
Applications for Symbol Elimination in
Combination with Hierarchical Reasoning

by

Dennis Peuter

Approved Dissertation thesis for the partial fulfillment of the requirements for a
Doctor of Natural Sciences (Dr. rer. nat.)

Fachbereich 4: Informatik
Universität Koblenz

Chair of PhD Board: Prof. Dr. Ralf Lämmel
Chair of PhD Commission: Prof. Dr. Maria A. Wimmer
Examiner and Supervisor: Prof. Dr. Viorica Sofronie-Stokkermans
Further Examiners: Prof. Dr. Silvio Ghilardi

Prof. Dr. Pascal Fontaine

Date of the doctoral viva: 3. April 2024

Summary

The goal of this PhD thesis is to investigate possibilities of using symbol elimination
for solving problems over complex theories and analyze the applicability of such uniform
approaches in different areas of application, such as verification, knowledge representation
and graph theory. In the thesis we propose an approach to symbol elimination in complex
theories that follows the general idea of combining hierarchical reasoning with symbol
elimination in standard theories. We analyze how this general approach can be specialized
and used in different areas of application.

In the verification of parametric systems it is important to prove that certain safety prop-
erties hold. This can be done by showing that a property is an inductive invariant of the
system, i.e. it holds in the initial state of the system and is invariant under updates of the
system. Sometimes this is not the case for the condition itself, but for a stronger condition
it is. In this thesis we propose a method for goal-directed invariant strengthening.

In knowledge representation we often have to deal with huge ontologies. Combining two
ontologies usually leads to new consequences, some of which may be false or undesired.
We are interested in finding explanations for such unwanted consequences. For this we
propose a method for computing interpolants in the description logics EL and EL+, based
on a translation to the theory of semilattices with monotone operators and a certain form
of interpolation in this theory.

In wireless network theory one often deals with classes of geometric graphs in which the
existence or non-existence of an edge between two vertices in a graph relies on properties
on their distances to other nodes. One possibility to prove properties of those graphs or to
analyze relations between the graph classes is to prove or disprove that one graph class is
contained in the other. In this thesis we propose a method for checking inclusions between
geometric graph classes.

Zusammenfassung

Das Ziel der vorliegenden Doktorarbeit ist die Untersuchung von Möglichkeiten zur
Anwendung von Symbolelimination, um Probleme über komplexen Theorien zu lösen,
sowie die Analyse der Anwendbarkeit solcher einheitlichen Ansätze in verschiedenen
Anwendungsbereichen, beispielsweise in der Verifikation, Wissensrepräsentation oder
Graphentheorie. In der Arbeit stellen wir ein Verfahren für die Symbolelimination in
komplexen Theorien vor, welches der generellen Idee folgt, hierarchisches Schließen mit
Symbolelimination in Standardtheorien zu verbinden. Wir untersuchen, wie dieser allge-
meine Ansatz spezialisiert werden kann, um ihn in verschiedenen Anwendungsgebieten zu
verwenden.

In der Verifikation parametrischer Systeme ist es wichtig zu beweisen, dass bestimmte
Sicherheitsbedingungen erfüllt sind. Dies kann erreicht werden, indem man zeigt, dass eine
Bedingung eine induktive Invariante des Systems ist, das heißt, dass sie im Anfangszustand
des Systems erfüllt ist und unter Veränderungen des Systems erhalten bleibt. Manchmal
ist dies für die Bedingung selbst nicht der Fall, aber für eine stärkere Bedingung schon. In
der Arbeit stellen wir eine Methode zum zielgerichteten Verstärken von Invarianten vor.

In der Wissensrepräsentation wird häufig mit großen Ontologien gearbeitet. Das Zusam-
menfügen zweier Ontologien bringt für gewöhnlich neue Konsequenzen mit sich, von
denen einige womöglich fehlerhaft oder unerwünscht sind. Wir sind interessiert daran,
Erklärungen für das Auftreten solcher unerwünschten Konsequenzen zu finden. Zu diesem
Zweck stellen wir eine Methode vor, mit der Interpolanten in den Beschreibungslogiken
EL und EL+ generiert werden können, basierend auf einer Übersetzung zur Theorie der
Halbverbände mit monotonen Operatoren und einer bestimmten Form von Interpolation
in dieser Theorie.

In der Forschung zu kabellosen Übertragungsverfahren beschäftigt man sich mit Klassen
von geometrischen Graphen, bei denen die Existenz oder Nicht-Existenz einer Kante zwi-
schen zwei Knoten im Graph von Eigenschaften auf deren Distanzen zu anderen Knoten
abhängt. Eine Möglichkeit, um Eigenschaften solcher Graphen zu beweisen oder Beziehun-
gen zwischen zwei Klassen zu analysieren, ist zu zeigen, dass eine Klasse in der anderen
enthalten ist. In dieser Arbeit stellen wir eine Methode vor, um die Inklusion einer Klasse
von Graphen in einer anderen zu überprüfen.

First and foremost I would like to thank my advisor, Prof. Dr. Viorica
Sofronie-Stokkermans, for her supervision and guidance over the past few years. With

her support of my research she made this thesis possible in the first place. In addition to
giving me helpful scientific advice, she always had understanding for any personal

matters in my life, for which I am very grateful.

I would also like to express my gratitude to my other examiners, Silvio Ghilardi and
Pascal Fontaine, for their appreciation of my work and their helpful feedback.

Furthermore I would like to thank Hannes Frey and Lucas Böltz for their collaboration
and discussions about geometric graph theory.

Many thanks also go to Philipp Marohn and Sebastian Thunert for providing
implementations of the methods used in this thesis.

Last but not least, I want to thank all family members and friends who have supported
me throughout my life.

Contents

1 Introduction 1
1.1 Illustration . 2
1.2 Related Work . 7
1.3 Contributions of the Thesis . 11
1.4 Publications . 15
1.5 Structure of the Thesis . 16

2 Preliminaries 19
2.1 First-order Logic . 19

2.1.1 Syntax and Semantics . 19
2.1.2 Proof Calculi and Interpolation . 23

2.2 Theories . 25
2.2.1 Local Theory Extensions . 25
2.2.2 Recognizing Local Theory Extensions 27
2.2.3 Hierarchical Reasoning in Local Theory Extensions 31

2.3 Quantifier Elimination . 35
2.3.1 Real Quantifier Elimination . 36
2.3.2 Quantifier Elimination in Theories with Equality 41

2.4 Provers . 48

3 Symbol Elimination 51
3.1 Quantifier Elimination in Combinations of Theories 51
3.2 Symbol Elimination in Theory Extensions 53

3.2.1 Improvement of the Algorithm . 57
3.2.2 Implementation of the Algorithm . 61

4 Verification of Parametric Systems 67
4.1 Parametric Systems and Problems Related to Their Verification 67
4.2 Invariant Strengthening Algorithm . 71

4.2.1 Correctness . 75
4.3 Refinements . 77

4.3.1 Applying Quantifier Elimination on Shorter Formulae 77
4.3.2 Avoiding Some Conditions . 85
4.3.3 Termination . 89

4.4 Implementation . 92
4.5 Conclusion . 99

4.5.1 Future Work . 100

5 Finding Explanations in EL+ 101
5.1 The Description Logics EL and EL+ . 101
5.2 P -Interpolation Property . 109
5.3 ≤-Interpolation for High-Level Explanations 118

ix

5.4 Implementation and Tests . 123
5.5 Conclusion . 132

5.5.1 Future Work . 132

6 Reasoning About Classes of Graphs 133
6.1 Locality of Theory Extensions Involving Distances 134
6.2 Graph Classes Related to Planarity Conditions 139

6.2.1 Proof Tasks . 142
6.2.2 Checking Graph Class Inclusion for Simple Graph Classes 143

6.3 Graph Classes Obtained by Transformations 154
6.4 Conclusion . 164

6.4.1 Future Work . 164

7 Conclusion 165

Bibliography 167

1 Introduction

Symbol elimination is used in mathematics and symbolic computation, in verification (in-
terpolation, projection, computing reachable states), in knowledge representation (com-
munication, forgetting), and in logic (theorem proving). The goal is to eliminate certain
symbols (variables, function symbols or predicate symbols) of a logical formula and ob-
tain formulae over such simpler languages which are “optimal” in some sense. Depending
on the properties of these formulae, we obtain various forms of symbol elimination. One
possibility is to eliminate certain symbols from a formula such that the newly generated
formula is in some sense equivalent to the original one. However, a weaker form of symbol
elimination is also possible. Sometimes we may not need a formula that is equivalent to
the original formula, but we would only like to ensure that it is entailed by it and has
additional “good” properties with respect to a given other formula or to a class of formulae
over a given signature. We can thus distinguish two forms of symbol elimination:

(a) Property-directed symbol elimination

(b) General symbol elimination

In property-directed symbol elimination we are given a formula F from which we want to
eliminate certain symbols and an additional formula G which is meant to guide the process
of elimination. In this thesis we distinguish two different ways in which property-directed
symbol elimination may be used:

(1) Find a formula F ′ over a simpler language (i.e. not containing certain symbols) which
is entailed by F such that some desired property, usually related to the formula G,
holds.

(2) If the conjunction of F and G is satisfiable, find a formula Γ only containing a
certain subset of the symbols in F and G such that the conjunction of F , G and Γ is
unsatisfiable, i.e. a constraint over a given language which guarantees unsatisfiability
of F in conjunction with G.

Property-directed symbol elimination as in (1) is for instance important when computing
an interpolant. Given two formulae A and B such that A entails B and they have some
symbols in common, we say that a formula I which only contains shared (or common)
non-logical symbols is an interpolant of A and B if A entails I and I entails B. We
can compute such interpolants by eliminating non-shared symbols from A such that the
property “I entails B” holds. Alternatively, the problem of interpolation can also be stated
in the following way: Given two formulae A and B where A ∧ B |= ⊥, find a formula I
containing only symbols shared by A and B such that A |= I and I ∧B |= ⊥.

As an example for (2), assume that we have a description of a system using variables
x1, ..., xn, where some safety property of the system is described by a formula F (x1, ..., xn),
and the updates of the system are described by a formula Tr(x1, ..., xn, x′1, ..., x

′
n), where the

primed variables describe the values of the corresponding non-primed variables after the

1

update. Using property-directed symbol elimination we can then compute additional condi-
tions on a subset of the function symbols (considered to be underspecified to start with) un-
der which the system is safe. For this we compute a formula Γ over a simpler language (for
instance not containing x′1, ..., x

′
n) such that Γ∧F (x1, ..., xn)∧Tr(x1, ..., xn, x′1, ..., x

′
n)∧G

is unsatisfiable, where G = ¬F (x′1, ..., x
′
n). In this setting we usually are interested in

computing the weakest such formula Γ.

The problem of general symbol elimination is different. Here we only have a formula F
given, without an additional formula G to guide the process. The goal of general symbol
elimination is to find a formula over a simpler language that is in some sense equivalent to
the original formula.

General symbol elimination can for instance be used to compute a stronger kind of inter-
polant than the one described above, namely a uniform interpolant. Given a formula A,
we say that a formula I is a uniform interpolant of A if I is an interpolant of A and B
for any formula B that is entailed by A and has only the non-logical symbols occurring in
I in common with A. In contrast to an interpolant, a uniform interpolant is not depend-
ant on the formula B and therefore general symbol elimination on A can be used for its
computation rather than property-directed symbol elimination.

As another example, consider a class of graphs axiomatized by geometric conditions
between points (x1, ..., xn), the vertices (V) and the edges (E). These geometric con-
ditions are described by a formula F (x1, ..., xn, V, E). In addition we could have a for-
mula Tr(E,E′) describing a transformation on the edges of the graphs to form another
graph class. If we are interested in computing an axiomatization for this class of trans-
formed graphs which is based solely on geometric conditions and the edges E′ of the
transformed graph, then we have to eliminate the symbol E to obtain a formula equivalent
to ∃E F (x1, ..., xn, V, E) ∧ Tr(E,E′).

Methods for symbol elimination are usually applied to formulae of propositional logic or
first-order logic or in logical theories (arithmetic). In the thesis we will also use similar
ideas for symbol elimination in description logics, by first translating the given problems to
propositional or first-order logic, where quantifier elimination or methods for interpolation
can then be used.

1.1 Illustration

We first illustrate our ideas on short examples from three different application areas: in-
ductive verification and synthesis, interpolation in description logic and reasoning about
geometric graph classes. A description of the used methods and a detailed discussion of
the examples will be given later in the thesis.

Inductive Verification and Synthesis

In program verification it is important to check that programs work correctly. One way
of doing this is to show that some conditions are invariant, i.e. they hold at every point
during the execution of the program. A formula is an inductive invariant if it holds in the
initial state of a system and is preserved during updates of the system. If a formula cannot
be proved to be an inductive invariant, one possibility is to strengthen it until it becomes
an inductive invariant.

2

In the following we show an example of invariant strengthening.

Consider the program in Figure 1.1. It uses two
subprograms copy(a, b) and add1(a) with the fol-
lowing meaning:

• copy(a, b) copies the array b into array a.

• add1(a) adds 1 to every element of array a.

Assume that b is an array with its elements sorted
in increasing order. The task is to prove that then
the formula Ψ := d2 ≥ d1 is an inductive invariant
of the program.

d1 = 1;
d2 = 1;
copy(a, b);
i = 0;
while (nondet())
{

a = add1(a);
d1 = a[i];
d2 = a[i+1];
i = i + 1

}

Figure 1.1: A simple program.

For checking that Ψ is an inductive invariant we have to show two things:

• Ψ holds in the initial state, i.e. before the while loop.

• Ψ is an inductive invariant of the while loop, i.e. if it holds before an iteration of the
while loop, then it also holds afterwards.

Ψ clearly holds in the initial state, since before the while loop we have d2 ≈ 1 ≥ 1 ≈ d1.

Ψ is an inductive invariant of the while loop if and only if the formula

∀j(a′[j] ≈ a[j] + 1) ∧ d′1 ≈ a′[i] ∧ d′2 ≈ a′[i+ 1] ∧ i′ ≈ i+ 1 ∧ d1 ≤ d2 ∧ d′1 > d′2

is unsatisfiable. As it can be checked that this formula is satisfiable, Ψ is not an inductive
invariant. However, we can strengthen Ψ := d2 ≥ d1 with the condition ∀i(a[i] ≤ a[i+ 1])
to make it become an inductive invariant. Indeed, the formula

(d2 ≥ d1) ∧ ∀i(a[i] ≤ a[i+ 1])

is an inductive invariant of the program.

In Chapter 4 we present a method for computing inductive invariants by iteratively
strengthening them like shown above. In Section 4.2 we discuss the example above in
more detail.

Interpolation in Description Logic

Description logics are used for modeling and reasoning in knowledge bases. Classes of
objects are described by concepts and relationships between objects by roles. Relation-
ships between concepts or roles are modeled using ontologies, which can contain concept
definitions, concept inclusions and role inclusions. A special class of description logics,
which were proved to be tractable [4, 5, 8], are EL and its extension EL+. They both
allow existential role restrictions and intersection of concepts; the latter also allows role
inclusions.

When combining two ontologies or extending an ontology with another one it can happen
that some unwanted concept subsumptions can be derived afterwards. For fixing such
unwanted consequences it is important to locate their cause. An important goal is therefore
to find explanations for subsumption relations in combined or extended ontologies. We here
present an example.

3

A1 : AmpOfFinger ⊑ Amputation
A2 : AmpOfFinger ⊑ ∃site.FingerStructure
A3 : Amputation ⊓ ∃site.FingerStructure ⊑ AmpOfFinger
A4 : InjToFinger ⊑ Injury
A5 : InjToFinger ⊑ ∃site.FingerStructure
A6 : Injury ⊓ ∃site.FingerStructure ⊑ InjToFinger
A7 : FingerEntity ⊑ FingerStructure
A8 : FingerPart ⊑ FingerStructure
A9 : FingerPart ⊑ ∃part.FingerEntity
A10 : FingerStructure ⊑ HandPart
A11 : HandEntity ⊑ HandStructure
A12 : HandPart ⊑ HandStructure
A13 : HandPart ⊑ ∃part.HandEntity

B1 : AmpOfHand ⊑ Amputation
B2 : AmpOfHand ⊑ ∃site.HandStructure
B3 : Amputation ⊓ ∃site.HandStructure ⊑ AmpOfHand
B4 : InjToHand ⊑ Injury
B5 : InjToHand ⊑ ∃site.HandStructure
B6 : Injury ⊓ ∃site.HandStructure ⊑ InjToHand

Figure 1.2: Example of an EL ontology.

Consider the extended ontology in Figure1.2, which is based on an example from [12]. We
assume that axioms A1 to A13 form our main ontology. It describes what an amputation
of a finger (A1 to A3) and an injury to a finger (A4 to A6) is and models relations between
finger and hand using concepts for structure, entity and part of a hand or a finger (A7 to
A13). We now want to include descriptions for amputation and injury of a hand as well
and therefore extend the ontology with axioms B1 to B6.

Note that we can derive the following two consequences from the extended ontology:

InjToFinger ⊑ InjToHand
AmpOfFinger ⊑ AmpOfHand

Of those two subsumptions the first one makes sense, since an injury to a finger is also an
injury to the hand. The second subsumption, however, is undesirable, as an amputation
of the finger is not also an amputation of the hand. We are therefore interested in finding
a simple explanation for the unwanted consequence AmpOfFinger ⊑ AmpOfHand w.r.t. this
extended ontology.

Note that the consequence that an amputation of a finger is an amputation of a hand follows
neither from the main ontology (A1 −A13) nor from the extension (B1 −B6) alone, but it
follows only from the combination of both ontologies (A1 −A13 together with B1 −B6).

4

Our goal now is to find an explanation for why the consequence holds in the extended
ontology. Formally this means that we try to find a concept description C such that

• AmpOfFinger ⊑ C holds in the extended ontology,

• C ⊑ AmpOfHand holds in the extended ontology, and

• C only contains symbols which are common to the A-part and B-part of the ontology.

The common concepts (i.e. the concepts occurring in both parts of the ontology) are
Amputation, Injury and HandStructure. We can show that the concept description

C := Amputation ⊓ ∃site.HandStructure,

has this property, i.e. can be regarded as a high-level explanation for the subsumption
AmpOfFinger ⊑ AmpOfHand. This explanation can give us a hint on how to repair the
ontology such that the unwanted subsumption is not a consequence of the extended on-
tology anymore. We can for example try to change one or more axioms related to either
Amputation or ∃site.HandStructure. Here, replacing ∃site.HandStructure by ∃site.HandEntity
in axioms B2 and B3 will fix the ontology.

In Section 5.3 we propose a method for finding explanations for subsumption relations in
EL and EL+ ontologies and show how to apply it on this example in detail.

Reasoning About Geometric Graph Classes

Classes of geometric graphs occurring in algorithmic wireless network research can be
described using axioms over suitable theories. Such axioms typically refer to points in
R2 (and possibly also their coordinates) and often describe geometrical conditions for the
existence or non-existence of edges. We assume an edge between two vertices u and v to
be the line segment between u and v, i.e. it is always a straight line.

The class of Gabriel graphs G contains all undirected graphs without self loops satisfying
the following conditions:

• An edge between two vertices u and v exists if there is no other vertex w which lies
inside the smallest circle passing through u and v (see Figure 1.4).

• An edge between two vertices u and v does not exist if there is a vertex w which
lies inside the smallest circle passing through u and v (see Figure 1.5).

Figure 1.3: Example of a
Gabriel graph1.

Figure 1.4: Existence of an
edge in a Gabriel graph.

Figure 1.5: Non-existence of an
edge in a Gabriel graph.

1https://en.wikipedia.org/wiki/Gabriel_graph#/media/File:Gabriel_graph.svg (24.04.23)

5

https://en.wikipedia.org/wiki/Gabriel_graph#/media/File:Gabriel_graph.svg

The class of relative neighborhood graphs R contains all undirected graphs without self
loops satisfying the following conditions:

• An edge between two vertices u and v exists if there is no other vertex w which is
closer to u than v and closer to v than u. Geometrically this means that no vertex
w lies inside the intersecting area of the open disk with center u and radius |uv| and
the open disk with center v and radius |uv| (see Figure 1.7).

• An edge between two vertices u and v does not exist if there is a vertex w which
is closer to u than v or closer to v than u, i.e. if there is a vertex located inside the
intersecting area of the open disk with center u and radius |uv| and the open disk
with center v and radius |uv| (see Figure 1.8).

Figure 1.6: Example of
a relative neighborhood
graph2.

Figure 1.7: Existence of an
edge in a relative neighborhood
graph.

Figure 1.8: Non-existence of an
edge in a relative neighborhood
graph.

The class of plane drawings P contains all undirected geometric graphs without self loops
which are drawn in the plane without any intersections between edges. For example, the
Gabriel graph in Figure 1.3 and the relative neighborhood graph in Figure 1.6 are both
plane drawings. In fact, every Gabriel graph and every relative neighborhood graph is a
plane drawing.

We can prove that all Gabriel and relative neighborhood graphs are plane drawings by
showing that the class inclusions G ⊆ P and R ⊆ P hold. To prove G ⊆ P, for instance, we
have to show that AxG∧¬AxP is unsatisfiable, where AxG and AxP are axiomatizations of the
classes G and P, respectively. The axioms contain information not only about the position
of a vertex or the distance between vertices, but also about the existence of vertices and
edges, so it is not possible to use methods for reasoning in arithmetic directly. The idea is
therefore to first eliminate the symbols V and E, which correspond to the existence of a
vertex or an edge, respectively. Thus, we can use a two-layered approach, in which we first
use symbol elimination to derive geometric conditions under which class inclusion does not
hold, and then use hierarchical reasoning to show that these geometric conditions cannot
be satisfied. In case that the geometric conditions are satisfiable (i.e. class inclusion does
not hold), we have methods to derive additional conditions under which class inclusion is
guaranteed to hold.

In Chapter 6 we propose a method for checking class inclusions (of simple geometric graph
classes like the ones described here, but also for graph classes obtained by transformations)
and we present in detail the planarity proofs for the classes of Gabriel graphs and relative
neighborhood graphs.

2https://en.wikipedia.org/wiki/Relative_neighborhood_graph#/media/File:Relative_
neighborhood_graph.svg (24.04.23)

6

https://en.wikipedia.org/wiki/Relative_neighborhood_graph#/media/File:Relative_neighborhood_graph.svg
https://en.wikipedia.org/wiki/Relative_neighborhood_graph#/media/File:Relative_neighborhood_graph.svg

1.2 Related Work

In the following we will discuss the related work on general and property-directed symbol
elimination as well as the related work on the application areas described in the thesis,
i.e. verification of parametric systems, interpolation in the description logics EL and EL+
and reasoning about classes of geometric graphs. In this discussion we will state several
research questions which will serve as a basis for the contributions stated in Section 1.3.

General Symbol Elimination

The most basic form of general symbol elimination is quantifier elimination. We say that
a theory allows quantifier elimination, if for every formula of the theory there exists a
quantifier-free formula that is equivalent to it with respect to the theory. Quantifier elim-
ination is important for instance in verification, where it is used for computing reachable
states, or in knowledge representation, where it is used for forgetting (restricting the sig-
nature to a subsignature without loss of consequences which can be described in the sub-
signature). The most prominent examples of theories which admit quantifier elimination
are Presburger arithmetic and the theory of real closed fields (basically the real numbers).

If we only consider simple theories like linear arithmetic for integers and real numbers we
know that quantifier elimination methods exist [22, 112]. But in some cases the investigated
theories are more complex and do not allow quantifier elimination. Things get for example
more complicated in the following two situations:

(1) We eliminate function or predicate symbols (second-order quantifier elimination).

(2) We consider combinations of theories.

General symbol elimination in complex theories can be achieved using refinements of su-
perposition. In [14], Bachmair et al. mention the applicability of a form of hierarchical
superposition to second-order quantifier elimination. This idea and possible links to inter-
polation are also mentioned by Ganzinger et al. in [49, 50]. In [73], Kovacs and Voronkov
study inference systems and local derivations in the context of interpolant generation, and
symbol elimination in proofs in such systems. The ideas are concretized using the super-
position calculus and its extension LASCA (ground linear rational arithmetic and unin-
terpreted functions). An algorithm for second-order quantifier elimination, called SCAN,
is presented by Gabbay and Ohlbach in [47]. The idea is, given a set of formulae, to
use ordered resolution and factorization to compute sufficiently many consequences of the
formulae, and to keep from the obtained set only the formulae which do not contain the
predicate symbols to be eliminated.

General symbol elimination is closely related to uniform interpolation, which has been
studied by Ghilardi et al. [27, 52, 28] (they often use the term “cover” instead of “uniform
interpolant”). In [27] relations between uniform interpolation and model completeness are
analyzed and a way of computing covers with a constrained version of the superposition
calculus is proposed. In [52] the authors propose two algorithms for the computation of
uniform interpolants in the theory of equality with uninterpreted function symbols (UIF).
Results on computing combined covers, for instance in the combination of UIF and linear
real arithmetic, are presented in [28].

Research question 1: Can we use established quantifier elimination methods also in com-
binations of theories?

7

Property-directed Symbol Elimination

The main difference to general symbol elimination is that in property-directed symbol
elimination we have in addition to a formula F also a formula (or property) G given, which
is meant to guide the process. In interpolation, for instance, we have two formulae A and B
given such that A∧B |= ⊥ holds and we are looking for a formula I with A |= I such that the
property I ∧B |= ⊥ holds. Methods for property-directed symbol elimination for complex
theories (i.e. combinations or extensions of theories) have been proposed in many cases in
relationship with interpolant computation. In [113] Yorsh et al. studied interpolation in
combinations of theories. They propose a modular approach for computing interpolants in
combined theories, which is based on the Nelson-Oppen framework and uses interpolation
methods for the theories in a black box manner. They show that this approach can be used
for a class of (convex) first-order theories which they call equality-interpolating. In [26],
Brutomesso et al. extend these results by giving a weaker notion of equality interpolation,
which in contrast to the work of Yorsh et al. also allows interpolation for combinations
of non-convex theories. A modular approach for interpolation in data structures, which
reduces the theories of data structures to the theories of equality and linear arithmetic,
was analyzed by Kapur, Majumdar and Zarba in [68]. They prove that every recursively
enumerable theory is interpolating (i.e. an interpolant always exists), and if in addition
the theory allows quantifier elimination, it is quantifier-free interpolating (i.e. a quantifier-
free interpolant always exists). They conclude, in particular, that the theories of integer,
rational and real linear arithmetic are quantifier-free interpolating, and that the theory
of arrays is interpolating, but not quantifier-free interpolating. Independently, Sofronie-
Stokkermans in [91, 93] analyzed possibilities of computing interpolants hierarchically, and
in [98, 100] proposed a method of hierarchical symbol elimination used for interpolant
computation.

Property-directed symbol elimination is also used in the context of constraint generation,
i.e. computing from given formulae F and G such that F ∧ G is satisfiable a constraint
Γ such that Γ ∧ F ∧ G is unsatisfiable. In [98, 100] the proposed hierarchical symbol
elimination method is not only used for interpolation, but also for inferring constraints on
parameters. Already [97] mentions the possibility to infer constraints on parameters by
hierarchical reasoning followed by quantifier elimination.

Research question 2: Under which conditions can we use hierarchical reasoning for
property-directed symbol elimination in extensions and combinations of theories?

We discuss three areas of application relevant to this thesis with regard to property-directed
symbol elimination: verification of parametric systems, knowledge representation (descrip-
tion logics) and geometric graph theory.

Automated Verification of Parametric Systems

In the verification of parametric systems it is important to show that a certain property
holds for all states reachable from the initial state. One way to solve such problems is
to identify an inductive invariant entailing the property to be proved. Finding suitable
inductive invariants is non-trivial, the problem is undecidable in general. Solutions have
been proposed for specific cases: In [67], Kapur proposes methods for invariant generation
in theories such as Presburger arithmetic, real closed fields, and for polynomial equations
and inequations with solutions in an algebraically closed field. The main idea is to use
templates for the invariant (polynomials with undetermined coefficients), and solve con-

8

straints for all paths and initial values to determine the coefficients. A similar idea was
used by Beyer et al. in [16] for constraints in linear real or rational arithmetic; it is shown
that if an invariant is expressible with a given template, then it will be computed. Symbol
elimination has been used for interpolation and invariant generation in many papers. The
methods proposed in [67], where quantifier elimination or Gröbner bases computation are
used for symbol elimination, are one class of examples. Quantifier elimination is also used
by Dillig et al. in [38]. Applications of symbol elimination to invariant generation (briefly
mentioned in [73]) are explored in detail in, among others, [72, 60] – there Vampire is used
to generate a large set of invariants using symbol elimination; only invariants not implied
by the theory axioms or by other invariants are kept (some of these tasks are undecidable).
In [56], Gleiss et al. analyze functional and temporal properties of loops. For this, extended
expressions (introduced in [72]) are used; symbol elimination as in [73] is used to synthesize
invariants using quantification over iterations.

Various papers address the problem of strengthening a given formula to obtain an induct-
ive invariant. In [23], Bradley proposes a goal-oriented invariant generation method for
boolean/numeric transition systems, relying on finding counterexamples. Such methods
were implemented in IC3 [21]. For programs using only integers and propositional vari-
ables, Dillig et al. in [38] use quantifier elimination to obtain increasingly more precise
approximations of inductive invariants (termination is not guaranteed), expressed as arbit-
rary boolean combinations of linear integer constraints. In [44], Falke and Kapur analyze
various ways of strengthening the formulae. Depending on how strengthening is attemp-
ted, their procedure may also determine whether the original formula is not an invariant.
Situations in which termination is guaranteed are identified. This is the case for instance
for logics in which only finitely many non-equivalent formulae over a fixed language can be
built or for the quantifier-free logic of UTVPI-constraints. In [69], Karbyshev et al. propose
a method to generate universal invariants in theories with the finite model property using
diagram-based abstraction for invariant strengthening. Padon et al. in [80] identify suffi-
cient conditions for the decidability of inferring inductive invariants in a given language
and also present undecidability results; they prove decidability of inferring universal in-
variants for programs manipulating singly-linked-lists and show undecidability of inferring
alternation-free invariants in the same setting, as well as undecidability of inferring uni-
versal invariants in general systems (beyond linked lists). They also propose methods for
constructing in a systematic way new classes of systems with decidable invariant inference
from already established classes. Invariant synthesis for array-based systems is studied by
Ghilardi et al. in [53]; under local finiteness assumptions on the theory of elements and ex-
istence of well-quasi-orderings on configurations termination is guaranteed. In [2], Alberti
et al. use lazy abstraction with interpolation-based refinement and discuss the applicab-
ility to invariant synthesis. A system for verifying safety properties that are “cubes” and
invariant generation in array-based systems is described in [30]. In [57], Gurfinkel et al.
propose an algorithm extending IC3 to support quantifiers for inferring universal invari-
ants in theories of arrays, combining quantified generalizations (to construct invariants)
with quantifier instantiation (to detect convergence). The safety problems regarded are
assumed to be described by quantifier-free formulae and the quantification in the generated
universal invariants is limited to integer variables.

All the approaches addressing the problem of invariant strengthening have limitations
in some way. Some methods restrict the shape of the invariants, for example by using
templates, some can only be used for numeric domains or require theories which have the
finite model property, and some do not come with correctness or termination guarantees.

9

Research question 3: Can property-directed symbol elimination in combination with hier-
archical reasoning be used for inductive invariant synthesis? Under which conditions
are such approaches correct/terminating?

Finding Explanations in EL+

Description logics are logics for knowledge representation used in ontologies. They provide
a logical basis for modeling and reasoning about objects, classes of objects (concepts), and
relationships between them (roles). Based on the operations that are allowed we obtain
different descriptions logics. ALC for example allows intersection, union and negation of
concepts, as well as universal and existential role restriction. If we only allow intersection
and existential restriction, we obtain the description logic EL, a logic used for reasoning in
medical ontologies [103, 102]. EL+ is an extension of EL which also allows role inclusions.

One of the problems arising when creating description logic ontologies is ensuring that they
do not contain mistakes that could allow to prove subsumptions between concepts that are
not supposed to hold. One situation in which this can happen is when already existing
ontologies which can be considered trustworthy are extended, or when two ontologies are
put together. Even if the new ontology is still consistent, one needs to make sure that
no concept inclusions which are not supposed to be true can be derived. It is therefore
important to provide simple explanations for concept subsumptions in such combined on-
tologies (containing, for instance, only symbols that occur both in the original ontology
and in the extension).

One method for finding justifications in description logic TBoxes that has been addressed
in other work is the so-called axiom pinpointing. The idea is to find a minimal axiom set
which already has the consequence in question. Algorithms for computing minimal axiom
sets for ALC-terminologies were e.g. given by Baader and Hollunder [7], and by Schlobach
and Cornet [88]. They are extensions of the tableau-like satisfiability algorithm for ALC
and the tableau-like consistency algorithm for ALC, respectively, in which they make use
of labels to keep track of the axioms that were used during the execution of the algorithms.
In contrast to the algorithm in [88], the one in [7] does not compute minimal axiom sets
directly, but Boolean formulae from which they can be derived. Possibilities of explaining
ALC-subsumption (again based on tableau implementations) are described in [19]. In [10]
and [11] Baader et al. give a similar algorithm for axiom pinpointing in the description
logics EL and EL+, respectively, in which they modify the subsumption algorithm for EL
and EL+, respectively. Here again labels are used to keep track of the axioms needed and
the output is a Boolean formula, from which the axioms can be derived. They show that
computing all possible minimal axiom sets may need exponential time, whereas computing
one such set can be done in polynomial time. In [11] they consider extensions of TBoxes,
i.e. unions of a static TBox (with irrefutable axioms) and a refutable TBox. Possibilities
of finding small proofs for description logics have been investigated in [3], which can be
considered as a further step in an incremental way of generating explanations.

In [93, 99] Sofronie-Stokkermans investigated methods for interpolation in the description
logics EL and EL+. There it is shown that concept subsumption tests in EL and EL+
can be reduced to checking validity of implications w.r.t. the theory of semilattices with
monotone operators and that in this theory the proof tasks can be hierarchically reduced
to checking satisfiability in the theory of semilattices. In [46], Fortin et al. analyze in-
terpolation properties for EL and extensions thereof. They prove that in contrast to EL,
most of its extensions, in particular extensions of EL with role inclusions (i.e. EL+), do

10

not enjoy the ⊑-interpolation property, i.e. the property that for two concept descriptions
A and B with A ⊑ B there exists a concept description I such that A ⊑ I and I ⊑ B
(they refer to this property as Craig interpolation). However, it is shown that if all role
symbols occuring in role inclusions are guaranteed to be part of the shared signature, then
an interpolant exists.

Research question 4: Can we use property-directed symbol elimination and hierarchical
reasoning to find easy explanations for inconsistencies in combined EL+ ontologies?

Checking Containedness Between Geometric Graph Classes

Checking containedness between geometric graph classes is a topic of interest, as it provides
a general tool to check graph properties resulting from distributed graph algorithms. Test-
ing containedness of graph classes has been studied by Böltz and Frey in recent work.
In [17] they derive by hand formulae representing necessary and sufficient conditions for
containedness between certain types of graph classes. In this thesis we propose automated
methods relying on symbol elimination and hierarchical reasoning for checking inclusion
without the manual component in [17]. We are not aware of other similar approaches
to the area of computational geometric graph theory, combining reasoning about graphs
with reasoning about geometric properties of graphs. In his numerous publications on the
topic, e.g. [31, 32, 33, 34, 35], Courcelle uses a logical representation of graphs based on
monadic second-order logic; many of the results rely on graphs with bounded tree-width
or bounded clique-width. In other existing approaches, higher-order theorem provers are
used, for instance Isabelle/HOL is used for the verification of graph algorithms in [1], and
Coq is used for checking graph theoretical properties in [39]. In [58] an overview on the
analysis of graph transformation systems is given.

Research question 5: Can we use general and property-directed symbol elimination in
combination with hierarchical reasoning to prove inclusion of geometric graph classes?

1.3 Contributions of the Thesis

For many problems in automated reasoning we need efficient methods for symbol elimin-
ation. The challenge is that the tasks become much more difficult for complex theories,
for instance for combinations or extensions of theories. In the thesis we look at both situ-
ations, but our focus is on extensions of theories. A theory extension consists of a base
theory which is extended with additional function symbols whose properties are described
by a set of axioms. A general approach we are using to reason in such theory extensions
is hierarchical reasoning. This means that we try to reduce the given problem in a hier-
archical manner to a problem in the base theory. Provided that the extensions have the
right properties and we have the means to reason effectively in the base theory, we can
then solve the problems. We therefore have to analyze under which conditions hierarchical
reasoning in combination with symbol elimination is possible. An especially nice property
of theory extensions is the so-called locality [90]. In the thesis we propose a method for
symbol elimination in (local) theory extensions that we used in [81, 82], which is a refined
version of the algorithm from [98, 100]. Given a problem which is structured as a theory
extension, the idea is to reduce it to the base theory using purification and instantiation,
to apply quantifier elimination in the base theory, and to translate the result back to the
original language.

11

This general approach can be used in many different application domains. We will show its
applicability by proposing specialized methods for several interesting problems in different
areas of automated reasoning. In addition to that we will demonstrate our methods on a
wide range of interesting examples from verification and description logics.

The application areas we consider in this thesis are the following:

(1) Verification of parametric systems: We use property-directed symbol elimina-
tion for the goal-oriented synthesis of inductive invariants of parametric systems.

(2) Description logics: We use methods for symbol elimination in propositional logic
based on resolution for finding explanations for subsumptions in EL+ ontologies.

(3) Geometric graph theory: We use second-order quantifier elimination combined
with property-directed symbol elimination to check inclusion of geometric graph
classes and to detect additional conditions under which inclusion holds.

Verification of Parametric Systems

In the thesis we will build upon existing work on automated verification and synthesis
in parametric systems [63, 96, 97] by investigating possibilities for automated invariant
checking and goal-oriented generation of inductive invariants. The results were published in
[81] and [82]. The goal is to verify safety of a system (or program) by showing that a safety
property is an inductive invariant of the system or, if this is not the case, to strengthen the
property such that the strengthened property can be proved to be an inductive invariant
of the system.

Given as input is the description of a system or a program and the property Ψ, expressed
by a universally quantified formula, which needs to be checked for invariance. We present a
method which starts with the universally quantified formula Ψ and successively strengthens
it, using a certain form of abductive reasoning based on symbol elimination (by abductive
reasoning we mean inferring additional conditions on parameters). In case of termination it
can be proved that we obtain a universal inductive invariant that entails Ψ, or the answer
“no such invariant exists”. We identify situations in which the method terminates and
present some refinements, which we also illustrate on examples.

As described already in Chapter 1.2, there is a lot of existing work in the area of para-
metric verification, but all the existing approaches have limitations in one way or another.
Common limitations are:

(1) Templates are used, which are difficult to use in connection with additional func-
tion symbols (for instance linear arithmetic with an additional function symbol a to
describe an array). This is the case for instance in the methods proposed in [67, 38].

(2) Only simple theories are covered. The methods of [23, 38, 44] for example can only
handle numeric domains.

(3) The finite model property is required, which is the case for instance in the work
described in [69, 80].

(4) Correctness and termination are not guaranteed, as e.g. in [57].

(5) The methods are non-deterministic, as is the case for example in [53].

12

While we rely on methods similar to the ones used in [23, 53, 38, 44, 80, 69, 57], there
are several differences between our work and previous work. Our method is not based on
templates, it instead allows us to choose the language for the candidate invariants (we can
search for invariants not containing certain constants or function symbols). Furthermore,
our method is specialized for use with theory extensions and can therefore handle more
complex theories than many of the existing work. The finite model property is only required
if we want to guarantee termination. In addition, our algorithm is deterministic. We can
guarantee correctness under locality assumptions (which, for instance, do not need to be
checked separately if updates and properties are in the array property fragment) and our
termination results are established for classes of formulae for which only finitely many
atomic formulae formed with a fixed number of variables can be generated using quantifier
elimination.

Description logics

An application in description logics that we will address in the thesis is the problem of
finding simple explanations for unwanted subsumptions in combinations or extensions of
ontologies. Previous work on this topic was published in [83]. We investigate this problem
for the case in which the ontologies consist of TBoxes or CBoxes. We restrict to the
description logics EL and EL+. We use the encoding of TBox subsumption for EL as
a uniform word problem in classes of semilattices with monotone operators and the ≤-
interpolation property in these classes of algebras (it essentially says that if A ≤ B can
be derived, then there exists an intermediate term t containing only symbols shared by A
and B such that A ≤ t ∧ t ≤ B), as well as extensions to these results in the presence
of role inclusions. A subset of the axioms needed for deriving a concept inclusion can be
determined using an unsatisfiable core computation or pinpointing [10, 11]. For computing
the ≤-interpolating terms we use a translation to propositional logic and methods for
computing Craig interpolants in propositional logic. The result is translated back to the
description logic language. We regard the translated ≤-interpolating terms as high-level
explanations for the subsumption. Such easy explanations are important for debugging
ontologies, since full proofs may be too complicated in practice. Our approach to ⊑-
interpolation is different from the one proposed in [46], in which a proof technique based
on simulations is used. The method we propose in this thesis is based on hierarchical
reasoning in theory extensions and a formalization of the ⊑-interpolation problem for EL+
as a ≤-interpolation problem for the theory of semilattices with monotone operators.

Geometric graph theory

In this thesis we devise methods for checking containedness between geometric graph
classes. We focus on graph classes that can be described with universally quantified axioms.
When defining such graph classes we use two kinds of predicates. On the one hand we
have edge predicates, describing that an edge between two vertices in the graph exists, on
the other hand we have inclusion, exclusion and transfer predicates, describing geometric
conditions for the existence of an edge, usually based on a distance or cost function.

Transformations can be applied to such graphs in order to make the graphs symmetric,
for example by removing all directed edges whose reverse edge is missing or by adding all
the missing reverse edges. This way we can define further graph classes. When checking
inclusion between graph classes described using transformations – since the transformations
update the sets of edges – we need to check entailment of second-order formulae. In

13

addition, many such graph class descriptions are parametric in nature, so the goal is,
in fact, to obtain (weakest) conditions on the parameters used in such descriptions that
guarantee that graph classes are non-empty or that inclusions hold. This can be achieved
by eliminating “non-parametric” constants or function symbols used in the description of
such classes.

Our goal is to prove that one graph class is contained in another graph class, where both
are possibly defined using transformations. This can be done in two steps. In a first step,
we use general symbol elimination for eliminating existentially quantified edge predicates.
In a second step we check unsatisfiability of the obtained formula to prove containedness. If
containedness cannot be proved, the methods we use allow us to generate counterexamples
or conditions on parameters such that the inclusion holds. For the latter we use property-
directed symbol elimination.

The main application area we consider in this thesis is the analysis of inclusions between
graph classes arising in wireless network research. The approach we propose (and the tools
we use for this) can be a good instrument in theoretical graph and network theory, which
would allow the user to test whether certain generalizations of concept are problematic and
to locate possible problems with the general formalizations. Our approach is orthogonal to
other approaches in this area such as [33], [1] or [39]. It relies on methods for second-order
quantifier elimination which allow a reduction of many problems to satisfiability modulo
a suitable theory for which state of the art SMT solvers can be used. The procedure
is sound and our approach allows us to identify situations in which completeness can be
guaranteed. Many of the results in [31, 32, 33, 34, 35] rely on graphs with bounded tree-
width or bounded clique-width. We do not impose such restrictions on the graphs we
analyze. In contrast to the approaches proposed in [1] or [39], in this thesis we rely on
methods which avoid the use of higher-order logic systems such as Isabelle/HOL or Coq.

Overview

In the following the contributions of this thesis are stated, each of them corresponding to
one of the research questions from Section 1.2.

Contribution 1: We establish results on quantifier elimination in combinations of theories.

Contribution 2: We propose a refinement to the method for symbol elimination in local
theory extensions.

Contribution 3: We use methods for symbol elimination to obtain a method for inductive
invariant synthesis in parametric systems based on hierarchical reasoning in exten-
sions of theories.

Contribution 4: We obtain methods based on hierarchical reasoning and symbol elimin-
ation for finding high-level explanations for subsumption in combinations of EL+
ontologies.

Contribution 5: We use general symbol elimination and property-directed symbol elimin-
ation in combination with hierarchical reasoning to prove containedness of geometric
graph classes.

14

1.4 Publications

The contributions stated in this thesis are based on former publications of papers in con-
ferences or workshops. In the following we list these papers in chronological order, from
oldest to newest:

• Dennis Peuter and Viorica Sofronie-Stokkermans: On Inductive Verification and Syn-
thesis. In Selected Student Contributions and Workshop Papers of LuxLogAI 2018,
volume 10 of Kalpa Publications in Computing, pages 1-8. EasyChair, 2018.

• Dennis Peuter and Viorica Sofronie-Stokkermans: On Invariant Synthesis for Para-
metric Systems. In Proceedings of the 27th International Conference on Automated
Deduction (CADE-27), volume 11716 of Lecture Notes in Computer Science, pages
385-405. Springer, 2019.

• Dennis Peuter and Viorica Sofronie-Stokkermans: Finding High-Level Explanations
for Subsumption w.r.t. Combinations of CBoxes in EL and EL+. In Proceedings of
the 33rd International Workshop on Description Logic (DL 2020) co-located with
the 17th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2020), volume 2663 of CEUR Workshop Proceedings. CEUR-WS.org,
2020.

• Lucas Böltz, Hannes Frey, Dennis Peuter, and Viorica Sofronie-Stokkermans: On
Testing Containedness Between Geometric Graph Classes using Second-order Quan-
tifier Elimination and Hierarchical Reasoning (Short Paper). In Proceedings of
the Second Workshop on Second-Order Quantifier Elimination and Related Top-
ics (SOQE 2021) associated with the 18th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2021), volume 3009 of CEUR Work-
shop Proceedings, pages 37-45. CEUR-WS.org, 2021.

• Dennis Peuter and Viorica Sofronie-Stokkermans: Symbol Elimination and Applica-
tions to Parametric Entailment Problems (Abstract). In Proceedings of the Second
Workshop on Second-Order Quantifier Elimination and Related Topics (SOQE 2021)
associated with the 18th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2021), volume 3009 of CEUR Workshop Proceedings,
pages 83-91. CEUR-WS.org, 2021.

• Dennis Peuter and Viorica Sofronie-Stokkermans: Symbol Elimination and Applica-
tions to Parametric Entailment Problems. In Proceedings of the 13th International
Symposium on Frontiers of Combining Systems (FroCoS 2021), volume 12941 of
Lecture Notes in Computer Science, pages 43-62. Springer, 2021.

• Dennis Peuter, Viorica Sofronie-Stokkermans, and Sebastian Thunert: On P -
Interpolation in Local Theory Extensions and Applications to the Study of Interpol-
ation in the Description Logics EL, EL+. In Proceedings of the 29th International
Conference on Automated Deduction (CADE-29), volume 14132 of Lecture Notes in
Computer Science, pages 419-437. Springer, 2023.

Table 1.9 also lists these papers in chronological order and denotes which chapter of the
thesis the contents of the papers is related to.

15

Title Authors Event Related to Ref.
1 On Inductive Verification and Dennis Peuter, LuxLogAI Chapter 4 [81]

Synthesis Viorica Sofronie- 2018
Stokkermans

2 On Invariant Synthesis for Para- Dennis Peuter, CADE Chapters [82]
metric Systems Viorica Sofronie- 2019 3 and 4

Stokkermans
3 Finding High-Level Explanations Dennis Peuter, DL Chapter 5 [83]

for Subsumption w.r.t. Combina- Viorica Sofronie- 2020
tions of CBoxes in EL and EL+ Stokkermans

4 On Testing Containedness Between Lucas Böltz, SOQE Chapter 6 [18]
Geometric Graph Classes using Hannes Frey, 2021
Second-order Quantifier Elimina- Dennis Peuter,
tion and Hierarchical Reasoning Viorica Sofronie-
(Short Paper) Stokkermans

5 Symbol Elimination and Applica- Dennis Peuter, SOQE Chapter 6 [85]
tions to Parametric Entailment Viorica Sofronie- 2021
Problems (Abstract) Stokkermans

6 Symbol Elimination and Applica- Dennis Peuter, FroCoS Chapter 6 [84]
tions to Parametric Entailment Viorica Sofronie- 2021
Problems Stokkermans

7 On P-Interpolation in Local Theory Dennis Peuter, CADE Chapter 5 [86]
Extensions and Applications to the Viorica Sofronie- 2023
Study of Interpolation in the Stokkermans,
Description Logics EL, EL+ Sebastian Thunert

Figure 1.9: List of publications.

1.5 Structure of the Thesis

In Chapter 2 we present the preliminaries that are needed for the understanding of this
thesis. We first describe the syntax and semantics of first-order logic and some related
notions such as unsatisfiable cores, ordered resolution and Craig interpolation. Afterwards
we define theories and theory extensions and introduce the notion of locality. For local
theory extensions we show how to recognize them and present a method for hierarchical
reasoning. We then define the notion of quantifier elimination and present methods for
eliminating quantifiers in different theories: first, in the theory of real closed fields, and
second, in the theory of an infinite set.

In Chapter 3 we present our results on symbol elimination. We first analyze possibilities
for quantifier elimination in combinations of theories, in particular in the combination of
the theory of real closed fields and the theory of an infinite set. Afterwards we explain an
algorithm for symbol elimination in (local) theory extensions proposed in [98]. We then
propose a refinement of the algorithm and illustrate both the algorithm and its refinement
on an example.

In Chapter 4 we show applications of hierarchical reasoning and symbol elimination
to the verification of parametric systems. We first describe the problems of invariant
checking, constraint synthesis and invariant generation for transition constraint systems.
We then present a method for invariant generation that is based on hierarchical reasoning
and symbol elimination. We analyze the correctness of the method, identify situations in
which termination is guaranteed and show some refinements that decrease complexity. We
illustrate the algorithm and its refinements on examples.

16

In Chapter 5 we present a method for generating high-level explanations for subsumptions
in the description logics EL and EL+. We first introduce the description logics EL and
EL+, explain their algebraic semantics and prove a locality property related to EL+. Then
we define the P -interpolation property w.r.t. a set P of binary predicate symbols and
show that the theory of semilattices with monotone operators satisfies this property for
P ∈ {≤,≈}. Based on this property for semilattices we then propose an algorithm for
applying a form of interpolation in EL and EL+, i.e. for computing intermediate terms for
concept subsumptions, which is used for generating the explanations. We illustrate the
method on several examples.

In Chapter 6 we illustrate how to use symbol elimination in local theory extensions
for checking containedness of geometric graph classes whose descriptions usually refer to
distances between vertices. For this we first show that the extension of the theory of
equality with certain distance functions is local. We then show on several examples how
containedness of one graph class in another class can be checked, or in case of parametrically
described classes, how to compute weakest properties on the parameters such that the class
inclusion holds.

In Chapter 7 we conclude by summarizing and analyzing the results that were achieved
in the thesis.

17

2 Preliminaries

In this chapter we describe the notions and methods that are important for this thesis.
We start in Section 2.1 by introducing the syntax and semantics for first-order logic and
related notions. In Section 2.2 we explain what theories and theory extensions are, and
describe the locality property for theory extensions. In Section 2.3 quantifier elimination
is presented, in particular the virtual substitution method for quantifier elimination in the
theory of real numbers (i.e. the theory of real closed fields).

2.1 First-order Logic

We assume known standard definitions from first-order logic and refer the reader to [45]
for more information. We briefly present the syntax and semantics of first-order logic,
then continue by giving a description of ordered resolution and interpolation. Since we
only need ordered resolution for propositional logic in this thesis, we will only describe the
method for propositional logic and not for first-order logic.

Notation: Throughout this thesis, we usually denote variables with x, y, z, constants with
a, b, c and terms with t, s. Propositional variables are denoted with P,Q,R, S, formulae
with F,G,H, I and clauses with C,D. We usually denote sets of formulae or sets of clauses
with N . We may use all the symbols mentioned above also in combination with indices,
for example x1, ..., xn for variables or F1, F2 for formulae. For a tuple of variables x1, ..., xn
we sometimes use the notation x, and analogously for constants and terms. We often refer
to finite conjunctions of formulae as “sets of formulae”. For instance, if N1 and N2 are
finite sets of formulae, then N1 ∪N2 stands for the conjunction of all formulae in the set
N1 ∪ N2. We use ≈ as a notation for the equality predicate to distinguish it from the
usual equality sign (denoted by =). To save space, we sometimes write a < b < c for a
conjunction a < b∧ b < c (and similarly for other relation symbols or larger conjunctions).

2.1.1 Syntax and Semantics

We start by defining the syntax and semantics of first-order logic in the case of one-sorted
signatures; the extension to many-sorted signatures is shown at the end of the section.

Syntax

We consider signatures Π = (Σ,Pred), where Σ is a set of function symbols and Pred a set
of predicate symbols such that for each function symbol and predicate symbol the arity is
specified. A function symbol with arity zero is called a constant and a predicate symbol
with arity zero is called a propositional variable. We consider a fixed countably infinite set
X of variables.

Remark: If the set Σ of function symbols is empty and all predicates in Pred have arity
zero (i.e. Π only contains propositional variables), then we are in propositional logic.

19

The set of Π-terms TΠ(X) over X is defined as the smallest set containing

• all variables in X;

• all constants in Π;

• f(t1, ..., tn) if f is a function in Π with arity n and every ti is a Π-term for i ∈
{1, ..., n}.

In a term t = f(t1, ..., tn) we call f the root and ti the subterms of t. A term is called a
ground term if it does not contain variables. We denote the set of ground terms by TΠ.

A Π-atom is an equality t1 ≈ t2 between terms or an expression P (t1, ..., tn), where P is
a predicate symbol of arity n and ti is a Π-term for every i ∈ {1, ..., n}. A Π-literal is a
Π-atom A (positive literal) or a negated Π-atom ¬A (negative literal).

The set of Π-formulae FΠ(X) with variables in X is defined as the smallest set containing

• ⊤, ⊥, and all Π-atoms;

• ¬F if F is a Π-formula;

• F1 ◦ F2 if F1 and F2 are Π-formulae and ◦ ∈ {∧,∨,→,↔};

• ∀xF and ∃xF if F is a Π-formula and x ∈ X.

A formula not containing any quantifiers is called quantifier-free. A formula not containing
any variables is called a ground formula. We denote the set of ground formulae with FΠ.

A Π-clause is a disjunction of Π-literals. A clause is called a ground clause if it does not
contain variables. A Horn-clause is a clause which contains at most one positive literal.

Remark: If we only have equality as a predicate, then for terms or clauses containing only
function symbols in a set Σ we sometimes refer to as Σ-terms or Σ-clauses. We denote the
set of all Σ-terms by TΣ.

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses (i.e. if it is
a conjunction of disjunctions of literals); it is in disjunctive normal form (DNF) if it is a
disjunction of conjunctions of literals.

In QxF with Q ∈ {∃,∀} we call F the scope of the quantifier Qx. A variable x is called a
bound variable of a formula F if it appears in the scope of a quantifier Qx in F . A variable
that is not bound by a quantifier is called a free variable of F . A Π-formula is called a
Π-sentence if every variable is bound by a quantifier. It is in prenex normal form if it
consists of a string of quantifiers and bound variables followed by a quantifier-free formula.
It is called a universal formula if it is in prenex normal form and contains only universal
quantifiers.

Semantics

A Π-structure for a signature Π = (Σ,Pred) is a tuple A = (|A|,ΣA,PredA), where

• |A| is a non-empty set called the universe of A,

• ΣA is a set containing a function fA : |A|n → |A| for every f ∈ Σ with arity n, and

• PredA is a set containing a predicate PA ⊆ |A|m for every P ∈ Pred with arity m.

20

A valuation over a Π-structure A is a total map β : X → |A|, assigning to each variable
an element of the universe. By β[x → a] we denote the valuation that maps x to a and
every other variable y ∈ X to β(y). The value A(β)(t) of a term t in A w.r.t. β is defined
inductively by:

• A(β)(t) = β(t) if t ∈ X,

• A(β)(t) = cA if t is a constant c,

• A(β)(t) = fA(A(β)(t1), ...,A(β)(tn)) if t = f(t1, ..., tn).

