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Kurzfassung
Diese Bachelorarbeit erforscht eine Methode zur 3D-Objekterkennung und Posenschät-
zung, basierend auf dem Punkte-Paare-Eigenschaften-Verfahren (PPE) von Drost et.
al. [Dro+10]. Die Methoden der Posenschätzung haben sich in den letzten Jahre zwar
deutlich verbessert, stellen jedoch weiterhin ein zentrales Problem im Bereich der Com-
putervisualistik dar. Im Rahmen dieser Arbeit wurde ein Programm implementiert, wel-
ches Punktewolkenszenen als Ausgangspunkt erhält und daraus eine Objekterkennung
und Posenschätzung durchführt. Das Programm deckt alle Schritte eines Objekterken-
nungsprogramm ab, indem es 3D-Modelle von Objekten verarbeitet, um deren PPE zu
extrahieren. Diese Eigenschaften werden gruppiert und in einer Tabelle gespeichert.
Anhand des Auswahlverfahrens, bei dem die Übereinstimmung der Eigenschaften über-
prüft wird, können potenzielle Posen des Objekts ermittelt werden. Die Posen mit der
größten Übereinstimmung werden miteinander verglichen, um ähnliche Posen zu grup-
pieren. Die Gruppen mit der höchsten Übereinstimmung werden erneut überprüft, so-
dass am Ende nur eine Pose ausgewählt wird. Das Programm wurde anhand von Real–
und Simulationsdaten Daten getestet. Die erhaltenen Ergebnisse wurden anschließend
analysiert und evaluiert.

Abstract
This thesis explores a 3D object detection and pose estimation approach based on the
point pair features method presented by Drost et. al. [Dro+10]. While pose estimation
methods have shown good improvements, they still remain a crucial problem on the
computer vision field. In this work, we implemented a program that takes point cloud
scenes as input and returns the detected object with their estimated pose. The program
fully covers an object detection pipeline by processing 3D models during an offline
phase, extracting their point pair features and creating a global descriptor out of them.
During an online phase, the same features are extracted from a point cloud scene and are
matched to the model features. After the voting scheme, potential poses of the object are
retrieved. The poses end being clustered together and post-processed to finally deliver
a result. The program was tested using simulated and real data. We evaluate these tests
and present the final results, by discussing the achieved accuracy of the detections and
the estimated poses.
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Chapter 1

Introduction

The detection of objects has been an essential topic in the area of computer vision for
the last few years. Machine learning methods can already localize and classify objects
on images in real-time by using bounding boxes i.e., Regions of Interest (RoI), or seg-
mentation masks, showing very satisfying results that can be retrieved in real-time. But
very challenging problems remain, such as the accurate retrieval of 3D object poses,
also called 6DOF (Degrees Of Freedom) poses, which are essential for object interac-
tion tasks in the robotic field. Some of the problems that pose estimation could solve,
are manipulation of objects or grasping tasks executed by robots. The use of robots
systems has increased in the last years as part of repetitive tasks in the industry, but
the interest on their application in more complex situations is starting to grow more.
For example, if a robot wants to grab any item, lets assume something with a handle,
the certain object should not only be detected on an image, but real coordinates about
where the object lies must be known. By retrieving the pose of the object using a full 3D
model representation, the robot would know where the object is. Thanks to a specific
orientation of the 3D model the robot can know the pose of the handle too, even if the
handle is not visible. This type of tasks come with requisites that are not very easy to
satisfy, such as low computational costs, efficiency, accuracy and real-time application.

1.1 Motivation

As part of this thesis, an object detection algorithm has been implemented, with the goal
of estimating accurate 3D poses and retrieving the full shape of the found instances.
Principally, we will be working with 3D models and depth images, where meaningful
features can be extracted and matched. The program bases its method mostly on Drost
et al. [Dro+10] and other improvements to this approach [Hin+17; BI15; Vid+18]. We
also propose and implement some changes to existing approaches for the verification of
hypotheses.

9
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During the coming chapters, this thesis will assess related work and explain all steps
used to implement the object detection algorithm. Finally, we evaluate the program,
discussing its accuracy, runtime, efficiency and what could be improved.



Chapter 2

Related Work

There are many different approaches that detect objects and estimate their 3D poses.
The most known approaches are divided into two main categories. One category is
applied to depth images and the other one is applied to intensity and color images.
Before good depth images retrieved from sensors started delivering good results, 2D-
image-based approaches where more popular, but in the recent years more approaches
are applied to depth maps, as the quality and resolution of these have increased. Also,
many approaches that were initially applied to 2D-images have been adapted to work
with depth data too. The categories mentioned before can be divided into the next
subcategories.

2.1 Learning-based methods

Machine learning approaches have gained a lot of popularity the last years because
of their good performances and accurate results in different areas. These methods are
divided into two phases. The training, which takes place during an offline phase and
requires a large amount of data and time. And an online phase, where the detection
would be made by using a model created and trained during the offline phase. There has
been a large interest on using convolutional neural networks on both RGB images and
depth images, but they have shown limitations on efficiency. Other negative aspects are
the expensive training times and acquisition of large training data.

2.2 Template-based methods

Another type of approach is the retrieval of templates by rendering the 3D model of an
object from different view points. These templates are normally acquired from synthetic
images by rendering 3D models, as the templates have to cover all possible views. The

11



12 CHAPTER 2. RELATED WORK

pose is retrieved when a template matches a part of the input scene. The matching is
normally done after computing scores of the templates on the input scene, where the
highest score is the matched template. This approach presents fast performances and
accurate results even for objects with non-descriptive textures, but also some limitations
when it comes to occlusion and clutter.

2.3 Feature-based methods
Feature-based methods are well known to handle occlusion and clutter much better then
template-based methods. In this type of methods, features are extracted from the in-
put scene and are matched against the features of the models. Normally, feature-based
methods can be divided into two steps. The first step retrieves an initial pose by match-
ing the features globally and the second step is used to refine the retrieved pose by using
local features.

