
Querying for Meta KnowledgeQuerying for Meta Knowledge

Bernhard Bernhard SchuelerSchueler
SergejSergej SizovSizov
Steffen StaabSteffen Staab

Nr. 8/2008Nr. 8/2008

Arbeitsberichte aus demArbeitsberichte aus dem
Fachbereich InformatikFachbereich Informatik

Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung
vorläufiger Ergebnisse, die in der Regel noch für spätere Veröffentlichungen
überarbeitet werden. Die Autoren sind deshalb für kritische Hinweise dankbar. Alle
Rechte vorbehalten, insbesondere die der Übersetzung, des Nachdruckes, des
Vortrags, der Entnahme von Abbildungen und Tabellen – auch bei nur
auszugsweiser Verwertung.

The “Arbeitsberichte aus dem Fachbereich Informatik“ comprise preliminary results
which will usually be revised for subsequent publication. Critical comments are
appreciated by the authors. All rights reserved. No part of this report may be
reproduced by any means or translated.

Arbeitsberichte des Fachbereichs Informatik

ISSN (Print): 1864-0346
ISSN (Online): 1864-0850

Herausgeber / Edited by:
Der Dekan:
Prof. Dr. Zöbel

Die Professoren des Fachbereichs:
Prof. Dr. Bátori, Prof. Dr. Beckert, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr. Ebert,
Prof. Dr. Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,
Jun.-Prof. Dr. Hass, Prof. Dr. Krause, Prof. Dr. Lämmel, Prof. Dr. Lautenbach, Prof.
Dr. Müller, Prof. Dr. Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese, Prof. Dr.
Rosendahl, Prof. Dr. Schubert, Prof. Dr. Staab, Prof. Dr. Steigner, Prof. Dr. Troitzsch,
Prof. Dr. von Kortzfleisch, Prof. Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Zöbel

Kontaktdaten der Verfasser

Bernhard Schueler, Sergej Sizov, Steffen Staab
Institut für Informatik
Fachbereich Informatik
Universität Koblenz-Landau
Universitätsstraße 1
D-56070 Koblenz
EMail: bernie@uni-koblenz.de, sizov@uni-koblenz.de, staab@uni-koblenz.de

mailto:sizov@uni-koblenz.de

Querying for Meta Knowledge

Bernhard Schueler, Sergej Sizov, Steffen Staab
ISWeb — Information Systems and Semantic Web

University of Koblenz-Landau, Germany
{bernie,sizov,staab}@uni-koblenz.de

ABSTRACT
The SemanticWeb is based on accessing and reusing RDF data
from many different sources, which one may assign different lev-
els of authority and credibility. Existing Semantic Web query lan-
guages, like SPARQL, have targeted the retrieval, combination and
reuse of facts, but have so far ignored all aspects of meta knowl-
edge, such as origins, authorship, recency or certainty of data, to
name but a few.

In this paper, we present an original, generic, formalized and imple-
mented approach for managing many dimensions of meta knowl-
edge, like source, authorship, certainty and others. The approach
re-uses existing RDF modeling possibilities in order to represent
meta knowledge. Then, it extends SPARQL query processing in
such a way that given a SPARQL query for data, one may request
meta knowledge without modifying the query proper. Thus, our
approach achieves highly flexible and automatically coordinated
querying for data and meta knowledge, while completely separat-
ing the two areas of concern.

1. INTRODUCTION
Integrating and re-using Semantic Web data becomes more and
more fruitful and worthwhile in order to answer questions and de-
liver results. Typically, engines like Swoogle provide points of
access for RDF data, crawlers may fetch relevant RDF data, and
query languages like SPARQL with their corresponding query en-
gines allow for selecting and re-using data in the appropriate for-
mat. With the arrival of more and more data in the Semantic Web
and more sophisticated processing through query and reasoning en-
gines, one now, however, encounters challenging questions linked
to meta knowledge about the data like:

•Where is this data from?
•Who provided the data?
•When was this data provided?
•Was the provider certain about the truth of this data?
•Was the data believed by others, too?

For instance, when querying the Semantic Web with the help of
SPARQLfor the affiliation of a person named of “James Hendler”,
one finds (at least) two answers, i.e. “University of Maryland” and
“Rensselaer Polytechnic Institute”. Without further indication as
to where, by whom, when, etc. such information was given, it is
impossible to decide which of the two affiliations is still valid.

The problem might be remedied in several ways. First, an ideosyn-
cratic solution by the search engine, such as returning the corre-
sponding RDF files or links to sources of knowledge extraction (say
http://www.cs.umd.edu/survey.pdf andhttp://www.rpi.
edu/report.doc), might help in this special case. However, an
ideosyncratic solution may not be appropriate in a second case in
which the ‘when’ was more relevant than the ‘where’ or in a third
case where such a piece of information had to be aggregated from
several resources. Second, the person or system requesting the meta
knowledge might manually extend the SPARQL query formalizing
the request for the affiliation in order to return the where, the who
and the when. Such a modification will, however, be very tedious,
as it will include a number of additional optional statements, and
expressing it manually will be error prone. Also, it will not help
in delivering meta knowledge that arises from joining several state-
ments, e.g. meta knowledge about uncertainty that was based on
several meta knowledge statements with different values of uncer-
tainty.

Therefore, querying Semantic Web data requires a principled, generic
approach to the treatment of meta knowledge that is able to adapt
to many dimensions of meta knowledge and that is open to accom-
modate to new dimensions when the need arises. Such a princi-
pled, original framework is given in this paper. We start to ex-
plain our approach with a discussion of important design choices
in section 2. We model meta knowledge in existing RDF struc-
tures by embedding a slightly more expressive language, which we
call RDF+, into RDF . We define the abstract syntax of RDF+, its
semantics and its embedding in RDF in Section 4. In Section 5,
we extend the SPARQL syntax and semantics to work on data and
meta knowledge of RDF+. The extension allows the user to ex-
tend a given conventional SPARQL query by a keyword for meta
knowledge triggering the construction of meta knowledge by the
query processor. Section 6 summarizes the overall use and process-
ing of SPARQL queries with meta knowledge. Section 7 reports on
initial graceful results for meta knowledge processing from a theo-
retic point of view and Section 8 provides pointers to the prototype
implementation of the system.

3

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

2. SCENARIO
In oursample application scenario, we assume that the user utilizes
knowledge which has been initially extracted from Web pages of
Computer Science departments and stored in form of RDF triples in
his personal “active space" [17], backed by a local RDF repository.
Example 2.1 shows the relevant facts that may have been obtained
from departments of different universities. For better readability,
we use for our examples in this paper the RDF triple language TriG
[1] with Named Graphs [2] in a simplified form that abstracts from
default namespaces.

E 2.1. Extracted Knowledge and SPARQL query

G1 { JamesHendler researchTopic SemanticWeb .
JamesHendler affiliatedWith RensselaerPI }

G2 { JamesHendler researchTopic Robotics .
JamesHendler affiliatedWith UnivMaryland .
RudiStuder researchTopic SemanticWeb .
RudiStuder affiliatedWith UnivKarlsruhe }

The extracted knowledge comes from different sources,at differ-
ent timepoints, and with different degrees of extraction confidence.
This information is also captured and stored into the same RDF
repository as shown in example 2.2, using the notion of Named
RDF Graphs [2, 5].

E 2.2. Associated meta knowledge

G3 { G1 mk:source <www.rpi.edu/report.doc> .
G1 mk:certainty "0.9" .
G1 mk:timestamp "5/5/2007" }

G4 { G2 mk:source <www.cs.umd.edu/survey.pdf> .
G2 mk:certainty "0.6" .
G2 mk:timestamp "6/6/2001" }

In our scenario, the sample user aims to explore the knowledge and
meta knowledge using the RDF query language SPARQL. We as-
sume that he aims to find experts in the domain of Semantic Web
and their affiliations. The corresponding SPARQL query is shown
in example 2.3. In addition, the user wants to exploit meta knowl-
edge from example 2.2 for obtaining results with best certainty and
for analyzing contradictive answers (e.g. different affiliations for
the same person “James Hendler” in example 2.1).

E 2.3. Extracted Knowledge and SPARQL query

CONSTRUCT {?x worksAt ?z}
FROM NAMED G1
FROM NAMED G2
WHERE { GRAPH ?g {?x affiliatedWith ?z .

?x researchTopic SemanticWeb}
}

3. DESIGN CHOICES
This sectionsummarizes and shortly motivates the design choices
for our meta knowledge framework.

Reification. Establishing relationships between knowledge and
meta knowledge requires appropriate reification mechanisms for
supporting statements about statements. Our general objective is
to execute queries on original data (i.e. without meta knowledge)
directly, without complex transformations. For compliance with
existing applications that access the repository in a common way
(e.g. using SPARQL queries), we do not modify existing user data.
This requirement does not allow us to use mechanisms like RDF
reification, which decompose existing triples and fully change the
representational model. In our framework described in section 4,
we adopt the notion of Named RDF Graphs for meta knowledge
representation [2, 5].

Storage mechanisms.Following the overall philosophy of RDF,
we do not separate meta knowledge from “normal” user knowl-
edge in the repository. Following this paradigm, a user or devel-
oper has unlimited access to all contents of the triple store and
can manipulate meta knowledge directly. In other words, the user
can directly access meta knowledge (e.g. using suitable SPARQL
queries). Beyond explicitly designed queries for meta knowledge
access, in Section 5 we describe the extension of SPARQL that al-
lows us to access meta knowledge about the result set automatically
without user intervention.

Dimensions of Meta Knowledge.An important point for the ap-
plication design is the definition of relevant meta knowledge prop-
erties and their suitable interpretation for arbitrary complex query
patterns. In general, these properties are application dependent and
must be carefully chosen by the system administrator. In our sce-
nario (sections 2 and 6) we discuss common and widely used prop-
erties, such as timestamp, source, and (un)certainty, and show ways
of defining and utilizing them in our framework.

