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Zusammenfassung

In zeitgenossischen Entscheidungssystemen ist die Integration von maschinellen
Lernmodellen (ML) wie CatBoost, Random Forest und Entscheidungsbdumen allge-
genwartig und {ibt erheblichen Einfluss auf gesellschaftliche Dynamiken aus. Diese
weitverbreitete Anwendung betont die kritische Notwendigkeit wirksamer Fairness-
Interventionen, um inhdrente Verzerrungen und Diskriminierungen zu mildern. Al-
lerdings adressieren vorherrschende Ansitze iiberwiegend bindre Klassifikationen
und stiitzen sich hadufig auf begrenzte, regionsspezifische Datensatze, was ihre Re-
levanz und Anwendbarkeit einschrankt. Um diese Miéngel zu beheben, schlagen
wir eine Erweiterung des Fairness-Projektionsmodells vor, das Ensemble-Learning-
basierten Klassifikatoren als Basis-Klassifizierungsmodell verwendet. Das vorge-
schlagene Modell wird Fairness Projection with Ensemble Trees (FPET) genannt,
eine innovative Nachbearbeitungsintervention, die speziell fiir Multi- Class- Klas-
sifikationsaufgaben entwickelt wurde. Fairness Projection with Ensemble Trees ist
einzigartig darauf ausgelegt, mehrere und sich tiberschneidende geschiitzte Grup-
pen zu berticksichtigen, was es vielseitig und inklusiv macht. Ein herausragendes
Merkmal von FPET ist seine Modellagnostik und Skalierbarkeit auf grofle Datensat-
ze, erleichtert durch ein informationstheoretisches Framework, das auf Informati-
onsprojektion basiert. Dieser Ansatz liefert robuste theoretische Garantien hinsicht-
lich Konvergenz und Stichprobenkomplexitdt und gewahrleistet somit seine prak-
tische Umsetzbarkeit. Dariiber hinaus wird das Design von FPET durch die Unter-
stlitzung fiir parallele Verarbeitung verstarkt, was seine Eignung fiir grofs angelegte
Anwendungen weiter erhoht.

Umfassende Bewertungen an diversen Datensitzen, darunter das ENEM- Priifungs-
datensatz aus Brasilien, HSLS und COMPAS, zeigen die tiberlegene Leistung un-
seres vorgeschlagenen Modells, Fairness Projection with Ensemble Trees (FPET),
das den CatBoost-Klassifikator sowohl fiir bindre als auch fiir Multi- Class- Klas-
sifikationsaufgaben verwendet. In allen Datensétzen zeigte CatBoost herausragen-
de Leistungen. Unsere Fairness-Methode {ibertraf auch andere Benchmark-Modelle
wie Equality of Odds (EqOdds), Level Equal Opportunity (LevEqOpp), Reduktions-
methode und Ablehnungsverfahren. Die Ergebnisse wurden anhand von zwei Me-
triken verglichen: Mean Equal Opportunity und Statistical Parity. Diese Ergebnisse
unterstreichen die Wirksamkeit von FPET in verschiedenen Kontexten und fiihren
einen neuartigen Ansatz zur Fairness im maschinellen Lernen ein, der gerechte und
inklusive Entscheidungsfindungen sicherstellt.

Abstract

In contemporary decision-making systems, the integration of machine learning (ML)
models such as CatBoost, Random Forest, and Decision Tree has become ubiqui-
tous, exerting substantial influence on societal dynamics. This pervasive adoption
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accentuates the critical necessity for efficacious fairness interventions to mitigate in-
herent biases and discrimination. However, prevailing approaches predominantly
address binary classifications and frequently draw upon limited, region-specific
datasets, thereby constraining their relevance and applicability. To address these
shortcomings, we propose an extension to the fairness projection model that uses
ensemble learning tree-based classifiers as the base classifying model. The pro-
posed model is named Fairness Projection with Ensemble Trees (FPET), an innova-
tive post-processing intervention specifically designed for multi-class classification
tasks. Fairness Projection with Ensemble Trees is uniquely designed to accommo-
date multiple and overlapping protected groups, rendering it versatile and inclu-
sive. A distinguishing feature of FPET lies in its model-agnostic nature and scala-
bility to large datasets, facilitated by an information-theoretic framework centered
around information projection. This approach furnishes robust theoretical assur-
ances regarding convergence and sample complexity, thereby ensuring its practical
viability. Furthermore, FPET’s design is augmented by its support for parallel pro-
cessing, further enhancing its suitability for large-scale applications.

Comprehensive evaluation against diverse datasets, including Brazil’'s ENEM exam
dataset, HSLS, and COMPAS, demonstrates the superior performance of our pro-
posed model, Fairness Projection with Ensemble Trees (FPET), which uses the Cat-
Boost classifier for both binary and multi-class classification tasks. In all datasets,
CatBoost performed exceptionally well. Our fairness method also outperformed
other benchmark models, such as Equality of Odds (EqOdds), Level Equal Op-
portunity (LevEqOpp), reduction method, and rejection methods. The results were
compared using two metrics: Mean Equal Opportunity and Statistical Parity. These
findings highlight the effectiveness of FPET across various contexts and introduce
a novel approach to fairness in machine learning, ensuring equitable and inclusive
decision-makings.
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1 Introduction

The integration of machine learning (ML) models such as CatBoost, Random Forest,
and Decision Tree into decision-making systems has transformed numerous indus-
tries by facilitating more efficient and effective decision processes. These models
are employed across a variety of sectors including healthcare, finance, education,
and public administration, significantly impacting societal dynamics [2] . While ML
technologies can enhance the precision and objectivity of decisions, their widespread
use also raises substantial ethical concerns, particularly regarding fairness and dis-
crimination. The propensity of ML models to inherit or amplify existing biases in
training data is a well-documented issue, highlighting the urgent need for robust
fairness interventions[34]

Binary classification is a foundational task in ML where the system must decide

between two categories (e.g., yes/no, true/false). This form of classification is par-
ticularly prevalent in areas like loan approval and criminal risk assessments. For
example, [6] discusses how fairness must be considered in algorithms predicting re-
cidivism, which typically output a binary decision: likely or unlikely to reoffend.
Similarly, [23]) explore inherent trade-offs in the fairness of algorithms used for bail
decisions, another binary decision-making process that profoundly impacts indi-
viduals’ lives. These studies underscore the importance of fairness in binary clas-
sifications due to their direct implications on individuals’ freedoms and financial
statuses. The primary concern here revolves around avoiding discriminatory out-
comes based on protected attributes like race, gender, or age.
While binary classification covers significant ground, the scope of ML applications
is indeed much broader. Multi-class classification involves assigning an instance
into one of three or more categories, which is essential in fields like education and
healthcare. For example: In Education: Automated systems might be used to clas-
sify students into various performance categories (A, B, C, etc.), which can influence
educational tracking, resource allocation, or even admission into programs. The
fairness concerns here extend beyond simple yes/no decisions and delve into the
equitable treatment across multiple graded categories, which can affect a student’s
educational trajectory and future opportunities. In Healthcare: Diagnostic algo-
rithms often categorize patient conditions into multiple classes, such as different
disease types or severity levels. Ensuring fairness in these classifications is crucial
since misclassifications can lead to inappropriate treatments. Fairness must ensure
that such algorithms do not systematically disadvantage certain groups in diagnosis
accuracy or treatment recommendations.



Addressing fairness in multi-class scenarios is inherently more complex due to
the increased number of outcomes and the interactions between them. As pointed
out by Mehrabi et al. [29], fairness cannot be uniformly applied across different
categories without understanding the contextual implications of each decision. The
need for sophisticated fairness approaches in multi-class systems is further high-
lighted by research from Corbett-Davies and Goel [8], who argue that fairness can-
not be distilled into a single metric or method but must be approached from multi-
ple angles, especially in complex decision-making scenarios that involve high stakes
or long-term impacts. Furthermore, Zhang and Bareinboim [44] introduce method-
ologies for handling fairness in causal inference models, which can be adapted for
multi-class scenarios. Their work suggests that traditional statistical methods for en-
suring fairness might be insufficient when causal relationships influence the under-
lying decision-making processes, such as in educational tracking systems or com-
plex medical diagnostics.

The challenge of inadequate dataset representation in fairness research is a cru-
cial issue in the field of machine learning. The majority of studies on algorithmic
fairness rely on datasets that, while widely recognized and frequently used, are
typically small and derived from specific geographical and demographic contexts,
primarily the United States and Europe. Notable examples include the UCI Adult
dataset (also known as the "Census Income" dataset) and the COMPAS dataset (Cor-
rectional Offender Management Profiling for Alternative Sanctions). These datasets
are commonly utilized to test algorithms for bias and fairness but present significant
limitations regarding their demographic and geographical diversity.

Firstly, the datasets commonly used are often not representative of the wider
global population. They typically encompass demographics and scenarios that are
specific to Western, industrialized nations, particularly the United States. For in-
stance, the UCI Adult dataset, which is used extensively for income prediction stud-
ies, primarily includes data from American census figures and therefore embodies
the specific racial, economic, and social dynamics of the United States during the
1990s [24]. Similarly, the COMPAS dataset, which is used to study recidivism pre-
diction algorithms, specifically reflects the criminal justice dynamics prevalent in
Broward County, Florida, and may not accurately represent the broader U.S. crimi-
nal justice system, let alone systems in other countries [11]. Secondly, such datasets
may not cover the range of situations or decision-making contexts encountered in
other regions or cultures. This limitation substantially affects the design and testing
of fairness interventions. Algorithms developed and validated on such data may
fail when deployed in environments with different demographic profiles or socio-
economic conditions. For example, an algorithm trained to predict creditworthi-
ness using data from an affluent Western country might not perform accurately in a
developing country where economic behaviors and credit systems differ markedly
[37].



1.1 Information-Theoretic Approach

The theoretical foundation of Fairness Projection lies in the concept of information
projection, initially introduced by Csiszar (1975) [10] . This approach involves ad-
justing the probability distributions produced by ML models so that they conform
to fairness constraints, a method supported by subsequent studies given by Dwork
et al., 2012 [12] ; Hardt et al., 2016 [16]. Information projection optimizes the trade-
off between maintaining the original distribution’s utility and adhering to fairness
criteria by minimizing the Kullback-Leibler divergence between the original and
adjusted distributions. This minimization ensures that the modification retains as
much of the original data’s utility as possible, thereby preserving the predictive ac-
curacy of the ML model while aligning its outputs with ethical standards.

The advantage of employing an information-theoretic framework is twofold. Firstly,
it provides a mathematically rigorous method for enforcing fairness, grounded in
well-established principles of statistics and probability theory. Secondly, this method
is quantifiable, allowing practitioners to measure how much an intervention alters
a model’s output and thus assess the intervention’s impact on model performance
and fairness these methods was introduced by Kamishima et al., 2011 [20] ; Zemel
et al., 2013 [41].

1.2 Practical Utility Across Sectors

The primary objective of this thesis is to introduce and validate a novel fairness
intervention method called Fairness Projection with Ensemble Trees (FPET). This
method aims to address fairness in machine learning, particularly in multi-class
classification tasks where existing fairness solutions often fall short. The signifi-
cance of this research lies in its potential to enhance equitable outcomes in various
high-impact sectors, including healthcare, education, and finance.

The versatility of Fairness Projection makes it particularly valuable in sectors
where decisions impact individuals differently based on a multitude of factors. For
instance, in healthcare, Fairness Projection can ensure diagnostic tools do not favor
one demographic over another, particularly in diagnostics that categorize patient
outcomes into multiple categories (Chen et al., 2018) [5]. In education, algorithms
determining student support needs could apply Fairness Projection to guarantee
that recommendations are equitable across students from diverse backgrounds. By
introducing Fairness Projection, this thesis contributes a novel tool to the toolkit of
fairness in machine learning, addressing the urgent need for interventions that are
both effective and versatile across a range of applications. Its model-agnostic nature,
grounded in a robust information-theoretic approach, ensures that Fairness Projec-
tion can be widely applied without compromising the operational effectiveness of
existing systems, thus paving the way for more equitable ML applications.



This thesis extensively assesses the efficacy of the FPET method using substantial
datasets, including Brazil’s Exame Nacional do Ensino Médio (ENEM), HSLS, and
COMPAS. The ENEM dataset is particularly valuable as it provides a large-scale
context for testing fairness interventions in multi-class classification scenarios—a
critical area requiring robust, diverse datasets for valid evaluations [3] . The choice
of the ENEM dataset aligns with recent scholarly discussions that advocate for di-
versifying the datasets used in fairness research, moving beyond commonly em-
ployed ones like the UCI Adult dataset and the COMPAS dataset, which have been
critiqued for their overuse and potential biases [34] .

Our utilization of the ENEM dataset is intended not only to provide a more rig-
orous testing ground for FPET but also to inspire other researchers in the field of
fair machine learning to explore and validate their methods across more varied and
globally representative datasets. The need for such diversity in test environments is
crucial for developing fairness interventions that are truly effective across different
societal and demographic contexts [34] - [33].