The point pair feature method explored in this work happens to take the advantages
of both feature types, local and global, by computing local features of the models and
creating a global descriptor where the local descriptors are stored. This approach was
inspired by a similar type of feature, the surflet-pair feature, presented by Rusu et. al.
[Rus+08] with Point Feature Histogram (PHF). The surflet-pair is a description of the
local surface of an oriented point on a 3D space. In a set of points P , for each point p ∈
P , the point and all its neighbours in a certain radius are connected. Every connected
pair of points (pi, pj) and their corresponding normals (ninj) are processed, where i ̸= j
and the angle between ni and the line connecting the pairs is smaller then the one of nj .
The pair forms a Darboux frame, which is described as a moving frame on a surface and
is calculated as follows:

u = ni, v = pj − pi, w = u× v (2.1)

Using these values we compute the following features of the pair:

f1 = v · nj (2.2)
f2 = ∥pj − pi∥ (2.3)

f3 = u · pj − pi
f2

(2.4)

f4 = arctan(w · nj, u · nj) (2.5)

Each feature belongs to a bin, whose index can be calculated with its value. The indexes
form a key for a 4-dimensional Histogram bin, where each match is registered increasing
its score by one. The features with the most votes are selected and used in machine
learning methods for classification.
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(a) PFH (b) FPFH

Figure 2.1: Comparison of the pair retrieval between PFH and FPFH. The red point is the point
in turn, the blue points are the neighbours inside the radius and the green points are the points
outside the radius. Inspired by [RBB09].

This procedure was later improved by Rusu. et. al in [RBB09], presenting the Fast
Point Feature Histogram (FPFH). The FPFH gets rid of the f1 feature, as tests showed
that the robustness did not notably decrease. The number of pairs that are collected for
each point p are reduced, since the computational complexity was too high. To reduce
the number of pairs, the Simplified Point Feature (SPF) was proposed. The difference is
that it only connects the point p being processed with its neighbours. While some pairs
are lost, the descriptive information is enough to keep delivering satisfying results. A
representation of the pairs can be seen in Fig. 2.1. Finally, the FPFH can be calculated
as follows:

FPFH(p) = SPF (p) +
1

k

k∑
i=1

1

wi

SPF (pi), (2.6)

where pi is a neighbour point and wi is the distance between p and pi.





Chapter 3

Method

Different approaches for object recognition match searched objects to global features
found on images. This has been proven not to be very accurate and it also leads to very
slow and inefficient computations. Local features have shown to be more appropriate for
this kind of tasks, resulting on faster and more exact detections. Locally based methods
that use 3D data for the detections need dense information for the representation of
the local features, which are very sensible to background noise and can cause high
computation times and .

Offline Phase

Online Phase

3D Model 
Retrieval

Model 
Point Cloud  
Generatarion

Model Features 
Extraction 

Global 
Descriptor
Generation

Sensor 
Depth Image 

Retrieval

Scene Normal 
Estimation

Matching / 
Voting Scheme

Pose Hypotheses 
Retrieval

Scene 
Downsampling

Pose 
Clustering

Global 
Hypothesis 
Verification

Scene 
Features

Extraction

Figure 3.1: Pipeline for object detection and pose estimation divided into two sections. In
the offline phase, the features are extracted from the model. In the online phase, the features
extracted from the scene are matched to the model features to finally retrieve the model pose in
the scene. Inspired by [Dro+10].
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d = F1

F2 F3

F4

n1
n2

m1

n2

m2

Figure 3.2: Representation of a point pair feature F , where two points m1 and m2 have normals
n1 and n2 respectively. The normal orientations represent the surface where the points lie. The
feature F contains the distance between both points (F1), the two angles (F2, F3) between F1

and the normals and the angle between both normals (F4).

The approach used for the object detection program is principally based on Drost´s
[Dro+10] method, which presents a local descriptor called point pair feature and is
extracted from only two points obtained in the 3D data. For more efficient computations
and better results, improvements presented in other works [Hin+17; BI15; Vid+18] on
the method are explored and integrated into the program.

3.1 Point Pair Features

A point pair feature can be extracted from a pair of oriented points. Suppose m1 and
m2 are points in a three-dimensional space, n1 and n2 are their corresponding normals
which represent their surface orientation and d is the vector between both points (m1 −
m2). Finally, the definition of the feature F is the following:

F (m1,m2) = (∥d∥2,∠(n1, d),∠(n2, d),∠(n1, n2))
⊤, (3.1)

where ∠(a, b); a, b ∈ R3 is the angle between vectors a and b.
The point pair feature has the advantage of being very descriptive. In addition, the

local descriptor is invariant against rigid motions, which means that the feature can be
retrieved from any transformation the 3D model could have. Another trait of this feature
is that by matching and aligning two point pair features together, a potential pose can be
retrieved. On the other side, it highly depends on the resolution of the retrieved 3D data,
as depth errors and very noisy surfaces will directly affect the results of the feature.
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Figure 3.3: Some of the mesh models from the YCB-Dataset used for simulated scenes.
[Cal+15; Cal+]

3.2 Model Features Extraction
To estimate a pose of an object, the point pair features of the searched object need to be
known. For this, a representation of the object as a 3D Model is necessary. In this case,
the program was adapted to work with polygon mesh models. Examples can be seen in
Fig. 3.3 and Fig. 3.4.

This section will focus on the offline phase of the pipeline where the model data is
processed to then be used during the online phase, i.e. the object detection phase. First
we show how the sampling of points from a mesh model works. Afterwards, we will
explore how to extract these features from the models, following with the creation of
a global descriptor, where all the useful point pair features of the model are stored and
grouped.

3.2.1 Point Sampling with Triangle Interpolation
The first step to get a good point cloud representation of a 3D model would be by
generating points on the triangle faces of the mesh.

To distribute all the points over the mesh, a list of n random indices of the triangle
faces is needed, n being the size of the point cloud to be generated. But to do this
with an uniform distribution, the quantity of points on a face has to depend on the area
of the triangle. For this, the indices are weighted, so smaller triangles have a smaller
probability. If this is not done, it is very probable that small and big triangles end with a
similar quantity of generated points, and hence resulting on a bad distribution. [Por17]
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Figure 3.4: Some of the mesh models used in real scenes.

