera pose starting from an

initial guess to minimize an error metric (usually the sum of squared differences

between point correspondences). In the KinectFusion algorithm, the point corres-

pondences are obtained through projection, so that the error can easily be calculated

by a point-plane metric per pixel.

C) Volume integration performs a global scene fusion process. First, the surface

measurements (Vk, Nk) are transformed from camera coordinates to the global coor-

dinate system of the volume. Therefore, the camera pose determined by the previous

step is used. Second, new data are integrated into the 3D voxel grid representation.

D) Surface prediction performs a ray casting of the TSDF to provide a dense surface

prediction. The prediction consists of a vertex and normal map (V̂k, N̂k) for the

frame k. This prediction is used in the next frame k + 1 to estimate a frame-to-

model pose. This step performs a per-pixel ray cast: it traverses all voxels along the

ray (defined from the center of the sensor through the pixel) until a zero-crossing (a

sign change of the TSDF values) is found. The intersection point is finally obtained

3.2. Background to KinectFusion 51

by linear interpolation. The surface normal is estimated directly as the derivative

of the TSDF.

The data association and pose estimation work with a coarse to fine strategy using a three

level vertex and normal map pyramid. They start with the coarsest level and perform an

ICP minimization to estimate the pose of the sensor, based on the pose obtained in the

previous frame. Then this pose is used to perform an ICP minimization on the next level,

and so on.

Each component of the pipeline has a parallelized structure, so that the pipeline is fully

realized using the advantage of GPU hardware to achieve real-time capability. A detailed

description appears in [NDI+11; IKH+11].

3.2.3 Limitations and Improvements

The KinectFusion system was one of the first approaches that was capable of reconstruct-

ing high-quality 3D models in small indoor scenarios [DSM+17]. Several improvements

have focused on different aspects of the algorithm. Most of the extensions have aimed at

extending the size of the scene the system can reconstruct or on improving the accuracy

of the pose estimation.

The TSDF voxel representation enables accurate and precise reconstructions, but is very

memory-intensive [KDS+15]. Hence, high-precision reconstructions are realizable only for

scenes of limited size, such as single objects, small workspaces, or rooms.

KinectFusion’s pose estimation relies on depth information; therefore, the accuracy of the

estimation decreases if insufficient geometry features are available. Examples are when

the camera is pointed at a flat wall or corridor that lacks significant 3D features. The ICP

algorithm, moreover, assumes small motions from frame-to-frame and fails if the camera

moves fast or abruptly [WJK+13].

52 Chapter 3. Optimizing 3D Reconstructions

Roth and Vona [RV12] presented Moving Volume KinectFusion which automatically moves

the volume through space as the camera translates and rotates to provide both visual

odometry and a dense spatial map of the local environment. Their system no longer store

data of non-visible voxels. In contrast, Klingensmith et al. [KDS+15] concentrated on

reducing the amount of data to store. They presented an approach for mobile devices

that uses a dynamic, spatially-hashed TSDF for mapping and localization. Unnecessary

calculations and memory use are avoided by culling parts of the scene that do not contain

surfaces. Whelan et al. [WJK+13] integrated color information into the reconstruction and

combined various odometry estimation techniques, which uses both dense geometric and

photometric constraints to increase the tracking robustness across a various environments

(e.g. desk size or corridors).

In AR scenarios, tracking is fundamental to register virtual objects and the reconstruction

of large-scale environments offers new opportunities to move around attributively. How-

ever, quality is no less important. As mentioned before, reconstructions should ideally be

complete, without holes or gaps, and should be geometrically consistent between consecu-

tive frames. At present only a few approaches concentrate on optimizing reconstructions

of the real world during the capturing process. For example, one strategy entails fitting

planes to the TSDF to fill small holes or to reduce noise on flat surfaces. These methods

are discussed in detail in Section 3.3.2.

3.3 Related Work on Optimizing 3D Surface

Reconstructions

This section discusses relevant work in the field of plane segmentation and fitting. Planes

are very useful in urban environments for the optimization of 3D surface reconstructions.

Thereafter, current approaches for optimizing 3D surface reconstructions are presented.

3.3. Related Work on Optimizing 3D Surface Reconstructions 53

3.3.1 Plane Segmentation and Fitting

Plane extraction and fitting techniques are useful for several applications in urban envi-

ronments where surfaces are mainly planar. Planes can be used, among other things, to

simplify the geometry [WGS03], to reduce noise [DSM+17], to obtain semantic informa-

tion [HHR+12], or to perform a planar SLAM [LLL+12; TJR+13]. Holz et al. [HHR+12]

used detected plane segments to identify obstacles and segment graspable objects on the

floor in household environments or in table top scenarios. At present, most approaches

work on 3D point clouds that are obtained from laser scanners, RGB-D or stereo cameras.

These approaches can be divided into three categories [DG10; OSW+11], namely: region

growing methods, Hough transform-based methods, and methods that follow the random

sample consensus (RANSAC) procedure.

Region growing methods start with one or more seed regions and expand them iteratively.

Neighbors are merged to the seed region if they satisfy certain conditions [DG10]. Most

of these methods work on organized point clouds, such as those obtained from a depth

sensor, where the neighbors are easy to identify.

Poppinga et al. [PVB+08] used an organized point cloud as input and followed a point-

based procedure and grew planar regions by adding neighboring points. The algorithm

starts with random points to define a seed plane. A neighboring point extends the plane

if it is likely to be a part of the plane – that is, if the point-plane distance and mean

square error are below thresholds. The region grows until no more suitable points can

be found. The centroid and covariance matrix for estimating the plane parameters are

updated incrementally. Thus, the results are mostly accurate, but the method is somewhat

inefficient because complex computations, such as the calculation of the covariance matrix,

are performed very often.

Holz and Behnke [HB13] presented an approach for reconstruction of the surface as

mesh and segmentation of the range image by growing regions using the local mesh

54 Chapter 3. Optimizing 3D Reconstructions

neighborhoods. They processed four main steps: 1) approximating a mesh from an image

neighborhood; 2) approximating local surface normals and estimating curvature by using

this mesh neighborhood; 3) using bilateral filtering to smooth points and normals; and 4)

segmenting points to a given model, such as a plane, by region growing.

For plane segmentation, seed planes are defined by a centroid and a normal. A neighbor is

merged with the plane if the angle between its normal and the normal of the plane, as well

as the point-plane distance, both lie below a threshold. To avoid complex calculations

the algorithm updates only the centroid and normal instead of incrementally updating a

covariance matrix to derive a plane normal.

These methods use point clouds that are organized in an image-point structure to compute

the nearest neighbors. They cannot be directly applied to (unorganized) point clouds that

are obtained from multiple views. They are only able to consider the data that are visible

from the current view.

Deschaud and Goulette [DG10] used a voxel representation instead and presented an

algorithm to detect planes in unorganized and noisy point clouds, using filtered normals

and voxel growing. First, their system uses an octree to split the point cloud into voxels

and estimates normals. Then the system estimates a score of local planarity for each

point and its neighborhood. The point with the best score is then used as seed to start

the region growing by voxels. The algorithm detects large and small planes in massive

data sets and extracts connected components. However, the voxel growing method has a

complexity of O(N) and needs a processing time up to a minute or more (e.g. 452 seconds

for 398k points, ∼ 1 millisecond per point).

It can be concluded that voxel growing approaches are often not efficient enough to opti-

mize planar regions during the reconstruction process.

Hough transform [Hou62] is a fundamental algorithm to find multiple instances of objects

with specific shapes that are parametrizable. This is achieved through transformation to

3.3. Related Work on Optimizing 3D Surface Reconstructions 55

a parameter space and a voting procedure. Typically, the method is used to find regular

curves such as lines or circles in 2D images. Calculations with 3D data sets have not

received much attention to date [BEL+11] .

Boormann et al. [BEL+11] presented variants of the Hough transform to detect planes

in a 3D point cloud. In their system, each plane in R3 is defined by the hesse normal

form, a normal vector perpendicular to the plane and a distance to the origin. The 3D

Hough space (θ, φ, d) is defined by the normal in polar coordinates θ, φ and the distance

to the origin d. To find planes, each point of the point cloud is transformed into this

parameter space and votes for all planes on which the point may lie. Clusters with many

votes in the Hough space then represent the detected planes. The 3D Hough transform

approaches tend to be slow in practice and the results are imprecise, as these methods

require discrete data [WGS03].

Holz et al. [HHR+12] used two parameter spaces and an iterative procedure to realize a

fast plane segmentation in point clouds obtained via a RGB-D camera. First, the approach

estimates local surface normals and clusters the point cloud in the normal space to obtain

plane candidates. Second, it clusters each candidate group by its distance from the origin.

Discretization effects are compensated using a post-processing step, which merges similar

neighboring segments. However, unconnected planar segments might become merged into

the same cluster.

RANSAC, presented by Fischler and Bolles [FB81], is an iterative algorithm to find a

model for a dataset that may contains outlier. RANSAC-based plane fitting methods,

such as [DG10], usually fit planes to a model by 1) iteratively selecting three random

points to describe a plane mathematically; 2) calculating the inliers (e.g. all points with

a distance to the plane below a threshold); and 3) repeating these two steps until a good

plane is found or a certain number of iterations is reached.

Several approaches [TRC12; TJR+13] process the RANSAC procedure several times to

obtain multiple planes. The approaches first detect the globally significant plane in the

56 Chapter 3. Optimizing 3D Reconstructions

whole point cloud, remove all inliers from the point cloud, and perform these two steps

to find the next significant plane. These steps are repeated until a specific number of

planes is found, or until no more significant planes (with a certain number of inliers) can

be found.

In contrast to region growing approaches, approaches based on Hough and RANSAC

are processed globally. Plane segments are merged if they share a similar orientation and

distance from the origin. Hence, points of one plane segment are not necessarily connected

with each other [HB13].

To overcome this problem and to increase the speed several approaches apply the RANSAC

procedure only to local regions, instead of the entire point cloud. Afterwards, planes are

merged to obtain global planes.

The approach, presented by Weingarten et al. [WGS03], splits the set of points into

equally sized 3D cubes and fits a single plane to each cube using RANSAC. Plane segments

are afterwards merged through a region growing approach. For every cube, the neighbors

are merged if two constraints are satisfied: the best fitting planes of the cubes are similar

in their orientation and their centers of gravity lie close together.

Lee et al. [LLL+12] presented a rapid approach to extract planes in RGB-D sensor data

by processing a segmentation to obtain plane candidates first. The approach estimates

normals and edges from the incoming depth map and uses them to split the image into

segments of planar structures. Segments having a certain number of pixels are potential

candidates for planes. RANSAC is then applied to these candidates and segments having

sufficient inliers are refined.

The method, proposed by Hulik et al. [HBS+12], segments a depth map into planar

regions by splitting the image into tiles. The algorithm computes the normals and pro-

cesses RANSAC for each tile. If a plane is found, a seed-fill procedure is performed to

obtain planes with connected components.

3.3. Related Work on Optimizing 3D Surface Reconstructions 57

Other methods also exist that cannot be categorized into the three groups. For example,

Feng et al. [FTK14] divided an organized point cloud into uniform and non-overlapping

groups in image space. Their approach constructs a graph that represented the groups

and their neighborhood. Then an agglomerative hierarchical clustering on this graph

systematically merges graph nodes belonging to the same plane. This is repeated until

the mean squared error of plane fitting exceeds a threshold. Lastly, the algorithm uses a

pixel-wise region growing to refine the plane.

Generally, it can be concluded that fast algorithms mostly work on organized point clouds,

such as those obtained by an RGB-D device, and do not consider previously obtained

surface information. Approaches that work on point clouds obtained from multiple views

of the surface are much more accurate. However, they are often too slow to achieve

real-time performance.

3.3.2 Hole Filling, De-noising and Propagating Surfaces

Filling holes and gaps in a surface reconstruction is an important issue and many ap-

proaches have already been proposed. Many of these use an implicit representation.

One method is to fit functions to the distance field first and to extract the iso-surface from

these functions afterwards. Carr et al. [CBC+01] used radial basis functions to describe

a smooth and closed surface. Marschner et al. [DMG+02] presented another method that

extends the signed distance values from the boundaries of the observed parts to the whole

volume. This process is called diffusion and is done by alternating steps: blurring and

compositing. This method is explained in detail in Section 3.10.

Most of these approaches are performed as a post-processing step after the reconstruction

and thus are not designed to achieve real-time performance. Moreover, solving problems

like wobbling surfaces, hole filling, and noise reduction in real-time during the acquisition

phase has not yet received much attention [DSM+17].

58 Chapter 3. Optimizing 3D Reconstructions

Silberman et al. [SSG+14] focused on extending planar surfaces to fill occluded and non-

visible parts of the scene. Their system extends the KinectFusion pipeline by accessing

the TSDF volume and filling the unknown parts. The system first extracts planar surfaces

and classifies each with a label (e.g. floor, wall) or as a part of an internal object. The

system uses a Hough transform to select a finite set of planes. It then sorts the candidates

in descending order, depending on the votes received during Hough transform. After that,

the algorithm iteratively associates points to each plane that are likely to correspond to

it. Planes are then extended by solving a labeling problem. However, this pipeline is

currently implemented only in Matlab [Mat] and does not achieve real-time rates; up to

a minute of processing time is required.

Dzitsiuk et al. [DSM+17] de-noised, stabilized and filled holes of a SDF representation

during a reconstruction of a scene in real-time by fitting planes into the reconstruction.

Their approach splits the volume into equally sized regions and fits local planes to the SDF.

Then it merges these local plane candidates to find globally consistent planes. Dzitsiuk

et al. presented different approaches to perform both steps, namely local plane fitting and

merging.

To estimate local planes, the researchers presented a RANSAC and a least squares ap-

proach. To perform a traditional 3-point RANSAC procedure (see Section 3.3.1), the sys-

tem generates 3D points by creating a mesh for each local region of the volume. Hence,

each local region represents the dominant plane. The least squares approach does not

extract an explicit representation. It fits planes directly to the local SDF volumes by

minimizing the difference between the distance from the plane to the voxel center and

the SDF. Because a local region of the volume can contain more than one plane, and to

provide robustness against outliers, a weighted least squares method is used.

Larger planes, such as walls, are reconstructed by merging them at a global level and

propagating them back to small volumes. This is done by a 1-point RANSAC algorithm

or a greedy region growing. The RANSAC method selects a plane candidate randomly,

3.4. Propagating Surfaces, Hole Filling and De-noising during the 3D Reconstruction59

identifies inlier planes and refines the plane having the largest set of inliers. Region grow-

ing, in contrast, selects one candidate, performs a breadth-first traversal of its neighbors,

and merges similar planes. The main drawback of the region growing method is to find a

good candidate to start with.

Dzitsiuket al. [DSM+17] implemented these different methods on the central processing

unit (CPU) of a mobile device. The researchers concluded that the least squares fit-

ting to find plane candidates, followed by a plane merging by RANSAC, was the fastest

combination. Using this combination, they were able to obtain interactive frame rates.

To reduce noise, the SDF values are adapted to the global planes. To stabilize the esti-

mated planes which continued to change with each new observation the system updates

only those planes that differs by more than a degree. The hole filling is processed by

extending planes to unfilled voxels. Therefore, the refined planes are propagated to inter-

sected volumes in a specific range.

3.4 Propagating Surfaces, Hole Filling and De-noising

during the 3D Reconstruction

To date, few approaches have concentrated on optimizing ongoing surface reconstructions

(described in Section 3.3.2). Existing approaches have followed the same procedure: they

fit global planes to the reconstruction and use them to de-noise and fill holes in planar

regions. This method clearly works relatively well in man-made environments in which

many flat structures occur be found (e.g. table tops, walls or floors). But, taking a closer

look at objects in man-made environments, it can be noted that also a lot of non-flat

structures can be found (e.g. cups, bottles, sinks or balls).

One of the main contributions of this thesis is an algorithm that can reduce noise, fill

holes, and extend unknown parts of an ongoing reconstruction according to the geometric

60 Chapter 3. Optimizing 3D Reconstructions

structure of the scene. In contrast to state-of-the-art methods, the proposed method

generates watertight and visually appealing geometric reconstructions on several types

of surfaces. The algorithm is integrated in the widely used KinectFusion reconstruction

pipeline [NDI+11]. The KinectFusion system uses a voxel grid representation of the scene

and reconstructs a dense surface model by integrating the depth data from the sensor, as

described in Section 3.2. The extension de-noises the partial dense reconstruction of the

observed surface and extends it to fill unknown voxels so that holes and gaps where depth

data is not captured are filled in. As the camera moves, new incoming structure data are

continuously integrated so that hypothetical filled in voxels are refined. Therefore, the

algorithm continuously propagates the actual observed TSDF values towards unknown

parts of the volume. First, it estimates local planes within subregions of the volume and

uses them to extend and to de-noise the current observed planar structures of the scene.

Note: local planes are signified local plane priors in further descriptions of the algorithm,

similar as in [DSM+17]. If this process is finished, a diffusion algorithm continuously

fills in small holes and extends curved structures of the scene to generate a watertight

and complete reconstruction. In contrast to current methods that estimate global planes,

the presented approach uses local planes, fits TSDF values to locally merged planes and

provides smooth transitions between subregions. Thus, it does not require a step to merge

planes globally. Furthermore, existing methods are implemented on the CPU whereas the

presented approach is completely integrated into the KinectFusion pipeline and uses the

capabilities of the GPU hardware. Thus, there is no need to transfer the reconstruction

data to the CPU.

3.5 Method Overview

The pipeline takes the depth data from a sensor and applies the following six main stages

to de-noise the current reconstruction and continuously fill unknown parts of the volume.

The stages are shown and labeled in Figure 3.5.

3.5. Method Overview 61

(A) Tracking

(B) Volume Integration

(D) Planar Surface Propagation
from Local Plane Priors

Sensor data and 
camera pose

Updated volume
with new observed
data (gray)

Extend planar
structures
(green)

(F) Non-Planar Surface Propagation  
and Hole Filling by Diffusion

Yes

(E) De-noising and Refinement
 through Plane Priors

De-noised known
values (red), refined
hypothetical values
(green)

Planar
surface

propagation
finished?

(C) Local Plane Prior Estimation

No

Local plane priors
(red and blue)

Figure 3.5: Overview of propagation, hole filling and de-noising pipeline. Visu-
alization of main stages of the algorithm to propagate, fill and de-noise a reconstruction.
The algorithm uses the depth data of the scene from a sensor and estimates the camera
pose, integrates new incoming depth data, and optimizes the ongoing surface reconstruc-
tion. A short description of each stage appears in Section 3.5.

62 Chapter 3. Optimizing 3D Reconstructions

A) Tracking uses the depth data obtained by the sensor to perform projective ICP

tracking to estimate the camera pose (described in Section 3.2.2).

B) Volume integration integrates new incoming depth data to the current recon-

struction. New observed data are fused to the current surface data. Hypothetical

surface data (which are created in Step D and Step F) are adapted accordingly.

C) Local plane prior estimation splits the volume into equally sized subregions,

called to hereafter subvolumes. The step estimates the dominant local plane of the

actual observed surface for each region.

D) Planar surface propagation from local plane priors continuously extends

planar structures (like walls or floors) towards unknown regions. As a first step,

it propagates local planes to empty subvolumes by examining the neighboring sub-

volumes and determining whether an empty subvolume is affected by a local plane.

Thereafter, for each unknown voxel the superordinate subvolume is checked to see

if it contains a local plane. If so, the voxel is filled using the distance from the voxel

center to the local plane.

By applying this process multiple times iteratively, local planes are quickly extended

and known planar structures of the scene grow towards unknown regions.

E) De-noising and refinement through local plane priors reduces noise of known

flat structures of the scene by adapting the TSDF values to local planes, on the

one hand, and refines propagated TSDF values (created in the Step D), on the

other hand. It estimates a partially consistent plane in the neighborhood of the

considered voxel and optimizes its TSDF value. Partially consistent planes prevent

discretization artifacts like unwanted steps between adjacent subvolumes.

If the propagation of planar structures is finished, only observed values are de-

noised. This is necessary because new data are continuously integrated and must

also updated.