Syntax extensions.Seamlessly integrated access to meta knowl-
edge requires corresponding extensions of existing querying mech-
anisms. These can be realized at different levels, for instance at the
level of query languages (e.g. SPARQL) or at the level of applica-
tion-specific interfaces (e.g. Sesame API). In Section 5 we describe
our SPARQL extension for constructing query results with asso-
ciated meta knowledge. It is system-independent and not related
to some particular implementation of the RDF repository. Further-
more, it fully supports the existing SPARQL syntax and semantics.
Compliance with existing established standards makes the integra-
tion with existing applications and interfaces substantially easier.

4. SYNTAX AND SEMANTICS FOR RDF
WITH META KNOWLEDGE

In the course of representing and reasoning with meta knowledge
we embed a language with meta knowledge reasoning, i.e. RDF+,
in a language without such specific facilities, i.e. in RDF. This em-
bedding implies that we may consider an RDF snippet in its literal
senseand we may possibly interpret it as making a meta knowl-
edge statement. Embedding meta knowledge in RDF is not the
most expressive means to deal with all needs of meta knowledge
processing, but it retains upward compatibility with existing usage

4

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

of the language and corresponding tools and methods, which is a
major concernfor Semantic Web approaches.

Though we denote meta knowledge in RDF, we must distinguish
the notation of RDF with onlyimplicit notation of meta knowledge,
but no semantic consequences specifically due to this meta knowl-
edge, from a formally extended model of RDF withexplicit nota-
tion of meta knowledge. The following definition of RDF+ helps
us to draw this line very clearly and concisely. The abstract syntax
for this embedded language, RDF+, is given in Section 4.1 and its
semantics in Section 4.2. Eventually in this section, we show how
to embed RDF+ in RDF with named graphs.

4.1 An Abstract Syntax for RDF+
The abstract syntax of RDF+ is based on the same building blocks
as RDF:

• U are Uniform Resource Identifiers (URIs).

• L are all RDF literals.

• G ⊆ U is the set of graph names.

• P ⊆ U is the set of properties.

In addition, we must be able to refer to statements directly without
use of reification. For this purpose, we introduce statement identi-
fiers:

• Θ is a set of statement identifiers, which is disjoint fromU
andL.

Now, we may define RDF+ literal statements that are placed in
named graphs and have, in addition to RDF, a globally unique state-
ment identity.

D 4.1 (RDF+ L S).
The set of all RDF+ literal statements,S, is defined as quintuples
by:
S := {(g, s,p,o, θ) | g ∈ G, s ∈ U, p ∈ P,o ∈ U ∪ L, θ ∈ Θ}.

Thereby,θ and(g, s,p,o) are keys such that there exists a bijection
f1 with f1(g, s,p,o) = θ ∧ f4(θ) := f −1(θ) = (g, s,p,o). More-
over, we define the overloaded function f5 to return the complete
quintuple given eitherθ or (g, s,p,o), i.e. f5(θ) := (g, s,p,o, θ) =:
f5(g, s,p,o), when f1(g, s,p,o) = θ.

The reader may note that we assume thatf1 is fixed and given be-
fore any statement is defined. Furthermore, this definition of lit-
eral statements and the rest of this paper abstracts from RDF blank
nodes in order to keep the formalization more concise. However,
we do not see any conceptual problem in extending our treatments
to blank notes, too.

The two statements of Graph G1 of Example 2.1 may now be rep-
resented in RDF+ in the following way.

E 4.1.

S ⊇ K ⊇ {
(G1, JamesHendler, researchTopic, SemanticWeb, θ1),
(G1, JamesHendler, affiliatedWith, RensselaerPI, θ2) }

Thereby, the exact form of statement identifiers inΘ is up to the
implementation, as they are only used for internal processing.

Having represented the literal interpretation of RDF statements in
RDF+, we may now address the representation of selected RDF
statements as RDF+ meta knowledge. This is done using a structure
of RDF+ meta knowledge statements,M, that is separate from the
set of RDF+ literal statements:

D 4.2 (RDF+ M K S).
LetΠ ⊆ P be the set of meta knowledge properties. LetΩπ, withπ ∈
Π, be sets providing possible value ranges for the meta knowledge
propertiesπ ∈ Π.

Then, the set of all RDF+ meta knowledge statements,M, is defined
by:M := {(θ, π, ω) | θ ∈ Θ, π ∈ Π, ω ∈ Ωπ)}.

The following example partially demonstrates the target represen-
tation of the first two meta knowledge statements of graphG3 from
Example 2.2.

E 4.2.

M ⊇ M ⊇ {
(θ1, mk:source, {<www.rpi.edu/report.doc>}),
(θ1, mk:certainty, 0.9)}

Together we may now define a RDF+ theory.

D 4.3 (RDF+ T).
A RDF+ theory ofliteral statements and associated meta knowledge
statements is a pair(K,M) referring to a set of literal statements
K ⊆ S and a set of meta knowledge statements M⊆ M.

A (partial) example for such a theory is given by the pair (K,M)
with definitions forK and M as given in examples 4.1 and 4.2,
respectively.

4.2 A Semantics for RDF+
We now have an abstract syntax for representing RDF triples like
JamesHendler researchTopic SemanticWebas part ofG1 and meta
knowledge statements likethe source of the statement that James
Hendler’s research topic is Semantic Web is found in the docu-
ment<www.rpi.edu/report.doc>. However, such an abstract syn-
tax may remain remarkably ambiguous if it cannot be linked to a
formal semantics. Assume two meta knowledge statements:
(θ1, mk:source, {<www.rpi.edu/draftReport.doc>}) and
(θ1, mk:source,{<www.rpi.edu/finalReport.doc>})

for the same literal statement identified byθ1, the question may
arise whether this means a disjunction, i.e. one of the two docu-
ments has provided the fact, or a conjunction, i.e. both documents

5

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

have provided the fact, or a collective reading, i.e. the two docu-
ments together gave rise to the fact, or whether this situation con-
stitutes invalid meta knowledge.

In order to prevent such ambiguities we introduce a generic seman-
tic framework for meta knowledge in RDF+. However, the frame-
work must also be able to reproduce the literal interpretations found
in RDF. For the latter purpose, we first define a ‘standard’ model
for a RDF+ theory.

D 4.4 (S I  M).
A standard interpretation Is : S → {>,⊥} for a structure(K,M)

assigns truth values to all statements1 in K.

A standard interpretation is a standard model if and only if it makes
all statements in K become true.

For instance, any standard modelIs for (K,M) in example 4.1 would
include(G1, JamesHendler, researchTopic, SemanticWeb,θ1) in its
set of literal statements evaluating to>.

In order to address the level of meta knowledge we foresee an ad-
ditional model layer that provides a different interpretation to each
meta knowledge property.

D 4.5 (Π-I  M).
A Π-interpretation Iπ : S ⇀ Ωπ for a propertyπ ∈ Π is a partial

function mapping statements into the allowed value range ofπ.

A Π-interpretation Iπ is aΠ-model for(K,M) if and only if for all
meta knowledge statements(θ, π, ω) ∈ M where f1(θ) = (g, s,p,o)
the value of the interpretation coincides withω, i.e. Iπ((g, s,p,o, θ)) =
ω.

As an example, consider the certainty interpretationIcertainty of the
literal statement(G1, JamesHendler, researchTopic, SemanticWeb,
θ1) from Examples 4.1 and 4.2. A modelI would map this literal
statement usingIcertainty onto0.9.

The literal and the meta knowledge interpretations may now be
combined to define what an overall, unambiguous model is:

D 4.6 (  I  M).
A meta knowledge interpretationI is aset including a standard in-
terpretation Is and theΠ-interpretations Iπ for all meta knowledge
propertiesπ ∈ Π.

A meta knowledge interpretationI is a model for a theory(K,M)
if and only if all its interpretations I∈ I are a standard model or
Π-models for(K,M).

4.3 Mapping between RDF and RDF+
The mapping between RDF and RDF+ needs to be defined in two
directions. First, one must be able to map from RDF as given in
the examples from Section 2 to RDF+. Second, one must be able to
map from RDF+ to RDF. Because RDF+ is more fine-grained than
RDF the first direction will be easy. For the second a compromise
on the granularity of the representation has to be made.
1Note that because f1 is fixed there are no two tuples
(g, s,p,o, θ1), (g, s,p,o, θ2), where θ1 , θ2. This implies that the
standard interpretation is independent of the identifiersθ1, θ2.

4.3.1 From RDF to RDF+
The examples of Section 2 reify groups of statements, i.e. the ones
found inG1andG2, in order to associate meta knowledge, such as
given inG3 andG4. In order to allow for an interpretation of the
meta knowledge as defined in the preceding section, we map RDF
into RDF+. For all RDF statements, including statements in graphs
G1 andG2 of Example 2.1, the mapping performed is close to an
identity mapping. One only needs to add statement identifiers. The
result forG1 in RDF+ is:

E 4.3.

K ⊇ { (G1, JamesHendler, researchTopic, SemanticWeb, θ1),
(G1, JamesHendler, affiliatedWith, RensselaerPI, θ2) },
with
θ1 := f1(G1, JamesHendler, researchTopic, SemanticWeb) and
θ2 := f1(G1, JamesHendler, affiliatedWith, RensselaerPI)

The same mapping – close to the identity mapping – is performed
for metaknowledge statements like statements of graphG3, result-
ing in their representation as literal statements:

E 4.4.

K ⊇ {
(G3, G1, mk:source, <www.rpi.edu/report.doc>, θ3),
(G3, G1, mk:certainty, "0.9", θ4), ...}

Note that this step is necessary in order to achieve upward and –
limited –downward compatibility between RDF+ and RDF.

The interpretation of statements, like the ones found inG3, also
require an interpretation as meta knowledge. This is achieved by
mapping RDF statements with designated properties fromΠ like
mk:sourceandmk:certaintyto the additional meta knowledge layer:

E 4.5.

