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Möglichkeit an diesem interessanten Thema zu arbeiten bedanken.

Ebenfalls danke ich Christian Fischer für die Übernahme meiner Betreuung und die Begleitung
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Summary

The presented study was motivated by the dynamic phenomena observed in basic catalytic surface

reactions, especially by bi- and tristability, and the interactions between these stable states. In this

regard, three reaction-diffusion models were developed and examined using bifurcation theory and

numerical simulations.

A first model was designed to extend the bistable CO oxidation on Ir(111) to include hydrogen and

its oxidation. The differential equation system was analyzed within the framework of bifurcation

theory, revealing three branches of stable solutions. One state is characterized by high formation

rates (upper rate state, UR), while the other two branches display low formation rates (lower rate

(LR) & very low rate (VLR) states). The overlapping branches form the shape of a ‘swallowtail’,

the curve of saddle-node bifurcations forming two cusps. Increasing the temperature leads to a

subsequent unfolding and hence decreases the system complexity.

A series of numerical simulations representing possible experiments was conducted to illus-

trate the experimental accessibility (or the lack) of said states. Relaxation experiments show par-

tially long decay times. Quasistatic scanning illustrates the existence of all three states within the

tristable regime and their respective conversion once crossing a fold.

A first attempt regarding the state dominance in reaction-diffusion fronts was done. While UR

seems to dominate in 1D, a 2D time-evolution shows that LR invades the interphase between UR

and VLR.

Subsequently, a generic monospecies mock model was used for the comprehensive study of reaction-

diffusion fronts. A quintic polynomial as reaction term was chosen, derived by the sixth-order po-

tential associated with the ‘butterfly bifurcation’. This ensures up to three stable solutions(u0,u1,u2),

depending on the four-dimensional parameter space.

The model was explored extensively, identifying regions with similar behaviors. A term for the

front velocity connecting two stable states was derived, depending only on the relative difference

of the states’ potential wells. Equipotential curves were found, where the front velocity vanishes

of a given front. Numerical simulations on a two-dimensional, finite disk using a triangulated

mesh supported these findings.

Additionally, the front-splitting instability was observed for certain parameters. The front

solution u02 becomes unstable and divides into u01 and u12, exhibiting different front velocities. A

good estimate for the limit of the front splitting region was given and tested using time evolutions.

Finally, the established mock model was modified from continuous to discrete space, utilizing

a simple domain in 1D and three different lattices in 2D (square, hexagonal, triangular). For
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vi SUMMARY

low diffusivities or large distances between coupling nodes, fronts can become pinned, if the

parameters are within range of the equipotential lines. This phenomenon is known as propagation

failure and its extent in parameter space was explored in 1D. In 2D, an estimate was given for

remarkable front orientations respective to the lattice using a pseudo-2D approximation.

Near the pinning region, front velocities differ significantly from the continuous expectation

as the shape of the curve potential becomes significant. Factors that decide the size and shape of

the pinning regions are the coupling strength, the lattice, the front orientation relative to the lattice,

and the front itself. The bifurcation diagram shows a snaking curve in the pinning region, each

alternating branch representing a stable or unstable frozen front solution.

Numerical simulations supported the observations concerning propagation failure and lattice

dependence. Furthermore, the influence of front orientation on the front velocity was explored

in greater detail, showing that fronts with certain lattice-dependent orientations are more or less

prone to propagation failure. This leads to the possibility of pattern formation, reflecting the lattice

geometry. An attempt to quantify the front movement depending on angular front orientation has

shown reasonable results and good agreement with the pseudo-2D approach.



Zusammenfassung

Motiviert wurde die vorliegende Arbeit durch die dynamischen Phänomene, die bei grundlegenden

katalytischen Oberflächenreaktionen beobachtet werden, insbesondere durch Bi- und Tristabilität

und die Wechselwirkungen zwischen diesen stabilen Zuständen. In diesem Zusammenhang wur-

den drei Reaktions-Diffusions-Modelle entwickelt und auf Bifurkationen analytisch und mittels

numerischer Simulationen untersucht.

Das erste Modell wurde entwickelt, um die bistabile CO-Oxidation auf Ir(111) um Wasserstoff und

dessen Oxidationsreaktionen zu erweitern. Das Differentialgleichungssystem wurde im Rahmen

der Bifurkationstheorie analysiert, wobei drei Zweige stabiler Lösungen gefunden wurden. Einer

der Zustände ist durch hohe Bildungsraten gekennzeichnet (upper rate, UR), während die ande-

ren beiden Zweige niedrige Bildungsraten aufweisen (lower rate (LR) & very low rate (VLR)). Die

Kurve der Sattel-Knoten-Bifurkationen bildet zwei Spitzen aus, wodurch die sich überschneidenden

Zustände die Form eines Schwalbenschwanzes bilden. Eine Temperaturerhöhung führt zur Entfal-

tung und damit zu einer Komplexitätserniedrigung des Systems.

Um die experimentelle (Un-)Zugänglichkeit dieser Zustände zu veranschaulichen wurde ei-

ne Reihe von numerischen Simulationen durchgeführt, die mögliche Experimente widerspiegeln.

Relaxationsexperimente zeigen teilweise lange Konvergenzzeiten. Quasi-statisches Scannen des

Versuchsparameters zeigt die Existenz aller drei Zustände innerhalb des tristabilen Region und

ihre jeweilige Umwandlung beim Verlassen desselben.

Ein erster Versuch bezüglich Reaktions-Diffusions-Fronten zwischen den stabilen Zuständen

wurde durchgeführt. In 1D dominiert UR, während in 2D die Interphase zwischen UR und VLR

durch den LR Zustand durchdrungen wird.

Anschließend wurde ein generisches ‘Parodie’-Monospezies-Modell für die umfassende Unter-

suchung von Reaktions-Diffusions-Fronten verwendet. Als Reaktionsterm wurde ein Polynom

fünften Grades gewählt. Dies resultiert aus einem polynomischen Potential sechster Ordnung, das

mit der “Schmetterlingsbifurkation” verbunden ist. Dies garantiert abhängig von dem vierdimen-

sionalen Parameterraum bis zu drei stabile Lösungen (u0,u1,u2).

Das Modell wurde eingehend untersucht, wobei Regionen mit ähnlichem Verhalten identifi-

ziert wurden. Es wurde ein Term für die Frontgeschwindigkeit zwischen zwei stabilen Zuständen

abgeleitet, der eine Abhängigkeit von der relativen Potentialdifferenz der beiden Zustände zeigt. Es

wurden Äquipotentialkurven gefunden, bei denen die Geschwindigkeit der zugehörigen Front ver-

schwindet. Numerische Simulationen auf einer zweidimensionalen, endlichen Scheibe unterstützten

diese Ergebnisse.
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Außerdem wurde die Front-Splitting-Instabilität beobachtet, bei der die Frontlösung u02 insta-

bil wird und sich in u01 und u12 mit je unterschiedlichen Geschwindigkeiten aufteilt. Eine gute

Schätzung zu den Grenzen der Front-Splitting-Region wurde gegeben und mit Hilfe von numeri-

schen Zeitentwicklungen überprüft.

Schließlich wurde das etablierte kontinuierliche Modell räumlich diskretisiert, wobei eine einfache

Domäne in 1D und drei verschiedene Gitter in 2D (quadratisch, hexagonal, dreieckig) verwendet

wurden. Bei niedrigen Diffusivitäten oder großen Abständen zwischen den gekoppelten Knoten

können die Fronten ‘einfrieren’, falls die Parameter in der Nähe einer Äquipotentiallinie liegen.

Dieses Phänomen ist als Propagationsversagen (PF) bekannt und sein Ausmaß im Parameterraum

(Pinning Region) wurde in 1D untersucht. In 2D wurde zunächst eine Schätzung für die Frontaus-

breitung in ausgezeichnete Gitterrichtungen mittels einer Pseudo-2D-Näherung vorgenommen.

Nahe der Pinning-Region weichen die Frontgeschwindigkeiten erheblich von der kontinuier-

lichen Erwartung ab, da die exakte Form des Potentials signifikant wird. Größe und Form der

Pinning-Regionen wird von der Kopplungsstärke, dem Gitter, die Frontausrichtung zum Gitter

und die Frontlösung selbst entschieden. Das Bifurkationsdiagramm zeigt eine schlängelnde Kur-

ve innerhalb der Pinning-Region, wobei jeder abwechselnde Zweig aus stabilen bzw. instabilen,

eingefrorenen Fronten besteht.

Numerische Simulationen bestätigten die Beobachtungen bezüglich des PF und der Gitter-

abhängigkeit. Darüber hinaus wurde der Einfluss der Frontorientierung auf die Geschwindigkeit

genauer untersucht. Es wurde gezeigt, dass Fronten mit ausgezeichneter Orientierung zum Git-

ter mehr oder weniger anfällig für PF sind. Hieraus resultiert die Möglichkeit zur Stabilisierung

von metastabilen Mustern, welche die Gittergeometrie widerspiegelt. Die Quantifizierung der win-

kelabhängigen Frontausbreitung zeigt plausible Ergebnisse mit einer guten Übereinstimmung zum

Pseudo-2D-Ansatz.
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1
Introduction

A recurring theme in nature is the emergence of complex structures through the self-assembly

of simple units and afar from equilibrium conditions. Analysis of the driving forces sometimes

may be sufficient to understand these phenomena in simple systems with few relevant properties

and agents. Otherwise, their description can become more complex as the number of agents and

their interactions increases or the state of a system changes (globally or locally). Often, nonlinear

dynamics such as positive or negative feedback play a large role.

These systems can often be described as a reaction-transport type system (or reaction-diffusion

(RD) in physico-chemical systems), which consists of local change and spatial propagation of the

agents under given properties. A prime example of reaction-transport systems with the possibility

of self-assembling patterns is heterogeneous catalysis. Here, the interphase between catalyst and

reactants defines a limited spatial regime as the site of the chemical reaction.

In the following section 1.1 a short introduction to the kinetics of chemical reactions and

related processes is given. Section 1.2 introduces heterogeneous catalysis as an application and

motivation for the treatment of reaction-diffusion systems. Finally, section 1.3 will further explore

the treatment of RD systems.

1.1 Chemical reactions and their kinetics

Chemical reactions are processes that change chemical substances under the formation of new

and/or breaking of old chemical bonds. As described in thermodynamics, they can be classified

by the amount of energy they emit (exothermic) or absorb (endothermic); or whether they occur

spontaneously (exergonic) or not (endergonic). Simple chemical reactions usually strive towards

an equilibrium state, where no further change occurs.

1



2 CHAPTER 1. INTRODUCTION

The kinetics of chemical reactions are of utmost importance in various disciplines and applica-

tions. While these are influenced by thermodynamics, the behavior of coupled reactions far from

equilibrium is less likely to be described only by thermodynamic considerations. The kinetics of

different types of chemical reactions with the focus on heterogeneous catalysis are introduced in

the following sections.

1.1.1 Reaction kinetics and chemical equilibrium

A chemical process, where the educt(s) Ei react to the product(s) Pj may be generalized as

∑Ei
kr
⇌
k−r

∑Pj (1.1)

Two reactions are taking place at the same time, the reaction from Ei to Pj and the reverse

reaction from Pj to Ei. Their reaction rate is proportional to the reaction constants k and the

activity of the participating reactants, in the following marked by square brackets. The formation

rate of Pj can be described by

r =
∂ [Pj]

∂ t
= kr ·∏ [Ei]− k−r ·∏ [Pi] (1.2)

The reaction constants kr and k−r are governed by the Arrhenius equation and therefore de-

pendent on the activation energy of the reaction Ea, the temperature T and the ideal gas constant

R:

ki = Ai · e−
Ea
R·T (1.3)

In a closed system, the chemical process will strive to reach a chemical equilibrium, where

both reaction steps (forth and back-reaction) occur at the same rate. The equilibrium is quantified

by the equilibrium constant K and is defined by the following equation using the chemical activities

of the reactants in equilibrium:

K =
kr

k−r
=

∏ [Pi]

∏ [Ei]
(1.4)

In experimental conditions, the activities are often replaced with the concentrations of the

observed reagents.

1.1.2 Transition state and catalysis

A catalyst is an agent, which accelerates a chemical process, that neither changes the reaction

equilibrium nor is being depleted in the process. This means, that the acceleration is only a kinetic,

not a thermodynamic effect. The presence of the catalyst speeds up both, back and forth reactions

in such a way, that the chemical equilibrium is not shifted in any way; but reached in a shorter

time.

The activation energies of both processes are decreased by the presence of the catalyst. The

activation energy is usually dependent on the energetical stability of the transitional state (TS) of

the process. A catalyst interacts stabilizing with the TS and therefore reduces the energy needed
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to reach it. Otherwise, a catalyst could enable a different, energetically more favorable TS (see

Figure 1.1) .̧

E
ne

rg
y

Reaction coordinate

educts

products

TS/cat

TS

∆Ea

∆Ea

∆H

Figure 1.1: Schematic energy diagram for a chemical reaction with and without a catalyst.

Catalysis is divided into three fields: biocatalysis or enzymatic catalysis, homogeneous catal-

ysis, and heterogeneous catalysis. A homogeneous catalyst has the same phase as the reagents.

Frequent examples are acid-catalyzed reactions, where H+ initializes the reaction but is replen-

ished during the process. Biocatalysis can be seen as a special case of homogeneous catalysis,

where the enzymes and educts are solved in the same phase. Enzymatic reactions are omnipresent

in biological systems and show a rich diversity of (highly selective) reactions and complex kinet-

ics.

In heterogeneous catalysis, the catalyst is of a different state of matter than the reactants. The

interphase between catalyst and reactants plays a major role in the reaction kinetics. Therefore,

understanding surface processes is fundamental for the comprehension of heterogeneous catalysis.

1.1.3 Adsorption

Adsorption can be described as the process of a fluid phase (reactants) interacting and binding

on a static phase (i.e. a catalyst). Langmuir described it as a layer of condensed gas particles on

the catalyst [1]. Interaction can occur via weaker van-der-Wals interactions (physisorption) or via

strong chemical bonds (chemisorption). The latter is more important concerning catalysis since it

severely changes the bonds of the adsorbate. If these are sufficiently weakened, dissociation can

occur.

The driving force of adsorption is the minimization of surface energy. The surface particles of

crystalline materials are strongly perturbated compared to the bulk particles in the regular lattice

and have unsaturated valency compared to their subsurface neighbors. While surface reconstruc-

tion can reduce surface energy, adsorption is more effective in filling vacant positions. Adsorption

can even induce surface reconstruction to reach higher coverages (see 1.2.2.1)

Therefore surface facets have a strong influence on adsorption behavior. More open planes
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with larger free valency tend to have higher surface energy and exhibit larger adsorption ener-

gies [2, 3]. In addition, adsorbates prefer specific surface positions, which are more energetically

favorable to them (e.g. [4]). The composition of these sites changes with the surface facet.

Furthermore, they are not necessarily the same positions where dissociation occurs more likely.

Surface defects are often found to act as activated sites for dissociation [5, 6].

The significance of adsorbate interactions on adsorption increases for higher surface cover-

ages. They may be repulsive or attractive and can lead to the formation of ordered adsorbate

overlayers. These self-organized patterns represent a coverage-dependent equilibrium between

the adsorbate-adsorbate interactions, and adsorbate-adsorbent interactions (e.g. preferential ad-

sorption sites) [7, 8]. For coadsorption processes (multiple different adsorbates), interaction can

become quite complex (e.g. oxygen stabilizing water adsorption [9, 10], or hydrogen compressing

the adsorbed oxygen overlayer [11])

In terms of kinetics, adsorption rates are proportional to the flux of particles Φ on the surface

and the sticking coefficient s, which describes the probability that a given particle adsorbs. The

sticking coefficient decreases with increasing surface coverage θr. A good approximation is a

linear dependency for non-dissociative (one surface site is used, n = 1) and a square dependency

for dissociative (two surface sites are used n = 2) adsorption.

The adsorption rate can then be defined as

rads = Φs0(1−θr)
n (1.5)

Kinetically, desorption from the surface behaves analog to other chemical reactions (as de-

scribed in section 1.1) and depends therefore mainly on temperature, the activation energy of

desorption, and the activity of adsorbed particles.

However, for large coverages or significant intermolecular interactions on the surface, devi-

ations from ideal behavior can occur. This can be treated e.g. by using a coverage-dependent

constants (Ai(θr) and Ea(θr)) in the Arrhenius equation (eq.(1.3)) [12].

1.1.4 Diffusion

Diffusion is a process deriving from the Brownian motion of individual particles. This results in a

net flux of particles along concentration gradients.

The mathematical foundation of diffusion was first formulated by Adolf Fick, who was in-

spired by the experiments of Thomas Graham. Fick’s law is analogous to the heat equation from

Joseph Fourier [13].

In contrast to particles in the gas phase, which move nearly unrestricted, diffusion on surfaces

is hindered by the attractive forces of the adsorbent. A periodic crystalline surface creates a pe-

riodic lattice of potential wells, which correspond to preferential adsorption sites discussed in the

last section. These wells are separated by an energy barrier which diffusion has to overcome [3].

The diffusion of a single particle can then be illustrated by a hopping motion from one well to

another.

Macroscopically, the effect of this discontinuous motion is not easily visible but can influence

the behavior of adsorbates especially around defects or for large coverages. Nonetheless, a good
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agreement can be achieved using Fick’s law

∂θ

∂ t
= D

∂ 2θ

∂x2 (1.6)

utilizing an Arrhenius-type diffusion constant:

D = D0 · e−
Ediff
k·T (1.7)

1.2 Heterogeneous Catalysis

In heterogeneous catalysis, the catalyst is in a different phase than the reagents. In most cases, a

solid, usually crystalline catalyst acts on liquid or gaseous reagents. Many metals and their oxides

can act as catalysts, most prominently the so-called platinum group, consisting of ruthenium,

rhodium, palladium, osmium, iridium, and platinum [14].

The following section glances over the historic significance of heterogeneous catalysis, in re-

search and application, before exemplifying nonlinear reaction-diffusion dynamics on two studied

surface reactions, namely the oxidation of CO and H2.

1.2.1 Historic Impact

The catalytic effect was known long before industrialization. The first applications were probably

in the form of fermentation [15] as a way of preserving and modifying food, producing e.g. al-

cohols, vinegar, and cheeses. Later, alchemists invented means of producing diethyl ether using

sulfuric acid as a catalyst.

The modern concept of a catalyst as a substance that accelerates a chemical reaction without

being consumed was first articulated by Elizabeth Fulhame [16], as she noticed the significance

of water as catalyst in the reduction of soluted metal salts. Though a larger impact had the later

systematic experiments of Berzelius, who coined the expression catalysis as well as shaped it into

a distinct discipline, discussed by the likes of Faraday, Liebig, and Pasteur.

Around the turn of the 20th century, recent development in thermodynamics and the introduc-

tion of statistical concepts provided the framework for the modern theory of catalysis. A large

impact had the work of Wilhelm Ostwald, who was awarded the Nobel Prize in 1909 [15, 17].

The theoretical progress in catalysis was accompanied by important changes in technology and

culture. Demand of bulk chemicals and crude oil products increased by magnitudes, especially

with regard to the two world wars, and catalysis played a major role in satisfying it. The most

famous example is the Haber-Bosch-Process [14], in which an iron-based catalyst accelerates the

synthesis of ammonia from hydrogen and nitrogen gas. Fritz Haber studied the reaction and first

noticed the industrial significance in his experiments. He developed a prototype reactor, for which

he earned the Nobel Prize in 1918 [17]. At BASF, Alwin Mittasch tested about 2500 possible

catalysts [18], while Carl Bosch made significant improvements to the process by developing

high-pressure devices [15]. The latter received the Nobel Prize in 1931 [17].

The synthetic ammonia was mainly used in the synthesis of nitric acid (and thus explosives

in World War I) and synthetic fertilizer. The new availability of cheap fertilizer (later) worldwide
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improved crop yields and has been stated as a major factor to the population growth in the 20th

century [19]. Still, 1% of the global energy consumption in 2005 was devoted to the production of

ammonia (110 Mt) [20].

Before and during World War II, a major driving force of research was the transformation of

crude oil and coal into needed fuels and chemical precursors. Catalysis improved basic reactions

such as cracking, alkylation, and dehydrogenation of hydrocarbons in refineries. The Fischer-

Tropsch synthesis was developed in 1938 [15, 21] as a means to ‘liquify’ coal into hydrocarbons

for synthetic fuel, using alkalized iron as catalyst.

While being introduced during World War II, polymers became of large interest in the 1950s

due to the popularity of polyethylene and nylon. A breakthrough in the catalytic mass production

of polymers was made with the Ziegler-Natta polymerization which was acknowledged with the

Nobel Price in 1963 [17, 22]. Originally, solved titanium tetrachloride acted as a catalytic complex

and also allowed for rudimentary control over chirality [23].

In the following decades, the focus on the development of catalytic applications shifted from

enabling mass production to treating environmental and safety-related issues. Demand for new

catalysts increased with stricter regulation of sulfur content in fuels and pollutants in the exhaust

gas of cars [24]. Under the label ‘green chemistry’, catalysis was introduced in new chemical

industries (e.g. pharmaceutical industry, to prevent waste, reduce energy consumption, and replace

hazardous chemicals [20]. Applications in energy technology such as fuel cells also gained more

interest.

Despite these technical advances in these processes and widespread applications, many of the

underlying reaction mechanisms could not be conclusively investigated until the 1980s. The first

to improve upon the framework provided by Ostwald was Irving Langmuir, who was awarded

the Nobel Price 1932[17] for his studies on surfaces and interphases. He proposed a layer of

condensed gas on the surface to play a central role in catalytic surface reactions [25].

His idea was further developed by Sir Cyril Norman Hinshelwood [26, 27] (Nobel Price

1956 [17]). The Langmuir-Hinshelwood (LH) mechanism describes the catalytic surface reaction

as a multi-stepped process, where only adsorbed particles on neighboring sites undergo reaction.

Adsorption and desorption processes then contribute to the replenishment of reactants or surface

sites. The process is described by the reaction equations (1.8 - 1.11) and illustrated in Figure 1.2

using CO oxidation as an example.

Ag ⇌ Aads (1.8)

Bg ⇌ Bads (1.9)

Aads +Bads ⇌Cads (1.10)

Cads ⇌Cg (1.11)

The most discussed alternative reaction pathway is the Eley-Rideal mechanism. Here, only

one molecule of a bimolecular process adsorbs on the surface, while the other interacts directly

out of the gas phase (shown in equations (1.12 - 1.14))
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Figure 1.2: Schematic of the Langmuir-Hinshelwood mechanism for CO+O2.

Ag ⇌ Aads (1.12)

Aads +Bg ⇌Cads (1.13)

Cads ⇌Cg (1.14)

Insight in this debate was enabled by the advances in pumping and pressure control technol-

ogy to the point of ultra-high vacuum (UHV). This allowed the setup of an extremely well-defined

environment, where the catalytic process is controlled by the movement of single particles, in-

stead of a fluid motion of gases. It also allowed the in-situ usage of mass spectrometry and other

spectroscopic techniques, such as photoemission electron microscopy (PEEM).

The caveat of using these idealized, controlled conditions is the discrepancy to industrial ap-

plications, which tend to utilize high-pressure (≥ 1 bar). The interactions between particles and

multiple adsorption layers must be taken into account when extrapolating these findings for ‘real’

catalytic conditions. This difference is known as pressure gap [28]. This is analog to the material

gap between idealized single-crystal catalysts experiments and real polycrystalline industrial used

catalysts.

While the Eley-Rideal mechanism was found for some surface reactions, the group around

Gerhard Ertl (Nobel Price 2006 [17]) conducted a conclusive series of experiments on single

crystal, platinum group metal catalysts and demonstrated the Langmuir-Hinshelwood mechanism

prevalent for many catalytic reactions [29–31].

This development sparked a new wave of interest in the field. Further insight in the surface

processes lead to the finding of new surface phenomena (see section 1.2.2) and to improvement of

descriptive models (see section 1.3).

1.2.2 Oxidation of carbon monoxide

The CO-oxidation is one of the most investigated catalytic reactions. This is certainly due to its

large amount of applications, e.g. in the industrial purification of hydrogen gas or the reduction

of CO content in exhaust gases. It became the prototypical monomer-dimer (A+B2) reaction and

was the first demonstrated [29] to occur according to the LH mechanism (equations (1.8 - 1.11)).
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While the fundamental principle of the mechanism could be elucidated, later experiments

showed more complex dynamics extending the predicted behavior.

1.2.2.1 Oscillations on Pt(100) and Pt(110)

Shortly after concluding LH as the reaction mechanism of CO oxidation on Pt with well-defined

steady states, further UHV experiments found sustained oscillations for Pt(100) surface [32].

Ertl et al. proposed a first addition to the established mechanism based on surface reconstruc-

tion: clean Pt(100) exhibits a quasi-hexagonal (5×20)-reconstructed phase [33], while increasing

CO-coverage over a critical value θCO,cr enforces a phase transition to a (1× 1)-unreconstructed

surface [34]. After removing the adsorbed CO, the unreconstructed surface is metastable below

350 K. The surface reconstructions and the energetics of the process are illustrated in Figure 1.3.

clean ‘hex’, 5×20

CO covered, 1×1

E
ne

rg
y

(1×1)

(5×20)
∆H

(1×1)

(5×20)
∆H

CO ∆

Figure 1.3: Schematic illustration of the surface reconstruction during the CO oxidation on
Pt(100), and the energetics of this process, according to [3]. The clean surface exhibits far smaller
sticking coefficients regarding O2 [35]

Oscillations can therefore only start above 350 K as temperature suffices to overcome the ac-

tivation barrier of reconstruction. Critical for the oscillatory behavior is the difference in oxygen

adsorption, as the sticking coefficient increases on the (1×1) surface by orders of magnitude [35].

The increased oxygen availability leads to faster CO2 formation and a decrease in CO coverage.

The subsequent surface reconstruction to the ‘hex’ structure and reduction of the sticking coeffi-

cient restarts the oscillatory cycle.

Further experiments and theoretical analysis demonstrated this mechanism [36, 37] and illus-

trated its consequence in spatial dimension. A similar scheme was found for rate oscillations on

Pt(110) surface investigated thoroughly by Eiswirth et al. (i.e. 38–41). The surface exhibits re-

construction between the relaxed (1× 2) ‘missing row’ structure and the regular (1× 1). Using
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imaging techniques, rate oscillations could be correlated with spiral waves [42–44] which were

further investigated concerning wave propagation.

1.2.2.2 Bistability on Ir(111)

While rate oscillations were intensely investigated on (100) and (110) surfaces, this phenomenon

was seldom observed on (111) surfaces. On an ideal (111) facing crystal catalyst, the surface

atoms are arranged in a regular hexagonal lattice. The surface is flat and reconstruction is strongly

inhibited. Small observed oscillations can be attributed to surface defects, though the most com-

mon defect in an experiment may be steps, due to small misalignments in cutting the unit crystal

(leading to a higher-order surface facet, e.g. (997)).

Without surface reconstruction, the system can exhibit bistability within a range of experi-

mental parameters, meaning multiple stable steady rates could be found, e.g. on Ir(111) [45],

Pt(111) [46]. This means, that for given experimental parameters, two different equilibrium states

can be observed. Changing the reaction conditions to certain critical values can lead to a discon-

tinuous, significant change.

In the case of the CO oxidation on Ir(111), both steady states form branches that differ qual-

itatively by their CO2 formation rate, denoting them as ‘upper rate branch’ (UR) and ‘lower rate

branch’ (LR). For instance, Wehner et al. [45] showed the bistable regime for 420 K ≤ T ≤ 530 K.

With high O2 partial pressures, the upper rate branch is stable. With increasing CO partial pressure

(under equal flow), a critical value is reached, where a transition to the LR branch occurs. To return

to the UR branch, a different threshold has to be surpassed; the branches describe a hysteresis.

On a surface level, the steady states correlate with different surface occupations. Relative

high oxygen coverage can be correlated with the UR branch, while the LR branch can be seen

as reversibly poisoned by CO. This was firstly confirmed by modeling [47] and later shown with

PEEM [48, 49]. PEEM experiments also clarified the spatial distribution of the surface species.

The minority species forms small islands, the reaction occurs mainly at the boundaries of these

islands. If a kinetic phase transition occurs from one branch to another, these islands grow, analog

to crystal growth.

It has been shown possible, to enable phase transition utilizing external noise [50–52]. This

could be relevant for industrial applications, where sudden catalyst poisoning could be attributed

to small statistic occurrence of poison slowly forming sufficient large islands. Larger noise in

the feed gas composition lead experimentally to faster island nucleation, thus accelerating the

transition [52, 53].

1.2.3 Water formation

The water formation (or hydrogen oxidation) adds a layer of complexity to the previously dis-

cussed CO oxidation. While being one of the most basic reactions, it requires at least one in-

termediate surface species and is rich of possible reaction pathways [54, 55]. The exact reaction

conditions and the surface catalyst decides the preferential pathway for the reaction.

The most recognized reaction model for platinum group metal consists of three elementary

surface reactions, using only hydroxide as an intermediate species:
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Hads +Oads ⇌ OHads (1.15)

Hads +OHads ⇌ H2O (1.16)

OHads +OHads ⇌ H2O+Oads (1.17)

Depending on the reaction temperature and catalyst, the formed water may remain adsorbed,

or desorbs quickly. Interestingly, on Pt(111) the reaction was found highly dependable on temper-

ature. For low temperatures (T < 170 K) [3], an induction period was observed after which the

reaction rapidly starts. Above this temperature, the reaction occurs spontaneously but shows an

increase in its apparent activation energy.

An explanation for this was found in an autocatalytic mechanism that lowers the activation

barrier below the desorption temperature of water. According to Anton and Cadogan [56], the

synproportionation of water and oxygen on Pt(111) has a fairly low activation energy, in the same

order of magnitude as water desorption. This enables a chain reaction, covering the surface in-

creasingly with water.

Using STM [57–59], this chain reaction can be observed as chemical waves. The synpro-

portionation takes place at the boundary of oxygen and water islands and formed hydroxide is

consequently hydrogenated again to water. Thus, the water domains propagate into the oxygen

covered regions. The moving reaction front can be described by a traveling wave [58], showing

the significance of transport in the reaction mechanism. There is still debate about which step

may be rate limiting [60] and for higher temperatures, the reaction is far less studied. Verheij

and Hugenschmidt studied the reaction at conditions T > 300 K [61]. Their results were dis-

cussed under a model strongly dependent on surface defects as active sites. The recent work of

Borodin et al. [62] added (non-conclusive) evidence for this conclusion. They realized a series

of experiments which they fitted with a simplistic dummy model over a large temperature range.

Comparison of their results and the complete reaction model utilizing DFT determined reaction

parameters showed large deviations. Due to the large discrepancy between both models, they ar-

gued that this ‘full-scheme’ was still not complete, either because of missing elementary reaction

steps, unidentified precursor molecules, or involved active sites.

1.3 Reaction-Diffusion Systems

The nonlinear phenomena shown in sections 1.2.2.1–1.2.3 exemplifies the wide variety of dynam-

ics present in catalytic systems. A more general understanding of reaction-diffusion systems can

help predicting the dynamics utilizing simpler equations. A generalized methodology may also be

adapted to model a vide variety of subjects, such as neural networks [63], coupled reactors [64, 65]

or chemical oscillators [66, 67], population growth [68], virus propagation [69] and formation of

vegetational pattern [70].

In a reaction-diffusion system with n participating species, the vector ρ contains n elements

which represent a measure of activity of that species. In regards to chemical reactions, ρ often con-

tains the concentrations or partial pressures of the active species, while for surface reactions the
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spatial concentrations of molecules or active sites are often used. In a typical reaction-diffusion-

model, the terms treating transport and reaction are usually separated. The transport term describes

the spatial distribution of the species ρ (as a vector) and is mainly responsible for pattern forma-

tion. In the case of diffusion, mostly Fick’s law is implemented (see section 1.1.4), but sometimes

modified to treat deviations such as non-constant diffusion or time-delayed response.

The reaction term in the equation system includes consumption and production of the species

ρ , as well as external feed/discharge not covered by transport. It defines steady states of the system,

which play an crucial role in spatiotemporal pattern formation. In 1D, a general reaction-diffusion

system is expressed by the rate vector:

∂ρ

∂ t
= D

∂ 2ρ

∂x2 +F(ρ), (1.18)

where D is a Fickian diffusion constant and F is a function that reproduces the formation/con-

sumption rates described by the model system. A shorter notation can be used to express the

partial derivates:

ρt = Dρxx +F(ρ) (1.19)

An equation of this type is called partial differential equation (pde), because it depends on

derivation of multiple variables. An analytical treatment of pdes is not always possible (e.g. only

under certain initial conditions). Here, since in this case both terms influence different properties

of the system and are isolated in the equation, it is sensible to first analyze both parts separately to

get an intuitive understanding.

1.3.1 Properties of the reaction term

Function F describes the reaction-system as defined by the applied model. It decides the number,

type, and stability of steady states of the system. The mathematical expression consists of multiple

terms in the form of eq. (1.2) and (1.5), leading (usually) to a nonlinear equation system. For

instance, an example LH-model (based on CO+O2/Ir(111) [52])

Ag +∗⇌ Aads

Bg +2∗→ 2Bads

Aads +Bads→Cg +∗

using asterics to denote free surface sites, gives the equation system:

ρ =

ρA

ρB

ρ∗

 ;
∂ρ

∂ t
= F(ρ) =

 ΦAsAρ∗− k1ρA− k2ρAρB

2ΦBsBρ2
∗ − k2ρAρB

−ΦAsAρ∗−2ΦBsBρ2
∗ + k1ρA +2k2ρAρB

 (1.20)

Φi depicts the constant gas flow of the precursors, si their sticking coefficients, k1 the desorption

constant of A and k2 the reaction constant of A+B, both governed by the Arrhenius law (eq. (1.3)).

The third equation is a linear combination of the other two, thus additional boundary condi-

tions are needed to solve the equation system analytically. Physically sensible constraints may be
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applied, such as limiting concentrations to positive values, or applying conservation laws (e.g. a

constant number of surface sites):

ρA +ρB +ρ∗ = 1. (1.21)

Using the conservation law (1.21) to express the surface sites, this model can be reduced to 2D:

ρ =

(
ρA

ρB

)
;
∂ρ

∂ t
= F(ρ) =

(
ΦAsA(1−ρA−ρB)− k1ρA− k2ρAρB

2ΦBsB(1−ρA−ρB)
2− k2ρAρB

)
(1.22)

This rate vector applied over all possible ρ constructs a vector field. An arbitrary initial con-

dition ρ0 changes in time according to the field. The curve ρ(t) is called trajectory, the graphic

illustration of multiple different trajectories is called phase diagram.

Points ρ̃ which fulfill the condition ∂ρ

∂τ
= 0 are fixed points of the equation system. Steady

states in reaction-diffusion systems are fixed points of the equation system. The differential equa-

tion system depicted in eq. (1.22) has one trivial (ρA = 0, ρB = 1) and three unique, possibly

complex solutions. The terms are shown in appendix A and were computed utilizing Sympy [71]

in Python. While an analytical solution is not always possible, such systems can be approached

numerically (see section 1.3.3).

Different types of fixed points exist and can be classified by the behavior of the trajectories

around them. One criterion is the stability of a fixed point. Trajectories strive away from unstable

fixed points, and towards stable ones. From this observation, stricter formalized definitions as the

Lyapunov stability can be defined:

If there exists an ε > 0, for that all trajectories ρ with |ρ(t0)− ρ̃|< ε then:

ρ̃ is stable if |ρ(t)− ρ̃|< ε for all t ≥ t0, (1.23)

ρ̃ is asymptotically stable if lim
t→∞

ρ(t) = ρ̃ (1.24)

To study the stability of a fixed point, we investigate the behavior of trajectories around ρ̃ . For

the small perturbation δ (t) = ρ(t)− ρ̃ , the reaction system can be linearized:

∂δ

∂ t
= F(δ ) = F(ρ̃)+F ′(ρ̃)(ρ− ρ̃)+O(|ρ− ρ̃|2)

≈ Jρ̃δ

(1.25)

Here, O depicts the nonlinear deviation, which vanishes as δ approaches zero and the deriva-

tive F ′ is the Jacobian matrix J at the fixed point ρ̃ .