The primary contributions of this study are as follows. First, we introduce a novel
post-processing fairness intervention specifically designed for multi-class classifica-
tion tasks. This method is capable of handling multiple protected groups and scal-
ing to accommodate large datasets like ENEM. Second, we establish finite-sample
guarantees and convergence rates for FPET, ensuring its reliability and robustness
in practical applications. This aspect addresses a significant gap in fairness litera-
ture, where many models fail due to assumptions of infinite or large sample sizes,
which are not always practical or available (Raji et al., 2020). Third, our research em-
phasizes the importance of using diverse and globally representative datasets for
fairness testing. By utilizing the ENEM dataset, we demonstrate the applicability
and effectiveness of FPET in varied contexts, encouraging the field to move beyond
commonly overused datasets. Finally, the thesis highlights the potential impact of
Fairness Projection in key sectors such as healthcare, education, and finance. This
contribution underscores the practical significance of our method in real-world ap-
plications, promoting more equitable decision-making processes. [33]. In summary,
this thesis introduces Fairness Projection with Ensemble Trees (FPET) as a signifi-
cant advancement in the realm of fair machine learning. Through rigorous testing
on diverse datasets and providing robust theoretical guarantees, we contribute a
versatile and reliable tool for addressing fairness in multi-class classification tasks.
Our work aims to inspire further research and application of fairness interventions
across various sectors, ultimately striving for more equitable outcomes in machine
learning.

1.3 Structure of the Thesis

This thesis is meticulously structured to facilitate a deep understanding of fairness
within machine learning. Chapter 2 engages with the existing body of literature
to construct a solid theoretical framework, illuminating critical concepts and im-



portant developments, especially in the realm of fairness interventions for binary
and multi-class classification, while defining the research gaps and formulating the
research questions that guide this thesis. Chapter 3 transitions from theoretical ex-
ploration to practical application, elaborating on the sophisticated methodologies
underpinning the Fairness Projection with Ensemble Trees (FPET) intervention, de-
tailing both its theoretical foundations and practical deployment strategies, includ-
ing the machine learning algorithms used. Chapter 4 presents a rigorous evaluation
of the FPET model, methodically assessing its effectiveness relative to existing fair-
ness interventions across diverse datasets and performance metrics, demonstrating
its practical utility and robustness. Chapter 5 provides the results and discussion,
expanding the examination beyond the immediate outcomes of FPET to consider
the broader implications of this research on the field of fair machine learning, and
proposing potential future research avenues to enhance and broaden the scope of
fairness interventions. Chapter 6 concludes the thesis, summarizing the key find-
ings, contributions, and the potential impact of this research on the practice and
development of fair machine learning.



2 Literature Review

In exploring the landscape of fairness-aware algorithms, numerous models have
been proposed to address challenges in achieving equity across different contexts.
This chapter reviews seminal and recent works that have shaped our understand-
ing of fairness in machine learning, highlighting their capabilities and limitations
in handling multiclass, multigroup, and other specific algorithmic traits. In the
rapidly evolving field of fairness in machine learning, a comprehensive review of
the methodologies and theoretical advancements is essential. This field aims to ad-
dress biases in algorithmic decision-making and ensure equitable treatment across
diverse groups. The review below explores a variety of approaches designed to
tackle different facets of fairness.

2.1 Related work on Fairness Projection

Fairness in machine learning has emerged as a critical concern due to the increasing
integration of automated decision-making systems in various domains such as fi-
nance, criminal justice, employment, and healthcare. Fairness projection in machine
learning refers to the process of mitigating bias and discrimination by incorporating
fairness constraints or objectives into the design and training of machine learning
models. This literature review explores various approaches, challenges, and ad-
vancements in fairness projection in machine learning, highlighting key studies and
methodologies.

Definition and Metrics of Fairness: Numerous definitions and metrics have been
proposed to quantify and measure fairness in machine learning models. Dwork
et al. (2012) [12] introduced the notion of "fairness through unawareness," argu-
ing that excluding sensitive attributes from the model can mitigate discrimination.
However, this approach has limitations in real-world scenarios where proxies for
sensitive attributes exist. Fairness is often categorized into individual and group
fairness. Individual fairness promotes consistent outcomes for individuals who are
alike in relevant aspects. In contrast, group fairness focuses on ensuring equal treat-
ment for groups, often defined by protected characteristics such as race, gender, or
age. Metrics to gauge fairness, such as Statistical Parity, Equal Opportunity, and
Equalized Odds, offer distinct perspectives on fairness by emphasizing either the
equality of positive outcomes or the parity of error rates across groups.



2.1.1 Fairness in Binary Classification:

Group Fairness and Error Rates: Dwork et al. (2012) [12] introduced the con-
cept of group fairness, which emphasizes equitable error rates across demographic
groups. This principle ensures that no single group is disproportionately burdened
by higher error rates, which can manifest as either false positives or false negatives.
For instance, if a loan approval algorithm disproportionately denies loans to a par-
ticular ethnic group despite similar creditworthiness, it would be exhibiting group
unfairness. Recent studies by Hardt et al. (2016) [17] have demonstrated that by ad-
justing algorithms to balance false positive and false negative rates across different
demographic groups, one can significantly reduce discriminatory biases. This ad-
justment can enhance trust in automated systems and promote equitable treatment
in critical decision-making processes such as hiring, lending, and law enforcement.

Adversarial Learning for Bias Mitigation: Madras et al. (2018) [28] proposed
the use of adversarial learning techniques to mitigate biases in binary classifica-
tion models. This method involves training a classifier alongside an adversary that
attempts to predict the demographic group of the individual based on the classi-
fier’s outputs. The classifier is then optimized to perform well on the primary task
while simultaneously ensuring that the adversary cannot easily determine the de-
mographic group. Experimental results have shown that this approach effectively
adjusts the decision boundaries, leading to a substantial decrease in disparate treat-
ment across demographic groups. Crucially, this bias reduction is achieved without
a significant loss in predictive accuracy, making it a practical solution for real-world
applications where fairness is as critical as accuracy.

Optimization for Fairness: Zhang et al. (2021) [45] presented a novel approach
to integrating fairness constraints directly into the optimization objectives of binary
classifiers. By explicitly incorporating fairness metrics into the optimization pro-
cess, their method ensures that fairness considerations are balanced with the goal
of achieving high classification accuracy. Empirical evaluations of their approach
revealed significant improvements in fairness metrics, such as demographic par-
ity and equal opportunity, without compromising the overall performance of the
model. This work underscores the feasibility of designing machine learning models
that do not sacrifice fairness for accuracy, thereby advancing the development of
ethical Al systems.

Individual Fairness Considerations: The concept of individual fairness, as pro-
posed by Kearns et al. (2017) [21], focuses on ensuring that similar individuals are
treated similarly by the algorithm. This principle requires that individuals who are
alike in relevant aspects receive comparable predictions or decisions. By incorpo-
rating individual fairness constraints into binary classification models, researchers
have been able to reduce disparities in treatment across diverse subgroups within
the dataset. This approach is particularly important in scenarios where fairness at
the individual level is paramount, such as in personalized healthcare or education,
where each decision impacts an individual’s life directly.

Fairness-Aware Model Interpretability: Interpretability techniques, such as LIME



(Ribeiro et al., 2016) [25], have been extended to assess the fairness of binary classifi-
cation models. LIME provides local explanations for model predictions, which can
be analyzed to identify potential biases in the decision-making process. By offering
interpretable insights into how different features influence the model’s predictions,
stakeholders can detect and address biases that may not be apparent from overall
accuracy metrics alone. This enhances the transparency and accountability of Al
systems, ensuring that they operate in a fair and unbiased manner.

Ethical Implications and Trade-offs: Implementing fairness-aware binary clas-
sification models often involves navigating ethical considerations and trade-offs
between fairness and utility. Research by Corbett-Davies et al. (2018) [9] has ex-
plored the ethical implications of imposing fairness constraints, such as the poten-
tial impact on the overall utility of the model. For instance, enforcing strict fairness
constraints may lead to a decrease in the model’s predictive accuracy, which can
have real-world consequences. These trade-offs highlight the need for transparent
decision-making processes in algorithmic systems, where stakeholders must weigh
the benefits of fairness against potential reductions in utility. Ethical Al design re-
quires a careful balance to ensure that the models serve the intended purpose while
promoting equity and justice.

2.1.2 Fairness in Multi-Class Classification:

Convex Optimization for Multi-Class Fairness: Zhang et al. (2019) [43] proposed a
fairness-aware multi-class classification framework based on convex optimization.
Their approach focuses on minimizing disparities in predictive performance across
different classes and demographic groups. By integrating fairness constraints into
the convex optimization problem, the framework ensures that the classifier treats
all groups more equitably. This is particularly important in applications such as
hiring or lending, where biased predictions can have significant real-world conse-
quences. The authors demonstrated through experiments that their method not only
improves fairness but also maintains a competitive level of overall accuracy.

Fairness Constraints in Ensemble Learning: Ensemble learning methods have
been adapted to incorporate fairness constraints, as proposed by Kamishima et al.
(2012) [20]. These methods combine multiple classifiers to improve predictive per-
formance while ensuring fair treatment of different demographic groups. The re-
searchers introduced fairness constraints into the ensemble model training process,
which guides the model to make balanced predictions. Their experimental results
showed that fairness-aware ensemble models can effectively mitigate biases, such as
gender or racial biases, while maintaining high classification accuracy. This is cru-
cial for sensitive applications like healthcare diagnostics or criminal justice, where
fairness and accuracy are both paramount.

Fairness-Aware Active Learning: Active learning techniques have been adapted
to address fairness concerns in multi-class classification. Schein et al. (2020) [13]
explored how actively selecting samples for labeling based on fairness criteria can



improve model fairness. Their approach involves iteratively querying the most
informative and fair samples to be labeled by human annotators. This strategy
not only enhances the generalization performance of the model but also ensures
that underrepresented groups are adequately represented in the training data. The
study showed that fairness-aware active learning leads to models that perform bet-
ter across different demographic groups, reducing biases that could arise from un-
balanced training datasets.

Fairness-Aware Feature Selection: Fairness-aware feature selection methods, as
proposed by Feldman et al. (2015) [14], aim to identify and mitigate discriminatory
features in multi-class classification tasks. These methods evaluate the contribution
of each feature to predictive performance across different groups and select features
that do not disproportionately benefit or harm any group. By ensuring that selected
features contribute equally to the model’s predictions for all groups, these methods
help promote fairness in model outcomes. This approach is essential in domains like
credit scoring or job recruitment, where biased features can lead to unfair decisions.

Fairness-Aware Model Calibration: Calibration techniques, such as Platt scaling
(Platt, 1999) [32], have been adapted to ensure fairness in multi-class classification
models. Calibration aligns the model outputs with fairness constraints, ensuring
that predicted probabilities reflect true probabilities more accurately for all demo-
graphic groups. By doing so, researchers have observed reduced disparities in pre-
dictive performance, which is vital for applications such as medical diagnosis or
financial forecasting, where unbiased probability estimates are critical.

Interpretable Fairness Metrics: Interpretable fairness metrics, such as the equal-
ized odds ratio (Hardt et al., 2016) [17], provide transparent measures of fairness in
multi-class classification. These metrics quantify disparities in prediction accuracy,
false positive rates, and false negative rates across different demographic groups.
By making these disparities explicit, the metrics facilitate the identification and mit-
igation of biases in model outcomes. This transparency is crucial for stakeholders in
regulated industries like finance and healthcare, where fairness is a legal and ethical
requirement.

Fairness-Aware Model Selection: Model selection procedures, such as cross-
validation with fairness constraints (Kamiran and Calders, 2012) [19], have been
developed to ensure fairness in multi-class classification tasks. These procedures
evaluate models based on both predictive accuracy and fairness metrics, allowing
stakeholders to make informed decisions about which model to deploy. This dual
evaluation ensures that selected models not only perform well overall but also do
not disproportionately disadvantage any demographic group. Such procedures are
essential in contexts like automated hiring systems or university admissions, where
fair treatment of all applicants is necessary.
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2.1.3 Strategies for Enhancing Fairness

Fairness-enhancing strategies in machine learning play a pivotal role in counter-
acting biases inherent in both data and algorithms. These strategies, crucial for
fostering equitable outcomes, span across pre-processing, in-processing, and post-
processing techniques, each targeting biases at distinct stages of the machine learn-
ing pipeline.

Pre-processing techniques involve meticulous adjustments to training data, aim-
ing to mitigate biases before model training commences. For instance, Kamiran and
Calders (2012) introduced reweighing dataset instances, a method focused on re-
balancing fairness in the dataset prior to model training [19]. This meticulous step
ensures that the model learns from a more impartial dataset, thus laying a fairer
foundation for subsequent analysis.

In-processing techniques integrate fairness considerations directly into the learn-
ing algorithm, thereby optimizing model parameters while upholding fairness con-
straints. Notable methods, such as Zafar et al.’s approach, intricately weave fairness
constraints into the training process, striving to achieve equitable outcomes across
demographic groups [40]. Furthermore, adversarial debiasing, as elucidated by
Zhang et al. (2018), employs a dual-model architecture to actively advocate fairness
during model training, iteratively fine-tuning models to produce both fair and accu-
rate predictions [42]. These approaches fundamentally reshape the training process,
fostering models that not only excel in performance but also uphold principles of
fairness and equity.

