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Abstract

This thesis addresses the problem of action recognition through the analysis of human motion and the
benchmarking of its imitation by robotic systems. For our action recognition related approaches, we
focus on presenting approaches that generalize well across different sensor modalities. We transform
multivariate signal streams from various sensors to a common image representation. The action recog-
nition problem on sequential multivariate signal streams can then be reduced to an image classification
task for which we utilize recent advances in machine learning. We demonstrate the broad applicability
of our approaches formulated as a supervised classification task for action recognition, a semi-supervised
classification task for one-shot action recognition, modality fusion and temporal action segmentation.

For action classification, we use an EfficientNet Convolutional Neural Network (CNN) model to
classify the image representations of various data modalities. Further, we present approaches for filtering
and the fusion of various modalities on a representation level. We extend the approach to be applica-
ble for semi-supervised classification and train a metric-learning model that encodes action similarity.
During training, the encoder optimizes the distances in embedding space for self-, positive- and negative-
pair similarities. The resulting encoder allows estimating action similarity by calculating distances in
embedding space. At training time, no action classes from the test set are used.

Graph Convolutional Network (GCN) generalized the concept of CNNs to non-Euclidean data struc-
tures and showed great success for action recognition directly operating on spatio-temporal sequences
like skeleton sequences. GCNs have recently shown state-of-the-art performance for skeleton-based ac-
tion recognition but are currently widely neglected as the foundation for the fusion of various sensor
modalities. We propose incorporating additional modalities, like inertial measurements or RGB features,
into a skeleton-graph, by proposing fusion on two different dimensionality levels. On a channel dimen-
sion, modalities are fused by introducing additional node attributes. On a spatial dimension, additional
nodes are incorporated into the skeleton-graph.

Transformer models showed excellent performance in the analysis of sequential data. We formu-
late the temporal action segmentation task as an object detection task and use a detection transformer
model on our proposed motion image representations. Experiments for our action recognition related
approaches are executed on large-scale publicly available datasets. Our approaches for action recognition
for various modalities, action recognition by fusion of various modalities, and one-shot action recognition
demonstrate state-of-the-art results on some datasets.

Finally, we present a hybrid imitation learning benchmark. The benchmark consists of a dataset,
metrics, and a simulator integration. The dataset contains RGB-D image sequences of humans performing
movements and executing manipulation tasks, as well as the corresponding ground truth. The RGB-D
camera is calibrated against a motion-capturing system, and the resulting sequences serve as input for
imitation learning approaches. The resulting policy is then executed in the simulated environment on
different robots. We propose two metrics to assess the quality of the imitation. The trajectory metric
gives insights into how close the execution was to the demonstration. The effect metric describes how
close the final state was reached according to the demonstration. The Simitate benchmark can improve
the comparability of imitation learning approaches.
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Kurzfassung

In dieser Arbeit präsentieren wir Ansätze zur Aktionserkennung durch die Analyse menschlicher Bewe-
gung sowie dem Benchmarking von Imitation beobachteter Aktionen durch Roboter. Unsere Aktionser-
kennungsansätze legen einen Fokus auf die Generalisierung über verschiedene Modalitäten. Wir transfor-
mieren multivariate Signalsequenzen von verschiedenen Sensoren in eine einheitliche Bildrepräsentation.
Dadurch kann das Aktionserkennungsproblem verschiedener Modalitäten zu einem Bildklassifikations-
problem reduziert werden. Für die Klassifikation der Repräsentationen bauen wir auf den Fortschritten
des maschinellen Lernens auf. Wir zeigen eine breite Anwendbarkeit unserer Ansätze, formuliert als
Probleme des überwachten Lernens und des teilüberwachten Lernens zum Klassifizieren der Aktionen,
Klassifizieren der Aktionen mittels weniger Referenzbeispiele, Sensordatenfusionierung und temporaler
Aktionssegmentierung.

Zur Klassifikation der Aktionen, auf Basis unserer einheitlichen Repräsentation für verschiedene
Modalitäten, nutzen wir ein Modell basierend auf einem EfficientNet Faltungsnetz. Weiterhin stellen
wir Ansätze zum Filtern und Fusionieren verschiedener Modalitäten auf einer Repräsentationsebene vor.
Dieser überwachte Lernansatz für die Aktionserkennung wird anschließend erweitert zu einem Ansatz
des teilüberwachten Lernens. Dazu verwenden wir einen Ansatz zum Metriklernen. Dieser transformiert
die Repräsentationen in einen Einbettungsraum, in welchem Aktionsänlichkeint encodiert wird. Ähnliche
Aktionen haben in diesem Raum einen geringen Abstand, wohingegen unterschiedliche Aktionen einen
großen Abstand in diesem Raum haben.

Weiterhin präsentieren wir einen Ansatz zur Sensordatenfusion für das Aktionerkennungsproblem
auf Basis von Faltungsnetzen für Graphen. Diese generalisieren die Konzepte von Faltungsnetzen auf
nicht-Euklidische Datenstrukturen. Diese Ansätze definieren derzeit den Stand der Technik durch sehr gu-
te Klassifikationsergebnisse auf Räumlich-Temporalen Daten wie Skelettdatensequenzen, dennoch wer-
den diese derzeit in der Literatur nicht als Basis für die Sensordatenfusion verwendet. Mit unserem
Fusion-GCN Ansatz stellen wir einen Ansatz zur Sensordatenfusion auf Basis von Faltungsnetzen fr̈
Graphen vor. Dabei werden weitere Sensoren in einen Skelettgraphen auf zwei Ebenen fusioniert. Zur
Fusion in der Kanaldimension werden neue Attribute an schon existierende Knoten des Graphen ange-
hangen. Auf der räumlichen Ebene werden neue Knoten in den Graphen aufgenommen. Wir zeigen, dass
der Ansatz in der Lage ist verschiedene Modalitäten, wie Merkmale von RGB Bildern oder Messungen
von Inertialsensoren in einen Skelettgraphen zu fusionieren.

Des Weiteren präsentieren wir einen Ansatz zur Segmentierung von Aktionen auf Sequenzen von
Skeletten. Transformer Netzarchitekturen erreichen in jüngster Zeit sehr gute Ergebnisse zur Analyse
von sequenziellen Daten. Motiviert davon, formulieren wir das Aktionsegmentierungsproblem als Objek-
terkennungsproblem und nutzen ein Objektdetektionsnetz basierend auf einer Transformerarchitektur als
Grundlage zur Segmentierung der Aktionen auf Basis der Bildrepräsentationen. Experimente für unsere
Aktionserkennungsansätze werden auf öffentlichen Datensätzen mit großem Umfang ausgeführt. Unsere
Aktionserkennungansätze zum Klassifizieren, zum Klassifizieren mit einem Referenzbeispiel sowie der
Fusion von verschiendenen Modalitäten stellen auf einem Teil der Datensätze den Stand der Technik dar.

Abschließend präsentieren wir einen hybriden Benchmarkingansatz zum Evaluieren von Methoden
des Imitationslernens vor. Der Benchmark besteht aus einem Datensatz, Metriken und einer Integrati-
on in einen Simulator. Der Datensatz enthält RGB-D Sequenzen von Menschen, welche Bewegungen
und Manipulationsaufgaben demonstrieren. Weiterhin sind Grundwahrheiten für die Pose der Hand und
der Interaktionsobjekte enthalten. Diese Sequenzen dienen als Eingabe zu evaluierender Ansätzen des
Imitationslernens. Zur Imitation können die Ansätze in der simulierten Umgebung ausgeführt und durch
Metriken zur Beurteilung der Trajektorienqualität oder des Effekts automatisch evaluiert werden.
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Chapter 1

Introduction

We are surrounded by sensors nowadays, raising the question: How can we use this
data? Sensors enable great possibilities for the analysis and information extraction of
its data. This question is exciting as sensors are distributed in various domains allowing
a broad range of applications, from elderly care, autonomous driving, and surveillance
to service robotics. Humans can learn from observations through their sensory input,
which leads to whether autonomous systems can also learn new behaviors by obser-
vation from those sensors. Machine learning research made considerable progress and
continues to influence many research areas that directly benefit from many advances.
Still, there remain challenges, for example, in terms of generalization. Many proposed
approaches aim to optimize for single tasks on single sensors. A current research prob-
lem is to develop approaches for broader generalization, i.e., by generalizing across
multiple tasks or sensor modalities. The acquisition of behaviors by observation for au-
tonomous systems also made significant advances, guided by the progress of machine
learning. Crucial for those approaches is assessing the quality of imitated behaviors to
advance the imitation learning field. What is typical for many computer vision or ma-
chine learning datasets is in robotics, either limited to simulated environments or hard
to reproduce and verify on a larger scale due to the systems’ complexity.

1.1 Motivation

The analysis of human actions and their imitation by robotic systems intersects the three
research fields: computer vision, robotics and machine learning, and enables a wide
range of applications.

Action recognition describes the analysis of sequential data to estimate an action
label. Most prominently, image sequences or their respective transformations into a
feature space (like skeleton sequences) are considered as input for action recognition
approaches. The generalization of action recognition approaches to various data modal-
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ities or their fusion is favorable and enables flexible transfer from vision systems to
embedded devices or mobile robots. The task of action recognition is a specialization
of more general human motion analysis [AC99; AR11] and has close relations to ge-
ometric human modeling [Joh73; MN78] and body tracking [Arg+09]. Early action
recognition approaches were image-based [Hog83], but later approaches transformed
full video sequences into a feature space [PN94] that allows identifying different ac-
tions. The recognition of human actions in videos (image sequences) has close relations
to more general video classification.

Imitation learning, in the context of this thesis, describes the ability of a robotic
system to imitate an observed human activity from sequential data. Thus, it extends the
estimation of an action class in a sequence towards translating the observed activity into
a robotic behavior. A key research problem forms the imitation of observations that can
be gathered from images directly.

Like many other research fields, both research areas benefited highly from the ad-
vances of deep neural networks in the last decade. Hand-crafted feature descriptions
have been replaced by learned feature representations, which have been demonstrated
to generalize across many domains like image classification [KSH12; He+16], speech
recognition [PMC15] and even natural language processing [CW08; SZ14; ZZL15]. In
our case, the motivation of this thesis also relies on observation of limitations in current
service robotic systems as we experienced them throughout the participation in robot
competition attendances [MSP17; Mem+18c; Mem+18b]. We identified shortcomings
in two research domains that we tackle throughout this thesis: We found a lack of ap-
proaches that generalize well across various sensor modalities for the action recognition
task. Further, we found a lack of comparability in the evaluation of imitation learning
approaches.

1.2 Challenges

Challenges for the recognition of actions are introduced by the wide range of different
applications, their different sensor modalities, and setup variations. Sensor modalities
range from Inertial Measurement Units (IMUs), Wi-Fi Channel State Information (CSI)
fingerprints, motion capturing systems, image sequences from cameras and Global Posi-
tioning System (GPS). Some sensors suitable for the action recognition task are depicted
in Fig. 1.1. Sensor position setups, e.g., for cameras differ (like depicted in Fig. 1.2) be-
tween static external observations (Fig. 1.2a) and moving positions like for first person
views (Fig. 1.2b) or mounted on mobile platforms like UAVs (Fig. 1.2c). Approaches
that generalize well across different setups are favorable, as they allow for more flexi-
ble applications. Popular evaluation protocols in action recognition datasets are used to
evaluate the cross setup capabilities by presenting different views of a sequence. Be-
sides cross-setup evaluation protocols, cross-subject protocols yield interesting insights
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(a) GPS (b) IMU [CJK15] (c) Wi-Fi
[Wan+19a]

(d) Motion Capturing
System

(e) Camera (RGB(-D))

Figure 1.1: An excerpt of sensors that allow action recognition.

(a) Static Viewpoints (b) Egocentric (c) Unmanned Aerial Vehicle
(UAV)

Figure 1.2: The image on the left shows a static camera position from the NTU RGB+D 120
[Liu+20a] dataset. The center image shows an egocentric view from the EPIC-KITCHENS
dataset [Dam+21]. The right image shows an aerial view from the UAV-Human dataset [Li+21].

about how good an approach can generalize between different persons that have not been
seen during training time and might execute the same actions quite different. Advances
from the action recognition research can be used to advance the imitation learning field,
such that robots can be enabled to learn by observations if they are able to understand
them. In imitation learning research, a key challenge is to imitate behaviors that has
been observed from image streams.

1.3 Applications

Action recognition approaches are applicable in various domains, ranging from Human
Robot Interaction (HRI) to surveillance. Especially, approaches that can handle video
streams as input enable wide applications, as can be seen in Fig. 1.3, where multiple
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(a) Surveillance (b) Human Robot Interaction (c) Elder Care

Figure 1.3: Three application settings that demonstrate sample applications. 1.3a shows a
surveillance setting from the MMAct dataset [Kon+19], 1.3b shows a possible application from
our RoboCup@Home participation with our service robot LISA where the robot should find a
waving guest in an unknown restaurant. 1.3c gives an example for a possible elder care setting
from the Toyota Smarthome dataset [Das+19].

(a) Autonomous Driving (b) Service Robotics

Figure 1.4: Imitation learning applications from various domains like autonomous driving (a)
[Dos+17] or service robotics (b).

applications from various domains are given. Benchmarks and datasets [Hei+15; CZ17;
Kon+19; Dam+21], often accompanied by workshops at major computer vision con-
ferences, have been formed to address shortcomings in current approaches and like the
ActivityNet [Hei+15] have been built around various action recognition problems. A
large set of publicly available datasets for various applications, sensor setups and levels
of abstraction have been built. In Fig. 1.4 we give example applications for imitation
learning approaches for autonomous driving and service robotics.

Surveillance Approaches based on action recognition in video streams [Niu+04; DG07;
Han+18; Ull+19] can be used to detect security issues like aggressive behavior,
theft, or destruction. In a surveillance setting, cameras are usually mounted at
a ceiling level and have a wide field of view to observe critical locations. Ac-
tion prediction could potentially even prevent criminal acts [KF18]. On a broader
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view, these systems can also be used to widely track the activities of humans and
analyze behaviors and create individual activity profiles for marketing or social
classifications. Action recognition and prediction arise many ethical questions
should be seen critical depending on their application and consequent decisions.

Elder Care Health and security monitoring in senior homes, often referred to as as-
sisted living or ambient assistive living [Che+13] allows for another wide range of
applications. Senior people in domestic smart homes to call for assistance in case
of emergency forms an interesting application with broader impact. For instance,
triggering an emergency call in case of a fallen person [Nou+07; ST17] could
potentially save someone’s life. More general activity analysis for senior people,
especially in rapidly aging population in developed countries, allows health mon-
itoring [NGC15]. Irregularities in the medication can potentially be detected and
the senior person or caregivers can be notified. Great datasets, in realistic settings
have been proposed, especially in a smart home with senior people [Das+19].

Human Robot Interaction In applied robotics, a natural interaction between humans
and robots is crucial for acceptance and also allows for wide applications rang-
ing from industrial applications [AH15] to social robotics. Natural human-robot-
interaction requires real-time action recognition capabilities [Son+20b; Fan+17a].
Planning social acceptable and safe trajectories based on observed actions in
crowded settings can improve the navigation of robots in domestic environments
[CKG16a]. Whole conferences like RO-MAN and HRI target social robotics re-
search and focus on human-robot-interaction, where the recognition of actions
performed by humans play a vital role.

Autonomous Driving To relieve expert programmers for autonomous systems, imita-
tion learning approaches are interesting candidates, that become especially favor-
able when dealing with large-scale datasets. Widely spread is imitation learning
for applications in autonomous driving [Keb+20; Pan+20]. Of increasing research
interest are also imitation learning approaches for service robots [Fan+19]. Our
action recognition approaches are also candidates for application in autonomous
driving for driver-behavior analysis [Zha+17] e.g., to detect driver sleepiness
[Bac+20]. Our one-shot action recognition approaches may even be suitable for
anomaly detection on various sensor modalities.

1.4 Contributions

In this thesis, we present novel approaches for the recognition and imitation of activities.
Our approaches are applicable for various sensors applications and setups that were
mentioned in Section 1.2. The presented approaches allow applications for
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• multimodal action recognition,

• the multimodal action recognition given a single reference sequence,

• the segmentation of actions from continuous streams,

• the transfer from sensor data into a simulative environment to train robot behav-
iors,

• assessing the quality of human actions imitated by robots.

In detail the contributions can be categorized and summarized as follows:

Action Recognition for Various Data-Modalities We presented approaches for action
recognition on various data modalities like skeleton sequences, inertial measure-
ment units, motion capture data or Wi-Fi CSI fingerprints. Sequential data origi-
nating from different sensors are transformed to a common image representation.
A convolutional neural network is trained to recognize activities from the repre-
sentations. An approach proposing a common sparse representation for various
data modalities was presented [MTP20a]. Further sensor data fusion methods and
a filtering method to prevent the representation from overloading were presented.
A dense representation unifying various data modalities is presented in this thesis.
The approaches were evaluated on publicly available datasets with four different
data modalities and up to 400 different action classes.

Multimodal Action Recognition We presented an approach for the fusion of sensor
modalities based on a hierarchical pose graph. Additional sensor modalities are
incorporated into the graph representation either on a channel dimension, by in-
troducing additional node attributes, or a spatial dimension, by introducing new
nodes into the graph. Flexible modality fusion for the fusion of accelerometer,
gyroscope and orientation sensors are demonstrated in an early fusion setting on
a representation level. The Fusion-GCN approach was presented in [DMP21].

One-Shot Action Recognition for Various Data-Modalities In contrast to the action
recognition problem, where a model is trained to recognize known actions in var-
ious setups, the one-shot action recognition problem has to recognize previously
unseen actions with a single reference sample. We proposed metric learning-
based approaches based on the previously mentioned representations. Instead of
learning a model that predicts an action class, the metric learning approach learns
a model to transform action representations into an embedding space in which
low distances reflect high action similarity and high distances reflect dissimilar
actions. A signal level approach for various data-modalities and their fusion was
presented in [MTP20b]. In [Mem+22] a focus on skeleton-based one-shot action
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recognition was set with an extensive evaluation on various related representa-
tions.

Action Segmentation Associating action class labels and start- and end-times to un-
trimmed-sensor data streams like videos or skeleton sequences is a highly practi-
cal task and the basis for many applications. The action segmentation task of con-
tinuous sensor-data streams has close relation to the action recognition task, which
commonly limits to trimmed sequences. We present an action segmentation ap-
proach for the segmentation of skeleton sequences based on transformer networks
[HMP21]. Like for our previous approaches [MTP20a; MTP20b; Mem+22],
we represent skeleton sequences in an image. Then we propose to use apply a
transformer-based object-detection approach to segment the skeleton sequences.

Benchmarking of Imitation Learning We presented a benchmark to quantitatively as-
sess the performance of imitation learning approaches [Mem+19a]. With the
benchmark, we propose to integrate real sensor measurements into a simulated
environment (Real-to-Sim). This is achieved by the calibration of an RGB-D
camera against a motion capturing system. 1938 sequences have been recorded.
The idea is that sequences of demonstrations serve as input to imitation learning
approaches that learn a policy to imitate the movement or behavior. An effect
metric and trajectory metric are proposed to assess the imitation performance of
a robotic system in the simulated environment.

To foster reproducible research for verification, reproduction, and extension of our
results, we provide the source code, datasets, and models for the core contributions
of this thesis. Our Convolutional Neural Network (CNN)-based action recognition ap-
proach [MTP20a] is available on GitHub1. Our Fusion-GCN approach for incorpora-
tion of various sensor data-modalities into a skeleton-graph with Graph Convolutional
Networks (GCNs) is available2. Our one-shot action recognition approaches for multi-
modal action recognition on a signal-level formulation [MTP20b]3 and with a focus on
skeleton sequences [Mem+22]4. The Simitate benchmarking environment and dataset
are available on a dedicated project page5.

Special attention for the selection of the depending libraries is also on open source
that allow royalty-free and unlimited reproduction. For better comparability, we con-
ducted our experiments on public datasets.

1https://github.com/raphaelmemmesheimer/gimme_signals_action_recognition
2https://github.com/mduhme/fusion-gcn
3https://github.com/raphaelmemmesheimer/sl-dml
4https://github.com/raphaelmemmesheimer/skeleton-dml
5https://agas.uni-koblenz.de/simitate

https://github.com/raphaelmemmesheimer/gimme_signals_action_recognition
https://github.com/mduhme/fusion-gcn
https://github.com/raphaelmemmesheimer/sl-dml
https://github.com/raphaelmemmesheimer/skeleton-dml
https://agas.uni-koblenz.de/simitate
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1.5 Methodology

All approaches, that are presented in this thesis, follow quantitative evaluation to assess
their performance. Commonly used performance metrics and the evaluation on publicly
available datasets ensure better comparability and reproduction. Further, we introduce a
custom benchmark for imitation learning which introduces a novel dataset and metrics
for the evaluation of the imitation. These metrics are inspired by the metrics used for
the evaluation of mapping and pose estimation approaches [Küm+09; Stu+12; GLU12].

1.6 Publications

Parts of this thesis have been previously published in peer-reviewed, international, con-
ference proceedings (chronological order):

• Raphael Memmesheimer, Ivanna Kramer, Viktor Seib, and Dietrich Paulus.
“Simitate: A Hybrid Imitation Learning Benchmark”. In: 2019 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, IROS 2019, Macau,

SAR, China, November 3-8, 2019. IEEE, 2019, pp. 5243–5249. DOI: 10.1109
/IROS40897.2019.8968029

• Raphael Memmesheimer, Nick Theisen, and Dietrich Paulus. “Gimme Sig-
nals: Discriminative signal encoding for multimodal activity recognition”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020,

Las Vegas, NV, USA, October 24, 2020 - January 24, 2021. IEEE, 2020, pp. 10394–
10401. DOI: 10.1109/IROS45743.2020.9341699

• Raphael Memmesheimer, Nick Theisen, and Dietrich Paulus. “SL-DML: Signal
Level Deep Metric Learning for Multimodal One-Shot Action Recognition”. In:
25th International Conference on Pattern Recognition, ICPR 2020, Virtual Event

/ Milan, Italy, January 10-15, 2021. IEEE, 2020, pp. 4573–4580. DOI: 10.110
9/ICPR48806.2021.9413336

• Simon Häring, Raphael Memmesheimer, and Dietrich Paulus. “Action Segmen-
tation on Representations of Skeleton Sequences Using Transformer Networks”.
In: 2021 IEEE International Conference on Image Processing, ICIP 2021, An-

chorage, AK, USA, September 19-22, 2021. IEEE, 2021, pp. 3053–3057. DOI:
10.1109/ICIP42928.2021.9506687

• Michael Duhme, Raphael Memmesheimer, and Dietrich Paulus. “Fusion-GCN:
Multimodal Action Recognition Using Graph Convolutional Networks”. In: Pat-

tern Recognition - 43rd DAGM German Conference, DAGM GCPR 2021, Bonn,

https://doi.org/10.1109/IROS40897.2019.8968029
https://doi.org/10.1109/IROS40897.2019.8968029
https://doi.org/10.1109/IROS45743.2020.9341699
https://doi.org/10.1109/ICPR48806.2021.9413336
https://doi.org/10.1109/ICPR48806.2021.9413336
https://doi.org/10.1109/ICIP42928.2021.9506687
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Germany, September 28 - October 1, 2021, Proceedings. Ed. by Christian Bauck-
hage, Juergen Gall, and Alexander G. Schwing. Vol. 13024. Lecture Notes in
Computer Science. Springer, 2021, pp. 265–281. DOI: 10.1007/978-3-030
-92659-5_17

• Raphael Memmesheimer, Simon Häring, Nick Theisen, and Dietrich Paulus.
“Skeleton-DML: Deep Metric Learning for Skeleton-Based One-Shot Action Recog-
nition”. In: IEEE/CVF Winter Conference on Applications of Computer Vision,

WACV 2022, Waikoloa, HI, USA, January 3-8, 2022. IEEE, 2022, pp. 837–845.
DOI: 10.1109/WACV51458.2022.00091

Video abstracts of the core contributions of this thesis have been created in order to make
the research topics more accessible. The video abstracts are shown and referenced in
Fig. 1.5.

Closely related to the content of this thesis are also the following publications that
have been published during the writing of this thesis:

• Raphael Memmesheimer, Ivanna Mykhalchyshyna, and Dietrich Paulus. “Ges-
ture Recognition On Human Pose Features Of Single Images”. In: 9th IEEE In-

ternational Conference on Intelligent Systems, IS 2018, Funchal, Madeira, Portu-

gal, September 25-27, 2018. Ed. by Ricardo Jardim-Gonçalves, João Pedro Men-
donça, Vladimir Jotsov, Maria Marques, João Martins, and Robert E. Bierwolf.
IEEE, 2018, pp. 813–819. DOI: 10.1109/IS.2018.8710515

• Raphael Memmesheimer, Viktor Seib, and Dietrich Paulus. “homer@UniKoblenz:
Winning Team of the RoboCup@Home Open Platform League 2017”. In: RoboCup

2017: Robot World Cup XXI [Nagoya, Japan, July 27-31, 2017]. Ed. by Hide-
hisa Akiyama, Oliver Obst, Claude Sammut, and Flavio Tonidandel. Vol. 11175.
Lecture Notes in Computer Science. Springer, 2017, pp. 509–520. DOI: 10.10
07/978-3-030-00308-1_42

• Raphael Memmesheimer, Ivanna Mykhalchyshyna, Viktor Seib, Tobias Evers,
and Dietrich Paulus. “homer@UniKoblenz: Winning Team of the RoboCup@Home
Open Platform League 2018”. In: RoboCup 2018: Robot World Cup XXII [Mon-

treal, QC, Canada, June 18-22, 2018]. Ed. by Dirk Holz, Katie Genter, Maarouf
Saad, and Oskar von Stryk. Vol. 11374. Lecture Notes in Computer Science.
Springer, 2018, pp. 512–523. DOI: 10.1007/978-3-030-27544-0_42

• Pascal Schneider, Raphael Memmesheimer, Ivanna Kramer, and Dietrich Paulus.
“Gesture Recognition in RGB Videos Using Human Body Keypoints and Dy-
namic Time Warping”. In: RoboCup 2019: Robot World Cup XXIII [Sydney,

NSW, Australia, July 8, 2019]. Ed. by Stephan K. Chalup, Tim Niemüller, Jackrit

https://doi.org/10.1007/978-3-030-92659-5_17
https://doi.org/10.1007/978-3-030-92659-5_17
https://doi.org/10.1109/WACV51458.2022.00091
https://doi.org/10.1109/IS.2018.8710515
https://doi.org/10.1007/978-3-030-00308-1_42
https://doi.org/10.1007/978-3-030-00308-1_42
https://doi.org/10.1007/978-3-030-27544-0_42
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Suthakorn, and Mary-Anne Williams. Vol. 11531. Lecture Notes in Computer
Science. Springer, 2019, pp. 281–293. DOI: 10.1007/978-3-030-35699-
6_22

• Ivanna Kramer, Niko Schmidt, Raphael Memmesheimer, and Dietrich Paulus.
“Evaluation Of Physical Therapy Through Analysis Of Depth Images”. In: 28th

IEEE International Conference on Robot and Human Interactive Communication,

RO-MAN 2019, New Delhi, India, October 14-18, 2019. IEEE, 2019, pp. 1–6.
DOI: 10.1109/RO-MAN46459.2019.8956435

• Raphael Memmesheimer, Viktor Seib, Tobias Evers, Daniel Müller, and Di-
etrich Paulus. “Adaptive Learning Methods for Autonomous Mobile Manipula-
tion in RoboCup@Home”. In: RoboCup 2019: Robot World Cup XXIII [Sydney,

NSW, Australia, July 8, 2019]. Ed. by Stephan K. Chalup, Tim Niemüller, Jackrit
Suthakorn, and Mary-Anne Williams. Vol. 11531. Lecture Notes in Computer
Science. Springer, 2019, pp. 565–577. DOI: 10.1007/978-3-030-35699-
6_46

• Raphael Memmesheimer, Ivanna Kramer, Viktor Seib, Nick Theisen, and Diet-
rich Paulus. “Robotic Imitation by Markerless Visual Observation and Semantic
Associations”. In: 2020 IEEE International Conference on Autonomous Robot

Systems and Competitions, ICARSC 2020, Ponta Delgada, Portugal, April 15-17,

2020. IEEE, 2020, pp. 275–280. DOI: 10.1109/ICARSC49921.2020.909
6123

At the beginning of non-first-authorship chapters, we give details about the own
contribution. A complete list of publications is given in the Publications appendix.

1.7 Collaborations

During my PhD studies, I supervised various research projects as well as bachelor-
and master theses. Some of them have been extended and published afterwards. The
approach for segmenting activities from skeleton streams using transformer networks
[HMP21], presented in Chapter 6, is based on the master thesis of Simon Häring.
The implemented representations for his master thesis allowed the in-depth experi-
ments of the extensive representation comparison in a one-shot action recognition set-
ting [Mem+22]. The Fusion-GCN approach [DMP21], presented in Chapter 4 was
extended with Michael Duhme based on his master thesis. Inspiration, that later led
to the signal-level representations for the action recognition tasks on various sensors,
has been gathered from the research project and collaboration with Pascal Schneider

https://doi.org/10.1007/978-3-030-35699-6_22
https://doi.org/10.1007/978-3-030-35699-6_22
https://doi.org/10.1109/RO-MAN46459.2019.8956435
https://doi.org/10.1007/978-3-030-35699-6_46
https://doi.org/10.1007/978-3-030-35699-6_46
https://doi.org/10.1109/ICARSC49921.2020.9096123
https://doi.org/10.1109/ICARSC49921.2020.9096123
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https://youtu.be/usmmDaFREC4 https://youtu.be/oDAtim_nJEg

https://youtu.be/Wdy_YPPiYgc https://youtu.be/yNEuzqzNBSc

https://youtu.be/CriyQgqCTrs https://youtu.be/jH5eMDZfMyY

Figure 1.5: Video abstracts of the contributions of this thesis (in chronological order).

[Sch+19]. Of great assistance for the acquisition of the data for the Simitate, imita-
tion learning benchmark [Mem+19a], presented in Chapter 7, was the access to IS-
RoboNet@Home Test Bed of Institute for Systems and Robotics at the Instituto Superior
Técnico, U.Lisboa in Portugal. Further, for the Simitate benchmark [Mem+19a], Ivanna
Kramer, was of great support during the data acquisition and discussions. Together with
Nick Theisen most of the problem formulations [MTP20a; MTP20b; Mem+22], were
simplified and improved.

1.8 Outline

We introduce preliminaries that are shared across the thesis in the following Chapter 2.
Chapters 3 - 7 introduce our research contributions and are mostly self-contained with

https://youtu.be/usmmDaFREC4
https://youtu.be/oDAtim_nJEg
https://youtu.be/Wdy_YPPiYgc
https://youtu.be/yNEuzqzNBSc
https://youtu.be/CriyQgqCTrs
https://youtu.be/jH5eMDZfMyY
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their individual related work discussion and conclusion. Chapter 3, presents action
recognition methods using CNNs for various sensor modalities and their fusion in a su-

pervised training setting. In Chapter 4, we focus on a method for the fusion of various
sensor modalities into a skeleton-graph based on GCN. Approaches framed in a semi-

supervised setting are presented in Chapter 5. The segmentation of actions on skeleton
sequences with a transformer network is presented in Chapter 6. After presenting meth-
ods to recognize and segment human performed actions, we present a benchmarking
method for evaluating imitation learning approaches in a robotics context in Chapter 7.
Finally, Chapter 8 provides a general conclusion.



Chapter 2

Preliminaries

In this chapter, we present the foundation that is used in multiple later chapters. We
give the fundamental definitions, problem descriptions and performance metrics. Af-
ter, we introduce the fundamentals of a Convolutional Neural Network (CNN) and
GCNs. Finally, we introduce related approaches for human pose estimation on Red
Green Blue (RGB) and Red Green Blue Depth (RGB-D) sequences that we use funda-
mentally among our approaches.

2.1 Definitions

Throughout the thesis, we want to establish common definitions, as many of the terms
used in research get alternating definitions.

In three of the following chapters, we propose methods related to the action recog-
nition problem. Different definitions for an action are existing. In this thesis, we follow
a definition of action, which is based on a combination of the activity and action def-
initions by Bobick [Bob97]. We soften the granularity of the definition here, as our
approaches do not distinguish in the applied methods for handling them. Large-scale
datasets also commonly consist of activities and actions without distinguishing between
them explicitly. An action is then defined as follows:

Definition 1: Action

An action ranges from sequences of motion towards larger-scale events, which typ-
ically include interaction with the environment and causal relationships.

This definition includes short human motion sequences, sometimes also referred to
as gesture, as well as more complex human motion sequences like interactions with
appliances or the environment and interactions between two or more persons. Actions
can range from short sequences to more enduring sequences.

13
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For our action recognition related tasks, we propose approaches that aim at general-
izing well across different sensor modalities. Many definitions for the abstract term of a
signal have been developed in various domains. We follow the definition by [Opp+97;
Cha18] of signals as:

Definition 2: Signal

A signal is a function of one or more independent variables that contain information
about the behavior or nature of some phenomenon.

Examples of signals range from acoustic sound waves that are converted to voltages
by microphones, orientation, and velocities measured by a gyroscope or event images
as captured by image sensors, and also covers transformations from images to higher
level features like human pose features.