The set of truth values is {0, 1}, where 0 stands for false and 1 for true. If A is a Π-
structure and β a valuation, then A(β)(F), the truth value of a formula F in A w.r.t. β,
is defined inductively over the structure of F by

• A(β)(⊤) = 1,

• A(β)(⊥) = 0,

• A(β)(P (t1, ..., tn)) = 1 if and only if (A(β)(t1), ...,A(β)(tn)) ∈ PA,

• A(β)(¬F) = 1−A(β)(F),

• A(β)(F ∧G) = min(A(β)(F),A(β)(G)),

• A(β)(F ∨G) = max(A(β)(F),A(β)(G)),

• A(β)(F → G) = 0 if and only if A(β)(F) = 1 and A(β)(G) = 0,

• A(β)(∃xF) = max
a∈|A|

(A(β[x→ a])(F)),

• A(β)(∀xF) = min
a∈|A|

(A(β[x→ a])(F)).

A structure A is called a model of a formula F , denoted A |= F , if and only if A(β)(F) = 1
for every valuation β : X → |A|. F is called valid, denoted |= F , if and only if A |= F
for every structure A. F is called satisfiable if and only if there exist A and β such that
A(β)(F) = 1, otherwise it is called unsatisfiable. If F and G are formulae, we say that
F entails G, denoted F |= G, if and only if for all structures A and all valuations β it
holds that A(β)(F) = 1 implies A(β)(G) = 1. F |=⊥ means that F is unsatisfiable. A set
of formulae N is satisfiable if and only if there exist A and β such that A(β)(F) = 1 for
all F ∈ N , otherwise it is called unsatisfiable. We call two formulae F and G equivalent,
denoted F ≡ G, if F |= G and G |= F .

Unsatisfiable Cores

If we have an unsatisfiable set of formulae N , often not every formula in N is responsible for
the unsatisfiability of N . To make reasoning more efficient it can therefore be of advantage
to compute a subset of N that is still unsatisfiable. Such an unsatisfiable subset of N is
called an unsatisfiable core of N .

Definition 2.1 ((Minimal) Unsatisfiable Core). An unsatisfiable core of an unsatis-
fiable set of formulae N is a subset U ⊆ N such that U is also unsatisfiable. An unsatisfiable
core U is called minimal if every proper subset V ⊂ U is satisfiable.

21

Example 2.2. We consider the set N = {F1, F2, F3, F4, F5} of formulae, where:

F1 = P

F2 = P → Q

F3 = ¬Q ∧R

F4 = R→ S

F5 = ¬R

Then {F1, F2, F3} and {F3, F5} are minimal unsatisfiable cores of N . ■

The Many-sorted Case

Sometimes we need signatures which have more than one sort with functions whose domains
range over different sorts. We then consider a many-sorted signature Π = (S,Σ,Pred),
where

• S is a set of sorts,

• Σ is a set of function symbols such that for every f ∈ Σ its arity a(f) = s1...sn → s
is specified, and

• Pred is a set of predicate symbols such that for every p ∈ Pred its arity a(p) = s1...sm
is specified,

where s1, ..., sn, sm, s are sorts in S.

Let X = {Xs|s ∈ S}, where every Xs is a countably infinite set of variables of sort s.

Let the set T s
Π(X) of terms of sort s be recursively defined as follows:

• Every variable x ∈ Xs is a term of sort s.

• Every constant c with a(c) =→ s is a term of sort s.

• If a(f) = s1...sn → s and ti are terms of sort si for all i ∈ {1, ..., n}, then f(t1, ..., tn)
is a term of sort s.

We denote by {T s
Π(X)}s∈S the set of many-sorted Π-terms over X with sorts in S.

For many-sorted Π-atoms p(t1, ..., tm) with arity a(p) = s1...sm we require that ti is a term
of sort si for all i ∈ {1, ...,m}.

A many-sorted Π-structure is a tuple A = ({|A|s}s∈S ,ΣA,PredA), where

• every |A|s is a non-empty set called the universe of A of sort s,

• ΣA is a set containing a function fA : |A|s1 × ...× |A|sn → |A|s for every f ∈ Σ with
arity s1...sn → s, and

• PredA is a set containing a predicate pA ⊆ |A|s1 × ...× |A|sm for every p ∈ Pred with
arity s1...sm.

A valuation over a many-sorted Π-structure is a set β = {βs}s∈S , where every βs is a map
βs : Xs → |A|s.

22

2.1.2 Proof Calculi and Interpolation

In this section we describe important notions related to first-order logic and propositional
logic, which are needed later in the thesis. For reasoning in propositional or first-order
logic it is often necessary to show satisfiability or unsatisfiability of logical formulae. There
exist several proof calculi for deciding satisfiability, for example semantic tableau calculi
and the resolution calculus, which both have variants for propositional logic as well as
first-order logic. In the following we decribe the ordered resolution calculus.

Ordered Resolution

Ordered resolution is a method for checking satisfiability of formulae in conjunctive normal
form. We here present the ordered resolution calculus only for propositional logic, because
we will only need it for propositional logic and not for first-order logic in the thesis. We
denote the ordered resolution calculus by Res≺.

Definition 2.3 (Literal Ordering). Let ≺ be a total and well-founded ordering on pro-
positional variables. We can extend ≺ to an ordering on literals:

• If P ≺ Q, then also P ≺ ¬Q, ¬P ≺ Q and ¬P ≺ ¬Q.

• P ≺ ¬P for every propositional variable P .

A literal L is called maximal w.r.t. ≺ in a clause L1∨...∨Ln∨L if there is no L′ ∈ {L1, ..., Ln}
such that L ≺ L′, i.e. if for all L′ ∈ {L1, ..., Ln} it holds that either L′ ≺ L or L′ = L. A
literal L is called strictly maximal w.r.t. ≺ in L1 ∨ ... ∨ Ln ∨ L if for all L′ ∈ {L1, ..., Ln}
it holds that L′ ≺ L.

Definition 2.4 (Ordered Resolution Rules). Let C,D be clauses and A be an atom.
Consider the following inference rules:

• Ordered resolution:
C ∨A ¬A ∨D

C ∨D
if A is strictly maximal w.r.t. ≺ in C ∨ A

and ¬A is maximal w.r.t. ≺ in ¬A ∨D.

• Ordered (positive) factorization:
C ∨A ∨A

C ∨A
if A is maximal w.r.t. ≺ in its clause.

The clause C∨D generated by the resolution rule is called a resolvent of C∨A and ¬A∨D.
The clause C ∨A generated by the factorization rule is called a factor of C ∨A ∨A.

Given a formula F in conjunctive normal form, described as a set of clauses, we can check its
satisfiability by generating new resolvents and factors in a systematic way. A set of clauses
N is saturated under Res≺ if every application of an inference rule yields a resolvent or
factor that is already in N .

Theorem 2.5 (Soundness/Completeness [13]). Let F be a formula in conjunctive
normal form, described as a set of clauses.

(1) The ordered resolution calculus is sound, i.e. if the empty clause (⊥) can be derived
by Res≺, then F is unsatisfiable.

(2) The ordered resolution calculus is refutationally complete, i.e. if the empty clause is
not included in the saturated set Nsat obtained by Res≺, then F is satisfiable.

23

Example 2.6 (Ordered Resolution). Let R ≺ Q ≺ P be an atom ordering and let F
be the CNF-formula described by the following set of clauses:

C1 = P ∨Q ∨ ¬R
C2 = ¬P ∨Q

C3 = ¬Q ∨ ¬R
C4 = R

• Resolution of C1 and C2 yields: C5 = Q ∨Q ∨ ¬R

• Factorization of C5 yields: C6 = Q ∨ ¬R

• Resolution of C3 and C6 yields: C7 = ¬R ∨ ¬R

• Resolution of C4 and C7 yields: C8 = ¬R

• Resolution of C4 and C8 yields: C9 = ⊥

Since ⊥ was derived by Res≺ and the calculus is sound, we can conclude that F is unsat-
isfiable. ■

One can also define a resolution calculus without ordering, by discarding the conditions on
the ordering for the resolution and factorization rules. In Chapter 5 we use a variant of
resolution without ordering, where in addition we only allow inferences in which one clause
is a positive unit clause (i.e. an atom). We refer to this variant of resolution as positive
unit resolution. It is sound and complete for sets of Horn clauses (cf. [59]).

Interpolation

Interpolation in logic is a way of computing intermediate terms between two formulae in
the common signature of the formulae. In the following we define the notion of Craig
interpolation. When we talk about non-logical symbols we refer to all symbols except
for logical operators and parantheses, i.e. non-logical symbols include variables, constants,
function symbols and predicate symbols.

Definition 2.7 (Craig Interpolant). Let F and G be formulae such that F → G is valid.
A formula I is called a Craig interpolant if

(i) F → I is valid,

(ii) I → G is valid, and

(iii) Every non-logical symbol in I occurs in both F and G.

In [36] Craig proved that for any two formulae of first-order logic there exists a Craig
interpolant. It follows that the same holds for any two propositional formulae. Interpolants
in propositional logic can be computed using ordered resolution. We now give an example
of a Craig interpolant in propositional logic.

Example 2.8. Consider the following formulae in propositional logic:

F = ¬((P ∧Q)→ R)

G = (¬P → S) ∧ (¬Q→ S)

Clearly F → G is valid. Since F → P ∧Q and P ∧Q→ (¬P → S) ∧ (¬Q→ S) are valid,
a Craig interpolant for F and G is I = P ∧Q. ■

24

2.2 Theories

A logical theory can be seen as a collection of sentences, defining which formulae are
supposed to be true in the theory. This can for instance be done by stating a set of axioms
and considering all logical consequences of the axioms or by giving a set of models in which
the statements of the theory hold. The formal definitions are given below.

A Π-theory T is a set of Π-sentences. A set AxT of Π-sentences is an axiomatization of
a Π-theory T if and only if T and AxT have the same consequences, i.e. if for every Π-
sentence F it holds that T |= F if and only if AxT |= F . The elements of AxT are called
axioms.

If F and G are formulae we write F |=T G (also written as T ∪ F |= G) to say that every
model of F which is also a model of T is a model of G. F |=T ⊥ means that there is no
model of T in which F is true. If there is a model of T which is also a model of F we say
that F is T -consistent (or satisfiable w.r.t. T). If F |=T G and G |=T F , we say that F
and G are equivalent w.r.t. T , denoted by F ≡T G.

A theory T is called locally finite if for every finite set of variables X the set of terms
TΠ(X) contains only finitely many terms t1, ..., tn with |=T ti ̸≈ tj for i ̸= j.

Examples of theories are the theories of rational and real linear arithmetic (LI(Q), LI(R))
and the theory of real closed fields (which will be defined in Section 2.3.1). These theories
are not locally finite. An example of a locally finite theory is the theory of semilattices
(which will be defined in Chapter 5).

Often we need to consider combinations or extensions of theories. Combining two theories
T1 and T2 means that we combine the corresponding axioms of the theories. For instance,
a theory of arrays can be regarded as the combination of an index theory (usually the
theory of integers) and an element theory (for instance the theory of real numbers).

Sometimes we may have a base theory which is extended with additional function symbols
which have certain properties (decribed by universal formulae). This is then called a theory
extension. This could for instance be an extension of the theory of real numbers with a
function f : R→ R which has the property that it is monotone, i.e. it satisfies the formula

∀x, y (x ≤ y → f(x) ≤ f(y)).

Of special interest are theory extensions that have a “locality” property. In the following
we define what a local theory extension is, show how to recognize them and describe a
method for hierarchical reasoning in theory extensions.

2.2.1 Local Theory Extensions

The notion of locality was first introduced by Givan and McAllester in [54, 55], who looked
into so-called local inference relations for which checking validity of ground Horn clauses
can be done in polynomial time. Ganzinger continued this work in [48] by studying so-
called local theories and established links between embeddability properties and locality.
In [90] Sofronie-Stokkermans further generalized these results by introducing the notion
of local theory extensions. In [63] Sofronie-Stokkermans et al. introduced the notion of Ψ-
local theory extensions, where Ψ is a closure operator on ground terms, which were further
studied by Ihlemann and Sofronie-Stokkermans in [64]. In the following these two notions
will be defined.

25

Let Π0=(Σ0,Pred) be a signature and T0 be a base theory with signature Π0 (we call
functions in Σ0 base functions). We consider a theory extension T1 := T0 ∪ K of T0 with
new function symbols in a set Σ disjoint from Σ0 (which we call extension functions).
The properties of the extension functions are axiomatized using a set K of clauses in the
extended signature Π1 = (Σ0 ∪ Σ,Pred), which contain function symbols in Σ. If G is a
finite set of ground ΠC

1 -clauses (where ΠC
1 = (Σ0 ∪ Σ ∪ ΣC ,Pred) is the extension of Π1

with constants in a countable set ΣC of fresh constants) and K a set of Π-clauses, we will
denote by st(K, G) the set of all ground terms which occur in G or K, and by est(K, G) the
set of all extension ground terms (i.e. ground terms whose root is in Σ) which occur in G
or K. We here regard every finite set G of ground clauses as the ground formula

⋀︁
C∈GC.

We denote by K[G] the set of instances of K in which all terms starting with an extension
function are ground terms in the set est(K, G), i.e.

K[G] = {Cσ | C ∈ K and σ : X → X ∪ TΣ∪ΣC
is such that

(i) for each extension term f(t) in C, f(t)σ ∈ est(K, G)

(ii) xσ = x if x does not occur in an extension term}.

Example 2.9. Let T0 be the theory of integers with signature Π0 = {Σ0,Pred}, where
Σ0 = Z and Pred = {≈,≤}. Let Π1 = (Σ0 ∪ Σ ∪ ΣC ,Pred) be the extended signature,
where Σ = {f, g} and ΣC = {a, b, c}. We consider the following set of clauses K and set of
ground terms G:

K = { ∀x f(x) ≤ g(x), ∀x, y x ≤ y → f(x) ≤ f(y) }
G = { a ≤ b, b ≤ c, f(a) ≈ 1, f(b) ≈ 2, g(a) ≈ g(c) }

Then the set of extension ground terms looks as follows:

est(K, G) = { f(a), f(b), g(a), g(c) }

We compute the set of instances K[G] as follows:

• Since f(a) ∈ est(K, G) and g(a) ∈ est(K, G), we have f(a) ≤ g(a) as an instance of
the first clause in K[G].

• Since f(a) ∈ est(K, G) and f(b) ∈ est(K, G), we have four instances of the second
clause in K[G], all instances of the form x ≤ y → f(x) ≤ f(y), where x, y ∈ {a, b}.

Therefore, we obtain the following set of instances K[G]:

K[G] = { f(a) ≤ g(a), a ≤ a→ f(a) ≤ f(a),

a ≤ b→ f(a) ≤ f(b),

b ≤ a→ f(b) ≤ f(a),

b ≤ b→ f(b) ≤ f(b) }

Definition 2.10 (Local Theory Extension). A theory extension T0 ∪ K is local if the
condition (Locf) is satisfied:

(Locf) For every finite set G of ground clauses in the signature ΠC
1 it holds that

T0 ∪ K ∪G |= ⊥ if and only if T0 ∪ K[G] ∪G is unsatisfiable.

26

It is always true that T0 ∪ K[G] ∪ G |= ⊥ implies T0 ∪ K ∪ G |= ⊥. However, in general
the satisfiability of T0 ∪K[G] ∪G does not imply the satisfiability of T0 ∪K ∪G. If this is
the case, i.e. we can restrict to a “local” part of the problem for checking (un-)satisfiability,
we say that the theory extension has the locality property. Sometimes the instances K[G]
computed from the set of ground terms est(K, G) may not be sufficient for guaranteeing
satisfiabilty. In this case we can try to find a suitable closure operator Ψ to compute
a larger set of ground terms. If this guarantees satisfiability, then we call this property
Ψ-locality.

Definition 2.11 (Term Closure Operator [64]). Let Ψ be a map associating with K
and a set of ΠC-ground terms T a set ΨK(T) of ΠC-ground terms. We call ΨK a term
closure operator if the following holds for all sets of ground terms T and T ′:

(1) est(K, T) ⊆ ΨK(T),

(2) If T ⊆ T ′, then ΨK(T) ⊆ ΨK(T
′),

(3) ΨK(ΨK(T)) = ΨK(T),

(4) for any map h : C → C it holds that h(ΨK(T)) = ΨK(h(T)), where h is the canonical
extension of h to extension ground terms.

The important case, in which this criterion is helpful, is the case in which for every finite
set T of ground terms the set ΨK(T) is also finite. This is the case we consider in what
follows. Let the set ΨK(est(K, G)) of ground terms derived using the closure operator ΨK
be denoted by ΨK(G).

Definition 2.12 (Ψ-local Theory Extension [63, 64]). A theory extension T0 ∪ K is
Ψ-local if the condition (LocΨf) is satisfied:

(LocΨf) For every finite set G of ground clauses in the signature ΠC
1 it holds that

T0 ∪ K ∪G |= ⊥ if and only if T0 ∪ K[ΨK(G)] ∪G is unsatisfiable.

Sometimes we require that the clauses in K and/or G are flat or linear w.r.t. Σ-functions.
In the definition we make a distinction between ground and non-ground clauses.

Definition 2.13 (Flat, Linear [100]). A non-ground clause D is Σ-flat if all symbols be-
low a Σ-function symbol in D are variables. A non-ground clause D is Σ-linear if whenever
a variable occurs in two terms of D whose root symbol is in Σ, the two terms are identical,
and no term which starts with a Σ-function contains two occurrences of the same variable.
A ground clause D is Σ-flat if all symbols below a Σ-function in D are constants. A ground
clause D is Σ-linear if whenever a constant occurs in two terms of D whose root symbol
is in Σ, the two terms are identical, and no term which starts with a Σ-function contains
two occurrences of the same constant.

2.2.2 Recognizing Local Theory Extensions

In [90] it was shown that (Ψ-)local extensions can be recognized by showing that certain
partial models embed into total ones. Especially well-behaved are the theory extensions
with the completability property, stating that partial models can be made total without
changing the universe of the model. In the following we will define the embeddability and
completability properties formally.

27

Definition 2.14 (Partial Structure [100]). Let Π = (Σ,Pred) be a signature. A partial
Π-structure is a tuple (|A|, {fA}f∈Σ, {PA}P∈Pred), where

• |A| is a non-empty set,

• for every n-ary function symbol f ∈ Π, fA is a partial function from |A|n to |A|,

• constants (0-ary function symbols) are always defined, and

• for every k-ary predicate symbol P ∈ Pred, PA is a subset of |A|k.

The structure is a (total) algebra if all functions fA are total.

Definition 2.15 (Weak Satisfiability [90]). Let A be a partial Π-structure and let β :
X → |A| be a valuation for its variables. (A, β) weakly satisfies a literal L (notation:
(A, β) |=w L) if and only if

• L = P (t1, ..., tn) and either (β(t1), ..., β(tn)) ∈ PA or β(ti) is undefined for some i;

• L = ¬P (t1, ..., tn) and either (β(t1), ..., β(tn)) ̸∈ PA or β(ti) is undefined for some i.

(A, β) weakly satisfies a clause C (notation: (A, β) |=w C) if and only if it weakly satisfies
one of the literals in C.

Let T0 ⊆ T1 = T0 ∪ K be a theory extension where the signature of the base theory T0 is
Π0 = (Σ0,Pred) and the extended signature of T1 is Π1 = (Σ0∪Σ1,Pred). Given a (partial
or total) Π-structure A and Π0 ⊆ Π we denote by A|Π0 the reduct of A to Π0, i.e. the
Π0-structure obtained from A by forgetting the interpretations of function and predicate
symbols from Π \Π0.

Definition 2.16 (Weak Partial Model [100]). A partial Π1-structure A is a weak
partial model of T1 with totally defined Σ0-functions if

• A|Π0 is a total model of T0 and

• A weakly satisfies all clauses in K.

We denote by PModw(Σ1, T1) the set of all weak partial models of T1 with totally defined
Σ1-functions.

Definition 2.17 (Weak Embedding [100]). Let Π = (Σ,Pred). A weak Π-embedding
between two partial Π-structures A and B is a total injective map h : |A| → |B| such that:

(i) For all P ∈ Pred it holds that PA(a1, ..., an) if and only if PB(h(a1), ..., h(an)).

(ii) For all f ∈ Σ it holds that whenever fA(a1, ..., an) is defined (in A), then
fB(h(a1), ..., h(an)) is defined (in B) and h(fA(a1, ..., an)) = fB(h(a1), ..., h(an)).

We now define the embeddability and completability properties (and also versions related
to a closure operator Ψ) in a formal way:

(Embf) Every A ∈ PModw(Σ1, T1) where all functions have a finite domain of definition
weakly embeds into a total model of T1.

(Compf) Every A ∈ PModw(Σ1, T1) where all functions have a finite domain of definition
weakly embeds into a total model B of T1 such that A|Π0 and B|Π0 are
isomorphic.

28

(EmbΨf) Every A ∈ PModw(Σ1, T1) where {f(a1, ..., an) | ai ∈ A, f ∈ Σ1, fA(a1, ..., an) is
defined} is finite and closed under Ψ weakly embeds into a total model of T1.

(CompΨf) Every A ∈ PModw(Σ1, T1) where {f(a1, ..., an) | ai ∈ A, f ∈ Σ1, fA(a1, ..., an) is
defined} is finite and closed under Ψ weakly embeds into a total model B
of T1 such that A|Π0 and B|Π0 are isomorphic.

Since completability is a stronger property than embeddability, it clearly follows that
(Compf) implies (Embf) and (CompΨf) implies (EmbΨf).

In [90] it was shown that under certain conditions (Embf) implies (Locf).

Theorem 2.18 ([90]). Let K be a set of Σ1-flat and Σ1-linear clauses and let T1 = T0∪K.
Assume that T0 is a locally finite theory and K only contains finitely many ground subterms.
If the extension T0 ⊆ T1 satisfies (Embf), then it satisfies (Locf).

In [99] it was proved that (EmbΨf) implies (LocΨf).

Theorem 2.19 ([99]). Let K be a set of Σ1-flat and Σ1-linear clauses. If the extension
T0 ⊆ T1 = T0 ∪K satisfies (EmbΨf), where Ψ is a term closure operator, then the extension
satisfies (LocΨf).

Remark 2.20 ([99], [86]). The Σ1-linearity restriction in Theorem 2.19 can be relaxed.
We can allow a variable x to occur below two unary function symbols g and h in a clause
if Ψ has the property that for every constant c it holds that: g(c) ∈ Ψ(G) if and only if
h(c) ∈ Ψ(G).

Examples of Local Theory Extensions

The link between embeddability of partial models into total models and locality can be
used to identify many classes of local theory extensions. In the following we present some
examples.

Example 2.21 (Extensions with Free/Monotone Functions [90, 63]). The following
types of extensions of a theory T0 are local:

(1) Any extension of T0 with uninterpreted function symbols (the extension satisfies
condition (Compf)).

(2) Any extension of a theory T0 for which ≤ is a partial order with functions monotone
w.r.t. ≤, i.e. functions satisfiying monotonicity axioms of the form

Mon(f) = ∀x, y(x ≤ y → f(x) ≤ f(y))

(the extension satisfies condition (Compf) if all models of T0 are lattices w.r.t. ≤). ■

Remark 2.22. For the set of monotonicity axioms for functions in a set Σ we use the
following notation:

Mon(Σ) :=
⋃︁
f∈Σ

Mon(f).

29

Example 2.23 (Extensions with Definitions [66, 63]). Any extension of a theory T0
with a new function symbol f is local if f is defined by case distinction with axioms of the
form

Deff := {∀x(ϕi(x)→ Fi(f(x), x)) | i = 1, . . . ,m},

where ϕi and Fi with i = 1, . . . ,m are formulae over the signature of T0 such that the
following conditions hold:

(i) ϕi(x) ∧ ϕj(x) |=T0⊥ for i ̸=j and

(ii) T0 |= ∀x(ϕi(x)→ ∃y(Fi(y, x))) for all i ∈ {1, . . . ,m}.

In particular the following types of extensions are local (and satisfy (Compf)):

(1) Any extension with a function f defined by axioms of the form

Df := {∀x(ϕi(x)→ f(x) ≈ ti) | i = 1, . . . , n} ,

where ϕi are formulae over the signature of T0 and ti terms over the signature of T0
such that (i) holds.

(2) Any extension of T0 ∈ {LI(Q), LI(R)} with functions satisfying axioms

Boundf := {∀x(ϕi(x)→ si ≤ f(x) ≤ ti) | i = 1, . . . , n},

where ϕi are formulae over the signature of T0, si, ti are Π0-terms, condition (i) holds
and |=T0 ∀x(ϕi(x)→ si ≤ ti). ■

Example 2.24 (The Array Property Fragment [24, 63]). In [24] a decidable fragment
of the theory of arrays is studied, namely the array property fragment. Arrays are regarded
as functions with arguments of sort index and values of sort elemm with m > 0. The index
theory Ti is Presburger arithmetic, with signature ΠZ = ({0, 1,+,−}, {≈, <,≤}). The
element theories T 1

elem,...,T m
elem are parametric, with Π1

elem, ...,Π
m
elem being the corresponding

signatures. The theory of arrays TA has the signature ΠA = ΠZ∪
⋃︁

k Π
k
elem∪{·[·], ·{· ← ·}}

where a[i] describes an array read, i.e. it returns the value of the array a at position i,
and a{i← e} describes an array write, i.e. it returns the modified array a with value e at
position i.

An array property formula has the form ∀i(φI(i)→ φV (i)), where:

• φI is called the index guard, and it is a positive Boolean combination of atoms of
the form t ≤ u or t ≈ u, where t and u are either a variable or a ground term of sort
index.

• φV is called the value constraint, and it has the property that any universally quan-
tified variable x of sort index only occurs in a direct array read a[x] in φV and there
are no nested array reads.

The array property fragment consists of all existentially closed Boolean combinations of
quantifier-free formulae and array property formulae. In [24] it is shown that formulae in
the array property fragment have complete instantiation for satisfiability checking. In [63]
it is shown that this fragment satisfies a Ψ-locality condition with the closure operator
Ψ(G) = {a(i1, ..., in) | a is an array name, i1, ..., in ∈ I} where I is the set of index terms
used for complete instantiation in [24], i.e. the union of the set R of index terms at which
some array is read and the set B of index terms that define boundaries on some array of
an array property (additionally, if R = B = ∅, then I = {0}). ■

30

2.2.3 Hierarchical Reasoning in Local Theory Extensions

For (Ψ)-local theory extensions hierarchical reasoning is possible. Here we discuss only the
case of local theory extensions, but similar results hold also for Ψ-local theory extensions
under the additional assumption that for every finite set G of ground clauses ΨK(G) is
finite. If T0 ∪ K is a local extension of T0 and G is a set of ground Σ0 ∪ Σ1 ∪ ΣC-clauses,
then T0 ∪K∪G is unsatisfiable if and only if T0 ∪K[G]∪G is unsatisfiable. We can reduce
this last satisfiability test to a satisfiability test w.r.t. T0. The idea is to purify K[G] ∪ G
by applying the following steps:

(i) Introduce in a bottom-up manner new constants ct for subterms t = f(g1, . . . , gn),
where f ∈ Σ and gi are ground Σ0 ∪ ΣC-terms, and replace the terms t with the
constants ct.

(ii) Add the definitions ct ≈ t to a set Def.

We denote by K0 ∪ G0 ∪ Def the set of formulae obtained this way. Then G is satisfiable
w.r.t. T0∪K if and only if K0∪G0∪Con0 is satisfiable w.r.t. T0, where Con0 is the following
set of instances of congruence axioms:

Con0 = {(
n⋀︂

i=1

ci ≈ di)→ c ≈ d | c ≈ f(c1, . . . , cn), d ≈ f(d1, . . . , dn) ∈ Def}.

Theorem 2.25 ([90]). If T1 = T0 ∪ K is a local theory extension of T0 and G is a finite
set of ground clauses, then we can reduce the problem of checking whether G is satisfiable
w.r.t. T0 ∪ K to checking the satisfiability w.r.t. T0 of the set of formulae K0 ∪ G0 ∪ Con0
constructed as explained above. If K0∪G0∪Con0 belongs to a decidable fragment of T0, we
can use the decision procedure for this fragment to decide whether T0∪K∪G is unsatisfiable.

As the size of K0∪G0∪Con0 is polynomial in the size of G (for a given K), locality allows
us to express the complexity of the ground satisfiability problem w.r.t. T1 as a function of
the complexity of the satisfiability of formulae w.r.t. T0.

In the following we illustrate the method for hierarchical reasoning in theory extensions
described before on a small example.

Example 2.26. Let T1 = T0 ∪ K be a theory extension, where T0 = LI(R) and

K = Mon(f, g) = {∀x, y(x ≤ y → f(x) ≤ f(y)),

∀x, y(x ≤ y → g(x) ≤ g(y))}.

We want to show that

T0 ∪ K |= ∀x, y(x ≤ y → f(x) + g(x) ≤ f(y) + g(y)).

For this we have to show that T0 ∪ K ∪G is unsatisfiable, where

G = a ≤ b ∧ (f(a) + g(a) > f(b) + g(b))

is the skolemized negation of the formula ∀x, y(x ≤ y → f(x) + g(x) ≤ f(y) + g(y)).

From Example 2.21 we already know that the theory extension T1 = LI(R) ∪ Mon(f, g)
is local. We can therefore use hierarchical reasoning as described above. We show the
reduction step by step:

31

Step 1: Use locality

From locality we know that T0 ∪ K ∪ G is unsatisfiable if and only if T0 ∪ K[G] ∪ G is
unsatisfiable. The extension terms appearing in G are f(a), f(b), g(a) and g(b), therefore
we have the following set of instances of Mon(f, g):

Mon(f, g)[G] = { (a ≤ b→ f(a) ≤ f(b)),

(a ≤ b→ g(a) ≤ g(b)),

(b ≤ a→ f(b) ≤ f(a)),

(b ≤ a→ g(b) ≤ g(a)),

(a ≤ a→ f(a) ≤ f(a)),

(a ≤ a→ g(a) ≤ g(a)),

(b ≤ b→ f(b) ≤ f(b)),

(b ≤ b→ g(b) ≤ g(b)) }.

Remark: Since the relation ≤ on R is reflexive, the last four instances in the set above
are trivially always true and are therefore not needed. Thus, we will omit these instances
in the following steps. In other examples in this thesis similar redundant instances are
always omitted from the start.

Step 2: Flattening and purification

We flatten and purify Mon(f, g)[G] by replacing every ground term whose root is an ex-
tension function (i.e. f or g) with a new constant. We obtain a set of definitions Def and
a conjunction of formulae in the base signature, T0 ∪ K0 ∪G0, where:

Def = {a1 ≈ f(a), a2 ≈ g(a), b1 ≈ f(b), b2 ≈ g(b)}
K0 = (a ≤ b→ a1 ≤ b1) ∧ (a ≤ b→ a2 ≤ b2) ∧

(b ≤ a→ b1 ≤ a1) ∧ (b ≤ a→ b2 ≤ a2)

G0 = a ≤ b ∧ (a1 + a2 > b1 + b2)

Step 3: Reduction to testing satisfiability in T0

We know that G is unsatisfiable w.r.t. T0 ∪K if and only if K0 ∪G0 ∪Con0 is unsatisfiable
w.r.t. T0, where Con0 consists of the instances of the congruence axioms containing only
terms starting with f and g which occur in Def.

Con0 = {a ≈ b→ a1 ≈ b1, a ≈ b→ a2 ≈ b2}

Remark: For extensions with monotone functions the congruence axioms are not needed,
since from a ≤ b → f(a) ≤ f(b) and b ≤ a → f(b) ≤ f(a) it immediately follows that
a ≈ b→ f(a) ≈ f(b). Therefore we can omit the congruence axioms whenever we have an
extension with monotonicity axioms.

It is easy to see that K0 ∪ G0 ∪ Con0 is unsatisfiable w.r.t. T0, as from a ≤ b it follows
that a1 ≤ b1 and a2 ≤ b2, but then we clearly have a1 + a2 ≤ b1 + b2, which contradicts
a1 + a2 > b1 + b2. ■

Sometimes theories can be structured such that we have a chain of theory extensions
T0 ⊆ T1 ⊆ ... ⊆ Tn.

32

Chains of Theory Extensions

Consider the chain of theory extensions

T0 ⊆ T1 = T0 ∪ K1 ⊆ T2 = T0 ∪ K1 ∪ K2 ⊆ ... ⊆ Tn = T0 ∪ K1 ∪ ... ∪ Kn

with signatures

Π0 = (Σ0,Pred) ⊆ Π1 = (Σ0 ∪ Σ1,Pred) ⊆ ... ⊆ Πn = (Σ0 ∪ Σ1 ∪ ... ∪ Σn,Pred).

If every theory Ti with i ∈ {1, ..., n} defines a local theory extension of Ti−1 and every
variable in Ki occurs under a function symbol in Σi, then hierarchical reasoning is possible
and we can reduce the satisfiability test w.r.t. Tn in a top-down manner to a satisfiabilty
test w.r.t. the base theory T0 in n steps.

Example 2.27 (Hierarchical Reasoning in Chains of Local Theory Extensions).
Let T1 = T0 ∪ K1 ∪ K2 be a theory extension with signature Π1 = (Σ1 ∪ Σ2,Pred), where

T0 = LI(R),
K1 = Mon(f) = {∀x, y(x ≤ y → f(x) ≤ f(y)},
K2 = Dg = {∀x(x < c→ g(x) ≈ c,∀x(x ≥ c→ g(x) ≈ f(x)},
Σ1 = {f},
Σ2 = {g},

Pred = {≈, <,≤, >,≥}.

We want to show that T0 ∪K1 ∪K2 |= f(c) ≥ c→ ∀x(g(x) ≥ c). For this we have to show
that T0 ∪ K1 ∪ K2 ∪G is unsatisfiable, where

G = f(c) ≥ c ∧ g(a) < c

is the skolemized negation of the formula f(c) ≥ c → ∀x(g(x) ≥ c). From Example
2.21 and Example 2.23 we know that the theory extensions T1 = LI(R) ∪ Mon(f) and
T2 = T1 ∪ Dg are local. We can therefore use hierarchical reasoning. We first consider the
theory extension T1 ⊆ T2 = T1 ∪ Dg:

From locality we know that T1 ∪ Dg ∪ G is unsatisfiable if and only if T1 ∪ Dg[G] ∪ G
is unsatisfiable. The only extension term appearing in G is g(a), therefore we have the
following set of instances of Dg:

Dg[G] = {(a < c→ g(a) ≈ c), (a ≥ c→ g(a) ≈ f(a))}.

We flatten and purify Dg[G] by replacing every ground term whose root is an extension
function (i.e. g) with a new constant. We obtain:

Def = {a2 ≈ g(a)}
Dg1 = (a < c→ a2 ≈ c) ∧ (a ≥ c→ a2 ≈ f(a))

G1 = f(c) ≥ c ∧ a2 < c

The instances of the congruence axioms Con1 are not needed here because we have only one
extension term g(a). We can now reduce it further to T0 by using hierarchical reasoning
on the theory extension T0 ⊆ T1 = T0 ∪Mon(f):

33

Let G′ = G1 ∪ Dg1. From locality we know that T0 ∪Mon(f) ∪ G′ is unsatisfiable if and
only if T0 ∪Mon(f)[G′]∪G′ is unsatisfiable. The only extension terms appearing in G′ are
f(a) and f(c), therefore we have the following set of non-redundant instances of Mon(f):

Mon(f)[G′] = {(a ≤ c→ f(a) ≤ f(c)), (c ≤ a→ f(c) ≤ f(a))}.

We flatten and purify Mon(f)[G′] by replacing every ground term whose root is an extension
function (i.e. f) with a new constant. We obtain:

Def = {a2 ≈ g(a)}
Def′ = {a1 ≈ f(a), c1 ≈ f(c)}

Mon(f)0 = (a ≤ c→ a1 ≤ c1), (c ≤ a→ c1 ≤ a1)

G′
0 = c1 ≥ c ∧ a2 < c ∧ (a < c→ a2 ≈ c) ∧ (a ≥ c→ a2 ≈ a1)

We know that G is unsatisfiable w.r.t. T0 ∪Mon(f) if and only if Mon(f)0 ∪G0 ∪ Con0 is
unsatisfiable w.r.t. T0, where Con0 consists of the congruence axioms containing only terms
starting with f which occur in Def′.

Con0 = {a ≈ c→ a1 ≈ c1}

We can show that Mon(f)0 ∪G0 ∪ Con0 is unsatisfiable w.r.t. T0 by case distinction:

Case 1: a < c. Then from G′
0 we immediately obtain a2 ≈ c, which is in contradiction to

a2 < c.

Case 2: a ≥ c. Then from G′
0 we obtain a2 ≈ a1 and from Mon(f)0 we get c1 ≤ a1, so we

have c1 ≤ a2, which together with c1 ≥ c ∧ a2 < c from G′
0 yields a contradiction.

An automated proof is also possible, by using a prover for the base theory T0. ■

Hierarchical reasoning is used to reduce a (satisfiability) problem to a problem in the given
base theory. The reduced problem can then be solved if efficient reasoning methods for
the base theory exist. Let ∀xF (x, c1, ..., cn) be the formula obtained after the hierarchical
reduction. The following are equivalent:

(i) ∀xF (x, c1, ..., cn) is unsatisfiable

(ii) ∃c1, ..., cn ∀xF (x, c1, ..., cn) ≡ ⊥

Note that if every variable in K occurs below an extension function, then we reduce the
reasoning task to the task of checking satifiability w.r.t. T0 of a ground formula, i.e. we
have F (c1, ..., cn) instead of ∀xF (x, c1, ..., cn) in (i) and (ii).

Provided that the base theory allows quantifier elimination we can check (ii) using quanti-
fier elimination, so we can check satisfiability of the reduced formula and therefore of the
original problem. Besides checking satisfiability, quantifier elimination can als be used for
generating constraints on parameters, i.e. if the formula ∀xF (x, c1, ..., cn) is satisfiable, we
can use it to find a formula Γ such that Γ∧F (x, c1, ..., cn) is unsatisfiable. In the following
we present the details of quantifier elimination.

34

2.3 Quantifier Elimination

The goal of quantifier elimination (QE) is to eliminate all quantifiers and quantified vari-
ables of a logical formula to obtain a simpler formula that is equivalent to the original one.
Quantifier elimination can for instance be used for satisfiability checking.

Definition 2.28 (Quantifier Elimination). A theory T over signature Π allows quan-
tifier elimination if for every formula ϕ ∈ FΠ(X) there exists a quantifier-free formula
ϕ∗ ∈ FΠ(X) which is equivalent to ϕ modulo T .

Examples of theories which allow quantifier elimination are rational and real linear arith-
metic (LI(Q), LI(R)), the theory of real closed fields, and the theory of absolutely free data
structures. Presburger arithmetic with an additional divisibility predicate allows quantifier
elimination as well (cf. [22]). Of particular interest for the applications considered in this
thesis are quantifier elimination methods for the real numbers, i.e. the theory of real closed
fields, which we will refer to simply as real quantifier elimination.

Example 2.29. In the real numbers the following hold:

(1) The formula ∃x(a · x+ b ≈ 0) is equivalent to the quantifier-free formula

(a ≈ 0 ∧ b ≈ 0) ∨ (a ̸≈ 0).

(2) The formula ∃x(a · x2 + b · x+ c ≈ 0) is equivalent to the quantifier-free formula

(a ̸≈ 0 ∧ b2 − 4ac ≥ 0) ∨ (a ≈ 0 ∧ b ̸≈ 0) ∨ (a ≈ 0 ∧ b ≈ 0 ∧ c ≈ 0).

(3) The formula ∀x(a · x− b · x ≈ 0) is equivalent to the quantifier-free formula

a− b ≈ 0. ■

Remark: If we have a formula φ with nested quantifiers we can use the following trans-
formations on φ to simplify the quantifier elimination problem:

(1) Transform φ to prenex normal form: Q1x1...Qnxn(φ
′), where φ′ is quantifier free.

(2) Eliminate the quantifiers one after the other, starting with the innermost (Qn).

(3) If it is a universal quantifier, transform it: ∀x(φ′)⇝ ¬∃x(¬φ′).

The problem is reduced to eliminating x from ∃x(φ′′) (where φ′′ is either φ′ or ¬φ′).

(4) Transform the quantifier-free formula φ′′ to disjunctive normal form:
⋁︁

i

⋀︁
jφij .

(5) Bring the existential quantifier inside the disjunction:
⋁︁

i∃x
⋀︁

jφij .

With these transformations we have reduced the problem to the case where only existential
quantifiers in front of a conjunction of literals need to be eliminated. Note that not all
transformations lead to a simplification of the problem all the time. Especially steps (1)
and (4) can potentially cost more effort than they save.

In what follows we will first present a method for real quantifier elimination, then discuss
quantifier elimination in theories with equality.

35

2.3.1 Real Quantifier Elimination

Since in many applications we have problems including real numbers, we need a suitable
method for quantifier elimination in this case. There exist several methods for real quan-
tifier elimination: In 1948 the first one was presented by Tarski [107], in 1975 Collins
introduced cylindrical algebraic decomposition [29], and in 1988 Weispfenning proposed
the virtual substitution [111]. In this thesis we present the method of Weispfenning for
linear formulae in detail, as this method is implemented in the software which will be used
throughout the thesis, namely the Redlog package in Reduce. Note that we will describe
the idea of virtual substitution for the case of linear equations and disequations, but meth-
ods for handling the quadratic case and heuristics for even higher degrees do exist and are
implemented in Redlog [112, 42, 105].

Definition 2.30 (Theory of Real Closed Fields [61]). A field K is called a real closed
field if in addition to the field axioms the following axioms hold:

(1) ∀x1, ..., xn ∈ K : x21 + ...+ x2n ̸≈ −1 for every positive natural number n

(2) ∀x ∈ K ∃y ∈ K : (x ≈ y2 ∨ −x ≈ y2)

(3) ∀a1, ..., an ∈ K ∃x ∈ K : xn + a1 · xn−1 + ...+ an−1 · x+ an ≈ 0 for every number n
that is odd

The theory axiomatized by the above axioms together with the field axioms is called the
theory of real closed fields and denoted by TRCF .

The field of real numbers R with the usually defined operations is a real closed field, since
all axioms hold. The field of complex numbers C is not a real closed field, since axiom
(1) is not satisfied. The field of rational numbers Q is not a real closed field either, since
axioms (2) and (3) are not satisfied.

Definition 2.31 (Signature of Ordered Rings [104]). The signature of ordered rings
is SOR = ({0/0, 1/0, +/2, −/1, ·/2}, {≈ /2, ≤ /2}).

In the signature SOR and the theory TRCF also the relations ̸≈, <, >, ≥ and a division
function div can be defined:

(1) x ̸≈ y if and only if ¬(x ≈ y)

(2) x < y if and only if x ≤ y ∧ x ̸≈ y

(3) x > y if and only if ¬(x ≤ y)

(4) x ≥ y if and only if ¬(x < y)

(5) div(x, y, z) := y ̸≈ 0 ∧ z · y ≈ x

Virtual Substitution

We assume that we have a formula φ = ∃x(F) with F being quantifier-free and only
containing linear equalities (≈), disequalities (̸≈) and inequalities (<,≤, >,≥). The idea
of virtual substitution is to replace ∃x(F), which can be regarded as an infinite disjunction
over the real numbers, by a finite disjunction of formulae not containing x. For this we
decompose the set R of real numbers into a finite number of intervals such that the truth

36

value of the formula can only change on the endpoints of the intervals, i.e. inside an interval
the truth value remains the same. Then we only need to take one suitable test point from
each interval and can replace the quantified variables in the formula with those. The
method is named after this (virtual or modified) substitution.

We first give definitions for the main notions of virtual substitution together with examples.
We consider φ = ∃x(F (x, a1, ..., an)), where a1, ..., an are free variables in F and F is a
quantifier-free formula. We assume that the atomic formulae of F are linear equalities,
disequalities and inequalities over the real numbers, i.e. we have the set of predicates
P = {≈, ̸≈, <,≤, >,≥}. Every (linear) equality, disequality and inequality t ▷ s with
▷ ∈ P can equivalently be written in the form p▷ 0, where p is a (linear) polynomial, so
we assume atoms to be of this form.

A formula is called positive if it does not contain any negation. Without loss of generality
we can assume F to be a positive formula, since every non-positive formula over the real
numbers can easily be transformed to a positive formula. For this we just have to bring
F to negation normal form and eliminate the negations in front of atoms by changing the
predicate accordingly. For instance, ¬(x ̸≈ 3) ≡ x ≈ 3 and ¬(x < y) ≡ x ≥ y.

Definition 2.32 (Solution Candidate [40]). The zeroes of the polynomials occurring in
the atomic formulae of F are called solution candidates.

Remark 2.33. Since we need a distinction between the different predicates used in an
atomic formula later on, our set of solution candidates contains the zeroes in the form of
equalities, disequalities and inequalities, i.e. for an atomic formula p(x)▷ 0, where p(x) is
a polynomial in the variable x and ▷ ∈ {≈, ̸≈, <,≤, >,≥}, the zero z of p(x) is given in
the form x▷ z.

Example 2.34. Let F = 2x−4 ≈ 0∧x−1 ≥ 0∧x+a < 0 and x the quantified variable in
∃xF (x, a). Then 2, 1 and −a are the solution candidates. Therefore, based on the remark
above, we obtain the following set of solution candidates:

C = {x ≈ 2, x ≥ 1, x < −a}. ■

The solution candidates are the endpoints of the intervals, so if we have n solution candid-
ates, this describes a decomposition of the set of real numbers into n + 1 intervals. From
each interval we need one test point. Test points may contain the additional symbols ∞
and ε. We call a term containing one of these symbols a non-standard term.

Definition 2.35 (Test Point, Guard [40]). A test point is a term (this includes non-
standard terms) that the quantified variable is replaced with. A guard is a quantifier-free
formula describing a condition which assures that the test point is always defined.

Example 2.36. Test points could for instance be 2, 3a, −a + b or 5
a−1 . The first three

test points do not need guards. However, the term 5
a−1 is only defined if the denominator

is not zero, therefore we need γ = a ̸≈ 1 as a guard. −∞, ∞, 5+ ε, 1
a − ε are also possible

test points, of which the latter needs γ = a ̸≈ 0 as a guard. Those four test points are
non-standard terms, as they contain the symbols∞ or ε. How to compute test points from
the solution candidates is explained in Definition 2.39. ■

37

Definition 2.37 (Test Term [40]). A test term is a tuple (γ, t), where γ is a guard and
t is a test point.

Example 2.38. (a ̸= 1, 5
a−1) is a test term. (⊤, 5 + ε) is also a test term. Since no guard

is needed for the test point, we set γ = ⊤. ■

Definition 2.39 (Elimination Set [40]). An elimination set is a set of test terms, which
is derived from the solution candidates as follows:

Let A = {x ▷i si | i ∈ I} be the set of all solution candidates with ▷i ∈ {≈, ̸≈,≤<,≥, >}.
Then the set of test terms is

T := {−∞} ∪ {si | ▷i ∈ {≥,≈}} ∪ {si + ε | ▷i ∈ {>, ̸≈}}.

Together with the corresponding guards for each test point we derive the elimination set.

The computation of the elimination set described in Definition 2.39 is based on traversing
the real numbers from−∞ to +∞ and taking for every interval its leftmost point. These are
the points where the truth value of the formula can change from true to false or conversely.
It is also possible to traverse the real numbers in the opposite direction, from +∞ to −∞,
and take the rightmost point from each interval, which then leads to the following set of
test points:

T ′ := {+∞} ∪ {si | ▷i ∈ {≤,≈}} ∪ {si − ε | ▷i ∈ {<, ̸≈}}.

Let F be a formula, x a variable, a parameters and t a term, then with σ = F (x, a)[x//t] we
denote the virtual substitution of x with t. The difference to standard substitution is that
we may also substitute with non-standard terms. For distinction we use the notation ”// ”
for virtual substitution in contrast to ”/” for standard substitution. When substituting
test terms (including non-standard terms) into atomic formulae the following conditions
have to hold for the substitution result σ (cf. [40]):

(1) σ is a quantifier-free formula over the signature of ordered rings.

(2) σ is equivalent to the formal substitution result w.r.t. the extended signature (i.e.
the signature of ordered rings extended by the non-standard terms ∞ and ε).

To obtain formulae satisfying both conditions we need to eliminate the non-standard sym-
bols ∞ and ε from the formal substitution result. For this we use the following simplific-
ation rules:

Definition 2.40 (Simplification Rules [89]). After the substitution of the quantified
variables the symbols ∞ and ε can occur in the formula. We use the following rules to
eliminate these symbols:

(1) (x < s)[x//−∞] := lim
r→−∞

(r < s) = ⊤

(2) (x ≤ s)[x//−∞] := lim
r→−∞

(r ≤ s) = ⊤

(3) (x > s)[x//−∞] := lim
r→−∞

(r > s) = ⊥

(4) (x ≥ s)[x//−∞] := lim
r→−∞

(r ≥ s) = ⊥

38

(5) (x ≈ s)[x//−∞] := lim
r→−∞

(r ≈ s) = ⊥

(6) (x ̸≈ s)[x//−∞] := lim
r→−∞

(r ̸≈ s) = ⊤

(7) (x < s)[x// u+ ε] := lim
ε→0,ε>0

(u+ ε < s) = (u < s)

(8) (x ≤ s)[x// u+ ε] := lim
ε→0,ε>0

(u+ ε ≤ s) = (u < s)

(9) (x > s)[x// u+ ε] := lim
ε→0,ε>0

(u+ ε > s) = (u ≥ s)

(10) (x ≥ s)[x// u+ ε] := lim
ε→0,ε>0

(u+ ε ≥ s) = (u ≥ s)

(11) (x ≈ s)[x// u+ ε] := lim
ε→0,ε>0

(u+ ε ≈ s) = ⊥

(12) (x ̸≈ s)[x// u+ ε] := lim
ε→0,ε>0

(u+ ε ̸≈ s) = ⊤

In Algorithm 1 we present the algorithm for virtual substitution in the linear case.

Algorithm 1 Virtual Substitution [40]
Input: Formula φ = ∃xF (x, a), where F is a quantifier-free formula containing

only linear equalities and disequalities
Output: Quantifier-free formula φ′ which is euivalent to φ

Step 1 Let A be the set of atomic formulae of F .

Step 2 Compute the set of solution candidates C from A (i.e. the zeroes of the polynomials).

Step 3 Compute the elimination set E from C according to Definition 2.39.

Step 4 Virtually substitute the terms from E in F (using the rules in Definition 2.40):

∃xF (x, a)↔
⋁︂

(γ,t)∈E

γ ∧ F (x, a)[x//t].

We now show for a given formula with two existential quantifiers how to compute an
equivalent quantifier-free formula using Algorithm 1.

Example 2.41. Consider the formula ∃x2∃x1F (x1, x2, a), where a is a parameter and
F (x1, x2, a) is the following quantifier-free formula:

F (x1, x2, a) = (x1 − x2 ≤ 0) ∧ (ax2 ≈ 1) ∧ ¬(x2 > 1) ∧ (−x1 + 2x2 + 3 < 0)

Our goal is to eliminate the quantifiers and the quantified variables x1 and x2 in F . We
start with the innermost quantifier, i.e. ∃x1F (x1, x2, a):

(1) All subformulae of the conjunction except for ¬(x2 > 1) are atomic formulae. This
formula is equivalent to the atomic formula x2 ≤ 1. We obtain:

A = {x1 − x2 ≤ 0, ax2 ≈ 1, x2 ≤ 1, −x1 + 2x2 + 3 < 0}.

(2) We solve the equations and disequations from A for x1. Atoms which do not contain
x1 can be disregarded. We obtain the following set of solution candidates :

C = {x1 ≤ x2, x1 > 2x2 + 3}

39

(3) −∞ is always a test point. The test point 2x2+3+ε is derived from the second solu-
tion candidate. Since for these two test points no additional conditions are needed,
we can set the guards to γ = ⊤. We obtain the following elimination set:

E = {(⊤,−∞), (⊤, 2x2 + 3 + ε)}

(4) We substitute, form the disjunction and simplify the obtained formula:

F ′(x2, a) := (⊤ ∧ (−∞ ≤ x2) ∧ (ax2 ≈ 1) ∧ (x2 ≤ 1) ∧ (−∞ > 2x2 + 3)) ∨
(⊤ ∧ (2x2 + 3 + ε ≤ x2) ∧ (ax2 ≈ 1) ∧ (x2 ≤ 1) ∧
(2x2 + 3 + ε > 2x2 + 3))

≡ (⊤ ∧ (ax2 ≈ 1) ∧ (x2 ≤ 1) ∧ ⊥) ∨
((2x2 + 3 < x2) ∧ (ax2 ≈ 1) ∧ (x2 ≤ 1) ∧ (2x2 + 3 ≥ 2x2 + 3))

≡ ⊥ ∨ ((x2 + 3 < 0) ∧ (ax2 ≈ 1) ∧ (x2 ≤ 1) ∧ ⊤)
≡ (x2 + 3 < 0) ∧ (ax2 ≈ 1) ∧ (x2 ≤ 1)

Therefore we have ∃x2∃x1F (x1, x2, a) ≡ ∃x2F ′(x2, a).

We now eliminate the quantifier in ∃x2 ((x2 + 3 < 0) ∧ (ax2 ≈ 1) ∧ (x2 ≤ 1)).

(1) All subformulae in the conjunction above are atomic, so we have the following set of
atomic formulae:

A = {x2 + 3 < 0, ax2 ≈ 1, x2 ≤ 1}

(2) Solving the equations and disequations for x2 we obtain the following set of solution
candidates:

C = {x2 < −3, x2 ≈ 1
a , x2 ≤ 1}

(3) Besides −∞ we obtain from the second solution candidate the test point 1
a . We need

the guard guard γ = a ̸≈ 0 to ensure that this term is always defined. Therefore the
elimination set is:

E = {(⊤,−∞), (a ̸≈ 0, 1a)}

(4) Virtual substitution and simplification yields the following:

F ′′(a) = (⊤ ∧ (−∞ < −3) ∧
(︃
−∞ ≈ 1

a

)︃
∧ (−∞ ≤ 1)) ∨

((a ̸≈ 0) ∧
(︃
1

a
< −3

)︃
∧
(︃
1

a
≈ 1

a

)︃
∧
(︃
1

a
≤ 1

)︃
)

≡ (⊤ ∧ ⊥ ∧ ⊤) ∨

((a ̸≈ 0) ∧
(︃
1

a
< −3

)︃
∧ ⊤ ∧

(︃
1

a
≤ 1

)︃
)

≡ (a ̸≈ 0) ∧ (3a2 + a < 0) ∧ (a ≤ a2)

Both quantifiers and the corresponding variables are eliminated and as a result we have
∃x2∃x1F (x1, x2, a) ≡ F ′′(a) = a ̸≈ 0 ∧ 3a2 + a < 0 ∧ a ≤ a2. ■

40

Complexity

Time complexity for quantifier elimination over the real numbers is in general (i.e. for arbit-
rary alternations of quantifiers and arbitrary degrees of the formulae) doubly exponential
in the size of the input formula [37]. The method of Tarski is not elementary recursive.
Cylindrical algebraic decomposition is doubly exponential in the number of all variables
[25]. Virtual substitution for linear formulae is doubly exponential in the number of quan-
tifier alternations [111]. In the applications we consider in this thesis we usually have only
existential quantifiers, i.e. no quantifier alternations, and often only linear formulae. This
makes the virtual substitution method efficient for our purposes.

2.3.2 Quantifier Elimination in Theories with Equality

In this section we analyze quantifier elimination results for theories with equality. We start
with the theory of pure equality, denoted by E . This theory has the signature Π = (∅, {≈}),
i.e. it has no function symbols and equality ≈ as the only predicate symbol, and contains
no non-logical axioms. In this theory we only have atoms of the form x ≈ y, where x and y
are constants or variables. Formulae can be built in the usual way, as boolean combinations
of the atoms and with universal and existential quantification. Unfortunately, the theory
E does not allow quantifier elimination, as the following example shows.