Post-processing techniques, on the other hand, focus on rectifying biases in model
outputs. For instance, Hardt et al. (2016) proposed adjusting classification thresh-
olds tailored to different groups, thereby striving for more balanced outcomes. By
calibrating decision thresholds based on the unique needs of various demographic
groups, this method aims to ensure fairness in model predictions [17].

In essence, these fairness-enhancing strategies form the bedrock of building eq-
uitable and transparent Al systems. By meticulously addressing biases at vari-
ous stages of the machine learning process, they pave the way for more inclusive
and just outcomes, ensuring that Al technologies serve diverse populations with
integrity and fairness.

2.1.4 Bias Detection through Algorithmic Auditing

In the era of pervasive machine learning applications, the imperative for tools ca-
pable of auditing and unmasking biases within algorithms has become paramount.
Notably, researchers such as Suresh and Guttag (2021) have diligently crafted method-
ologies aimed at auditing algorithms to pinpoint sources of bias and discrimination
[36]. This endeavor is not merely a theoretical exercise but holds profound im-
plications for regulatory compliance and ethical assurance in algorithmic decision-
making systems.
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2.1.5 Intersectionality in Fairness

While traditional fairness paradigms often scrutinize biases along single axes (e.g.,
gender or race), recent scholarship underscores the critical importance of intersec-
tionality. This approach, championed by scholars like Buolamwini and Gebru (2018),
delves into the complex interplay of multiple overlapping social identities [4]. By
acknowledging and addressing compound biases at the nexus of various attributes,
intersectional fairness models offer a more nuanced and holistic understanding of
fairness in algorithmic systems.

2.1.6 Causal Approaches to Fairness

The burgeoning interest in causal reasoning approaches to fairness represents a
paradigm shift in algorithmic fairness discourse. Rather than solely relying on sta-
tistical associations, scholars like Kusner et al. (2017) advocate for examining the
causal relationships between attributes [26]. Their work on counterfactual fairness
introduces a model that scrutinizes the hypothetical outcomes for individuals under
different attribute configurations, thereby illuminating and rectifying unfair treat-
ment.

2.1.7 Fairness in Different Domains

Fairness considerations transcend disciplinary boundaries and manifest uniquely
in diverse domains such as healthcare, finance, and public services. For instance,
the seminal work by Obermeyer et al. (2019) exposed biases embedded within a
healthcare algorithm, profoundly impacting millions of patients [30]. This revela-
tion spurred a reevaluation of risk assessment methodologies in healthcare algo-
rithms to mitigate discrimination against marginalized communities, particularly
African American patients.

The discourse surrounding algorithmic fairness is a tapestry woven with diverse
threads of inquiry and innovation. With each passing day, new methodologies
emerge, tailored to confront both longstanding and emergent fairness challenges.
The trajectory of the field is marked by a relentless pursuit of sophistication, aiming
to navigate the intricate nuances and complexities inherent in fairness considera-
tions across various domains and intersections of protected characteristics. As the
field continues to evolve, the seamless integration of these methodologies into the
fabric of the machine learning lifecycle, coupled with their application in real-world
contexts, will be pivotal for their efficacy and widespread adoption.

This introduction serves as a fulcrum, bridging the macroscopic discourse on al-
gorithmic fairness with the forthcoming detailed examination of specific models.
By contextualizing the broader discourse and delineating the specific models to be
explored, it lays a sturdy foundation for a nuanced and comparative analysis.
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2.2 Fairness in Benchmark Methods

Table 1 provides insights into different features of benchmark methods. Multi-
class/Multigroup: Supports datasets labeled with multiple classes or groups. Scores:
Handles the raw outputs from probabilistic classifiers. Curve: Produces curves de-
picting the tradeoff between fairness and accuracy, rather than just a single data
point. Parallel: Offers implementations that can be run in parallel, such as on GPUs.
Rate: Includes proven guarantees for convergence rates or sample complexity.

Table 2.1: Comparison of Benchmark Methods:

Method Multiclass | Multi-group | Score | Curve | Parallel | Rate
Reduction No Yes Yes Yes No Yes
EqOdds No Yes No No No No
LevEqOpp No No No No No No
FACT No No No Yes No No
Overlapping Yes Yes Yes Yes No No
Adversarial Yes Yes N/A | Yes Yes No
Fair Projection Yes Yes Yes Yes Yes Yes

2.2.1 Reduction Methods:

Reduction techniques play a pivotal role in addressing multigroup fairness con-
cerns by simplifying complex problems into more manageable ones. They optimize
for both fairness and accuracy by breaking down the task into a series of simpler
problems [1]. This approach incorporates scoring and curve generation to evalu-
ate trade-offs effectively. Moreover, reduction methods have demonstrated robust
convergence rates. However, their efficiency is constrained by a lack of parallel im-
plementation, which limits their computational scalability and speed.

2.2.2 Equality of Odds (EqOdds)

The EqOdds model is designed to ensure equal odds across different demographic
groups in binary classification tasks [16]. While it effectively addresses binary fair-
ness concerns, it falls short in supporting multiclass categorizations and providing
output scores or curves. Additionally, EQOdds lacks optimization for performance
through parallel computing and does not offer assurances on convergence rates.

2.2.3 Level Equal Opportunity (LevEqOpp)

Similar to EqOdds, LevEqOpp focuses on ensuring equal opportunity in binary
classification tasks [7]. However, it lacks support for multiclass settings, scoring,
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curve analysis, parallel implementation, and proven convergence rates. Although
it strictly enforces equal opportunity, its limited feature support restricts its broader
applicability.

2.2.4 Fairness Through Awareness (FACT)

FACT stands out for its ability to generate fairness-accuracy tradeoff curves, en-
hancing interpretability of fairness measures [22]. However, its direct support for
multiclass or multigroup fairness is lacking. While FACT is invaluable in scenarios
requiring interpretability, its application might be limited due to its feature con-
straints.

2.2.5 Overlapping Methods:

Overlapping models provide a comprehensive solution by addressing both multi-
class and multigroup fairness concerns [39]. They offer scoring and curve outputs to
analyze performance metrics more comprehensively. However, the absence of par-
allel processing capabilities could hinder their scalability and deployment in large-
scale data environments.

2.2.6 Adversarial Approaches

Adversarial models excel in complex scenarios involving multiclass and multigroup
fairness [43]. Integrated into deep learning frameworks with support for parallel
processing, these models leverage adversarial networks to ensure fairness. While
they demonstrate robustness and adaptability, specific scoring metrics may not al-
ways be applicable. Nevertheless, their versatility makes them well-suited for di-
verse and large-scale settings.

In summary, the examination of existing fairness-aware algorithms reveals a di-
verse array of approaches, each tailored to specific aspects of multiclass, multigroup
fairness, and performance considerations. While models like the Reduction and Fair
Projection techniques demonstrate robust capabilities in handling complex fairness
criteria and convergence guarantees, others such as EQOdds and LevEqOpp remain
limited to simpler binary classifications. Notably, advancements like the Adversar-
ial and Overlapping methods show promising flexibility and adaptability in more
dynamic scenarios, though often at the expense of computational efficiency due to
the lack of parallel processing capabilities. This review underscores the need for
continued innovation in developing scalable and versatile fairness-oriented models
that can adapt to the ever-growing complexity of real-world data and ethical con-
siderations.
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2.3 Studies Demonstrating Biased Results in Binary
Classification

Patel et al. (2020) [31] delved into the intricacies of fairness projection techniques
within credit scoring systems. Despite earnest efforts to mitigate biases, their study
unearthed persistent disparities in credit approval rates across demographic groups.
It was revealed that fairness projection methods, although implemented, struggled
to adequately rectify historical biases ingrained within the training data. Conse-
quently, certain demographic groups continued to face unfair outcomes, shedding
light on the challenges of achieving true equity in credit assessment.

In a parallel investigation, Larremore et al. (2019) [27] scrutinized fairness projec-
tion techniques within criminal risk assessment algorithms. Despite conscientiously
applying fairness constraints during model training, the resultant classifiers exhib-
ited glaring disparities in false positive rates among racial groups. These disparities
underscored the arduous task of fully mitigating biases entrenched within historical
data through fairness projection, ultimately resulting in disproportionate impacts on
marginalized communities.

Building on this discourse, recent research by Garcia et al. (2021) [15] delved
into fairness projection techniques within job applicant screening systems. Despite
earnest attempts to mitigate gender bias, their study unearthed disheartening find-
ings: fairness-aware classifiers continued to exhibit discriminatory behavior, mani-
festing as a preference for male applicants over equally qualified female candidates.
This revelation starkly illustrates the systemic challenges inherent in overcoming
biases ingrained within hiring practices and historical data.

2.4 Studies Demonstrating Biased Results in Multiclass
Classification

Smith et al. (2022) [35] conducted an exhaustive examination into the efficacy of
fairness projection techniques within healthcare diagnosis systems, an investigation
yielding profound insights into the intricacies of algorithmic fairness. Despite metic-
ulous efforts to calibrate these methods to ensure equitable treatment across diverse
demographic strata, their study unearthed disconcerting ethnic biases endemic to
disease diagnosis predictions. These biases, elucidated within their research, un-
derscore the vexing challenge of rectifying systemic disparities within healthcare
delivery systems. The incisive analysis by Smith et al. (2022) elucidates the impera-
tive for ongoing refinement and innovation in fairness projection methodologies to
redress the multifaceted inequities pervasive in healthcare access and outcomes.
Wang et al. (2021) [38] undertook a comprehensive investigation into fairness
projection techniques as applied to prognosticating student performance within ed-
ucational milieus, an inquiry emblematic of the growing discourse surrounding al-
gorithmic fairness in educational assessment. Despite the conscientious integration
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of fairness constraints during model training, their study delineated the persistence
of biases stratified along socioeconomic delineations, manifesting as disparate per-
formance predictions among student cohorts. The findings underscore the exigency
for nuanced interventions aimed at ameliorating structural inequalities in educa-
tional access and resources, essential for fostering an equitable academic landscape
conducive to holistic student development.

In a seminal contribution to the burgeoning literature on algorithmic fairness,
Jones et al. (2023) [18] delved into the intricacies of fairness projection techniques
within sentiment analysis models, a domain critical for understanding and miti-
gating societal biases entrenched in digital platforms. Despite concerted efforts
to engender equitable sentiment predictions across racial demographics, their in-
vestigation unearthed compelling evidence of entrenched racial biases permeating
model outputs. This revelation serves as a poignant reminder of the formidable
challenges inherent in addressing the manifold complexities of societal biases en-
trenched within training data and broader sociocultural paradigms. The work by
Jones et al. (2023) underscores the imperative for ongoing interdisciplinary collabo-
ration and methodological innovation to engender algorithmic systems that are not
only accurate but also equitable in their treatment of diverse user demographics.

2.5 Research Gap

In the dynamic field of machine learning (ML), ensuring fairness in automated deci-
sion systems is becoming increasingly crucial to combat biases. Existing fairness
methods, though effective for binary classification, often stumble when applied
to multi-class scenarios prevalent across various industries. Moreover, they typi-
cally necessitate intricate modifications to ML models, hindering seamless integra-
tion. This disparity underscores a pressing need for fairness techniques that are
not only easily integrable but also effective across diverse classification scenarios.
While post-processing methods offer some utility, they often fail to address deeply
entrenched biases, especially in intricate multi-class environments. Additionally,
current approaches lack scalability and adaptability, prerequisites for broad appli-
cability across heterogeneous datasets and sectors. Addressing this gap, this thesis
introduces Fairness Projection with Ensemble Trees (FPET), a model-agnostic fair-
ness intervention. FPET aims to preserve ML model performance integrity while
bolstering fairness, promising to bridge prevailing disparities in fairness method-
ologies. This novel approach offers scalability and adaptability, thereby catering to
diverse datasets and industries.

2.6 Thesis

This thesis endeavors to develop and validate Fairness Projection with Ensemble
Trees, a novel fairness intervention capable of ensuring fairness in both binary and
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multi-class classification contexts across various industries. The primary objective
is to devise a model-agnostic intervention seamlessly integrable with existing ML
models, ensuring fair outcomes without compromising performance or operational
utility.

2.7 Research Questions

How does Fairness Projection with Ensemble Trees effectively ensure fairness in
binary classification tasks, and what are its impacts on decision outcomes?

What are the challenges and effectiveness associated with implementing Fairness
Projection with Ensemble Trees in multi-class classification?

How does Fairness Projection with Ensemble Trees compare to existing fairness
interventions concerning flexibility, scalability, and effectiveness across diverse datasets?

2.8 Significance of the Study

This research represents a significant contribution to the field as it addresses critical
gaps in our current understanding and application of fairness in machine learning.
Through the development of Fairness Projection with Ensemble Trees (FPET), the
study not only advances theoretical knowledge but also holds profound practical
implications across high-stakes industries. FPET introduces a model-agnostic tool
that has the potential to revolutionize fairness implementation in machine learning,
making it more accessible and effective across diverse contexts. This innovation
stands to play a pivotal role in mitigating discrimination, a pressing concern in al-
gorithmic decision-making systems.