2.2 Problem Description

The focus of this thesis is on action recognition on various sensor data modalities, which
we interpret as a classification task. Our proposed approaches aim at a general for-
malization by defining multivariate signal streams as the standard input for our action
recognition methods. Signal streams originate either directly from sensors like inertial
measurement systems, marker guided position estimation devices like motion capturing
systems, Wi-Fi CSI-fingerprints or skeleton sequences. Throughout this thesis, we ob-
serve skeleton sequences with a special consideration because of the large-scale public
available datasets and their general applicability. Skeleton-sequences can be gathered
by transforming input images to human pose features [Cao+21; Sho+11] from passively
observing sensors.

Fig. 2.1 gives a categorization of action recognition approaches. Action Recognition

infers a single action class for a given sequence. Action Segmentation detects multiple
action chunks, formed by start- and end-times, as well as their corresponding class label.
In case of multi-person actions, a single class label is inferred for a chunk, in our case
the most active person. Spatio-Temporal Action Localization, in contrast, infers spatio-
temporal information about the humans, and their actions. In addition, a bounding box
per person containing the area of interest and an action label for each frame is predicted.
An additional person identifier, that tracks persons throughout a sequence, is favorable.

2.2.1 Action Recognition

In machine learning, given an optimization algorithm, a loss function, a model and a
dataset [GBC16], a model can be trained to solve for a task. One of the most fundamen-
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Action Recognition

Point finger at the other person

Action Segmentation

Standing Point finger at the other person Standing

Spatio-Temporal Action Localization

Standing

Standing

Point finger at other person Standing

Figure 2.1: Classification of action recognition approaches.

tal tasks is the classification of data. For that, we want a function that maps an input to
an label l ∈ {1, . . . , C}

f : IRn → l,

that transforms an n dimensional input vector of data to numeric class identities. In
machine learning the function f , to transform the input data to associate class labels, is
learned. During inference, the learned function that is related to as a model is used to
predict a class label:

y = g(x),

where x is an input vector and y is a class identity encoded in an one-hot vector.
Throughout this thesis, we transform motion sequences into images and use them

as basis for our classification approaches. In that case, the input is assumed to be an
image I , which is represented as a matrix I ∈ {0, . . . , 255}H×W×3. The problem then
becomes finding a function that associates a class label to an image:

f : I → l

in a final model that predicts an action class:

y = g(I).

We consider the standard action recognition task as a supervised learning task for
which a model is trained on C classes, where the training and test sets share the same
C classes. Thus, a test set T shares the same classes as the training set D in contrast to
the one-shot action recognition problem that is introduced in the following section.
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2.2.2 One-Shot Action Recognition

For one-shot action recognition [Liu+20a], the goal is similar to the action recognition
problem. Action class labels should be estimated, but the amount of training samples
of a specific class to recognize is limited to a single reference sample. That yields a
more flexible and practical application formulation in novel scenarios. In contrast to the
standard action recognition setting as it was presented above, in a one-shot action recog-
nition setting C classes are known in a training set D, while the test set T contains U
novel classes, providing a single reference sample per class in an auxiliary set A, where
|A| = U . This constraint doesn’t allow training a model that predicts a known class
label but learns a more generic model that transforms an input image to an embedding
space, preferably reflecting semantic relevance, that allows class association of the test
samples to the classes by finding the nearest neighbor in the embedding space.

In the one shot action recognition setting, we therefore want to find a transformation
into an embedding space:

g : I → IRn,

that allows associating class labels to reference actions u ∈ {1, . . . , U} by finding
the nearest neighbor:

f : IRn → u.

For the transformation to the embedding space a metric learning approach can be
utilized.

2.2.3 Action Segmentation

The action segmentation task tackles the problem of temporally segmenting sequences.
An action segment is described with an action class and start and end frames encoding
the duration of the action. An encoded sequence can contain multiple such tuples. Fig.
2.1 visualizes on the top right an example of the action segmentation problem. As for
the previous two problem descriptions, we assume an image representation, encoding
signals as input and target the estimation of n action segments in the underlying rep-
resentation. Formally, the action segmentation can be described with a function that
transforms an image representation to a set of action segments as follows:

h : I → {(tstart, tend, l)0, . . . , (tstart, tend, l)n},

where tstart and tend are the timestamps for the start and end of the segment and l corre-
sponds to the estimated segment label. Multiple segments can be contained in an image
representation.
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2.3 Performance Metrics

Relying on common performance metrics for the evaluation of an approach is as impor-
tant as the usage of publicly available datasets. In later chapters, we present approaches
for the action recognition task and temporal action segmentation. For better compara-
bility, we report performance metrics that are used for the evaluation of our approaches.
A good reference to various performance metrics is given by Manning et al. [MRS08].
Metrics for the evaluation of action recognition task, which is considered to be a classifi-
cation task with balanced and imbalanced datasets, are introduced. Further, we present
a metrics for the performance of temporal action segmentation approaches. For the
evaluation of imitation learning approaches, we propose new metrics for the evaluation
focusing on the effect in Section 7.4.1 and the evaluation of the trajectory in Section
7.4.2 as part of our Simitate benchmark.

The Accuracy [] is the standard metric for classification tasks with balanced classes
and is defined as the proportion of correct predictions to the total number of predictions:

Accuracy =
#Correct Predictions

#Total Predictions

or

Accuracy =
TP + TN

TP + TN + FP + FN
,

where TP,TN denote true positives and true negatives, likewise, the FP,FN denote
false positives and false negatives. The accuracy estimates how good the classifica-
tion performance is on the given set, and therefore is simple to interpret and calculate.
However, on largely unbalanced datasets, the accuracy is biased towards more frequent
sample classes, therefore metrics to handle class imbalances like the Mean Per-Class

Accuracy (mpcA) for which accuracies per class are calculated and afterwards the mean
over all accuracies is taken.

The F1-measure is defined as the harmonic mean of precision and recall. If either
precision or recall is much lower than the other, the F1 measure will significantly lean
towards the lower value.

Given the amount of true positives and false positives, we can estimate the fraction
of the correct estimates as precision with:

Precision =
TP

TP + FP
,

and the fraction of overall correct segments recall as:

Recall =
TP

TP + FN
.
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(a)

(b)

(c)

Figure 2.2: Intersection over Union (IoU) visualization. AGroundtruth depicting the ground-
truth segment and APredicted depicting the estimated segment. Different occurring examples are
given in (a), (b), (c). The crossed segment depicts the overlap between the ground-truth and the
estimate. An example for a bad estimate that falls below a threshold of ω is given in (b) and
therefore considered to be a false positive. A good estimate is shown in (c).

Depending on the system-requirements, a system might optimize for higher precision or
higher recall. To give a better overall performance estimate, the F1-measure combines
precision and recall in a single metric with:

F1 =
2× Precision× Recall

Precision + Recall
.

The F1-measure is high when both precision and recall are high and has benefits for
class imbalanced datasets.

The Mean Average Precision (mAP) is a metric that is commonly used to evaluate
object detection methods, but also translates well to action segmentation tasks. We
follow the derivation by Manning et al. [MRS08, p. 158–160] and Liu et al. [Liu+17a].
First, the Intersection over Union (IoU) of two segments AGroundtruth as the ground-truth
segment and APredicted as the predicted segment. The IoU is then calculated as follows:

IoU =
|AGroundtruth ∩ APredicted|

|AGroundtruth ∪ APredicted|
.

If the IoU is above a threshold ω:
IoU > ω,

the predicted segment has a high overlap and is considered to be a true positive. Analog
for the false positives if the IoU is below a threshold. Fig. 2.2 visualizes two segments
and overlap. The higher the overlap, the higher the IoU. Extensions of the IoU, like
the Generalized Intersection over Union (GIoU) [Rez+19] reward also non-overlapping
bounding boxes and therefore are more suitable as for the integration into a bounding-
box regression learning method, but also can be used as a metric.
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To gather the average precision per class, we calculate the precision and recall over
all sequences K and rank them by their confidence scores.

The interpolated precision Precisioninterp is defined as the highest precision for any
recall level Recall′ ≥ Recall:

Precisioninterp = max
Recall′≥Recall

Precision(Recall′).

The average precision is the area below the sorted precision-recall curve and given
by:

AP =

∫ 1

0

Precisioninterp(Recall)dRecall,

which is practically achieved by discretizing the integration by a summation:

mAP(Q) =
1

|Q|

|Q|
∑

j=1

1

mj

mj∑

k=1

Precisioninterp(Recalljk)

︸ ︷︷ ︸

AP

,

where mj is the number of action occurrences {d1, . . . , dmj
} for parts of a retrieval set

Q and Recalljk is the recall result of a ranked k retrieval result [Liu+17a]. For the
evaluation Q is defined over all actions and videos separately denoted as mAPaction and
mAPvideo.

The mAP is used to evaluate our action segmentation approaches. In practice, we
use the proposed evaluation scripts of the PKU-MMD [Liu+17a] dataset for better com-
parability.

2.4 Convolutional Neural Networks

The wide use of Convolutional Neural Networks CNNs lead to a paradigm shift, from
previously often handcrafted feature designs to learned features and their combinations.
CNNs form the basis of large parts of the methods described throughout this thesis.
Therefore, we introduce the different layers that a CNN consists of. CNNs are widely
used in image analysis but can be transferred to a wide set of tasks from various domains.

The central element of CNNs is the convolutional layer, which consists of filters,
that, during a training phase, learn to identify patterns. With each layer the patterns that
can be identified get more complex.

An overview of a CNN is given in Fig. 2.3. The actual learned elements are the
filters denoted in red.
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Figure 2.3: An exemplary CNN overview. The input image on the right, the convolutional
layers in green and the linear layers that flatten the results after several convolutions to a feature
vector. Exemplary filter weights are denoted in red.

2.4.1 Convolutional Layer

The central element of a CNN is a convolutional layer, which performs an element wise
multiplication with a kernel K for each position at the input image I . We follow the
definition of Goodfellow et al. [GBC16] for a convolution operation at position i, j over
valid positions m,n:

conv(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(i−m, j − n)K(m,n).

Many libraries implement a convolution as a cross-correlation, which is defined as:

conv(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(i+m, j + n)K(m,n),

with a flipped kernel. As the weights for the kernels will be adjusted throughout the
training process, the cross-correlation will just learn a flipped kernel. Thus, both opera-
tions result in the same weights.

Fig. 2.4 gives an exemplary convolutional operation. Traditionally, kernels have
been handcrafted. In CNNs, the weights for the convolutional kernels are learned to
optimize for a given loss function. In a CNN architecture, the number of layers, and
sizes of filters are defined. More recently, the architectures are also samples from an
architecture space and allows the definition of loss functions to optimize the gathered
architecture e.g., towards high accuracies on the validation set or to minimize the num-
ber of floating point operations. In this thesis, we do not propose novel architectures
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Figure 2.4: Example of a convolution operation.
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Figure 2.5: Different activation functions.

but take inspiration from well established architectures by using them as backend mod-
els for learning models to image representations like the ResNet [He+16] architecture
family which allows for identity mappings (also known as skip-connections) and the
EfficientNet [TL19] architecture family. The identity mappings of ResNet increased the
accuracy for deeper neural networks and stabilized the training. The EfficientNet archi-
tecture family proposed to scale the number of trained filters, the filter sizes and depth
of the CNN at the same time.

2.4.2 Activation Layer

An activation layer wraps an activation function that decides which neurons are activated
and to which extent. Further, the activation function adds non-linearity to the training of
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Figure 2.6: A max pool operation with (2,2).

a neural network. Historically, sigmoid and tanh [APB17; KO11] activation functions
have been widely used, but alternatives have prevailed, mostly because they suffer from
the vanishing gradient problem. Modern architectures often employ Rectified Linear
Unit (ReLU) [NH10] which takes the element-wise max of 0 and a given input value x:

a(x) = max(0, x).

The Rectified Linear Unit (ReLU) is gradient preserving and due to its simplicity, it is
efficient to compute and superior performance over sigmoid and tanh on deeper CNNs
as shown in empirical studies [Xu+15; MSM17]. More recently, the swish activation
has been proposed by leveraging automatic search techniques for finding new activation
functions [RZL18]. The swish activation function is defined as:

a(x) = x sigmoid(βx),

where the sigmoid function is defined as sigmoid(z) = 1
1+e−z and β is a trainable pa-

rameter. Interesting to note that the Swish activation function is, in contrast to the ReLU,
non-monotonic and with β → ∞ becomes a standard ReLU [RZL18]. The Swish and
ReLU activation functions are visualized in Fig. 2.5

2.4.3 Pooling Layer

The pooling layer is usually integrated after convolutional layers to reduce the dimen-
sionality of a given input. In the context of CNNs, features are aggregated spatially to re-
duce the resolution of the feature maps and gain spatial invariant feature maps[SMB10].
Fig. 2.6 gives an example of a max pooling operation with a window size of 2 and a
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stride of 2. The filter size describes the path size in x, y direction, and the stride de-
scribes the steps that are moved in between the iterations. In the max pool operation,
the maximum of each block reflects the target value in the pooled image. Other pooling
operations, like average pooling, are possible, but max pooling has been shown to have
vastly better performance [SMB10] in vision tasks.

2.4.4 Linear Layer

The linear layer (also fully-connected or dense layer) maps the features from an input
feature space to an output feature space using a weight matrix A and can be expressed
as

l(x) = Ax+ b,

where b denotes the bias and the input features x are received as a flattened feature
vector.

2.4.5 Training

Now that we have defined a model, we introduce the complete training routine. Note,
the same model can be used with different optimization targets for different tasks like
regression or classification. The focus of this thesis is on action recognition; therefore,
we concentrate on presenting the methods for the classification task. Throughout the
iterations over the training samples, the weights are continuously updated. For other
tasks, a similar training routing is used, but with different loss functions.

Cross Entropy Loss

In a classification task, we aim to adjust the model’s parameters throughout the training
to infer estimated labels of given inputs that correspond to the ground-truth labels. This
can be achieved by minimizing cross entropy between an input class distribution and a
ground-truth class distribution. The Cross Entropy Loss [Cox58] is defined as:

L(y, ŷ) = −
K∑

n=1

C∑

c=1

yc
n · log(ŷ

c
n),

where y is a class distribution vector for the estimated class and analog the ŷ one-hot
vector for the ground-truth class [Mur12]. The loss is estimated for all class labels C

over all data samples K. As we deal with multi-class problems, the cross-entropy loss in
our work is defined as a categorical cross entropy loss. In practice, the loss is calculated
for each batch and reduced to the overall mean.
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Stochastic Gradient Descent

Gradient descent is an optimization algorithm that updates the model parameters θ with
a learning rate α towards a global minimum of an objective function J(θ,L(y, ŷ)),
where y, ŷ contain the class distributions and one-hot vectors for the complete dataset:

θi+1 = θi − α∇θJ(θ,L(y, ŷ)).,

where ∇θ is the gradient of the objective function.
The weight initialization is crucial for the optimization using gradient descent. Var-

ious methods to initialize the parameters, e.g., drawing random weights from Gaussian
distributions [KSH12] or specifically targeting ReLU activation functions by adaptive
initialization methods as proposed by He et al. [He+15]. Models can also be optimized
with parameters initialized by an already pre-trained model.

As the gradient descent algorithm becomes inefficient larger datasets the gradients
are optimized on the sampled batches using Stochastic Gradient Descent (SGD), where
the model parameters are updated for batches of a given size separately, yBatch, ŷBatch

contain the class distributions and one-hot vectors for the batches:

θi+1 = θi − α∇θJ(θ,L(yBatch, ŷBatch)).

The gradients are lower per iteration, but computation becomes tractable even for larger
datasets. Additional randomization of the sampled batches creates more variation of
the presented training data. The parameters are optimized for several iterations over the
training set, where a complete iteration over the training set is referred to as an epoch.
Different strategies like training for a fixed number of epochs, early stopping when the
training or validation loss is stagnating, or the validation accuracy does not increase are
commonly employed.

2.5 Graph Convolutional Networks

Graph Convolutional Network (GCN)s become especially interesting over CNNs when
dealing with naturally graph structured, non-euclidean, data structures like documents
and their connections by citations [KW17]. Throughout this thesis, we demonstrate
action recognition methods based on skeleton sequences. Skeletons sequences are also
an ideal candidate for graph representations. Yan et al. [YXL18] proposed to represent
skeleton sequences as a spatio-temporal graph (see Fig. 2.7). While CNNs sample pixels
around the center of the filter, for a convolution on graphs the neighboring nodes N are
sampled, which are again partitioned and weighted individually. Given a spatial graph
G = (V,E), consisting of vertices vi ∈ V and their edges (i, j) ∈ E, where two nodes
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Spatial

Temporal

Figure 2.7: Skeleton Graph Representation for Spatio-Temporal Action Recognition. The
spatio-temporal representation on the left and an partition example on the right. Figure from
[Shi+19b].

are neighbors if they have a common edge. We sample the neighboring nodes of a node
vtj , that have a distance d(v1, v2) below or equal to a threshold D:

N (vti) = {vtj|d(vtj, vti) ≤ D)}.

Yan et al. [YXL18] set D = 1 to only consider direct neighbors in the graph.
The set of neighboring nodes is again partitioned into 3 subsets, to which vertices

are associated to by the mapping function l(vi) : N (vi) → {1, 2, 3}. This partition
is done to weight the neighbors individually by the elements contained in the subsets.
Svti1 consists of the current vertex (green node in the right skeleton graph of Fig. 2.7),
Svti2 consists of the vertices closer to the gravity center (centripetal subset, red node),
and Svti3 contains the more distant vertices (centrifugal subset, blue nodes).

A convolution over graphs can be defined now by sampling the neighboring nodes
to weight their relation to neighboring nodes with a weighting function w [YXL18]:

gconv(vti) = (G ∗ w)(vti) =
∑

vti∈N (vtj)

1

Zvtj

Gvtjw(l(vtj)),

where the weight function is then normalized by the cardinality of the subset Zvtj that
contains the currently considered node vtj .

A break-through was made by the Spatial Temporal Graph Convolutional Network
(ST-GCN) [YXL18] model, that first proposed to represent skeleton sequences on a
spatial and temporal level for the action recognition task on skeleton sequences. Joints
and their inter-joint connections form the spatial connection, while intra-frame connec-
tions of the same joints build the temporal component. An overview of the ST-GCN
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minimize

maxi
mize

Figure 2.8: Metric Learning goal. An embedding model is trained which optimizes the projec-
tion function such that it minimizes the scatter within classes and maximizes the scatter between
classes.

representation is given in Fig. 2.7. On this basis, a wide set GCN-based approaches for
skeleton-based action recognition have been introduced later [Shi+19b]. For practical
implementations the GCN layers are realized with an adjacency matrix representation.

2.6 Metric Learning

In contrast to a classification problem, where a class label is associated, in metric learn-
ing a projection into a embedding space on which a distance metric is defined. Sim-
ilarity functions like the cosine similarity are then used to compute distances of the
projected samples in the embedding space. By this, the formulation is more general in
comparison to a classification formulation and allows generalizing to novel, previously
unseen classes. Once a data sample or a given set of data samples are projected into
a metric space, distances between samples can be used for clustering, dimensionality
reduction, nearest-neighbor classification or ranking. The goal of metric learning is to
learn a projection model that minimized the inter-class-scatter between sample class
data samples and maximize the distance between centroids of different class sample
clusters Fig. 2.8. Applications can be found in face recognition [SKP15] or person
re-identification [Yi+14; WB18; HBL17].

2.7 Human Pose Estimation

Our approaches have in common that they are applicable on human pose features from
sensors like RGB-D or RGB cameras. Throughout this thesis, we use mainly two kine-
matic models to represent the human pose (see Fig. 2.9). We therefore introduce the
common approaches as used for transforming data streams from these sensors into hu-
man pose features.
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Figure 2.9: Human pose models, commonly used in human pose estimation.

Figure 2.10: Depth-based skeleton estimation approach. Figure from [Sho+11].

2.7.1 Human Pose Estimation on Depth Images

With the release of the Microsoft Kinect [Zha12], RGB-D cameras became affordable
and accessible. In contrast to common RGB cameras, an additional depth channel pro-
vides depth estimations per pixel by projecting structured light in a non-visible infrared
(IR) range. With the additional IR-camera that receives the known dot light pattern
and the known relative transformation between the IR-projector and the IR-camera 3D
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Figure 2.11: OpenPose pose estimation approach. Figure from [Cao+21].

points can be triangulated. Many datasets like the large-scale NTU RGB+D 60 [Sha+16]
and NTU RGB+D 120 [Liu+20a] datasets provide skeleton estimates that are gathered
by the Kinect OpenNI SDK, which implements a human pose estimation approach by
Shotton et al. [Sho+11]. The skeleton-estimation approach is depicted in Fig. 2.10.
Depth images serve as the basis for the estimation of pixel regions of the body parts,
which are then used to locally estimate 3D joint position estimates for multiple persons
[Sho+11]. This approach is proposed for single depth images such that no temporal
information is required.

2.7.2 Human Pose Estimation on RGB Images

Human pose estimation methods that operate directly on RGB images can be catego-
rized in regression approaches and body part detection methods approaches [Zhe+20].
Recent regression methods utilize CNN that use multiple convolutions followed by lin-
ear layers to transform input images to human pose keypoints. Commonly, a L2 dis-
tance between prediction and ground-truth pose vector is used as a loss for the training
[TS14]. Body part detection methods estimate heatmaps for different body parts that
are assembled to final poses [Zhe+20]. Fig. 2.11 gives an overview of the human pose
estimation approach by Cao et al. [Cao+21]. This approach takes single RGB images to
estimate a 2D human pose. OpenPose predicts jointly the part confidence maps and the
part affinity fields. Those part affinity fields are used as a non-parametric representation
to learn associated body parts from the image. In the next step, the body part candidates
are matched by a bipartite matching system. And finally, all matched parts yield in pose
estimates for all persons contained in the image. In this thesis, we utilized the Open-
Pose model [Cao+21] for some of our experiments. Recent approaches like OpenPifPaf
[KBA19] utilize composite fields for a spatio-temporal association. MediaPipe by Lu-
garesi et al. [Lug+19] is an highly efficient approach targeting low-latency human pose
estimation among other visual estimation features. Their pose estimation approach is,
however, limited to single persons, whereas OpenPose and OpenPifPaf are multi-person
human-pose-estimators.
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Figure 2.12: Example of uni-modal models. The architectures don’t share any features or input
data.

2.8 Modality Fusion

We now introduce various approaches for handling different modalities in the context of
modality fusion. The recent trend in machine learning research goes into single models
that generalize well across different tasks [AEP06] and modalities, i.e., by introduc-
ing the multimodal neuron [Goh+21]. In this thesis, we follow the following modality
fusion definition by Luo et al. [LKL93]:

Definition 3

Multisensor fusion, ..., refers to any stage in an integration process where there is
an actual combination (or fusion) of different sources of sensory information into
one representational format.

Uni-Modal The Uni-Modal design is the most common one and widely used in image
classification [KSH12; Den+09] tasks operating on single modalities. A model M is
trained and inferred using a single modality in the most common case, camera images.
No information fusion takes place. The resulting models solely concentrate on single
modalities. An abstract example of such an approach is given in Fig. 2.12.

Multi-Modal To fuse different modalities, Multi-Modal architectures have been pro-
posed. Data is either fused on a feature or representation level. In feature level fusion
(also late fusion) a model is trained for each modality. Features extracted from the mod-
els are then fused to yield a final classification result. In contrast, an early fusion is a
representation level fusion. An early fusion results in a single model. The benefit of
early fusion methods are the reduced training cost by only training a single model. Late
fusion approaches might learn more descriptive features per modality. Intermediate fu-
sion, on a feature layer-level, has also recently been proposed [Joz+20]. Fig. 2.13 gives
an abstract overview of the two different fusion concepts.
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Figure 2.13: Example of multi-modal models. Modalities are fused on a feature level (late
fusion) and on a representation level (early fusion).
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Figure 2.14: Cross-Modal feature fusion.

Cross-Modal Cross-Modal designs improve the models crosswise by distilling knowl-
edge [HVD15] from models of different modalities during training or learn good can-
didates for common representations. During training, samples from all modalities are
available. An example of such an architecture is given in Fig. 2.14. Originally, the
knowledge distillation approach was proposed for model compression, where knowl-
edge of larger deep neural networks is distilled into smaller networks to improve the
model of lower complexity with information from the model of higher complexity. One
can imagine distilling knowledge from a ResNet 151 teacher model into a ResNet 50
student model. One approach to distill the knowledge of a teacher model into a student
model is defining the loss function as the cross entropy between the output of the student
model and the output of the teacher model during training. Using knowledge distillation
as a cross-modal training approach has been first proposed by Gupta et al. [GHM16] for
distilling knowledge from pre-trained RGB image model to paired sample images of a
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Figure 2.15: Example of an inter-modal architecture. Models that generalize well across differ-
ent modalities are trained. In the given example, a model is trained using skeleton data. During
inference, this model is used to infer class labels on IMU data.

different modality like depth- or optical-flow images. In the context of action recogni-
tion, these concepts have been transferred to approaches distilling knowledge, e.g., from
RGB-sequences to skeleton sequences by Thoker and Gall [TG19] and across multiple
sensor modalities and their combinations into a student model by Kong et al. [Kon+19].

Inter-Modal The term inter-modal originates from the freight transportation, where
inter-modal containers can be used for different means of transportation like ships,
trains, or trucks. The same containers can be used without adoptions to the underly-
ing means of transportation which supports efficient transportation handling. We em-
ploy the inter-modality term in a machine learning scenario where a model is trained
on a set of samples of a sensor modality that differs to the modality used during infer-
ence. In Chapter 5, we demonstrate that one-shot approaches that transform input data
into a common embedding space can be used to employ an Inter-Modal architecture
design. During training, no samples of the testing modalities are available, while the
resulting model is capable of inferring results on different modalities. This protocol is
challenging, avoids overfitting by hardly optimized architectures or representations, and
is potentially highly practical as generalized inter-modal approaches can be transferred
to novel sensor generations. Fig. 2.15 depicts an inter-modal architecture in the con-
text of action recognition. It is to note that an inter-modal model must be designed to
generalize well across different modalities. Additional augmentation that tries to trans-
form signals from one modality into another can be either learned or designed. To the
best of our knowledge, inter-modality in machine learning is not widely spread. Guo
et al. [Guo+18] propose a joint inter-modal and intra-modal correlation-preservation
approach to handle scenarios where only partial pairs are provided in a canonical corre-
lation analysis, as used for dimensionality reduction or information fusion.





Chapter 3

Action Recognition on Various Sensor

Data Modalities

In this and the following chapter, we present approaches for the action recognition task
formulated as a supervised classification task. This chapter is based on representing the
motion in images and using CNNs for their classification. The following Chapter 4 is
based on GCNs. In contrast, the approaches in Chapter 5 are formulated as a semi-
supervised classification task for action recognition using a single reference sample per
class.

We present an approach that distinguishes from approaches in the existing litera-
ture by its focus on generalization across different sensor modalities without requiring
adoptions to the underlying problem formulation, models, and training procedure. We
achieve generalization by formulating the action recognition problem on a signal-level
and employing a common underlying representation. A CNN is used for training the
final action recognition model. We further demonstrate that this approach can fuse dif-
ferent modalities in an early fusion paradigm with limited training overhead, in contrast
to late fusion approaches, that require separate streams per additional modality. This
part of the chapter extends our prior publications for a unified action recognition ap-
proach that generalizes well across different sensor modalities [MTP20a]. We extend
the underlying publication by a more detailed introduction, updated related work dis-
cussion and additional experiments on a broader set of recently published datasets. We
further present action recognition results with the dense representation proposed for our
one-shot action recognition approach. The wide set of experiments offers insights about
the generalization capabilities and the application range that our approach is sufficient
for.

33
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Skeleton

Inertial Sensor

MoCap

WIFI CSI Fingerprints

Figure 3.1: We propose a representation that is suitable for multimodal action recognition.
The Figure shows representations for skeletal data from the NTU [Liu+20a; Sha+16] dataset,
Inertial data from the UTD-MHAD [CJK15] dataset and Wi-Fi CSI fingerprints from the ARIL
[Wan+19a] dataset.
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Table 3.1: Modality support comparison of various approaches, where ✓ denotes that an ap-
proach supports a modality, ✗ denotes no support, (✓) denotes support but with additional pre-
processing like extraction of human-pose features.

Name Skl IMU WiFi MoCap RGB

Liu et al. [LLC17] ✓ ✗ ✗ ✗ ✗

Ehatisham et al. [Eha+19] ✗ ✓ ✗ ✗ ✓

Imran et al. [IR20] ✓ ✓ ✗ ✗ ✓

Liu et al. [Liu+20b] ✓ ✗ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ (✓)

3.1 Introduction

Action (also referred to as activity or behavior) recognition is a well-studied field and
enables application in many areas like elderly care [Nou+07; ST17; NGC15; LRJ19],
smart homes [NGC15; LRJ19], surveillance [Niu+04; Wil+12], driver behavior analy-
sis [Cho+07; Mar+20; Rig+05], and robotics [Krü+07; CKG16b].

Action recognition can be defined as finding a mapping that assigns a class label to
a sequence of signals. The input data can, for instance, be measurements from IMU,
skeleton sequences, motion capturing sequences or image streams. In this chapter, we
tackle the action recognition problem on a signal level, as this is a common basis for
a variety of input modalities or features that can be transformed into multivariate sig-
nal sequences. A common basis is important for the generalization across different
modalities. Table 3.1 compares an excerpt of recent approaches in terms of generaliza-
tion capabilities over various modalities. Many approaches focus on tackling the action
recognition problem on single modalities or multi-stream models with one stream per
separate modality, which increases complexity.

Some sensors like IMUs or Wi-Fi receivers yield multivariate signals directly, other
sensors like RGB-D cameras provide skeleton estimates indirectly. Skeleton estimates
can be transformed easily into multivariate signals by considering their joint axes. This
also holds for human poses that can be estimated on camera streams using recent meth-
ods [XWW18]. Predicting the action class from multivariate signal sequences can then
be seen as finding discriminative representations for signals.

CNNs have shown great performance for image classification tasks. We, therefore,
propose a representation that transforms multivariate signal sequences into images. Re-
cent proposed CNN architectures use architecture search conditioned on maximizing
the accuracy while minimizing the floating-point operations [San+18; TL19]. There-
fore, they are good candidates for use in robotic systems. Figure 3.1 gives an exem-
plary overview of the variety of modalities that our proposed representation can be
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used for. We evaluated the approach on 8 datasets containing 4 modalities. To the
best of our knowledge, our signal-level action recognition approach is currently the
only one supporting such a variety of modalities without special adaptions of the un-
derlying representation or architecture design. Many proposed fusion approaches rely
on custom-engineered sub-models per sensor modality, which are usually combined in
multi-stream architectures. In contrast, we fuse the modalities on a representation level.
This has the huge benefit of having a constant computing complexity independent of the
number of modalities used, whereas multi-stream architectures raise in complexity with
every modality added.

The main contributions of this chapter are as follows:

• We propose an action recognition approach based on the encoding of signals as
images for classification with an efficient 2D-CNN.

• We propose filter methods on a signal level to remove signals with only a minor
contribution to the action.

• We present an approach for information fusion on a signal level.

By considering the action recognition problem on a signal level, our approach gener-
alizes well across different sensor modalities. The signal reduction prevents the image
representation from overloading and allows flexible addition of signal streams. We ex-
periment with sparse and dense representations of the underlying signals. By fusion
on a signal level, we create a flexible framework for adding additional information, for
instance object estimates or the fusion of different sensor modalities.

3.2 Related Work

In this section, we present action recognition methods based on traditional feature ex-
tractors and recent advances in machine learning. Existing survey papers [Zha+16;
Zha+19a; WYD17; Gu+18; LKL14] do not include most recent publications, as the
action recognition field is a highly active field of research. In the related work discus-
sion, we put a focus on more recent work from the action recognition domain related
to our proposed method. We put a focus on methods using skeleton sequences as input
because these can be acquired on robotic systems directly from RGB-D frames or by
extracting human pose features [XWW18] from video sequences. Further, large-scale
benchmarks, e.g., [Liu+20a] are available for action recognition on skeleton sequences,
thus a fair comparison of different approaches can be achieved.

An interesting analysis from a human visual perception perspective has been pre-
sented by Johansson [Joh73] in 1973. He found that humans are using 10-12 elements
in proximal stimulus to distinguish between human motion patterns [Joh73]. This sup-
ports the use of skeletons or pose estimation maps as underlying representations for
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activity recognition approaches from a visual perception perspective [Si+19]. Recent
advances in action recognition developed from handcrafted feature extractors to deep
learning approaches like 2D- and 3D-CNNs, while in parallel Long Short-Term Mem-
ory (LSTM) based methods also improved results on large-scale datasets. More recently,
graph convolution approaches showed promising results.

Rahmani et al. [Rah+16] presented viewpoint invariant histograms of gradient de-
scriptors for action recognition. Vemulapalli et al. [VAC14] represented skeleton joints
as points in a Lie-group. The classification is then done by a combination of dynamic
time-warping [BC94], Fourier temporal pyramid representation and linear Support Vec-
tor Machine (SVM) [VAC14]. More recent approaches suggest representing skeleton
sequences as images and 2D-CNNs for recognition. Wang et al. [Wan+18a] encode joint
trajectory maps into images based on three spatial perspectives. Caetano et al. [Cae+19;
CBS19] represent a combination of reference joints and a tree-structured skeleton in
images. Their approach preserves spatio-temporal relations and joint relevance. Liu
and Yuan [LY18] study a pose map representation. The approach that comes closest to
our approach is by Liu et al. [LLC17]. Liu et al. presented a combination of skeleton
visualization methods and jointly trained them on multiple streams. In contrast to our
approach, their underlying representation enforces custom network architectures and is
constrained to skeleton sequences, whereas our approach adds flexibility to other sensor
modalities. Kim et al. [KR17] presented a visual interpretable method for action recog-
nition using temporal convolutional networks. Their approach uses a spatio-temporal
representation, which allows visual analysis to understand why a model predicted an
action. Especially joint contributions are visually interpretable.