Example 2.42. Consider the formula F = ∃x(¬(x ≈ c1) ∧ ... ∧ ¬(x ≈ cn)). There does
not exist a quantifier-free formula F ′ which is equivalent to F w.r.t. E , since the validity of
F in a model A of E depends on the size of the universe of A. If the universe only contains
the n elements c1,...,cn, then F is false in A, but if it contains more than n elements, then
F is true in A. ■

While the theory of pure equality does not allow quantifier elimination, there is a closely
related theory which does. We consider the theory of an infinite set, denoted by TIS , which
has the same signature as E (i.e. no function symbols and ≈ as the only predicate symbol),
but has as models only Π-structures with an infinite universe. Hence, every model of TIS
has infinitely many elements, so the formula F = ∃x(¬(x ≈ c1) ∨ ... ∨ ¬(x ≈ cn)) from
Example 2.42 is equivalent to F ′ = ⊤ w.r.t. TIS .

In the following we define what a model completion is, then we show that the model
completion TIS of E admits quantifier elimination.

Definition 2.43 (Diagram of a Structure [61]). The diagram ∆(A) of a Π-structure
A is the set of ground Π|A|-literals that are true in A (where Π|A| is the signature obtained
from Π by adding to it new constants naming the elements of |A|).

Definition 2.44 (Complete Theory [61]). A theory T is called complete if it has models
and every two models of T are elementary equivalent, i.e. satisfy the same first-order
formulae (this is the same as saying that for every formula F in the language of T either
F or ¬F is a consequence of T).

Definition 2.45 (Embedding [61]). Let Π = {Σ,Pred} and let A and B be Π-structures.
A map h : |A| → |B| is called a Π-embedding if and only if it is an injective homomorphism
and for all P ∈ Pred with arity n and all (a1, ..., an) ∈ |A|n the following holds:

(a1, ..., an) ∈ PA if and only if (h(a1), ..., h(an)) ∈ PB.

41

Definition 2.46 (Elementary Embedding [61]). A Π-embedding that preserves the
truth of all first-order formulae over Π is called an elementary embedding.

Definition 2.47 (Model-complete [61]). A theory is called model-complete if every
embedding between its models is elementary.

Definition 2.48 (Model Companion [61]). Let T be a Π-theory. We call T ∗ a model
companion of T if and only if

(1) T ∗ is model-complete, and

(2) every model of T can be extended to a model of T ∗ and vice versa.

Definition 2.49 (Model Completion [61]). Let T be a Π-theory and let T ∗ with T ⊆ T ∗

be a further Π-theory. We say that T ∗ is a model completion of T if and only if

(1) T ∗ is a model companion of T , and

(2) for every model A of T we have that T ∗ ∪∆(A) is a complete theory.

There is a relation between model completions and quantifier elimination, as shown in the
following theorem.

Theorem 2.50 ([51]). Let T be a Π-theory and let T ∗ with T ⊆ T ∗ be a further Π-theory.
T ∗ is a model completion of T if

(1) every model of T can be embedded into a model of T ∗, and

(2) T ∗ admits quantifier elimination.

TIS is the model completion of E and it admits quantifier elimination. We now analyze
how quantifiers can be eliminated in the theory TIS .

Let F (x, y) be a quantifier-free formula in negation normal form. We only consider the
case in which the existential quantifier in ∃xF (x, y) needs to be eliminated (if we have a
universal quantifier we can use the equivalence ∀xF (x, y) ≡ ¬∃x¬F (x, y)). By extending
our signature with ̸≈ we can assume that F does not contain any negation (as the equi-
valences ¬(c ≈ d) ≡ c ̸≈ d and ¬(c ̸≈ d) ≡ c ≈ d hold). Therefore, F contains only atoms
of the form c ≈ d and c ̸≈ d, where c and d are constants or variables.

We first present a simple method for quantifier elimination in TIS which is typically used,
afterwards we show that virtual substitution can be used alternatively.

The Typical Method for Quantifier Elimination

In what follows, we denote literals of the form ¬(c ≈ d) with c ̸≈ d. Let y = y1, ..., yk and
F (x, y) be a formula containing only atoms of the form x▷ x, x▷ yj , yj ▷ x and yj1 ▷ yj2 ,
where ▷ ∈ {≈, ̸≈} and j, j1, j2 ∈ {1, ..., k}. We can eliminate x in ∃xF (x, y) by applying
the following steps:

(1) We bring the formula F to disjunctive normal form and distribute the existential
quantifier over the disjuncts: ∃xF (x, y) ≡

⋁︁
i ∃xCi(x, y), where Ci are conjunctions

of atoms of the form c ≈ d or c ̸≈ d with c, d ∈ {x, y1, ..., yk}.

42

(2) For each formula ∃xCi(x, y) we compute an equivalent quantifier-free formula C ′
i(y).

If Ci contains an atom of the form x ̸≈ x, then C ′
i(y) = ⊥. Otherwise we do the

following:

• We replace in Ci every atom of the form x ≈ x with ⊤.

• If Ci contains at least one literal of the form x ≈ yj or yj ≈ x with j ∈
{1, ..., k}, then we substitute every occurrence of x in Ci with yj . The result is
an equivalent quantifier-free formula C ′

i(y).

• If in Ci all atoms containing x are of the form x ̸≈ yj or yj ̸≈ x with j ∈ {1, ..., k},
then we replace every such atom with ⊤. The result is an equivalent quantifier-
free formula C ′

i(y).

(3) The formula F ′(y) =
⋁︁

iC
′
i(y) is a quantifier-free formula that is equivalent to

∃xF (x, y) w.r.t. TIS .

Note that in the last case of Step 2 every literal of the form x ̸≈ yi can be replaced by ⊤
because we can only have a finite number of atoms but we have an infinite universe, so it is
guaranteed that there exists an element different from every yi such that all atoms x ̸≈ yi
become true.

We now illustrate the application of this quantifier elimination procedure on an example.

Example 2.51. Let F (x, y) = (x ≈ y1 ∧ x ≈ y2) ∨ (x ̸≈ y3 ∧ y1 ≈ y3). We eliminate the
existential quantifier in ∃xF (x, y) by following the steps above:

(1) The formula F (x, y) is already in disjunctive normal form, so

∃xF (x, y) ≡ ∃xC1(x, y) ∨ ∃xC2(x, y), where
C1(x, y) = (x ≈ y1 ∧ x ≈ y2) and
C2(x, y) = (x ̸≈ y3 ∧ y1 ≈ y3).

(2) Neither F1 nor F2 contain atoms of the form x ̸≈ x or x ≈ x. Since in C1 we have
the atom x ≈ y1, we can replace every occurrence of x in F1 with y1. We obtain the
following:

∃xC1(x, y) ≡ (y1 ≈ y1 ∧ y1 ≈ y2)

≡ (⊤ ∧ y1 ≈ y2)

≡ y1 ≈ y2 = C ′
1(y)

Since in C2 the atom x ̸≈ y1 is the only atom containing x, we can replace it by ⊤.
We obtain the following:

∃xC2(x, y) ≡ (⊤ ∧ y1 ≈ y3)

≡ y1 ≈ y3 = C ′
2(y)

(3) The quantifier-free formula F ′(y) = C ′
1(y)∨C ′

2(y) = (y1 ≈ y2)∨(y1 ≈ y3) is equivalent
to ∃xF (x, y) = ∃x(x ≈ y1 ∧ x ≈ y2) ∨ (x ̸≈ y3 ∧ y1 ≈ y3) w.r.t. TIS . ■

43

Quantifier Elimination Using Virtual Substitution

We can also eliminate x in ∃xF (x, y) using the virtual substitution method. Without loss
of generality we can assume that all atoms in F (x, y) which contain x are of the form x ≈ d
where d ∈ {x, y}, i.e. x always occurs on the left hand side of the equality (or on both
sides). In the following we describe what happens in Steps 1-5 of Algorithm 1 (virtual
substitution) when being applied on formulae in the theory TIS .

• In Step 1 we transform every literal of the form ¬(x ≈ y) to x ̸≈ y (for this we extend
the signature by the predicate symbol ̸≈).

• In Step 2 we compute the solution candidates. As in the atoms x ≈ y and x ̸≈ y the
variables x and y are always defined, we do not need guards.

• In Step 3 we add −∞ as a test point and in Step 4 we replace every occurrence of x
with −∞. Note that this test point would not be necessary in this case, as it is only
needed for satisfying atoms of the form x ≤ t.

• For each atom x ≈ y we add in Step 3 y as a test point and replace in Step 4 every
occurrence of x with y.

• For each atom x ̸≈ y we add in Step 3 y + ε as a test point, do the substitution in
Step 4 and simplify in Step 5 the formula by replacing every atom y + ε ≈ z with ⊥
and every atom y + ε ̸≈ z with ⊤.

For comparison with the first quantifier elimination method, we now apply virtual substi-
tution on the same example.

Example 2.52. Let F (x, y) = (x ≈ y1 ∧ x ≈ y2) ∨ (¬(x ≈ y3) ∧ y1 ≈ y3). We want to
eliminate x in ∃xF (x, y). We follow the steps described above:

(1) We transform the non-atomic formula ¬(x ≈ y3) to x ̸≈ y3 and obtain the following
set of atomic formulae: A = {x ≈ y1, x ≈ y2, x ̸≈ y3, y1 ≈ y3}

(2) We do not need guards for the solution candidates, so our set of solution candidates
looks as follows: C = {x ≈ y1, x ≈ y2, x ̸≈ y3}

(3) The elimination set E contains −∞ and the test points derived from the solution
candidates: E = {−∞, y1, y2, y3 + ε}

(4) We virtually substitute the terms from E in F and use the simplification rules:

∃xF (x, y) ≡ ((−∞ ≈ y1 ∧ −∞ ≈ y2) ∨ (−∞ ̸≈ y3 ∧ y1 ≈ y3))∨
((y1 ≈ y1 ∧ y1 ≈ y2) ∨ (y1 ̸≈ y3 ∧ y1 ≈ y3))∨
((y2 ≈ y1 ∧ y2 ≈ y2) ∨ (y2 ̸≈ y3 ∧ y1 ≈ y3))∨
((y3 + ε ≈ y1 ∧ y3 + ε ≈ y2) ∨ (y3 + ε ̸≈ y3 ∧ y1 ≈ y3))

≡ ((⊥ ∧⊥) ∨ (⊤ ∧⊥)) ∨ ((⊤ ∧ y1 ≈ y2) ∨ ⊥) ∨
((y2 ≈ y1 ∧ ⊤) ∨ (y2 ̸≈ y3 ∧ y1 ≈ y3))∨
((⊥ ∧⊥) ∨ (⊤ ∧ y1 ≈ y3))

≡ (y1 ≈ y2) ∨ (y2 ≈ y1) ∨ (y2 ̸≈ y3 ∧ y1 ≈ y3) ∨ (y1 ≈ y3)

≡ (y1 ≈ y2) ∨ (y1 ≈ y3)

Thus, the quantifier-free formula F ′(y) = (y1 ≈ y2) ∨ (y1 ≈ y3) is equivalent w.r.t. TIS to
∃xF (x, y) = ∃x(x ≈ y1 ∧ x ≈ y2) ∨ (¬(x ≈ y3) ∧ y1 ≈ y3). ■

44

As one can see, we obtained the same result with the two presented methods for quantifier
elimination in TIS . We now give an analysis of why virtual substitution yields a correct
result when being applied for this theory.

Since virtual substitution yields an equivalent quantifier-free formula F ′ for an arbitrary
formula F , it is sufficient to show that it computes the right result for a formula in dis-
junctive normal form that is equivalent to F . For this we show that applying virtual
substitution to a formula in disjunctive normal form always yields the same result as the
other method.

Let y = y1, ..., yk and F (x, y) = C1(x, y)∨ ...∨Cn(x, y) be a formula in disjunctive normal
form with C1,...,Cn being conjunctions of atoms of the form x ▷ x, x ▷ yj and yj1 ▷ yj2 ,
where ▷ ∈ {≈, ̸≈} and j, j1, j2 ∈ {1, ..., k}. Let x be the existentially quantified variable
to be eliminated. We compare the way virtual substitution works with Step 2 of the other
elimination method.

• Note first that, with the exception of −∞, we can only have two kinds of test points:
atoms of the form x ≈ y yield y as a test point, while atoms of the form x ̸≈ y yield
y + ε as a test point.

• If an atom of the form x ≈ x is present in a conjunction Ci and the variable x is
replaced by some test point t, then this yields t ≈ t and simplifies to ⊤. This is the
same as in the other method.

• If an atom of the form x ̸≈ x is present in a conjunction Ci and x is replaced by a test
point t, then this yields t ̸≈ t, which simplifies to ⊥ and makes the whole conjunction
evaluate to ⊥. This is the same as in the other method.

• Consider a conjunction Ci in which an atom of the form x ≈ y occurs. It yields y as
a test point, so in the result of the virtual substitution there will be a conjunction
C ′
i resulting from replacing every occurrence of x in Ci by y. The same conjunction

appears in the result when we use the other method.

• Consider a conjunction Ci in which only atoms of the form x ̸≈ y occur. It yields
terms of the form y + ε as test points. Replacing x with such a test point yields
atoms of the form y + ε ̸≈ z, which are then simplified to ⊤. Therefore, we obtain
a conjunction C ′

i where all atoms of the form x ̸≈ y are replaced by ⊤. The same
conjunction appears in the result when we use the other method.

Let F ′
1 be the result obtained by applying the typical method for quantifier elimination and

F ′
2 be the result obtained by applying the method of virtual substution. The considerations

above show that every conjunction C ′
i that occurs in F ′

1 also occurs in F ′
2. However, without

additional simplifications F ′
2 will in addition contain many conjunctions that are not present

in F ′
1 for the following reasons:

(1) We always have −∞ as an additional test point for virtual substitution.

(2) From one conjunction Ci we may get several test points for virtual substitution. For
instance, if we have the conjunction Ci = x ≈ y1 ∧ x ≈ y2, this yields two test
points y1 and y2 for virtual substitution, while in the typical method x only has to
be replaced with one of the two.

(3) In virtual substitution we always replace x with a test point t in the whole formula,
while in the typical method we replace x only in the relevant conjunction.

45

We show that the additional conjunctions arising from (1) to (3) are not relevant for the
formula.

Consider (1):

In conjunctions containing −∞ all atoms of the form −∞ ≈ y are simplified to ⊥ and all
atoms of the form −∞ ̸≈ y are simplified to ⊤. Therefore, if a conjunction C ′

i contains
at least one atom of the form −∞ ≈ y, then C ′

i is false and therefore not relevant for the
disjunction. If C ′

i contains only atoms of the form −∞ ̸≈ y, then each of these atoms is
replaced by ⊤, which yields the same conjunction that is obtained by replacing x with the
test point y + ε, so it adds nothing new to the formula.

Consider (2):

If all atoms in Ci containing x are of the form x ̸≈ y, then for each test point we obtain
the same conjunction C ′

i, in which all such atoms are replaced by ⊤. Assume now that Ci

contains also atoms of the form x ≈ y, i.e. it is of the form

Ci = x ≈ yi1 ∧ ... ∧ x ≈ yin ∧ x ̸≈ yj1 ∧ ... ∧ x ̸≈ yjm ∧ C(y)

where n,m ≥ 0 and C(y) is a conjunction of atoms not containing x.

We obtain n+m test points yi1 , ..., yin , yj1 + ε, ..., yjm + ε and therefore after substitution
the following n+m conjunctions:

C ′
i1 = yi1 ≈ yi1 ∧ ... ∧ yi1 ≈ yin ∧ yi1 ̸≈ yj1 ∧ ... ∧ yi1 ̸≈ yjm ∧ C(y)

...

C ′
in = yin ≈ yi1 ∧ ... ∧ yin ≈ yin ∧ yin ̸≈ yj1 ∧ ... ∧ yin ̸≈ yjm ∧ C(y)

C ′
j1 = yj1 + ε ≈ yi1 ∧ ... ∧ yj1 + ε ≈ yin ∧ yj1 + ε ̸≈ yj1 ∧ ... ∧ yj1 + ε ̸≈ yjm ∧ C(y)

...

C ′
jm = yjm + ε ≈ yi1 ∧ ... ∧ yjm + ε ≈ yin ∧ yjm + ε ̸≈ yj1 ∧ ... ∧ yjm + ε ̸≈ yjm ∧ C(y)

The conjunctions C ′
i1
, ..., C ′

in
are equivalent, since for each of them the conjunction of the

first n atoms is equivalent to yi1 ≈ yi2 ≈ ... ≈ yin . The conjunctions C ′
j1
, ..., C ′

jm
evaluate

to ⊥, as they contain atoms of the form y1 + ε ̸≈ y2, which are simplified to ⊥ according
to the simplication rules for virtual substitution. Thus, replacing x with more than one
test point in a conjunction Ci does not add any relevant conjunctions.

Consider (3):

Let C1 and C2 be two conjunctions in F of the form

C1 = x ≈ yi11 ∧ ... ∧ x ≈ yi1n ∧ x ̸≈ yj11 ∧ ... ∧ x ̸≈ yj1m ∧ C1(y) and

C2 = x ≈ yi21 ∧ ... ∧ x ≈ yi2k
∧ x ̸≈ yj21 ∧ ... ∧ x ̸≈ yj2l

∧ C2(y),

where n,m, k, l ≥ 0 and C1(y) and C2(y) are conjunctions of atoms not containing x. We
show that substituting x in C2 with test points from C1 yields only conjunctions which are
not relevant for the formula.

From C1 we derive the set of test points {yi11 , ..., yi1n , yj11 + ε, yj1m + ε}. We make a case
distinction on the form of the test point we are substituting with.

46

Case 1: We substitute x in C2 with the test points yi11 , ..., yi1n . We obtain the following n
conjunctions:

C ′
2i11

= yi11 ≈ yi21 ∧ ... ∧ yi11 ≈ yi2k
∧ yi11 ̸≈ yj21 ∧ ... ∧ yi11 ̸≈ yj2l

∧ C2(y)

...

C ′
2i1n

= yi1n ≈ yi21 ∧ ... ∧ yi1n ≈ yi2k
∧ yi1n ̸≈ yj21 ∧ ... ∧ yi1n ̸≈ yj2l

∧ C2(y)

Note that from the substitution of x with yi21 (one of the test points obtained from C2) in
C2 we have the following conjunction:

C ′
2i21

= yi21 ≈ yi21 ∧ ... ∧ yi21 ≈ yi2k
∧ yi21 ̸≈ yj21 ∧ ... ∧ yi21 ̸≈ yj2l

∧ C2(y)

It is easy to see that the following hold:

C ′
2i11
≡ C2(y) ∧ yi21 ̸≈ yj21 ∧ ... ∧ yi21 ̸≈ yj2l

∧ yi21 ≈ yi22 ∧ ... ∧ yi21 ≈ yi2k
∧ yi21 ≈ yi11

C ′
2i21
≡ C2(y) ∧ yi21 ̸≈ yj21 ∧ ... ∧ yi21 ̸≈ yj2l

∧ yi21 ≈ yi22 ∧ ... ∧ yi21 ≈ yi2k

It follows that C ′
2i11
|= C ′

2i21
and thus the conjunction C ′

2i11
is not needed in the disjunction

resulting from virtual substitution. Similarly, the same can be shown for conjunctions
C ′
2i12

, ..., C ′
2i1n

.

Case 2: We substitute x in C2 with the test points yj11 + ε, ..., yj1m + ε. We obtain the
following m conjunctions:

C ′
2j11

= yj11 + ε ≈ yi21 ∧ ... ∧ yj11 + ε ≈ yi2k
∧ yj11 + ε ̸≈ yj21 ∧ ... ∧ yj11 + ε ̸≈ yj2l

∧ C2(y)

...

C ′
2j1m

= yj1m + ε ≈ yi21 ∧ ... ∧ yj1m + ε ≈ yi2k
∧ yj1m + ε ̸≈ yj21 ∧ ... ∧ yj1m + ε ̸≈ yj2l

∧ C2(y)

According to the simplification rules of virtual substitution, all atoms of the form y+ε ≈ z
are replaced by ⊥ and all atoms of the form y+ε ̸≈ z are replaced by ⊤. Therefore, if k ≥ 1,
then the conjunctions C ′

2j11
, ..., C ′

2j1m
are equivalent to ⊥. If k = 0, then all conjunctions

are equivalent to C2(y), which is the same conjunction one obtains by replacing x with the
test point yj21 + ε in C2, so it does not add anything new to the formula.

In conclusion, we have shown that using virtual substitution on a formula in disjunctive
normal form yields a disjunction of conjunctions which includes all the conjunctions that are
obtained with the typical method and many additional conjunctions which are not relevant
for the formula. Therefore, for a formula F in disjunctive normal form, the formula F ′

2

obtained by using virtual substitution is equivalent to the formula F ′
1 obtained by using

the typical method. It follows that also for arbitrary input formulae the results of the two
methods will always be equivalent.

The fact that virtual substitution can be used for quantifier elimination in the theory of
an infinite set will be used in Section 3.1 to show that virtual substitution can be used for
quantifier elimination in the combination of the theory of real closed fields and the theory
of an infinite set as well.

47

2.4 Provers

In this section we introduce the software that was used for the work presented in the thesis.
This includes:

• the logic system Redlog, which is used for quantifier elimination in real closed fields
or Presburger arithmetic.

• the SMT solver Z3, which is used for satisfiability checking and unsatisfiable core
computation.

• the theorem prover SPASS, which is used for applying resolution on propositional
formulae.

• the program H-PILoT, which is used for hierarchical reduction and reasoning in
theory extensions.

• the program SEH-PILoT, which is used for property-directed symbol elimination
and invariant strengthening.

We here give a brief description of the provers and what they are used for in this thesis.
We provide references for readers interested in more details about the provers.

Redlog

Redlog (short for Reduce logic system) is an extension of the computer algebra system
Reduce to a computer logic system, where several algorithms can be applied to first-order
formulae, including several forms of quantifier elimination [41]. Redlog needs a context
specifying the language and theory which is used. Since in our applications we usually have
real numbers, we need a context specifying the real closed fields, which Redlog offers in the
form of a context called OFSF (which stands for ordered fields standard form). Sometimes
we may also use the context PASF, which stands for Presburger arithmetic standard form
and is used for linear integer arithmetic. Given a context and an input formula with
quantifiers, we can use Redlog to eliminate quantifiers and obtain an equivalent formula
not containing any of the quantified variables. For the context OFSF Redlog has the virtual
substitution method described in Section 2.3.1 implemented for the linear and quadratic
case, for formulae of higher degrees Redlog uses heuristics [112, 105]. In this thesis, Redlog
is the main software used for any kind of quantifier elimination over the real numbers or
the integers.

Z3

Z3 is a theorem prover developed by Microsoft Research [79]. It is used to check the
satisfiability of logical formulae over one or more theories. Its input syntax is based on
the SMT-LIB 2.0 standard. If Z3 detects satisfiability of a formula, it can also generate a
model. If Z3 detects unsatisfiability of a formula, then it can also display a proof. However,
these proofs are often not very comprehensible for a human and therefore this option is not
used in the thesis. If an unsatisfiable set of formulae is given in Z3, then it also offers the
option to compute a (minimal) unsatisfiable core. In this thesis, Z3 is used for satisfiability
checking, model generation and unsatisfiable core computation.

48

SPASS

SPASS is a theorem prover for first-order logic with equality that is developed at the Max
Planck Institute for Informatics in Saarbrücken, Germany [110]. It tries to determine
whether a formula is valid or not by negating the formula, adding it to the premises and
applying reduction and inference rules based on the superposition calculus. For valid for-
mulae a proof can be given. For formulae which are not valid a saturated set of clauses is
returned, from which a model can be built (i.e. a countereaxample). SPASS offers many
options on which kind of inference and simplification rules are used. It is in particular
possible to restrict to resolution and factorization rules. It is also possible to set a preced-
ence on the used symbols, which determines an order for using ordered resolution. In this
thesis, we use SPASS mainly for resolution.

H-PILoT

H-PILoT (short for Hierarchical Proving by Instantiation in Local Theory extensions) is
a program for performing hierarchical reasoning in theory extensions, developed in the
research group of Prof. Dr. Viorica Sofronie-Stokkermans [65]. It reduces a problem in the
theory extension (this can also be a chain of theory extensions) to a problem in the base
theory. Specialized provers or SMT solvers, such as Redlog or Z3, are then used to test
satisfiability of the formula obtained after reduction. If the answer is unsatisfiable, then
one knows that the original problem is unsatisfiable as well. If the answer is satisfiable,
then satisfiability of the original problem is only guaranteed if all theory extensions are
local. In this thesis, we use H-PILoT for hierarchical reasoning and satisfiability checking
in theory extensions which are known to be local.

SEH-PILoT

SEH-PILoT (short for Symbol Elimination based on Hierarchical Proving In Local Theory
Extensions) is an extension of H-PILoT that was written by Philipp Marohn as part of
his Bachelor thesis [77] and extended with more features later on. Its main purpose is to
perform property-directed symbol elimination in theory extensions (see Section 3.2.2). The
program builds upon the hierarchical reduction of H-PILoT with Redlog as a prover, but
allows the user to specify which symbols need to be eliminated and after the elimination
does the resubstitution of the constants that were introduced by H-PILoT in the reduc-
tion process. Additionally, SEH-PILoT offers functionality for invariant strengthening in
parametric systems (see Section 4.4). Moreover, it has various (optional) simplification
techniques implemented to make the formulae obtained by Redlog as short and compre-
hensible as possible. In this thesis, SEH-PILoT is used for performing property-directed
symbol elimination in local theory extensions and for invariant strengthening in parametric
systems.

49

3 Symbol Elimination

In Section 2.3 we discussed possibilities of eliminating quantified variables from a formula
in order to obtain an equivalent quantifier-free formula. However, sometimes we may
be interested in eliminating not only quantified variables, but other kinds of symbols as
well, e.g. constants, function symbols or predicate symbols. In this case we use the term
symbol elimination. We distinguish between two variants of symbol elimination. The goal
of general symbol elimination is to compute from a given formula F a formula F ′ that is
equivalent to F and does not contain certain symbols. The goal of property-directed symbol
elimination is different. We are given a formula F and an additional formula G and want
to compute a formula F ′ not containing certain symbols that has some desired property
related to G. Symbol elimination is a more general notion than quantifier elimination, as
quantifier elimination is a special kind of general symbol elimination.

The theories allowing quantifier elimination that were discussed in Section 2.3 were simple
theories, like the theory of real closed fields or the theory of an infinite set. However, in
many cases we have more complex theories, for example a combination of different theories
or extensions of a base theory. Therefore, it is important to have methods for quantifier
elimination or, more generally, symbol elimination in theories with such complex structures.
We first analyze possibilities of quantifier elimination in combinations of disjoint theories
with a concrete example relevant for this thesis. Afterwards we present an algorithm for
symbol elimination in theory extensions, discuss the role of locality for this method, present
an improvement of the original algorithm and illustrate the algorithm and its improvement
on examples.

Parts of the results in this chapter were already published in [81, 82].

3.1 Quantifier Elimination in Combinations of Theories

In Section 2.3 we discussed methods for quantifier elimination in simple theories, but
sometimes the problems we consider are structured in a more complex way, for instance as
a combination of theories with disjoint signatures. Therefore, we now analyze possibilities
of existential quantifier elimination in combinations of disjoint theories.

Theorem 3.1 (Existential quantifier elimination in combinations of disjoint
theories). Let S1 and S2 be sets of sorts such that S1 ∩ S2 = ∅. Let T1 and T2 be
theories over the disjoint signatures Π1 = (S1,Σ1,Pred1) and Π2 = (S2,Σ2,Pred2), re-
spectively. Let T be the two-sorted combination of the theories T1 and T2 with signa-
ture Π = (S1 ∪ S2,Σ1 ∪ Σ2,Pred1 ∪ Pred2), where every n-ary operation f ∈ Σi has sort
s1...sn → s with s1, ..., sn, s ∈ Si, and every m-ary predicate symbol p ∈ Predi has arity
s1...sm with s1, ..., sm ∈ Si. Assume that T1 and T2 allow elimination of existential quan-
tifiers. Let F (x, y) be a quantifier-free Π-formula. Then ∃xF (x, y) is equivalent w.r.t. T
with a quantifier-free Π-formula G(y).

51

Proof: For eliminating the existential variable x from ∃xF (x, y) we first bring F to dis-
junctive normal form, F (x, y) ≡

⋁︁n
i=1Di(x, y), where every conjunction Di can be written

as a conjunction (D1
i ∧D2

i), where D1
i contains only atoms over the signature Π1 and D2

i

contains only atoms over the signature Π2. Then ∃xF (x, y) ≡
⋁︁n

i=1 ∃x(D1
i (x, y)∧D2

i (x, y)).

• Case 1: The variable x is of sort s ∈ S1. Then for every i, x does not occur in D2
i and

∃x(D1
i (x, y) ∧D2

i (y)) ≡ ∃x(D1
i (x, y)) ∧D2

i (y). A method for quantifier elimination
in T1 can be used for computing formulae Di(y) with ∃x(D1

i (x, y)) ≡ Di(y).

• Case 2: The variable x is of sort s ∈ S2. Then for every i, x does not occur in D1
i and

∃x(D1
i (y) ∧D2

i (x, y)) ≡ D1
i (y) ∧ ∃x(D2

i (x, y)). A method for quantifier elimination
in T2 can be used for computing formulae Di(y) with ∃x(D2

i (x, y)) ≡ Di(y). □

We now consider a special case of a disjoint combination of theories relevant for this thesis
and analyze how to eliminate quantifiers using only one method for quantifier elimination.

Lemma 3.2. Let TIS be the theory of an infinite set over signature Π1 = ({p},Σ1,Pred1)
and TRCF be the theory of real closed fields over signature Π2 = ({num},Σ2,Pred2), where
Π1 and Π2 are disjoint. Let T = TIS ∪ TRCF be the disjoint combination the two theories
with signature Π = ({p, num},Σ1 ∪ Σ2,Pred1 ∪ Pred2). Let F (x, y) be a quantifier-free
Π-formula. Then we can compute a Π-formula equivalent w.r.t. T to ∃xF (x, y) using the
virtual substitution method (Algorithm 1).

Proof: Let ∃xF (x, a) be the formula from which we want to eliminate x. Since we are in
the disjoint combination of the two theories, each atom contains either only symbols from
Π1 or from Π2. Note that all Π1-atoms are of the form p ≈ q, where p and q are variables
in Σ1. We consider two cases:

• Case 1: x is of sort num. Then x only occurs in Π2-atoms. Then clearly by Algorithm
1 a quantifier-free formula F ′ equivalent to ∃xF (x, a) w.r.t. TRCF is computed. Since
the parts of the formula which do not contain x are not important for computing the
test points, the existence of Π1-atoms in F (x, a) does not influence the equivalence
between the original formula and the result of the virtual substitution, so F ′ is also
equivalent to ∃xF (x, a) w.r.t. TIS ∪ TRCF .

• Case 2: x is of sort p. Then x only occurs in Π1-atoms. Let L be the set of all
Π1-literals. We analyze what happens when we apply Algorithm 1.

Step 1: The set A of atomic formulae is computed by transforming every formula
¬(p ≈ q) (where p and q are of sort p) to p ̸≈ q (we assume w.l.o.g. that ̸≈ ∈ Pred1).

A = {p ≈ q | p ≈ q ∈ L} ∪ {p ̸≈ q | ¬(p ≈ q) ∈ L}

Step 2: The set C of solution candidates is computed by separating x on the left-
hand side of each equation and disequation. We obtain atoms of the form x ≈ y and
x ̸≈ y, where x and y are of sort p.

C = {x ≈ y | x ≈ y ∈ A} ∪ {x ̸≈ y | x ̸≈ y ∈ A}

Step 3: The elimination set E is computed, which contains −∞ (which is in fact
not needed because there are no atoms of the form x < y or x ≤ y), y for every atom
of the form x ≈ y in C, and y + ε for every atom of the form x ̸≈ y in C. For these
types of atoms no guards are needed, therefore we can always set γ = ⊤.

E = {(⊤,−∞)} ∪ {(⊤, y) | x ≈ y ∈ C} ∪ {(⊤, y + ε) | x ̸≈ y ∈ C}

52

Step 4: The virtual substitution of x with elements in E is performed, which leads
to the following formula:⋁︁

(⊤,t)∈E
⊤ ∧ F (x, a)[x//t] ≡

⋁︁
(⊤,t)∈E

F (x, a)[x//t]

In the virtual substitution F (x, a)[x//t] the simplification rules in Definition 2.40 are
applied and yield the following:

– For t = −∞ and t = y + ε, atoms of the form x ≈ z in F are replaced by ⊥.

– For t = −∞ and t = y + ε, atoms of the form x ̸≈ z in F are replaced by ⊤.

– For t = y, atoms of the form x ≈ z and x ̸≈ z are replaced by y ≈ z and y ̸≈ z,
respectively.

The formula obtained this way is quantifier-free and equivalent to ∃xF (x, a) w.r.t.
TIS . Since the parts of the formula which do not contain x are not important for
computing the test points, the existence of Π2-atoms in F (x, a) does not influence the
equivalence between the original formula and the result of the virtual substitution,
so the obtained formula is also equivalent to ∃xF (x, a) w.r.t. TIS ∪ TRCF .

In both cases by applying Algorithm 1 we obtain a quantifier-free formula that is equivalent
to ∃xF (x, a) w.r.t. TIS ∪ TRCF . □

The result in Lemma 3.2 is very useful, as it simplifies the choice of tools for quantifier
elimination in the combination of TRCF and TIS . There is no need to implement the
method described in Theorem 3.1, we can instead just use virtual substitution.

Examples in which Lemma 3.2 is used, i.e. in which virtual substitution is used for quantifier
elimination in the combination of TRCF and TIS , are shown in Chapter 6.

3.2 Symbol Elimination in Theory Extensions

The reasoning tasks we consider in the thesis are usually stated in such a way that we have
to check unsatisfiability of a given formula. If for instance we want to verify that a certain
system is always safe, then we try to prove that it cannot happen that the safety condition
for the system is violated, which corresponds to checking that a formula specifying such a
violation is unsatisfiable.

The theories we consider are often complex and structured as an extension of a base theory
or even as a chain of theory extensions, as in the following example.

Example 3.3. Let T0 = LI(R) be a base theory which is extended by a set of additional
function symbols {f}, where f = f1, ..., fn. Let Safe(x, f) be a formula describing a
safety condition for the system (depending on variables x and extension functions f) and
Update(x, x′, f , f ′) be a formula describing an update of the system, where primed symbols
denote the values of the corresponding variables and functions after an update of the
system. To prove safety of the system, one has to show that it is impossible that the safety
condition holds before an update, but does not hold anymore after the update. This can
be achieved by proving that the formula Safe(x, f) ∧ Update(x, x′, f , f ′) ∧ ¬Safe(x′, f ′) is
unsatisfiable. ■

53

If Safe(x, f) in the example above is a universal formula and we have a chain of theory
extensions T0 ⊆ T0 ∪ Safe(x, f) ⊆ T0 ∪ Safe(x, f) ∪ Update(x, x′, f , f ′) and all quantified
variables occur below an extension function, then by hierarchical reasoning we can reduce
such a satisfiability problem in a theory extension to a proof task in the base theory
and then check satisfiability of the reduced problem. If one obtains unsatisfiability of
the reduced formula, it is clear that the original formula is unsatisfiable as well. If all
the theory extensions in the chain above are local, then also satisfiability of the reduced
formula implies that the original formula is satisifable. If we obtain satisfiability it means
that we could not prove that the safety condition is preserved under updates, for example
that the system is not safe. In this case it can be of interest to find conditions over a given
subsignature such that unsatisfiability is guaranteed, for example finding conditions which
guarantee the safety of a system. Since the problems we consider are often parametric in
some way, we usually are interested in finding additional constraints on the parameters
that guarantee unsatisfiabilty of the original formula.

We now present a method for symbol elimination in theory extensions which allows us
to generate such constraints. We first give the idea: Let Σ0 be a set of base functions
and Σ1 be a set of extension functions disjoint from Σ0. Assume given a theory extension
T0 ⊆ T0 ∪ K, a set of ground clauses G containing ground terms in a set T and a set Σp

of “parameters” with Σp ⊆ Σ1. The task is to compute a constraint Γ containining only
symbols in Σp such that T0 ∪ Γ ∪ K ∪ G |= ⊥. We start with the set K[T] ∪ G obtained
after instantiation and use purification as described in Theorem 2.25 by introducing new
constants for the terms appearing in G. Among these newly introduced constants we
identify which ones need to be eliminated and which ones not. The constants corresponding
to a symbol in Σp or corresponding to an argument of a function in Σp are not supposed to
be eliminated, all other constants will be eliminated. For eliminating these (existentially
quantified) constants we can use a quantifier elimination method for T0. In the result we
then have to replace back the constants introduced during the purification step with the
terms they stand for and finally negate the obtained formula.

In the following we describe the details of the algorithm. Let Π0 = (Σ0,Pred). Let
T0 be a Π0-theory and Σp be a set of parameters (function and constant symbols) with
Σp ∩ Σ0 = ∅. Let Σ be a signature such that Σ ∩ (Σ0 ∪ Σp) = ∅. We consider the theory
extension T0 ⊆ T0 ∪ K, where K is a set of clauses in the signature Π = Π0 ∪ Σp ∪ Σ in
which all variables occur also below functions in Σ1 = Σp ∪Σ. In Algorithm 2 we describe
a method for symbol elimination proposed in [98, 100]. For a given theory extension
T0 ⊆ T0∪K and a set of flat and linear ground clauses G such that T0∪K∪G is satisfiable,
it computes a universal formula Γ over Π0∪Σp such that T0∪K∪Γ∪G is unsatisfiable. The
following theorems state that the computed formula is always a constraint that guarantees
unsatisfiability of the input formula in the extended theory (Theorem 3.4) and if we have
theory extensions satisfying (Compf) it is even the weakest such constraint (Theorem 3.5).

Theorem 3.4 ([98]). Assume that the base theory T0 allows quantifier elimination. For
every finite set of flat and linear ground ΠC-clauses G, and every finite set T of flat terms
over the signature Π0∪Σp∪Σ∪ΣC with est(G) ⊆ T and such that K[T] is ground, Algorithm
2 yields a universally quantified Π0 ∪ Σp-formula ∀yΓT (y) with the following properties:

(1) For every structure A with signature Π0 ∪ Σ ∪ Σp ∪ ΣC which is a model of T0 ∪ K,
if A |= ∀yΓT (y), then A |= ¬G.

(2) T0 ∪ ∀yΓT (y) ∪ K ∪G is unsatisfiable.

54

Algorithm 2 Symbol Elimination in Theory Extensions [98, 100]
Input: Theory extension T0 ⊆ T0 ∪ K with signature Π = Π0 ∪ (Σp ∪ Σ)

where Σp is a set of parameters and K a set of flat and linear clauses;
set G of flat and linear ground ΠC-clauses;
set T of flat ground ΠC-terms such that K[T] is ground.

Output: Universal Π0 ∪ Σp-formula ∀yΓT (y).

Step 1 Purify K[T]∪G as described in Theorem 2.25 (with set of extension symbols Σ1 = Σp∪Σ).
Let K0 ∪G0 ∪ Con0 be the set of ΠC

0 -clauses obtained this way.

Step 2 Let G1 = K0 ∪G0 ∪ Con0. Among the constants in G1, we identify
(i) the constants cf , f ∈ Σp, where cf is a constant parameter or cf is introduced by a

definition cf ≈ f(c1, . . . , ck) in the hierarchical reasoning method,
(ii) all constants cp which are not parameters and occur as arguments of functions in Σp

in such definitions.
Replace all the other constants c with existentially quantified variables x (i.e. replace
G1(cp, cf , c) with ∃xG1(cp, cf , x)).

Step 3 Construct a formula Γ1(cp, cf) equivalent to ∃xG1(cp, cf , x) w.r.t. T0 using a method for
quantifier elimination in T0.

Step 4 Replace each constant cf introduced by a definition cf = f(c1, . . . , ck) with the term
f(c1, . . . , ck) in Γ1(cp, cf). Let Γ2(cp) be the formula obtained this way. Replace cp with
existentially quantified variables y.

Step 5 Let ∀yΓT (y) be ∀y¬Γ2(y).

Theorem 3.5 (cf. also [98]). Assume that K = Kp ∪ K1 such that Kp contains only
symbols in Σ0 ∪ Σp and K1 is a set of Π-clauses such that

T0 ⊆ T0 ∪ Kp ⊆ T0 ∪ Kp ∪ K1

is a chain of theory extensions both satisfying condition (Compf) and having the property
that all variables occur below an extension function, and such that K is flat and linear.
Let G be a set of flat and linear ground ΠC-clauses, and ∀yΓG(y) be the formula obtained
with Algorithm 2 for T = est(K, G). Then ∀yΓG(y) is entailed by every universal Π0 ∪Σp-
formula Γ which entails Kp and for which T0 ∪ Γ ∪ K ∪G |=⊥.

A similar result holds if T is the set of instances obtained from the instantiation of a chain
of theory extensions T0 ⊆ T0 ∪ K1 ⊆ · · · ⊆ T0 ∪ K1 ∪ · · · ∪ Kn, all satisfying condition
(Compf), and where K1, . . . ,Kn are all flat and linear [100].

In the following example we illustrate how Algorithm 2 can be applied to compute ad-
ditional constraints on parameters such that a desired property, expressed by a universal
formula, holds.

Example 3.6. In Example 2.26 we showed that if two functions f and g are monotone,
then f + g is also monotone. We now assume that we only know that f is monotone and
we want to find conditions on g such that the sum of f and g is monotone. Let Π0 be the
signature of LI(R) and let Σ1 = {f, g} and Σp = {g}. We have the local theory extension
T0 ⊆ T1 = T0 ∪ K, where T0 = LI(R) and K = Mon(f) = {∀x, y(x ≤ y → f(x) ≤ f(y)}.
The sum of the functions f and g is monotone if T0 ∪ K ∪G is unsatisfiable, where

G = a ≤ b ∧ (f(a) + g(a) > f(b) + g(b)).

55

However, T0 ∪ K ∪ G is satisfiable. Let Σp = {g}. From Example 2.21 we know that
the theory extension T0 ⊆ T1 = LI(R) ∪ Mon(f) is local and we know that LI(R) allows
quantifier elimination, so by Theorem 3.4 we can use Algorithm 2 to compute a Π0 ∪ Σp-
formula ∀yΓT (y) such that T0∪∀yΓT (y)∪K∪G is unsatisfiable, which means that ∀yΓT (y)
is a condition on g which assures monotonicity of f + g. Additionally, since the theory
extension T0 ⊆ T1 satisfies condition (Compf) and K is flat and linear, from Theorem 3.5
it follows that this must be the weakest such condition.

Step 1: The extension terms starting with g in G are g(a) and g(b), but since we do not
have axioms for g, they are not needed for instantiation. The extension terms starting with
f in G are f(a) and f(b), therefore we have the following set of non-redundant instances:

Mon(f)[G] = {(a ≤ b→ f(a) ≤ f(b)), (b ≤ a→ f(b) ≤ f(a))}

Using purification we obtain:

Def = {a1 ≈ f(a), b1 ≈ f(b), a2 ≈ g(a), b2 ≈ g(b)}
K0 ∪G0 ∪ Con0 = (a ≤ b→ a1 ≤ b1) ∧ (b ≤ a→ b1 ≤ a1)∧

(a ≤ b) ∧ (a1 + a2 > b1 + b2)∧
(a ≈ b→ a1 ≈ b1) ∧ (a ≈ b→ a2 ≈ b2)

Step 2: We want to eliminate all constants not related to the parameters Σp = {g}. We
identify the three sets of constants according to the algorithm:

• a2 and b2 are introduced as names for g(a) and g(b), respectively, so cf = a2, b2.

• a and b appear as arguments in g(a) and g(b), respectively, so cp = a, b.

• The remaining constants in K0 ∪G0 ∪ Con0 are a1 and b1, so c = a1, b1.

We replace the constants c = a1, b1 with existentially quantified constants (of the same
name) and obtain the formula ∃a1, b1 G1(a, b, a2, b2, a1, b1) :

∃a1, b1((a ≤ b→ a1 ≤ b1) ∧ (b ≤ a→ b1 ≤ a1)∧
(a ≤ b) ∧ (a1 + a2 > b1 + b2)∧
(a ≈ b→ a1 ≈ b1) ∧ (a ≈ b→ a2 ≈ b2))

Step 3: We can use a system such as Redlog for quantifier elimination to obtain the
following formula equivalent to ∃a1, b1 G1(a, b, a2, b2, a1, b1):

Γ1(a, b, a2, b2) = a < b ∧ a2 > b2

Step 4: By replacing back a2 with g(a) and b2 with g(b) and quantifying a and b existen-
tially we get the following:

∃a, b Γ2(a, b) = ∃a, b (a < b ∧ g(a) > g(b))

Step 5: Negating the formula above yields the following result:

∀a, b ΓT (a, b) = ∀a, b (a ≥ b ∨ g(a) ≤ g(b)) ≡ ∀a, b (a < b→ g(a) ≤ g(b))

Therefore we know that ∀a, b (a < b→ g(a) ≤ g(b)), i.e. the monotonicity property for g,
is the weakest condition on g such that the sum of g and any monotone function f is also
monotone. ■

56

3.2.1 Improvement of the Algorithm

Algorithm 2 uses a hierarchical approach in which we reduce eliminating symbols in Σ\Σp

to quantifier elimination in the base theory T0. However, quantifier elimination usually
has high complexity and can lead to very large formulae. Therefore we are interested
in making the algorithm more efficient. One way to improve the algorithm is to apply
quantifier elimination not to the whole formula, but only to a smaller part of it. This
can often be done, as we have a set of parameters Σp which we do not want to eliminate.
This means, considering our set of clauses K can be divided into a part which contains
only parameters (function symbols in Σp) and a part which also contains non-parametric
symbols (function symbols in Σ), i.e. K = Kp ∪ K1 where Kp contains only parameters
from Σp, we do not need to eliminate any symbols from Kp. It is therefore sufficient to
apply quantifier elimination on the rest of the formula, leaving Kp out of the scope of the
quantifiers.

Theorem 3.7. Assume that K = Kp ∪ K1 such that Kp contains only symbols in Σ0 ∪ Σp

and K1 is a set of Π-clauses such that

T0 ⊆ T0 ∪ Kp ⊆ T0 ∪ Kp ∪ K1

is a chain of theory extensions both satisfying condition (Compf) and having the property
that all variables occur below an extension function, and such that K is flat and linear. Let
G be a set of flat and linear ground ΠC-clauses. Then the formula Kp ∧ ∀yΓ1(y), where
∀yΓ1(y) is obtained by applying Algorithm 2 to T0 ∪ K1 ∪ G, has the property that for
every universal formula Γ containing only parameters with T0 ∪ (Kp ∪Γ)∪G |=⊥, we have
Kp ∧ Γ |= Kp ∧ ∀yΓ1(y).

Proof: Assume that we have the following chain of local theory extensions:

T0 ⊆ T0 ∪ Kp ⊆ T0 ∪ Kp ∪ K1

We assume that the clauses in Kp ∪ K1 are flat and linear and that for each of these
extensions any variable occurs below an extension function. For the sake of simplicity we
assume that Σ contains only one function symbol which we want to eliminate. For several
function symbols the procedure is analogous.

Let G be a set of flat ground clauses. We know that the following are equivalent:

(1) T0 ∪ Kp ∪ K1 ∪G is satisfiable.

(2) T0 ∪ Kp ∪ K1[G] ∪ G is satisfiable, where the extension terms used in the in-
stantiation correspond to the set est(G) = {f(d1), . . . , f(dk)}, where for every i,
di = (d1i , . . . , d

a(f)
i), where a(f) is the arity of f .

(3) The set of formulae obtained after purification (in which each extension term f(d) is
replaced with a new constant cfd) and the inclusion of instances of the congruence
axioms, T0 ∪ Kp ∪ (K1[G])0 ∪G0 ∪ Con0(G), is satisfiable, where

Con0(G) = {
a(f)⋀︁
j=1

djn ≈ djm → cfdn ≈ cfdm | f(dn), f(dm) ∈ est(G)}.

(4) T0 ∪ Kp[G1] ∪G1 is satisfiable, where G1 = (Deff [G])0 ∪G0 ∪ Con0(G).

(5) The purified form of the formula above, T0 ∪ (Kp[G1])0 ∪ (G1)0 ∪ Con0(G1), is satis-
fiable.

57

We use the following set of ground terms:

T = est(G) ∪ est(G1) = {f(d1), . . . , f(dk)} ∪ {g(c) | g ∈ Σp, g(c) ∈ est(G1)}

(a set of flat terms in which we isolated the terms starting with the function symbol f).

We apply Algorithm 2:

Step 1: We perform the hierarchical reduction in two steps.
In the first step we introduce a constant cfd for every term f(d) ∈ est(G). After this first
reduction we obtain G1 = K1[G] ∪G0 ∪ Con0(G), where

G1 = K1[G] ∧G0 ∧
⋀︂

f(dn),f(dm)∈est(G)

(︁ a(f)⋀︂
j=1

djn ≈ djm → cfdn ≈ cfdm
)︁
.

In the second reduction we replace every term g(c) ∈ est(G1), where g ∈ Σp, with a new
constant cgc and add the corresponding congruence axioms. We obtain

G′
1 = (Kp[G1])0 ∧ (G1)0 ∧ Con0(G1).

Step 2: We want to eliminate the function symbol f . We assume that all the other
function symbols are either parametric or in T0. We therefore replace the constants cfd
with variables xfd.

Step 3: Since Kp does not contain any function symbol in Σ, neither (Kp[G1])0 nor
Con0(G1) contain the variables xfd. Therefore:

∃xfd1 , . . . , xfdk G′
1(xfd1 , . . . , xfdk) ≡ (K[G1])0 ∧ Con0(G1) ∧ ∃xfd1 , . . . , xfdk(G1)0

After we have applied quantifier elimination w.r.t. T0 we obtain a quantifier-free ΠC-formula
D0 ≡ ∃xfd1 , . . . , xfdk(G1)0, hence

∃xfd1 , . . . , xfdk G′
1(xfd1 , . . . , xfdk) ≡ (K[G1])0 ∧ Con0(G1) ∧D0.

Step 4: We replace back in the formula obtained this way all constants cgc, where g ∈ Σp

and g(c) ∈ est(G1), with the terms g(c) and remove Con0(G1). This restores Kp[G1] and
all formulae which did not contain f in G′

1. We therefore obtain

Γ2(d) = Kp[G1](d, c, g(c)) ∧D(d, c, g(c)).

We replace the constants d, c which are not parameters with variables y and obtain

Γ2(y) = Kp[G1](y, g(y)) ∧D(y, g(y)).

If we analyze the formula Kp[G1](y, g(y)) obtained from Kp[G1] by replacing the constants
d, c with variables y, we notice that the constants substituted for variables in Kp[G1]

are replaced back with new variables. Thus, Kp[G1](y, g(y)) =
⋀︁

i∈I Kpσi, which is a
finite conjunction, where I is the set of instances of Kp[G1](y, g(y)) and for every i ∈ I,
σi : X → X is a substitution (not necessarily injective) that might rename the variables
in Kp.

Step 5: We negate ∃yΓ2(y) and obtain

¬∃yΓ2(y) ≡ ∀y¬Γ2(y) ≡ ∀y(
⋁︂
i∈I
¬Kpσi ∨ ¬D(y, g(y))).

58

If the goal is to strengthen the already existing constraints Kp on the parameters with an
additional (universally quantified) condition Γ such that T0 ∪ Kp ∪ Γ ∪ K1 ∪ G |=⊥, note
the following:

∀xKp(x) ∧ ∀y(
⋁︁
i∈I
¬Kpσi ∨ ¬D(y, g(y))) ≡ ∀y

(︁ ⋁︁
i∈I

(∀xKp(x) ∧ ¬Kpσi)∨

(∀xKp(x) ∧ ¬D(y, g(y)))
)︁

≡ ∀y
(︁
∀xKp(x) ∧ ¬D(y, g(y))

)︁
≡ ∀xKp(x) ∧ ∀y¬D(y, g(y))

We now prove that the formula Γ1 = ∀y¬D(y) is the weakest formula Γ with the property
that T0 ∪ Kp ∪ Γ ∪ K1 ∪ G, i.e. that for every set Γ of constraints on the parameters, if
T0∪Kp∪Γ∪K1∪G is unsatisfiable, then every model of T0∪Kp∪Γ is a model of T0∪Kp∪Γ1.

We know that if the extensions T0 ⊆ T0 ∪ Kp ⊆ T0 ∪ Kp ∪ K1 satisfy condition (Compf)
and Γ contains only symbols in Σ0 ∪ Σp, then also the extensions T0 ∪ Γ ⊆ T0 ∪ Γ ∪ Kp ⊆
T0 ∪ Γ ∪ Kp ∪ K1 satisfy condition (Compf) [64]. If Kp ∪ K1 is flat and linear, then the
extensions are local. Let T = est(K1, G). By locality, T0 ∪ Γ∪Kp ∪K1 ∪G is unsatisfiable
if and only if T0 ∪ Γ ∪ Kp ∪ K1[G] ∪ G is unsatisfiable, which is the case if and only if
T0 ∪Γ∪Kp ∪ (K1[G])0 ∪G0 ∪Con0 ∪Def is unsatisfiable. Let A be a model of T0 ∪Γ∪Kp.
Then A cannot be a model of (K1[G])0 ∪ G0 ∪ Con0 ∪ Def, so (with the notation used in
Steps 1–5) A ̸|= D(d, c, g(c)), i.e. A ̸|= ∃yD(y, g(y)). It follows that A |= ∀y¬D(y, g(y)).
Thus, A |= Kp ∧ Γ1. □

We illustrate the ideas of the improvement of the symbol elimination algorithm based on
Theorem 3.7 on an adaptation of an example first presented in [98].

Example 3.8. Let T0 = LI(R). Consider the extension of T0 with the function symbols
Σ1 = {f, g, h, c}. Assume Σp = {f, h, c} and Σ = {g}, and the properties of these function
symbols are axiomatized by Kp ∪ K, where

Kp := { ∀x, y(c < x ≤ y → f(x) ≤ f(y)), ∀x, y(x ≤ y < c→ h(x) ≤ h(y)) },
K := { ∀x(x ≤ c→ g(x) ≈ f(x)), ∀x(c < x→ g(x) ≈ h(x)) }.

We are interested in generating a set of additional constraints on the functions f and h
which ensure that g is monotone, i.e. satisfies

Mon(g) : ∀x, y(x ≤ y → g(x) ≤ g(y)).

For this we have to generate a set Γ of Σ0 ∪ Σp-constraints such that

T0 ∪ Kp ∪ Γ ∪ K ∪ {c1 ≤ c2, g(c1) > g(c2)}

is unsatisfiable, where G = {c1 ≤ c2, g(c1) > g(c2)} is the Skolemized negation of Mon(g).
We have the following chain of theory extensions:

T0 ⊆ T0 ∪ Kp ⊆ T0 ∪ Kp ∪ K

Both extensions satisfy the condition (Compf), and T0 ∪ Kp ∪ K ∪ G is satisfiable if and
only if T0 ∪ Kp ∪ K[G] ∪G is satisfiable, where:

K[G] := { c1 ≤ c→ g(c1) ≈ f(c1), c2 ≤ c→ g(c2) ≈ f(c2),
c < c1 → g(c1) ≈ h(c1), c < c2 → g(c2) ≈ h(c2) }

We construct Γ as follows:

59

Step 1 Since we have a chain of two local extensions, we perform a two-step reduction:
First we compute T0∪K[G]∪G, then we purify it by introducing new constants g1, g2
for the terms g(c1), g(c2). We obtain

Def1 = {g1≈g(c1), g2≈g(c2)} and

K0 ∪ Con0 ∪G0 := { c1 ≤ c→ g1 ≈ f(c1), c2 ≤ c→ g2 ≈ f(c2),
c < c1 → g1 ≈ h(c1), c < c2 → g2 ≈ h(c2),
c1 ≈ c2 → g1 ≈ g2, c1 ≤ c2, g1 > g2 }.