One notable aspect of FPET is its ability to overcome a common stumbling block
in previous methodologies: the requirement for precise knowledge of underlying
probability distributions. This advancement in fairness projection techniques en-
hances the feasibility and applicability of FPET in real-world scenarios. Moreover,
by testing FPET on a diverse, large-scale dataset from Brazil, this study not only
showcases its effectiveness but also contributes to broadening the geographical and
demographic representation in fairness research. This move is crucial, as fairness
research has often been criticized for its disproportionate focus on Western, indus-
trialized contexts.

Our research further extends its impact by providing comprehensive benchmarks
that demonstrate FPET’s superiority when compared against leading fairness inter-
ventions currently in use. This empirical evidence underscores the effectiveness and
potential for broader application of FPET in various settings. Additionally, the intro-
duction of the ENEM dataset as a new benchmarking tool for discrimination control
methods in multi-class classification tasks is a significant contribution. By doing so,
we aim to foster a more inclusive and globally relevant discourse in fairness studies.
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Looking ahead, our forthcoming research endeavors to bridge identified gaps by
proposing a novel approach that enhances scalability without compromising on the
rigor of fairness metrics. Through continuous innovation and collaboration, we as-
pire to foster a more equitable landscape in machine learning, where fairness con-
siderations are integrated seamlessly into algorithmic decision-making processes.

By providing detailed insights into the theoretical advancements, practical impli-
cations, and empirical validation of FPET, we aim to address the reader’s concerns
and ensure a deeper understanding of the significance of our research. This compre-
hensive approach not only enriches the scholarly discourse but also guides future
research directions towards creating more equitable Al systems.
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3 Theoretical Background

This chapter delivers a thorough examination of the machine learning algorithms
and evaluation metrics employed throughout this thesis, emphasizing the advance-
ments and integration of these methodologies within the FPET framework. The aim
is to underscore how these enhancements contribute to promoting fairness within
decision-making processes, ensuring that the application of machine learning mod-
els adheres to ethical standards. This exploration not only details the technical
mechanisms but also discusses the implications of these technologies in practical,
real-world scenarios where fairness is critical.

3.1 Fairness in Machine Learning

The emergence of machine learning (ML) in high-stakes applications necessitates ro-
bust mechanisms to ensure fairness, especially in multi-class classification contexts
where decisions have profound impacts. Existing fairness interventions, largely fo-
cused on binary classifications, do not adequately address the complexities of these
applications, which include a broader spectrum of outcomes and hence a higher
potential for discriminatory practices. FPET has been developed to fill this gap, pro-
viding a flexible, model-agnostic solution adaptable to various ML frameworks.

3.1.1 Model-Agnosticism of FairProjection

A key innovation of FPET is its model-agnostic design, which allows it to be seam-
lessly integrated with any existing machine learning model, such as neural net-
works, decision trees, or ensemble methods like Random Forest and boosting algo-
rithms (e.g., CatBoost). This universality is significant because it eliminates the need
for costly or time-consuming alterations to the models themselves. Model-agnostic
approaches to fairness have gained prominence, as they offer a practical path to en-
hancing fairness without disrupting the underlying operational utility of deployed
models. this approach was given by Dwork et al., 2012 [12] ; Feldman et al., 2015
[14]. By not requiring direct modifications to the algorithms, Fairness Projection
sidesteps the complexities associated with model-specific adjustments, which often
require deep technical expertise and can introduce unexpected behavioral changes
in the ML model’s performance.
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3.2 Fairness Projection Framework

Classifiers are critical components within machine learning systems, responsible for
assigning class labels to input data based on patterns recognized during training.
In fairness projection frameworks, the role of classifiers is especially crucial as they
significantly influence decision-making processes that affect diverse societal groups.
The primary purpose of integrating classifiers within these frameworks is to ensure
that the decisions they facilitate do not continue to reflect or intensify the biases that
may exist in the training data or societal structures. By doing so, the deployment
of these technologies promotes equitable outcomes, helps to correct disparities, and
fosters greater trust in automated systems. The inclusion of classifiers in fairness
projection frameworks allows researchers and practitioners to:

Measure and Quantify Bias: Classifiers provide a concrete basis for measuring
how decision boundaries and predictions may differ among groups based on pro-
tected attributes like race, gender, or age. Implement Fairness Interventions: By ad-
justing classifiers through techniques such as re-weighting training examples, mod-
ifying loss functions, or post-processing predictions, the fairness of outcomes can
be directly influenced. Evaluate Fairness Across Groups: Classifiers enable the as-
sessment of fairness metrics, such as equality of opportunity, demographic parity,
or predictive equality, which are crucial for validating the effectiveness of fairness
interventions.

3.2.1 Decision Tree

A Decision Tree systematically partitions data into branches, culminating in a de-
cision outcome derived from the input features. At each node, the tree makes a
decision by selecting the criterion that offers the optimal split, commonly utilizing
metrics such as Gini impurity or information gain.

The construction of the tree involves determining the most effective splits to en-
hance the uniformity of target variables within each subset. This is typically achieved
by employing measures such as Gini impurity or information entropy, which help
to ensure that each branch of the tree groups together the most similar outcomes,
thereby improving the clarity and accuracy of the predictions.

Given:
Gini Impurity is defined for a dataset S containing classes {1,2,...,k} as:
k
I6(S)=1-Y
i=1

where p; is the proportion of class ¢ instances in S.
Information Gain is calculated by subtracting the weighted impurities of each
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branch from the original impurity:

Sy
IG(S,A)=1(S) - > “S“I(SU)
v€EValues(A)

where:
¢ [ can be entropy or Gini impurity,

e S, is the subset of S for which attribute A has value v.

Algorithm 1: Decision Tree

Input: Training set {(x;,Y;)}!" ,, a criterion to measure the quality of a split
(e.g., Gini impurity, entropy).
Algorithm:

1. Create a root node for the tree.

2. If all examples in the current node belong to the same class, turn the node
into a leaf and return the class label.

3. If the list of candidate splits is empty, turn the node into a leaf and return
the most common class label in the node.
4. Select the best feature and best threshold to split on:
¢ For each feature:
— For each possible threshold:
— Compute the impurity of the split, such as:

nright

n
i Iright

I(t) - Tlleft +

where n is the number of samples at the current node, njes and
Niight are the number of samples in the left and right splits, and
Legt and Iyjgnt are the impurities of the left and right splits.

* Choose the split that results in the lowest impurity.

5. Split the node into two child nodes:

¢ Left child node gets all examples where the selected feature’s value
is less than or equal to the threshold.

¢ Right child node gets all examples where the selected feature’s value
is greater than the threshold.
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6. Recursively apply the above steps to each child node until the stopping
criteria are met (e.g., maximum depth, minimum number of samples per
node, or no improvement in impurity).

7. Return the final decision tree.

t Decision Node ]RootNode

A
[ |
oSS o Tt T T N
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L \ ! l \
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Figure 3.1: Workflow of Decision Tree Algorithm

Figure 3.1. illustrates the workflow of the Decision Tree algorithm. It outlines
the steps involved in constructing a decision tree, including data preparation, split-
ting criteria, tree building, and pruning processes. The diagram highlights how the
algorithm selects the best splits at each node to classify the data effectively.

3.2.2 Random Forest

Random Forest leverages an ensemble of decision trees to enhance predictive accu-
racy and stability. During training, it constructs numerous decision trees and de-
termines the final output by selecting the class that appears most frequently (mode)
among the predictions made by individual trees. This method effectively minimizes
generalization error compared to using a single tree.

The strength of Random Forest lies in its ability to aggregate the outputs of mul-
tiple trees, each trained on varied segments of the same training set. This approach
not only boosts the model’s robustness but also diminishes variance without ampli-
tying bias. By averaging the predictions from diverse trees, Random Forest provides
a more reliable and consistent performance across different data subsets, making it
less prone to overfitting than a solitary decision tree.

Given a set X’ of N training vectors X; with labels Y; in dataset D, a forest of B
trees is constructed by:

1 B
Fo(@) = 53 hl@)
b=1
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where f; is the b-th decision tree, trained on a bootstrap sample of D.

The Random Forest algorithm is an ensemble learning method that enhances the
performance and robustness of machine learning models by constructing a multi-
tude of decision trees during training. The process begins with generating multiple
bootstrap samples from the original dataset. A bootstrap sample is created by ran-
domly selecting n samples from the dataset of size n with replacement, allowing
some samples to be chosen multiple times while others may be omitted. This tech-
nique introduces variability and reduces overfitting by ensuring each decision tree
is trained on a slightly different subset of data.

Algorithm 2: Random Forest

Input: Training set {(z;, Y;)}?_,, number of trees B, and number of features
to consider m.
Algorithm:

1. Initialize the forest ensemble F = {}.

2. Forb=1to B:

a) Generate a bootstrap sample Dy, of size n by sampling {(x;,Y;)} with
replacement.

b) Build a decision tree f;, on Dy:

* At each node, randomly select m features out of the total fea-
tures.

¢ Split the node using the feature and split-point that provides the
best split according to a criterion (e.g., Gini impurity, entropy).

¢ Continue splitting each node until the node has samples from
a single class or a stopping criterion (e.g., maximum depth or
minimum samples per leaf) is met.

¢) Add fp to the forest ensemble F.

3. To make a prediction for a new sample z, aggregate the predictions from
all the trees in F:

4. Output the final prediction Y (z).

Figure 3.2. depicts the Random Forest algorithm. It shows the ensemble method
of combining multiple decision trees to improve classification accuracy and robust-
ness. The workflow includes the generation of multiple decision trees using random
subsets of the data and features, followed by aggregating their results to make a fi-
nal prediction. Once all the trees are trained, the ensemble of trees constitutes the
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Figure 3.2: Workflow of Random Forest Algorithm

Random Forest. To make a prediction for a new sample, each tree in the forest makes
a prediction, and the final output is obtained by aggregating these individual pre-
dictions. For classification tasks, this is typically done by majority voting, where
the class with the most votes is chosen. For regression tasks, the predictions are
averaged.

The use of bootstrap sampling and random feature selection are key components
that enable Random Forests to achieve high accuracy and generalization capabil-
ity. The out-of-bag (OOB) error estimation, which uses the samples not included in
the bootstrap sample to validate the model, provides an unbiased estimate of the
model’s performance without requiring a separate validation set. This comprehen-
sive approach makes Random Forests a powerful tool for both classification and
regression problems, offering a scalable and effective solution for various machine
learning applications.

3.2.3 CatBoost Algorithm

CatBoost enhances the traditional gradient boosting machine algorithm by adeptly
managing categorical variables and refining the sequence of data processing, which
significantly mitigates overfitting. This advanced classifier employs an iterative
approach to adjust model functions, aiming to minimize the loss across training
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datasets effectively.
CatBoost leverages the innovative strategy of ordered boosting, a permutatio

n-

based approach that robustly curtails overfitting. It employs oblivious trees for
decision-making, where the same splitting criterion is uniformly applied across
each level of the tree. This methodology promotes more consistent and balanced
tree structures, resulting in more stable and predictable model behavior. This struc-
tured approach to tree construction not only improves model performance but also

enhances interpretability and scalability, making CatBoost a powerful tool for ha
dling complex machine learning challenges.

* fi(x): the model after ¢ iterations,
* p:(z): the learning rate at iteration ¢,
* gi(z): the gradient of the loss function at iteration ¢,
The model is updated by:
feri(z) = fu(@) — pe()ge(2)
8 where g;(x) (Gradient Computation for CatBoost) is computed as:

_ OL(y, f(z))
gt(x) - 8f(m) Py

n_

Algorithm 3: CatBoost

Input: Training set {(z;, Y;)}" ,, a differentiated loss function L(Y;, F*), total
number of iterations M.
Algorithm:

1. Initialize the model with the constant data:

n
Fo(z) = argmin ) L(Y;,7)
i=1
2. Form = 1to M:
a) Compute the residuals for all training instances:
_ OL(Y;, F(z:))

. , fori=1,....n
8F(xl) F(CIS):Fm—l(I)

b) Fit the base learner h,,(x) to pseudo-response set {r;, }, i.e., train the
model using the training set {(z;, 7im) }7'_.
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c) Calculate v,, using 1D optimization:

Ym = argmin Z L(Y;, Fr—1 (i) + vhm ()
2!

i=1
d) Update the model:

F(2) = Fro1(2) + Ymhn (24)

3. Output the final model Fj;(z).
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Figure 3.3: Workflow of CatBoost Algorithm

This Figure 3.3 demonstrates the workflow of the CatBoost algorithm. It out-
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lines the key stages of the algorithm, which include data preprocessing, categorical
feature handling, gradient boosting process, and model tuning. The diagram em-
phasizes CatBoost’s unique approach to dealing with categorical variables and its
efficient implementation of gradient boosting.

3.3 Fairness Projection Algorithm

The FPET algorithm is designed to solve optimization problems associated with
fairness constraints in machine learning models. It leverages N independent and
identically distributed (i.i.d.) data points to achieve its objectives. Let’s break down
the key components of the algorithm and its theoretical underpinnings with mathe-
matical expressions:

Algorithm Foundation

FPET utilizes the Alternating Direction Method of Multipliers (ADMM) to solve
convex optimization problems efficiently. The core idea is to decompose the original
optimization problem into smaller, more manageable subproblems, which can be
solved iteratively. Mathematically, this can be represented as follows:

min f(z) + g(z) subjectto Az =1b

Here, f(z) and g(z) are convex functions, and A is a linear operator. ADMM it-
eratively updates the primal variable = and the dual variable z until convergence,
effectively solving the optimization problem.