3D CNN 3D convolutions for video action recognition was popularized by Tran et al.
[Tra+15]. They have shown good performance on direct video action classification. A
three-stream network has then been proposed to integrate multiple cues sequentially via
a Markov chain model [Zol+17]. By the integration of additional cues from e.g., pose
information, optical flow and RGB images using a Markov chain they could increase
the recognition accuracy incremental with each additional cue. A special focus on more
complex actions was put by Hussein Hussein et al. [HGS19]. They use multiscale tem-
poral convolutions and thereby reduce the complexity of 3D-CNN architectures to show
increased performance on more complex, longer activities. With the SlowFast [Fei+19]
proposed a two pathways 3D-CNN. The slow path, at a low frame rate, aims at cap-
turing spatial semantics, while the fast path, with a high frame rate, focuses on motion
at a fine temporal resolution. Their two path approach has shown great performance in
various video classification tasks. Carreira and Zisserman [CZ17] presented an Inflated
3D-CNN. They propose to initialize a 3D-CNN with pre-trained 2D-CNN weights, e.g.,
from ImageNet [KSH12] pre-training. Filters and pooling kernels of deep networks
can then be expanded to 3D while leveraging from already established 2D-CNN archi-
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tectures and their parameters. They proposed single stream networks, that operate on
RGB sequences and optical flow individually, but can also be fused with two streams,
improving the model’s performance.

Time Series Classification Commonly, for time series classification, time series are
transformed to feature vectors with a sliding window approach and then are analyzed
with a machine learning approach [SL17]. With WEASEL by Schäfer and Leser [SL17],
presented a time series classification approach that has a low amount of very discrimina-
tive features by using a bag-of-pattern approach. Hochreiter and Schmidhuber [HS97]
proposed LSTM tackle the back-flow issues of Recurrent Neural Networks (RNNs) by
incorporating memory cells and gated connections. More recently, approaches based on
transformer networks [Vas+17] have shown great performance for time series classifica-
tion [Zer+21; OWW18]. CNN architectures for signal classification have also been stud-
ied previously in audio processing [Her+17]. ResNet 1D-CNN architectures have been
used for joint classification and localization of activities in Wi-Fi -signals [Wan+19a].
For activity classification on a set of inertial sensors Yang et al. [Yan+15] acquire time-
series signals and classify the activities using a multi-layer CNN.

Skeleton-based Action Recognition A good indicator for the progress of skeleton-
based action recognition are the results on the NTU RGB+D dataset [Liu+20a]. Initially,
approaches have been based around LSTM [Liu+16a] or RNNs. For skeleton-based ac-
tion recognition, approaches based on GCN are defining current state-of-the art meth-
ods. With the spatio-temporal GCN approach by Yang et al. [Yan+19] steadily improved
action recognition on skeleton sequences [Liu+20b; Pap+20]. Liu et al. [Liu+16a] pre-
sented a spatio-temporal LSTM inspired by graph-based representation of the human
skeleton. They further introduced a novel trust-gating mechanism to overcome noise
and occlusion. Si et al. [Si+19] presented an Attention Enhanced Graph Convolutional
LSTM Network (AGC-LSTM). They use feature augmentation and a three-layer AGC-
LSTM to model discriminative spatial-temporal features and yield good results on cross-
view and cross-subject experiments on skeleton sequences. Very recently Papadopoulos
et al. [Pap+20] proposed two novel modules to improve action recognition based on
Spatial Graph Convolutional [YXL18] networks. The Graph Vertex Feature Encoder
learns vertex features by encoding skeleton data into a new feature space, while the
Dilated Hierarchical Temporal Convolutional Network introduces new convolutional
layers capturing temporal dependencies. Very recently, Song et al. [Son+21] introduced
the concept of compound scaling from EfficienNet CNN [TL19] to GCNs and demon-
strated state-of-the-art performance on the NTU RGB+D 120 dataset while reducing the
number of required parameters. Note, all the here mentioned approaches focus on only
skeleton-based action recognition, whereas our approach generalized across different
modalities as well.
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Multi-modal Action Recognition Most fusion methods rely on complex individual
representations per modality or propose complex multi-stream architectures. In contrast,
our approach allows modality fusion using matrix concatenations in a single stream. By
this, our approach is directly usable for a variety of sensors used in robotics like inertial
measurement units, Motion Capturing System or skeleton sequences and can integrate
features extracted from higher dimensional image streams that result, e.g., in human
pose features [XWW18]. Interesting fusion approaches have been presented previously.
Perez-Rua et al. [Per+19] presented an approach for multi-modal fusion architecture-
search using RGB, depth and skeleton fusion. Song et al. [Son+18] extract visual fea-
tures from different modalities around skeletal joints from RGB and optical flow repre-
sentations. Whereas those approaches have focused on multiple modalities originating
from one device (e.g., Microsoft Kinect) there are also methods for the fusion of sensor
data from different devices. Imran and Raman [IR20] propose a three-stream architec-
ture, with different sub-architectures per modality. A 1D-CNN for gyroscopic data, a
2D-CNN for a flow-based image classification and an RNN for skeletal classification.
In the end, individual features are fused, and a class label is predicted. The fused results
are promising, and additional modalities improved the results. Additional augmentation
by signal filter methods has shown to influence the result positively as well. However,
the complexity of the architecture and their sub-architectures require engineering and
training overhead and lead to increased run-times by each added modality. This is an
issue that we overcome by using a common representation for various modalities. Chen
et al. [CJK15] fuse depth information, inertial and demonstrate positive influence. How-
ever, they also use two different approaches for each modality. Namely, they use depth
motion maps for depth sequences and partitioned temporal windows for signal classifi-
cation of the gyroscope signals.

3.3 Approach

The problem of action recognition with a given set of k actions Y = {0, . . . , k} can
be reformulated as a classification problem, where a mapping f : RN×M → Y with N

being the number of signals and M relating to the measurement samples M must be
found that assigns an action label to a given input. The input in our case is a Matrix
S ∈ R

N×M where each row vector represents a discrete 1-dimensional signal and each
column vector represents a sample of all sensors at one specific time step.

After signal reduction, the reduced signal matrix Sfocused is transformed to an RGB
image I ∈ {0, . . . , 255}H×W×3 by normalizing the signal length M to W and the range
of the signals N to H . The identity of each signal is encoded in the color channel. An
overview of our approach is given in Fig. 3.2.
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Figure 3.2: Approach overview. We propose to transform individual signals of different sensor
modalities and represent them as an image. The resulting images are then recognized using a
2D convolutional neural network.

3.3.1 Signal Reduction

To avoid cluttering of the signal representation, we propose a straightforward method for
signal reduction which can be used across different modalities. This allows to lay focus
on signals with high information content while removing the ones with low information
content.

If for example sequences of skeletons are considered, many of the joints are not
moving significantly throughout the performance of an action. Intuitively, it can be
understood that when an action is performed while standing in one place, the signal of
the leg movement does not contribute much to help in classifying the performed action.
From this intuition, we developed the assumption that low variance signals do contain
less information in the context of action recognition as high variance signals. Therefore,
we propose to set the signals to zero which are not actively contributing to the action by
applying a threshold τ to the signal’s standard deviation σ. In our experiments τ was
defined as 20% of the maximum value of all signals.

To be more concise, we define the decision function filter(sj) for the j-th signal sj
in matrix S as

filter(sj) =







1, if σ(sj) ≥ τ

0, otherwise.

When applying this function to each signal in matrix S we receive a vector c ∈ R
N

which encodes in each element if the corresponding signal contributes to the action.
By element-wise multiplication of each column vector of S with c Sfocus is received
where all signals that do not contribute to the action are set to zero. The signals with
low contribution to actions are not removed but set to zero to prevent losing the joint
identity (encoded in different colors).

Reducing the signals with low contribution to the action reduces the amount of over-
lapping signals in the image representation, which in turn allows increasing the total
number of fused signals. We suggest applying signal reduction before fusion because
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different scaling of sensor data can result in the elimination of all signals of a sensor
with lower variance as another.

3.3.2 Signal Fusion

By our formulation, the fusion of signals becomes a matrix concatenation:

Sfused = (S1|S2),

where Sfused is the fusion of S1 and S2 under the assumption that both matrices have
the same number of columns, where columns represent the sequence length. This can be
either achieved by subsampling the higher frequency signals or interpolating the lower
frequency signals. An example of sensor fusion is the encoding of multiple identities
from skeletal data with Sfused = (Sid1|Sid2), where two identities are fused. Another
example is fusion of two sensor modalities with, i.e., Sfused = (Sskeleton|Sinertial) or
adding interaction context by Sfused = (Sskeleton|Sobjects). We therefore created a sim-
ple framework to support a wide variety of possible applications.

3.3.3 Sparse Representation

To allow a CNN based classifier to discriminate well between the action classes, we
aim to find a discriminative representation in the first place. For encoding the signal
identity, we sample discriminative colors in the HSV color space depending on the
number of signals. Similar to the sparse representation proposed by Liu et al. [LLC17],
we make the initial assumption that temporal relations are represented by the position
in the image. However, network architectures of lower depth seem not to maintain a
global overview of the input but focuses on local relations. Therefore, we encode local
temporal information by interpolating from white to the sampled color throughout the
sequence length. Signal changes are encoded spatially and joint relation are preserved.
Fig. 3.3 and Fig. 3.4 give exemplary representations for skeleton and inertial sequences
(Fig. 3.3) and Wi-Fi CSI fingerprints (Fig. 3.4). A limitation of this approach is that only
lower dimensional signals can be encoded. Image sequences or their transformations
like optical flow motion history images are too high dimensional to encode on a signal
level by using our representation. Extracted human pose estimates, hand- or object
estimates from image sequences are adequate signals for encoding in this representation.

3.3.4 Dense Representation

We also experimented with a dense representation, as proposed in [MTP20b] for one-
shot action processing. Multivariate signal or higher-level feature sequences are re-
assembled into a 3 channel image. Each row of the resulting image corresponds to one
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Skeleton

IMU

(a) (b) (c)

Figure 3.3: Sample representations of the UTD-MHAD dataset: (a) and (b) represent the same
class (a27) of different subjects. (c) is a sample of a different class (a1). The color encoded lines
correspond to the joint signals. On the top the representation for skeletal data is shown and on
the bottom their respective inertial data. Note: the axes are intentionally omitted, as these are
depicted as the actual underlying representations.

joint, and each channel corresponds to one sample in the sequence. The color channels,
red, green and blue, represent respectively the signals’ x-, y- and z-values. The result-
ing images are normalized to the range of 0 to 1. We chose to normalize over the whole
image to preserve the relative magnitude of the signals. We experimented with a joint-
level normalization, which can be interpreted as a per-row normalization but found the
results to be negatively affected as spatio-temporal inter-joint relation get lost with this
normalization. In contrast to the previously presented sparse representation for various
sensor modalities [MTP20a] or skeleton-based action recognition [Wan+18a; LLC17]
the proposed representation is invertible and more compact. Example representations
are shown in Fig. 3.5.
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(a) (b) (c)

Figure 3.4: Sample representations from the Wi-Fi CSI fingerprints of the ARIL dataset
[Wan+19a]. (a) and (b) represent the same class (0) of different subjects. (c) represents a differ-
ent class.

(a) (b)

(c) (d)

Figure 3.5: Example representations for skeleton sequences (a), inertial measurements (c),
fused measurements (b) with skeleton and sub-sampled IMU measurements, and Wi-Fi CSI
fingerprints (d). The four example representations show the range of modalities we conducted
experiments on. Axes are intentionally omitted. Joints are represented in the y-axis, temporal
information is encoded in the x-axis.

3.3.5 Augmentation

Augmentation methods have shown to influence the generalization successfully. In our
case, we can create artificial training data on a signal level by interpolating, sampling,
scaling, filtering, adding noise to the individual signals or augment the resulting image
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representation. Liu et al. [LLC17] already proposed to synthesize view independent
representations for skeletal motion. As we consider action recognition on a signal level,
these transformations would result in augmentations integrated as a pre-processing step
for each modality separately. Therefore, we decided to focus on augmenting the re-
sulting image representation, which can be efficiently integrated into training pipelines.
Augmentation applied to the image representation during training still allows interpre-
tation of an effect on the underlying signals. Stretching the width describes the same
action but executed in a different speed, while perspective changes or rotations can syn-
thesize slightly different executions during the demonstrations.

3.3.6 Architecture

Most action recognition approaches based on CNNs present custom architecture de-
signs in their pipelines [LLC17; Ke+17]. A benefit is the direct control over the number
of model parameters and can be specifically engineered for data representations or use
cases. Recent advances in architecture design cannot be transferred directly. Searching
good hyperparameters for training is then often an empirical study. Minor architecture
changes can result in an entirely different set of hyperparameters. He et al. [He+16]
suggested the use of residual layers during training, resulting in more stable training.
Tan et al. [TL19] recently proposed a novel architecture category based on compound
scaling across all dimensions of a CNN. We take advantage of the recent development
in architecture design and use an already established architecture for image classifica-
tion. The recently proposed EfficientNet [TL19] architecture is of special interest in the
robotics context, as it’s based on an architecture search, conditioned on maximizing the
accuracy while minimizing the floating-point operations.

3.3.7 Implementation

Our implementation is done in PyTorch Lightning [Pas+19; Fal19], which puts a focus
on reproducible research. Hyperparameters and optimizer states are logged directly
into the model checkpoints. The source code is made publicly available. We used a
re-implementation and pre-trained weights of the EfficientNet [TL19] architecture. For
training, we used a Stochastic Gradient Decent optimizer with a learning rate of 0.1
and reduction of learning rate by a factor of 0.1 every 30 epochs with a momentum of
0.9. The learning rate reduction was inspired by He et al. [He+16]. A batch size of
40 was used on a single Nvidia GeForce RTX 2080 TI with 11 GB GDDR-6 memory.
We trained for a minimum of 150 epochs and used an early stopping policy based on
the accuracy after. Similar model checkpoints were created for an increased validation
accuracy. For optimizing the training, we used a mixed precision approach by training
using 16bit float with a 32bit float batch-norm and master weights. A gradient clipping
of 0.5 prevented gradient and loss overflows.
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3.4 Experiments

In this section, we present the datasets that we used in our evaluation of our action
recognition approaches. Further, we give an overview of the most common evalua-
tion protocols. We conducted experiments on 8 different datasets. The NTU RGB+D
120 [Liu+20a], UTD-MHAD [CJK15], ARIL [Wan+19a] and the Simitate [Mem+19a]
dataset. These datasets contain in total 4 modalities. In addition to the original pub-
lication we experimented on other datasets that demonstrate generalization capabilities
across various applications, setups and number of classes. Those datasets are the ETRI-
Activity-3D [Jan+20], Toyota Smarthome [Das+19], UAV-Human [Li+21] and the Ki-
netics 400 [CZ17] datasets. Skeleton sequences are evaluated on the recently released
NTU RGB+D 120 [Liu+20a] and the UTD-MHAD dataset [CJK15]. The NTU RGB+D
120 dataset demonstrates the scaling capabilities of our approach as it contains 120
classes in more than 114000 sequences. The UTD-MHAD dataset [CJK15] provides
27 classes but includes IMU data beside the skeleton estimates. Therefore, it is suitable
to demonstrate the cross modal capabilities of our approach. We further use it for our
fusion experiments. We further executed experiments on activity recognition datasets
containing Wi-Fi CSI fingerprints [Wan+19a] and Motion Capturing data from the Sim-
itate [Mem+19a] dataset. The ETRI-Acftivity-3D and Toyota Smarthome dataset have
a focus on assisted living for elder people in a smarthome. The UAV-Human dataset
shows applicability from an UAV perspective and the Kinetics 400 dataset is used for
highly varying videos sourced from YouTube and further contains 400 different action
classes. For our experiments, we generated the representations of the datasets prior and
used an EfficientNet-B2 [TL19] architecture for classification. AIS in the tables de-
notes the additional augmentation of the training signals in image space. Results are
compared to other approaches in the Results Section 3.4.3.

3.4.1 Evaluation Protocols

Common proposed protocols for the evaluation of action recognition approaches are
the cross-setup (see Fig. 3.6) and cross-subject (see Fig. 3.7) protocols. The cross-setup
protocol aims at benchmarking the generalization capabilities across different setups
in terms of varying camera or subject positions, varying backgrounds and locations.
In the NTU RGB+D 120 dataset for instance are 32 different setups are used to build
the dataset [Liu+20a]. In this thesis, we denote cross-view protocols as cross-setup
protocols, but state at the relevant positions also the protocol name from the original
dataset. Cross-setup protocols are contained in the NTU RGB+D 60 [Sha+16] and
NTU RGB+D 120 [Liu+20a], the MMAct [Kon+19], the Toyota Smarthome dataset
[Das+19]. Examples for cross-setup protocols are given in Fig. 3.6.

Commonly, half of the setups is used for training and the remainder for testing. The
cross-subject evaluation protocol in contrast aims at testing the generalization capabil-
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(a) Varying camera positions (b) Varying subject positions

Figure 3.6: An evaluation following the cross setup protocol. An example is given in (a), e.g.,
when trained on the green camera and tested on the blue and red cameras. The cross setup also
translates to subject locations (b) , e.g., when trained on positions for green and tested on blue
and red.

(a) (b)

Figure 3.7: An evaluation following the cross subject protocol trains on a set of subjects and
tests on a set of unseen subjects. In this example, the colors in (a) and (b) denote different
subjects.

ities of a model in terms of varying subjects. Datasets containing a cross-subject pro-
tocol are the UTD-MHAD [CJK15], the NTU RGB+D 60 [Sha+16] and NTU RGB+D
120 [Liu+20a], the ETRI dataset[Jan+20], the Toyota Smarthome dataset [Das+19], the
UAV-Human [Li+21]. Examples for cross-subject protocols are given in Fig. 3.7.
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3.4.2 Datasets

Table 3.2: Action recognition datasets used in the experiments. Note: * denotes datasets on
which experiments were conducted after the initial publication, 1 denotes that these datasets
were used for our CNN based action recognition and 2 for our GCN based action recognition
approaches. For the Kinetics 400 dataset, where denoted with 3 we use the pose-features as
pre-calculated in [YXL18].

Dataset Splits Modalities Classes Subjects Setups Samples

UTD-MHAD1,2 [CJK15] Subject RGB+D, Skl, IMU 27 8 1 861

NTU RGB+D 1201[Liu+20a] Subject, Setup RGB+D, Skl, IR 120 106 32 114,480

Toyota Smarthome*,1 [Das+19] Subject, Setup RGB, Skl 31 18 8 16,129

ETRI Activity*,1 [Jan+20] Subject RGB+D, Skl 55 100 - 112,620

UAV-Human*,1 [Li+21] Subject RGB, Skl 155 119 - 67.428

ARIL1[Wan+19a] 80/20 Wi-Fi 6 - 16 1,394

Simitate1 [Mem+19a] 80/20 RGB+D, MoCap 27 8 - 1,938

Kinetics 400*,1[CZ17; YXL18] 92/83 RGB, Skl3 400 - - 260.0003

In the following, the datasets on which the experiments were performed are intro-
duced. We aim at showing generalization capabilities of our approach across different
sensor modalities and various applications. Therefore we experimented on 8 containing
4 different modalities. We use the datasets listed in Table 3.2 in our experiments.

NTU RGB+D 60 / NTU RGB+D 120

The NTU RGB+D 120 [Liu+20a] dataset is a large-scale action recognition dataset
containing RGB+D image streams and skeleton estimates. In contrast to the first NTU
RGB+D 60 version of the dataset which contained 56880 sequences with 60 classes,
the extended NTU RGB+D 120 dataset consists of 114,480 sequences containing 120
action classes from 106 subjects in 155 different views. Cross-view and cross-subject
splits are defined as protocols. For the cross-subject evaluation, the dataset is split into
53 training subjects and 53 testing subjects, as reported by the dataset authors [Liu+20a].
For the cross-setup evaluation, the dataset sequences with odd setup IDs are reserved,
while the remainder is used for training. Resulting in 16 setups used during training and
16 used for testing. We report results on both versions with both cross subject and cross
view splits.

UTD-MHAD

This dataset [CJK15] contains 27 actions of 8 individuals performing 4 repetitions each.
RGB-D camera, skeleton estimates and inertial measurements are included. The RGB-
D camera is placed frontal to the demonstrating person. The IMU is either attached
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at the wrist or the leg during the movements. A cross-subject protocol is followed as
proposed by the authors [CJK15]. Half of the subjects are used for training, while the
other half is used for validation. This dataset is a great candidate because it contains
various data modalities and also allows fusion experiments. Because of its different
modalities, we use it for experiments on skeleton, inertial and fused data.

ARIL

This dataset [Wan+19a] contains Wi-Fi Channel State Information (CSI) fingerprints.
The CSI describes how wireless signals propagate from the transmitter to the receiver.
A standard IEEE 802.11n Wi-Fi protocol was used to collect 1398 CSI fingerprints for
6 activities. The data is varying by location. The 6 classes represent hand gestures hand

circle, hand up, hand cross, hand left, hand down, and hand right targeting the control
of smart home devices. For our experiments, we use the same train/test split as was used
by the authors of the dataset (1116 train sequences / 278 test sequences).

Simitate

The Simitate [Mem+19a] benchmark focuses on robotic imitation learning tasks. Hand
and object data are provided from a motion capturing system in 1932 sequences con-
taining 27 classes of different complexity. The individuals execute tasks of different
kinds of activities, from drawing motions with their hand-over to object interactions and
more complex activities like ironing. This dataset is interesting as we can fuse human
and object measurements from the motion capturing system to add context information.
Good action recognition capabilities will allow direct application to symbolic imitation
approaches. We use an 80/20 train/test split for our experiments.

ETRI

The ETRI-Activity3D [Jan+20] dataset consists of 112,620 samples containing 55 ac-
tivity classes recorded from 100 subjects. The activities were chosen visiting elderly
people above the age of 70, in 53 homes, observing the most frequent activities. The
dataset was then constructed from two age groups. The first group consists of 50 elderly
people aged between 64 aged 88 years in order to gather realistic inter-class variation of
the actions. The second group consists of 50 younger subjects in their 20s.

Toyota Smarthome

The Toyota smarthome [Das+19] dataset provides more than 16.000 RGB-D sequences
separated into 31 action classes performed by 18 elderly people in a smarthome. In
contrast to datasets like, e.g., NTU or the UTD-MHAD dataset, the Toyota smarthome
dataset is completely unscripted. In total, 3 different scenes observed with 7 cameras
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are provided. This dataset has practical classes like take pills to assist elder people
in smartly in their daily live. Cross-subject and cross-view protocols are proposed as
protocols.

UAV-Human

The UAV-Human benchmark [Li+21] aims at various challenges in understanding hu-
man behavior from unmanned aerial vehicles. In this work, we concentrate on the action
recognition task, which contains 67,428 multi-modal video sequences with 119 sub-
jects. In total, 115 different action classes are divided into 6 categories (daily activities,
productive activities, violent activities, social interaction behaviors, life-saving activi-
ties and UAV control gestures). The UAV was equipped with a night vision, a fish-eye
and an Azure Kinect DK RGB-D camera. The provided skeleton-data originates from
the Region Multi-person Pose Estimator (RMPE) [Fan+17b]. Two cross-subject based
evaluation protocols are proposed (CSv1, CSv2). They differ in the subject IDs used for
training and testing. Both protocols use 89 subjects for training and 30 for testing.

Kinetics 400

The Kinetics 400 [CZ17; Kay+17] dataset is an interesting dataset for large-scale eval-
uation. The dataset consists of 400 classes, with at least 400 samples per class from
YouTube videos. Videos were obtained by matching video titles and action list and then
verified by a manual label process. The dataset is especially interesting because of the
unconstrained setup and the large scale. However, the videos can disappear over time,
leading to a changing dataset over time. In our work, however, we use the pre-calculated
pose features from Yan et al. [YXL18] for 260.000 sequences that remain available even
if the original videos might disappear.

3.4.3 Results

We did our best to include results from the most recent approaches for comparison.
We found that the proposed representation on a signal level archived good perfor-
mances across different modalities. An improvement of +6.8% over the baseline has
been achieved on a Wi-Fi CSI fingerprint-based dataset [Wan+19a]. Augmentation has
shown a positive impact on the resulting accuracy across modalities. The resulting
model based on an EfficientNet-B2 performs well in interpreting spatial relations on the
color encoded signals across the experiments. Results denoted with * have been added
after the initial publication of our approach.

NTU RGB+D 120 For the NTU RGB+D 120 dataset, we give results in Table 3.3.
Related results are taken from literature [Liu+20a; Cae+19; Pap+20; Che+20; Son+21].



50 CHAPTER 3. ACTION RECOGNITION FOR VARIOUS SENSORS

(a) Cross Subject (b) Cross Setup

Figure 3.8: Confusion matrices for the NTU RGB+D 120 dataset for both, the cross setup and
cross subject, splits.

A skeleton with 25 joints serves as input for the training of our model. In case multi-
ple identities are contained, they are fused with the presented signal fusion approach.
We got a cross-subject accuracy of 70.8% and a cross-view accuracy of 71.6% for our
sparse representation. For the dense representation, we yield an accuracy of 80.0% for
the cross-subject protocol and 82.0% for the cross-view split. For both dense mod-
els, results without investment of dataset-specific model tuning are reported. Confusion
matrices for both splits, using the dense representation without additional augmenta-
tion, are shown in Fig. 3.8. Even so, the splits are quite different, the resulting models
face issues with similar classes. Intuitively, when considering sequential data, LSTM
based approaches are considered. We highly outperform the LSTM based approaches
[Sha+16; Liu+16a; Liu+17b; Liu+18b]. More directly comparable are CNN based ap-
proaches [LLC17; Ke+18; LY18; CBS19; Cae+19]. All the mentioned approaches con-
centrate on finding representations limited to skeleton or human pose features, while
our approach considers action recognition on a signal level and therefore is transferable
to other modalities as well. The discriminative representation we suggest comes clos-
est to the one by Liu et al. [LLC17]. With the proposed augmentation method and the
EfficientNet-B2 based architecture, we outperform the current CNN based approaches
by +2.9% (cross-subject), +4.6% (cross-view)with the sparse representation. Using the
dense representation, we improve over the TSRJI CNN baseline by +12.1% (cross-
subject) and +19.2% (cross view). In that case, our approach performs better on the
cross view protocol in contrast to some related CNN-based approaches (TSRIJ, Skele-
Motion, Multi-Task CNN) approaches that show higher accuracies on the cross-subject
split than on the cross-view split. Papadopoulos et al. [Pap+20] presented an approach
based on a graph convolutional network that performs 5.7% better on the cross-subject
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Table 3.3: Results on NTU RGB+D 120. Units are in %.

Approach CS CV

Part Aware LSTM [Sha+16] 25.5 26.3

Soft RNN [Hu+19] 36.3 44.9

Spatio-Termoral LSTM [Liu+16a] 55.7 57.9

GCA-LSTM et al. [Liu+17b] 58.3 59.2

Skeleton Visualization (Single Stream) [LLC17] 60.3 63.2

Two-Stream Attention LSTM [Liu+18b] 61.2 63.3

Multi-Task CNN with RotClips [Ke+18] 62.2 61.8

Body Pose Evolution Map [LY18] 64.6 66.9

SkeleMotion [Cae+19] 67.7 66.9

TSRJI [CBS19] 67.9 62.8

Ours (Sparse, AIS) 70.8 71.6

ST-GCN + AS-GCN w/DH-TCN [Pap+20] 78.3 79.2

Ours (Dense)* 80.0 82.0

4s Shift-GCN [Che+20]* 85.9 87.6

Efficient-GCN-B4[Son+21]* 88.7 89.1

split and 8% better on a cross-view split than our approach with the sparse represen-
tation. With the dense representation, we perform better than the ST-GCN-based ap-
proach by Papadopoulos et al. [Pap+20]. Recent advances in GCN-based approaches
for skeleton-based action recognition outperform our approach by a large margin, like
the 4s Shift-GCN [Che+20] and the Efficient-GCN-B4 [Son+21]. All the approaches
we compared to focus on the recognition for a single modality, whereas our approach
shows good results while generalizing well to other modalities.

UTD-MHAD Results on the UTD-MHAD dataset are shown in Table 3.4. We com-
pare our approach to the baseline of the authors as well as a more recent approach
[Zha+19b; Wan+18a]. While Zhao et al. [Zha+19b] perform better than our proposed
approach, we get slightly better results than Wang et al. [Wan+18a] and further have
the benefit of being applicable on other sensor modalities. It is to note that the per-
fect accuracy of 100.0% in [Zha+19a] was falsely reported on a similar named dataset.
Fused experiments are executed by fusing skeleton estimates and inertial measurements
Sfused = (Sskeleton|Sinertial). We improve the UTD-MHAD inertial baseline [CJK15]
by +14.4% using the sparse representation with augmentation and an additional +3.3%
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(a) Inertial (b) Skeleton (c) Fused

Figure 3.9: Confusion matrices for the UTD-MHAD dataset.

Table 3.4: Results on UTD-MHAD. Units are in %.

Approach Accuracy

Zhao et al. [Zha+19b] 92.8

Wang et al. [Wan+18a] 85.8

Chen et al. (Kinect DMMs) [CJK15] 66.1

Chen et al. (Inertial) [CJK15] 67.2

Chen et al. (Fused) [CJK15] 79.1

Liu and Yuan [LY18] 94.5

Ours (Sparse, Skeleton) 91.1

Ours (Sparse, Skeleton, AIS) 93.3

Ours (Sparse, Inertial) 72.9

Ours (Sparse, Inertial, AIS) 81.6

Ours (Sparse, Fused) 76.1

Ours (Sparse, Fused, AIS) 86.5

Ours (Dense, Skeleton)* 91.6

Ours (Dense, Skeleton, AIS)* 91.8

Ours (Dense, Inertial)* 84.9

Ours (Dense, Inertial, AIS)* 80.5

Ours (Dense, Fused)* 91.5

Ours (Dense, Fused, AIS)* 91.9
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Figure 3.10: Confusion matrix for the ARIL dataset.

using the dense representation without augmentation. Our approach is outperformed by
the approach from Liu and Yuan [LY18] which follows a posemap evolution method.
This approach operates on additionally calculated pose features and omits the original
skeleton estimates. For the inertial data, we improve the baseline by +8.8% for IMU
data and +10.3% for the fusion with the proposed augmentation methods. Fusion in our
experiments did not have an overall positive effect. The inertial measurements seem to
negatively bias the predicted action. Additional sensor confidence encoding could guide
future research. The dense representation improves the over the sparse representation
for the fusion and inertial experiments. Additional augmentation did only slightly im-
prove most of the results, and for the experiments using only the inertial measurements
the results were impacted negatively. In Fig. 3.9 we give the confusion matrices for
the individual experiments on inertial data, skeleton data and the fusion of both on the
dense representation. Interesting to note that for the fused experiments in Fig. (c) the
confusion for classes a4 and a19 on the skeleton data (see Fig. 3.9b) and a3 and a19

on the inertial data (see Fig. 3.9a) are completely solved. These actions consist of fast,
repeating, right hand movements (a3: right hand wave, a4: two hand front clap, a19:
right hand knock on door).

ARIL The experiments we conducted on the ARIL dataset are compared to a 1D-
ResNet CNN [Wan+19a] architecture proposed by the datasets authors. Results are
presented in Table 3.5. Our approach, using the sparse representation, performs better
by +3.1% and the additional proposed augmentation methods improved the baseline by
+6.8%. The dense representation improves over the sparse representation by an addi-
tional improvement of 3%. Wi-Fi CSI fingerprints have the benefit of being separated



54 CHAPTER 3. ACTION RECOGNITION FOR VARIOUS SENSORS

Table 3.5: Results on ARIL dataset. Units are in %.

Approach Accuracy

Wang et al. [Wan+19a] 88.1

Ours (Sparse) 91.2

Ours (Sparse, AIS) 94.9

Ours (Dense)* 97.9

Ours (Dense, AIS)* 96.7

Figure 3.11: Confusion matrix for the Simitate dataset.

by their 52 bands already. Signal reduction is therefore not necessary. The additional
proposed augmentation methods increase the accuracy by another 3.7% for the sparse
representation. In contrast, no further enhancements were achieved by the additional
augmentation on the dense representation. The highest accuracy in our experiments
was achieved with the unaugmented dense representation, which improved 1D-ResNet
baseline by +9.8% and over the sparse representation +6.7%. The confusion matrix
shown in Fig. 3.10 supports that the approach performs well on all classes included in
the dataset. This dataset is used to show our action recognition capabilities for Wi-Fi
CSI fingerprints.
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Table 3.6: Results on Simitate. Units are in %.