In the next step we introduce new constants f1, f2, h1 and h2 for the terms f(c1),
f(c2), h(c1) and h(c2), respectively. We obtain

Def2 = {f1≈f(c1), f2≈f(c2), h1≈h(c1), h2≈h(c2)}.

We do not need to effectively perform the instantiation of the axioms in Kp or con-
sider the instances of the congruence axioms for the functions in Σp. We restrict to
computing (K0 ∪ Con0 ∪G0)0:

(K0 ∪ Con0 ∪G0)0 := { c1 ≤ c→ g1 ≈ f1, c2 ≤ c→ g2 ≈ f2,
c < c1 → g1 ≈ h1, c < c2 → g2 ≈ h2,
c1 ≈ c2 → g1 ≈ g2, c1 ≤ c2, g1 > g2 }

Step 2 The parameters are contained in the set Σp = {f, h, c}. We want to eliminate the
function symbol g, so we replace g1, g2 with existentially quantified variables z1, z2
and obtain an existentially quantified formula:

∃z1, z2
(︁

(c1 ≤ c→ z1 ≈ f1) ∧ (c2 ≤ c→ z2 ≈ f2) ∧
(c < c1 → z1 ≈ h1) ∧ (c < c2 → z2 ≈ h2) ∧
(c1 ≈ c2 → z1 ≈ z2) ∧ c1 ≤ c2 ∧ z1 > z2

)︁
Step 3 If we use Redlog for quantifier elimination, the obtained formula is quite long and

incomprehensible. Therefore we instead use QEPCAD1, which can often simplify
the obtained formulae better than Redlog. Using QEPCAD we obtain the following
formula:

Γ1(c1, c2, c, f1, f2, h1, h2):

c2 > c1∧
(︁
(c2 ≤ c ∧ f2 < f1) ∨ (c1 > c ∧ h2 < h1) ∨ (c1 ≤ c ∧ c2 > c ∧ h2 < f1)

)︁
Step 4 We construct the formula Γ2(c1, c2, c) from Γ1 by replacing fi by f(ci) and hi by

h(ci), for i ∈ {1, 2}. We obtain

c2 > c1 ∧
(︁

(c2 ≤ c ∧ f(c2) < f(c1)) ∨ (c1 > c ∧ h(c2) < h(c1)) ∨
(c1 ≤ c ∧ c2 > c ∧ h(c2) < f(c1))

)︁
.

After replacing c1 with a variable x1 and c2 with a variable x2 we obtain

x2 > x1 ∧
(︁

(x2 ≤ c ∧ f(x2) < f(x1)) ∨ (x1 > c ∧ h(x2) < h(x1)) ∨
(x1 ≤ c ∧ x2 > c ∧ h(x2) < f(x1))

)︁
.

1QEPCAD is a tool for quantifier elimination in the real numbers based on the method of cylindrical
algebraic decomposition. See https://www.usna.edu/Users/cs/wcbrown/qepcad/B/QEPCAD.html for
more information on QEPCAD.

60

Step 5 After negation and universal quantification of the variables we obtain

∀x1, x2
(︁
x2 ≤ x1 ∨

(︁
(x2 ≤ c→ f(x1) ≤ f(x2)) ∧
(x1 > c→ h(x1) ≤ h(x2)) ∧
(x1 ≤ c ∧ x2 > c→ f(x1) ≤ h(x2))

)︁)︁
which is a set of contraints on f and h that guarantees monotonicity of g. ■

3.2.2 Implementation of the Algorithm

The symbol elimination procedure described in Algorithm 2 was implemented by Philipp
Marohn as part of his Bachelor thesis [77] (with me and Prof. Dr. Sofronie-Stokkermans
being the supervisors) and updated with more features later on. The program is called
SEH-PILoT (short for Symbol Elimination based on Hierarchical Proving In Local Theory
Extensions) and is implemented in Python 3.9. Its primary purpose is to perform property-
directed symbol elimination in theory extensions, i.e. to generate constraints on parameters
such that a given property holds, but it additionally offers other useful features as well.

In the following we give a brief overview on the latest version of SEH-PILoT at the time of
writing this thesis. The description is based on a preliminary system description [78], which
describes an older version of SEH-PILoT and therefore does not include all the features
of the current version. Note that the implementation is still ongoing, which means that
things may be changed and new features will be added in the future.

The input for SEH-PILoT is a YAML-file2 in which a mode, various options, a spe-
cification type, a specification theory and the specification are specified. When
SEH-PILoT is used for symbol elimination in general (and not specifically for para-
metric transition systems), one has to set the specification type to HPILOT. In this
case the specification is just a plain input file for H-PILoT. The specification the-
ory can be either REAL_CLOSED_FIELDS or PRESBURGER_ARITHMETIC. One can
choose between the three modes GENERATE_CONSTRAINTS, SYMBOL_ELIMINATION
and CHECK_SATISFIABILITY. In what follows we first illustrate the workflow of SEH-
PILoT when using mode GENERATE_CONSTRAINTS.

For the most part SEH-PILoT in the mode GENERATE_CONSTRAINTS follows the steps
of Algorithm 2 and uses Redlog for quantifier elimination. One minor difference is that in
SEH-PILoT the negation is done in Step 3 right after the quantifier elimination, i.e. before
replacing back the constants in Step 4. In Algorithm 2 the formula is negated after the
constants have been replaced, i.e. in a fifth step. However, the order in which the negation
and the replacement of the constants is done is not important as it does not change the
result.

Specifying parameters in SEH-PILoT can be done in one of two ways. Using the option
eliminate we can define a set of symbols which are eliminated. Symbols which are not
included in this set are interpreted as parameters. Alternatively, using the option parameter
we can do the opposite. We specify a set of parameters and all the symbols not included in
this set will be eliminated. Note that in mode GENERATE_CONSTRAINTS and in mode
SYMBOL_ELIMINATION exactly one of the two options must be used.

SEH-PILoT offers various options to use simplifiers in order to obtain shorter formulae, as
Redlog in many cases does not simplify formulae very well. It is for instance possible to

2see https://yaml.org/

61

use the QEPCAD simplifier SLFQ3 on the input formula for Redlog and on the result that
is obtained after quantifier elimination. For this the options slfq_formula and slfq_query,
respectively, can be used.

If SEH-PILoT is used in mode SYMBOL_ELIMINATION, then the specified symbols are
eliminated without a negation of the result afterwards. This means that only Steps 1-4 of
Algorithm 2 are applied.

If SEH-PILoT is used in mode CHECK_SATISFIABILITY, then the satisfiability of the
given specification is checked. This is essentially the same as using H-PILoT on the input.
Internally it is done by choosing in Step 2 that all the symbols occuring in the reduced
formula (obtained after Step 1) are to be eliminated. Therefore, the options eliminate and
parameter may not be used in this mode.

It is possible to specify several tasks in one YAML-file. If several tasks have the same
specification, one can set an anchor ("&" plus a string) before the specification is written
for the first time and use the alias ("*" plus the same string) in the following tasks instead
of writing the whole specification again. The time required for each task (in seconds)
is measured separately and displayed in the output file in addition to the total time (in
seconds).

We illustrate on two examples the usage of SEH-PILoT with specification type HPILOT
in mode CHECK_CONSTRAINTS. We also analyze the benefits of the implemented SLFQ
simplifier by comparing the results with and without the option slfq_query.

Example 3.9. Consider again the problem from Example 3.6. We have the theory exten-
sion T0 ⊆ T0 ∪ K, where T0 = LI(R) and

K := {∀x, y(x ≤ y → f(x) ≈ f(y))}.

We have the signature Σ1 = Σp ∪ Σ, where Σp = {g} and Σ = {f}. We know that
T0 ∪K∪G is satisfiable, where G is the Skolemized negation of the property to be proved,
i.e. G := a ≤ b ∧ (f(a) + g(a) > f(b) + g(b)).

Using SEH-PILoT we can then generate a constraint containing only symbols occur-
ring in Σp (i.e. a constraint on g) which ensures that the sum of f and g is mono-
tone. We have to use SEH-PILoT with specification type HPILOT, specification theory
REAL_CLOSED_FIELDS and mode GENERATE_CONSTRAINTS. In this mode it is oblig-
atory to specify either the parameters or, conversely, which symbols are to be eliminated.
We here use the option parameter to specify that {g} is the set of parameters. The spe-
cification is basically an input for H-PILoT. Here we first specifiy the base functions (with
corresponding arity), the extension functions (with corresponding arity and level of the
extension) as well as the relations (with corresponding arity). It is followed by a set of
clauses, which corresponds to the clauses in K, and a query, which corresponds to the
Skolemized negation of the property to be proved. We use the anchor "&spec_ex3_9"
such that we do not have to write the same specification again for the second task.

With the above considerations the input file for SEH-PILoT looks as follows:

3see https://www.usna.edu/Users/cs/wcbrown/qepcad/SLFQ/Home.html for more information on SLFQ

62

tasks:
example_3.9:

mode: GENERATE_CONSTRAINTS
options:

parameter: [g]
slfq_query: false

specification_type: HPILOT
specification_theory: REAL_CLOSED_FIELDS
specification: &spec_ex3_9

file: |
Base_functions := {(+,2), (-,2), (*,2)}
Extension_functions := {(f,1,2), (g,1,1)}
Relations := {(<=,2), (<,2), (>=,2), (>,2)}

Clauses := (FORALL x,y). x <= y --> f(x) <= f(y);

Query := a <= b;
f(a) + g(a) > f(b) + g(b);

example_3.9_slfq:
mode: GENERATE_CONSTRAINTS
options:

parameter: [g]
slfq_query: true

specification_type: HPILOT
specification_theory: REAL_CLOSED_FIELDS
specification: *spec_ex3_9

We run SEH-PILoT in command line using the command sehpilot example_3.9.yaml where
"example_3.9.yaml" is the name of the input file. We obtain the following output:

Metadata:
Date: ’2023-07-14 13:53:26’
Number of Tasks: 2
Runtime Sum: 0.4934

example_3.9:
Runtime: 0.1065
Result: (FORALL a, b). NOT(AND(g(a) - g(b) > _0, a - b < _0))

example_3.9_slfq:
Runtime: 0.3869
Result: (FORALL a, b). OR(g(a) - g(b) <= _0, a - b >= _0)

First of all, it can be seen that the result we obtain is the same that we obtained by hand in
Example 3.6. It expresses the property that g is a monotone function, since the following
are equivalent:

¬(g(a)− g(b) > 0 ∧ a− b < 0) ≡ g(a)− g(b) ≤ 0 ∨ a− b ≥ 0 ≡ a < b→ g(a) ≤ g(b)

We now compare the results obtained with and without the SLFQ simplifier. Since we
already obtain a very simple formula without the SLFQ simplifier, the difference between
the two is rather small. With SLFQ we obtain a slightly shorter formula, in which the
negation was already eliminated. This came with the cost of taking almost 4 times as long
to compute (0.3869 seconds with simplification and 0.1065 seconds without simplification).
We conclude that in this example the simplifier was not necessary. However, often the
SLFQ simplifier will make a significant difference in the length and simplicity of the output
formula, as the following example shows. ■

63

Example 3.10. Consider again the problem from Example 3.8. We have the theory ex-
tension T0 ⊆ T0 ∪ Kp ⊆ T0 ∪ Kp ∪ K, where T0 = LI(R) and

Kp := { ∀x, y(c < x ≤ y → f(x) ≤ f(y)), ∀x, y(x ≤ y < c→ h(x) ≤ h(y)) },

K := { ∀x(x ≤ c→ g(x) ≈ f(x)), ∀x(c < x→ g(x) ≈ h(x)) }.

We have the signature Σ1 = Σp ∪ Σ, where Σp = {f, h, c} and Σ = {g}. Since we want to
prove that g is monotone, our formula G, the Skolemized negation of the property to be
proved, is as follows:

G := c1 ≤ c2 ∧ g(c1) > g(c2)

Using SEH-PILoT we can generate a constraint containing only symbols occurring in Σp

which ensures that g is monotone. We use the improvement of the algorithm, which means
that we can disregard Kp. We have to use SEH-PILoT with specification type HPILOT, spe-
cification theory REAL_CLOSED_FIELDS and mode GENERATE_CONSTRAINTS. This
time we use the option eliminate to specify that {g} is the set of symbols which are elimin-
ated. For comparing the output with and without the use of the SLFQ simplifier, we state
two tasks. For the first task we set the option slfq_query to false and for the second one to
true in order to simplify the result of the quantifier elimination. The specification is again
an input for H-PILoT, where we state the base functions, extension functions, relations,
the clauses in K and the query G.

With the above considerations the input file for SEH-PILoT looks as follows:

tasks:
example_3.10:

mode: GENERATE_CONSTRAINTS
options:

eliminate: [g]
slfq_query: false

specification_type: HPILOT
specification_theory: REAL_CLOSED_FIELDS
specification: &spec_ex3_10

file: |
Extension_functions := {(f,1,1), (h,1,1), (g,1,2)}
Relations := {(<=,2), (<,2), (>=,2), (>,2)}

Clauses := (FORALL x). x <= c --> g(x) = f(x);
(FORALL x). c < x --> g(x) = h(x);

Query := c1 <= c2;
g(c1) > g(c2);

example_3.10_slfq:
mode: GENERATE_CONSTRAINTS
options:

eliminate: [g]
slfq_query: true

specification_type: HPILOT
specification_theory: REAL_CLOSED_FIELDS
specification: *spec_ex3_10

We run SEH-PILoT on the input file above and obtain the following output:

64

Metadata:
Date: ’2023-07-14 13:53:31’
Number of Tasks: 2
Runtime Sum: 0.53

example_3.10:
Runtime: 0.1119
Result: (FORALL c2, c1). NOT(OR(AND(h(c1) - h(c2) > _0, c1 - c2 < _0,

OR(f(c2)- h(c2) = _0, c - c2 < _0),
OR(f(c1) - h(c1) = _0, c - c1 < _0)),

AND(f(c2)- h(c1) < _0, c1 - c2 < _0,
OR(f(c2) - h(c2) = _0, c - c2 >= _0),
OR(f(c1) - h(c1) = _0, c - c1 < _0)),

AND(f(c1) - h(c2) > _0, c1 - c2 < _0,
OR(f(c2) - h(c2) = _0, c - c2 < _0),
OR(f(c1) - h(c1) = _0, c - c1 >= _0)),

AND(f(c1) - f(c2) > _0, c1 - c2 < _0,
OR(f(c2) - h(c2) = _0, c - c2 >= _0),
OR(f(c1)- h(c1) = _0, c - c1 >= _0))))

example_3.10_slfq:
Runtime: 0.4181
Result: (FORALL c2, c1). OR(c1 - c2 >= _0,

AND(f(c1) - f(c2) <= _0, c - c2 >= _0),
AND(h(c2) - f(c1) >= _0, c - c2 < _0,

c - c1 >= _0),
AND(h(c1) - h(c2) <= _0, c - c1 < _0))

Comparing the results obtained with and without the SLFQ simplifier one can see a signi-
ficant difference in the length of the formulae. Using SLFQ, the number of atomic formulae
in the computed constraint was reduced from 24 to 8. The simpler formula obtained using
SLFQ is similar to the one obtained in Example 3.8. The time needed for the computa-
tion is again about 4 times higher with SLFQ (0.4181 seconds) than without the simplifier
(0.1119 seconds), but in this case it was worth it, because the formula that is not simplified
is not easily comprehensible, wheras the simplified formula is. ■

65

4 Verification of Parametric Systems

In this chapter we analyze possibilities of using symbol elimination and hierarchical reas-
oning in the verification of parametric systems, i.e. systems in which not every part is
completely specified. For systems in general and parametric systems in particular it is
important to be able to verify that they work as intended. One possibility to do so is to
show that a certain property, for instance a safety condition, is an invariant of the system,
i.e. it holds at all times during the runtime of the system. An invariant is called inductive
if it holds in the initial states and is preserved under any update of the system. In this
chapter we discuss the problem of checking whether a property is an inductive invariant
of a system and propose a method for invariant strengthening, i.e. finding an inductive
invariant which entails the property to be proved.

Parts of the results in this chapter were already published in [81, 82].

4.1 Parametric Systems and Problems Related to Their
Verification

We consider systems S which can be described using system specifications (for an example
cf. [43]) consisting of

• a background theory TS describing the datatypes used in the specification and their
properties, and

• a transition constraint system T = (Σ, Init,Update) specifying

– the function symbols Σ (including a set V of functions with arity 0, i.e. the
variables of the system) whose values can change over time;

– a formula Init specifying the properties of the initial state;

– a formula Update with function symbols in Σ ∪ Σ′ (where Σ′ consists of copies
of symbols in Σ, such that if f ∈ Σ, then f ′ ∈ Σ′ is the updated function after
the transition).

Essentially a transition constraint system describes the initial state of the system and
what happens during an update of the system. In state-based approaches one describes
all transitions from one state to the next (where states are defined by the values of the
functions in Σ). This can be problematic if there are infinitely many states. In transition
constraint systems both the initial states and the updates are described using formulae.
In this way the formula Init defines the values of the functions in the initial state. The
formula Update specifies how the function values change during an update, where for every
f ∈ Σ the corresponding symbol f ′ represents the values of f after the update.

67

Example 4.1. Consider the system S = (TS , T), where TS = LI(R) is the background
theory and T = {Σ, Init,Update} a transition constraint system, where:

Σ = {x, y, f} with x and y of arity zero (i.e. variables) and f of arity one
Init = {x ≈ 0, y ≈ 3, ∀z f(z) ≈ 1}

Update = {y > 0→ (y′ ≈ y − 1 ∧ x′ ≈ x+ 2 ∧ f ′(y) ≈ f(y) + 1)}

Since no update rule for y ≤ 0 is specified, the values of x, y, and f do not change in this
case. After one transition of the system we have the following updated values:

y′ ≈ 3− 1 ≈ 2

x′ ≈ 0 + 2 ≈ 2

f ′(3) ≈ 1 + 1 ≈ 2

After three updates of the system a fixpoint is reached with the following values:

x ≈ 6

y ≈ 0

f(3) ≈ f(2) ≈ f(1) ≈ 2

f(z) ≈ 1 for all z ̸∈ {1, 2, 3}

Note that in this example initial values for all variables and all terms f(z) are defined.
Therefore the system is fully specified. ■

If there are variables or function symbols of arity ≥ 1 such that not all their initial values
are specified, we call these symbols parameters. We usually denote the set of parameters
with Σp ⊆ Σ. A system containing parameters is called a parametric system.

Example 4.2. Consider the system S = (TS , T), where TS = LI(R) is the background
theory and T = {Σ, Init,Update} a transition constraint system, where:

Σ = {x, y, f} with x and y of arity zero (i.e. variables) and f of arity one
Init = {y ≈ 3, f(3) ≈ 1}

Update = {y > 0→ (y′ ≈ y − 1 ∧ x′ ≈ x+ 2 ∧ f ′(y) ≈ f(y) + 1)}

In this case we do not have an initial value specified for x, so by the update rule x′ ≈ x+2
we cannot compute a concrete value for x′. Also for f(2) there is not an initial value
specified, so the rule f ′(2) ≈ f(2) + 1 does not yield a concrete value for f ′(2). ■

If we cannot verify a parametric system to be safe, it is possible to generate conditions
on the parameters such that safety is guaranteed, or to strengthen a property to an in-
ductive invariant which only contains parameters. We describe several types of verification
problems in the following.

Inductive Invariant Checking

An inductive invariant of a system is a formula which is true in the initial states of the
system and is preserved during any update of the system. Therefore, checking whether a
formula Ψ is an inductive invariant of a system S = (TS , T), where T=(Σ, Init,Update),
can be done in two steps:

68

(1) check whether Init |=TS Ψ;

(2) check whether Ψ,Update |=TS Ψ′, where Ψ′ results from Ψ by replacing each f ∈ Σ
with f ′ ∈ Σ′.

Checking whether a formula Ψ is an invariant can thus be reduced to checking whether ¬Ψ′

is satisfiable w.r.t. a theory T . Even if Ψ is a universally quantified formula (and thus ¬Ψ′

is a ground formula) the theory T can be quite complex: it contains the axiomatization TS
of the datatypes used in the specification of the system, the formalization of the update
rules, as well as the formula Ψ itself. Often Init, Ψ and Update can be expressed as sets of
clauses and we have chains of theory extensions:

T0 ⊆ . . . ⊆ TS ⊆ TS ∪ Init
T0 ⊆ . . . ⊆ TS ⊆ TS ∪Ψ ⊆ TS ∪Ψ ∪ Update

In many cases these theory extensions have the property that checking satisfiability of
ground formulae w.r.t. T can be reduced (possibly in several steps) to checking satisfiability
w.r.t. T0. This is the case for instance when the theory extensions in the chains above are
local (for definitions and further properties cf. Section 2.2).

Failure to prove (1) means that Ψ cannot be strengthened to an inductive invariant. How-
ever, it is possible to generate additional conditions on the parameters which can be added
to the initial states such that Ψ holds.

Failure to prove (2) means that the formula Ψ is not an invariant or Ψ is not inductive
w.r.t. T . If Ψ is not an inductive invariant, we can consider the following two orthogonal
problems:

(a) Constraint synthesis:

Determine additional constraints on the parameters of the system which guarantee
that Ψ is an inductive invariant.

(b) Invariant generation:

Determine a formula I containing parameters of the system such that TS |= I → Ψ
and I is an inductive invariant.

Problem (a) was studied in [96, 97]. It can be shown that for theory extensions satisfying
property (Compf) the formulae obtained using Algorithm 2 for symbol elimination (or its
improvement described in Chapter 3) are weakest constraints on the parameters which
guarantee that Ψ is an inductive invariant.

In this thesis we therefore address only problem (b): We show how symbol elimination can
be used for giving a complete method for goal-oriented invariant generation, for invariants
containing symbols in a specified signature.

Let S be a system, TS be the theory and T=(ΣS , Init,Update) the transition constraint
system associated with S. We assume that ΣS = Σ0 ∪ Σp ∪ Σ, where Σ0 is the signature
of the base theory T0, Σp is a set of function symbols assumed to be parametric, and Σ is
a set of (non-parametric) function symbols disjoint from Σ0 ∪ Σp.

Let LocSafe be a class of universal formulae over the signature ΣS . Note that the formulae
in LocSafe can be regarded as stes of clauses.

We make the following three assumptions:

69

(A1) There exists a chain of local theory extensions T0 ⊆ · · · ⊆ TS ∪ Init such that in each
extension all variables occur below a function in Σp ∪ Σ.

(A2) For every Ψ ∈ LocSafe there exists a chain of local theory extensions T0 ⊆ · · · ⊆ TS∪Ψ
such that in each extension all variables occur below a function in Σp ∪ Σ.

(A3) The update axioms describe the change of the functions in a set F ⊆ Σ, depending
on a finite set {ϕi | i ∈ J} of mutually exclusive and exhaustive conditions over
non-primed symbols, i.e. Update =

⋃︁
f∈F Updatef , where Updatef has the form

Deff := {∀x(ϕf
i (x)→ Cf

i (f
′(x), x)) | i ∈ J}

such that

(1) ϕf
i (x) contains no symbols from Σ′ and Cf

i (f
′(x), x) must contain f ′.

(2) ϕi(x) ∧ ϕj(x) |=TS⊥ for i ̸= j,

(3) TS |=
⋁︁

i∈J ϕi, and

(4) Cf
i are conjunctions of literals and TS |= ∀x(ϕf

i (x)→ ∃y(C
f
i (y, x))) for all i ∈ J .

For (A3) we can in particular consider definition updates of the form Df or updates of
the form Boundf as discussed in Example 2.23.

Example 4.3. Consider the system S = (LI(R), (Σ, Init,Update)) from Example 4.1. We
have Update = {ϕ1 → C1}, where ϕ1 = y > 0 and

C1 = (y′ ≈ y − 1 ∧ x′ ≈ x+ 2 ∧ f ′(y) ≈ f(y) + 1).

First of all, we can split Update into three update formulae, one for each variable:

Update = Updatex ∧ Updatey ∧ Updatef , where

Updatex = y > 0→ x′ ≈ x+ 2

Updatey = y > 0→ y′ ≈ y − 1

Updatef = ∀z(y > 0 ∧ z ≈ y → f ′(z) ≈ f(z) + 1) ∧
∀z(y > 0 ∧ z ̸≈ y → f ′(z) ≈ f(z))

Note that we now express Updatef as a universal formula which specifies not only a change
for f(y), but also for terms f(z) with z ̸≈ y (in which case the value does not change).
Formally, condition (3) does not hold for the three update formulae, as they do not define
an exhaustive case distinction. However, it is easy to make a mutually exclusive case
distinction with conditions ϕ1....ϕn exhaustive while preserving the mutual exclusiveness,
by defining an “otherwise” case with ϕelse = ¬(ϕ1 ∨ ... ∨ ϕn). In our example we get
ϕelse = y ≤ 0. The values do not change in this case. This leads to the following update
formula:

Update = Updatex ∧ Updatey ∧ Updatef , where

Updatex = (y > 0→ x′ ≈ x+ 2) ∧ (y ≤ 0→ x′ ≈ x)

Updatey = (y > 0→ y′ ≈ y − 1) ∧ (y ≤ 0→ y′ ≈ y)

Updatef = ∀z(y > 0 ∧ z ≈ y → f ′(z) ≈ f(z) + 1) ∧
∀z(y > 0 ∧ z ̸≈ y → f ′(z) ≈ f(z)) ∧
∀z(y ≤ 0→ f ′(z) ≈ f(z))

70

For this update formula the conditions (1)-(4) hold. Since for the non-specified case we
can always assume that the values do not change, in the specification we sometimes leave
those cases out, but when carrying out the proof tasks they are always included in the
corresponding update formulae.

Remark 4.4. If Σ = {x1, ..., xn} and for some xi ∈ Σ no formula Updatexi
is specified

in Update, then we can set Updatexi
= (x′i ≈ xi) (if no update is specified for a symbol x,

then the values of x will not change during the update).

In what follows, for every formula ϕ containing function symbols in Σ we denote by ϕ′ the
formula obtained from ϕ by replacing every function symbol f ∈ Σ with the corresponding
symbol f ′ ∈ Σ′. For instance, if ϕ = y ≈ 1∧ ∀x f(x) > 0, then ϕ′ = y′ ≈ 1∧ ∀x f ′(x) > 0.

Theorem 4.5 ([63, 96]). The following hold under assumptions (A1)− (A3):

(1) If ground satisfiability w.r.t. T0 is decidable, then the problem of checking whether a
formula Ψ ∈ LocSafe is an inductive invariant of S is decidable.

(2) If T0 allows quantifier elimination and the initial states or the updates contain para-
meters, the symbol elimination method in Algorithm 2 yields constraints on these
parameters that guarantee that Ψ is an inductive invariant.

Proof: The result was proved in [63, 96]. The proof uses the fact that assumptions (A1),
(A2) and (A3) guarantee that there are chains of local theory extensions:

(i) T0 ⊆ · · · ⊆ TS ⊆ TS ∪ Init and

(ii) T0 ⊆ · · · ⊆ TS ⊆ TS ∪Ψ ⊆ TS ∪Ψ ∪ Update

Thus, checking satisfiability of TS ∪ Init∪¬Ψ and of TS ∪Ψ∪Update∪¬Ψ′ can be reduced
to a satisfiability test w.r.t. T0.

If T0 allows quantifier elimination and the formulae we obtain in TS∪ Init or TS∪Ψ∪Update
are satisfiable, we can use the symbol elimination method described in Algorithm 2 to
obtain a set Γ of Σ0∪Σp-constraints such that TS∪Γ∪ Init∪¬Ψ or TS∪Γ∪Ψ∪Update∪¬Ψ′

are unsatisfiable, respectively. □

By (1) in Theorem 4.5 the problem of invariant checking is decidable and by (2) in Theorem
4.5 the problem of constraint synthesis is decidable under assumptions (A1), (A2) and
(A3). It remains to analyze the problem of invariant generation.

4.2 Invariant Strengthening Algorithm

We now study the problem of strengthening a formula Ψ in a goal-oriented way to a univer-
sally quantified inductive invariant. We propose an algorithm for invariant strengthening
and prove its partial correctness under certain assumptions. We then present some refine-
ments of the algorithm and identify situations in which the assumptions under which partial
correctness is guaranteed can be weakened. We conclude this section with an analysis of
termination of our method and a short description of an implementation.

The method we propose is described in Algorithm 3. As an input we assume given a
transition constraint system T = (Σ, Init,Update). We are searching for inductive invariants

71

Algorithm 3 Successively strengthening a formula to an inductive invariant
Input: Transition constraint system T = (Σ, Init,Update) satisfying assumptions

(A1),(A2),(A3) and T0 allowing quantifier elimination;
signature Σp ⊆ Σ; Ψ ∈ LocSafe, formula over Σp.

Output: Inductive invariant I of T that entails Ψ and contains only function
symbols in Σp (if such an invariant exists).

1: I := Ψ
2: while I is not an inductive invariant for T do:

if Init ̸|= I then:
return “no universal inductive invariant entails Ψ”

if I is not preserved under Update then:
Let Γ be obtained by eliminating all symbols not in Σp

from I ∧ Update ∧ ¬I ′ and negating the result;
I := I ∧ Γ

3: return “I is an inductive invariant which entails Ψ”

over a certain signature, which is specified by a set of parameters Σp ⊆ Σ. The starting
point for the algorithm is a formula Ψ, which contains only symbols from Σ0∪Σp. We call
this formula a candidate invariant, as we do not know beforehand whether it is already
an inductive invariant or not, nor whether it can be strengthened to obtain an inductive
invariant.

The goal of the algorithm is to strengthen Ψ to an inductive invariant I (which still
contains only symbols from Σ0 ∪ Σp), i.e. to find a formula I such that I entails Ψ and I
is an inductive invariant. The strengthening is done iteratively, by starting with our first
candidate invariant I0 = Ψ, which in each step is strengthened further to a new candidate
invariant I1, I2, ... until an inductive invariant is found or it can be concluded that none
exists. In each iteration of the algorithm we have to perform the following steps:

(1) Invariant Checking: Check whether the current candidate invariant In is an in-
ductive invariant, i.e. check whether it

a) holds in the initial state, and

b) is preserved during updates.

We show that failure to prove a) means that no inductive invariant which entails
Ψ exists (which means that the algorithm can terminate here). Failure to prove b)
means that In is not inductive and needs to be strengthened. If both conditions
hold, then the current candidate is an inductive invariant which entails Ψ and the
algorithm terminates.

(2) Invariant Strengthening: From the current candidate invariant In we compute
a strengthened formula In+1 which will be our next candidate invariant. We can
generate a strengthened formula by applying Algorithm 2 to eliminate all the symbols
not in Σp from the formula In ∪Update∪¬I ′n, where I ′n results from In by replacing
each f ∈ Σ with f ′ ∈ Σ′. This formula expresses that the current candidate invariant
holds before the update, but not anymore after the update. By using Algorithm 2 we
compute a constraint Γn (if the theory extensions involved are local, then Γn is the
weakest such constraint) which rules out this situation. Our new candidate invariant
is then In+1 = In ∧ Γn.

72

We first illustrate how the algorithm can be applied on a simple example containing for-
mulae in LI(Z). More complex examples follow later.

Example 4.6. We consider Example 12 from [44]. Let S = (TS , T), where TS = LI(Z) and
T = (ΣS , Init,Update) is a transition constraint system, where:

• ΣS = Σ0 ∪ Σp, where

– Σ0 is the signature of linear integer arithmetic and

– Σp = {x, y}, where x and y are 0-ary function symbols

• Init = (x ≈ y ∨ x ≈ y + 2)

• Update = (x ≤ y + 1→ x′ ≈ x+ 2)

Let Ψ = (y ≤ x ∧ x ≤ y + 2) be the property that is supposed to be invariant. We apply
Algorithm 3, starting with the candidate invariant I0 = Ψ = (y ≤ x ∧ x ≤ y + 2).

Invariant checking: We first check whether Init |= I0. It is easy to see that this holds. We
then check whether I0 is invariant under transitions of T . This is the case if the following
formula is unsatisfiable:

F0 = (y ≤ x ∧ x ≤ y + 2) ∧ Updatex ∧ Updatey ∧ (y′ > x′ ∨ x′ > y′ + 2), where

Updatex = (x ≤ y + 1→ x′ ≈ x+ 2) ∧ (x > y + 1→ x′ ≈ x)

Updatey = y′ ≈ y

F0 is satisfiable, so we have to strengthen Ψ.

Invariant strengthening: We eliminate all symbols which are not in Σp (i.e. x′ and y′)
from F0 (we can do this using Redlog with context PASF) and obtain x ≈ y + 1. We
negate it and obtain Γ0 = x ̸≈ y + 1. Therefore the new candidate invariant is:

I1 = I0 ∧ Γ0 = (y ≤ x ∧ x ≤ y + 2) ∧ (x ̸≈ y + 1) ≡ x ≈ y ∨ x ≈ y + 2

We check whether I1 is an inductive invariant. I1 clearly holds in the initial state. We check
whether it is invariant under updates by checking satisfiability of the following formula:

F1 = (x ≈ y ∨ x ≈ y + 2) ∧ Updatex ∧ Updatey ∧ (x′ ̸≈ y ∧ x′ ̸≈ y′ + 2)

F1 is unsatisfiable, so I = x ≈ y ∨ x ≈ y + 2 is an inductive invariant which entails
Ψ = (y ≤ x ∧ x ≤ y + 2), hence Ψ is an invariant of the system S. ■

Termination of Algorithm 3 is not guaranteed in general, as in the worst case it could
happen that the algorithm ends up in an infinite loop of strengthenings. In the following
we show such an example.

Example 4.7. We consider Example 2 from [44] with a slight change in the condition
of the while-loop. Let S = (TS , T), where TS = LI(Z) and T = (ΣS , Init,Update) is a
transition constraint system, where:

• ΣS = Σ0 ∪ Σp, where

– Σ0 is the signature of linear integer arithmetic and

– Σp = {x, y, z,N}, where x, y, z and N are 0-ary function symbols

73

• Init = (x ≈ 0 ∧ y ≈ 0 ∧ z ≈ 0)

• Update = (x ≤ N → (x′ ≈ x+ 1 ∧ y′ ≈ y + 1 ∧ z′ ≈ z + x′ − y′))

Let Ψ = (z ≤ 0) be the property that is supposed to be invariant. We apply Algorithm 3.

We start with the candidate invariant I0 = Ψ = (z ≤ 0).

Iteration 1:

Invariant checking: We first check whether Init |= I0. It is easy to see that this holds. We
then check whether I1 is invariant under transitions of T . This is the case if the following
formula is unsatisfiable:

F0 = (z ≤ 0) ∧ Updatex ∧ Updatey ∧ Updatez ∧ (z′ > 0), where

Updatex = (x ≤ N → x′ ≈ x+ 1) ∧ (x > N → x′ ≈ x)

Updatey = (x ≤ N → y′ ≈ y + 1) ∧ (x > N → y′ ≈ y)

Updatez = (x ≤ N → z′ ≈ z + x′ − y′) ∧ (x > N → z′ ≈ z)

This formula is satisfiable, so we have to strengthen Ψ.

Invariant strengthening: We eliminate all symbols which are not in Σp (i.e. x′, y′ and
z′) from F (we can do this using Redlog with context PASF) and obtain

x ≤ N ∧ x− y + z > 0 ∧ z ≤ 0.

We negate it and obtain

Γ0 = ((z ≤ 0 ∧ x ≤ N)→ z ≤ y − x).

Therefore the new candidate invariant is:

I1 = I0 ∧ Γ0 =(z ≤ 0) ∧ ((z ≤ 0 ∧ x ≤ N)→ z ≤ y − x)

≡(z ≤ 0) ∧ (x ≤ N → z ≤ y − x)

Iteration 2:

Invariant Checking: I2 clearly holds in the initial state. We check whether it is invariant
under updates by checking satisfiability of the following formula:

F1 =((z ≤ 0) ∧ (x ≤ N → z ≤ y − x)) ∧ Updatex ∧ Updatey ∧ Updatez∧
((z′ > 0) ∨ (x′ ≤ N ∧ z′ > y′ − x′))

F1 is satisfiable, so I1 has to be strengthened.

Invariant Strengthening: We eliminate x′, y′ and z′ from F2 and obtain

x+ 1 ≤ N ∧ 2x− 2y + z > 0 ∧ x− y + z ≤ 0 ∧ z ≤ 0.

We negate it and obtain

Γ1 = ((z ≤ 0 ∧ x+ 1 ≤ N ∧ z ≤ y − x)→ z ≤ 2y − 2x).

74

Therefore the new candidate invariant is:

I2 = I1 ∧ Γ1 = (z ≤ 0) ∧ (x ≤ N → z ≤ y − x)

∧ ((z ≤ 0 ∧ x+ 1 ≤ N ∧ z ≤ y − x)→ z ≤ 2y − 2x)

≡ (z ≤ 0) ∧ (x ≤ N → z ≤ y − x)

∧ (x+ 1 ≤ N → z ≤ 2y − 2x)

Further iterations:

I2 is still not an inductive invariant. If we iterate the procedure further we would obtain
the following:

In = (z ≤ 0) ∧ (x ≤ N → z ≤ y − x)

∧ (x+ 1 ≤ N → z ≤ 2y − 2x)

∧ (x+ 2 ≤ N → z ≤ 3y − 3x)

...
∧ (x+ (n− 1) ≤ N → z ≤ ny − nx)

This process would iterate infinitely. Therefore, the algorithm does not terminate. ■

While Algorithm 3 is not guaranteed to terminate, we can prove that if the algorithm
terminates, then its output is correct.

4.2.1 Correctness

In addition to assumptions (A1), (A2), (A3) from Section 4.1 we now consider also the
following assumptions (where T0 is the base theory in assumptions (A1)–(A3)):

(A4) T0 allows quantifier elimination (then also ground satisfiability in T0 is decidable).

(A5) All candidate invariants I computed in the while loop in Algorithm 3 are in LocSafe,
and all formulae in LocSafe are sets of clauses which define local theory extensions
of T0 satisfying condition (Compf).

In what follows we prove partial correctness of Algorithm 3 under assumptions (A1)–(A5),
i.e. we show that if it terminates, then its output is correct.

Lemma 4.8. If Algorithm 3 terminates and returns a formula I = Γ1 ∧ ... ∧ Γn ∧Ψ, then
I is an inductive invariant of T that entails Ψ, where Γi contains only function symbols in
Σp for all i ∈ {1, ..., n}.

Proof: The algorithm terminates and returns a formula I only if the loop condition of the
while loop in line 2 of Algorithm 3 is false. This means that I is an inductive invariant.
Since Ψ and any Γ computed in the while loop contain only function symbols in Σp, the
formula I contains only function symbols in Σp. □

Lemma 4.9. Assume Assumptions (A1)–(A5) hold. Assume that there exists a universal
inductive invariant J containing only function symbols in Σp that entails Ψ. Then J entails
every candidate invariant I generated in the while loop of Algorithm 3.

75

Proof: We prove the lemma by induction on the number of iterations in which the candidate
invariant I is obtained.

Induction basis:

If i = 0, then I0 = Ψ, hence J |=TS Ψ = I0.

Induction hypothesis:

Assume that the property holds for the candidate invariant generated in n steps. Let
In+1 be generated in step n + 1. In this case there exist candidate invariants I1, . . . , In
containing only function symbols in Σp such that:

(i) I0 = Ψ;

(ii) for all 0 ≤ i ≤ n, Init |=TS Ii;

(iii) for all 0 ≤ i ≤ n, Ii is not an inductive invariant, i.e. Ii∧Update∧¬I ′i is satisfiable and
Γi is obtained by eliminating the primed functions and all function symbols which
are not in Σp;

(iv) for all 0 ≤ i ≤ n, Ii+1 = Ii ∧ Γi.

Induction step:

We prove that J |=TS In+1, i.e. that J |=TS In ∧ Γn. By the induction hypothesis it holds
that J |=TS In. It is easy to see that then J ≡TS J∧In (every TS-model which is a model of J
is a model of J ∧ In; the converse implication is obvious). We know that J is an inductive
invariant, i.e. J ∧ Update ∧ ¬J ′ is unsatisfiable. This means (if we use the equivalence
J ≡TS J ∧ In) that (J ∧ In) ∧ Update ∧ (¬J ′ ∨ ¬I ′n) is unsatisfiable. Hence, in particular
J ∧ In ∧ Update ∧ ¬I ′n is unsatisfiable. By Theorem 3.5 and the way Γn is constructed, we
know that Γn is the weakest universal formula over Σp such that Γn ∧ In ∧Update∧¬I ′n is
unsatisfiable. Together with the fact that J is a universal formula containing only function
symbols in Σp, we then know that J |=TS Γn. Thus, J |=TS In ∧ Γn, so J |=TS In+1. □

Theorem 4.10 (Partial Correctness). Under Assumptions (A1)–(A5), if Algorithm
3 terminates, then its output is correct.

Proof: There are two different ways in which the algorithm can terminate. We make a case
distinction:

Case 1: Algorithm terminates with output “I is an inductive invariant which entails Ψ”

By Lemma 4.8, if the algorithm returns a formula I, then it is an inductive invariant.
Thus, the output of the algorithm is correct.

Case 2: Algorithm terminates with output “no universal inductive invariant entails Ψ”

Assume that there exists a universal inductive invariant J that entails Ψ. By Lemma 4.9,
J entails every candidate invariant generated at each iteration, thus entails I. On the one
hand, by the termination condition Init ̸|= I there exists a model A of Init which is not a
model of I. On the other hand, every model of Init is a model of J , hence also a model of I.
This is a contradiction. Therefore, the assumption that there exists a universal inductive
invariant J that entails Ψ was false. Thus, the output of the algorithm is correct. □

76

4.3 Refinements

In this section we take a look at possible drawbacks of Algorithm 3 and propose sev-
eral refinements which improve certain aspects of the algorithm, like the complexity of
the quantifier elimination, the assumptions being made to guarantee correctness, or the
termination.

The invariant generation algorithm may run multiple iterations of strengthening to com-
pute an inductive invariant. With each iteration needed the formula on which quantifier
elimination is applied gets larger, which could potentially lead to problems. Therefore,
we examine possibilities for applying quantifier elimination on shorter formulae (for in-
stance using the improvement of Algorithm 2 described in Section 3.2.1) and analyze the
complexity.

The assumptions (A1)–(A5) which we stated to guarantee the correctness of the algorithm
are quite strong. We analyze situations in which some of the assumptions can be relaxed
or avoided.

Last but not least, a drawback of the algorithm is the fact that termination is not guar-
anteed. We show that the choice of the symbols to be eliminated can sometimes have
an influence on the termination of the method and propose a refinement based on trying
different sets of symbols to be eliminated. In addition to that we analyze situations in
which termination is guaranteed.

4.3.1 Applying Quantifier Elimination on Shorter Formulae

Let T = (Σ, Init,Update) be a transition constraint system. In what follows we assume
that Update =

⋁︁
f∈F Updatef , where F ⊆ Σ (no f ′ with f ∈ F is a parameter) such

that Updatef satisfies the conditions in Assumption (A3). We analyze the computations
described in Algorithm 3, in Step 2 of iteration n+ 1.

Consider the case in which Init |= In, but In is not invariant under updates. By construc-
tion, In = Ψ∧Γ0∧· · ·∧Γn−1, where Ψ is the safety property we consider and Γ0, . . . ,Γn−1

are the additional constraints added in the first n iterations in Step 2 to strengthen the
candidate invariants I0 = Ψ, I1, . . . , In−1, respectively.

Lemma 4.11. If In = In−1 ∧ Γn−1 is not invariant under updates, then Algorithm 3
computes a formula Γn =

⋀︁
f∈F Γf

n, where Γf
n is obtained by applying Algorithm 2 to

K ∧ In ∧ Updatef ∧G, where G is obtained by Skolemization from ¬Γ′
n.

Proof: In ∧Update∧¬I ′n ≡
⋁︁

f∈F (In ∧Updatef ∧¬I ′n), so it is satisfiable if and only if for
some f ∈ F , the formula K ∧ In ∧ Updatef ∧ ¬I ′n is satisfiable. We have:

K ∧ In ∧ Updatef ∧ ¬I ′n = K ∧ (In−1 ∧ Γn−1) ∧ Updatef ∧ (¬I ′n−1 ∨ ¬Γ′
n−1)

≡ K ∧ (In−1 ∧ Γn−1) ∧ Updatef ∧ ¬Γ′
n−1

since Γn−1 was introduced such that K∧ (In−1 ∧ Γn−1)∧Updatef ∧¬I ′n−1 is unsatisfiable.
Then in Algorithm 3 a formula Γn =

⋀︁
f∈F Γf

n is computed, where Γf
n are the (weakest)

formulae obtained by Algorithm 2 such that K ∧ In ∧ Γf
n ∧ Updatef ∧ ¬Γ′

n is unsatisfiable.
□

77

The following Lemma expresses the fact that case distinctions of the form
⋀︁n

i=1(ϕi → Ci)
which are mutually exclusive (i.e. ϕi ∧ ϕj |=T ⊥ for all 1 ≤ i < j ≤ n) and exhaustive (i.e.
|=T

⋁︁n
i=1 ϕi) can be written in the form

⋁︁n
i=1(ϕi ∧ Ci).

Lemma 4.12. Let T be a theory and for i ∈ {1, ..., n} let ϕi be formulae and Ci be clauses.
If ϕi∧ϕj |=T ⊥ for all 1 ≤ i < j ≤ n and |=T

⋁︁n
i=1 ϕi, then the following equivalence holds:

n⋀︂
i=1

(ϕi → Ci) ≡
n⋁︂

i=1

(ϕi ∧ Ci).

We now analyze the formulae Γf
n generated at iteration n. For simplicity we assume that f

is unary; the extension to higher arities is also possible. For the following considerations we
need to recall the improvement of Algorithm 2 described in Theorem 3.7. The idea is that
if the set of clauses K can be structured as K = Kp∪K1, where Kp contains only parameters
(i.e. symbols which are not supposed to be eliminated), then symbol elimination only needs
to be applied to K1. The following theorem describes how this improvement can be used
in Step 2 of Algorithm 3.

Theorem 4.13. Let Ψ ∈ LocSafe and T = (Σ, Init,Update) be a transition constraint
system, where Update =

⋁︁
f∈F Updatef is of the form discussed above. Assume that the

clauses in Ψ and Updatef are flat and linear for all f ∈ F . Let m be the maximal number
of variables in a clause in Ψ. Assume that the only non-parametric functions which need
to be eliminated are the primed symbols {f ′ | f ∈ F} and that conditions (A1)–(A5) hold.
Consider a variant of Algorithm 3 which uses for symbol elimination Algorithm 2 with the
improvement in Theorem 3.7. Then for every step n the following hold:

(i) The clauses in the candidate invariant In obtained at step n of Algorithm 3 are flat.

(ii) The number of universally quantified variables in every clause in In is ≤ m.

Proof: We prove (i) and (ii) by induction over the number of iterations n.

Induction basis:

For n = 0 we have I0 = Ψ and (i) and (ii) clearly hold.

Induction hypothesis:

Assume that (i) and (ii) hold for iteration n.

Induction step:

In the following we prove that (i) and (ii) hold for iteration n+ 1.

By Theorem 3.7, if the clauses K∪In contain only function symbols in Σ0∪Σp, we need to
apply Algorithm 2 to Updatef ∧G only, where G is obtained from ¬Γ′

n after Skolemization.
If Γ′

n is a conjunction of clauses, then G is a disjunction of conjunctions of literals. Each
disjunct can be processed separately and we take the conjuction of the obtained constraints.
Thus, we can assume without loss of generality that G is a conjunction of literals. By the
induction hypothesis the number k of universally quantified variables in Γn is ≤ m, so
G contains Skolem constants {d1, ..., dk, c1, ..., cr} with k + r ≤ m, where d1, ..., dk occur
below f ′.

78

To prepare the formula for symbol elimination we compute G1 = Updatef [G] ∪ G (with
est(G) = {f ′(d1), . . . , f

′(dk)} used in the instantiation), then instantiate also the terms
starting with function symbols g ∈ Σp ∪ Σ. Hence, we use the set of ground terms

T = est(G) ∪ est(G1) = {f ′(d1), . . . , f
′(dk)} ∪ {g(c) | g ∈ Σp ∪ Σ, g(c) ∈ est(G1)},

which is a set of flat terms, in which we isolated the terms starting with the function
symbol f . Let nf be the number of cases in the definition of f . By Lemma 4.12 we have:

Updatef [G]:=
k⋀︂

j=1

(︄ nf⋀︂
i=1

(ϕi(dj)→ Ci(dj , f
′(dj)))

)︄
≡

k⋀︂
j=1

nf⋁︂
i=1

(ϕi(dj) ∧ Ci(dj , f
′(dj)))

≡
⋁︂

i1,...,ik∈{1,...,nf}

⎛⎝ k⋀︂
p=1

ϕip(dp) ∧
k⋀︂

p=1

Cip(dp, f
′(dp))

⎞⎠
We thus obtained a DNF with (nf)

k ≤ (nf)
m disjuncts, where nf and m are constants

depending on the description of the transition system. Both nf and m are typically small,
in most cases the definition of f ′ is done by at most 3 disjoint cases, so nf ≤ 3. Algorithm
2 is applied as follows:

Step 1: We introduce a constant cf ′d for every term f ′(d) ∈ est(G), replace f ′(d) with cf ′d,
and add the corresponding instances of the congruence axioms. We obtain the following:

G1 = G0 ∧ (Updatef [G])0 ∧
⋀︂

f ′(di),f ′(dj)∈est(G)

di ≈ dj → cf ′di ≈ cf ′dj

We may compute a disjunctive normal form for the instances of congruence axioms or not;
depending on this we obtain one of the equivalences (4.1) or (4.2) below:

G1 ≡ G0 ∧
⋁︂

i1,...,ik∈{1,...,nf }

D⊆est(G)2

(︃ k⋀︂
p=1

ϕip(dp) ∧
k⋀︂

p=1

Cip(dp, cf ′dp) ∧KD(Con0)
)︃

(4.1)

≡ G0 ∧
⋁︂

i1,...,ik∈{1,...,nf}

(︃ k⋀︂
p=1

ϕip(dp) ∧
k⋀︂

p=1

Cip(dp, cf ′dp) ∧ Con0

)︃
(4.2)

In equivalence (4.1) we brought the formula to DNF. The formulae KD(Con0) are the
conjunctions which appear when bringing the congruence axioms to DNF, based on a
subset D of est(G)2. In equivalence (4.2) we used distributivity and moved the conjunction
of all congruence axioms inside the conjunctive formulae in the big disjunction.

Note that
Con0 =

⋀︂
f(di),f(dj)∈est(G)

(di ≈ dj → cf ′di ≈ cf ′dj)

and every formula

KD(Con0) =
⋀︂

(f(di),f(dj))∈D

di ̸≈ dj ∧
⋀︂

(f ′(d1),f ′(d2))∈est(G)2\D

cf ′d1 ≈ cf ′d2

contain k2 ≤ m2 conjunctions, and the DNF of Con0 contains 2(k2) ≤ 2(m
2) disjuncts, each

being of length k.

79

In a second reduction we replace every term of the form g(d) ∈ est(G1), where g ∈ Σp, with
a new constant cgd. By Theorem 3.7 we do not need to add the corresponding congruence
axioms. Using equivalence (4.1) and distributivity we obtain

G0
1(1) ≡

⋁︂
i1,...,ik∈{1,...,nf }

D⊆est(G)2

(︃ k⋀︂
p=1

ϕ0
ip(dp)∧

k⋀︂
p=1

C0
ip(dp, cf ′dp)∧KD(Con0)∧G0

0(d, c, cf ′d, cgc)

)︃

and using equivalence (4.2) and distributivity we obtain

G0
1(2) ≡

⋁︂
i1,...,ik∈{1,...,nf}

(︃ k⋀︂
p=1

ϕ0
ip(dp)∧

k⋀︂
p=1

C0
ip(dp, cf ′dp)∧Con0∧G0

0(d, c, cf ′d, cgc)

)︃

where ϕ0
j , C

0
j and G0

0 are obtained from ϕj , Cj and G0, respectively, after replacing all
terms of the form g(c), where g ∈ Σp, with cgc.

Step 2: f ′ is not a parameter. All the other function symbols are either parametric or in
T0. We therefore replace the constants cf ′d with variables xf ′d.

Step 3: Note that ∃xf ′d1 , . . . , xf ′dk G0
1(1)(xf ′d1 , . . . , xf ′dk) is equivalent to

G′
1(1) ≡

⋁︂
i1,...,ik∈{1,...,nf }

D⊆est(G)2

(︄
k⋀︂

p=1

ϕ0
ip(dp) ∧

⋀︂
(f ′(di),f ′(dj))∈D

di ̸≈ dj ∧

∃xf ′d1 , . . . , xf ′dk

(︃ k⋀︂
p=1

C0
ip(dp, xf ′dp) ∧

⋀︂
(f ′(di),f ′(dj))∈est(G)2\D

xf ′di ≈ xf ′dj ∧G0
0(d, c, cgc, xf ′d)

)︃)︄
.

Using equivalence (4.2) we obtain the following:

G′
1(2) ≡

⋁︂
i1,...,ik∈{1,...,nf}

(︄
k⋀︂

p=1

ϕ0
ip(dp) ∧ ∃xf ′d1 , . . . xf ′dn

(︃ k⋀︂
p=1

C0
ip(dp, xf ′dp) ∧

⋀︂
(f ′(di),f(′dj))∈est(G)

(di ≈ dj → xf ′di ≈ xf ′dj) ∧G0
0(d, c, cgc, xf ′d)

)︃)︄

Using equivalence (4.1) we obtain after quantifier elimination a formula of the form

G′′
1(1) ≡

⋁︂
i1,...,ik∈{1,...,nf }

D⊆est(G)2

(︃ k⋀︂
p=1

ϕ0
ip(dp) ∧

⋀︂
(di,dj)∈D

di ̸≈ dj ∧D1
i1,...,ik,D

(d, c, cgc)

)︃

where D1
i1,...,ik,D

(d, c, cgc) is obtained after quantifier elimination from

∃xf ′d1 , . . . , xf ′dk

(︃ k⋀︂
p=1

C0
ip(dp, xf ′dp) ∧

⋀︂
(f ′(di),f ′(dj))∈est(G)2\D

xf ′di ≈ xf ′dj ∧G0
0(d, c, cgc, xf ′d)

)︃
.

80

When we use equivalence (4.2) we obtain after eliminating the quantifiers a formula of the
form

G′′
1(2) ≡

⋁︂
i1,...,ik∈{1,...,nf}

(︄
k⋀︂

p=1

ϕ0
ip(dp) ∧D2

i1,...,ik,D
(d, c, cgc)

)︄

where D2
i1,...,ik,D

(d, c, cgc) is obtained after quantifier elimination form

∃xf ′d1 , . . . , xf ′dk

(︃ k⋀︂
p=1

C0
ip(dp, xf ′dp)∧

⋀︂
(f ′(di),f ′(dj))∈est(G)

(di ≈ dj → xf ′di ≈ xf ′dj)∧G
0
0(d, c, cgc, xf ′d)

)︃
.

Step 4: We replace back in the formula obtained this way all constants cgd, where g ∈ Σp

and g(c) ∈ est(G1), with the terms g(c). Therefore, when starting from formula (4.1) we
obtain

Γ2(1)(d, c) =
⋁︂

i1,...,ik∈{1,...,nf }

D⊆est(G)2

(︄ (︃ k⋀︂
p=1

ϕip(dp) ∧
⋀︂

(di,dj)∈D

di ̸≈ dj ∧Gg
0(d, c, g(c))

)︃
∧

D1
i1,...,ik,D

(d, c, g(c))

)︄
and when starting from formula (4.2) we obtain

Γ2(2)(d, c) =
⋁︂

i1,...,ik∈{1,...,nf}

⋁︂
D⊆est(G)2

(︄(︃ k⋀︂
p=1

ϕip(dp) ∧Gg
0(d, c, g(c))

)︃
∧D2

i1,...,ik,D
(d, c, g(c))

)︄
.