3.6. TSDF Volume 63

F) Non-planar surface propagation and hole filling by diffusion starts when

the propagation of planar structures is finished and extends the actual TSDF values

(observed and hypothetical) to fill small holes. This stage is especially necessary for

non-planar surfaces. It alternates two steps, blurring and compositing, to diffuse

the known TSDF values. If this step is repeated many times, similar to Step D, the

known non-planar structures of the scene grow towards unknown regions.

The local plane estimation (Step C) is not processed for each frame. The reason is

threefold: 1) it reduces the effect of wobbling surfaces; 2) it keeps the real-time capability

of this approach; and 3) surface data do not change significantly within several frames,

so it is unnecessary to estimate new local planes for each frame. Instead, it is sufficient

to perform this step only for keyframes.

To keep the algorithm real-time capable, only one iteration of steps D and F which

continuously extend the observed reconstruction is processed per frame. The volume is

not filled immediately, but the algorithm converges relatively fast. It usually finishes

after a few iterations. As discussed in Section 3.13.2, a common scene from an man-

made environment is filled rapidly after the user starts the reconstruction procedure. For

example, the volume of the kitchen front is filled completely within 70 frames, which

corresponds to 2.5 seconds with a frame rate of 30 frames per second (fps).

The notation used to describe the reconstruction volume is explained in Section 3.6, and

Sections 3.7 to 3.10 describe steps C to F in detail. Lastly, Section 3.11 describes the

volume integration (Step B).

3.6 TSDF Volume

The reconstruction volume that will be extended and optimized is defined analogously,

as illustrated in Section 3.2.1. For a voxel v within volume Sk which keeps observed data

64 Chapter 3. Optimizing 3D Reconstructions

from 0..k, the TSDF value Tk(v) and the weight Wk(v) can be obtained by:

Sk(v) = [Tk(v),Wk(v)]. (3.2)

Unobserved TSDF values of all voxel v within the volume are identifiable by Wk(v) = 0.

These values should be filled by the propagation and hole filling procedures and adapted

by the volume integration, if new surface data become available.

3.7 Local Plane Prior Estimation

To estimate local plane priors the algorithm splits the volume in subvolumes and finds

the most significant plane inside the local region of each subvolume by following a 1-point

RANSAC procedure. To do so, a sampling step creates a set of sample points on the

surface of the current reconstruction. Each sample is defined by its 3D point and its

normal. Afterwards, the algorithm iteratively selects a random sample to define a plane

candidate and calculates its inliers. This step is repeated to find the candidate with the

largest number of inliers and stops if a certain number of iterations is reached.

In contrast to previous work by Dzitsiuk et al. [DSM+17], the time-consuming steps to

create a mesh (to process a 3-point RANSAC) and to estimate the normals by calculating

the covariance matrix are not required. Instead, the presented algorithm is inspired by

the 1-point RANSAC plane merging strategy of Dzitsiuk et al..

The first step of the algorithm splits the volume into equal subvolumes. A size of 0.2 m3

for each subvolume is a good choice, in terms of quality and runtime performance. For

example, when using a volume with 2563 voxels which is a commonly used configuration to

reconstruct a 3 m3 environment, it is then grouped into 173 subvolumes. To perform the

1-point RANSAC for a given subvolume the first step generates a set of plane candidates.

The algorithm identifies all voxels of the subvolume that lie at a zero-crossing and calcu-

3.7. Local Plane Prior Estimation 65

lates their surface normal and corresponding point on the surface. For each voxel center vi

in V = {v0, . . . , vm} ⊂ R3 at a zero-crossing the normalized normal vector ~ni is estimated

by |∇Tk(vi)|. The point on the surface x is calculated by x = vi − Tk(vi)~ni. These points

are then used to build a set of possible plane candidates P = {p0, . . . , pm|pi = (~ni, xi)}.

The algorithm then iteratively selects a random plane candidate pk (with 0 ≤ k ≤ m) and

calculates the number of inliers. Inliers are all other plane candidates of the subvolume

I = {pi ∈ P |k 6= i} that fulfill the following two conditions, similar to those described in

[DSM+17]):

1) the point-to-plane distance between a hypothetical inlier pi and the plane candidate

pk is below a certain threshold ε

|nk ◦ (xi − xk)| < ε, (3.3)

2) the normals of both are approximately similar; for example the angle between the

hypothetical inlier pi and the plane candidate pk is below a certain threshold δ

|nk ◦ ni| < cos(δ). (3.4)

In most cases, ε = 0.01 m and δ ≈ 25◦ work well. After a certain number of iterations

have been performed, the plane candidate with the highest number of inliers is accepted

as the most significant plane. This, however, only applies if |I|
m

is above a threshold (where

0.5 is a good choice of threshold). Approximately 100 iterations are absolutely sufficient

to obtain good results. Finally, the local plane is estimated by the average of all inliers.

66 Chapter 3. Optimizing 3D Reconstructions

3.8 Planar Surface Propagation from Local

Plane Priors

Before planar surfaces can be propagated throughout the whole volume it is necessary to

propagate local plane priors towards empty subvolumes. To do so, the algorithm follows

a region growing procedure and processes two steps for each iteration: 1) it grows local

planes to adjacent and intersected subvolumes; and 2) it fills unknown voxels with their

distance to the superordinated local plane. If these two steps are iterated on planar

structures will quickly grow towards unknown regions.

To grow local plane priors, every iteration of the algorithm examines the neighboring sub-

volumes of each empty subvolume. Hence, an empty subvolume is filled by the average of

all planes of the neighboring subvolumes that intersect the empty subvolume significantly.

To determine if a local plane p of a subvolume affects an adjacent and empty subvolume

the normal ~np, the center xp of the plane and the center of the empty subvolume xs in

global coordinates are considered:

| ~np ◦
(xp − xs)
‖(xp − xs)‖

| < λ, (3.5)

where λ is a certain threshold. If the dot product is approximately zero the plane intersects

the subvolume clearly. Thus, λ regularizes whether a plane is considered or not depending

on the size of the intersection (λ = 0.5 works well in many scenarios). Figure 3.6 shows

two examples of how local plane priors are propagated. The number of required iterations

depends on the size of the subvolumes and the number of subvolumes that are already

filled with data obtained by the sensor.

The propagation of local plane priors ceases if dominant planes intersect – for example in

the corner of a room where walls intersect. It is likely that the local planes intersect and

from a corner if their normal vectors are differ significantly from each other. Accordingly,

3.8. Planar Surface Propagation from Local Plane Priors 67

(a) (b)

Figure 3.6: Two examples of local plane propagation. (a) Shows a plane p (blue)
which should be propagated to the whole volume (black dots). The plane is defined by its
center xp (orange) and normal ~np (gray). Considering the adjacent subvolumes the plane
p will be propagated only to the subvolume marked with a blue cross (where xs is the
center of this subvolume and ~v the normalized vector between xp and xs). Subvolumes
which are not affected by the plane are marked with red and gray crosses at the center.
(b) Shows to which subvolumes the green plane will be propagated accordingly.

the variance of the unsigned dot product between the planes is calculated and the propa-

gation procedure stops if it is below a threshold (0.9 provides good results). The variance

σ2 is calculated by:

σ2 = 1
m

m∑
i=0

(ni ◦ µ)2, (3.6)

where m is the number of considered planes, n is the normal vector of a plane, and µ is the

mean of all normal vectors. The second step of every iteration checks for each unknown

voxel of the volume if there exists a local plane in the superordinate subvolume. If there

exists such a plane, the distance between the voxel center and the plane is calculated (as

in Equation 3.3) and saved in the current voxel.

After the propagation process is stopped, the surface still contains holes and gaps in

regions where no significant planar structure could be found. These small holes are closed

by the diffusion algorithm (see Section 3.10).

68 Chapter 3. Optimizing 3D Reconstructions

3.9 De-noising and Refinement through Local

Plane Priors

To obtain a smooth and appealing surface reconstruction of flat structures observed TSDF

values are de-noised and hypothetical TSDF values are refined. To eliminate unwanted

step artifacts that occur because of the partitioning into subvolumes, TSDF values are

refined by adapting them to partially consistent planes. On the one hand this guarantees

smooth transitions between planes of adjacent subvolumes; on the other hand it prevents

small holes (which occur if nearby planes cover only a small region of the subvolume and

are not designated as dominant).

To de-noise or refine a TSDF value of a voxel with center v ∈ R3, the normal ~nv ∈ R3

is calculated by |∇Tk(v)| in the first step. After that, the plane of the superordinate

subvolume s and all planes in its 3 × 3 × 3 neighborhood are potentially candidates to

build a partially consistent plane. Only planes to which the voxel v potentially corresponds

to should be considered. Accordingly, all plane candidates that are too far away from the

voxel or do not have a similar normal are removed. A plane is considered as a candidate

if the point-to-plane distance and angular difference using the Equations 3.3 and 3.4 are

small. The remaining planes are then merged to a single plane by calculating the weighted

average. An example is illustrated in Figure 3.7. The weight wi of a subvolume plane pi

depends on the distance of the subvolume si to the current voxel v and is calculated by :

wi = (1− ‖v
s − cs

i‖
dmax

)
3

, (3.7)

where vs ∈ R3 describes the voxel center and cs
i ∈ R3 the center of the subvolume si.

Both values are given in the coordinate system of the superordinate subvolume s. The

term dmax ∈ R describes the maximal distances between the vs, cs within the considered

neighborhood.

3.10. Non-Planar Surface Propagation and Hole Filling via Diffusion 69

(a) (b) (c)

Figure 3.7: Estimation of partially consistent plane by merging local planes.
The volume with its voxels (gray) is split into subvolumes (black). (a) Shows the surface
of the real environment (black dots), the current viewed voxel v (yellow), and its normal
~nv (black). The superordinate subvolume s is outlined in blue and the considered neigh-
borhood is outlined in purple. Panel (a) also shows the local planes for all subvolumes
(red and green) and the plane candidates that are finally merged to a single plane (green).
(b) Shows the weights of each local plane (blue points) that are used to build the weighted
average. (c) Shows the merged plane (green) and the new calculated TSDF value tsdfnew.

The next step calculates the new TSDF value tsdfnew. This is the distance from the voxel

center v to the merged plane. After a normalization and clamping procedure, the TSDF

value replaces the current one if tsdfnew does not deviate significantly from the previous

value. This is true if the difference between the values is below a certain threshold (2 cm

provided good results).

3.10 Non-Planar Surface Propagation and

Hole Filling by Diffusion

Similar to the planar surface propagation, the surface diffusion algorithm continuously

extends the actual known TSDF values to unknown parts of the volume. The method

is used to fill small holes and to extend curved structures of the scene. Each diffusion

iteration consists of two steps: blurring and compositing (similar as in Marschner et al.

[DMG+02]). The idea is to blur the whole volume and to write back only blurred values

70 Chapter 3. Optimizing 3D Reconstructions

where the TSDF is unknown. If this step is processed repeatedly, the TSDF values diffuse

to the whole volume. If the whole volume is blurred and unobserved parts of the volume

are replaced naively, unsightly stair-step artifacts of two consecutive diffusion steps arise.

The compositing step ensures smooth transitions by interpolating between consecutive

iteration steps.

To alternate between blurring and compositing the algorithm uses a second volume, diffu-

sion volume Dk, in addition to the reconstruction volume Sk. The reconstruction volume

is used to realize the reconstruction and interactions (e.g. occlusion or collision handling).

In contrast, the diffusion volume is used to diffuse observed and hypothetical values to-

wards to unknown regions. Values that are observed by the sensor should not be modified

by the diffusion algorithm.

The reconstruction volume Sk is defined as described in Section 3.6 and the diffusion

volume Dk is adequately defined by Dk(v) = [T d
k (v),W d

k (v)]. Whereas the weight of the

reconstruction volume describes the confidence of an observed value, the weight of the

diffusion volume is used to realize the compositing between two iteration steps.

The pseudocode Algorithm 1 illustrates the main steps of the algorithm for a single

iteration. To process the blurring step the known TSDF values are convolved with a

kernel h (line 6). The kernel h is defined by the weights of the diffusion volume Dk

Algorithm 1 Diffusion algorithm for a single iteration at frame k.
1: for Each voxel v in the diffusion volume Dk do
2: wk ← Wk(v) current confidence in volume Sk

3: if wk == 0 then . TSDF value is unobserved
4: wk

max ← actual maximum weight of the source volume Sk

5: h← prepare kernel h with weights and normalize it
6: T d

k (v)← h ∗ Tk(v) . convolve values from the last iteration with kernel h
7: T d

k (v)← W d
k (v)Tk(v) + (1−W d

k (v))T d
k (v) . interpolate between two iterations

8: W d
k (v)← min(W d

k (v) + 1, wk
max) . update the weights

9: end if
10: end for
11: copy all TSDF values with W d

k > 0 from volume Dk to the source volume Sk

3.11. Volume Integration 71

in the n3 neighborhood (line 5). Hence, TSDF values having a large weight that are

observed more often have a potentially higher accuracy and exert more influence during

the first convolution. Values that are unknown are ignored automatically. The weights of

the TSDF values, which were estimated by the previous propagation procedure of planar

structures, are initialized with 1. This generates smooth transitions between planar and

curved structures.

The compositing step processes a linear interpolation between the previous TSDF values

to smooth between two blurring steps (line 7), and it updates the weight (line 8). Increas-

ing the weight for each iteration ensures that the linear interpolation (line 7) is reduced to

Tk(v) so the blurring process stops after a certain number of iterations. As an additional

benefit the interpolation of values near to an accurate observed surface stops earlier. The

filter size n is not critical because of the repeated blurring step [DMG+02]. In terms of

blurring and performance results, n = 3 offers a good compromise.

3.11 Volume Integration

New incoming depth data are continuously integrated into the volume as the sensor is

moved around. New observed data are fused to the previous observed TSDF values and

estimated TSDF values are adapted. Thus, the complete propagation process does not

have to start anew. The pseudocode Algorithm 2 illustrates the volume integration.

First, the new TSDF value of a voxel is calculated (lines 2-4). To calculate the incoming

TSDF observed by the sensor (line 2), each voxel center of the volume is are converted into

a global position using the resolution of the volume and its dimension in the real world.

To obtain their distances to the camera center, these global voxel points are transformed

into camera coordinates. After their correspondences are calculated by a back projection

in image space and looking up measured depth values, the TSDF can be calculated. The

TSDF for a voxel is calculated by the difference between the measured and calculated

72 Chapter 3. Optimizing 3D Reconstructions

Algorithm 2 Integration step at frame k.
1: for Each voxel v in the volume Sk do
2: tsdfk+1 ← incoming tsdf value
3: wk+1 ← min(Wk(v) + 1, wmax)
4: tsdfk+1 ← Tk(v)Wk(v)+tsdfk+1wk+1

Wk(v)+wk+1
. weighted average

5: if W d
k (v) > 0 and Wk(v) == 0 then . diffused tsdf value

6: if tsdfk+1 < 0 and tsdfk+1 < Tk(v) then
7: tsdfk+1 ← Tk(v) . take diffused tsdf value
8: wk+1 ← Wk(v)
9: end if

10: end if
11: Tk(v)← tsdfk+1
12: Wk(v)← wk+1
13: end for

distance to the camera. The TSDF is then truncated and ranged to [−1, 1]. A detailed

description about TSDF calculation for a given depth map appears in [NDI+11] and

[IKH+11]. Then the weight is increased (line 3) and the TSDF values are fused (line 4)

by taking the weighted average of the newly calculated and the previously stored value,

in which Sk is the TSDF integrated up to frame k.

Second, new incoming TSDF values are merged with the diffused values (lines 5-10). If the

new TSDF value (tsdfk+1) lies in front of the surface (tsdfk+1 > 0), the diffused values are

replaced. Alternatively, if the new TSDF lies behind the surface, a minimum operation

is used to form the union. In this way, surfaces without self-intersections are created.

Lastly, new values are stored at the current voxel v (lines 11 and 12).

3.12 Collisions and Occlusions with the TSDF

As mentioned before, collision and occlusion handling between the real and the virtual

world is a well-known task and is essential to create believable AR applications. This

section shows how a TSDF representation can be used to detect and handle both collisions

and occlusions. Generally, there is no need to create an explicit representation, since both

techniques work directly on the implicit surface data. Permanent and time-consuming re-

3.12. Collisions and Occlusions with the TSDF 73

meshing of the TSDF (e.g. via Marching Cubes [LC87]) if new data are integrated into

the reconstruction can be avoided.

3.12.1 Collision Detection and Response

Typically, virtual objects in an AR scene are represented by polygonal meshes, whose faces

consist of triangles or squares. Hence, a simple algorithm that handles collisions between

polygonal surfaces of rigid bodies and the TSDF reconstruction is used. It focuses on

an efficient GPU implementation by avoiding unnecessary data transfer between main

and GPU memory, as the volume resides on the graphics card by design. The algorithm

performs well enough to allow the collision of real and virtual objects, even while the

surface reconstruction and optimization are in progress.

Collision handling can be divided into two main stages: collision detection and collision

response. To detect collisions between virtual objects and the real world, the reconstruc-

tion is always aligned with its real counterpart, and predictions are made about where

the virtual objects will move to. All virtual objects are temporarily moved to their new

positions and the algorithm checks whether they collide with objects in the scene. Each

virtual object is represented by a set of sample points on the surface (the vertices of

the polygonal mesh). By simply testing all sample points against the TSDF, a collision

between the object and the real world can be detected (a similar approach was used in

[GBF03]).

Let t0 be a time step in which no interpenetration between a virtual object and real world

occurs. By considering the time interval [t0, t0 +4t] between two consecutive updates,

the position and orientation of the moving virtual object is updated to time t0 +4t. A

collision occurs during this time interval if one or more sample points s of an object are

74 Chapter 3. Optimizing 3D Reconstructions

inside the surface of the real world (as shown in Figure 3.8):

cd(s) =


1, if T d

k (s) < 0 and W d
k (s) > 0

0, otherwise,
(3.8)

where T d
k represents the distance function and W d

k the weight function (which indicates if

a point is already known) of the optimized reconstruction. Depending on the time of the

interval [t0, t0 +4t], one or more sample points might already be inside the real world

surface.

For the collision response, the collision point of the virtual object – the first sample point

at which the virtual object contacts the real world – must be found. This point sd can be

approximated by the deepest point of interpenetration (which corresponds to the lowest

negative TSDF value). The contact point p on the real world surface is then approximated

by tracing a ray ~r in the inverse movement direction ~m. The surface normal ~n is defined

by evaluating the gradient ∇T d
k (p) at the contact point p on the surface. Based on the

contact point and the normal a collision response can be performed by following standard

procedure (as described in [MW88]).

(a) (b)

Figure 3.8: An example collision detection. (a) Shows the surface of the real
world represented by the TSDF (black) and a virtual object represented by its vertices
s0, s1, s2, s3, s4 (blue) at time step t0. The virtual object moves in direction ~m. (b) Shows
a collision at time step t0 +4t where sd is the deepest point of interpenetration, ~r is the
ray used to find the contact point p, and ~n is the corresponding normal.

3.13. Experimental Results 75

The quality of collision handling depends on the number of sample points used to approx-

imate the surface. Using the vertices works well for sharp objects (e.g. cubes) but it can

be critical for curved objects (e.g. spheres) that have low resolutions. It might be worth-

while to use a dense point sampling (as in [Erl04]) instead of simply using the vertices.

To simulate collisions between deformable virtual objects (e.g. clothes) and the TSDF

reconstruction, particle based approaches, such as [FSG03; TKH+05], can be useful.

3.12.2 Occlusion Handling

To realize occlusions, two render passes must be used. The first pass performs a ray

casting of the reconstruction volume from the camera’s point of view in which the depth

data of all surfaces are saved to a separate frame buffer. When rendering virtual objects

in a second render pass, it can be decided whether the stored depth values are in front of

the rendered objects. If that is the case the alpha value of the corresponding fragment is

set to zero, which results in an occlusion. More details about occlusion handling and its

challenges, using a reconstruction of the environment, are given in Chapter 4.