The next step is to generate a random point on the surface of the triangle. To solve
this problem Barycentric coordinates are applied as follows:

1. A linear combination of the triangle vertices and three numbers is used. These
numbers are defined as u, v, w and u+ v + w ≤ 1.

2. For u and v two random numbers are generated. If u+ v > 1, then the values are
set as u = 1− v and v = 1− u to ensure that the definition applies.

3. Finally set w = 1− (u+ v).

The vertices of the triangle are defined as x1, x2 and x3. To generate a point p on the
triangle surface compute the following:

p = x1u+ x2v + x3w (3.2)

The same approach can be applied for the computation of the point normals using the
vertices normals. Examples of generated model point clouds can be seen in Fig. 3.5.

3.2.2 Poisson Disk Sampling
While a point sampling technique has already been explored, the Poisson Disk Sampling
approach [Yuk15] offers a much cleaner distribution of the points, this is also called
blue noise distribution [CCS12]. This technique checks when points are too close to
each other and only generates points that are satisfactorily far from other samples, but
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Figure 3.5: Visualization of the generated point clouds with normals using triangle interpola-
tion.

a) b) c)

Figure 3.6: a) is a demonstration of the point cloud generated by sampling the points only with
triangle interpolation as seen in (3.2.1). b) follows the same approach as in a), but more points
are sampled. For c), the sample elimination was applied on b) to form a Poisson Disk Sample
set, which shows a much better distribution of the points in comparison with a).

it comes with high computational costs and is more complex. As an alternative, there
is a method that eliminates samples in a given radius of each point and forms a Poisson
Disk Sample set out of it. First, we set values of the radius and the number of remaining
samples n. In [Hin+17], a maximum of 650 points are told to be enough to have accurate
and fast detections, as more points drastically increase the detection times, so we decide
to apply the same number in here. The distance of the radius ddist depends on the model
diameter and is set as

ddist = τd · diameter(M) (3.3)

where τd = 0.05. Similar values are also used in [Hin+17; BI15]. Having these values,
we create a 3D spatial locator of the given samples using a k-dimensional tree for a faster
search of the points. Then all samples are weighted depending on their distance to their
neighbours on the given radius r. This would mean that, the closer the neighbours are
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inside the radius, the bigger the weight gets. Finally, the point with the biggest weight is
eliminated and the weights of its neighbours are updated. The process repeats itself until
the size of the remaining samples equals n or until there are no points left to remove.
An example of a Poisson Disk Sample can be seen in Fig. 3.6.

3.2.3 PPF extraction
To extract the values of the point pair feature from a pair of points as in 3.1, we have
to calculate the distance between the points m1,m2 by computing the norm of d =
m2 − m1. To compute an angle α ∈ [0, π] between two normalized vectors v1, v2,
calculate the magnitude y = ∥v1 × v2∥ and the dot product x = v1 · v2. The magnitude
of a cross product and the dot product can be interpreted as:

∥a× b∥ = ∥a∥∥b∥|sin(θ)| (3.4)

a · b = ∥a∥∥b∥|cos(θ)| (3.5)

These properties and the law of tangents show that

y

x
=

sin(θ)

cos(θ)
= tan(θ) (3.6)

therefore the angle θ can be retrieved with the inverse trigonometric function arctan( sin(y)
cos(x)

).
To fulfill the definition of α, the function atan2(y, x) returns an angle within the interval
of [0, π], where π is the mathematical constant π ≈ 3.1416 . The next function shows
how this can be done in practice:

Listing 3.1: PPF extraction
1 void e x t r a c t _ p p f ( c o n s t Eigen : : Vec to r3d& m1 ,
2 c o n s t Eigen : : Vec to r3d& m2 ,
3 c o n s t Eigen : : Vec to r3d& n1 ,
4 c o n s t Eigen : : Vec to r3d& n2 ,
5 Eigen : : Array4d& ppf )
6 {
7 / / C a l c u l a t e v e c t o r be tween p o i n t s m1 and m2 .
8 Eigen : : Vec to r3d d (m2 − m1 ) ;
9 / / Get d i s t a n c e from d

10 c o n s t double dn = d . norm ( ) ;
11 / / Norma l i z e v e c t o r
12 d . n o r m a l i z e ( ) ;
13

14 / / C a l c u l a t e a n g l e s be tween normals and v e c t o r d .
15 c o n s t double a1 = a t a n 2 ( d . c r o s s ( n1 ) . norm ( ) , d . d o t ( n1 ) ) ;
16 c o n s t double a2 = a t a n 2 ( d . c r o s s ( n2 ) . norm ( ) , d . d o t ( n2 ) ) ;
17 c o n s t double a3 = a t a n 2 ( n1 . c r o s s ( n2 ) . norm ( ) , n1 . d o t ( n2 ) ) ;
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18

19 / / S t o r e f e a t u r e s i n p p f
20 ppf << dn , a1 , a2 , a3 ;
21 }

The point pair features are stored in a look-up table after their extraction. This table
works as a global descriptor and it groups the features in bins for a faster search. The
index of each bin is the combination of the four values in a point pair feature. Each
feature value fi is discretized as

idi =

⌊
fi
si

⌋
(3.7)

where si is the step between bins. For the distance value f1 the step s1 is set equal to
ddist as defined in (3.2.2). For the angle values f2, f3 and f4 the corresponding steps si
are set to dangle = 2π/nangle, where nangle is set to 30. With these parameters the global
descriptor has a size of 303× 20 bins. Finally, in each bin is a list of the point pairs with
the same discretized feature.