Step 5: We negate ∃yΓ2(1)(y) and obtain

∀y

[︄ ⋀︂
i1,...,ik∈{1,...,nf}

⋀︂
D⊆est(G)2

(︄
¬
(︃ k⋀︂

p=1

ϕip(yp) ∧
⋀︂

(f(di),f(dj))∈D

yi ̸≈ yj ∧Gg
0(y, g(y))

)︃
∧

¬D1
i1,...,ik,D

(y, g(y))

)︄]︄

which is equivalent to

∀y

[︄ ⋀︂
i1,...,ik∈{1,...,nf}

⋀︂
D⊆est(G)2

(︄ (︃ k⋀︂
p=1

ϕip(yp) ∧
⋀︂

(f(di),f(dj))∈D

yi ̸≈ yj ∧Gg
0(y, g(y))

)︃

→ ¬D1
i1,...,ik,D

(y, g(y))

)︄]︄
.

We have therefore obtained a formula Γf
n+1(G) ≡ ¬∃yΓ2(1)(y), which is a conjunction of

universally quantified clauses. All clauses in Γf
n+1(G) are flat. By construction, the number

of universally quantified variables in Γf
n+1(G) is k + r ≤ m.

The case of ∃yΓ2(2)(y) is similar. □

81

Complexity: We analyze the complexity of the transformations presented above. We
show how the size of the formula changes depending on nf and m (since k ≤ m and m is
a constant of the system).

• After the instantiation we first have a conjunction of k ∗ nf implications (where
k ∗ nf ≤ m ∗ nf).

• After the transformation to DNF we obtain a disjunction of at most nm
f conjunctions,

each having a length of at most m ∗ lf , where lf is the maximal length of a rule in
Updatef .

• Using formula (4.1), after applying the first reduction in Step 1 we obtain a disjunc-
tion of nm

f ∗ 2(m
2) conjunctions, each of length at most (m ∗ lf +m2+ |G|) (note that

m ∗ lf and m2 are constants of the system).

• Using formula (4.2), after applying the first reduction in Step 1 we obtain a disjunc-
tion of nf formulae, each of length at most (m ∗ lf + |G|+ |Con0|) (note that m ∗ lf
is a constant of the system).

• In Step 2 the size of the formulae does not change.

• After quantifier elimination in Step 3 the size of the conjuncts may grow, since for
every variable which is eliminated, the size of the formula might grow quadratically.

• The last two steps of the algorithm do not change the size of the formula.

In the following we analyze the length of the formula Γn, i.e. the constraint generated by
symbol elimination in the n-th iteration of Algorithm 3.

Theorem 4.14. Let Ψ ∈ LocSafe and T = (Σ, Init,Update) be a transition constraint
system, where Update =

⋁︁
f∈F Updatef , with F ⊆ Σ such that Updatef satisfies (A3).

The following hold:

(1) If the constraints Ci are all equalities, then the length of Γn is at most n ∗ k1 + |Ψ|,
where k1 is a constant of the system.

(2) If the constraints Ci are linear constraints over Q or R, then the length of the clauses
in Γn is of order O(|Ψ|)n∗k2 , where k2 is a constant of the system.

Proof: Let m be the maximal number of variables in a clause in Ψ and lf be the maximal
length of a rule in Updatef . Let nf be the number of cases in the definition of f and mc be
the maximal number of case distinctions in the updates Updatef for f ∈ F (i.e. nf ≤ mc
for all f ∈ F).

We first analyze the number c(n) of clauses in Γn. We have Γn =
⋀︁

f∈F Γf
n. From the

proof of Theorem 4.13 it can be seen that for every clause C in Γn, the number of clauses
in Γf

n+1 generated to ensure unsatisfiability of Updatef ∧ G, where G = ¬C, is at most
nm
f ∗m2, where nm

f ∗m2 ≤ mcm ∗m2. Thus, for the number c(n + 1) of clauses in Γn+1

the following holds:

c(n+ 1) ≤ |F | ∗mcm ∗m2 ∗ c(n) = k1 ∗ c(n)

This shows that c(n+1) ≤ kn1 ∗c(1), where k1 = |F |∗mcm ∗m2 is a constant of the system.

82

We now analyze the length of the clauses in Γn. Let q be the maximal length (i.e. the
maximal number of literals) of the constraints Ci and q(n) the maximal length of the
clauses in Γn. Then the negation of every clause in Γn contains at most q(n) literals. After
instantiation and transformation to disjunctive normal form we obtain a disjunction of
conjunctions of the form

k⋀︂
p=1

ϕip(dp) ∧
k⋀︂

p=1

Cip(dp, cf ′dp) ∧
⋀︂

f ′(di),f ′(dj))∈D

di ̸≈ dj ∧
⋀︂

(f ′(di),f ′(dj))∈est(G)2\D

cf ′di ≈ cf ′dj ∧G0

(where D ⊆ est(G)2) with at most (k ∗ lf + k2 + |G|) ≤ (m ∗ lf + m2 + p(n)) literals.
We apply quantifier elimination essentially on

⋀︁k
p=1Cip(dp, xfdp) ∧ G (the conjunction of

equalities xf ′di ≈ xf ′dj is processed fast). This conjunction contains at most a number
k ∗ p+ p(n) ≤ m ∗ p+ p(n) of literals.

If the constraints Ci are equalities (as it is the case with updates of the form Df from
Example 2.21), then the formula obtained by quantifier elimination has equal length or is
shorter than

⋀︁k
p=1Cip(dp, xfdp)∧G, so p(n+1) ≤ m ∗ p+ p(n). Thus, p(n) ≤ k2 ∗n+ |Ψ|,

where k2 = m ∗ p.

If the constraints are conjunctions of linear inequalities over Q, then using for example
the Fourier-Motzkin elimination procedure, after eliminating one variable the size is at
most (m ∗ p + p(n))2, and after eliminating m variables it is (m ∗ p + p(n))2

m . Thus,
p(n + 1) ≤ (k2 + p(n))k3 , where k3 = 2m is a constant depending on the system. Hence,
p(n) is in the worst case in O(p(1)k

n
3). □

Remark 4.15. In many of the examples we analyzed the growth of the formulae is not so
dramatic for the following reasons:

(i) In many cases the updates are assignments.

(ii) Even if the updates are specified by giving lower and upper bounds for the new values,
the length of the constraints Ci is 1 or 2.

(iii) Many of the disjuncts in the DNF to which quantifier elimination should be applied
are unsatisfiable and do not need further consideration.

If there are non-parametric functions that are being updated, then the number of variables
in the clauses Γn might grow: Any constant c ∈ F which is not a parameter, but occurs
below a parameter in Update or G, is then being converted into a universally quantified
variable by Algorithm 2, as the following example shows.

Example 4.16. Consider the program in Figure 4.1 (this is the same program that was
illustrated in Chapter 1).

It uses two subprograms copy(a, b) and add1(a) with the following meaning:

• copy(a, b) copies array b into array a;

• add1(a) adds 1 to every element of array a.

Assume that we are in linear arithmetic over the integers and assume that b is an array
which is increasingly sorted. The goal is to prove that the formula Ψ := d2 ≥ d1 is an
invariant of the program.

83

d1 = 1;
d2 = 1;
copy(a, b);
i = 0;
while (nondet())
{

a = add1(a);
d1 = a[i];
d2 = a[i+1];
i = i + 1

}

Figure 4.1: A simple program.

We can model the program as a system S = (TS , T), where TS = LI(Z) is the background
theory and T = (Σ ∪ Σp, Init, {Updatea,Updated1 ,Updated2 ,Updatei}) is a transition con-
straint system, where:

• Σ = {b, i}, where b is a unary function and i is a variable

• Σp = {a, d1, d2}, where a is a unary function and d1, d2 are variables

• Init = {d1 ≈ 1, d2 ≈ 1, ∀j(a[j] ≈ b[j]), i ≈ 0, ∀j, k(j ≤ k → b[j] ≤ b[k])}

• Updatea = ∀j(a′[j] ≈ a[j] + 1)

• Updated1 = d′1 ≈ a′[i]

• Updated2 = d′2 ≈ a′[i+ 1]

• Updatei = i′ ≈ i+ 1

The task is to prove that if b is an array with its elements sorted in increasing order, then
the formula Ψ := d1 ≤ d2 is an invariant of the program.

Invariant checking: Ψ clearly holds in the initial state, as d1 ≈ 1 ≤ 1 ≈ d2. In order to
show that Ψ is an inductive invariant of the while loop, we need to prove that the following
formula is unsatisfiable:

d1 ≤ d2 ∧ ∀j(a′[j] ≈ a[j] + 1) ∧ d′1 ≈ a′[i] ∧ d′2 ≈ a′[i+ 1] ∧ i′ ≈ i+ 1 ∧ d′1 > d′2

We have the chain of local theory extensions

LI(Z) ⊆ LI(Z) ∪ UIFa ⊆ LI(Z) ∪ UIFa ∪ Updatea = T ,

where Updatea = ∀j(a′[j] ≈ a[j]+1). Checking unsatisfiability of the formula above can be
done using the hierarchical reduction method for local theory extensions. First we compute
Updatea[G] and obtain the set of instances {a′[i] ≈ a[i] + 1, a′[i+1] ≈ a[i+1] + 1}. After
purification and after eliminating the variables d′1, d′2 and i′ (by replacing every occurrence
of the variables by the right hand side of their respective update rule) we obtain the
following:

Def : a′1 ≈ a′[i] ∧ a′2 ≈ a′[i+ 1]
G0 ∧ (Updatea)0 : d1 ≤ d2 ∧ a′1 > a′2 ∧ a′1 ≈ a[i] + 1 ∧ a′2 ≈ a[i+ 1] + 1

In a second step we can use a similar hierarchical reduction for the extension with the
uninterpreted function a. We obtain:

84

Def : a′1 ≈ a′[i] ∧ a′2 ≈ a′[i+ 1] ∧ a1 ≈ a[i] ∧ a2 = a[i+ 1]
G0 ∧ Update(a′)0 : d1 ≤ d2 ∧ a1 + 1 > a2 + 1 ∧ a′1 ≈ a1 + 1 ∧ a′2 ≈ a2 + 1

It can be checked that G0 ∧ Update(a′)0 is satisfiable, i.e. I0 is not an inductive invariant
and therefore needs to be strengthened.

Invariant strengthening:

The only symbols which need to be eliminated from G0 ∧ Update(a′)0 are the primed
variables a′1 and a′2. For this we use Algorithm 2. By the improvement in Theorem 3.7
we can ignore I0 = d1 ≤ d2, as d1, d2 ∈ Σp. After quantifier elimination we obtain the
formula a1 > a2. After replacing the constants with the terms they denote we obtain
∃i(a[i] > a[i+ 1]). The negation of this formula yields the following constraint:

Γ = ∀j(a[j] ≤ a[j + 1])

Therefore we obtain the following strengthened candidate invariant:

I1 = I0 ∧ Γ = d1 ≤ d2 ∧ ∀j(a[j] ≤ a[j + 1])

We check whether the candidate invariant I1 is an inductive invariant. I1 holds in the
initial state, as d1 ≤ d2 holds due to d1 ≈ 1 ≈ d2 and ∀j(a[j] ≤ a[j + 1]) holds because
array b is increasingly sorted and b is copied into array a, so a is increasingly sorted as
well. It can also be checked that I1 is invariant under updates, i.e. the formula

(d1 ≤ d2 ∧ ∀j(a[j] ≤ a[j + 1]) ∧ ∀j(a′[j] ≈ a[j] + 1) ∧ d′1 ≈ a′[i] ∧ d′2 ≈ a′[i+ 1]

∧ i′ ≈ i+ 1 ∧ (d′1 > d′2 ∨ ∃j(a′[j] > a′[j + 1]))

is unsatisfiable. Thus, I1 = d1 ≤ d2 ∧ ∀j(a[j] ≤ a[j + 1]) is an inductive invariant of the
system S, i.e. of the program in Figure 4.1. ■

4.3.2 Avoiding Some Conditions

In order to prove correctness of Algorithm 3 we made assumption (A1)–(A5) from Sections
4.1 and 4.2. We analyze situations in which some of these assumptions can be relaxed.

Assume that only primed variables are to be eliminated, i.e. all function symbols are
parameters (Σp = Σ). The condition that T0 allows quantifier elimination in Assumption
(A4) is not needed if all update axioms are of the form (Df ′) in Example 2.23 (i.e. the value
of f ′ is defined using equality), because then the primed variables can be easily eliminated.

Assumption (A5) is very strong. Even if we cannot guarantee that Assumption (A5)
holds, it could theoretically be possible to identify situations in which we can transform
candidate invariants which do not define local extensions into equivalent formulae which
define local extensions – for instance using the results in [62]. As an example of such a
transformation, consider the base theory T0 = LI(Z) extended with a function f satisfying
the following property:

K = ∀x(f(x) ≤ f(x+ 1))

This extension is not local, as we cannot complete every partial model to a total one: If
we have the instances f(1) ≤ f(2) and f(4) ≤ f(5), then for example f(1) ≈ f(2) ≈ 1
and f(4) ≈ f(5) ≈ 0 satisfies the instances and is a partial model of K, but it cannot be
transformed into a total model of K. However, we can write the monotonicity property
described by K equivalently in the following way:

K′ = ∀x, y(x ≤ y → f(x) ≤ f(y))

85

According to Example 2.21, T0 ⊆ T0 ∪ K′ is a local theory extension satisfying (Compf).

If we can guarantee that the candidate invariants I generated in Algorithm 3 are all ground,
then Assumption (A5) is not necessary. In what follows we describe situations in which
Assumption (A5) is not needed or is guaranteed to hold, so Lemma 4.9 and Theorem 4.10
hold under Assumptions (A1)– (A4).

Ground Invariants

We first present a situation in which all candidate invariants I that are generated with
Algorithm 3 are ground formulae, so Assumption (A5) is not needed.

Theorem 4.17. For transition systems in which only variables (0-ary functions in V ⊆ Σ)
are updated and for properties Ψ containing only variables in V, if all conditions imposed
on the data structures used in the program are ground, then all candidate invariants I
computed in the while loop in Algorithm 3 are ground formulae. In this case, Lemma 4.9
and Theorem 4.10 hold under Assumptions (A1)–(A4).

Proof: If all invariants In generated in the while loop of the algorithm are ground formulae,
then the result in Theorem 3.5 does not need Assumption (A5). □

The Array Property Fragment

We consider transition constraint systems T = (ΣS , Init,Update) and properties Ψ, where
TS = T0∪K and Init,Ψ,K and Updatef , for f ∈ F , are all in the array property fragment (cf.
Example 2.24). Then Assumptions (A1) and (A2) are not needed. We identify conditions
under which we can guarantee that at every iteration of Algorithm 3 the candidate invariant
In is in the array property fragment, so the locality assumption (A5) is fulfilled and does
not need to be mentioned explicitly.

Many types of systems have descriptions in this fragment. In the following we give an
example.

Example 4.18. Consider a controller of a water tank in which we have an inflow and
an outflow depending on a moment in time t, denoted by in(t) and out(t), respectively.
We here assume that the evolution of time goes in discrete measures, i.e. in(t) describes
the inflow in the time unit from t to t + 1. The values for the inflow and outflow in a
time unit from t to t + 1 can be chosen depending on the moment in time t between two
minimum (index m) and two maximum (index M) values that depend on the moment in
time, denoted by inim(t) and outiM (t), where i ∈ {1, 2}. Let

• L be the current water level in the tank,

• Loverflow be the highest possible water level of the tank, i.e. by exceeding this level
the tank will overflow, and

• Lalarm be a certain water level which marks a critical height of the water in the tank.

As global constraints for the inflow and outflow we have the formulae

Ini = ∀z(0 ≤ inim(z) ≤ iniM (z) ≤ Loverflow−Lalarm−εi) (where εi > 0) and

Outi = ∀z(iniM (z) ≤ outim(z) ≤ outiM (z)),

86

where i ∈ {1, 2}. The initial states are described by the formula Init = (t ≈ 0) ∧ (L ≈ L0).
The updates are described by Update = Updatein ∧ L′ ≈ L+in′(t) ∧ t′ ≈ t+1, where

Updatein = { ∀z(L ≤ Lalarm ∧ z ≤ t0 → in1m(z) ≤ in′(z) ≤ in1M (z)),
∀z(L ≤ Lalarm ∧ z > t0 → in2m(z) ≤ in′(z) ≤ in2M (z)),
∀z(L > Lalarm ∧ z ≤ t0 → in1m(z)−out1M (z) ≤ in′(z) ≤ in1M (z)−out1m(z)),
∀z(L > Lalarm ∧ z > t0 → in2m(z)−out2M (z) ≤ in′(z) ≤ in2M (z)−out2m(z)) }.

Assume that Σp = {Lalarm, Loverflow, L, L0, in1m, in1M , in2m, in2M , out1m, out1M , out2m, out2M} and
Kp = {0 ≤ Lalarm, Lalarm < Loverflow, L0 ≤ Lalarm} ∪ {In1,Out1, In2,Out2}.

Let T0 = LI(R). The theory TS is structured as follows: TS = T0 ∪ Kp. All the formulae
appearing in TS , Init and Updatein are in the array property fragment. In fact, these
formulae satisfy also the conditions in Example 2.23, so we have the following local theory
extensions:

TS ⊆ TS ∪ Init and TS ⊆ TS ∪ Updatein.

We illustrate the way the refinement of Algorithm 3 described in Section 4.3.1 can be used
to strengthen the property Ψ = L ≤ Loverflow.

Let I0 = Ψ be the first candidate invariant. It is easy to check that Init |=TS I0. Indeed,
Kp∧ Init∧L > Loverflow |=⊥ because L0 ≤ Lalarm∧Lalarm < Loverflow∧L ≈ L0∧L > Loverflow
is already unsatisfiable.

We now check whether I0 is invariant under updates, i.e. whether I0 ∧ Update ∧ ¬I ′0 is
unsatisfiable. We can show that

Kp ∧ L ≤ Loverflow ∧ Updatein ∧ L′ ≈ L+in′(t) ∧ t′ ≈ t+1 ∧ L′ > Loverflow

is satisfiable using hierarchical reasoning in the chain of local theory extensions mentioned
above, so I0 is not an inductive invariant. We strengthen I0 by applying the improvement
of the symbol elimination algorithm, according to Theorem 3.7, to the following formula:

Updatein ∧ L′ ≈ L+in′(t) ∧ t′ ≈ t+1 ∧ L′ > Loverflow

After instantiating the universally quantified variables z with t, using Lemma 4.12 we can
bring Updatein to DNF. By replacing the ground terms f(t) with cft and the ground terms
to be eliminated, i.e. in′(t), L′ and t′, with variables xin, L

′ and t′, respectively, we obtain
the following disjunction of formulae:
2⋁︂

i=1

(L≤Lalarm ∧ Ci(t) ∧ cinim(t)≤xin≤ciniM (t) ∧ L′≈L+ xin ∧ t′≈t+ 1 ∧ L′>Loverflow) ∨

2⋁︂
i=1

(L>Lalarm ∧ Ci(t) ∧ cinim(t) − coutiM (t)≤xin≤ciniM (t) − coutim(t) ∧ L′≈L+ xin ∧ t′≈t+ 1

∧L′>Loverflow)

For uniformity we use the notations C1(t) := t ≤ t0 and C2(t) := t > t0.

After eliminating the existentially quantified variables xin, L′ and t′ and replacing cgc back
with g(c) we obtain:
2⋁︂

i=1

(L≤Lalarm ∧ Ci(t) ∧ inim(t)≤iniM (t) ∧ Loverflow − L < iniM (t)) ∨

2⋁︂
i=1

(L>Lalarm ∧ Ci(t) ∧ inim(t)−outiM (t)≤iniM (t)−outim(t) ∧ Loverflow−L < iniM (t)−outim(t))

87

As t is not a parameter, we consider it to be existentially quantified. After negation we
obtain the formula Γ0 (equivalent to a formula in the array property fragment):

∀t(L≤Lalarm ∧ t ≤ t0 ∧ in1m(t)≤in1M (t)→ in1M (t) ≤ Loverflow − L)
∀t(L≤Lalarm ∧ t > t0 ∧ in2m(t)≤in2M (t)→ in2M (t) ≤ Loverflow − L)
∀t(L>Lalarm ∧ t ≤ t0 ∧ in1m(t)−out1M (t)≤in1M (t)−out1m(t)→ in1M (t)−out1m(t)≤Loverflow−L)
∀t(L>Lalarm ∧ t > t0 ∧ in2m(t)−out2M (t)≤in2M (t)−out2m(t)→ in2M (t)−out2m(t)≤Loverflow−L)

It can be checked, e.g. using H-PILoT, that I1 = I0 ∧ Γ0 holds in the initial states and is
invariant under updates, i.e. it is an inductive invariant of the system. ■

Lemma 4.19. Under Assumption (A3), the formulae Updatef are in the array property
fragment if and only if the following hold:

• ϕ1, . . . ϕnf
are conjunctions of constraints of the form x ≤ g or x ≥ g, where x is a

universally quantified variable and g is a ground term of sort index,

• all Σ ∪ Σp-terms are flat, and

• all universally quantified variables occur below a function in Σ ∪ Σp.

Proof: Follows from the definition of the array property fragment (cf. Example 2.24). □

Lemma 4.20. Let G be the negation of a formula in the array property fragment. Then
the following are equivalent:

(1) The formula obtained by applying Algorithm 2 to Updatef ∧G is in the array property
fragment.

(2) No instances of the congruence axioms need to be used for est(G).

(3) Either est(G) contains only one element, or whenever f ′(d), f ′(d′) ∈ est(G), where
d = d1, . . . , dn and d′ = d′1, . . . , d

′
n, we have T0 ∪ K ∪G |=

⋁︁n
i=1 di ̸≈ d′i.

Proof: Follows from the fact that the formula obtained after applying Algorithm 2,(︃ k⋀︂
p=1

ϕip(yp) ∧
⋀︂

(di,dj)∈D

yi ̸≈ yj ∧Gg
0(y, g(y))

)︃
,

can be an index guard only if it does not contain the disequalities yi ̸≈ yj . This is the case
if and only if est(G) contains only one element or if for all f(di), f(dj) ∈ est(G) we have
T0 ∪G0 |= di ̸≈ dj . □

Theorem 4.21. Let T = (ΣS , Init,Update) be a transition constraint system with theory
TS = T0 ∪ K. Assume that T0 is the disjoint combination of Presburger arithmetic (sort
index) and a theory of elements (e.g. linear arithmetic over Q or R). Assume that all
functions in Σ are unary. If the formulae K, Init,Update and Ψ are in the array property
fragment and all clauses in Ψ have only one universally quantified variable, then the formu-
lae Γn obtained by symbol elimination in Step 2 at every iteration of Algorithm 3 are again
in the array property fragment and are conjunctions of clauses having only one quantified
variable.

Proof: Follows from Lemma 4.19 and Lemma 4.20.

88

4.3.3 Termination

Algorithms of the form of Algorithm 3 do not terminate in general even for simple programs
handling only integer or rational variables. However, we can identify situations in which
the invariant generation procedure terminates. In the following we describe a situation in
which this is the case.

The candidate invariants computed by Algorithm 3 in each step will always be different
from each other and cannot be equivalent. If we assume that the generated candidate
invariants can only be of a certain form, in which the number of potential candidate
invariants is finite, then the algorithm is guaranteed to terminate after a finite number of
steps.

Theorem 4.22 (A termination condition). Let Var be a finite set of variables. Assume
that the candidate invariants I generated at each iteration are conjunctions of flat clauses
which contain terms in a given finite family Ter of terms. Then Algorithm 3 must terminate
with an invariant I or after detecting that Init ̸|= I.

Proof: Assume that Algorithm 3 does not terminate. From the finiteness of Var and Ter
and the flatness of the clauses it follows that only finitely many different clauses can be
generated. Then at some iteration n a candidate invariant In = In−1 ∧ Γn−1 equivalent to
In−1 is obtained. Then, on the one hand the formula In−1 ∧ Update ∧ ¬I ′n−1 is satisfiable,
as otherwise the algorithm would have terminated at the previous iteration. On the other
hand the formula must be unsatisfiable, as it is equivalent to (In−1∧Γn−1)∧Update∧¬I ′n−1.
This is a contradiction. □

A situation in which the termination condition holds is described below. To simplify the
notation we assume that the functions in Σ have arity ≤ 1, but similar arguments can be
used for n-ary functions as well.

Theorem 4.23. Let Σ = {f1, . . . , fn}. Assume that T0 = LI(R) and the following holds:

• All clauses used for defining TS and the property Ψ contain only literals of the form

x▷ t, u▷ v, fi(x)▷ s, fi(x)▷ y,

where x, y are (universally quantified) variables, s, t, u, v are constants, fi ∈ Σ, and
▷ ∈ {≤, <,≥, >,≈}.

• All axioms in Update are of form ∀x
(︁
ϕk
i (x)→ Ci(x, f

′
k(x)

)︁
as in assumption (A2),

where the formulae Ci(x, y) and ϕk
i (x) are conjunctions of literals of the form above.

Then all the candidate invariants I generated during the execution of Algorithm 3 are
equivalent to conjunctions of flat clauses, which all contain terms in a finite set Ter, where
the terms are formed with variables in a finite set Var. Since only finitely many clauses
can be formed this way, after a finite number of steps no new formulae can be generated,
thus the algorithm terminates.

Proof: We analyze the way the formulae Γ are built using Algorithm 3. We prove by
induction that for every n ∈ N the candidate invariant In constructed in the n-th iteration
is a conjunction of clauses, where each clause contains universally quantified variables in
the finite set Var and terms obtained from the terms in Ter.

Induction basis: For I0 = Ψ the property holds by assumption.

89

Induction hypothesis: We assume that the property holds for In.

Induction step: Consider the case in which Init |= In and In is not invariant under all
updates, i.e. there exists f ∈ Σ such that the formula In∧Updatef ∧G is satisfiable, where
G is obtained from ¬I ′n after Skolemization. From the assumption that the property holds
for In it follows that G is a conjunction of atoms of the form

cx ▷ cy, cx ▷ t, f ′(cx)▷ cy, f ′(cx)▷ s, g(cy)▷ cz, g(cy)▷ s, u▷ v,

where g ∈ Σ, t, s, u, v are constants, and cx, cy, cz, ... are Skolem constants introduced for
variables x, y, z, ... (where x, y, z are among the variables in x universally quantified in Γ′

n).

The analysis of the form of the candidate invariants obtained with Algorithm 3 in the proof
of Theorem 4.13 shows that after steps 1-2 of Algorithm 2 we obtain the following type of
formulae:

G′
1(1) ≡

⋁︂
i1,...,ik∈{1,...,nf }

D⊆est(G)2

(︄
k⋀︂

p=1

ϕ0
ip(dp) ∧

⋀︂
(di,dj)∈D

di ̸≈ dj ∧

∃xf ′d1 , . . . xf ′dk

(︃ k⋀︂
p=1

C0
ip(dp, xf ′dp) ∧

⋀︂
(f ′(di),f ′(dj))∈est(G)2\D

xf ′di ≈ xf ′dj ∧G0
0(d, c, cgc, xf ′d)

)︃)︄

In this case c, d are the Skolem constants occurring in G, such that (with the notation in
the proof of Theorem 4.13) est(G) = {f ′(d1), . . . , f

′(dk)} and est(G1) = {g(c1), . . . , g(cr)}.
Quantifier elimination is applied to formulae of the following form:

∃xfd1 , . . . xfdk
(︃ k⋀︂

p=1

C0
ip(dp, xfdp) ∧

⋀︂
(di,dj)∈est(G)2\D

xfdi ≈ xfdj ∧G0
0(d, c, cgc, xfd)

)︃
Due to the assumptions on the literals that can occur in Γn, G and Update, these formulae
contain only literals of the form s▷ t, where ▷ ∈ {≤, <,≥, >,≈} and s and t are

(a) constants in Σp,

(b) Skolem constants in {d1, . . . , dk, c1, . . . , cr},

(c) constants of the form cfd or cgc, or

(d) variables of the form xf ′d which need to be eliminated.

After quantifier elimination (Step 3 of the algorithm) we obtain a disjunction G′′
1(1) of

conjunctions of literals of the form s▷ t, where s and t are as in (a)-(c) above.

After Step 4 of the algorithm we obtain a disjunction of conjunctions of literals of the
form s ▷ t, where s and t are as in (a)-(b) or terms of the form f(c) and g(c), with
c ∈ {d1, . . . , dk, c1, . . . , cn}.

In Step 5, after replacing the Skolem constants ci, di again with variables xi, yi and neg-
ating, we obtain a conjunction of clauses, where each clause contains at most as many
universally quantified variables as Γn, say {x1, . . . , xm}, and only terms of the form s▷ t,
where s and t are constants in Σp, variables xi, or terms of the form f(xi) and g(xi) with
f ∈ Σ and g ∈ Σp. Note that, under the assumptions we made, the number of variables in
the newly generated clauses does not grow. For a fixed set of variables {x1, . . . , xm} there
are only finitely many terms of the form above. Thus, after a finite number of steps no
new formulae can be generated and the algorithm terminates. □

90

Termination vs. Non-termination

The goal of Algorithm 3 is to obtain an inductive invariant containing only parameters
specified by a set Σp. Therefore, we usually eliminate all symbols except for the ones in
Σp. However, if we eliminate some of the symbols from Σp as well, then we would get an
invariant in a slightly more restricted language (assuming the algorithm terminates with
an invariant), but it would still only contain symbols from Σp.

In our experiments we have discovered that sometimes the choice of the variables to be
eliminated can make a difference for the termination of the algorithm. Therefore, as an
heuristic, we could try different possibilities of eliminating additional symbols from Σp in
order to check in which case we have termination. We give an example for this.

Example 4.24. Consider again the system S from Example 4.7, for which we have shown
that the algorithm in its standard form does not terminate:

Let S = (TS , T), where TS = LI(Z) and T = (ΣS , Init,Update) is a transition constraint
system, where:

• ΣS = Σ0 ∪ Σp, where

– Σ0 is the signature of linear integer arithmetic and

– Σp = {x, y, z,N}, where x, y, z and N are 0-ary function symbols

• Init = (x ≈ 0 ∧ y ≈ 0 ∧ z ≈ 0)

• Update = (x ≤ N → (x′ ≈ x+ 1 ∧ y′ ≈ y + 1 ∧ z′ = z + x′ − y′))

Let Ψ = (z ≤ 0). The goal is to show that Ψ is invariant, e.g. by finding an inductive
invariant which entails it.

The first candidate invariant I0 = Ψ = (z ≤ 0) is not an inductive invariant and needs
to be strengthened. The standard approach, which was used in Example 4.7, would be to
eliminate only the symbols which are not in Σp, i.e. the primed variables x′,y′ and z′, from
the following formula:

F0 = (z ≤ 0) ∧ Updatex ∧ Updatey ∧ Updatez ∧ (z′ > 0), where

Updatex = (x ≤ N → x′ ≈ x+ 1) ∧ (x > N → x′ ≈ x)

Updatey = (x ≤ N → y′ ≈ y + 1) ∧ (y > N → y′ ≈ y)

Updatez = (z ≤ N → z′ ≈ z + x′ − y′) ∧ (z > N → z′ ≈ z)

With this approach we ended up in an infinite sequence of strengthenings. Assume now
that we additionally eliminate the variable z. We then obtain x ≤ N ∧ y − x < 0, which
after negation yields the following constraint:

Γ = x ≤ N → x ≤ y

Indeed, the newly obtained candidate invariant I1 = I0 ∧ Γ = (z ≤ 0) ∧ (x ≤ N → x ≤ y)
can be proved to be an inductive invariant of the system S.

91

4.4 Implementation

Essential to our invariant generation method (Algorithm 3) is on the one hand the hier-
achical reduction of a formula defining a chain of local theory extensions, and on the other
hand the property-directed symbol elimination. As a tool for performing the reduction
to the base theory we can use H-PILoT (see Section 2.4), for property-directed symbol
elimination we can use Algorithm 2, implemented in SEH-PILoT (see Section 3.2.2). As
both of these things can be handled using SEH-PILoT, it was only logical to include the
invariant strengthening as a separate mode in SEH-PILoT.

While the symbol elimination algorithm was implemented by Philipp Marohn as part of
his Bachelor thesis, he did the implementation of the invariant strengthening algorithm at
a later point. The preliminary system description [78] does not include a description of this
relatively new mode. An implementation of the optimization using the DNF transformation
described in Lemma 4.12 is currently work in progress. In the following we describe how
to use SEH-PILoT for invariant checking, constraint synthesis and invariant strengthening
in parametric transition systems.

The input file for SEH-PILoT is a YAML-file specifying a mode, a specification type, a
specification theory, a specification and possibly some additional options. In order to use
SEH-PILoT as a tool for the verification of parametric systems, we have to set the specific-
ation type to PTS (short for Parametric Transition Systems). SEH-PILoT supports two
specification theories, REAL_CLOSED_FIELDS and PRESBURGER_ARITHMETIC. Spe-
cification type PTS can be used together with the modes GENERATE_CONSTRAINTS
and INVARIANT_STRENGTHENING, which refer to the problems “constraint synthesis”
and “invariant generation”, respectively, as described in Section 4.1. In both modes it is
obligatory to specify the symbols which are to be eliminated or, alternatively, the para-
meters (i.e. the symbols which are not eliminated), using the option eliminate or parameter,
respectively. In the SPECIFICATION the following components are specified:

• base_functions: specification of the base functions as in H-PILoT

• extension_functions: specification of the extension functions as in H-PILoT

• relations: specification of the relations as in H-PILoT

• axioms: specification of axioms corresponding to the theory TS

• init: specification of the initial conditions in the transition constraint system

• update: specification of the update rules in the transition constraint system

• safety: specification of the safety condition Ψ, which is the first candidate invariant

• update_vars: gives a list of pairs x : x′ mapping variable x to its update variable x′

The invariant generation method consists of two steps that are possibly repeated. It is first
checked whether a candidate invariant is already an invariant (invariant checking), and if
it is not, then a stronger invariant is generated (invariant strengthening).

For invariant checking H-PILoT is used. It can do the reduction and call a prover. If the
answer is “unsatisfiable”, we know that our candidate invariant is an inductive invariant.
If the answer is “satisfiable”, then it is not an inductive invariant and we have to apply the
invariant strengthening. Note that the fact that all theory extensions are local needs to

92

be checked in advance by hand. If locality is not given, then the answer “satisfiable” could
also mean that not enough instances were considered.

For invariant strengthening the symbol elimination algorithm in SEH-PILoT is used, which
uses Redlog to eliminate all the symbols which are not parameters. The output of this step
will be a formula (only containing the parameters) describing the weakest condition for the
candidate invariant to hold after the update. This in conjunction with the old candidate
invariant is the new candidate invariant for the next step.

The option slfq_formula can be used to apply the SLFQ simplifier to the formula before
quantifier elimination, the option slfq_query can be used to apply the SLFQ simplifier to the
result of the quantifer elimination. To not run into an infinite loop of strengthenings, SEH-
PILoT forces termination by having a maximum number of iterations specified. Currently,
by default this limit is set to 5, but the user can set it to any natural number using the
option inv_str_max_iter.

As explained in Section 3.2.2, it is possible to specify several tasks in one YAML-file and
to use anchor and alias to use the same specification in more than one task in an easy
way. Under sehpilot_options and task_options one can set certain global options, which
will apply to all tasks specified in the YAML-file. The task option print_steps can be
set to true (by default it is false) in order to get a more detailed output, showing e.g.
also results of intermediate steps, i.e. intermediate candidate invariants. The SEH-PILoT
option keep_files can be set to true (by default it is false) in order to get in addition to the
YAML-file containing the output also all the intermediate files used for invariant checking
and invariant strengthening in each iteration, i.e. the corresponding input files for H-PILoT
and for Redlog.

The output is given as a YAML-file. If within the iteration limit an inductive invariant was
found, the formula is given as a result. If within the iteration limit the invariant checking
fails because the candidate invariant does not hold in the initial states, a note “No universal
inductive invariant over parameters Σp entails the safety property” is given in the output.
If the iteration limit n is exceeded without an inductive invariant being found yet, a note
“Reached iteration limit (n)” is given in the output. If the option print_steps is set to true,
then in any case the candidate invariants computed after each iteration are displayed in
the output file in addition to the end result. The total time required for the computation
and the time required for each separate task will alway be given (in seconds) as part of the
output file as well.

Example 4.25. Consider the system S = (TS , T) from Example 4.6, where TS = LI(Z)
and T = (ΣS , Init,Update) is a transition constraint system, where:

• ΣS = Σ0 ∪ Σp, where

– Σ0 is the signature of linear integer arithmetic and

– Σp = {x, y}, where x and y are 0-ary function symbols

• Init = (x ≈ y ∨ x ≈ y + 2)

• Update = (x ≤ y + 1→ x′ ≈ x+ 2) ∧ (x > y + 1→ x′ ≈ x) ∧ (y′ ≈ y)

Let Ψ = (y ≤ x ∧ x ≤ y + 2). The goal is to show that Ψ is an invariant of the system,
possibly by strengthening it to an inductive invariant.

We apply the implementation of Algorithm 3 in SEH-PILoT.

93

We use specification type PTS, specification theory PRESBURGER_ARITHMETIC and
mode INVARIANT_STRENGTHENING. In the specification we specify base functions, ex-
tension functions and relations similar to H-PILoT. Note that the specification in this mode
is not an H-PILoT file as in mode HPILOT, so the syntax is a little different (the H-PILoT
input files will be generated by SEH-PILoT afterwards). Under init and update the formu-
lae describing the initial states and the update rules are given, respectively. Under query
the safety property is specified. We here use names “xp” and “yp” for the primed variables
(i.e. the updated variables). We denote the update variables in SEH-PILoT by matching
them with the corresponding variables under update_vars. To see how SEH-PILoT uses
H-PILoT and Redlog, we set the SEH-PILoT option keep_files to true, such that the input
files for H-PILoT and Redlog are kept for the user (otherwise these files will be deleted
after they have been used).

We have the following input file for SEH-PILoT:

sehpilot_options:
keep_files: true

tasks:
example_4.25:

mode: INVARIANT_STRENGTHENING
options:

parameter: [x, y]
specification_type: PTS
specification_theory: PRESBURGER_ARITHMETIC
specification:

base_functions: "{(+,2), (-,2), (*,2)}"
extension_functions: "{}"
relations: "{(<=,2), (<,2), (>=,2), (>,2)}"
init: |

OR(x = y, x = y + _2);
update: |

x <= y + _1 --> xp = x + _2;
x > y + _1 --> xp = x;
yp = y;

query: |
y <= x;
x <= y + _2;

update_vars:
x : xp
y : yp

We get the following output from SEH-PILoT:

Metadata:
Date: ’2023-08-01 12:54:15’
Number of Tasks: 1
Runtime Sum: 0.6982

example_4.25:
Runtime: 0.6982
Result:

Inductive Invariant: |-
NOT((x - y) - _1 = _0);
(x - y) - _2 <= _0;
x - y >= _0;

94

The result is equivalent to the formula I1 = x ≈ y ∨ x ≈ y + 2 which we obtained in
Example 4.6.

Due to the option keep_files we also get the following input files for H-PILoT (loc-files)
which were generated by SEH-PILoT and the corresponding input files for Redlog (dat-
files) which were generated by H-PILoT:

• VC_Init_1.loc and VC_Init_1.dat

• VC_Init_2.loc and VC_Init_2.dat

• VC_Update_1.loc and VC_Update_1.dat

• VC_Update_2.loc and VC_Update_2.dat

• Strengthening_1.dat

In this example it took only one iteration to compute the inductive invariant, so we have two
candidate invariants (the original safety property and the formula obtained after strength-
ening). In the files this is indicated by the number (1 for the first candidate and 2 for
the second). For each candidate invariant it was checked whether they hold in the initial
states (files with "Init" in their name) and whether they are invariant under updates (files
with "Update" in their name).

The last file in the above list is the one that was used for computing the strengthening. It
is essentially the same input as the first Update-file, with the only difference being that for
satisfiability checking all the symbols are existentially quantified in the file (and therefore
all symbols are eliminated), while for strengthening the parameters are not existentially
quantified and therefore not eliminated.

To give an example we show the files for checking whether the first candidate invariant
is invariant under updates. The file VC_Update_1.loc contains the following input for
H-PILoT:

Base_functions := {(+,2), (-,2), (*,2)}
Extension_functions := {}
Relations := {(<=,2), (<,2), (>=,2), (>,2)}

Clauses := % --SAFETY CONDITION--
y <= x;
x <= y + _2;
% --UPDATE--
x <= y + _1 --> xp = x + _2;
x > y + _1 --> xp = x;
yp = y;

Query := OR(xp - yp < _0, (xp - yp) - _2 > _0);

Using the above file as an input for H-PILoT a corresponding input file VC_Update_1.dat
for Redlog is generated.

95

load_package redlog;
rlset PASF;
on rlsimpl;
off nat;
off rlverbose;
on rlnzden;
vars := {x, xp, y, yp};
formula := (
(xp - yp < 0 or (xp - yp) - 2 > 0) and
yp = y and
((x > y + 1) impl (xp = x)) and
((x <= y + 1) impl (xp = x + 2)) and
x <= y + 2 and
y <= x
);

query := (rlqe ex(vars, formula));
end;

Note that the file Strengthening_1.dat is identical to the one above, with the only exception
being that the set of variables "vars" in this case does not contain the parameters x and y.

Example 4.26. Consider the system S = (TS , T) from Example 4.7, where TS = LI(Z)
and T = (ΣS , Init,Update) is a transition constraint system, where:

• ΣS = Σ0 ∪ Σp, where

– Σ0 is the signature of linear integer arithmetic and

– Σp = {x, y, z,N}, where x, y, z and N are 0-ary function symbols

• Init = (x ≈ 0 ∧ y ≈ 0 ∧ z ≈ 0)

• Update = Updatex ∧ Updatey ∧ Updatez, where

– Updatex = (x ≤ N → x′ ≈ x+ 1) ∧ (x > N → x′ ≈ x)

– Updatey = (x ≤ N → y′ ≈ y + 1) ∧ (x > N → y′ ≈ y)

– Updatez = (x ≤ N → z′ ≈ z + x′ − y′) ∧ (x > N → z′ ≈ z)

Let Ψ = (z ≤ 0) be the property to be checked for invariance. We apply the implementation
of Algorithm 3 in SEH-PILoT.

We use specification type PTS, specification theory PRESBURGER_ARITHMETIC and
mode INVARIANT_STRENGTHENING. We know from Example 4.7 that the procedure
does not terminate if we have parameters Σp = {x, y, z,N} and from Example 4.24 that
the algorithm terminates if we additionally eliminate z. To test both variants, we state
two tasks with the same specification. In the first task we use parameters {x, y, z,N},
in the second one we use {x, y,N}. To force termination of SEH-PILoT also on the
non-terminating task, we use the option inv_str_max_iter to set the maximal number of
iterations to 3. We use the global SEH-PILoT option keep_files to get all the intermediate
files generated by SEH-PILoT during the execution of the algorithm and the global task
option print_steps to have the candidate invariants computed in each iteration written in
the output file.

We have the following input file for SEH-PILoT:

96

sehpilot_options:
keep_files: true

task_options:
print_steps: true

tasks:
example_4.26:

mode: INVARIANT_STRENGTHENING
options:

inv_str_max_iter: 3
parameter: [x, y, z, n]

specification_type: PTS
specification_theory: PRESBURGER_ARITHMETIC
specification: &spec_ex4_28

base_functions: "{(+,2), (-,2), (*,2)}"
extension_functions: "{}"
relations: "{(<=,2), (<,2), (>=,2), (>,2)}"
init: |

x = _0;
y = _0;
z = _0;

update: |
x <= n --> xp = x + _1;
x <= n --> yp = y + _1;
x <= n --> zp = (z + xp) - yp;
x > n --> xp = x;
x > n --> yp = y;
x > n --> zp = z;

query: |
z <= _0;

update_vars:
x : xp
y : yp
z : zp

example_4.26_elim_z:
mode: INVARIANT_STRENGTHENING
options:

inv_str_max_iter: 3
parameter: [x, y, n]

specification_type: PTS
specification_theory: PRESBURGER_ARITHMETIC
specification: *spec_ex4_28

As expected, the maximum number of iterations, in this case 3, is exceeded in the first task.
Due to the print_steps option we can see in the output file all the candidate invariants that
were computed in the three iterations of the algorithm, which show nicely the pattern that
is repeated infinitely and causes non-termination. 15 intermediate files were generated in
total (and kept because of the keep_files option):

• 3 loc-files and 3 dat-files for checking the initial states,

• 3 loc-files and 3 dat-files for checking the updates, and

• 3 dat-files for the strengthenings.

97

The second task terminates after only one step with the output of an inductive invariant
that is equivalent to the inductive invariant I1 = (z ≤ 0) ∧ (x ≤ N → x ≤ y) that
we obtained in Example 4.24. Nine intermediate files were generated, two loc-files and
two dat-files each for checking the initial states and the updates and one dat-file for the
strengthening. The following output file was generated by SEH-PILOT:

Metadata:
Date: ’2023-08-01 15:55:30’
Number of Tasks: 2
Runtime Sum: 1.894

example_4.26:
Runtime: 1.2004
Result:

Inductive Invariant: NA
Note: Reached iteration limit (3)

Steps:
1. Step:

New Candidate: |-
z <= _0;
OR(n - x < _0,

(x - y) + z <= _0);
2. Step:

New Candidate: |-
z <= _0;
OR(n - x <= _0,

((_2 * x) - (_2 * y)) + z <= _0,
(x - y) + z > _0);

OR(n - x < _0,
(x - y) + z <= _0);

3. Step:
New Candidate: |-

z <= _0;
OR((n - x) - _1 = _0,

n - x <= _0,
((_3 * x) - (_3 * y)) + z <= _0,
((_2 * x) - (_2 * y)) + z > _0,
(x - y) + z > _0);

OR(n - x <= _0,
((_2 * x) - (_2 * y)) + z <= _0,
(x - y) + z > _0);

OR(n - x < _0,
(x - y) + z <= _0);

example_4.26_elim_z:
Runtime: 0.6936
Result:

Inductive Invariant: |-
z <= _0;
OR(n - x < _0, (x - y) - _1 <= _0);
OR(n - x < _0, x - y <= _0);

Steps:
1. Step:

New Candidate: |-
z <= _0;
OR(n - x < _0, (x - y) - _1 <= _0);
OR(n - x < _0, x - y <= _0);

98

4.5 Conclusion

We considered parametric systems described by their initial states and transition rules for
the upates of the system. We proposed a method for property-directed invariant generation
in such systems and analyzed its properties.

We start from a given universal formula describing a property of the data of the system.
We can also consider properties on individual elements of an array, such as a[i] ≤ b[j]+c[k]
for fixed indices i, j, k, and “global properties”, for instance sortedness or a property such
as ∀i, j, k(a[i] ≤ b[j] + c[k]). These are properties which describe relationships which refer
to the values of the variables or of the functions (e.g. arrays) at a given, fixed iteration in
the execution of a loop. The invariants we generate have a similar form.

Our results extend the results in [21] and [38], as we consider more complex theories. In
contrast to approaches to invariant generation that use templates, such as e.g. [16], we
do not start with concrete templates. We specify beforehand which class of formulae the
invariants should belong to, by restricting the signature for the computed invariants.

There are similarities between our method and the one in [80], but our approach is dif-
ferent and does not restrict to theories with the finite model property (although a form
of finiteness ensures termination). In [69, 80], if a counterexample to the inductiveness of
a candidate invariant I is found, a formula is constructed using the finite model property
assumption and added to I to avoid finding the same counterexample again in the next
iteration. In our work we do not try to avoid a single counterexample to the inductiveness
of the current candidate invariant, but instead we use the symbol elimination method in
Algorithm 2 to compute the weakest formula Γ with the property that under the additional
conditions Γ the formula I is invariant, which rules out a whole class of counterexamples
at once. The procedure has to be iterated since Γ itself might not be invariant under
transitions. We think that our method should help to accelerate the procedure compared
to the diagram-based approach.

The algorithm proposed in [53] for the theories of arrays uses a non-deterministic function
ChooseCover that returns a cover of a formula (as an approximation of the reachable states).
It is proved that if the theory of elements is locally finite, then for every universal formula Ψ
a universal inductive invariant I strengthening Ψ exists if and only if there exists a suitable
ChooseCover function for which the algorithm returns an inductive invariant strengthening
Ψ. In contrast to the algorithm proposed in [53], our algorithm is deterministic.

The methods used in [73, 72, 60] and also in [56] often introduce a new argument to
constants and function symbols. If n is the arity of a function f , then a version of f with
arity n+ 1 is used, where f(x1, . . . , xn, i) denotes the value of f(x1, . . . , xn) at iteration i.
A major difference between our approach and the methods for invariant generation used in
[73, 72, 60] and [56] is that we do not use additional indices to refer to the values of variables
at iteration steps and do not quantify over the iteration steps. However, an extension with
quantification over iteration steps and possibilities of giving explicit solutions to at least
simple types of recurrences seems to be feasible.

We analyzed correctness and termination of our invariant strengthening algorithm. For
proving partial correctness we had to make several assumptions related to the locality of
the extensions. These assumptions hold for instance for systems in which all properties
are expressed in the array property fragment. While our method is not guaranteed to
terminate in general, we identified situations in which termination is guaranteed. To prove

99

termination we show that the length of the quantifier prefix in the candidate invariants
generated in every iteration does not grow. Termination is then guaranteed if only finitely
many atomic formulae formed with a fixed number of variables can be generated using
quantifier elimination when applying the algorithm.

We analyzed the applicability of our methods on several examples. In our tests we used the
implementation described in Section 4.4, which is part of the program SEH-PILoT. Using
the mode PTS for parametric transition systems one can specify the initial states and up-
date rules of the system as well as the property that is supposed to be invariant. Then one
can choose between satisfiability checking, constraint generation and invariant strength-
ening and also between real closed fields and Presburger arithmetic as base theories. The
tests that we made for invariant strengthening showed that usually, if the algorithm ter-
minates, it does so in very few iterations. In fact, all the terminating examples terminated
after only one iteration.

4.5.1 Future Work

As future work we would like to investigate how to use similar ideas for the goal-oriented
generation of inductive properties for recursively defined functions. The tasks are likely to
be very similar, as we would first try to prove a property by structural induction and, if it
cannot be proved, we would either generate constraints on parameters or strengthen the
property until it becomes an inductive property.

In addition to that, we plan to identify additional situations in which our invariant genera-
tion method is correct, terminates and has low complexity. This can be done by considering
either other theories or more general first-order properties.

Another interesting question to investigate further is how locality can be detected easily,
since locality of the involved theory extensions is a key aspect of our approach and an
assumption that was needed to prove correctness.

We here restricted to universally quantified invariants and theories related to the array
property fragment, but an extension to a framework using the notion of “extended locality”,
in which both the axioms in K and the formula G to refute are allowed to contain arbitrary
formulae over the base theory (cf. [63, 64]), seems unproblematic.

Performing instantiation and quantified generalization on demand as done in [57] might
be useful for theories for which it is not known whether complete instantiations exist.
Incorporating such ideas in our own approach could be useful even if completeness cannot
be guaranteed in this case.

100

5 Finding Explanations in EL+

When combining two ontologies or when extending an existing ontology with additional
axioms we may get new consequences arising from this combination. Some of these con-
sequences may be desirable, but also unwanted consequences could arise, which would
require repairing the ontology. For this it is important to locate the reason for the oc-
currence of those faulty consequences. In this section we present a method for finding
explanations for subsumptions in EL and EL+ ontologies that is based on a translation to
the theory of semilattices and a form of interpolation which we call P -interpolation (for
some set P of predicates). For an illustration of the problem we are addressing see Section
1.1.

We first describe the description logics EL and EL+ with their algebraic semantics, i.e.
classes SLEL and SLEL+ of semilattices with monotone operators, and present existing
locality results for the theories of both classes. Afterwards we define the notion of P -
interpolation, which was first studied in [91], and show that the classes SLEL and SLEL+

both have this property for the predicate P = {≤}. We then propose an algorithm for
obtaining high-level explanations for subsumptions in EL and EL+ based on the compu-
tation of ≤-interpolants. We demonstrate the applicability of this algorithm on various
examples.

Parts of the results in this chapter were already published in [83]. The results have recently
been extended in [86].

5.1 The Description Logics EL and EL+

The definitions of the basic notions of description logics given here are based on the De-
scription Logic Handbook by Franz Baader et al. [6]. The central notions in description
logics are concepts and roles. In any description logic a set NC of concept names and a set
NR of roles is assumed to be given (we also call these atomic concepts and atomic roles).
A concept description is either an atomic concept, an atomic role, or a complex concept
that is built from them using concept constructors. The available constructors determine
the expressive power of a description logic.

The semantics of description logics is defined in terms of interpretations I = (∆I , ·I),
where ∆I is a non-empty set, and the function ·I maps each concept name C ∈ NC to a
set CI ⊆ ∆I and each role name r ∈ NR to a binary relation rI ⊆ ∆I ×∆I . Figure 5.1
shows the constructor names used in the description logic ALC and their semantics. The
extension of ·I to concept descriptions is inductively defined using the semantics of the
constructors.

Restricting the type of allowed concept constructors from Figure 5.1 leads to less expressive
but more tractable description logics. If we only allow top, intersection and existential
restriction as concept constructors, we obtain the description logic EL. By extending EL
with role inclusion axioms we get the description logic EL+.

101

Constructor name Syntax Semantics
bottom ⊥ ∅
top ⊤ ∆I

negation ¬C ∆I\CI

intersection C1 ⊓ C2 CI
1 ∩ CI

2

union C1 ⊔ C2 CI
1 ∪ CI

2

existential restriction ∃r.C {x | ∃y((x, y) ∈ rI and y ∈ CI)}
universal restriction ∀r.C {x | ∀y((x, y) ∈ rI −→ y ∈ CI)}

Figure 5.1: ALC constructors and their semantics.

Relationships between concepts and roles are described using TBoxes or, more generally,
using CBoxes.

Definition 5.1 (TBox, Model, TBox Subsumption). A TBox (or terminology) is a
finite set consisting of

• primitive concept definitions of the form C ≡ D, where C is a concept name and D
a concept description, and

• general concept inclusions (GCIs) of the form C ⊑ D, where C and D are concept
descriptions.

We define the following:

• An interpretation I is a model of a TBox T if it satisfies

– all concept definitions in T , i.e. CI=DI for all definitions C≡D ∈ T , and

– all general concept inclusions in T , i.e. CI⊆DI for every C⊑D ∈ T .

• Let T be a TBox and let C1, C2 be two concept descriptions. C1 is subsumed by C2

w.r.t. T (C1 ⊑T C2) if and only if CI
1 ⊆ CI

2 for every model I of T .

Since definitions can always be expressed as double inclusions, in what follows we will refer
to TBoxes consisting of general concept inclusions only.

Definition 5.2 (CBox, Model, CBox Subsumption). A CBox consists of a TBox T
and a set RI of role inclusions of the form r1 ◦ · · · ◦ rn ⊑ s. Since terminologies can be
expressed as sets of general concept inclusions, we will view CBoxes as unions GCI∪RI
of a set GCI of general concept inclusions and a set RI of role inclusions of the form
r1 ◦ · · · ◦ rn ⊑ s, with n≥1. We define the following:

• An interpretation I is a model of the CBox C = GCI ∪ RI if it is a model of GCI
and satisfies all role inclusions in C, i.e. rI1 ◦· · ·◦rIn ⊆ sI for all r1◦· · ·◦rn ⊆ s ∈ RI.