Ji, j =
∂Fi

∂ρ j

∣∣∣∣
ρ̃

(1.26)

Solving eq. 1.25 gives a solution of the form δ (t) = Je(Jt) which can be expressed by using

the n eigenvalues λk and eigenvectors λ⃗k of J:

δ (t) =
n

∑
k=1

Ckλ⃗ke(λkt) (1.27)
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The constants Ck depend on the initial condition ρ0. The behavior of δ (t) is strongly dependent

on the eigenvalues. If all (real parts) of λk are negative, then δ approaches zero as time progresses,

and thus ρ̃ is asymptotically stable. Otherwise, if at least one eigenvalue is positive, any small

deviation δ increases exponentially, meaning ρ̃ is unstable. If none of these conditions are fulfilled

(by having at least one zero eigenvalue), then the nonlinear deviations influence the fixed point

stability. With complex eigenvalues, the imaginary part introduces rotation into the behavior of

the trajectories.

In 2D, the Jacobian matrix

J =

(
J11 J12

J21 J22

)
(1.28)

has the two eigenvalues:

λ1,2 =
1
2

[
(J11 + J22)±

√
(J11 + J22)2−4(J11J22− J12J21)

]
=

1
2

[
trJ±

√
(trJ)2−4(detJ)

]
(1.29)

The trace and determinant of the Jacobian define five sections with different behavior, illus-

trated in Figure 1.4. Stable fixed points exist in the upper left quadrant of the diagram, while the

other quadrants are unstable. The line defined by (trJ)2−4(detJ) is the boundary for the existence

of real eigenvalues. Point e) is a (asymptotically) stable node, while f an unstable node. b) and

c) show fixed points whose Jacobian exhibits complex eigenvalues, they show (asymptotically)

stable and unstable spiral points. A special case appears at the boundaries (see j), where the tra-

jectories form stable orbits around the fixed point. In the lower quadrants (negative determinant),

the fixed point can be described as saddle, as one eigenvalue is positive and the other is negative.

The trajectories approach and leave the fixed point in different dimensions.

If multiple solutions ρ̃ exist, changing an experimental parameter of the model can change

the stability of these solutions. As illustrated in Figure 1.4, a stable solution becomes unstable by

changing sign of either trace or determinant of J. This induces a bifurcation, a phase transition

to a different stable fixed point. The unstable solutions form a new branch that can again become

stable (see Figure 1.6).

1.3.2 Properties of the diffusion term and synthesis

Diffusion, as described in section 1.1.4, is expected to behave as an equalizing force. Without

reaction, any initial distribution ρ0 should approach a constant value at every point in space.

Solving equation (1.6) (again depending on the initial and boundary conditions) has been

accomplished in the same manner as the analog heat equation. Assuming the function ρ(x, t) can
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Figure 1.4: Illustration of the linearized stability of fixed points in 2D. The behavior of trajectories
around the fixed point depends on the trace and the determinant of the Jacobian matrix. Stable
fixed points are located in the upper left quadrant and are illustrated by a), b), and e).

be written as ρ(x, t) = ν(t)µ(x), then

∂ (ν(t)µ(x))
∂ t

= D
∂ 2(ν(t)µ(x))

∂x2 (1.30)

µ(x)
∂ν(t)

∂ t
= Dν(t)

∂ 2µ(x)
∂x2

1
ν(t)

∂ν(t)
∂ t

=
D

µ(x)
∂ 2µ(x)

∂x2 (1.31)

Both variables can be completely separated such that the left side of the equation only depends

on t while the right side depends on x. This means they must both be equal to a constant value C;

resulting in two separate, and solvable ordinary differential equations:

vt = Cν , Dµxx = Cµ (1.32)
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Solving and utilizing C = c0D leads to the following terms:

v(t) = c1ec0Dt (1.33)

µ(x) = c2e
√

c0x + c3e−
√

c0x (1.34)

ρ(x, t) = c1c2e
√

c0x+c0Dt + c1c3e−
√

c0x+c0Dt (1.35)

with c0,c1,c2,c3 being constants, depending on the given initial and boundary conditions. An

alternative solution for µ is in the form of a sine (or cosine) wave. The superposition of multiple

wave functions is also a valid solution. These solutions fit with the intuition regarding diffusion.

In time, an exponential decay towards equilibrium is expected (eq. (1.33)). A plausible prediction

in space is a front that spreads between the boundaries.

Concerning boundary conditions regarding the boundary ∂L, common possibilities are Dirich-

let conditions and Neumann conditions. For Dirichlet, ρ is fixed at the boundary (e.g. to a remark-

able value; ρ(∂L, t) = f (∂L, t)). Neumann conditions limit the derivative at the boundaries instead

(e.g. constant flux; (∂ρ(∂L, t)/∂n) = g(∂L, t)).

The introduction of the reaction term (eq. 1.18) increases the complexity of the equation. The

interactions between steady states of the reaction system and diffusion can form traveling waves.

The simplest reaction-term which exhibits a traveling wavefront is the logistic Fischer-Equation:

F(ρ) = rρ(1−ρ) [72]. Since the differential equation is only analytically solvable for very basic

F , numerical approaches are widespread. The most used are the finite element method (FEM) and

the finite difference method (FDM). Both methods are based on the discretization of the involved

dimensions, the latter being more intuitive and easier to implement but is restricted to rectangular

geometries [73].

In FEM, the partial derivatives are replaced by the finite difference in discrete space and time.

The coupling between the discrete spatial intervals can be expressed as a stencil. Using a discrete

linear domain illustrated by N nodes with the distance h, equation (1.18) becomes

∂ρn

∂ t
= D

ρn−1 +ρn+1−2ρn

h2 +F(ρn) (1.36)

for any node n ̸∈ 1,N.

The resulted equation system can be used directly in numerical integration as illustrated in the

previous section. Two example fronts in time are shown in Figure 1.7 in the following section.

1.3.3 Example treatment

In this section, the reaction-diffusion model from equation (1.22) is further utilized as an example

to illustrate the behavior of such systems. The reaction constants and parameters used in this

section are summarized in Table 1.1, utilizing YA as an experimental parameter to change the

temperature flow.

Trajectories can be obtained using numerical integration starting from different initial condi-

tions. The integration or evolution of ρ is done iteratively, assuming linearized steps: Starting

with an initial condition ρ0 and an initial slope of F0 = F(ρ0), after the small time step ∆t, the

concentrations shift to ρ(∆t) = ρ0 +F0 ·∆t. Thus, the function ρ(t) can be computed utilizing
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Table 1.1: Parameters utilized for numerical integration of the example model. The values are
taken from [52, 74] as this is a variant model.

Parameter value unit Parameter value unit
sA 1 [-] sB 0.11 [-]
ΦA 0.878YA ML s−1 ΦB 0.878(1−YA) ML s−1

v1 1013 s−1 E1 140 kJ mol−1
v2 105 (MLs)−1 E2 40 kJ mol−1
T 500 K R 8.3145 J mol−1 K−1

multiple iterations.

The result is of course only an approximation of the real trajectory. ∆t governs the accuracy

of the integration. Decreasing ∆t generally improves the precision while increasing the number of

steps to be calculated. This can lead to a significant decline in numerical accuracy, especially for

small slopes.

On the other hand, too large time steps can result in missing the fine structure of the curve

(e.g. a local minimum), branching out towards a different fixed point, or exhibiting instabilities

(e.g. striving towards infinity). An equation is called stiff, if it is sensitive toward numerical

instabilities. Sophisticated integration schemes (such as BDF [75]) rely on implicit (backward)

integration methods [73] to avoid instabilities while trying to reduce the number of necessary

iterations.

Example trajectories for multiple random initial conditions utilizing sensible ∆t and two dif-

ferent parameters YA are illustrated in Figure 1.5. Both examples show convergence towards a

steady state. In the first Figure, one stable fixed point seems to exist, while for YA, there are two

stable fixed points. The behavior of the trajectory in the ρA−ρB-plane reveals two different phases

of behavior. Firstly, a linear phase, where both ρA and ρB ‘quickly’ decrease in time. The trajec-

tories fall into a so-called slow manifold [76]. Here, the convergence towards the steady states

progresses slowly.

For equation systems which are not analytically solvable, numerical solutions can be obtained.

In this case, the solutions are too complex for manual treatment, but can be obtained using libraries

for symbolic computing such as the Sympy module in Python. Linear stability analysis can be

done utilizing the Jacobian matrix:

J =−
(

ΦAsA + k1 + k2ρ̃B ΦAsA + k2ρ̃A

2ΦBsB (1− ρ̃A− ρ̃B)+ k2ρ̃B 2ΦBsB (1− ρ̃A− ρ̃B)+ k2ρ̃A

)
. (1.37)

Since all physical constants used in this model are real and positive, the trace of the matrix must be

negative. With regard to Figure 1.4, any fixed point of this model is either (asymptotically) stable,

or an unstable saddle, depending on the determinant. Omiting negative and complex solutions

(imaginary part > 10−8), Figure 1.6 can be obtained.

The bifurcation diagram shows exactly two branches of stable solutions connected by a branch

of unstable ones. In the ternary diagram, the solutions form the slow manifold observed in Fig-

ure 1.5. The model captures the qualitative behavior of the CO oxidation on Ir(111) as discussed

in section 1.2.2.2, even tough improvements to fit experimental observations have been done [52].
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Figure 1.5: Example trajectories for different YA. The left side of the both illustrates the numerical
integration for ρA in time, the right side shows the trajectory in the ρA− ρB-plane. Numerical
integration is done using Python.

An example for reaction-diffusion fronts are shown in Figure 1.7, for two pairs of diffusion

coefficients DA,DB. In both cases, the front connects the two stable states at YA = 0.083 (LR and

UR, as illustrated by the dotted line). The first front propagates to the left, as the UR dominates

due to the spreading of B into the LR domain. The opposite happens in the second example, as the

LR slowly pushes into the UR domain.
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The CO oxidation on Platinum-group metals under ultra-high-vacuum conditions is

one of the most studied surface reactions. However, the presence of disturbing species

and competing reactions are often neglected. One of the most interesting additional

gases to be treated is hydrogen, due to its importance in technical applications and

its inevitability under vacuum conditions. Adding hydrogen to the reaction of CO

and O2 leads to more adsorbed species and competing reaction steps towards water

formation.

In this study, a model for approaching the competing surface reactions CO+O2+H2 is

presented and discussed. Using the framework of bifurcation theory, we show how

the steady states of the extended system correspond to a swallowtail catastrophe set

with a tristable regime within the swallowtail. We explore numerically the possibility

of reaching all stable states and illustrate the experimental challenges such a system

could pose. Lastly, an approximative first-principle approach to diffusion illustrates

how up to three stable states balance each other while forming heterogeneous patterns.
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2.1 Introduction

The development of the understanding of surface reactions during the last century is an inter-

play between unexpected observations, experiments, and modelling. For example adsorption of

thin films was first described by Langmuir [1]; hydrogen exchange was analyzed by Eley and

Rideal [2]; the Langmuir-Hinshelwood mechanism was found after extended experiments by Ertl’s

group [3, 4]; and the possibility of oscillating rates was first observed by Norton and Rüstig [5]

and described in the following by Krischer, Eiswirth and Ertl [6–8].

A theoretical approach leads to experimental observation, while vice versa predictions from

models initiate new experiments. This interplay has enabled the stepwise progress behind the

present picture of surface reactions.

In studies on CO oxidation on Iridium, this combination has also been the case: experi-

ments about, e.g. phase transition and rate hysteresis [9, 10] or noise [11, 12] were followed

by detailed modelling; and modelling of the spatiotemporal pattern on such a non-reconstructing

catalytic surface [11] was followed by experiments [12–14]. CO oxidation is the prototype re-

action for a monomer-dimer surface reaction. It was for example intensively analysed on the

non-reconstructing surfaces of the platinum group metals: Platinum [15], Rhodium [16, 17], Pal-

ladium [3, 18–21] and Iridium [22–28]. Water formation is the prototype for a dimer-dimer surface

reaction. It was studied for example by Imbihl’s group experimentally [29, 30] and Zhdanov nu-

merically [31].

The differences between real-world applications and ideal ultra-high-vacuum (UHV) experi-

ments are known as pressure gap [32] (atmospheric pressures vs. UHV) and material gap [33]

(supported catalysts vs. single crystal). A third difference is the quality of the feed gas in UHV

experiments, considering the use of highly pure gases and most accurate dosing. This discrepancy

could be referred to as ‘quality gap’. One way to address the limited precision of real applica-

tions is to add noise [11, 12, 34]. Another way is the acceptance of impurities. Although even

the purest commercially available pressurized gas cylinders contain oxygen as 99.99990%, CO as

99.7%, and hydrogen as 99.99990%, in the industrial production of H2 the presence of impurities

is a lot higher. Therefore for addressing impurities, another gas has to be added in a controlled

manner to produce a ternary system with competing reactions. For high pressures, this was done

by Piccolo et al. [35, 36], but never for the better controllable UHV experiments.

To address the presence of hydrogen as a competing surface species, new reaction paths have

to be introduced. The focus of this study is, therefore, the modelling of the reaction system and

the analysis of the numerical results. As we will show, the new steady states of the system can be

studied using bifurcation theory leading to a codimension-2 diagram that features a ‘swallowtail’

shape.

The structure of the article is as follows: in section II we present the model of the competing

reactions and its mathematical form; in section III we use bifurcation analysis for studying the new

steady states and propose a scanning protocol for exploring the reaction rates in future experiments

and visit all stable states by appropriate manipulation of two control parameters. The presence of

spatial patterns is also considered. Finally, we present our conclusions.
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2.2 Modelling

Numerous different models for the oxidation of carbon monoxide or hydrogen have been reported

in previous studies, e.g. by Bär et al. [37] for CO and by Zhdanov [31] for H2. The herewith

presented model was based on our previous studies [26, 27] about CO oxidation on Ir(111). The

necessary reaction steps for treating the water formation reaction are discussed in this section.

Hydrogen adsorption will be treated analogously to CO and O2 adsorption with the sticking

coefficient sH and an exponential factor b. Hydrogen adsorption occurs dissociatively on Ir(111),

as does oxygen. Hydrogen desorption, however, occurs at lower temperatures [38] and therefore

has to be included (k3).

Catalytic water formation is a two-step mechanism, unlike the one-step CO oxidation. The first

reaction step is the oxidation of a single adsorbed hydrogen atom, resulting in adsorbed hydroxide

OHads. In this step, Hads competes with COads for Oads. Formation of water from hydroxide can

occur by two different reactions, depending on temperature and occupation. Consequently, we

include both the consecutive hydrogenation and the disproportionation of hydroxide in the model.

All reaction steps are potentially reversible under certain conditions. High-temperature pro-

cesses such as hydroxide desorption [39] were not considered. The reaction rate for each step is

defined by either a reaction coefficient ki or a sticking coefficient (sH, sO, sCO).

This results in a total of eleven necessary reactions for the competing oxidations of CO and H2 on

iridium:

O2,gas
sO
⇌ 2Oads

COgas
sCO
⇌
k1

COads

COads +Oads
k2−→ CO2,gas

H2,gas
sH
⇌
k3

2Hads

Hads +Oads
k4
⇌
k−4

OHads

OHads +Hads
k5
⇌
k−5

H2Oads

2OHads
k6
⇌
k−6

H2Oads +Oads

H2Oads
k7−−→

k−7
H2Ogas

Since the reaction constants have a large uncertainty, a reduced model with fewer equations is

preferable. Firstly, slow reactions at 500 K can be neglected, thus omitting the back-reaction of all

three hydrogen oxidation steps (k−4 = k−5 = k−6 = 0) [39, 40]. Hydroxide disproportioning (k6)

occurs also slowly at such high temperatures, could be important in case of high OH occupation.

Secondly, water desorption occurs at far lower temperatures [41] and can be seen as instantaneous

at 500 K (k−7 = ∞). For this reason, re-adsorption of water is also prohibited. Hence, the reduced

model consists of only nine reaction steps for the competing reaction between hydrogen, carbon
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monoxide and oxygen.

O2,gas
sO−→ 2Oads (2.1)

COgas
sCO
⇌
k1

COads (2.2)

COads +Oads
k2−→ CO2,gas (2.3)

H2,gas
sH
⇌
k3

2Hads (2.4)

Hads +Oads
k4−→ OHads (2.5)

OHads +Hads
k5−→ H2Ogas (2.6)

2OHads
k6−→ H2Ogas +Oads (2.7)

An additional feature of the model is the constancy of the total flow rate Φ = ΦCO +ΦO2 +

ΦH2 . This condition is similar to the conducted experiments in previous studies [9–14, 22, 34]

concerning the CO oxidation. Since the total flow restricts the single gas flows, every gas flow

composition can be described as a single point (ΦCO/ΦO2/ΦH2) in a ternary graph in which each

axis represents the fraction Yi = Φi/Φ with i = {CO,H2,O2}. The restriction reduces the degrees

of freedom and therefore decreases the number of parameters to control the reaction system.

In this basic model, possible pressure effects such as global coupling [21, 42] are neglected,

thus adsorption depends directly on gas flow and is not influenced by changing partial pressures.

Therefore we propose the following differential equations for our model:

dnCO

dt
= ΦCOsCO(1−nCO−nH−nO−nOH)

a− k1nCO− k2nCOnO (2.8)

dnH

dt
= 2ΦH2sH(1−nCO−nH−nO−nOH)

b−2k3n2
H− k4nHnO− k5nHnOH (2.9)

dnO

dt
= 2ΦO2sO(1−nCO−nH−nO−nOH)

c− k2nCOnO− k4nHnO + k6n2
OH (2.10)

dnOH

dt
= k4nHnO− k5nHnOH−2k6n2

OH (2.11)

The formation rates of the products CO2 and H2O can be calculated directly according to

equations (2.12) and (2.13).

rCO2 = k2nCOnO ∝nCOnO (2.12)

rH2O = k5nHnOH + k6n2
OH

∝∼nOHnH (2.13)

The reaction constants were calculated for each temperature applying the Arrhenius equation

using the activation energy and an exponential prefactor:

ki = νi exp(−Ei/(T R)) (2.14)

The activation energies and prefactors were derived from the literature (see table 2.1). All

calculations were done for T = 500 K if not stated otherwise. This temperature was selected to
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ensure bistability for CO oxidation without hydrogen [9].

The main challenge in treating hydrogen oxidation was the large variety of different reac-

tion parameters [29, 31, 43] and simultaneously, the lack of data for the reaction specifically on

Ir(111). Considering that the parameters for CO oxidation were chosen to characterise the results

of specific experiments [9, 26], water formation parameter must accord with the established con-

stants qualitatively and quantitatively. Due to the high uncertainty in this process, we distance

our findings from the physical background by referring to the dummy-molecules A, BB, CC and

BC instead of referring to CO, H2, O2 and OH. Thus our model treats the competing reactions

2A + CC→ 2AC and 2BB + CC→ 2BBC.

It should be emphasised that our results are qualitatively reliable in some magnitude of ki.

Also, since the reaction constants for the CO oxidation (or A + CC reaction respectively) represent

the experimental findings, the lower the hydrogen (or BB) flow, the better will the model agree

with later experiments.

Table 2.1: Model parameters used in the numerical analysis and simulation. *Modified

Parameter Value Ref. Parameter Value Ref.
sA 1 [27] a 1 [27]
sB 0.007 [44] b 2 [38]
sC 0.11 [27] c 3 [27]

ML 1.56 ·1015 cm−2 [27] Φ 0.88 ML s−1 [27]
E1 140 kJ mol−1 [27] ν1 1 ·1013 s−1 [27]
E2 40 kJ mol−1 [27] ν2 105 (ML s)−1 [27]
E3 78 kJ mol−1 [44]* ν3 1.5 ·10−1 (ML s)−1 [44]*
E4 19 kJ mol−1 [40] ν4 6 (ML s)−1 [39]*
E5 10 kJ mol−1 [40]* ν5 6 (ML s)−1 [39]*
E6 75 kJ mol−1 [43] ν6 1.3 ·10−3 (ML s)−1 [43]

2.3 Bifurcation Analysis

The differential equations (2.8–2.11) that constitute the proposed model feature several competing

nonlinearities that make an analytical treatment impossible, thus one has to rely on approximations

or numerical results for specific values of the parameters.

Our results show the existence of up to five equilibrium points (combinations of the coverages

that make the right-hand side of the equations equal to zero). The qualitative changes of the

equilibrium points as control parameters are varied can be studied with Bifurcation theory, that

provides a suitable mathematical language.

In general, changes in the number of solutions induced by variations in one of the control pa-

rameters temperature T and fractions YA, YBB and YCC, are described by saddle-node bifurcations,

i.e. associated with either annihilation or the creation of two solutions: a stable and an unsta-

ble solution. Therefore one can visualize transitions between monostable, bistable and tristable

scenarios as parameters are varied. These transitions in the context of chemical surface reactions

mean abrupt changes in surface occupations and therefore in reaction rates.
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Figure 2.1(a) shows reaction rates and surface occupations as function of YA. Each colour

indicates a constant value of parameter YBB. As a curve reaches a saddle-node bifurcation, it starts

to go backward, and the stability of the solution changes (continuous style indicates stable, dashed

style indicates unstable). Depending on the selection of YBB, up to four saddle-node bifurcations

are found, although some of them are hard to see from the figure.

For low values of YBB such as YBB = 0.025, the behaviour is quite similar to previous findings

for CO oxidation: there is a well-defined bistability range where an upper rate (UR) and a very low

rate (VLR) state coexist stably. For YBB = 0.075 the unstable section develops two saddle-nodes

and a stable section is born: now this section is not visible in the reaction rates, only in the A
and B occupations. The new state has low rates (LR). For YBB = 0.125 one of the saddle-node

bifurcations moves to the left to the YA = 0 edge, so the VLR exists stably almost everywhere. For

YBB = 0.2 two saddle-node bifurcations collide and the thin stable branch LR disappears.

With this information, we can define approximative values for the three stable states we estab-

lished above:

nA [ML] nB [ML] nC [ML] nBC [ML]

UR: ⪅ 0.05 ≈ 0.05 ≈ 0.2 ≈ 0.03

LR: ⪅ 0.80 ⪅ 0.7 ≈ 0 ≈ 0

VLR: ≈ 0.01 ≈ 0.98 ≈ 0 ≈ 0

These values confirm our previous assumption of a high B occupation in the VLR. However,

a distinction for LR and VLR is only meaningful for intermediate values of YBB where there is a

clear transition mediated by folds. In terms of reaction rates, no quantitative difference between

LR and VLR can be seen. Since reaction step BC + B is faster compared to BC + BC and BC
is the limiting species in both states, the difference in B is insignificant. Therefore, both states

should be differentiated via occupations.

A more complete analysis of the influence of YA and YBB at the same time can be obtained with

the codimension-2 bifurcation diagram depicted in figures 2.1(b) and 2.1(c). Since YA + YBB + YCC = 1,

a ternary representation is used. The figure includes only the location of the saddle-node bifur-

cations. Horizontal cuts through the codimension-2 diagram correspond to curves in fig. 2.1(a)

for the surface species and calculated rates. Interestingly, the diagram shows how two pairs of

saddle-node bifurcations annihilate in two cusps, defining a swallowtail region where three sta-

ble solutions coexist [46, 47]. This is a similar phenomenon to what Cui et al. found for CO

oxidation [48] in a topological approach.

Within the swallowtail, a tristable regime is expected. Starting from there, crossing a single

direct border should result in a bistable regime and the areas further away are expected to be

monostable. The new stable state (very low rate, VLR) which is found in the largest area of the

diagram is mostly influenced by BB flow, therefore high occupation of B can be expected.

From our previous studies, we know that higher temperature may induce coalescence of

saddle-nodes [9, 10]. Fig. 2.2 illustrates the influence of temperature on the bifurcation behaviour.

At 520 K, the tristable regime shrinks along with the bistable regime of the A + CC reaction.

The marginal LR-VLR cusp pointing to the right increases therefore drastically and a new cusp
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Figure 2.1: (a) Bifurcation diagrams that correspond to varying YA with constant YBB (YBB in
{0.025,0.075,0.125,0.20}) showing both stable (solid) and unstable (dashed) sections of the
branches. The number of saddle-node bifurcations changes from one curve to the next. First
two subplots show reaction rates of A + C and B + BC. The remaining four subplots show cov-
erages of the four species on the surface. (b) Codimension-2 bifurcation diagram for T = 500 K.
The saddle-node bifurcations form ‘cusps’ through their different interactions. (c) Detailed bifur-
cation diagram. Curves define regions with one, two and three stable occupation states. Inside
‘swallowtail’ all three stable states coexist. The coloured horizontal lines (YBB constant) corre-
sponds to analyses presented in (a). Computations were performed using the bifurcation software
AUTO-07p [45].

emerges from the lower YA = 0 edge. The unfolding continues till 540 K where the tristable region

becomes negligible along with LR, as two cusps become closer to each other. A further increase

to 560 K leaves only a single cusp and two separate areas: inside the cusp, there is a coexistence

between VLR and UR; whereas outside of the cusp a continuous transition between UR, LR and

VLR exists, as the selection YA, YBB, YCC goes around the cusp. Now as the temperature decreases,

for instance T = 480 K, the swallowtail moves to the left corner of the diagram and the new

phenomena becomes less relevant.

The whole picture depicting the changes in the swallowtail would require two parameters, for
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Figure 2.2: Codimension-2 bifurcation diagrams for higher temperatures, showing different in-
teractions between cusps. With increasing temperature, the swallowtail unfolds and finally disap-
pears. Computations were performed using the bifurcation software AUTO-07p [45].

instance, temperature T and total flux Φ, in addition to the YA, YBB, YCC used to generate each

swallowtail. This complete picture should correspond to the swallowtail catastrophe set described

in the literature [46]: the local minima of a sixth-order polynomial of a single variable. This

complete set includes a case where three cusps collide. Here, we only show the influence of T as

realistic changes in the total flux of Φ are not able to induce qualitative changes in the swallowtail.

For instance, a hundredfold increase in Φ will reduce the size of the swallowtail to one-tenth of

its original size, and a reduction of Φ to one-tenth will induce an enlargement of the swallowtail,

comparable to what was obtained by raising the temperature to 550 K.

2.4 Simulation of experiment

One aim of this study was to simulate a simple experimental setup, based on our experience from

CO oxidation [26]. These simulations can support a following experimental approach to a similar

system by uncovering its features and challenges.

In the experiments conducted by Wehner et al. [9], certain initial conditions (Yi,T,Φ) were set,
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which lead to an initial occupation state. From there, the gas composition Yi is shifted gradually

by discrete values. For three gases, the most basic analogous setup with constant total flow Φ,

one gas flow may be maintained while modifying the other two reciprocally (e.g. (Y1/Y2/Y3)→
(Y1/Y2 ± ∆Y/Y3 ∓ ∆Y )). For all simulations, the resolution in Y was limited by the technical

limitation of the mass flow controllers (as in [9], ∆Y = 0.001).

2.4.1 Time evolution

Before modelling the experimental conditions, simple simulations with fixed control parameters

(gas composition and flow) starting with different initial occupations can be done to show the

evolution towards the predicted stable states.

Therefore, we chose a point within the tristable regime and set up a variety of initial occupa-

tions. Numerical integration was done and selected trajectories are highlighted in figure 2.3.

All three stable states are reached after a large amount of integration time. Only extremely

high values of initial nB converge to VLR (red). While traces of A decelerate the process, C
destabilises the VLR slowly until a critical composition is reached and LR (brown) is approached.

Both, LR and VLR are only reached on long time scales.

Initial conditions with high proportions of C or high nA and low nB tend to converge to UR

(blue). Apparently, for the chosen gas composition, C adsorbs faster than A and B, while A+C
reaction replenishes occupation sites. In these cases, UR is reached in extremely short times,

compared to LR and VLR.

2.4.2 Linear scanning approach

In the following, the term ‘scan’ will be used for a series of numerical simulations with a stepwise

increase/decrease of two gas components, starting and ending at one edge in the ternary diagram

(e.g. (YA/1−YA/0)→ (YA/0/1−YA), thus a scan parallel to YCC axis).

The following pre-step was performed to obtain reliable starting occupations for the scans.

We started with the A + CC reaction (YBB = 0) as this case represents our previous findings

[19, 23, 24]. Three consecutive scans (forward, backward and forward) were run to ensure quasi-

static behaviour. The resulting occupations at YA = 0.015 and YA = 1 were set as initial conditions

for calculating the other edges of the triangle (BB + CC reaction and A + BB adsorption equi-

librium). Two consecutive scans (forward and backwards) were sufficient to obtain information

about bistability. Furthermore, convergence tests were performed to select a sufficiently long time

step.

All distinguishable occupation states (one or two per set of Y ) were collected from data. Each

set served as an initial condition for further two scans. The series of scans from the same starting

border and in the same direction can be visualized by a vector in the ternary diagram.

A selection of our results is highlighted in figure 2.4. They are representative of the whole set

of scans since they show all stable states within the ternary regime. High occupation of one species

correlates directly with a specific kinetic state. Therefore, we can apply the kinetic terminology of

UR, LR and VLR to identify the specific occupations and vice versa.
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Figure 2.3: Time evolution of nB for the gas flow composition YA = 0.06, YBB = 0.075, YCC = 0.865
(within the ’swallowtail’) with different initial occupations. The inner graph shows the short-scale
evolution while the outer shows the long-scale evolution. The color of each trajectory represents
the total surface occupation according to RGB = (nB/nA/nC + nBC). Eventually, all trajectories
reach one of the stable states (UR: blue, LR: brown, VLR: red), if given a sufficient amount of
time.

Concerning the A + C reaction, the presence of a small amount of B lowers rAC at first only

marginally, especially if decreasing YA for YBB. It is remarkable however that an amount of YBB >

0.05 is sufficient to ensure nB close to 1 in most cases. Considering A and B could represent

carbon monoxide and hydrogen, a different result was expected. CO is often found to poison

catalytic surfaces, which is especially crucial in PEM fuel cells [49]. Experimentally, quantitative

hydrogen desorption occurs at for many platinum group catalysts at temperatures between 300 and

400 K [38, 50], so desorption of B might be underrated. However, the mostly hydrogen covered

surface is consistent with the theoretical results of Zhdanov [31]. He also found bistability which

is compatible with the present results. Compared to our model, he used lower temperatures and

higher pressures, but an extremely large desorption coefficient for hydrogen. These differences

show the large variety of parameter values which can show qualitatively similar behaviour.

In the first occupation pattern (figure 2.4(a)) UR (high C, blue) is visited in all its stable

regions. All scans which showed this pattern started from UR within the bistable regime. In terms

of reaction rates (figure 2.4(b)), this pattern shows the highest possible rates for AC formation,

as well as for BBC formation. The requirement for these high rates is the high C occupation

(corresponding to higher BC in case of BBC reaction).

The second occupation pattern (figure 2.4(c)) illustrates the other extreme case with maximal

VLR (high B, red). Formation rates (figure 2.4(d)) for both reactions collapse, rAC,max is only half

as large as in the UR case, rBBC,max decreases to a fifth. Besides in the monostable UR area, both

reactions only occur at a low rate in the UR-LR bistable area. This means that high nB prevents
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Figure 2.4: Highlighted occupation patterns (left) and resulting product formation rates (right)
with different scan vectors for experiment simulations. The Colour schema is derrived by translat-
ing ni (ri respectively) into RGB values. (a) The blue regions show areas of high nC corresponding
high reaction rates for both reactions (UR). (b) BBC formation is faster where B is high and AC
formation is faster where A is high. (c) The red region shows areas of high nB corresponding to
VLR. (d) rAC,max is only half as large as in the UR case, rBBC,max decreases to a fifth of before.
(e) The green region shows areas of high nA corresponding to LR. (f) Due to starting with UR,
AC formation rate reaches the same maximum as in (a) while BBC rate maximum increases only
marginally compared to (b). The linear edges are due to state transitions when crossing the saddle-
node curves.
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both reactions more strongly than high A.

This is also shown in the third occupation pattern (figure 2.4(e)). Since LR (high A, green)

is dominant in the swallowtail, the reactions occur both at a slow rate. While BBC formation

(figure 2.4(f)) only accelerates a little in the upper UR area, rAC,max increases to its value in (b)

because of the lower UR area.

Although LR reaction rates (A + CC and BB + CC) are slightly faster than VLR, we highlight

again, that a difference between both might be hard to notice in the experiment looking at only

reaction rates. Main rate deciding species is C and in both cases, occupation is not significant

enough to provide sufficient difference.

An interesting feature in these figures is the presence of sharp lines which are parallel to the

direction of the scan and divide the two bistable regimes. They follow the scanning direction and

show clear transitions depending on which cusp is crossed. When crossing from tristable to the

bistable regime at the left cusp, LR transitions preferably to UR. Otherwise, if the bent line of

the swallowtail from LR, VLR is more stable than UR. Because of the simple linear scanning

approach, it is also not possible to show LR in the complete swallowtail.

2.4.3 Transition Analysis

To highlight the kinetic phase transitions and obtain information about the global stability of a

certain state, simulations along more complex paths were performed. Each path started in the

tristable area, crossing two saddle-node curves at different points. Figure 2.5 exemplifies the

different behaviour obtained by moving into the bistable VLR/LR regime. Since the difference

between both states is subtle and the transition is continuous over the majority of the diagram, this

region was particularly interesting.
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(c) Starting with VLR.

Figure 2.5: Scanning along a path from tristable point (YA = 0.107, YBB = 0.049, YCC = 0.844)
over bistable (LR/VLR) point (YA = 0.110, YBB = 0.049, YCC = 0.841) to monostable (VLR) point
(YA = 0.110, YBB = 0.109, YCC = 0.781). The figure illustrates the different behaviors when different
kinetic states become unstable.

Since VLR can be visited in all three points, no qualitative change or transition occurs (fig. 2.5(c)).

Otherwise, when leaving the small bistable regime in LR state, a transition occurs (fig. 2.5(b)).
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Only VLR is stable after the bistable point. As seen here, the difference between LR and VLR

is quantitatively not large. UR is only stable within the tristable regime (fig. 2.5(a)) which means

transition occurs when crossing the edge of the swallowtail. Although both states, LR and VLR

are stable in the bistable region, LR is visited. This shows that even though VLR seems dominant

in most conditions (see fig. 2.4), in the bistable (LR/VLR)-tip LR is slightly more stable.

This behaviour has to be anticipated in the experiment. When shifting the parameters from a

monostable to a bistable regime, no transition will occur. The backwards-scans in all three of the

presented cases are equal to figure 2.5(c). In consequence, a single scan neither displays the start

of regimes with more stable states nor necessarily reveals the disappearance of a stable state. Only

the destabilisation of the visited state can be demonstrated.

2.5 Heterogeneous concentrations

One of the most influencing factors we neglected in our basic model is diffusivity. In general,

diffusion of adsorbates is dependent on temperature, strengths of bonding, the species and also

coverages [20]. Since particles move on the surface and react only if they find an adequate partner,

diffusion can influence the reaction dramatically. This leads often to macroscopic surface patterns:

waves, islands, and fronts.

Since the effect of reaction fronts is important but there are still many uncertainties about

diffusion mechanisms and timescales, only the most basic approach to diffusion will be used. The

simple model is augmented in the following way:

∂nCO

∂ t
= ΦCOsCO(1−nCO−nH−nO−nOH)

a

− k1nCO− k2nCOnO +DCO∆nCO (2.15)

∂nH

∂ t
= 2ΦH2sH(1−nCO−nH−nO−nOH)

b

−2k3n2
H− k4nHnO− k5nHnOH +DH∆nH (2.16)

∂nO

∂ t
= 2ΦO2sO(1−nCO−nH−nO−nOH)

c

− k2nCOnO− k4nHnO + k6n2
OH +DO∆nO (2.17)

∂nOH

∂ t
= k4nHnO− k5nHnOH−2k6n2

OH +DOH∆nOH (2.18)

We tested different combinations of Diffusion coefficients but noticed no relevant differences.

Selected results for DA = 1,DB = 10,DC = DBC = 0.1 (the spatial length scale is modified accord-

ingly) are presented in Fig. 2.6 and 2.7.

In fig. 2.6, we considered two basic scenarios: one bistable case (UR and VLR coexist); and

one tristable case (UR coexists with LR and VLR). These situations are investigated using a simple

one-dimensional domain with periodic boundary conditions, prepared with a step-wise constant

initial condition that includes each stable state, and integrated with a traditional Cranck-Nicolson

semi-implicit scheme [51].

For both cases, we found UR to be dominant, as the other states were close to saddle-node
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bifurcations where they become unstable.

Observing the interphase between UR and VLR, Diffusion destabilises the nearly completely

occupied VLR which consequently replenishes space for C to adsorb. Similar conclusions can

be drawn from the observations of the interphase between UR and LR in fig. 2.6(b). C adsorbs

quickly on vacant sites that became free through diffusion. Due to the increase of nC, both surface

reactions accelerate which has an auto-catalytic effect on the corrosion of the LR.
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(b) YA = 0.06, YCC = 0.865, YBB = 0.075

Figure 2.6: Time evolution of B coverage following equations (2.15–2.18) in a periodic one di-
mensional domain for two different gas compositions in the ternary diagram. The initial condition
in each figure is indicated with a dashed line that divides the domain between the stable states.
(a) This selection corresponds to a bistable regime, where UR (lower value of nB) and LR (higher
value of nB) are stable. (b) This selection corresponds to a tristable regime (inside the ‘swallow-
tail’ of Fig. 2.1(c)), where UR, LR, and VLR (highest value of nB) are stable. In both cases, the
coverage becomes smoother over time and the UR state dominates (the part of the domain where
nB > 0 shrinks to zero). Numerical integration was performed with Crank-Nicolson semi-implicit
method.