3.13 Experimental Results

This section shows the applicability of the algorithm and the effectiveness of local planes

priors on different indoor scenes which retain both planar and curved structures. First, the

diffusion algorithm was evaluated. Second, changes in the results due to considering local

plane priors were noted. Finally, the runtime performance of the algorithms was measured

to show that the overall system performance was good enough to obtain real-time rates.

Unless stated otherwise, all scenes were reconstructed and extended with standard pa-

rameters, as described in detail in the corresponding sections, and recorded with a Kinect

(v1 or v2).

76 Chapter 3. Optimizing 3D Reconstructions

3.13.1 Surface Propagation without using Plane Priors

Figure 3.9 illustrates the progression of the diffusion over a period of iteration steps and

shows that the diffusion starts relatively fast, rapidly covering large parts of an unfilled

area. This area is refined as the diffusion progresses. Due to the progression being fast

during the first iterations, it is less important that the reconstruction is not completed in

one frame.

Figure 3.9: Surface propagation without plane priors. Starting with an observed
(gray) surface reconstruction, the approach fills holes and extends the surface (green).
The two rows show the same scene from different viewpoints. The iteration interval of
the diffusion algorithm was as follows: 1, 4, 16, 64, 256.

Figure 3.10 shows different scenes that contain several types of surfaces which are common

in man-made environments. The propagation algorithm filled small holes in a scene having

scattered and planar surfaces. The small holes behind the cups and kitchen equipment

(Figure 3.10a) and small holes on the office desk (Figure 3.10b) were filled in a plausible

way. In addition, the coffee table (Figure 3.10d) was approximated reasonably, as the

diffusion followed the edge of the table and left an empty space underneath. Figures

3.10c and 3.10d show that the algorithm was also able to diffuse known parts of the scene

towards unknown ones. For example, the front side of the kitchen was fulfilled through a

vertical progression (Figure 3.10c). However, the diffusion tended to curved surfaces even

if the distance increased.

3.13. Experimental Results 77

(a) Kitchen front with cupboard (b) Office scene

(c) Kitchen scene (d) Coffee scene

Figure 3.10: Propagation results without plane priors. The unsuccessful reconstruc-
tion data (gray) and the diffusion without using plane priors (green) on different scenes
with scattered and planar surfaces. Panels (a) and (b) show scenes with small holes
on scattered surfaces. Panels (c) and (d) show scenes with unsuccessfully reconstructed
planar surfaces.

Generally speaking, small holes were repaired effectively as the diffusion converged rela-

tively fast. In contrast, on parts of the scene, where the known surface should be extended

in a planar manner, the diffusion converged more slowly and tended to curved shapes.

3.13.2 Surface Propagation using Plane Priors

In man-made scenarios with large flat surfaces, propagation with plane priors produced

more reasonable results than a simple propagation procedure through diffusion. Figure

3.11 compares the results with and without plane priors on different types of surfaces.

78 Chapter 3. Optimizing 3D Reconstructions

The algorithm with plane priors was able to deal with small holes and large unknown

parts. It diffused planar surfaces towards unknown parts of the scene without curved

forms and filled holes without planar structures.

(a) (b) (c)

(d) (e) (f)

Figure 3.11: Comparison between results created with and without plane priors.
Panels (a) to (c) results without local plane priors, and (d) to (f) show the results with
local planes.

Plane priors ensured that the algorithm converged even more quickly and effectively.

Figure 3.12 illustrates the surface propagation using plane priors over several steps of

iteration. The extension of planes was notably rapid. Unfilled planar parts of the scene

were filled in after only a few iterations (e.g. 40 iterations). Then the diffusion without

plane priors (which started between frame 40 and 60) filled small holes and eliminated

small artifacts by smoothing regions in which no significant planes were found.

Figure 3.13 shows the effect of refinement and de-noising through partially consistent

planes. Notably, unpleasant steps between adjacent subvolumes were eliminated. Noise

from the observed reconstruction data in planar regions was successfully reduced. How-

ever, it can happen that filigree structures may be lost. For example, shown in Figure

3.13f, the structure of the drawer was no longer visible. This can be controlled by the

parameter δ, which decides based on the angular difference if a local plane should be

3.13. Experimental Results 79

Figure 3.12: Surface Propagation using Plane Priors for three scenes. Starting
from an observed (gray) surface reconstruction, the approach filled holes and extended the
surface (green) in a plausible way. The iteration interval of the algorithm was as follows:
10, 20, 40, 60, 80, 380.

(a) (b) (c)

(d) (e) (f)

Figure 3.13: Effect of refinement and de-noising through partially consistent
planes. Panels (a) to (c) show results of the propagation of planar structures without
refinement and de-noising. Panels (d) to (f) show the results with refinement and de-
noising, respectively. The diffusion step, which eliminates small artifacts and closes small
holes, were not performed on these examples.

80 Chapter 3. Optimizing 3D Reconstructions

considered during the merging step (as described in Section 3.9). A large δ leads to the

elimination of filigree structures, whereas a small δ leads to ignoring many local planes so

that only a small part of the scene is refined.

3.13.3 Implementation Details and Runtime Performance

The presented approach used the capabilities of the GPU hardware using CUDA [CUD]

technologies. In addition, all calculations were performed on the GPU to overcome limi-

tations in transferring reconstruction data between GPU and CPU memory. The runtime

performances were evaluated for different scenes. All benchmarks were performed on a

PC with a 4 GHz i7 processor and a Geforce GTX Titan X graphics card. An overview of

runtime performances at each stage of the algorithm, for the different test scene, appears

in Table 3.1. All measurements given in this section were obtained by the NVIDIA Visual

Profiler [Pro] and are shown as an average of 1000 invocations.

Pipeline stage Coffee scene Kitchen front Corner scene
Local Plane Estimation 113.093 126.230 202.151
Local Plane Propagation 0.810 0.124 0.759
Total (ms) 113.903 126.354 202.910
Surface Propagation Plane Priors 3.821 3.771 3.542
Refinement & De-noising 3.690 3.729 5.092
Total per frame (ms) 7.511 7.500 8.634
Surface Propagation Diffusion 6.759 6.682 6.560
De-noising 2.031 2.105 4.107
Total per frame (ms) 8.790 8.787 10.667

Table 3.1: Runtime performance measurements for different test scenes. All
these attributes define times in milliseconds (ms). Each scene was reconstructed using a
volume with 2563 voxels grouped into 173 subvolumes. The whole volume was thus 3m3

and each subvolume was 0, 2m3. The local plane estimation was performed using 100
RANSAC iterations. Local plane estimation and propagation was not performed for each
frame.

Local plane estimation. The estimation of local planes consumed most of the runtime of

the algorithm. Furthermore, the execution time increased with the size of a known scene.

Currently, the realization of this step does not focus on an efficient implementation and

3.13. Experimental Results 81

could be optimized using common GPU acceleration methods. As described in Section

3.5, the local plane estimation was only performed for keyframes; moreover, it could be

performed asynchronously. Optimization of this step nevertheless makes sense to reduce

the GPU utilization and memory capacity of the algorithm, as an asynchronous execution

would need a second volume. The execution time of the current implementation depended

strongly on the number of subvolumes, as Table 3.2 shows. The RANSAC procedure was

performed by evaluating each plane candidate (counting its number of inliers) in parallel.

Thus plane estimation was performed more rapidly for larger subvolumes, which had

more plane candidates, because more instructions were processed in parallel. However,

the algorithm tended to provide better results when small subvolumes were used.

Number of subvolumes (size) Coffee scene Kitchen front Corner scene
173 (0.2 m) 113.093 126.230 202.151
253 (0.3 m) 63.936 63.548 119.881
343 (0.4 m) 33.485 31.475 53.945
423 (0.5 m) 24.189 25.664 40.321

Table 3.2: Runtime performance measurements for the local plane estimation
at various subvolumes. All these attributes define times with milliseconds. Each scene
is given by a 3m3 volume with 2563 voxels.

Surface propagation and hole filling per frame. The runtime needed to propagate

planar surfaces was perfectly sufficient to fulfill real-time requirements. Moreover, it was

largely independent from the size of the known surface. The diffusion algorithm, which

extends curved structures and closes small holes, was also independent from the known

size of the surface and achieved real-time rates. However, it was computationally more

intensive and almost twice as times slower than the propagation of planar surfaces because

a convolution of the volume is needed. Thus it is focused on an efficient implementation

in this regard. In the last years much research has been done on how convolution al-

gorithms can be efficiently implemented on GPU. The performance of 2D convolutions

is significantly improved by utilizing parallelization and overlapping kernel windows via

shared memory [Pod07]. As a 3D convolution is required to process volume data, a 2D

convolution for every volume slice is performed, followed by an accumulation of the result

82 Chapter 3. Optimizing 3D Reconstructions

inside the kernel. This resulted in three slices that were accumulated per voxel for a 33

kernel. A similar approach is described in [ED14] for non-separable 3D convolutions.

Refinement and de-noising per frame. The refinement of propagated values and the

de-noising of observed values were processed per voxel in parallel. As shown in Table 3.1,

the processing time of this step varied only slightly according to the size of the scene,

which kept the complete pipeline real-time capable.

For the sake of completeness, the collision handling (described in Section 3.12.1) between

a mesh with 14837 vertices and an optimized volume took less than a millisecond to

compute.

3.14 Conclusion and Future Work

A strategy to optimize a surface reconstruction while the reconstruction is in progress

has been presented. The approach was able to de-noise observed surfaces and extended

them towards unknown parts of the scene so that unobserved parts were filled in and

holes were closed in a believable way. Generally, this marked an immense step forward

to realize more realistic AR applications in which virtual content interacts with the real

world. The user was not tasked with obtaining a complete reconstruction of his or her

surroundings before the main AR application started. Moreover, interactions between the

real and virtual worlds, such as collisions, were no longer limited to observed regions.

The contribution of this chapter is twofold. First, it details an approach to integrate

a suitable filling and de-noising algorithm into the KinectFusion reconstruction pipeline,

which can fill in unknown parts in a plausible way and de-noise known parts. The approach

handled different types of structures, such as curved or planar structures, and overcame

limitations of state-of-the-art approaches whose filling procedures are restricted to planar

structures. Therefore, the proposed approach fitted local planes to the reconstruction and

3.14. Conclusion and Future Work 83

propagated planar structures, and diffused the surfaces to extend curved structures and

to close small gaps. Hypothetical surfaces were smooth, without self-intersections, and

were updated if the sensor captured new surface data. Second, this chapter demonstrates

how to use the extended implicit surface reconstruction to realize collision and occlusion,

without a transfer to an explicit representation. All algorithms used the capabilities of

the GPU. By design they did not require high transfer rates and thus achieved real-time

performance.

A limitation of the implementation was that the whole volume was not filled at once, as

the processing time per propagation step (via plane priors or diffusion) was too lengthy.

However, for a rough approximation of the surface just a few iterations are required (see

Section 3.13.2), which enables real-time capability. Additionally, the processing speed of

the local plane estimation stage may be enhanced by adapting the implementation to the

use of small subvolumes that achieve the best overall appearance in different scenes.

Chapter 4

Occlusion Matting: Realistic

Occlusion Handling

This chapter deals with the occlusion problem in AR applications and presents a method

of handling occlusions realistically through alpha matting. This new approach is called

occlusion matting and was proposed for the first time in the context of this thesis.

The occlusion handling challenge is discussed in Section 4.1, followed by Section 4.2 which

gives an overview of related work. Section 4.3 explains the idea of occlusion matting and

re-formulates the occlusion problem as an alpha matting problem. Afterwards, Section 4.4

discusses relevant approaches in the field of alpha matting and focuses on the applicability

of those approaches to occlusion matting. An overview of the occlusion matting approach

is given in Section 4.5, and its realization is detailed in Sections 4.6 to 4.8. Section

4.9 illustrates the runtime performance and applicability of the algorithm across several

cases. The results are compared with those obtained by state-of-the-art methods. Lastly,

a summary and discussion of future work is given in Section 4.12. Most of the work

presented in this chapter was peer-reviewed and presented at a conference [HHM17].

85

86 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

4.1 Occlusion Handling Challenge

The rendering of virtual objects in AR must be as realistic as possible nowadays. In

addition to the illumination of virtual objects, occlusions between the real and virtual

worlds are important to achieve an outstanding AR experience.

By default, virtual objects always appear in the front of the user’s view; they overlay the

video image. However, virtual objects are sometimes softly, partially or totally occluded

by real objects. Hidden parts of the objects should not be rendered or blended together to

create realistic occlusions. Accordingly, techniques are needed to determine which parts

of virtual objects are visible, transparent or non-visible.

Occlusion errors are not only unsightly; they lead to incorrect depth perception because

the spatial relationship between the real and virtual worlds is unrecognizable. This results

in misunderstanding and confusion in users – for example if they try to grab virtual

objects. The effect of occlusion handling in AR is shown in Figure 4.1. Moreover, the

probability of eyestrain and motion sickness is increased [FHF+99].

(a) Without occlusion handling (b) With occlusion handling

Figure 4.1: Occlusion handling in AR. (a) Shows the virtual content is well registered
but occlusion by the real object is not handled. (b) Shows the same scene with occlusion
handling, which creates better depth perception as the relationship between real and
virtual scene is clear.

4.2. Related Work on Occlusion Handling 87

4.2 Related Work on Occlusion Handling

Approaches to occlusion handling in AR can be divided into three categories: 1) object-

based, 2) model-based and 3) depth-based. The following sections describe and discuss

in detail relevant methods in the each category.

4.2.1 Object-based Occlusion Handling

Object-based approaches usually estimate a 2D region representing the objects that lie in

front of the virtual object. By tracking or detection of this region, an occlusion mask can

be calculated and used to handle occlusions.

Berger [Ber97] used a contour-based approach to solve the occlusion problem. In their

system, each contour point is labeled with behind or in front of. The occlusion mask is

then generated by tracking the contour from frame-to-frame. This algorithm is easy to

implement and does not need a 3D model of the real scene. However, the user must specify

the spatial relationship between real and virtual objects, which cannot change during the

runtime of the application. Moreover, the approach suffers from missing contours. If a

contour cannot be detected it has a strong influence on the final occlusion mask. Even

one missing contour can lead to noticeable errors when using this algorithm.

Lepetit and Berger [LB00] extended the contour-based method to resolve occlusion

semi-automatically in an offline scenario. The user specifies the outline of occluding ob-

jects in key-views, thus, occlusions in intermediate views can be generated automatically.

Fischer et al. [FRB03] proposed an alternative method, based on the background sub-

traction principle, which can run in real-time. They assumed a static background, namely

a plane like a marker or a template image, with the virtual scene lying in front of it. The

idea is that an object that lies in front of the static background also lies in front of the

virtual scene. The algorithm detects a known background (e.g. a marker board) in the

88 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

current camera image and creates an occlusion mask by performing an image comparison.

This concept only works for AR scenarios in which the occluding objects are closer to the

camera than the rendered objects (such as hands or pointing devices). In addition, the

occluding objects must be in front of markers or templates. Occlusions are only handled

in front of the known background plane; occlusions with real objects that lie in front of

the virtual scene but do not cover the plane are not handled.

Feng et al. [FDG+06] presented an approach for realizing multilayer occlusions. They

focused on indoor scenarios in which occluded objects were several meters away from the

user. The approach splits the real indoor space into several parts, from the front to the

back, out of the users view. To realize occlusions, the virtual scene is divided into these

parts accordingly. If real objects are moving, occlusions can be handled depending on

their location in the room. In contrast to most object-based approaches, the approach

of Feng et al. can deal with large distances and multiple objects. However, the occlusion

results are very coarse and depended on the level of subdivision of the room.

Tian et al. [TGW10b] proposed an approach that can deal with similar background

colors and large viewpoint changes. As in other object-based approaches, the occlusion

handling is divided into three steps: selection, tracking, and masking. First, the user

selects the occluding object using an interactive segmentation method. Then the contour

of the object region is tracked through optical flow and the correct occlusion is obtained.

Lastly, the boundary between real and virtual objects is smoothed. This procedure does

not work if the user or the camera moves too fast and the tracking fails; in that case, the

user must re-initialize the occluding object first. To summarize, these methods do not

need a 3D model of the considered scene or special sensors to realize occlusions. However,

they must be initialized by the user or the background must be known.

Tian et al. [TGW10a] presented an approach that obtains the contour of the occluding

real object automatically, using a disparity map generated from a stereo image pair. The

precise contour is estimated by a mean-shift algorithm in an offline step. As in other

4.2. Related Work on Occlusion Handling 89

methods, the contour is then tracked online to handle occlusions. However, object-based

approaches depend on a fixed relationship between real and virtual objects, which is not

realistic in many AR cases.

4.2.2 Model-based Occlusion Handling

Model-based approaches require a 3D model of either the real scene or the occluding

object. Then occlusion handling can be performed by aligning the virtual and real objects

through tracking, followed by an off-screen rendering step.

This strategy was introduced by Breen et al. [BWR+96] to handle static occlusions.

The main idea is to define a representation of real objects in the user’s surroundings,

which is often called a phantom (see Section 3.1). After a registration step, the virtual

representations should be aligned precisely with their real counterparts. Phantoms are

then rendered only into the z-buffer and not to the screen. With this approach occlusions

are automatically handled by the rendering hardware. A pixel of the virtual object will

only be drawn if it is in front of the real scene, as indicated by a smaller depth value.

Fuhrmann et al. [FHF+99] extended this method to handle dynamic occlusion caused

by people moving in a collaborative environment. Human motion capturing enables the

registration of the phantom. The phantom represents the user and is modeled as kinematic

chains of articulated solids.

Model-based approaches suffer from (among others) registration errors, jitter, and incor-

rect projection parameters [KD04]. Even small errors, such as those caused by inaccurate

calibration or tracking, result in noticeable occlusion errors. In addition to accurate reg-

istration, an accurate and complete 3D model of the real environment is needed. The

phantom model must match exactly its counterpart in the real scene, otherwise the oc-

clusion does not look appealing. An example of an inaccurate registration is shown in

Figure 4.2.

90 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

(a) Accurate registration (b) Inaccurate registration

Figure 4.2: Example of model-based occlusion handling and the registration
problem. (a) Shows a scene with occlusion handling, with a precise phantom of the real
object (backpack) that is well registered. (b) Shows the phantom not well registered,
so occlusions do not look appealing. Small images (outlined in white) show the scene
without occlusion handling.

Klein and Drummond [KD04] proposed a method in which tracking is followed by oc-

clusion refinement. After a tracking step, the algorithm identifies and refines the bound-

aries where real objects occluded virtual objects. The approach calculates a 2D clipping

polygon that is in front of the virtual object. Each clipping edge of the polygon is then

refined using an edge-based tracking approach. This procedure can be summarized in

three steps: 1) sampling of the clipping edge; 2) perpendicular search for strong image

gradients in the camera image for each sample point; and 3) optimization to fit a clipping

edge to its counterpart in the camera image. The refined polygon is used to clip the

virtual object, and each clipping edge is thus blended into the camera image to generate

seamless occlusion boundaries.

DiVerdi and Höllerer [DH06] proposed a similar technique. Instead of refining each

edge of the clipping polygon as in Klein and Drummond’s method, they proposed an

image-based post-processing approach. Using the GPU the algorithm estimates a per-

pixel offset that is used to render clipped polygons of the virtual objects.

Both approaches reduce the visual registration errors. The results are convincing for

simple scenarios and jitter effects are mostly eliminated. But in more complex situations,

4.2. Related Work on Occlusion Handling 91

these approaches suffer from low contrast and incorrect correspondences. Occluding edges

cannot be found or are too close to other texture edges or shadows [KD04]. Using the

pixel-wise approach, DiVerdi and Höllerer were able to deal with coarsely approximated

geometries, where errors caused by inaccurate phantoms were reduced.

Zheng et al. [ZSW14] corrected registration errors, both in world space through camera

pose refinement and in local image space through pixel-wise refinement. Better registra-

tion in world space was obtained by refining the camera poses through selective weighting

of important regions of the image. The image space correction computed the optical flow

between the camera image and a rendering of the real model, using the refined pose in a

post-processing step, to deal with various non-rigid errors. However, visual differences be-

tween the rendered model image and the camera image can be problematic. This method

cannot deal with strong lighting changes, shadows, motion blur, or large occlusions.