Approach Accuracy mpcA

Ours (Sparse, Raw) 95.72 89.15

Ours (Sparse, AIS) 96.11 90.83

Ours (Dense, Raw)* 95.96 84.57

Ours (Dense, AIS)* 93.58 85.08

Simitate On the Simitate dataset, a high accuracy is achieved on an 80/20 train/test
split. Results are given in Table 3.6. We give the overall accuracy and the mean per
class accuracy, as the classes are imbalanced. Augmentation of this dataset yields only
a minimal improvement. This dataset is especially interesting for adding context. In
addition to the hand poses, the object poses can be added by our proposed signal fusion
approach. As of now, there are no comparable results published. But the results suggest
applicability for symbolic imitation approaches in the future. The mean per class accu-
racy, denoted as mpcA is generally lower, and demonstrates that classes with a lower
number of samples have a slightly lower performance. In our experiments, the sparse
representation yields in general a higher mpcA, suggesting that this representation per-
forms better for underrepresented classes. In this experiment, the augmentation has a
positive effect on the sparse representation, while results are negatively influenced for
the dense representation. The number of motion capturing markers tracked are lower
than the skeleton joints and depending on the number of interacting objects are similar
to the number of inertial axes. The overall best result is achieved for an unaugmented
sparse representation. However, this representation is not performing significantly bet-
ter than the dense counterpart.

ETRI-Activity-3D The ETRI-Activity-3D and the following datasets are included to
show generalization capabilities over various applications. For the following datasets,
we focus on experiments with the dense representation. Results for our experiments
with the ETRI-Activity-3D dataset are given in Table 3.7 and the confusion matrix for
the dense representation in Fig. 3.12. Our approach yields en-par results with the four
stream [Jan+20] approach proposed by the dataset authors, with additional rotation aug-
mentation our approach reaches state-of-the-art performance on the ETRI-Activity-3D
dataset. Only skeleton sequences in a single stream have been used in our experiments,
suggesting superior performance of the simple EfficientNet architecture over more com-
plex multi-stream architectures that simultaneously train additional spatial, short- and
long-term temporal feature extractors. The most confused classes are similar classes
28 (washing a towel by hands) and 11 (washing hands) 22 (washing dishes). Note, our
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Figure 3.12: Confusion matrix for the ETRI-Activity-3D dataset.

Approach Accuracy [%]

Beyond Joint [WW18] 79.1

SK-CNN [Cao+19] 83.6

ST-GCN [YXL18] 86.8

Motif ST-GCN [Wen+19] 89.9

Ensem-NN [Xu+18] 83.0

MANs [Liu+21a] 82.4

HCN [Li+18] 88.0

FSA-CNN [Jan+20] 90.6

Ours (dense) 90.7

Ours (dense, AIS) 91.1

Table 3.7: Action recognition results on the ETRI-Activity-3D dataset.

approach encodes only skeleton sequences. To distinguish between those classes addi-
tional visual clues, to encode the presence and type of interacting object, could be fused
into the representation for further improvement.

Toyota Smarthome A confusion matrix of a complete model trained with the dense
representation after 150 epochs is given in Fig. 3.13. Reasonable errors appear with the
similar subclasses of e.g., cooking, drinking, and eating as the representation encodes
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Figure 3.13: Toyota Smarthome, Dense Representation, 150 epochs.

Approach CS mpcA [%]

Dense Trajectories [SYS14] 41.9

LSTM [MT16] 42.5

Ours (Dense) 53.2

I3D [CZ17] 53.4

I3D [CZ17] + NL [Wan+18c] 53.6

Separable-STA [Das+19] 54.2

AssembleNet++[Ryo+20] 63.6

Table 3.8: Toyota Smarthome action recognition results. mpcAs are given.

only joint movement and lacks information about the interacting objects.
Results are given in Table 3.8. As the dataset is unscripted, the number of class sam-

ples per class has a high variance, therefore the mean per-class accuracy is proposed as
a metric for comparison. Our approach, despite using only skeleton sequences as input,
outperforms the LSTM-based approach by Mahasseni and Todorovic [MT16] which
also utilizes only the skeleton sequences and the dense trajectory approach which relies
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Figure 3.14: Confusion matrix for the UAV-Human dataset, using the dense representation, after
150 epochs, with additional augmentation.

on densely matched features [MT16]. Our approach yields comparable performance to
the inflated 3D-CNN approach [CZ17], which operates on the video sequences. The
Separable-STA [Das+19] approach improves the I3D approach by additionally guiding
the training process with skeleton sequences. The AssembleNet++ [Ryo+20] approach
operates on RGB sequences and aims at learning interactions between the objects and
the other raw inputs with a supporting peer-attention module. Also, for these experi-
ments, the encoding of additional visual clues for the interacting objects would be re-
quired for further enhancements.

UAV-Human Results using the dense representation after a training of 150 epochs are
given in Table 3.9 and the corresponding confusion matrix for the augmented results in
Fig. 3.14. Note, the legend scales only to approximately 0.6, highlighting that none of
the classes achieve a particular high per class accuracy. In the experiments, we focus
on the CSv1 split, which has a higher variance in the execution of the actions for test-
ing an training. Multiple similar classes show increased confusion. Also interesting to
highlight is the near-center block in the confusion matrix, where the action classes (74
- 98) for multi-person actions are contained. Our approach is separating these classes
quite well from other classes. We experiment with single-person representations and
two-person representations for actions where multiple people interact. Our approach
outperforms the ST-GCN [YXL18] approach but performs worse than recent improve-
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Approach Accuracy (CSv1) [%]

DGNN [Shi+19a] 29.90

ST-GCN [YXL18] 30.25

Ours (Dense) 31.73

Ours (Dense, AIS) 33.45

Ours (Dense, 2 persons) 32.90

Ours (Dense, 2 persons, AIS) 34.40

2S-AGCN [Shi+19b] 34.84

Hard-Net [Li+20b] 36.97

Shift-GCN [Che+20] 37.98

Table 3.9: Action recognition results for the UAV-Human dataset.

Table 3.10: Action recognition results on the Kinetics-400 dataset. Top 1 and Top 5 accuracies
are given in %.

Approach Top 1 Top 5

Feature Enc. [Fer+15] 14.9 25.8

Deep LSTM [Sha+16] 16.4 35.3

Temporal Conv. [KR17] 20.3 40.0

Ours (Dense) 22.7 41.7

Ours (Dense, AIS) 24.1 43.1

ST-GCN [YXL18] 30.7 52.8

2s-AGCN [Shi+19b] 36.1 58.7

ments to the ST-GCN approach [Shi+19b; Li+20b; Che+20].

Kinetics 400 Results for the Kinetics 400 dataset, using the pre-generated pose feature
from Yan et al. [YXL18], are shown in Table 3.10. This dataset is especially challeng-
ing as it has 400 different action classes and consists of highly varying videos sourced
from YouTube. The results reported on this dataset are reported for the dense rep-
resentation for 150 epochs. Augmentation improved the results by +1.4%. Our ap-
proach performs significantly better than the LSTM-based approach [Sha+16], and the
temporal-convolution based approach [KR17]. However, GCN-based approaches per-
form significantly better than our CNN based approach. Our approach is outperformed
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Figure 3.15: Kinetics-400 confusion matrix.

by the ST-GCN [YXL18] and the 2s-AGCN [Shi+19b] approaches, suggesting that the
GCN-based model scales better with larger amounts of classes. Samples from the Ki-
netics 400 dataset have large variances in their sequence length, this is currently an
constraint of our approach as we scale the input sequences to a fixed length to pass it
then to the CNN. The confusion matrix is shown in Fig. 3.15. Visual cues could also
improve the action recognition accuracy. All the reported results, from Table 3.10, have
the same data-basis and therefore none of the listed approaches has visual information
encoded.

Sensor Modality Generalization Table 3.11 gives results for different modalities and
different datasets relating to other ex excerpt of related methods. Our approach achieves
good accuracies across the different datasets and different splits. It does not necessarily
compete with recent GCN-based approaches for skeleton-based action recognition, but
competes very well with CNN-based action recognition methods, while still generaliz-
ing well to various other sensor modalities. Our approach is the only one adapting to
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Table 3.11: Action recognition results on four different datasets. Accuracy in [%] is given.

NTU 60 NTU 120 UTD-MHAD Simitate ARIL

Approach Type CS CV CS CV RGB Skl IMU Fused MoCap Wi-Fi #

Ours (Sparse) CNN - - 70.8 71.6 - 93.3 81.6 86.5 96.1 94.9 4

Ours (Dense) CNN 83.3 81.7 80.0 82.0 - 93.9 80.6 96.0 96.0 97.9 4

Imran et al. [IR20] CNN+RNN - - - - 83.5 93.5 86.5 97.9 - - 3

Ehatisham et al. [Eha+19] HOG - - - - 85.2 - 91.6 98.3 - - 2

Liu et al. [Liu+16a] LSTM 69.2 77.7 55.7 57.9 - - - - - - 1

Liu et al. [LLC17] CNN 80.0 87.2 60.3 63.2 - - - - - - 1

Liu et al. [Liu+20b] GCN 91.5 96.2 86.9 88.4 - - - - - - 1

Wang et al. [Wan+19a] CNN - - - - - - - - - 89.6 1
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generalize across 4 different sensor modalities without major adoptions. For the UTD-
MHAD we got the highest accuracy on skeleton sequences, and improve by a high
margin over the fused accuracy with the dense representation. Individual architectures
per modality potentially lead to higher recognition accuracies [IR20; Eha+19]. How-
ever, we claim that our approach simplifies the action recognition training and inference
by a common architecture for all modalities and relieve the need for individual streams
per modality. For motion capturing experiments, we compared sparse and dense repre-
sentation, that perform comparably well. Similar to the Wi-Fi experiments, we perform
better as the baseline 1D-ResNet CNN approach by Wang et al. [Wan+19a] and perform
comparably well to the augmented results of sparse representation. For the fusion ex-
periments, we decided to use an early fusion method to avoid multiple network-streams
to be trained individually. Fusion is done by concatenating the signal matrices after
sub-sampling the higher frequent modality. The fusion with the dense representation
performs much better than the fusion with the sparse representation. For the Simitate
dataset, we could add object context by fusing the interacting objects to the hand pose
measurements. A late fusion method might improve the fusion, however will add com-
plexity to the overall model by introducing individual network streams. Our approach
mostly benefits by its simplicity and wide variety of supported modalities over the cur-
rent available action recognition approaches. Our approach can not compete directly
with the most recent approaches for skeleton-based action recognition like [Shi+19b],
but generalizes across various modalities. Further, our approach still achieves a quite
high accuracy for both the cross-view and cross-setup accuracy, even outperforming the
earlier graph convolutional neural networks [Pap+20; YXL18] on some experiments.

Discussion Most approaches focus on getting high accuracy on a single modality,
whereas our approach on a signal level serves as an interesting framework for multi-
modal action recognition. In total, we have shown good results across 4 modalities
(Skeleton, IMU, Motion Capturing System, Wi-Fi). To the authors’ knowledge, no ex-
periment with a similar extent is known. A benefit is the common representation that
allows immediate prototyping. Run times are constant, even when additional context
or sensors are added due to the representation level fusion. The EfficientNet-B2 archi-
tecture serves as a good basis for action recognition on our representation. Additional
augmentation has improved the accuracy across the conducted experiments.

3.5 Conclusion

This chapter proposes to transform individual signals of different sensor modalities and
represent them as an image, either with a sparse or dense representation. The resulting
images are then classified using an EfficientNet-B2 architecture. The signal level for-
mulation has shown to be sufficient for generalization across various sensor modalities
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for action recognition. This contrasts with many previously proposed approaches that
often focus on action recognition on a single modality. Our approach was evaluated on
action recognition datasets based on skeleton estimates, inertial measurements, motion
capturing data and Wi-Fi CSI fingerprints on a wide set of public available datasets. To
the best of our knowledge, there is no other approach contesting such a broad general-
ization across various sensor data modalities. For skeleton data, we represent each joint
and their respective axis as individual signals. For Wi-Fi , we used each of the 52 CSI
fingerprint channels as signals. For inertial measurement units, we used each axis of the
acceleration and angular velocity. For our motion capturing experiments, we used each
axis of the marker attached to the hand and the interacting objects. Additional context
like subjects and object estimates or even the fusion of different modalities can be flex-
ibly added by a matrix concatenation. As our approach is limited to sparse signals, we
propose filtering methods on a signal level to reduce signals that do not contribute much
to the action. By this, additional information can be added without overloading the
image representation. We evaluated our approach on four different datasets: the NTU
120 dataset for skeleton data, the UTD-MHAD dataset for skeleton and inertial data, the
ARIL dataset for Wi-Fi data and the Simitate dataset for motion capturing data. To show
better generalization across various applications, we also experimented with the Toyota
Smarthome, the ETRI-Activity-3D, the Kinetics 400 and the UAV-Human dataset.

We found that our approach achieves action recognition en-par with current state-of-
the-art approaches on datasets like the ETRI-Activity-3D. With the introduction of many
more classes like up to 400 on the Kinetics-400 dataset, our approach is outperformed
by recent GCN-based approaches for skeleton-based action recognition. However, our
approach targets better generalization across various sensor modalities in the first place.
The experimental results show that our approach is achieving good results across the
different sensor modalities.





Chapter 4

Multi-Modal Action Recognition using

Graph Convolutional Networks

In contrast to the previous chapter (Chapter 3), which focused on action recognition
on various sensor data modalities using CNNs, this chapter presents Fusion-GCN, an
approach for multimodal action recognition using a GCN.

GCNs have recently shown state-of-the-art performance for skeleton-based action
recognition, but are currently widely neglected as the foundation for the fusion of vari-
ous sensor modalities. Therefore, we propose to incorporate additional modalities like
IMU or RGB features into a skeleton-graph, either on a channel- or spatial dimension.
On a channel dimension, modalities are fused by introducing additional node attributes.
On a spatial dimension, additional nodes are incorporated to the skeleton-graph. We
evaluated our approach on two publicly available datasets: the UTD-MHAD dataset
and the MMAct dataset. Most notably, Fusion-GCN improves the current baseline on
the MMAct dataset significantly with the fusion of skeleton-estimates and accelerome-
ter measurements from a smart-watch. We argue that Fusion-GCN can influence future
fusion approaches on the basis of graph convolutional neural networks.

This chapter is based on our work presented in [DMP21]. This publication was writ-
ten in cooperation with Michael Duhme and represents an improved version of his mas-
ter thesis supervised by me. Michael Duhme contributed significantly to the technical
realization, the experiments and the writing. I contributed significantly to the research
idea and the literature review.

4.1 Introduction

Automatic Human Action Recognition (HAR) is a research area that is utilized in var-
ious fields of application where human monitoring is infeasible due to the amount of
data and scenarios where quick reaction times are vital, such as surveillance and real-

65
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(a) Appended to center joint (b) Appended to right wrist/hip

Figure 4.1: Showing the skeleton as included in UTD-MHAD. IMU nodes are either appended
to the central node (neck) or to both the right wrist and right hip. Two additional representations
arise when all newly added nodes are themselves connected by edges.

time monitoring of suspicious and abnormal behavior in public areas [Niu+04; Hu+07;
NYK09; TJA18] or intelligent hospitals and healthcare sectors [Gao+18; Duo+05] with
scenarios such as fall detection [Nou+07; ST17], detection of potentially life-threatening
situations [Duo+05], and monitoring of medication intake [Huy+09]. Additional areas
of applications include video retrieval [RY16], robotics [Ryo+15], smart home automa-
tion [Kot+19], and autonomous vehicles [ZBX18]. In recent years, approaches based on
neural networks, especially GCNs like ST-GCN [YXL18] or 2s-AGCN [Shi+19b], have
achieved state-of-the-art results in classifying human actions from skeleton sequences.

GCNs can be seen as an extension to CNNs that work on graph-structured data
[KW17]. Its network layers operate by including a binary or weighted adjacency ma-
trix, that describes the connections between each of the individual graph nodes. As of
now, due to their graph-structured representation in the form of joints (graph nodes)
and bones (graph edges), research for HAR using GCNs is mainly limited to skeleton-
based recognition. However, the fusion of additional modalities into GCNs models are
currently neglected. For that reason, taking skeleton-based action recognition as the
foundation, our objective is to research possibilities of incorporating other vision-based
modalities and modalities from worn sensors into existing GCN models for skeleton-
based action recognition through data fusion and augmentation of skeleton sequences.
Fig. 4.1 provides an example of two suggestions on how inertial measurements can be
incorporated into a skeleton graph. To the best of our knowledge, Fusion-GCN is the
first approach proposing to flexibly incorporate additional sensor modalities into the
skeleton graph for HAR. We evaluated our approach on two multimodal datasets, UTD-
MHAD [CJK15] and MMAct [Kon+19].
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The contributions of this chapter can be summarized as:

• We propose the fusion of multiple modalities by incorporating sensor measure-
ments or extracted features into a graph representation. The proposed approach
significantly lifts the state-of-the-art on the large-scale MMAct dataset.

• We propose modality fusion for GCNs on two dimensionality-levels: (a) the fu-
sion at a channel dimension to incorporate additional modalities directly into the
already existing skeleton nodes, (b) the fusion at a spatial dimension to incor-
porate additional modalities as new nodes spatially connected to existing graph
nodes.

• We demonstrate the applicability of the flexible fusion for various modalities like
skeleton, inertial, RGB data in an early fusion approach.

4.2 Related Work

In this section, we present related work from the skeleton-based action recognition do-
main that is based on GCN and further present recent work on multi-modal action recog-
nition.

Skeleton-based Action Recognition Approaches based on GCNs have recently shown
great applicability on non-Eucliean data [Pen+20] like naturally graph-structure repre-
sented skeletons and have recently defined the state-of-the-art. Skeletons, as provided by
large-scale datasets [Sha+16], commonly are extracted from depth cameras [Sho+11].
RGB images can be transformed into human pose feature that yield a similar skeleton-
graph in 2D [Cao+21; KBA19; Lug+19] and in 3D [Lug+19; Meh+20; Iqb+18]. All
of those approaches output skeleton-graphs that are suitable as input for our fusion ap-
proach as a base structure for the incorporation of additional modalities. The Spatial-
Temporal Graph Convolutional Network (ST-GCN) [YXL18] is one of the first pro-
posed models for skeleton-based HAR that utilizes GCNs based on the propagation rule
introduced by Kipf and Welling [KW17]. The Adaptive Graph Convolutional Network
(AGCN) [Shi+19b] builds on these fundamental ideas with the proposal of learning
the graph topology in an end-to-end-manner. Peng et al. [Pen+20] propose a Neural
Architecture Search (NAS) approach for finding neural architectures to overcome the
limitations of GCN caused by fixed graph structures. Cai et al. [Cai+21] proposes to
add flow patches to handle subtle movements into a GCN. Approaches based on GCN
[Che+20; Pap+20; Son+20a; Li+19a] have been constantly improving the state-of-the-
art on skeleton-based action recognition recently.
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Multi-Modal Action Recognition Chéron et al. [CLS15] design CNN input features
based on the positions of individual skeleton joints. Here, human poses are applied to
RGB images and optical flow images. The pixel coordinates that represent skeleton
joints are then grouped hierarchically starting from smaller body parts, such as arms,
and upper body to full body. For each group, an RGB image and optical flow patch
is cropped and passed to a 2D-CNN. The resulting feature vectors are then processed
and concatenated to form a single vector, which is used to predict the corresponding
action label. Similarly, Cao et al. [Cao+16] propose to fuse pose-guided features from
RGB-Videos. Cao et al. [Cao+18] further, refine this method by using different ag-
gregation techniques and an attention model. Islam and Iqbal [II20] propose to fuse
data of RGB, skeleton and inertial sensor modalities by using a separate encoder for
each modality to create a similar shaped vector representation. The different streams
are fused using either summation or vector concatenation. With Multi-GAT [II21] an
additional message-passing graphical attention mechanism was introduced. Li et al.
[Li+20a] propose another architecture that entails skeleton-guided RGB features. For
this, they employ ST-GCN to extract a skeleton feature vector and R(2+1)D [Tra+18]
to encode the RGB video. Both output features are fused either by concatenation or by
compact bilinear correlation.

The above-mentioned multi-modal action recognition approaches follow a late-fusion
method, that fuse various models for each modality. This allows a flexible per modality
model-design, but comes at the computational cost of the multiple streams that need to
be trained. For early fusion approaches, multiple modalities are fused on a represen-
tation level [MTP20a], reducing the training process to a single model but potentially
loosing the more descriptive features from per-modality models. Kong et al. [Kon+19]
presented a multi modality distillation model. Teacher models are trained separately us-
ing a 1D-CNN. The semantic embeddings from the teaching models are weighted with
an attention mechanism and are ensembled with a soft target distillation loss into the
student network. Similarly, Liu et al. [Liu+21b] utilize distilled sensor information to
improve the vision modality. Luo et al. [Luo+18] propose a graph distillation method
to incorporate rich privileged information from a large-scale multi-modal dataset in the
source domain, and improves the learning in the target domain More fundamentally,
multi-modality in neural networks is recently also tackled by the multi-modal neu-
rons that respond to photos, conceptual drawings and images of text [Goh+21]. Joze
et al. [Joz+20] propose a novel intermediate fusion scheme in addition to early and
late-fusion, they share intermediate layer features between different modalities in CNN
streams. Perez-Rua et al. [Per+19] presented an approach for finding neural architecture
search for the fusion of multiple modalities. To the best of our knowledge, our Fusion-
GCN approach is the first that proposes to incorporate additional modalities directly into
the skeleton-graphs as an early fusion scheme.
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Figure 4.2: Options for fusion of skeleton graph and IMU signal values, viewed as skeleton
nodes. If both skeleton joint coordinates and wearable sensor signals share a common channel
dimension, the skeleton graph can be augmented by simply appending signal nodes at some
predefined location.

4.3 Approach

In the context of multi-modal action recognition, early and late fusion methods have
been established to either fuse on a representation or feature level. We present ap-
proaches for fusion of multiple modalities at representation level to create a single graph
which is passed to a GCN.

4.3.1 Incorporating Additional Modalities Into a Graph Model

Early fusion denotes the combination of structurally equivalent streams of data before
sending them to a larger (GCN) model, whereas late fusion combines resulting outputs
of multiple neural network models. For early fusion, one network handles multiple data
sources which are required to have near identical shape to achieve fusion. As done by
Song et al. [Son+18], each modality may be processed by some form of an encoder to
attain a common structure before being fused and passed on to further networks. Fol-
lowing a skeleton-based approach, for example, by employing a well established GCN
model like ST-GCN or AGCN as the main component, RGB and inertial measurements
are remodeled and factored into the skeleton structure. With Fusion-GCN we suggest
the flexible integration of additional sensor modalities into a skeleton graph by either
adding additional node attributes (fusion on a channel dimension) or introducing addi-
tional nodes (fusion at a spatial dimension). In detail, the exact possible fusion approach
is as follows.

Let XSkl ∈ IR(M×CSkl×TSkl×NSkl) be a skeleton sequence input, where M is the
number of actors that are involved in an action, CSkl is the initial channel dimen-
sion (2D or 3D joint coordinates) and sizes TSkl and NSkl are sequence length and
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number of skeleton graph nodes. An input of shape IR(M×C×T×N) is required when
passing data to a spatial-temporal GCN model, such as ST-GCN. Furthermore, let
XRGB ∈ IR(CRGB×TRGB×HRGB×WRGB) be the shape of an RGB video with channels
CRGB, frames TRGB and image size HRGB × WRGB. For sensor data, the input is de-
fined as X IMU ∈ IR(M×CIMU×SIMU×TIMU), where TIMU is the sequence length, SIMU

is the number of sensors and CIMU is the channel dimension. For example, given
gyroscope and accelerometer with x-, y- and z-values each, the structure would be
SIMU = 2 and CIMU = 3. Similar to skeleton data, M denotes the person wearing
the sensor and its value is equivalent to that of skeleton, that is, MSkl = MIMU. Con-
sidering a multi-modal model using a skeleton-based GCN approach, early fusion can
now be seen as a task of restructuring non-skeleton modalities to be similar to skele-
ton sequences by finding a mapping IR(CRGB×TRGB×HRGB×WRGB) → IR(M×C×T×N) or
IR(M×CIMU×SIMU×TIMU) → IR(M×C×T×N) with some C, T and N . This problem can be
reduced: If the sequence length of some modalities is different, TSkl 6= TRGB 6= TIMU,
a common T can be achieved by resampling TRGB and TIMU to be of the same length
as the target modality TSkl. Early fusion is then characterized by two variants of feature
concatenation to fuse data:

1. Given XSkl and an embedding XE ∈ IR(M×CE×T×NE) with sizes CE and NE

where N = NSkl = NE , fusion at the channel dimension means creating a fused
feature X ∈ IR(M×CSkl×CE×T×N). An example is shown in Figure 4.2b.

2. Given an embedding where C = CSkl = CE instead, a second possibility is fu-
sion at the spatial dimension, that is, creating a feature X ∈ IR(M×C×T×NSkl+NE).
Effectively, this amounts to producing M · T · NE additional graph nodes and
distributing them to the existing skeleton graph at each time step by resizing its
adjacency matrix and including new connections. In other words, the already ex-
isting skeleton graph is extended by multiple new nodes with an identical number
of channels. An example is shown in Figure 4.2c.

The following sections introduce multiple approaches for techniques about the early
fusion of RGB video and IMU sensor modalities together with skeleton sequences by
outlining the neural network architecture.

4.3.2 Fusion of Skeleton Sequences and RGB Video

This section explores possibilities for fusion of skeleton sequences and 2D data modal-
ities. Descriptions and the following experiments are limited to RGB video, but all
introduced approaches are in the same way applicable to depth sequences. As previ-
ously established, early fusion of RGB video and skeleton sequences in preparation for a
skeleton-based GCN model is a problem of finding a mapping IR(CRGB×HRGB×WRGB) →
IR(M×C×N). An initial approach uses a CNN to compute vector representations of
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N · M · T skeleton-guided RGB patches that are cropped around projected skeleton
joint positions. Inspired by the work of Wang and Gupta [WG18] and Norcliffe-Brown
et al. [NVP18], a similar approach involves using an encoder network to extract relevant
features from each image of the RGB video. This way, instead of analyzing N ·M · T
cropped images, the T images of each video are utilized in their entirety. A CNN is used
to extract features for every frame and fuse the resulting features with the corresponding
skeleton graph, before the fused data is forwarded to a GCN. By running this procedure
as part of the training process and performing fusion with skeleton sequences, the in-
tention is to let the encoder network extract those RGB features that are relevant to the
skeleton modality. For example, an action involving an object cannot be fully repre-
sented by merely the skeleton modality because an object is never part of the extracted
skeleton. Objects are only visible in RGB video.

4.3.3 Fusion of Skeleton Sequences and IMU Signals

Fusion of skeleton and data from wearable sensors, such as IMUs, is applicable in the
same way as described in the fusion scheme from the previous section. In preparation
to fuse both modalities, they again need to be adjusted to have an equal sequence length
first. Then, assuming both the skeleton joint coordinates and the signal values have a
common channel dimension C = 3 and because MSkl = MIMU, since all people wear a
sensor, the only differing sizes between skeleton modality and IMU modality are N , the
number of skeleton graph nodes, and S, the number of sensor signals. Leaving aside its
structure, the skeleton graph is a collection of N nodes. A similar understanding can be
applied to the S different sensors. They can be understood as a collection of S graph
nodes (see Figure 4.2a. The fusion of sensor signals with the skeleton graph is therefore
trivial because the shape is almost identical. According to channel dimension fusion as
described in the previous section, the channels of all S signals can be broadcasted to
the x-, y- and z-values of all N skeleton nodes to create the GCN input feature X ∈
IR(M×(1+S)·C×T×N), as presented in Figure 4.2b. The alternative is to append all S signal
nodes onto the skeleton graph at some predefined location to create the GCN input
feature X ∈ IR(M×C×T×N+S), as illustrated in Figure 4.2c. Similar to the RGB fusion
approaches, channel dimension fusion does not necessarily require both modalities to
have the same dimension C if vector concatenation is used. In contrast, the additional
nodes are required to have the same dimension as all existing nodes if spatial dimension
fusion is intended.

4.3.4 Combining Multiple Fusion Approaches

All the introduced fusion approaches can be combined into a single model, as illus-
trated by Figure 4.3. First, the RGB modality needs to be processed using one of the
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Figure 4.3: All described approaches can be flexible fused together for early fusion and passed
to a GCN. Fusion can be realized independent of a channel or spatial fusion dimension. Here
we give an example of a mixed (channel and spatial) fusion.

variants discussed in Section 4.3.2. Ideally, this component runs as part of the super-
vised training process to allow the network to adjust the RGB feature extraction pro-
cess based on the interrelation of its output with the skeleton graph. Similarly, sen-
sor signals need to be processed using one of the variants discussed previously for
that modality. Assuming all sequences are identical in length, to combine the differ-
ent representations, let XSkl ∈ IR(M×CSkl×T×NSkl) be the sequence of skeleton graphs.
For RGB, let XRGB1 ∈ IR(M×CE×T×N) be the CE-sized channel features obtained
from computing individual patch features or feature extraction for the whole image or
XRGB2 ∈ IR(M×C×T×NE) be the RGB feature representing additional graph nodes. Re-
spectively, the two variants of generated IMU features are X IMU1 ∈ IR(M×S·CIMU×T×N)

or X IMU2 ∈ IR(M×CIMU×T×S). The following possibilities to fuse different combina-
tions of these representations arise.

• (XSkl,XRGB1,X IMU1) → XFused ∈ IR(M×CSkl+CE+S·CIMU×T×NSkl) is the feature
when combining modalities at channel dimension by vector concatenation.

• (XSkl,XRGB1,X IMU2) → XFused ∈ IR(M×CSkl+CE×T×NSkl+S) combines skele-
ton with computed RGB features at channel dimension and expands the skeleton
graph by including additional signal nodes. Since CIMU = CSkl, the newly added
nodes also need to be extended to have CSkl + CE channels. In contrast to skele-
ton nodes, there exists no associated cropped patch or RGB value. Therefore, the
remaining CE values can be filled with zeros. Conversely, the same applies when
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replacing XRGB1 with XRGB2 and X IMU2 with X IMU1.

• (XSkl,XRGB2,X IMU2) → XFused ∈ IR(M×C×T×NSkl+NE+S) introduces new nodes
for both RGB and signal modalities. This is accomplished by appending them to
a specific location in the graph.

4.4 Experiments

We conducted experiments on two public available datasets and various modality fusion
experiments. If not stated otherwise we use the top-1 accuracy as reporting metric for
the final epoch of the trained model.

4.4.1 Datasets

We now present the datasets used for the evaluation of the Fusion-GCN approach. The
UTD-MHAD dataset is a great candidate for showing concepts and the MMAct dataset
for generalization on a larger set of samples and more complex actions.

UTD-MHAD The UTD-MHAD dataset has been used in Chapter 3 as well. For bet-
ter readability we introduce briefly re-introduce the dataset here again. UTD-MHAD
[CJK15] is a relatively small dataset containing 861 samples and 27 action classes,
which thereby results in shorter training durations for neural networks. Eight individ-
uals (four females and four males) perform each action a total of four times, captured
from a front-view perspective by a single Kinect camera. UTD-MHAD also includes
gyroscope and accelerometer modalities by letting each subject wear the inertial sensor
on either the right wrist or on the right hip, depending on whether an action is primarily
performed using the hands or the legs. For the following experiments using this dataset,
the protocol from the original paper [CJK15] is used.

MMAct The MMAct dataset [Kon+19] contains more than 35k data samples and 35
available action classes. With 20 subjects and four scenes with four currently available
different camera perspectives each, the dataset offers a larger variation of scenarios.
RGB videos are captured with a resolution of 1920 × 1080 pixels at a frame rate of
30 frames per second. For inertial sensors, acceleration, gyroscope and orientation data
is obtained from a smartphone carried inside the pocket of a subject’s pants. Another
source for acceleration data is a smartwatch, resulting in data from four sensors in total.
For the following experiments using this dataset, the protocol from the original paper
[Kon+19] is used which proposes a cross-subject and a cross-view split. Since skeleton
sequences are missing in the dataset, we create them from RGB data using OpenPose
[Cao+21].
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4.4.2 Implementation

Models are implemented using PyTorch 1.6 and trained on a Nvidia RTX 2080 GPU
with 8GB of video memory. To guarantee a deterministic and reproducible behavior,
all training procedures are initialized with a fixed random seed. Unless stated other-
wise, experiments regarding UTD-MHAD use a cosine annealing learning rate sched-
uler [LH17] with a total of 60 epochs, warm restarts after 20 and 40 epochs, an initial
learning rate of 1e−3 and ADAM [KB15] optimization. Experiments using RGB data
instead run for 50 epochs without warm restarts. Training for MMAct adopts the hyper-
parameters used by Shi et al. [Shi+19b]. For the MMAct, skeleton and RGB features
were extracted for every third frame for more efficient pre-processing and training. The
base GCN model is a single-stream AGCN for all experiments.

4.4.3 Comparison to the State-of-the-Art

We now compare our Fusion-GCN approach with results reported in recent literature
for each of the two datasets. For both datasets we report the accuracy. For the MMAct
dataset, we additionally report the F1-Measure, as described in Section 2.3, to be aligned
with the original dataset metric.

UTD-MHAD Table 4.1 shows a ranking of all conducted experiments in comparison
with other recent state-of-the-art techniques that implement multimodal HAR on UTD-
MHAD with the proposed cross-subject protocol. Without GCNs and all perform better
than the default skeleton-only approach using a single-stream AGCN. Additionally, an-
other benchmark using GCNs on UTD-MHAD does not exist, thus, making a direct
comparison of different approaches difficult. From the listing in Table 4.1, it is clear
that all fusion approaches skeleton and IMU modalities achieve the highest classifica-
tion performance out of all methods introduced in this work. In comparison to the best
performing fusion approach of skeleton with IMU nodes appended at its central node.
MCRL [LKJ19] uses a fusion of skeleton, depth and RGB to reach 93.02% (-1.4%) val-
idation accuracy on UTD-MHAD. Gimme Signals [MTP20a] reach 93.33% (-1.09%)
using a CNN and augmented image representations of skeleton sequences. PoseMap
[LY18] achieves 94.5% (+0.08%) accuracy using pose heatmaps generated from RGB
videos. This method slightly outperforms the proposed fusion approach.