As already mentioned, noisy data is very inconvenient when working with local
features. To try to minimize the errors caused by this, we are going to store the point
pairs into the neighbour bins too. This idea is presented first in [Hin+17], where pairs
are stored in all possible neighbour bins. In this case, there is a total of (34) − 1 = 80
neighbours for each bin, as the number of neighbours increases exponentially for every
dimension that is added to the global descriptor (4 features = 4 dimensions). But in
[Lef19], the author argues that this not only increases the total number of pairs stored,
but increases the running time too. To overcome this problem, in [Lef19] is proposed to
compute the quantization error for each feature of each pair and therefore only store the
pair on the neighbour bins that are the most probable to be matched during the detection
phase. The quantization error is calculated for each feature as

eq =
fi
si

− idi (3.8)

Then we can determine if the feature should be stored in one of both neighbours as
follows:

g(eq) =


−1, eq <

1
3

1, eq > 1− 1
3

0, else
(3.9)

If the result is zero, we do not store the pair in any neighbour for this feature, oth-
erwise we store the pair in idi + g(eq). This results in max. 24 = 16 neighbours were
the pair is stored. We choose to follow this approach, as the results remain accurate
and helps maintain the detection times low. An example of the features extracted from
models can be seen in Fig. 3.7
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a) b) c) d)

Figure 3.7: Visualization of bins from the global descriptors. Each image shows all point pair
features that belong to the same bin. The colored lines are the normals and the black lines
connect the pairs.

3.3 Detection phase
This section will explain how to find an object on a point cloud using a global descriptor
created during the offline phase. For a faster detection time, the program has to know
beforehand what object is going to be searched on the point cloud, since the downsam-
pling of the scene is dependent of the model diameter.

3.3.1 Normal estimation
The first step during the detection process is to calculate the normals of the point cloud
before it gets downsampled, that way the normals are more accurate. To estimate the
normal of a point, we need to estimate the normal of a plane tangent of the surface. As
explained in [Rus10], the plane tangent is represented by a point x and a normal n. The
value of x and n have to be calcuated in such a way, so that a distance to a point pi is
defined as di = (pi − x) · n and di = 0. This is done by taking

x =
1

k
·

k∑
i=1

pi, (3.10)

as the centroid of the points taken into consideration. The value of n can be found
through the eigenvalues and eigenvectors of the covariance matrix

C =
1

k
·

k∑
i=1

(pi − x) · (pi − x)⊤, C · vj = λj · vj, j ∈ {0, 1, 2} (3.11)

By applying Principal Component Analysis, if 0 ≤ λ0 ≤ λ1 ≤ λ2, then the eigenvector
v0 corresponding to the smallest eigenvalue λ0, would be the best estimation for the
normal n. The point density in the point cloud is very important, since the normals
will be more accurate if the points being considerate are as near as possible to the point
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being processed. This is why the normals estimation takes place before reducing the
samples in the scene, otherwise the normals would not be precise. But this is not a
major problem, because the computational cost for estimating normals on a point cloud
frame is low and does not affect the runtime.

Another point to be made, is that normals can be oriented the wrong way. This
problem has multiple different solution, but since we only need to orient them towards
the camera viewpoint vp, we prove that this is satisfied:

ni · (vp − pi) > 0 (3.12)

If this is not satisfied, the normal is flipped by applying ni = (−1) · ni.

3.3.2 Scene downsampling
At this step, the scene point cloud is dense, meaning it still has to be reduced to allow
detections to be fast, since processing all possible pairs of points without a reduction
would have high computational costs. To avoid this losing too much descriptive infor-
mation we use the same value as the sample elimination of the model point cloud in
(3.2.2), where the points have a minimum distance of τd. By using the same distance τd
for the size of the bins where the point pair features are stored and for the scene down-
sampling, we allow to efficiently eliminate samples without loosing a lot of information
about the scene.

The sample elimination explored in (3.2.2) is not very useful during the online phase
considering it is not fast enough for the online phase. For that reason we use another
approach for downsampling the scene by using a voxelized grid. A 3D voxel grid is a
grid composed by 3D boxes that are put over the point cloud, where each box has a size

a) b) c)

Figure 3.8: The pre-processed scene point cloud can be seen in image a). After downsampling
the scene by applying voxelization, the point cloud results as in b). The computed normals can
be seen in c).
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of τd for each direction (length, width and height). Then, the point which is nearest to
the centroid of all points in the voxel remains with its normal unchanged. An example
of a downsampled seen can be seen in Fig.3.8.

3.3.3 Pose retrieval
After pre-processing the point cloud scene, the detection process can start. To under-
stand how a potential pose of the model scene is retrieved from the scene, we define a
reference point sr and a point si as the first and second point of a pair sampled from the
scene.

Assuming the point sr is a point on the object, there should be a point mr on the
model that corresponds to it. The first step to retrieve the pose of the model on the scene
would be by aligning both points and their normals. This can be done by bringing both
points sr and mr to the origin and aligning their normals with the x-axis applying a
rotation matrix R and a translation vector t. This can be done for any point pr and its
normal nr, where pr can be a scene point sr or a model point mr.

R = Ry(θy) ·Rz(θz) (3.13)
t = −1 · (R · pr) (3.14)

To get the angles θy and θz for the rotation over the axes, we project the normal on the
the x-z-plane and compute the angle difference to the x-axis

θz = −1 · atan2(nr(z), nr(x)), (3.15)

and rotate the normal over the z-axis by θz

nr = Rz(θz) · nr (3.16)

Finally we project the rotated normal on the y-z-plane and compute the angle difference
to the x-axis again

θy = atan2(nr(y), nr(x)) (3.17)

Having sr and mr and their respective normals aligned, we can now assume that a
point pair (sr, si) lays on the object and corresponds to the model point pair (mr,mi).
To align both pairs, we only need to rotate the model pair over the x-axis by an angle α,
where α is the difference angle between both pairs. For efficiency reasons, we calculate
α in two different parts α = αm−αs, where αm and αs are the angles differences to the
y-axis for the model and the scene respectively. This way, we can store αm in the global
descriptor during the offline phase and save time during the online phase. In order to do
this, we transform the second point of the pair

pi = R · pi + t, (3.18)
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then project it on the x-y-plane and compute their angle difference to the y-axis (3.19).

α = atan2(pi(y), pi(z)) (3.19)

The transformation matrix that transforms the model to its pose on the scene can be
computed as follows:

Tpose = T−1
s ·Rx(α) · Tm, (3.20)

where α is the difference between the model alpha αm and the scene alpha αs:

α = αm − αs. (3.21)

The transformation matrices are created from their corresponding R and t

T =


R0,0 R0,1 R0,2 t0
R0,1 R1,1 R1,2 t1
R0,2 R1,2 R2,2 t2
0 0 0 1

 (3.22)

All transformation matrices Tm are stored during the offline phase, while Ts can be
computed for all reference points before starting the voting scheme.