M ⊇ {
(θ1, mk:certainty, "0.9"),
(θ1, mk:source, {<www.rpi.edu/report.doc>}), . . .}

The mapping of predicates of these meta knowledge statements
from RDFto RDF+ is obvious, they are mapped to itself. Objects
are mapped to the corresponding elements of the value rangesΩπ.
For the subjects, however, there arise modeling choices. For in-
stance, ifmk:certaintywere interpreted using probability theory,
one might assign a distributive or a collective reading. In the dis-
tributive reading, each fact inG1 receives the probability value of
0.9 and, eventually, the distributive reading will assign a joint prob-
ability of close to 0 for a large number ofn stochastically indepen-
dent facts, i.e. the joint probability 0.9n. In the collective reading,
the collection of facts inG1 as a whole will receive the probability
value 0.9. Therefore, the collective reading will assign an individ-
ual certainty close to 1 for each individual fact, when the number
of facts is high and each fact is independent from the others, i.e.
the individual probability would be

n√
0.9. A priori, none of the

two (and more) modeling choices is better than the other, but they
constitute different modeling targets.

6

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

The mapping from RDF to RDF+ for thedistributive readingof a
meta propertyπ is easy to achieve.

D 4.7 (D E).
Given an RDF statement “G {S P O}” and an RDF meta knowledge
statement “H{G π ω}”, a distributive embedding of RDF+ in RDF
adds the meta knowledge statement

{(θ, π, ω) | θ = f1(G, s,p,o)∧ f5(θ) ∈ K}
to M.

This means that such a meta knowledge statement is applied indi-
vidually to all statements in the graph to which it refers in RDF, as
indicated in the example above. For certainπ there might be several
RDF meta knowledge statementsH {G π ωi} which attach differ-
ent valuesωi to a graphG via a single meta knowledge property
π. In that case a set-valued rangeΩπ has to be used in order to be
consistent with Definition 4.5.

4.3.2 From RDF+ to RDF
The serialization of RDF+ data in the knowledge baseK is straight-
forward. Each quintuple (g,s,p,o, θ) is realized as a corresponding
triple in a named graph and the tuple identifierθ is discarded.

E 4.6.

(G5, JamesHendler, researchTopic, SemanticWeb, θ)
is mappedto

G5 {JamesHendler researchTopic SemanticWeb }

For meta knowledge statements the situation is more challenging,
because literalstatements with different statement identifiers may
belong to only one named graph. Their corresponding meta knowl-
edge statements may differ, but the realization of the meta knowl-
edge statements in RDF does not allow for retaining these fine-
grained distinctions – unless one chooses to change the modeling
approach drastically, e.g. by assigning each literal statement to a
named graph of its own, which seems undesirable (cf. discussion
in Section 3).

We have preferred to pursue a more conventional modeling strategy
for RDF with named graphs. Therefore, we weaken the association
between meta knowledge statements and their corresponding lit-
eral statements when mapping to RDF. I.e. we group sets of meta
knowledge property values into one complex value.

D 4.8 (G G  ).
Given an RDF+ theory(K,M), RDFmeta knowledge is generated
by grouping RDF+ meta knowledge statements as follows:

Add the triple(g π ω′) to the RDF graph g′ := hashGraph(g)for
each

ω′ := ω1 ∨π . . . ∨π ωn ,

where(θ, π, ωi) ∈ M ∧ (g,S,P,O, θ) ∈ K. Further,hashGraphis a
function mapping existing graph names onto graph names suitable
for associating meta knowledge and∨π is an operation defined on
Ωπ.

If ω′ is set-valued then a set of triples is added tog′ in order to
representω′. The suitability ofhashGraphmay be application spe-
cific. A general strategy may map graph namesg to graph names

prefixed by<http://metaknowledge.semanticweb.org> in a deter-
ministic manner. Operations on meta knowledge properties are dis-
cussed in section 5.2.

In the following example the grouping of meta knowledge values
is illustrated.

E 4.7.

K:={
(G5, JamesHendler, researchTopic, SemanticWeb, θ1),
(G5, JamesHendler, affiliatedWith, UnivMaryland, θ2) },
M:={
(θ1, mk:source, {<www.rpi.edu/report.doc>}),
(θ2, mk:source, {<www.cs.umd.edu/survey.pdf>}) }

is mapped to
G5 { JamesHendler researchTopic SemanticWeb .

JamesHendler affiliatedWith UnivMaryland }
G6 { G5 mk:source <www.rpi.edu/report.doc>,

<www.cs.umd.edu/survey.pdf>.}

In Example 4.7, the resulting grouped value is the set consisting of
the two documents<report.doc> and<survey.pdf> which is rep-
resented by two triples. For specific meta knowledge properties, an
additional function may be necessary to provide a mechanism for
representing grouped values in an appropriate RDF data structure.

5. SPARQL FOR RDF AND META KNOWL-
EDGE

In this section we first introduce a small extension to standard SPARQL
syntax [16] and then define how SPARQL can be applied to an
RDF+ knowledge base. The objective of our considerations is the
derivation of meta knowledge about query results.

5.1 SPARQL Syntax Revisited
When using SPARQL to query RDF+ we propose only two mod-
ifications to obtain meta knowledge. First, we introduce one ad-
ditional expression “WITH METAMetaList”. This expression in-
cludes the named graphs specified inMetaListfor treatment as meta
knowledge. This statement is optional. When it is present the
SPARQL processor may digest the RDF+ meta knowledge state-
ments derivable from the RDF named graphs appearing in theMeta-
List. The SPARQL processor will then use this meta knowledge to
compute and output all the meta knowledge statements deriveable
by successful matches of RDF+ literal statements with the WHERE
pattern.

In order to determine which literal statements should be considered
we introduce a second modification. We do not process FROM
expressions with our meta knowledge framework, but only FROM
NAMED. The reason is that FROMg expressions replicate all RDF
triples ofg into the default triple space of the query. Thereby, they
remove the links between the RDF statements ofg and possible
meta knowledge. Hence, FROM expressions are not relevant for
our treatment of meta knowledge, but of course they may still be
processed using the standard SPARQL semantics.

Thus, SPARQL queries on RDF+ have one of the two following
overall forms:

7

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

D 5.1 (SPARQL SELECT Q).
The structure of a SPARQL SELECT query has the following form:

SELECT SelectExpression
(WITH META MetaList)?
(FROM NAMED GraphName)+
WHERE P

D 5.2 (SPARQL CONSTRUCT Q).
The structure of a SPARQL CONSTRUCT query has the following
form:

CONSTRUCT ConstructExpression
(WITH META MetaList)?
(FROM NAMED GraphName)+
WHERE P

In these definitions,P refers to a graph pattern that explains how
RDF+ literal statements from named graphs specified using FROM
NAMED statements are matched. Matches bind variables that are
used for providing results according to theSelectExpressionor the
ConstructExpression.

5.2 SPARQL Semantics Revisited
In this subsection we define the semantics of SPARQL queries eval-
uated on an RDF+ theory. For our definitions we use two build-
ing blocks: algebraic semantics of SPARQL [12, 14] and thehow-
provenancecalculated via annotated relations (cf. [8]).

The algebraic semantics of SPARQL queries are given based on set-
theoretic operations for sets of variable assignments (cf. [12, 14]).
Thereby, a variable assignment is a partial functionµ : V → U ∪ L,
whereV is the set of variables given in a SPARQL query. A set
of variable assignments can be represented by a relationφ over
the domain (U∪ L)|V|, where the variablesV are the attributes
and assignments are the tuples of this relation. Such a set of as-
signments may be assigned information about the so calledhow-
provenance[8], i.e. the assignments may be annotated with for-
mulae describing the individual derivation tree used to assign the
variables. The how-provenance annotation may be represented by
a functionΦ : (U ∪ L)|V| → F, where (U∪ L)|V| is the set of all
tuples of the length|V| over the domainU ∪ L andF is the set of
formulae annotating variable assignments. The set of formulaeF

is given by all Boolean formulas constructed over the set of literal
statementsS and including a bottom element⊥ and a top element
>. The formulae constitute an algebra (F,∧,∨,¬,⊥,>). The spe-
cial element⊥ is used as annotation of variable assignments which
are not in the relationφ. The special element> may be omitted,
but it allows for simplification of complex formulas.

Assume the following SPARQL query to be evaluated on the RDF+

knowledge baseK:

E 5.1.

SELECT ?g ?x ?y
FROM NAMED G1
FROM NAMED G2
WHERE {

GRAPH ?g {?x researchTopic ?y}
}

E 5.2.

K = {
(G1, JamesHendler,researchTopic,SemanticWeb, θ1),
(G1, JamesHendler,affiliatedWith,RensselaerPI, θ2),
(G2, JamesHendler,researchTopic,Robotics, θ3),
(G2, JamesHendler,affiliatedWith,UnivMaryland, θ4),
(G2, RudiStuder,researchTopic,SemanticWeb θ5),
(G2, RudiStuder,affiliatedWith,UnivKarlsruhe θ6) }

For the query of example 5.1, we may find the following variable
assignments usingstandard SPARQL processing and we may in-
dicate, which atomic formulae, i.e. RDF+ quintuples in this simple
example, led to these variable assignments. This indication is given
by the statement identifiers representing their statements.

E 5.3.

Φ =

?g ?x ?y F

G1 JamesHendler SemanticWebθ1
G2 JamesHendler Robotics θ3
G2 RudiStuder SemanticWeb θ5

This simple example of how a set of variable bindings has been pro-
duced isgeneralized to SPARQL queries of arbitrary complexity by
a recursive definition of simultaneous query evaluation and compu-
tation of the annotations. The first step in evaluating a graph pattern
is to find matches for the triple pattern contained in the query. Be-
cause the RDF+ knowledge baseK consists of quintuples, we need
to adapt the SPARQL evaluation procedures. The statement iden-
tifiers do not need to be matched, as they depend functionally on
graph name, subject, predicate and object. Therefore, we consider
matching of quadruple patterns (γ, α, β, δ). As a simplification of
our formalization we assume that the keyword GRAPH together
with a URI or a graph variable is used in any given SPARQL query.
If it is not used, we may expand a given SPARQL query to include
it.