MMAct To show better generalization, we also conducted experiments on the large-
scale MMAct dataset which contains more modalities, classes and samples as the UTD-
MHAD dataset. Note, we only use the cross-subject protocol, the signal modalities can
not be seperated by view. A comparison of approaches regarding the MMAct dataset
is given in Table 4.2. Kong et al. [Kon+19] propose along with the MMAct dataset the
MMAD approach, a multimodal distillation method utilizing an attention mechanism
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Table 4.1: Comparison to the State-of-the-Art on the UTD-MHAD dataset.

Approach Acc

Skeleton 92.32

RGB Patch Features R-18 27.67

RGB Encoder R-18 27.21

R(2+1)D 61.63

Skeleton + RGB Encoder R(2+1)D 91.62

Skeleton + RGB Encoder R-18 89.83

Skeleton + RGB Patch Features R-18 73.49

Skeleton + RGB Patch Features R-18 (no MLP) 44.60

Skeleton + IMU (Center) 94.42

Skeleton + IMU (Wrist/Hip) 94.07

Skeleton + IMU (Center + Add. Edges) 93.26

Skeleton + IMU (Wrist/Hip + Add. Edges) 93.26

Skeleton + IMU (Channel Fusion) 90.29

Skeleton + IMU + RGB Patch Features R-18 78.90

Skeleton + IMU + RGB Encoder R-18 92.33

Skeleton + IMU + RGB Encoder R(2+1)D 92.85

PoseMap [LY18] 94.50

Gimme Signals [MTP20a] 93.33

MCRL [LKJ19] 93.02

that incorporates acceleration, gyroscope, orientation and RGB. For evaluation, they
use the F1-measure and reach an average of 66.45%. Without the attention mechanism,
the approach (MMD) yields 64.33%. An approach utilizing the standard distillation
approach Single Modality Distillation (SMD) yields 63.89%. The current baseline is
set by SAKDN [Liu+21b] which distills sensor information to enhance action recogni-
tion for the vision modality. Experiments show that the skeleton-based approach can
be further improved by fusion with just the acceleration data to reach a recognition
F1-measure of 89.60% (+12.37%). The MMAct dataset contains two accelerometers,
where only the one from the smartwatch yields a mention-able improvement. The most
significant improvement of our proposed approach is yielded by introducing the skele-
ton graph. In contrast, while the fusion approaches of skeleton and all four sensors
do not improve the purely skeleton-based approach of 88.65% (+13.41%), with 85.5%
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Table 4.2: Comparison to the State-of-the-Art on the MMAct dataset.

Approach Acc F1-Measure

Skl 87.85 88.65

Skl+Acc(W+P)+Gyo+Ori 84.85 85.50

Skl+Acc(W+P)+Gyo+Ori (Add. Edges) 84.40 84.78

Skl+Acc(W) 89.32 89.55

Skl+Acc(P) 87.70 88.72

Skl+Gyo 86.35 87.41

Skl+Ori 87.65 88.64

Skl+Acc(W+P) 89.30 89.60

SMD [HVD15] (Acc+RGB) - 63.89

MMD [Kon+19] (Acc+Gyo+Ori+RGB) - 64.33

MMAD [Kon+19] (Acc+Gyo+Ori+RGB) - 66.45

Multi-GAT [II21] - 75.24

SAKDN [Liu+21b] - 77.23

(+10.26%) without additional edges and 84.78% (+9.54%) with additional edges, both
reach a higher F1-measure than the baseline but also impact the pure skeleton-based
recognition negatively.

4.4.4 Ablation Study

Fusion of Skeleton and RGB Skeletons and RGB videos are combined using the
three approaches depicted in Fig. 4.4. Fig. 4.4a shows an approach using RGB patches
that are cropped around each skeleton node and passed to a ResNet-18 to compute
a feature vector XRGB ∈ IR(M×512×T×N) as part of preprocessing. The second ap-
proach, shown in Fig. 4.4b, uses ResNet-18 to compute a feature vector for each im-
age. The resulting feature vector is rescaled to the size CE · N · M and reshaped
to be able to be fused with skeleton data. Similarly, in Fig. 4.4c, the third approach
uses R(2+1)D. In terms of parameters, the basis Skeleton model has 3.454.099 param-
eters, only 2.532 parameters are added for incorporation of inertial measurements into
the model Skeleton+IMU(Center) 3.456.631 for a 2.2% accuracy improvement. Fu-
sion with an RGB encoder adds five times more parameters (Skeleton+RGB Encoder
ResNet-18 with 17.868.514) and a massive training overhead.

Table 4.1 shows that the RGB approaches viewed individually (without fusion) do
not reach the performance of R(2+1)D pre-trained for action recognition. Results re-
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Figure 4.4: The three different skeleton + RGB Fusion models with reference of an image from
UTD-MHAD. The first model generates a feature for each node, while the last two generate a
feature for the entire image that is distributed to the nodes and adjusted as part of the supervised
training.

garding the fusion models show a low accuracy of 73.49% for RGB patch features that
have been created outside the training process and 44.6% for the same procedure with-
out a downscaling Multilayer Perceptron (MLP). A similar conclusion can be drawn
from the remaining two fusion models. Using R(2+1)D to produce features shows a
slightly increased effectiveness of +1.79% (91.62%) over ResNet-18 (89.83%) but -
0.7% in comparison to the solely skeleton-based approach.

Fusion of Skeleton and IMU Fusion of skeletal and inertial sensor data is done ac-
cording to Fig. 4.2. Fig. 4.1 shows the skeleton structure of UTD-MHAD and illustrates
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Figure 4.5: Confusion matrix for the results on MMAct with the fusion of skeleton and ac-
celerometer measurements from the smartwatch with highlighted high-confused actions.

two possibilities for fusing the red IMU graph nodes with the skeleton by connecting
them to different skeleton joint nodes. In Figure 4.2b, nodes are appended at the central
skeleton joint as it is defined in ST-GCN and AGCN papers. The configuration depicted
in Figure 4.2b is attributed to the way sensors are worn by subjects of the UTD-MHAD
dataset. This configuration is therefore not used for MMAct. Additional configurations
arise when additional edges are drawn between the newly added nodes. According to
Figure 4.2b, another experiment involves broadcasting the IR6-sized IMU feature vector
to each skeleton joint and fuse them at channel dimension. From the results in Table 4.1,
it is observable that all skeleton graphs with additional associated IMU nodes at each
point in time improve the classification performance by at least one percent. In com-
parison to a skeleton-only approach, variants with additional edges between the newly
added nodes perform generally worse than their not-connected counterparts and are both
at 93.26% (+0.94%). The average classification accuracy of both other variants reaches
94.42% (+2.1%) and 94.07% (+1.75%). Despite having a slightly increased accuracy
for appending new nodes to the existing central node, both variants almost reach equal
performance and the location where nodes are appended seemingly does not matter
much. While all experiments with fusion at spatial dimension show increased accura-
cies, the only experiment that does not surpass the skeleton-based approach is about
fusion of both modalities at channel dimension, reaching 90.29% (-2.03%) accuracy.

For MMAct, all experiments are conducted using only the configuration in Fig. 4.1a
and its variation with interconnected nodes. Table 4.2 shows that the skeleton-based
approach reaches 87.85% accuracy for a cross-subject split, fusion approaches includ-
ing all four sensors perform worse and reach only 84.85% (-3%) and 84.4% (-3.45%).
Mixed results are achieved when individual sensors are not part of the fusion model. Fu-
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Figure 4.6: Class specific accuracy for all MMAct classes for the fusion of various data modal-
ities with Fusion-GCN.

Class Skl Skl + Acc

carrying_heavy 24.69 43.83

checking_time 81.93 96.58

drinking 85.00 95.00

transferring_object 87.23 96.10

pointing 84.52 92.34

Table 4.3: Top-5 most improved classes by the fusion of skeleton (Skl) and additional ac-
celerometer (Acc) data from the smartwatch.

sion using only one of the phone’s individual sensors, acceleration, gyroscope or orien-
tation, reaches comparable results with 87.70% (-0.15%), 86.35% (-1.5%) and 87.65%
(-0.2%) accuracy, respectively. On the contrary, performing a fusion of skeleton and
acceleration data obtained by the smartwatch or with the fusion of both acceleration
sensors shows an improved accuracy of 89.32% (1.47%) and 89.30% (1.45%).

Table 4.3 shows the top-5 improved classes by the fusion with the accelerometer
measurements of a smartwatch. All the top-5 improved actions have a high arm move-
ment in common. In Fig. 4.5 we give a confusion matrix for the Skeleton + Accelerom-
eter (Watch) and highlight the most confused classes. Especially the variations of the
“carrying” actions are hard to distinguish by their obvious similarity. Also, actions that
contain sudden movements with high acceleration peaks are often confused (“jumping”
is often considered as “falling”). This might be caused by the extraction of the human
poses with a lower frame rate where an important part is then missing. For instance if
the first part of the jumping activity is missing then the human poses might just contain
the part where the person is landing which could lead to a misclassification as falling.
In general, most of the activities can be recognized quite well. Fig. 4.6 gives a general
comparison of all class-specific results on different fusion experiments. Especially the
fusion from skeleton sequences with the accelerometer measurements (skeleton + acc
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(watch)) suggest a high improvement on many classes, where the similar “carrying”
classes are to highlight.

Fusion of Skeleton, RGB and IMU One experiment is conducted using skeleton,
RGB and IMU with IMU nodes appended to the skeleton central node without additional
edges in combination with and all three RGB early fusion approaches. The results in
Table 4.1 show that, like previously except for the RGB patch feature model, all models
achieve an accuracy over 90%, albeit not reaching the same values as the skeleton and
IMU fusion approach.

4.4.5 Limitations and Discussion

Comparing skeleton and skeleton + IMU, the fused approach generally has less misclas-
sifications in all areas. Especially similar actions, such as “throw”, “catch” ,“knock” or
“tennis swing”, are able to be classified more confidently. The only action with de-
creased recognition accuracy using the fused approach is “jog” which is misclassified
more often as “walk”, two similar actions and some of the few with sparse involvement
of arm movement. Common problems for all RGB approaches regarding UTD-MHAD
are a small number of training samples, resulting in overfitting in some cases that can not
be lifted by either weight decay or dropout. Another fact is the absence of object interac-
tions in UTD-MHAD. With the exception of “sit2stand” and “stand2sit”, actions such as
“throwing”, “catching”, “pickup_throw” or sports activities never include any objects.
As pointed out previously, skeleton is focused purely on human movements and, by
that, omits all other objects inside of a scene. RGB still contains such visual informa-
tion, making it supposedly more efficient in recognizing object interactions. In contrast,
many of MMAct’s actions, like “transferring_object”, “using_pc”, “using_phone” or
“carrying”, make use of real objects. While fusion with RGB modality achieves similar
accuracies as other approaches, incorporating the data into the network increases the
training time by up to a magnitude of ten; hence, the RGB fusion models do not pro-
vide a viable alternative to skeleton and IMU regarding the current preprocessing and
training configurations. Therefore, due to timely constraints, experiments for fusion of
skeleton and RGB modalities on the larger dataset MMAct are omitted.

4.5 Conclusion

With Fusion-GCN, we presented an approach for multimodal action recognition using
GCNs. To incorporate additional modalities, we propose to fuse on two different di-
mensions, either on a channel or spatial dimension. Further integration into early and
late fusion approaches have been presented. In our experiments, we considered the
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flexible fusion of skeleton sequences with inertial measurements, accelerometer-, gyro-
, orientation- measurements separately, as well as RGB features. Our presented fu-
sion approach successfully improved the previous baselines on the large-scale MMAct
dataset significantly. A large improvement is based on the usage of skeleton sequences
in conjunction with a GCN-based model with additional improvements attributing to
the fusion with additional modalities, where especially the fusion with the smartwatch
data has been shown to improve the action recognition performance. However, adding
to many modalities led too uncertainty and decreased the performance. We believe that
Fusion-GCN demonstrated successfully that GCNs serve as good basis for multimodal
action recognition and could potentially guide future research in this domain.





Chapter 5

One-Shot Action Recognition

In this chapter, we present approaches for the action recognition task in a semi-super-
vised setting. Similar to approaches presented in Chapter 3, we represent various sensor-
modalities in an image. Models are trained on a set of known action classes and tested
on a distinct set of unknown classes. When referring to one-shot recognition [Liu+20a],
one sample per unseen class is provided in a reference set.

This chapter is based on our previous publications [MTP20b; Mem+22]. In the first
part of this chapter, we focus on a signal-level problem formulation with the goal to pro-
pose a one-shot action recognition approach that is applicable for various sensor modal-
ities. With our Signal-Level Deep Metric Learning (SL-DML) [MTP20b] approach, we
propose a metric learning approach to reduce the action recognition problem to a near-
est neighbor search in embedding space. We encode signals into images and extract
features using a deep residual CNN. Using triplet loss, we train an embedding func-
tion. The resulting encoder transforms features into an embedding space where closer
distances encode similar actions while higher distances encode different actions. Our
approach is based on a signal-level formulation and remains flexible across a variety of
modalities.

In the second part of this chapter, we concentrate on skeleton-based one-shot action
recognition. With our Skeleton-Based Deep Metric Learning (Skeleton-DML) [Mem+22]
approach, we follow the idea of SL-DML, but focus on the one-shot action recognition of
skeleton sequences. A novel representation is proposed and compared against a wide set
of comparable skeleton-sequence representations known from supervised action recog-
nition tasks.

5.1 Introduction

Learning to identify unseen classes from a few samples is an active research topic. Met-
ric learning in computer vision research mainly concentrates on one-shot object recog-
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nition [Fu+15], person re-identification [Yi+14; WB18] or face identification [SKP15].
Only recently, few-shot methods for action recognition [Car+19; JM19; Liu+20a; Pen+21]
have gained popularity. These approaches present good results for one-shot action
recognition, but only concentrate on single modalities like image- or skeleton sequences.
We propose to use a signal level representation that allows flexible encoding of signals
into an image and the fusion of signals from different sensor modalities.

In contrast to classification methods, which predict class labels, metric learning ap-
proaches learn an embedding function. Our approaches learn a function that embeds
signal- or skeleton-representations into an embedding space. One-shot action recogni-
tion then becomes a nearest neighbor search in embedding space. Figure 5.1 gives an
application example for one-shot action recognition on skeleton sequences using our
approach.

The first part of the chapter concentrates on a signal-level formulation of the one-
shot action recognition problem. While it may appear implausible, initially, to encode
signals into an image representation for action recognition, it entails some benefits.
First, it allows generalization across different sensor modalities as long as a sensor
originates multivariate signal sequences or higher-level features such as human pose
estimates. There is no need for modality-specific architectures or pipelines. Further,
an image-like representation allows the usage of well-studied and well-performing clas-
sification architectures [He+16]. Finally, experiments for multi-modal or inter-modal
one-shot action recognition can be conducted flexibly.

In our study, signals originate from 3D skeleton sequences gathered by an RGB-D
camera, inertial, or motion capturing measurements. To fuse multiple modalities, e.g.,
skeleton sequences and inertial measurements, the signal matrices are concatenated and
represented as an image. Inter-modal experiments are especially interesting, as they
allow training on one modality and recognition on another, previously unseen, modality
by providing only a single reference. A new sensor can be used for action recognition
without any prior training data from that sensor.

In the second part of the chapter, we focus on skeleton-based one-shot action recog-
nition. RGB-D cameras that support the OpenNI SDK not only provide color and depth
streams, but also offer human pose estimates in the form of skeleton sequences. These
skeleton estimates allow a wide variety of higher-level applications without investing
in the human pose estimation problem. As the pose-estimation approach is based on
depth streams [Zha12], it is robust against background information and different light-
ing conditions. Therefore, it also remains functional in dark environments. Especially
in a robotics context, one-shot action recognition enables a considerable variety of ap-
plications to improve the human-robot-interaction. A robot could initiate a dialog, when
recognizing an activity that it is unfamiliar with, to assign a robot-behavior to the obser-
vation. This can be done with a single reference sample, while standard action recog-
nition approaches can only recognize actions that were given during training time. In
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Figure 5.1: Illustrative example. In this example, a skeleton is transformed into an image-like
representation. Joint axes are encoded as signals. Each axis is drawn in a different color. Our
approach encodes an action sequence representation into an embedding vector. Low Euclidean
distances on the action embedding represent close similarity, whereas higher distances represent
different actions. This approach allows for one-shot action classification or clustering of similar
activities. The underlying signal level representation enables multi-modal applications.
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our proposed one-shot action recognition approach, observations are projected to an
embedding space in which similar actions have a low distance, and dissimilar actions
have a high distance. A high distance to all known activities can be seen as an indicator
for anomalies. The embedding in a metric learning setting allows online association
of novel observations, which is a high advantage over classification tasks that would
require retraining or fine-tuning.

The contributions of this chapter are as follows:

• We present a novel model for one-shot action recognition on a signal level.

• We present a representation that reassembles skeleton sequences into images.

• We integrate the representation into a deep metric learning formulation to tackle
the one-shot action recognition problem.

• We furthermore evaluate related skeleton-based image representations for one-
shot action recognition.

A classifier and embedding encoder are jointly optimized using triplet margin loss

[WS09] with a Muti-Similarity Miner [Wan+19b]. The nearest neighbor in embed-
ding space defines the most similar action. Our proposed approaches lift the state-of-

the-art in one-shot action recognition on skeleton sequences on the NTU RGB+D 120
dataset for the one-shot evaluation protocol by 5.6% and with Skeleton-DML by an ad-
ditional +3.3%, while SL-DML still generalizes for other sensor data modalities like
IMU and motion capturing systems. For our SL-DML approach, we claim that our ap-
proach based on triplet margin loss and a common signal-level representation yields
high flexibility for applications in one-shot action recognition. We achieve good results
on one-shot action recognition for conventional sensor modalities (skeleton sequences,
inertial measurements, motion capturing measurements). Our approach shows good ca-
pabilities when being trained on one modality and inferred on a different modality by
providing a single reference sample per action class of the unknown modality. This
allows. e.g., training on skeleton sequences and inference on inertial measurements.
With Skeleton-DML, we further improve on the initial idea from SL-DML but focus on
skeleton-based action recognition. A novel image-based representation is proposed and
compared against other related representations in the context of one-shot action recog-
nition. Further, we use the Multi-Similarity-Loss for our Skeleton-DML approach.

5.2 Related Work

We give a brief overview of methods related to metric learning and few-show recogni-
tion approaches in general. We focus on methods for action embeddings and few-shot
action recognition.
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Action recognition is a broad research topic that varies not only in different modal-
ities like image sequences, skeleton sequences, data by inertial measurement units but
also by their evaluation protocols. Most common protocols are cross-view or cross-
subject. More recently, one-shot protocols have gained attention. As our approach fo-
cuses on skeleton-based one-shot action recognition, we present related work from the
current research state directly related to our method. Skeleton-based action recognition
gained attention with the release of the Microsoft Kinect RGB-D camera. This RGB-D
camera not only streams depth and color images, but the SDK also streams skeleton data
processed from the depth images. With the NTU RGB+D dataset [Sha+16; Liu+20a]
a large-scaleRGB-D action recognition dataset that also contains skeleton sequences
has been released. The progress made on this dataset gives a good indication of the
performance of various skeleton-based action recognition approaches. The idea of rep-
resenting motion in image-like representations lead to serious alternatives to sequence
classification approaches based on Recurrent Neural Networks [Hu+19] and Long Short

Term Memory (LSTM) [Liu+18a].

Metric Learning Metric learning has been intensively studied in computer vision.
A focus is on metric learning from photos or cropped detection boxes for person re-
identification or image-ranking. Schroff et al. [SKP15] presented a joint face recogni-
tion and clustering approach. They trained a network such that the squared L2 distances
in the embedding space directly correspond to face similarity [SKP15]. Triplet loss
[WS09] is used for training the embedder. The embedding minimizes distances be-
tween anchor images and positive images (i.e., same person, different viewpoint) and
maximizes distances to negative samples (different person). Yi et al. [Yi+14] presented
a deep metric learning approach based on a Siamese deep neural network for person re-
identification. The two sub-nets are combined using a cosine layer. Wojke and Bewley
[WB18] propose a deep cosine metric learning approach for the person re-identification
task. The Cosine Softmax Classifier pushes class samples towards a defined class mean
and therefore allows similarity estimation by a nearest neighbor search.

Skeleton Representations Because convolution neural architectures showed great per-
formance in the image-classification domain, a variety of research concentrated on
finding image-like representations for different research areas like speech recognition
[Her+17]. Our one-shot action recognition approaches build on image representation
of signal sequences. Prior work has already presented representations for action recog-
nition with skeleton sequences. The Skeleton-DML approach, presented later, is based
on representations for skeleton sequences. Thus, we now introduce some representa-
tion approaches for skeleton-based action recognition. We use these representations in
our experiments for the Skeleton-DML approach. Representations for encoding spatio-
temporal information were explored in-depth for recognizing actions [LLC17; Cae+19].
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They focus on a classification context by associating class labels with skeleton se-
quences, in contrast to learning an embedding space. Caetano et al. [Cae+19; CBS19]
represent a combination of reference joints and a tree-structured skeleton as images.
Their approach preserves spatio-temporal relations and joint relevance. In contrast to
our approach, their underlying representation enforces custom network architectures
and is constrained to skeleton sequences, whereas our SL-DML approach adds flexibil-
ity to other sensor modalities. Liu et al. [LLC17] presented a combination of skele-
ton visualization methods and jointly trained them on multiple streams. Wang et al.
[Wan+18a] presented joint trajectory maps. Viewpoints from each axis were set and
encoded 3D trajectories for each of the three main axis views. A simple Convolutional
Neural Network (CNN) architecture was used to train a classifier analyzing the joint tra-
jectory maps. Occlusion could not be directly tackled. Therefore, the representation by
Liu et al. [LLC17] added flexibility by fusing up to nine representation schemes in sep-
arate image channels. A similar representation has recently shown to be usable also for
action recognition on different modalities and their fusion [MTP20a]. Kim and Reiter
[KR17], on the other hand, presented a compact and human-interpretable representa-
tion. Joint movement contributions over time can be interpreted. Interesting to note is
the skeleton transformer by Li et al. [Li+17]. They employ a fully connected layer to
transform skeleton sequences into a 2 dimensional matrix representation. Yang et al.
[Yan+19] present a joint order that puts joints closer together if their respective body
parts are connected. It is generated by a depth-first tree traversal of the skeleton starting
in the lower chest. Skepxels are small 5 × 5-pixel segments containing the positions
of all 25 skeleton joints in a random but fixed order. Liu et al. [LAM19] use this 2D
structure as it is more easily captured by CNNs. Each sample of a sequence is turned
into multiple sufficiently different Skepxels, which are then stacked on top of each other.
These Skepxels differ only in their joint permutation. The full Skepxel image of a skele-
ton’s sequence is assembled width-wise, without altering the joint permutation within
one row of Skepxels. Caetano et al. [Cae+19] generate two images containing motion
information in the form of an orientation and a magnitude. The orientation is defined
by the angles between the motion vector and the coordinate axes. The angles are stored
in the color channels of an image with time in horizontal and the joints in TSSI order in
vertical direction. Instead, the gray-scale magnitude image contains the Euclidean norm
of the motion vectors.

Action Embedding A recent action embedding approach by Hahn et al. [HSR19]
takes inspiration from the success of word embeddings in natural language processing.
They combine linguistic cues from class labels with spatio-temporal features from se-
quences. A hierarchical recurrent neural network trains a feature extractor. A joint loss
combines classification accuracy and similarity trains a function to encode the input
into an embedding. Discriminative embeddings are important for few-shot learning ap-
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proaches. Jasani and Mazagonwalla [JM19] proposed a similar approach for skeleton-
based zero-shot action recognition. A Spatio Temporal Graph Convolution Network

(ST-GCN) [YXL18] extracts features which are encoded in semantic space by a contin-
uous bag of words method.

One-Shot Action Recognition One-shot recognition in general aims at finding a met-
hod to classify new instances with a single reference sample. Possible approaches
for solving problems of this category are metric learning [Wan+14; HA15], or meta-
learning [FAL17]. In action recognition, this means a novel action can be learned with a
single reference demonstration of the action. Contrary to one-shot image classification,
actions consist of sequential data. A single frame might not contain enough context to
recognize a novel activity. One-shot action recognition is in comparison to image rank-
ing, or person re-identification a quite underrepresented research domain. Kliper-Gross
et al. [KHW11] proposed One-Shot-Similarity Metric Learning. A projection matrix
that improves the One-Shot-Similarity relation between the example same and not-same
training pairs represents a reduced feature space [KHW11]. Fanello et al. [Fan+13] use
Histogram of Flow and Global Histogram of Oriented Gradient descriptors with adap-
tive sparse coding and are classified using a linear SVM. Careaga et al. [Car+19] propose
a two-stream model for few-show action recognition on image sequences. They aggre-
gate features from optical flow and the image sequences separately by a LSTM and fuse
them afterward for learning metrics. Rodriguez et al. [Rod+17] presented a one-shot
approach based on Simplex Hidden Markov Models (SHMM). Improved dense trajecto-
ries are used as base features [WS13]. A maximum a posteriori (MAP) adoption and an
optimized Expectation Maximization reduce the feature space. A maximum likelihood
classification, with the SHMM, allows one-shot classification. Roy et al. [RMM18]
propose a Siamese network approach for discriminating actions by a contrastive loss
on a low dimensional representation gathered factory analysis. Mishra et al. [Mis+18]
presented a generative framework for zero- and few-shot action recognition on image
sequences. A probability distribution models classes of actions. The parameters are
functions for semantic attribute vectors that represent the action classes. Along with the
NTU RGB+D 120 dataset, Liu et al. [Liu+20a] presented a one-shot action recognition
protocol and corresponding baseline approaches. The Advanced Parts Semantic Rel-

evance (APSR) approach extracts features by using a spatio-temporal LSTM method.
They propose a semantic relevance measurement similar to word embeddings. Body
parts are associated with an embedding vector and a cosine similarity is used to cal-
culate a semantic relevance score. Sabater et al. [Sab+21] presented a one-shot action
recognition approach based on a Temporal Convolutional Network (TCN). After nor-
malization of the skeleton stream, they calculate pose features and use the TCN for the
generation of motion descriptors. The descriptors at the last frame, assumed to contain
all relevant motion from the skeleton-sequence, are used to calculate the distances to the
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Figure 5.2: Approach overview: We represent actions on a signal level. In the example above,
we transformed skeleton joint axes into images. We use a ResNet18 architecture with a triplet
loss to train a model that transforms an image into an embedding space. For inference, the
trained encoder encodes a set of references and queries. The closest reference in embedding
space represents the most similar activities for which we use a nearest-neighbor search.

reference samples. Action classes are associated by thresholding the distances.

Multi-modal Few-Shot Action Recognition The field of multi-modal few-shot ac-
tion recognition is entirely unexplored. Somehow related is the work of Al-Naser et al.
[Al-+18], who presented a zero-shot action recognition approach by combining gaze
guided object recognition with a gesture recognition wrist-band. Actions are detected
by fusing features of sub-networks per modality and integrating action definitions. Only
three actions demonstrate the recognition results. Very recently, a multi-modal fusion
transformer has been presented by Shvetsova et al. [Shv+21]. This approach operates on
video, audio and text-input that is represented in a joined multi-modal representation.
The model is trained with a combinatorial loss that projects each of the modalities into a
joint embedding space. The method has shown to perform well for the zero-shot action
localization task.

5.3 Signal-Level Deep Metric Learning

To cover the action recognition task across a variety of sensor modalities, we consider
the action recognition problem on a signal level. Signals are encoded in a discriminable
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Figure 5.3: Exemplary representation for a throwing activity of the NTU-RGB+D 120 dataset.

image representation. An image-like representation allows direct adaption of already
established image classification architectures for extracting features. On the extracted
features, we train a similarity function yielding an action embedding function using
triplet loss. The triplet loss minimizes embedding distances between similar action
samples while maximizing distances between different actions. Finally, to solve the
one-shot problem, we apply a nearest neighbor search in the embedding space. An
illustration of our approach is given in Fig. 5.2.

5.3.1 Problem Formulation

The one-shot action recognition problem is considered as a metric learning problem.
First, we encode action sequences on a signal level into an image representation. The in-
put in our case is a signal matrix S ∈ R

N×M where each row vector represents a discrete
1-dimensional signal and each column vector represents a sample of all sensors at one
specific time step. The matrix is transformed to an RGB image I ∈ {0, . . . , 255}H×W×3

by normalizing the signal length M to W and the range of the signals to H . The iden-
tity of each signal is encoded in the color channel. This results in a dataset D =
{(I i,yi)}

K
i=1 of K training images I1,...,K with labels yi ∈ {1, . . . , C}. Our goal is

to train a feature embedding x = gΘ(I) with parameters Θ which projects input im-
ages I ∈ {0, . . . , 255}H×W×3 into a feature representation x ∈ X

d. The feature repre-
sentation reflects minimal distances for similar classes.

5.3.2 Representations

Our approach builds upon a discriminable image representation. Therefore, we propose
a novel, more compact signal level representation. Multivariate signal or higher-level
feature sequences are reassembled into a 3 channel image. Each row of the resulting
image corresponds to one joint, and each channel corresponds to one sample in the se-
quence. The color channels, red, green and blue, represent respectively the signals’ x-,
y- and z-values. The resulting images are normalized to the range of 0 to 1. We chose
to normalize over the whole image to preserve the relative magnitude of the signals.
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In contrast to the sparse representations used for multi-modal action classification in
Chapter 3 or skeleton-based action recognition [Wan+18a; LLC17], the proposed repre-
sentation is invertible and more compact. This representation conforms the dense repre-
sentation as used in Chapter 3. Chronological the representation has first been used for
the one-shot action recognition experiments and afterwards extended our action recog-
nition experiments. The construction of the representation is depicted in Fig. 5.6.

5.3.3 Feature Extraction

Most action recognition approaches based on CNNs present custom architecture designs
in their pipelines [LLC17]. A benefit is the direct control over the number of model pa-
rameters that can be specifically engineered for data representations or use cases. Recent
advances in architecture design cannot be transferred directly. Searching good hyper-
parameters for training is then often an empirical study. Minor architecture changes
can result in an entirely different set of hyperparameters. He et al. [He+16] suggested
the use of residual layers during training to tackle the vanishing gradient problem. We
take advantage of the recent development in architecture design and decided to use a
ResNet18 [He+16] architecture. For weight initialization, we use a pre-trained model.
After the last feature layer, a two-layer perceptron to transform the features into the
embedding size is applied. The embedding is refined by the metric learning approach.

5.3.4 Metric Learning

Metric learning aims to learn a function to transform an image into an embedding space,
where the embedding vectors of similar samples are encouraged to be closer, while
dissimilar ones are pushed apart from each other [Wan+19b]. We use a triplet loss with
a Multi-Similarity-Miner [Wan+19b] for mining good triplet candidates during training.

While the triplet loss has been used in image ranking [Bui+17], face recognition
[SKP15], and person re-identification [HBL17] it has only rarely been used for inter-
and cross-modal ranking to improve action recognition [Wan+18b] or for complex event
detection [Hou+18]. Given a triplet of an anchor image I◦, a positive data sample, rep-
resenting the same action class image I↑ and a negative sample, representing a different
action class I↓ the triplet loss can be formulated as:

Ltriplet (I◦, I↑, I↓) = max (‖g(I◦)− g(I↑)‖2−

‖g(I◦)− g(I↓)‖2+

δ, 0 ) ,

where δ describes an additional distance margin.
Finding good candidate pairs is crucial. Therefore, we use a Multi-Similarity Miner

[Wan+19b] to mine positive and negative pairs that are assumed to be difficult to push
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apart in the embedding space. That means positive pairs are constructed by an anchor,
its positive image pair {I◦, I↑} and its embedding g(I◦), preferring pairs with a high
distance in embedding space with the following condition:

‖g(I◦)− g(I↑)‖2 > min
y

k
6=y

i

‖g(I i)− g(Ik)‖2 − ǫ,

likewise, negative pairs {I◦, I↓} are mined by the lowest distance in embedding space:

‖g(I◦)− g(I↓)‖2 < max
y

k
6=y

i

‖g(I i)− g(Ik)‖2 + ǫ,

where ǫ is a given margin. Finally, we yield the total loss by:

L = αLtriplet + βLclassifier,

such that the influences of the loss can be weighted using the scalars α for the triplet
loss Ltriplet and β for the classifier loss Lclassifier. We utilize a cross entropy loss for
Lclassifier. Finding an action class by a query and set of references is now reduced to a
nearest-neighbor search in the embedding space. The classifier and encoder are jointly
optimized. After the last feature layer of the classifier, a two-layer perceptron is used to
yield an embedding size of 128.

5.4 Skeleton-Based Deep Metric Learning

In the previous section (Section 5.3), we presented an one-shot action recognition ap-
proach on signal-level. This section sets a focus on the skeleton-based one-shot action
recognition. Fig. 5.4 shows an illustrative example of an application of our approach.
We propose a novel, compact image representation for skeleton sequences. Addition-
ally, we present an encoder model that learns to project said representations into a metric
embedding space that encodes action similarity.