3.3.4 Feature matching
To retrieve potential poses are, we need to create a voting table that stores the scores of
the poses computed after the matching and alignment of two features. Such a table is
created for each reference point sr. The reference points can be all points in the scene
or just a fraction of them. By taking a fraction, the computation times are lower but
the accuracy decreases too. In our program, we decide to choose all points in the scene
as reference points. For each sr we need to compare every possible point pair feature
F (sr, si) (3.1) with the stored pairs in the global descriptor, where si is a also a point in
the scene but not necessary a reference point.

The process starts choosing the first reference point sr from the input scene. To get
all possible pairs, we use a kd-tree to find all neighbours of sr in a radius size of the
model diameter. All point that are outside of the radius are ignored, as they would form
pairs of points that could not be on the model and would not have any impact on the
voting. For every reference point sr, an accumulator is created to work as a register table
to track the votes that are made. This accumulator is two dimensional, one dimension
Nm is defined by the number of model points |M | and the other dimension Nangle is
defined by the number of rotation angles Nangle. The number of rotation angles is set to
Nangle = 30.
For every point pair (sr, si), we extract the point pair feature values as seen in (3.2.3).
These values have to fulfill some criteria to be considered descriptive enough.
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Criterias:
The angle value a1 between the normals has to...

1. ...be bigger then π/6, as long the other angles a2 and a3 satisfy π/7 < ai < π/8,
i ∈ {2, 3}.

2. ...be smaller then (π − dangle).

The criteria 1 is applied since we do not want to consider pairs of points that lie on
the same planar surface. Otherwise, points that are near each other will have a major
impact on the voting and will leave more discriminative features out. It can also be
considered to apply this criteria only for points that are near, but results have shown that
applying it for all distances reduces computation time and does not affect the accuracy.
The criteria 2 helps to eliminate unprobable angle values between normals.

The features that have fulfilled the criteria are allowed to retrieve the model pairs
that have a similar feature by computing the key for the bin they belong to in the global
descriptor. Each one of this pairs (mr, αm) can now have a vote on the accumulator. We
do not need to store any information about the second point mi on the pair, since the
angle difference am to the y-axis is stored and represents mi.

3.3.5 Pose voting
For each pair (sr, si) to make a vote, we use the index of mr and the index value of
α (3.21) as coordinates in the accumulator. In order to do this, we discretize α the
same way as in (3.2.3). In the accumulator, the coordinates for the dimension Nangle are
defined as αi ∈ [0; 29], where each coordinate αi is an angle step dangle in the interval
[−π; π]. After (3.21), it can be assumed that α ∈ [−2π; 2π], therefore we need to make
sure that α ∈ [−π; π] with the next case distinction:

f(α) =


α + 2π, α < −π
α− 2π, α > π
α, else

(3.23)

Finally we can add π to f(α) to get a coordinate ai after the discretization.
Having the coordinates for the accumulator, the vote can be registered by adding one

point to the box. All boxes in the accumulator have at the beginning a score of zero.
After all votes have been registered for every pair of every matched bin, the coordi-

nates of the box with the most highest score are retrieved. Through these coordinates we
can now retrieve a potential pose of the model in the scene, by using the transformation
matrices Ts of sr and Tm of mr stored during the offline phase and the α angle. To re-
trieve α, we take the coordinate of the current pose with the highest score and multiply
it by the angle step dangle (3.2.3) and subtract π from it. Now to compute the pose, we
just make use of the equation defined in (3.20).
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3.3.6 Clustering

When all potential poses for each reference point sr have been retrieved, the poses
have to be clustered into groups. Poses that have similar rotations and translations are
clustered together. The rotations can be compared with their relative angle difference
and the translations by their euclidean distance, so that small differences under a certain
threshold belong to the same cluster.

The clustering begins by sorting out all poses from the highest score to the lowest.
A kd-tree is created using the translation vectors t to accelerate the process, since the
list of hypotheses to process contains a large number of poses.

Starting with the pose with the highest score, we iterate over all poses by searching
all other poses within a certain radius (2 ·ddist). If any of these poses is the centroid of a
cluster, the rotations are compared. In order to do this, we need to compute the smallest
angle between both rotations. To achieve this, we compute the rotation matrix Rsmallest

from the pose rotation Rpose to the centroid rotation Rcentroid.

Rsmallest = Rpose ·R−1
centroid (3.24)

Having a rotation matrix 3 × 3 allows to retrieve the smallest angle of rotation by
calculating its trace tr(R).

tr(R) = R11 +R22 +R33 (3.25)

The trace is no other than the sum of the diagonal elements in the matrix. The trace can
then be interpreted as

tr(R) = 1 + 2cos(θ), (3.26)

where θ is the relative angle of the rotation matrix. Consequently, we can retrieve the
angle as follows:

θ = arccos(
tr(Rsmallest)− 1

2
) (3.27)

The pose can be grouped to the cluster if θ < 2 · dangle. The pose is added to every
cluster that satisfies the criteria. If the pose cannot be added to any cluster, a new cluster
is created with the current pose as its centroid.

Many cluster scores get too many votes because of bias caused by repetitive geo-
metric structures. It would be better, if the clustering would only add poses extracted
from different local descriptors and not from multiple similar features. This is why in
[Hin+17] is proposed to only accept new poses in the cluster, only if the model point mr

that belongs to this pose has not been considered through other poses that had already
been added to the cluster. This can be easily done by creating a bit array with a size of
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|M |. If the bit belonging to the index of the model point is zero, then the pose is added
to the cluster and the bit is set to 1, otherwise the pose is ignored.

When all poses have been clustered, we sort them by their score, which is the deter-
mined by the sum of the scores of the poses in the cluster. Having all poses clustered
and sorted, we can normally expect to get a very good pose estimation in one of the
firsts clusters on the list.