D 5.3 (B Q P M).
Let K be a knowledge base of RDF+ literal statements andµ be a
variable assignment.

The evaluation of the SPARQL query”GRAPH γ {α β δ}” over K,
denoted by[[GRAPH γ {α β δ}]] K is defined by the annotated rela-
tionΦ, dom(Φ)= {µ |dom(µ)= vars(GRAPHγ {α β δ})},

Φ(µ) =


θ if r(µ, (γ, α, β, δ)) = (g, s,p,o)∧

(g, s,p,o, θ) ∈ K ∧ f1(g, s,p,o) = θ,
⊥ else

wherevars(P) denotes the variables contained in a pattern P and
r(µ, (γ, α, β, δ)) is the quadruple obtained by replacing the vari-
ables in(γ, α, β, δ) according toµ.

8

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

An example for this definition is given by evaluating the query from
Example 5.1on the dataset of Example 5.2 delivering the result as
indicated in example 5.3.

Basic quadruple pattern matching is not directly applicable, if an
expression “GRAPHγ” appears outside a complex triple pattern.
In such a case, we first need to distribute the expression “GRAPH
γ” appropriately to atomic triple patterns in order to prescribe atomic
SPARQL expressions accessible by basic quadruple pattern match-
ing. Because named graphs cannot be nested, this distribution is
always possible and unambiguous. In the following we use the
function quads(P) to denote the query resulting from this transfor-
mation. In example 5.4 this transformation is demonstrated on a
conjunction of two triple patterns.

E 5.4.

P1 =
GRAPH ?src {

{ ?x researchTopic ?y .}
{ ?x affiliatedWith ?z .} }

quads(P1) =
GRAPH ?src { ?x researchTopic ?y .}
GRAPH ?src { ?x affiliatedWith ?z .}

Now we define the evaluation of complex graph patterns by opera-
tions onsets of variable assignments similar to [12, 14].

D 5.4 (C   ).
Let P1, P2 be complex graph patterns. The evaluation of graph
patterns over K, denoted by[[·]] K , is defined recursively:

1. [[GRAPH γ {α β δ}]] K is given by definition 5.3,

2. [[GRAPH g P1]] K = [[quads(P1)]] K ,

3. (a) [[P1 AND P2]] K = [[P1]] K Z [[P2]] K ,

(b) [[P1 OPTP2]] K = [[P1]] K =./ [[P2]] K ,

(c) [[P1 UNION P2]] K = [[P1]] K ∪ [[P2]] K ,

4. [[P1 FILTER C]]K = σc([[P1]] K),

The definition uses the operation AND. In standard SPARQL the
operation AND is denoted by the absence of an operator. Like [12,
14] we still use the explicit term AND in order to facilitate refer-
encing to this operator.

The recursion in the SPARQL query evaluation defined here is in-
deed identical to [12, 14]. Only the basic pattern matching has been
changed slightly. Basic pattern matching now considers quadru-
ples and it annotates variable assignments from basic matches with
atomic statements fromS and variable assignments from complex
matches with Boolean formulaeF ∈ F overS.

As an example, consider the query from Example 5.5 evaluated on
the knowledge base from Example 5.2.

E 5.5.

SELECT ?h1 ?h2 ?x ?y
FROM NAMED G1
FROM NAMED G2
WHERE {

{GRAPH ?h1 {?x affiliatedWith ?y}} AND
{GRAPH ?h2 {?x researchTopic SemanticWeb}}
FILTER {?x=JamesHendler}

}

Let P be the graph pattern contained in the WHERE clause of the
query. Then the evaluation ofP is defined by an algebraic expres-
sion:

[[P]]K = [[{P1 AND P2} FILTER {?x= JamesHendler}]] K

= σ?x=JamesHendler([[P1 AND P2]] K)

= σ?x=JamesHendler([[P1]] K Z [[P2]] K)

= σ?x=JamesHendler(Φ1 Z Φ2)

whereΦ1 andΦ2 are relations representing variable assignments
and their annotations. In this example and in the preceding defini-
tion we have used algebraic operations on sets of annotated bind-
ings. However, we have not yet explained how these operations are
used to construct formulas representing the how-provenance. The
following definition will specify how complex formulae fromF,
which serve as annotations for results of matching complex graph
pattern, will be derived.

D 5.5 (A  A R). Let Φ, Φ1

andΦ2 be setsof annotated variable assignments. We defineZ, ∪,
\ andσ, =./ via operations on the annotations of the assignments
as following:

• (Φ1 Z Φ2)(µ) = Φ1(µ1) ∧ Φ2(µ2), where ∀x ∈ dom(µ1) ∩
dom(µ2) : µ1(x) = µ2(x) andµ = µ1 ∪ µ2,

• (Φ1 ∪ Φ2)(µ) = Φ1(µ) ∨ Φ2(µ),

• (Φ1 \ Φ2)(µ) = Φ1(µ) ∧ ¬
(∨

µi ,Φ2(µi),⊥ Φ2(µi)
)
, where∀x ∈

dom(µi) ∩ dom(µ) :µi(x) = µ(x).

• (σc(Φ))(µ) = Φ(µ) ∧ fc(µ), where fc(µ) denotes a function
mappingµ to either> or ⊥ according the condition c.

• (Φ1 =Z Φ2)(µ) = (Φ1 Z Φ2)(µ) ∨ (Φ1 \ Φ2)(µ).

Let usnow continue the evaluation of the query specified in Exam-
ple 5.5. In order to evaluate the expressionσ?x=JamesHendler(Φ1 Z Φ2)
we need to determineΦ1 andΦ2 using definition 5.3. The interme-
diate result is shown in example 5.6. To evaluate the conjunction
of two quadruple patterns the operationZ is applied, the result is
shown in example 5.7. The annotationθ1∧θ2 of the first row repre-
sents that this assignment has been derived from the conjunction of
the two literal statementsθ1 andθ2 (see example 5.2). Application
of theσ-operation to the intermediate results gives the annotated
relation shown in example 5.8.

9

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

E 5.6.

Φ1 =

?h1 ?x ?y A1

G1 JamesHendler RensselaerPI θ2
G2 JamesHendler UnivMaryland θ4
G2 RudiStuder UnivKarlsruhe θ6

Φ2 =

?h2 ?y A2

G1 JamesHendler θ1
G2 RudiStuder θ5

E 5.7.

Φ1 Z Φ2 =

?h1 ?h2 ?x ?y A3

G1 G1 JamesHendler RensselaerPI θ1 ∧ θ2
G1 G2 JamesHendler UnivMaryland θ1 ∧ θ4
G2 G2 RudiStuder UnivKarlsruhe θ5 ∧ θ6

E 5.8.

σ?x=JamesHendler(Φ1 Z Φ2) =

?h1 ?h2 ?x ?y A4

G1 G1 JamesHendler RensselaerPI (θ1 ∧ θ2) ∧ >
G1 G2 JamesHendler UnivMaryland(θ1 ∧ θ4) ∧ >

The annotationsΦ(µ) cannow be used to assign truth values forµ.
Is (see definition 4.4) assigns truth values to all atomic statements
si ∈ K ⊆ S. We extend the interpretationIs to capture all the
Boolean formulae over statementsS.

D 5.6 (S I  F).
Let F, F1, F2 ∈ F be Booleanformulae overS, let Fa ∈ S be an

atomic formula. We define the standard interpretation of formulae
I f
s as follows:

• I f
s (Fa) := Is(Fa);

• I f
s (¬F) := ⊥ if I f

s (F) = >; I f
s (¬F) := > if I f

s (F) = ⊥;

• I f
s (F1 ∧ F2) is> if I f

s (F1) = I f
s (F2) = >, otherwise⊥

• I f
s (F1 ∨ F2) is> if I f

s (F1) = > or I f
s (F2) = >, otherwise⊥.

For instance,I f
s returns> for the assignment shown in the first row

of Φ1 Z Φ2 from example 5.7, because the statementsθ1 andθ2 are
in the knowledge base.

Analogously toI f
s , we can extend aΠ-interpretationIπ over RDF+

statements to aΠ-interpretationI f
π over formulae. Remember that

meta knowledge interpretations allow for only oneω perθ ∈ Θ and
π ∈ Π (Definition 4.5). In order to make use of the how-provenance
represented by the annotations we require that for each meta knowl-
edge propertyπ an algebra (Ωπ,∧π,∨π,¬π,>π,⊥π) with three oper-
ations∧π,∨π,¬π and two special elements>π,⊥π ∈ Ωπ is defined.
The definition of the algebras can be supplied by a modeler ac-
cording to the intended semantics of the different meta knowledge
properties.

D 5.7 (Π-I  F).
Let F, F1, F2 ∈ F be Boolean formulae overS, let Fa ∈ S be an
atomic formula. We define the interpretation If

π as follows:

• I f
π (Fa) := Iπ(Fa);

• I f
π (¬F) is ¬πI

f
π (F);

• I f
π (F1 ∧ F2) is I f

π (F1) ∧π I f
π (F2);

• I f
π (F1 ∨ F2) is I f

π (F1) ∨π I f
π (F2);

For illustration we consider in Example 5.9 the definition of fuzzy
logic operations to calculate a possibility measure on variable as-
signments, operations defined on timestamps which calculate the
time of the last modification, and set operations defined for source
documents that construct the combined provenance.

E 5.9.