In addition to registration and modeling errors, another drawback of model-based methods

is the need for a 3D model. Currently, the required model is obtained directly from existing

resources or is modeled using a modeling software or is obtained by a 3D scanning process.

Thus, any representation – whether mesh, implicit surface, or point cloud – can be used

to create a depth map.

Tian et al. [TLX+15] proposed a method based on a 3D reconstruction. The method

uses a low-cost depth sensor and consisted of two stages: 1) an offline stage in which a

3D point cloud is generated; and 2) an online stage in which occlusions are handled. The

occlusion results depend strongly on the quality of the reconstruction and the method

is not suitable for dynamic scenes where the real environment changes. Occlusions with

real objects that are placed into the scene or moved out of the scene cannot be handled.

In contrast, a real-time reconstruction procedure during the online stage to update the

model would be able to handle this.

Generally, current reconstruction algorithms [NLD11; WLS+15] are able to reconstruct

a semi-dense and accurate model in real-time. The boundaries, however, often remain

92 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

noisy. A detailed discussion about this challenge is presented in Section 3.1. Overall, it

can be concluded that the accuracy of the model or reconstruction and the tracking have

strongly influence the occlusion results. Consistent occlusions can be achieved only if a

complete and precise 3D model is available and accurate tracking without jitter is used. In

contrast to the object-based methods, these approaches estimate spatial relationships and

handle occlusions between real and virtual objects without user interactivity. However,

model-based methods are generally unable to deal with dynamic occlusions or deformable

objects. To deal with these aspects each dynamic object must be known and tracked.

4.2.3 Depth-based Occlusion Handling

Due to the spread and advancement of low-cost sensor technologies, such as depth sensors

or stereo cameras, current algorithms use incoming depth maps from sensors to handle

the occlusion problem [FHS07; DFK13]. As model-based approaches do, they compare

the depth values to decide which parts of the rendered scene are visible or non-visible.

These methods can realize occlusions for unknown real objects without any user input.

No prior knowledge of the shape, size or position of the objects is required.

Despite strong improvements of low-cost depth sensors, the following challenges remain:

1) several types of noise occur, especially at the boundaries between foreground and

background; 2) incomplete data may occur, for example because of shadow effects or

limited sensor ranges; and 3) inaccurate mapping occurs between color and depth data.

Thus, occlusion handling based on raw depth maps suffers from missing data, coarse edges,

and inconsistency between color and depth boundaries. The result is visual artifacts, as

shown in Figure 4.3. These artifacts are not only unsightly but also detract from an

immersive AR experience considerably [KSF10]. Hence, common depth-based methods

improve the incoming data by a pre-processing step. Because high-quality depth maps

are essential to many tasks in computer vision, many algorithms to improve and enhance

depth maps have been proposed already. Filtering approaches [TM98; KCL+07; HST13]

4.2. Related Work on Occlusion Handling 93

(a) (b) (c)

Figure 4.3: Occlusion handling with raw depth data. (a) Results of occlusion han-
dling using raw depth data, which yields visual artifacts. (b) Noisy depth data, especially
at the boundaries between foreground and background, result in unsightly zigzag patterns.
(c) Inaccurate mapping between color and depth data results in inconsistency between
edges, and false occlusions.

can reduce noise and fill holes but they are only partially suitable for solving the AR

occlusion problem. The reasons are twofold: firstly, the computational cost of these

algorithms is high; secondly, the boundaries often remain coarse and unaligned with the

boundaries of the color image [DCY+16]. Popular edge-aware filters, such as a guided filter

[HST13] or bilateral filters [TM98; KCL+07] which smooth images but preserve edges,

tend to generate interpolation artifacts around boundaries [DCY+16]. Such artifacts can

falsify the occlusion result.

Leal-Meléndrez et al. [LAG13] filled holes using an in-painting algorithm. The bound-

aries generated using this method are still imprecise and noisy, and noisy boundaries

result in zigzag patterns between the foreground and the virtual object.

Schmidt et al. [SNV02] presented a method to obtain a high-quality, dense disparity

map from stereo images, with a focus on sharp edges. However, these edges are not always

aligned with the edges of the color image. Misalignments between depth and color edges

lead to false occlusions. Background pixels at the boundaries are considered as foreground

– or vice versa.

Du et al. [DCY+16] also focused on improving depth maps with sharp edges that were

aligned to the edges in the color image. The algorithm snaps depth edges to color edges

94 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

to improve the consistency between the two. This procedure is very time-consuming for

higher resolutions but produces good results if the occluding object can be separated from

the background precisely. This method suffers from background clutter and weak gradi-

ents between foreground and background. Moreover, it cannot handle smooth occlusions

that arise through motion blur or fuzzy objects (as shown in Section 4.9).

4.3 Occlusion Matting

This section motivates the handling of the occlusion problem as an alpha matting problem,

to overcome the limitations in state-of-art methods.

4.3.1 Idea and Motivation

As shown in the previous section (Section 4.2), several solutions to handling occlusions

in AR exist. Depth-based methods are becoming more popular and their accuracy has

increased. In comparison with other methods, their distinctive advantage is that they

can deal with occlusions of unknown and dynamic objects without any user input. The

results of these methods often remain inaccurate or are accurate only in regions in which

the foreground and background are clearly separable. However, sometimes pixels or re-

gions close to the boundary of an object are not strictly foreground or background –

for example, they might be caused by fuzzy objects such as hair, or motion blur. Ac-

cordingly, occlusion handling should involve determining both the full and partial pixel

transparency of virtual objects. Whereas state-of-the-art methods try to identify which

pixel of the rendered virtual object is visible or non-visible, the goal should be to deter-

mine a blending coefficient for each pixel. These blending coefficients are called the alpha

matte. The approach presented in this thesis formulates the occlusion problem as an alpha

matting problem. Instead of calculating the visibility for each pixel of the virtual objects,

a blending coefficient is estimated. This enables seamless integration of virtual objects

4.3. Occlusion Matting 95

into the real world, even for fuzzy foreground objects like hair. A comparison between

occlusion matting and state-of-the-art methods is given in Figure 4.4. The approach uses

raw depth information from the real scene (e.g. obtained by a low-cost depth sensor) to

realize rough foreground and background segmentation. The blending coefficient between

transitions in which depth values are typically noisy is estimated from the color image.

(a) Binary mask (b) Result using (a)

(c) Alpha matte (d) Result using (c)

Figure 4.4: State-of-the-art approaches vs. occlusion matting. (a) Binary mask
from state-of-art methods; they judge only whether a pixel of the rendered scene is visible
or non-visible. (b) Results of the occlusion handling using the binary mask (a). (c) Alpha
matte of the occlusion matting approach, in which the opacity of each pixel is precisely
estimated. (d) Results of the occlusion handling using the alpha matte (c).

4.3.2 Occlusion as an Alpha Matting Problem

The motivation for the proposed method is to handle the occlusion problem as an alpha

matting problem. Generally, alpha matting addresses the problem of extracting fore-

ground objects from static images or video sequences. Precisely separating a foreground

object from the background requires estimating the opacity for each pixel, also known as

96 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

(a) (b) (c)

Figure 4.5: A natural image matting example. (a) Shows the input image. (b) Shows
a user-specified trimap. The trimap splits the input image in three regions: definitive
foreground (white), definitive background (black) and unknown (gray). (c) Shows the
alpha matte. Image source: Benchmark test data set with ground truth data [RRW+09].

pulling a matte. An observed image I can be described mathematically by a composit-

ing equation (see [PD84]). I is a convex combination of the foreground image F and

background image B:

I = αF + (1− α)B (4.1)

where α defines the alpha matte, with α ∈ [0, 1]. Matting describes the inverse process

of compositing. To handle occlusions in AR, alpha matting can be used to determine a

precise alpha matte of the virtual scene. The task is the same: to precisely separate the

foreground (parts of the real scene which occlude virtual objects) from the background.

Thus, foreground and background are separated by the alpha matte in relation to the vir-

tual objects. Then the composition of the augmented scene can be obtained by redefining

Equation 4.1.

Matting is an under-constrained problem, since in a three-channel image seven unknowns

need to be solved from three inputs. The seven unknowns include the foreground F color,

the background B color, and alpha α; the three inputs represent the color of the input im-

age I. Thus, there exists no unique solution and constraints are necessary to ensure a good

alpha estimation. Hence, almost all common alpha matting methods use a user-specified

three-level map, called a trimap, as the starting point. A trimap segments the input im-

age into three non-overlapping regions: definitive foreground, definitive background and

unknown. Figure 4.5 shows an example of a trimap.

4.4. Related Work on Alpha Matting 97

It can be concluded that two main challenges exist. The first is to automatically generate

a trimap based on the relation between the real and virtual objects. The trimap should

be as precise as possible and unknown regions should be as small as possible. This enables

a high-quality alpha matte estimation and avoids unnecessary computations. The second

challenge is to estimate the alpha matte by solving the optimization problem for all

unknown regions in real-time.

4.4 Related Work on Alpha Matting

This section gives a short overview of relevant work on alpha matting. Because alpha

matting is a well-known problem in many image and video editing applications, it has

been extensively studied. Methods that solve the matting problem for scenes in which the

background is arbitrary and unknown are important to the current work. This problem

is known as natural image matting. Methods related to automatic trimap generation are

also of interest.

4.4.1 Natural Image Matting

Natural image matting methods can be classified into four categories: 1) sampling-based;

2) propagation-based; 3) a combination of sampling and propagation; and 4) learning-

based approaches [ZSL+15].

Sampling-based methods, [BDV00a; BDV00b; RT00], assume that the true foreground

and background colors of an unknown pixel can be estimated from known foreground and

background samples. Unknown alpha values are then calculated by solving the inverse

compositing equation. The results depend on the selected samples and the quality of the

trimap [WC07a]. Thus, the methods work well on distinct foreground and background

color distributions, where samples are easy to collect.

98 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

Propagation-based methods, [LLW08; SJT+], do not estimate explicit foreground

and background colors. Instead they assume that foreground and background colors are

locally smooth and treat the problem as propagating known alpha values towards unknown

regions. Compared with sampling-based approaches, these methods produce local smooth

results. However, the quality rapidly degrades when foreground and background patterns

become complex, because colors are wrongly propagated [WC07b].

Combination of sampling and propagation. Several methods fuse these two ap-

proaches to achieve high-quality alpha mattes. These techniques collect sample sets (pairs

of foreground of background samples) and estimate the alpha matte in a global optimiza-

tion process, by selecting a single or several best sample pairs [GO10; WC07b]. Two main

challenges occur with these algorithms: 1) how to collect suitable sample sets, and 2)

how to define an objective function to select good sample pairs. For example, samples are

generated from spatial nearest boundary pixels [WC07b] or from the closest superpixel1

[JVC+16]. Once sample pairs have been selected, the next step is to choose a good pair

using an objective function and calculating an alpha value from this pair [GO10; WC07b].

These methods only perform well if the true foreground and background colors are repre-

sented in the sample set. The true colors are not always covered because these methods

collect samples only near each unknown pixel, and the number of samples is rather limited.

Several improvements have been devised to overcome this problem. He et al. [HRR+11]

presented a global sampling method that uses all available samples in the image to avoid

missing good samples. The approach, proposed by Johnson et al. [JVC+16], generates

samples from the spatially closest superpixels and treats the matting problem as a sparse

coding problem; alpha is estimated from the complete set of selected samples.

Learning-based approaches treat the matting problem as a supervised or semi-supervised

learning task. These methods usually perform a training procedure and estimate the

matting parameters in a learning-based framework [ZSL+15]. Xu et al. [XPC+17] pro-

1Superpixels are segments of a so called superpixel segmentation, which over-segments the image by
grouping pixels that share similar properties [LMC17].

4.4. Related Work on Alpha Matting 99

posed a novel deep learning based algorithm to overcome problems like similar foreground

and background colors or complicated textures. The method uses a deep convolutional

encoder-decoder network that takes an image and the corresponding trimap as inputs

to predict the alpha matte. Thereafter, a small convolutional network refines the alpha

matte to obtain accurate alpha values and sharper edges.

4.4.2 Real-time Natural Image Matting and Video Matting

Algorithms that achieve a good trade-off between almost real-time performance and ac-

curacy are of interest to this work. Most image matting algorithms presented in Section

4.4.1 are unable to run in real-time and thus are not suited for processing live videos.

First, the matting problem requires global optimization. Second, these approaches are

mostly used for static images in editing applications, where almost real-time capability

is sufficient. Video matting extends the matting problem to video sequences and is often

used in television and film production. It is not possible to use user-specified constraints –

such as trimaps or strokes – for every video frame. Moreover, in online video matting, the

alpha matte must be estimated in real-time. Recent algorithms have generally processed

two steps: 1) generate trimaps by segmentation methods and 2) pull a matte with im-

age matting techniques [ZSL+15]. Real-time video matting approaches, such as chroma

key matting [YZ14; XDW+14], often simplify the problem by using a known green or

blue background. Hence these methods can be used only in controlled environments (e.g.

movie studios). To handle the occlusion problem, the challenge remains computing the

alpha matte from video frames in natural, unknown, uncontrolled environments. More-

over, the relationship between foreground and background can change at any time if the

real and virtual objects move.

Joshi et al. [JMA06] presented a rapid automatic system for high-quality video matting

in a natural environment using a camera array. Based on the relative parallax in the array

images, the system constructs a trimap and estimates alpha at near real-time rates. The

100 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

matting problem is constrained by assuming a sufficiently textured background. There-

fore, the algorithm projects colors from each camera to the depth of the foreground object.

The trimap and alpha values are then estimated using mean and variance statistics from

these colors. The approach achieves good results in scenarios where the background is

well-textured. However, it fails in scenarios where background colors are constant, such

as a white wall. With regard to this limitation and the need for several cameras, the

method is currently not transferable to the occlusion problem.

Gastal and Oliveira [GO10] presented an approach that combines sampling and prop-

agation. The algorithm traces rays from the unknown pixels to select potential sample

pairs. An objective function is then used to select the best sample pair; the objective

function considered spatial, photometric, and probabilistic information. This method

was realized in OpenGL shading language (GLSL) and could perform in real-time, de-

pending on the number of selected samples. However, the researchers did not have to deal

with the automatic trimap generation problem.

Wang et al. [WGZ+12] used information from a depth sensor to generate a trimap

automatically through a segmentation procedure. In their system, the alpha matte is

estimated by a propagation-based method called multichannel Poisson matting. Real-

time rates were achieved by optimizing the algorithm for parallel processing on the GPU.

In addition, problems of propagation-based methods (see Section 4.4.1), the method yields

unpleasant visual artifacts that result from temporal inconsistency. The reason for this

temporal inconsistency is that the segmentation is solved for each frame independently.

4.4.3 Depth-based Trimap Generation and Matting

Automatic high-quality trimap generation is a fundamental problem in alpha matting.

Many proposed approaches use depth information from the scene [LL12; WFQ+07] and

almost all of them follow the same procedure. They create a binary map by calculating

4.4. Related Work on Alpha Matting 101

a segmentation of foreground and background, as a first step. For example, a separation

of foreground and background can be generated using a segmentation algorithm, such as

k-means [ZLY+09]. In the second step, unknown regions are determined by applying an

erosion and dilation technique to the foreground.

These approaches use a fixed structuring element for the morphological operations. This

results in inaccurate alpha estimation, because a wide unknown region is better suited

to fuzzy areas whereas a narrow region is more suitable for objects with sharp edges

[CYA+11]. Ideally, fuzzy regions (e.g. foreground object with fur) should be covered

by larger unknown regions than regions having sharp edges (e.g. foreground object with

significant boundaries).

Wang et al. [WFQ+07] proposed an adaptive dilation according to the fuzziness of the

foreground object. Like other systems, their system performs two main steps: segmen-

tation, followed by morphological operations. The segmentation between foreground and

background is obtained through a user-defined plane. The amount of erosion and dilation

are also specified by the user. Thus, the user decides which parts of the object needed a

larger dilation.

Cho et al. [CYA+11] proposed an alternative approach. The approach generates trimaps

in which the size of unknown regions differs automatically according to fuzziness. The

algorithm traces the exterior boundaries of foreground objects and calculates the size of

structuring elements based on the fuzziness. The fuzziness is estimated from the variance

between the previously calculated alpha values of the neighboring pixels.

In addition to being used for automatic trimap generation, depth information can be used

to reduce artifacts that arise from ambiguities between foreground and background colors

[LL12; WFQ+07].

102 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

4.5 Method Overview

The occlusion matting pipeline takes a color image and a raw, registered depth map from

a sensor, and applies the following five main stages. The process is shown in Figure 4.6).

A) 3D Rendering renders the color and depth values of the virtual scene into textures.

B) Adaptive trimap generation specifies invalid, foreground, background and un-

known regions of the image. It uses the depth information acquired by the sensor

and rendered scene. It also takes the color image of the sensor into account to

provide a precise assumption of which pixels certainly belong to the foreground or

the background in relation to the virtual scene. Furthermore, a dilation is applied

to unknown regions based on the boundaries and fuzziness in the color image.

C) Foreground and background propagation propagates known foreground and

background regions of the color image towards unknown regions.

D) Alpha estimation identifies, for each pixel in the unknown regions, the best pairs

of foreground and background samples using a simple objective function. Based on

the obtained sample sets, the final alpha value is estimated.

E) Compositing combines the color images of the rendered and real scene into a single

image, called composite.

The following sections (Sections 4.6 to 4.8) describe steps B to D in detail.

4.6 Adaptive Trimap Generation

The image is divided into two parts: segments that are in the background of the virtual

objects and segments in the foreground of these objects. This division allows for easy

4.6. Adaptive Trimap Generation 103

Figure 4.6: Overview of occlusion matting pipeline. Visualization of main stages,
from a raw depth map to the rendered view of the virtual scene, with occlusion handling
through alpha matting. A short description of each stage appears in Section 4.5.

segmentation of the foreground and background by performing a depth test. Unknown

regions can then be obtained by identifying the transition between the foreground and

background, followed by a dilation procedure (see Section 4.4.1). However, this would

result in an inaccurate trimap. Unknown areas lie around the boundaries of the depth

104 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

image but not necessarily around the boundaries of the color image. This scenario strongly

influences the alpha estimation, because some background regions are wrongly taken as

foreground and vice versa. However, a large dilation means large unknown regions and

color boundaries may be covered; it also means that known foreground regions are likely

to shrink. Foreground regions of small objects, such as fingers of a hand, can be fully elim-

inated and a precise alpha estimation is no longer possible. To overcome these problems,

unknown regions are enlarged towards the boundaries of the color image. In contrast,

regions without significant edges (e.g. hair) are enlarged in all directions.

The adaptive trimap generation is processed in three steps: 1) coarse segmentation of

foreground, background, and unknown 2) labeling of unknown regions, which helps to

decide how to dilate them; and 3) the adaptive dilation.

4.6.1 Coarse Segmentation

The segmentation takes the raw depth map as input and generates an initial trimap.

Typically, a trimap defines foreground, background and unknown regions using a three

color image (e.g. white, black and gray). In this algorithm a fourth color (red) is needed

to represent invalid values, because information is valid only in regions onto which virtual

objects are projected. Known foreground pixels (F) and known background pixels (B)

are identified by applying a simple depth test between virtual objects and valid pixels of

the scene. Invalid depth values occur mostly because of shadowing effects so that these

are defined as background. Unknown regions (U) are represented by the boundaries of

the foreground object (transitions between F and B). To obtain these regions, the valid

pixels are convolved with a 3×3 Sobel kernel. Because raw depth edges are typically noisy

as evident in Figures 4.7b and 4.7h, low-pass filtering is used to smooth the valid pixels

first. Invalid values (red) are ignored, so that pixels with large gradients within a window

are the unknown regions. The results of coarse segmentation are shown in Figures 4.7c

and 4.7i.