As the tristable case is of particular interest, we further examined it in a 2-dimensional ap-

proach. A circular domain with zero flux on the boundary is chosen and divided equally by UR,

LR and VLR (fig. 2.6). This more complex case illustrates only a slightly different picture com-

pared to the one-dimensional case, where the UR corrodes LR and VLR equally. Firstly, LR

invades the interface between both states and extends towards VLR (b). Presumably, the contact

with the UR (nB ≈ 0) accelerates the transitions from VLR (nB ≈ 1) to LR (nB ≈ 0.6). Upon

further evolution, UR expands towards LR (c) and dominates at the end of the simulation (d).

More detailed experiments should be performed to extract the features of diffusion. Among
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(a) (b)

(c) (d)

Figure 2.7: Time-evolution of B (hydrogen) coverage following equations (2.15–2.18) in a circular
two dimensional domain with zero flux on the boundary and the gas composition of YA = 0.06,
YBB = 0.075, YCC = 0.865. The initial condition shown in (a) splits the domain evenly between
the three stable states: UR (orange), LR (blue), and VLR (red). As simulation progresses, the LR
invades the interface between UR and VLR (b) and starts to extinguish the VLR (c). In the end,
the UR state dominates over LR and will cover the whole disc. Computation was performed using
FreeFem++ [52].

the multiple phenomena induced by diffusion, one should mention front instabilities in two spatial

dimensions.

2.6 Conclusions

In this article, we have presented theoretical work on a surface reaction system that besides oxygen

and carbon monoxide, includes the presence of hydrogen in the feeding gas. This simple change

forces the inclusion of several new reaction pathways, new adsorbed species (hydrogen, hydroxide

and water), and the water formation that may collaborate or compete with the CO oxidation.

The resulting 4-dimensional system of differential equations can be analysed within the frame-

work of bifurcation theory, revealing a state that features high CO and water formations, thus ba-

sically coincides with the upper rate state (UR) that one would expect for CO oxidation; and up to

two lower rate states (LR and VLR) with limited formation rates. These three states can coexist

stably, and a codimension-2 diagram (using the molar fractions as control parameters) reveals how

the saddle-node bifurcations are connected by ‘cusps’ that form a ‘swallowtail’ diagram, suggest-
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ing how other additional control parameters such as temperature and total flux can enlarge the

tristability region.

The bistability and tristability can be made manifest in experiments by preparing the state of

the surface and slowly scanning (quasi-statically) the control parameters in different ‘directions’.

Our work anticipates formation rates that follow non-trivial changes induced by the underlying

structure of the cusps. The tristable region can only be revealed by manipulating the molar frac-

tions along certain ‘paths’ in the codimension-2 diagram.

Finally, making a simple assumption about the diffusion mechanisms of the adsorbed species,

we explored reaction-diffusion fronts that can make one state dominant over the other stable states.

Only a detailed analysis of experiments will indicate the most appropriate diffusion mechanisms

and the existence of spatio-temporal patterns.

Data accessibility

Python codes for numerical simulations can be accessed in the supplementary material.
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External Noise-Induced Transitions in a Bistable Reaction-Diffusion System: Photoelec-

tron Emission Microscopy Experiments and Modeling. (2005) Phys. Rev. Lett. 95, 1–4.

doi: 10.1103/PhysRevLett.95.038301.

[13] Hoffmann P, Wehner S, Schmeißer D, Brand HR, Küppers J Noise-Induced Spatiotemporal
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A single-species reaction-diffusion model is used for studying the coexistence of mul-

tiple stable steady states. In these systems one can define a potentiallike functional

that contains the stability properties of the states, and the essentials of the motion of

wave fronts in one and two dimensional space. Using a quintic polynomial for the re-

action term, and taking advantage of the well known butterfly bifurcation, we analyse

the different scenarios involving the competition of two and three stable steady states,

based on equipotential curves and points. The predicted behaviours, including a front

splitting instability, are contrasted to numerical integrations of reaction fronts in two

dimensions.
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The propagation of fronts in reaction–diffusion systems is relevant in a wide variety of contexts.

For bistable situations (two homogeneous stable states in competition), there are abundant results

for the propagation speeds. For situations where three stable states coexist, general results are

more scarce. We propose here the use of bifurcation theory for a complete characterization of the

existence of fronts.

3.1 Introduction

Reaction–diffusion models have proved to be relevant in chemistry, biology, and physics, provid-

ing a unitary framework that can account for spatiotemporal patterns, localized structures, trav-

eling waves, spirals, and more complex phenomena. Several extensions of the basic model such

as density dependent diffusion, crossdiffusion terms, or time-delays can be considered for making

reaction– diffusion models more realistic and for enlarging their range of applicability [1–5].

In this work, we focus on fronts or moving interfaces between two or more stable homoge-

neous states, in domains that are large enough so that their boundaries can be reasonably ignored.

We have in mind, particularly, surface reactions in ultra-high-vacuum conditions such as CO ox-

idation on platinum group crystals. For the time being, we focus on a single reacting species.

Models considering the interaction of multiple species participating in several reactions can ex-

hibit additional bifurcations that go beyond the scope of the present work.

The mathematical problem of predicting the speed of these reaction fronts has been consid-

ered extensively in the literature. Under certain conditions, the speed can be obtained without

explicit knowledge of the profile of the reaction fronts [6, 7]. Interestingly, zero-velocity fronts

have been observed in experiments and in realistic models, indicating equal stability between two

homogeneous states [6, 8–12].

When multiple stable states coexist, as in the models considered in Refs. 13–15, the compe-

tition between states leads to competition between fronts of different speeds. Other works that

have studied the motion of reaction fronts in a tristability regime are Refs. 14 and 16–19. In

the context of metastable phases. They found that when three stable phases coexist, not all three

possible fronts will exist; and that there are situations when a metastable phase grows transiently

before being dominated by the most stable phase. Bifurcations of front solutions connecting two

stable states are also possible, but only for reaction–diffusion models with two or more interacting

species [14, 20–22]. For instance, Chirilus-Bruckner et al. [22] found a rich set of bifurcations,

predicting the existence of up to three stable fronts with different speeds connecting the same two

stable states, something that is not possible in single-species models.

In this article, our goal was to take advantage of the framework developed in Catastrophe

Theory (see, for instance, Ref. 23) and analyze a minimal model of front propagation between

three stable states and all its possible scenarios based on the features of a potential function. We

do not compute speeds or actual solutions, but only study the algebraic conditions that make the

speeds of these fronts equal to zero. The results of our study will shed light on other systems

where three states coexist stably, such as Refs. 13 and 15 or 24–26.

In Sec. 3.2, we present the model and summarize simple mathematical results. In Sec.3.3, we

pose the problem of equipotential curves and points and show results for three different sections
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of the butterfly bifurcation. In Sec. 3.4, we derive conditions for the existence of fronts based on

the mechanical analogy and an analysis around the equipotential point. In Sec. 3.5, we locate the

curve in parameter space where the front splitting instability (FSI) arises. In Sec. 3.6, we project

the existence of a tristability region and equipotential point back to the butterfly bifurcation set.

In Sec. 3.7, we will show partial differential equation (PDE) simulations that confirm the results

of Secs. 3.4-3.6. We conclude with a discussion on the implications for other reaction–diffusion

systems.

3.2 Model

The simplest model of competition between stable homogeneous states is the single-species reac-

tion–diffusion equation (also known as the Allen–Cahn equation in some contexts) in an infinite

1D domain,

ut = uxx + f (u), (3.1)

where the nonlinear function f (u) represents the local reaction rate and determines the exis-

tence of homogeneous states and their stability. In the following, we specialize our analysis to

front solutions of the form u(x, t) = u(z) with z = x− ct, and

u(−∞) = u−,u(+∞) = u+,

fixed points of the reaction function

f (u−) = f (u+) = 0,

which are both stable under the ODE dynamics u̇ = f (u),

f ′(u−)< 0, f ′(u+)< 0.

The invasion of an unstable state ( f (u) = 0, f ′(u)> 0) may be relevant in certain contexts, but

we have decided to narrow the scope of our analysis to connections between strictly stable states.

Under these general assumptions, we end up with an ODE for the front solution u(z),

0 = uzz + cuz + f (u). (3.2)

Multiplying the front equation by uz and integrating by parts along the whole real line, one can

identify the front speed,

c =−
∫ u+

u− f (u)du∫
∞

−∞
u2

z dz
=

V u+−V (u−)∫
∞

−∞
u2

z dz
, (3.3)

where the potential

V (u) satisfies V ′(u) =− f (u)
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.

The stable states u± are now minima of potential V (u). So, even if exact solutions u(z) cannot

be found explicitly, one can predict the direction in which the front will move.

The long-time evolution of an initial condition u(x,0) when two stable states coexist has been

studied rigorously by Fife and McLeod [16] and Aronson and Weinberger [27]. They proved,

using different sets of assumptions, that appropriate initial conditions evolve into the monotonic

traveling front u(x± ct) joining the two stable states.

For smaller domains, their geometry and boundary conditions also play a role, as was studied,

for instance, in Ref. 28. The curvature of fronts can become relevant and allow “frozen” fronts

(with zero speed) that are not possible in simpler geometries, as discussed in Ref. 11. In those

situations, the speed of the curved front presents a correction, which can be connected with the

critical radius a circular area must have before growing.

Equations 3.2 and 3.3 allow a simple mechanical analogy that has been extensively used (see,

for instance, Ref. 2): if z is interpreted as time, u as position, c as a (positive) friction, then −V

plays the role of a potential energy and the front solution u(z) can be interpreted as the trajectory

of a particle of unit mass from the position u− in the infinite past moving toward u+ in the infinite

future. Both u± (minima of V (u)) correspond to “hills” in this analogy. Assuming for the sake of

the argument that V (u−)<V (u+), then c can be interpreted as the critical friction that allows the

particle to reach u+ in the infinite future: (u(z),u0(z))
z→∞−−→ (u+,0). Now, as was pointed out by

Bechhoefer et al. [17], this condition for the existence of fronts is not sufficient, as intermediate

obstacles may prevent the particle from reaching u+ and staying there.

To analyze more deeply the effects of multiple coexisting stable states, we propose using a

fifth-order reaction function,

fαβγδ (u) =−u5−αu3−βu2− γu−δ , (3.4)

which may have one, two, or three roots that satisfy f (u) = 0 and f ′(u)< 0, depending on the

values of the coefficients. A fourthorder term is not considered since it can be eliminated via a

linear transformation.

The previous choice leads to a sixth-order potential,

Vαβγδ (u) =
1
6

u6 +
α

4
u4 +

β

3
u3 +

γ

2
u2 +δu, (3.5)

as considered in Catastrophe Theory (see, for instance, Ref. 23). This polynomial, which always

has at least one minimum, is the most general unfolding of a degenerate potential of one variable

that has five derivatives equal to zero at the same point. By varying the four coefficients α , β , δ ,

and γ the minima of the potential undergo all the possible transitions between the monostable,

bistable, and tristable scenarios.

Figure 3.1 shows several sections of the butterfly bifurcation, giving a simplified description

of the role of the four parameters. In these depicted sections, the curves separate regions with

different numbers of stable roots. In this work, we are mostly interested in regions, where two and

three stable where two and three stable roots coexist and front solutions of 3.2 are possible.

In the language of bifurcation theory, the curves in Fig. 3.1 are saddle-node bifurcations since
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Figure 3.1: Butterfly catastrophe map, depicted as sections of four-dimensional parameter space
(α,β ,γ,δ ). Each small square corresponds to a particular choice of α and β and shows curves that
indicate where minima of potential V (u) defined in 3.5 appear or disappear. Regions of one stable
solution are colored in light gray; two stable solutions in dark cyan; and three stable solutions in
magenta. Based on figure by Poston and Stewart [23].

a stable and an unstable solution of u̇ = f (u) annihilate at these points. The points where the

saddlenode curves develop “cusps” are places, where either two stable solutions and one unstable

solution meet (here, cusps that point in direction of growing γ) or one stable and two unstable solu-

tions meet (here, the cusp that points in direction of decreasing γ). For certain particular sections

(here, particular selections of α and β ), these cusps merge into higher codimension bifurcation

points, where whole regions of two or three stable states disappear.

Quintic reaction terms, similar to 3.4, have been considered in the literature of front solutions,

but under a different light. For instance, van Saarloos [29] (see also Refs. 6 and [9]) found analytic

solutions of the front equation for quintic reaction functions of the form f (u) = −u5 + νu3 +

µu. Bechhoefer et al. [17, 18] considered the existence and interaction of fronts using reaction

functions from a restricted set of polynomials f (u) = −u(u− (1/2−b))(u−1)(u−3/2)(u−2).

More recently, Stegemerten et al. [14] used f (u) = −u5 + (5/4)u3− (1/4)u+ µ and derived

intricate sets of solutions using continuation methods, including fronts between both stable and

unstable states.
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In the context of surface reactions (see, for instance, Ref. 30), quadratic and quintic terms

arise from the stoichiometry of the reactions. Here, we use nonlinear terms to control the shape of

the reaction term f (u) and consider multiple solutions, which could capture qualitatively what is

observed in more complex models, but without assuming a direct connection between each non-

linear term in 3.4 and a particular reaction. Thus, we use the quintic model as a “cartoon” model

that allows analytical treatment and gives qualitative insights about the outcomes of complex re-

action–diffusion models of surface reactions.

3.3 Equipotential curves and points

In the butterfly diagrams depicted in Fig. 1, there are regions with one, two, or three stable

solutions of the fifth-order equation f (u) = 0, f (u)< 0 as defined in eq. 3.4. These roots indicate

possible stable homogeneous solutions of eq. 3.1.

In regions with a single stable solution u0, the only possible outcome of the reaction–diffusion

model is a homogeneous state u(x, t) = u0 for long times t.

In regions with two stable solutions u0, u1 (we assume u0 < u1), it is possible to have moving

fronts u01(x− c01t) connecting u(−∞) = u0 and u(∞) = u1, and the direction of motion of the

front will depend on the sign of the speed c01 i.e., on the values V (u0) and V (u1) as predicted by

eq. 3.3. If V (u0)<V (u1), then c01 > 0 and state u0 will invade parts of the space initially covered

with u1; if V (u0) > V (u1), then c01 < 0 and it will be state u1 invading the whole spatial domain

(away from boundaries or defects).

Now, in regions of parameter space with three stable solutions u0, u1, u2 (we assume u0 < u1 <

u2), there will be up to three front solutions u01(z), u12(z), u02(z) with speeds c01, c12, and c02,

which we label 01, 12, and 02 indicating the values at z =−∞ and z =+∞. As before, the relative

values of V (u0), V (u1), and V (u2) determine the signs of the speeds and indicate the directions of

motion of the fronts: the state with the minimum value of V (u) will invade the other two. However,

the details of the process will depend on whether the fronts connecting the three states do exist or

not, a question that will be answered in Sec. 3.4.

In this section, we focus on zero-velocity fronts c = 0, which exist when there are two stable

states u− and u+ that satisfy f (u) = 0, f ′(u)< 0 and have the same potential values,

V (u−)
ep
=V (u+) (3.6)

(here, “
ep
=” means that the equation is valid if both sides are evaluated at particular combina-

tions of the parameters α,β ,γ , and δ ). This Maxwell or equipotential condition indicates that

in the absence of other forcings, there are two stable states with the same stability properties.

From 3.2, multiplying by du/dz and integrating from −∞ to z (assuming u− < u+),

u2
z (z)
2

ep
=V (u(z))−V (u−). (3.7)

In the context of the mechanical analogy, these zero-friction solutions are known as Hamilto-

nian solutions.
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For bistable surface reactions, the region in the parameter space where two stable solutions

coexist is delimited by two saddle-node bifurcations. It has been shown by Bär et al. [8] and

Wehner et al. [11], both in experiments and modeling, that if the width of the bistability region

shrinks and disappears in a cusp, then the curve where V (u0) =V (u1) will reach the tip of the cusp,

separating the bistability region into two subregions where either the u0 or u1 state dominates.

In the case of a tristable reaction, i.e., inside a tristability region such as the ones depicted in

Fig. 3.1, one can study (in parameter space α , β , γ , δ ) the existence of equipotential curves where

V (u0) = V (u1), V (u1) = V (u2), or V (u0) = V (u2), and of equipotential points where V (u0) =

V (u1) =V (u2). For these particular points in parameter space, the long term behavior of solutions

of the reaction–diffusion 3.1 will look like a subdivision of the spatial domain into patches where

u(x, t) is constant and uniform.

In the context of the sixth-order potential 3.5, the equipotential condition leads to two sim-

ple bifurcation problems. The equipotential curves are solution sets of the following system of

algebraic equations (for given α , β parameters):

f (u0;γ,δ ) = 0, (3.8a)

f (u1;γ,δ ) = 0, (3.8b)

V (u0;γ,δ )−V (u1;γ,δ ) = 0, (3.8c)

where u0 and u1 are distinct solutions of f (u;α,β ,γ,δ ) = 0.

The equipotential points are solutions of the following system of algebraic equations (for given

α , β parameters):

f (u0;γ,δ ) = 0, (3.9a)

f (u1;γ,δ ) = 0, (3.9b)

f (u2;γ,δ ) = 0, (3.9c)

V (u0;γ,δ )−V (u1;γ,δ ) = 0, (3.9d)

V (u1;γ,δ )−V (u2;γ,δ ) = 0, (3.9e)

where u0, u1, and u2 are distinct solutions of f (u;α,β ,γ,δ ) = 0.

Numerical analysis of algebraic systems (3.8) and (3.9) can be performed with continuation

algorithms such as the software AUTO [31]. Assuming that appropriate initial solutions were used,

it is possible to reconstruct the whole codimension-2 equipotential curves in the plane (γ , δ ) for a

given choice of α , β , revealing the inner structure of the bistability and the tristability regions. In

Secs. 3.3.1-3.3.3, three qualitatively different sections of the butterfly bifurcation set are analyzed.

3.3.1 First scenario: One bistability region and monostability region

The simplest sections of the butterfly bifurcation set are those without a tristability region in the

(γ , δ ) plane. For these scenarios, the cusp-shaped bistability region where fronts are possible will
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Figure 3.2: The scenario of the butterfly bifurcation is here presented for α = 2 and β = 10. There
are two saddle-node bifurcation curves (black) that separate regions with one and two stable states
and meet at a cusp: in the area contained by the two saddle-node curves, two stable solutions
coexist. The bistability region is divided by an equipotential curve (blue), solution of 3.8, where a
zero-velocity front connecting the two states is possible.

be divided by a single equipotential curve V (u0) =V (u1), solution of (3.8), which ends at the tip

of the cusp, as depicted in Fig. 3.2. At that particular point, the solutions u0 and u1 swap roles and

the curve retraces back.

For points (γ , δ ) above the equipotential curve, V (u0)<V (u1), so solution u0 is the invading

state and state u1 the one being invaded; for points (γ , δ ) below the equipotential curve V (u0) >

V (u1), it is the other way around. This scenario describes what was found in surface reactions

experiments like [11].

3.3.2 Second scenario: One tristability region, one bistability region, and one monos-
tability region

For some selection of α and β parameters, a pair of cusps develops along one of the saddle-node

curves as depicted in Fig. 3.3. Inside the triangle-shaped region defined by the newly created

cusps, three stable states coexist.

Now, only one of the “new” cusps has an equipotential curve that divides the tristability region

and ends at the opposing saddle-node curve; at that point, the equipotential curve bounces back

and keeps going but it now captures one stable and one unstable state having the same potential

and then bounces at another saddle-node curve and finally ends at the other new cusp. The “spu-

rious” sections of the curves, indicating an equipotential condition involving one or two unstable

solutions, are indicated in red in Fig. 3.3.

The “older” cusp (the one pointing to the right) that penetrates into the monostable region does

have an equipotential curve that traces to the left. Depending on α and β , this equipotential curve

may or may not pass through the tristability region; so, two subscenarios must be considered. If

the curve does touch the saddle-node curves and bounces two times at the saddle-node curves,

as shown in Fig. 3.3(a), a tristability point (γep,δep) solution of (3.9) will exist; if there is no such

intersection and the curve goes unhindered in the direction of decreasing γ , as shown in Fig. 3.3(b),

no equipotential point will exist.
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Figure 3.3: The scenario of the butterfly bifurcation set is here depicted for (a) α = −10,β = 6
and (b) α =−10,β = 8. There are several saddle-node bifurcation curves, depicted in black, that
separate regions with one, two, and three stable states (inside the upper “horn” two stable solu-
tions coexist, inside the central triangular region three stable solutions coexist). The equipotential
curves, depicted in blue, are solutions of 3.8. “Spurious” sections of the equipotential curves (in-
volving unstable solutions) are depicted in red. In (a), the equipotential curves intersect defining
an equipotential point that is the unique solution of (3.9): at that point, three zero-velocity fronts
exist. In (b), there is no intersection: although the three states coexist stably in the triangular re-
gion, only two of them can be connected by a zero-velocity front.

A closer look at the triangle-shaped tristability region for the case where an equipotential point

exists reveals that there are six distinct subregions where the values of the potential V (u0), V (u1),

and V (u2) will have different orderings. These orderings are going to be described in more detail

in the next scenario.

3.3.3 Third scenario: One tristability region, three bistability regions, and one
monostability region

The third situation corresponds to selections of (α , β ) that lead to (γ , δ ) planes with two bistable

cusps penetrating the monostable region and a diamond-shaped tristability region as shown in

Fig. 3.4. Comparing this scenario with the one just considered in Sec. 3.3.2, it looks as if one of

the new cusps grew to the right and crossed the other saddle-node curve.

The two equipotential curves born at the right-pointing cusps intersect inside the tristability

region at a unique equipotential point (γep, δep) and end at opposing saddle-node curves, where they

bounce and become spurious. One of these spurious curves bounces a second time before reaching

the tip of the left-pointing cusp. The other spurious curve becomes legitimate after bouncing at a

saddle-node, passes through the equipotential point, and then goes unhindered to the left.

A closer look at the subregions of (γ , δ ) plane defined by the equipotential curves reveals that

there are six distinct cases: different orderings for the values of the potential V (u0), V (u1), and

V (u2). Figure 3.6 shows the potentials V (u) for some limited selection of parameters (α , β , γ , δ ),

including the equipotential point shown in Fig. 3.4. Figure 3.5 shows two different sections of

Fig. 3.4, indicating the roots, their stability, and the places where equipotential conditions are

verified.

For β = 0, the diagrams in the plane (γ , δ ) become symmetric to reflections with respect to

γ axis. This case is not relevant in the context of fronts and is not further analyzed. A summary of
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Figure 3.4: (a) The scenario of the butterfly bifurcation is here shown for α =−10,β = 2. There
are several saddle-node bifurcation curves depicted in black that separate regions with one, two,
and three stable states: inside the “wings of the butterfly” two stable solutions coexist, and inside
the diamond-shaped region, three stable solutions coexist. The equipotential curves depicted in
blue are solutions of 3.8, and the equipotential point is the unique solution of 3.9 and the inter-
section of three equipotential curves. (b) A zoom of the diamond-shaped tristability region. Red
segments of equipotential curves are spurious since they represent an equipotential condition be-
tween astable and an unstable state.

the possible orderings of the values V (u0), V (u1), and V (u2) is presented in Fig. 3.7. The colored

areas indicate whether u0, u1 or u2 is the minimum of V (u), and thus will invade the other two

states in the context of a surface reaction modeled by 3.1.

3.4 Existance of fronts inside the tristability region

In Sec. 3.3, and using only the features of the potential V (u) as its polynomial coefficients were

varied, we identified up to six subregions where the stable roots u0, u1, and u2 have their potential

values V (u0), V (u1), and V (u2) ordered in different ways. The global minimum of V(u) will

always be the invading state that in the long term will cover the whole domain. The details of this

process will depend on whether the front solutions u01(z), u12(z), and u02(z) exist or not.

We illustrate this issue with the mechanical analogy: a rightmoving (c > 0) front connecting

u− and u+ is only possible if V (u− <V (u+), and the starting hill must be higher. However, there

is an additional requirement: no intermediate hill should block the path between u− and u+.

In the case of three hills (three local minima of V (u)), there are always front connections

(moving either to the left or to the right) between u0 and u1, and between u1 and u2. But the u02(z)

front connecting u0 and u2 deserves a separate treatment.

As it turns out there are three regions in the (γ , δ ) plane. We follow the treatment used by

Bechhoefer et al. [17].

3.4.1 First subregion: Intermediate hill is highest

Using the mechanical analogy for the case when V (u1) < V (u0) and V (u1) < V (u2), we can see

that both u10(z) and u12(z) fronts exist with speeds c10 and c12 given by (3.3), but fronts connecting

u0 and u2 are forbidden in both directions (the mechanical particle does not have enough energy
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Figure 3.5: Codimension-1 bifurcation diagrams showing the roots of function f (u) as a single
parameter is varied. These two diagrams correspond to a horizontal and a vertical cut in Fig. 3.4,
respectively. Stable roots are depicted in continuous blue lines; unstable roots in dashed red lines;
tristability ranges are indicated with shaded areas. (a) Parameter γ is varied, keeping α =−10,β =
2, and δ =−5 constant. The three green points indicate that the condition V (u0) =V (u1) =V (u2)
is satisfied for γ = 18.75. (b) Parameter δ is varied, keeping α =−10,β = 2, and γ = 20 constant.
The three pairs of green points connected by dotted lines indicate that an equipotential condition
is satisfied for three different values of δ .

to climb the intermediate hill at u1).

In the dynamic problem 3.1, state u1 will dominate everywhere, invading both areas initially

covered with states u0 and u2. Any interface between u0 and u2 will develop a thin u1 band that

will grow and invade both sides of the domain.

3.4.2 Second subregion: Intermediate hill is lowest

If V (u1)>V (u0) and V (u1)>V (u2), then all three fronts are possible: u01(z), u21(z), and u02(z)

(or u20(z) depending on relative values of potential V (u0) and V (u2)).

In the dynamic problem, either u0 or u2 will dominate depending on their potential values,

and u1 will be invaded by both. Areas initially covered by state u1 will shrink and disappear,

leaving behind an interface between u0 and u2, which then will move as the state with smaller

V (u) dominates on the whole spatial domain.

3.4.3 Third subregion: “Interesting” case

If V (u0)<V (u1)<V (u2) [or the “mirror” case V (u0)>V (u1)>V (u2)], then the fronts u01(z) and

u12(z) will always exist, but the front u02(z) may or may not exist. So, we will have an additional

subdivision in this subregion.

In the dynamic problem, the state of lowest potential (either u0 or u2) will always invade the

other two in the long term. However, for intermediate times, whether the front u02(z) exists or not

will show up as an instability in parameter plane.

If the front 02 does exist, the speeds of the three fronts verify c01 > c02 > c12 [in the mirror case

V (u0)>V (u1)>V (u2), the order is c21 > c20 > c10], as explained in Ref. 17 using the mechanical

analogy: if there is a connection between u0 and u2 for a critical friction c02, then a larger critical

friction c01 will make the particle stop at u1; if connection u02 passes through u1 before reaching
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Figure 3.6: Potentials V (u) obtained for different combinations of parameter values, where one or
two equipotential conditions are satisfied: (a) α = −10, β = 2, γ = 1.636, δ = −6.558, and two
stable solutions exist and verify V (u0) =V (u2); (b) α =−10, β = 2, γ = 20.655, δ =−4.718, and
three stable solutions exist and verify V (u0)=V (u2)>V (u1); (c) α =−10, β = 2, γ = 18.750, and
δ = −5, equipotential point where the three minima V (u0) = V (u1) = V (u2); (d) α = −10, β =
2, γ = 18.790, δ =−6.294, and a stable and an unstable solution have the same potential (spurious
situation).

u2, then a particle starting at u1 can also reach u2 but only for a smaller friction c12.

Now if the front u02(z) does not exist, the order of the speeds reverses: c01 < c12 [in the mirror

case V (u0)>V (u1)>V (u2), the order is c21 < c10]. In this case, the interesting and paradoxical

phenomena of front splitting appear [17, 18] in the reaction–diffusion model: fronts 01 and 12

will move in the same direction with speeds c01 < c12, leaving a growing area of the domain with

the metastable state u1. In the short term, the area that is covered with u1 is the one that grows

although it is continuously invaded. In the long term, it is the state with the lowest potential (either

u0 or u2) that will eventually cover the whole domain. Such a scenario was analyzed by Fife and

McLeod [16] (particularly in Theorem 3.3).

At a point in parameter space where c01 = c02 = c12, the front u02(z) will be the result of

merging u01(z) and u12(z), so it will stay around u1 for an indefinite amount of “time” z.

Rubinstein et al. [19] presented a detailed analysis of the fronts close to the equipotential point

where V (u0) = V (u1) = V (u2). They found that the fronts u01(z) and u12(z) exist independently

and travel with slightly different speeds. For one spatial dimension and assuming c01 > c12, they

considered solutions where the two fronts approached each other until a repulsive interaction bal-

anced the attraction, resulting in a stable “two-stepped” front as shown in Fig. 3.8 As we will show

in Sec. 3.5, the fronts u02(z) exist in large regions of parameter space and progressively develop a
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Figure 3.7: Summary of the behaviors of (3.1) as predicted by analysis of the potential V (u) (here,
we selected α =−10, β = 2). The proper equipotential curves and the saddle-node curves in (γ,δ )
plane define six subregions where the values V (u0),V (u1), and V (u2) have different orderings (a
schematic graph of the potential is shown for each one). The colored areas indicate the dominant
state that will invade the other two states by moving fronts: u0 (purple), u1 (brick), or u2 (mustard).
The intersection of the curves V (u0) = V (u1), V (u1) = V (u2), and V (u0) = V (u2) defines the
equipotential point (γep,δep), where the three fronts have the same speed. In the monostable region
(not colored), no fronts are possible.

two-stepped profile not only near the equipotential point but in general near the curve in parameter

space where the fronts u01(z) and u12(z) have the same speed. Beyond this curve, the front u02

does not exist.

3.5 Front splitting instability

Assuming that V (u0) < V (u1) < V (u2) [or the “mirror” case V (u0) > V (u1) > V (u2)], answer-

ing the question of whether the front solution u02(z) exists for some c02 will require solving a

PDE, shooting an ODE, or implementing a continuation scheme as in Refs. 14 and 32. We could

use variational methods that do not require explicit knowledge of the solution u(z) (see, for in-

stance, Ref. 7 for a general overview of variational methods in this setting). All these methods are

approximate and have their own strong and weak points.

In this work, we have favored elementary arguments over more complex analyses. In this

spirit, we present here an estimate of the transition boundary where the u02 front is born, close to

the equipotential point where the three fronts have zero speed.

Let us first compute partial derivatives of the front speed with respect to parameters γ and δ .



58 CHAPTER 3. REACTION-DIFFUSION FRONTS AND THE BUTTERFLY SET

Figure 3.8: Front solutions of (3.2) connecting u0, u1, and u2, stable roots of f (u) (indicated by
horizontal dashed lines). Parameters α =−10,β = 2, and δ = 0 are kept constant as δ takes three
values: (a) for δ = 17.5, three right-moving fronts u01(z), u12(z), and u02(z) exist, with speeds
satisfying c01 > c02 > c12; (b) for δ = 18.0, the front u02(z) acquires a “two-stepped” profile and
c01 ⪆ c02 ⪆ c12; and (c) for γ = 18.5, the front u02(z) no longer exists and c01 < c12. Although the
two-stepped front u02(z) may look like a combination of the fronts u01(z) and u12(z), these three
solutions correspond to three different speeds.

Recalling (3.3), for any front connecting u− and u+,

c
∫

∞

−∞

u2
z dz =V (u+)−V (u−) (3.10)

where both sides are positive.

Differentiating with respect to γ and evaluating at an equipotential point where c = 0 (as was

proposed in Ref. 9),

∂c
∂γ

∫
∞

−∞

u2
z dz

ep
=

∂V (u+)
∂γ

− ∂V (u−)
∂γ

=
u2
+

2
− u2

−
2

(3.11)

The fact that u+ and u− are roots of f (u) and verify the equipotential condition V (u+) =

V (u−) allowed us to eliminate several terms in the previous equation and will help us to find a

simplified expression for the partial derivative. For the integral in the left hand side, we can use

(3.7) integrated over the whole real line, which leads to
∫

∞

−∞
u2

z dz
ep
=
∫ u+

u−

√
2(V (u)−V (u−))du. We

then obtain for the partial derivative of the speed with respect to γ at the zero-speed point,

∂c
∂γ

ep
=

u2
+

2 −
u2
−
2∫ u+

u−

√
2(V (u)−V (u−))du

(3.12)

Repeating the process for the partial derivative of the speed with respect to δ at the zero-speed

point,

∂c
∂δ

ep
=

u+−u−∫ u+
u−

√
2(V (u)−V (u−))du

(3.13)

Now, considering the difference of speeds c01− c12 as a function of parameters γ and δ , we

get the following expression, valid at the point (γep, δep) where both fronts have zero speed:
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∂ (c01− c12)

∂γ

ep
=

u2
1

2 −
u2

0
2∫ u1

u0

√
2(V (u)−V (u0))du

u2
2

2 −
u2

1
2∫ u2

u1

√
2(V (u)−V (u1))du

,

(3.14a)

∂ (c01− c12)

∂δ

ep
=

u1−u0∫ u1
u0

√
2(V (u)−V (u0))du

u2−u1∫ u2
u1

√
2(V (u)−V (u1))du

,

(3.14b)

These partial derivatives make up a gradient vector in (γ , δ ) space. Perpendicularly, from this

vector, there is a line that passes through ((γep, δep) where c01− c12 = 0 at linear order. To the left

of such a line, the front u02 does exist and has a speed c02 that sits between c01 and c12; to the right

of such a line, the front u02 does not exist and the front splitting instability arises.

The slope of this line is

∆δ

∆γ
=− (∂ (c01− c12)/∂γ)ep

(∂ (c01− c12)/∂δ )ep
(3.15)

We could use this estimate for predicting the disappearance of the 02 front, i.e., the front split-

ting instability. For instance, using the section α =−10, β = 2, where (γep,δep) = (18.75,−5),

∆δ

∆γ
=−5.662

and focusing on the line δ = 0, inside the interesting region where V (u0) < V (u1) < V (u2),

the transition takes place at γ ≈ 17.86. For larger values, there will not be a 02 front.

For the selection α =−10, β = 6, where (γep,δep) = (18.75,−15),

∆δ

∆γ
=−1.991

For α =−10, β = 0, where (γep,δep)= (18.75,0), one can verify that (∂ (c01−c12)/∂δ )ep = 0,

and, thus, the curve of the front splitting instability is vertical.

Now, we must emphasize that the front splitting instability does not require the presence of an

equipotential point in the bifurcation diagram.

Using simple continuation techniques implemented in AUTO it is possible to reconstruct the

curve in parameter space (γ , δ ) where both speeds are equal (for given α , β parameters),

D2(u)i + cD(u)i + f (ui;γ,δ ) = 0 (i = 1...N) (3.16a)

D2(v)i + cD(v)i + f (vi;γ,δ ) = 0 (i = 1...N) (3.16b)

∑
N
i=1 zi(D(u)i)

2

∑
N
i=1(D(u)i)2

= 0 (3.16c)
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∑
N
i=1 zi(D(v)i)

2

∑
N
i=1(D(v)i)2

= 0 (3.16d)

where {ui} and {vi} represent the discretized fronts u01(z) and u12(z) at the zi points; and

operator D is the discrete derivative. The first two sets of N equations correspond to (3.2) for

u01(z) and u12(z) implemented using finite differences. The last two equations pin the two fronts

at the center of the discrete domain.

Figure 3.9: As explained in the text, the fronts 01 and 12 exist everywhere inside the tristability
region but the front 02 only exists to the left of the dashed boundary where the front splitting
instability (FSI) arises. The location of this curve is explained in Sec. 3.5. Colored subregions are
analyzed separately in the text.

The resulting curve of solutions of system (3.16) for α = −10, β = 2 was already presented

in Fig. 3.9. The curve passes through (γep,δep) with a slope ∆δ/∆γ ≈ −5.67 that matches the

analytical estimate (3.15). For α = −10, β = 6, the curve passes through (γep,δep) with a slope

∆δ/∆γ ≈−1.99 that also matches the analytical estimate.