3.3.7 Global Hypothesis Verification
For the final step, we need to verify which pose is the most probable to have detected
an object accurately and estimated its pose correctly, as it is still possible to get false
positives very high on the list. To achieve a good reliable verification, we use a similar
approach as proposed by Vidal et. al. [Vid+18], which computes a score that should
estimate which pose is the best aligned to the scene, and hence the most probable to be
a true positive. For a hypothesis hi, where hi is one of the poses gotten from the clusters
with the largest number of votes, calculate its score by counting how many model points
are valid. For a point to be valid, the distance to the closest point in the scene has to be
under a certain threshold, where this threshold is set to ddist

2
. The valid points are then

used to compute a fitting score.
Vidal et. al. [Vid+18] presents another verification step to try and eliminate false

positives from the hypotheses by rendering the model and scene. The pixels of the model
can be sorted into three groups, valid, occluded and not-valid, which generate another
score. Additionaly, they [Vid+18] compare areas with the silhouette of the model with
estimated edges in the scene.

For our program, we decide to skip the fitting score and classify the points into the
three groups directly. Instead of rendering the model, we transform the model point
cloud to the desired pose hi and remove all the self-occluded points. To select a point
as valid, we propose to not only check if a point is close to the scene, but also check if
the points surface are similar by computing the angle difference between both normals
as in (3.2.3). We set the threshold for the angle difference to be relaxed (24 degrees),
since normals that lie on the silhouette of the model on the scene are not very precise.
Points that are close enough to the scene and have a similar surface are considered valid.
Points that do not have a similar surface but are close enough to the scene are directly
considered inconsistent and hence not-valid. We remove the points occluded by the
scene from the remaining points, the points that are not occluded are added to the not-
valid points. We do this for the first n hypotheses in the list, where in our case n is set
to 10.

To eliminate all occluded points, self-occluded or occluded by the scene, we look
into the approach presented in [KTB07]. The paper introduces the Hidden Point Re-
moval operator, which has the following properties:
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1. "Correctness: in the limit, as the density ρ →0, a point pi on S should be marked
visible by the operator, if and only if it is indeed visible."

2. "The operator should handle oblique surfaces, while avoiding to compute the sur-
face normals locally."

3. "The asymptotic complexity and the running time should be reasonable, even in
software." [KTB07]

The first step for the creation of such operator is the application of a spherical
flipping of the point cloud, also referred as an inversion. For this, we center a 3-
Dimensional sphere at the origin. In this case, we also place the camera view position
at the origin, which is normally the real position of the camera C. If the camera is po-
sitioned somewhere else, the point cloud has to be transformed correspondingly. The
sphere has to have a radius r big enough to cover the whole point cloud. To apply the
inversion for all pi ∈ P , where P is the point cloud being processed, we use the next
function:

h(pi) = pi + 2(r − ∥pi∥)
pi

∥pi∥
(3.28)

The resulting point cloud after the transformation is denoted as P̂ . An example of an
inversion can be seen in Fig. 3.9.

Figure 3.9: Example of how the inversion of the HPR operator works. In practice the radius is
set to be much bigger. Image taken from [Gra+19].
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The following step is the construction of a convex hull, which is the smallest convex
set that contains all points. In a convex set, every pair of points that belongs to the
set forms a single line that lies completely inside the set. To form a convex hull we
take a look into The Quickhull algorithm for convex hulls proposed in [BDH96]. The
algorithm starts by creating a hull using four points from the set of points that is given.
The initial points are not allowed to be on the same hyperplane. For each face in the
hull, a set of outside points is created, where all the points above a certain face belong
to this set. The algorithm starts iterating over the faces, where for each face on the hull,
the point in the outside set that is the furthest away from the face is selected. Then all
the neighbour faces that are visible for the selected point are stored on a set V , forming
a set of horizon ridges in H. For every ridge, a new face is created using the selected
point. For the new face, create a new outside set of points. This is done, until all points
are inside the hull or belong to the hull. An example of the convex hull over a model
can be seen in Fig. 3.10.

The set of points P̂ ∪C is given to construct the convex hull. Since C belongs to the
set, all points that are not visible (hidden) before the inversion cannot lie on the convex
hull. All points that lie on the convex hull are assigned as visible points. This approach
works very good on dense point clouds as on point clouds with low density. An example
of the application of the HPR operator can be seen in Fig. 3.11.

The original model point cloud must be transformed to its corresponding pose before
applying the HPR operator on the current hypotheses hi. The transformed point cloud
and a radius r are given to the operator. Is recommended that the radius for the spherical
flipping has a very high value, as this returns much better results. In our case, we use the
distance of the translation vector used for the transformation of the model and multiply
it by hundred.

After the operator returns the set of visible points S of the model, we count how
many points have a valid correspondence to the scene. Valid points will belong to the
point set Sm. All valid points can then be removed from the current model point cloud.
The points that are left over are merged with the scene point cloud creating a new set
of points (M ∪ S \ Sm). The HPR operator is applied for a second time to remove all
points that are occluded by the scene. The occluded points belong to the point set So.
Finally, the points of the model point cloud that were not removed are not valid. The
non-valid points belong to the point set Sn.

The score can be computed for the remaining hypotheses as follows:

score = (1− |So|
|S|

) · ( |Sv|
|S| − |So|

) (3.29)

Very occluded detections (|So| > |S|
4

) and poses with low scores (score < 0.4) are
not considered candidates. This means if no pose has a good enough score then no
detection is returned. This may lead to true positives also being rejected.



3.3. DETECTION PHASE 31

Algorithm 1 Quickhull algorithm on a set of 3D points [BDH96]
Require: set of points P

1: create hull H with 4 points from P
2: for each face F in H do
3: for each unassigned point p in P do
4: if p is above F then
5: assign p to F´s outside set
6: end if
7: end for
8: end for
9: for each face F with a non-empty outside set do

10: select the furthest point p of F´s outside set and add it to hull H
11: initialize the visible set V to F
12: add all visible faces from p to V
13: for each unvisited neighbour face N do
14: if p is above N then
15: add N to V
16: end if
17: end for
18: the boundary formed by V is the set of horizon ridges in H
19: for each ridge R in H do
20: create a new face from R and p
21: link the new face to its neighbours
22: end for
23: for each new face F´ do
24: for each unassigned point q in an outside set of a face in V do
25: if q is above F´ then
26: assign q to F´s outside set
27: end if
28: end for
29: end for
30: delete the faces in V
31: end for
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Figure 3.10: Visualization of convex hull over point clouds without inversion.