4.6. Adaptive Trimap Generation 105

(a) Scene (b) Sensor
depth

(c) Coarse
trimap

(d) Labeling
w = 25

(e) Dilation
s = 32

(f) Dilation
s = {32, 40}

(g) Scene (h) Sensor
depth

(i) Coarse
trimap

(j) Labeling
w = 25

(k) Dilation
s = 15

(l) Dilation
s = {15, 25}

Figure 4.7: Adaptive trimap generation. Panels (a) and (g) show a virtual plane
that should lie partially behind a real object; (b) and (h) are raw sensor depth data; and
(c) and (i) represent the smoothed segmentation between foreground (white), background
(black), unknown (gray), and invalid (red) pixels. Panels (d) and (j) show the edges of the
color image overlaid with the labeled unknown regions, where w is the size of the w × w
search window. Color edges that lie in the front-half-space of the unknown pixel (red),
in the back-half-space (green), or where no significant edge exists nearby the unknown
pixel (blue). Panels (e) and (k) show the extended unknown regions with a fixed dilation
amount s. Panels (f) and (l) show the adaptive dilation with two sizes s. Large structuring
elements are used to visualize the differences, although, in several cases a smaller size is
sufficient.

4.6.2 Labeling of Unknown Regions

The purpose of the labeling step is to categorize all initial unknown pixels into three

classes: front half-space, back half-space and no edge. An unknown pixel i (with i ∈ U)

is labeled as front half-space if i lies in the front half-space of a significant edge in the

color image (Figure 4.8b). If pixel i lies in the back half-space instead (Figure 4.8c), it

is labeled as back half-space. If there is no edge nearby, it is marked as no edge. To

realize this distinction, significant edges in the color image are detected by applying a

3 × 3 Sobel filter. Significant edge points are then extracted by applying a threshold to

the gradient magnitudes. For each unknown pixel i, the method then collects edge points

106 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

(a) (b) (c)

Figure 4.8: Schematic illustration of the labeling procedure. (a) coarse segmenta-
tion between foreground, background and unknown regions (blue) overlaid with bound-
aries in the color image (red), (b) the unknown pixel lies in the front half-space of a
significant edge in the color image, (c) the unknown pixel lies in the back half-space of a
significant edge in the color image.

of the color boundaries within a specific search window. Based on the smoothed gradient

of the unknown pixel, the algorithm decides whether the pixel lies in the front or back

half-space of the selected edge points. This can be decided efficiently by calculating the

scalar product, as visualized in Figure 4.8. If only a few edge points are selected, the

unknown pixel is labeled as no edge. The results of the labeling step are shown in Figures

4.7d and 4.7j.

4.6.3 Adaptive Dilation

As mentioned before, the idea behind adaptive dilation is to extend unknown regions in

a such way that both depth and color boundaries are covered while keeping the unknown

regions as small as possible. The dilation process consists of checking for each pixel

k ∈ F,B if there exists a pixel i ∈ U within a window around k. Pixel k is also labeled

as unknown if there exists such a pixel i which is either labeled as front half-space and

k lies in back half-space of i or labeled as back half-space and k lies in front half-space

of i. Figure 4.7e shows a simple dilation. The corresponding trimap generated by the

adaptive dilation is shown in Figure 4.7f. Different unknown regions are obtained, and

the adaptive dilation extends unknown regions towards the boundaries of the color image.

4.7. Foreground and Background Propagation 107

However, large fuzzy areas are not always covered by the unknown regions. Generally,

regions with sharp edges only need small extensions, whereas fuzzy regions or those with

corners need a wider extension (see Section 4.4.3). To solve this problem, the amount of

dilation depends on the number of no edge labeled points e. If e is above a threshold, the

dilation amount is increased. The threshold should depend on the size of the structuring

element s (where s
3 is a good choice). This results in a larger dilation for fuzzy foreground

objects (Figure 4.7l). Figure 4.7k shows a trimap based on a structuring element, in which

the size is fixed.

4.7 Foreground and Background Propagation

For robust alpha estimation, it is necessary to choose good samples of the known fore-

ground and background colors. Therefore, the known background and foreground colors

are propagated towards the unknown regions, while maintaining a distance metric to cal-

culate the uncertainty of the propagation. This pre-processing step allows for the use of

a universal search window for the alpha estimation, which reduces the cost of selecting

samples.

The main idea of the propagation method is to blur the whole image, foreground or

background, and to write back only blurred colors for unknown regions. If this step is

processed repeatedly, the known colors diffuse to the unknown regions. The idea of this

algorithm is similar to the hole-filling technique for 3D volumes [DMG+02]. The realiza-

tion of a fast blurring is inspired by pyramid-based filter algorithms [Bur81; OAB+85].

Such approaches create an image pyramid by downscaling the input many times, up to a

specific level. Later, the lower resolution images are used to blur the source image.

The process is explained through following the steps of the propagation of foreground

pixels; the background propagation works identically. Algorithm 3 illustrates the main

steps of the diffusion for a single iteration.

108 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

Algorithm 3 Diffusion algorithm for a single iteration i.
1: copy input image F with 4 channels to image S
2: for each pixel ps of the image S do
3: if ps

a > 0 then . color value is unknown
4: ps

a ← 1
5: else
6: ps

a ← 0
7: end if
8: end for
9: build image pyramid of S with l levels

10: go top-down the pyramid to smooth S
11: for each pixel pf of the input image F do
12: if ps

a > 0 then . corresponding smoothed color is known
13: wi−1 ← pf

a

n
. calculate normalized weight

14: pf
rgb ← wi−1p

f
rgb + (1− wi−1)ps

rgb

15: pf
a ← min(pf

a + 1, n) . increase and clamp alpha
16: end if
17: end for

First, the foreground image F is copied (line 1) and an image pyramid with l levels of

the copy S is created (lines 2-9). The finest level is initialized with all known foreground

colors and their α channels are set to 1 (line 4). Unknown pixels are initialized by α = 0

(line 6). The coarser levels are created by reducing the resolution of the previous finer

level using a filtering operation (e.g. Gaussian filter) on the collapsing known foreground

colors (line 9). The following blurring steps work top-down (line 10). New pixel colors

of finer levels are calculated from the coarser levels by a quadratic B-Spline interpolation

(as in [CC78]). The interpolation factors are weighted by the α values. Thus, unknown

regions are not involved during this filtering process. The next steps (lines 11-18) write the

smoothed foreground colors back into the input image F , where the colors are unknown.

To achieve a smooth transition between two blurring steps, a linear interpolation between

the previous colors and the new one (lines 13-15) is processed, where value n regularizes

how often a color value is interpolated. To maintain the original colors the α values of

F (with α > 0) are initialized in the first iteration (i = 0) with n. If these steps are

processed repeatedly, the known values diffuse towards unknown regions. Additionally,

for each filled pixel, the corresponding diffusion iteration is saved as a distance metric, as

4.7. Foreground and Background Propagation 109

mentioned. The amount of diffusion depends on the number of pyramid levels l and the

number of diffusion steps i. A small number of levels leads to clearly diffused unknown

colors and fills unknown regions by processing the diffusion several times. Conversely, a

high number of levels results in smooth propagated values and fills unknown regions by

processing the diffusion only a few times. Figure 4.9 shows the results of the propagation

process and the interaction between the number of pyramid levels and diffusion steps.

The values l = 4 and i = 5 are good compromises in terms of blurring, filling, and

performance in several of the presented test cases. To profit from hardware optimization,

the implementation utilizes mipmapping2 to increase texture access times. The whole

pyramid is represented as a texture with mipmap levels that are bound to framebuffer

objects, which allows a manual mipmapping process.

2Mipmapping is a method of precomputing textures of reduced resolution [Bus03].

(a) Foreground (b) l = 6, i = 4 (c) l = 4, i = 5 (d) l = 2, i = 20

(e) Background (f) l = 6, i = 4 (g) l = 4, i = 5 (h) l = 2, i = 20

Figure 4.9: Propagation of foreground and background. Different propagation
results of an example scene shown in (a). (a) Shows definitive foreground colors and (b)
shows definitive background colors. Panels (b) to (d) show propagated foreground colors
with different numbers of pyramid levels l and diffusions i. Panels (f) to (h) show the
propagated background colors.

110 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

4.8 Alpha Estimation

To estimate the alpha matte on the basis of the propagated foreground and background

colors a sample-based method is realized. Local samples of the foreground and the back-

ground are collected, pairs are formed and the best pair by an optimization of an objective

function is selected. The objective function takes color information and the propagation

distance metric into account. For a given sample pair Fi, Bj (with indexes i and j), alpha

can be estimated by the following equation:

α̂p(Fi, Bj, Ip) = (Ip −Bj)(Fi −Bj)
‖Fi −Bj‖2 , (4.2)

where Ip is the color of pixel p.

Color Cost A good sample pair should be able to represent the pixel Ip of the color

image as a linear combination of themselves. Thus, for a good pair of foreground and

background colors Fi and Bi the color cost Ccol should be small:

Ccol(Fi, Bj, Ip) = ‖Ip − (α̂Fi + (1− α̂)Bj)‖, (4.3)

α̂ is the estimated alpha value for Ip based on the sample pair Fi, Bj (using Equation

4.2). This type of function is used in other sample-based alpha matting methods [GO10;

HRR+11; RRG08].

Propagation Cost In addition to the color information, information about the confidence

of the propagated foreground and background colors is used. This reduces the effect of

incorrect propagated colors and helps to achieve quality results. Each foreground and

background pixel of the propagated maps retains information about which diffusion step

the pixel was created in (as described in Section 4.7). Colors that are created during the

first diffusion lie close to the known foreground and background colors, and have a high

confidence. They should result in a low cost. To achieve this, the normalized propagation

4.9. Experimental Results 111

cost Cpro for a sample pair (Fi, Bj) is defined by:

Cpro(Fi, Bj) = d(Fi) + d(Bj)
2dm

, (4.4)

where the function d returns the number of iterations di (with di ∈ [0, dm − 1]) when the

color (Fi or Bj) is created. The term dm represents the number of total diffusions.

Objective Function To find the best pairs, first the possible sample candidates in a n×n

neighborhood around the unknown pixel p are selected from the propagated foreground

and background colors ({Fi, . . . , Fnn}, {Bj, . . . , Bnn}). Then an objective function that

combines the color and propagation cost for all possible pairs (Fi, Bj) is minimized:

(F̂i, B̂j) = arg min
F,B

w Ccol(Fi, Bj, Ip) + Cpro(Fi, Bj) (4.5)

where w is a weight that defines the influence of the color cost. The final alpha value

α̂p of pixel p is then estimated based on the best sample pair (F̂i, B̂j). For completeness,

the alpha values of known foreground pixels are set to 1 and alpha values of known

background pixels are set to 0. The alpha values of the virtual object are then calculated

by the inversion (1− α̂p).

4.9 Experimental Results

To prove the viability of the presented algorithm in real scenarios, different scenes that

were representative for real world scenarios were tested. In addition, runtime performance

of the algorithm was measured because real-time capability is a crucial factor in an AR

experience.

112 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

4.9.1 Implementation Details and Runtime Performance

The algorithm is implemented in C++ and GLSL and is portable to mobile devices using

OpenGL for embedded systems (OpenGL ES). The algorithm performs all operations on

the graphics card as each step can be computed independently per pixel. This includes the

image-processing tasks and the optimization process to select good sample pairs. Thus,

the algorithm do not depend on data transfer between the CPU and GPU, apart from

the color and depth data at the start to eliminate potential bottlenecks.

The time measurements were obtained for an image resolution of 1920× 1080 (color and

depth image), whereas the propagation of known values operated on a 1024×1024 window

around the area of interest. The texture upload time (∼ 7.5 ms) was excluded in all test

runs as it was a constant time factor, independent of the contribution. All benchmarks

were executed on a test system with an Intel i7 4770K processor and an NVIDIA GeForce

GTX 1080 graphics card. Both devices were used with fixed clock frequencies and disabled

turbo settings to reduce variations during the measurements.

As shown in Table 4.1, the number of unknown pixels had no significant influence on the

overall performance of the algorithm. Interestingly, the alpha estimation was the only part

that depended on unknown pixels. However, the algorithm had a nearly constant runtime

for the generated trimaps in full high definition resolution. The trimap in Figure 4.7f, for

example, had 42748 unknown pixels and produced good results. Although the elapsed

time increased for ∼ 100000 unknown pixels, it remained insignificant compared to the

total runtime. The computationally most expensive step was the propagation of known

No. unknown pixels 16703 46129 99653
Trimap (ms) 0.252862 0.263313 0.28445
Propagation (ms) 1.147508 1.145953 1.118089
Alpha (ms) 0.04997 0.04639 0.13538
Total (ms) 1.45034 1.455656 1.537919

Table 4.1: Performance measurements for different numbers of unknown pixels for
l = 4 mipmap levels and i = 5 diffusion steps.

4.9. Experimental Results 113

values into unknown regions. There was a linear correlation between the runtime of the

propagation and the number of diffusion steps and mipmap levels (see Table 4.2). The

algorithm required ∼ 1.5 milliseconds to generate visually pleasing results and therefore

surpassed real-time requirements for modern hardware.

Diffusion steps i mipmap levels l Time in ms
10 2 0.740895
10 5 2.049906
10 7 3.030899
1 2 0.112646
20 2 1.54018
40 2 2.950295

Table 4.2: Performance measurements for the propagation of known values in mil-
liseconds (ms).

4.9.2 Evaluation of the Algorithm

This section describes how the adaptive trimap generation affected the alpha matte esti-

mation. An alpha matte obtained with different extended trimaps is shown in Figure 4.10.

Panel 4.10d shows that fine unknown regions, obtained by a simple dilation, resulted in

an alpha matte of poor quality. Foreground and background values were wrongly propa-

gated because the unknown regions did not include fuzzy areas of the color image. Wide

unknown regions included fine details but led to a loss of color information (Figure 4.10e).

A good trade-off was obtained by the adaptive generated trimap (Figure 4.10f).

The effects of the objective function are also evaluated in this section. Figure 4.11 shows

that the effect of wrongly propagated colors was reduced by using the objective function.

Moreover, the use of the objective function yielded better results if the separation between

foreground and background colors was ambiguous. This effect is shown in Figure 4.11f,

where the pillow in the foreground has partially similar colors to those of the wall in the

background. Generally, the algorithm achieved good results in quality and runtime by

selecting the sample pairs in a 9× 9 neighborhood.

114 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

(a) Fine (s = 5) (b) Wide (s = 34) (c) Adaptive (s = 5, 34)

(d) Alpha matte of (a) (e) Alpha matte of (b) (f) Alpha matte of (c)

(g) Composite of (d) (h) Composite of (e) (i) Composite of (f)

Figure 4.10: Comparison of trimaps and their effects on the alpha matte. Panels
(a) to (c) show unknown regions (colored blue) obtained by different dilation procedures,
where s is the size of the squared structuring element. Panels (d) to (f) represent the
alpha mattes. Panels (g) to (i) are the final occlusion results.

4.9.3 Comparison with Edge-aware Filtering Methods

Different scenarios were tested to demonstrate the robustness and transferability of the

algorithm and to compare the results with edge-aware filtering methods, including the

guided image filtering [HST13] and adaptive manifolds [GO12]. In a simple scene with

4.9. Experimental Results 115

(a) Composite (b) Alpha matte (without) (c) Alpha matte (with)

(d) Composite (e) Alpha matte (without) (f) Alpha matte (with)

Figure 4.11: Effect of the objective function: two examples. Panels (a) and (d)
show the composites using alpha matte (c) and (f) respectively. Panels (b) and (e) show
the alpha mattes calculated directly from the propagated foreground and background
colors. Panels (c) and (f) present the alpha mattes obtained by the sample pair that
best fits the objective function (within a 9 × 9 neighborhood). Interesting regions are
highlighted with rectangles.

clear and hard borders the resulting depth of both edge-aware filters was smoother than

the raw depth data, which led to acceptable occlusions (Figure 4.12a, 4.12d and 4.12g).

The zigzag pattern of the raw depth was completely eliminated. However, the manifold

filter produced wrong occlusions in some regions, whereas the guided filtering provided

consistently good results. Occlusion matting generated a nearly perfect alpha matte and

occlusion.

Filigree objects were heavily blurred by the manifold filter, which resulted in wrong depth

values and an occluded head of the virtual object (Figure 4.12e). The guided filter,

although not as blurry, suffered from the same problem (Figure 4.12h). Additionally,

the background clutter influenced the filtering of depth values within the plant. The

presented approach generated a visually pleasing occlusion, although the alpha matte

had small artifacts (Figure 4.12n). This was due to the soft transition in areas having

116 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

(a) Raw (b) Raw (c) Raw

(d) Manifold Filtering (e) Manifold Filtering (f) Manifold Filtering

(g) Guided Filtering (h) Guided Filtering (i) Guided Filtering

(j) Edge Snapping-Based (k) Edge Snapping-Based (l) Edge Snapping-Based

(m) Occlusion Matting (n) Occlusion Matting (o) Occlusion Matting

Figure 4.12: Overall comparison with state-of-the-art methods. The algorithm was
compared with raw depth data, manifold filtering, guided filtering, and an edge snapping-
based approach in three AR scenarios. See Section 4.9.3 and Section 4.9.4 for detailed
explanation and discussion.

4.9. Experimental Results 117

high uncertainty. Fuzzy objects were also challenging. In comparison to occlusion matting

the edge-aware filters were unable to achieve a smooth transition between fuzzy regions

and the virtual object (Figure 4.12f, Figure 4.12i and Figure 4.12o).

(a) Nearby edges in
the background (ES)

(b) Nearby edges in
the foreground (ES)

(c) Motion blur (ES) (d) Narrow regions
(ES)

(e) Similar colors in
the background (OM)

(f) Mixed colors in the
foreground (OM)

(g) Motion blur (OM) (h) Narrow regions
(OM)

Figure 4.13: Comparison with edge snapping-based method. Results for various
hand scenes with common difficulties. Panels (a) to (d) show results of the edge snapping-
based approach (ES). Panels (e) to (h) show results of the occlusion matting approach
(OM).

4.9.4 Comparison with Edge Snapping-Based Method

This section provides an extensive comparison between the presented method and the

edge snapping-based depth enhancement by Du et al. [DCY+16]. The method of Du et al.

is the latest state-of-the-art approach that deals with dynamic occlusion in AR scenarios.

Du et al. focused on refining boundaries of skin colored objects like hands by snapping

depth edges to color edges. Figure 4.13 shows such a case. It illustrates significant frames

with challenging situations, such as ambiguous colors or edges in the background. The

edge-snapping-based algorithm produced more visual artifacts (Figure 4.13a) than the

occlusion matting approach (Figure 4.13e). The edge snapping-based method suffered

from nearby edges and followed a seemingly stronger but incorrect edge (blue chair bor-

der), resulting in false occlusions. The presented method had difficulties in distinguish

118 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

foreground versus background, because of similar colors. This uncertainty was reflected

in the alpha values. The final result, however, was much more appealing than that of

the edge snapping-based method, as the transparent transition was less obvious than the

hard border in Figure 4.13a. Figure 4.13b shows a similar effect for the method of Du

et al.; the algorithm chose undesired gradients (the edge near the fingernail in the fore-

ground), which resulted in a wrong boundary. The presented approach (Figure 4.13f),

given the easily distinguishable colors, produced a correct, smooth transition. In Figure

4.13c, the border had shifted inside the foreground object due to motion blur. Blurred

edges tend to have weak gradients on the outside, although a visible boundary remains.

Edge based-snapping, however, prefers to snap to strong gradients inside the object. Here

the occlusion matting procedure profited from the smooth alpha transition and provided

a more realistic object boundary.

Figure 4.13d and Figure 4.13h depict the differences in finding borders of regions that were

very narrow compared to the whole object. The edge snapping-based approach generated

a round border, based on its optimization process, whereas occlusion matting resulted

in a clear boundary. Figure 4.14 gives two examples of how both algorithms behaved

temporally. In contrast to the presented approach, the edge-based-snapping tended to

switch its boundary from frame-to-frame if ambiguous edges were present (Figure 4.14a

and Figure 4.14b). This resulted in considerable temporal discontinuities. The presented

algorithm tended to generate small flickering effects because of noisy depth values (Figure

4.14b), which becomes noticeable in static scenes.