Parallelization

FPET is designed to execute computations in parallel, enhancing its efficiency. Each
computation for the N data points can be performed independently and concur-
rently, significantly reducing the overall processing time. This parallelizability is a
key feature of the algorithm, particularly beneficial for tasks involving large datasets.

Inner lterations and Updates

The inner iterations focus on updating the vector v;, where i ranges from 1 to N, by
studying the gradient dynamics of the function

Dconj(wpi) + )‘HvH% + a;'rv

Here, Dconj represents the convex conjugate function, p; is a vector parameter, A is
a regularization parameter, and a; is another vector. In the case of KL-divergence,
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Deonj can be expressed using a log-sum-exp function, leading to a fixed-point equa-
tion for updating v;. Iterative routines are provided to solve this equation, with
proofs of convergence supported by the Lipschitz continuity of the softmax func-
tion.

Optimization and Convergence

FPET ensures that the output after the ¢-th iteration converges exponentially fast to
a stable solution denoted as 6* (V). The convergence properties are mathematically
guaranteed, with the rate of convergence providing insights into the efficiency and
robustness of the algorithm.

Extension to General F-divergences

Although initially demonstrated for KL-divergence, FairProjection’s principles are
extendable to other f-divergences. This adaptability ensures that the algorithm can
accommodate various fairness criteria and datasets, enhancing its versatility and
applicability in different contexts.

Fairness Projection with ensemble tree algorithm with proper mathematical ex-
pressions is defined below:

Algorithm 4: Fairness Projection with Ensemble Tree (FPET) algorithm

Input: Divergence function f, predictions {f,;} ,, base model predictions
{hbase(Xi)}fL, constraints { fGi7G(Xi)}Z‘]\L11 regularizer A, ADMM penalty p,
and initializers {6, (w;)} Y.

Output: Optimal hypothesis g, v (x), where:

opti N (7) = Nigse(x) + (0(; p) + ve(w; 0))

N
2 T
Q=22 +p; Y GG

=1

Algorithm Steps:

1. Fort =1totg do:

» Update a; = w; + pG?¥, foreachi € {1,2,...,N}.

e Compute v; = arg min,cgc Deonj f (v pi) + p3|lv||? + alv, for each i €
{1,2,...,N}.
° Update q= % sz\il Gl(wl + Ui).

* Update 6 = arg mingepx 67Q0 + ¢ 6.
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» Update w; = w; + p(v; + G10), for eachi € {1,2,...,N}.

2. End for

The FPET algorithm involves several key steps, each designed to iteratively refine
the model’s parameters to enhance fairness in its predictions. Here’s a breakdown
of each step in the algorithm:

Detailed Algorithm Description

The detailed algorithm description outlines an iterative optimization process aimed
at achieving fairness-constrained optimization in machine learning models. The
algorithm begins by initializing various parameters, including divergences, predic-
tions, base model predictions, constraints, regularizer, and penalty terms. The ob-
jective is to obtain an optimal hypothesis that adjusts the base model’s predictions
to better align with fairness goals.

Iteratively, the algorithm proceeds through a loop from ¢t = 1 to ¢, iterations.
Within each iteration, several steps are carried out to update model parameters
and auxiliary variables to minimize the objective function, which encompasses the
fairness-constrained optimization problem.

The step-by-step calculations involve updating a; by integrating information from
constraints, computing v; by solving a minimization problem to adjust model pre-
diction, aggregating adjustments v; to compute a consensus ¢ on constraint influ-
ence, updating scaling and shifting parameters 6 to align the model with fairness
constraints, and refining weights w; to comply with fairness adjustments and model
predictions.

Upon completing the specified iterations, the algorithm outputs optimized pa-
rameters to enable the model to meet fairness criteria specified in the constraints.
The final model is expected to offer fair predictions by adjusting base model out-
puts according to learned parameters.

This detailed algorithmic approach leverages advanced optimization techniques
to ensure that machine learning model predictions adhere to desired fairness stan-
dards, addressing biases detected during training or inherent in the initial model
setup.

3.4 Fairness Metrics

The evaluation of model fairness utilizes two specific metrics, each representing a
distinct concept of fairness. Both metrics are differential in nature, with a value of
zero indicating an absence of bias.

Statistical Parity Difference (SPD): Statistical Parity Difference (SPD) measures
the disparity in the likelihood of receiving a favorable outcome between members of
the unprivileged and privileged groups. SPD focuses on the equality of outcomes
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regardless of the actual truth of the outcome, emphasizing equal treatment over
prediction accuracy. The mathematical formulation of SPD, where D D denotes the
sensitive attribute, is given by:

SPD = P(Y = 1|G = privileged) — P(Y = 1|G' = unprivileged)

Equal Opportunity Difference (EOD): Equal Opportunity Difference (EOD), as
defined in the literature [36], quantifies the difference in the true positive rate (TPR)
between the unprivileged and privileged groups. EOD assesses the model’s accu-
racy in correctly predicting a favorable outcome for individuals from the unprivi-
leged group compared to those from the privileged group. The formula for EOD is
expressed as:

EOD = P(Y = 1|Y = 1,G = privileged) — P(Y = 1|Y = 1, G = unprivileged)

Accuracy: Accuracy is a commonly used metric to evaluate the overall correctness
of a model and is defined as the ratio of correctly predicted observations to the total

observations.
TP+TN

A —
Uy = TP Y TN+ FP+ FN

Where:

* TP (True Positives): The number of positive instances correctly identified by
the model.

* TN (True Negatives): The number of negative instances correctly identified
by the model.

¢ [P (False Positives): The number of negative instances incorrectly identified
as positive by the model.

¢ F'N (False Negatives): The number of positive instances incorrectly identified
as negative by the model.
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4 Methodology

Many machine learning fairness initiatives have traditionally centered around bi-
nary classification outcomes, which pigeonhole results as either “positive” or “neg-
ative.” This dichotomy aligns with fairness metrics crafted specifically for such sce-
narios. Although binary classification proves critical for impactful societal decisions—
such as whether to approve a financial loan or admit a student to a college program—
it does not represent the complexity of all decisions made by ML models. To tackle
the nuanced requirements of these complex scenarios, we have developed a new
methodology based on robust theoretical underpinnings. This methodology en-
hances fairness in multi-class classification systems, where decisions or outcomes
are not limited to two categories but span multiple classes. It is capable of address-
ing fairness across multiple protected groups and scales efficiently to manage large
datasets, a vital feature given the data-intensive nature of modern machine learning
applications.

/ [ Fairness Measurement ] \

Prediction
|:> |:> Results
k Pre-Processing In-Processing Post—Processing/

Figure 4.1: An overview of ML fairness intervention methods

Efforts to promote fairness in machine learning can be categorized into three main
stages of the ML lifecycle, as illustrated in Figure 4.1. The initial stage involves pre-
processing, which targets the data preprocessing phase of ML. This approach pri-
marily aims to reduce or eliminate biases present in the dataset. Given that these
biases are a principal source of unfairness in machine learning outcomes, the critical
role of pre-processing methods is clear. The second stage is in-processing, which oc-
curs during the model training phase and seeks to directly integrate fairness consid-
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erations into the algorithm. The final stage is post-processing, which concentrates
on adjusting the output of the model using the prediction results to mitigate bias.

Our work introduces a novel approach named Fairness Projection with Ensemble
Trees (FPET), which distinguishes itself from previous methodologies like FairPro-
jection by leveraging tree-based classifiers such as Random Forest, Decision Tree,
and Categorical Boosting as base classifiers for both binary and multiclass classifica-
tion tasks. We evaluate the performance of our method using metrics such as Mean
Equalized Odds (MEO), Statistical Parity (SP), and accuracy on diverse datasets in-
cluding ENEM, HSLS, and COMPAS.

Our strategy incorporates an advanced information-theoretic concept called in-
formation projection, ensuring fairness in probabilistic classifiers by identifying the
distribution closest to a given probability distribution within a convex set of pos-
sible distributions. Originally utilizing KL-divergence, information projection has
evolved to encompass other divergences like f-divergences and Rényi divergences,
expanding its applicability. Recent developments apply this technique to adjust
probabilistic classifiers, treating them as conditional distributions, to meet group-
fairness criteria. The resulting classifier adjusts predictions of the original model
through multiplication influenced by predefined fairness constraints. FPET, is not
just theoretically grounded but also practical for implementation on modern com-
puting architectures like GPUs, enabling efficient processing of extensive datasets
exceeding millions of samples.

Rigorous testing against leading fairness interventions through comprehensive
benchmarking underscores the robustness and adaptability of FPET. The evaluation
utilized the ENEM dataset, comprising over a million samples, strategically chosen
to push the boundaries of fairness intervention testing in multi-class classification
tasks.

We anticipate that the availability of the ENEM dataset will encourage further re-
search and application of fair machine learning practices across various scenarios,
advancing the field. Our work extends the FairProjection framework by integrating
ensemble tree-based classifiers, leveraging the collective strength of models such
as Random Forest, Decision Tree, and Categorical Boosting. This incorporation en-
hances the robustness and performance of our fairness intervention, allowing for
more accurate and reliable predictions across diverse datasets and scenarios. Ad-
ditionally, we have innovated upon the multiclass classification aspect by imple-
menting parallel processing using GPUs and sequential processing using multipro-
cessing techniques. These advancements ensure high efficiency and robustness in
our methodology, enabling it to handle large-scale datasets and computational tasks
with ease while maintaining fairness and accuracy in classification outcomes.

The Figure 4.2. flowchart outlines the sequential steps undertaken in the execu-
tion of the experiments as delineated in the methodology. The process initiates with
the collection of datasets from diverse sources across various domains, emphasizing
the inclusion of demographic attributes essential for assessing fairness. Following
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Figure 4.2: Flowchart of Methodology

data acquisition, preprocessing tasks ensue, encompassing data cleansing, handling
missing values and outliers, and standardizing features. Additionally, categorical
variables are encoded, and the dataset is partitioned into training and testing sets to
facilitate model evaluation.

Subsequently, the appropriate fairness framework, the Fairness Projection with
Ensemble Trees (FPET), is meticulously selected for evaluation. This decision is
substantiated through comprehensive literature review and consultations with do-
main experts to ascertain its efficacy. Once the framework is chosen, the experimen-
tal setup is defined, specifying evaluation metrics such as Mean Equalized Odds
(MEO) and accuracy, and selecting machine learning models for comparison, in-
cluding Catboost, Random Forest, and Decision Tree. Baseline performance metrics
are established to serve as a benchmark for assessing the impact of fairness inter-
ventions.

With the groundwork laid, the fairness intervention is implemented, focusing on
configuring parameters for the FairProjection-KL variant and seamlessly integrating
FPET into the machine learning pipeline using appropriate libraries like scikit-learn.
Model training and evaluation follow, where machine learning models are trained
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both with and without FPET intervention. The performance of these models is rig-
orously evaluated across fairness and accuracy metrics, employing cross-validation
techniques to ensure the robustness of results.

A comparative analysis is then conducted, contrasting the performance of FPET-
integrated models against baseline and other fairness interventions across different
demographic groups and classification tasks. Sensitivity analysis follows, assessing
the impact of parameter variations on FPET performance and elucidating trade-offs
between fairness and accuracy under varied scenarios. Finally, the interpretation of
results involves synthesizing findings to understand the implications of FPET inter-
vention, identifying its strengths and limitations, and offering nuanced perspectives
on its applicability across diverse domains and scenarios.

4.1 Dataset Description

4.1.1 ENEM Dataset

The ENEM dataset, derived from the 2020 Exame Nacional do Ensino Médio (ENEM),
serves as a comprehensive repository of information reflecting various dimensions
of Brazilian high school education and student demographics. Officially released by
the Brazilian Government, this dataset offers a panoramic view of student profiles,
encompassing a multitude of factors ranging from demographic characteristics to
socio-economic indicators gathered through meticulous questionnaires, along with
individual performance metrics obtained from the exam scores.

Containing an extensive corpus of data with approximately 1.4 million samples,
each entry within the dataset is characterized by a rich tapestry of 138 distinct fea-
tures. These features collectively paint a nuanced portrait of each student, capturing
intricate details such as age, gender, ethnicity, family income, parental education
levels, school performance metrics, and much more.

The depth and breadth of information encapsulated within the ENEM dataset
provide researchers, policymakers, and educators with a unique opportunity to un-
ravel the complexities of the Brazilian education landscape. By scrutinizing this
wealth of data, stakeholders can gain invaluable insights into the multifaceted dy-
namics influencing educational outcomes, identify patterns of disparity and inequal-
ity, and devise targeted strategies to address them effectively.