5.4.1 Problem Formulation

The problem formulation for the Skeleton-DML approach, except the focus on skele-
ton sequences, aligned with the problem formulation from Section 5.3.1. A standard
approach for action recognition is trained on C classes where the training and test sets
share the same C classes. Thus, a test set T shares the same classes as the training set
D. In an one-shot action recognition setting C classes are known in a auxiliary training
set D, while the test set T contains U novel classes, providing a single reference sample
per class in an reference set A, where |A| = U . We consider the one-shot action recog-
nition problem as a metric learning problem. Our goal is to train a feature embedding
x = gΘ(I) with parameters Θ which projects input images I ∈ {0, . . . , 255}H×W×3
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Figure 5.4: Illustrative example of our method. Prior to training a metric on the initial data, no
class association could be formed given a skeleton sequence. After training our one-shot action
recognition model, skeleton sequences can be encoded. A euclidean distance on the encoded
sequence allows class association by finding the nearest neighbour in embedding space from a
set of reference samples. The colors are encoding the following classes: throw, falling, grab
other person’s stuff. Brighter arrow colors denote higher distance in embedding space.

into a feature representation x ∈ X
d. H denotes the height of the image, W denotes the

width of the image in an RGB channel image and d is the given target embedding vec-
tor size. The feature representation reflects minimal distances in embedding space for
similar classes. For defining the similarity, we follow [Wan+19b], where the similarity
of two samples (I i,xi) and (Ij,xj) is defined as Dij :=< xi,xj >, where < ·, · >
denotes the dot product, resulting in an K ×K similarity matrix D.

5.4.2 Skeleton-DML Representation

We encode skeleton sequences into an image representation. Fig. 2.9b shows the skele-
ton as contained in the NTU RGB+D 120 dataset. On a robotic system, these skeletons
can be either directly extracted from the RGB-D camera [Zha12], or from a camera im-
age stream using a human-pose estimation approach [Cao+21]. The input in our case
is a skeleton sequence matrix S ∈ R

N×M where each row vector represents a discrete
joint sequence (for N joints) and each column vector represents a sample of all joint po-
sitions at one specific time step of a sequence length M . The matrix is transformed to an
RGB image I ∈ {0, . . . , 255}H×W×3. In contrast to [MTP20b; DFW15] the joint space
is not projected to the color channels but unfolded per axis separately like depicted in
Fig. 5.5, and Fig. 5.6. This results in a dataset D = {(I i,yi)}

K
i=1 of K training images
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Figure 5.5: Skeleton-DML skeleton representation. x and z denote the skeleton joint component
in joint space. The number of joints is reflected by N , which relates to the height of the image
H . The sequence length M relates to the width of the image W . Instead of projecting the
temporal information throughout the width of the image, we project the joint space locally for
each dimension and assemble the joint axis blocks over the width.

I1,...,K with labels yi ∈ {1, . . . , C}. In contrast to the representations used for mul-
timodal action recognition [MTP20a] or skeleton based action recognition [Wan+18a;
LLC17] the proposed representation is more compact. In comparison to [DFW15] and
the representation for SL-DML, our representation separates the joint values for all axes
as blocks over the width, keeping all joint values grouped locally together per axis.
In [MTP20b] the color channels are used to unfold the joint values. As the skeleton-
sequence is represented as an image, the model needs to be applied only to a single
image for inference.

5.4.3 Feature Extraction

For better comparability between the approaches, we use the same feature extraction
method as previously proposed in SL-DML [MTP20b]. Using a ResNet18 [He+16] ar-
chitecture allows us to train a model that converges fast and serves as a good feature
extractor for the embedder. The low number of parameters allows practical use for in-
ference on autonomous mobile robots. Weights are initialized with a pre-trained model
and are optimized throughout the training of the embedder. After the last feature layer,
we use a two-layer perceptron to transform the features to the given embedding size.
The embedder is refined by the metric learning approach.
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Figure 5.6: Exemplary representation for a throwing activity of the NTU-RGB+D 120 dataset.
A skeleton-sequence serves an input and can be represented as an image directly [DFW15;
MTP20a]. Our Skeleton-DML representation groups x-, y-, z joint values locally in M

3 blocks
per axis and assembles them into the final image representation. All axis blocks are laid out
aside.

Figure 5.7: A possible intermediate state of the embeddings during the training process of two
classes (left). During training, pairs, that are difficult to push apart in embedding space, are
mined (middle). Given the blue anchor sample, the most difficult positive pair is the blue sample
with the highest distance in embedding space. Similar, the closest red sample in embedding
space is the corresponding negative sample. The goal is to separate the samples in embedding
space (right) by minimizing the inter-class scatter and maximize the intra-class distance to the
class centers in embedding space.

5.4.4 Metric Learning

We aim to learn a function that projects an skeleton image-representation into an em-
bedding space, where the embedding vectors of similar samples are encouraged to be
closer, while dissimilar ones are pushed apart from each other [Wan+19b]. We use a
Multi-Similarity-Loss with a Multi-Similarity-Miner [Wan+19b] for mining good pair
candidates during training. Positive and negative pairs (by class label), that are as-
sumed to be difficult to push apart in the embedding space, are mined. Fig. 5.7 gives
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a constructed example of how positive and negative pairs are mined. Positive pairs are
constructed by an anchor and positive image pair {I◦, I↑} and its embedding g(I◦),
preferring pairs with a low similarity in embedding space (high distance in embedding
space) with the following condition:

D+
◦↑ < max

k 6=◦
D◦k + ǫ.

Similar, if {I◦, I↓} is a negative pair, the condition is:

D−
◦↓ > min

k=◦
D◦k − ǫ,

where k is a class label index and ǫ is a given margin.
These conditions support the mining of hard pairs, i.e., a positive pair where the

sample still has a high distance in embedding space and a negative pair that still has a
low distance in embedding space. This forces the sampling to concentrate on sampling
the hard pairs. A set of positive images to an anchor image I◦ are denoted with Pi,
analog, a set of negative images to I◦ are denoted with Ni.

Given the mined positive- and negative pairs, allows us integration into the Multi-

Similarity loss, as derivated by Wang et al. [Wan+19b]:

LMS =
1

K

K∑

i=1

{
1

α
log

[
1 +

∑

k∈Pi

e−α(Dik−λ)
]

+
1

β
log

[
1 +

∑

k∈Ni

eβ(Dik−λ)
]
}

,

where α, β and λ are fixed hyperparameters.
In contrast to SL-DML, we do not apply weighting to the classifier- and embedder

loss, as no marginal improvement has been achieved in our experiments on SL-DML.
After the model optimization, associating an action class to a query sample and set of
reference samples is now reduced to a nearest-neighbor search in the embedding space.
The classifier and encoder are jointly optimized.

5.5 Experiments

To show the multi-modal one-shot recognition performance, we applied our SL-DML

approach to three datasets containing three different modalities. For our Skeleton-DML

approach, we focus on experiments with the one-shot protocol from the NTU RGB+D
120 dataset. Results are discussed after the dataset presentation for SL-DML in Sec-
tion 5.5.3 and for Skeleton-DML in Section 5.5.4.
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5.5.1 Implementation

Our implementation is based on PyTorch [MBL20b], [Pas+19]. We tried to avoid many
of the metric learning flaws as pointed out by Musgrave et al. [MBL20a] by using their
training setup and hyperparameters where applicable. Key differences are that we use a
ResNet18 [He+16] architecture and avoid the proposed four-fold cross validation for hy-
perparameter search in favor of better comparability to the proposed one-shot protocol
on the NTU RGB+D 120 dataset [Liu+20a]. Note, we did not perform any optimization
of the hyperparameters. A batch size of 32 was used on a single Nvidia GeForce RTX
2080 TI with 11 GB GDDR-6 memory. If not mentioned otherwise, we trained for 100
epochs with initialized weights of a pre-trained ResNet18 [He+16]. The classification
and metric loss were weighted by 0.5 unless stated otherwise. For the multi similarity
miner we used an epsilon of 0.05 while we used a margin of 0.1 for the triplet margin
loss. A RMSProp optimizer with a learning rate of 10−6 was applied in all experiments.
If not mentioned otherwise, the embedding model outputs a 128-dimensional embed-
ding, and for the SL-DML experiments the classifier yields a 128 dimensional feature
vector.

5.5.2 Datasets

We used skeleton sequences from the NTU RGB+D 120 [Liu+20a] dataset for large-
scale one-shot action recognition. With 100 auxiliary classes and 20 evaluation classes,
it is the largest dataset that we applied to our approach. To show the multi-modal capa-
bilities of our SL-DML approach, we also used the UTD-MHAD [CJK15] dataset (iner-
tial and skeleton data) and the Simitate [Mem+19a] dataset (motion capturing data).

The datasets are split into an auxiliary set, representing action classes used for train-
ing, and an evaluation set. In our experiments, the evaluation set does contain novel
actions or actions from a novel sensor modality. One sample of each test class serves as
reference demonstration. This protocol is based on the protocol proposed by [Liu+20a]
for the NTU RGB+D 120 dataset. We conducted similar experiments with the remain-
ing two data sets. In depth descriptions are given below. First we trained a model
on the auxiliary set. The resulting model estimates embeddings for the reference ac-
tions and then for the evaluation actions. We then calculate the nearest neighbor from
the evaluation embeddings to the reference embeddings. This yields to which action
from the reference set the current evaluation sample comes closest. Experiments for our
Skeleton-DML approach is evaluated on the NTU RGB+D 120 one-shot action recogni-
tion protocol.

NTU RGB+D 120 The NTU RGB+D 120 [Liu+20a] dataset is a large-scale action
recognition dataset containing RGB+D image streams and skeleton estimates. The
dataset consists of 114,480 sequences containing 120 action classes from 106 subjects
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in 155 different views. We follow the one-shot protocol as described by the dataset
authors. The dataset is split into two parts: an auxiliary set and an evaluation set. The
action classes of the two parts are distinct. 100 classes are used for training, 20 classes
are used for testing. The unseen classes and reference samples are documented in the
accompanied dataset repository1. A1, A7, A13, A19, A25, A31, A37, A43, A49, A55,

A61, A67, A73, A79, A85, A91, A97, A103, A109, A115 are previously unseen. As refer-
ence, the demonstration for filenames starting with S001C003P008R001* are used for
actions with IDs below 60 and S018C003P008R001* for actions with IDs above 60.

UTD-MHAD The UTD-MHAD [CJK15] contains 27 actions of 8 individuals per-
forming 4 repetitions each. RGB-D camera, skeleton estimates and inertial measure-
ments are included. The RGB-D camera is placed frontal to the demonstrating person.
The IMU is either attached at the wrist or the leg during the movements. No one-shot
protocol is defined. Therefore, we defined custom splits. We started with 23 auxiliary
classes and evaluated with reduced training sets. We evaluated our approach by moving
auxiliary instances over to the evaluation set. By this, we decreased the training set
while increasing the evaluation set. In a third experiment, we evaluated the inter-joint
one-shot learning abilities of our approach. For actions with IDs up to 21 the inertial
unit was placed on the subject’s wrist and for the remaining IDs from 22-27 the sensor
was placed on the subject’s leg. This allows us to inspect the one-shot action recognition
transfer to other sensor positions by learning on wrist sequences and recognize on leg
sequences with one reference example. We always used the first trial of the first subject
as reference sample and the remainder for testing. Finally we evaluated the inter-modal
capabilities of our approach. The model is trained on a set of training samples from
a modality, i.e., skeleton sequences and evaluated on a set of samples from an other
sensor, i.e., the inertial measurements. A single reference sample for each sensor is
provided for our inter-modal experiments.

Simitate Furthermore, we evaluate on the Simitate dataset. The Simitate benchmark
focuses on robotic imitation learning tasks. Hand and object data are provided from a
motion capturing system in 1932 sequences containing 26 classes of 4 different com-
plexities. The individuals execute tasks of different kinds of activities, from drawing
motions with their hand-over to object interactions and more complex activities like
ironing. We consider one action class of each complexity level as unknown. Namely the
following actions, zickzack from basic motions, mix from motions, close from complex

and bring from sequential. Resulting in an auxiliary set of 22 classes and 4 evaluation
classes. The corresponding first sequence by filename is used as reference sample.

1https://github.com/shahroudy/NTURGB-D

https://github.com/shahroudy/NTURGB-D
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Figure 5.8: Result graphs for the NTU RGB+D 120 dataset (a), the UTD-MHAD dataset (b)
and the Simitate dataset (c). Skl denotes skeleton data, IMU denotes inertial data, Fused denotes
multi-modal data consisting of inertial- and skeleton data s. val denotes a static evaluation set.

5.5.3 Signal-Level Deep Metric Learning Experiments

In the following, we present the experiments conducted on the presented datasets for
the SL-DML approach. Like Liu et al. [Liu+20a], we also experimented with the ef-
fect of the auxiliary set reduction. Results for this experiment are given in Fig. 5.8a
and Table 5.1. Further we inspect the influence of different loss weighting parame-
ters and compare two miners: Triplet Margin [SKP15] and the Multi Similarity Miner
[Wan+19b] in Table 5.2.
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Table 5.1: Results for different auxiliary training set sizes for one-shot recognition on the NTU
RGB+D 120 dataset.

#Train Classes APSR [Liu+20a] [%] SL-DML (α, β = 0.5) [%]

20 29.1 36.7

40 34.8 42.4

60 39.2 49.0

80 42.8 46.4

100 45.3 50.9

Table 5.2: Ablation study for our proposed one-shot action recognition approach on the NTU
RGB+D 120 dataset.

Miner α β Accuracy [%]

Triplet Margin [SKP15] 1.0 0.0 50.6

Triplet Margin [SKP15] 0.0 1.0 40.4

Triplet Margin [SKP15] 0.5 0.5 50.5

Multi Similarity [Wan+19b] 1.0 0.0 52.2

Multi Similarity [Wan+19b] 0.0 1.0 40.4

Multi Similarity [Wan+19b] 0.5 0.5 50.9

NTU RGB+D On the NTU RGB+D 120 dataset, we compare against the proposed
baseline APSR by Liu et al. [Liu+20a]. Table 5.1 shows the results with an auxiliary
set size of 100 action classes and a evaluation set size of previously unseen 20 action
classes. Our proposed approach performs 5.6% better than the first follow-up [Liu+20a]
and 8% better than the second follow up [Liu+18b]. Figure and Table 5.1 show results
for an increasing amount of auxiliary classes (100 auxiliary classes and 20 evaluation
classes are considered as the standard protocol). Overall, our approach performs better
as the baseline on all conducted auxiliary set experiments. In this context, the high accu-
racy with 60 auxiliary classes and that the 20 additional classes added in the 80 classes
auxiliary set added confusion, has to be highlighted. With 60 classes, our approach per-
forms 9.8% better than the baseline approach with a same amount of auxiliary classes.
Further, our approach performs better, with just 60% of the training data, than the first
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Figure 5.9: UMAP embedding visualization for the one-shot experiments using the NTU
RGB+D 120 (a) dataset, the UTD-MHAD dataset (IMU) (b) and the Simitate dataset (c).

Table 5.3: One-shot action recognition results on the UTD-MHAD dataset.

#Train Cl. #Val Cl. Skl. [%] Inertial [%] Fused [%]

23 4 92.7 81.3 90.2

19 8 74.8 74.0 76.0

15 12 81.1 63.5 78.7

11 16 77.7 43.3 69.4

7 20 57.2 41.3 65.0

3 24 59.4 29.2 44.7

follow-up with the full amount of auxiliary classes. With only 40% of the training data,
our approach performs comparably good as the second and third follow up. These ex-
periments strongly highlight the quality of the learned metric. In Fig. 5.14, we show
UMAP [McI+18] visualizations that give an insight about the discriminative capabili-
ties. Distances in embedding space capture the number of identities well. This is the
case for the three top clusters containing the actions (grab other person’s stuff, take a

photo of other person and hugging other person). The two clusters at x-axis around -7.5
correspond to the actions arm circles and throw, suggesting that actions with clear high
joint-relevance can also be clustered well. The most bottom cluster corresponds to the
class falling and supports this hypothesis. On the left we have a quite sparse cluster re-
flecting highly noisy skeleton sequences from multiple classes. Mainly sequences with
multiple persons, especially with close activities like hugging, resulted in noisy data.
In that case the skeleton-estimation approach seems not be able to estimate multiple
skeletons. Table 5.2 gives an ablation study showing the influence of the loss weighting
and the underlying triplet mining approach. A multisimilarity miner [Wan+19b] with
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Table 5.4: Inter-joint one-shot action recognition results on the UTD-MHAD dataset.

#Train Classes #Val Classes Train Joint Accuracy [%]

21 6 Left wrist 80.4

6 21 Left leg 28.3

6 6 Left wrist 18.8

6 6 Left leg 59.7

Table 5.5: Inter-modal one-shot action recognition results on the UTD-MHAD dataset.

Train Modality Val. Modality Representation Accuracy [%]

Skeleton Inertial Sparse 35.5

Inertial Skeleton Sparse 40.5

Skeleton Inertial Dense 23.1

Inertial Skeleton Dense 40.5

a metric loss yields the best results fort one-shot action recognition on the NTU 120
dataset. In our ablation study, the loss weighting with α = 1.0 and β = 0.0 yielded the
best results for both miners.

UTD-MHAD The UTD-MHAD dataset was used to show the generalization capa-
bilities of the proposed approach across different modalities. Results for the inter-joint
experiment on inertial data are provided in Table 5.4. For the fused experiments, we
concatenated Sfused = (Simu|Sskl), where Simu denotes the inertial signal matrix and
Sskl denotes the skeleton signal matrix. Concatenation is only possible with equal col-
umn matrices. Therefore, we subsampled the modality with the higher signal sample
rate. By considering a signal level action representation, we could compare skeleton
and inertial results and also perform multi-modal, inter-joint and inter-modal experi-
ments. Figure 5.8b shows the effect on the resulting one-shot accuracy with increasing
auxiliary set sizes. In this experiment series, we could observe that a higher number of
classes used for training, not necessarily leads to a higher accuracy. This was the case
for our experiments on inertial data, where training on only three classes shows a more
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Table 5.6: One-shot action recognition results on the Simitate dataset.

#Train Classes #Val Classes Accuracy [%]

22 4 100.0

18 4 98.8

14 4 99.4

10 4 93.1

18 8 76.7

14 12 61.2

10 16 56.6

(a) Inter-joint (b) Inter-modal

Figure 5.10: Inter-joint (a) and inter-modal (b) experiment setup.

similar action embedding. This observation could not be transferred to the skeleton ex-
periments on this dataset. The selection of auxiliary classes used for training should
be well-chosen. Adding more classes does not necessarily mean higher similarity in
the embedding but can also add more confusion. Our inter-joint experiments yielded
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Figure 5.11: UMAP embedding visualization for inter-modal experiments. Trained on skele-
ton inertial measurements and validated on skeleton (a). Trained on skeleton sequences and
validated on inertial measurements (b).

more transferable embeddings by training on data from the wrist and validating on the
leg, as shown in Table 5.4. This holds true for our conducted experiments, but we do
want not exclude the possibility of finding a subdivision of the wrist auxiliary set that
results in a higher transferable embedding. A key-insight among our experiments is
that balanced classes for training and testing yielded mostly higher accuracy for lower
dimensional modalities like IMU (see Table 5.3) and motion capturing (see Table 5.6).
This is especially visible in our inter-joint experiments (see a depiction in Fig. 5.10a),
as shown in Table 5.4. In comparison, our experiments applied to skeleton sequences
benefited from more auxiliary classes (see Table 5.1, 5.3 and Fig. 5.8a & 5.8c). The
conducted fusion experiments, by the concatenation of skeleton sequences and inertial
measurements, show good performance in some experiments. The lower performing
modality can also negatively impact the performance. This observation suggests adding
sensor confidences into the approach as a future research direction. Sensor data fusion
on an signal level by a single stream architecture remains an interesting and functional
alternative to multi-stream architectures.

UTD-MHAD Inter-Modal In our inter-modal experiments (see Fig. 5.10b), we used
all actions from one modality as auxiliary set and evaluated the other modality with a
single reference sample. Results for this experiment are given in Table 5.5 and Fig. 5.11
visualizes the corresponding UMAP embeddings. The resulting one-shot recognition
for inertial to skeleton performs by a large margin better (+17.4%) better than the re-
verse direction using our novel representation. In approximately 40.5% of the time, an
action trained on a different data modality on the UTD-MHAD dataset could be rec-
ognized with just one reference sample. The signal representation from Section 3.3.3,
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Figure 5.12: Result graph for increasing auxiliary set sizes.

generalizes better in this aspect. Overall, the inter-modal experiments show the flexi-
bility of our proposed approach, but are subject to further improvement. We observed
that the inertial measurements have a relation to the arm and hand movements of the
skeleton, which explains the good transferability across the modalities.

Simitate Finally, we evaluated our approach on the Simitate dataset with motion cap-
turing data. Results are given in Table 5.6 and Fig. 5.8c. The number of classes is
comparable to the number from the UTD-MHAD dataset. The effects of the auxiliary
set reduction are en-par with the experiments conducted on the UTD-MHAD dataset.
Therefore, the proposed approach transfers also good to motion capturing data. The
class-distances from the motion capturing experiments are higher in embedding space
than the ones gathered by the inertial experiments (see Fig. 5.8b & 5.8c).

5.5.4 Skeleton-DML Experiments

We used skeleton sequences from the NTU RGB+D 120 [Liu+20a] dataset for large-
scale one-shot action recognition with the representation proposed in Section 5.4.2.
Examples for sequences and their representations are given in Fig. 5.13.

The dataset is split into an auxiliary set, representing action classes that are used for
training, and an evaluation set. In the one-shot protocol, the evaluation set does only
contain novel actions. One sample of each test class serves as reference demonstration.
This protocol is based on the one proposed by [Liu+20a] for the NTU RGB+D 120

dataset. First we trained a model on the auxiliary set. The resulting model transforms
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Table 5.7: One-shot action recognition results on the NTU RGB+D 120 dataset.

Approach Accuracy [%]

Attention Network [Liu+17b] 41.0

Fully Connected [Liu+17b] 42.1

Average Pooling [Liu+18b] 42.9

APSR [Liu+20a] 45.3

TCN [Sab+21] 46.5

SL-DML (ours) 50.9

Skeleton-DML (ours) 54.2

Table 5.8: Results for different auxiliary training set sizes for one-shot recognition on the NTU

RGB+D 120 dataset in %.

#Train Classes APSR [Liu+20a] SL-DML Skeleton-DML

20 29.1 36.7 28.6

40 34.8 42.4 37.5

60 39.2 49.0 48.6

80 42.8 46.4 48.0

100 45.3 50.9 54.2

skeleton sequences encoded as an image representation into embeddings for the refer-
ence actions and then for the evaluation actions. We then calculate the nearest neighbor
from the evaluation embeddings to the reference embeddings. As the embeddings en-
code action similarity, we can estimate to which reference samples the given test sam-
ple comes closest. Besides the standard one-shot action protocol and experiments with
dataset reduction, we give an ablation study that gives a hint on which combination of
embedding size, loss, transformation, and representation are yielding best results with
our approach. Further, we integrated various related skeleton-based image representa-
tions that have been previously proposed for action recognition into our one-shot action
recognition approach to compare them.

One-shot action recognition results are given in Table 5.7. Like Liu et al. [Liu+20a]
we also experimented with the effect of the auxiliary set reduction. Results are given in
Fig. 5.12 and Table 5.8. In addition, we analyze different representations in Table 5.10
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) throw (j) falling (k) hugging other person (l) grab other person’s
stuff

Figure 5.13: From top to bottom: A RGB Frame, the corresponding skeleton sequences and
the image representation of those sequences are shown. The latter is used in our one-shot action
recognition approach. The first two sequences contain single person activities, whereas the
remaining two contain two person interactions. The grab other person’s stuff sequence was
shorter than the hugging other person sequence.

and the influence of different embedding vector sizes, metric losses and augmentations
on two representations more detailed in Table 5.9.

Training Set Size Reduction

An interesting question that comes up when evaluating one-shot action recognition ap-
proaches is how much training classes are required to get a certain performance. Liu
et al. [Liu+20a] already proposed to evaluate the one-shot action recognition approach
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Table 5.9: Ablation study for our proposed one-shot action recognition with different represen-
tations, embedding sizes, losses and augmentations. Results are given for a training over 200
epochs. Units are in %.

Representation 128 256 512 Transform Loss

SL-DML 55.2 50.6 52.7 None MS

SL-DML 51.5 51.7 54.0 None TM

SL-DML 51.8 55.3 55.8 Rot MS

SL-DML 53.6 54.8 55.5 Rot TM

Skeleton-DML 54.7 51.5 53.1 None MS

Skeleton-DML 47.5 51.9 54.0 None TM

Skeleton-DML 55.3 58.0 58.6 Rot MS

Skeleton-DML 56.0 55.1 56.1 Rot TM

with varying training set sizes. Aligned with Liu et al. [Liu+20a] we use training sets
containing 20, 40, 60, 80 training classes while remaining a constant evaluation set size
of 20. For practical systems, where only a limited amount of training data is available,
this evaluation can give an important insight about which performance can be achieved
with lower amounts of provided training data. It is also interesting to observe how an
approach performs when adding more training data. Table 5.8 and Fig. 5.12 give re-
sults for different training set sizes for SL-DML [MTP20b], APSR [Liu+20a] and our
Skeleton-DML approach, while remaining a static validation set. With just 20 training
classes, our approach performs comparably to the APSR approach. With a small amount
of training classes, the SL-DML approach performs best. In our experiments, Skeleton-

DML performs better when providing a larger training set size. At a training set size of
60 classes, our approach performs comparably well to SL-DML. With 80 classes in the
training set, our approach starts outperforming SL-DML. It is interesting to note that,
aligned with the results from SL-DML, our approach seems to be confused by the 20
extra classes that are added to the 60 classes.

Ablation Study

To distill the effects of the components, we report their individual contributions. We
examine influence of the representation, augmentation method and different resulting
embedding vector sizes. Inspired by Roth et al. [Rot+20] we experiment with different
embedding vector sizes of 128, 256, 512. In addition, we included the SL-DML rep-
resentation, compare a Triplet Margin loss (TM) and a Multi-Similarity loss (MS) and
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Table 5.10: Ablation study for different representations.

Representation Accuracy [%]

Skepxel [LAM19] 29.6

SkeleMotion Orientation [Cae+19] 34.4

SkeleMotion MagnitudeOrientation [Cae+19] 39.2

TSSI [Yan+19] 41.0

Gimme Signals [MTP20a] 41.5

SkeleMotion Magnitude [Cae+19] 44.4

SL-DML 50.9

Skeleton-DML 54.2

included an augmentation with random rotations of 5◦. In total, 24 models were trained
for this ablation study. We trained these models for 200 epochs, as we expected longer
convergence due to the additional augmented data. Results are given in Table 5.9. In
the table, we highlight important results. We highlight interesting results by different
colors in the table (the best result without augmentation (55.2%), embedding size of 128
(56.0%), embedding size of 256 (58.0%), TM loss (56.1%), overall, MS loss, augmen-
tation, embedding size of 512 (58.6%)). For SL-DML the augmentation had a positive
influence with higher embedding vector sizes of 512. Whereas the augmentation with
embedding sizes of 128 only improved with the TM loss. With the MS loss and a low
embedding size, the augmentation did lower the result. For our Skeleton-DML repre-
sentation, the augmentation improved the results throughout the experiments for both
losses. The best results without augmentation were achieved by the SL-DML represen-
tation with an embedding vector of size 128 and a MS loss. The overall best results
were achieved with a MS loss and embedding vector size of 512 and augmentation by
rotation using the Skeleton-DML representation, which improved the results of +4.4%
over our approach under a comparable training setup as SL-DML.

Comparison with Related Representations

To support the effectiveness of our proposed representation in a metric learning setting,
we compare against other skeleton-based image representations. We use the publicly
available implementation for the SkeleMotion [Cae+19], SL-DML [MTP20b], Gimme
Signals [MTP20a] and re-implementations of the TSSI [Yan+19] and Skepxels [LAM19]
representations to integrate them into our metric learning approach. These representa-
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tions have been described in Section 6.2 more detailed.

The overall training procedure was identical, as all models were trained with the
parameters as in Section 5.5.3. The experiment only differed in the underlying repre-
sentation. Results for the representation comparison are given in Table 5.10. While
most of the representations initially target action recognition and are not optimized for
one-shot action recognition, they are still good candidates for integration in our met-
ric learning approach. We did not re-implement the individual architecture proposed
by the different representations but decided to use the ResNet18 architecture for better
comparability.

Our Skeleton-DML approach shows the best performance, followed by SL-DML.
The SkeleMotion Magnitude [Cae+19] representation transfers well from an action recog-
nition setting to a one-shot action recognition setting. Interesting to note is that the
SkeleMotion Orientation [Cae+19] representation, while achieving comparable results
in the standard action recognition protocol, performs 10% worse than the same repre-
sentation encoding the magnitude of the skeleton joints. An early fusion of Magnitude
and Orientation on a representation level did not improve the Skelemotion represen-
tation but yields a result in between both representations. Similar observations have
been made in [MTP20b] by the fusion of inertial and skeleton sequences. The lower
performing modality adds uncertainty to the resulting model in our one-shot setting.

A UMAP embedding of all evaluation samples is shown in Fig. 5.14 for our Skeleton-

DML approach. Our approach shows better capabilities in distinguishing the actions
throw and arm circles. In our approach, these clusters can be separated quite well
whereas SL-DML struggles to discriminate the two classes.

Result Discussion

We evaluated our approach in an extensive experiment setup. Aside from lower per-
formance on lower amounts of classes for training, our approach outperformed other
approaches. For fair comparison, we report the result of +3.3% over SL-DML for train-
ing with 100 epochs and without augmentation, as under these conditions the SL-DML

result was reported. With augmentation and training for 200 epochs, we could improve
the baseline for +7.7%. Our approach leans an embedding model that captures semantic
relevance from joint movements well. For example, Skeleton-DML differentiates suc-
cessfully between activities that primarily contain hand- or leg-movements. Interactions
between multiple person and single person activities are also separated well. Activities
with similar joint movements contribute to are still challenging. These are the activities
that are formed by the main cluster in Fig. 5.14.
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Figure 5.14: UMAP embedding visualization four our approach. Classes are: drink water •,
throw •, tear up paper •, take off glasses •, reach into pocket •, pointing to something with
finger •, wipe face •, falling •, feeling warm •, hugging other person •, put on headphone •,
hush (quite) •, staple book •, sniff (smell) •, apply cream on face •, open a box •, arm circles •,
yawn •, grab other person’s stuff •, take a photo of other person •.

5.6 Conclusion

In this chapter, we presented two approaches, SL-DML and Skeleton-DML for one-shot
action recognition using deep metric learning. We propose to transform signal or skele-
ton sequences into an image representation. Similar to popular approaches for face
recognition [SKP15], we then transform the representations. On the image represen-
tations, an embedder is learned which projects the images into an embedding vector.
Distances between encoded actions reflect semantic similarities. Actions can then be
classified, given a single reference sample, by finding the nearest neighbor in embed-
ding space.

SL-DML is evaluated on three different, publicly available, datasets. Most impor-
tantly, we showed an improvement of the current state-of-the-art for one-shot action
recognition on the large-scaleNTU RGB+D 120 dataset by only using 40% of the train-
ing data. To show the transfer capabilities, we also verified our results using the UTD-
MHAD dataset for skeleton and inertial data and the Simitate dataset for motion captur-
ing data. Inter-joint experiments show inertial sensor attached to the wrist and the leg
from the UTD-MHAD dataset. Motivated by the flexible underlying problem formu-
lation, we proposed a new, challenging, inter-modal evaluation protocol that matches
current intends towards multi-task more generalizable architectures. The inter-modal
experiments allow training action recognition approaches on one modality and can be
transferred given a single sample from a different modality. The results are objective
for further enhancements that target the learning of more general models. During the
non-intermodal experiments, we found that more classes used during training for lower
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variate sensor data like IMUs and motion capturing systems do not necessarily improve
the one-shot recognition accuracy. A good selection of training classes and a balanced
training and validation set improved results across all modalities. Our SL-DML ap-
proach allows one-shot recognition on all the modalities we experimented with and
indicates to serve as a flexible framework for inter-joint and even inter-modal experi-
ments. By training on one modality and inferring on an unknown modality, the novel
inter-model protocol can potentially shape future evaluation protocols.

For the second part of this chapter, we focussed on skeleton-based one-shot action
recognition. The presented Skeleton-DML approach mainly differs in the underlying
representations. In an extensive experiment setup, we compared different representa-
tions, losses, embedding vector sizes and augmentations. Our representation remains
flexible, and yields improved results over SL-DML. Additional augmentation by ran-
dom 5-degree rotations have shown to improve the results further. We found the overall
approach of transforming skeleton sequences into image representations for one-shot
action recognition by metric learning a promising idea that allows future research into
various directions like finding additional representations, augmentation methods or min-
ing and loss approaches. Especially in robot applications, one-shot action recognition
approaches have the potential to improve human-robot-interaction by allowing robots to
adapt to unknown situations. The required computational cost for our approach is low,
as only a single image representation of the skeleton-sequence needs to be embedded
by a comparably slim ResNet18-based embedder.





Chapter 6

Action Segmentation

This chapter presents an approach for the segmentation of actions in skeleton sequences.
Similar to the approaches presented in Chapter 3 and Chapter 5, we represent the motion
of the joints in images, but in contrast, this chapter focuses on the action segmentation
problem.