Generally, the edge snapping-based approach achieved appealing results in regions having

clear foreground boundaries (Figure 4.13 and Figure 4.12i). However, the method could

not deal with ambiguous edges in the background (Figure 4.12k) and foreground (see the

ear of the cuddly toy in Figure 4.12l). Moreover, it was unsuitable for generating smooth

transitions on fuzzy intersections (Figure 4.12l). In such scenes, it was hard to choose

good parameters for the neighbor weights in such a way that the edges followed the zigzag

4.9. Experimental Results 119

(a) Dynamic object

(b) Static object

Figure 4.14: Temporal comparison. Results of edge snapping (ES) and occlusion
matting (OM) in significant frames of a scene with a dynamic object and static object.
(a) Shows the final occlusion results; (b) shows the enhanced depth map and the alpha
matte. Regions of interest are highlighted with red rectangles.

pattern while avoiding incorrect correspondences. The presented method combined both

characteristics and was able to generate hard borders, as well as soft transitions where

needed (Figure 4.12o).

120 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

4.9.5 Comparison of Runtime Performance

The performance of all algorithms on different image resolutions (see Table 4.3) was

compared using the same system as in Section 4.9.1. According to Du et al. [DCY+16]

edge based-snapping maintained acceptable frame rates on low resolution images (22 ms

to 40 ms for 640 × 480 images). In the current work, an own implementation of their

approach was used that relied on the CPU alone, and was therefore slower. Nonetheless,

the frame time increased drastically for higher resolutions. The same applied to the

manifold and guided filter, as their runtimes more than doubled from 720p to 1080p

(Table 4.3). As shown in Section 4.9.1, presented algorithm’s runtime mainly depended

on the propagation of known values, but achieved real-time performance. Table 4.3 shows

that the performance did not change significantly for higher resolutions.

Resolution 1920× 1080 1280× 720
Edge snapping (ms) 251.284 118.593
Guided filter (ms) 95.583 41.078
Manifold filter (ms) 170.502 70.531
Occlusion matting (ms) 1.481 (9.025) 1.372 (4.257)

Table 4.3: Comparison of runtime performance for several state-of-the-art al-
gorithms. The time is the average of 500 executions. Brackets show the total calculation
time with texture upload.

Furthermore, the table illustrates the increased runtime of the other algorithms, depending

on image resolution. Although an increase in calculation time by ∼ 0.1 ms from 720p to

1080p is evident, the main difference is caused by the upload time of the necessary texture

data.

4.10 Limitations

The evaluation showed that the algorithm can produce visually pleasing results, even in

areas in which previous techniques failed. However, it is often hard to find good sample

4.11. Optimizing Sensor Data with 3D Reconstruction 121

pairs in regions where foreground and background colors are difficult to distinguish. This

is a general problem in alpha matting and can be improved by a better split into known

and unknown regions using structural information from the color image. Furthermore,

it might be beneficial to use a more advanced objective function. Gastal and Oliveira

[GO10], for example, found a good sample pair by minimizing the chromatic cost within

a specific neighborhood of the input pixel. Furthermore, noisy depth data, especially at

the boundaries, results in flickering that is visible throughout multiple frames. The raw

depth data could be filtered to reduce potential noise, or temporal information could be

used saving the trimaps of previous frames. Another limitation was that large holes in

foreground objects ere not handled, as invalid depth values marked as definitive back-

ground. Small holes were usually not a problem if the size of the unknown regions were

large enough to cover the hole. Hole-filling techniques [YKP12; XZW12; LCK16] could

be used to overcome this limitation. However, such algorithms are often able to deal

only with small holes and are often very time-consuming. The next section (Section 4.11)

presents a simple and efficient solution.

4.11 Optimizing Sensor Data with 3D

Reconstruction

As mentioned in Section 4.2.3, depth maps obtained from today’s low-cost sensors have

several limitations that depth-based occlusion handling methods must deal with: 1) noise,

especially at the boundaries; 2) inaccurate mapping between color and depth data; and

3) incomplete data. Occlusion matting overcomes the limitations regarding noise and

inaccurate mapping, but has problems dealing with large holes in the foreground for

which no depth data can be obtained.

Depth maps of the scene can be also obtained from an existing model of the scene, as

is the case with model-based methods (Section 4.2.2). Generally, model-based methods

122 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

need an accurate and dense model or reconstruction of the environment. If a complete

model of the scene, which exactly matches its counterpart in the real scene is available,

model-based methods benefit from complete depth maps. However, these methods suffer

from registration errors and jitter, which results in imprecise and unpleasant occlusions.

Because the alpha estimation of the occlusion matting relies exclusively on the RGB data

in the regions that separate the foreground from the background, small registration errors

or jitter effects can almost be eliminated. However, limitations such as incomplete models

or dynamic objects mean that model-based methods still tend to be impractical in many

AR scenarios.

To benefit from both, depth-based and model-based methods, the depth map obtained

by a low-cost sensor is optimized with data from the reconstruction (as presented in

Chapter 3). Large holes in the sensor map mainly arise because of shadowing effects,

reflections (Figure 4.15a) or limited sensor ranges (Figure 4.15b); they can be filled in

with reconstruction data (Figures 4.15a and 4.15b). It is quite likely that a user observes

a scene from several viewpoints and thereby reconstructs critical parts of the scene so that

missing parts can be filled in. Sensor data instead are primarily useful for dealing with

dynamic objects or incomplete or imprecise reconstruction data (as visualized in Figures

4.15c and 4.15d).

To optimize the sensor depth map, the reconstruction is rendered into a depth map from

the current view. Depth values are then easily combined by preferring the sensor depth

values and filling invalid values with the rendered depth values. As shown in Figure 4.15,

large holes in the sensor data were correctly filled and clearly improved the occlusion.

4.12 Conclusion and Future Work

Occlusion matting combines and extends ideas from different research areas. A novel

real-time approach was created to solve the occlusion problem in several AR scenarios.

4.12. Conclusion and Future Work 123

(a) Sensor data (b) Sensor data

(c) Reconstruction data (d) Reconstruction data

(e) Optimized sensor data (f) Optimized sensor data

Figure 4.15: Comparison of occlusion matting results for different depth maps:
two examples. Panels (a) and (b) show occlusion matting results based on raw depth
maps obtained by a Kinect depth sensor; (c) and (d) show results based on depth maps
created with reconstruction data; and (e) and(f) show results based on optimized depth
maps that combine sensor and reconstruction data. Small images outlined in white show
the scene with occlusion handling, whereas images outlined in red highlight critical parts
of the scene. For a detailed discussion, see Section 4.11.

Reinterpreting the known challenge as an alpha matting problem enables not only to

separate visible and non-visible regions of the virtual object, but also to realize smooth

transitions by estimating an alpha value as a blending coefficient.

To handle a broad range of occlusion types (clear and soft object boundaries), an adap-

tive trimap generation was introduced that extended the regions of unknown pixels. The

extension was influenced by the boundary and fuzziness in the color image. Based on

the trimap the colors of the known foreground and background were propagated towards

unknown regions. This allowed the use of a fixed search window while looking for suit-

able sample pairs, and led to the real-time capability of the presented algorithm. Section

4.9 verifies that occlusion matting compares well with current state-of-the-art techniques,

124 Chapter 4. Occlusion Matting: Realistic Occlusion Handling

while maintaining real-time capability and offering wider versatility due to smoother tran-

sitions. Occlusion matting suffers from the same problems as alpha matting approaches

in general. Small artifacts occur because of similar foreground and background colors or

from flickering throughout multiple frames, flickering is especially visible in static scenes.

Section 4.10 presents more details on these issues and offers suggestions for future re-

search. Generally, future work should concentrate on solving the occlusion problem as an

alpha matting problem.

Chapter 5

Conclusion

This chapter summarizes the presented approaches to solve the identified problems, high-

lights the main achievements, discusses suggestions for future work.

5.1 Summary and Achievements

This thesis has presented various approaches to overcoming well-known problems in AR,

and offers the realization of more believable, realistic AR applications. The problems of

accurate and jitter-free registration and tracking, complete and de-noised 3D reconstruc-

tions and realistic occlusion handling have been researched and discussed.

Registration and Tracking. The presented tracking system can track an object based

on a line model, and overcomes known limitations of standard edge-based trackers using an

appearance-based line model. While state-of-the-art approaches still require a complete

and accurate line model as input, a coarse line model is sufficient for the presented method.

It is no longer necessary to expend great effort to manual create a suitable model. The

presented approach performs a mapping and refinement step to generate a suitable model.

As the user moves around new lines are added to the model and existing ones are refined.

125

126 Chapter 5. Conclusion

Lines are added to the model if they appear and are detected by standard edge-detection

algorithms in the camera stream. It is likely that lines which occur often will be detected

again in subsequent frames.

In this context, the idea of so-called keyposes was presented. Each keypose retains a

camera pose and a set of lines that are likely to be visible for similar camera poses.

This data enables a selection of good edges to track; it also enables detail-based culling,

automatic hidden-line removal, and an enhanced re-initialization procedure.

3D Surface Reconstruction. The proposed algorithm to optimize 3D surface recon-

structions offers new possibilities for realistic AR applications. Realistic interactions be-

tween the real and virtual worlds, such as collisions, are realizable. Whereas previous work

mainly focused on improving surface reconstructions offline after a capturing step, the pre-

sented method improves and extends the reconstruction during the capturing process; it

also fills holes. User’s are not required to capture the environment first but can explore

it without any preparation. Moreover, interactions between the real and virtual world

are not limited to captured regions or static parts of the scene. The presented approach

extends the well-known KinectFusion pipeline and estimates local planes in subregions

of the reconstruction volume. Local planes are used to de-noise and propagate planar

structures of the current observed surface towards unknown regions. The subsequent sur-

face diffusion can to fill small gaps and holes, especially on curved structures that lack

dominant planes.

Generally, the method de-noises and extends, and fills holes in planar structures such as

table tops, walls, or floors which are common in man-made environments. In contrast

to existing work, the presented approach can deal with several types of structures other

than flat ones. It also extends and fill holes in curved structures like bottles or balls, in

a plausible manner.

The thesis has described how to use an implicit representation, represented by a volume

allocated on the GPU memory, to realize collisions and occlusions without transferring

5.2. Future Work 127

the reconstruction data to the CPU memory or extracting an explicit representation, such

as a triangle mesh. Thereby, the proposed method is real-time capable.

Occlusion Handling. The novel approach presented here, for handling occlusions by

reinterpreting the occlusion challenge as an alpha matting problem offers new perspec-

tives to solve the occlusion problem more realistically. Whereas state-of-the-art methods

calculate whether pixels of the rendered scene are visible or non-visible, the presented

approach estimates a blending coefficient per pixel. This enables more realistic occlusions

in regions where the foreground and background are not strictly separable (e.g. caused

by fuzzy objects like fur or hair, or by motion blur). The presented algorithm estimates

an adaptive trimap to enable realistic occlusions, both in regions where foreground and

background are clearly separable and in regions where they are not strictly separable.

If definitive foreground, background, and unknown regions are defined, the algorithm

quickly propagates known foreground and background color of the boundaries towards

unknown regions. It then estimates an alpha matte based on an objective function, which

takes color information and a propagation distance metric into account.

The results showed that the approach generated a high-quality alpha matte without any

user input; it also overcame the limitations of low-cost sensor data and outperformed

previous work in terms of quality, realism, and practical applicability. Furthermore, the

presented algorithm solved the alpha matting within real-time rates by using the capa-

bilities of the GPU hardware. This feature not only provides real-time occlusion matting

but also offers opportunities in other fields of research, such as video matting.

5.2 Future Work

This thesis has reviewed and explained different approaches to realize more realistic and

believable AR applications. However, several problems remain that need to be solved to

meet the goal of merging the real and virtual worlds into a single unit.

128 Chapter 5. Conclusion

Combination with other tracking approaches. This thesis has focused on an edge-

based tracking approach using a coarse line model. The presented algorithm improves the

robustness of the pose estimation and eliminates time-consuming pre-processing steps.

However, it would be beneficial to combine the approach with other methods to become

even more robust and practical for AR. Currently, the user has to move the camera towards

a specific camera pose before the camera is registered to the model and the tracker is

initialized. A tracking-by-detection approach could allow the tracking to be initialized or

re-initialized without requiring user interaction. Currently, it is common to analyze the

model to learn features, such as point-features, during an offline stage, and then during

the online stage, to use those features to initialize and re-initialize the tracking. Research

to date almost invariably used point-feature descriptors [LVT+03; BPS05; RPS+18] to

realize the initialization. However, other approaches have described a line feature in an

image [WLW09; WWH09; HS12], which are currently not used in a model-based approach.

Future research could analyze whether these methods are suitable. Moreover, if structural

information about the scene is available (e.g. obtained from a RGB-D sensor), it seems

preferable to use a feature descriptor that considers the geometric structure of a feature,

instead of only its appearance in the RGB image. The approach would then remain

suitable for poorly textured scenes; only a polygonal model without texture would be

required. Another suggestion for future work is to use the presented approach in a SLAM

context. First, it can be used to offer an absolute reference to register virtual objects in

the world; second, it can be used to reduce drift. The idea is that one or more models of

static objects in the environment serve as anchors. Instead of registering virtual objects

to a single coordinate system, they are registered in the coordinate system of the anchor

next to them. The tracking and mapping starts and is adapted (e.g. to the current scale)

whenever an anchor is detected.

Considering dynamic and deformable objects. While the presented approach to

handling occlusions can deal with both dynamic and static objects, the presented approach

to surface reconstruction assumes a static scene. If dynamic or deformable objects – such

5.2. Future Work 129

as a moving person – appear in the scene, the algorithm tries to integrate these objects into

the current reconstruction. This results in incorrect surfaces, which do not look appealing

and can result in incorrect collision or occlusion handling. One approach could be to

ignore dynamic and deformable objects so they are not even integrated. An algorithm

would be needed that detects which parts of the incoming depth image represent such an

object. This is a challenging task in computer vision, particularly if the camera is also

moving [WHN17]. If it is known which pixels of the incoming depth image correspond

to moving or changeable objects, a depth-based collision handling method (e.g. [BRW95;

SYT+12]) would be the next step. Another solution might be to reconstruct dynamic

and deformable objects separately. Reconstructing deformable objects is a well-known

problem and is useful in several other fields of research, such as body motion capturing.

For example, a proposed approach called DynamicFusion [NFS15] addressed this issue and

offers a good starting point. The researchers in that work adapted the idea of KinectFusion

to reconstruct and track a non-rigidly deforming shape in real-time.

Semantic understanding of the real world. The presented approach to reconstruct

the real world focuses on a complete geometric representation and enables geometry-aware

AR interactions between real and virtual objects. In addition to a geometric reconstruc-

tion, semantic segmentation of the real world enables several possibilities in AR. It can

be used to realize physical interactions even more realistically. Deep understanding of the

semantics of the scene can help to simulate the behavior of virtual objects. For example,

if information about the material properties are available – like segmentation into two

classes, hard and soft – collisions between objects of both worlds can be handled more

believably. A virtual drinking glass will be broken if it is dropped onto the stone floor

and will remain intact if dropped onto a sofa. Information about material properties is

also useful for occlusion handling. Occlusions can be handled more realistically if it is

known whether an occluding object is transparent or opaque. Semantic understanding

can therefore support the realization of AR applications. Dzitsiuk et al. [DSM+17] showed

that detected planes could be used to obtain segmentation in classes such as floor, wall,

130 Chapter 5. Conclusion

ceiling, and other. They proposed using such segmentation to remove objects from the re-

construction to obtain a 3D floor plan of a building, for example. However, segmentation

can be also used to place or replace objects in the scene. Furniture in the real scene can

be replaced by a new piece of furniture to evaluate how it fits with the existing interior

decoration. To date, relatively little attention has been given to semantic understanding

in the context of AR [CFT17; DSM+17]. Progress in meaningful semantic scene under-

standing and segmentation has been made mainly in other fields of research, including

virtual reality and robotics.

This thesis has focused on various computer vision problems. It has shown that tracking,

reconstruction, and occlusion handling can be more successfully addressed to achieve

greater practical value in AR. AR researchers need to investigate these types of topics

more thoroughly to move step closer to the goal of perfectly co-existing worlds.

List of Tables

2.1 Root mean square (RMS) error in a synthetic generated sequences. 38

3.1 Runtime performance measurements for different test scenes. 80

3.2 Runtime performance measurements for the local plane estimation at var-

ious subvolumes. 81

4.1 Performance measurements for different numbers of unknown pixels. 112

4.2 Performance measurements for the propagation of known values. 113

4.3 Comparison of runtime performance for several state-of-the-art algorithms. 120

131

List of Figures

2.1 Classes of edges. 12

2.2 Problem of silhouette edges. 16

2.3 Schematic overview of the proposed method. 25

2.4 Schematic visualization of different keyposes. 26

2.5 Schematic pipeline of line mapping and refinement. 32

2.6 Effectiveness of dividing by length. 35

2.7 Tracking results of a synthetic generated scene. 36

2.8 6 DOF camera pose plots of the chopping board in a synthetic generated

image sequence. 37

2.9 Tracking results of a real scene. 39

3.1 An example of using a phantom model for shadowing. 45

3.2 Examples of incomplete 3D surface reconstructions. 46

3.3 Example of a TSDF volume. 48

3.4 Schematic visualization of the Sk function in a 2D voxel grid representation

for three consecutive observations. 49

133

134 LIST OF FIGURES

3.5 Overview of propagation, hole filling and de-noising pipeline. 61

3.6 Two examples of local plane propagation 67

3.7 Estimation of partially consistent plane by merging local planes. 69

3.8 An example for collision detection. 74

3.9 Surface propagation without plane priors. 76

3.10 Propagation results without plane priors. 77

3.11 Comparison between results created with and without plane priors. 78

3.12 Surface Propagation using Plane Priors for three scenes. 79

3.13 Effect of refinement and de-noising through partially consistent planes. . . 79

4.1 Occlusion handling in AR. 86

4.2 Example of model-based occlusion handling and the registration problem. . 90

4.3 Occlusion handling with raw depth data. 93

4.4 State-of-the-art approaches vs. occlusion matting. 95

4.5 A natural image matting example. 96

4.6 Overview of occlusion matting pipeline. 103

4.7 Adaptive trimap generation. 105

4.8 Schematic illustration of the labeling procedure. 106

4.9 Propagation of foreground and background. 109

4.10 Comparison of trimaps and their effects on the alpha matte. 114

4.11 Effect of the objective function: two examples. 115

4.12 Overall comparison with state-of-the-art methods. 116

4.13 Comparison with edge snapping-based method. 117

4.14 Temporal comparison. 119

4.15 Comparison of occlusion matting results for different depth maps: two

examples. 123

135

Own Publications

[HDD+15] A. K. Hebborn, M. Dilberovic, A. Derstroff, A. Franke, N. Höhner, P. Krechel,

L. Prinz, A. Szirmai, F. Weigend, and S. Müller. OscARsWelt: A Collabo-

rative Augmented Reality Game. In Proceedings of the Second International

Conference on Augmented and Virtual Reality (AVR), pages 135–150, Lecce,

Italy, August 2015.

[HEM15] A. K. Hebborn, M. Erdt, and S. Müller. Robust Model Based Tracking Using

Edge Mapping and Refinement. In Proceedings of the Second International

Conference on Augmented and Virtual Reality (AVR), pages 109–124, Lecce,

Italy, August 2015.

[HHM14] J. Hunz, A. K. Hebborn, and S. Müller. A GPU based Real-Time Line Detec-

tor using a Cascaded 2D Line Space. In Proceedings of the International Con-

ference Computer Graphics, Multimedia and Image Processing (CGMIP),

pages 56–63, Kuala Lumpur, Malaysia, November 2014.

[HHM16] A. K. Hebborn, N. Höhner, and S. Müller. Augmenting Surface Reconstruc-

tions. In Proceedings of the 2016 IEEE International Symposium on Mixed

and Augmented Reality (ISMAR Adjunct), pages 38–42, Merida, Yucatan,

Mexico, September 2016.