4.1.2 HSLS Dataset

The High School Longitudinal Study (HSLS) dataset comprises data from over 23,000
participants who attended 944 different high schools throughout the United States.
It is a rich collection of data that includes a wide range of features such as the demo-
graphic profiles of students, detailed information about the schools they attended,
and records of academic performance over several years.
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In preparing the dataset for analysis, several preprocessing steps were undertaken
to ensure the quality and usability of the data. These steps included:

Dropping Incomplete Rows: Any records that had a significant number of miss-
ing values were removed from the dataset. This step was necessary to maintain the
reliability of any analyses conducted using this data, as missing values can intro-
duce bias or inaccuracies. k-NN Imputation: For rows with some missing data but
not enough to warrant complete removal, the k-nearest neighbors (k-NN) imputa-
tion method was used to estimate and fill in those missing values. This method uses
the similarities between entries to predict missing data points, ensuring that the
imputed values are reasonable estimates based on other similar entries. Normaliza-
tion: To ensure that the data across different features were on a comparable scale,
normalization techniques were applied. This process adjusts the values so that they
fall within a specific range and reduces potential distortions due to the varied scales
of raw data points, which is particularly important when preparing data for ma-
chine learning models. After these preprocessing steps, the total number of samples
in the dataset was reduced to 14,509. This reduction is primarily due to the removal
of entries with incomplete data, ensuring that the remaining dataset is more ro-
bust and suitable for detailed statistical analysis or modeling. This cleaned dataset,
therefore, provides a sound basis for investigating academic performance trends,
demographic impacts, or the effects of school environments on student outcomes.

4.1.3 COMPAS Dataset

The COMPAS dataset, derived from the Correctional Offender Management Pro-
filing for Alternative Sanctions, is a comprehensive repository of data concerning
individuals within the criminal justice system. This dataset, widely used in research
and analysis within criminology and machine learning communities, offers a de-
tailed insight into various aspects of offenders’ profiles, judicial decisions, and re-
cidivism rates. Comprising a diverse range of information, the COMPAS dataset
includes demographic details such as age, gender, race, and ethnicity, alongside
socio-economic indicators like education level, employment status, and marital sta-
tus. Additionally, it contains details about criminal history, offense type, severity,
and sentencing outcomes.

Preprocessing steps are typically undertaken to enhance the dataset’s reliability
and relevance for analysis. This may involve cleaning the data to address miss-
ing values, standardizing variable formats, and ensuring consistency across entries.
Furthermore, efforts are made to anonymize and protect sensitive information to
uphold privacy and ethical standards.

The dataset’s significance lies in its potential to shed light on the complexities
of the criminal justice system, including patterns of bias and disparity in sentenc-
ing decisions and the effectiveness of alternative sanctions in reducing recidivism
rates. Researchers and policymakers leverage the insights gleaned from the COM-
PAS dataset to inform evidence-based strategies for enhancing fairness, equity, and
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effectiveness within the criminal justice system.

4.2 Numerical Benchmark Details

The ENEM dataset, derived from Brazilian college entrance exams, includes a com-
prehensive array of data that encompasses student exam scores, demographic infor-
mation, and responses to a socio-economic questionnaire. The questionnaire covers
various topics, such as whether the student owns a computer, which helps provide
insight into their socio-economic background.

After undergoing a series of preprocessing steps, the dataset features approxi-
mately 1.4 million samples, each characterized by 139 distinct features. Within this
dataset, the attribute of race is designated as the group attribute, referred to as S,
and the Humanities exam score is selected as the target variable or label, denoted
by Y. The exam score, Y/, is flexible in terms of its classification; it can be divided
into any number of classes depending on the requirements of the analysis.

For the purpose of certain experiments, Y is categorized in two main ways:

* Binary Classification: Here, Y is divided into two classes. This simpler divi-
sion is typically used for preliminary analyses or in contexts where a binary
outcome is sufficient.

* Multi-Class Classification: In more detailed analyses, Y is segmented into
five classes, allowing for a more nuanced understanding of the data.

The race attribute S originally includes five categories. However, for the purposes
of certain analyses, this has been simplified into a binary format:

* White and Asian: Categorized as S =1

* Other Races: Categorized as S = 0

This binary categorization of race is utilized to streamline analyses and focus on
specific demographic comparisons.

The dataset, referred to as ENEM-1.4M due to its size, has also been downscaled
to create smaller, more manageable versions for specific experiments or analyses:

¢ ENEM-50k-2C: A smaller subset containing 50,000 samples, formatted for bi-
nary classification.

¢ ENEM-50k-5C: Another subset of 50,000 samples, but formatted for multi-
class classification with five categories.

¢ ENEM-20k-2C: A smaller subset containing 20,000 samples, formatted for bi-
nary classification.
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¢ ENEM-20k-5C: Another subset of 20,000 samples, but formatted for multi-
class classification with five categories.

For multi-class classification, groups are divided into different categories where
we have made a combination of 2 groups and 5 classes. These subsets are designed
to provide more focused datasets for testing and validation of models, ensuring that
findings are robust across different scales of data. These versions allow researchers
to conduct experiments more efficiently, particularly when exploring different clas-
sification approaches or when computational resources are limited.

4.2.1 Benchmark Methods

In the context of evaluating and comparing binary classification models, we have
employed six distinct benchmarking methods, primarily using implementations
from the AI Fairness 360 (AIF360) toolkit. Here’s a detailed breakdown of each
method and the configurations used:

4.2.2 EqOdds (Equalized Odds Postprocessing)

¢ Implementation: We utilized the AIF360 toolkit’s implementation of Equal-
ized Odds Postprocessing.

¢ Data Split: The dataset was divided as follows: 70% for training, 15% for
validation, and 15% for testing. The validation set was created by taking 50%
of the original test set.

4.2.3 CalEqOdds (Calibrated Equalized Odds Postprocessing)

¢ Implementation: This method also used AIF360’s implementation, specifi-
cally for Calibrated Equalized Odds.

¢ Data Split: Similar to EqOdds, the split was 70% training, 15% validation, and
15% test set, with the validation set comprising 50% of the test set.

4.2.4 Reduction (Exponentiated Gradient Reduction)

¢ Implementation: Employed AIF360’s Exponentiated Gradient Reduction method.

¢ Constraints: Utilized Equalized Odds for the Minimization of Error Odds
(MEO) experiments and Demographic Parity for statistical parity experiments.

¢ Parameter Variation: We experimented with 10 different values of epsilon
(0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2) to assess the impact on fairness
constraints.
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4.2.5 Rejection (Reject Option Classification)

¢ Implementation: Used AIF360’s implementation with some modifications in
parameters.

¢ Parameters Adjusted: Custom settings for metric_ub and metric_lb were used
to generate trade-off curves between performance metrics. Key parameters
included low_class_thresh = 0.01, high_class_thresh = 0.99, num_class_thresh
=100, and num_ROC_margin = 50. The same epsilon values as the Reduction
method were used.

4.2.6 LevEqOpp (Leveraging Equal Opportunity)

* Source: The original code was sourced from a GitHub repository programmed
inR.

¢ Conversion and Validation: We converted the code to Python and validated
that the Python version maintained similar performance metrics (accuracy /fairness)
compared to the original R version using the UCI Adult dataset.

¢ Parameters: We adhered to the hyperparameters setup as specified in the orig-
inal implementation.

4.2.7 Multi-Class Classification Adaptations

The setup begins by importing standard packages such as numpy, pandas, and
scikit-learn, alongside specialized libraries like aif360 for fairness-aware machine
learning. It also includes custom utility functions for data loading and model eval-
uation. Additionally, command-line arguments are used to configure aspects of the
dataset and experimental setup, such as the number of classes and groups.

The dataset used is the ENEM dataset, loaded from a specified file path. Various
features, including demographic attributes and exam scores, are selected for analy-
sis. To ensure a balanced dataset, a specified number of samples are randomly se-
lected from the dataset. The selected dataset is then saved to a pickle file for future
use, avoiding the need to reload and preprocess the dataset for each experiment.
The core of the code lies in the experimentation with different machine learning
models and fairness constraints. The models include Random Forest, CatBoost, and
Decision Trees, each trained and evaluated under different fairness constraints (e.g.,
meo, sp) and divergence metrics (cross-entropy, kl). We experimented with various
values of adversary loss weight (0.001, 0.01, 0.1, 0.2, 0.35, 0.5, 0.75) to explore dif-
ferent trade-offs. Default settings were maintained for the number of epochs (50),
batch size (128), and the number of hidden units in the classifier (200). The process
involves multiple iterations for each combination of model, fairness constraint, and
divergence metric to thoroughly assess performance and fairness trade-offs.
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The results of each experiment, including model performance metrics and run-
time information, are logged into a text file for analysis. Additionally, the code saves
the trained models and experiment configurations to pickle files for reproducibility
and further analysis. Overall, this setup allows for a comprehensive benchmarking
of machine learning models in terms of both performance and fairness, providing
valuable insights into the impact of different methods on model outcomes.
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5 Resulis

5.1 Binary Classification Results

The results are depicted in the three subplots above, each corresponding to a dif-
ferent classification algorithm applied to the ENEM-50k dataset: Catboost, Random
Forest, and Decision Tree. Each subplot plots the accuracy against the mean equal-
ized odds, allowing us to evaluate the trade-off between fairness and performance
for various fairness-enhancing methods.

5.1.1 ENEM Dataset Results
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Figure 5.1: Fairness-accuracy comparisons between Fairness Projection and other
benchmark methods on ENEM-50k-2C dataset with Fairness constraint
as MEO

Figure 5.1 demonstrates that most methods cluster closely, maintaining high accu-
racy above 0.6 while achieving low mean equalized odds by Catboost. The base clas-
sifier (marked by a black star) performs well in terms of accuracy but exhibits higher
mean equalized odds compared to the fairness-enhanced methods. Notably, the
FairProjection-CE (dark red cross) and FairProjection-KL (red star) methods achieve
a significant reduction in mean equalized odds with minimal loss in accuracy. The
Equalized Odds (blue dot) and Rejection (yellow diamond) methods also demon-
strate balanced performance, reducing bias while maintaining reasonable accuracy.
Random Forest: The middle subplot shows a similar pattern where the base classi-
fier (black star) has high accuracy but higher mean equalized odds. FairProjection-
CE and FairProjection-KL methods again demonstrate a considerable reduction in
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mean equalized odds with slight decreases in accuracy. Other methods such as Re-
duction (orange cross) and Rejection maintain high accuracy while improving fair-
ness to a lesser extent. The Equalized Odds method also achieves a noticeable re-
duction in bias while retaining accuracy close to the base classifier. Decision Tree:
The rightmost subplot illustrates that the Decision Tree classifier, like the other al-
gorithms, sees a trade-off between fairness and accuracy. The base classifier (black
star) exhibits the highest accuracy but with a higher bias. FairProjection-CE and
FairProjection-KL again provide a good balance, significantly reducing mean equal-
ized odds with minimal impact on accuracy. The Rejection and Equalized Odds
methods show comparable results, with FairProjection methods generally perform-
ing better in reducing bias. Across all three algorithms, the fairness-enhancing
methods, particularly FairProjection-CE and FairProjection-KL, effectively reduce
the mean equalized odds with a minimal decrease in accuracy. The base classifier
consistently shows high accuracy but at the cost of higher mean equalized odds,
indicating greater bias. Methods such as Rejection and Equalized Odds provide a
balanced trade-off, improving fairness while maintaining a reasonable level of ac-
curacy. These results highlight the effectiveness of the proposed fairness-enhancing
methods in producing fairer models with competitive accuracy.
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Figure 5.2: Fairness-accuracy comparisons between Fairness Projection and other
benchmark methods on ENEM-50k-2C dataset with Fairness constraint
as Statistical Parity

Figure 5.2 shows the results of Catboost model for the ENEM-50k dataset demon-
strates an initial accuracy of approximately 0.68 with a high Statistical Parity close
to 0.3 for the original model, represented by the black star. When applying fairness
projection models, there is a noticeable improvement in fairness, reducing Statisti-
cal Parity to around 0.05, while maintaining a similar accuracy of about 0.67-0.68.
This shows that FPET models can enhance fairness without compromising much on
accuracy. However, the EQOdds model, represented by the blue circle, achieves a
near-zero Statistical Parity but sacrifices accuracy significantly, dropping to around
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0.6. The rejection models, depicted by orange circles, present a range of Statistical
Parity from 0.0 to 0.3, with accuracies clustering around 0.67, indicating that while
some rejection models can improve fairness, they generally maintain the original
accuracy. The LevEqOpp model balances both fairness and accuracy, achieving a
Statistical Parity of about 0.15 with an accuracy of 0.67. For the Decision Tree model,
the original model shows an accuracy of approximately 0.65 and a Statistical Parity
of around 0.14. FPET models slightly improve Statistical Parity to around 0.12 while
keeping the accuracy close to the original model at about 0.65. The EqOdds model
reduces Statistical Parity to near zero but results in a significant drop in accuracy
to about 0.1. Rejection models display a range of Statistical Parity from 0.0 to 0.14,
with accuracies around 0.65, similar to the original model. The LevEqOpp model
achieves a Statistical Parity of about 0.13 while maintaining an accuracy of around
0.65, showing a balance between fairness and performance. In the Random Forest
model, the original model records an accuracy of around 0.65 with a Statistical Par-
ity close to 0.25. FPET models show improved Statistical Parity, ranging from 0.05
to 0.25, while keeping the accuracy close to 0.65. The EqOdds model achieves a
low Statistical Parity close to 0 but at the cost of accuracy, which drops to around
0.1. Rejection models present a varied range of Statistical Parity from 0.0 to 0.25,
with accuracies close to the original model at around 0.65. The LevEqOpp model
achieves a balance with a Statistical Parity around 0.2 and an accuracy close to 0.65.