Camera view before HPR Camera view after HPR Removed hidden side

Figure 3.11: Visualization of HPR results over point clouds.

3.3.8 ICP registration refinement
The result after the pose clustering is already very accurate, but it is still possible to
refine the poses with the help of the Iterative Closest Point approach.

The goal for this approach is to minimize the distance between two sets of points by
transforming one set that brings it closer to the other. The algorithm can be explained
as an iteration over the next steps:

1. Get the correspondence set C = (s,m), where S is the target point cloud(scene)
and M is the source point cloud (model).
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2. Compute the transformation matrix T between one set to the other with by using
the correspondence set by minimizing the error function E(T ).

3. Update the source cloud M with the transformation T .

E(T ) =

|M |∑
i=1

∥si − Tmi∥ (3.30)

The process can stop after a certain number of iterations or until a certain error
threshold has been achieved. The algorithm is normally applied having a good initial
pose of the source cloud, as this reduces the computational time by a lot if it iterates
until convergence. For more understanding of this algorithm refer to [BM92].





Chapter 4

Experimental Results and Evaluation

The evaluation of the program was done on simulated i.e. synthetic and real data. We
chose to use different model datasets for the two categories, some model from the YCB-
Dataset (Fig.3.3) [Cal+15; Cal+] were used on the synthetic experiments, while for the
real scene other available reconstructed 3D models were used (Fig.3.4). Some of the
detections acquired in these evaluation can be seen in Fig.4.7.

4.1 Simulated Experiments

The simulated data was retrieved by using the Gazebo Simulation environment [Sim].
The simulation was prepared with different objects sparsed over a room. To retrieve the
point clouds, we simulated a robot system that would retrieve multiple depth images

Gazebo Simulation Point cloud

Figure 4.1: Simulation used to retrieved the point clouds.

35
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from different views and angles. The point clouds that are retrieved from the environ-
ment are very clean and dense, as in comparison with real data, were the point clouds
are normally disturbed by noise. Real images present a density decrease on areas that
are further away from the camera, while the simulated point clouds are still very dense
on distant areas. This is very important to mention, since it will make an impact on the
results of the detections and pose estimations between simulated and real data.

To be able to compare the results of the detections, we stored the ground truth poses
from the objects at the moment of the point cloud generation, as we can easily retrieve
their positions and orientations by getting their poses stored in the simulation.

4.2 Experiments on Real Data

For the generation of real data, we placed the chosen objects in different positions and
generated scene point clouds from different points of view. We also tested the program
by using point clouds retrieved with different types of sensors, as they may vary on
resolution and noise.

To compare the results of the program on the real data, we retrieve the ground truth
pose of the objects by manually placing the 3D models on the point cloud so they overlap
with the visible surface of the object on the scene. Then the resulting pose of the objects
could be stored as their ground truth.

0 10 20 30 40 50
0

50

100

150

200

250

Detection ID

Tr
an

sl
at

io
na

lE
rr

or
(c

m
)

(a) Simulated data

0 20 40 60
0

50

100

150

200

Detection ID

Tr
an

sl
at

io
na

lE
rr

or
(c

m
)

(b) Real data

Figure 4.2: Representation of the top 10 poses for every detection after clustering.
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4.3 Accuracy
To analyse the accuracy of the results, we divided the acquired data into different cate-
gories. First we have have the results as seen in Fig. 4.3, where the best poses of each
detection after clustering were retrieved. The results show the majority of the poses
being relative near to the ground truth.
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Figure 4.3: Representation of the best pose for every detection after clustering.
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Figure 4.4: Representation of the pose with the best score (GHV) for every detection after
clustering.
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The results shown in Fig.4.4 demonstrate the poses returned after the Global Hy-
pothesis Verification (GHV) 3.3.7. The implemented GHV returns less false positives
in comparison with taking the pose with the most votes. This improvement is more
notable in the simulated experiments, but the experiments on real data also show an
improvement.

Comparing the results of the experiments with simulated and real data, the simulated
experiments delivered more accurate detections in the top 10 poses as the experiments
with real data. This probably happens mostly due to the lack of noise in the simulated
data. If future depth sensors are able to retrieve dense clouds with not much noise
affecting them, approaches like this one could become even much accurate and reliable.
The results for the poses with the most votes and the poses chosen by the GHV are very
similar between both type of experiments.
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Figure 4.5: Pose estimation error average of all accurate poses and best poses from all top 10
lists returned after clustering from simulated data.
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Figure 4.6: Pose estimation error average of all accurate poses and best poses from all top 10
lists returned after clustering from real data.

In Fig. 4.2, we can observe the 10 poses with the most votes for every detection
made, meaning no GHV was yet applied. It can be observed, that the majority of detec-
tions have multiple accurate positions and very few of the detections return no accurate
poses at all.

For the pose estimation evaluation, we compare the translational and rotational er-
rors of the resulting pose estimations for each object (4.5, 4.6). These results are ob-
tained from the accurate poses listed in the top 10, where the average overall is already
good, but the average for all the best poses are very near to the ground truth. It is im-
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portant to mention that some objects used in the experiments are very symmetrical and
therefore many of their estimated poses may have a small translational error and an in-
accurate orientation (i.e. can, oat milk). We evaluated these poses as accurate, for all
the poses that had this type of error, as it is very difficult to estimate the ground truth
orientation of the model.