I f
certainty(x1 ∧ x2) = min(I f

certainty(x1), I
f
certainty(x2))

I f
certainty(x1 ∨ x2) = max(I f

certainty(x1), I
f
certainty(x2))

I f
certainty(¬x1) = 1− I f

certainty(x1)
Ωcertainty= [0,1]

I f
time(x1 ∧ x2) = max(I f

time(x1), I
f
time(x2))

I f
time(x1 ∨ x2) = min(I f

time(x1), I
f
time(x2))

I f
time(¬x1) = 0
Ωtime = [0,∞)

I f
source(x1 ∧ x2) = I f

source(x1) ∪ I f
source(x2)

I f
source(x1 ∨ x2) = I f

source(x1) ∪ I f
source(x2)

I f
source(¬x1) = {}
Ωsource= 2D, D the set of document URIs

Query forms. In standardSPARQL query forms, such as SELECT
and CONSTRUCT, allow to specify how resulting variable bind-
ings or RDF graphs, respectively, are formed based on the solutions
from graph pattern matching [16]. Modifiers, e.g. for projection
and ordering, can be applied. The evaluation of SPARQL queries
on RDF+ data differs in that meta knowledge is attached to the re-
sults.

The evaluation of SELECT queries on an RDF+ dataset is based on
X([[P]]K), whereX denotes the set of variables specified in
theSelectExpressionand is defined as following:

D 5.8 (P). LetΦ be a set of annotated vari-
ableassignments and X be a set of variables, then

(X(Φ))(µ) =


∨
∀x∈X:µ(x)=ν(x),Φ(ν),⊥ Φ(ν), if µ is a partial

function defined only on X,
⊥, else

If X forms a proper subset of the variables used in the graph pattern
then the annotations of all bindingsν are aggregated. This aggre-
gation is analog to the generation of grouped meta knowledge de-
scribed in Definition 4.8. As an example consider the query shown
in Example 5.10, which is a slight modification of the query from
Example 5.5, applied to the data shown in Example 5.2. For the
result see Example 5.11. In contrast to Example 5.7 there is only
one row forJamesHendler.

10

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

E 5.10.

SELECT ?x
WITH META G3, G4
FROM NAMED G1
FROM NAMED G2
WHERE {

{GRAPH ?h1 {?x affiliatedWith ?y}} AND
{GRAPH ?h2 {?x researchTopic "SemanticWeb"}}

}

E 5.11.

{?x}(Φ1 Z Φ2) =
?x A5

JamesHendler (θ1 ∧ θ2) ∨ (θ1 ∧ θ4)
RudiStuder θ5 ∧ θ6

The result of a SELECT query is a set of extended bindings. Such
an extended binding contains values for the specified variables and
values for each meta knowledge propertyπ ∈ Π which can be re-
garded as additional variables. For each bindingµ these variables
π are bound toI f

π (X([[P]]K)(µi)), see Example 5.12. For this
result the meta knowledge from Example 5.13 has been used. For
instanceI f

certainty((θ1 ∧ θ2) ∨ (θ1 ∧ θ4)) = 0.9. If no meta knowl-
edge statement (θ, π, ω) exists for a particular RDF+ literal state-
ment f5(θ) and a particular meta knowledge propertyπ then⊥π
serves as default value. For the result of a SELECT query all bind-
ings fromX([[P]]K) are extended in this way.

E 5.12.
?x certainty time

JamesHendler 0.9 5/5/2007
RudiStuder 0.7 8/8/2003

E 5.13.

M = {
(θ1, mk:certainty, 0.9),
(θ1, mk:time, "5/5/2007"),
(θ2, mk:certainty, 0.9),
(θ2, mk:time, "5/5/2007"),
(θ3, mk:certainty, 0.6),
(θ3, mk:time, "6/6/2001"),
(θ4, mk:certainty, 0.6),
(θ4, mk:time, "6/6/2001"),
(θ5, mk:certainty, 0.6),
(θ5, mk:time, "6/6/2001"),
(θ6, mk:certainty, 0.6),
(θ6, mk:time, "6/6/2001")}

Analogously to standard evaluation, the evaluation of a CONSTRUCT
query onan RDF+ dataset results in a single RDF+ graph which is
built using the graph template specified in theConstructExpression
(see Definition 5.2). This is in line with the fact that the graph tem-
plate consists of a conjunction of triple patterns and thus quadru-
ple patterns cannot be stated.2 Similar to the evaluation of SE-
LECT queries the evaluation of CONSTRUCT queries is based on
2Standard SPARQL does not allow for giving this graph a name. In order
to associate meta knowledge, multiple named graphs as outputs are con-
venient. In order to remain standard compliant, the SPARQL engine may
however also return data and meta knowledge in two different batches dis-
tinguished by some implementation-specific mechanism.

X([[P]] K), whereX denotes the set of variables specified in
the ConstructExpression. The RDF+ graph is constructed as de-
scribed in the following:

Let t j denote triple patternj specified in theConstructExpression,P
denote the graph pattern specified in the WHERE-clause, (si, j , pi, j ,oi, j)
denote the triple obtained by replacing the variables int j accord-
ing to a mappingµi and ĝ denote a new graph name. Then, for
each bindingµi ∈ X([[P]]K) and for eacht j the quintuple
(ĝ, si, j , pi, j ,oi, j , θi, j) is added toS, whereθi, j is the statement iden-
tifier f1(ĝ, si, j , pi, j ,oi, j). Further (θi, j , π, ωi, j) is added toM, where
ωi, j = I f

π (X([[P]]K)(µi)).

Each new quintuple inherits the meta knowledge propertiesπ asso-
ciated with the binding which has been used to create that quintu-
ple. The value ofωi, j is determined by applyingI f

π to the formula
which annotates the binding. Note that sinceX([[P]]K) and
the interpretationsI f

π are functions and further the graph template
in ConstructExpressionis a set of triples the meta knowledge prop-
erties (θi, j , π, ωi, j) are unique for a givenθi, j .

As an example for a CONSTRUCT statement consider Example
5.14. Meta knowledge for some of the RDF+ statements presented
in example 5.2 is specified in example 5.13. For graph patternP
contained in this query the result ofX([[P]]K) is identical to
the annotated relation shown in Example 5.7 except for the first
two columns. Based on the single triple pattern?x worksAt ?y
contained in the graph template and the two bindings contained in
X([[P]]K) two quintuples are constructed and added to the
RDF+ literal statementsKres as shown in Example 5.15.Mres con-
tains the corresponding meta knowledge statements resulting from
I f
π (X([[P]]K)(µi)).

E 5.14.

CONSTRUCT {?x worksAt ?y}
WITH META G3, G4
FROM NAMED G1
FROM NAMED G2
WHERE {

{GRAPH ?h1 {?x affiliatedWith ?y}} AND
{GRAPH ?h2 {?x researchTopic SemanticWeb}}

}

E 5.15.

Kres = {
(Gnew, JamesHendler, worksAt, RensselaerPI, θnew1)
(Gnew, JamesHendler, worksAt, UnivMaryland, θnew2)}
(Gnew, RudiStuder, worksAt, UnivKarlsruhe, θnew3)}

Mres = {
(θnew1, mk:certainty, 0.9),
(θnew1, mk:time, "5/5/2007"),
(θnew2, mk:certainty, 0.6),
(θnew2, mk:time, "6/6/2001")
(θnew3, mk:certainty, 0.6),
(θnew3, mk:time, "6/6/2001") }

6. TASKS AND BENEFITS
This sectionsummarizes the discussed steps of meta knowledge
representation and utilization for the sample scenario that was in-
troduced in section 2.

11

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

6.1 Tasks for the administrator
In order to represent and utilize meta knowledge, the system ad-
ministrator has to make some design choices. In particular, the
application-specific meta knowledge properties must be defined. In
our sample scenario, we consider three meta knowledge properties:
source, certainty, and timestamp. In the next step, the adminis-
trator defines the intended semantics of these properties in order
to facilitate query processing with complex expressions and pat-
tern combinations. Using the notion from Section 5.1, we assume
that corresponding definitions for meta knowledge properties are
defined according to previously discussed Example 5.9.

Finally, data and available associated meta knowledge are repre-
sented in RDF using named graphs [2, 5], and imported into our
RDF+-based repository.

6.2 Processing performed by the System
We assume that the administrator manages the small sample knowl-
edge base introduced in section 2. The knowledge base is trans-
formed into the RDF+ quintuples shown in Example 5.2 as dis-
cussed in section 4. Associated meta knowledge is transformed into
further RDF+ literal statements and RDF+ meta knowledge state-
ments. For the propertiesmk:timeandmk:certaintythe latter are
shown in Example 5.13.

Following our sample scenario, the query from Example 2.3 can
be reformulated as the query from Example 5.14 which retrieves
names of Semantic Web experts together with their affiliations. In-
ternally, the query processor evaluates this query using graph pat-
terns as discussed in 5.1. IfP denotes the graph pattern from this
query then all matches for all variables inP are given by [[P]]K .
The resulting set of annotated variable assignments is shown in Ex-
ample 5.7. It contains possible variable assignments, and the how-
provenance (A3) that explains how these source statements have
been used.

By combining this information with definitions for meta knowledge
properties and available meta knowledge statements, the query pro-
cessor constructs the result shown in Example 5.15. This result is
then serialized in RDF.

6.3 Benefits for the user/developer
The user or application developer can access the knowledge stored
in the RDF+-based repository in different ways. On one hand, the
repository does not change the existing SPARQL semantics and
thus fully supports common SPARQL queries. This is an impor-
tant advantage for compatibility with existing applications and in-
terfaces. On the other hand, the repository supports the advanced
SPARQL syntax with metaknowledge support (section 5.1). Thus,
the user obtains additional access to valuable meta knowledge that
can be used for relevance ranking, conflict resolution, or other ap-
plications in connection with retrieved knowledge.

In our application scenario, the user may realize that the query an-
swer is potentially contradictive (James Hendler is affiliated with
Rensselaer PI and University of Maryland). By inspecting the as-
sociated meta knowledge, he would realize that the second fact
was generated by mistake. In fact, it is based on outdated in-
formation (knowledge from the documentsurvey.pdfwith times-
tamp6/6/2001) that was wrongly combined with knowledge from a
more recent source (namely documentreport.docwith timestamp

5/5/2007). It turns out that the affiliation of James Hendler has actu-
ally changed from U Maryland to Rensselaer PI, and the erroneous
tuple can be safely excluded from further processing.