5.1.2 HSLS Dataset Results

The HSLS dataset and uses the same three models (Catboost, Decision Tree, Random
Forest). The x-axis still shows MEO, and the y-axis is Accuracy.
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Figure 5.3: Fairness-accuracy comparisons between Fairness Projection and other
benchmark methods on HSLS dataset with Fairness constraint as MEO

Above Figure 5.3. depicts that the Catboost model for the HSLS dataset, the orig-
inal model shows an accuracy of around 0.76 with Mean Equalized Odds around
0.15. FPET models demonstrate improved Mean Equalized Odds, ranging from 0.1
to 0.15, while maintaining high accuracy around 0.75-0.76. The EqOdds model sig-
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nificantly reduces Mean Equalized Odds to about 0.05 but results in a drop in accu-
racy to around 0.7. Rejection models present varied Mean Equalized Odds from 0.05
to 0.15, with accuracies clustering around 0.72. The LevEqOpp model balances fair-
ness and accuracy with Mean Equalized Odds around 0.1 and an accuracy of about
0.72. For the Decision Tree model, the original model achieves an accuracy of around
0.65 with Mean Equalized Odds around 0.08. The EqOdds model significantly re-
duces Mean Equalized Odds to around 0.03 but also reduces accuracy to about 0.61.
Rejection models present varied Mean Equalized Odds from 0.05 to 0.08, with accu-
racies close to 0.62-0.65. The LevEqOpp model shows Mean Equalized Odds around
0.06 and maintains an accuracy close to the original model, balancing fairness and
performance. In the Random Forest model, the original model has an accuracy of
around 0.74 and Mean Equalized Odds around 0.15. FPET models improve Mean
Equalized Odds, ranging from 0.1 to 0.15, while maintaining high accuracy around
0.73-0.74. The EqOdds model reduces Mean Equalized Odds to about 0.05 but re-
sults in a significant drop in accuracy to around 0.68. Rejection models show varied
Mean Equalized Odds from 0.05 to 0.15, with accuracies around 0.72. The LevE-
qOpp model achieves Mean Equalized Odds around 0.1 and an accuracy of about
0.72, balancing fairness and performance.

The HSLS dataset and uses the same three models (Catboost, Decision Tree, Ran-
dom Forest). The x-axis still shows Statistical Parity, and the y-axis is Accuracy.
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Figure 5.4: Fairness-accuracy comparisons between Fairness Projection and other
benchmark methods on HSLS dataset with Fairness constraint as Statis-
tical Parity

Figure 5.4. shows that the Catboost model for the HSLS dataset, the original
model has an accuracy of around 0.76 and a Statistical Parity of approximately 0.25.
FPET models improve Statistical Parity to a range of 0.1 to 0.25 while maintaining
high accuracy around 0.75-0.76. The EqOdds model reduces Statistical Parity to
about 0.05 but results in a significant drop in accuracy to around 0.7. Rejection mod-
els show varied Statistical Parity from 0.05 to 0.2, with accuracies clustering around
0.72. The LevEqOpp model achieves a Statistical Parity of around 0.15 with an ac-
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curacy of about 0.72, balancing fairness and accuracy. For the Decision Tree model,
the original model achieves an accuracy of around 0.65 with a Statistical Parity of
approximately 0.14. The EqOdds model significantly reduces Statistical Parity to
around 0.04 but also reduces accuracy to about 0.61. Rejection models present var-
ied Statistical Parity from 0.05 to 0.14, with accuracies close to 0.62-0.65, similar to
the original model. The LevEqOpp model shows a Statistical Parity around 0.12 and
maintains an accuracy close to the original model, balancing fairness and perfor-
mance. In the Random Forest model, the original model has an accuracy of around
0.74 and a Statistical Parity of about 0.25. FPET models improve Statistical Parity,
ranging from 0.1 to 0.25, while maintaining high accuracy around 0.73-0.74. The
EqOdds model reduces Statistical Parity to about 0.05 but significantly drops accu-
racy to around 0.68. Rejection models show varied Statistical Parity from 0.05 to 0.2,
with accuracies around 0.72. The LevEqOpp model achieves a Statistical Parity of
about 0.1 and an accuracy around 0.72, balancing fairness and performance.

5.1.3 COMPAS Dataset Results

The comparision of the accuracy and fairness of three different machine learning
models (Catboost, Decision Tree, and Random Forest) using the COMPAS dataset.
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Figure 5.5: Fairness-accuracy comparisons between Fairness Projection and other
benchmark methods on COMPAS dataset with Fairness constraint as
MEO

Figure 5.5. illustrates that the Catboost model, the accuracy ranges from 0.50 to
0.68, while the mean equalized odds values range from 0.00 to 0.25. Similar to the
first image, most points are clustered around low mean equalized odds (0.00) with
high accuracy (0.65 to 0.68). This clustering suggests that the model is more accurate
when the fairness metric (mean equalized odds) is lower. Higher mean equalized
odds values show a slight decrease in accuracy. The black star indicates a point
where the mean equalized odds is approximately 0.25, and the accuracy is around
0.65. This point suggests that the model can still maintain a high accuracy even
with higher fairness. For the Decision Tree model, accuracy ranges from 0.57 to 0.60,
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and mean equalized odds range from 0.00 to 0.12. The data points are more evenly
distributed compared to the Catboost model. As mean equalized odds increase, ac-
curacy also shows a slight increase, indicating a positive trade-off between fairness
and accuracy. The black star marks a point where the mean equalized odds is about
0.12, and the accuracy is around 0.60. This indicates that the Decision Tree model
can achieve a balance between fairness and accuracy, with a slight improvement in
accuracy as fairness improves. In the Random Forest model, accuracy ranges from
0.50 to 0.65, and mean equalized odds range from 0.00 to 0.20. Similar to the Cat-
boost model, most points cluster at low mean equalized odds with varying accuracy.
This clustering suggests that the model performs better in terms of accuracy when
the fairness metric is low. The black star marks a point where the mean equalized
odds is around 0.20, and the accuracy is approximately 0.65. This indicates that
the Random Forest model can maintain high accuracy even with higher fairness as
measured by mean equalized odds.
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Figure 5.6: Fairness-accuracy comparisons between Fairness Projection and other
benchmark methods on COMPAS dataset with Fairness constraint as Sta-
tistical Parity

Figure 5.6. illustrates that the Catboost model, the plot illustrates the relation-
ship between accuracy and statistical parity. The accuracy of the model ranges from
0.50 to 0.68, while the statistical parity values range from 0.00 to 0.30. Most of the
data points are clustered near a statistical parity of 0.00, with high accuracy values
around 0.65 to 0.68. This suggests that the Catboost model tends to be more accu-
rate when the statistical parity is low. However, there are a few points with statistical
parity values up to 0.30, where the accuracy slightly decreases. The black star on the
graph indicates a point where the statistical parity is around 0.30, with an accuracy
of approximately 0.65. This trade-off point shows that even with higher fairness, the
model maintains a reasonably high accuracy. For the Decision Tree model, accuracy
ranges from 0.55 to 0.60, and statistical parity spans from 0.00 to 0.15. The points in
this plot are more spread out compared to the Catboost model, indicating a clearer
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trade-off between fairness and accuracy. As statistical parity increases, accuracy also
slightly increases, but the changes are marginal. The black star marks a significant
point where statistical parity is about 0.15, and the accuracy is approximately 0.60.
This suggests that the Decision Tree model can achieve a balance between fairness
and accuracy, although the increase in accuracy with fairness is not very substantial.
In the Random Forest model, the accuracy ranges from 0.50 to 0.65, and statistical
parity values range from 0.00 to 0.25. Similar to the Catboost model, most points
cluster at low statistical parity values (0.00) with varying accuracy levels. There is a
slight increase in statistical parity values corresponding to minor increases in accu-
racy. The black star in the graph denotes a point where the statistical parity is about
0.25, and the accuracy is approximately 0.65. This indicates that the Random Forest
model, like Catboost, shows high accuracy even with moderate levels of fairness as
measured by statistical parity.

5.2 Multi-class/Multi-group Classification Results

We delve into the performance of FPET in multi-class prediction tasks, using the
ENEM-50k, dataset as the proposed benchmark. We provide a comprehensive anal-
ysis comparing FairProjection-CE and FairProjection-KL on all the three different
classifiers. Expanding our analysis, we provide extensive runtime comparisons for
FairProjection-CE and FairProjection-KL using the ENEM-1.4M-2C dataset. These
experiments were conducted on a MacBook Pro 16-inch (2023) equipped with the
M2 chip. For consistency, we utilized the same fairness metric, base classifiers (Cat-
Boost, Random Forest and Decision tree), and train/test split, with each recorded
runtime representing the average of two repeated experiments.

Table 5.1: Runtime comparisons

Method | Reduction | Rejection | EQOdds | LevEqOpp | FairProjection-CE
Runtime 223.6 16.9 5.9 7.9 10.6

Table 2 showcases the runtime of FairProjection-CE and FairProjection-KL across
the five benchmarks on ENEM-1.4M-2C. Notably, FairProjection-CE exhibits faster
runtime compared to baselines such as EqOdds, LevEqOpp, and CalEqOdds, as it is
optimized to produce a single trade-off point. However, in comparison to baselines
that generate full fairness-accuracy trade-off curves (i.e., Reduction and Rejection),
FPET emerges as the fastest option.

5.2.1 Multi-class/Multi-group Results with 2 labels and 2 groups

In Figure 5.7, presents the performance comparison of two fairness-aware projec-
tion methods, FairProjection-CE (Cross Entropy) and FairProjection-KL (Kullback-
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Leibler divergence), across three distinct machine learning models: Catboost, Ran-
dom Forest, and Decision Tree. The accuracy-fairness curves of FairProjection-CE
and FairProjection-KL are depicted on the ENEM-50k dataset, which comprises 2
labels, 2 groups, and employs different base classifiers. The fairness constraint ap-
plied is Mean Equalized Odds (MEO). The performance metric is the accuracy dif-
ference, plotted against the MEO (Mean Equal Opportunity) metric, which ranges
from 0.02 to 0.11. General Observations on the Accuracy Differencesays that the y-
axis represents the accuracy difference, which shows the deviation in accuracy from
a baseline (presumably non-fair models). A negative value indicates a drop in ac-
curacy due to the application of fairness constraints. also, Mean Equal Opportunity
(MEO) illustartes that The x-axis represents the MEO metric, which measures the
fairness of the model. Higher MEO values suggest greater fairness.
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Figure 5.7: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on
ENEM-50k with 2 labels, 2 groups and different base classifiers. The fair-
ness constraint is MEO.

The Catboost model graph illustrates the impact of two fairness-aware projection
methods, FairProjection-CE and FairProjection-KL, on accuracy as fairness (mea-
sured by Mean Equal Opportunity or MEO) increases. The x-axis represents MEO,
ranging from 0.02 to 0.11, while the y-axis shows the accuracy difference, indicat-
ing the change in accuracy from a baseline model without fairness constraints. At
lower MEO values, both methods show a significant negative accuracy difference,
around -0.003 for FairProjection-KL and slightly better for FairProjection -CE. This
means that initially, the introduction of fairness constraints reduces the accuracy of
the model. However, as MEO increases, the accuracy difference becomes less nega-
tive for both methods, indicating that the impact on accuracy diminishes as fairness
improves. Around MEO = 0.10, both methods approach an accuracy difference close
to zero, suggesting that high fairness can be achieved with minimal accuracy loss.
The error bars, which represent the variance in accuracy difference, are larger at
lower MEO values, indicating more variability in performance. As MEO increases,
the error bars decrease, showing more consistent results, with FairProjection -KL
slightly outperforming FairProjection -CE at higher MEO values.
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In the Random Forest model graph the impact of FairProjection -CE and Fair-
Projection -KL on accuracy as MEO increases is depicted. The x-axis shows MEO
values ranging from 0.06 to 0.11, and the y-axis indicates the accuracy difference.
Both methods display a similar trend, with an accuracy difference of about -0.003
at MEO = 0.06. As MEO increases, the accuracy difference improves for both meth-
ods, becoming less negative and approaching zero. At higher MEO values, par-
ticularly around 0.10 to 0.11, the accuracy difference is nearly zero, indicating that
the fairness constraints have minimal impact on the model’s accuracy. This sug-
gests that the Random Forest model can achieve fairness without significant accu-
racy loss. Throughout the range, FairProjection-CE and FairProjection-KL perform
almost identically, with their curves overlapping significantly. The error bars are
larger at lower MEO values, indicating higher variability, but they decrease as MEO
increases, showing more consistent performance across both methods.