Action segmentation tackles the problem of estimating the start- and end-times and
the action-class labels of sequential data, in our case skeleton sequences. Action seg-
mentation is closely related to action recognition. A naive approach it can be reduced
to a frame-wise classification problem. Transformer networks have recently shown to
perform well in the processing of sequential data. With DETR [Car+20], they have been
applied successfully to object detection tasks. Therefore, we propose to use transformer
networks for the segmentation of actions. Our approach is evaluated on the PKU-MMD
dataset, with an extensive comparison of various image representations. The proposed
approach can segment actions in skeleton sequences with a high class accuracy of over
95% on the test set, while the GIoU only reaches around 75%. Qualitative results show
that timing estimates are often still reasonable.

This chapter is based on our publication [HMP21], co-authored with with Simon
Häring of his master thesis under my supervision. Simon Häring significantly con-
tributed to the technical realization, experiments, and preparation for the manuscript
while I significantly contributed to the general idea, research concept and further con-
tributed to the experiment preparation and literature review.

6.1 Introduction

Cameras and storage become more accessible and are distributed in masses over cus-
tomer devices, leading to increasing the importance for video analysis. Many practical
applications for video analysis like in elder-care, surveillance or autonomous driving
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object detection

throw jumpclap wave touch

neck

touch

back

Figure 6.1: Skeleton sequences are represented as images. A transformer network is trained to
segment actions from the image representation.

generate continuous image streams required to be automatically annotated to allow for
automatic decisions or generate more interpretable reports.

Similar to the two previous chapters, in which we represent motions in images to
associate a single class label per sequence, we utilize the representation idea but in a
segmentation context of untrimmed sequences.

Surveillance and health care could use systems that scan live video for suspicious
actions or people who need help. Scenarios like these include people falling or indi-
cating sudden pain from stomach cramps or heart attacks by touching respective body
parts. Further, human-robot-interaction can be improved by allowing robots to rec-
ognize actions continuously and act accordingly, i.e., to offer assistance. Particularly,
action segmentation allows additional analysis of the action, like measuring its duration
or the time between connected actions that belong to some longer action sequence.

We use an off-the-shelf network for object detection, namely the detection trans-
former DETR [Car+20] and re-purpose it for human action segmentation. DETR ad-
dresses object detection with a simple model lacking hand-made components. Instead,
it combines a CNN with a transformer network [Vas+17]. These attention-based trans-
formers are designed to process long sequences and large sets, modeling arbitrary long-
distance relations. Other than Recurrent Neural Networks, which maintain and update a
memory vector used to reference information from earlier in the sequence, transformers
act on the entire sequence at once and generate connections between different elements
when they are necessary.

In order to use this existing network for human action segmentation, we need to
convert this task into object detection on images. We present and compare different
ways of representing skeleton sequences as images. Unlike [Cae+19] and [LLC17], we
constrain ourselves to three channel or gray-scale images to keep compatibility with
DETR and numerous other architectures. We use skeleton sequences instead of videos
because they are more compact and simplify processing long action sequences. The
extracted skeletons are also invariant to changing background or lighting in the original
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video, which means, however, that any contextual information is lost as well.
Our representations are constructed from different building blocks. These include

normalization techniques, different coordinate encodings and image assembly methods
like those in [Yan+19] or [MTP20a]. Our goal is to find the best-performing com-
binations of the described techniques and provide an insight into which properties of a
representation are beneficial for training. Figure 6.1 presents an example of our method.
Different actions and movements appear as different texture patterns in the image rep-
resentation. This is especially noticeable for the jump action in the middle of the image
representation. The position and shape of each bounding box encodes the time-interval
of the action. This is possible because time is encoded spatially in the image.

6.2 Related Work

In the context of this thesis, we concentrate on temporal action segmentation methods
that infer which action takes when place in sequential data like RGB- or skeleton se-
quences. Referring to in this thesis, action segmentation is not to confuse with video
segmentation methods that aim at separating objects of interest in videos.

Action segmentation in videos Dense trajectories of feature vectors have been used
to capture local motion information for the foreground and background motion [Wan+13].
Improved Dense Trajectories (IDT) [WS13] aim at estimating camera motion by sepa-
rating background and human motion. Human motion often leads to inconsistent feature
matching. Those mismatches are avoided by potential filtering mismatches using a hu-
man detector, leading to more descriptive trajectories. Incorporating IDT in a sliding
window approach by Shu et al. [SYS14] enables a naive approach for temporal action
segmentation. Analyzing IDT by statistical length and language models in a dynamic
programming optimization has shown as an improved method to represent the tempo-
ral and contextual structure [RG16]. Kuehne et al. [KGS16] presented an end-to-end
approach for action segmentation and recognition. Fisher Vectors are used to represent
local feature descriptors. Those vectors are reduced by a Principal Component Analysis
(PCA) to allow modeling with a Hidden Markov Model (HMM).

Lea et al. [Lea+17] presented Temporal Convolutional Networks (TCNs) by a hi-
erarchy of temporal convolutions to perform action segmentation. The integration of
TCNs is demonstrated in an encoder-decoder and by dilated convolutions. TCNs are
applicable for the fine-grained time series segmentation of various sensor modalities.

Wang et al. [Wan+16] presented Temporal Segment Networks (TSNs), an approach
to learn a video representation that captures long-term temporal information. Further,
a hierarchical aggregation scheme allows for action segmentation in untrimmed videos.
Lin et al. [Lin+19] proposed a Boundary-Matching network that offers a solution to
further estimate confidence scores of densely distributed temporal action proposals.
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Action segmentation in skeleton sequences Li et al. [Li+16] presented a Joint Class-
ification-Regression RNN for skeleton sequences avoiding a typical sliding window ap-
proach by using a LSTM subnetwork that captures complex long-range temporal dy-
namics. First, a classification network is pre-trained for frame-wise action recognition.
Then, a regression model is incorporated to capture temporal features for action seg-
mentation. This regression network can also be used to predict future actions before
their occurrence.

Datasets We now present an excerpt of interesting datasets for the temporal action
segmentation task. The Breakfast dataset [KAS14] is a popular dataset for segmenting
actions in videos. The dataset consists of 52 participants executing ten common cooking
activities in 18 different kitchens. Similar, the recently released EPIC-Kitchen [Dam+21]
contains annotation for action recognition and action segmentation from an egocentric
perspective with a total of 100 hours of video material from various kitchens. The
MMAct dataset by Kong et al. [Kon+19] contains untrimmed sequences and annotated
action segments with RGB videos, accelerometer, gyroscope, and orientation data. This
chapter uses the PKU-MMD dataset [Liu+17a] which contains annotated action seg-
ments for videos and skeleton sequences in three different views. The dataset is de-
scribed in detail in the experiments Section 6.4.1.

6.3 Approach

Transformer networks [Vas+17] have recently become popular for their break-thoughts
in natural language processing solving long term relations in sequences by an attention
mechanism. Even so transformers are commonly used for sequence classification the
actual set-based formulation allows transfer to other domains as well. We convert action
segmentation on skeleton sequences into object detection on image representations.

6.3.1 Detection Transformer - DETR

CNN

set of image features

transformer
encoder

…

…

positional encoding

+
transformer

decoder

class,

box

class,

box

no

action

no

action

FFN

FFN

FFN

FFN

action queries

backbone encoder decoder prediction heads

Figure 6.2: Action segmentation approach using DETR. The figure is adapted from [Car+20].
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Object detection can be understood as a set prediction problem. An object detector
generates a set of bounding boxes with class probabilities when given an image as its
input. Just like sequences, sets can be predicted using transformers by evaluating multi-
ple queries — one for each element in the output set. Carion et al. [Car+20] present an
end-to-end object detection pipeline based on the transformer architecture by Vaswani
et al. [Vas+17]. An adapted approach overview of DETR is given in Fig. 6.2. DETR is
built on top of a standard CNN classifier as backbone for image data like ResNet50 or
ResNet101 [He+16]. The 2048 feature maps generated by the CNN are reduced to 512
and flattened to a sequence of 512 dimensional vectors. A positional encoding vector of
the same length is added to each input vector before the entire sequence is processed by
the transformer. The sequence length is proportional to the image size. The encoder and
decoder blocks of the transformer in DETR are the same as those presented by Vaswani
et al. [Vas+17]. The input to the first decoder layer is a set of object queries which are
unique, learned vectors. Each of these corresponds to one object prediction in the final
output. The output vectors of this final decoder stage are independently transformed
by a small feed-forward network into bounding box coordinates and class probabilities,
including a no-object class. The additional class is required as the number of object
queries is constant and usually much larger than the expected number of objects in any
single image. These object queries are a set of learned vectors. Unlike anchors or region
proposals, they do not explicitly encode a spatial region.

6.3.2 Representation

Skeleton sequences as they are generated by the Kinect v2 RGB-D camera contain up
to six skeletons per frame. Each skeleton is defined by the 3D coordinates of its 25
joints. We construct our image representation by combining different techniques from
the categories’ normalization, feature extraction and image assembly.

Normalization

To achieve location-invariance, we normalize a skeleton sequence by shifting each
skeleton such that its hip’s center is the origin. We refer to this as normPos or nP.
Alternatively, we shift each skeleton such that the mean position of the hip joint is in
the origin (nPM). Using this, we keep the movement information and only correct for
fixed offsets. Scaling is done in a later step to constrain each feature to [0, 255] for dense
representations (see section 6.3.2). Similar to [LAM19] and [LLC17] we also use some
joints to define a coordinate system relative to the mean skeleton of a sequence. The
mean-hip defines the origin, and the x-axis is given by a vector pointing from joint 17
to joint 13 in the pelvis. The z-axis is defined as the up-vector of the camera, and the
y-axis is y = z × x. All vectors are normalized. We will refer to this rotation-invariant
normalization as nRM.
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Feature Extraction Extracting additional information from skeleton sequences and
explicitly providing it to neural networks can make them easier to train [Cae+19]. Other
than the position p of the skeleton joints, we extract their velocity v, the angles a between
their adjacent edges and the rates of change of those angles A. The angles are only
generated for joints with two or more adjacent edges in a depth-first tree traversal order
adapted from [Yan+19]. This leads to a total of 42 angles per skeleton. In the PKU-
MMD dataset, two skeleton sequences are available for each video. If both are used, the
representation images generated for each are stacked vertically.

Image Assembly We mainly focus on a dense image representation in which each
column contains one frame such that time progresses from left to right. Each row holds
one measurement of one joint, i.e., the y-velocity of joint five or the x-position of joint
23 etc. We order the joints either by their ID or by the tree structure described by Yang
et al. [Yan+19]. The latter is referred to as TSSI in the following sections. Other than
these dense representations, we use sparse to convert a skeleton sequence into an image
like described in Section 3.3.3. For the sparse representation, joints and their axes are
considered as signals and are graphed into an image. These representations are denoted
with sparse.

Coordinate Encoding This section further details the way that the joint coordinates or
velocities can be encoded in the dense representations shown above. An intuitive way of
expressing three coordinates in a three-channel image is to encode each one in a separate
color channel. We denote this as RGB, despite using OpenCV, which defaults to a BGR
color order, to generate our representations. Figure 6.3 shows an example of a nP RGB

pv skeleton representation of the action clapping. The upper half is a stack of the 3D
positions of all 25 joints, while the lower half contains their velocities. The rows of the
first joint are black, as its position and velocity is set to zero during the normalization (it
is moved to the origin and stays there). When one-dimensional features like joint angles
are added to this representation, each one is repeated to fill all three channels. Therefore,
the resulting image contains a mixture of colored and gray-scale regions. Instead of
stacking the (x, y, z) coordinates along the channel dimension, one could stack them
along the joint dimension, forming a gray-scale image. We chose two orderings, called
grayJ [x1, y1, z1, ..., xn, yn, zn] and grayC [x1, ..., xn, y1, ..., yn, z1, ..., zn]. The names
stand for gray image with grouped joints and grouped coordinates respectively. While
RGB, grayC and grayJ are mutually exclusive, either of them may be combined with
TSSI to influence the skeleton joint order. In either case, including RGB, the values are
mapped onto the range from [0, 255] to fit into an 8-bit image. This is done separately
for each type of feature, as the range of values for angles differ from that of positions or
velocities.
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Figure 6.3: A section of a nP RGB pv skeleton representation. The variation corresponds to a
single clap, where the joint IDs related to the hand and arm contribute most to.

6.4 Experiments

In our experiments, we show that an off-the-shelf object detector can be used for human
action segmentation. We use the PyTorch [Pas+19] implementation of DETR, OpenCV
for generating the representation images and the official PKU-MMD evaluation script
for our results.

6.4.1 PKU Multi-Modality Dataset - PKU-MMD

The PKU-MMD dataset is a large-scale multi-modal dataset for human action recog-
nition [Liu+17a]. It contains 1076 untrimmed RGB, depth and infrared videos as well
as skeleton sequences, captured by three Kinect v2 cameras from different viewpoints.
The untrimmed sequences are annotated with a set of action labels containing start and
end frames, as well as one of 51 class labels. From the 51 action classes, 41 actions are
related to daily activities and 10 classes concentrate on interactions between humans.
This makes the dataset ideal for action segmentation. The authors propose to use eval-
uate the overlapping ratio between the predicted interval and the ground-truth interval
with a threshold ω. The Mean Average Precision of Actions (mAPaction) gives the aver-
age precision over all action categories. Similar, the Mean Average Precision of Videos
(mAPvideo) is averaged over all videos.

6.4.2 Implementation

Unless otherwise noted, we only use the first of possibly two skeletons available in
the video for our experiments. We retrain the DETR weights provided by Carion et
al. [Car+20] with each representation on an Nvidia GTX 1080 for 2000 epochs with a
learning rate of 3e-5, a class error weight of 8, a bounding box weight of 20, a DICE
weight of 1, a relative weight of the no-object class of 0.1, a GIoU weight of 20 and no
learning rate reduction. Furthermore, we also use the cardinality loss, with weight 0.07,
which compares the number of predicted objects to the actual number of objects in the
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Table 6.1: Results for dense representations using different coordinate encoding methods.

Encoding mAPaction mAPvideo

RGB 12.4 13.0

grayC 45.1 46.1

grayJ 28.7 29.5

3×RGB 44.6 45.0

Table 6.2: Results with the standard Kinect v2 and the TSSI joint orders and varying normal-
ization methods.

3×RGB grayC

Normalization mAPaction mAPvideo mAPaction mAPvideo

Kinect v2

raw values 44.6 45.0 45.1 46.1

nP 45.4 46.0 42.1 41.7

nPM 39.0 40.4 47.6 48.7

nRM 40.4 40.6 49.7 51.8

TSSI

nP 53.2 54.6 44.6 46.4

nRM 56.3 58.0 51.3 52.4

image. For each image, we let DETR predict 50 bounding boxes using its object queries,
limiting the amount of estimated action segments per sequence. These hyperparameters
are kept constant unless further noted. All following mean average precision scores are
percentages on the cross-view split of PKU-MMD grouping action instances either per
video (mAPvideo) or per action class (mAPaction). Like in the DETR implementation, we
use a ResNet-50 backbone which is trained alongside the transformer with a learning
rate of 10e-5.

6.4.3 Results

We experimented with each of the previously presented components of our approach.
Further, we compare the dense representations against sparse representations and state-

of-the-art methods.
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Figure 6.4: The per-class AP for 4×pa (blue), 2×pa both (red) and hybrid (green). Classes marked with an asterisk are two-person
interactions.
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In Table 6.1 we present results for different dense representations of the skeleton
position as described in section 6.3.2. The grayC encoding achieved best results. Com-
parably well is the 3 times stacked RGB representation, suggesting that the height width
ratio of the final encoded image influences the results. We then compare different nor-
malization strategies for the two better performing encodings grayC and 3×RGB. Ta-
ble 6.2 shows the mean average precision scores for different normalization techniques
using the standard Kinect v2 joint order (top) and the semantically sorted TSSI joint
order (bottom). The nP had a positive effect on the Kinect v2 joint order, whereas the
mean normalization for position and rotation resulted in a lower mAP. In contrast, for
the TSSI joint order, the nRM normalization yields the highest scores.

Table 6.3: Ablation study modal features. Positional data (p) as before with versions using joint
velocities (v), joint angles (a) and angular velocities (A) as well as stacks of these features.

nRM TSSI 3×RGB

Feature height mAPaction mAPvideo

p 147px 56.3 58.0

v 147px 22.9 21.6

a 126px 43.0 43.5

A 126px 9.7 10.1

pv 294px 67.2 68.1

pva 420px 76.2 77.0

pvaA 546px 70.2 71.4

Table 6.4: Results with two skeletons

Approach mAPaction mAPvideo

4×pa 71.7 72.0

2×pa both 77.9 79.0

hybrid 73.6 74.7

Table 6.3 shows results for different features combinations. Positions and angles
perform much better than their time-derivatives. Combining the positional data with
velocities and angles achieves the best results. However, adding angular velocities to
this, leads to a reduction in mAP score. Disregarding the pvaA result, which may be
explained by the low performance of angular velocities, we can observe the trend of
taller representations resulting in better scores to continue.



6.4. EXPERIMENTS 125

Table 6.5: Comparison of dense- and sparse representations.

Approach height mAPaction mAPvideo

sparse p 420px 59.3 59.2

sparse pa 420px 58.7 59.4

TSSI 6×RGB p 294px 68.0 69.5

TSSI 4×RGB pa 364px 71.7 72.0

In order to compare the influence of the second skeleton for interaction classes, we
test three representations built from stacks of positional and angular data. Figure 6.4
shows the per-class average precision of the three different representations discussed
in this section. The two representations using both skeletons consistently score higher
than 4×pa in interaction classes (marked with an asterisk). The large difference in
mAP score between the hybrid and 2×pa both representations is mostly due to large
improvements, including falling and pointing at something. Table 6.4 shows the results
of this experiment. While the 364px tall 4×pa representation scores in between the
294px 3×pv and 420px 3×pva representations from Table 6.3, 2×pa both surpasses
all previous representations by using the second skeleton where available. The hybrid
representation does not achieve comparable results, despite also using both skeletons.
Here, if only one skeleton is available, the image region is filled with a copy of the first
skeleton instead of black pixels like with 2×pa both.

To show generalization of our action segmentation approach, we integrate the sparse

representation as presented in Section 3.3.3. In Table 6.5 we compare two sparse repre-
sentations with dense representations. Adding angular information to the sparse repre-
sentation seems to have no effect on the result. In Table 6.6 we compare against related
methods. Our approach is outperformed by the latest CNN-based approaches [Li+19b;
Li+17] but performs better than the PKU-MMD dataset baselines[Li+16]. None of the
previous presented approaches uses transformer networks for the action segmentation
task. While the class accuracy lies above 95% regularly on the test set, the GIoU, which
determines how well our method predicts the start- and endpoints of an action, only
reaches values around 75%.

Fig. 6.5 gives exemplary segmentation results for three different sequences of the
PKU-MMD dataset. On the bottom of each frame, the ground-truth and prediction are
shown. Classes are denoted by different colors. Many predicted segments match with
the ground-truth, with our approach estimating segments with slightly differences in the
start- and end-times comparing to the ground-truth. When inspecting those segments in
detail the timing estimates appear to be still reasonable.

In Fig. 6.6, we give exemplary segmentation results. These examples support that



126 CHAPTER 6. ACTION SEGMENTATION

(a) 0002-M (b) 0010-M

(c) 0025-M

Figure 6.5: Example segmentation results for the PKU-MMD dataset.

Table 6.6: Comparison with related approaches.

Approach mAP @ ω = 0.5

Li et al. [Li+19b] 94.4

Li et al. [Li+17] 93.7

JCRRNN [Li+16] 53.3

nRM TSSI 3×RGB pva (ours) 77.0

nRM TSSI 2×RGB pa both (ours) 79.0

segmentation class estimation is correct for the majority of the segments and the lower
performance falls back to varying start- and end-time predictions, which are oftentimes
still reasonable.



6.5. CONCLUSION 127

0 500 1000 1500 2000 2500 3000 3500 4000
GT

Pred

(a) 0002-M

0 500 1000 1500 2000 2500 3000 3500
GT

Pred

(b) 0032-M

0 1000 2000 3000 4000 5000
GT

Pred

(c) 0064-M

0 1000 2000 3000 4000 5000 6000
GT

Pred

(d) 0128-M

0 500 1000 1500 2000
GT

Pred

(e) 0256-M

Figure 6.6: Exemplary action segmentation results on the PKU-MMD dataset. Predicted seg-
ments are at the top, Groundtruth segments are visualized at the bottom. The x-axis denotes the
timing in milliseconds.

6.5 Conclusion

We presented an approach for action segmentation on skeleton sequences using a transformer-
based object detector. Similar to our approaches presented in Chapter 3, we employ a
variety of representations based that can be used to encode skeleton motion into an im-
age flexibly. The action segmentation problem is then formulated similar to an object
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detection problem on the image representations. We use the transformer-based object
detection approach DETR to segment action sequences from the PKU-MMD dataset.
Our approach reaches a high class recognition accuracy but is outperformed by state-

of-the-art methods for skeleton-based action segmentation by lower start and end esti-
mation of the actions.



Chapter 7

Benchmarking for Imitation Learning

While the first part of the thesis concentrated on associating class labels to sensor data
sequences originating from various data sensors in a supervised and unsupervised train-
ing setting, this part aims at transferring the observed actions to a robotic agent. In
detail, one aspect that we found a lack of focus in the existing literature is the bench-
marking of imitation learning approaches. In its current state, most imitation learning
approaches are trained and tested in complete simulated environments or on custom
acquired data that prevents experiment reproduction. In this chapter, we present an
approach for the benchmarking of imitation learning approaches.

This chapter extends our previous work on benchmarking for imitation learning ap-
proaches, which has been published in [Mem+19a]. We give an updated related work
discussion, an extended description of the experimental setup for the dataset acquisition,
and provide additional insights about the proposed metrics. Section 7.1 provides an in-
troduction to imitation learning and benchmarking. In Section 7.2, we present literature
related to imitation learning research and the benchmarking approaches from the com-
puter vision and robotics communities. The resulting dataset is presented in Section 7.3.
Details about the dataset integration, proposed metrics and the general benchmark are
given in Section 7.4. Finally, we conclude this chapter in Section 7.5.

7.1 Introduction

Recent research in machine learning aims to automate an increasing amount of the sys-
tem architecture to solve tasks. Learned feature maps succeeded hand-crafted- feature
design [KSH12; LeC+89]. NAS [ZL17] succeeded the manual design of neural network
architectures. When transferring these developments, we can argue that in the context
of robotics, robots learn either from human demonstrations to succeed sequences of tex-
tual program descriptions defined by expert programmers or learn to solve a task solely
on their own.

129
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The application of robots in domestic environments is foreseeable. We argue that
with the future spread of robots, the demand for custom service robot tasks and, there-
fore, expert programmers will increase dramatically. Thus, we publish a dataset that
fosters imitation learning approaches just by visual observation of humans interacting
with their environment. This supports the demonstrator when interacting naturally with
its environment (let it be objects or humans). This idea stands in high contrast to cur-
rent approaches that pull demonstrators out of their natural interaction by putting sensor
suites or using kinesthetic teaching of robots. The Programming by Demonstration
paradigm is most famous for various applications in industrial repetitive task program-
ming.

Motivated by the increasing success of deep neural networks that recently opened
up possibilities for reasonable accurate object recognition [He+16; KSH12; Sze+15],
detection [Red+16; Liu+16b], semantic segmentation [He+17; BKC17; PCD15] and
human pose estimations [Cao+17; Sim+17; Wei+16], we argue in advancing these fun-
damental approaches to actual scene understanding and even replication with a mobile
domestic service robot.

We identified that one issue with imitation learning research is that approaches are
often just empirically evaluated and often demonstrate performance only on qualitative
results on a small action set. Reproducibility and direct comparison are not given as
the observed data is not publicly available. This defines a gap between other research
topics like the benchmarking of mapping approaches in robotics [GLU12; Stu+12] or
benchmarks from computer vision research like image classification [KSH12], object
detection [Lin+14], object tracking [BS08].

This issue might be caused by the complexity of the evaluation process for the imi-
tation learning tasks. In general, benchmarks for robotic systems are more complex. A
robot system usually is equipped with various sensors and different subsystems that fuse
information from various sensors. Those sensors need to be calibrated and a ground-
truth needs to be defined that many times isn’t as trivial as for the image classifica-
tion task. These aspects are tackled on various levels. Interesting approaches follow
the sim2real method, where robot agents are trained in a simulated environment, and
the learned policies are then transferred to real-world robot systems [Hig+17; Höf+21;
Ope+19]. Sim2Real requires precise simulators modelling general physics down to a
motor controller level. Training agents in a simulation carries benefits as for instance,
simulation can be executed faster than real-time and can collect decades of experience in
days [Kad+20] due to parallelization. However, the trained policies often do not directly
transfer to real-world robots [Hig+17].

In this chapter, we present an approach for the benchmarking problem of imitation
learning tasks. The benchmark entails a dataset that incorporates real-world sensor mea-
surements from an RGB-D camera. The dataset is strongly coupled with an integration
into a simulator. Further, we propose metrics for the evaluation of the imitated robot
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Pick (CUP)

Dataset Recognition Imitation in Simulation

Figure 7.1: Overview: This figure gives an overview of our benchmarking model. We provide a
dataset contained recorded in the real world. The sequences of these datasets are supposed to be
interpreted by imitation learning approaches, which then execute the imitation in a simulated en-
vironment which is grounded by the ground truth initial object positions. After the performance
in simulation, the results are evaluated.

behavior. The lack of missing metrics has already been highlighted in 2009 by Argall
et al. [Arg+09] and again in 2018 by Osa et al. [Osa+18].

We found robotic imitation learning approaches that use custom collected data for
experiments, but this data has not been published for general access. This makes re-
production and comparison more difficult or even impossible. In high contrast to other
currently available datasets, we not only focus on the recognition of actions, but also on
a more profound understanding of the interaction between humans and objects. Even
though we also recorded ground truth positions of the demonstrator’s hand and the in-
teracting objects, the goal of the benchmark is to advance in markerless visual imitation
learning approaches.

Simitate will be applicable for approaches in different fields like imitation learning
through reinforcement learning [Dua+17], genetic programming [GP18] or generative
adversarial networks [Gai+15]. Besides imitation learning, the dataset can be used for
action recognition or object tracking but does not primarily target these fields.

The main contributions of this chapter are:

• a novel publicly available dataset containing different individuals performing daily
activity tasks,

• a novel benchmarking component that enables researchers to compare their results
in a simulated environment,

• metrics for evaluation based on the imitated trajectory and the effect are proposed.
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7.2 Related Work

Imitation Learning Most approaches use custom datasets and methods for evalua-
tion, making direct comparisons vague. Ross et al. [RGB11] presented a supervised
approach for imitation learning by dataset aggregation, called DAgger. Expert policies
which gather a dataset of trajectories are used to train a second policy that aims at mim-
icking the trajectories well. Afterwards, more policies from expert demonstrations are
used again to mimic the demonstrations, but now the trained policies are added to the
dataset. The next policy is then defined as the policy that best mimics the expert on the
whole dataset. Laskey et al. [Las+17] proposed an off-policy approach which injects
noise into the demonstrator’s policy. By this, the demonstrator is forced to correct the
injected noise and a recovery behaviour from errors can be trained. In comparison to
DAgger [RGB11] they claim the approach to be faster and more robust. The data from
the physical experiments on a real robot is not available. Ho et al. [HE16] presented an
approach for extracting policies directly from data by a model-free imitation learning
algorithm. Their approach has been proven to show the same results as inverse rein-
forcement learning problems. One shot imitation learning approaches [Yu+18; Pai+18;
Dua+17] have recently gained popularity. Further, virtual reality approaches have been
used for learning new activities by demonstration [Bat+17; Ram+14]. A promising
crowdsourcing approach of human-robot interactions was proposed by Mizuchi and In-
amura [MI17]. This potentially could enable learning robot activities by demonstrations
through virtual reality. A direct transferability from virtual reality to real-world robots
is challenging because of the usage of simulated sensor data. We try to tackle this bot-
tleneck in this chapter. More recently, interesting Real2Sim [Sad+18] approaches train
robot controllers entirely in simulation and are successfully transferred to real robots.

Datasets Comparable datasets mostly target action recognition. Therefore, the datasets
presented in Section 3.4.2 are related to the imitation learning to a certain degree. How-
ever, many action recognition datasets do not focus on human-object or human-scene
interactions. Weinzaepfel et al. [WMS16] presented DALY, a dataset containing ten
daily activity classes found in 500 YouTube videos with a total duration of 31 hours.
Pirsiavash and Ramanan [PR12] created a first person dataset containing images from
people fulfilling daily activity tasks. A comprehensive survey for action recognition is
given by Zhang et al. [Zha+16]. Many published datasets focusing on imitation learn-
ing target autonomous driving [Cod+18; ZC16]. Gupta and Malik [GM15] presented a
dataset based on a subset of the COCO [Lin+14] dataset, targeting semantic role label-
ing by verbs describing people interacting with objects. An interesting dataset, named
PROX, to support the analysis of humans interacting with an environment was presented
by Hassan et al. [Has+19]. Similar, the GRAB [Tah+20] and ContactPose [Bra+20]
datasets concentrate on humans grasping objects. Those datasets could potentially be
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interesting to improve imitation learning in future, as they allow more detailed analysis
of humans and their object- and environment interactions.

The dataset that comes closest to our proposed dataset is the CAD-120 by Koppula
et al. [KGS13] which contains 120 different RGB-D camera sequences where four indi-
viduals perform activities like making cereals, microwaving food and more. In addition,
the dataset contains skeleton data provided by a skeleton tracker and also manually an-
notated object tracks.

Robot Benchmarking Benchmarking nowadays enables quantitative evaluation in
many research topics like autonomous driving [GLU12], object tracking [BS08; WLY13;
Mil+16], and RGB-D SLAM systems [Stu+12]. . Those benchmarks build a comfort-
able environment for evaluation as most commonly standard formats, evaluation metrics
and scripts are specified for result comparison. Most of them even collect produced eval-
uation results online [GLU12; Mil+16] in a leaderboard. Some of the later benchmarks
also integrate the replication by actual robotic systems i.e. for grasping [Lei+17]. Vir-
tual reality environments have previously been used [Zha+18; VCS18] for evaluation of
human robot interfaces.

Around the time, that we proposed Simitate, an increasing interest in robotic bench-
marking was evolved. Yu et al. [Yu+19] presented a benchmark for multitask and meta
reinforcement learning. They target training policies that generalize well to entirely
held-out tasks. Different protocols for various difficulties are proposed. James et al.
[Jam+20] presented a robot learning benchmark in a simulated environment containing
100 hand-designed tasks. Demonstrations can be generated. Both of those benchmarks
concentrate on fully simulated environments without incorporation of real sensor data,
neither demonstrations from human observations. Toyer et al. [Toy+20] presented an
imitation learning benchmark that aims at benchmarking generalization capabilities of
imitation learning approaches. Rana et al. [Ran+20] presented a benchmarking ap-
proach for Learning by Demonstration (LbD) approaches. Four different methods were
benchmarked in a large-scale user experience. Demonstrations by varying expert levels
were recorded. Reproductions using the four different methods from different start-
ing positions were recorded and have been rated by mechanical turks. This benchmark
relies on human observations for the evaluation of the reproductions.

Robot Challenges and Competitions In form of competitions like RoboCup@Home
[Wis+09] robotic systems are benchmarked in domestic environments, however, due to
the biannual changes of the rules and not fully objective opinions of referees the com-
parison should be seen critical. Further, the focus is set on a time constrained one shot
evaluation in most tasks. In contrast, the European Robotics League [Lim+16] puts
a focus on benchmarking and uses explicit metrics. However, long term benchmark-
ing and the limited amount of participating teams still makes long-term comparability
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(a) Reflective
markers on hand

(b) Reflective marker on interact-
ing object

(c) Reflective markers on RGB-D
camera

Figure 7.2: Dataset setup. Reflective markers are attached on the human’s hand (a) on the
interacting objects (b)) and the RGB-D camera (c).

difficult. The HEART-MET challenge [TH21] follows an interesting approach to com-
bine dataset challenges with real-world robot challenges. The World Robot Summit has
several sub-challenges like assembly [Yok+19], where industrial robots are challenged
in manipulation tasks. Points are given in tasks of various difficulty. As the task is
well-defined by partial points for subtasks that can clearly been indicated as success or
failure. The service robot category, Similar, the Future Convenience Store Challenge

[Wad17] proposes practical tasks for service robots. Three challenges, two of them with
clear metrics, like e.g., for the toilet cleaning task the cleaning rate (measured by before
and after the cleaning task) and for the store and disposal task points corresponding to
the stored and disposed items are proposed.

Metrics Some metrics have been proposed, mainly for the correspondence problem
of imitation learning tasks [AND07]. A promising approach is to measure the effect
based on [Ali+06] were demonstrated and imitated effects are compared by their dis-
placements in relation to other objects. Most common for the evaluation of imitation
learning tasks are qualitative observations [RGB11; Las+17]. This is a major deficit in
comparison to other well established fields.

7.3 Dataset

In the following section, we describe the dataset recording setup for the Simitate bench-
mark dataset. An RGB-D-camera has been calibrated against a Motion Capturing Sys-
tem. The dataset sequences contain humans performing demonstrations of various com-
plexities in a replicated domestic environment, targeting the benchmarking of domestic
service robots. The resulting dataset sequences are introduced.



7.3. DATASET 135

(a) Rendered testbed model (b) Actual testbed

Figure 7.3: The ISRoboNet@Home testbed.