7. COMPLEXITY
In this section we analyze how the construction of the annotations
influences the complexity of the decision problem related to SPARQL.
The decision problem associated with the evaluation of a SPARQL
query can be stated as following [12]:Given an RDF dataset D, a
graph pattern P and a mappingµ, determine whetherµ is in the
result of P applied to D.For this decision problem, which we de-
note by E, an analysis of the complexity is presented in [12,
13]. In the context of RDF+ datasets and annotated variable as-
signments we have a slightly different decision problem:Given an
RDF+ dataset D+, an RDF+ graph pattern P+, a variable assign-
mentµ and an annotationα determine whetherα is the correct
annotation ofµ. We denote this problem by E+. An annotation
is correct iffthe formula isequivalent(in the logical sence) to the
formula obtained by evaluatingP+ as defined in section 5.

With the following two theorems we show that for patterns which
do not use the OPTIONAL operator E+ has the same complexity
as E. The RDF counterparts of both theorems have been estab-
lished by [12, 13]. Like [12, 13] we restrictP+ to graph pattern
which do not contain blank nodes. In the first theorem we consider
graph pattern which use only AND and FILTER operations. Bind-
ings obtained by such pattern are annotated with formulae which
do not contain any other operator besides∧ according to definition
5.4.

T 7.1. E+ can be solved in time O(|P+| · |D+|) for
graph pattern expressions constructed by using only AND and FIL-
TER operators and for annotation formulas using only the opera-
tion∧.

Proof: The proof consists of two parts: In the first part we construct
a correct annotation ˆα for µ and in the second we check whether
α and α̂ are equivalent. In the following letpi denote quadruple
patterni from P+ and r(µ,pi) denote the quadruple obtained by re-
placing the variables in the quadruple patternpi according toµ.

In order to construct ˆα we start by evaluating [[pi]] for all quadru-
ple pattern using definition 5.3. In order to achieve thisD+ needs
to be searched for all quadruples r(µ,pi). This can be performed
in O(|P+| · |D+|). Then, we construct the algebraic expressionψ
by evaluating [[P+]] using definition 5.4. This can be performed
by traversingP+. The correct annotation ˆα of µ in the result of
evaluatingP+ on D+ is defined asψ(µ), see definition 5.5. We can
construct ˆα = ψ(µ) in a depth-first traversal ofψ as following:

Let ψ1, ψ2 be algebraic expressions part ofψ. For each join opera-
tion in ψ the annotation of (ψ1 Z ψ2)(µ) is given byψ1(µ) ∧ ψ2(µ).
For each select operationσc(ψ)(µ) is given byψ(µ) if conditionc is
fulfilled otherwise it is given by⊥. Since traversingP+ andψ each
has time complexityO(|P+|) the evaluation of ˆα = ψ(µ) remains in
O(|P+| · |D+|).

Now we determine whether for a given annotationα holdsα ≡ α̂.
We transform both formulas into a normal form inO(|P+| · log |P+|)
using associativity, commutativity and idempotency of∧. First, we
remove all brackets then establish an order among atomic formulas

12

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

(identifiers and>,⊥) andfinally remove duplicates. Forα and α̂
normalized this way syntactic equality implys logical equivalence.
Assuming|P+| < |D+| the overall complexity remains inO(|P+| ·
|D+|). �

T 7.2. E+ is NP-complete for graph pattern expres-
sions constructed by using only AND, FILTER and UNION opera-
tors.

Proof: The proof consists of two parts: In the first part we show
that E+ is contained in NP and in the second we establish NP-
hardness of E+. As above, letpi denote quadruple patterni from
P+ and r(µ,pi) denote the quadruple obtained by replacing the vari-
ables in the quadruple patternpi according toµ.

The first part consists of two steps as well: first we construct a cor-
rect annotation ˆα for µ and then we check whetherα and α̂ are
equivalent. In order to construct ˆα we start by evaluating [[pi]]
for all quadruple pattern using definition 5.3. In order to achieve
this D+ needs to be searched for all quadruples r(µ,pi). Then, we
construct the algebraic expressionψ by evaluating [[P+]] using def-
inition 5.4. This can be performed by traversingP+. The correct
annotation ˆα of µ in the result of evaluatingP+ on D+ is defined as
ψ(µ), see definition 5.5. We can construct ˆα = ψ(µ) in a depth-first
traversal ofψ as following:

Let ψ1, ψ2 be algebraic expressions part ofψ. For each join op-
eration (ψ1 Z ψ2)(µ) is given byψ1(µ) ∧ ψ2(µ). For each union
operation (ψ1 ∪ ψ2)(µ) is given byψ1(µ) ∨ ψ2(µ). For each select
operationσc(ψ)(µ) is given byψ(µ) if conditionc is fulfilled other-
wise it is given by⊥.

Time complexity for evaluatingψ(µ) is O(|P+| · |D+|). The evalua-
tion ofα ≡ α̂ is more difficult if UNION operations are contained in
P+. But it is subsumed by checking equivalence of Boolean formu-
lae which is a NP-complete problem. Thus, the decision problem
E+ is contained in NP.

We can deduce that E+ is an NP-complete problem if E,
which has been shown to be NP-complete [12, 13], can be reduced
to it. E can be reduced to E+ if the evaluation defined in
section 5 results in an annotationα ≡ ⊥ exactly for such bind-
ings which are not in the result of standard SPARQL evaluation.
For graph pattern which do not contain the OPTIONAL operator
this can be shown by induction over the structure of algebraic ex-
pressions using definition 5.4 and its standard SPARQL counterpart
from [12]. �

8. IMPLEMENTATION
The framework described in this paper has been implemented and
is available as an initial prototype. The prototype is available as an
open source implementation at
http://isweb.uni-koblenz.de/Research/MetaKnowledge
together with example queries using artificial data from the LeHigh
benchmark3.

9. EXPERIMENTS
In order to evaluate the overhead produced by the evaluation of
meta knowledge properties for results of SPARQL queries we car-

3available athttp://swat.cse.lehigh.edu/projects/lubm/

ried out two experiments based on the well-known LUBM bench-
mark [9] and our implementation of the meta knowledge frame-
work. Our main aim is to find out whether the evaluation of SPARQL
queries remains feasible if provenance and meta knowledge is pro-
vided for query results and thus to support the theoretical results of
section 7.

A key question is how to separate the additional effort for the eval-
uation of provenance and meta knowledge from standard SPARQL
processing. Triples describing meta knowledge receive anaddi-
tional meta knowledge interpretation according to section 4. At
the same time they are also treated as ordinary RDF triples (and
thus can be queried using standard SPARQL). Thus, if we add meta
knowledge to a knowledge base this increases its overall size which
also increases the workload for standard query processing. In or-
der to account for this we compare query evaluations performed
on the same knowledge base which includes meta knowledge. Our
implementation is built on top of Sesame4 2.0 (beta 6) using query
rewriting. The triple store is used to store both, knowledge and
meta knowledge. We expect that a native implementation of the
meta knowledge framework can achieve an increased performance.

Query evaluation.For the evaluation of SPARQL on RDF+ we
defined the results of SELECT queries to be set-valued, see section
5.2. For standard SPARQL [16], however, a SELECT query returns
a solution sequencewhich may contain duplicate elements. All 14
queries of the LUBM benchmark are SELECT queries. To allow
for a consistent comparison of extended evaluation on one side and
standard evaluation on the other we added the keyword DISTINCT
to the queries for standard evaluation. This tells the query processor
to eliminate duplicates. Since the evaluation of individual meta
knowledge properties can be arbitrarily complex we compare the
following three kinds of query evaluation:

• standard evaluation with additional duplicate elimination (SD),
as performedby Sesame,

• evaluation of provenance formulae for each query result (PF)
and

• evaluation of four basic meta knowledge properties (M4),
namelyagent,confidence,creation timeandsource, see Ex-
ample 5.9 (we evaluateagentanalogously tosource).

Only the last type of query processing actually makes use of the
additional triples.

Data. We added artificial meta knowledge to the LUBM data.
Amount and granularity of the additional meta knowledge are key
properties of the resulting dataset. We created two datasets con-
taining a different percentage of meta knowledge triples. In the first
dataset (MK29) 10 triples each are assigned to a named graph and
artificial values of the four meta knowledge properties are attached
to it. As a consequence the dataset contains 29 percent of meta
knowledge which might be a reasonable scenario in a real world
scenario. In the second dataset (MK400) each single triple is as-
signed to a different graph and the four meta knowledge properties
are associated with it. This way the knowledge base contains four
times as many meta knowledge triples as knowledge triples.
4www.openrdf.org

13

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

SD PF M4

MK29 313 894 1382
MK400 196 104 425

Table 1: Random query sequence experiments: average pro-
cessing time(ms).

The data set MK29 was created based on LUBM OWL data for 10
Universities. We added the meta knowledge by putting groups of 10
consecutive original triples into one named graph and associating
random values of the meta knowledge propertiesagent,confidence,
creation timeandsourcewith this graph name, see Example 9.1.

E 9.1.

<graph>
<uri>
http://www.x-media-project.org/ontologies/someGraph#0-0_30

</uri>
<triple>
<uri>http://www.Department0.University0.edu/

FullProfessor1</uri>
<uri>
http://www.lehigh.edu/%7Ezhp2/2004/0401/

univ-bench.owl#doctoralDegreeFrom</uri>
<uri>http://www.University882.edu</uri>

</triple>
<triple>
<uri>http://www.University882.edu</uri>
<uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</uri>
<uri>http://www.lehigh.edu/%7Ezhp2/2004/0401/

univ-bench.owl#University</uri>
</triple>

...
<graph>
<uri>http://www.metaknowledge.semanticweb.org0-0_30</uri>
<triple>
<uri>http://www.x-media-project.org/ontologies/

someGraph#0-0_30</uri>
<uri>http://www.x-media.org/ontologies/metaknow#source</uri>
<uri>http://www.x-media-project.com/ex#source30</uri>

</triple>
<triple>
<uri>http://www.x-media-project.org/ontologies/

someGraph#0-0_30</uri>
<uri>http://www.x-media.org/ontologies/metaknow

#confidence_degree</uri>
<typedLiteral datatype=’http://www.w3.org/2001/

XMLSchema#double’>0.7</typedLiteral>
</triple>

...