It is interesting at this point to compare our findings with those presented by Stegemerten et al.

[14] (particularly in the section “The passive cubic-quintic Allen–Cahn equation”). They analyzed

the front (3.2) with a restricted quintic reaction term, finding a wealth of fronts between stable and

unstable states (here, we only consider fronts between stable states) and nontrivial connections

between them. Now, because of the particular choice of parameters they used, they observed a

strict separation of front speeds c01 < c02 < c12, and did not observe front splitting instabilities.

These observations and results will be contrasted with numerical integrations of 3.1 in Sec. 3.7.

3.6 The existance of equipotential points and the butterfly set

As it is studied in this article, stable states and their connections experience several transitions as

parameters α , β , γ , andδ are varied. In this section, we go back to Fig. 3.1, where interesting

combinations of (α , β ) were emphasized, those that deserve to be analyzed in more detail with

the equipotential condition and the tools of bifurcation theory.
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Figure 3.10: Projection of a bifurcation diagram in all four parameters α , β , γ , and γ . Each point
in this (α , β ) plane summarizes the features present in a (γ , δ ) section. Three distinct subregions
(identified with different colors) are identified, and a small representative (γ , δ ) diagram is in-
cluded for each one: points (α , β ) inside the exterior curves have sections (γ , δ ) with tristability
regions; points (α , β ) inside the interior curves have sections (γ , δ ) where an equipotential point
exists; outside the exterior curves, no tristability regions exist in the associated (γ , δ ) sections.

First, we separate the points (α ,β ) where the associated (γ , δ ) plane contains a tristability

region, no matter how small; loosely speaking, these points lie to the left of the origin in Fig. 3.1.

The shrinking of the tristability region appears when two cusps collide and three minima of V (u)

become a single one. Points at a saddle-node satisfy f (u) = f ′(u) = 0; points right at a cusp satisfy

f (u) = f ′(u) = f ′′(u) = 0. For the collision of cusps, an additional equation should be included.

The points in the (α , β ) plane where two cusps coincide can be found by the following alge-

braic system:

f (u;α,β ,γ,δ ) = 0, (3.17a)

f ′(u;α,β ,γ,δ ) = 0, (3.17b)

f ′′(u;α,β ,γ,δ ) = 0, (3.17c)

f ′′′(u;α,β ,γ,δ ) = 0, (3.17d)

The solution set of this system has the shape of a cusp that points in the α direction, is sym-

metric to reflections in theβ axis, and has its tip at the (0, 0) point. This curve is a boundary: for

points (α , β ) inside the cusp, there are combinations of (γ , δ ) where f (u) has three stable solutions

(besides regions with one and two); for points outside the cusp, there are combinations of (γ , δ )

that have at most two stable states.
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In Sec. 3.3, we showed that for a given (α , β ) where there is a tristability region, there is

no guarantee that equipotential curves intersect. The boundary where a cusp touches another

equipotential curve can also be found with a system of equations,

f (u1;α,β ,γ,δ ) = 0, (3.18a)

f ′(u1;α,β ,γ,δ ) = 0, (3.18b)

f ′′(u1;α,β ,γ,δ ) = 0, (3.18c)

f (u2;α,β ,γ,δ ) = 0, (3.18d)

V (u1;α,β ,γ,δ )−V (u2;α,β ,γ,δ ) = 0 (3.18e)

The solution set of this system has also the shape of a cusp that points in the α direction, is

symmetric to reflections in the β axis, and has its tip at the (0, 0) point. For points (α , β ) inside the

cusp, the associated (γ , δ ) will show equipotential curves that intersect at an equipotential point

(γep, δep).

Both cusps are shown in Fig. 3.10. This illustration complements the original butterfly map

presented in Fig. 3.1, explaining the different scenarios of the reaction–diffusion model (3.1) when

the reaction term is derived from a sixth-order polynomial (3.5).

3.7 PDE Solutions

Figure 3.11: Long-time solutions u(x,y, t) of (3.1) with no-flux boundary condition and with an
initial condition u(x,y,0) that was equally divided between u0 (dark blue), u1 (green),and u2 (yel-
low). The two choices of parameters correspond to equipotential points so the speeds of the three
fronts connecting these three states are zero; therefore, all three homogeneous solutions coexist
peacefully separated by three zero-velocity interfaces. (a) α =−10, β = 2, γ = 18.75, and δ =−5;
(b) α =−10, β = 7.8, γ = 18.75, and δ =−19.5. As the parameters β and δ are different in the
two subfigures, the values of u0, u1, and u2 are also different.
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Figure 3.12: Integrations of (3.1) in a two-dimensional domain for different combinations of pa-
rameters (γ , δ ), evaluated at a time t = 3. The plots are organized as to be comparable with the
diagram in Fig.3.4 (α =−10,β = 2). The corner graphs show bistable situations: V (u0)>V (u2),
no state u1 (upper-left); V (u1) > V (u0), no state u2 (upper-right); V (u2) > V (u0), no state u1
(bottom-left); and V (u1) > V (u2), no state u0 (bottom-right). At the center of the figure is the
equipotential scenario (γep,δep) at which all three front velocities become zero. Around that case,
several combinations of parameters achieve different invasion patterns between the three stable
states.

In Secs. 3.1-3.6, we explored the front connections between stable states by basically looking

at the potential condition.

One could now verify some of the findings by integrating the original reaction–diffusion model

(3.1) in an arbitrarily long 1D domain for several combinations of the parameters, as is often done

in this context. Here, we wanted to verify our predictions and show that they are relevant also in

finite two-dimensional domains. We used the same sort of numerical setup we used in Ref. 15:

integrations of evolution (3.1) in a 2D domain with a “free” boundary where ∂u/∂n = 0, and an

initial condition u(x,y; t = 0) that is equally divided between the two or three stable solutions,
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depending on the parameter values. In this way, we allow the two or three states to interact and

develop interfaces that move, determining the invasion sequence and the final dominance. As in

Ref. 15, we used the software FreeFem++ [33] that implements the finite element method with an

irregular triangular mesh.

A first verification is the existence of equipotential points. Using α =−10 and β = 2, where

(γep,δep) = (18.75,−5), we computed the long-time behavior of the solution u(x,y, t), shown in

Fig. 3.11(a). The basic “triple junction” was preserved over time as the interfaces did not experi-

ence invasion motion. Interestingly, the front between u0 and u2 exhibits some wave motion along

the interface, a phenomenon that may look similar to the traveling interface pulses reported in

Ref. 34. Even if stationary one-dimensional fronts 01 and 02 have zero speed, in two dimensions,

there are transversal effects that decay very slowly. This kind of instability due to sharp interfaces

could play a role in a physical context, for instance, in the presence of crystal anisotropies, terraces

or defects that are common in surface reactions.

Using α = −10 and β = 7.8, where (γep,δep) = (18.75,−19.5), the “triple junction” initial

condition evolves into Fig. 3.11(b). Comparing with the previous situation, the difference u2−u1

becomes smaller and the front 12 becomes smoother. The interface between u0 (dark blue) and

u2 (light green) suffers a subtle change with respect to Fig. 3.11(a): as one crosses the interface,

the front u(x,y, t) develops an intermediate region of moderate slope where u(x,y, t) ≈ u1 [see

also Fig. 3.8(b)]. This feature corresponds to the “twostepped” fronts that, as proved by Rubin-

stein et al. [19], persist in the neighborhood of equipotential points.

In Fig. 3.12, solutions u(x,y, t) for intermediate values of t are shown, for the selection α =

−10 and β = 2 and a discrete set of values of γ and δ . These integrations illustrate different

possibilities treated in Secs. 3.2-3.6 and could be contrasted with Figs. 3.7 and 3.9.

Several combinations of (γ , δ ) lie outside the tristability region and their initial conditions are

divided equally between two states by a single interface that may have moved after some time. In

the lower-left part of the diagram, only the states u0 (dark blue) and u2 (yellow) are stable, with

state u2 being slightly dominant c20 > 0; in the upper-right part, only u0 and u1 (green) are stable,

with u0 being slightly dominant c01 > 0, with a single instance of c10 > 0 for (γ,δ ) = (25,−5).

At the lower-right corner of the diagram, (γ,δ ) = (25,−15), there is a case of c12 ≈ 0.

Inside the tristability region, the outcomes are organized around the equipotential case (γep,δep)=

(18.75,−5) that was analyzed in Fig. 3.11(a). Directly to its left and downward in the diagram,

c21 > 0 and the state u2 seems to grow. As one moves from the equipotential case to the right

or upward, the interface 02 suffers a front splitting instability, and two parallel interfaces 01 and

12 develop and the surface covered with state u1 begins to grow (at least transiently). This phe-

nomenon is particularly clear at (γ,δ ) = (25,−10), where both areas u0 and u2 were displaced by

the area covered by state u1.

The results of the simulations can also be interpreted as manifestations of the changes suffered

by the potential V (u): with increasing γ , V (u1) decreases relatively to V (u0) and V (u2), thus

u1 being more dominant on the right section of the graph. Similarly, an increasing δ favors the

dominance of state u0.

Figure 3.13 shows a selection of solutions u(x, t) at t = 5, using ten selections of parameter

values along the line δ = 0. For all values ofδ shown in the figure, V (u0) < V (u1) and V (u0) <
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Figure 3.13: Solutions u(x,y, t) for several combinations of parameter values: α = −10, β =
2, γ = 0, and 16 ≤ δ ≤ 20.5. All integrations were initialized using the same initial condition
u(x,y;0) (a disk divided equally between three sectors) and are here shown at t = 5. Although the
u0 state invaded the other two in all these cases, it is clear that for γ ≥ 18, the interface between u0
and u2 breaks up.

Figure 3.14: Solution u(x,y, t) for parameters α = −10,β = 2,γ = 18.5, and δ = 0, illustrating
the front splitting instability: the interface between u0 (blue) and u2 (yellow) becomes thicker and
a long strip with the state u1 (green) appears, creating two parallel interfaces, one connecting u0
and u1, and other connecting u1 and u2. Transiently the area covered by u1 grows, but in the end,
u0 invades the whole domain.

V (u2), therefore, the state u0 dominates in the long term (not shown). For γ =≤ 17.5, no front

splitting can be observed: the front 02 exists and has nearly zero speed. However, for γ ≥ 18, the

front 02 gets destabilized, becomes thicker until it finally splits into two separate parallel fronts 01

and 12. For larger values of γ , the state u1 pushes u2 out of the boundaries of the disk, and in turn

u0 pushes u1, becoming in the long run the only dominant state.

A better understanding of the process of front splitting can be gained by looking at the progres-

sion for several instants. Figure 3.14 shows the evolution of an initial condition that was equally

divided between the three stable states, for parameter values selected such that the front 02 does

not exist. As the interface between states u0 and u2 becomes wider, it is clear that state u1 is able

to “sneak in” between the other two, creating two separate parallel interfaces 01 and 12. Although

in the end state the u0 invades the whole domain, the area covered by metastable state u1 grows

transiently.

Figure 3.15 illustrates the front splitting behavior furthermore. We define n1(t) as the fraction
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Figure 3.15: The quantity n1(t) defined by (3.19) measures the fraction of surface covered by
metastable state u1. For different combinations of parameters, the curve n1(t) shows an overall
decay to zero as u0 is the dominant state, but for some range of values γ ≥ 18, it shows a transient
growth, explained by the front splitting instability.

of surface covered by state u1,

n1(t) =

∫
S χ[u1−ε,u1+ε](u(x,y; t))dxdy∫

S dxdy
(3.19)

with

χ[a,b](u)

1 if u ∈ [a,b]

0 otherwise

and low values of ε .

For δ = 0 and low values of γ , the curve decays to zero monotonically. But for γ ≥ 18, n1(t)

shows an initial growth phase that is followed by a decay to zero, illustrating that the transient

effect of the front splitting instability can also be detected by a global measure.

3.8 Conclusion

In the present article, we described a cartoonishly simplified one-dimensional model for reac-

tion–diffusion processes with up to three stable states. From Catastrophe Theory, we know that a

sixthorder polynomial potential can describe the nonlinear behavior of such systems. The unstable

and stable states can then be calculated as the roots of a quintic polynomial.

We extensively studied the bifurcation behavior of the model in parameter space. The exis-

tences of front solutions can be deduced using a mechanical analogy. Based on that, we observed

equipotential points associated with zero-velocity fronts. These equipotential points and curves

can be thoroughly analyzed with continuation methods, identifying regions in parameter space

where fronts exhibit similar behaviors. With this simple model, we conclude that the final behav-

ior and front velocities depend on the depths of the potential wells, not on eigenvalues or well

sizes. All our observations are supported by simulations in two-dimensional space.
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Another interesting phenomenon that can be captured by the sixth-order polynomial potential

is the front splitting instability, as described in different contexts [17, 18]. We analyze the con-

ditions of front splitting in our model. With simple assumptions, we can give a basic estimate,

which is supported by continuation results and simulations on a two-dimensional, finite disk.

Future work should consider two-species systems using standard forms of polynomials of two

variables. A goal would be to find potential conditions that can predict the onset of nonequilibrium

Ising-Bloch transition and other bifurcations of fronts [21, 22, 35].
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Propagation failure in discrete reaction-diffusion system
based on the butterfly bifurcation
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Reaction-diffusion systems are used in biology, chemistry, and physics to model the

interaction of spatially distributed species. Particularly of interest is the spatial re-

placement of one equilibrium state by another, depicted as traveling waves or fronts.

Their profiles and traveling velocity depend on the nonlinearities in the reaction term

and on spatial diffusion. If the reaction occurs at regularly spaced points, the velocities

also depend on lattice structure and the orientation of the traveling front. Interestingly,

there is a wide region of parameters where the speeds become zero and the fronts do

not propagate.

In this manuscript, we focus on systems with three stable coexisting equilibrium states

that are described by the butterfly bifurcation, and study to what extent the three pos-

sible 1D traveling fronts suffer from propagation failure. We demonstrate that dis-

creteness of space affects the three fronts differently. Regions of propagation failure

add a new layer of complexity to the butterfly diagram. The analysis is extended to

planar fronts traveling through different orientations in regular 2D lattices. Both prop-

agation failure and the existence of preferred orientations play a role in the transient

and long-time evolution of 2D patterns.

71
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One of the key features of reaction-diffusion models is the additive combination of reactions be-

tween the chemical or biological species and their diffusive spreading. The behavior of traveling

waves and stationary patterns depends on the interaction of reaction and diffusion. This is also

true for discrete space, where fronts (patterns formed by two uniform states) become ‘pinned’ to

the lattice and do not move unless diffusion is strong enough and a certain nontrivial threshold

is overcome. This phenomenon has been widely studied and has found application in concrete

experiments. For tristable systems (with three coexisting stable uniform states), the situation is far

from simple since there are up to three types of fronts (interfaces between pairs of different states)

that behave differently in discrete space. For the sake of concreteness, we will use a single species

model with a quintic polynomial as a reaction term. The qualitative behavior of such a system

is explained by the butterfly bifurcation diagram that contains all the relevant changes as the co-

efficients of the polynomial are varied. The overall picture is enriched when several 1D and 2D

lattices (and orientations of the fronts) are considered. As we will show, discreteness modifies the

basic butterfly diagram in a highly nontrivial way, since the Maxwell (or equipotential) condition

is no longer a requirement for non-propagating fronts in discrete space. In 2D, discreteness effects

are particularly subtle since they depend also on the alignment of the front with the discrete lattice.

As we will show with illustrative examples, the evolution of heterogeneous 2D patterns follows

the basic mechanisms predicted by bifurcation analysis.

4.1 Introduction

The oxidation of CO on platinum group metal catalysts is a basic chemical system that has been

extensively investigated concerning its spatio-temporal patterns and bifurcation properties. The

prevalent reaction mechanism has been shown experimentally by the work of Ertl [1, 2] to follow

the Langmuir-Hinshelwood (LH) mechanism, i.e. adsorption, reaction on the surface and consec-

utive desorption of carbon dioxide [2]. This mechanism is also the foundation to explain more

complex behavior such as oscillations [3, 4], traveling waves [5] and spiral waves [6]. The LH

model for CO oxidation assumes the form of a reaction-diffusion (RD) system of equations for the

adsorbed species.

While this model approaches a specific system using physical and chemical constants mea-

sured with high precision, another approach is to utilize a generic reaction-diffusion equation to

qualitatively mimic the behavior of the system of interest. This leads to simpler models which

still can show complex behavior such as bifurcations and chaos, and allows direct insight into the

interaction between multiple stable solutions (see for instance Refs. 7–10). Spatial discreteness

is a property of physical systems, which could explain some discrepancies between observations

and modeling. For certain cases, this discreteness is a defining feature, e.g. in cellular systems and

neuronal networks [11] or cascade reactors [12] where coupled units influence each other.

In heterogeneous catalysis, the surface facet of a crystalline catalyst defines the properties of

reaction and diffusion. Different molecules show preferred adsorption sites [13] on the discrete

atomic lattice. A reaction front may concur with a surface reconstruction [14] and surface de-

fects such as steps can lead to anisotropic patterns [15, 16]. Quite often discreteness leads to

propagation failure (PF), where a given front solution does not propagate along the nodes as oth-
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erwise expected if diffusivities are too small. Peyrard and Kruskal [17], and Keener [18] proved

that this is an inherent property of certain 1D discrete reaction-diffusion models. Propagation

failure was investigated in the context of coupled chemical reactors [19] and bistable chemical re-

actions [20, 21]. It has been proved that propagation failure is connected to the existence of stable

non-propagating fronts, which define ‘snaking branches’ of solutions as some reaction parameter

is varied [8, 22–24]. The width of the snaking region in parameter space gets smaller as more

dense lattices or larger diffusivities are considered.

In this article, we want to study propagation failure in systems with up to three stable uniform

states. In this regard, we build on the insights of Humphries and Wilds [25] but extend the basic

model developed in Ref. 9 which exhibits the butterfly bifurcation using a sixth-order polynomial

as potential. The name ‘butterfly’ comes from the general shapes of the regions with one, two or

three stable equilibria in a codimension-2 diagram: the tristability region being the body of the

butterfly, and the two narrow bistability regions being the wings of the butterfly.

The reason for using the butterfly bifurcation is simplicity. Tristable and multistable scenarios

are common in applications involving multiple species and complex nonlinearities (see for in-

stance Refs.26–28). These systems can be modeled by a variety of sophisticated models with rich

bifurcation structures. Now since we want to analyze propagation failure in the simplest tristable

RD model, we propose a ‘caricature’ single-species model with a single polynomial term with up

to 5 different roots, 3 of them stable. From Catastrophe Theory (as explained in Ref. 29 and used

in our previous article [9]) such polynomial must be quintic and can be conveniently written with

only four free coefficients.

We will use the following structure: in section 4.2, the model is introduced and our previous

results are shortly recapitulated. Section 4.3 follows with a discussion of extending the model in

discrete space, described by regular lattices. The existence of propagation failure as a result of

discrete diffusion lattices is discussed in section 4.4. Numerical simulations on a finite 2D domain

exploring the influence of different variables, i.e. reaction parameter, discreteness, diffusion grid,

angular front orientation conclude our analysis in section 4.5 with numerical simulations on 2D

rectangular diffusion grids, varying different parameters of the reaction term and changing the

connectivity of the lattice.

4.2 Model

Despite all the extensive work on propagation failure of RD fronts, little has been done for systems

with three stable states that can show propagation failure of some of the three fronts. In our previ-

ous article, we constructed a single species reaction-diffusion system based on a quintic reaction

term that enabled the study of all the bifurcations [9]. Since an extensive description of the model

was given there, only a fundamental introduction is provided in the present section.

The most basic model to describe a reaction-diffusion system in an infinite 1D domain is given

by

∂u
∂ t

= D
∂ 2u
∂x2 + f (u), (4.1)
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where f (u) is a nonlinear function representing the local reaction rate and is the decisive element

to the existence and stability of homogeneous states. The diffusion constant D provides the spatial

scale but its precise value is not relevant for the qualitative behavior of the solutions.

Focusing on the front solutions of the form u(x, t) = u(z) with z = x− vt and boundary condi-

tions at infinity:

u(z)−−−−→
z→−∞

ũ− and u(z)−−−−→
z→+∞

ũ+

where ũ+ and ũ− are stable roots of the reaction:

f (ũ+) = f (ũ−) = 0, f ′(ũ+)< 0, f ′(ũ−)< 0

Here the concept of stability of a root ũ is associated to the behavior of trajectories of the

ordinary differential equation u̇ = f (u) close to the root ũ. If the velocity v > 0 then the front

moves to the right and the region covered with ũ− grows, effectively ‘invading’ the state ũ+.

Since we want to focus on competition between stable homogeneous solutions, we do not

consider fronts invading unstable states. In some scenarios, the speeds of these other fronts depend

on the reaction term at the state being invaded: it is said that the front is being ‘pulled’, as opposed

to ‘pushed’ fronts with speeds that depend on the whole reaction term [7]. Using this terminology,

all fronts between stable states (as considered in this article) are ‘pushed’.

To obtain a model with multiple stable states, we propose using the quintic polynomial

fαβγδ (u) =−u5−αu3−βu2− γu−δ , (4.2)

which, depending on the parameters α , β , γ , and δ . fαβγδ (u) may have one, two or three

stable roots being designated ũ0, ũ1 and ũ2. These stable roots of f (u) = 0 correspond to minima

of the sixth-order potential:

Vαβγδ (u) =
1
6

u6 +
α

4
u4 +

β

3
u3 +

γ

2
u2 +δu, (4.3)

(satisfying fαβγδ (u) =−V ′
αβγδ

(u)). In the following we will drop the dependence on parameters.

V (u) always has at least one minimum and depicts the most general unfolding of a degenerate

potential of one variable that has five derivatives equal to zero at the same point. By varying its four

coefficients, the minima of the potential undergo all the possible transitions between qualitatively

distinct scenarios.

Using a mechanical analogy, the relative ‘depths’ of the wells of the potential are a measure

for the stability of the corresponding solutions, and the ‘hill’ between two wells can be seen as an

energy barrier to be overcome by diffusion. It can be shown that the front velocity is proportional

to the difference V (ũ+)−V (ũ−) and the sign indicates the direction of propagation.

Using this model, we investigated conditions and properties of equipotential points and curves

in parameter space. At these locations, the front velocities between multiple coexisting solutions

become zero. Fig. 4.1 illustrates a representative (γ , δ )-section (for α =−10 and β = 2). Indicated

are regions with 1, 2 or 3 stable roots, the equipotential curves, and their intersection, the equipo-

tential point. The relative values of the potential minima in different sub-regions lead to qualitative
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predictions for the front solutions. These findings were verified by numerical simulations on a 1D

domain and also on a 2D-disk using a triangulated mesh.

Since the treatment of Eq. (4.1) relies on integration along the continuous space, application

of a discrete spatial lattice requires a separate analysis. Necessary modifications to the model are

discussed in the following section.

60

40

20

0

-20

-40

604020

0

(a)

(b)

Figure 4.1: (a) Section of the butterfly bifurcation diagram corresponding to the potential function
V (u) defined in Eq. (4.3) and the parameters α = −10 and β = 2 (which will further be used
as standard). Color indicates the number of minima: 1 (white), 2 (light), and 3 (dark). Dashed
lines correspond to equipotential curves where two minima have the same values of the potential
function; the intersection at γ = 18.75,δ = −5 is the equipotential point of all three minima. (b)
Example of PF in different front solutions of Eq. (4.4) for γ = 17,δ = 0,∆x = 1 and D ∈ {5,6,7}
over a 1D-strip. For D = 5 propagation failure occurs, while for D = 7 all three fronts propagate
freely. Moving fronts are indicated by arrows with lengths proportional to the observed velocities.
The right-most diagram shows the potential V (u) as in Eq. (4.3).
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4.3 Discrete lattices

The equivalent of the RD Eq. (4.1) in a (infinite) 1D discrete domain is:

dui

dt
=

D
∆x2 (ui−1 +ui+1−2ui)+ f (ui) (4.4)

=
D

∆x2 g(i)+ f (ui)

where ui = u(xi). The function g(i) will be denoted as interaction term for ui in the following.

The quotient D/∆x2 controls the effect of discreteness: for small ∆x or large D, the solution of the

discrete equation will resemble the solution of the continuous Eq. (4.1).

RD systems may lead to numerical instabilities but we found the quintic term to be rather well-

behaved: only (static and traveling) smooth fronts were observed. The checkerboard instability

was prevented by using an implicit algorithm. The only relevant instability is the propagation

failure that is the main topic of the article.

The discrete RD equation can be written also as a gradient system:

dui

dt
=−∂F

∂ui
(4.5)

with the Lyapunov functional:

F = ∑
k

[
V (uk)−

D
4∆x2

(
(uk−1−uk)

2 +(uk+1−uk)
2)] (4.6)

Its property that dF/dt = −∑i(dui/dt)2 ≤ 0 means that dynamic evolution is oriented towards

states that are minima of F (if such exist). The existence of a Lyapunov functional F prevents

oscillating and chaotic fronts [30].

To further study front propagation and the effect of front orientation, we propose the use

of three regular 2D lattices illustrated in Fig. 4.2 (square, hexagonal and triangular), which are

discussed in the following sections. While there are infinitely many other lattices and orientations

that one could consider (see also Refs. 25, 31, 32 for other treatments), these three were chosen

due to their simplicity, but they also follow symmetries found on surface catalysts and can be used

to model other systems.

4.3.1 Square lattice

The simplest regular 2D lattice is a square array where each node is connected to four other nodes

located at distance ∆x and an angle of 90°. Due to the 4-fold symmetry, the links between nodes

form squares as well. Regarding physical systems, this could be applied to model diffusion on an

fcc(100) metal surface.

The discrete equation in a 2D square domain uses a 5-point stencil:

dui, j

dt
=

D
∆x2 (ui−1, j +ui+1, j +ui, j−1 +ui, j+1−4ui, j)+ f (ui, j) (4.7)



4.3. DISCRETE LATTICES 77

(a) square lattice

(b) hexagonal lattice

(c) triangular
lattice

Figure 4.2: Illustration of the chosen diffusion lattices : (a) square, (b) hexagonal, and (c) trian-
gular. The terms are chosen according to the number of neighbors, not according to the shape
enclosed by the links. In each case, the separation between the nodes is ∆x. For the hexagonal
and triangular grids, the mapping to a regular matrix is added, which facilitates writing the finite
differences as a 4-point or 7-point stencil. Dashed lines represent isolines of planar fronts oriented
in particular directions, that can effectively be captured by 1D discrete lattices.
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where we have used ui, j = u(xi, j,yi, j). In the limit of the finite difference scheme approaches the

Laplacian as ∆x→ 0.

The discrete RD equation can be written also as a gradient system similar to Eq. (4.5) with the

Lyapunov functional

F =∑
k,l

[
V (uk,l)−

D
4∆x2

(
(uk−1,l−uk,l)

2 +(uk+1,l−uk,l)
2

+(uk,l−1−uk,l)
2 +(uk,l+1−uk,l)

2)] (4.8)

Assuming that the values of ui, j are constant along parallel lines, with the values at a particular

line labeled uk, the previous equations can be simplified: For fronts advancing parallel to the grid,

e.g. the velocity vector is parallel to the x-axis, φ = 0°), the interactions in y disappear. The

interaction term can thus be reduced to the same as in 1D (Eq. (4.4)).

Similar considerations can be done for φ = 45° (fronts parallel to the grid diagonals) and

φ = 26.6° (fronts with a slope of 1 : 2), by comparing which lines are connected by a specific

link. However, the distance between these lines has to be taken into account. These fronts are

exemplified in Fig. 4.2 (a) with their respective ∆xeff, their interaction terms are summarized in

Table 4.1. While the interaction for φ = 45° is the same as for φ = 0°, the effective coupling is

twice its value due to the smaller line separation. For φ = 26.6°; a different behavior has to be

expected concerning propagation failure, as g differs qualitatively.

Not all orientations with the angle φ are easily approachable like this, as ∆xeff decreases quite

quickly. But based on these simple cases, it is clear that the stencil or connectivity pattern of the

1D effective equation depends on the orientation of the front.

For each orientation, the speed of the planar front

v =
∆xeff

∆τ
, where ∆τ such that uk+1(t +∆τ) = uk(t)

depends on the separation between lines and the time it takes for the front to advance to the next

site.

We repeated the same analysis on the ‘Mehrstellen’-variation of the square lattice. It is ob-

tained by including the diagonal connections between nodes. The equation in a 2D square domain

uses a 9-point stencil:

dui, j

dt
=

D
∆x2

(
1
6
(ui−1, j−1 +ui−1, j+1 +ui+1, j−1 +ui+1, j+1)

+
2
3
(ui−1, j +ui+1, j +ui, j−1 +ui, j+1)−

10
3

ui, j

)
+ f (ui, j)

(4.9)

It has been demonstrated (see Ref. 33) that using this stencil, the leading error term of the

Laplacian does not have preferred directions. It is not clear whether or not the behavior of ui, j(t)

is expected to be spatially isotropic. Its pseudo-2D examples are shown Table 4.1 as well.
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lattice φ ∆xeff interaction term g(k)

square

0° =̂ 90° ∆x (uk−1 −2uk +uk+1) (4.12)

26.6° ∆x/
√

2 (uk−2 +uk−1 −4uk +uk+1 +uk+2) (4.13)

45° ∆x/
√

5 (uk−1 −2uk +uk+1) (4.14)

square &
diagonals

0° =̂ 90° ∆x (uk−1 −2uk +uk+1) (4.15)

26.6° ∆x/
√

2 (1
6 uk−3 +2

3 uk−2 +5
6 uk−1 −10

3 uk +5
6 uk+1 +2

3 uk+2 +1
6 uk+3) (4.16)

45° ∆x/
√

5 (1
6 uk−2 +4

3 uk−1 −3uk +4
3 uk+1 +1

6 uk+2) (4.17)

hexagonal
0° =̂ 60° ∆x/2 (uk−2 +2uk−1 −6uk +2uk+1 +uk+2) (4.18)

30° =̂ 90°
√

3∆x/2 (uk−1 −2uk +uk+1) (4.19)

triangular
0° =̂ 60° ∆3x/4

{
(2uk−1 −3uk +uk+1) k is odd (4.20)

(uk−1 −3uk +2uk+2) k is even

30° =̂ 90°
√

3∆x/2 (uk−1 −2uk +uk+1) (4.21)

Table 4.1: Effective node distance ∆xeff and the interaction term g(k) for the pseudo-2D counter-
parts with the front orientation φ .

4.3.2 Hexagonal and triangular lattices

Both, the hexagonal and triangular lattice are conjugate to each other. In a triangular tiling, the

vertices of the triangles can be seen as centerpoints of hexagons and vice versa in an hexagonal

tesselation. To reflect the symmetry of the chosen lattice, we denote the lattice where each node is

connected to 6 neighbors located at distance ∆x as hexagonal lattice. It shows a 6-fold symmetry,

each node representing the center of an hexagon, while the links form equilateral triangles. The

lattice is more densely packed then the square lattice, covering less area per node using the same

∆x. The hexagonal grid could be seen as a model for diffusion on an fcc(111) surface where

diffusion between on-top sites is most important.

In the triangular grid (Fig. 4.2 (c)), each node is connected to 3 neighbors located at distance

∆x. It is less dense than the square lattice, filling larger space with the same number of nodes.

The triangular lattice could be valuable as a model for diffusion on an fcc(111), where diffusion

between fcc and hcp sites is most prevalent.

For easier manipulation, both lattices can be mapped into a regular array indexed by i, j with

additional connections, as illustrated on the right in Fig. 4.2 (b,c). The equation in a 2D hexagonal

domain can be expressed by using a 7-point stencil with a conditional expression:

dui, j

dt
= f (ui, j)+

2D
3∆x2 (ui−1, j +ui+1, j +ui, j−1 +ui, j+1

−6ui, j +

ui+1, j+1 +ui+1, j−1) j is odd

ui−1, j+1 +ui−1, j−1) j is even

(4.10)

That said, three equivalent expressions can be visualized by turning the matrix representation by

90°. The coupling between nodes 2D/(3∆x2) was selected such that the finite difference scheme
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captured the Laplacian of a continous quadratic function.

For the triangular lattice, multiple stencils are obtainable by reducing the number of links in

the hexagonal lattice. We selected the 4-point stencil represented through:

dui, j

dt
= f (ui, j)+

4D
3∆x2

(ui−1, j +ui, j+1 +ui, j−1−3ui, j) i+ j is odd

(ui+1, j +ui, j+1 +ui, j−1−3ui, j) i+ j is even

(4.11)

Similar considerations concerning fronts along isovalue lines were done for both lattices and

summarized in Table 4.1 for φ = 0° and φ = 30°

4.4 Propagation failure in 1D and in 2D

After having defined the discrete lattices one can proceed to evaluate the effect of discreteness

and orientation on the behavior of traveling fronts. Although the butterfly potential defined in

Eq. (4.3) has four parameters, most of the phenomena of fronts can be captured using a generic

two dimensional section (as explained in Ref. 9). In the present treatment we choose α = −10

and β = 2, shown in Fig. 4.1. We designate as u01,k or just u01 the front solution that verifies

u01,k −−−−→
k→−∞

ũ0 and u01,k −−−−→
k→+∞

ũ1. This is done analogously for u12,k and u02,k.

15 20 25 30 35 40 45 50
D/∆x2

-10

-8

-6

-4

-2

δ

v01 = 0

v12 = 0

v02 = 0

Figure 4.3: Extent of PF for the three fronts as a function of D/∆x2 for γ = 17. While the position
of the pinning region is different for each front, it generally shrinks with increasing D/∆x2. For
sufficiently small D/∆x2 < 15, propagation failure dominates for almost any δ .

A selection of the results using Eq. (4.4) are shown in figures 4.3 and 4.4, but they are also

representative of 2D fronts using our simplification for certain orientations (e.g. Eq. 4.12 – 4.14),

which will be discussed in more detail in section 4.4.1. We designate v01, v12, and v02 the effective

speed of the front solutions u01,k(t), u12,k(t), and u02,k(t). Figure 4.3 explores a ‘vertical section’

(γ = 17) of Fig. 4.1, always inside the tristability region. As expected, for finite D/∆x2 there

are intervals where the speeds v01,v12 and v02 of the three fronts are identically zero. The figure

shows the upper and the lower limits of the pinning range. At these points the front undergoes
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a ‘pinning-depinning transition’. The front u01 between ũ0 and ũ1 seems the more susceptible to

propagation failure, and the front u12 between ũ1 and ũ2, the more immune. The three widths of

the propagation failure intervals shrinks to zero as D/∆x2 grows.

Figure 4.4 (a) offers the actual values of the speeds v01,v12 and v02 for γ = 18.75 and D/∆x2 =

15 (where these fronts exist), exhibiting the characteristic discontinuity associated to PF. This

section of the butterfly diagram includes the equipotential (also known as Maxwell) point γ =

18.75,δ =−5 where all three speeds are zero for any D/∆x2, so the three PF intervals include that

point.

Figure 4.4 (b) shows an analogue ‘horizontal’ section of the butterfly diagram for δ =−3 with

D/∆x2 = 15. Now the PF intervals do not overlap at all, and it is the connection u02,k between

ũ0 and ũ2 the one that looks more susceptible to PF; while as before, u12,k is only pinned inside a

narrow interval. Interestingly, there is a point where the three speeds become equal v01 = v12 =

v02 ̸= 0, and the u02,k front solution ceases to exist. This is the front-splitting instability [9, 34, 35]

that now depends on D/∆x2. At this point the u02(xk) solution acquires an infinitely wide step

where u02 ≈ ũ1 the intermediate stable state that also has a potential value between the other two

minima.

Although the signs of the speeds depend on the potential values at the equilibria, the speeds

depend on the whole shape of V (u). In this article we used a nonzero coefficient β that leads to

a asymmetric butterfly wings (see Fig. 1) and therefore unequal pinning ranges for the fronts u01

and u12.

(a)

(b)

(a)

(b)

Figure 4.4: Front speeds for solutions of Eq. (4.4) in different sections of Fig. 4.1 using D/∆x2 =
15. The sign hints the direction of front propagation. Exemplifies the range of propagation failure
depending on front γ or δ respectively. (a) γ = 18.75 shows PF around the equipotential point.
(b) δ =−3 shows both, propagation failure and front splitting instability.

4.4.1 Effect of orientation of 2D fronts

While in the continuous case, the front speed depends continuously on the shape of the potential

V (u) (which means the parameters α,β ,γ,δ ) and the diffusivity D, in the discrete 1D case, a

pinning region where v = 0 is expected for small coupling D/∆x2.