7.3.1 Setup

To record the dataset, we used a Kinect 2 RGB-D camera mounted on a tripod. Data was
acquired in an exemplar apartment modelling common real-world apartments, including
different furniture and rooms. 12 OptiTrack PRIME 13 cameras were mounted on the
ceiling. In total, an area of 50m2 is covered by the system. The optical center of the
RGB-D camera is calibrated against the Motion Capturing System. Rigid body markers
are attached to all relevant interacting objects and the human demonstrator. The demon-
strator is completely visible during recording, except when he is occluded by objects or
furniture he is interacting with. The individual sequences were recorded at a number of
different locations in the apartment. For inspection purposes, we also recorded a cam-
era stream giving an overview of the apartment. The marker- and apartment-setups are
shown in Fig. 7.2.

7.3.2 Testbed

The testbed ISRoboNet@Home1 (see Fig. 7.3) has been set up for the European Robotics
League to support the benchmarking of service robots. A detailed floor plan id also
depicted in Appendix B. It aims at imitating a domestic environment separated in dif-
ferent rooms, including standard furniture and objects. The Motion Capturing System
described above is integrated in the testbed and allows recording ground truth data of
interacting humans, robots, as well as objects. Besides the installed Motion Captur-
ing System this testbed has the following benefits: its initial state can be recovered,
it is similar to real apartments and it is open for use by research groups. This bene-
fits also allows everyone to extend the set of recorded sequences. In fact, we want to

1http://welcome.isr.tecnico.ulisboa.pt/isrobonet/

http://welcome.isr.tecnico.ulisboa.pt/isrobonet/
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motivate researchers to add new demonstrations or environments. The rendered model
(see Fig. 7.3a) is used for the integration in the simulator to allow integration of the
real-world sensor data recorded in the real environment (see Fig. 7.3b).

7.3.3 Calibration

Reflective Marker

Checkerboard Pattern

Figure 7.4: Checkerboard with reflective markers. The top right marker is used to define a
unique pose. The central point on the plane in the middle of the four reflective markers on the
checkerboard pattern define the centroid of the calibration pattern.

For the calibration of the RGB-D camera to the Motion Capturing System, we follow
the ideas of Sturm et al. [Stu+12]. Reflective markers were attached at the corners of a
checkerboard pattern. The setup for the calibration pattern and markers are depicted in
Fig. 7.4. The centroid of the checkerboard was estimated using the Motion Capturing
System and the central checkerboard pixel for corresponding image coordinates. It was
ensured that the printed pattern was completely planar. We estimated the reflective
marker height using the CW-200 marker and updated the centroid to be on the same
planar surface as the printed pattern.

Our goal is to transform point clouds from the RGB-D camera into a common ref-
erence coordinate system with the Motion Capturing System such that we can project
real sensor data into a virtual environment later on. We intrinsically calibrated the RGB
and infrared cameras of the RGB-D camera by following a method of Zhang et al.
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TKino,Cb

TKinp,Cb

T Cb,WorldTKinm,World

TKino,Kinp

Figure 7.5: Extrinsic transformation overview. We are interested in finding the transformation
between the optical center of the RGB-D camera and the RGB-D camera frame in Motion Cap-
turing System coordinates. The Motion Capturing System calibration pattern (bottom) defines
the world origin. Correspondences between the checkerboard in world coordinates and image
coordinates can be generated automatically by finding the central checkerboard point in image
coordinates.

[Zha00] and then extrinsically calibrate the camera’s optical center using the Levenberg-
Marquardt method [Mar63]. Fig. 7.5 illustrates the given and required transformations.

Intrinsic Calibration

For the intrinsic calibration, a chessboard pattern with 7 horizontal inside corners and
5 vertical inside corners with a distance of 20 mm was used. A complete planar attach-
ment on a wooden board was ensured. The RGB-D camera and calibration board were
mounted on a tripod to ensure no motion artifacts. The RGB and infrared camera were
then each presented various differing poses of the pattern. The calibration was guided
by a tool reporting about the different scale and skew poses of the pattern to ensure
varying poses. For each of the poses, a corner detector is used to extract features from
the checkerboard.
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OptiTrack Camera

Microsoft Kinect 2 RGB-D Camera

Calibration Pattern

Figure 7.6: Motion Capture / RGB-D Camera Calibration setup

Our goal is to estimate the parameters of our camera matrix K:

K =






αx γ u0 0

0 αy v0 0

0 0 1 0




,

where αx, αy denotes the focal length, u0, v0 denote the optical center, and γ denotes
the skew. By using the method of Zhang [Zha00], the intrinsic camera parameters as
well as the poses for each input pattern are given. We are interested only in the intrinsic
parameters for later estimation of the extrinsic calibration between the camera and the
Motion Capturing System. A closed-form solution initializes the model parameters,
then the radial distortion parameters are estimated by minimizing a simplified projection
equation and finally the whole projection equation is refined by a maximum likelihood
estimation. For details, we refer the reader to Zhang’s approach [Zha00].
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Extrinsic Calibration (Camera to MoCap)

Now, given the camera matrix K, we can formulate our problem as finding the trans-
lation vector t and rotation matrix R to transform the projective center of the RGB-D
camera TKino,Cb into the marker frame of the Motion Capturing System TKinm,World:

Finding the transformation TKinm,Kinp is crucial for aligning the pointclouds from
the Kinect with the Motion Capturing System. A method to get the rotation R and
translation t is to solve the projective n-point problem. For an in-depth description
of solutions of the projective n-point problem, we refer to Marchand et al. [MUS16].
We collect a set of synchronized correspondences of the central checkerboard point.
The central checkerboard world coordinate is given by the calibrated motion captur-
ing system. For that, we used a checkerboard setup as shown in Fig. 7.4. The overall
calibration scene for collecting correspondences is depicted in Fig. 7.6. The central
checkerboard point in pixel coordinates is given by the same feature detector that has
been used for the intrinsic calibration already. The pixel coordinates are then trans-
formed to homogeneous image coordinates. Note, we assume a calibrated and rectified
camera here. An approach to estimate R and t is to minimize the re-projection error
with:

argminR,t =
m∑

i=1

∣
∣pImage,i −K(RpCb,i + t)

∣
∣
2
,

where pImage,i denotes the homogeneous image coordinate and pCb,i denotes the central
checkerboard point in homogeneous world coordinates. The minimized rotation R and
translation t define the required transformation TKinm,Kinp = [R|t].

The Motion Capturing System has carefully been calibrated before recording the
sequences using OptiTrack Motive motion capturing software with a CW-500 marker.
A common origin has been estimated using a CW-200 marker in a fixed point of the
apartment. For the motion capturing calibration, we achieved the following results. The
mean overall wand error was 0.136mm. For re-projection, we got a mean 3D error of
0.523mm, and a mean 2D error of 0.099 pixels. The worst mean re-projection 3D error
was at 0.642mm and the worst mean 2D error was at 0.143 pixels. The RGB-D camera
has been calibrated intrinsically and extrinsically.

Fig. 7.7 shows the re-projected marker of the checkerboard center. The transforma-
tion between the centroid of the RGB-D camera’s rigid body and optical center of the
RGB-D camera are then estimated [Zha00]. In order not to interfere with the calibra-
tion result by motion, we mounted the RGB-D camera and the checkerboard on tripods.
The inverse transformation is used between the Motion Capturing System pose of the
RGB-D camera and its optical center. A precise calibration is especially important for
the alignment of real-world data and later imitation in simulation. Too high residuals
will lead to an inaccurate alignment between simulation and real-world observation and
can affect the imitation performance.
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Figure 7.7: A visualization of the resulting calibration. The checkerboard center is correctly
aligned to its corresponding Motion Capturing System marker.

7.3.4 Human-Object Interactions

We used common affordable home accessories that we got from a worldwide serving
furniture retailer. The used objects are depicted in Fig. 7.8 and listed with their item
numbers in Table 7.1. their labeled training images and pre-trained models for two
widely spread recent approaches [Red+16; He+17]. The images have been labeled with
support of a recent guided image segmentation approach [Man+18]. The provided data
allows to easily reproduce the results and diminished the hurdles to develop approaches
for this benchmark. We tried to get colorful objects too, as the focus of the presented
benchmark should not be on object recognition, but on the imitation learning aspect.

We mounted rigid body markers at the back of the right hand of the demonstrator.
An exemplary setup for the human is shown in Fig. 7.2a. We ensured that human pose
estimates using a recent key-point detector are not interfered by the marker setup. We
provide human body keypoints extracted with OpenPose [Wei+16] and projected using
the depth channel into world coordinates as well.

7.3.5 Sequences

We recorded sequences for multiple purposes. First, we want to ensure that different
categories of imitation learning can use this dataset. Therefore, we recorded sequences
that aim at the interpretation of the demonstrations on a symbolic and on a trajectory
level.
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Figure 7.8: Objects used for the dataset.

Sequences on a trajectory level are further divided into cloning tasks, where the hu-
man performs a movement and the goal is to mimic the movement. More challenging
sequences contain object interactions. Different individuals perform all sequences. We
provide sequences that cover not only local demonstrations, but also movements be-
tween different places in the apartment of Fig. 7.3. For tasks like opening a door, we en-
sured to handle multiple doors of the apartment. We divide the sequences based on their
level of difficulty. Basic Motion sequences contain drawn figures with the right hand.
Its intention is to clone the observed movement. They also serve as testing sequences
for the hand position estimation. Motion sequences contain activities like reaching for
an object with the hand, picking, placing, moving or pushing it. More complex activi-
ties contain tasks that are categorized as Complex sequences. Sequential scenes contain
multiple basic motions in various random combinations over a longer period of time.
The complete list of sequences is given in Table 7.2. In Fig. 7.9 example, sequences are
visualized. The tables in Appendix A contain one example for each class contained in
the dataset.

7.4 Benchmark

We propose a combined approach of real-world observations and simulated environ-
ment for benchmarking imitation learning approaches. The initial object locations and
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Table 7.1: Simitate object list

Name Number Type

365+ 604.063.04 plates

JÄLL 202.428.90 ironing board

BITTERMANDEL 204.323.81 vase

STEKA 926.258.00 pan

PS 2002 303.879.72 watering can

LILLNAGGENA 402.435.96 Shower squeegee

FÖRDUBBLAA 903.459.41 2-piece knife set

HEAT 870.777.00 trivet

ANTAGENA 202.339.61 Dish brush

BLASKA 701.703.29 Dust pan and brush

GNARP 303.358.41 3-piece kitchen utensil set, black

SVAMPIG 602.576.05 sponge

FLUNDRA 401.769.59 dish drainer

FÄRGRIK 003.189.56 mug

VISPAD 602.575.25 colander

GLIS 800.985.83 box with lid

FEJKA 903.751.55 Artificial potted plant

GUBBRÖRA 902.257.31 Rubber spatula

positions of the observing sensors are propagated into a carefully reconstructed simula-
tion of the testbed. This approach has multiple benefits: First, this enables evaluation
methods for imitation learning and extends currently available datasets that focus on
action recognition. Second, it supports generalization as the imitated behavior could
be benchmarked with a wider variety of simulated robots and simplifies the transfer to
real-world robots. Third, it enables generalization to verify the imitated behavior with a
variety of objects and locations.

Exemplary, we provide integration into two widely used simulations [KH04; CB21]
in the robotics and machine learning community. The benchmark in combination with
the provided dataset therefore allows the evaluation of action recognition and task imi-
tation on a semantic and trajectory level. As action recognition is already addressed by
many other datasets, we focus on the imitation aspect in the benchmark description.

To reduce the complexity in application of this benchmarking approach and to fos-
ter the development of imitation learning approaches, we provide labeled training data
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Table 7.2: Sequence overview

# Seq Avg. Length in s Total

Length in m

Basic Motions

Circle 104 6.83 11.58

Rectangle 105 6.84 11.97

Heart 85 6.85 9.70

Triangle 85 6.85 9.70

Zickzack 85 6.83 9.68

Motion

Reach 79 7.97 10.49

Move 79 7.96 10.48

Push 30 9.40 4.70

Pick 79 7.97 10.49

Place 79 7.96 10.49

Pour 224 8.25 30.83

Stack 63 14.63 15.36

Wipe 31 29.06 15.01

Mix 33 14.36 7.90

Complex

Ironing 92 31.74 48.66

Clean 92 28.11 43.11

Throw 50 6.84 5.70

Cut 49 19.37 15.82

Open 40 9.37 6.24

Close 20 4.34 1.44

Sequential

Rearrange 65 19.33 20.94

Pick and Place 409 14.21 96.91

Place into 60 10.67 10.67

Bring 82 21.02 28.73

.



144 CHAPTER 7. BENCHMARKING FOR IMITATION LEARNING

−0.5
0.0

0.5
1.0

1.5
2.0

2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

checkerboard

hand

(a)

1.3
1.4

1.5
1.6

1.7
1.8

1.9
2.0 −1.0

−0.5

0.0

0.5
1.0

1.5
2.0

0.8

0.9

1.0

1.1

1.2

1.3

1.4

bittermandel-blue

checkerboard

vispad

hand

(b)

1.3
1.4

1.5
1.6

1.7
1.8 −0.6

−0.4

−0.2

0.0

0.2

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

bittermandel-blue

arrow

jaell

iron

hand

(c)

Figure 7.9: Example sequences image on top and plotted trajectories at the bottom for (a) a
basic motions heart sequence, (b) a motion sequence for reaching, (c) a complex sequence for
ironing.

for object segmentation and object detection as well as pre-trained models for current
state-of-the-art approaches [He+17; Red+16]. The benchmark is supposed to be exe-
cuted sequentially. First, the individual sequences are played back. This sequence has
to be analyzed by an approach either on semantic or trajectory level. After the analysis,
the task is to reproduce the observed actions. Generalization is evaluated by replication
of the same tasks using different initial setups, but common actions on previously un-
seen sequences. In the observation step, sequences from the dataset will be analyzed
and relevant information for the recognized action, interacting objects and arm trajec-
tories should be extracted. We provide a class that simplifies this for later evaluation.
The ground-truth information from the sequence is used to initially set up the virtual
representation of the testbed in simulation. A simulated robot should then execute the
observed action. This allows evaluation of the achieved effect and trajectory error mea-
surements.

7.4.1 Effect

Using the effect has been proposed by Alissandrakis et al. [AND07]. We integrate
effect evaluation for relative and absolute effects after performance of the imitation.
Evaluating the relative object pose seems to be appropriate when objects are placed
very close to each other. In this case, we can measure the Relative Pose Error (RPE)
between the final object pose pe and the relative ground truth poses between the object
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Figure 7.10: Examples for a pose error. On the left, a rotational and translational error is shown.
On the right, only a translational error is shown. The rotational error is omitted for symmetric
objects.

and the j-th of n surrounding objects pg,j like:

RPE :=
n∑

j=1

(pe ⊖ pg,j)
2,

where ⊖ is the inverse motion-compensation operator [Küm+09] that can be imagined
as the relative 3D transformation between two poses. This metric is inspired by sug-
gestions for the accuracy of SLAM systems [Küm+09; Stu+12]. The success of the
imitation is evaluated based on post conditions that are modeled by the end state of the
ground truth. An example for the pose error is given in Fig. 7.10. In other cases, it will
be more relevant to aim for an effect in the human’s coordinate frame. For that, we use
the absolute pose error:

APE := pe ⊖ pg.

In the proposed benchmark, we provide scripts for automatic evaluation of both
metrics and weight their interest depending on the performed action. For many com-
mon everyday objects like bowls, the rotation around their z axis is irrelevant because
their symmetry is not distinguishable, even for humans. In this case, we skip the angular
component in the error calculation. This metric is used for motion sequences. Addition-
ally, it could be applied on other sequences as well, but this is not primarily targeted by
this benchmark.

7.4.2 Trajectory Error

The other metric that we propose is based on the relative trajectory error between the
robot’s end-effector and the interacting object over the period (1 : m) of imitation. This



146 CHAPTER 7. BENCHMARKING FOR IMITATION LEARNING

(a) Perfect alignment (b) Error in alignment

Figure 7.11: Trajectory metric visualization. Given the blue ground truth trajectories as ob-
served from the demonstrator’s hand and the red imitated trajectory by the robot’s end-effector,
in (a), the trajectory, even so that the location of the imitation is off, the trajectory could be
perfectly aligned with an RMSE = 0 while the trajectory in (b) cannot be perfectly aligned and
results in an RMSE > 0.

results in a similar metric as proposed in [Stu+12] for visual odometry using the Root
Mean Square Error (RMSE):

RMSE(RPE 1:m) :=

√
√
√
√

1

m

m∑

j=1

‖RPE j‖2.

By considering the relative trajectory error, the exact location and scale of the imita-
tion is not of interest. The focus is on the quality of the imitated end-effector trajectory.
This metric is considered, e.g., for the basic motions sequences, where no hand-object
interactions take place. A visualization and analysis of exemplary trajectories is given
in Fig. 7.11.

7.4.3 Baseline

To prove the validity of the proposed trajectory metrics and the benchmarking model,
we implemented a simple approach for imitating human motions based on visual obser-
vation. Such a scenario is visualized in Fig. 7.12a. For showing the validity of the effect
metric, we took exemplary sequences and compared them against other demonstrated
sequences involving the same set of objects.

For the basic motion sequences, we evaluated the absolute trajectory error of the
imitation. We use a keypoint detector for human pose estimation [Wei+16] to estimate
the hand positions in every frame of the sequence. The position of the right hand is
projected in 3D space by using the depth channel of the corresponding pixel. The APE
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(a) (b) (c)

Figure 7.12: Trajectory comparison in simulation. The red line denotes the end-effector po-
sitions while the black line shows the ground truth positions of the demonstrator with a basic
motions heart sequence (a), a motion pick sequence (b) and a sequential stack sequence (c).

of the first sequence of each set are with two robots, shown in Table 7.3. This table
shows that the imitated hand poses with the robot’s end-effector are reasonably accurate
but subject to further improvement. We show the applied metric for the approached
estimated hand keypoints (KP) and also in contrast what could potentially be reachable
with the proposed same initial setup by the robot with the ground-truth hand position
(GT). The keypoint results are heavily influenced by outliers that occurred through pro-
jection errors of the corresponding 2D estimation to the corresponding depth value, i.e.,
in cases where no depth could be estimated.

We also verified the validity of the effect evaluation using the RPE for the imitation
of a place sequence. Example settings are shown in Fig. 7.12b, 7.12c. The robots are
placed in front of the table in a similar position as the RGB-D camera was placed. The
goal is to replicate the final state of the scene. For simplicity, we attach the moved object
to the end-effector position and computed the inverse kinematics to the goal location to
compute the RPE . For the TIAGo robot, we got an average distance error of 0.047m
and a rotational error of 0.013 rad for the active object. The source code to reproduce
the results is provided on the project page.

7.5 Conclusion

We proposed a novel benchmark for imitation learning tasks. A dataset recorded with
a RGB-D camera calibrated against a motion capturing system is coupled with a simu-
lated representation of the environment. Metrics for evaluation are proposed. The goals
of this benchmark are to foster comparability, reproducibility, and the development of
approaches for imitation learning tasks with a slight focus on visual imitation learning
approaches. The dataset does not just contain toy examples (like reaching or moving
objects) but also more complex challenges to solve, for example, ironing cloths and
sequences for imitation on a trajectory level without object interactions. Simitate aims
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Table 7.3: Evaluation of the absolute translation error (units are in m)

Min Max Mean RMSE

Circle

TIAGo KP 0.006 0.673 0.105 0.160

TIAGo GT 0.007 0.108 0.034 0.038

Sawyer KP 0.011 0.755 0.110 0.174

Sawyer GT 0.003 0.333 0.030 0.041

Rectangle

TIAGo KP 0.010 0.548 0.065 0.086

TIAGo GT 0.005 0.139 0.028 0.032

Sawyer KP 0.009 0.769 0.061 0.086

Sawyer GT 0.005 0.386 0.026 0.033

Triangle

TIAGo KP 0.015 0.382 0.068 0.094

TIAGo GT 0.007 0.112 0.024 0.034

Sawyer KP 0.014 0.400 0.078 0.106

Sawyer GT 0.007 0.114 0.025 0.036

Heart

TIAGo KP 0.011 0.362 0.054 0.073

TIAGo GT 0.007 0.083 0.027 0.033

Sawyer KP 0.010 0.701 0.057 0.085

Sawyer GT 0.005 0.184 0.030 0.037

ZickZack

TIAGo KP 0.024 0.213 0.072 0.081

TIAGo GT 0.001 0.098 0.036 0.043

Sawyer KP 0.022 0.214 0.070 0.079

Sawyer GT 0.002 0.108 0.035 0.043

at keeping the entrance barrier low by providing a complete suite with datasets, pre-
trained models, integration into widely spread simulations and simple visual baseline
approaches as a starting point. It can be extended by adding new tasks using an openly
accessible testbed. The effect metric will come to a limit on imitation learning tasks
with soft-bodies like bedsheets or liquids.



Chapter 8

Conclusion and Outlook

In this thesis, we introduced approaches for the recognition of actions on signal streams.
Next to supervised and semi-supervised training settings, we presented methods for the
segmentation and fusion of various sensor-data-streams. In addition, we presented an
imitation learning benchmark that goes beyond the sole recognition of actions, but to-
wards the imitation of observed actions in a robotic system. We put a particular em-
phasis on comparability and reproducibility, therefore, all of our presented approaches
are evaluated on large-scale public available datasets and the source code is made avail-
able. At the time of writing, our one-shot action recognition approaches SL-DML and
Skeleton-DML hold the state-of-the-art on the challenging NTU RGB+D 120 one-shot
action recognition protocol by a significant margin. Further, our Fusion-GCN approach
outperforms other approaches on the large-scale multi-modal MMAct dataset by a sig-
nificant margin. Our CNN-based approach for action recognition on various sensor that
aims at generalizing well across sensor data modalities is outperformed by recent GCN-
based approaches, that focus on skeleton sequences, when dealing with high number of
action classes.

First, we presented methods for representing motion originating from various sensor
modalities in images. By formulating the action recognition problem on a signal-level,
our method remains flexible to modalities ranging from skeleton sequences, IMU, Wi-
Fi -CSI fingerprints over motion capturing data to RGB-sequences (after transformation
into a human pose feature space). The motion representations are then trained using
a recent EfficientNet-CNN model in a supervised training setting. Our results suggest
good generalization capabilities across different sensor-modalities without adaptions
of the underlying representation or network architecture. Being generalizable across
different sensor modalities is a huge practical benefit over other available approaches
that often focus on improving results for a single sensor modality.

Further, we presented an approach for multi-modal action recognition based on
GCNs into a skeleton graph. Various modalities are fused into a skeleton graph on
two dimensionality-levels in an early fusion scheme, either on a channel dimension or a
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spatial dimension. Early fusion schemes are particularly interesting as they add limited
complexity to a base model, contrarily to late fusion schemes which introduce separate
streams for each additional modality.

For the fusion on a channel dimension, additional modalities are fused by introduc-
ing additional node attributes. On a spatial dimension, additional nodes are incorporated
into the skeleton-graph.

We demonstrate state-of-the-art performance on the MMAct dataset, where the in-
corporation of additional modalities has further improved the superior performance of
the GCN.

For our experiments, we observed that the fusion by inertial measurements from a
smartwatch improves the skeleton-graph while to many modalities decrease the action
recognition performance. This suggests future research towards the modelling of uncer-
tainty into the training process, for instance by weighting different modalities with the
loss.

The first two presented approaches focused on generalization or the fusion of various
sensor data modalities. However, it might also be favorable to generalize to previously
unseen actions in practice. Methods that are able to recognize actions given only a few
samples are beneficial for further applications, e.g., to improve human-robot-interaction,
but are also of interest, e.g., for the recognition of anomalies. We proposed to transform
motion representations into an embedding space that encodes action similarity. The em-
bedding model jointly optimizes the embedding space with features of a backbone CNN
and a metric learning loss that optimizes for self-, positive-, and negative-pair similari-
ties. By continuing to follow the signal level problem formulation, our semi-supervised
action recognition approach generalizes well across different sensor modalities. Our
metric-learning based one-shot action recognition approaches achieve state-of-the-art

performance on the challenging NTU 120 one-shot action recognition task, even with
just a fraction of 40% of the available training data. The models are learning semantic
contributions of the skeleton-joints. A highlight is a novel inter-modal action recogni-
tion protocol that is a result of our flexible problem formulation. Concepts from action
samples trained on one modality can be transferred to a novel, unseen modality with
just a single reference sample. Inter-modal action recognition remains highly practical
due to its flexibility and aligns well with the current research efforts towards multi-task
models.

In this thesis, we also addressed the segmentation of actions in skeleton-streams. We
formulate the action segmentation problem as an object detection problem. We propose
to use transformer networks, in detail the DETR, and their abilities to model long-term
attention to address the action segmentation problem for skeleton sequences. Various
representations have been evaluated with the approach. Experiments were conduced on
the PKU-MMD dataset. We showed that detection transformers are good candidates
for the action segmentation task. Performance is especially good for the recognition of
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the actions but is outperformed by state-of-the-art methods for skeleton-based action
segmentation by lower start and end estimation of the actions.

Finally, we presented a hybrid imitation-learning benchmark. The imitation learn-
ing problem goes beyond the recognition of actions but towards its imitation of robotic
systems. Currently, imitation learning approaches are widely evaluated only in simu-
lated environments or in toy scenarios, with datasets mostly not publicly available. With
the Simitate benchmark, we aim at making the imitation learning task more accessible
and comparable. For that, we recorded a dataset where different individuals perform
daily tasks of various complexity levels, ranging from basic motions to manipulation
activities like picking or placing, to complex tasks like ironing. The dataset provides
RGB-D-sequences that are calibrated against a Motion Capturing System. This setup
allows pairing real sensor data with ground-truth motion to train a policy that imitates
the observation. Having access to the ground-truth data of the demonstrator’s hand
and the interacting objects gives many possibilities for the training and evaluation of
imitation learning approaches in a simulated environment. Beyond the commonly used
success rate for the evaluation of agent-based systems, we proposed metrics that give in-
sights into the imitation in the simulated environment either on a trajectory-level, where
the focus is on accurately imitated trajectories of the end-effector, or on an effect-level,
where the final state of the manipulated objects and their relation is in focus.

The research topics related to action recognition and imitation contain a lot of po-
tential for future research that would exceed the course of the thesis. We now present
some research ideas for future research. With minor adoptions, our action segmentation
approach could be applied for the spatio-temporal action localization problem. Pose se-
quences from multiple persons would be represented in an image. Naively, the proposed
action segmentation approach could be executed for pose sequences per person and per
sample. The pose sequence enclosed by the segmentation would allow for a pose level
spatio-temporal action localization. Calculating the bounding box of the pose at a given
time step would yield a bounding box of the person and action class label that could
be re-projected into image space from the information contained in the representation.
NAS is an interesting research direction that suggests novel research topics for action
recognition. First, sampling all existing architectures in an architecture space would be
engaging for the evaluation of action recognition. Having access to trained models in
an architecture space would allow for in-depth architecture studies. From our perspec-
tive, the inter-modal action recognition protocol is an promising candidate for future
research and improvement, which requires the modeling of generalization capabilities.
Reformulating the NAS optimization target to minimize the error on a validation set
of a different modality should lead to architectures that generalize better across various
modalities. An interesting future research direction leading requiring generalization of
neural networks in its core might also be the incorporation of prediction methods for
test errors into the NAS routine. Currently, most NAS approaches aim at finding ar-
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chitectures that optimize the number of floating-point operations while achieving high
validation accuracies. Recently proposed methods for the estimation of generalization
capabilities would be great candidates to experiment with a reformulation of the opti-
mization target, to minimize the predicted test-error while minimizing the floating-point
operations. There are many datasets for action recognition of various modalities already
existing. However, there is a lack of action recognition datasets that includes laser range
data, which could potentially verify to which extent laser range finders are suitable for
the action recognition related task. Such a dataset could examine the action recognition
for applications in automotive context. For assisted or autonomous driving, the anticipa-
tion of actions becomes especially interesting. Existing datasets, including laser range
data, focus on semantic segmentation tasks. Action recognition and related topics like
the temporal segmentation, spatio-temporal localization or anticipation remain promis-
ing topics for future research. Our imitation learning benchmark could potentially guide
future imitation learning approaches and their evaluations to be more reproducible and
comparable while still operating on real sensor data.
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Appendix A

Simitate Sequence Examples

Trajectories Initial Frame Sequence Name

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0 −1.0

−0.8

−0.6

−0.4
−0.2

0.0
0.2

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

bittermandel-blue

vispad

arrow

hand

rect

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8 −0.7
−0.6

−0.5
−0.4

−0.3
−0.2

−0.1
0.0

0.1

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

bittermandel-blue

steka

vispad

hand

circle

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0 −1.0
−0.8

−0.6
−0.4

−0.2
0.0

0.2
0.4

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

bittermandel-blue

vispad

arrow

hand

zickzack
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−1.0
−0.5

0.0
0.5

1.0
1.5

2.0 −1.0
−0.8

−0.6
−0.4

−0.2
0.0

0.2
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

bittermandel-blue

steka

vispad

arrow

hand

heart

Table A.1: Basic motions examples

Trajectories Initial Frame Sequence Name

1.5
1.6

1.7
1.8

1.9
2.0

2.1
2.2 −0.8

−0.6

−0.4

−0.2
0.0

0.2
0.4

0.7

0.8

0.9

1.0

1.1

1.2

1.3

bittermandel-blue

steka

arrow

hand

iron

vispad

pour_vispad_into_steka

1.3
1.4

1.5
1.6

1.7
1.8

1.9
2.0 −0.5

0.0

0.5

1.0

1.5

2.0

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

bittermandel-blue

checkerboard

vispad

hand

reach_bittermandel

1.4
1.6

1.8
2.0

2.2
−0.6

−0.4

−0.2

0.0

0.2

0.7

0.8

0.9

1.0

1.1

1.2

1.3

bittermandel-blue

steka

arrow

hand

iron

vispad

place_iron
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1.3
1.4

1.5
1.6

1.7
1.8

1.9
2.0

2.1 −1.0

−0.5

0.0

0.5
1.0

1.5
2.0

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

bittermandel-blue

checkerboard

vispad

hand

pick_bittermandel

1.4
1.5

1.6
1.7

1.8
1.9

2.0
2.1

2.2 −0.8

−0.6

−0.4

−0.2
0.0

0.2
0.4

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

bittermandel-blue

steka

arrow

hand

iron

vispad

push_vispad

1.4
1.6

1.8
2.0

2.2 −0.8

−0.6

−0.4

−0.2
0.0

0.2
0.4

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

bittermandel-blue

steka

vispad

arrow

hand

move_steka

Table A.2: Motions examples

Trajectories Initial Frame Sequence Name

1.4
1.6

1.8
2.0

2.2 −0.4
−0.3

−0.2
−0.1

0.0
0.1

0.2
0.3

0.7

0.8

0.9

1.0

1.1

1.2

1.3

glis-yellow

glis-blue

glis-white

hand

stack_glis
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1.3
1.4

1.5
1.6

1.7
1.8

1.9
2.0 −0.8

−0.6

−0.4

−0.2
0.0

0.2
0.4

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

bittermandel-blue

steka

vispad

arrow

hand

place_arrow_into_vispad

1.2 1.3 1.4 1.5 1.6 1.7
1.8

1.9
2.0

2.1 −0.6

−0.4

−0.2

0.0
0.2

0.4
0.6

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

bittermandel-blue

steka

head-raphael

hand

arrow

head-ivanna

cf1

pick_and_place_arrow

1.5
1.6

1.7
1.8

1.9
2.0

2.1 −0.8

−0.6

−0.4

−0.2
0.0

0.2
0.4

0.75

0.80

0.85

0.90

0.95

1.00

bittermandel-blue

steka

vispad

arrow

hand

rearrange_2018-09-15-17-10-24

Table A.3: Sequential examples

Trajectories Initial Frame Sequence Name

1.3
1.4

1.5
1.6

1.7
1.8 −0.7

−0.6
−0.5

−0.4
−0.3

−0.2
−0.1

0.0
0.1

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

bittermandel-blue

vispad

jaell

iron

hand

iron_without_cloth
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1.5
1.6

1.7
1.8

1.9
2.0

2.1
2.2 −0.7

−0.6
−0.5

−0.4
−0.3

−0.2
−0.1

0.0
0.1

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

heat

knife

hand2

hand

cut

−0.1
0.0

0.1
0.2

0.3
0.4

0.5
0.6 −0.6

−0.4

−0.2

0.0

0.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

dust-brush

hand2

dustpan

hand

clean_dust

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0 −1.8
−1.6

−1.4
−1.2

−1.0
−0.8

−0.6
−0.4
−0.2

0.0

0.7

0.8

0.9

1.0

1.1

bittermandel-blue

steka

hand

vispad

arrow

RigidBody01

throw_arrow_into_vispad

1.0
1.2

1.4
1.6

1.8
2.0

2.2 −0.8

−0.6

−0.4

−0.2
0.0

0.2
0.4

0.75

0.80

0.85

0.90

0.95

1.00

1.05

iron

head-ivanna

lillnaggena

arrow

hand

wipe_table

1.3
1.4

1.5
1.6

1.7
1.8

1.9
2.0

2.1 −0.4
−0.3

−0.2
−0.1

0.0
0.1

0.2
0.3

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

jaell

iron

hand

iron_with_cloth
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0.6
0.8

1.0
1.2

1.4
1.6

1.8 0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

steka

door

vispad

iron

hand

open_left_cupboard_door

Table A.4: Complex examples
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Simitate Testbed Layout

Figure B.1: Simitate Testbed Layout
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