• If C is a CBox and C1, C2 are concept descriptions, then C1 ⊑C C2 if and only if
CI
1 ⊆ CI

2 for every model I of C.

For our applications we restrict to the less expressive but tractable description logic EL
[4] and its extension EL+ [9, 8], which are used for example in terminological reasoning in
medicine, like the clinical database SNOMED [103, 102]. In EL and EL+ CBox subsump-
tion checking can be done in polynomial time and we can use an encoding of this problem
as a uniform word problem in a suitable class of semilattices.

102

In [9] it was shown that subsumption w.r.t. CBoxes in EL+ can be reduced in linear time
to subsumption w.r.t. normalized CBoxes, in which all GCIs have one of the forms

C ⊑ D,

C1 ⊓ C2 ⊑ D,

C ⊑ ∃r.D,

∃r.C ⊑ D,

where C,C1, C2, D are concept names, and all role inclusions are of the form r ⊑ s or
r1 ◦ r2 ⊑ s, where r, s, r1, r2 are role names. Therefore, in what follows we consider w.l.o.g.
that CBoxes only contain role inclusions of the form r ⊑ s and r1 ◦ r2 ⊑ s.

Algebraic Semantics for EL and EL+

In [92] the link between TBox subsumption in EL and uniform word problems in the
corresponding classes of semilattices with monotone functions was studied. In [94, 95] it
was shown that these results naturally extend to the description logic EL+.

The relation≤ is a (non-strict) partial order on a set S if it satisfies the following conditions:

(1) Reflexivity: ∀x ∈ S : x ≤ x

(2) Antisymmetry: ∀x, y ∈ S : x ≤ y ∧ y ≤ x→ x = y

(3) Transitivity: ∀x, y, z ∈ S : (x ≤ y ∧ y ≤ z)→ x ≤ z

S together with ≤ is then called a partially ordered set (poset).

A partially ordered set S is a meet-semilattice (∧-semilattice) if for any two elements x and
y a greatest lower bound exists (called the meet of x and y and denoted with x ∧ y). The
class SLat of (meet-)semilattices can alternatively be axiomatized by the following axioms:

• Associativity: ∀x, y, z : x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z

• Commutativity: ∀x, y : x ∧ y ≈ y ∧ x

• Idempotency: ∀x : x ∧ x ≈ x

Therefore, SLat is an equational class.

Let SLO(Σ) = SLat ∪
⋃︁
f∈Σ

Mon(f) be the theory of ∧-semilattices (S,∧, {fS}f∈Σ) with

unary operators in Σ, such that, for every f ∈ Σ, fS : S → S is a monotone function, i.e.
f satisfies the condition

Mon(Σ) =
⋀︂
f∈Σ
∀x, y

(︁
x ≤ y → f(x) ≤ f(y)

)︁
.

When defining the semantics of EL or EL+ with role names NR we use a class of ∧-
semilattices with monotone operators of the form (S,∧, {f∃r}r∈NR

). Every concept de-
scription C can be represented as a term C by the following inductively defined encoding:

• Every concept name C ∈ NC is regarded as a variable C = C.

• C1 ⊓ C2 = C1 ∧ C2 and ∃r.C = f∃r(C).

103

If RI is a set of role inclusions of the form r ⊑ s and r1 ◦ r2 ⊑ s, let RIa be the set of all
axioms of the form

∀x (f∃r(x) ≤ f∃s(x)) for all r ⊑ s ∈ RI and
∀x (f∃r1(f∃r2(x)) ≤ f∃s(x)) for all r1 ◦ r2 ⊑ s ∈ RI.

We will denote by SLO(Σ, RIa) = SLat ∪
⋃︁
f∈Σ

Mon(f) ∪ RIa the theory of ∧-semilattices

with monotone operators in a set Σ = {f∃r | r ∈ NR} in which all axioms in RIa hold.

Theorem 5.3 ([95]). If the only concept constructors are intersection and existential
restriction, then for all concept descriptions D1, D2 and every EL+ CBox C=GCI∪RI,
where RI consists of role inclusions of the form r ⊑ s and r1 ◦ r2 ⊑ s, with concept names
NC = {C1, . . . , Cn} and set of roles NR the following are equivalent:

(1) D1⊑CD2.

(2) SLO(Σ, RIa) |= ∀C1 . . . Cn

(︂(︂⋀︁
C⊑D∈GCI C≤D

)︂
→ D1≤D2

)︂
.

Locality Properties for EL and EL+

In [95, 99] it was shown that the uniform word problem for the class of algebras SLO(Σ)
is decidable in PTIME. For this, it was proved that SLO(Σ) can be seen as a Ψ-local
extension of the theory SLat of semilattices.

Theorem 5.4 ([101, 95]). Let G be a set of ground clauses. The following are equivalent:

(1) SLat ∪Mon(Σ) ∪G |=⊥.

(2) SLat∪Mon(Σ)[G]∪G has no partial model A such that its {∧}-reduct is a semilattice,
and all Σ-subterms of G are defined.

Here we denote by Mon(Σ)[G] the set of all instances of axioms of Mon(Σ) containing
only (ground) subterms occurring in G.

Let Mon(Σ)[G]0 ∪G0 ∪ Def be obtained from Mon(Σ)[G] ∪G by replacing (in a bottom-up
manner) every term t = f(c) starting with functions in Σ with a fresh constant ct, and
adding t ≈ ct to the set Def.

The following are equivalent (and equivalent to (1) and (2) above):

(3) Mon(Σ)[G]0∪G0∪Def has no partial model A such that its {∧}-reduct is a semilattice,
and all Σ-subterms of G are defined.

(4) Mon(Σ)[G]0 ∪G0 is unsatisfiable in SLat.

(In the presence of Mon(Σ) the instances Con[G]0 of the congruence axioms for func-
tions in Σ, Con[G]0 = {g ≈ g′ → cf(g) ≈ cf(g′) | f(g) ≈ cf(g), f(g

′) ≈ cf(g′) ∈ Def},
are not necessary.)

The equivalences described in Theorem 5.4 allow us to hierarchically reduce, in polynomial
time, proof tasks in SLat ∪ Mon(Σ) to proof tasks in SLat, which can then be solved in
polynomial time.

104

Example 5.5. We illustrate the method on an example first considered in [4]. This ex-
ample was also discussed in [95, 97]. Consider the EL TBox T consisting of the following
definitions:

A1 = P1 ⊓A2 ⊓ ∃r1.∃r2.A3

A2 = P2 ⊓A3 ⊓ ∃r2.∃r1.A1

A3 = P3 ⊓A2 ⊓ ∃r1.(P1 ⊓ P2)

We want to prove that P3 ⊓A2 ⊓ ∃r1.(A1 ⊓A2) ⊑T A3.

We translate this subsumption problem to the following satisfiability problem:

SLat ∪Mon(f1, f2) ∪G |=⊥

where G is the following set of ground clauses obtained from the TBox T and the negation
of the subsumption to be proved:

G = { a1 ≈ (p1 ∧ a2 ∧ f1(f2(a3))),

a2 ≈ (p2 ∧ a3 ∧ f2(f1(a1))),

a3 ≈ (p3 ∧ a2 ∧ f1(p1 ∧ p2)),

¬(p3 ∧ a2 ∧ f1(a1 ∧ a2) ≤ a3)}.

We proceed as follows: We flatten and purify the set G of ground clauses by introducing
new names for the terms starting with the function symbols f1 or f2 (we here use f1
and f2 as abbreviations for f∃r1 and f∃r2 , respectively). Let Def be the corresponding set
of definitions. We then take into account only those instances of the monotonicity and
congruence axioms for f1 and f2 which correspond to the instances in Def, and purify
them as well by replacing the terms themselves with the constants which denote them. We
obtain the following separated set of formulae:

Def G0 ∪ (Mon(f1, f2)[G])0 ∪ Con[G]0

f2(a3) ≈ c1 (a1 ≈ p1 ∧ a2 ∧ c2) a1Rc1 → c3Rc2, R ∈ {≤,≥,≈}
f1(c1) ≈ c2 (a2 ≈ p2 ∧ a3 ∧ c4) a3Rc3 → c1Rc4, R ∈ {≤,≥,≈}
f1(a1) ≈ c3 (a3 ≈ p3 ∧ a2 ∧ d1) a1Re1 → c3Rd1, R ∈ {≤,≥,≈}
f2(c3) ≈ c4 (p3 ∧ a2 ∧ d2 ̸≤ a3) a1Re2 → c3Rd2, R ∈ {≤,≥,≈}
f1(e1) ≈ d1 p1 ∧ p2 ≈ e1 c1Re1 → c2Rd1, R ∈ {≤,≥,≈}
f1(e2) ≈ d2 a1 ∧ a2 ≈ e2 c1Re2 → c2Rd2, R ∈ {≤,≥,≈}

e1Re2 → d1Rd2, R ∈ {≤,≥,≈}

Then, by Theorem 5.4, it follows that the subsumption P3 ⊓ A2 ⊓ ∃r1.(A1 ⊓ A2) ⊑T A3

holds if and only if G0 ∪ (Mon(f1, f2)[G])0 ∪ Con[G]0 is unsatisfiable w.r.t. the theory of
semilattices. Unsatisfiability can be checked by hand as follows: Note that a1∧a2 ≤ p1∧p2,
i.e. e2 ≤ e1. Then using monotonicity instance e2 ≤ e1 → d2 ≤ d1 it follows that d2 ≤ d1,
so p3 ∧ a2 ∧ d2 ≤ p3 ∧ a2 ∧ d1 ≈ a3, which is a contradiction to p3 ∧ a2 ∧ d2 ̸≤ a3. ■

In [95, 99] it was proved that similar results hold for the class SLO(Σ, RIα) of semilattices
with monotone operators in a set Σ satisfying a family RIa of axioms of the form

∀x g(x) ≤ h(x), (5.1)

∀x f(g(x)) ≤ h(x), (5.2)

as well as their flattened version RIflat
a , in which (5.2) is replaced by

∀x, y y ≤ g(x)→ f(y) ≤ h(x). (5.3)

105

In this case we need more instances, which can be described using a suitable closure
operator.

We define the following closure operator ΨRI on a ground set G:

ΨRI(G) =
⋃︂
i≥0

Ψi
RI(G), with

Ψ0
RI(G) = est(G), and

Ψi+1
RI (G) = {h(c) | ∀x(g(x) ≤ h(x)) ∈ RIflat

a and g(c) ∈ Ψi
RI(G)} ∪

{g(c) | ∀x(g(x) ≤ h(x)) ∈ RIflat
a and h(c) ∈ Ψi

RI(G)} ∪
{h(c) | ∀x, y(y ≤ g(x)→ f(y) ≤ h(x)) ∈ RIflat

a and g(c) ∈ Ψi
RI(G)} ∪

{g(c) | ∀x, y(y ≤ g(x)→ f(y) ≤ h(x)) ∈ RIflat
a and h(c) ∈ Ψi

RI(G)}.

The following theorem states that the extension of the theory of semilattices with monotone
operators and role inclusions is ΨRI -local.

Theorem 5.6. SLat ∪Mon(Σ) ∪RIflat
a is a ΨRI-local theory extension of SLat.

Proof: By Theorem 2.19 we know that (EmbΨf) implies (LocΨf) for flat and linear clauses.
In RIflat

a we have clauses of type 5.1 and 5.3, which both are not linear. However, the closure
operator ΨRI satisifes for clauses of type 5.1 and 5.3 the condition that for all constants c,
if g(c) ∈ ΨRI(G), then h(c) ∈ ΨRI(G), and vice versa. Therefore, by Remark 2.20, we can
conclude that (EmbΨf) implies (LocΨf) for the closure operator ΨRI . In Lemma 4.5 from [99]
it was shown that every semilattice P = (S,∧, {f}f∈Σ) with partially defined monotone
operators satisfying the axioms in RIflat

a , and with the property that if a variable occurs
in two terms g(x) and h(x) in a clause in RIflat

a , then for every s ∈ S, g(s) is defined if
and only if h(s) is defined, weakly embeds into a semilattice with totally defined operators
satisfying RIflat

a . Therefore, SLat ∪ Mon(Σ) ∪ RIflat
a satisfies property (EmbΨf), thus it

satisfies property (LocΨf) (for Ψ = ΨRI). □

Example 5.7. We illustrate the ideas on an example presented in [9] (here slightly sim-
plified). This example was also considered in [95, 97], but there a different locality notion
was used. We present here the way Ψ-locality can be used in this context.

Consider the CBox C consisting of the following general concept inclusions and role inclu-
sions:

Endocard⊑Tissue ⊓ ∃cont-in.HeartWall ⊓ ∃cont-in.HeartValve
HeartWall⊑∃part-of.Heart

HeartValve⊑∃part-of.Heart
Endocarditis⊑ Inflammation ⊓ ∃has-loc.Endocard

Inflammation⊑Disease
HeartDisease=Disease ⊓ ∃has-loc.Heart

part-of ◦ part-of⊑ part-of
part-of⊑ cont-in

has-loc ◦ cont-in⊑ has-loc

We want to check whether Endocarditis ⊑C Heartdisease.

106

We first introduce abbreviations for the other concepts to make the formulae shorter:

fci = f∃cont-in e = Endocard
fpo = f∃part-of h = Heart
fhl = f∃has-loc t = Tissue
hw = HeartWall i = Inflammation
hv = HeartValve d = Disease

From the three role inclusions we get the set RIflat
a = {R1, R2, R3} of (flattened) role

inclusion axioms, where

R1 = ∀x, y y ≤ fpo(x)→ fpo(y)≤fpo(x),

R2 = ∀x fpo(x)≤fci(x),

R3 = ∀x, y y ≤ fci(x)→ fhl(y)≤fhl(x).

Endocarditis ⊑C HeartDisease holds if and only if

SLat ∪ Mon(fci, fhl, fpo) ∪ {∀x, y y ≤ fpo(x)→ fpo(y)≤fpo(x),
∀x fpo(x)≤fci(x),
∀x, y y ≤ fci(x)→ fhl(y)≤fhl(x)}

∪ {e ≤ (t ∧ fci(hw) ∧ fci(hv)), hw ≤ fpo(h), hv ≤ fpo(h),
Endocarditis ≤ (i ∧ fhl(e)), i ≤ d, HeartDisease ≈ (d ∧ fhl(h)),
Endocarditis ̸≤ HeartDisease} |= ⊥ .

We use the closure operator ΨRI to compute the set of ground terms needed for instanti-
ation of the axioms in RIflat

a .

Ψ0
RI = est(K, G) = { fci(hw), fci(hv), fpo(h), fhl(e), fhl(h) }

From R2 ∈ RIflat
a and fpo(h) ∈ Ψ0

RI it follows that fci(h) ∈ Ψ1
RI .

From R2 ∈ RIflat
a and fci(hw), fci(hv) ∈ Ψ0

RI it follows that fpo(hw), fpo(hv) ∈ Ψ1
RI .

From R3 ∈ RIflat
a and fci(hw), fci(hv) ∈ Ψ0

RI it follows that fhl(hw), fhl(hv) ∈ Ψ1
RI .

From R3 ∈ RIflat
a and fhl(e), fhl(h) ∈ Ψ0

RI it follows that fci(e), fci(h) ∈ Ψ1
RI .

Ψ1
RI = { fci(hw), fci(hv), fci(h), fci(e),

fpo(hw), fpo(hv), fpo(h),

fhl(hw), fhl(hv), fhl(h), fhl(e) }.

From R2 ∈ RIflat
a and fci(e) ∈ Ψ1

RI it follows that fpo(e) ∈ Ψ2
RI . No other new terms are

added in this step.

Ψ2
RI = { fci(hw), fci(hv), fci(h), fci(e),

fpo(hw), fpo(hv), fpo(h), fpo(e),

fhl(hw), fhl(hv), fhl(h), fhl(e) }.

In the next step no new terms are added. From Ψ3
RI = Ψ2

RI it follows that ΨRI(G) = Ψ2
RI .

After computing (RIa ∪Mon(fci, fhl, fpo) ∪ Con)[ΨRI(G)] we obtain:

107

G (RIa ∪Mon ∪ Con)[ΨRI(G)]

e ≤ (t ∧ fci(hw) ∧ fci(hv)) y ≤ fpo(x)→ fpo(y) ≤ fpo(x) for x, y ∈ {hv, hw, h, e}
hw ≤ fpo(h) fpo(x) ≤ fci(x) for x ∈ {hv, hw, h, e}
hv ≤ fpo(h) y ≤ fci(x)→ fhl(y) ≤ fhl(x) for x, y ∈ {hv, hw, h, e}
Endocarditis ≤ (i ∧ fhl(e))
i ≤ d xRy → fci(x)Rfci(y) for x, y ∈ {hw, hv, h, e}
HeartDisease ≈ (d ∧ fhl(h)) xRy → fhl(x)Rfhl(y) for x, y ∈ {hv, hw, h, e}
Endocarditis ̸≤ HeartDisease R ∈ {≤,≥} x ̸= y

We can simplify the problem even further by replacing the ground terms in ΨRI(G) with
new constants and taking into account the corresponding definitions ct ≈ t. Let the set of
clauses obtained this way be (RIa ∪Mon ∪ Con)[ΨRI(G)]0.

G0 (RIa ∪Mon ∪ Con)[ΨRI(G)]0

e ≤ (t ∧ cfci(hw) ∧ cfci(hv)) y ≤ cfpo(x) → cfpo(y) ≤ cfpo(x) for x, y ∈ {hv, hw, h, e}
hw ≤ cfpo(h) cfpo(x) ≤ cfci(x) for x ∈ {hv, hw, h, e}
hv ≤ cfpo(h) y ≤ cfci(x) → cfhl(y) ≤ cfhl(x) for x, y ∈ {hv, hw, h, e}
Endocarditis ≤ (i ∧ cfhl(e))

i ≤ d xRy → cfci(x)Rcfci(y) for x, y ∈ {hw, hv, h}
HeartDisease ≈ (d ∧ cfhl(h)) xRy → cfhl(x)Rcfhl(y) for x, y ∈ {hv, hw, h, e}
Endocarditis ̸≤ HeartDisease R ∈ {≤,≥} x ̸= y

With the notation in the previous table, Endocarditis ⊑C HeartDisease if and only if it holds
that G0 ∪ (RIa ∪Mon ∪ Con)[Ψ(G)]0 |=SLat⊥. Unsatisfiability can be proved as follows:

(1) From Endocarditis ≤ (i ∧ cfhl(e)) it follows that Endocarditis ≤ i.

(2) From Endocarditis ≤ i and i ≤ d it follows that Endocarditis ≤ d.

(3) From Endocarditis ≤ (i ∧ cfhl(e)) it follows that Endocarditis ≤ cfhl(e).

(4) From e ≤ (t ∧ cfci(hw) ∧ cfci(hv)) it follows that e ≤ cfci(hv).

(5) From e ≤ cfci(hv) and an instance of the role inclusion axiom R3 it follows that
cfhl(e) ≤ cfhl(hv).

(6) From an instance of the role inclusion axiom R2 it follows that cfpo(h) ≤ cfci(h).

(7) From hv ≤ cfpo(h) and cfpo(h) ≤ cfci(h) it follows that hv ≤ cfci(h).

(8) From hv ≤ cfci(h) and an instance of the role inclusion axiom R2 it follows that
cfhl(hv) ≤ cfhl(h).

(9) From Endocarditis ≤ cfhl(e), cfhl(e) ≤ cfhl(hv) and cfhl(hv) ≤ cfhl(h) it follows that
Endocarditis ≤ cfhl(h).

(10) From Endocarditis ≤ d, Endocarditis ≤ cfhl(h) and HeartDisease ≈ (d∧cfhl(h)) it follows
that Endocarditis ≤ HeartDisease.

Thus, we have obtained a contradiction to Endocarditis ̸≤ HeartDisease. ■

108

5.2 P -Interpolation Property

Let Pred be a set of predicates and let P ⊆ Pred. We look at a form of interpolation property
which we call P -interpolating [91]. If P consists of one predicate only, e.g. P = {≤}, we
may omit the set notation and refer to the property simply as ≤-interpolation instead of
{≤}-interpolation. In the following we give a definition for P -interpolation and prove that
the theory of semilattices has≤-interpolation. For this, we use a form of symbol elimination
based on positive unit resolution. We afterwards show that the ≤-interpolation property
extends to SLO(Σ, RIα).

Definition 5.8 ((Strong) P-interpolation). A theory T0 is P -interpolating with respect
to P ⊆ Pred if for all conjunctions A and B of ground literals, all binary predicates R ∈ P
and all terms a and b such that a contains only constants occurring in A and b contains
only constants occurring in B (or vice versa), the following holds:

If A ∧B |=T0 aRb, then there exists a term t containing only constants common to A and
B with A ∧B |=T0 aRt ∧ tRb.

T0 is strongly P -interpolating if there exists such a term t with A |=T0 aRt and B |=T0 tRb.1

Proving P -interpolation is sometimes easier for theories which are convex.

Definition 5.9 (Convexity). A theory T0 is convex with respect to the set Pred of all
predicates (which may include also equality ≈) if for all conjunctions Γ of ground atoms,
relations R1, . . . , Rm ∈ Pred and ground tuples t1, . . . , tm of corresponding arity, the fol-
lowing holds:

If Γ |=T0
⋁︁m

i=1Ri(ti), then there exists j ∈ {1, . . . ,m} such that Γ |=T0 Rj(tj).

We prove that the theory of semilattices with monotone operators is ≤-interpolating. For
this we use the fact that the theory of semilattices is ≤-convex.

Lemma 5.10. The theory of semilattices is convex w.r.t. P = {≈,≤}.

Proof: The convexity of the theory of semilattices w.r.t. ≈ follows from the fact that this
is an equational class; convexity w.r.t. ≤ follows from the fact that x ≤ y if and only if
(x ∧ y) ≈ x. □

Theorem 5.11. If 0 is not included in the signature, then the theory SLat of semilattices
is ≤-interpolating.

Proof: This is a constructive proof based on the fact that SLat = ISP (S2), where S2

is the 2-element semilattice. We prove that the theory of semilattices (without 0 in its
signature) is ≤-interpolating, i.e. we show that if A and B are two conjunctions of literals
and A∧B |=SLat a ≤ b, where a is a term containing only constants which occur in A and b
a term containing only constants occurring in B, then there exists a term containing only
common constants in A and B such that A ∧ B |=SLat a ≤ t and A ∧ B |=SLat t ≤ b. We
can assume without loss of generality that A and B consist only of atoms: Indeed, assume
that A ∧B = A1 ∧ · · · ∧ An ∧ ¬A′

1 ∧ · · · ∧ ¬A′
m, where A1, . . . , An, A

′
1, . . . , A

′
m are atoms,

then the following are equivalent:

1This definition is equivalent to the definition, sometimes used in the literature, in which a and b are
required to be constants.

109

• A ∧B |=SLat a ≤ b

• |=SLat A ∧B → a ≤ b

• |=SLat ¬A1 ∨ · · · ∨ ¬An ∨A′
1 ∨ · · · ∨A′

m ∨ a ≤ b

• |=SLat (A1 ∧ · · · ∧An)→ A′
1 ∨ · · · ∨A′

m ∨ a ≤ b

• A1 ∧ · · · ∧An |=SLat A
′
1 ∨ · · · ∨A′

m ∨ a ≤ b

Since the theory of semilattices is convex w.r.t.≤ and≈, it follows that if A∧B |=SLat a ≤ b,
then either

(a) A1 ∧ · · · ∧An |=SLat A
′
j for some j ∈ {1, . . . ,m}, or

(b) A1 ∧ · · · ∧An |=SLat a ≤ b.

It is easy to see that in case (a), A ∧ B |=⊥. Then the conclusion of the theorem follows
immediately. We therefore continue the proof for the case when A and B consist only of
atoms.

As SLat = ISP (S2), in SLat the same Horn sentences are true as in the 2-element semi-
lattice S2. Thus, A∧B |=SLat a ≤ b if and only if A∧B |=S2 a ≤ b, so we can reduce such
a test to entailment in propositional logic.

It follows that A ∧ B |=SLat a ≤ b if and only if the conjunction NA ∧ NB ∧ Pa ∧ ¬Pb of
literals in propositional logic is unsatisfiable, where:

NA :

⎧⎪⎪⎨⎪⎪⎩
Pe1∧e2 ↔ Pe1 ∧ Pe2

Pe1 ↔ Pe2 e1 ≈ e2 ∈ A
Pe1 → Pe2 e1 ≤ e2 ∈ A

for all e1, e2 subterms in A

NB :

⎧⎪⎪⎨⎪⎪⎩
Pg1∧g2 ↔ Pg1 ∧ Pg2

Pg1 ↔ Pg2 g1 ≈ g2 ∈ B
Pg1 → Pg2 g1 ≤ g2 ∈ B

for all g1, g2 subterms in B

We obtain an unsatisfiable set of clauses (NA ∧ Pa) ∧ (NB ∧ ¬Pb) |=⊥, where NA and NB

are sets of Horn clauses. We can saturate NA∧NB ∧Pa under positive unit resolution, i.e.
a form of resolution in which an inference is only allowed if one of the clauses is a positive
unit clause. We show that if A ∧B |=SLat a ≤ b holds, then for the term

t :=
⋀︂
{c | A ∧B |=Slat a ≤ c, where c is a common subterm of A and B}

the following hold:

(i) A ∧B |=SLat a ≤ t, and

(ii) A ∧B |=SLat t ≤ b.

Every c ∈ T = {c | A ∧ B |=SLat a ≤ c, where c is a common subterm of A and B}
corresponds to the positive unit clause Pc (where Pc is a propositional variable common
to NA and NB) which can be derived from NA ∧ NB using positive unit resolution. Let
T = {c1, ..., ck}, i.e. t = c1 ∧ ... ∧ ck.

It is clearly the case that A∧B |=SLat a ≤ t, because NA∧NB ∧Pa∧¬Pt∧ (Pt ↔
⋀︁

c∈T Pc)
is unsatisfiable. Thus, (i) holds.

110

For proving (ii), we have to show that NA ∧ NB ∧ Pc1 ∧ ... ∧ Pck |= Pb. It is known that
NA ∧NB ∧ Pa ∧ ¬Pb |= ⊥. We analyze which clauses are derived from NA ∧NB ∧ Pa by
resolution.

Note first that, since NA, NB and Pa are Horn clauses, we do not have to consider all the
resolvents obtained by resolution, but only those obtained from inferences with positive
unit clauses (this follows from a result in [59], stating that for an unsatisfiable set of Horn
clauses there always exists a resolution proof using only inferences in which one clause
is a positive unit clause). We therefore analyze how ⊥ can be derived by positive unit
resolution.

Assume that NA contains the following unit clauses:

• Pa1 , ..., Pan1
, where a1, ..., an1 are terms only occurring in A, and

• Pc1 , ..., Pcm1
, where and c1, ..., cm1 are terms common to A and B.

Assume that NB contains the following unit clauses:

• Pb1 , ..., Pbr1
, where b1, ..., br1 are terms only occurring in B, and

• Pcm1+1 , ..., Pcm2
, where m1 ≤ m2 and cm1+1, ..., cm2 are terms common to A and B.

In a first step we consider only inferences of unit clauses with clauses in NA. Since clauses
in NA cannot contain any of the atoms Pb1 , ..., Pbr1

, at first only inferences between
Pa, Pa1 , ..., Pan1

, Pc1 , ..., Pcm2
and clauses in NA are possible, and later also inferences

between newly derived unit clauses and clauses in NA. By saturating under positive unit
resolution Pa ∧NA ∧ Pcm1+1 ∧ ... ∧ Pcm2

we obtain the following unit clauses:

• Pan1+1 , ..., Pan2
, where n1 ≤ n2 and an1+1, ..., an2 are terms only occurring in A, and

• Pcm2+1 , ..., Pcm3
, where m2 ≤ m3 and cm2+1, ..., cm3 are terms common to A and B.

In a next step we consider inferences of unit clauses with clauses in NB. Since clauses
in NB cannot contain any of the atoms Pa, Pa1 , ..., Pan2

, at first only inferences between
Pb1 , ..., Pbr1

, Pc1 , ..., Pcm3
and clauses in NB are possible, and later also inferences between

newly derived unit clauses with clauses in NB. By saturating under positive unit resolution
NB ∧ Pc1 ∧ ... ∧ Pcm1

∧ Pcm2+1 ∧ ... ∧ Pcm3
we obtain the following unit clauses:

• Pbr1+1 , ..., Pbr2
, where r1 ≤ r2 and br1+1, ..., br2 are terms only occurring in B, and

• Pcm3+1, ..., Pcm4
, where m3 ≤ m4 and cm3+1, ..., cm4 are terms common to A and B.

It can be proved that for all i ∈ {1, ..., r2} there exists a clause (
⋀︁

l∈J1 Pcl∧
⋀︁

j∈J2 Pbj)→ Pbi ,
where J1 ⊆ {1, ...,m4} and J2 ⊆ {1, ..., i − 1}, such that all Pcl and all Pbj are derived
as unit clauses before Pbi . It therefore holds that NA ∧ NB |=

⋀︁m4
s=1 Pcs → Pbt for all

t ∈ {1, ..., r2}.

This procedure may continue, such that new “common” unit clauses, i.e. unit clauses which
are atoms common to NA and NB, are again obtained from inferences with clauses in
NA, then again from inferences with clauses in NB, and so on. At some point, since
NA ∧ Pa ∧NB |= Pb holds, Pb has to be derived from an inference of a unit clause with a
clause in NB. Then, since we do not need Pa in the presence of the common unit clauses
to derive Pb, we have NA ∧NB ∧ Pc1 ∧ ... ∧ Pck |= Pb, where c1, ..., ck are all the common
unit clauses obtained by positive unit resolution. Thus, (ii) is proved. □

111

Based on the ideas illustrated in the proof of Theorem 5.11 we propose Algorithm 4 for
≤-interpolation in SLat.

Algorithm 4 ≤-interpolation in SLat
Input: Conjunctions of literals A and B;

terms a and b such that A ∧B |=SLat a ≤ b
Output: Intermediate term t containing only common constants of A and B

such that A ∧B |=SLat a ≤ t and A ∧B |=SLat t ≤ b

Step 1 Let SA and SB be the set of all constants appearing in A and B, respectively, and let
SAB = SA ∩ SB , S∗

A = SA \ SAB and S∗
B = SB \ SAB .

Step 2 Let Pa be a propositional variable corresponding to a and NAB be the set of Horn clauses
obtained from A ∧B using the following transformations:

• Translate every constant c to a corresponding propositional variable Pc.
• Interpret every meet operator ∧ as a logical conjunction.
• Replace every symbol ≤ by a logical implication sign →.

Step 3 Let Nsat be the set of clauses obtained after saturating NAB ∧ Pa under positive unit
resolution.

Step 4 Let t :=
⋀︁
{c | Pc is a positive unit clause in Nsat with c ∈ SAB}.

We show in detail how to compute an intermediate term in the theory of semilattices using
Algorithm 4 on the following example.

Example 5.12. Let A and B be the following two sets of formulae:

A = {a1 ≤ c1, c2 ≤ a2, a2 ≤ c3 }
B = { c1 ≤ b1, b1 ≤ c2, c3 ≤ b2}

It is easy to see that A ∧B |= a1 ≤ b2. We can compute an intermediate term, i.e. a term
t such that A ∧B |= a1 ≤ t and A ∧B |= t ≤ b2, using Algorithm 4.

Step 1: We have the following sets of constants:

SA = {a1, a2, c1, c2, c3}
SB = {b1, b2, c1, c2, c3}

SAB = {c1, c2, c3}
S∗
A = {a1, a2}

S∗
B = {b1, b2}

Step 2: Using the translation described in the algorithm we get the following set NAB∧Pa1

of Horn clauses:

NAB ∧ Pa1 = {(Pa1 → Pc1),

(Pc2 → Pa2),

(Pa2 → Pc3),

(Pc1 → Pb1),

(Pb1 → Pc2),

(Pc3 → Pb2),

Pa1}

112

Step 3: We saturate NAB ∧ Pa1 under positive unit resolution:

• Resolution of Pa1 and (Pa1 → Pc1) yields Pc1 .

• Resolution of Pc1 and (Pc1 → Pb1) yields Pb1 .

• Resolution of Pb1 and (Pb1 → Pc2) yields Pc2 .

• Resolution of Pc2 and (Pc2 → Pa2) yields Pa2 .

• Resolution of Pa2 and (Pa2 → Pc3) yields Pc3 .

• Resolution of Pc3 and (Pc3 → Pb2) yields Pb2 .

Therefore, our saturated set of clauses looks as follows:

Nsat = {(Pa1 → Pc1),

(Pc2 → Pa2),

(Pa2 → Pc3),

(Pc1 → Pb1),

(Pb1 → Pc2),

(Pc3 → Pb2),

Pa1 , Pc1 , Pc2 , Pc3 , Pb1 , Pb2}

Step 4: The unit clauses in Nsat corresponding to a constant in SAB are Pc1 , Pc2 and Pc3 .
For t = c1 ∧ c2 ∧ c3 the following holds:

A ∧B |= a1 ≤ c1 ∧ c2 ∧ c3

A ∧B |= c1 ∧ c2 ∧ c3 ≤ b2

Therefore, t = c1 ∧ c2 ∧ c3 is an intermediate term for a1 ≤ b2. ■

For the theory SLO(Σ, RIa) of semilattices with monotone operators satisfying axioms
RIa it is a bit more complicated to show that it is ≤-interpolating. Remember that in
the presence of monotone operators we have monotonicity and (flattened) role inclusion
axioms of the following form:

∀x, y x ≤ y →f(x) ≤ f(y)

∀x, y y ≤ g(x)→f(y) ≤ h(x)

These axioms need to be instantiated (using the closure operator ΨRI). It can happen
that x is replaced by a ground term that occurs only in A and y is replaced by a ground
term that occurs only in B. We call such an instance a mixed instance. Since we need
a clear distinction between the A-part and the B-part, these mixed instances need to be
separated, which in fact is always possible.

Theorem 5.13. Let T0 be a theory with signature Π0 = (Σ0,Pred). Assume that ≤ ∈ Pred
is such that

• ≤ is a transitive relation in all models of T0,

• T0 is convex with respect to ≤, and

• T0 is ≤-interpolating.

113

Let A0 and B0 be conjunctions of ground literals in the signature ΠC
0 (the extension of Π0

with a set C of constants) such that A0∧B0∧H |=T0 a ≤ b, where a contains only symbols
occurring in A0, b contains only symbols occurring in B0, and H is a set of Horn clauses
of the form c1 ≤ d1 → c ≤ d in the signature ΠC

0 which are instances of axioms of the
following type: {︃

x ≤ g(y) → f(x) ≤ h(y)
x ≤ y → f(x) ≤ f(y)

Then the following hold:

(1) There exists a set T of ΠC
0 -terms containing only constants common to A0 and B0

and a term t ∈ T such that

A0 ∧B0 ∧ (H\Hmix) ∧Hsep |=T0 a ≤ t ∧ t ≤ b,

where

Hmix = {a1 ≤ b1 → a2 ≤ b2 ∈ H | a1, a2 constants in A, b1, b2 constants in B}∪
{b1 ≤ a1 → b2 ≤ a2 ∈ H | b1, b2 constants in B, a1, a2 constants in A}

Hsep = {(a1 ≤ t1 → a2 ≤ cf(t1)) ∧ (t1 ≤ b1 → cf(t1) ≤ b2) | a1 ≤ b1 → a2 ≤ b2 ∈ Hmix,

b1 ≈ g(e1), b2 ≈ h(e1) ∈ DefB and a2 ≈ f(a1) ∈ DefA or vice versa,
and t1, f(t1) ∈ T} = HA

sep ∧HB
sep

where cf(t1) are new constants in Σc (considered to be common) introduced for the corres-
ponding terms f(t1).

(2) A0 ∧B0 ∧ (H\Hmix)∧Hsep ∧¬(a ≤ t∧ t ≤ b) is logically equivalent w.r.t. T0 with the
following separated conjunction of literals:

A0 ∧B0 ∧ ¬(a ≤ t ∧ t ≤ b) = A0 ∧ B0 ∧
⋀︂
{c ≤ d | Γ→c ≤ d ∈ H\Hmix}∧⋀︂

{c ≤ cf(t) ∧ cf(t) ≤ d | (Γ→ c ≤ cf(t)) ∧ (Γ→ cf(t) ≤ d) ∈ Hsep}∧

¬(a ≤ t ∧ t ≤ b)

Proof: We prove (1) and (2) by induction on the number of clauses in H.

If H = ∅, then the initial problem is already separated into an A-part and a B-part. We
have A0 ∧ B0 |=T0 a ≤ b and since we assumed that T0 is ≤-interpolating, there exists a
term t containing only constants common to A0 and B0 such that A0∧B0 |=T0 a ≤ t∧t ≤ b
(we can choose T = {t}).

Assume that H contains at least one clause, and that for every H1 with fewer clauses and
every conjunction of literals A′

0, B
′
0 with A′

0 ∧B′
0 ∧H1 |=T0 a ≤ b, (1) and (2) hold.

Let D be the set of all atoms c ≤ d occurring in premises of clauses in H. As every model
of A0 ∧B0 ∧

⋀︁
(c≤d)∈D ¬(c ≤ d) ∧ ¬(a ≤ b) is also a model of H ∧A0 ∧B0 ∧ ¬(a ≤ b) and

H∧A0 ∧B0 ∧¬(a ≤ b) |=T0⊥, we have A0 ∧B0 ∧
⋀︁

(c≤d)∈D ¬(c ≤ d)∧¬(a ≤ b) |=T0⊥. Let
(A0 ∧ B0)

+ be the conjunction of all positive literals in A0 ∧ B0, and (A0 ∧ B0)
− be the

set of all negative literals in A0 ∧B0. Then

(A0 ∧B0)
+ |=T0

⋁︂
(c≤d)∈D

(c ≤ d) ∨
⋁︂

¬L∈(A0∧B0)−

L ∨ (a ≤ b).

114

T0 is convex with respect to≤ and (A0∧B0)
+ is a conjunction of positive literals. Therefore,

either

(i) (A0 ∧ B0)
+ |= L for some L ∈ (A0 ∧ B0)

− (then A0 ∧ B0 is unsatisfiable and hence
entails any atom ci ≤ di), or

(ii) (A0 ∧B0)
+ |= a ≤ b, or

(iii) there exists (c1 ≤ d1) ∈ D such that A0 ∧B0 |=T0 c1 ≤ d1.

Case 1: A0 ∧ B0 is unsatisfiable. In this case (1) and (2) hold for T = {t}, where t is an
arbitrary term over the common symbols of A0 and B0.

Case 2: A0 ∧B0 is satisfiable and (A0 ∧B0)
+ |= a ≤ b. Then we can use the fact that T0

is ≤-interpolating and we are done.

Case 3: A0∧B0 is satisfiable and there exists (c1 ≤ d1) ∈ D such that A0∧B0 |=T0 c1 ≤ d1.
Then A0 ∧B0 is logically equivalent in T0 with A0 ∧B0 ∧ c1 ≤ d1.

Let C = c1 ≤ d1 → c ≤ d ∈ H such that A0 ∧B0 |= c1 ≤ d1.

Case 3a: Assume that C contains only constants occurring in A or only constants occur-
ring in B. Then A0 ∧B0 ∧H is equivalent w.r.t. T0 with A0 ∧B0 ∧ (H\{C}) ∧ c ≤ d. By
the induction hypothesis for A′

0 ∧ B′
0 = A0 ∧ B0 ∧ c ≤ d and H1 = H\{C}, we know that

there exists T ′ and t ∈ T ′ such that A′
0 ∧B′

0 ∧ (H1\H1mix)∧H1sep |= a ≤ t∧ t ≤ b, and (2)
holds too.

Then, for T = T ′, A′
0∧B′

0∧ (H1\H1mix)∧H1sep∧¬(a ≤ t∧ t ≤ b) is logically equivalent to
A0∧B0∧(H\Hmix)∧Hsep∧¬(a ≤ t∧t ≤ b), so A0∧B0∧(H\Hmix)∧Hsep |= (a ≤ t∧t ≤ b),
i.e. (1) holds.

In order to prove (2), note that, by definition, H1mix = Hmix and H1sep = Hsep. On the one
hand, by the induction hypothesis, A′

0∧B′
0∧(H1\H1mix)∪H1sep∧¬(a ≤ t∧t ≤ b) is logically

equivalent to a corresponding conjunction A
′
0∧B

′
0∧¬(a ≤ t∧t ≤ b) containing as conjuncts

all literals in A′
0 and B′

0 and all conclusions of rules in H1\H1mix and H1sep. On the other
hand, A′

0∧B′
0∧¬(a ≤ t∧t ≤ b) is logically equivalent to A0∧B0∧(c ≤ d)∧¬(a ≤ t∧t ≤ b),

where (c ≤ d) is the conclusion of the rule C ∈ H\Hmix. This proves (2).

Case 3b: Assume now that C = c1 ≤ d1 → c ≤ d is mixed, for instance that c1, c are
constants in A and d1, d are constants in B.

(a) Assume C is obtained from an instance of a clause of the form x ≤ g(y)→ f(x) ≤ h(y).
This means that there exist c ≈ f(c1) ∈ DefA and d1 ≈ g(e), d ≈ h(e) ∈ DefB. We know
that A0 ∧ B0 |=T0 c1 ≤ d1 and that T0 is ≤-interpolating. Thus, there exists a term t1
containing only constants common to A0 and B0 such that

A0 ∧B0 |=T0 c1 ≤ t1 ∧ t1 ≤ d1.

Let cf(t1) be a new constant, denoting the term f(t1), and let

CA = c1 ≤ t1 → c ≤ cf(t1) and CB = t1 ≤ d1 → cf(t1) ≤ d.

Thus, CA corresponds to the instance c1 ≤ t1 → f(c1) ≤ f(t1) of the monotonicity axiom
for f , whereas CB corresponds to the rule t1 ≤ g(e)→ f(t1) ≤ h(e).

115

As A0 ∧B0 |= c1 ≤ t1 ∧ t1 ≤ d1 and as ≤ is transitive, the following holds:

A0 ∧B0 ∧ CA ∧ CB ≡T0 A0 ∧B0 ∧ (c1 ≤ t1 ∧ CA) ∧ (t1 ≤ d1 ∧ CB)

|=T0 A0 ∧B0 ∧ c ≤ cf(t1) ∧ cf(t1) ≤ d

|=T0 A0 ∧B0 ∧ c ≤ d,

Thus, A0∧B0∧CA∧CB∧(H\{C}) |=T0 A0∧B0∧c ≤ d∧(H\{C}). Since A0∧B0 |=T0 c1 ≤ d1

it follows that A0 ∧B0 ∧H is logically equivalent with A0 ∧B0 ∧ c ≤ d ∧ (H\{C}), so we
have A0 ∧B0 ∧ CA ∧ CB ∧ (H\{C}) ∧ ¬(a ≤ b) |=T0⊥.

By the induction hypothesis for A0∧B0∧ c ≤ cf(t1)∧ cf(t1) ≤ d and H1 = H\{C} we know
that there exists a set T ′ of terms such that

A0 ∧B0 ∧ c ≤ cf(t1) ∧ cf(t1) ≤ d ∧ (H1\H1mix) ∧H1sep ∧ ¬(a ≤ t ∧ t ≤ b) |=⊥,

and also (2) holds. Then (1) holds for T = T ′∪{f(t1), t1}.

(b) Assume C corresponds to an instance of a monotonicity axiom x ≤ y → f(x) ≤ f(y).
This means that there exist c ≈ f(c1) ∈ DefA and d ≈ f(d1) ∈ DefB. We know that
A0∧B0 |=T0 c1 ≤ d1 and that T0 is ≤-interpolating. Thus, there exists a term t1 containing
only constants common to A0 and B0 such that

A0∧B0 |=T0 c1 ≤ t1 ∧ t1 ≤ d1.

Let cf(t1) be a new constant, denoting the term f(t1), and let

CA = c1 ≤ t1 → c ≤ cf(t1) and CB = t1 ≤ d1 → cf(t1) ≤ d.

Thus, CA corresponds to the instance c1 ≤ t1 → f(c1) ≤ f(t1) of the monotonicity axiom
for f , whereas CB corresponds to the instance t1 ≤ d1 → f(t1) ≤ f(d1) of the monotonicity
axiom for f . The proof can then continue as the proof of case (a); also in this case we can
choose T = T ′∪{f(t1), t1}.

(2) can be proved similarly using the induction hypothesis.

We show two examples for the separation of mixed instances, one containing a mixed
instance of a role inclusion axiom (Example 5.14) and one containing a mixed instance of
a monotonicity axiom (Example 5.15).

Example 5.14. Let A0, B0 and H be the following sets of flattened and purified formulae
(where the clause in H corresponds to an instance of a role inclusion axiom of the form
x ≤ g(y)→ f(x) ≤ h(y)):

A0 = { a1 ≤ cf(a2), a2 ≤ d }
B0 = { d ≤ cg(b1), ch(b1) ≤ b2 }
H = { a2 ≤ cg(b1) → cf(a2) ≤ ch(b1) } = Hmix

It holds that A0∧B0∧H |= a1 ≤ b2. The clause in H is a mixed instance, since a2 appears
only in A0 and b1 only in B0, so Hmix = H. To separate the mixed instance we compute

116

an intermediate term t for its premise a2 ≤ cg(b1) using Algorithm 4. As a result we get
t = d. From this we get the following set of separated instances:

Hsep = { a2 ≤ d → cf(a2) ≤ cf(d),

d ≤ cg(b1) → cf(d) ≤ ch(b1) }

Note that the first one is an instance of the monotonicity axiom for f and contains only
symbols appearing in A0, whereas the second one is an instance of the role inclusion axiom
and contains only symbols appearing in B0. ■

Example 5.15. Let A0, B0 and H be the following sets of flattened and purified formulae
(where both of the clauses in H correspond to an instance of a monotonicity axiom):

A0 = { a1 ≤ cf(a2), a2 ≤ cf(d1), a2 ≤ d2 }
B0 = { d1 ≤ b1, (cf(b1) ∧ d2) ≤ b2 }
H = { a2 ≤ b2 → cf(a2) ≤ cf(b2), d1 ≤ b1 → cf(d1) ≤ cf(b1) }

It holds that A0 ∧ B0 ∧ H |= a1 ≤ cf(b2). The first clause in H is a mixed instance, since
a2 appears only in A0 and b2 only in B0. The second clause in H is not mixed, since both
d1 and b1 appear in B0. Thus, Hmix = {a2 ≤ b2 → cf(a2) ≤ cf(b2)}. We use Algorithm 4 to
compute an intermediate term t for the premise a2 ≤ b2 and obtain t = (cf(d1) ∧ d2). We
then have the following set of separated instances:

Hsep = { a2 ≤ (cf(d1) ∧ d2) → cf(a2) ≤ cf(cf(d1)∧d2)
,

(cf(d1) ∧ d2) ≤ b2 → cf(cf(d1)∧d2)
≤ cf(b2) }

Both clauses correspond to instances of the monotonicity axiom of f . The first one contains
only symbols from A0 and the second one only symbols from B0. ■

Theorem 5.16. The theory SLO(Σ, RIa) of semilattices with monotone operators satisfy-
ing axioms RIa is ≤-interpolating.

Proof: The operators of SLO(Σ, RIa) satisfy the monotonicity condition Mon; the axioms
in RIa are in a class that was studied in [93]. Let A and B be two conjunctions of
literals (corresponding to two TBoxes), let RI be a set of role axioms and let Mon be
the family of all monotonicity axioms for the functions {f∃r | r ∈ NR}. Assume that
A ∧ B |=SLO(Σ,RIa) a ≤ b, where a is a term containing only constants and Σ-functions
occurring in A and b is a term containing only constants and Σ-functions occurring in B.
By Theorem 5.6, A∧B |=SLO(Σ,RIa) a ≤ b if and only if (with the notation used in Theorem
5.4) A0 ∧ B0 ∧ Mon[A ∧ B]0 ∧ RIa[A ∧ B]0 ∧ Con0 ∧ ¬(a ≤ b)0 |=SLat⊥. In the presence
of monotonicity, Con is not needed. The set H = Mon[A ∧B]0 ∧RIa[A ∧B]0 ∧ ¬(a ≤ b)0
contains mixed clauses. Using the result from Theorem 5.13 we can “separate” all clauses
in H and then compute an intermediate term for a ≤ b using Algorithm 4, i.e. we have
A0 ∧ HA

sep ∧ B0 ∧ HB
sep ∧ ¬(a0 ≤ t0 ∧ t0 ≤ b0) |=SLat⊥, where t0 contains only constants

common to A0 and B0. After replacing back the new constants with the terms they
represent, we obtain A ∧ B |=SLO(Σ,RIa) (a ≤ t ∧ t ≤ b), where t contains only symbols
which are common to A and B.2 □

2As in [93], for function symbols f, g, if f occurs in A and g occurs in B, but they occur together in one
of the axioms in RI, they are considered to be shared.

117

5.3 ≤-Interpolation for High-Level Explanations

In this section we explain in detail our method for finding high-level explanations for
subsumptions in combinations or extensions of EL+ ontologies. The method we propose
combines hierarchical reasoning, ≤-interpolation and resolution and can be enhanced by
unsatisfiable core computation. We first present the algorithm and then apply it on the
example from Section 1.1. We then briefly present an implementation of the algorithm and
test it on two more examples.

First we formally state the problem we are addressing. Let the following be given:

• Let TA and TB be two EL+ TBoxes and RI be a set of role inclusions.

• Let NC be the set of all concept names occurring in TA ∪ TB.

• Let NA
C be the set of concept names occurring in TA.

• Let NB
C be the set of concept names occurring in TB.

• Let NAB
C = (NA

C ∩NB
C) be the common concept names.

• Let X be a concept description over NA
C and Y a concept description over NB

C such
that they do not contain only shared symbols and such that the following hold:

TA ∪ TB ∪RI |= X ⊑ Y

TA ∪RI ̸|= X ⊑ Y

TB ∪RI ̸|= X ⊑ Y

The goal is to find a concept description C containing only concepts in NAB
C (and possibly

also only roles common to TA and TB) such that

TA ∪ TB ∪RI |= X ⊑ C and
TA ∪ TB ∪RI |= C ⊑ Y.

The concept description C can then be seen as a “high-level explanation” for X ⊑ Y . Using
Theorem 5.3 and Theorem 5.16 we can always compute such a concept description. For
this we propose Algorithm 5.

Algorithm 5 Algorithm for finding explanations in EL+

Input: EL+ TBoxes TA and TB; set of role inclusions RI; concept descriptions
X over NA

C and Y over NB
C such that TA ∪ TB ∪RI |= X ⊑ Y

Output: Concept description C over NAB
C such that TA ∪ TB ∪RI |= X ⊑ C and

TA ∪ TB ∪RI |= C ⊑ Y

Step 1: 1. Translate TA ∪ TB ∪RI to the theory of semilattices with monotone operators.
2. Compute a minimal set of axioms min such that min ∪RI |=SLO(Σ,RIa) X ≤ Y .

Step 2: 1. Flatten, purify and instantiate (using ΨRI) min ∪RI.
2. Compute a minimal set of axioms min′ such that min′ |=SLO(Σ,RIa) X ≤ Y .

Step 3: Separate all mixed instances of role and monotonicity axioms.

Step 4: 1. Compute an intermediate term C for X ≤ Y using Algorithm 4.
2. Translate C to the language of EL+.

118

The purpose of Steps 1.2 and 2.2 in Algorithm 5 is to make the algorithm more efficient,
especially for large ontologies. Usually, if we have very large TBoxes, only some of their
axioms are necessary for obtaining a certain consequence. Therefore it is sufficient to
apply Step 2 only on the relevant axioms. Similarly, it is sufficient to apply Step 3 only
on the instances relevant to the problem. For determining which axioms/instances are
relevant we can compute a minimal axiom set, for example by using unsatisfiable core
computation, which is done in Steps 1.2 and 2.2 of the algorithm. Note that these two
steps are completely optional, they can also be left out or, alternatively, only a reduced
set of axioms, which is not necessarily minimal, could be computed.

Example 5.17. Consider the EL ontologyOAmp in Figure 5.2, which was already presented
in Section 1.1 and is based on an example from [12].

A1 : AmpOfFinger ⊑ Amputation
A2 : AmpOfFinger ⊑ ∃site.FingerStructure
A3 : Amputation ⊓ ∃site.FingerStructure ⊑ AmpOfFinger
A4 : InjToFinger ⊑ Injury
A5 : InjToFinger ⊑ ∃site.FingerStructure
A6 : Injury ⊓ ∃site.FingerStructure ⊑ InjToFinger
A7 : FingerEntity ⊑ FingerStructure
A8 : FingerPart ⊑ FingerStructure
A9 : FingerPart ⊑ ∃part.FingerEntity
A10 : FingerStructure ⊑ HandPart
A11 : HandEntity ⊑ HandStructure
A12 : HandPart ⊑ HandStructure
A13 : HandPart ⊑ ∃part.HandEntity

B1 : AmpOfHand ⊑ Amputation
B2 : AmpOfHand ⊑ ∃site.HandStructure
B3 : Amputation ⊓ ∃site.HandStructure ⊑ AmpOfHand
B4 : InjToHand ⊑ Injury
B5 : InjToHand ⊑ ∃site.HandStructure
B6 : Injury ⊓ ∃site.HandStructure ⊑ InjToHand

Figure 5.2: Ontology OAmp.

The ontology consists of two EL TBoxes TA and TB. As we are in EL, we do not have
any role inclusions. TBox TA describes concepts for amputation of a finger and injury to
a finger. It also defines relations between finger and hand using concepts for structure,
entity and part of a finger or hand. TBox TB extends TA by a description of concepts for
amputation and injury of a hand. As a consequence of this extension the following two
subsumptions are true:

InjToFinger ⊑ InjToHand and AmpOfFinger ⊑ AmpOfHand

While the first subsumption makes sense, the second one is not a subsumption that is
supposed to hold, as an amputation of a finger is not an amputation of the whole hand.

119

We are interested in repairing the ontology such that AmpOfFinger ⊑ AmpOfHand does not
hold anymore. For this we need to understand what the cause of this faulty consequence
could be. Note that the following requirements hold:

TA ∪ TB ∪RI ⊨ AmpOfFinger ⊑ AmpOfHand
TA ∪RI ⊭ AmpOfFinger ⊑ AmpOfHand
TB ∪RI ⊭ AmpOfFinger ⊑ AmpOfHand

Therefore, we can use Algorithm 5 to find an explanation over the common signature of
the two TBoxes, i.e. a concept C such that the following hold:

TA ∪ TB ∪RI |= AmpOfFinger ⊑ C

TA ∪ TB ∪RI |= C ⊑ AmpOfHand

In the following we show how to apply the four steps of the algorithm. We have the
following sets of symbols (we indicate also the abbreviations used in what follows):

NA
C = {AmpOfFinger (AF), Amputation (A), FingerStructure (FS), InjToFinger (IF),

Injury (I), FingerEntity (FE), FingerPart (FP), HandPart (HP),
HandEntity (HE), HandStructure (HS)}

NB
C = {AmpOfHand (AH), Amputation (A), HandStructure (HS), InjToHand (IH),

Injury (I)}
NAB

C = {Amputation (A), Injury (I), HandStructure (HS)}

Step 1.1: We translate the ontology to the theory of semilattices with monotone operators.
For this we replace ⊑ by ≤ and ⊓ by ∧. We now state the monotonicity axioms for each
role, i.e. site and part, explicitly. Figure 5.3 shows the ontology after the translation to the
theory of semilattices. Note that from here on we use the abbreviations for concept names
indicated in the sets NA

C , NB
C and NAB

C above.