In 2D, the situation is more complex, since the selected lattice and the front orientation influ-

ence the node interaction as worked out in section 4.3. Assuming for instance that the solution is

a planar front between states ũ0 and ũ2, everything can be reduced to the solution u02,k of a 1D
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equation. The change of front speed for the different surface lattices and orientations as a function

of δ is illustrated in Fig. 4.5.

(a)

(c)

(b)

(d)

Figure 4.5: Front speeds for the u02 front in 2D lattices using the simplified isocurve approach.
γ = 17, D/∆x2 = 15. (a) Square lattice Eqs. (4.12,4.13,4.14), (b) Square lattice with diagonal
connections Eqs. (4.15,4.16,4.17), (c) Hexagonal lattice Eqs. (4.18,4.19), (d) Triangular lattice
Eqs. (4.20,4.21). For large D/∆x2 and away from the pinning region, the speeds associated with
different orientations approach each other, while near the pinning region, some orientations are
stickier than others.

In direct comparison, all the figures share some common features. Far from the pinning region

or for large D/∆x2, the lattice and the front orientation do not play a large role. On the other hand,

the size of the pinning region strongly depends on the lattice and the orientation: some can be

described as being stickier; and the propagation of fronts having isolines parallel to some edges

seem more prone to fail.

The results for both square lattices (with and without diagonal connections) are extremely

similar. The additional connections do not eliminate the PF along certain orientations and seem to

have only a small influence on the qualitative behavior.

Overall, the size of the pinning region tends to decrease with the connectivity of the lattice

(triangular lattice > square lattice > hexagonal lattice). This seems plausible, regarding the num-

ber of ‘active’ links in the ‘worst case’ for propagation: 4 links are used for propagation in the

hexagonal lattice while only 2 are active for the square and triangular lattice. Also, the links for

the square grid are more effective being exactly perpendicular to the isolines, while the links in

the triangular lattice are rotated by 30°.

Certainly, this could lead to anisotropic behavior. Although all orientations should be studied

for a conclusive answer, based on our limited evidence we can claim, that in our selection, hexag-

onal is the most isotropic and the triangular lattice is the most anisotropic case. This is further
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discussed based on numerical simulations in section 4.5.3.

4.4.2 Bifurcation structure

The main mechanism behind PF is the existence of static solutions connecting two different states

of different potentials. Such nontrivial solutions persist after small changes to the reaction func-

tion. One way of understanding this situation is writing the stationary front equation:

0 =
D

∆x2 (uk−1 +uk+1−2uk)+ f (uk). (4.22)

or similar (depending on lattice and orientation) and interpreting the index k as a discrete ‘time’.

Solutions uk for k ∈ Z that satisfy initial and final conditions:

uk −−−−→
k→−∞

ũ− and uk −−−−→
k→+∞

ũ+

should belong to both the unstable manifold W u(ũ−) and the stable manifold W s(ũ+). Such hete-

roclinic connections are robust [22, 23, 36] and when represented as points in parameter space, de-

fine a branch that connects all the solutions that are equivalent modulo a shift, shown in Fig. 4.6 (a)

in blue. The branch also connects other solutions that are unstable in the original time, shown in

Fig. 4.6 (a) in red. This kind of branch traces a snaking trajectory as a parameter is varied, as

shown in Fig. 4.6 (b) for each one of the fronts (obtained with the continuation algorithms of

software AUTO [37]). The projections of the snaking curves on the parameter axis define the pin-

ning ranges. Each of the snaking branches is centered around the place where the corresponding

roots have same potential values (indicated with vertical segments connecting branches of roots in

Fig. 4.6 (b)).

There is a simple explanation (borrowed from Ref. 38) for the stability or instability of the

front solutions u01,i depicted in Fig. 4.6 (a). Unstable fronts (in red) connect the stable states

ũ0 = −2.893 and ũ1 = 0.438 and have a node ui ≈ −1.7 close close to an unstable root of f (u)

that we name ũuns =−1.558. At that point f (ũuns) = 0 and f ′(ũuns)> 0. In the limit of vanishing

D/∆x2 such type of front becomes:

u01,k =


ũ0 for k < 0,

ũuns for k = 0,

ũ1 for k > 0.

and is unstable. Stable fronts (in blue) have nodes far from ũuns and in the limit of vanishing D/∆x2

such type of front becomes:

u01,k =

ũ0 for k < 0,

ũ1 for k ≥ 0.

and is stable.

Now for front solutions between ũ0 and ũ2 there are more ways to build unstable connections

(in the limit of vanishing D/∆x2) since there are two unstable roots ũuns inside of the interval
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(b)

(c)

(a)

Figure 4.6: (a) Illustration of PF in a 1D domain: Multiple “frozen” front solutions of Eq. (4.4) be-
tween ũ0 and ũ1 roots of the quintic polynomial with coefficients α =−10,β = 2,γ = 17,δ =−7,
and spatial coupling D/∆x2 = 15. (b) Codimension-1 bifurcation diagram for the fronts connect-
ing stable solutions with α = −10,β = 2,γ = 17, D/∆x2 = 15, corresponding thus to a vertical
section in Fig. 4.4. The frozen front solutions as shown in (a) form alternating stable (solid) and
unstable (dashed) branches, following a snaking pattern; points of the same branch located at
the same δ correspond to shifted copies of the same two solutions (stable or unstable). Vertical
dotted lines connect roots of equal potential are also depicted to emphasize how the snaking is
organized around the equipotential condition (compare with Figs. 4.3 and 4.4). (c) Zoom into the
fine-structure of the snaking branches. u02 exhibits multiple turns and several changes of stability
within the same period.
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defined by ũ0 and ũ2. There are also more ways to build stable connections. A first stable solution

corresponds to:

u02,k =

ũ0 for k < 0,

ũ2 for k ≥ 0.

and a second stable solution corresponds to:

u02,k =


ũ0 for k < 0,

ũ1 for k = 0,

ũ2 for k > 0.

Both solutions are stable when coupling vanishes. Summarizing the argument, and for finite cou-

pling, the family of fronts u02 has several stable and unstable solutions that are represented in Fig.

4.6 (b) (blue curve).

Some of these multiple (stable and unstable) frozen fronts and their bifurcations appear in Figs.

4.7 and 4.8, for square and triangular lattices respectively, that show the regions where frozen front

solutions u01,u12 and u02 exist (indicated by red, green and blue shading respectively). As the

precise location of turning points of u02 change with parameters, lattice structure and orientation

of the fronts, the upper and lower limits will show peculiar structures (cusps) that are not present

in the PF regions of front solutions u01 and u12.

As shown by Humphries and Wilds [25], neither simple bistable functions (such as f (u) =

−u(u−a)(u−1)) nor tristable functions (such as f (u)=−u(u−b)(u−1/2)(u−a)(u−1)) exhibit

the additional cusps of frozen fronts presented here. As long as the roots are well separated the

bifurcation structure of the frozen fronts will remain simple. Only a flexible polynomial, as the

one defined in Eq. (4.2), will reveal the full richness of propagation failure in discrete lattices.

In the (γ,δ ) plane these three ‘horns’ have different widths but they are all located along

the corresponding equipotential curves (dashed lines) of the butterfly diagram, and they extend

outside the central diamond-shaped tristability region (compare with Fig. 4.1). The overlap of

the three horns defines a small rectangular region, inside the tristability region, where all three

fronts are frozen. This rectangular region shrinks to the equipotential point mentioned before as

coupling approaches large values, while it fills the tristability diamond as D/∆x2 approaches 0. It

is important to notice that the u02 front does not exist beyond the overlapping region, as a result of

the front splitting instability [9, 34, 35].

4.5 2D Time evolution

A defining aspect for the 2D pattern evolution with regard to discreteness is the implementation of

the 2D lattice. The following key aspects have to be considered: a) lattice resolution, b) boundary

conditions, c) geometry of the diffusion grid, and d) coupling strength D/∆x2 as measure of dis-

creteness. In the present work, we focus mainly on the influence of c) and d) while compromising

a) and b).

As discussed (sec. 4.3), we utilize a regular square lattice, an equilateral hexagonal and an
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(a)

(b)

(a)

(b)

Figure 4.7: The three regions of frozen fronts in a square lattice with D/∆x2 = 15. (a) Orientation
φ = 0, solutions of Eq. (4.12) (b) Orientation φ = 45°, solutions of Eq. (4.13). Red, green and
blue shadings indicate where frozen fronts u01,u12 and u02 (respectively) exist. The dashed lines
indicate the additional folds resulting from the snaking branch (as shown in Fig. 4.6).

(a)

(b)

(a)

(b)

Figure 4.8: The three regions of frozen fronts in a triangular lattice with D/∆x2 = 15. (a) Orien-
tation φ = 0, solutions of Eq. (4.20) (b) Orientation φ = 30°, solutions of Eq. (4.21). Red, green
and blue shadings indicate where frozen fronts u01,u12 and u02 (respectively) exist. The dashed
lines indicate the aditional folds resulting from the snaking branch (as shown in Fig. 4.6).

equilateral triangular lattice. The discrete diffusion coefficient D was then used as the main vari-

able in numerical simulation. Depending on the lattice, the effective coupling strengths were

applied (compare section 4.3.2).

Concerning the resolution, there are four defining factors: Number of nodes, length of the

links, area of the surface sample and the lattice itself. A square-shaped surface was utilized,

represented by a 100× 100 matrix connected by square lattice. The number of nodes in x,y was

adjusted to fit the same surface, while maintaining equidistant nodes (∆x). Therefore, the nodal

resolution is slightly different for each grid, with the hexagonal resolution being larger and the

triangular resolution being smaller.

Simple zero-flux boundary condition was chosen. Possible front distortion at the boundaries

could be mostly neglected either by limiting the simulation time, or by utilizing initial pattern

were no boundaries are involved. For the latter, a pattern was created by dividing the area into

four domains with octagonal rings. Each area is populated with a different solution ũi, thus al-

lowing observation of all three fronts (u01,u02, and u12). Also, due to the geometrical shape, a
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first evaluation of the effect of angular alignment can be done. The initial patterns are shown in

Fig. 4.9.

3

2

1

0

1

2

3

u
(x
,y

)

(a) (b) (c)

Figure 4.9: Illustration of the initial condition of the surface for α = −10, β = 2, γ = 18.75,
δ =−3. From left to right, the surfaces are constructed with the square, hexagonal and triangular
lattice. The colors represent one of the stable solutions (dark blue: ũ0; green: ũ1; orange: ũ2)

The spatio-temporal pattern have been evolved using a sophisticated ordinary differential equa-

tion solver (LSODA), to avoid checkerboard instability in Python with parameter values within

the tristable area around the equistable point in the plane spanned by α =−10 and β = 2, namely

γ ∈ {15,18.75,20} and δ ∈ {−3,−5,−7}. Coupling was enabled by using different D≤ 15 and

∆x2 = 1.

4.5.1 Diffusion grid

The type of connectivity has been shown to influence the reaction-diffusion system in discrete lat-

tices [39]. As discussed in section 4.3, front propagation is inhibited by a surface ‘friction’, which

can lead to propagation failure. This resistance is especially sensible to front alignment relative to

the lattice edges. For instance, a front aligned with the square lattice exhibits more friction than

the same front on a 45°-rotated lattice. Thus, a complex front with multiple orientations could

propagate or fail to do so at different places. Figures 4.10 and 4.11 illustrate this phenomenon:

depending on the parameters, fronts can either propagate freely, remain frozen in the initial state,

or propagate until friction inhibits further propagation and a metastable orientation is reached.

These metastable structures often reveal the geometry of the underlying grid, e.g. squares with the

square lattice or perfect hexagons with the hexagonal lattice.

For δ = 15,γ = −3 (Fig. 4.10), the potentials associated to the three stable states satisfy

V (ũ0)<V (ũ2)<V (ũ1), so both ũ0 and ũ2 invade regions initially covered with ũ1. The interface

between ũ1 and ũ2 (u12), freezes after the formation of a lattice-aligned square-shaped area. u01 is

slower and additionally inhibited in the same dimensions as u12, thus propagation of orientations

with less friction lead to the development of a transient, misaligned squared region.

For δ = 18.75,γ = −3, the potentials associated to the three stable states satisfy V (ũ0) <

V (ũ1) < V (ũ2), and a similar observation can be made. Here, the front solution u02 does not

exist since front-splitting occurs. However, while ũ1 can invade the inner regime of ũ2 completely,

diffusion to the outer regime is inhibited and leads again to propagation failure after a square shape
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t 1 3 5 10

γ = 15
δ =−3

γ = 18.75
δ =−3

Figure 4.10: Time-evolution of the initial surface pattern using the square lattice and a coupling
strength D/∆x2 = 5. These examples illustrate the front propagation for the square mesh grid. For
the regular square grids, propagation directly parallel to the edges is inhibited, fronts freeze after
forming a metastable square-shaped structure.

is reached. This anisotropic behavior can be explained by the facet size of the inner regime.

An analogue explanation can be made for the time-series illustrated in Fig. 4.11, while high-

lighting the difference due to lattice structure.

The hexagonal lattice is highly symmetric and has a larger connectivity than the square lattice.

This more intense coupling leads to fewer orientations being inhibited. This is illustrated by a

lower threshold for the metastable hexagonal shape.

The triangular lattice shows opposite properties, it has the lowest symmetry and connectivity

of the compared lattices. Due to its relationship with the hexagonal lattice, hexagonal shapes

can form, though they are somewhat deformed. Higher thresholds for the coupling strength are

required for defreezing the fronts.

The effect of angular front alignment is further analyzed in section 4.5.3.

4.5.2 Coupling strength

As shown in the previous section, a discrete diffusion grid can introduce an additional resistance

to diffusion. Depending on the coupling strength between the nodes of a given grid, fronts propa-

gate or stay frozen. A characteristic time-evolution for a series of coupling strengths is shown in

Fig. 4.12 (and further shown in SM).

The curves for ũ2 behave generally as expected: for D ≤ 4, the front u12 is frozen after slight

facet optimizations. The fronts start moving for higher D, while for 5≤D≤ 7 a metastable hexag-

onal region could form, which is destabilized by reaching the boundaries. The region covered with

state ũ1 mostly mirrors the changes in the region covered with state ũ2, except for D = 10, where

the slope decreases compared to D= 9. This is due to the front u01 being much more inhibited than

the front u12; propagation failure still occurs at D = 9. After the region covered with ũ0 slowly
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t 1 5 10

D = 2.5

D = 5

Figure 4.11: Time-evolution of the initial surface pattern for hexagonal and triangular diffusion
grid. Parameter values γ = 15, δ =−3, ∆x = 1 imply that the potentials verify V (ũ2)<V (ũ1)<
V (ũ0). Both lattices can produce hexagonal structures; whereas for the triangular lattice, the
structure will be an imperfect hexagon.

starts moving, it grows steadily by invading the state ũ1.

4.5.3 Angular dependent behavior

To further investigate and quantify the consequence of different front orientations to the front

velocity, a different initial pattern was used. Instead of using the symmetric shape (Fig. 4.9), the

surface was divided by a line with angle φ into two equal parts, each half being populated with the

value of a different state ũk.

Two pattern examples are shown in Fig. 4.13 for different values of D and time t. These results

show that boundary effects for long evolution times can’t be neglected. For small diffusivity

(Fig. 4.13 (a)), a front separation takes place. While the front for φ = 30° propagates, the left

boundary acts as a nucleation site where a frozen φ = 0°-front forms. The result is a ‘kink’ or

‘corner’, which itself propagates further right. At the right boundary, the front does not behave in

the same manner, though a small kink is visible which propagates slightly faster than the φ = 30°-

front.

For larger D (Fig. 4.13 (b), a smaller time is necessary to distort the initial front. Also, since

the φ = 0°-front can propagate, no sharp kink is formed, but a smooth bending takes place. The

effect is again more pronounced at the left side of the shape, where the front propagates faster.

To limit boundary effects on angular dependent front velocities, numerical evolution was done

only up to t = 1. Spatio-temporal patterns were computed for each lattice (square, hexagonal and

triangular) and front solution (u01, u02 or u12). Comparison with the initial state allows quantifica-
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Figure 4.12: Time-evolution of the initial surface pattern with the triangular lattice and varying
coupling strengths, illustrated by the relative area change for each stable solution ũi during evolu-
tion, defined in Eq. (4.23). Parameter values γ = 18.75, δ =−3 lead to potential values that verify
V (ũ0)<V (ũ1)<V (ũ2).
The graphs exemplify the change of behavior by increasing D/∆x2, namely the subsequent prop-
agation failure depending on facet and front.

tion of the change by different methods:

1. Evaluating the number of nodes that deviate less than a small quantity ε from one of the

stable states ũ:

Nk(t) = ∑
i, j

χ[ũk−ε,ũk+ε] (ui, j(t)) (4.23)
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Figure 4.13: Illustration of the boundary effects and the determination of front movement accord-
ing to Eq. (4.26b) for the front orientation φ = 30°, γ = 15, δ = −5, ∆x = 1, u01. For D = 5
the long evolution time leads to the formation of a pronounced ‘corner’. For D = 15, diffusion
is quite large and all front orientations propagate. As a result, no corner is formed, and a smooth
bending of the front is visible. The fitting of g⃗1 seems a reliable method for the identification of
front motion.

with the indicator function χ[a,b]

χ[a,b](u)

1 if u ∈ [a,b]

0 otherwise
(4.24)

and a small values of ε , here we used ε = 0.1. While this may be the most intuitive ap-

proach, some nodes may be misattributed or even fall out of the criteria. Also, for every

time evolution, up to three different curves have to be analyzed for a complete picture.

2. Calculating the difference of each node to its initial state and integrating over the surface:

M(t) = ∑
i, j
(ui, j(t)−ui, j(0)) (4.25)

With this approach, the general strength of change and the propagation direction can be
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illustrated. A drawback is, that it could overestimate the front movement due to a broad

interphase formation.

3. Neglecting boundary effects and further assuming that the front propagates exactly parallel

to its initial state, the distance d between the initial front and the propagated front can be

seen as the distance between two straight lines:

g⃗0 = a⃗+λ e⃗(φ), (4.26a)

g⃗1 = g⃗0 +d(t )⃗e(φ +
π

2
) (4.26b)

−→a being a vector to a point at the initial front and −→e (φ) a unit vector with the angle φ .

The distance d can then be obtained by optimizing the position of g⃗1. This method relies on

some uncertainty concerning how well the propagated front can be fitted. The minimized

error from fitting includes interphase formation, but also the deviation due to the boundary

conditions.

In this article, we optimized g⃗1 by minimizing the distance to all nodes, not counted by the

indicator function Eq.(4.24) for both solutions with a ε = 0.1. This approach is robust as

shown in Fig. 4.13. d is computed in the scale of node number, e.g. for φ=0, d = 1 means a

front shift of one row.

For γ = 15,δ = −5, the front movement (as defined in Eq. (4.26b)) for different front solu-

tions, diffusion grids, φ and D is shown in Fig. 4.14 and will be discussed in detail. (Further data

can be obtained in the supporting material).

The spatio-temporal evolution confirms the previous considerations concerning the observed

velocities made in section 4.3. In general, all surface lattices show special angles, at which the

diffusion behavior is extreme. Around these extremes, front propagation displays a flower petal-

like curve.

For the highlighted set of parameters, each front behaves in a very distinct way, independent of

the utilized grid. The potential difference V (ũ0)−V (ũ2) is small, which leads to only small front

movement. Additionally, since ũ1 is a stabilized intermediate of the front solution, propagation is

significantly overlapped by front broadening. While increasing D should accelerate propagation, it

also broadens the front interphase. These effects increase also the difficulty to accurately estimate

the calculated distances. While the trends are consistent, this could result in artifacts as the jump-

ing between minimum and maximum for φ = 45° using the square lattice (compare D = 6,8,10).

The evolved surface patterns show a frozen front up to D = 10.

The front solution for u12 can be seen as having polar opposite properties compared to u02.

While the potential difference between ũ1 and ũ2 is large, the potential maxima connecting both

solutions poses only a marginal energy barrier to overcome. Therefore, even small diffusion coef-

ficients are sufficient to overcome propagation failure for most orientations. Therefore, only small

D hints at the characteristics of the underlying surface. For D ≥ 6, the curve looks increasingly

circular with only slight distortions at the extreme angles.
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Figure 4.14: Front movement d(1) as function of the front orientation for α =−10, δ = 2, γ = 15,
δ = −5 (V (ũ0) < V (ũ2)≪ V (ũ1)), ∆x2 = 1 and different D. Its sign hints at the directions of
front movement. For this case, the diffusion grids (from top to bottom: square, hexagonal, and
triangular), as well as the evolved front solution (from left to right the: u01, u02, and u12.) show
distinct features.

The u01 front highlights the properties of the diffusion grid the best. The potential difference is

large to enforce a fast-moving front, while the barrier between the solutions exhibits a significant

resistance. As seen in Fig. 4.5, the square grid shows a periodicity of 90° with maximal front

movement at φ = 45° and minimal movement at φ = 0°.

The hexagonal and the triangular lattice show a periodicity of 60°, only being shifted by 30°

with respect to each other. The difference between their form is that the triangular lattice produces

more narrow and significant smaller petals. Further, the petals can be described as having a pro-

nounced twinned structure. Interestingly, the curve shows no reason for the development of the

distorted hexagonal pattern seen in Fig. 4.11.

Increasing D has here three effects on the petals: 1) they grow out as propagation speed in-
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creases; 2) they expand around the extreme angles, as fewer orientations remain frozen; and 3)

they change form after propagation failure is inhomogeneously overcome. This effect is seen

at the change from D = 2 to D = 4 where the curves first change from rather frozen, to slow

anisotropic propagation. For D = 6, the petals exhibit some unexpected changes. For the square

lattice, the expected maxima of φ = 45° is rather a local minimum as the curve is bent inwards.

Using the hexagonal lattice, propagation at the sticky angle φ = 60° jumps up significantly to

another frozen state.

A focus may be put on the triangular lattice as its behavior is the most unique of the three

lattices. Since the curve for D = 4 displays the maxima not at the expected positions, but in the

same phase as the hexagonal lattice. Also, front movement is found to be larger in this case.

Increasing D leads to a rather circular curve, propagation mostly increases around the expected

maxima. As this trend follows for D = 8, the twinned peaks around φ = 0° and φ = 60° start to

grow out using the front movement for D = 6 as a baseline.

More evidence that the triangular lattice is the most sticky of the three lattices can be found

in the curves for D = 10. For u12 and u02, there is no meaningful difference in front movement

between the three grids, but the u01 front propagates on the triangular lattice considerably less far.

This indicates that the ‘resistance’ that the surface offers is still not completely overcome.

4.6 Conclusion

Reaction-diffusion fronts can get pinned to a discrete spatial lattice instead of traveling without

deformation as in continuous space. This phenomenon has been studied extensively but using

simple bistable models, where there is a single family of fronts.

Here we wanted to understand how the properties of three stable states and three families of

fronts, are modified by propagation failure, and how the details of a 2D regular lattice enter into

the description.

Using a single species model and a quintic polynomial, we found that the three families of

fronts are not pinned in the same way: the widths of the pinning regions differ; the shapes of

the snaking branches differ; and the snaking branch of the front between the extreme roots being

the most complex. The regions of propagation failure for the three fronts create horns around the

equipotential curves, that intersect at a rectangular region where all three fronts are frozen. Again,

it was the region associated to the extreme front the one that showed the most structure.

We also found that regular 2D lattices with sparser connectivity lead more often to propagation

failure. Although all lattices do have ‘weak’ orientations that hinder propagation, the triangular

lattice was the weakest in the sense that the PF regions were larger.

All these observations are relevant for the propagation of 2D patterns. Complex patterns can

be stabilized within the pinning region, while relaxation of certain orientations can lead to patterns

reflecting the geometry of the lattice. Lattices of higher symmetry will subsequently lead to local

solutions of similar symmetry. Increasing the diffusion constant, the propagation along certain

orientations is enabled. The influence of the front orientation was analyzed in detail. Predicting

the front orientations at which propagation will be maximized resp. minimized is reasonably

possible using a 1D simplification, considering the surface lattice and given orientation. Numerical
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evolution of fronts with different orientations shows a flower-like behavior of propagation with a

lattice specific periodicity. These observed front velocities can be explained with the intrinsic

energy barrier of diffusion in our model and surface resistance that depends on front orientation.

For sufficiently large D/∆x2, propagation failure can be partly overcome and pattern matching the

surface symmetry can be evolved.

The present article considered a single-species RD model. But there are front phenomena that

can not be captured with a single species model. For instance the coexistence of front solutions

between the same two states. It would be an interesting topic of future research the extension of

the present framework to multi-species RD models and the effect of discreteness.

Supplementary Material

Supplementary material is online and contains the python source codes for numerical simulations.
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Slavič J, Nothman J, Buchner J, Kulick J, Schönberger JL, de Miranda Cardoso JV, Reimer

J, Harrington J, Rodrı́guez JLC, Nunez-Iglesias J, Kuczynski J, Tritz K, Thoma M, Newville
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5
Final Conclusion

The shown studies were motivated by the dynamic phenomena observed in elementary catalytic

surface reactions, particularly the CO oxidation on Ir(111), which can exhibit two stable kinetic

states. A particular focus was the introduction of tristable systems and the study of interactions

between these stable states. Therefore, two continuous and one discrete reaction-diffusion models

were developed and studied in detail using bifurcation theory and numerical simulations.

First, a physically sound model of the competing catalytic oxidation of carbon monoxide and

hydrogen was established. The model extends the well-established framework from previous work

on bistable CO oxidation to Ir(111) and draws on the literature on the water formation reaction.

The differential equation system was analyzed within the framework of bifurcation theory and the

possibility of a third stable kinetic regime was revealed. Besides the previously known UR (upper

rate branch, high oxygen coverage, high formation rates) and LR (lower rate branch, high carbon

monoxide coverage, low formation rates). The newly found state denoted as VLR (very low rate)

is dominantly covered by hydrogen as exhibits only limited conversion.

A codimension-2 diagram (using the molar fractions of the feed gas) reveals a higher-order

bifurcation in the shape of a ‘swallowtail’; formed by the saddle-node bifurcations dividing the

parameter space into different regimes and exhibiting ‘cusps’. Increasing the temperature leads to

a subsequent unfolding and thus decreases the complexity of the system.

A series of possible experiments were designed to test the experimental accessibility and dis-

tinguishability (or the lack) of the stable regimes and carried out via numerical simulation. A

relaxation experiment showing trajectories from different initial surface coverages enables a first

assessment of the decay velocity; hinting that the LR might be obtained by the largest set of ini-

tial conditions, but might prove difficult to reach in reasonable time frames. Quasistatic scanning

illustrates the existence of all three states within the tristable regime and the transition between
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states once becoming unstable. This was further exemplified by choosing a more complex path

from tristable to monostable regime.

Lastly, a first test concerning diffusion and state dominance was conducted. Examples show

UR dominating over LR and VLR in 1D. A 2D time-evolution reveals a front splitting behavior, as

the LR separates the interphase between UR and VLR. This phenomenon illustrates the importance

of diffusion in understanding the interactions between these states.

Due to the significance of these first results, greater emphasis was given to the reaction-diffusion

fronts. However, it became apparent that the established model had some constraints that could not

be easily resolved. Firstly, the model relying on four surface species renders its treatment highly

computationally demanding, especially in 2D. Secondly, since no experimental data is available

to verify or refine the model and its reaction constants, it is subject to a high degree of uncertainty.

The inclusion of additional assumptions regarding its diffusion mechanism renders the model a

highly speculative special case.

The solution to both of these challenges was achieved by utilizing a simple monospecies

reaction-diffusion equation with a quintic polynomial as reaction term. This mock model has

up to three stable solutions (u0,u1,u2) and exhibits the ‘butterfly bifurcation’ which is related to

the previously observed swallowtail bifurcation.

To identify regions with similar behaviors, an extensive exploration of the model in the four-

dimensional parameter space was conducted. A term for the front velocity connecting two stable

states showed its dependence on the sixth-order polynomial potential. Remarkably, only the po-

tential difference between both solutions influences the velocity, not its shape. Thus, equipotential

curves were identified as special features of the model, where the fronts connecting two solu-

tions are inhibited from propagation as their velocity vanishes. These findings were validated by

numerical simulations on a two-dimensional, finite disk using a triangulated mesh.

Under certain conditions, it was observed that u1 invades into the u02-front, similar to the dy-

namic observed for the physical-motivated model. This is called front-splitting instability, due to

the front solution u02 becoming unstable itself. Utilizing simple assumptions, a good estimate for

the boundaries of the front splitting region was given. This was validated using time evolutions,

illustrated qualitatively and quantitatively.

Finally, the numerical simulations in 2D posed a question about the relationship between mesh

resolution and the front velocity fronts. Especially for low diffusivity and lower resolution, front

propagation was not noticeable over the observed time scales. Furthermore, the question arose

whether an arbitrary triangulated mesh was the best surface discretization regarding surface reac-

tion, where the substrate is often a periodic crystal. Adsorbed molecules are known for having

preferred surface positions on crystals which restrict the direction of diffusion and lead to the

formation of regular overlayers.

Therefore, the established mock model was modified from continuous to discrete space, uti-

lizing a simple domain in 1D and three different lattices in 2D (square, hexagonal, triangular). For

high resolutions and thus strong interaction between individual surface nodes (expressed through

D/∆x2), the discrete model behaves close to the continuous model. For low diffusivities or large
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distances between coupling nodes, fronts can become pinned, if the parameters are within range

of the equipotential lines. This phenomenon is called propagation failure and its extent in pa-

rameter space was explored in 1D and for remarkable 2D front orientations using a pseudo-2D

approximation.

Front velocities become less easy to predict utilizing only the depths of the potential wells,

with large disagreements near the pinning region. Besides the coupling strength, the size and

shape of the pinning region depend on the lattice (hexagonal < triangular), the front orientation

relative to the lattice (45° < 0° for the square lattice), and the front (u12 < u01). Regarding the

bifurcation diagram in the pinning region, both stable branches become connected by a snaking

curve containing multiple branches of alternating stable and unstable front solutions.

These findings were complemented by numerical pattern evolution, confirming the observa-

tions concerning propagation failure and lattice dependence. An interesting observation was made

concerning the influence of front orientation on the front velocities. Since some orientations are

less prone to propagation failure, there exists a range in which some fronts can move while others

cannot. This selective propagation leads to the evolution of patterns reflecting the lattice geometry.

An attempt has been made to quantify the angular resistance towards propagation depending on

front orientation. While there were some distortions due to boundary effects, the results appear

plausible and in reasonable agreement with the pseudo-2D results.

These results expand our understanding of reaction-diffusion systems with three stable states in

the context of surface reactions and illustrate the value of generic models as a substitution for more

sophisticated ones. Thus, this work can serve as a basis to fertilize future research.

Given the theoretical nature of this study, experimental testing of the observed phenomena

(front splitting, propagation failure, and the influence of discreteness) in surface reactions could

be pursued using imaging techniques.

In addition, the uncertainty regarding the ternary surface reaction of hydrogen, carbon monox-

ide, and oxygen can be improved upon. To accomplish this, rigorous and well-controlled ex-

periments are necessary. In particular, the mechanism of the high-temperature catalytic water

formation is still controversial due to discrepancies between models and experiments.

A theoretical subject might be to consider two-species systems, which can include dynamic

effects such as oscillations and the coexistence of multiple front solutions, which are not present

in the single-species model.
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A
Exact solutions of the example model

The equation system (1.22) can be solved using computer algebra systems, such as the Sympy

package in Python. As first step, an expression for ρA(ρB) can be derrived, utilizing the first

equation:

ρA(ρB) =
φAsA(1−ρB)

ΦAsA + k1 + k2ρB
(A.1)

Substituting (A.1) in the second equation and solving for ρB gives 4 solutions:

ρB,1 = 1, (A.2)

ρB,2 =−
1
3

(
C0 +

C1

C0
+3C2

)
, (A.3)

ρB,3 =
1
6

(
(1+
√

3i)C0 +
(1−
√

3i)C1

C0
+6C2

)
, (A.4)

ρB,4 =
1
6

(
(1−
√

3i)C0 +
(1+
√

3i)C1

C0
+6C2

)
, (A.5)

utilizing the following substitutions:

C0 =
1
2

3

√
C3 +

√
C2

3−64C3
1 (A.6a)

C1 =
C2

5

4C2
7k2

2
− 3C2

6 +3C6k1

2C7k2
− 3k2

1

k2
2
+

6k1

k2
(A.6b)

C2 =−
C6

6C7
− 2k1

3k2
+

1
3

(A.6c)

105



106 APPENDIX A. EXACT SOLUTIONS OF THE EXAMPLE MODEL

C3 =−
9C4C5

C2
7k3

2
+

C3
5

C3
7k3

2
− 108k2

1

k2
2

(A.6d)

C4 =C2
6k2 +C6k1k2 +2C7k2

1−4C7k1k2 (A.6e)

C5 = k2C6 +(4k1−2k2)C7 (A.6f)

C6 = ΦAsA (A.6g)

C7 = ΦBsB (A.6h)

The terms for ρA,i can subsequently be computed through resubstituting ρB,i



B
Supplementary data for Chapter 2

The following sections contain the source codes for numerical simulation used in chapter 2.