The resulting dataset consists of 1.8 million triples of which 1.3
million triples were created by the LUBM generator to which we
added 0.5 million meta knowledge triples. It contains 0.3 million
(additional) graph URIs.

The data set MK400 was created based on LUBM OWL data for
three Universities. The resulting dataset consists of 1.7 million
triples of which 0.35 million are orignal LUBM data and 1.4 mil-
lion are additional metadata. Note that the overall sizes of the two
datasets are comparable. As indicated above the overall size of the
knowledge base influences the workload for query processing. In
fact, main memory consumption appeared to be a key factor. By
choosing similar sizes for the two datasets we reduce the influence
of factors related to the size of the knowledge base and concentrate
on how the different evaluations influence the processing time.

Random Query Sequence.We conducted two experiments
with each of the two datasets. One experiment aims at simulat-
ing behavior of a query engine in a real life scenario: first a dataset
is loaded and then a sequence of queries is submitted to the query
engine. We measured the average processing time of these queries.
The query sequence was created based on 8 of the 14 queries from
the LUBM benchmark. Query 2 was not included since we were
not able to obtain results for this query with this version of Sesame,
this dataset and an average machine. Five more queries are dis-
carded since they require OWL inferencing or hierarchy informa-
tion to obtain complete results and Sesame 2 was not able to obtain
bindings using plain SPARQL processing. Since no meta knowl-
edge needs to be calculated if the result set is empty using these
queries would bias the evaluation in favor of the meta knowledge
processing. The authors of the benchmark identified three main
characteristics of queries with respect to plain SPARQL process-
ing: input size,selectivityandcomplexity. The remaining 8 queries
still cover different settings for these features. Experiments with
single queries will be presented below.

The query sequence consisted of a random shuffle of 20 copies of
each of the remaining queries. For each query in the sequence we
measured the time which elapses during issuing the query, obtain-
ing the result and traversing the result sequentially. This measure
is similar to thequery responce timedefined in [9]. The only dif-
ference is that in [9] each query is performed ten times after the
knowledge base has been loaded to measure the caching perfor-
mance of the query engine. For each run we determined the average
of the execution times of the queries in the sequence in question.
The results are summarized in Table 1.

Evaluation of provenance formulae (PF) given dataset MK29 al-
most tripled the average query execution time. On average, the
evaluation took about half a second longer than standard evaluation
(SD). The evaluation of four meta knowledge properties (M4) adds
again half a second to the evaluation of provenance. The overall
overhead to obtain meta knowledge is about a second given a non-
trivial dataset. We consider this to be an indication for the feasi-
bility of our approach. Since these numbers are average values the
question remains whether reasonable processing times are achieved
for all individual queries as well. This will be analyzed below.

For the dataset MK400 the computations were faster for all three
kinds of evaluations. This can be explained by the fact that this
dataset contains a smaller number of knowledge triples and there-
fore the result sets for some of the queries contain fewer bindings as
we will see below. Surprisingly, evaluation of provenance formu-
las needed less time than standard evaluation. A possible explana-
tion is optimization performed by the qurery processor of Sesame
2. Since our implementation uses query rewriting different queries
are evaluated for the different kinds of evaluations. Optimization
techniques might be easier to apply to some of them. Why does
the evaluation of MK29 not show similar characterisitcs? Here a
possible explanation is the larger number of bindings involved in
the evaluation. Main memory consumption was quite large in both
cases. Possibly there was no space left for caching of (intermedi-
ary) results given dataset MK29. The calculation of the four meta
knowledge properties did result in an increase in processing time
as expected.

Single LUBM Queries.We also measured processing times
for single queries. As stated above we measured the time which

14

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

Query Q1 Q4 Q5 Q6 Q7 Q8 Q10 Q14 Av.

bindings 5 10 411 24019 3 1874 4 75547
processing SD 127 163 211 357 135 1619 127 977 465
time (ms) PF 324 347 386 995 337 691 325 2320 716

M4 340 375 426 2187 346 878 326 105011922

Table 2: Processing time of query evaluation with and without provenance and meta knowledge for individual queries and the MK29
dataset. Processing times are average values of 10 runs each.

Query Q1 Q4 Q5 Q6 Q7 Q8 Q10 Q14 Av.

bindings 5 10 411 6390 3 1874 4 19868
processing SD 137 189 204 217 131 1596 124 379 372
time (ms) PF 367 350 367 517 316 676 300 769 458

M4 346 359 440 859 321 1083 306 1953708

Table 3: Processing time of query evaluation with and without provenance and meta knowledge for individual queries and the
MK400 dataset.Processing times are average values of 10 runs each.

elapsed during during issuing the query, obtaining the result and
traversing the result sequentially. In contrast to the previous ex-
periment and to the definition of thequery response timefrom [9]
the application was restarted before each single query execution.
That way each query was evaluated against a newly loaded knowl-
edge base since we want to measure the effort it takes to evaluate
the queries and not the caching strategy of the query engine. This
procedure was repeated 10 times for each query and each method
of query evaluation. The average values from these runs are sum-
marized in tables 2 and 3. The standard deviations estimated from
these 10 runs are less than or equal 10 percent for all queries and
methods evaluated on the two datasets.

On average the calculation of provenance formulas (PF) increases
processing time by factor 1.5. In absolut numbers the average in-
crease is about 0.2 seconds. The largest increase (1.3 seconds for
the MK29 dataset) can be observed for query 14 which also gives
the largest result set. We attribute this to the main memory con-
sumption of our implementation. For query 8 there even is a de-
crease in processing time. As for the case of a random query se-
quence evaluated on MK400 a possible explanation are optimiza-
tions of the query processor. The additional querying for meta
knowledge might guide the optimization of the query execution.

Calculation of the four basic provenance properties (MD4) causes
an average increase of factor 4.1 (1.5 seconds) for the MK29 dataset
and factor 1.9 (0.3 seconds) for the MK400 dataset compared to
standard evaluation. We ascribe the larger increase for the runs
based on dataset MK29 to the larger number of results for queries
6 and 14 and the non-optimized memory consumption of our im-
plementation. These results are in line with the results from the
experiments using a random query sequence shown in table 1. For
query 8 the processing time decreases for query evaluation includ-
ing meta knowledge as well which might be explained by query
optimization of the underlying triple store as stated above.

Conclusions.At first we consider the experiments with individ-
ual queries. From the estimated standard deviations of the 10 runs
for each query, kind of evaluation and dataset we conclude that the
measurements are reliable enough to draw two general conclusions:
On the one hand we can observe a noticeable increase of processing
time using our implementation and on the other hand the amount
of this increase can be described by a small linear factor.

The results of the experiments using a random sequence of queries
indicate that similar results also hold for real world scenarios. Here
caching can be applied by a query processor. A few times eval-
uations of the same query even were repeated directly one after
another in the sequence. The resulting average processing times
are smaller but still comparable to the average values for the evalu-
ations of single queries. A key insight is that the overall processing
times remain feasible for evaluations on a dataset of up to 1.8 mil-
lion triples and results of up to 75,000 bindings.

If we compare the processing times obtained for the two different
datasets we might expect that for dataset MK400 processing times
increase by a larger factor if meta knowledge is involved. MK400
contains a larger number of meta knowledge triples which need to
be processed in order to evaluate meta knowledge – especially com-
pared to the number of knowledge triples. However, at least with
our implementation, the dominant characteristic of query evalua-
tion appears to be the size of the result set.

10. RELATED WORK
The importance of better understanding the ways by which the re-
sult came about is fundamental to many Semantic Web applications
and scenarios. The specification of the Semantic Web proof layer
was discussed in [11, 15, 10]. Our approach is focused on a differ-
ent language model (RDF) and provides fine-grained meta knowl-
edge management for retrieval queries with SPARQL that is not
directly comparable with proof traces for OWL reasoning.

In the area of database systems, meta knowledge is often repre-
sented using an extension of the relational data model, coinedan-
notated relations. Its purpose is primarily the description of data
origins (provenance) and the process by which it arrived as a query
answer [6, 3, 4, 7]. Basically, our methodology follows the same
idea. However, our approach is specially designed for RDF graph
models and not directly comparable to metadata models for rela-
tional database systems. The same holds for the query language
(SPARQL instead of SQL) and its semantics. An important dif-
ference to isolated database solutions is the serialization ability of
RDF and thus seamless exchanging and utilization of meta knowl-
edge from our framework across the Semantic Web.

15

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

11. CONCLUSION AND FUTURE WORK
In this paper, we presented an original, generic, formalized and
implemented approach for the management of many dimensions
of meta knowledge, like source, authorship, certainty, and others,
for RDF repositories. Our method re-uses existing RDF modeling
possibilities in order to represent meta knowledge. Then, it extends
SPARQL query processing in such a way that given a SPARQL
query for data, one may request meta knowledge without modifying
the query proper. We achieve highly flexible and automatically co-
ordinated querying for data and meta knowledge, while completely
separating the two areas of concern. Our approach remains com-
patible to existing standards and query languages and can be easily
integrated with existing applications and interfaces.

In the future, we will investigate the meta knowledge support for
OWL-based knowledge bases with advanced reasoning capabili-
ties. Due to the substantially higher complexity of inferencing and
retrieval algorithms (e.g. reasoning in OWL-DL vs. RDF querying
with SPARQL) and the distributed nature of knowledge sources
in the Semantic Web, the notion of meta knowledge will require
further, non-trivial justification. Another interesting research is-
sue is the support fornestedmeta knowledge (i.e. construction of
meta knowledge for the result with respect to additional informa-
tion aboutmeta knowledge of its origins).