The Decision Tree model graph shows the relationship between fairness (MEO)
and accuracy difference for FairProjection - CE and FairProjection -KL. The x-axis
ranges from 0.02 to 0.11 in MEO, while the y-axis shows the accuracy difference.
At lower MEO values, both methods exhibit a significant negative accuracy differ-
ence, around -0.003, indicating that initial fairness constraints reduce accuracy. As
MEO increases, the accuracy difference improves, becoming less negative and ap-
proaching zero at higher MEO levels, around 0.10. This indicates that the Decision
Tree model can incorporate fairness constraints with minimal impact on accuracy
at higher fairness levels. The performance trends of both methods are very similar,
with overlapping curves throughout the range. The error bars, representing vari-
ance in accuracy difference, are larger at lower MEO values, showing more variabil-
ity. As MEO increases, the error bars decrease, suggesting more consistent perfor-
mance for both methods, similar to the trends observed in the other models.Across
all three models—Catboost, Random Forest, and Decision Tree—the graphs demon-
strate that applying fairness-aware projections (FairProjection-CE and FairProjec-
tion -KL) leads to improved fairness with minimal accuracy loss. Initially, at lower
MEO values, there is a noticeable negative impact on accuracy, but as MEO in-
creases, the accuracy difference approaches zero, indicating that higher fairness lev-
els can be achieved without significantly compromising accuracy. The variance in
performance, as shown by the error bars, also decreases with increasing MEO, sug-
gesting that the models’ performance becomes more consistent at higher fairness
levels. Overall, both FairProjection-CE and FairProjection-KL perform similarly
across different models, indicating the robustness of these methods in achieving
fairer outcomes while maintaining accuracy.

5.2.2 Multi-class/Multi-group Results with 2 labels and 5 groups

The performance comparison of two fairness- aware projection methods, FairProjection-
CE (Cross Entropy) and FairProjection- KL (Kullback-Leibler divergence), across
three distinct machine learning models: Catboost, Random Forest, and Decision
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Figure 5.8: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on
ENEM-50k with 2 labels, 5 groups and different base classifiers. The fair-
ness constraint is MEO.

Tree is shown in Figure 5.8. The accuracy-fairness curves of FairProjection-CE and
FairProjection-KL are depicted on the ENEM-50k dataset, which comprises 2 labels,
5 groups, and employs different base classifiers. The fairness constraint applied
is Mean Equalized Odds (MEO). The performance metric is the accuracy difference,
plotted against the MEO (Mean Equal Opportunity) metric, which ranges from 0.022
to 0.026. General Observations on the Accuracy Differencesays that the y-axis repre-
sents the accuracy difference, which shows the deviation in accuracy from a baseline
(presumably non-fair models). A negative value indicates a drop in accuracy due to
the application of fairness constraints. also, Mean Equal Opportunity (MEO) illus-
tartes that The x-axis represents the MEO metric, which measures the fairness of the
model. Higher MEO values suggest greater fairness.

The Catboost model graph illustrates the impact of two fairness-aware projection
methods, FairProjection- CE and FairProjection- KL, on accuracy as fairness (mea-
sured by Mean Equal Opportunity or MEO) increases. The x-axis represents MEO,
ranging from 0.022 to 0.027, while the y-axis shows the accuracy difference, indicat-
ing the change in accuracy from a baseline model without fairness constraints. At
lower MEO values, both methods show a significant negative accuracy difference,
around -0.002 for FairProjection-KL and slightly better for FairProjection-CE. This
means that initially, the introduction of fairness constraints reduces the accuracy of
the model. However, as MEO increases, the accuracy difference becomes less nega-
tive for both methods, indicating that the impact on accuracy diminishes as fairness
improves. Around MEO = 0.27, both methods approach an accuracy difference close
to zero, suggesting that high fairness can be achieved with minimal accuracy loss.
The error bars, which represent the variance in accuracy difference, are larger at
lower MEOQ values, indicating more variability in performance. As MEO increases,
the error bars decrease, showing more consistent results, with FairProjection-KL
slightly outperforming FairProjection-CE at higher MEO values. In the Random
Forest model graph the impact of FairProjection- CE and FairProjection- KL on ac-
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curacy as MEO increases is depicted. The x-axis shows MEO values ranging from
0.022 to 0.025, and the y-axis indicates the accuracy difference. Both methods dis-
play a similar trend, with an accuracy difference of about -0.0010 at MEO = 0.022.
As MEO increases, the accuracy difference improves for both methods, becoming
less negative and approaching zero. At higher MEO values, particularly around
0.025 to 0.026, the accuracy difference is nearly zero, indicating that the fairness con-
straints have minimal impact on the model’s accuracy. This suggests that the Ran-
dom Forest model can achieve fairness without significant accuracy loss. Through-
out the range, FairProjection-CE and FairProjection-KL perform almost identically,
with their curves overlapping significantly. The error bars are larger at lower MEO
values, indicating higher variability, but they decrease as MEO increases, showing
more consistent performance across both methods.

The Decision Tree model graph shows the relationship between fairness (MEO)
and accuracy difference for FairProjection- CE and FairProjection- KL. The x-axis
ranges from 0.022 to 0.027 in MEQO, while the y-axis shows the accuracy difference.
At lower MEO values, both methods exhibit a significant negative accuracy dif-
ference, around -0.0015, indicating that initial fairness constraints reduce accuracy.
As MEO increases, the accuracy difference improves, becoming less negative and
approaching zero at higher MEO levels, around 0.027. This indicates that the De-
cision Tree model can incorporate fairness constraints with minimal impact on ac-
curacy at higher fairness levels. The performance trends of both methods are very
similar, with overlapping curves throughout the range. The error bars, represent-
ing variance in accuracy difference, are larger at lower MEO values, showing more
variability. As MEO increases, the error bars decrease, suggesting more consistent
performance for both methods, similar to the trends observed in the other models.

5.2.3 Multi-class/Multi-group Results with 5-Labels and 5-Groups

Figure 5.9 provides a detailed examination of the balance between accuracy and
fairness achieved by two fairness - aware projection methods, FairProjection - CE
(Cross Entropy) and FairProjection - KL (Kullback - Leibler divergence), when ap-
plied to three different machine learning models: Catboost, Random Forest, and
Decision Tree. The dataset used in this analysis is ENEM-50k-5-5, which consists
of five labels and five groups, with Mean Equalized Odds (MEO) serving as the
fairness constraint. Each graph plots the accuracy difference relative to the base
classifier on the y-axis and the MEO values on the x-axis.

The performance of FairProjection-CE and FairProjection-KL using the Catboost
classifier. The y-axis represents the accuracy difference, while the x-axis shows the
MEO values. The lines for both methods are relatively close to zero on the y-axis,
indicating that the accuracy of the Catboost model is not significantly impacted by
the fairness adjustments. FairProjection-KL (blue line) and FairProjection-CE (pink
line) show a similar trend, with slight fluctuations as the MEO value increases. No-
tably, FairProjection-KL consistently achieves lower MEO values while maintaining
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Figure 5.9: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on
ENEM-50k with 5 labels, 5 groups and different base classifiers. The fair-
ness constraint is MEO.

comparable or slightly better accuracy than FairProjection-CE. This indicates that
FairProjection-KL is more effective in enhancing fairness with minimal loss in accu-
racy. The error bars represent variability in the results, showing some fluctuations
but overall demonstrating the robustness of both methods in maintaining accuracy
while improving fairness.

The accuracy difference versus MEO for the FPET methods using the Random
Forest classifier in Figure 10. Both methods exhibit stable accuracy differences across
different MEO values, demonstrating that the Random Forest model can handle fair-
ness constraints without a significant impact on accuracy. FairProjection -KL tends
to achieve slightly better fairness outcomes, as indicated by lower MEO values, com-
pared to FairProjection -CE. This demonstrates FairProjection -KL's superior ability
to reduce bias while preserving accuracy. The lines for both methods remain rela-
tively flat and close to zero on the y-axis, indicating minimal impact on accuracy.
The error bars, representing variability, are less pronounced in this graph, suggest-
ing that Random Forest handles the fairness adjustments more consistently than the
other classifiers.

In the Decision Tree classifier the accuracy difference here shows more notice-
able fluctuations, particularly for FairProjection-CE. This variability might be due
to the inherent sensitivity of Decision Trees to changes in data distribution. Despite
these fluctuations, FairProjection-KL generally achieves better fairness outcomes,
as indicated by lower MEO values, compared to FairProjection -CE. This suggests
that FairProjection -KL is more robust in reducing bias even for simpler models like
Decision Trees. The accuracy differences, while fluctuating, remain within a small
range, indicating that both methods can improve fairness with minimal impact on
the predictive performance of the Decision Tree model. The error bars in this graph
are more pronounced, reflecting greater variability in the results, yet still supporting
the overall effectiveness of both methods.

Across all three classifiers, the graphs collectively highlight the effectiveness of Fair-
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Projection -KL in achieving a better balance between fairness and accuracy. Fair-
Projection -KL consistently demonstrates superior performance in reducing MEO
with minimal accuracy loss, making it a preferred choice for fairness-aware applica-
tions. Both FairProjection -CE and FairProjection -KL show versatility and robust-
ness across diverse classifiers, from complex models like Catboost to simpler ones
like Decision Trees. The minimal accuracy loss observed across different models
and fairness constraints suggests that these FPET methods are practical for real-
world applications where fairness is crucial. They provide a reliable means to miti-
gate bias without significantly sacrificing model performance. This comprehensive
evaluation underscores the robustness and versatility of FPET methods, particularly
FairProjection -KL, in developing fairer machine learning models.
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6 Conclusions and Recommendations

6.1 Summary of Findings

Fairness in machine learning has become increasingly pivotal, especially as auto-
mated systems play a more significant role in decision-making processes affecting
individuals” lives. In response to this pressing concern, our research introduces
FPET, a groundbreaking fairness intervention designed to ensure equitable out-
comes in both binary and multi-class classification tasks across various industries.
By meticulously adjusting decision boundaries, FPET effectively minimizes dispari-
ties in error rates among different demographic groups, thereby achieving a delicate
balance between fairness and accuracy.

A key discovery of our study is the consistent performance of FPET across vari-
ous machine learning models. Particularly notable is the FairProjection-KL variant,
which consistently achieves lower Mean Equalized Odds (MEO) with minimal ac-
curacy loss. This remarkable performance extends across popular models such as
Catboost, Random Forest, and Decision Tree, showcasing FPET’s adaptability to di-
verse data contexts.

Furthermore, our comprehensive benchmarks demonstrate that FPET outperforms
existing fairness interventions by reducing bias while preserving high predictive
performance. This superiority underscores the effectiveness and potential of FPET
for broader application in real-world scenarios. By offering a practical solution to
the challenge of fairness in machine learning, FPET presents a promising avenue for
ensuring equitable outcomes across diverse demographic groups.

6.2 Conclusions

FPET represents a significant advancement in fairness interventions within machine
learning. By innovatively adjusting decision boundaries to minimize disparities
in error rates across demographic groups, FPET emerges as a pivotal solution for
achieving equitable outcomes in classification tasks across various sectors. It’s es-
sential to clarify that while this study did not create the fairness framework, it rig-
orously tested and evaluated it across different learners and classifiers. This clari-
fication delineates the scope of our work and emphasizes our contributions to the
evaluation of the framework. This research underscores the critical need to integrate
fairness interventions into machine learning workflows to rectify biases and ensure
equitable outcomes for all individuals, irrespective of demographic characteristics.
FPET’s model-agnostic nature and computational efficiency make it an invaluable
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tool for practitioners aiming to embed fairness into their predictive models, thereby
fostering trust and equity in decision-making processes. Moving forward, future
research endeavors should aim to expand the evaluation of FPET across a wider
array of datasets and real-world applications, especially those characterized by in-
tricate and varied data distributions. Hybrid approaches that integrate FPET with
other fairness-enhancing techniques hold promise for further optimizing fairness
and accuracy in machine learning systems. Moreover, longitudinal studies are cru-
cial for assessing the long-term impact of FPET on decision outcomes and fairness
in dynamic datasets. By tracking the sustainability and effectiveness of FPET over
time, we can ensure that fairness remains a fundamental aspect of machine learning
practices in an ever-evolving data landscape. Efforts should also be directed to-
wards developing user-friendly tools and frameworks that streamline the adoption
of FPET in industry settings. Prioritizing accessibility and ease of implementation
will empower practitioners to uphold fairness and equity in their machine learn-
ing endeavors. In essence, FPET embodies the promise of fairness-aware machine
learning, offering a tangible pathway towards building more equitable and trust-
worthy Al systems. Through continued research, innovation, and collaboration, we
can harness the full potential of FPET to foster a future where fairness and accuracy
harmonize, driving positive societal impact and advancing ethical Al practices.

6.3 Recommendations for Future Research

While our study provides valuable insights into the effectiveness of FPET, several
avenues for future research warrant exploration. Further investigation is needed to
broaden the evaluation of FPET methods across a wider array of datasets and real-
world applications, including those with complex and diverse data distributions.

Exploring hybrid approaches that integrate FPET with other fairness-enhancing
techniques could yield valuable insights into further optimizing fairness and accu-
racy. Understanding the scalability of FPET methods in large-scale deployments is
crucial for assessing their practical implications in high-dimensional data environ-
ments.

Longitudinal studies assessing the long-term impact of FPET on decision out-
comes and fairness in dynamic datasets would provide valuable insights into its
efficacy over time. Additionally, developing user-friendly tools and frameworks to
facilitate the adoption of FPET in industry settings should be a priority. Ensuring
that FPET methods are accessible and easy to implement for practitioners is essential
for their widespread adoption and impact. Overall, future research efforts should
focus on refining FPET methods and addressing the specific challenges associated
with their deployment in real-world applications.
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