A1 : AF ≤ A
A2 : AF ≤ site(FS)
A3 : A ∧ site(FS) ≤ AF
A4 : IF ≤ I
A5 : IF ≤ site(FS)
A6 : I ∧ site(FS) ≤ IF
A7 : FE ≤ FS
A8 : FP ≤ FS
A9 : FP ≤ part(FE)
A10 : FS ≤ HP
A11 : HE ≤ HS
A12 : HP ≤ HS
A13 : HP ≤ part(HE)

B1 : AH ≤ A
B2 : AH ≤ site(HS)
B3 : A ∧ site(HS) ≤ AH
B4 : IH ≤ I
B5 : IH ≤ site(HS)
B6 : I ∧ site(HS) ≤ IH

M1 : ∀X,Y: X ≤ Y → site(X) ≤ site(Y)
M2 : ∀X,Y: X ≤ Y → part(X) ≤ part(Y)

Figure 5.3: OAmp after Step 1.1.

120

Step 1.2: Based on the axioms from Figure 5.3 we compute a minimal unsatisfiable core
of the set {A1, ..., A13}∪ {B1, ..., B6}∪ {M1,M2}∪ {¬(AF ≤ AH)} and obtain the minimal
axiom set

min = {A1, A2, A10, A12, B3,M1}

from which AF ≤ AH can be derived. This means that for the following instantiation
step we only have to consider monotonicity axiom M1, but not M2. Figure 5.4 shows the
reduced ontology.

A1 : AF ≤ A
A2 : AF ≤ site(FS)
A10 : FS ≤ HP
A12 : HP ≤ HS

B3 : A ∧ site(HS) ≤ AH

M1 : ∀X,Y: X ≤ Y → site(X) ≤ site(Y)

Figure 5.4: OAmp after Step 1.2.

Step 2.1: Let T0 = SLat and T1 = SLat∪M1 be the extension of T0 with the monotonicity
axiom M1. We know from Theorem 5.4 that this is a local theory extension, so we can use
hierarchical reasoning. We have the following set of ground terms:

T = { site(FS), site(HS) }

From T we only get two instances I1 and I2 of the monotonicity axiom M1:

I1 : FS ≤ HS → site(FS) ≤ site(HS)
I2 : HS ≤ FS → site(HS) ≤ site(FS)

We purify all formulae by introducing new constants for the terms starting with a function
symbol, i.e. role names. We save the definitions in the following set:

Def = {siteFS = site(FS), siteHS = site(HS)}

We then have the set A0 ∪ B0 ∪ I0, where A0, B0 and I0 are the purified versions of
A = {A1, A2, A10, A12}, B = {B3} and I = {I1, I2}, respectively. We obtain the set of
formulae shown in Figure 5.5, containing these purified axioms.

A1 : AF ≤ A
A2 : AF ≤ siteFS

A10 : FS ≤ HP
A12 : HP ≤ HS

B3 : A ∧ siteHS ≤ AH

I1 : FS ≤ HS → siteFS ≤ siteHS

I2 : HS ≤ FS → siteHS ≤ siteFS

Figure 5.5: OAmp after Step 2.1.

Step 2.2: To reduce the number of instances we compute a minimal unsatisfiable core of
A0 ∪B0 ∪ I0 ∪ {¬(AF ≤ AH)} and obtain the set of axioms

min′ = {A1, A2, A10, A12, B3, I1}

from which AF ≤ AH can be derived. We therefore know that from the two instances of
M1 only I1 is needed. In Figure 5.6 the new set of formulae is shown.

121

A1 : AF ≤ A
A2 : AF ≤ siteFS

A10 : FS ≤ HP
A12 : HP ≤ HS

B3 : A ∧ siteHS ≤ AH

I1 : FS ≤ HS → siteFS ≤ siteHS

Figure 5.6: OAmp after Step 2.2.

Step 3: The premise of I1 contains only symbols occuring in NA
C , so it is not a mixed

instance. Thus, there is nothing to do in this step and the set of axioms remains the same.

Step 4.1: We know that I1 is needed to derive the unwanted subsumption, so its premise
must be true (in fact, from A10 and A12 it follows that FS ≤ HP ≤ HS). Note that w.r.t.
SLat the formula A0 ∧ I1 is equivalent to the following formula:

A0 = (AF ≤ A) ∧ (AF ≤ siteFS) ∧ (FS ≤ HP) ∧ (HP ≤ HS) ∧ (siteFS ≤ siteHS)

As a whole, we have the formula A0 ∧B0 with the following sets of symbols:

• S∗
A = {AF, siteFS,FS,HP,HS}, the set of symbols occurring only in A0

• S∗
B = {AH}, the set of symbols occurring only in B0

• SAB = {A, siteHS}, the set of symbols occurring in A0 and B0

Using on A0 ∧B0 the translation to propositional logic described in the proof of Theorem
5.11 and using the same names for the SLat-terms and the corresponding propositional
variables we obtain a set of Horn clauses NAB:

NAB = { (¬AF ∨ A), (¬AF ∨ siteFS), (¬FS ∨ HP), (¬HP ∨ HS), (¬siteFS ∨ siteHS),

(¬A ∨ ¬siteHS ∨ AH) }

To obtain an explanation for TA ∪TB ∪RI |= AmpOfFinger ⊑ AmpOfHand we saturate the
set NAB ∪ {AF} under positive unit resolution as described in the proof of Theorem 5.11,
restricting to inferences in which one clause is a positive unit clause:

• Resolution of AF and ¬AF ∨ A yields A.

• Resolution of AF and ¬AF ∨ siteFS yields siteFS.

• Resolution of siteFS and ¬siteFS ∨ siteHS yields siteHS.

• Resolution of A and ¬A ∨ ¬siteHS ∨ AH yields ¬siteHS ∨ AH.

• Resolution of siteHS and ¬A ∨ ¬siteHS ∨ AH yields ¬A ∨ AH.

• Resolution of A and ¬A ∨ AH yields AH.

Two of the obtained resolvents are unit clauses containing only common symbols: A and
siteHS. Thus, we obtain the intermediate term A ∧ siteHS for AF ≤ AH.

Step 4.2: Translating A ∧ siteHS back to description logic yields the following formula:

J = Amputation ⊓ ∃site.HandStructure

122

Indeed, the following properties hold:

TA ∪ TB ∪RI |= AmpOfFinger ⊑ J

TA ∪ TB ∪RI |= J ⊑ AmpOfHand

So J is the intermediate term that is computed by Algorithm 5.

With J we now have a high-level explantion for the unwanted subsumption wich can give
us a hint on how to repair the ontology such that the unwanted consequence is not entailed
by it anymore. Since we consider TA to be consistent, we are looking for axioms in TB
that could cause this problem. The explanation contains the concepts Amputation and
HandStructure, so we could try to change some of the axioms in TB containing one of
these concepts in our original ontology. Actually, by the unsat core computation in Step
2 of the algorithm we have already pinpointed B3 as a cause of error. Indeed, replacing
∃site.HandStructure by ∃site.HandEntity in Axioms B2 and B3 will fix the ontology. ■

5.4 Implementation and Tests

An implementation of Algorithm 5 was done by Sebastian Thunert for his Master thesis
“Automatization of Computing High-Level Explanations for Subsumptions in EL and EL+”
[108]. The program is written in Python and uses Z3 and SPASS as external provers. The
steps of the program follow those of the algorithm, including the optional optimization
steps for computating reduced sets of axioms and instances.

In what follows we give a short description of the input and output as well as the four
steps of the implemented program.

Input: The input must be given by the user in the form of a Python Script file and contains
the axioms of the TBoxes TA and TB, the role inclusions RI, and the subsumption for which
an explanation is demanded.

Step 1: In this step a translation to either SPASS or Z3 is performed. It also aims at
reducing the number of axioms by computing a subset of the axioms which entails the
subsumption. For this the user can choose between a precise translation to SPASS or a
translation to Z3 which is not always precise and may therefore give a wrong reduced set
of axioms (i.e. one that does not entail the subsumption). While with using Z3 always
a minimal set of axioms which entails the subsumption is computed, SPASS will only
compute a subset of the axioms that is not necessarily minimal.

Step 2: In this step the flattening, instantiation and purification of the axioms is done.
For the reduced problem a precise translation to Z3 is possible. Z3 is used to reduce
the number of axioms and instances to a minimal set that is necessary for deriving the
subsumption.

Step 3: The program separates the mixed instances by computing intermediate terms for
their premises using Algorithm 4. For applying resolution SPASS is used.

Step 4: As a last step an intermediate term for the subsumption is computed using
Algorithm 4. From the result of the resolution, again applied using SPASS, the program
generates the intermediate term in the language of EL+.

Output: A text file containing the generated explanation for the subsumption is created.

123

In [108] the implementation has been tested on Example 5.17 from the previous chapter,
as well as two examples which follow (Example 5.18 and Example 5.19). In contrast to
the ontology in Example 5.17, which did not contain role inclusions, the ontologies in the
examples that follow are in EL+.

Example 5.18. Consider the ontology OOxi in Figure 5.7, which is based on an example
in [93] with some slight changes.

A1 : CatOxidation ⊑ ∃catalyzes.Oxidation
A2 : CatOxidation ⊑ Substance
A3 : Oxidation ⊑ Reaction

B1 : Reaction ⊑ Process
B2 : Reaction ⊑ ∃produces.Substance
B3 : Enzyme ⊑ Substance
B4 : Enzyme ⊑ ∃enhances.Process
B5 : Substance ⊓ ∃enhances.Process ⊑ Enzyme

R1 : catalyzes ⊑ enhances

Figure 5.7: Ontology OOxi.

We have a TBox TA specifying the concepts CatOxidation and Oxidation, and a TBox TB
describing the concepts Reaction and Enzyme. The ontology also contains a role inclusion
R1, so we are in EL+ now.

We have the following sets of symbols (we also indicate the abbreviations used in what
follows):

NA
C = {CatOxidation (CO), Oxidation (O), Substance (S), Reaction (R)}

NB
C = {Reaction (R), Process (P), Substance (S), Enzyme (E)}

NAB
C = {Substance (S), Reaction (R)}

In the ontology OOxi it holds that CatOxidation ⊑ Enzyme, where CatOxidation ∈ NA
C and

Enzyme ∈ NB
C . More precisely, the following holds:

TA ∪ TB ∪RI |= CatOxidation ⊑ Enzyme
TA ∪RI ̸|= CatOxidation ⊑ Enzyme
TB ∪RI ̸|= CatOxidation ⊑ Enzyme

We use Algorithm 5 to compute an intermediate term containing only shared symbols for
the subsumption CatOxidation ⊑ Enzyme.

Step 1.1: We translate the ontology to the theory of semilattices with monotone operators
and state monotonicity axioms for each role explicitly. We use the abbreviations for concept
names indicated in the sets NA

C , NB
C and NAB

C . We also use abbreviations for role names,
i.e. c for catalyzes, p for produces and e for enhances. Figure 5.8 shows the ontology after
the translation.

124

A1 : CO ≤ c(O)
A2 : CO ≤ S
A3 : O ≤ R

M1 : ∀X,Y: X ≤ Y → c(X) ≤ c(Y)
M2 : ∀X,Y: X ≤ Y → p(X) ≤ p(Y)
M3 : ∀X,Y: X ≤ Y → e(X) ≤ e(Y)

B1 : R ≤ P
B2 : R ≤ p(S)
B3 : E ≤ S
B4 : E ≤ e(P)
B5 : S ∧ e(P) ≤ E

R1 : ∀X: c(X) ≤ e(X)

Figure 5.8: OOxi after translation to SLat with monotone operators.

Step 1.2: Based on the axioms from Figure 5.8 we compute a minimal unsatisfiable core
of the set {A1, ..., A3} ∪ {B1, ..., B5} ∪ {M1, ...,M3} ∪ {R1} ∪ {¬(CO ≤ E)} and obtain the
minimal axiom set

min = {A1, A2, A3, B1, B5, R1,M3}

from which CO ≤ E can be derived.

Step 2.1: Let T0 = SLat and T1 = SLat∪R1 be the extension of T0 with axiom R1. Since
T0 ⊆ T1 is a local theory extension, we can use hierarchical reasoning.

We have the set of ground terms T = {c(O), e(P)}.

We use the closure operator ΨRI(T) described in Section 5.1 to extend our set of ground
terms. This means that for every term c(X) in T we have to add the term e(X) and vice
versa. This leads to the following extended set T ′ of ground terms:

T ′ = ΨRI(T) = { c(O), c(P), e(O), e(P) }

From T ′ we get two instances of the role inclusion axiom R1 and two instances of the
monotonicity axiom M3:

I1 : c(O) ≤ e(O)
I2 : c(P) ≤ e(P)
I3 : O ≤ P→ e(O) ≤ e(P)
I4 : P ≤ O→ e(P) ≤ e(O)

We purify all formulae by introducing new constants for the terms starting with a function
symbol (i.e. role names). We save the definitions in the following set:

Def = { cO = c(O), cP = c(P), eO = e(O), eP = e(P) }

We then have the set A0 ∪ B0 ∪ I0, where A0, B0 and I0 are the purified versions of
A = {A1, A2, A3}, B = {B1, B5} and I = {I1, I2, I3, I4}, respectively.

Step 2.2: To reduce the number of instances we compute a minimal unsatisfiable core of
A0 ∪B0 ∪ I0 ∪ {¬(CO ≤ E)} and obtain the set of axioms

min′ = {A1, A2, A3, B1, B5, I1, I3}

from which CO ≤ E can be derived. We then have H = {I1, I3}. Since O ∈ NA
C \NB

C and
P ∈ NB

C \NA
C , we have Hmix = {I3}.

125

Step 3: We separate the mixed instance O ≤ P → eO ≤ eP by using Algorithm 4 to find
an intermediate term t in the common signature such that O ≤ t and t ≤ P. We obtain
t = R. Therefore, we get Hsep = {IA3 , IB3 }, where:

IA3 : O ≤ R → eO ≤ eR

IB3 : R ≤ P → eR ≤ eP

Note that both IA3 and IB3 are instances of the monotonicity axiom for the enhances role.

Step 4.1: Since for every instance that is necessary to derive the consequence it must be
true that TA ∪ TB entails its premise, it is sufficient to consider only the corresponding
conclusions. Note that w.r.t. SLat the formula A0∧ I1∧ IA3 is equivalent to A0 and B0∧ IB3
is equivalent to B0, where:

A0 = CO ≤ cO ∧ CO ≤ S ∧ O ≤ R ∧ cO ≤ eO ∧ eO ≤ eR

B0 = R ≤ P ∧ (S ∧ eP) ≤ E ∧ eR ≤ eP

As a whole, we have the formula A0 ∧B0 with the following sets of symbols:

• S∗
A = {CO, cO,O, eO}, the set of symbols occurring only in A0

• S∗
B = {P,E, eP}, the set of symbols occurring only in B0

• SAB = {S,R, eR}, the set of symbols occurring in A0 and B0

Using on A0 ∧B0 the translation to propositional logic described in the proof of Theorem
5.11 and using the same names for the SLat-terms and the corresponding variables we
obtain the following set NAB of Horn clauses:

NAB = { (¬CO ∨ cO), (¬CO ∨ S), (¬O ∨ R), (¬cO ∨ eO), (¬eO ∨ eR),

(¬R ∨ P), (¬S ∨ ¬eP ∨ E), (¬eR ∨ eP) }

We saturate the set NAB ∪ {CO} under positive unit resolution as described in the proof
of Theorem 5.11, restricting to inferences in which one clause is a positive unit clause:

• Resolution of CO and ¬CO ∨ S yields S.

• Resolution of CO and ¬CO ∨ cO yields cO.

• Resolution of cO and ¬cO ∨ eO yields eO.

• Resolution of eO and ¬eO ∨ eR yields eR.

• Resolution of eR and ¬eR ∨ eP yields eP.

• Resolution of S and ¬S ∨ ¬eP ∨ E yields ¬eP ∨ E.

• Resolution of eP and ¬S ∨ ¬eP ∨ E yields ¬S ∨ E.

• Resolution of S and ¬S ∨ E yields E.

Two of the obtained resolvents contain only common symbols, namely S and eR, so S ∧ eR
is an intermediate term for CO ≤ E.

Step 4.2: Translating S ∧ eR back to description logic yields the following formula:

J = Substance ⊓ ∃enhances.Reaction

126

Indeed, the following properties hold:

TA ∪ TB ∪RI |= CatOxidation ⊑ J

TA ∪ TB ∪RI |= J ⊑ Enzyme

Thus, J is a high-level explanation for the subsumption CatOxidation ⊑ Enzyme. ■

Example 5.19. Consider the ontology OMed in Figure 5.9, based on an example from
[106], which we modified in some points. We changed it in a way that it only contains
general concept inclusions and conjunction only appears on the left hand side of an ax-
iom. Furthermore we left out some axioms and concepts, but also added new concepts
(LeftVentricle, RightVentricle, Ventricle) and changed some axioms accordingly. We devided
the ontology into three parts: A TBox TA, a TBox TB and a set of role axioms RI.

A1 : Endocardium ⊑ Tissue
A2 : Endocardium ⊑ ∃part-of.HeartWall
A3 : HeartWall ⊑ BodyWall
A4 : HeartWall ⊑ ∃part-of.LeftVentricle
A5 : HeartWall ⊑ ∃part-of.RightVentricle
A6 : LeftVentricle ⊑ Ventricle
A7 : RightVentricle ⊑ Ventricle
A8 : Endocarditis ⊑ Inflammation
A9 : Endocarditis ⊑ ∃has-location.Endocardium
A10 : Inflammation ⊓ ∃has-location.Endocardium ⊑ Endocarditis
A11 : Inflammation ⊑ Disease
A12 : Inflammation ⊑ ∃acts-on.Tissue

B1 : Ventricle ⊑ ∃part-of.Heart
B2 : HeartDisease ⊑ Disease
B3 : HeartDisease ⊑ ∃has-location.Heart
B4 : Disease ⊓ ∃has-location.Heart ⊑ HeartDisease

R1 : part-of ◦ part-of ⊑ part-of
R2 : has-location ◦ part-of ⊑ has-location

Figure 5.9: Ontology OMed.

We have the following sets of symbols (we indicate the abbreviations used in what follows):

NA
C = {Endocardium (Em), Tissue (T), HeartWall (HW),

LeftVentricle (LV), RightVentricle (RV), Ventricle (V)
Disease (D), Inflammation (I), Endocarditis (Es)}

NB
C = {Heart (H), HeartDisease (HD), Disease (D), Ventricle (V)}

NAB
C = {Disease (D), Ventricle (V)}

127

Consider the subsumption Endocarditis ⊑ HeartDisease, where Endocarditis ∈ NA
C and

Heartdisease ∈ NB
C .

Additionally, the following hold:

TA ∪ TB ∪RI |= Endocarditis ⊑ HeartDisease
TA ∪RI ̸|= Endocarditis ⊑ HeartDisease
TB ∪RI ̸|= Endocarditis ⊑ HeartDisease

Therefore, we can use Algorithm 5 to compute an intermediate term containing only shared
symbols for the subsumption Endocarditis ⊑ HeartDisease, which serves as an explanation
for the subsumption.

Step 1.1: We translate the ontology to the theory of semilattices with monotone operators.
We now state the monotonicity axioms for each role explicitly. Figure 5.10 shows the
ontology after the translation to the theory of semilattices. Note that from here on we use
the abbreviations for concept names indicated in the sets NA

C , NB
C and NAB

C above and
also abbreviations for role names, i.e. po for part-of, hl for has-location and ao for acts-on.

A1 : Em ≤ T
A2 : Em ≤ po(HW)
A3 : HW ≤ BW
A4 : HW ≤ po(LV)
A5 : HW ≤ po(RV)
A6 : LV ≤ V
A7 : RV ≤ V
A8 : Es ≤ I
A9 : Es ≤ hl(Em)
A10 : I ∧ hl(Em) ≤ Es
A11 : I ≤ D
A12 : I ≤ ao(T)

B1 : V ≤ po(H)
B2 : HD ≤ D
B3 : HD ≤ hl(H)
B4 : D ∧ hl(H) ≤ HD

R1 : ∀X: po(po(X)) ≤ po(X)
R2 : ∀X: hl(po(X)) ≤ hl(X)

M1 : ∀X,Y: X ≤ Y → po(X) ≤ po(Y)
M2 : ∀X,Y: X ≤ Y → hl(X) ≤ hl(Y)
M3 : ∀X,Y: X ≤ Y → ao(X) ≤ ao(Y)

Figure 5.10: OMed after translation to SLat with monotone operators.

Step 1.2: Based on the axioms from Figure 5.10 we compute a minimal unsatisfiable core
of the set {A1, ..., A12}∪{B1, ..., B4}∪{M1, ...,M3}∪{R1, R2}∪{¬(Es ≤ HD)} and obtain
the minimal axiom set

min = {A2, A4, A6, A8, A9, A11, B1, B4, R2}

from which Es ≤ HD can be derived.

This means that for the following instantiation step we only have to consider the role axiom
R2 and none of the monotonicity axioms is needed.

Step 2.1: Let T0 = SLat and T1 = SLat ∪ R2 be the extension of T0 with axiom R2. We
know that T0 ⊆ T1 is a local theory extension, so we can use hierarchical reasoning. We
first flatten the role axiom R2 in the following way:

Rflat
2 : ∀X, Y: X ≤ po(Y) → hl(X) ≤ hl(Y)

128

The set of ground terms is T = {po(HW), po(LV), po(H), hl(Em), hl(H)}.

We use the closure operator ΨRI(T) described in Section 5.1 to extend our set of ground
terms. This means that for every term po(X) in G we have to add the term hl(X) and vice
versa. This leads to the following extended set T ′ of ground terms:

T ′ = { po(Em), po(HW), po(LV), po(H), hl(Em), hl(HW), hl(LV), hl(H) }

From T ′ we get the following instances of the axiom Rflat
2 :

I1 : Em ≤ po(HW) → hl(Em) ≤ hl(HW)
I2 : Em ≤ po(LV) → hl(Em) ≤ hl(LV)
I3 : Em ≤ po(H) → hl(Em) ≤ hl(H)
I4 : HW ≤ po(Em) → hl(HW) ≤ hl(Em)
I5 : HW ≤ po(LV) → hl(HW) ≤ hl(LV)
I6 : HW ≤ po(H) → hl(HW) ≤ hl(H)
I7 : LV ≤ po(Em) → hl(LV) ≤ hl(Em)
I8 : LV ≤ po(HW) → hl(LV) ≤ hl(HW)
I9 : LV ≤ po(H) → hl(LV) ≤ hl(H)
I10 : H ≤ po(Em) → hl(H) ≤ hl(Em)
I11 : H ≤ po(HW) → hl(H) ≤ hl(HW)
I12 : H ≤ po(LV) → hl(H) ≤ hl(LV)

We purify all formulae by introducing new constants for the terms starting with a function
symbol, i.e. role names. We save the definitions in the following set:

Def = {poHW = po(HW), poLV = po(LV), poH = po(H), hlEM = hl(EM),
hlHW = hl(HW), hlLV = hl(LV), hlHC = hl(HC), hlH = hl(H)}

We then have the set A0 ∪ B0 ∪ I0, where A0, B0 and I0 are the purified versions of
A = {A2, A4, A6, A8, A9, A11}, B = {B1, B4} and I = {I1, ..., I10}, respectively.

Step 2.2: To reduce the number of instances we compute a minimal unsatisfiable core of
A0 ∪B0 ∪ I0 ∪ {¬(Es ≤ HD)} and obtain the set of axioms

min′ = {A2, A4, A6, A8, A9, A11, B1, B4, I1, I5, I9}

from which Es ≤ HD can be derived. We have H = {I1, I5, I9}. The first two instances
are not mixed, as their premises contain only symbols in NA

C . Since LV ∈ NA
C \NB

C and
H ∈ NB

C \NA
C , we have Hmix = {I9}.

Step 3: To separate the mixed instance LV ≤ poH → hlLV ≤ hlH we use Algorithm 4 to
compute an intermediate term t in the common signature such that LV ≤ t and t ≤ poH.
We obtain t = V. We get Hsep = {IA9 , IB9 }, where:

IA9 : LV ≤ V → hlLV ≤ hlV
IB9 : V ≤ poH → hlV ≤ hlH

Note that IA9 is an instance of the monotonicity axiom for the has-location role and IB9 is
an instance of axiom Rflat

2 .

129

Step 4.1: Since for every instance that is necessary to derive the consequence it is true that
TA ∪ TB entails its premise, it is sufficient to consider only the corresponding conclusions.
Note that w.r.t. SLat the formula A0 ∧ I1 ∧ I5 ∧ IA9 is equivalent to A0 and the formula
B0 ∧ IB9 is equivalent to B0, where:

A0 = Em ≤ poHW ∧ HW ≤ poLV ∧ LV ≤ V ∧ Es ≤ I ∧ Es ≤ hlEm ∧ I ≤ D
∧ hlEM ≤ hlHW ∧ hlHW ≤ hlLV ∧ hlLV ≤ hlV

B0 = V ≤ poH ∧ (D ∧ hlH) ≤ HD ∧ hlV ≤ hlH

As a whole, we have the formula A0 ∧B0 with the following sets of symbols:

• S∗
A = {Em, poHW,HW, poLV, LV,Es, I, hlEm, hlHW, hlLV}, symbols occurring only in A0

• S∗
B = {poH, hlH,HD}, the set of symbols occurring only in B0

• SAB = {V,D, hlV}, the set of symbols occurring in A0 and B0

Using the translation to propositional logic described in the proof of Theorem 5.11 we
obtain the following set NAB of Horn clauses:

NAB = { (¬Em ∨ poHW), (¬HW ∨ poLV), (¬LV ∨ V), (¬Es ∨ I), (¬Es ∨ hlEm),

(¬I ∨ D), (¬hlEM ∨ hlHW), (¬hlHW ∨ hlLV), (¬hlLV ∨ hlV), (¬V ∨ poH),

(¬D ∨ ¬hlH ∨ HD), (¬hlV ∨ hlH) }

We saturate the set NAB ∪{Es} under positive unit resolution as described in the proof of
Theorem 5.11, restricting to inferences in which one clause is a positive unit clause:

• Resolution of Es and ¬Es ∨ I yields I.

• Resolution of I and ¬I ∨ D yields D.

• Resolution of Es and ¬Es ∨ hlEm yields hlEm.

• Resolution of hlEm and ¬hlEM ∨ hlHW yields hlHW.

• Resolution of hlHW and ¬hlHW ∨ hlLV yields hlLV.

• Resolution of hlLV and ¬hlLV ∨ hlV yields hlV.

• Resolution of hlV and ¬hlV ∨ hlH yields hlH.

• Resolution of D and ¬D ∨ ¬hlH ∨ HD yields ¬hlH ∨ HD.

• Resolution of hlH and ¬D ∨ ¬hlH ∨ HD yields ¬D ∨ HD.

• Resolution of D and ¬D ∨ HD yields HD.

We obtained two resolvents containing only common symbols: D and hlV. Thus, D∧ hlV is
an intermediate term for Es ≤ HD.

Step 4.2: Translating the formula back to description logic yields the following formula:

J = Disease ⊓ ∃has-location.Ventricle

Indeed, the following properties hold:

TA ∪ TB ∪RI |= Endocarditis ⊑ J

TA ∪ TB ∪RI |= J ⊑ HeartDisease

Thus, J is a high-level explanation for the subsumption Endocarditis ⊑ HeartDisease. ■

130

Evaluation

We evaluate the program on the three examples we have shown, i.e. Examples 5.17, 5.18
and 5.19. For this we measure the execution times of the program and its steps and analyze
how the number of axioms and instances changes due to the unsatisfiable core computations
in Steps 1 and 2. We compare the two versions used for Step 1, i.e. the heuristic using Z3
and the precise formalization using SPASS. The data obtained when using Z3 for Step 1 is
shown in Figure 5.11, the data obtained when using SPASS for Step 1 is shown in Figure
5.12. All times are wall clock times given in milliseconds and rounded to 5 digits after the
comma. These are average times obtained by running the program 100 times. Tests were
run on a computer with Windows 10, an Intel Core i5-10210U processor and 16 GB RAM.

OAmp OOxi OMed

Time in total 69,86022 ms 91,71622 ms 117,79624 ms
Time for preprocessing 0,31730 ms 0,48127 ms 0,43949 ms
Time for Step 1 24,23889 ms 23,11613 ms 25,73731 ms
Time for Step 2 21,88105 ms 22,98602 ms 45,45626 ms
Time for Step 3 0,09455 ms 22,39066 ms 22,85824 ms
Time for Step 4 23,32525 ms 22,72220 ms 23,30493 ms
TBox axioms 23 8 16
Role inclusions 0 1 2
Axioms in Z3 25 12 21
Axioms after Step 1 6 7 9
Instances after instantiation 2 6 36
Instances after Step 2 1 2 3
Mixed instances 0 1 1
Axioms after Step 2 6 7 11

Figure 5.11: Evaluation of tests using Z3 for Step 1.

OAmp OOxi OMed

Time in total 69,22637 ms 92,68173 ms 117,38175 ms
Time for preprocessing 0,25467 ms 0,47784 ms 0,53041 ms
Time for Step 1 25,13976 ms 23,79103 ms 27,06715 ms
Time for Step 2 21,08219 ms 22,91415 ms 42,93753 ms
Time for Step 3 0,06179 ms 22,24924 ms 23,15206 ms
Time for Step 4 22,68795 ms 23,24947 ms 23,68460 ms
TBox axioms 23 8 16
Role inclusions 0 1 2
Axioms in SPASS 23 9 18
Axioms after Step 1 6 7 11
Instances after instantiation 2 6 36
Instances after Step 2 1 2 3
Mixed instances 0 1 1
Axioms after Step 2 6 7 11

Figure 5.12: Evaluation of tests using SPASS for Step 1.

First of all, one can see that the running times of the examples are all really low and
do not take much more than 100 milliseconds. Unsurprisingly, the examples containing
mixed instances take a little more time than the ones without mixed instances, which is

131

due to Step 3. Aside from this, the only significant difference in time in a given step is in
Step 2, which takes about twice as long for OMed than for the other two examples. This
is due to the fact that for OMed a lot more instances are computed in this step. Since
after unsatisfiable core computation in Step 2 the number of instances is again reduced
significantly, this does not affect the running times of the following steps.

A comparison of the two variants of Step 1, i.e. the heuristic using Z3 and the precise
formalization in SPASS, shows that the times needed do not differ much. If anything, Step
1 takes slightly longer with SPASS. The unsatisfiable cores computed at the end of Step
1 with Z3 and SPASS are the same for OAmp and OOxi, but different for OMed. Here the
unsatisfiable core computed with SPASS is a proper superset of the one computed by Z3,
so indeed it is not a minimal unsatisfiable core in this case. However, since another (always
minimal) unsatisfiable core is computed with Z3 at the end of Step 2 of the implementation,
it does not affect the following steps.

5.5 Conclusion

We analyzed a possibility of giving high-level justifications for subsumption in description
logics EL and EL+. For this, we used the encoding of TBox subsumption as a uniform word
problem in classes of semilattices with monotone operators for EL and the ≤-interpolation
property in these classes of algebras, as well as extensions to these results in the presence
of role inclusions. This can be seen as a first step towards providing short, high-level
explanations for subsumption. If more explanations are needed, they can be obtained by
pinpointing and analyzing the resolution derivation of the ≤-interpolating terms.

Our approach specifically aims at providing explanations for subsumption relations res-
ulting from a combination or extension of ontologies in EL and EL+. Pinpointing in EL
and EL+, as described [10] and [11], is a good method for narrowing down the cause of
why a certain unwanted consequence is present in a given TBox T . In [11] also exten-
sions of TBoxes are considered. However, by computing minimal axiom sets one cannot
capture the interplay between two TBoxes TA and TB in the same way that interpolation
does. Therefore, we believe that our approach is better suited in such a setting, since an
interpolant gives us useful information about the connection between the two TBoxes.

5.5.1 Future Work

In this thesis, we analyzed the property of P -interpolation in theory extensions and formu-
lated the subsumption problem for EL and EL+ as a ≤-interpolation problem in a theory
of semilattices with monotone operators and proposed a method for solving it based on
hierarchical reasoning and satisfiability modulo theories. The general approach we propose
opens the possibility of applying similar methods to more general classes of non-classical
logics, e.g. substructural logics or fuzzy logics with monotone operators studied in [101],
or in verification, where one could consider more general extensions than those with unin-
terpreted function symbols analyzed in [87].

There has been work on other forms of interpolation in the family of EL description logics.
For instance, a variant of interpolation is proved in [76] and possibilities for uniform in-
terpolation are analyzed in [71] and [75] (it is well known that neither ALC nor EL allow
uniform interpolation). In future work we would like to analyze possibilities of symbol
elimination and abduction in such logics, which are related to uniform interpolation.

132

6 Reasoning About Classes of Graphs

In this chapter we consider certain types of graph classes and transformations thereof and
analyze possibilities for reasoning about those classes. We can for instance prove properties
of graphs by showing containedness between suitable graph classes. The motivation for
the type of graph problems shown here stems from research in wireless network theory.

A graph is an ordered pair G = (V,E), where V is a set of vertices and E ⊆ V ×V a set of
edges. One can distinguish two kinds of graphs: directed graphs, containing only directed
edges, and undirected graphs, containing only undirected edges. A directed edge (u, v) has
an orientation, i.e. an outgoing vertex u and an ingoing vertex v. Thus, in a directed graph
the edges (u, v) and (v, u) are different from each other. An undirected edge does not have
an orientation. Thus, in an undirected graph the edge (u, v) is the same as the edge (v, u)
and can therefore also be regarded as the set of vertices {u, v}. A subgraph G′ of a graph
G = (V,E), denoted G′ ⊆ G, is a graph G′ = (V ′, E′) where V ′ ⊆ V , E′ ⊆ V ′ × V ′ and
E′ ⊆ E. A spanning subgraph G′′ of a graph G = (V,E) is a graph G′′ = (V ′′, E′′) where
V ′′ = V and E′′ ⊆ E.

We look at classes of geometric graphs which occur for instance in wireless networks. These
classes can be described using axioms which specify geometric conditions for the existence
or non-existence of an edge. The axioms typically refer to points and their coordinates
in R2 and often to distances between points (or costs associated with edges in a graph).
For describing geometric conditions we can often use a distance function d, which can for
instance be the Euclidean distance or an arbitrary metric (or a cost function). Sometimes
we can also use transformations on such graph classes, for example in order to make directed
graphs symmetric, i.e. guaranteeing that if a directed edge from a vertex u to a vertex v
exists, then an edge from v to u exists as well. Applying such transformations to all graphs
of a certain class leads to a new class of graphs.

We are interested in checking the inclusion between two graph classes (possibly obtained
from a given graph class using a certain transformation). We will present an approach
based on general and property-directed symbol elimination in combination with hierarchical
reasoning for checking whether an inclusion holds. If the inclusion cannot be proved, our
methods allow us to find a counterexample, i.e. a graph which is contained in the first class
but not in the second. In case the problem is parametric in some way, we can generate
conditions on the parameters which guarantee that the inclusion holds.

We consider graphs with vertices in a set X, which can for instance be the set of points in
the Euclidean space R2 or the set of points in an abstract metric space (X, d), or at least
in a space X with an additional cost function d (possibly having additional properties).
For modeling graph classes we use a unary predicate V and a binary predicate E such that

• for every element x ∈ X, V (x) is true if and only if x is a vertex of the graph, and

• for all elements x, y ∈ X, E(x, y) is true if and only if x and y are vertices and there
is an edge between x and y.

133

We first present locality results for extensions with distance functions satisfying the axioms
of a metric (or a subset of these axioms). Then we present three simple classes of undirected
graphs – namely Gabriel graphs, relative neighborhood graphs and plane drawings – and
prove certain relations between them: We prove that every relative neighborhood graph is
a spanning subgraph of a Gabriel graph and that Gabriel graphs and relative neighborhood
graphs are always plane drawings. Afterwards we look at classes of directed graphs and
define transformations on them which make them symmetric. We analyze containedness
relations between the graph classes obtained by those transformations.

Parts of the results in this chapter were already published in [18] and [84].

6.1 Locality of Theory Extensions Involving Distances

Many geometric graph classes are described using geometric conditions for the existence or
non-existence of edges. In many cases such conditions refer to the distance between vertices
or costs associated with pairs of vertices. Therefore, we prove that axiomatizations for such
distance or cost functions define local theory extensions.

Let T be a theory used for formalizing points, distance and vertices, with two sorts p
(points, uninterpreted) and num (reals, interpreted). If we model the Euclidian plane with
the Euclidean distance, T can be defined starting from the combination of a theory P of
points over R× R and the theory R of real numbers using a chain of theory extensions

(E) P ∪ R ⊆ P ∪ R ∪ UIFx,y ⊆ T = P ∪ R ∪ UIFx,y ∪ T e
d

where x and y are the coordinate functions, i.e. functions x : P → R and y : P → R
with x(u) describing the x-coordinate and y(u) describing the y-coordinate of point u, and
T e
d is the theory specifying that d(u, v) is the Euclidean distance between points u and v,

i.e. d(u, v) =
√︁

(x(u)−x(v))2+(y(u)−y(v))2. Note that the symbol √ is not part of the
signature, but the square root function can be defined using an extension by definition as
described in Example 2.23. Alternatively, we can express the Euclidean distance using the
following two axioms:

(1) ∀u, v d(u, v) ≥ 0

(2) ∀u, v (d(u, v))2 ≈ (x(u)−x(v))2+(y(u)−y(v))2

If we model arbitrary metric spaces (X, d), T is the theory extension

(M) P ∪ R ⊆ T = P ∪ R ∪ T m
d

where P is the theory of pure equality E1 and T m
d are the axioms of a metric. One can

prove that all these extensions are local. In (E) we have extensions with uninterpreted
function symbols and definitional extensions, which are local according to Examples 2.21
and 2.23, respectively. In the following we prove that in (M) we have a Ψ-local theory
extension for a suitable closure operator Ψ.

We first formalize the properties of metric spaces (X, d), i.e. sets endowed with a distance
function d satisfying the usual axioms of a metric, and prove a Ψ-locality property. We
then consider also variants that contain only some of these axioms and show that they
define Ψ-local extensions as well for suitably defined closure operators.

1We later use the theory of an infinite set TIS , which is the model completion of the theory of pure
equality E .

134

Theorem 6.1. Let T0 be the disjoint two-sorted combination of the theory E of pure equality
(sort p) and the theory LI(R) of linear real arithmetic (sort num). Let T m

d be the extension
of T0 with a function d with arity a(d) = p, p → num satisfying the following set Km of
axioms:

(d1) ∀x, y d(x, y) ≥ 0
(d2) ∀x, y, z d(x, y) ≤ d(x, z) + d(z, y)
(d3) ∀x, y d(x, y) ≈ d(y, x)
(d4) ∀x, y x ≈ y → d(x, y) ≈ 0
(d5) ∀x, y d(x, y) ≈ 0→ x ≈ y

Let Ψm be defined for every set T of ground terms by

Ψm(T) = T ∪ {d(a, b) | a, b are constants of sort p occurring in T}.

Then the following hold:

(1) Ψm is a closure operator on ground terms.

(2) For every finite set T of ground terms, Ψm(T) is finite.

(3) T m
d is a Ψm-local extension of T0 satisfying condition (CompΨf).

Proof: (1) We have to show that Ψm satisfies the conditions from the definition of a closure
operator (Definition 2.11):

• Clearly, for every set T of ground terms, T and Ψm(T) contain the same constants
of sort p, so Ψm(Ψm(T)) = Ψm(T).

• Since the only extension function symbol is d, it holds that est(K, T) ⊆ Ψm(T) for
every set T of ground terms.

• From the definition of Ψm it follows that if T1 ⊆ T2, then we have Ψm(T1) ⊆ Ψm(T2).

• It is easy to check that for every map h : C → C, we have h(Ψm(T)) = Ψm(h(T)),
i.e. Ψm is stable under renaming of constants.

(2) If T is finite, then it contains a finite number n of constants. Then Ψm(T) has n2

elements.

(3) To prove that T m
d is a Ψm-local extension of T0 we prove that it satisfies the embed-

dability condition (CompΨf). Let P = (P,R, dP) be a partial model of T m
d = T0 ∪ Km,

where P is the support of sort p, R the support of sort num, and dP a partial function
from P × P to R, such that the following properties hold:

(i) All function symbols in Σ0 are defined everywhere and d is partially defined.

(ii) The set T (P) = {d(a1, a2) | a1, a2 ∈ P, dP (a1, a2) is defined} is finite and closed
under Ψm.

To prove embeddability we have to show that dP can be extended to a total function on
P that satisfies the axioms Km.

From the axioms of a metric it follows that

• whenever dP (p1, p2) is defined, dP (p1, p2) ≥ 0;

• if p1 ≈ p2, then dP (p1, p2) ≈ 0 whenever defined;

135

• dP (p, p) ≈ 0 whenever it is defined;

• if dP (p1, p2) and dP (p2, p1) are defined, then dP (p1, p2) ≈ dP (p2, p1); and

• if dP (p1, p2), dP (p2, p3) and dP (p1, p3) are defined, then dP (p1, p2) ≤ dP (p2, p3) +
dP (p1, p3).

Let E = {(p1, p2) | dP (p1, p2) is defined}.

Let P1 = {p ∈ P | ∃q ∈ P : dP (p, q) is defined or dP (q, p) is defined}. By the assumption
that dP (p1, p2) is defined only for finitely many tuples (p1, p2), P1 is finite and by condition
(ii) above (as T (P) is closed under Ψm) we have E = P1 × P1. Thus, P = P1 ∪ P2

with d1 = dP |P1
being totally defined and d being defined nowhere on P2 (dP (p1, p2) is

undefined for any two different elements p1, p2 ∈ P2, and for every p ∈ P2 there is no
q ∈ P1 such that dP (p, q) or dP (q, p) is defined). Since P1 is finite, the maximum distance
m1 = max{dP (p, q) | p, q ∈ P1} exists.

Consider an arbitrary distance function d2 on P2 such that sup{d2(p1, p2) | p1, p2 ∈ P2} is
finite. Such a function is guaranteed to exist, since the distance axioms are consistent: We
can for instance bijectively map all points in P2 to points in the interior of the unit circle
and consider the euclidian distances between these points. Thus, the distance function d2
on P2 is totally defined and bounded. Let m2 be such that d2(p, q) ≤ m2 for all p, q ∈ P2.

We now show how to extend d on P1∪P2. If P1 or P2 are empty, we have a total extension
of d already. Assume they are both non-empty. Let p1 ∈ P1 and p2 ∈ P2. We construct a
totally defined function d : (P1 ∪ P2)

2 → R as follows:

d(p, q) =

⎧⎪⎪⎨⎪⎪⎩
d1(p, q) if p, q ∈ P1

d2(p, q) if p, q ∈ P2

d0 + d1(p, p1) + d2(p2, q) if p ∈ P1 and q ∈ P2

d0 + d1(q, p1) + d2(p2, p) if p ∈ P2 and q ∈ P1

where d0 ∈ R is such that d0 ≈ m + 1 with m = max(m1,m2).

We show that d is a total function that satisfies all the axioms Km:

• It is clear that d is a total function and that d(x, y) ≥ 0 for all x, y ∈ P1 ∪ P2, i.e. it
satisfies axiom (d1).

• Let p ∈ P1 ∪ P2. Then p ∈ Pi with i = 1 or i = 2. Since di satisfies axiom (d4), we
have d(p, p) ≈ di(p, p) ≈ 0. Thus, d satisfies axiom (d4).

• Let p, q ∈ P1 ∪ P2. We make a case distinction:

Case 1: p, q ∈ Pi for i = 1 or i = 2.

Then d(p, q) ≈ di(p, q) ≈ di(q, p) ≈ d(q, p), since di satisfies axiom (d3).

Case 2: p ∈ P1 and q ∈ P2.

Then d(p, q) ≈ d0 + d1(p, p1) + d2(p2, q) ≈ d(q, p) follows immediately from the
definition of d.

Case 3: p ∈ P2 and q ∈ P1.

Then d(p, q) ≈ d0 + d1(q, p1) + d2(p2, p) ≈ d(q, p) follows immediately from the
definition of d.

Thus, d satisfies axiom (d3).

136

• Let p, q ∈ P1 ∪ P2. We make a case distintion:

Case 1: p, q ∈ Pi with i = 1 or i = 2.

If d(p, q) ≈ 0, then di(p, q) ≈ 0, so as di satisfies axiom (d5), we have p ≈ q.

Case 2: p ∈ P1 and q ∈ P2, or p ∈ P2 and q ∈ P1.

Then by definition d(p, q) ≥ d0 > 0, so we cannot have d(p, q) ≈ 0.

Thus, d satisfies axiom (d5).

• We show that d satisfies the triangle inequality (axiom (d2)).

Let p, q, r ∈ P1 ∪ P2. We show that d(p, q) ≤ d(p, r) + d(r, q). We distinguish the
following cases:

Case 1: p ∈ P1, q ∈ P2. Then d(p, q) ≈ d0 + d1(p, p1) + d2(p2, q).

Subcase 1a: r ∈ P1.

Then d(p, r)+d(r, q) ≈ d1(p, r)+d0+d1(r, p1)+d2(p2, q) ≥ d0+d1(p, p1)+
d2(p2, q) ≈ d(p, q).

Subcase 1b: r ∈ P2.

Then d(p, r)+d(r, q) ≈ d0+d1(p, p1)+d2(p2, r)+d2(r, q) ≥ d0+d1(p, p1)+
d2(p2, q) ≈ d(p, q).

Case 2: p ∈ P2, q ∈ P1. Then d(p, q) ≈ d0 + d1(q, p1) + d2(p2, p).

Subcase 2a: r ∈ P2.

Then d(p, r)+ d(r, q) ≈ d2(p, r)+ d0+ d1(r, p2)+ d2(p1, q) ≈ d2(r, p)+ d0+
d1(q, p1) + d2(p2, r) ≥ d0 + d1(q, p1) + d2(p2, p) ≈ d(p, q).

Subcase 2b: r ∈ P1.

Then d(p, r)+d(r, q) ≈ d0+d2(p, p2)+d2(p1, r)+d1(r, q) ≥ d0+d1(p1, q)+
d2(p, p2) ≈ d0 + d1(q, p1) + d2(p2, p) ≈ d(p, q).

Case 3: p, q ∈ P1. Then d(p, q) ≈ d1(p, q).

Subcase 3a: r ∈ P1.

Then d(p, q) ≈ d1(p, q) ≤ d1(p, r) + d1(r, q) ≈ d(p, r) + d(r, q), since d1
satisfies axiom (d2).

Subcase 3b: r ∈ P2.

Then d(p, q) ≈ d1(p, q) ≤ m < d0 ≤ d(p, r) + d(r, q).

Case 4: p, q ∈ P2. Then d(p, q) ≈ d2(p, q).

Subcase 4a: r ∈ P2.

Then d(p, q) ≈ d2(p, q) ≤ d2(p, r) + d2(r, q) ≈ d(p, r) + d(r, q), since d2
satisfies axiom (d2).

Subcase 4b: r ∈ P1.

Then d(p, q) ≈ d2(p, q) ≤ m < d0 ≤ d(p, r) + d(r, q).

137

In [64] it was proved that condition (CompΨf) for T0 ⊆ T0 ∪ K implies Ψ-locality of the
extension if the clauses in K are flat and linear. The clauses in Km are flat, but are not
linear. In the proof of the fact that embeddability implies locality linearity is needed in
order to ensure that if we have a model B of T0 ∪ K[Ψ(G)] ∪ G, we can define a partial
model A of T0 ∪K∪G and argue that (by (CompΨf)) this model embeds into a total model
of T0 ∪ K ∪G.

We constructA as follows: Its universe(s) are the same as for B, and f(a1, . . . , an) is defined
in A if there exist constants c1, . . . , cn which interpret in A as a1, . . . , an and f(c1, . . . , cn)
occurs in Ψ(G). This definition is used to associate with every valuation in A in which all
terms in a clause C are defined a substitution σ such that Cσ ∈ K[Ψ(G)].

If the clause C is linear, the substitution can be defined without problems. If C contains a
variable in different terms, it might be difficult to define Σ because for different occurrences
of x we might find different suitable terms.

This problem does not occur here because of the fact that Ψm adds all necessary instances
that allow to define σ without problems. □

We can still obtain local theory extensions if we leave out some of the axioms of a metric.
Below we first consider extensions with a function d in which all the axioms of a metric
except for the triangle inequality hold. Afterwards we consider extensions with an unin-
terpreted function d and extensions with a function d satisfying only the positivity axiom
d1 or only the symmetry axiom d3.

Theorem 6.2. Let T0 be the disjoint two-sorted combination of the theory E of pure equality
(sort p) and the theory LI(R) of linear real arithmetic (sort num). Let T n

d be the extension
of T0 with a function d with arity a(d) = p, p → num satisfying the following set Kn of
axioms:

(d1) ∀x, y d(x, y) ≥ 0
(d3) ∀x, y d(x, y) ≈ d(y, x)
(d4) ∀x, y x ≈ y → d(x, y) ≈ 0
(d5) ∀x, y d(x, y) ≈ 0→ x ≈ y

Let Ψn be defined for every set T of ground terms by

Ψn(T) = T ∪ {d(t2, t1) | d(t1, t2) ∈ T}
∪ {d(a, a) | a is a constant of sort p occurring in T}.

Then T n
d is a Ψn-local extension of T0.

Proof: To prove locality we have to show that every partial model of T n
d = T0∪Kn which is

closed under Ψn can be extended to a total model. Let P = (P,R, dP) be a partial model
of T n

d = T0 ∪ Kn (where P is the support of sort p, R the support of sort num, and dP a
partial function from P × P to R) satisfying the conditions above. We construct a total
function d : P × P → R as follows:

d(p, q) =

⎧⎨⎩
dP (p, q) if dP (p, q) is defined
0 if dP (p, q) is not defined and p ≈ q
1 if dP (p, q) is not defined and p ̸≈ q

It is easy to check that d satisfies all the axioms in Kn. The considerations in the previous
proof can be used also in this case to show that embeddability implies locality in spite of
the non-linearity due to the choice of the closure operator. □

138

Theorem 6.3. Let T0 be the disjoint two-sorted combination of the theory E of pure equality
(sort p) and the theory LI(R) of linear real arithmetic (sort num). The following extensions
of T0 with a function d (sort p×p→num) are Ψ-local, with Ψ being the identity function.

(i) T u
d , the extension of T0 with an uninterpreted function d.

(ii) T p
d = T0 ∪ Kp, where Kp = {∀x, y d(x, y) ≥ 0}.

The extension T s
d = T0 ∪ Ks, where Ks = {∀x, y d(x, y) ≈ d(y, x)} is Ψs-local, where

Ψs(T) = T ∪ {d(a, b) | d(b, a) ∈ T}.

Proof: (i) and (ii) are local theory extensions according to Examples 2.21 and 2.23, re-
spectively. The locality proof for T s

d is similar to the one for T n
d . □

We present all the results together in the following theorem:

Theorem 6.4. Let T0 be the disjoint two-sorted combination of the theory E of pure equality
(sort p) and the theory LI(R) of linear real arithmetic (sort num). The following extensions
of T0 with a function d (sort p×p→num) are Ψ-local for a suitable closure operator Ψ:

(1) T m
d = T0 ∪ Km, where Km are the axioms of a metric, is Ψm-local, where

Ψm(T) = T ∪ {d(a, b) | a, b constants of sort p occurring in T}.

(2) T n
d = T0 ∪ Kn, where Kn contains all axioms of a metric except for the triangle

inequality, is Ψn-local, where

Ψn(T) = T∪{d(b, a) | d(a, b) ∈ T}∪{d(a, a) | a constant of sort p occurring in T}.

(3) T u
d , the extension of T0 with an uninterpreted function d, is Ψ-local, where Ψ(T) = T

(i.e. it is local).

(4) T p
d = T0 ∪Kp, where Kp = {∀x, y d(x, y) ≥ 0}, is Ψ-local, where Ψ(T) = T (i.e. it is

local).

(5) T s
d = T0 ∪ Ks, where Ks = {∀x, y d(x, y) = d(y, x)}, is Ψs-local, where

Ψs(T) = T ∪ {d(a, b) | d(b, a) ∈ T}.

6.2 Graph Classes Related to Planarity Conditions

In the following we present a type of graph classes which can be proved to be plane
drawings, i.e. they can be drawn in the plane such that none of their edges intersect. We
here assume that the graphs we consider are undirected and do not contain self-loops.
These properties can be described by the axioms K0:

K0 = { ∀x (¬E(x, x)), ∀x, y (E(x, y)→ E(y, x)), ∀x, y (E(x, y)→ V (x) ∧ V (y)) }

We consider the following three classes of graphs:

• The class P of plane drawings

• The class G of Gabriel graphs [20]

• The class R of relative neighborhood graphs [70]

We also look at classes G→ and R→ containing all the spanning subgraphs of graphs in G
and R, respectively.

139

Plane Drawings

A plane drawing is a graph which can be drawn in the plane in such a way that no edges
of the graph intersect. Guaranteeing that the graph is intersection-free means that if there
is an edge between two vertices w and s, and there are two vertices u and v such that the
line segments uv and ws intersect, then an edge between u and v cannot exist. This can
be described by a suitable formula.

The class P of plane drawings is the set of graphs satisfying the following axiom:

(P) ∀u, v, w, s : E(w, s) ∧ πP(u, v, w, s)→ ¬E(u, v)

Here, πP(u, v, w, s) is a formula which is true if and only if u, v, w and s are all vertices,
w and s are in different half-planes defined by the line uv passing through u and v, and u
and v are in different half-planes defined by the line ws passing through w and s.2 If we
express the fact that a point p lies on the segment xy by d(x, p) + d(p, y) ≈ d(x, y), then
we can express πP(u, v, w, s) (if d is a metric) by the following formula:

πP(u, v, w, s) := V (u) ∧ V (v) ∧ V (s) ∧ V (w) ∧ u ̸≈ v ∧ w ̸≈ s ∧
∃m(d(u,m) + d(m, v) ≈ d(u, v) ∧ d(w,m) + d(m, s) ≈ d(w, s))

Figure 6.1: Condition for a plane drawing.

Gabriel Graphs

A Gabriel graph is a graph in which an edge between two vertices u and v exists if and
only if there is no other vertex inside the closed disk with diameter uv. We define the class
of Gabriel graphs as the (infinite) set of all possible Gabriel graphs.

The class G of Gabriel graphs is axiomatized by K0 together with

(G) ∀u, v E(u, v)↔ πG(u, v)

where πG(u, v) expresses the fact that u and v are vertices and every vertex different from
u and v lies outside of the minimal circle passing through u and v. If m(u, v) is the middle
of the segment uv, we can express this by

πG(u, v) := V (u) ∧ V (v) ∧ u ̸≈ v ∧
∀w
(︁
w ̸≈ u ∧ w ̸≈ v ∧ V (w)→ d(m(u, v), w) > d(m(u, v), u)

)︁
.

2For the existence of these lines it is necessary that u ̸= v and w ̸= s. If, for instance, the vertex w is
located on the line through u and v, but not equal to u or v, it is located in both half-planes; hence, in
this case the segments uv and ws intersect.

140

Figure 6.2: Inclusion condition for an
edge in a Gabriel graph.

Figure 6.3: Exclusion condition for an
edge in a Gabriel graph.

We can define a superclass G→ by keeping the “→” implication in (G) and leaving out
the “←” implication. The superclass G→ contains all the spanning subgraphs of a Gabriel
graph.

Relative Neighborhood Graphs

A relative neighborhood graph is a graph in which an edge between two vertices u and
v exists if and only if there is no other vertex inside the intersection of the open disks
around u and v with radius |uv|. We define the class of relative neighborhood graphs as
the (infinite) set of all possible relative neighborhood graphs.

The class R of relative neighborhood graphs is axiomatized by K0 together with

(R) ∀u, v E(u, v)↔ πR(u, v)

where πR expresses the fact that u and v are vertices which are different from each other
and all other vertices are farther away from u than v and farther away from v than u.
Geometrically this means that there is no vertex w inside of the intersecting area of the
open disk with center u and radius |uv| and the open disk with center v and radius |uv|,
which can be expressed by

πR(u, v) := V (u) ∧ V (v) ∧ u ̸≈ v ∧ ∀w (V (w)→ d(u,w) ≥ d(u, v) ∨ d(v, w) ≥ d(u, v)).