ternary basics.py

from math import *
import numpy as np

def i n i t i a l i z e ( ) :
T = 500 # Tempera ture [K]
n I r = 1 . 5 6 e15 # a c t i v e s i t e s [cm−2 = 1 ML]
Fm = 1 . 3 7 e15 / n I r # maximal f l o w r a t e [ML s −1]
R = 8.3145 # gas c o n s t a n t [ J mol −1 K−1]
v = np . z e r o s ( ( 1 1 ) ) # p r e f a c t o r s
E = np . z e r o s ( ( 1 1 ) ) # a c t i v a t i o n e n r g i e s
k = np . z e r o s ( ( 1 1 ) ) # r e a c t i o n c o n s t a n t s
v [ 0 ] , E [ 0 ] = 1e13 , 140000 #CO d e s o r p t i o n [ s −1] , [ J+1 mol −1]
v [ 9 ] , E [ 9 ] = 1e5 , 40000 #CO+O r e a c t i o n [ML−1 s −1] , [ J+1 mol −1]
s CO , s O , s H = 1 , 0 . 1 1 , 0 . 0 0 7 # s t i c k i n g c o e f f i c i e n t s
a , b , c = 1 , 2 . 0 , 3 # c o v e r a g e c o r r e c t i o n CO
v [ 1 ] , E [ 1 ] = 1 . 5 e −1 , 1 8 . 6 * 4 1 8 4 . 0
v [ 3 ] , E [ 3 ] = 1 e16 / n I r , 4 .6*4184 #H+O r e a c t i o n [ML−1 s −1] , [ J mol −1]
v [ 5 ] , E [ 5 ] = 9 e15 / n I r , 2 . 5 * 4 1 8 4 . 0
v [ 7 ] , E [ 7 ] = 2 e12 / n I r , 7 5 0 0 0 . 0 #OH+OH r e a c t i o n [ML−1 s −1]
v [ 2 ] , E [ 2 ] , k [ 2 ] = 0 ,0 ,0 #1e −6 ,56*4184 #O d e s o r p t i o n [ J mol −1]
v [ 4 ] , E [ 4 ] , k [ 4 ] = 0 ,0 ,0 #1e2 ,5*4184 #HO l y s e [ s −1]
v [ 6 ] , E [ 6 ] , k [ 6 ] = 0 ,0 ,0 #1e7 ,37*4184 #H2O l y s e [ J mol −1]
v [ 8 ] , E [ 8 ] , k [ 8 ] = 0 ,0 ,0 #1e5 ,10*4184 #H2O+O r e a c t i o n [ J mol −1]
v [ 1 0 ] , E [ 1 0 ] , k [ 1 0 ] = 0 ,0 ,0 # 0 . 6 9 , 1 0 . 2 * 4 1 8 4 #H2O−D e s o r p t i o n [ s −1]
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k [ 0 ] = v [ 0 ] * exp ( −E [ 0 ] / ( T*R) ) #CO d e s o r p t i o n [ s −1]
k [ 9 ] = v [ 9 ] * exp ( −E [ 9 ] / ( T*R) ) #CO+O r e a c t i o n [ML−1 s −1]
k [ 1 ] = v [ 1 ] * exp ( −E [ 1 ] / ( T*R) ) #H d e s o r p t i o n [ML s −1]
k [ 3 ] = v [ 3 ] * exp ( −E [ 3 ] / ( T*R) ) #H+O r e a c t i o n [ML s −1]
k [ 5 ] = v [ 5 ] * exp ( −E [ 5 ] / ( T*R) ) #H+OH r e a c t i o n [ML s −1]
k [ 7 ] = v [ 7 ] * exp ( −E [ 7 ] / ( T*R) ) #OH+OH r e a c t i o n [ML−1 s −1]
k [ 8 ] = v [ 8 ] * exp ( −E [ 8 ] / ( T*R) ) #H2O+O r e a c t i o n [ML−1 s −1]
re turn T , k , E , v , Fm, s CO , s O , s H , a , b , c

def r h s ( t , n , c o n s t ) : # d e f i n e s f u n c t i o n
k , F CO , F O , F H , s CO , s O , s H , a , b , c = c o n s t
n [ abs ( n ) < t o l ] = 0 . 0
n [ n > 1] = 1
occ = 1 . − ( n [ 0 ] + n [ 1 ] + n [ 2 ] + n [ 3 ] )
m = np . z e r o s l i k e ( n )
r = np . z e r o s ( ( 1 4 ) ) # r e a c t i o n r a t e s
r [ 0 ] = ( F CO*s CO* occ ** a ) # A d s o r p t i o n CO
r [ 1 ] = F H* s H * occ **b # A d s o r p t i o n H
r [ 2 ] = ( F O* s O * occ ** c ) # A d s o r p t i o n O
r [ 3 ] = ( k [ 0 ] * n [ 0 ] ) # D e s o r p t i o n CO
r [ 4 ] = ( k [ 1 ] * n [ 1 ] * * 2 ) # D e s o r p t i o n H
r [ 6 ] = ( k [ 3 ] * n [ 1 ] * n [ 2 ] ) # R e a c t i o n H+O −−> OH
r [ 8 ] = ( k [ 5 ] * n [ 1 ] * n [ 3 ] ) # R e a c t i o n OH+H −−> H2O
r [ 1 0 ] = ( k [ 7 ] * n [ 3 ] * * 2 ) # R e a c t i o n OH+OH −−> H2O + O
r [ 1 2 ] = ( k [ 9 ] * n [ 0 ] * n [ 2 ] ) # R e a c t i o n CO+O −−> CO2
r [ 5 ] = 0# k [2]* n [1]**2 # Desorp ton O
r [ 7 ] = 0# k [4]* n [ 3 ] # R e a c t i o n HO −−> O+H
r [ 9 ] = 0# k [6]* n [ 4 ] # R e a c t i o n H2O −−> OH+H
r [ 1 1 ] = 0# k [8]* n [4]* n [ 2 ] # R e a c t i o n H2O+O −−> OH+OH
r [ 1 3 ] = 0# k [10]* n [ 4 ] # Desorp ton H2O
m[ 0 ] = r [ 0 ] − r [ 3 ] − r [ 1 2 ] #CO=A
m[ 1 ] = 2* r [ 1 ] − 2* r [ 4 ] − r [ 6 ] + r [ 7 ] − r [ 8 ] + r [ 9 ] #H=B
m[ 2 ] = 2* r [ 2 ] − 2* r [ 5 ] − r [ 6 ] + r [ 7 ] + r [ 1 0 ] − r [ 1 1 ] − r [ 1 2 ] #O=C
m[ 3 ] = r [ 6 ] − r [ 7 ] − r [ 8 ] + r [ 9 ] − 2* r [ 1 0 ] + 2* r [ 1 1 ] #OH=D
re turn m # r e t u r n s d e r i v a t i v e s o f s p e c i f i c n

i f n a m e == ” m a i n ” :
pass

e l s e :
pass

t o l = np . f i n f o ( f l o a t ) . eps *10

border.py

from math import *
import numpy as np
from s c i p y . i n t e g r a t e import s o l v e i v p
import t ime
import os
from t e r n a r y b a s i c s import *
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T , k , E , v , Fm, s CO , s O , s H , a , b , c = i n i t i a l i z e ( )
t o l = np . f i n f o ( f l o a t ) . eps *10
n s t e p = 1 # s t e p w i d t h f o r Y
c d i c = {1 : ’LSODA’ , 2 : ’ Radau ’ , 3 : ’BDF ’} # i n t e g r a t i o n s o l v e r s
Y H = 0 # s t a r t i n g v a l u e
F H = Y H*Fm/1000
r t o l , a t o l =1e −9 ,1 e −6
f o r c a l c in [ 1 ] : # T e s t o f S o l v e r s

c a l c a = c d i c [ c a l c ]
f o r tmin in [1 e3 , 1 e4 , 1 e5 ] : # T e s t o f d i f f e r e n t c a l c u l a t i o n t i m e s

s t a r t = t ime . s t r f t i m e ( ”%H:%M:%S” )
c o u n t e r = 0 # g l o b a l t i m e
n = np . z e r o s ( ( 4 ) ) #CO, H, O, OH, H2O [ML]
n [ 1 ] = 0
scan = [ ] # a r r a y f o r scan −run
i n t e r v a l l = [ 0 , 1 0 0 0 ] # i n t e r v a l l f o r CO s t e p
Y O = i n t e r v a l l [ 0 ] # s t a r t i n g v a l u e
whi le Y O <= i n t e r v a l l [ 1 ] :

max s tep , tmax , t = tmin / 6 , tmin , 0
F O = Y O*Fm/1000
Y CO = 1000−Y H−Y O
F CO = Fm−F O−F H
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H , s CO
, s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l = a t o l ,
d e n s e o u t p u t =True ) # S o l v e d i f f

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s t ep = max s t ep / 1 0
e l s e :

max s tep , t = ( r e s . t [ i t ] − r e s . t [ i t − 1 ] ) * 0 . 5 , r e s . t
[ i t −1]

tmax= t +( tmin − t ) *0 .75
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
max s tep , tmax = tmin / 6 , tmin

n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
Y O = Y O+ n s t e p

Y O = Y O− n s t e p
scan . append ( ( c o u n t e r , Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) ) # t ime , t r Y O ,

nCO , nH , nO , nOH
Y O = Y O− n s t e p
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whi le Y O >= i n t e r v a l l [ 0 ] :
max s tep , t = tmin / 6 , 0
F O = Y O*Fm/1000
Y CO = 1000−Y H−Y O
F CO = Fm−F O−F H
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H , s CO
, s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l = a t o l ,
d e n s e o u t p u t =True ) # S o l v e d i f f

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s t ep = max s t ep / 1 0
e l s e :

max s tep , t = ( r e s . t [ i t ] − r e s . t [ i t − 1 ] ) * 0 . 5 , r e s . t
[ i t −1]

tmax= t +( tmin − t ) *0 .75
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
max s tep , tmax = tmin / 6 , tmin

c o u n t e r = c o u n t e r +1
n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( c o u n t e r , Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) ) # t ime , t r

Y O , nCO , nH , nO , nOH
Y O = Y O− n s t e p

Y O = i n t e r v a l l [ 0 ] + n s t e p # s t a r t i n g v a l u e
whi le Y O <= i n t e r v a l l [ 1 ] :

max s tep , t = tmin / 6 , 0
F O = Y O*Fm/1000
Y CO = 1000−Y H−Y O
F CO = Fm−F O−F H
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H , s CO
, s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l = a t o l ,
d e n s e o u t p u t =True ) # S o l v e d i f f

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s t ep = max s t ep / 1 0
e l s e :

max s tep , t = ( r e s . t [ i t ] − r e s . t [ i t − 1 ] ) * 0 . 5 , r e s . t
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[ i t −1]
tmax= t +( tmin − t ) *0 .75
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
max s tep , tmax = tmin / 6 , tmin

c o u n t e r = c o u n t e r +1
n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( c o u n t e r , Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) ) # t ime , t r

Y O , nCO , nH , nO , nOH
Y O = Y O+ n s t e p

np . s a v e t x t ( ’ bo rde r H ’+ s t r ( Y H ) + ’\\ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) ) + ’
l g s ’+ c a l c a + ’ . t x t ’ , ( np . a s a r r a y ( scan ) ) , fmt=” %.0 f \ t ” *4 + ” %.12 e\ t ”+
” %.2 e\ t ”+” %.12 e\ t ”+” %.2 e ” , h e a d e r = ’ s t e p \ tY\−(A) \ tY\−(B) \ tY\−(C) \ t n
\−(A) \ t n \−(B) \ t n \−(C) \ t n \−(D) ’ , f o o t e r =” Th i s f i l e was g e n e r a t e d on
”+ t ime . s t r f t i m e ( ”%d.%m.%Y %H:%M:%S” ) +” by borde r H0 . py .\ nT = ”+ s t r (
T ) +”K\nE = ”+ s t r ( E ) +”\nv = ”+ s t r ( v ) +”\ n F t o t = ”+ s t r (Fm) )

p r i n t ( ’ f i n i s h e d c a l c u l a t i o n t m i n = ’ , tmin , ’ c a l c a = ’ , c a l c a , ’ s t a r t i n g
t ime = ’ , s t a r t , ’ e nd i ng t ime = ’ , t ime . s t r f t i m e ( ”%H:%M:%S” ) )

Y O = 0 # s t a r t i n g v a l u e
F O = Y O*Fm/1000
f o r c a l c in [ 2 ] : #Radau

c a l c a = c d i c [ c a l c ]
f o r tmin in [1 e0 , 1 e1 , 1 e2 , 1 e3 , 1 e4 , 1 e5 , 1 e6 , 1 e7 , 1 e8 , 1 e9 ] : # T e s t o f d i f f e r e n t

c a l c u l a t i o n t i m e s
s t a r t = t ime . s t r f t i m e ( ”%H:%M:%S” )
c o u n t e r = 0 # g l o b a l t i m e
n = np . z e r o s ( ( 4 ) ) #CO, H, O, OH, H2O [ML]
n [0 ]=9 .737279601731 e −01
scan = [ ] # a r r a y f o r scan −run
i n t e r v a l l = [0 ,1000 −Y O ] # i n t e r v a l l f o r CO s t e p
Y H = i n t e r v a l l [ 0 ] # s t a r t i n g v a l u e
Y CO = 1000−Y H−Y O
Y H = i n t e r v a l l [ 0 ] + n s t e p # s t a r t i n g v a l u e
whi le Y H <= i n t e r v a l l [ 1 ] :

max s tep , tmax , t = tmin / 6 , tmin , 0
F H = Y H*Fm/1000
Y CO = 1000−Y H−Y O
F CO = Fm−F O−F H
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H , s CO
, s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l = a t o l ,
d e n s e o u t p u t =True ) # S o l v e d i f f

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:
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i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s t ep = max s t ep / 1 0
e l s e :

max s tep , t = ( r e s . t [ i t ] − r e s . t [ i t − 1 ] ) * 0 . 5 , r e s . t
[ i t −1]

tmax= t +( tmin − t ) *0 .75
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
max s tep , tmax = tmin / 6 , tmin

c o u n t e r = c o u n t e r +1
n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( c o u n t e r , Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) ) # t ime , t r

Y O , nCO , nH , nO , nOH
Y H = Y H+ n s t e p

scan . append ( ( c o u n t e r , Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) ) # t ime , t r Y O ,
nCO , nH , nO , nOH

Y H = Y H− n s t e p
whi le Y H >= i n t e r v a l l [ 0 ] :

max s tep , tmax , t = tmin / 6 , tmin , 0
F H = Y H*Fm/1000
Y CO = 1000−Y H−Y O
F CO = Fm−F O−F H
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H , s CO
, s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l = a t o l ,
d e n s e o u t p u t =True ) # S o l v e d i f f

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s t ep = max s t ep / 1 0
e l s e :

max s tep , t = ( r e s . t [ i t ] − r e s . t [ i t − 1 ] ) * 0 . 5 , r e s . t
[ i t −1]

tmax= t +( tmin − t ) *0 .75
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
max s tep , tmax = tmin / 6 , tmin

c o u n t e r = c o u n t e r +1
n = r e s . s o l ( tmin )
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n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( c o u n t e r , Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) ) # t ime , t r

Y O , nCO , nH , nO , nOH
Y H = Y H− n s t e p

np . s a v e t x t ( ’ bo rde r O ’+ s t r ( Y O ) + ’\\ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) ) + ’
l g s ’+ c a l c a + ’ . t x t ’ , ( np . a s a r r a y ( scan ) ) , fmt=” %.0 f \ t ” *4 + ” %.12 e\ t ”

*3+ ” %.12 e ” , h e a d e r = ’ s t e p \ tY\−(A) \ tY\−(B) \ tY\−(C) \ t n \−(A) \ t n \−(B) \ t n
\−(C) \ t n \−(D) ’ , f o o t e r =” Th i s f i l e was g e n e r a t e d on ”+ t ime . s t r f t i m e (
”%d.%m.%Y %H:%M:%S” ) +” by borde r O25 . py .\ nT = ”+ s t r ( T ) +”K\nE = ”+
s t r ( E ) +”\nv = ”+ s t r ( v ) +”\ n F t o t = ”+ s t r (Fm) )

p r i n t ( ’ f i n i s h e d c a l c u l a t i o n t m i n = ’ , tmin , ’ c a l c a = ’ , c a l c a , ’ s t a r t i n g
t ime = ’ , s t a r t , ’ e nd i ng t ime = ’ , t ime . s t r f t i m e ( ”%H:%M:%S” ) )

Y CO = 0#15 # s t a r t i n g v a l u e
F CO = Y CO*Fm/1000
f o r c a l c in [ 2 ] : #Radau

c a l c a = c d i c [ c a l c ]
f o r tmin in [1 e10 ] : # T e s t o f d i f f e r e n t c a l c u l a t i o n t i m e s

s t a r t = t ime . s t r f t i m e ( ”%H:%M:%S” )
c o u n t e r = 0 # g l o b a l t i m e
n = np . z e r o s ( ( 4 ) ) #CO, H, O, OH, H2O [ML]
n [0 ]=9 .949272479787 e −01
scan = [ ] # a r r a y f o r scan −run
i n t e r v a l l = [0 ,1000 −Y CO] # i n t e r v a l l f o r CO s t e p
Y H = i n t e r v a l l [ 0 ] # s t a r t i n g v a l u e
Y O = 1000−Y H−Y CO

Y H = i n t e r v a l l [ 0 ] + n s t e p # s t a r t i n g v a l u e
whi le Y H <= i n t e r v a l l [ 1 ] :

max s tep , tmax , t = tmin / 6 , tmin , 0
F H = Y H*Fm/1000
Y O = 1000−Y H−Y CO
F O = Fm−F CO−F H
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H , s CO
, s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l = a t o l ,
d e n s e o u t p u t =True ) # S o l v e d i f f

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s t ep = max s t ep / 1 0
tmax= t +( tmin − t ) / 5

e l s e :
t = r e s . t [ i t −1]
max s tep , tmax = ( ( tmin − t ) * 0 . 7 5 ) / 6 , t +( tmin − t )

* 0 .75
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
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break
e l s e :

t = tmax
max s tep , tmax = tmin / 6 , tmin

c o u n t e r = c o u n t e r +1
n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( c o u n t e r , Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) ) # t ime , t r

Y O , nCO , nH , nO , nOH
Y H = Y H+ n s t e p

scan . append ( ( c o u n t e r , Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) ) # t ime , t r Y O ,
nCO , nH , nO , nOH

Y H = Y H− n s t e p
whi le Y H >= i n t e r v a l l [ 0 ] :

max s tep , tmax , t = tmin / 6 , tmin , 0
F H = Y H*Fm/1000
Y O = 1000−Y H−Y CO
F O = Fm−F CO−F H
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H , s CO
, s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l = a t o l ,
d e n s e o u t p u t =True ) # S o l v e d i f f

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s t ep = max s t ep / 1 0
tmax= t +( tmin − t ) / 5

e l s e :
t = r e s . t [ i t −1]
max s tep , tmax = ( ( tmin − t ) * 0 . 7 5 ) / 6 , t +( tmin − t )

*0 .75
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
max s tep , tmax = tmin / 6 , tmin

c o u n t e r = c o u n t e r +1
n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( c o u n t e r , Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) ) # t ime , t r

Y O , nCO , nH , nO , nOH
Y H = Y H− n s t e p

np . s a v e t x t ( ’ border CO ’+ s t r (Y CO) + ’\\ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) )
+ ’ l g s ’+ c a l c a + ’ . t x t ’ , ( np . a s a r r a y ( scan ) ) , fmt=” %.0 f \ t ” *4 + ” %.12 e\ t
” *3+ ” %.12 e ” , h e a d e r = ’ s t e p \ tY\−(A) \ tY\−(B) \ tY\−(C) \ t n \−(A) \ t n \−(B) \
t n \−(C) \ t n \−(D) ’ , f o o t e r =” Th i s f i l e was g e n e r a t e d on ”+ t ime .
s t r f t i m e ( ”%d.%m.%Y %H:%M:%S” ) +” by borde r O25 . py .\ nT = ”+ s t r ( T ) +”K\



115

nE = ”+ s t r ( E ) +”\nv = ”+ s t r ( v ) +”\ n F t o t = ”+ s t r (Fm) )
p r i n t ( ’ f i n i s h e d c a l c u l a t i o n t m i n = ’ , tmin , ’ c a l c a = ’ , c a l c a , ’ s t a r t i n g

t ime = ’ , s t a r t , ’ e nd i ng t ime = ’ , t ime . s t r f t i m e ( ”%H:%M:%S” ) )

CO-filling.py

from math import *
import numpy as np
from s c i p y . i n t e g r a t e import s o l v e i v p
import t ime
import os
from t e r n a r y b a s i c s import *
T , k , E , v , Fm, s CO , s O , s H , a , b , c = i n i t i a l i z e ( )
t o l = np . f i n f o ( f l o a t ) . eps *10 # c u t o f f t o l e r a n c e
r t o l , a t o l =1e −9 ,1 e −6
c d i c = {1 : ’LSODA’ , 2 : ’ Radau ’ , 3 : ’BDF ’} # i n t e g r a t i o n s o l v e r s
c a l c , n s t e p = 2 ,1
c a l c a = c d i c [ c a l c ]
O = np . l o a d t x t ( ’ border CO15 \\9 .0 l g s R a d a u . t x t ’ )
h e a d e r = ’Y\−(A) \ tY\−(B) \ tY\−(C) \ tY\−(A) \ t y \ t n \−(A) \ t n \−(B) \ t n \−(C) \ t n \−(D) ’

i = 1
b i 1 , b i 2 , mono = [ ] , [ ] , [ ]
whi le O[ i −1][0]< O[ − i ] [ 0 ] :

summe=0
f o r j in [ 4 , 5 , 6 , 7 ] :

summe = abs (O[ i − 1 ] [ j ] −O[ − i ] [ j ] ) +summe
i f summe>0.0001:

b i 1 . append ( (O[ − i ] [ 0 ] ,O[ − i ] [ 1 ] ,O[ − i ] [ 2 ] ,O[ − i ] [ 3 ] ,O[ i − 1 ] [ 4 ] ,O[ i − 1 ] [ 5 ] ,O[
i − 1 ] [ 6 ] ,O[ i − 1 ] [ 7 ] ) )

b i 2 . append ( (O[ − i ] [ 0 ] ,O[ − i ] [ 1 ] ,O[ − i ] [ 2 ] ,O[ − i ] [ 3 ] ,O[ − i ] [ 4 ] ,O[ − i ] [ 5 ] ,O[ − i
] [ 6 ] ,O[ − i ] [ 7 ] ) )

e l s e :
mono . append ( (O[ − i ] [ 0 ] ,O[ − i ] [ 1 ] ,O[ − i ] [ 2 ] ,O[ − i ] [ 3 ] ,O[ − i ] [ 4 ] ,O[ − i ] [ 5 ] ,O[ i

] [ 6 ] ,O[ i ] [ 7 ] ) )
i = i +1

l i s t d i c t = { ’ b i 1 ’ : b i 1 , ’ b i 2 ’ : b i 2 , ’mono ’ : mono}
f o r l i s t e in [ ’ b i 1 ’ , ’mono ’ , ’ b i 2 ’ ] :

f o r tmin in [1 e6 ] : #1 e8
O = np . a s a r r a y ( l i s t d i c t [ l i s t e ] )
s t a r t = t ime . s t r f t i m e ( ”%H:%M:%S” )
f o r rows in O:

n = np . z e r o s ( ( 4 ) )
Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] , n [ 4 ] = * rows
scan = [ ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n [ 0 ] , n

[ 1 ] , n [ 2 ] , n [ 3 ] ) ]
F O = Y O*Fm/1000
whi le Y H > 0 :

Y CO , Y H = Y CO+ n s t e p , Y H− n s t e p
F CO , F H = Y CO*Fm/ 1 0 0 0 , Y H*Fm/1000
max s tep , tmax , t = tmin / 6 , tmin , 0
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whi le t != tmin :
r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H ,

s CO , s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l =
a t o l , d e n s e o u t p u t =True )

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s tep , tmax = max s t ep / 1 0 , t +( tmax − t ) / 5
e l s e :

t = r e s . t [ i t −1]
tmax , max s t ep = t +( tmin − t ) * 0 . 7 5 , ( ( tmin − t )

* 0 . 7 5 ) / 6
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
tmax , max s t ep =tmin , tmin / 6

n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n

[ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) )
name = ’ f i l l i n g C O 1 5 \\O c o n s t \\ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin

) ) ) + ’ l g s \\ ’+ s t r ( i n t ( rows [ 1 ] ) ) + ’ ’+ s t r ( i n t ( rows [ 2 ] ) ) + ’ ’+ s t r
( i n t ( rows [ 3 ] ) )

np . s a v e t x t ( name+ ’− ’+ l i s t e + ’ . t x t ’ , ( np . a s a r r a y ( scan ) ) , fmt=” %.0 f \ t ”

*3 +” %.8 e\ t ” *2+ ” %.12 e\ t ” *4 , h e a d e r = header , f o o t e r =” Th i s f i l e
was g e n e r a t e d on ”+ t ime . s t r f t i m e ( ”%d.%m.%Y %H:%M:%S” ) +” by SPH0
. py .\ nT = ”+ s t r ( T ) +”K\nE = ”+ s t r ( E ) +”\nv = ”+ s t r ( v ) +”\ n F t o t =
”+ s t r (Fm) )

n = np . z e r o s ( ( 4 ) )
Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] , n [ 4 ] = * rows
scan = [ ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n [ 0 ] , n

[ 1 ] , n [ 2 ] , n [ 3 ] ) ]
F H = Y H*Fm/1000
whi le Y O > 0 :

Y CO , Y O = Y CO+ n s t e p , Y O− n s t e p
F CO , F O = Y CO*Fm/ 1 0 0 0 , Y O*Fm/1000
max s tep , tmax , t = tmin / 6 , tmin , 0
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H ,
s CO , s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l =
a t o l , d e n s e o u t p u t =True )

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
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i f i t ==0:
max s tep , tmax = max s t ep / 1 0 , t +( tmax − t ) / 5

e l s e :
t = r e s . t [ i t −1]
tmax , max s t ep = t +( tmin − t ) * 0 . 7 5 , ( ( tmin − t )

* 0 . 7 5 ) / 6
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
tmax , max s t ep =tmin , tmin / 6

n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n

[ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) )
name = ’ f i l l i n g C O 1 5 \\H c o n s t \\ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin

) ) ) + ’ l g s \\ ’+ s t r ( i n t ( rows [ 1 ] ) ) + ’ ’+ s t r ( i n t ( rows [ 2 ] ) ) + ’ ’+ s t r
( i n t ( rows [ 3 ] ) )

np . s a v e t x t ( name+ ’− ’+ l i s t e + ’ . t x t ’ , ( np . a s a r r a y ( scan ) ) , fmt=” %.0 f \ t ”

*3 +” %.8 e\ t ” *2+ ” %.12 e\ t ” *4 , h e a d e r = header , f o o t e r =” Th i s f i l e
was g e n e r a t e d on ”+ t ime . s t r f t i m e ( ”%d.%m.%Y %H:%M:%S” ) +” by SPH0
. py .\ nT = ”+ s t r ( T ) +”K\nE = ”+ s t r ( E ) +”\nv = ”+ s t r ( v ) +”\ n F t o t =
”+ s t r (Fm) )

p r i n t ( ’ f i n i s h e d c a l c u l a t i o n t m i n = ’ , tmin , ’ L i s t e = ’ , l i s t e , ’ s t a r t i n g
t ime = ’ , s t a r t , ’ e nd i ng t ime = ’ , t ime . s t r f t i m e ( ”%H:%M:%S” ) )

H-filling.py

# a u t h o r : Kevin Rohe
from math import *
import numpy as np
from s c i p y . i n t e g r a t e import s o l v e i v p
import t ime
import os
from t e r n a r y b a s i c s import *
T , k , E , v , Fm, s CO , s O , s H , a , b , c = i n i t i a l i z e ( )
t o l = np . f i n f o ( f l o a t ) . eps *10 # c u t o f f t o l e r a n c e
r t o l , a t o l =1e −9 ,1 e −6
c d i c = {1 : ’LSODA’ , 2 : ’ Radau ’ , 3 : ’BDF ’} # i n t e g r a t i o n s o l v e r s
c a l c , n s t e p = 2 ,1
c a l c a = c d i c [ c a l c ]
CO = np . l o a d t x t ( ’ bo rde r H0 \\5 .0 l g s R a d a u . t x t ’ )
h e a d e r = ’Y\−(A) \ tY\−(B) \ tY\−(C) \ tY\−(A) \ t y \ t n \−(A) \ t n \−(B) \ t n \−(C) \ t n \−(D) ’

i = 1
b i 1 , b i 2 , mono = [ ] , [ ] , [ ]

whi le CO[ i −1][0]< CO[ − i ] [ 0 ] :
summe=0
f o r j in [ 4 , 5 , 6 , 7 ] :
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summe = abs (CO[ i − 1 ] [ j ] −CO[ − i ] [ j ] ) +summe
i f summe>0.0001:

b i 1 . append ( (CO[ − i ] [ 0 ] ,CO[ − i ] [ 1 ] ,CO[ − i ] [ 2 ] ,CO[ − i ] [ 3 ] ,CO[ i − 1 ] [ 4 ] ,CO[ i
− 1 ] [ 5 ] ,CO[ i − 1 ] [ 6 ] ,CO[ i − 1 ] [ 7 ] ) )

b i 2 . append ( (CO[ − i ] [ 0 ] ,CO[ − i ] [ 1 ] ,CO[ − i ] [ 2 ] ,CO[ − i ] [ 3 ] ,CO[ − i ] [ 4 ] ,CO[ − i
] [ 5 ] ,CO[ − i ] [ 6 ] ,CO[ − i ] [ 7 ] ) )

e l s e :
mono . append ( (CO[ − i ] [ 0 ] ,CO[ − i ] [ 1 ] ,CO[ − i ] [ 2 ] ,CO[ − i ] [ 3 ] ,CO[ − i ] [ 4 ] ,CO[ − i

] [ 5 ] ,CO[ i ] [ 6 ] ,CO[ i ] [ 7 ] ) )
i = i +1

l i s t d i c t = { ’ b i 1 ’ : b i 1 , ’ b i 2 ’ : b i 2 , ’mono ’ : mono}
f o r l i s t e in [ ’ b i 2 ’ , ’ b i 1 ’ , ’ b i 2 ’ , ’mono ’ ] :

f o r tmin in [1 e6 , 1 e8 ] :
CO = np . a s a r r a y ( l i s t d i c t [ l i s t e ] )
s t a r t = t ime . s t r f t i m e ( ”%H:%M:%S” )
f o r rows in CO:

n = np . z e r o s ( ( 4 ) )
Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] , n [ 4 ] = * rows
scan = [ ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n [ 0 ] , n

[ 1 ] , n [ 2 ] , n [ 3 ] ) ]
F O = Y O*Fm/1000
whi le Y CO > 0 :

Y CO , Y H = Y CO− n s t e p , Y H+ n s t e p
F CO , F H = Y CO*Fm/ 1 0 0 0 , Y H*Fm/1000
max s tep , tmax , t = tmin / 6 , tmin , 0
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H ,
s CO , s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l =
a t o l , d e n s e o u t p u t =True )

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s tep , tmax = max s t ep / 1 0 , t +( tmin − t ) / 5
e l s e :

t = r e s . t [ i t −1]
tmax , max s t ep = t +( tmin − t ) * 0 . 7 5 , ( ( tmin − t )

* 0 . 7 5 ) / 6
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
tmax , max s t ep =tmin , tmin / 6

n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n

[ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) )
name = ’ f i l l i n g H 0 \\O c o n s t \\ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) )
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) + ’ l g s \\ ’+ s t r ( i n t ( rows [ 1 ] ) ) + ’ ’+ s t r ( i n t ( rows [ 2 ] ) ) + ’ ’+ s t r (
i n t ( rows [ 3 ] ) )

np . s a v e t x t ( name+ ’− ’+ l i s t e + ’ . t x t ’ , ( np . a s a r r a y ( scan ) ) , fmt=” %.0 f \ t ”

*3 +” %.8 e\ t ” *2+ ” %.12 e\ t ” *4 , h e a d e r = header , f o o t e r =” Th i s f i l e
was g e n e r a t e d on ”+ t ime . s t r f t i m e ( ”%d.%m.%Y %H:%M:%S” ) +” by SPH0
. py .\ nT = ”+ s t r ( T ) +”K\nE = ”+ s t r ( E ) +”\nv = ”+ s t r ( v ) +”\ n F t o t =
”+ s t r (Fm) )

n = np . z e r o s ( ( 4 ) )
Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] , n [ 4 ] = * rows
scan = [ ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n [ 0 ] , n

[ 1 ] , n [ 2 ] , n [ 3 ] ) ]
F CO = Y CO*Fm/1000
whi le Y O > 0 :

Y H , Y O = Y H+ n s t e p , Y O− n s t e p
F H , F O = Y H*Fm/ 1 0 0 0 , Y O*Fm/1000
max s tep , tmax , t = tmin / 6 , tmin , 0
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H ,
s CO , s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l =
a t o l , d e n s e o u t p u t =True )

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s tep , tmax = max s t ep / 1 0 , t +( tmin − t ) / 5
e l s e :

t = r e s . t [ i t −1]
tmax , max s t ep = t +( tmin − t ) * 0 . 7 5 , ( ( tmin − t )

* 0 . 7 5 ) / 6
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
tmax , max s t ep =tmin , tmin / 6

n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n

[ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) )
name = ’ f i l l i n g H 0 \\CO const \\ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin )

) ) + ’ l g s \\ ’+ s t r ( i n t ( rows [ 1 ] ) ) + ’ ’+ s t r ( i n t ( rows [ 2 ] ) ) + ’ ’+ s t r (
i n t ( rows [ 3 ] ) )

np . s a v e t x t ( name+ ’− ’+ l i s t e + ’ . t x t ’ , ( np . a s a r r a y ( scan ) ) , fmt=” %.0 f \ t ”

*3 +” %.8 e\ t ” *2+ ” %.12 e\ t ” *4 , h e a d e r = header , f o o t e r =” Th i s f i l e
was g e n e r a t e d on ”+ t ime . s t r f t i m e ( ”%d.%m.%Y %H:%M:%S” ) +” by SPH0
. py .\ nT = ”+ s t r ( T ) +”K\nE = ”+ s t r ( E ) +”\nv = ”+ s t r ( v ) +”\ n F t o t =
”+ s t r (Fm) )

p r i n t ( ’ f i n i s h e d c a l c u l a t i o n t m i n = ’ , tmin , ’ L i s t e = ’ , l i s t e , ’ s t a r t i n g
t ime = ’ , s t a r t , ’ e nd i ng t ime = ’ , t ime . s t r f t i m e ( ”%H:%M:%S” ) )
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O-filling.py

from math import *
import numpy as np
from s c i p y . i n t e g r a t e import s o l v e i v p
import t ime
import os
from t e r n a r y b a s i c s import *
T , k , E , v , Fm, s CO , s O , s H , a , b , c = i n i t i a l i z e ( )
t o l = np . f i n f o ( f l o a t ) . eps *10 # c u t o f f t o l e r a n c e
r t o l , a t o l =1e −9 ,1 e −6
c d i c = {1 : ’LSODA’ , 2 : ’ Radau ’ , 3 : ’BDF ’} # i n t e g r a t i o n s o l v e r s
c a l c , n s t e p = 2 ,1
c a l c a = c d i c [ c a l c ]
O = np . l o a d t x t ( ’ bo rde r O0 \\9 .0 l g s R a d a u . t x t ’ )
h e a d e r = ’Y\−(A) \ tY\−(B) \ tY\−(C) \ tY\−(A) \ t y \ t n \−(A) \ t n \−(B) \ t n \−(C) \ t n \−(D) ’

i = 1
b i 1 , b i 2 , mono = [ ] , [ ] , [ ]
whi le O[ i −1][0]< O[ − i ] [ 0 ] :

summe=0
f o r j in [ 4 , 5 , 6 , 7 ] :

summe = abs (O[ i − 1 ] [ j ] −O[ − i ] [ j ] ) +summe
i f summe>0.01:

b i 1 . append ( (O[ − i ] [ 0 ] ,O[ − i ] [ 1 ] ,O[ − i ] [ 2 ] ,O[ − i ] [ 3 ] ,O[ i − 1 ] [ 4 ] ,O[ i − 1 ] [ 5 ] ,O[
i − 1 ] [ 6 ] ,O[ i − 1 ] [ 7 ] ) )

b i 2 . append ( (O[ − i ] [ 0 ] ,O[ − i ] [ 1 ] ,O[ − i ] [ 2 ] ,O[ − i ] [ 3 ] ,O[ − i ] [ 4 ] ,O[ − i ] [ 5 ] ,O[ − i
] [ 6 ] ,O[ − i ] [ 7 ] ) )

e l s e :
mono . append ( (O[ − i ] [ 0 ] ,O[ − i ] [ 1 ] ,O[ − i ] [ 2 ] ,O[ − i ] [ 3 ] ,O[ − i ] [ 4 ] ,O[ − i ] [ 5 ] ,O[ i

] [ 6 ] ,O[ i ] [ 7 ] ) )
i = i +1

l i s t d i c t = { ’ b i 1 ’ : b i 1 , ’ b i 2 ’ : b i 2 , ’mono ’ : mono}
f o r l i s t e in [ ’ b i 1 ’ , ’ b i 2 ’ , ’mono ’ ] :

f o r tmin in [1 e8 ] :
O = np . a s a r r a y ( l i s t d i c t [ l i s t e ] )
s t a r t = t ime . s t r f t i m e ( ”%H:%M:%S” )
f o r rows in O:

n = np . z e r o s ( ( 4 ) )
Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] , n [ 4 ] = * rows
scan = [ ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n [ 0 ] , n

[ 1 ] , n [ 2 ] , n [ 3 ] ) ]
F CO = Y CO*Fm/1000
whi le Y H > 0 :

Y H , Y O = Y H− n s t e p , Y O+ n s t e p
F H , F O = Y H*Fm/ 1 0 0 0 , Y O*Fm/1000
max s tep , tmax , t = tmin / 6 , tmin , 0
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H ,
s CO , s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l =
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a t o l , d e n s e o u t p u t =True )
b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s tep , tmax = max s t ep / 1 0 , t +( tmax − t ) / 5
e l s e :

t = r e s . t [ i t −1]
tmax , max s t ep = t +( tmin − t ) * 0 . 7 5 , ( ( tmin − t )

* 0 . 7 5 ) / 6
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
tmax , max s t ep =tmin , tmin / 6

n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n

[ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) )
name = ’ f i l l i n g O 0 \\CO const \\ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin )

) ) + ’ l g s \\ ’+ s t r ( i n t ( rows [ 1 ] ) ) + ’ ’+ s t r ( i n t ( rows [ 2 ] ) ) + ’ ’+ s t r (
i n t ( rows [ 3 ] ) )

np . s a v e t x t ( name+ ’− ’+ l i s t e + ’ . t x t ’ , ( np . a s a r r a y ( scan ) ) , fmt=” %.0 f \ t ”

*3 +” %.8 e\ t ” *2+ ” %.12 e\ t ” *4 , h e a d e r = header , f o o t e r =” Th i s f i l e
was g e n e r a t e d on ”+ t ime . s t r f t i m e ( ”%d.%m.%Y %H:%M:%S” ) +” by SPH0
. py .\ nT = ”+ s t r ( T ) +”K\nE = ”+ s t r ( E ) +”\nv = ”+ s t r ( v ) +”\ n F t o t =
”+ s t r (Fm) )

n = np . z e r o s ( ( 4 ) )
Y CO , Y H , Y O , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] , n [ 4 ] = * rows
scan = [ ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n [ 0 ] , n

[ 1 ] , n [ 2 ] , n [ 3 ] ) ]
F H = Y H*Fm/1000
whi le Y CO > 0 :

Y CO , Y O = Y CO− n s t e p , Y O+ n s t e p
F CO , F O = Y CO*Fm/ 1 0 0 0 , Y O*Fm/1000
max s tep , tmax , t = tmin / 6 , tmin , 0
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H ,
s CO , s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l =
a t o l , d e n s e o u t p u t =True )

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s tep , tmax = max s t ep / 1 0 , t +( tmin − t ) / 5
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e l s e :
t = r e s . t [ i t −1]
tmax , max s t ep = t +( tmax − t ) * 0 . 7 5 , ( ( tmin − t )