Our long-term objective is the generic, efficient and effective in-
frastructure for meta knowledge management as an integral part of
the proof layer of the Semantic Web.

12. REFERENCES
[1] Chris Bizer and Richard Cyganiak. The TriG Syntax. 2007.

http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/Spec/TriG-
20070730/.

[2] Christian Bizer and Jeremy J. Carroll. Modelling Context
using NamedGraphs. InW3C Semantic Web Interest Group
Meeting, Cannes, France, 2004.

[3] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan.
Data Provenance: Some Basic Issues.20th Conference on
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), New Delhi, India, pages
87–93, 2000.

[4] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan.
Why and Where: A Characterization of Data Provenance.
Proc. of ICDT, pages 316–330, 2001.

[5] Jeremy J. Carroll and Patrick Stickler. TriX: RDF triples in
XML. In Proceedings of the Extreme Markup Languages
2004, Montreal, Canada, 2004.

[6] Y. Cui and J. Widom. Practical Lineage Tracing in Data
Warehouses.Proc. of ICDE, pages 367–378, 2000.

[7] Li Ding, Pranam Kolari, Tim Finin, Anupam Joshi, Yun
Peng, andYelena Yesha. On Homeland Security and the
Semantic Web: A Provenance and Trust Aware Inference
Framework. InProceedings of the AAAI Spring Symposium
on AI Technologies for Homeland Security, 2005.

[8] Todd J. Green, Gregory Karvounarakis, and Val Tannen.
Provenance Semirings. InPODS, pages 31–40, 2007.

[9] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for
OWL Knowledge Base Systems.Journal of Web Semantics,
3(2):158–182, 2005.

[10] D. McGuinness and P. Pinheiro da Silva. Explaining
Answers fromthe Semantic Web: the Inference Web
Approach.J. Web Sem., 1(4):397–413, 2004.

[11] W. Murdock, D. McGuinness, P. Pinheiro da Silva, C. Welty,
and D.Ferrucci. Explaining Conclusions from Diverse
Knowledge Sources.International Semantic Web Conference
(ISWC), Athens, USA, pages 861–872, 2006.

[12] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez.
Semantics andComplexity of SPARQL. InProc. of ISWC,
pages 30–43, 2006.

[13] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez.
Semantics andComplexity of SPARQL. arXiv:cs/0605124v1
[cs.DB], May 2006.

[14] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez.
Semantics ofSPARQL. Technical Report TR/DCC-2006-17,
Universidad de Chile, October 2006.

[15] P. Pinheiro da Silva, D. McGuinness, and R. Fikes. A Proof
Markup Languagefor Semantic Web services.Inf. Syst.,
31(4-5):381–395, 2006.

[16] Eric Prud’hommeaux and Andy Seaborne. SPARQL query
language forRDF. Working draft, W3C, March 2007.
http://www.w3.org/TR/rdf-sparql-query/.

[17] M. Schraefel, N. Shadbolt, N. Gibbins, S. Harris, and
H. Glaser. CS AKTive Space: Representing Computer
Science in the Semantic Web.Proc. of WWW, pages
384–392, 2004.

[18] Bernhard Schueler, Sergej Sizov, and Steffen Staab.
Management of Meta Knowledge for RDF Repositories. In
Int. Conf. on Semantic Computing (ICSC), pages 543–550,
Irvine, CA, September 2007.

16

Querying for Meta Knowledge, Fachbereich Informatik, Nr. 8/2008

Bisher erschienen

Arbeitsberichte aus dem Fachbereich Informatik
(http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte)

Bernhard Schueler, Sergej Sizov, Steffen Staab, Querying for Meta Knowledge,
Arbeitsberichte aus dem Fachbereich Informatik 8/2008

Stefan Stein, Entwicklung einer Architektur für komplexe kontextbezogene Dienste im
mobilen Umfeld, Arbeitsberichte aus dem Fachbereich Informatik 7/2008

Matthias Bohnen, Lina Brühl, Sebastian Bzdak, RoboCup 2008 Mixed Reality League Team
Description, Arbeitsberichte aus dem Fachbereich Informatik 6/2008

Bernhard Beckert, Reiner Hähnle, Tests and Proofs: Papers Presented at the Second
International Conference, TAP 2008, Prato, Italy, April 2008, Arbeitsberichte aus dem
Fachbereich Informatik 5/2008

Klaas Dellschaft, Steffen Staab, Unterstützung und Dokumentation kollaborativer Entwurfs-
und Entscheidungsprozesse, Arbeitsberichte aus dem Fachbereich Informatik 4/2008

Rüdiger Grimm: IT-Sicherheitsmodelle, Arbeitsberichte aus dem Fachbereich Informatik
3/2008

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik 2/2008

Markus Maron, Kevin Read, Michael Schulze: CAMPUS NEWS – Artificial Intelligence
Methods Combined for an Intelligent Information Network, Arbeitsberichte aus dem
Fachbereich Informatik 1/2008

Lutz Priese,Frank Schmitt, Patrick Sturm, Haojun Wang: BMBF-Verbundprojekt 3D-RETISEG
Abschlussbericht des Labors Bilderkennen der Universität Koblenz-Landau, Arbeitsberichte
aus dem Fachbereich Informatik 26/2007

Stephan Philippi, Alexander Pinl: Proceedings 14. Workshop 20.-21. September 2007
Algorithmen und Werkzeuge für Petrinetze, Arbeitsberichte aus dem Fachbereich Informatik
25/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS – an Intelligent Bluetooth-
based Mobile Information Network, Arbeitsberichte aus dem Fachbereich Informatik 24/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS - an Information Network for
Pervasive Universities, Arbeitsberichte aus dem Fachbereich Informatik 23/2007

Lutz Priese: Finite Automata on Unranked and Unordered DAGs Extented Version,
Arbeitsberichte aus dem Fachbereich Informatik 22/2007

Mario Schaarschmidt, Harald F.O. von Kortzfleisch: Modularität als alternative Technologie-
und Innovationsstrategie, Arbeitsberichte aus dem Fachbereich Informatik 21/2007

Kurt Lautenbach, Alexander Pinl: Probability Propagation Nets, Arbeitsberichte aus dem
Fachbereich Informatik 20/2007

Rüdiger Grimm, Farid Mehr, Anastasia Meletiadou, Daniel Pähler, Ilka Uerz: SOA-Security,
Arbeitsberichte aus dem Fachbereich Informatik 19/2007

http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte

Christoph Wernhard: Tableaux Between Proving, Projection and Compilation, Arbeitsberichte
aus dem Fachbereich Informatik 18/2007

Ulrich Furbach, Claudia Obermaier: Knowledge Compilation for Description Logics,
Arbeitsberichte aus dem Fachbereich Informatik 17/2007

Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML Models
and OWL Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 16/2007
Rüdiger Grimm, Anastasia Meletiadou: Rollenbasierte Zugriffskontrolle (RBAC) im
Gesundheitswesen, Arbeitsberichte aud dem Fachbereich Informatik 15/2007

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus
dem Fachbereich Informatik 14/2007

Björn Pelzer, Christoph Wernhard: System Description:“E-KRHyper“, Arbeitsberichte aus dem
Fachbereich Informatik, 13/2007

Ulrich Furbach, Peter Baumgartner, Björn Pelzer: Hyper Tableaux with Equality,
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems,
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitäten,
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte
aus dem Fachbereich Informatik, 9/2007

Jürgen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung,
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007

Rüdiger Grimm, Robert Krimmer, Nils Meißner, Kai Reinhard, Melanie Volkamer, Marcel
Weinand, Jörg Helbach: Security Requirements for Non-political Internet Voting,
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauß, „grUML – Eine UML-
basierte Modellierungssprache für T-Graphen“, Arbeitsberichte aus dem Fachbereich
Informatik, 5/2007

Richard Arndt, Steffen Staab, Raphaël Troncy, Lynda Hardman: Adding Formal Semantics to
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus
dem Fachbereich Informatik, 4/2007

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich
Informatik, 3/2007

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007

„Gelbe Reihe“
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe)

Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages.
Extended Version, Fachberichte Informatik 3-2006

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets,
Fachberichte Informatik 2-2006

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services,
Fachberichte Informatik 1-2006

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte
Informatik 16-2005

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop ''Reengineering Prozesse'' –
Software Migration, Fachberichte Informatik 15-2005

Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005

Reinhold Letz: FTP 2005 – Fifth International Workshop on First-Order Theorem Proving,
Fachberichte Informatik 13-2005

Bernhard Beckert: TABLEAUX 2005 – Position Papers and Tutorial Descriptions,
Fachberichte Informatik 12-2005

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and
artificial intelligence, Fachberichte Informatik 11-2005

Jürgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte
Informatik 10-2005

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies,
Fachberichte Informatik 9-2005

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering,
Fachberichte Informatik 8-2005

Benno Stein and Sven Meier zu Eißen: Proceedings of the Second International Workshop on
Text-Based Information Retrieval, Fachberichte Informatik 7-2005

Andreas Winter and Jürgen Ebert: Metamodel-driven Service Interoperability, Fachberichte
Informatik 6-2005

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra,
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League
can benefit from each other, Fachberichte Informatik 5-2005

Torsten Gipp and Jürgen Ebert: Web Engineering does profit from a Functional Approach,
Fachberichte Informatik 4-2005

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of
Multiagent Team Behavior, Fachberichte Informatik 3-2005

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their
Applications in a Mobile Environment, Fachberichte Informatik 2-2005

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms –
 Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/
http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_inf
	Foliennummer 1

	Impressum
	techreport_SchuelerSizovStaab
	Bisher erschienen
	Bisher erschienen