Table 4.1: Detection accuracy on simulated data

Accuracy
Object Top 1 GHV Top 101

can 9.09% 18.18% 72.73%
toy airplane 90.91% 100.00% 100.00%

pitcher 50.00% 60.00% 100.00%
hammer 85.71% 57.14% 100.00%
banana 100.00% 100.00% 100.00%
Overall 64.58% 67.00% 93.75%

Table 4.2: Detection accuracy on real data

Accuracy
Object Top 1 GHV Top 101

hamster 71.43% 85.71% 85.71%
dolphin 71.43% 57.14% 71.43%

pipe cleaner 25.00% 37.50% 100.00%
oat milk 38.46% 38.46% 76.92%
sagrotan 87.50% 75.00% 100.00%

nivea 60.00% 60.00% 80.00%
perwoll 64.00% 64.00% 87.50%
Overall 59.69% 70.66% 85.94%

4.4 Reliability
The goal of the program is to deliver accurate and reliable pose estimations of detected
objects, but the results do not fully achieve this. We tested two different ways to get
accurate poses and avoid returning false positives as much as possible. One way is by
taking the pose with the most votes and the other by computing a score with the use of
a Global Hypothesis Verification (3.3.7). Both ways show a low result on returning an

1This column refers to acquiring at least one accurate pose on the top 10 lists.
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accurate detection. This means that for the current status, the program cannot stop false
positives to be returned on a reliable way. To try to achieve a better selection of true
positives, future work should focus on implementing other GHV methods that may be
more appropriate and reliable for this approach.

On the other hand, the estimated poses on accurate detection’s are very satisfying
and accurate, with very low distance errors compared with the ground truths. This
means that by successfully removing false positives, the program could achieve very
reliable and accurate pose estimations. The experiments were also able to detect some
objects under occlusion.

4.5 Runtime

The detection times can vary depending on the size of the object that we want to detect,
since the downsampling of the input scenes takes the diameter of the object as an argu-
ment for the size of its voxels. This means that for smaller objects the detections will
take more time compared to bigger objects.

The detections made during the evaluation had times between 1.0s and 9.0s. This
computation times are not very useful for tasks were the detections have to be made in
real time e.g., object tracking tasks. There exist many extensions on how to improve the
current program to work faster and more efficient, so that detections can be made under
1.0s.

4.6 Sampling density

The initial density of the point clouds is crucial to achieve accurate estimation of the
normals since they are essential for the used approach. As already mentioned, we con-
sidered using different sensors that provide different resolutions and quality. For this,
different resolutions between 512 x 424 and 1280 × 720 were used. Depth images with
less resolution were also tested, but the results were not good. These resolutions proved
to provide good detections and pose estimations. For the approach in general, the point
clouds are downsampled, meaning the density is mainly important for normals to be
estimated accurately. There is other advantage for denser point clouds, which relies on
detections that lie further away from the camera. This can be seen on the results of the
simulated experiments, since we placed objects that lied further away of the view point
compared to the average distance from the real experiments and still delivered better
results. In the experiments were real depth images were used, areas that lie further away
are less dense and therefore exist some limits on the distance of an object to the camera
view, meaning smaller objects will need to be closer to be detected accurately.
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4.7 Implementation
The algorithm was implemented in C++ and Python. All experiments were run on
a 1.80GHz Intel Core i7-8550U CPU with 8 cores and 16GB RAM. To improve the
runtime during the detection phase, the extraction of point pair features and the pose
retrieval were implemented to be run on multiple threads. Some of the functions used in
the implementation were taken from the PCL [RC11] and Open3D [ZPK18] libraries.

Figure 4.7: Detections and pose estimations delivered by the program. The detected poses are
shown as the green colored points that form the model point clouds. The detected objects are
surrounded by a bounding box.
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Conclusion

5.1 Summary

This bachelor thesis implemented a program with the goal to detect objects and estimate
their 3D pose. The implementation was principally based on the approach presented by
[Dro+10]. This approach uses local descriptors called point pair features which are
extracted from point clouds generated from 3D models. These features are deserialized
and quantized so they can be grouped into bins creating a global descriptor of the model.
During an online phase, input scenes are pre-processed by estimating their normals and
being downsampled. In the next step the features are extracted from the scene and
matched to the model features stored in the global descriptor. This allows to retrieve
potential poses of the object in the scene by aligning the point pairs and their normals.
The poses get a score by voting for them after every match. Poses with the most votes
are stored in a sorted list to then be grouped into clusters increasing their score. Finally,
the best clusters are selected. To eliminate potential false positives, a Global Hypothesis
Verification is applied giving each pose a score. This score determines which pose is
the most probable to be a true positive and selects it as the final pose for the detection.

The program was evaluated by using two different approaches, one approach was
retrieving synthetic point clouds on a simulation environment and the other using depth
sensors to retrieve real data. The evaluation showed a much better result on the synthetic
data compared to the experiments with real data. This is due to the lack of noise on the
simulated data and its better resolution i.e. sampling density. The experiments also
showed bad results on detection accuracy, as the elimination of false positives using our
verification approach was not very successful. On the other hand, we could prove that
accurate detections were present in the majority of the top 10 poses gotten from the
clustering. These accurate detections also included good pose estimations, presenting
very low translational and rotational errors.
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5.2 Future Work
Other works [Dro+10; Hin+17; BI15; Vid+18] have shown better results in accuracy
and runtime by using similar approaches as this one, meaning that the approach has
more potential than the results we got. The implemented program could be improved in
many different ways, starting from implementing a more reliable verification approach
for the pose hypotheses and improving the runtime.

One of the main traits of this approach is being neural network free. But having
very accurate pose estimations as its strength, we could improve the detection step by
adding a neural network for object detection to the pipeline. Some classifiers as e.g.,
YOLO1, are very accurate and reliable nowadays and could improve the results of this
approach drastically, since the size of the point cloud would be reduced making the
detections more accurate and the computation times much faster. This would reduce
the probability of false negatives being selected, as it would only search on areas with a
high probability of the object being there.

The current voting scheme increases the score of a pose by one for any local feature
matching. This could be changed by applying weights to the point pair features depend-
ing on how repetitive and descriptive they are. The weights could also be different for
each model and could be processed during the offline phase when creating the global
descriptor. The program could be accelerated by adapting parts of the code to work on
a GPU.

1https://pjreddie.com/darknet/yolo/
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