* 0 . 7 5 ) / 6
n = r e s . s o l ( tmax )
n [ abs ( n ) < t o l ] = 0 . 0
break

e l s e :
t = tmax
tmax , max s t ep =tmin , tmin / 6

n = r e s . s o l ( tmin )
n [ abs ( n ) < t o l ] = 0 . 0
scan . append ( ( Y CO , Y H , Y O , ( 2 * Y O+Y H ) / 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n

[ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) )
name = ’ f i l l i n g O 0 \\H c o n s t \\ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) )

) + ’ l g s \\ ’+ s t r ( i n t ( rows [ 1 ] ) ) + ’ ’+ s t r ( i n t ( rows [ 2 ] ) ) + ’ ’+ s t r (
i n t ( rows [ 3 ] ) )

np . s a v e t x t ( name+ ’− ’+ l i s t e + ’ . t x t ’ , ( np . a s a r r a y ( scan ) ) , fmt=” %.0 f \ t ”

*3 +” %.8 e\ t ” *2+ ” %.12 e\ t ” *4 , h e a d e r = header , f o o t e r =” Th i s f i l e
was g e n e r a t e d on ”+ t ime . s t r f t i m e ( ”%d.%m.%Y %H:%M:%S” ) +” by SPH0
. py .\ nT = ”+ s t r ( T ) +”K\nE = ”+ s t r ( E ) +”\nv = ”+ s t r ( v ) +”\ n F t o t =
”+ s t r (Fm) )

p r i n t ( ’ f i n i s h e d c a l c u l a t i o n t m i n = ’ , tmin , ’ L i s t e = ’ , l i s t e , ’ s t a r t i n g
t ime = ’ , s t a r t , ’ e nd i ng t ime = ’ , t ime . s t r f t i m e ( ”%H:%M:%S” ) )

zus.py

# a u t h o r : Kevin Rohe
import os
from math import *
import numpy as np
import t ime

f o r f i l l i n g in [ ’H0 ’ , ’CO15 ’ , ’O0 ’ ] : # ’H0 ’ , ’ CO15 ’ , ’O0 ’
f o r c o n s t in [ ’H’ , ’O’ , ’CO’ ] : # ’H ’ , ’O ’ , ’CO’

f o r tmin in [1 e6 , 1 e8 ] :
d i r e c = ’ f i l l i n g ’+ f i l l i n g + ’\\ ’+ c o n s t + ’ c o n s t \\ ’+ s t r ( ” { : . 1 f }” .

format ( log10 ( tmin ) ) ) + ’ l g s \\ ’
p r i n t ( f i l l i n g + c o n s t + s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) ) + ’ s t a r t ’ )
i f os . p a t h . i s d i r ( d i r e c ) == True :

f1 = open ( ’ z u s ’+ f i l l i n g + c o n s t + s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) )
) + ’MONO. t x t ’ , ’ ab ’ )

f2 = open ( ’ z u s ’+ f i l l i n g + c o n s t + s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) )
) + ’MONO+ BI 1 . t x t ’ , ’ ab ’ )

f3 = open ( ’ z u s ’+ f i l l i n g + c o n s t + s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) )
) + ’MONO+ BI 2 . t x t ’ , ’ ab ’ )

matches = [ fname f o r fname in os . l i s t d i r ( d i r e c ) i f ( ’mono ’ in
fname ) ]

f o r j in matches :
Data = np . l o a d t x t ( d i r e c + j )
Data = Data [ ( Data [ : , 5 ] >= 0 ) * ( Data [ : , 6 ] >= 0 ) * ( Data [ : , 7 ] >= 0 ) * (
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Data [ : , 8 ] >= 0 ) ]
np . s a v e t x t ( f1 , Data , fmt=” %.0 f \ t ” *3 +” %.8 e\ t ” *2+ ” %.12 e\ t ”

*4)
np . s a v e t x t ( f2 , Data , fmt=” %.0 f \ t ” *3 +” %.8 e\ t ” *2+ ” %.12 e\ t ”

*4)
np . s a v e t x t ( f3 , Data , fmt=” %.0 f \ t ” *3 +” %.8 e\ t ” *2+ ” %.12 e\ t ”

*4)
f1 . c l o s e ( )
f4 = open ( ’ z u s ’+ f i l l i n g + c o n s t + s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) )

) + ’ BI 1 . t x t ’ , ’ ab ’ )
matches = [ fname f o r fname in os . l i s t d i r ( d i r e c + ’\\ ’ ) i f ( ’ b i 1

’ in fname ) ]
f o r j in matches :

Data = np . l o a d t x t ( d i r e c + j )
Data = Data [ ( Data [ : , 5 ] >= 0 ) * ( Data [ : , 6 ] >= 0 ) * ( Data [ : , 7 ] >= 0 ) * (

Data [ : , 8 ] >= 0 ) ]
np . s a v e t x t ( f2 , Data , fmt=” %.0 f \ t ” *3 +” %.8 e\ t ” *2+ ” %.12 e\ t ”

*4)
np . s a v e t x t ( f4 , Data , fmt=” %.0 f \ t ” *3 +” %.8 e\ t ” *2+ ” %.12 e\ t ”

*4)
f2 . c l o s e ( )
f4 . c l o s e ( )
f5 = open ( ’ z u s ’+ f i l l i n g + c o n s t + s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) )

) + ’ BI 2 . t x t ’ , ’ ab ’ )
matches = [ fname f o r fname in os . l i s t d i r ( d i r e c + ’\\ ’ ) i f ( ’ b i 2

’ in fname ) ]
f o r j in matches :

Data = np . l o a d t x t ( d i r e c + j )
Data = Data [ ( Data [ : , 5 ] >= 0 ) * ( Data [ : , 6 ] >= 0 ) * ( Data [ : , 7 ] >= 0 ) * (

Data [ : , 8 ] >= 0 ) ]
np . s a v e t x t ( f3 , Data , fmt=” %.0 f \ t ” *3 +” %.8 e\ t ” *2+ ” %.12 e\ t ”

*4)
np . s a v e t x t ( f5 , Data , fmt=” %.0 f \ t ” *3 +” %.8 e\ t ” *2+ ” %.12 e\ t ”

*4)
f3 . c l o s e ( )
f5 . c l o s e ( )

p r i n t ( f i l l i n g + c o n s t + s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) ) + ’ f i n i s h e d ’ )

zoom.py

# a u t h o r : Kevin Rohe
import os
from math import *
import numpy as np
import t ime
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Abbrev = [ ’ zus ’ ]
h e a d e r = ’Y\−(A) \ tY\−(B) \ tY\−(C) \ tY\−(A) \ t y \ t n \−(A) \ t n \−(B) \ t n \−(C) \ t n \−(D) ’
f o r i in Abbrev :

matches = [ fname f o r fname in os . l i s t d i r ( ” . / ” ) i f fname . s t a r t s w i t h ( i ) and
( ’MONO+BI ’ in fname ) ]

f o r f i l e in matches :
p r i n t ( ’ i m p o r t e d ’ , f i l e )
NBF = np . l o a d t x t ( f i l e )
r e s u l t = r e s u l t [ ( NBF[ : , 0 ] <=250) * ( r e s u l t [ : , 1 ] <=250) * ( r e s u l t [ : , 2 ] >=750) ]
r e s u l t [ : , : 1 ] = r e s u l t [ : , : 1 ] * 4
r e s u l t [ : , 2 ] = 1000− r e s u l t [ : , 0 ] − r e s u l t [ : , 1 ]
np . s a v e t x t ( ’ zoom ’+ f i l e , ( r e s u l t ) , d e l i m i t e r = ’\ t ’ , fmt=” %.0 f \ t ” *3 +” %.8 e

\ t ” *2+ ” %.12 e\ t ” *4 , h e a d e r = header , f o o t e r =” Th i s f i l e was g e n e r a t e d
on ”+ t ime . s t r f t i m e ( ”%d.%m.%Y %H:%M:%S” ) +” by zus +zoom” )

Route.py

from math import *
import numpy as np
from s c i p y . i n t e g r a t e import s o l v e i v p
import t ime
import os
from t e r n a r y b a s i c s import *
T , k , Fm, s CO , s O , s H , a , b , c = i n i t i a l i z e ( )
t o l = np . f i n f o ( f l o a t ) . eps *10 # c u t o f f t o l e r a n c e
n s t e p = 1 # s t e p w i d t h f o r Y
c d i c = {1 : ’LSODA’ , 2 : ’ Radau ’ , 3 : ’BDF ’} # i n t e g r a t i o n s o l v e r s
r t o l , a t o l =1e −9 ,1 e −6
n s t e p = 1 # s t e p w i d t h f o r Y
h e a d e r = ’\ tY\−(A) \ tY\−(B) \ tY\−(C) \ t x \ t y \ t n [CO]\ t n [H]\ t n [O]\ t n [OH] ’
tmin = 1 e8
c d i c = {1 : ’LSODA’ , 2 : ’ Radau ’ , 3 : ’BDF ’}
c a l c = 2
c a l c a = c d i c [ c a l c ]
r a t e = { ’VLR ’ : [ 1 . 9 0 2 0 8 4 2 2 9 6 7 7 e −02 ,9 .761826662101 e −01 ,9 .615712752842 e

−08 ,1 .290779735582 e −08] , ’UR’ [7 .690962824681 e −02 ,2 .011343927304 e
−02 ,1 .347261516183 e −01 ,1 .808516861712 e −02] , ’LR ’ [1 .495968083815 e
−01 ,8 .125823654650 e −01 ,8 .457790551004 e −06 ,1 .135344299655 e −06]}

n = [ 0 , 0 , 0 , 0 ]
A = np . a r r a y ( [107 ,49 ,1000 −107 −49] )
B = np . a r r a y ( [107 ,5 ,1000 −107 −5] )
C = np . a r r a y ( [110 ,49 ,1000 −110 −49] )
D = np . a r r a y ( [47 ,109 ,1000 −47 −109] )
Eo = np . a r r a y ( [47 ,65 ,1000 −47 −65] )
F = np . a r r a y ( [154 ,5 ,1000 −154 −5] )
G = np . a r r a y ( [110 ,109 ,1000 −110 −109] )

r o u t e s = { ’ACF ’ : np . a r r a y ( [ C , F ] ) , ’ACG’ : np . a r r a y ( [ C ,G] ) , ’ABF ’ : np . a r r a y ( [ B , F ] ) , ’
ABE ’ : np . a r r a y ( [ B , Eo ] ) , ’ADE’ : np . a r r a y ( [ D, Eo ] ) , ’ADG’ : np . a r r a y ( [ D,G] ) }

f o r Route in [ ’ADG’ ] : # , ’ADE ’ , ’ACG ’ , ’ABF ’ , ’ABE ’ , ’ACF ’ ] :
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f o r nsav in [ ’UR’ , ’VLR ’ , ’LR ’ ] :
s can = [ ]
s t a r t = t ime . s t r f t i m e ( ”%H:%M:%S” )
n [ 0 ] = r a t e [ nsav ] [ 0 ]
n [ 1 ] = r a t e [ nsav ] [ 1 ]
n [ 2 ] = r a t e [ nsav ] [ 2 ]
n [ 3 ] = r a t e [ nsav ] [ 3 ]
W= r o u t e s [ Route ]
c o u n t e r 2 = 0
scan . append ( ( 1 ,A[ 0 ] * 4 ,A[1]*4 ,1000 −A[0]*4 −A[ 1 ] * 4 , ( 2 *A[ 2 ] +A[ 1 ] ) / 2 0 0 0 , (

s q r t ( 3 ) *A[ 1 ] ) / 2 0 0 0 , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) )
a l = A
f o r e l e m e n t in W:

c o u n t e r 3 = 1
b a l = e lement − a l
f o r v a l in b a l :

i f va l >0:
b a l = b a l / v a l
break

whi l e ( a l != e l e m e n t ) . any ( ) :
a l = a l + b a l
Y CO , Y H , Y O = * a l
F H , F CO , F O = Y H*Fm/ 1 0 0 0 ,Y CO*Fm/ 1 0 0 0 , Y O*Fm/1000
tmax , max s t ep =tmin , tmin / 6
t = 0
whi le t != tmin :

r e s = s o l v e i v p ( rhs , [ t , tmax ] , n , c a l c a , a r g s = ( ( k , F CO , F O , F H ,
s CO , s O , s H , a , b , c ) , ) , max s t ep = max s tep , a t o l = r t o l , r t o l =
a t o l , d e n s e o u t p u t =True ) # S o l v e d i f f

b o r d e r = r e s . y<0
i f b o r d e r . any ( ) == True :

A = np . a r a n g e ( l e n ( r e s . t ) )
f o r i t in A:

i f b o r d e r [ : , i t ] . any ( ) == True :
i f i t ==0:

max s t ep = max s t ep / 1 0
tmax= t +( tmax − t ) / 5

e l s e :
t = r e s . t [ i t −1]
tmax= t +( tmin − t ) *0 .75
max s t ep = ( tmax − t ) / 6 # ( r e s . t [ i t ]− r e s . t [ i t

−1])
f o r i t in [ 0 , 1 , 2 , 3 ] :

i f r e s . s o l ( tmax ) [ i t ]< t o l :
n [ i t ]=0

e l s e :
n [ i t ]= r e s . s o l ( tmax ) [ i t ]

break
e l s e :

t = tmax
tmax= tmin
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max s t ep = tmin / 6
f o r i t in [ 0 , 1 , 2 , 3 ] :

i f r e s . s o l ( tmax ) [ i t ]< t o l :
n [ i t ]=0

e l s e :
n [ i t ]= r e s . s o l ( tmax ) [ i t ]

s can . append ( ( va l , Y CO*4 ,Y H*4 ,1000 −Y H*4−Y CO* 4 , ( 2 * Y O+Y H )
/ 2 0 0 0 , ( s q r t ( 3 ) *Y H ) / 2 0 0 0 , n [ 0 ] , n [ 1 ] , n [ 2 ] , n [ 3 ] ) ) #Y O , nCO , nH
, nO , nOH

c o u n t e r 3 = c o u n t e r 3 +1
c o u n t e r 2 = c o u n t e r 2 +1
a l = e l e m e n t

np . s a v e t x t ( ’ Route ’+Route+ ’ ’+ nsav + ’ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) )
+ ’ l g s . t x t ’ , ( np . a s a r r a y ( scan ) ) , d e l i m i t e r = ’\ t ’ , fmt= ’ %.8 e ’ , h e a d e r =
h e a d e r )

Pa thbox =[A, B , C , D, Eo , F ,G]
P a t h l e n g t h = [ ]
h e a d e r = ’\ tY\−(A) \ tY\−(B) \ tY\−(C) \ t x \ t y \ t n [CO]\ t n [H]\ t n [O]\ t n [OH] ’
tmin = 1 e8
f o r nsav in [ ’UR’ , ’VLR ’ , ’LR ’ ] :

v a l =−1
R1 = np . l o a d t x t ( ’ RouteACG ’+ nsav + ’ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) ) + ’ l g s

. t x t ’ )
R2 = np . l o a d t x t ( ’ RouteADG ’+ nsav + ’ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) ) + ’ l g s

. t x t ’ )
R2 = np . f l i p ( R2 , 0 )
R2 = np . d e l e t e ( R2 , 0 , 0 )
R3 = np . c o n c a t e n a t e ( ( R1 , R2 ) )

R1 = np . l o a d t x t ( ’ RouteADE ’+ nsav + ’ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) ) + ’ l g s
. t x t ’ )

R1 = np . d e l e t e ( R1 , 0 , 0 )
R3 = np . c o n c a t e n a t e ( ( R3 , R1 ) )
R2 = np . l o a d t x t ( ’ RouteABE ’+ nsav + ’ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) ) + ’ l g s

. t x t ’ )
R2 = np . f l i p ( R2 , 0 )
R2 = np . d e l e t e ( R2 , 0 , 0 )
R3 = np . c o n c a t e n a t e ( ( R3 , R2 ) )

R1 = np . l o a d t x t ( ’ RouteABF ’+ nsav + ’ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) ) + ’ l g s
. t x t ’ )

R1 = np . d e l e t e ( R1 , 0 , 0 )
R3 = np . c o n c a t e n a t e ( ( R3 , R1 ) )
R2 = np . l o a d t x t ( ’ RouteACF ’+ nsav + ’ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) ) + ’ l g s

. t x t ’ )
R2 = np . f l i p ( R2 , 0 )
R2 = np . d e l e t e ( R2 , 0 , 0 )
R3 = np . c o n c a t e n a t e ( ( R3 , R2 ) )
n=0
f o r row in R3 :
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n=n+1
f o r p o i n t in Pathbox :

i f a l l ( [ row [ 1 ] / 4 , row [ 2 ] / 4 , 1 0 0 0 − row [ 1 ] / 4 − row [ 2 ] / 4 ] == p o i n t ) :
P a t h l e n g t h . append ( n )
n=0
break

k=0
v a l =0
f o r row in R3 :

v a l = v a l +1/ P a t h l e n g t h [ k ]
row [ 0 ] = v a l
f o r p o i n t in Pathbox :

i f a l l ( [ row [ 1 ] / 4 , row [ 2 ] / 4 , 1 0 0 0 − row [ 1 ] / 4 − row [ 2 ] / 4 ] == p o i n t ) :
k=k+1
break

np . s a v e t x t ( ’ACGDADEBABFCA’+ ’ ’+ nsav + ’ ’+ s t r ( ” { : . 1 f }” . format ( log10 ( tmin ) ) ) + ’
l g s . t x t ’ , ( R3 ) , d e l i m i t e r = ’\ t ’ , fmt= ’ %.8 e ’ , h e a d e r = h e a d e r )
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C
Supplementary data for Chapter 4

The following sections contain the source codes for numerical simulation used in chapter 4.

discrete basics.py

import numpy as np
import c o l o r s y s
import m a t p l o t l i b . p y p l o t a s p l t
from m a t p l o t l i b import cm
from m a t p l o t l i b . c o l o r s import Lis t edColo rmap , LinearSegmentedColormap

def d e f i n e c c o l o r m a p ( ) : # cus tom colormap
i t , k = 55 , 0
v i r i d i s = cm . ge t cmap ( ’ v i r i d i s ’ , 256)
n e w c o l o r s = v i r i d i s ( np . l i n s p a c e ( 0 , 1 , 4* i t +1) )
a , b = 4 / 6 , 1 / 4

f o r i , j in [ ( 3 / 6 , 1 / 3 ) , ( 2 / 6 , 1 / 2 ) , ( 1 / 6 , 1 ) , ( 1 / 1 2 , 1 ) ] :
f o r h , v in z i p ( np . l i n s p a c e ( a , i , i t , e n d p o i n t = F a l s e ) , np . l i n s p a c e ( b ,

j , i t , e n d p o i n t = F a l s e ) ) :
c o l = l i s t ( c o l o r s y s . h s v t o r g b ( h , 1 . 0 , v ) )
c o l . append ( 1 )
n e w c o l o r s [ k , : ] = c o l
k = k +1
newcmp = L i s t e d C o l o r m a p ( n e w c o l o r s )

a , b = i , j

c o l = l i s t ( c o l o r s y s . h s v t o r g b ( a , 1 . 0 , b ) )
c o l . append ( 1 )

129
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n e w c o l o r s [ k , : ] = c o l
newcmp = L i s t e d C o l o r m a p ( n e w c o l o r s )
re turn newcmp
# 4 . / 6 . , 1 . 0 , 0 . 2 5 , / / dark b l u e
# 2 . / 6 . , 1 . 0 , 0 . 5 , / / g reen
# 1 . / 6 . , 1 . 0 , 1 . 0 , / / l i g h t y e l l o w

def fp ( u , k ) : # d e r r i v a t i v e
a , b , c , d = k
re turn − 5*u**4 − 3* a *u**2 − 2*b*u − c

def r e a c t e r m ( x , k ) : # r e a c t i o n term
a , b , c , d = k
re turn − x **5 − a *x**3 − b*x**2 − c *x − d

def p o t e n t i a l ( x , k ) : # p o t e n t i a l
a , b , c , d = k
re turn − x **6 /6 − a *x **4 /4 − b*x **3 /3 − c *x **2 /2 − d*x

def minima ( a , b , c , d ) :
c o e f f s = [ −1 . , 0 , −a , −b , −c , −d ]
a l l r o o t s = np . r o o t s ( c o e f f s )
r e a l r o o t s = [ x . r e a l f o r x in a l l r o o t s i f np . i s r e a l ( x ) ]
s t a b l e r o o t s = [ x f o r x in r e a l r o o t s i f fp ( x , ( a , b , c , d ) ) < 0]
re turn np . s o r t ( s t a b l e r o o t s )

def mesh hex ( r e s o l ) :
r e s = i n t ( r e s o l * 2 / np . s q r t ( 3 ) ) , r e s o l
xx , yy = np . meshgr id ( np . a r a n g e ( r e s [ 1 ] ) , np . a r a n g e ( r e s [ 0 ] ) , s p a r s e = F a l s e ,

i n d e x i n g = ’ xy ’ )
yy = yy * np . s q r t ( 3 ) / 2
xx = xx * 1 . 0
xx [ : : 2 , : ] = ( xx [ : : 2 , : ] + 1 / 2 )
re turn r e s , xx , yy

def m e s h t r i ( r e s o l ) :
r e s = i n t ( r e s o l * 2 / np . s q r t ( 3 ) + 1 ) , r e s o l * 2 / / 3 + 1
xx , yy = np . meshgr id ( np . a r a n g e ( r e s [ 1 ] ) , np . a r a n g e ( r e s [ 0 ] ) , s p a r s e = F a l s e ,

i n d e x i n g = ’ xy ’ )
xx = xx * 3 . 0 / 2
xx [ : : 2 , : : 2 ] = xx [ : : 2 , : : 2 ] + 1 / 2
xx [ 1 : : 2 , 1 : : 2 ] = xx [ 1 : : 2 , 1 : : 2 ] + 1 / 2
yy = yy*np . s q r t ( 3 ) / 2
re turn r e s , xx , yy

def mesh reg ( r e s o l ) :
r e s = r e s o l , r e s o l
xx , yy = np . meshgr id ( np . a r a n g e ( r e s [ 1 ] ) , np . a r a n g e ( r e s [ 0 ] ) , s p a r s e = F a l s e ,

i n d e x i n g = ’ xy ’ )
re turn r e s , xx , yy

def i n i o c t ( r e s , xx , yy , s o l u t i o n s , r e s o l = 100) : # i n i t i a l o c t a g o n a l shape
r1 = r e s o l *3 /8
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r2 = r e s o l *2 /8
r3 = r e s o l / 8
r4 = np . s q r t ( 2 )

z = ( xx + yy ) * 0 . 0 + s o l u t i o n s [ 0 ]
f o r i in np . a r a n g e ( r e s [ 0 ] ) :

f o r j in np . a r a n g e ( r e s [ 1 ] ) :
r adx = ( np . abs ( xx [ i , j ] − r e s o l / / 2 ) )
r ady = ( np . abs ( yy [ i , j ] − r e s o l / / 2 ) )

i f ( r adx < r3 and r ady < r3 ) and r adx + rady < r3 * r4 :
z [ i , j ] = s o l u t i o n s [ 2 ]

e l i f ( r adx < r2 and r ady < r2 ) and r adx + rady < r2 * r4 :
z [ i , j ] = s o l u t i o n s [ 1 ]

e l i f ( r adx < r1 and r ady < r1 ) and r adx + rady < r1 * r4 :
z [ i , j ] = s o l u t i o n s [ 0 ]

e l s e :
z [ i , j ] = s o l u t i o n s [ 2 ]

re turn z

def i n i s t r i p e ( xx , yy , r e s o l , phi , s o l i , s o l j ) : # i n i t i a l a n g u l a r f r o n t
z = ( xx + yy ) * 0 . 0
m = np . t a n ( p h i *np . p i / 1 8 0 )
y = xx*m + (1 − m) * r e s o l / 2
z [ y <= yy ] = s o l i
z [ y > yy ] = s o l j
re turn z

i f n a m e == ” m a i n ” :
pass

e l s e :
newcmp = d e f i n e c c o l o r m a p ( )

discrete plot.py

import numpy as np
import c o l o r s y s
import m a t p l o t l i b . p y p l o t a s p l t
import m a t p l o t l i b . p a t c h e s as mpatches
from m a t p l o t l i b . c o l l e c t i o n s import P a t c h C o l l e c t i o n
from d i s c r e t e b a s i c s import newcmp

def p a t c h e s r e g ( xx , yy , z1 , r a d = 1) :
s q u a r e s = [ mpatches . R e g u l a r P o l y g o n ( ( xi , y i ) , 4 , r a d i u s =np . s q r t ( 2 ) * 0 .5 * rad ,

o r i e n t a t i o n =np . deg2rad ( 4 5 ) , l i n e w i d t h =0) f o r xi , y i in z i p ( xx . f l a t t e n ( )
, yy . f l a t t e n ( ) ) ]

c o l l e c t i o n = P a t c h C o l l e c t i o n ( s q u a r e s , cmap = newcmp , norm = p l t . Normal i ze
( − 3 . 5 , 3 . 5 ) , r a s t e r i z e d = True )

c o l l e c t i o n . s e t a r r a y ( z1 . f l a t t e n ( ) )
re turn c o l l e c t i o n

def p a t c h e s h e x ( xx , yy , z1 , r a d = 1) :
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hexagons = [ mpatches . R e g u l a r P o l y g o n ( ( xi , y i ) , 6 , r a d i u s = np . s q r t ( 1 . 1 / 3 ) *
rad , o r i e n t a t i o n = np . deg2rad ( 0 ) , l i n e w i d t h = 0) f o r xi , y i in z i p ( xx .
f l a t t e n ( ) , yy . f l a t t e n ( ) ) ]

c o l l e c t i o n = P a t c h C o l l e c t i o n ( hexagons , cmap = newcmp , norm = p l t . Normal i ze
( − 3 . 5 , 3 . 5 ) , r a s t e r i z e d = True )

c o l l e c t i o n . s e t a r r a y ( z1 . f l a t t e n ( ) )
re turn c o l l e c t i o n

def p a t c h e s t r i ( xx , yy , z1 , r a d = 1) :
temp = np . h s t a c k ( ( xx [ : : 2 , : : 2 ] . f l a t t e n ( ) , xx [ 1 : : 2 , 1 : : 2 ] . f l a t t e n ( ) ) ) , np .

h s t a c k ( ( yy [ : : 2 , : : 2 ] . f l a t t e n ( ) , yy [ 1 : : 2 , 1 : : 2 ] . f l a t t e n ( ) ) )
t r i a n g l e s = [ mpatches . R e g u l a r P o l y g o n ( ( xi , y i ) , 3 , r a d i u s = 1 .075 * rad ,

o r i e n t a t i o n = np . deg2rad ( −30) , l i n e w i d t h = 0) f o r xi , y i in z i p (* temp ) ]
temp = np . h s t a c k ( ( xx [ 1 : : 2 , : : 2 ] . f l a t t e n ( ) , xx [ : : 2 , 1 : : 2 ] . f l a t t e n ( ) ) ) , np .

h s t a c k ( ( yy [ 1 : : 2 , : : 2 ] . f l a t t e n ( ) , yy [ : : 2 , 1 : : 2 ] . f l a t t e n ( ) ) )
t r i a n g l e s = t r i a n g l e s + [ mpatches . R e g u l a r P o l y g o n ( ( xi , y i ) , 3 , r a d i u s =

1 .075* rad , o r i e n t a t i o n = np . deg2rad ( 3 0 ) , l i n e w i d t h = 0) f o r xi , y i in
z i p (* temp ) ]

c o l l e c t i o n = P a t c h C o l l e c t i o n ( t r i a n g l e s , cmap = newcmp , norm = p l t . Normal i ze
( − 3 . 5 , 3 . 5 ) , r a s t e r i z e d = True )

c o l l e c t i o n . s e t a r r a y ( np . h s t a c k ( ( z1 [ : : 2 , : : 2 ] . f l a t t e n ( ) , z1 [ 1 : : 2 , 1 : : 2 ] .
f l a t t e n ( ) , z1 [ 1 : : 2 , : : 2 ] . f l a t t e n ( ) , z1 [ : : 2 , 1 : : 2 ] . f l a t t e n ( ) ) ) )

re turn c o l l e c t i o n

def p l o t r e g ( xx , yy , z1 , name ) : # s tandard − p l o t s
f i g , ax = p l t . s u b p l o t s ( 1 , 1 , f i g s i z e = ( 5 , 5 ) , d p i = 150)
ax . a d d c o l l e c t i o n ( p a t c h e s r e g ( xx , yy , z1 ) )
ax . a x i s ( ’ e q u a l ’ ) ;
ax . a x i s ( ’ o f f ’ )
p l t . t i g h t l a y o u t ( )
f i g . s a v e f i g ( name + ” . pdf ” )
p l t . show ( )

def p l o t h e x ( xx , yy , z1 , name ) : # s tandard − p l o t s
f i g , ax = p l t . s u b p l o t s ( 1 , 1 , f i g s i z e = ( 5 , 5 ) , d p i = 150)
ax . a d d c o l l e c t i o n ( p a t c h e s h e x ( xx , yy , z1 ) )
ax . a x i s ( ’ e q u a l ’ ) ;
ax . a x i s ( ’ o f f ’ )
p l t . t i g h t l a y o u t ( )
f i g . s a v e f i g ( name + ” . pdf ” )
p l t . show ( )

def p l o t t r i ( xx , yy , z1 , name ) : # s tandard − p l o t s
f i g , ax = p l t . s u b p l o t s ( 1 , 1 , f i g s i z e = ( 5 , 5 ) , d p i = 150)
ax . a d d c o l l e c t i o n ( p a t c h e s t r i ( xx , yy , z1 ) )
ax . a x i s ( ’ e q u a l ’ ) ;
ax . a x i s ( ’ o f f ’ )
p l t . t i g h t l a y o u t ( )
f i g . s a v e f i g ( name + ” . pdf ” )
p l t . show ( )
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i f n a m e == ” m a i n ” :
pass

discrete sim.py

import numpy as np
from numba import j i t
from s c i p y . i n t e g r a t e import s o l v e i v p
from s c i p y . o p t i m i z e import minimize

@ j i t ( nopython = True )
def r h s r e g ( t , z , k ) :

a , b , c , d , d i f f , dx , r e s = k
m = z . r e s h a p e ( r e s )
dz = np . z e r o s l i k e (m)
i = 0
j = r e s [ 0 ] −1
dz [ 0 , 0 ] = m[ 1 , 0 ] +m[ 0 , 1 ] −2*m[ 0 , 0 ]
dz [ 0 , j ] = m[ i +1 , j ] +m[ i , j −1] −2*m[ 0 , j ]
dz [ j , 0 ] = m[ j −1 ,0] +m[ j , 1 ] −2*m[ j , 0 ]
dz [ j , j ] = m[ j −1 , j ] +m[ j , j −1] −2*m[ j , j ]
l im1 = 1
f o r i in range ( l im1 , r e s [ 0 ] − l im1 ) :

f o r j in range ( 1 , r e s [ 1 ] −1) :
dz [ i , j ] = m[ i +1 , j ] +m[ i −1 , j ] +m[ i , j +1] +m[ i , j −1] −4*m[ i , j ]

j = 0
dz [ i , j ] = m[ i +1 , j ] +m[ i −1 , j ] +m[ i , j +1] −3*m[ i , j ]
dz [ j , i ] = m[ j +1 , i ] +m[ j , i +1] +m[ j , i −1] −3*m[ j , i ]
j = r e s [ 1 ] −1
dz [ i , j ] = m[ i +1 , j ] +m[ i −1 , j ] +m[ i , j −1] −3*m[ i , j ]
dz [ j , i ] = m[ j −1 , i ] +m[ j , i +1] +m[ j , i −1] −3*m[ j , i ]

m = dz * d i f f / dx **2 −m**5 − a *m**3 − b*m**2 − c *m − d
re turn m. f l a t t e n ( )

@ j i t ( nopython = True )
def r h s h e x ( t , z , k ) :

a , b , c , d , d i f f , dx , r e s = k
m = z . r e s h a p e ( r e s )
dz = np . z e r o s l i k e (m)
i = 0
j 1 = r e s [ 0 ] −1
j 2 = r e s [ 1 ] −1
dz [ 0 , 0 ] = m[ 0 , 1 ] +m[ 1 , 0 ] + (m[ 1 , 1 ] ) −3*m[ 0 , 0 ]
dz [ 0 , j 2 ] = m[ 0 , j 2 −1] +m[ 1 , j 2 ] −2*m[ 0 , j 2 ]
dz [ j1 , 0 ] = m[ j1 , 1 ] +m[ j 1 −1 ,0] −2*m[ j1 , 0 ]
dz [ j1 , j 2 ] = m[ j1 , j 2 −1] +m[ j 1 −1 , j 2 ] +m[ j 1 −1 , j 2 −1] −3*m[ j1 , j 2 ]

f o r i in range ( 1 , r e s [ 0 ] −1) :
f o r j in range ( 1 , r e s [ 1 ] −1) :

dz [ i , j ] = m[ i , j +1] +m[ i , j −1] +m[ i +1 , j ] +m[ i −1 , j ] +(m[ i −1 , j −1]
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+m[ i +1 , j −1] ) * ( i %2) +(m[ i +1 , j +1] +m[ i −1 , j + 1 ] ) * ( ( i +1) %2)
−6*m[ i , j ]

j = 0
dz [ i , j ] = m[ i , j +1] +m[ i +1 , j ] +m[ i −1 , j ]

+(m[ i +1 , j +1] +m[ i −1 , j +1] −2*m[ i , j ] ) * ( ( i +1) %2)
−3*m[ i , j ]

j = r e s [ 1 ] −1
dz [ i , j ] = m[ i , j −1] +m[ i +1 , j ] +m[ i −1 , j ] +(m[ i −1 , j −1] +m[ i +1 , j −1]

−2*m[ i , j ] ) * ( i %2) −3*m[ i , j ]

f o r j in range ( 1 , r e s [ 1 ] −1) :
dz [ 0 , j ] = m[ 0 , j +1] +m[ 0 , j −1] +m[ 1 , j ] +m[ 1 , j +1] −4*m[ 0 , j ]
i = r e s [ 0 ] −1
dz [ i , j ] = m[ i , j +1] +m[ i , j −1] +m[ i −1 , j ] + (m[ i −1 , j −1] ) * ( i %2) +(m[ i

−1 , j + 1 ] ) * ( ( i +1) %2) −4*m[ i , j ]

m = dz * d i f f * 2 / ( 3 * dx **2) −m**5 − a *m**3 − b*m**2 − c *m − d
re turn m. f l a t t e n ( )

@ j i t ( nopython = True )
def r h s t r i ( t , z , k ) :

a , b , c , d , d i f f , dx , r e s = k
m = z . r e s h a p e ( r e s )
dz = np . z e r o s l i k e (m)
i = 0
j 1 = r e s [ 0 ] −1
j 2 = r e s [ 1 ] −1

dz [ 0 , 0 ] = m[ 1 , 0 ] +m[ 0 , 1 ] −2*m[ 0 , 0 ]
dz [ 0 , j 2 ] = m[ 1 , j 2 ] + ( j 2 %2) * ( (m[ 0 , j 2 −1] −m[ 0 , j 2 ] ) ) −m[ 0 , j 2 ]
dz [ j1 , 0 ] = m[ j 1 −1 ,0] + ( ( j 1 +1) %2) * (m[ j1 , 1 ] −m[ j1 , 0 ] ) −m[ j1 , 0 ]
dz [ j1 , j 2 ] = m[ j 1 −1 , j 2 ] + ( ( j 2 +1) %2) * ( ( j 1 %2) * (m[ j1 , j 2 −1] −m[ j1 , j 2 ] ) ) +( j 2

%2) * ( ( ( j 1 +1) %2) * (m[ j1 , j 2 −1] −m[ j1 , j 2 ] ) ) −m[ j1 , j 2 ]

f o r i in range ( 1 , r e s [ 0 ] −1) :
f o r j in range ( 1 , r e s [ 1 ] −1) :

dz [ i , j ] = m[ i +1 , j ] +m[ i −1 , j ] + ( ( j +1) %2) * ( ( i %2) * (m[ i , j −1] ) + ( ( i
+1) %2) * (m[ i , j + 1 ] ) ) + ( j %2) * ( ( ( i +1) %2) * (m[ i , j −1] ) +( i %2) * (m[

i , j + 1 ] ) ) −3*m[ i , j ]
j = 0
dz [ i , j ] = m[ i +1 , j ] +m[ i −1 , j ] + ( ( i +1) %2) * (m[ i , j +1] −m[ i , j ] ) −2*m[ i , j