[HHM17] A. K. Hebborn, N. Höhner, and S. Müller. Occlusion Matting: Realistic Oc-

clusion Handling for Augmented Reality Applications. In Proceedings of the

137

2017 IEEE International Symposium on Mixed and Augmented Reality (IS-

MAR), pages 62–71, Nantes, France, October 2017.

138

Bibliography

[Azu97] R. T. Azuma. A Survey of Augmented Reality. Presence: Teleoperators and

Virtual Environments, 6(4):355–385, August 1997.

[BCL15] M. Billinghurst, A. Clark, and G. Lee. A Survey of Augmented Reality. Foun-

dations and Trends in Human-Computer Interaction, 8(2-3):73–272, March

2015.

[BDV00a] A. Berman, A. Dadourian, and P. Vlahos. Comprehensive method for re-

moving from an image the background surrounding a selected subject. U.S.

Patent 6,134,345, 2000.

[BDV00b] A. Berman, A. Dadourian, and P. Vlahos. Method for removing from an

image the background surrounding a selected object. U.S. Patent 6,134,346,

2000.

[BEL+11] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nüchter. The 3D Hough

Transform for Plane Detection in Point Clouds: A Review and a New Accu-

mulator Design. 3D Research, 2(2):32:1–32:13, 2011.

[Ber97] M. O. Berger. Resolving Occlusion in Augmented Reality: A Contour Based

Approach without 3D Reconstruction. In Proceedings of 1997 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pages 91–96,

San Juan, Puerto Rico, USA, June 1997.

[Ble] Blender. URL http://www.blender.org/. Accessed: October 8th, 2014.

139

http://www.blender.org/

[BMF03] R. Bridson, S. Marino, and R. Fedkiw. Simulation of Clothing with Folds

and Wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (SCA), pages 28–36, San Diego, CA,

USA, July 2003.

[BPS05] G. Bleser, Y. Pastarmov, and D. Stricker. Real-time 3D Camera Tracking

for Industrial Augmented Reality Applications. In Proceedings of the Inter-

national Conference in Central Europe on Computer Graphics, Visualization

and Computer Vision (WSCG), pages 47–54, Plzen, Czech Republic, January

2005.

[BR16] L. Bose and A. Richards. Fast Depth Edge Detection and Edge Based RGB-

D SLAM. In Proceedings of the 2016 IEEE International Conference on

Robotics and Automation (ICRA), pages 1323–1330, Stockholm, Sweden,

May 2016.

[BRF01] D. Bandyopadhyay, R. Raskar, and H. Fuchs. Dynamic Shader Lamps: Paint-

ing on Movable Objects. In Proceedings of the IEEE and ACM International

Symposium on Augmented Reality (ISAR), pages 207–216, New York, NY,

USA, October 2001.

[BRW95] D. Breen, E. Rose, and R. T. Whitaker. Interactive Occlusion and Collision

of Real and Virtual Objects in Augmented Reality. Technical Report ECRC-

95-02, ECRC, Munich, Germany, 1995.

[BS12] A. Breitenmoser and R. Siegwart. Surface Reconstruction and Path Plan-

ning for Industrial Inspection with a Climbing Robot. In Proceedings of the

2nd International Conference on Applied Robotics for the Power Industry

(CARPI), pages 22–27, Zurich, Switzerland, September 2012.

[Bur81] P. J. Burt. Fast Filter Transform for Image Processing. Computer Graphics

and Image Processing, 16(1):20–51, May 1981.

140

[Bus03] S. R. Buss. 3D Computer Graphics: A Mathematical Introduction with OpenGL.

Cambridge University Press, New York, NY, USA, 2003. isbn: 0521821037.

[BWR+96] D. E. Breen, R. T. Whitaker, E. Rose, and M. Tuceryan. Interactive Oc-

clusion and Automatic Object Placement for Augmented Reality. Computer

Graphics Forum, 15(3):11–22, August 1996.

[BWS06] G. Bleser, H. Wuest, and D. Stricker. Online camera pose estimation in

partially known and dynamic scenes. In Proceedings of the 5th IEEE and

ACM International Symposium on Mixed and Augmented Reality (ISMAR),

pages 56–65, Santa Barbara, CA, USA, October 2006.

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,

B. C. McCallum, and T. R. Evans. Reconstruction and Representation of

3D Objects with Radial Basis Functions. In Proceedings of the 28th annual

conference on Computer graphics and interactive techniques (SIGGRAPH),

pages 67–76, Los Angeles, California, USA, August 2001.

[CC10] C. Choi and H. I. Christensen. Real-time 3D Model-based Tracking Using

Edge and Keypoint Features for Robotic Manipulation. In Proceedings of the

2010 IEEE International Conference on Robotics and Automation (ICRA),

pages 4048–4055, Anchorage, AK, USA, May 2010.

[CC78] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary

topological meshes. Computer-Aided Design, 10(6):350–355, 1978.

[CFT17] L. Chen, K. Francis, and W. Tang. Semantic Augmented Reality Environ-

ment with Material-Aware Physical Interactions. In Proceedings of the 16th

IEEE International Symposium on Mixed and Augmented Reality (ISMAR

Adjunct), pages 135–136, Nantes, France, October 2017.

[CGB+09] F. I. Cosco, C. Garre, F. Bruno, M. Muzzupappa, and M. A. Otaduy. Aug-

mented Touch without Visual Obtrusion. In Proceedings of the 8th IEEE In-

141

ternational Symposium on Mixed and Augmented Reality (ISMAR), pages 99–

102, Orlando, FL, USA, October 2009.

[CUD] CUDA. URL https://www.geforce.com/hardware/technology/cuda.

Accessed: February 2th, 2016.

[CYA+11] J. H. Cho, T. Yamasaki, K. Aizawa, and K. H. Lee. Depth video camera based

temporal alpha matting for natural 3D scene generation. In Proceedings of

the 3DTV Conference: The True Vision - Capture, Transmission and Display

of 3D Video (3DTV-CON), pages 1–4, Antalya, Turkey, May 2011.

[DC02] T. Drummond and R. Cipolla. Real-time Visual Tracking of Complex Struc-

tures. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(7):932–946, July 2002.

[DCY+16] C. Du, Y. Chen, M. Ye, and L. Ren. Edge Snapping-Based Depth Enhance-

ment for Dynamic Occlusion Handling in Augmented Reality. In Proceedings

of the 15th IEEE International Symposium on Mixed and Augmented Reality

(ISMAR), pages 54–62, Merida, Yucatan, Mexico, September 2016.

[DFK13] S. Dong, C. Feng, and V. R. Kamat. Real-Time Occlusion Handling for Dy-

namic Augmented Reality Using Geometric Sensing and Graphical Shading.

Journal of Computing in Civil Engineering, 27(6):607–621, November 2013.

[DG10] J.-E. Deschaud and F. Goulette. A Fast and Accurate Plane Detection Al-

gorithm for Large Noisy Point Clouds Using Filtered Normals and Voxel

Growing. In Proceedings of the 5th International Symposium on 3D Data

Processing, Visualization and Transmission (3DPVT), Paris, France, May

2010.

[DH06] S. DiVerdi and T. Höllerer. Image-space Correction of AR Registration Er-

rors Using Graphics Hardware. In Proceedings of the IEEE Virtual Reality

Conference (VR), pages 241–244, Alexandria, VA, USA, March 2006.

142

https://www.geforce.com/hardware/technology/cuda

[DMG+02] J. Davis, S. Marschner, M. Garr, and M. Levoy. Filing Holes in Complex

Surfaces Using Volumetric Diffusion. In Proceedings of the first Interna-

tional Symposium on 3D Data Processing Visualization and Transmission,

pages 428–441, Padova, Italy, June 2002.

[DMM03] A. J. Davison, W. W. Mayol, and D. W. Murray. Real-Time Workspace

Localisation and Mapping for Wearable Robot. In Proceedings of the 2th

IEEE and ACM International Symposium on Mixed and Augmented Reality

(ISMAR), pages 315–316, Tokyo, Japan, October 2003.

[DSM+17] M. Dzitsiuk, J. Sturm, R. Maier, L. Ma, and D. Cremers. De-noising, Sta-

bilizing and Completing 3D Reconstructions On-the-go using Plane Priors.

In Proceedings of the 2017 IEEE International Conference on Robotics and

Automation (ICRA), pages 3976–3983, Singapore, 2017.

[ED06] E. Eade and T. Drummond. Edge Landmarks in Monocular SLAM. In Pro-

ceedings of the British Machine Vision Conference 2006 (BMVC), pages 7–

16, Edinburgh, UK, September 2006.

[ED14] A. Eklund and P. Dufort. Non-separable 2D, 3D, and 4D Filtering with

CUDA. In GPU Pro 5, pages 469–492. CRC Press, 2014.

[Erl04] K. Erleben. Stable, Robust, and Versatile Multibody Dynamics Animation.

PhD thesis, University of Copenhagen, Deptartment of Computer Science,

2004.

[FB81] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated Car-

tography. Communications of the ACM, 24(6):381–395, June 1981.

[FDF+90] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Prin-

ciples and Practic (2Nd Ed.) Addison-Wesley Professional, 1990.

143

[FDG+06] Y. Feng, W. Du, X. Guan, F. Gao, and Y. Chen. Realization of Multilayer

Occlusion between Real and Virtual Scenes in Augmented Reality. In Pro-

ceedings of the 10th International Conference on Computer Supported Coop-

erative Work in Design (CSCWD), pages 1–5, Nanjing, China, May 2006.

[FHF+99] A. Fuhrmann, G. Hesina, F. Faure, and M. Gervautz. Occlusion in collabora-

tive augmented environments. Computers & Graphics, 23(6):809–819, 1999.

[FHS07] J. Fischer, B. Huhle, and A. Schilling. Using Time-of-flight Range Data

for Occlusion Handling in Augmented Reality. In Proceedings of the 13th

Eurographics Conference on Virtual Environments (EGVE), pages 109–116,

Weimar, Germany, July 2007.

[FL01] S. Fisher and M. C. Lin. Deformed Distance Fields for Simulation of Non-

penetrating Flexible Bodies. In Proceedings of the Eurographic Workshop

on Computer Animation and Simulation, pages 99–111, Manchester, UK,

September 2001.

[FRB03] J. Fischer, H. Regenbrecht, and G. Baratoff. Detecting Dynamic Occlusion in

Front of Static Backgrounds for AR Scenes. In Proceedings of the Workshop

on Virtual Environments 2003 (EGVE), pages 153–161, Zurich, Switzerland,

May 2003.

[FSG03] A. Fuhrmann, G. Sobottka, and C. Groß. Distance Fields for Rapid Collision

Detection in Physically Based Modeling. In Proceedings of the International

Conference on Computer Graphics and Vision (Graphicon), pages 58–65,

Moscow, Russia, September 2003.

[FTK14] C. Feng, Y. Taguchi, and V. R. Kamat. Fast Plane Extraction in Organized

Point Clouds Using Agglomerative Hierarchical Clustering. In Proceedings

of the 2014 IEEE International Conference on Robotics and Automation

(ICRA), pages 6218–6225, Hong Kong, China, May 2014.

144

[GBF03] E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex Rigid Bodies with

Stacking. In Proceedings of ACM SIGGRAPH 2003 Papers (SIGGRAPH),

pages 871–878, San Diego, CA, USA, July 2003.

[GHH01] S. Gibson, T. Howard, and R. Hubbold. Flexible Image-Based Photomet-

ric Reconstruction using Virtual Light Sources. Computer Graphics Forum,

20(3):203–214, September 2001.

[GJM+10] R. Grompone von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall. LSD:

A Fast Line Segment Detector with a False Detection Control. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 32(4):722–732, April

2010.

[GM06] A. P. Gee and W. Mayol-Cuevas. Real-Time Model-Based SLAM Using Line

Segments. In Proceedings of the International Symposium on Visual Comput-

ing (ISVC), pages 354–363, Lake Tahoe, NV, USA, November 2006.

[GMS+17] R. Gomez-Ojeda, F.-A. Moreno, D. Scaramuzza, and J. Gonzalez-Jimenez.

Pl-slam: a stereo slam system through the combination of points and line

segments. arXiv preprint arXiv:1705.09479, 2017.

[GO10] E. S. L. Gastal and M.l M. Oliveira. Shared Sampling for Real-Time Alpha

Matting. Computer Graphics Forum, 29(2):575–584, May 2010.

[GO12] E. S. L. Gastal and M. M. Oliveira. Adaptive Manifolds for Real-Time High-

Dimensional Filtering. ACM Transactions on Graphics (TOG), Proceedings

of ACM SIGGRAPH 2012, 31(4):33:1–33:13, 2012.

[Har93] C. Harris. Tracking with rigid models. In Active Vision, pages 59–73. MIT

Press, 1993.

[HB13] D. Holz and S. Behnke. Fast Range Image Segmentation and Smoothing Us-

ing Approximate Surface Reconstruction and Region Growing. In Intelligent

Autonomous Systems 12: Volume 2 Proceedings of the 12th International

Conference IAS-12, pages 61–73, Jeju Island, Korea, June 2013.

145

[HBS+12] R. Hulik, V. Beran, M. Spanel, P. Krsek, and P. Smrz. Fast and Accurate

Plane Segmentation in Depth Maps for Indoor Scenes. In Proceedings of the

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 1665–1670, Vilamoura, Portugal, October 2012.

[HDH03] M. Haller, S. Drab, and W. Hartmann. A Real-time Shadow Approach for

an Augmented Reality Application Using Shadow Volumes. In Proceedings of

the ACM Symposium on Virtual Reality Software and Technology (VRST),

pages 56–65, Osaka, Japan, October 2003.

[HHR+12] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke. Real-Time Plane Segmen-

tation Using RGB-D Cameras. In RoboCup 2011: Robot Soccer World Cup

XV, pages 306–317, 2012.

[Hou62] P. V. C. Hough. Method and means for recognizing complex patterns. U.S.

Patent 3,069,654, 1962.

[HRR+11] K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun. A Global Sampling

Method for Alpha Matting. In Proceedings of the 2011 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 2049–2056,

Colorado Springs, CO, USA, June 2011.

[HS12] K. Hirose and H. Saito. Fast Line Description for Line-based SLAM. In Pro-

ceedings of the British Machine Vision Conference 2012 (BMVC), pages 83.1–

83.11, Surrey, UK, September 2012.

[HS90] C. Harris and C. Stennett. RAPID - A Video Rate Object Tracker. In Pro-

ceedings of the British Machine Vision Conference 1990 (BMVC), pages 15.1–

15.6, Oxford, UK, September 1990.

[HST13] K. He, J. Sun, and X. Tang. Guided Image Filtering. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 35(6):1397–1409, June 2013.

146

[IKH+11] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shot-

ton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. KinectFusion:

Real-time 3D Reconstruction and Interaction Using a Moving Depth Cam-

era. In Proceedings of the 24th Annual ACM Symposium on User Interface

Software and Technology (UIST), pages 559–568, Santa Barbara, California,

USA, October 2011.

[JMA06] N. Joshi, W. Matusik, and S. Avidan. Natural Video Matting Using Camera

Arrays. In Proceedings of ACM SIGGRAPH 2006 Papers (SIGGRAPH),

pages 779–786, Boston, Massachusetts, August 2006.

[JVC+16] J. Johnson, E. S. Varnousfaderani, H. Cholakkal, and D. Rajan. Sparse Cod-

ing for Alpha Matting. IEEE Transactions on Image Processing, 25(7):3032–

3043, 2016.

[KA08] A. Koschan and M. A. Abidi. Digital Color Image Processing. Wiley-Interscience,

2008.

[KBS16] H. Kolivand, M. Billinghurst, and M. S. Sunar. Livephantom: retrieving vir-

tual world light data to real environments. PLOS ONE, 11(12):1–19, Decem-

ber 2016.

[KCL+07] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele. Joint Bilateral Up-

sampling. In Proceedings of ACM SIGGRAPH 2007 Papers (SIGGRAPH),

San Diego, California, USA, August 2007.

[KD04] G. Klein and T. Drummond. Sensor Fusion and Occlusion Refinement for

Tablet-Based AR. In Proceedings of the 3th IEEE and ACM International

Symposium on Mixed and Augmented Reality (ISMAR), pages 38–47, Arling-

ton, VA, USA, November 2004.

[KDN93] D. Koller, K. Danilidis, and H.-H. Nagel. Model-based Object Tracking in

Monocular Image Sequences of Road Traffic Scenes. International Journal

of Computer Vision, 10(3):257–281, June 1993.

147

[KDS+15] M. Klingensmith, I. Dryanovski, S. S. Srinivasa, and J. Xiao. Chisel: real time

large scale 3d reconstruction onboard a mobile device using spatially hashed

signed distance fields. In Robotics: Science and Systems (RSS), Rome, Italy,

July 2015.

[Kli00] G. Klinker. Augmented reality: a problem in need of many computer vision-

based solutions. In Confluence of Computer Vision and Computer Graphics,

pages 267–284. Springer Netherlands, 2000.

[KM07] G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR

Workspaces. In Proceedings of the 6th IEEE and ACM International Sym-

posium on Mixed and Augmented Reality (ISMAR), pages 225–234, Nara,

Japan, November 2007.

[KM08] G. Klein and D. Murray. Improving the Agility of Keyframe-Based SLAM. In

Proceedings of the 10th European Conference on Computer Vision (ECCV),

pages 802–815, Marseille, France, October 2008.

[KMB+14] A. Krull, F. Michel, E. Brachmann, S. Gumhold, S. Ihrke, and C. Rother. 6-

dof model based tracking via object coordinate regression. In Proceedings of

the 12th Asian Conference on Computer Vision (ACCV), Singapore, Novem-

ber 2014.

[KSF10] E. Kruijff, J. E. Swan, and S. Feiner. Perceptual Issues in Augmented Reality

Revisited. In Proceedings of the 9th IEEE International Symposium on Mixed

and Augmented Reality (ISMAR), pages 3–12, Seoul, South Korea, October

2010.

[KSW+11] D. Kalkofen, C. Sandor, S. White, and D. Schmalstieg. Visualization Tech-

niques for Augmented Reality. In Handbook of Augmented Reality. Springer

New York, 2011, pages 65–98.

[LAG13] J. A. Leal-Meléndrez, L. Altamirano-Robles, and J. A. Gonzalez. Occlusion

Handling in Video-Based Augmented Reality Using the Kinect Sensor for

148

Indoor Registration. In Progress in Pattern Recognition, Image Analysis,

Computer Vision, and Applications (CIARP), pages 447–454, Havana, Cuba,

November 2013.

[LB00] V. Lepetit and M.-O. Berger. A Semi-Automatic Method for Resolving Oc-

clusion in Augmented Reality. In Proceedings of 2000 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 225–230, Hilton

Head Island, SC, USA, June 2000.

[LC87] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution 3D

Surface Construction Algorithm. In Proceedings of the 14th Annual Con-

ference on Computer Graphics and Interactive Techniques (SIGGRAPH),

pages 163–169, Anaheim, California, USA, August 1987.

[LCK16] S. Liu, C. Chen, and N. Kehtarnavaz. A Computationally Efficient Denoising

and Hole-Filling Method for Depth Image Enhancement. Real-Time Image

and Video Processing 2016, 9897, 2016.

[LF05] V. Lepetit and P. Fua. Monocular Model-Based 3D Tracking of Rigid Ob-

jects: A Survey. Foundations and Trends in Computer Graphics and Vision,

1(1):1–89, January 2005.

[LL12] T. Lu and S. Li. Image Matting with Color and Depth Information. In

Proceedings of the 21st International Conference on Pattern Recognition

(ICPR), pages 3787–3790, Tsukuba, Japan, November 2012.

[LLL+12] T.-k. Lee, S. Lim, S. Lee, S. An, and S.-y. Oh. Indoor Mapping Using Planes

Extracted from Noisy RGB-D Sensors. In Proceedings of the 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 1727–

1733, Vilamoura, Portugal, October 2012.

[LLW08] A. Levin, D. Lischinski, and Y. Weiss. A Closed-Form Solution to Natu-

ral Image Matting. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 30(2):228–242, February 2008.