]
j = r e s [ 1 ] −1
dz [ i , j ] = m[ i +1 , j ] +m[ i −1 , j ] + ( ( j +1) %2) * ( i %2) * (m[ i , j −1] −m[ i , j ] )

+( j %2) * ( ( i +1) %2) * (m[ i , j −1] −m[ i , j ] ) −2*m[ i , j ]
f o r j in range ( 1 , r e s [ 1 ] −1) :

i = 0
dz [ i , j ] = m[ i +1 , j ] + ( ( j +1) %2) * ( (m[ i , j + 1 ] ) ) +( j %2) * ( ( +m[ i , j −1] ) )

−2*m[ i , j ]
i = r e s [ 0 ] −1
dz [ i , j ] = m[ i −1 , j ] + ( ( j +1) %2) * ( ( i %2) * ( +m[ i , j −1] ) + ( ( i +1) %2) * (m[ i ,
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j + 1 ] ) ) +( j %2) * ( ( ( i +1) %2) * (m[ i , j −1] ) +( i %2) * ( +m[ i , j + 1 ] ) ) −2*m[ i
, j ]

m = dz * d i f f * 4 / ( 3 * dx **2) −m**5 − a *m**3 − b*m**2 − c *m − d
re turn m. f l a t t e n ( )

def v e c f i t ( dev , xx , yy , phi , r e s o l ) :
a = np . a r r a y ( [ r e s o l / 2 + dev [ 0 ] * np . cos ( np . deg2rad ( p h i + 90) ) , r e s o l / 2 + dev

[ 0 ] * np . s i n ( np . deg2rad ( p h i + 90) ) ] ) # p o i n t on f i t l i n e , dev=0== i n i
b = np . a r r a y ( [ np . cos ( np . deg2rad ( p h i ) ) , np . s i n ( np . deg2rad ( p h i ) ) ] ) #

d i r e c t i o n a l v e c t o r
p = np . c o l u m n s t a c k ( ( xx , yy ) ) # p o i n t s i n ’ f r o n t ’
d i f f = np . c r o s s ( p −a , b ) / np . l i n a l g . norm ( b ) # d i s t a n c e be tween t h e f i t l i n e a +

b and t h e f r o n t da ta
re turn np . sum ( np . abs ( d i f f ) )

def v e c f i t t e r ( xx , yy , phi , r e s o l = 100) :
r e s = min imize ( v e c f i t , 0 , a r g s = ( xx , yy , phi , r e s o l ) , method = ’SLSQP ’ ,

bounds = [ ( ( − r e s o l * 0 . 4 5 , r e s o l * 0 . 4 5 ) ) ] )
re turn ( r e s . fun , r e s . x [ 0 ] )

i f n a m e == ” m a i n ” :
pass

fig9.py

import m a t p l o t l i b . p y p l o t a s p l t
import m a t p l o t l i b a s mpl
from m p l t o o l k i t s . a x e s g r i d 1 import ImageGrid
from d i s c r e t e b a s i c s import *
from d i s c r e t e p l o t import *
mpl . r cPa rams [ ’ backend ’ ] = ’ pdf ’
mpl . r c ( ’ f o n t ’ ,**{ ’ f a m i l y ’ : ’ s e r i f ’ } )
mpl . r cPa rams [ ’ m a t h t e x t . f o n t s e t ’ ] = ’cm ’
def a x i n s e t u p ( a x i n s ) :

a x i n s . s e t x l i m ( 1 0 , 50)
a x i n s . s e t y l i m ( 1 0 , 50)
a x i n s . s e t x t i c k l a b e l s ( [ ] )
a x i n s . s e t y t i c k l a b e l s ( [ ] )
a x i n s . s e t x t i c k s ( [ ] )
a x i n s . s e t y t i c k s ( [ ] )
re turn None

r e s o l u t i o n = 100
a , b , c , d = −10 ,2 ,18 .75 , −5
s o l u t i o n s = minima ( a , b , c , d )

# S e t up f i g u r e and image g r i d
f i g = p l t . f i g u r e ( f i g s i z e =(15 , 5 ) , d p i =150)
g r i d = ImageGrid ( f i g , 111 , n r o w s n c o l s = ( 1 , 3 ) , a x e s p a d = 0 . 1 5 , s h a r e a l l =True ,
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c b a r l o c a t i o n =” r i g h t ” , cbar mode =” s i n g l e ” , c b a r s i z e =”7%” , c b a r p a d = 0 . 1 )

r e s , xv , yv = mesh reg ( r e s o l u t i o n )
z = i n i o c t ( r e s , xv , yv , s o l u t i o n s , r e s o l u t i o n )
c = g r i d [ 0 ] . a d d c o l l e c t i o n ( p a t c h e s r e g ( xv , yv , z ) )
a x i n s = g r i d [ 0 ] . i n s e t a x e s ( [ 0 , 0 , 0 . 5 , 0 . 5 ] )
a x i n s . a d d c o l l e c t i o n ( p a t c h e s r e g ( xv , yv , z , 0 . 6 ) )
a x i n s e t u p ( a x i n s )
r e s , xv , yv = mesh hex ( r e s o l u t i o n )
z = i n i o c t ( r e s , xv , yv , s o l u t i o n s , r e s o l u t i o n )
g r i d [ 1 ] . a d d c o l l e c t i o n ( p a t c h e s h e x ( xv , yv , z ) )
a x i n s = g r i d [ 1 ] . i n s e t a x e s ( [ 0 , 0 , 0 . 5 , 0 . 5 ] )
a x i n s . a d d c o l l e c t i o n ( p a t c h e s h e x ( xv , yv , z , 0 . 6 ) )
a x i n s e t u p ( a x i n s )
r e s , xv , yv = m e s h t r i ( r e s o l u t i o n )
z = i n i o c t ( r e s , xv , yv , s o l u t i o n s , r e s o l u t i o n )
g r i d [ 2 ] . a d d c o l l e c t i o n ( p a t c h e s t r i ( xv , yv , z ) )
a x i n s = g r i d [ 2 ] . i n s e t a x e s ( [ 0 , 0 , 0 . 5 , 0 . 5 ] )
a x i n s . a d d c o l l e c t i o n ( p a t c h e s t r i ( xv , yv , z , 0 . 6 ) )
a x i n s e t u p ( a x i n s )

f o r ax in g r i d :
ax . s e t r a s t e r i z a t i o n z o r d e r ( 0 )
ax . a x i s ( ’ e q u a l ’ ) ;
ax . a x i s ( ’ o f f ’ )

ax . cax . c l a ( )
cb = mpl . c o l o r b a r . C o l o r b a r ( ax . cax , c )
cb . ax . t i c k p a r a m s ( l a b e l s i z e =15)
cb . s e t l a b e l ( l a b e l = r ’ $u ( x , y ) $ ’ , we ig h t = ’ bo ld ’ , f o n t s i z e =18)
ax . cax . t o g g l e l a b e l ( True )
p l t . s a v e f i g ( ” 9 i n i t i a l s . pdf ” )
p l t . show ( )

fig10 11.py

import m a t p l o t l i b . p y p l o t a s p l t
import m a t p l o t l i b a s mpl
from d i s c r e t e b a s i c s import *
from d i s c r e t e p l o t import *
from d i s c r e t e s i m import *
from s c i p y . i n t e g r a t e import s o l v e i v p
mpl . r cPa rams [ ’ backend ’ ] = ’ pdf ’
mpl . r c ( ’ f o n t ’ ,**{ ’ f a m i l y ’ : ’ s e r i f ’ } )
mpl . r cPa rams [ ’ m a t h t e x t . f o n t s e t ’ ] = ’cm ’
p l t . r c ( ’ t e x t ’ , u s e t e x =True )
p l t . r c ( ’ t e x t . l a t e x ’ , p reamble = r ’\ u s e p a c k a g e {amssymb , amsmath , wasysym} ’ )
p l t . r cPa rams [ ’ f o n t . s i z e ’ ] = 10

a , b , c , d = −10 , 2 , 15 , −3
r e s o l u t i o n = 100
coup , dx = 5 , 1 . 0
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s o l u t i o n s = minima ( a , b , c , d )
r e s , xv , yv = mesh reg ( r e s o l u t i o n )
z = i n i o c t ( r e s , xv , yv , s o l u t i o n s , r e s o l u t i o n )
d i f f = coup *dx **2
z1 = z . f l a t t e n ( )
t i m e p l u s =0
f o r t l i m i t in [ ( 1 , 0 . 0 0 1 ) , ( 3 , 0 . 0 1 ) , ( 5 , 0 . 0 1 ) , ( 1 0 , 0 . 0 1 ) ] : # Looping t o goal −v a l u e s

t o p r i n t
t s t e p = t l i m i t [ 1 ]
t = 0
whi le ( t * t s t e p + t i m e p l u s )< t l i m i t [ 0 ] : # Looping p r e v e n t s i n t e r n a l i s s u e s

t r y :
r e s o = s o l v e i v p ( r h s r e g , [ 0 , t s t e p ] , z1 , ’LSODA’ , a r g s = ( ( a , b , c , d , d i f f ,

dx , r e s ) , ) )
z1 = r e s o . y [ : , − 1 ]
t = t +1

e xc ep t ( MemoryError ) : # Workaround a g a i n s t memory i s s u e
f i g , ax = p l t . s u b p l o t s ( 1 , 1 , f i g s i z e = ( 1 , 1 ) )
p l t . c l o s e ( )

p l o t r e g ( xv , yv , z1 , ” 10 r e g {} {} {} c { : . 2 f } d {} D{} dx {} t { : . 3 f } s ” . format (
r e s o l u t i o n , a , b , c , d , d i f f , dx , t l i m i t [ 0 ] ) )

t i m e p l u s = t i m e p l u s + t * t s t e p

a , b , c , d = −10 , 2 , 1 8 . 7 5 , −3
coup , dx = 5 , 1 . 0
s o l u t i o n s = minima ( a , b , c , d )
r e s , xv , yv = mesh reg ( r e s o l u t i o n )
z = i n i o c t ( r e s , xv , yv , s o l u t i o n s , r e s o l u t i o n )
d i f f = coup *dx **2
z1 = z . f l a t t e n ( )
t i m e p l u s =0
f o r t l i m i t in [ ( 1 , 0 . 0 0 1 ) , ( 3 , 0 . 0 1 ) , ( 5 , 0 . 0 1 ) , ( 1 0 , 0 . 0 1 ) ] : # Looping t o goal −v a l u e s

t o p r i n t
t s t e p = t l i m i t [ 1 ]
t = 0
whi le ( t * t s t e p + t i m e p l u s )< t l i m i t [ 0 ] : # Looping p r e v e n t s i n t e r n a l i s s u e s

t r y :
r e s o = s o l v e i v p ( r h s r e g , [ 0 , t s t e p ] , z1 , ’LSODA’ , a r g s = ( ( a , b , c , d , d i f f ,

dx , r e s ) , ) )
z1 = r e s o . y [ : , − 1 ]
t = t +1

e xc ep t ( MemoryError ) : # Workaround a g a i n s t memory i s s u e
f i g , ax = p l t . s u b p l o t s ( 1 , 1 , f i g s i z e = ( 1 , 1 ) )
p l t . c l o s e ( )

p l o t r e g ( xv , yv , z1 , ” 10 r e g {} {} {} c { : . 2 f } d {} D{} dx {} t { : . 3 f } s ” . format (
r e s o l u t i o n , a , b , c , d , d i f f , dx , t l i m i t [ 0 ] ) )

t i m e p l u s = t i m e p l u s + t * t s t e p

a , b , c , d = −10 , 2 , 15 , −3
coup , dx = 2 . 5 , 1 . 0
s o l u t i o n s = minima ( a , b , c , d )
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r e s , xv , yv = mesh hex ( r e s o l u t i o n )
z = i n i o c t ( r e s , xv , yv , s o l u t i o n s , r e s o l u t i o n )
d i f f = coup *dx **2
z1 = z . f l a t t e n ( )
t i m e p l u s =0
f o r t l i m i t in [ ( 1 , 0 . 0 0 1 ) , ( 5 , 0 . 0 1 ) , ( 1 0 , 0 . 0 1 ) ] : # Looping t o goal −v a l u e s t o p r i n t

t s t e p = t l i m i t [ 1 ]
t = 0
whi le ( t * t s t e p + t i m e p l u s )< t l i m i t [ 0 ] : # Looping p r e v e n t s i n t e r n a l i s s u e s

t r y :
r e s o = s o l v e i v p ( r h s h e x , [ 0 , t s t e p ] , z1 , ’LSODA’ , a r g s = ( ( a , b , c , d , d i f f ,

dx , r e s ) , ) )
z1 = r e s o . y [ : , − 1 ]
t = t +1

e xc ep t ( MemoryError ) : # Workaround a g a i n s t memory i s s u e
f i g , ax = p l t . s u b p l o t s ( 1 , 1 , f i g s i z e = ( 1 , 1 ) )
p l t . c l o s e ( )

p l o t h e x ( xv , yv , z1 , ” 11 hex {} {} {} c { : . 2 f } d {} D{} dx {} t { : . 3 f } s ” . format (
r e s o l u t i o n , a , b , c , d , d i f f , dx , t l i m i t [ 0 ] ) )

t i m e p l u s = t i m e p l u s + t * t s t e p

a , b , c , d = −10 , 2 , 15 , −3
coup , dx = 5 , 1 . 0
s o l u t i o n s = minima ( a , b , c , d )
r e s , xv , yv = m e s h t r i ( r e s o l u t i o n )
z = i n i o c t ( r e s , xv , yv , s o l u t i o n s , r e s o l u t i o n )
d i f f = coup *dx **2
z1 = z . f l a t t e n ( )
t i m e p l u s =0
f o r t l i m i t in [ ( 1 , 0 . 0 0 1 ) , ( 5 , 0 . 0 1 ) , ( 1 0 , 0 . 0 1 ) ] : # Looping t o goal −v a l u e s t o p r i n t

t s t e p = t l i m i t [ 1 ]
t = 0
whi le ( t * t s t e p + t i m e p l u s )< t l i m i t [ 0 ] : # Looping p r e v e n t s i n t e r n a l i s s u e s

t r y :
r e s o = s o l v e i v p ( r h s t r i , [ 0 , t s t e p ] , z1 , ’LSODA’ , a r g s = ( ( a , b , c , d , d i f f ,

dx , r e s ) , ) )
z1 = r e s o . y [ : , − 1 ]
t = t +1

e xc ep t ( MemoryError ) : # Workaround a g a i n s t memory i s s u e
f i g , ax = p l t . s u b p l o t s ( 1 , 1 , f i g s i z e = ( 1 , 1 ) )
p l t . c l o s e ( )

p l o t t r i ( xv , yv , z1 . r e s h a p e ( r e s ) , ” 11 t r i {} {} {} c { : . 2 f } d {} D{} dx {} t { : . 3 f }
s ” . format ( r e s o l u t i o n , a , b , c , d , d i f f , dx , t l i m i t [ 0 ] ) )

t i m e p l u s = t i m e p l u s + t * t s t e p
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fig12.py

import m a t p l o t l i b . p y p l o t a s p l t
import m a t p l o t l i b a s mpl
import os
from d i s c r e t e b a s i c s import *
from d i s c r e t e p l o t import *
from d i s c r e t e s i m import *
from s c i p y . i n t e g r a t e import s o l v e i v p
from c y c l e r import c y c l e r
p l t . r cPa rams [ ’ axes . p r o p c y c l e ’ ]= c y c l e r ( ’ c o l o r ’ , [ ’ #1 f77b4 ’ , ’ # f f 7 f 0 e ’ , ’ # d62728 ’

, ’ #9467 bd ’ , ’ #8 c564b ’ , ’ # e377c2 ’ , ’ #7 f 7 f 7 f ’ , ’ # bcbd22 ’ , ’ #17 b e c f ’ ] )
mpl . r cPa rams [ ’ backend ’ ] = ’ pdf ’
mpl . r c ( ’ f o n t ’ ,**{ ’ f a m i l y ’ : ’ s e r i f ’ } )
mpl . r cPa rams [ ’ m a t h t e x t . f o n t s e t ’ ] = ’cm ’
p l t . r c ( ’ t e x t ’ , u s e t e x =True )
p l t . r c ( ’ t e x t . l a t e x ’ , p reamble = r ’\ u s e p a c k a g e {amssymb , amsmath , wasysym} ’ )
p l t . r cPa rams [ ’ f o n t . s i z e ’ ] = 14
l o c a t i o n = ” c o u p s t r e n g t h / ”
t r y :

os . m a k e d i r s ( l o c a t i o n )
e xc ep t :

pass

a , b = −10 , 2
r e s o l u t i o n = 100
dx = 1 . 0
t o l = 0 . 1
coupArr = [ 2 , 4 , 6 , 8 , 1 0 ]
f o r p a r in [ ( 1 8 . 7 5 , − 3 ) ] :

c , d = p a r
s o l u t i o n s = minima ( a , b , c , d )
f o r method in [ ( m e s h t r i , r h s t r i ) ] : #

r e s , xv , yv = method [ 0 ] ( r e s o l u t i o n )
z = i n i o c t ( r e s , xv , yv , s o l u t i o n s , r e s o l u t i o n )
f o r coup in coupArr : #

d i f f = coup *dx **2
p r i n t ( ” coup = {} ” . format ( coup ) , end= ’\ r ’ )
z1 = z . f l a t t e n ( )
t i m e p l u s =0
f i l e n a m e = method [ 0 ] . n a m e [ − 3 : ] + ” a {} b {} c {} d {} D{} dx {} r {} ” .

format ( a , b , c , d , d i f f , dx , r e s o l u t i o n )
i f not os . p a t h . i s f i l e ( l o c a t i o n + f i l e n a m e +” . t x t ” ) :

f o r t l i m i t in [ ( 0 . 1 , 0 . 0 0 1 ) , ( 1 0 , 0 . 0 1 ) ] :
t s t e p = t l i m i t [ 1 ]
t = 0
whi le ( t * t s t e p + t i m e p l u s )< t l i m i t [ 0 ] :

t r y :
r e s o = s o l v e i v p ( method [ 1 ] , [ 0 , t s t e p ] , z1 , ’LSODA’ ,

a r g s = ( ( a , b , c , d , d i f f , dx , r e s ) , ) )
z1 = r e s o . y [ : , − 1 ]
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t = t +1
e xc ep t ( MemoryError ) :

f i g , ax = p l t . s u b p l o t s ( 1 , 1 , f i g s i z e = ( 1 , 1 ) )
p l t . c l o s e ( )

N 1 , N 2 , N 3 = l e n ( z1 [ np . abs ( z1 − s o l u t i o n s [ 0 ] )< t o l ] ) ,
l e n ( z1 [ np . abs ( z1 − s o l u t i o n s [ 1 ] )< t o l ] ) , l e n ( z1 [ np . abs
( z1 − s o l u t i o n s [ 2 ] )< t o l ] )

f = open ( l o c a t i o n + f i l e n a m e + ’ . t x t ’ , ’ a ’ )
f . w r i t e ( ”{}\ t {}\ t {}\ t {}\ t {}\n ” . format ( t * t s t e p + t i m e p l u s ,

N 1 , N 2 , N 3 , np . sum ( z1 −z . f l a t t e n ( ) ) ) )
f . c l o s e ( )

t i m e p l u s = t i m e p l u s + t * t s t e p
f i g , axs = p l t . s u b p l o t s ( 3 , 1 , f i g s i z e = ( 5 , 8 ) , s h a r e x =True , d p i =150)
f i g . t i g h t l a y o u t ( )
f i g . s u b p l o t s a d j u s t ( h s pa ce =0)
f o r coup in coupArr : #

d i f f = coup *dx **2#
f i l e n a m e = method [ 0 ] . n a m e [ − 3 : ] + ” a {} b {} c {} d {} D{} dx {} r {} ” .

format ( a , b , c , d , d i f f , dx , r e s o l u t i o n )
d a t a 1 = np . l o a d t x t ( l o c a t i o n + f i l e n a m e + ’ . t x t ’ )
axs [ 0 ] . p l o t ( d a t a 1 [ : , 0 ] , d a t a 1 [ : , 1 ] / 1 e2 , l a b e l = r ’ $\mathrm{D}= ’+ s t r (

d i f f ) + ’ $ ’ , lw =2)
axs [ 1 ] . p l o t ( d a t a 1 [ : , 0 ] , d a t a 1 [ : , 2 ] / 1 e2 , l a b e l = r ’ $\mathrm{D}= ’+ s t r (

d i f f ) + ’ $ ’ , lw =2)
axs [ 2 ] . p l o t ( d a t a 1 [ : , 0 ] , d a t a 1 [ : , 3 ] / 1 e2 , l a b e l = r ’ $\mathrm{D}= ’+ s t r (

d i f f ) + ’ $ ’ , lw =2)
axs [ 0 ] . s e t y l a b e l ( r ’ $N {0} \ c d o t 10ˆ{ −2}$ ’ )
axs [ 1 ] . s e t y l a b e l ( r ’ $N {1} \ c d o t 10ˆ{ −2}$ ’ )
axs [ 2 ] . s e t y l a b e l ( r ’ $N {2} \ c d o t 10ˆ{ −2}$ ’ )
axs [ 2 ] . s e t x l a b e l ( r ’ t ’ )
axs [ 0 ] . s e t x l i m ( 0 , 1 0 )
axs [ 1 ] . s e t x l i m ( 0 , 1 0 )
axs [ 2 ] . s e t x l i m ( 0 , 1 0 )
axs [ 0 ] . l e g e n d ( )
f i l e n a m e = l o c a t i o n + ’ 12 ’+method [ 0 ] . n a m e [ − 3 : ] + ” a {} b {} c {} d {} dx

{} r {} ” . format ( a , b , c , d , dx , r e s o l u t i o n )
f i g . s a v e f i g ( f i l e n a m e + ’ coup . pdf ’ , b b o x i n c h e s = ’ t i g h t ’ )
p l t . show ( )

fig13.py

import m a t p l o t l i b . p y p l o t a s p l t
import m a t p l o t l i b a s mpl
from d i s c r e t e b a s i c s import *
from d i s c r e t e p l o t import *
from d i s c r e t e s i m import *
from s c i p y . i n t e g r a t e import s o l v e i v p
from c y c l e r import c y c l e r
p l t . r cPa rams [ ’ axes . p r o p c y c l e ’ ]= c y c l e r ( ’ c o l o r ’ , [ ’ #1 f77b4 ’ , ’ # f f 7 f 0 e ’ , ’ # d62728 ’

, ’ #9467 bd ’ , ’ #8 c564b ’ , ’ # e377c2 ’ , ’ #7 f 7 f 7 f ’ , ’ # bcbd22 ’ , ’ #17 b e c f ’ ] )
mpl . r cPa rams [ ’ backend ’ ] = ’ pdf ’
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mpl . r c ( ’ f o n t ’ ,**{ ’ f a m i l y ’ : ’ s e r i f ’ } )
mpl . r cPa rams [ ’ m a t h t e x t . f o n t s e t ’ ] = ’cm ’
p l t . r c ( ’ t e x t ’ , u s e t e x =True )
p l t . r c ( ’ t e x t . l a t e x ’ , p reamble = r ’\ u s e p a c k a g e {amssymb , amsmath , wasysym} ’ )
p l t . r cPa rams [ ’ f o n t . s i z e ’ ] = 16

a , b , c , d = −10 , 2 , 15 , −5
s o l u t i o n s = minima ( a , b , c , d )
r e s o l u t i o n = 100
r e s , xv , yv = mesh reg ( r e s o l u t i o n )
dx = 1 . 0
p h i = 30
i n i = ( 0 , 1 )
t o l = 0 . 1
z = i n i s t r i p e ( xv , yv , r e s o l u t i o n , phi , s o l u t i o n s [ i n i [ 0 ] ] , s o l u t i o n s [ i n i [ 1 ] ] )
f o r coup in [ 5 , 1 5 ] :

d i f f = coup *dx **2
z1 = z . f l a t t e n ( )
t i m e p l u s =0
f o r t l i m i t in [ ( 1 , 0 . 0 0 1 ) , ( 5 , 0 . 0 1 ) ] :

t s t e p = t l i m i t [ 1 ]
t = 0
whi le ( t * t s t e p + t i m e p l u s )< t l i m i t [ 0 ] :

t r y :
r e s o = s o l v e i v p ( r h s r e g , [ 0 , t s t e p ] , z1 , ’LSODA’ , a r g s = ( ( a , b , c , d ,

d i f f , dx , r e s ) , ) )
z1 = r e s o . y [ : , − 1 ]
t = t +1

e xc ep t ( MemoryError ) :
f i g , ax = p l t . s u b p l o t s ( 1 , 1 , f i g s i z e = ( 1 , 1 ) )
p l t . c l o s e ( )

t i m e p l u s = t i m e p l u s + t * t s t e p
f i g , ax = p l t . s u b p l o t s ( 1 , 1 , f i g s i z e = ( 5 , 5 ) , d p i =150)
ax . a d d c o l l e c t i o n ( p a t c h e s r e g ( xv , yv , z1 ) )

m = r e s o l u t i o n *np . a r r a y ( [ np . cos ( np . deg2rad ( p h i ) ) , np . s i n ( np . deg2rad ( p h i )
) ] ) # d i r e c t i o n a l v e c t o r

a0 = np . a r r a y ( [ 5 0 , 5 0 ] ) # p o i n t on f i t l i n e , dev=0== i n i
ax . p l o t ( np . v s t a c k ( ( a0 −m, a0+m) ) [ : , 0 ] , np . v s t a c k ( ( a0 −m, a0+m) ) [ : , 1 ] , l s = ’

d o t t e d ’ , lw =2 , l a b e l = r ” $\vec {{g}} 0 , d = { : . 2 f }$ ” . format ( 0 ) )
mask = np . a r r a y ( np . abs ( z1 − s o l u t i o n s [ i n i [ 0 ] ] )> t o l ) * np . a r r a y ( np . abs ( z1 −

s o l u t i o n s [ i n i [ 1 ] ] )> t o l ) # a l l p o i n t s i n f r o n t
e r r o r , d i s t a n c e = v e c f i t t e r ( xv . f l a t t e n ( ) [ mask ] , yv . f l a t t e n ( ) [ mask ] , p h i )

a1 = np . a r r a y ( [ 5 0 + d i s t a n c e *np . cos ( np . deg2rad ( p h i +90) ) , 50+ d i s t a n c e *np .
s i n ( np . deg2 rad ( p h i +90) ) ] ) # p o i n t on f i t l i n e , dev=0== i n i

ax . p l o t ( np . v s t a c k ( ( a1 −m, a1+m) ) [ : , 0 ] , np . v s t a c k ( ( a1 −m, a1+m) ) [ : , 1 ] , l s = ’
d o t t e d ’ , lw =2 , l a b e l = r ” $\vec {{g}} 1 , d = { : . 2 f }$ ” . format ( d i s t a n c e ) )

ax . s e t x l i m ( − . 5 , 9 9 . 5 )
ax . s e t y l i m ( − . 5 , 9 9 . 5 )
ax . a x i s ( ’ o f f ’ )
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p l t . l e g e n d ( )
p l t . t i g h t l a y o u t ( )
f i g . s a v e f i g ( ” 13 r e g {} 30u02 ˆ ˆ {} {} c { : . 2 f } d {} D{} dx {} t { : . 3 f } s . pdf ” .

format ( r e s o l u t i o n , a , b , c , d , d i f f , dx , t l i m i t [ 0 ] ) )
p l t . show ( )

fig14.py

import m a t p l o t l i b . p y p l o t a s p l t
import m a t p l o t l i b a s mpl
import os
from d i s c r e t e b a s i c s import *
from d i s c r e t e p l o t import *
from d i s c r e t e s i m import *
from s c i p y . i n t e g r a t e import s o l v e i v p
from c y c l e r import c y c l e r
p l t . r cPa rams [ ’ axes . p r o p c y c l e ’ ]= c y c l e r ( ’ c o l o r ’ , [ ’ #1 f77b4 ’ , ’ # f f 7 f 0 e ’ , ’ # d62728 ’

, ’ #9467 bd ’ , ’ #8 c564b ’ , ’ # e377c2 ’ , ’ #7 f 7 f 7 f ’ , ’ # bcbd22 ’ , ’ #17 b e c f ’ ] )
l o c a t i o n = ” o r i e n t a t i o n / ”
t r y :

os . m a k e d i r s ( l o c a t i o n )
e xc ep t ( F i l e E x i s t s E r r o r ) :

pass
t o l = 0 . 1
a , b , c , d = −10 , 2 , 15 , −5
s o l u t i o n s = minima ( a , b , c , d )
r e s o l u t i o n = 100
dx = 1 . 0
d a t a l o c = l o c a t i o n +” n pz a {} b {} c {} d {} / ” . format ( a , b , c , d )
t r y :

os . m a k e d i r s ( d a t a l o c )
e xc ep t ( F i l e E x i s t s E r r o r ) :

pass
r e s u l t s = [ ]

f o r method in [ ( m e s h t r i , r h s t r i , 3 ) , ( mesh reg , r h s r e g , 4 ) , ( mesh hex , r h s h e x
, 6 ) ] :
r e s , xv , yv = method [ 0 ] ( r e s o l u t i o n )
f o r coup in [ 2 , 4 , 6 , 8 , 1 0 ] :

d i f f = coup *dx **2
f o r i , j in [ ( 0 , 1 ) , ( 0 , 2 ) , ( 1 , 2 ) ] :

f o r p h i in np . a r a n g e ( 0 , 9 0 . 5 , 0 . 5 ) :
z = i n i s t r i p e ( xv , yv , r e s o l u t i o n , phi , i , j )
d a t a = [ ]
p r i n t ( ”{} f r o n t u {}{} , D = {} , p h i = {} ” . format ( method [ 0 ] .

n a m e [ − 3 : ] , i , j , d i f f , p h i ) , end=”\ r ” )
t r y :

w i th np . l o a d ( d a t a l o c +method [ 0 ] . n a m e [ − 3 : ] + ” D{} dx {} r {}
p h i {} {} t 1 . npz ” . format ( d i f f , dx , r e s o l u t i o n , phi , i + j ) )

a s temp :
z1 = temp [ ’ a r r 0 ’ ] . f l a t t e n ( )
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e xc ep t ( F i l e N o t F o u n d E r r o r ) :
z1 = z . f l a t t e n ( )
t i m e p l u s =0
f o r t l i m i t in [ ( 0 . 1 , 0 . 0 0 1 ) , ( 1 , 0 . 0 1 ) ] :

t s t e p = t l i m i t [ 1 ]
t = 0
whi le ( t * t s t e p + t i m e p l u s )< t l i m i t [ 0 ] :

t r y :
r e s o = s o l v e i v p ( method [ 1 ] , [ 0 , t s t e p ] , z1 , ’LSODA’

, a r g s = ( ( a , b , c , d , d i f f , dx , r e s ) , ) )
z1 = r e s o . y [ : , − 1 ]
t = t +1

e xc ep t ( MemoryError ) :
f i g , ax = p l t . s u b p l o t s ( 1 , 1 , f i g s i z e = ( 1 , 1 ) )
p l t . c l o s e ( )

t i m e p l u s = t i m e p l u s + t * t s t e p
np . s a v e z c o m p r e s s e d ( d a t a l o c +method [ 0 ] . n a m e [ − 3 : ] + ” D{}

dx {} r {} p h i {} {} t 1 ” . format ( d i f f , dx , r e s o l u t i o n , phi , i +
j ) , z1 )

N 1 = l e n ( z1 [ np . abs ( z1 − s o l u t i o n s [ i ] )< t o l ] )
N 2 = l e n ( z1 [ np . abs ( z1 − s o l u t i o n s [ j ] )< t o l ] )
mask = np . a r r a y ( np . abs ( z1 − s o l u t i o n s [ i ] )> t o l ) * np . a r r a y ( np . abs (

z1 − s o l u t i o n s [ j ] )> t o l )
e r r o r , d i s t a n c e = v e c f i t t e r ( xv . f l a t t e n ( ) [ mask ] , yv . f l a t t e n ( ) [

mask ] , p h i )

r e s u l t s . append ( [ method [ 2 ] , coup , i + j , phi , N 1 , N 2 , np . sum ( z1 −z .
f l a t t e n ( ) ) , d i s t a n c e , e r r o r ] )

r e s u l t s = np . a s a r r a y ( r e s u l t s )
f i l e n a m e = ”{} {} {} c { : . 2 f } d {} . t x t ” . format ( r e s o l u t i o n , a , b , c , d )
np . s a v e t x t ( l o c a t i o n + f i l e n a m e , r e s u l t s )

mpl . r cPa rams [ ’ backend ’ ] = ’ pdf ’
mpl . r c ( ’ f o n t ’ ,**{ ’ f a m i l y ’ : ’ s e r i f ’ } )
mpl . r cPa rams [ ’ m a t h t e x t . f o n t s e t ’ ] = ’cm ’
p l t . r c ( ’ t e x t ’ , u s e t e x =True )
p l t . r c ( ’ t e x t . l a t e x ’ , p reamble = r ’\ u s e p a c k a g e {amssymb , amsmath , wasysym} ’ )

f i l e n a m e = ”{} {} {} c { : . 2 f } d {} . t x t ” . format ( r e s o l u t i o n , a , b , c , d )
d a t a = np . l o a d t x t ( l o c a t i o n + f i l e n a m e )
d a t a [ : , 3 ] = np . deg2rad ( d a t a [ : , 3 ] )
f i g , axs = p l t . s u b p l o t s ( 3 , 3 , f i g s i z e = ( 8 , 8 ) , s u b p l o t k w ={ ’ p r o j e c t i o n ’ : ’ p o l a r ’

} , d p i =150)
s o l u t i o n s = minima ( a , b , c , d )
f o r method in [ ( ’ r e g ’ , 4 , 0 ) , ( ’ hex ’ , 6 , 1 ) , ( ’ t r i ’ , 3 , 2 ) ] :

mask1 = d a t a [ : , 0 ] == method [ 1 ]
f o r d i f f in [ 2 . 0 , 4 . 0 , 6 . 0 , 8 . 0 , 1 0 . 0 ] : # , 1 5 . 0 ] : #

mask2 = d a t a [ : , 1 ] == d i f f
f o r i in range ( 3 ) :

axs [ i , 0 ] . s e t r t i c k s ( [ −4 , −3 , −2 , −1 ,0 ] )
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axs [ i , 0 ] . s e t r l i m ( 0 , − 3 . 7 5 )
axs [ i , 1 ] . s e t r t i c k s ( [ 0 . 0 , − 0 . 3 , − 0 . 6 , − 0 . 9 ] )
axs [ i , 1 ] . s e t r l i m ( 0 , − 0 . 8 )
axs [ i , 2 ] . s e t r t i c k s ( [ 0 , 2 , 4 , 6 ] )
axs [ i , 2 ] . s e t r l i m ( 0 , 6 . 5 )
f o r j in range ( 3 ) :

axs [ j , i ] . s e t t h e t a m i n ( 0 )
axs [ j , i ] . s e t t h e t a m a x ( 9 0 )
axs [ j , i ] . s e t x t i c k s ( np . deg2rad ( [ 0 , 1 5 , 3 0 , 4 5 , 6 0 , 7 5 , 9 0 ] ) )
axs [ j , i ] . x a x i s . s e t t i c k p a r a m s ( pad = −2)
axs [ j , i ] . y a x i s . s e t t i c k p a r a m s ( pad = −2)

f o r i n i in [ 1 , 2 , 3 ] :
mask3 = d a t a [ : , 2 ] == i n i
d a t a 1 = d a t a [ mask1*mask2*mask3 ]
axs [ method [ 2 ] , i n i − 1 ] . p l o t ( d a t a 1 [ : , 3 ] , d a t a 1 [ : , 7 ] , l a b e l = r ’$D={}$ ’ .

format ( d i f f ) )
axs [ 2 , 1 ] . l e g e n d ( l o c =” lower c e n t e r ” , b b o x t o a n c h o r = ( 0 . , −0 .4 , 0 . 7 , −0) , n c o l =5)
axs [ 0 , 0 ] . s e t y l a b e l ( ’ s q u a r e ’ )
axs [ 1 , 0 ] . s e t y l a b e l ( ’ h e x a g o n a l ’ )
axs [ 2 , 0 ] . s e t y l a b e l ( ’ t r i a n g u l a r ’ )
axs [ 0 , 0 ] . s e t t i t l e ( r ’ $u {01}$ ’ )
axs [ 0 , 1 ] . s e t t i t l e ( r ’ $u {02}$ ’ )
axs [ 0 , 2 ] . s e t t i t l e ( r ’ $u {12}$ ’ )
f i g . s a v e f i g ( ” 14 dx {} r {} a n g u l a r d . pdf ” . format ( dx , r e s o l u t i o n ) )
p l t . show ( )
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