149

[LMC17] O. Lézoray, C. Meurie, and E. Celebi. Superpixels for Image Processing and

Computer Vision. Journal of Electronic Imaging, Society of Photo-optical

Instrumentation Engineers, October 2017.

[Low92] D. G. Lowe. Robust model-based motion tracking through the integration of

search and estimation. International Journal of Computer Vision, 8(2):113–

122, August 1992.

[LSF+10] J. P. Lima, F. Simões, L. Figueiredo, and J. Kelner. Model Based Markerless

3D Tracking applied to Augmented Reality. SBC Journal on 3D Interactive

Systems, 1:2–15, 2010.

[LVT+03] V. Lepetit, L. Vacchetti, D. Thalmann, and P. Fua. Fully Automated and

Stable Registration for Augmented Reality Applications. In Proceedings of

the 2th IEEE and ACM International Symposium on Mixed and Augmented

Reality (ISMAR), pages 93–102, Tokyo, Japan, October 2003.

[LZL+13] J. H. Lee, G. Zhang, J. Lim, and I. H. Suh. Place Recognition using Straight

Lines for Vision-based SLAM. In Proceedings of the 2013 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 3799–3806,

Karlsruhe, Germany, May 2013.

[Mat] Matlab. URL https://de.mathworks.com/. Accessed: March 10th, 2018.

[MKS+11] T. Mörwald, M. Kopicki, R. Stolkin, J. Wyatt, S. Zurek, M. Zillich, and M.

Vincze. Predicting the Unobservable Visual 3D Tracking with a Probabilistic

Motion Model. In Proceedings of the 2011 IEEE International Conference on

Robotics and Automation (ICRA), pages 1849–1855, Shanghai, China, May

2011.

[MNZ+15] S. Magnenat, D. T. Ngo, F. Zund, M. Ryffel, G. Noris, G. Rothlin, A. Marra,

M. Nitti, P. Fua, M. Gross, and R. W. Sumner. Live Texturing of Augmented

Reality Characters from Colored Drawings. IEEE Transactions on Visual-

ization and Computer Graphics, 21(11):1201–1210, November 2015.

150

https://de.mathworks.com/

[MW88] M. Moore and J. Wilhelms. Collision Detection and Response for Com-

puter Animation. In Proceedings of the 15th Annual Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH), pages 289–298, Atlanta,

Georgia, USA, August 1988.

[NDI+11] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shot-

ton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon. KinectFusion:

Real-time Dense Surface Mapping and Tracking. In Proceedings of the 10th

IEEE International Symposium on Mixed and Augmented Reality (ISMAR),

pages 127–136, Basel, Switzerland, October 2011.

[NFS15] R. A. Newcombe, D. Fox, and S. M. Seitz. DynamicFusion: Reconstruction

and Tracking of Non-rigid Scenes in Real-Time. In Proceedings of the 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 343–352, Boston, MA, USA, June 2015.

[NLD11] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. DTAM: Dense Tracking

and Mapping in Real-Time. In Proceedings of the 2011 IEEE International

Conference on Computer Vision (ICCV), pages 2320–2327, Barcelona, Spain,

November 2011.

[NPD07] J. Neubert, J. Pretlove, and T. Drummond. Semi-Autonomous Generation

of Appearance-based Edge Models from Image Sequences. In Proceedings of

the 6th IEEE and ACM International Symposium on Mixed and Augmented

Reality (ISMAR), pages 79–89, Nara, Japan, November 2007.

[NS09] Z. Noh and M. S. Sunar. A Review of Shadow Techniques in Augmented

Reality. In Proceedings of the Second International Conference on Machine

Vision (ICMV), pages 320–324, Dubai, United Arab Emirates, December

2009.

[NSS+16] Y. Nakayama, H. Saito, M. Shimizu, and N. Yamaguchi. Marker-Less Aug-

mented Reality Framework Using On-Site 3D Line-Segment-based Model

151

Generation. Journal of Imaging Science and Technology, 60(2):20401-1–20401-

24, March 2016.

[OAB+85] J. M. Ogden, E. H. Adelson, J R. Bergen, and P. J. Burt. Pyramid-Based

computer graphics. RCA Engineer, 30(5):4–15, 1985.

[OSW+11] B. Oehler, J. Stueckler, J. Welle, D. Schulz, and S. Behnke. Efficient Multi-

resolution Plane Segmentation of 3D Point Clouds. In Proceedings of the 4th

International Conference on Intelligent Robotics and Applications (ICIRA),

pages 145–156, Aachen, Germany, December 2011.

[Pan11] G. Panin. Model-based Visual Tracking: The OpenTL Framework. Wiley,

2011. isbn: 9781118002131.

[PD84] T. Porter and T. Duff. Compositing digital images. In Proceedings of the

11th Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH), pages 253–259, Minneapolis, Minnesota, USA, July 1984.

[PL07] J. Platonov and M. Langer. Automatic Contour Model Creation out of Polyg-

onal CAD Models for Markerless Augmented Reality. In Proceedings of the

6th IEEE and ACM International Symposium on Mixed and Augmented Re-

ality (ISMAR), pages 75–78, Nara, Japan, November 2007.

[Pod07] V. Podlozhnyuk. Image Convolution with CUDA. NVIDIA Corporation white

paper :4–21, June 2007.

[Pro] NVIDIA Visual Profiler. URL https://developer.nvidia.com/nvidia-

visual-profiler. Accessed: February 2th, 2016.

[PVB+08] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak. Fast Plane Detec-

tion and Polygonalization in Noisy 3D Range Images. In Proceedings of the

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 3378–3383, Nice, France, September 2008.

152

https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler

[RD06] G. Reitmayr and T. W. Drummond. Going out: Robust Model-based Track-

ing for Outdoor Augmented Reality. In Proceedings of the 5th IEEE and

ACM International Symposium on Mixed and Augmented Reality (ISMAR),

pages 109–118, Santa Barbara, CA, USA, October 2006.

[RN17] John C. Russ and F. Brent Neal. The Image Processing Handbook, Seventh

Edition. CRC Press, Inc., 7th edition, 2017.

[RPS+18] J. Rambach, A. Pagani, M. Schneider, O. Artemenko, and D. Stricker. 6DoF

Object Tracking based on 3D Scans for Augmented Reality Remote Live

Support. Computers, 7(1), 2018.

[RRG08] C. Rhemann, C. Rother, and M. Gelautz. Improving Color Modeling for

Alpha Matting. In Proceedings of the British Machine Vision Conference

2008 (BMVC), Leeds, UK, September 2008.

[RRW+09] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and P. Rott. A

Perceptually Motivated Online Benchmark for Image Matting. In Proceedings

of the 2009 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1826–1833, Miami, FL, USA, June 2009.

[RT00] M. A. Ruzon and C. Tomasi. Alpha Estimation in Natural Images. In Pro-

ceedings of 2000 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 18–25, Hilton Head Island, SC, USA, June 2000.

[RV12] H. Roth and M. Vona. Moving Volume KinectFusion. In Proceedings of the

British Machine Vision Conference 2012 (BMVC), pages 1–11, Surrey, UK,

2012.

[SDKa] Microsoft HoloLens SDK. Spatial mapping. URL https : / / developer .

microsoft.com/en-us/windows/mixed-reality/spatial_mapping. Ac-

cessed: February 19th, 2018.

153

https://developer.microsoft.com/en-us/windows/mixed-reality/spatial_mapping
https://developer.microsoft.com/en-us/windows/mixed-reality/spatial_mapping

[SDKb] Vuforia AR SDK. Smart Terrain. URL https://library.vuforia.com/

articles/Training/Getting-Started-with-Smart-Terrain. Accessed:

February 19th, 2018.

[SH15] D. Schmalstieg and T. Höllerer. Augmented Reality: Principles and Prac-

tice. Addison-Wesley usability and HCI series. Addison-Wesley, 2015. isbn:

9780321883575.

[SJT+] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum. Poisson Matting. In Proceedings

of ACM SIGGRAPH 2004 Papers (SIGGRAPH).

[SMG05] R. Subbarao, P. Meer, and Y. Gene. A Balanced Approach to 3D Tracking

from Image Streams. In Proceedings of the 4th IEEE and ACM International

Symposium on Mixed and Augmented Reality (ISMAR), pages 70–78, Vienna,

Austria, October 2005.

[SNV02] J. Schmidt, H. Niemann, and S. Vogt. Dense Disparity Maps in Real-Time

with an Application to Augmented Reality. In Proceedings of the IEEE Work-

shop on Applications of Computer Vision (WACV), pages 225–230, Orlando,

FL, USA, December 2002.

[SSG+14] N. Silberman, L. Shapira, R. Gal, and P. Kohli. A Contour Completion

Model for Augmenting Surface Reconstructions. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), pages 488–503, Zurich,

Switzerland, September 2014.

[SSI03] I. Sato, Y. Sato, and K. Ikeuchi. Illumination from Shadows. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 25(3):290–300, March

2003.

[SYT+12] Y. Souma, H. Yamachi, Y. Tsujimura, and Y. Kambayashi. Interaction in

Augmented Reality by Means of Z-buffer Based Collision Detection. In Pro-

ceedings of the Fifth International Conference on Advances in Computer-

Human Interactions (ACHI), pages 315–318, Valencia, Spain, January 2012.

154

https://library.vuforia.com/articles/Training/Getting-Started-with-Smart-Terrain
https://library.vuforia.com/articles/Training/Getting-Started-with-Smart-Terrain

[TGW10a] Y. Tian, T. Guan, and C. Wang. An automatic occlusion handling method

in augmented reality. Sensor Review, 30(3):210–218, 2010.

[TGW10b] Y. Tian, T. Guan, and C. Wang. Real-Time Occlusion Handling in Aug-

mented Reality Based on an Object Tracking Approach. Sensors, 10(4):2885–

2900, 2010.

[TJR+13] Y. Taguchi, Y. D. Jian, S. Ramalingam, and C. Feng. Point-Plane SLAM for

Hand-Held 3D Sensors. In Proceedings of the 2013 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 5182–5189, Karlsruhe,

Germany, May 2013.

[TKH+05] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A.

Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, and

P. Volino. Collision Detection for Deformable Objects. Computer Graphics

Forum, 24(1):61–81, March 2005.

[TLX+15] Y. Tian, Y. Long, D. Xia, H. Yao, and J. Zhang. Handling Occlusions in

Augmented Reality Based on 3D Reconstruction Method. Neurocomputing,

156(C):96–104, May 2015.

[TM98] C. Tomasi and R. Manduchi. Bilateral Filtering for Gray and Color Images.

In Proceedings of the Sixth International Conference on Computer Vision

(ICCV), pages 839–846, Bombay, India, January 1998.

[TRC12] A. J. B. Trevor, J. G. Rogers, and H. I. Christensen. Planar Surface SLAM

with 3D and 2D Sensors. In Proceedings of the 2012 IEEE International

Conference on Robotics and Automation (ICRA), pages 3041–3048, Saint

Paul, MN, USA, May 2012.

[War] 3D Warehouse. URL https://3dwarehouse.sketchup.com/. Accessed:

October 8th, 2014.

[WC07a] J. Wang and M. F. Cohen. Image and Video Matting: A Survey. Foundations

and Trends in Computer Graphics and Vision, 3(2):97–175, January 2007.

155

https://3dwarehouse.sketchup.com/

[WC07b] J. Wang and M. F. Cohen. Optimized Color Sampling for Robust Matting. In

Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1–8, Minneapolis, MN, USA, June 2007.

[WFQ+07] O. Wang, J. Finger, Y. Qingxiong, J. Davis, and Y. Ruigang. Automatic

Natural Video Matting with Depth. In Proceedings of the 15th Pacific Con-

ference on Computer Graphics and Applications (PG), pages 469–472, Maui,

HI, USA, November 2007.

[WGS03] J. Weingarten, G. Gruener, and R. Siegwart. A Fast and Robust 3D Feature

Extraction Algorithm for Structured Environment Reconstruction. In Pro-

ceedings of the 11th International Conference on Advanced Robotics, Coim-

bra, Portugal, June 2003.

[WGZ+12] L. Wang, M. Gong, C. Zhang, R. Yang, C. Zhang, and Y.-H.Yang. Automatic

Real-Time Video Matting Using Time-of-Flight Camera and Multichannel

Poisson Equations. International Journal of Computer Vision, 97(1):104–

121, March 2012.

[WHN17] Y. Wu, X. He, and T. Q. Nguyen. Moving Object Detection With a Freely

Moving Camera via Background Motion Subtraction. IEEE Transactions on

Circuits and Systems for Video Technology, 27(2):236–248, February 2017.

[WJK+13] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald. Ro-

bust Real-Time Visual Odometry for Dense RGB-D Mapping. In Proceed-

ings of the 2013 IEEE International Conference on Robotics and Automation

(ICRA), pages 5724–5731, Karlsruhe, Germany, May 2013.

[WLS+15] T. Whelan, S. Leutenegger, R. F. Salas-moreno, B. Glocker, and A. Davison.

ElasticFusion : Dense SLAM Without A Pose Graph. In Robotics: Science

and Systems (RSS), Rome, Italy, July 2015.

[WLW09] Z. Wang, H. Liu, and F. Wu. HLD: A robust descriptor for line matching. In

Proceedings of the11th IEEE International Conference on Computer-Aided

156

Design and Computer Graphics (CAD/Graphics), pages 128–133, Huang-

shan, China, August 2009.

[WS07] H. Wuest and D. Stricker. Tracking of industrial objects by using CAD mod-

els. Journal of Virtual Reality and Broadcasting, 4(1):155–164, 2007.

[WVS05] H. Wuest, F. Vial, and D. Stricker. Adaptive Line Tracking with Multi-

ple Hypotheses for Augmented Reality. In Proceedings of the 4th IEEE and

ACM International Symposium on Mixed and Augmented Reality (ISMAR),

pages 62–69, Vienna, Austria, October 2005.

[WWH09] Z. Wang, F. Wu, and Z. Hu. Msld: a robust descriptor for line matching.

Pattern Recognition, 42(5):941–953, May 2009.

[XDW+14] J. Bing Xiahou, X. Na Deng, Q. Qian Wei, and X. Wei Liu. Real-Time Video

Matting Algorithm Based on Chroma Key. Advanced Materials Research,

926-930:3161–3164, May 2014.

[XPC+17] N. Xu, B. Price, S. Cohen, and T. Huang. Deep image matting. In Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 311–320, Honolulu, HI, USA, July 2017.

[XZW12] K. Xu, J. Zhou, and Z. Wang. A Method of Hole-filling for the Depth

Map Generated by Kinect with Moving Objects Detection. In Proceedings of

the IEEE international Symposium on Broadband Multimedia Systems and

Broadcasting (BMSB), pages 1–5, Seoul, South Korea, June 2012.

[YKP12] N.-E. Yang, Y.-G. Kim, and R.-H. Park. Depth Hole Filling Using the Depth

Distribution of Neighboring Regions of Depth Holes in the Kinect Sensor. In

Proceedings of the 2012 IEEE International Conference on Signal Process-

ing, Communication and Computing (ICSPCC), pages 658–661, Hong Kong,

China, August 2012.

157

[YZ14] L. Yin and J. Zhao. Real-Time Automatic Chroma-Key Matting Using Per-

ceptual Analysis and Prediction. In Proceedings of the IEEE 27th Canadian

Conference on Electrical and Computer Engineering (CCECE), pages 1–4,

Toronto, ON, Canada, May 2014.

[ZLY+09] J. Zhu, M. Liao, R. Yang, and Z. Pan. Joint Depth and Alpha Matte Op-

timization via Fusion of Stereo and Time-of-Flight Sensor. In Proceedings

of the 2009 IEEE Conference on Computer Vision and Pattern Recognition

Workshops (CVPR Workshops), pages 453–460, Miami, FL, USA, June 2009.

[ZSL+15] Q. Zhu, L. Shao, X. Li, and L. Wang. Targeting Accurate Object Extrac-

tion From an Image: A Comprehensive Study of Natural Image Matting.

IEEE Transactions on Neural Networks and Learning Systems, 26(2):185–

207, February 2015.

[ZSW14] F. Zheng, D. Schmalstieg, and G. Welch. Pixel-wise Closed-Loop Registra-

tion in Video-Based Augmented Reality. In Proceedings of the 13th IEEE In-

ternational Symposium on Mixed and Augmented Reality (ISMAR), pages 135–

143, Munich, Germany, September 2014.

158

Curriculum Vitae

Name Anna Katharina Hebborn

Date of birth June 28, 1985

Place of birth Bergisch Gladbach

Nationality German

2005 General qualification for university entrance

Gymnasium Herkenrath, Bergisch Gladbach

2005–2008 Professional training as Media Designer

Book and offset printing Häuser KG, Cologne

Digital and print media with focus on media technology

2008–2011 Bachelor of Science, Computational Visualistics

University of Koblenz-Landau, Koblenz

Bachelor thesis at research group Computer Graphics:

Acceptance of Tangible User Interfaces in AR Gaming

2011–2013 Master of Science, Computational Visualistics

University of Koblenz-Landau, Koblenz

Master thesis at metaio GmbH, Munich:

Automatic Generation of 3D Edge Models from Polygon

Models for Model-based Tracking

since 2013 Ph.D. Student and Research Associate

University of Koblenz-Landau, Koblenz

Institute for Computational Visualistics

Research group Computer Graphics

	Introduction
	Augmented Reality and Challenges
	Overview and Contributions

	Robust Model-based Tracking using Appearance-based Line Models
	Registration and Tracking Challenge
	Background of Model-based Tracking
	Taxonomy Model, Line and Edge
	Edge-based Methods and Challenges

	Related Work on Line Model Generation
	Appearance-based Line Models based on Mapping and Refinement
	Method Overview
	Line Model
	Keyposes
	Lines and Confidences

	Line Management
	Line states
	Re-initialization

	Edge-based Tracking
	Line Mapping and Refinement
	Extracting Lines
	Establishing Correspondences
	Adding New Lines and Updating Confidences

	Experimental Results
	Synthetic Image Sequences
	Real Image Sequences

	Conclusion and Future Work

	Optimizing 3D Reconstructions
	3D Reconstruction Challenge
	Background to KinectFusion
	Truncated Signed Distance Function
	Overview of the Pipeline
	Limitations and Improvements

	Related Work on Optimizing 3D Surface Reconstructions
	Plane Segmentation and Fitting
	Hole Filling, De-noising and Propagating Surfaces

	Propagating Surfaces, Hole Filling and De-noising during the 3D Reconstruction
	Method Overview
	TSDF Volume
	Local Plane Prior Estimation
	Planar Surface Propagation from Local Plane Priors
	De-noising and Refinement through Local Plane Priors
	Non-Planar Surface Propagation and Hole Filling via Diffusion
	Volume Integration
	Collisions and Occlusions with the TSDF
	Collision Detection and Response
	Occlusion Handling

	Experimental Results
	Surface Propagation without using Plane Priors
	Surface Propagation using Plane Priors
	Implementation Details and Runtime Performance

	Conclusion and Future Work

	Occlusion Matting: Realistic Occlusion Handling
	Occlusion Handling Challenge
	Related Work on Occlusion Handling
	Object-based Occlusion Handling
	Model-based Occlusion Handling
	Depth-based Occlusion Handling

	Occlusion Matting
	Idea and Motivation
	Occlusion as an Alpha Matting Problem

	Related Work on Alpha Matting
	Natural Image Matting
	Real-time Natural Image Matting and Video Matting
	Depth-based Trimap Generation and Matting

	Method Overview
	Adaptive Trimap Generation
	Coarse Segmentation
	Labeling of Unknown Regions
	Adaptive Dilation

	Foreground and Background Propagation
	Alpha Estimation
	Experimental Results
	Implementation Details and Runtime Performance
	Evaluation of the Algorithm
	Comparison with Edge-aware Filtering Methods
	Comparison with Edge Snapping-Based Method
	Comparison of Runtime Performance

	Limitations
	Optimizing Sensor Data with 3D Reconstruction
	Conclusion and Future Work

	Conclusion
	Summary and Achievements
	Future Work

	Own Publications
	Bibliography