Figure 6.4: Inclusion condition for an edge
in a relative neighborhood graph.

Figure 6.5: Exclusion condition for an edge
in a relative neighborhood graph.

We can define a superclass R→ by only keeping the “→” implication in (R) and leaving out
the “←” implication. The superclass R→ contains all the spanning subgraphs of a relative
neighborhood graph.

141

6.2.1 Proof Tasks

We are interested in proving certain properties of graphs and relationships between the
graph classes described above. We can first observe that a Gabriel graph or a relative
neighborhood graph can never have any intersecting edges, i.e. they are plane drawings.
The overall goal will be to prove automatically that all graphs in G and R are plane
drawings. This can be done by showing that the respective class of graphs is contained in
the class of plane drawings.

As an intermediate step we will also analyze the relationship between the classes of Gabriel
graphs and relative neighborhood graphs. For this we look first at Figure 6.6.

Figure 6.6: Relation between the graph classes G and R.

We can observe the following:

• If some vertex lies inside the smallest circle passing through vertices u and v (green
circle), then this vertex also lies inside the intersecting area of the open disk around
u with radius uv and the open disk around v with radius uv (defined by the red
circles). Therefore, if an edge is not allowed to exist in a Gabriel graph, then it also
does not exist in the corresponding relative neighborhood graph.

• If all vertices are located outside of the intersecting area of the open disks defined by
the red circles, then they are also located outside of the green circle. Therefore, if an
edge exists in a relative neighborhood graph, then it also exists in the corresponding
Gabriel graph.

• If a vertex w is located inside the intersecting area of the the open disks defined by
the red circles, but outside of the green circle (as shown in Figure 6.6), then the edge
between u and v exists in the Gabriel graph, but not in the corresponding relative
neighborhood graph.

We can conclude that, for a given set of vertices, the relative neighborhood graph obtained
from the set of vertices may be missing some of the edges of the corresponding Gabriel graph
that is obtained from the same set of vertices. This means that a relative neighborhood
graph will always be a spanning subgraph of the corresponding Gabriel graph. This can also
be proved automatically by showing that the class of all relative neighborhood graphs (R)
is contained in the class of spanning subgraphs of Gabriel graphs (G→). Since R ⊆ R→,
it is sufficient to prove that R→ is contained in G→. It can also be shown that this class
inclusion does not hold in the opposite direction.

142

In what follows we will prove the following class inclusions in the order given here:

(1) R→ ⊆ G→

(2) G→ ̸⊆ R→

(3) G ⊆ P

(4) R ⊆ P

For the proofs we will first interpret the distance function d to be the Euclidean distance
and prove (1)-(4). In some cases we will also analyze the inclusion for a general metric d.
We will see that for a general metric the results may differ, as (1) can for instance not be
proved in this case. If class inclusion cannot be proved, we will compute counterexamples.

6.2.2 Checking Graph Class Inclusion for Simple Graph Classes

In the following we explain our method for checking inclusion of graph classes. Let AxC1

and AxC2 be axiomatizations for graph classes C1 and C2 using predicates πC1 and πC2 ,
respectively. We know that C1 ⊆ C2 if and only if AxC1 ∧¬AxC2 is unsatisfiable. To check
satisfiability we use a two-layered approach:

a) Use symbol elimination to eliminate the predicate E in order to obtain conditions
only containing the predicates πC1 and πC2 .

b) Use hierarchical reasoning to reduce the problem to the base theory and check sat-
isfiability of the reduced problem.

Note that for step a) we consider πC1 and πC2 to be abstract predicates. For step b) we
then use the geometric interpretation of these predicates.

Symbol Elimination

We present some simple examples in which symbol elimination allows us to determine con-
straints on abstract predicates used in the description of the classes under which inclusions
hold. We consider the type of axioms occuring in the classes P, G and R using a binary
predicate E for the edges and (abstract) predicates representing additional conditions.

Example 6.5. Consider the classes C1 and C2 described by axioms of the following form:

AxCi : ∀u, v E(u, v)↔ πi(u, v) i = 1, 2

We know that C1 ⊆ C2 if and only if AxC1 ∧ ¬AxC2 is unsatisfiable. We have:

AxC1 ∧ ¬AxC2 ≡ ∀u, v (E(u, v)↔ π1(u, v)) ∧ ∃a, b (E(a, b) ∧ ¬π2(a, b)) ∨
∀u, v (E(u, v)↔ π1(u, v)) ∧ ∃a, b (¬E(a, b) ∧ π2(a, b))

Consider the second-order formula ∃E (AxC1 ∧ ¬AxC2). This formula is equivalent to the
formula ∃a, b ((π1(a, b) ∧ ¬π2(a, b)) ∨ (¬π1(a, b) ∧ π2(a, b))) which does not contain the
existentially quantified predicate E:

∃E (∀u, v (E(u, v)↔ π1(u, v)) ∧ ∃a, b (E(a, b) ∧ ¬π2(a, b))) ∨
(∀u, v (E(u, v)↔ π1(u, v)) ∧ ∃a, b (¬E(a, b) ∧ π2(a, b)))

≡ ∃a, b ((π1(a, b) ∧ ¬π2(a, b)) ∨ (¬π1(a, b) ∧ π2(a, b))).

143

Proof: For better readability, in what follows we express the predicates E, π1 and π2 as
binary functions with codomain {0, 1} (where value 0 means the predicate is false and
value 1 means it is true). We prove by hand that the equivalence above holds, i.e. we show
that for any structure A over the signature Π = ({π1, π2}, ∅) we have A |= F if and only
if A |= G, where:

F = ∃E (∀u, v (E(u, v) ≈ 1↔ π1(u, v) ≈ 1) ∧ ∃a, b (E(a, b) ≈ 1 ∧ π2(a, b) ≈ 0)) ∨
(∀u, v (E(u, v) ≈ 1↔ π1(u, v) ≈ 1) ∧ ∃a, b (E(a, b) ≈ 0 ∧ π2(a, b) ≈ 1))

G = ∃a, b ((π1(a, b) ≈ 1 ∧ π2(a, b) ≈ 0) ∨ (π1(a, b) ≈ 0 ∧ π2(a, b) ≈ 1))

1. (“⇒”): We show that A |= F implies A |= G.

Assume A |= F . Then there exists a structure B with the same universe and the same
interpretations for π1 and π2 as A and, in addition, an interpretation EB for E such that

(1) B |= ∀u, v (E(u, v) ≈ 1↔ π1(u, v) ≈ 1) and

(2) B |= ∃a, b ((E(a, b) ≈ 1 ∧ π2(a, b) ≈ 0) ∨ (E(a, b) ≈ 0 ∧ π2(a, b) ≈ 1)).

Then, by (1), EB = π1B. For (2) we make a case distinction.

Case 1: B |= ∃a, b (E(a, b) ≈ 1 ∧ π2(a, b) ≈ 0).

Then, since EB = π1B, we have B |= ∃a, b (π1(a, b) ≈ 1 ∧ π2(a, b) ≈ 0). Since all the
predicate symbols except for E are interpreted the same in A and B, we then also
have A |= ∃a, b (π1(a, b) ≈ 1 ∧ π2(a, b) ≈ 0).

Case 2: B |= ∃a, b (E(a, b) ≈ 0 ∧ π2(a, b) ≈ 1).

Then, since EB = π1B, we have B |= ∃a, b (π1(a, b) ≈ 0 ∧ π2(a, b) ≈ 1). Since all the
predicate symbols except for E are interpreted the same in A and B, we then also
have A |= ∃a, b (π1(a, b) ≈ 0 ∧ π2(a, b) ≈ 1).

Thus, A |= G, so A |= F implies A |= G.

2. (“⇐”): We show that A |= G implies A |= F .

Assume A |= G. We define a new structure B which has the same universe and the same
interpretations for π1 and π2 as A and, in addition, an interpretation EB with EB = π1A.
We make a case distinction:

Case 1: A |= ∃a, b (π1(a, b) ≈ 1 ∧ π2(a, b) ≈ 0).

Then the following hold:

(1) B |= ∀u, v (E(u, v) ≈ 1↔ π1(u, v) ≈ 1) and

(2) B |= ∃a, b (E(a, b) ≈ 1 ∧ π2(a, b) ≈ 0).

Then, since A is interpreted the same as B on all predicate symbols except for E and
there exists an interpretation EB with (1) and (2), we have

A |= ∃E (∀u, v (E(u, v) ≈ 1↔ π1(u, v) ≈ 1) ∧ ∃a, b (E(a, b) ≈ 1 ∧ π2(a, b) ≈ 0)).

Case 2: A |= ∃a, b (π1(a, b) ≈ 0 ∧ π2(a, b) ≈ 1).

Then the following hold:

(1) B |= ∀u, v (E(u, v) ≈ 1↔ π1(u, v) ≈ 1) and

(2) B |= ∃a, b (E(a, b) ≈ 0 ∧ π2(a, b) ≈ 1).

144

Then, since A is interpreted the same as B on all predicate symbols except for E and
there exists an interpretation EB with (1) and (2), we have

A |= ∃E (∀u, v (E(u, v) ≈ 1↔ π1(u, v) ≈ 1) ∧ ∃a, b (E(a, b) ≈ 0 ∧ π2(a, b) ≈ 1)).

Thus, A |= F , so A |= G implies A |= F . □

We have shown that C1 ⊆ C2 if and only if (π1(a, b)∧¬π2(a, b))∨ (¬π1(a, b)∧ π2(a, b)) is
unsatisfiable w.r.t. T , where a and b are Skolem constants introduced for the existentially
quantified variables of the same name.

We can obtain this result also using SEH-PILoT. Since SEH-PILoT cannot eliminate pre-
dicate symbols, we interpret the predicates E, π1 and π2 as binary functions with codomain
{0, 1} (where value 0 means the predicate is false and value 1 means it is true), then we
can treat π1 and π2 as parameters and use a variant of Algorithm 2 to eliminate E in the
formula

∃E (∀u, v (E(u, v) ≈ 1↔ π1(u, v) ≈ 1) ∧ ∃a, b (E(a, b) ≈ 1 ∧ π2(a, b) ≈ 0)) ∨
(∀u, v (E(u, v) ≈ 1↔ π1(u, v) ≈ 1) ∧ ∃a, b (E(a, b) ≈ 0 ∧ π2(a, b) ≈ 1)).

We say that we use a “variant” of the algorithm, because we do not need to perform
Step 5 of the algorithm, in which the result of the quantifier elimination is negated.
Therefore, we use SEH-PILoT with specification type HPILOT and specification theory
REAL_CLOSED_FIELDS in mode SYMBOL_ELIMINATION.

We obtain the formula (π1(a, b) ≈ 1 ∧ π2(a, b) ≈ 0) ∨ (π1(a, b) ≈ 0 ∧ π2(a, b) ≈ 1). ■

Remark 6.6. Eliminating the existentially quantified predicate symbol E can be done using
Algorithm 2 for symbol elimination in this simple case. However, we do not claim that
this works in general. As a more general approach one can also use a version of ordered
resolution (which is implemented in the system SCAN [47]) for second-order quantifier
elimination (cf. [84]).

Example 6.7. Let the classes C→
1 and C→

2 be described by axioms of the following form:

AxC→
i

: ∀u, v E(u, v)→ πi(u, v) i = 1, 2

C→
1 ⊆ C→

2 if and only if AxC→
1
∧ ¬AxC→

2
is unsatisfiable w.r.t. T . We have:

AxC→
1
∧ ¬AxC→

2
≡ ∀u, v (E(u, v)→ π1(u, v)) ∧ ∃a, b (E(a, b) ∧ ¬π2(a, b))

Consider the second-order formula ∃E (AxC→
1
∧ ¬AxC→

2
). This formula is equivalent to

the formula ∃a, b (π1(a, b) ∧ ¬π2(a, b)) which does not contain the existentially quantified
predicate E:

∃E (∀u, v (E(u, v)→ π1(u, v)) ∧ ∃a, b (E(a, b) ∧ ¬π2(a, b))
≡ ∃a, b (π1(a, b) ∧ ¬π2(a, b))

Proof: For better readability, in what follows we express the predicates E, π1 and π2 as
binary functions with codomain {0, 1} (where value 0 means the predicate is false and
value 1 means it is true). We prove by hand that the equivalence above holds, i.e. we show
that for any structure A over the signature Π = ({π1, π2}, ∅) we have A |= F if and only
if A |= G, where:

F = ∃E (∀u, v (E(u, v) ≈ 1→ π1(u, v) ≈ 1) ∧ ∃a, b (E(a, b) ≈ 1 ∧ π2(a, b) ≈ 0))
G = ∃a, b (π1(a, b) ≈ 1 ∧ π2(a, b) ≈ 0)

145

1. (“⇒”): We show that A |= F implies A |= G.

Assume A |= F . Then there exists a structure B with the same universe and the same
interpretations for π1 and π2 as A and, in addition, an interpretation EB for E such that

(1) B |= ∀u, v (E(u, v) ≈ 1→ π1(u, v) ≈ 1) and

(2) B |= ∃a, b (E(a, b) ≈ 1 ∧ π2(a, b) ≈ 0).

By (1) we know that whenever E(a, b) ≈ 1 in EB, then π1(a, b) ≈ 1 in π1B. It then follows
from (2) that B |= ∃a, b (π1(a, b) ≈ 1 ∧ π2(a, b) ≈ 0).

Since all the predicate symbols except for E are interpreted the same in A and B, we then
also have A |= ∃a, b (π1(a, b) ≈ 1 ∧ π2(a, b) ≈ 0).

Thus, A |= G, so A |= F implies A |= G.

2. (“⇐”): We show that A |= G implies A |= F .

Assume A |= G. We define a new structure B which has the same universe and the same
interpretations for π1 and π2 as A and, in addition, an interpretation EB with EB = π1A.
Then the following hold:

(1) B |= ∀u, v (E(u, v) ≈ 1→ π1(u, v) ≈ 1) and

(2) B |= ∃a, b (E(a, b) ≈ 1 ∧ π2(a, b) ≈ 0).

Then, since A is interpreted the same as B on all predicate symbols except for E and there
exists an interpretation EB with (1) and (2), we have

A |= ∃E (∀u, v (E(u, v) ≈ 1→ π1(u, v) ≈ 1) ∧ ∃a, b (E(a, b) ≈ 1 ∧ π2(a, b) ≈ 0)).

Thus, A |= F , so A |= G implies A |= F . □

We have shown that C→
1 ⊆ C→

2 if and only if π1(a, b) ∧ ¬π2(a, b) is unsatisfiable w.r.t. T ,
where a and b are Skolem constants introduced for the existentially quantified variables of
the same name.

We can obtain this result also using SEH-PILoT. We consider all predicates to be functions
with codomain {0, 1} and eliminate E in the formula

∃E (∀u, v (E(u, v) ≈ 1→ π1(u, v) ≈ 1) ∧ ∃a, b (E(a, b) ≈ 1 ∧ π2(a, b) ≈ 0)).

For this we use again SEH-PILoT with specification type HPILOT and specification theory
REAL_CLOSED_FIELDS in mode SYMBOL_ELIMINATION.

We obtain the formula π1(a, b) ≈ 1 ∧ π2(a, b) ≈ 0 . ■

Example 6.8. Let C be a class of graphs described by axiom AxC and P the class of plane
drawings described by axiom AxP, where:

AxC : ∀u, v E(u, v)↔ πC(u, v)
AxP : ∀u, v, w, x E(w, x) ∧ πP(u, v, w, x)→ ¬E(u, v)

C ⊆ P if and only if AxC ∧ ¬AxP is unsatisfiable w.r.t. T . We have:

AxC ∧ ¬AxP ≡ ∀u, v (E(u, v)↔ πC(u, v)) ∧ ∃a, b, c, d (E(c, d) ∧ πP(a, b, c, d) ∧ E(a, b))

146

Consider the second-order formula ∃E (AxC ∧ ¬AxP). It is equivalent to the formula
∃a, b, c, d (πP(a, b, c, d)∧πC(c, d)∧πC(a, b)) which does not contain the existentially quan-
tified predicate E:

∃E (∀u, v (E(u, v)↔ πC(u, v)) ∧ ∃a, b, c, d (E(c, d) ∧ πP(a, b, c, d) ∧ E(a, b)))
≡ ∃a, b, c, d (πP(a, b, c, d) ∧ πC(c, d) ∧ πC(a, b))

Proof: For better readability, in what follows we express the predicates E, πC and πP
as binary functions with codomain {0, 1} (where value 0 means the predicate is false and
value 1 means it is true). We prove by hand that the equivalence above holds, i.e. we show
that for any structure A over the signature Π = ({πC, πP}, ∅) we have A |= F if and only
if A |= G, where:

F = ∃E (∀u, v (E(u, v) ≈ 1↔ πC(u, v) ≈ 1) ∧
∃a, b, c, d (E(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ E(a, b) ≈ 1))

G = ∃a, b, c, d (πP(a, b, c, d) ≈ 1 ∧ πC(c, d) ≈ 1 ∧ πC(a, b) ≈ 1)

1. (“⇒”): We show that A |= F implies A |= G.

Assume A |= F . Then there exists a structure B with the same universe and the same
interpretations for πC and πP as A and, in addition, an interpretation EB for E such that

(1) B |= ∀u, v (E(u, v) ≈ 1↔ πC(u, v) ≈ 1) and

(2) B |= ∃a, b, c, d (E(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ E(a, b) ≈ 1).

As a consequence of (1) we then have EB = πCB. It then follows from (2) that B |=
∃a, b, c, d (πC(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ πC(a, b) ≈ 1).

Since all the predicate symbols except for E are interpreted the same in A and B, we then
also have A |= ∃a, b, c, d (πC(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ πC(a, b) ≈ 1).

Thus, A |= G, so A |= F implies A |= G.

2. (“⇐”): We show that A |= G implies A |= F .

Assume A |= G. We define a new structure B which has the same universe and the same
interpretations for πC and πP as A and, in addition, an interpretation EB with EB = πCA.
Then the following hold:

(1) B |= ∀u, v (E(u, v) ≈ 1↔ πC(u, v) ≈ 1) and

(2) B |= ∃a, b, c, d (E(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ E(a, b) ≈ 1).

Then, since A is interpreted the same as B on all predicate symbols except for E and there
exists an interpretation EB with (1) and (2), we have

A |= ∃E (∀u, v (E(u, v) ≈ 1↔ πC(u, v) ≈ 1) ∧
∃a, b, c, d (E(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ E(a, b) ≈ 1)).

Thus, A |= F , so A |= G implies A |= F . □

We have shown that C ⊆ P if and only if πP(a, b, c, d)∧ πC(c, d)∧ πC(a, b) is unsatisfiable
w.r.t. T , where a, b, c and d are Skolem constants introduced for the existentially quantified
variables of the same name.

147

We can obtain this result also using SEH-PILoT. We consider all predicates to be functions
with codomain {0, 1} and eliminate E in the formula

∃E (∀u, v (E(u, v) ≈ 1↔ πC(u, v) ≈ 1) ∧
∃a, b, c, d (E(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ E(a, b) ≈ 1)).

For this we use again SEH-PILoT with specification type HPILOT and specification theory
REAL_CLOSED_FIELDS in mode SYMBOL_ELIMINATION.

We obtain the formula πP(a, b, c, d) ≈ 1 ∧ πC(c, d) ≈ 1 ∧ πC(a, b) ≈ 1. ■

Example 6.9. Let C→ be a class of graphs described by axiom AxC→ and P the class of
plane drawings described by axiom AxP, where:

AxC→ : ∀u, v E(u, v)→ πC(u, v)
AxP : ∀u, v, w, x E(w, x) ∧ πP(u, v, w, x)→ ¬E(u, v)

C→ ⊆ P if and only if AxC→ ∧ ¬AxP is unsatisfiable w.r.t. T . We have:

AxC→ ∧ ¬AxP ≡ ∀u, v (E(u, v)→ πC(u, v)) ∧
∃a, b, c, d (E(c, d) ∧ πP(a, b, c, d) ∧ E(a, b))

Consider the second-order formula ∃E (AxC→ ∧ ¬AxP). This formula is equivalent to the
formula ∃a, b, c, d (πP(a, b, c, d) ≈ 1 ∧ πC(c, d) ≈ 1 ∧ πC(a, b) ≈ 1) which does not contain
the existentially quantified predicate E:

∃E (∀u, v (E(u, v) ≈ 1→ πC(u, v) ≈ 1) ∧
∃a, b, c, d (E(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ E(a, b) ≈ 1))

≡ ∃a, b, c, d (πP(a, b, c, d) ≈ 1 ∧ πC(c, d) ≈ 1 ∧ πC(a, b) ≈ 1)

Proof: For better readability, in what follows we express the predicates E, πC and πP
as binary functions with codomain {0, 1} (where value 0 means the predicate is false and
value 1 means it is true). We prove by hand that the equivalence above holds, i.e. we show
that for any structure A over the signature Π = ({πC, πP}, ∅) we have A |= F if and only
if A |= G, where:

F = ∃E (∀u, v (E(u, v) ≈ 1→ πC(u, v) ≈ 1) ∧
∃a, b, c, d (E(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ E(a, b) ≈ 1))

G = ∃a, b, c, d (πP(a, b, c, d) ≈ 1 ∧ πC(c, d) ≈ 1 ∧ πC(a, b) ≈ 1)

1. (“⇒”): We show that A |= F implies A |= G.

Assume A |= F . Then there exists a structure B with the same universe and the same
interpretations for πC and πP as A and, in addition, an interpretation EB for E such that

(1) B |= ∀u, v (E(u, v) ≈ 1→ πC(u, v) ≈ 1) and

(2) B |= ∃a, b, c, d (E(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ E(a, b) ≈ 1).

By (1) we know that whenever E(a, b) ≈ 1 in EB, then πC(a, b) ≈ 1 in πCB. It then follows
from (2) that B |= ∃a, b, c, d (πC(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ πC(a, b) ≈ 1).

Since all the predicate symbols except for E are interpreted the same in A and B, we then
also have A |= ∃a, b, c, d (πC(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ πC(a, b) ≈ 1).

Thus, A |= G, so A |= F implies A |= G.

148

2. (“⇐”): We show that A |= G implies A |= F .

Assume A |= G. We define a new structure B which has the same universe and the same
interpretations for πC and πP as A and, in addition, an interpretation EB with EB = πCA.
Then the following hold:

(1) B |= ∀u, v (E(u, v) ≈ 1→ πC(u, v) ≈ 1) and

(2) B |= ∃a, b, c, d (E(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ E(a, b) ≈ 1).

Then, since A is interpreted the same as B on all predicate symbols except for E and there
exists an interpretation EB with (1) and (2), we have

A |= ∃E (∀u, v (E(u, v) ≈ 1→ πC(u, v) ≈ 1) ∧
∃a, b, c, d (E(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ E(a, b) ≈ 1)).

Thus, A |= F , so A |= G implies A |= F . □

We have shown that C→ ⊆ P if and only if πP(a, b, c, d)∧πC(c, d)∧πC(a, b) is unsatisfiable
w.r.t. T , where a, b, c and d are Skolem constants introduced for the existentially quantified
variables of the same name. This is the same condition for graph inclusion that we obtained
in Example 6.8, so it follows that C→ ⊆ P if and only if C ⊆ P.

We can obtain this result also using SEH-PILoT. We consider all predicates to be functions
with codomain {0, 1} and eliminate E in the formula

∃E (∀u, v (E(u, v) ≈ 1→ πC(u, v) ≈ 1) ∧
∃a, b, c, d (E(c, d) ≈ 1 ∧ πP(a, b, c, d) ≈ 1 ∧ E(a, b) ≈ 1)).

For this we use again SEH-PILoT with specification type HPILOT and specification theory
REAL_CLOSED_FIELDS in mode SYMBOL_ELIMINATION.

We obtain the formula πP(a, b, c, d) ≈ 1 ∧ πC(c, d) ≈ 1 ∧ πC(a, b) ≈ 1. ■

For better reference, we show an overview of the conditions obtained for the different types
of class inclusions in Figure 6.7.

Graph class axiomatizations:

AxCi : ∀u, v E(u, v)↔ πi(u, v) i = 1, 2
AxC→

i
: ∀u, v E(u, v)→ πi(u, v) i = 1, 2

AxP : ∀u, v, w, s E(w, s) ∧ πP(u, v, w, s)→ ¬E(u, v)

Conditions for graph class inclusion:

C1 ⊆ C2 iff (π1(a, b) ∧ ¬π2(a, b)) ∨ (¬π1(a, b) ∧ π2(a, b)) is unsatisfiable
C→

1 ⊆ C→
2 iff π1(a, b) ∧ ¬π2(a, b) is unsatisfiable

C1 ⊆ P iff πP(a, b, c, d) ∧ π1(c, d) ∧ π1(a, b) is unsatisfiable
C→

1 ⊆ P iff C1 ⊆ P

Figure 6.7: Overview of conditions for graph class inclusion.

149

Hierarchical Reasoning

Having obtained conditions for class inclusion for certain graph classes we can now in a
second step check the concrete proof tasks stated in Section 6.2.1. We start with proof
tasks (1) and (2).

Example 6.10. We analyze the relation between the classes G→ and R→. According to
Figure 6.7, G→ ⊆ R→ if and only if πG(u, v) ∧ ¬πR(u, v) is unsatisfiable w.r.t. T , and
R→ ⊆ G→ if and only if πR(u, v)∧¬πG(u, v) is unsatisfiable w.r.t. T . The predicates πG
and πR are defined (for an arbitrary distance function d) as follows:

πG(u, v) := V (u) ∧ V (v) ∧ u ̸≈ v ∧
∀w
(︁
w ̸≈ u ∧ w ̸≈ v ∧ V (w)→ d(m(u, v), w) > d(m(u, v), u)

)︁
πR(u, v) := V (u) ∧ V (v) ∧ u ̸≈ v ∧ ∀w (V (w)→ d(u,w) ≥ d(u, v) ∨ d(w, v) ≥ d(u, v))

Here, m(u, v) is the middle point of the segment uv. If u and v are considered to be
constants, then both the extension of T with a function V satisfying condition πG(u, v)
and the extension of T with a function V satisfying condition πR(u, v) can be proved to
be local (embeddability, hence also locality, holds, as it is easy to construct a total model
from a partial model by setting all the terms V(x) which are undefined to false). Therefore,
we can use H-PILoT for the proof tasks.

We first consider the case where d is the Euclidean distance. Then we analyze this problem
for the more general case where d is an arbitrary metric.

Case 1: d is the Euclidean distance.

We check both class inclusions.

(i) To prove that R→ ⊆ G→ holds, it is sufficient to show that πR(u, v) ∧ ¬πG(u, v) is
unsatisfiable. We have the following formula:

V (u) ∧ V (v) ∧ u ̸≈ v ∧ ∀s(V (s)→ d(u, s) ≥ d(u, v) ∨ d(s, v) ≥ d(u, v)) ∧
w ̸≈ u ∧ w ̸≈ v ∧ V (w) ∧ d(m,w) ≤ d(m,u)

The formula obtained after Skolemization and simplification from ¬πG(u, v) is a ground
formula. Due to the locality property described above, for the universal clause in πR(u, v)
it is sufficient to analyze all instances where s is replaced with u, v, w and m. We use
functions x(p) and y(p) to describe the coordinates of a point p. The distance d(p, q)
between two points p and q is then defined as follows:

d(p, q) ≈
√︁
(x(q)− x(p))2 + (y(q)− y(p))2

Since provers may not be able to handle square root expressions, we can use a trick to
avoid them. We only have atoms of the form d(u, v)▷d(x,w) with ▷ ∈ {≈, ̸≈, <,>,≤,≥}
(we do not have sums of distances for instance), so we can use the squares of the distances,
as d(u, v)▷ d(x,w) if and only if d(u, v)2 ▷ d(x,w)2 for ▷ ∈ {≈, ̸≈, <,>,≤,≥}.

The coordinates of the middle m of uv can be computed as usual:

x(m) ≈ x(u) + x(v)

2
y(m) ≈ y(u) + y(v)

2

Stating that two points p and q are distinct can be done using the following condition:

x(p) ̸≈ x(q) ∨ y(p) ̸≈ y(q)

150

We check the satisfiability of the obtained formula using H-PILoT with Z3 as an external
prover. We derive unsatisfiability, which proves that R→ ⊆ G→.

(ii) For proving that G→ ̸⊆ R→ we show that πG(u, v)∧¬πR(u, v) is satisfiable. H-PILoT
with external prover Z3 gives the answer “satisfiable” and produces the following model:

u ≈ (1, 0) w ≈ (−1,−5)
v ≈ (7,−8) m ≈ (4,−4)

As can be seen in Figure 6.8, geometrically this describes a situation in which a vertex
w lies outside of the smallest circle passing through u and v (green circle), but inside the
intersecting area of the open disk with center u and radius |uv| and the open disk with
center v and radius |uv| (red circles). This is the counterexample shown in Section 6.2.1.

Figure 6.8: Counterexample for G→ ⊆ R→ (Euclidean dis-
tance).

Case 2: d is an arbitrary metric.

We again check for both directions of inclusion whether the corresponding formula holds.
For d we have the metric axioms, proved to be Ψ-local in Section 6.1.

For the direction πR(u, v) → πG(u, v) H-PILoT with external prover Z3 answers “satis-
fiable” and returns the following model:

d(u, v) ≈ 6 d(u,m) ≈ 3

d(v,m) ≈ 3 d(u,w) ≈ 6

d(v, w) ≈ 5 d(w,m) ≈ 3

Looking at Figure 6.9 it can be seen that this describes a situation which is not possible in
Euclidean space: d(u,w) ≈ 6 means that w lies on the blue circle and d(v, w) ≈ 5 means
that w lies on the red circle, but then d(w,m) ≈ 3 is not possible, since this would mean
that w lies in addition on the green circle. However, in an arbitrary metric space this is a
valid counterexample. Thus, the inclusion R→ ⊆ G→ holds in Euclidean space, but not
in arbitrary metric spaces.

151

For the direction πG(u, v) → πR(u, v) H-PILoT also returns the answer “satisfiable” and
the following model:

d(u, v) ≈ 6 d(u,m) ≈ 3

d(v,m) ≈ 3 d(u,w) ≈ 1

d(v, w) ≈ 5 d(w,m) ≈ 4

This model again describes a situation which cannot occur in Euclidean space, as can be
seen in Figure 6.10: d(u, v) ≈ 6 together with d(u,w) ≈ 1 and d(v, w) ≈ 5 implies that w
lies on the line segment uv, but then it cannot be that d(w,m) ≈ 4.

Figure 6.9: Counterexample for R→ ⊆ G→

(arbitrary metric).
Figure 6.10: Counterexample for G→ ⊆ R→

(arbitrary metric).

We proved that if we are in Euclidean space, the class R→ is contained in G→. Since
R→ is a superclass of R, it follows that R ⊆ G→, i.e. every relative neighborhood graph
is a spanning subgraph of a Gabriel graph. In an arbitrary metric space the inclusion
R→ ⊆ G→ does not hold. It was also shown that the converse direction of inclusion holds
neither in Euclidean space nor in arbitrary metric spaces. ■

Example 6.11. We want to show that Gabriel graphs and relative neighborhood graphs
are always plane drawings, i.e. that the inclusions G ⊆ P and R ⊆ P hold. For this we
first prove that G→ ⊆ P.

According to Figure 6.7, G→ ⊆ P holds if and only if πP(u, v, w, s) ∧ πG(w, s) ∧ πG(u, v)
is unsatisfiable. We first check this using the encoding of d as the Euclidean metric.

Case 1: d is the Euclidean distance.

We can express that line segments uv and ws intersect by stating that there is an inter-
section point p such that

• u, v, p are collinear and w, s, p are collinear,

• p lies on the line segment uv, i.e. d(u, p) ≤ d(u, v) and d(v, p) ≤ d(u, v),

• p lies on the line segment ws, i.e. d(w, p) ≤ d(w, s) and d(s, p) ≤ d(w, s).

152

We assume that u, v, w and s are distinct vertices, because if any of them are equal we do
not have a proper intersection. πG can be expressed using the midpoints m1 and m2 of
the segments uv and ws, respectively.

We use H-PILoT for checking satisfiability of the formula. The prover Z3 (and therefore
also H-PILoT) does not terminate after 3 minutes. Next we try the encoding of d as an
arbitrary metric.

Case 2: d is an arbitrary metric.

In this case we can express intersection in a simpler way, by stating that there is an
intersection point p such that the following hold:

d(u, p) + d(p, v) ≈ d(u, v)

d(w, p) + d(p, s) ≈ d(w, s)

Note that this simpler formalization cannot be used for the Euclidean distance, because
there we work with the squares of the distances, for which addition of distances is not the
same, i.e. d(u, p) + d(p, v) ≈ d(u, v) does not imply d(u, p)2 + d(p, v)2 ≈ d(u, v)2.

We use H-PILoT to check satisfiability. We obtain “satisfiable” as an answer, so we let
H-PILoT generate a model. In this model we have

d(w,m2) ≈ 231,

d(w, p) ≈ 101,

d(m2, p) ≈ 205,

where m2 is the midpoint of w and s. Since w,m2 and p are supposed to be collinear, this
situation is not possible in Euclidean space.

We can conclude that the class inclusion does not hold in general for arbitrary metrics.
However, we can impose the following additional assumptions to rule out the obtained
counterexample:

A1) d(u,m1) ≈ d(u, p) + d(p,m1) or d(v,m1) ≈ d(v, p) + d(p,m1)

A2) d(w,m2) ≈ d(w, p) + d(p,m2) or d(s,m2) ≈ d(s, p) + d(p,m2)

With these additional assumptions we check satisfiability using H-PILoT again. This time
we get the answer “unsatisfiable”.

We have therefore shown that G→ is included in P under the additional assumptions A1
and A2. In Euclidean space A1 and A2 are direct consequences of the following conditions:

(1) d(u, p) + d(p, v) ≈ d(u, v)

(2) d(w, p) + d(p, s) ≈ d(w, s)

(3) 2 · d(u,m1) ≈ d(u, v)

(4) 2 · d(v,m1) ≈ d(u, v)

(5) 2 · d(w,m2) ≈ d(w, s)

(6) 2 · d(s,m2) ≈ d(w, s)

153

We can therefore conclude that in Euclidean space G→ ⊆ P holds. We can also conclude
that in every metric space in which (1)− (6) imply A1 and A2 the class inclusion holds.

Since we know by Example 6.10 that R→ ⊆ G→ w.r.t. the Euclidean metric, we can
conclude that also R→ ⊆ P w.r.t. the Euclidean metric. As according to Figure 6.7 it is
known that C→

1 ⊆ P if and only if C1 ⊆ P, it follows that G ⊆ P and R ⊆ P w.r.t. the
Euclidean metric. ■

In Example 6.10 we proved that in Euclidean space every relative neighborhood graph is a
spanning subgraph of a Gabriel graph (and the opposite is not true) and in Example 6.11
we proved that in Euclidean space the class G of Gabriel graphs and the class R of relative
neighborhood graphs are subclasses of the class P of plane drawings. We have therefore
successfully carried out all the proof tasks from Section 6.2.1.

6.3 Graph Classes Obtained by Transformations

We now consider graph classes C(p) (where p is a sequence of symbols denoting parameters)
which can be described using inclusion, exclusion and transfer axioms. We assume given
a set of vertices V .

The inclusion axioms specify which edges have to exist. For a graph class C, the condition
under which an edge E(u, v) must exist can be described by a formula πi

C(u, v). Therefore,
inclusion axioms have the following form:

(1) ∀u, v πi
C(u, v)→ E(u, v)

The exclusion axioms specify which edges are not allowed to exist. For a graph class C,
the condition under which an edge E(u, v) is not allowed to exist can be described by a
formula πe

C(u, v). Therefore, exclusion axioms have the following form:

(2) ∀u, v πe
C(u, v)→ ¬E(u, v)

The transfer axioms specify which edges E(u,w) must exist as a consequence of the ex-
istence of another edge E(u, v). For a graph class C, we describe these conditions by a
formula πt

C(u, v, w). Therefore, transfer axioms have the following form:

(3) ∀u, v, w πt
C(u, v, w) ∧ E(u,w)→ E(u, v).

We refer to the formulae πi
C , πe

C and πt
C as inclusion, exclusion and transfer predicates,

respectively. If it is clear from the context which class C these predicates are referring to,
we often use the simplified notations πi, πe and πt.

If the description of the graph class C depends on parameters p, the formulae πi
C , π

e
C and

πt
C might contain parameters. We will sometimes indicate this by adding the parameters

to the arguments, i.e. writing πi
C(u, v, p), π

e
C(u, v, p) and πt

C(u, v, w, p), respectively.

Example 6.12. We define the classes MinDG(r) of minimum disk graphs, MaxDG(r)
of maximum disk graphs and CRG of connected region graphs (cf. [17]).

• MinDG(r): axiom (1), where πi(u, v, r) is the formula u ̸≈ v ∧ d(u, v) ≤ r.

• MaxDG(r): axiom (2), where πe(u, v, r) is the formula d(u, v) > r.

• CRG: axiom (3), where πt(u, v, w) is the formula u ̸≈ w ∧ d(u, v) ≤ d(u,w).

154

In these axioms r is supposed to be a parameter. If r is a constant, for instance r = 1, then
the third argument of πi and πe is not necessary and we write only πi(u, v) and πe(u, v).
In what follows we will sometimes also use the notation πi

r(u, v) instead of πi(u, v, r).

The inclusion axiom MinDG(r) states that if u ̸≈ v and d(u, v) ≤ r, then an edge from u
to v must exist. Intuitively, this means that two vertices are always connected if they are
closer to each other than a given radius r.

The exclusion axiom MaxDG(r) states that if d(u, v) > r, then we are not allowed to have
an edge from u to v. This means that two nodes are never connected if they are farther
apart from each other than a given radius r.

The transfer axiom CRG states that if u and w are different and there is an edge from u
to v and d(u,w) ≤ d(u, v), then there must exist an edge also from u to w. The intuition
behind it is that if a node is connected to some other node, then it must also be connected
to any node that is closer or equally close to it.

By combining such axioms we obtain axiomatizations for new graph classes. If the classes
A and B of graphs are axiomatized by axioms AxA and AxB, then AxA ∧ AxB is an
axiomatization for the intersection A ∩B.

For instance, the class UDG = MinDG(1)∩MaxDG(1) of unit disk graphs is axiomat-
ized by MinDG(1)∧MaxDG(1). This class describes all graphs in which any two nodes are
connected if one node is contained in the closed unit disk (i.e. disk with radius 1) around
the other node, i.e. their distance is smaller or equal to 1, and two nodes are not connected
if this is not the case, i.e. their distance is greater than 1. ■

Transformations

From now on we consider directed graphs defined by inclusion, exclusion and transfer
axioms. By applying transformations γ on graphs that transform the edges and leave the
set of vertices unchanged we can define further graph classes γ(C) = {γ(G) | G ∈ C}. We
consider two transformations on directed graphs which make them symmetric. A graph is
called symmetric if ∀x, y E(x, y) ↔ E(y, x) holds. A non-symmetric graph can be made
symmetric by considering all edges E(x, y) for which E(y, x) does not exist and either

(a) deleting all edges E(x, y), or

(b) adding all missing edges E(y, x).

We can describe (a) and (b) formally by transformations ·− and ·+, respectively. Given
a graph G = (V,E), we can build the symmetric subgraph G− = (V,E−) and symmetric
supergraph G+ = (V,E+) using axioms Tr−(E,E−) and Tr+(E,E+) defined as follows:

Tr−(E,F) : ∀x, y (F (x, y)↔ (E(x, y) ∧ E(y, x)))
Tr+(E,F) : ∀x, y (F (x, y)↔ (E(x, y) ∨ E(y, x)))

We can thus define the classes C− = {G− | G ∈ C} and C+ = {G+ | G ∈ C}.

In what follows, when talking about graphs obtained by transformation from other graphs,
we will use the notation E(x, y) to refer to edges in the original graph and F (x, y) to refer
to edges in the transformed graph, i.e. F (x, y) is true if there is an edge between vertices
x and y in the transformed graph and false if not.

155

Example 6.13. The class of quasi unit disk graphs [15, 74] can be described by

QUDG(r) = (MinDG(r) ∩MaxDG(1))−,

where r is a parameter which specifies the maximum communication range r(x) < 1 of a
vertex x.

We then have an axiomatization AxQUDG = ∃E
(︁
MinDG(r)∧MaxDG(1)∧Tr−(E,F)

)︁
.

In a quasi unit disk graph an edge from
a vertex x to a vertex y must exist if y
is within the maximum communication
range r(x) of vertex x. In Figure 6.11,
as vertex v is within the communication
range r(u) of vertex u (blue circle), there
is an edge between u and v.
Two vertices must not be connected if
their distance is greater than 1. As shown
in Figure 6.11, since t lies outside the unit
disk of vertex u (green circle), there is no
edge between u and t.
For any vertices located in between the
communication range and the unit disk
of a vertex x, an edge to x may or may
not exist. This is the case for vertices w
and s in Figure 6.11, of which only w is
connected to u. ■

Figure 6.11: Depiction of the inclusion and
exclusion conditions in a quasi unit disk graph.

Let A be a class of graphs described by axioms AxA and B be a class of graphs described
by axioms AxB. Let T be a theory used for expressing these axioms. Consider the trans-
formations ·+ and ·− described above. Then A+ ⊆ B− holds if and only if the following
equivalent conditions are true:

• For every graph H = (V, F) ∈ A+ we have H ∈ B−.

• For every graph H = (V, F), if there exists a graph GA = (V,EA) ∈ A with H = G+
A,

then there exists a graph GB = (V,EB) ∈ B with H = G−
B.

• It holds that ∃EA (AxA ∧ Tr+(EA, F)) |=T ∃EB (AxB ∧ Tr−(EB, F)).

Let T be a theory with the signature Π = (S,Σ,Pred) and let P 1 = P 1
1 , . . . , P

1
n1

and
P 2 = P 2

1 , . . . , P
2
n2

be finite sequences of different predicate symbols with P i
j ̸∈ Pred and

Πi = (Σ,Pred∪ {P i
j | 1 ≤ j ≤ ni}) for i ∈ {1, 2}. Let F1 be a universal Π1-formula and F2

be a universal Π2-formula. We analyze the problem of checking whether “∃P 1 F1 entails
∃P 2 F2 w.r.t. T ” holds.

Assume that there exist Π-formulae G1 and G2 such that G1 ≡T ∃P 1F1 and G2 ≡T ∃P 2F2.
Such formulae can be found for instance by saturation under a version of ordered resolution
by successively eliminating P i

1, . . . , P
i
ni

(cf. [84]). In this case, ∃P 1 F1 |=T ∃P 2 F2 if and
only if G1 |=T G2, which is the case if and only if G1∧¬G2 |=T ⊥. The problem of checking
whether G1∧¬G2 |=T ⊥ is in general undecidable, even if G1 and G2 are universal formulae
and T is the extension of Presburger arithmetic or real arithmetic with a new function or
predicate symbol (cf. [109]).

156

If G1∧¬G2 is in a fragment of T for which checking satisfiability is decidable, then we can
effectively check whether ∃P 1 F1 |=T ∃P 2 F2. This is obviously the case if T is a decidable
theory. We will show that a similar condition can be obtained for local extensions of theories
allowing quantifier elimination if G1 and G2 are universal formulae and the extensions
satisfy a certain “flatness property” which allows finite complete instantiation, and that in
both cases we can also generate constraints on parameters under which entailment holds.

Theorem 6.14. Assume that there exist Π-formulae G1 and G2 such that G1 ≡T ∃P 1F1

and G2 ≡T ∃P 2F2.

(1) If T is a decidable theory, then we can effectively check whether ∃P 1 F1 |=T ∃P 2 F2.

(2) If T allows quantifier elimination and the formulae F1 and F2 contain parametric
constants, we can use quantifier elimination in T to derive conditions on these para-
meters under which ∃P 1 F1 |=T ∃P 2 F2.

Proof: Since G1 and G2 are equivalent w.r.t. T to ∃P 1F1 and ∃P 2F2, repectively, checking
whether ∃P 1 F1 |=T ∃P 2 F2 is equivalent to checking whether G1 |=T G2, which is the
same as checking whether G1 ∧ ¬G2 |=T ⊥.

For (1), note that for a decidable theory T , checking G1 ∧ ¬G2 |=T ⊥ is possible.

For (2), note that, assuming T allows quantifier elimination, we can use Algorithm 2 to
compute a constraint Γ over the parameters such that G1 ∧ Γ ∧ ¬G2 |=T ⊥. □

Theorem 6.15. Assume that there exist two universal Π-formulae G1 and G2 such that
G1 ≡T ∃P 1F1 and G2 ≡T ∃P 2F2, and that T = T0 ∪ K, where T0 is a decidable theory
with signature Π0 = (S0,Σ0,Pred0), where S0 is a set of interpreted sorts and K is a set
of (universally quantified) clauses over Π = (S0 ∪ S1,Σ0 ∪ Σ1,Pred0 ∪ Pred1), where

(i) S1 is a new set of uninterpreted sorts,

(ii) Σ1 and Pred1 are sets of new function and predicate symbols, respectively, which
have only arguments of uninterpreted sort ∈ S1, and all function symbols in Σ1 have
interpreted output sort ∈ S0.

Assume in addition that all variables and constants of sort ∈ S1 in K, G1 and ¬G2 occur
below function symbols in Σ1. Then:

(1) We can use the decision procedure for T0 to effectively check whether G1 ∧¬G2 |=T ⊥
(hence whether ∃P 1 F1 |=T ∃P 2 F2).

(2) If T0 allows quantifier elimination and the formulae F1 and F2 (hence also G1 and
G2) contain parametric constants and functions, we can use Algorithm 2 for obtaining
constraints on the parameters under which ∃P 1 F1 |=T ∃P 2 F2.

Proof: Let C be the set of constants of uninterpreted sort s ∈ S1 occurring in K, G1 and
¬G2. Note that G1 ∧ ¬G2 is satisfiable w.r.t. T = T0 ∪K if and only if (K ∧G1)

[C] ∧ ¬G2

is satisfiable, where (K ∧G1)
[C] is the set of all instances of K ∧G1 in which the variables

of sort s ∈ S1 are replaced with constants of sort s in C.

(1) The hierarchical reasoning method in Theorem 2.25 allows us to reduce testing
whether G1 ∧ ¬G2 |=T ⊥ to a satisfiability test w.r.t. T0.

(2) If T0 allows quantifier elimination, we can use Theorem 3.4. □

157

Example 6.16. Consider the following two classes:

A = QUDG(r) =(MinDG(r) ∩MaxDG(1))−

B =(MinDG(r) ∩MaxDG(1))+

We are interested in checking whether (or under which conditions) A = B holds, i.e. when
the classes obtained by the transformations .+ and .− from MinDG(r)∩MaxDG(1) are
the same. For this we test whether A ⊆ B and whether B ⊆ A. For such tasks we can use
a two-layered approach:

(1) Using methods for general symbol elimination we want to eliminate E and obtain
axiomatizations for the classes that depend only on the predicates πi

r(x, y), πe(x, y)
and F (x, y).

(2) Using the axiomatizations from (1) we can by Theorem 6.15 check satisfiability to test
whether the inclusion holds, and if this is not the case we can by Theorem 6.15 use
property-directed symbol elimination to derive conditions on the parameters which
guarantee that the inclusion holds.

General Symbol Elimination

From the axiomatization AxA = MinDG(r) ∧MaxDG(1) ∧ Tr−(E,F), which contains
the predicate symbols πi

r, π
e, E and F , we want to obtain an axiomatization GA only

containing πi
r, π

e and F such that GA ≡ ∃E MinDG(r) ∧MaxDG(1) ∧ Tr−(E,F). In
what follows we describe how to use a variant of Algorithm 2 to eliminate the function
symbol E.

Since we want to use SEH-PILoT for symbol elimination and SEH-PILoT cannot eliminate
predicate symbols, we express all predicates as functions with codomain {0, 1} (where value
0 means the predicate is false and value 1 means it is true). From the axiomatization
AxA = MinDG(r) ∧MaxDG(1) ∧ Tr−(E,F) we then get the following clauses:

∀x, y πi
r(x, y) ≈ 1→ E(x, y) ≈ 1 (A1)

∀x, y πe(x, y) ≈ 1→ E(x, y) ≈ 0 (A2)

∀x, y F (x, y) ≈ 1→ E(x, y) ≈ 1 (A3)

∀x, y F (x, y) ≈ 1→ E(y, x) ≈ 1 (A4)

∀x, y E(x, y) ≈ 1 ∧ E(y, x) ≈ 1→ F (x, y) ≈ 1 (A5)

In addition we have the following clauses stating that the predicates are either true or false:

∀x, y πi
r(x, y) ≈ 1 ∨ πi

r(x, y) ≈ 0

∀x, y πe(x, y) ≈ 1 ∨ πe(x, y) ≈ 0

∀x, y E(x, y) ≈ 1 ∨ E(x, y) ≈ 0

∀x, y F (x, y) ≈ 1 ∨ F (x, y) ≈ 0

We can use SEH-PILoT to eliminate E from the conjunction of the clauses above. We
enforce the instantiation of the clauses with exactly two variables a and b by adding in the
query of the input file for SEH-PILoT the following trivial formulae:

πi
r(a, b) ≈ πi

r(a, b) πe(a, b) ≈ πe(a, b) E(a, b) ≈ E(a, b) F (a, b) ≈ F (a, b)

πi
r(b, a) ≈ πi

r(b, a) πe(b, a) ≈ πe(b, a) E(b, a) ≈ E(b, a) F (b, a) ≈ F (b, a)

158

Since we perform general symbol elimination and not property-directed symbol elimination
here, we do not need to negate the result of the quantifier elimination, i.e. we are interested
in the formula obtained after Steps 1-4 of Algorithm 2. SEH-PILoT therefore has to be
used with specification type HPILOT and specification theory REAL_CLOSED_FIELDS
in mode SYMBOL_ELIMINATION. As SEH-PILoT does not simplify the result of the
quantifier elimination very well, the obtained formula is quite large. However, by analyzing
the formulae we are able to manually show that the result is equivalent to the following
conjunction of clauses:

∀x, y πi
r(x, y) ≈ 1 ∧ πe(x, y) ≈ 1→ ⊥ (A′

1)

∀x, y πi
r(x, y) ≈ 1 ∧ πi

r(y, x) ≈ 1→ F (y, x) ≈ 1 (A′
2)

∀x, y πe(x, y) ≈ 1→ F (x, y) ≈ 0 (A′
3)

∀x, y πe(x, y) ≈ 1→ F (y, x) ≈ 0 (A′
4)

∀x, y F (x, y) ≈ 1→ F (y, x) ≈ 1 (A′
5)

We prove the correctness of the newly obtained axiomatization.

Proof: Let FA = ∃E (A1∧ ...∧A5) and GA = A′
1∧ ...∧A′

5. We show that for any structure
A over the signature Π = ({πi

r, π
e, F}, ∅) we have A |= FA if and only if A |= GA.

1. (“⇒”): We show that A |= FA implies A |= GA.

Assume A |= FA. Then there exists a structure B with the same universe and the same
interpretations for πe, πi

r and F as A and, in addition, an interpretation EB for E such
that

(1) B |= ∀x, y (πi
r(x, y) ≈ 1→ E(x, y) ≈ 1),

(2) B |= ∀x, y (πe(x, y) ≈ 1→ E(x, y) ≈ 0),

(3) B |= ∀x, y (F (x, y) ≈ 1→ E(x, y) ≈ 1),

(4) B |= ∀x, y (F (x, y) ≈ 1→ E(y, x) ≈ 1),

(5) B |= ∀x, y (E(x, y) ≈ 1 ∧ E(y, x) ≈ 1→ F (x, y) ≈ 1).

We can observe the following:

• From (1) and (2) it follows that
B |= ∀x, y (πi

r(x, y) ≈ 1 ∧ πe(x, y) ≈ 1→ ⊥), i.e. B |= A′
1.

• From (1) and (5) it follows that
B |= ∀x, y (πi

r(x, y) ≈ 1 ∧ πi
r(y, x) ≈ 1→ F (y, x) ≈ 1), i.e. B |= A′

2.

• From (2) and (3) it follows that
B |= ∀x, y (πe(x, y) ≈ 1→ F (x, y) ≈ 0), i.e. B |= A′

3.

• From (2) and (4) it follows that
B |= ∀x, y (πe(x, y) ≈ 1→ F (y, x) ≈ 0), i.e. B |= A′

4.

• From (3), (4) and (5) it follows that
B |= ∀x, y (F (x, y) ≈ 1→ F (y, x) ≈ 1), i.e. B |= A′

5.

Since all the predicate symbols except for E are interpreted the same in A and B, we then
also have A |= A′

i for i ∈ {1, ..., 5}. Thus, A |= GA, so A |= FA implies A |= GA.

159

2. (“⇐”): We show that A |= GA implies A |= FA.

Assume A |= GA. Then the following hold:

(1) A |= ∀x, y (πi
r(x, y) ≈ 1 ∧ πe(x, y) ≈ 1→ ⊥),

(2) A |= ∀x, y (πi
r(x, y) ≈ 1 ∧ πi

r(y, x) ≈ 1→ F (y, x) ≈ 1),

(3) A |= ∀x, y (πe(x, y) ≈ 1→ F (x, y) ≈ 0),

(4) A |= ∀x, y (πe(x, y) ≈ 1→ F (y, x) ≈ 0),

(5) A |= ∀x, y (F (x, y) ≈ 1→ F (y, x) ≈ 1).

We define a new structure B which has the same universe and the same interpretations for
πe, πi

r and F as A and, in addition, an interpretation EB such that E(x, y) ≈ 1 if and only
if F (x, y) ≈ 1 ∨ πi

r(x, y) ≈ 1. We can observe the following:

• From the definition of EB it follows that
B |= ∀x, y (πi

r(x, y) ≈ 1→ E(x, y) ≈ 1), i.e. B |= A1.

• From the definition of EB together with (1), (3) and (4) it follows that
B |= ∀x, y (πe(x, y) ≈ 1→ E(x, y) ≈ 0), i.e. B |= A2.

• From the definition of EB it follows that
B |= ∀x, y (F (x, y) ≈ 1→ E(x, y) ≈ 1), i.e. B |= A3.

• From the definition of EB together with (5) it follows that
B |= ∀x, y (F (x, y) ≈ 1→ E(y, x) ≈ 1), i.e. B |= A4.

• From the definition of EB together with (2) and (5) it follows that
B |= ∀x, y (E(x, y) ≈ 1 ∧ E(y, x) ≈ 1→ F (x, y) ≈ 1), i.e. B |= A5.

Then, since A is interpreted the same as B on all predicates except for E and there exists
an interpretation EB such that B |= Ai for i ∈ {1, ..., 5}, we have A |= ∃E (A1 ∧ ... ∧ A5).
Thus, A |= FA, so A |= GA implies A |= FA. □

An axiomatization GB such that GB ≡ ∃E MinDG(r) ∧MaxDG(1) ∧ Tr+(E,F) can
be computed in the same way. We consider all predicates to be functions with codomain
{0, 1}. From the axiomatization AxA = MinDG(r) ∧MaxDG(1) ∧ Tr−(E,F) we then
get the following clauses:

∀x, y πi
r(x, y) ≈ 1→ E(x, y) ≈ 1 (B1)

∀x, y πe(x, y) ≈ 1→ E(x, y) ≈ 0 (B2)

∀x, y F (x, y) ≈ 1→ E(x, y) ∨ E(y, x) ≈ 1 (B3)

∀x, y E(x, y) ≈ 1→ F (x, y) ≈ 1 (B4)

∀x, y E(y, x) ≈ 1→ F (x, y) ≈ 1 (B5)

Eliminating E using SEH-PILoT we obtain a result that can be manually simplified to the
following set of clauses:

∀x, y πi
r(x, y) ≈ 1 ∧ πe(x, y) ≈ 1→ ⊥ (B′

1)

∀x, y πe(x, y) ≈ 1 ∧ πe(y, x) ≈ 1→ F (y, x) ≈ 0 (B′
2)

∀x, y πi
r(x, y) ≈ 1→ F (x, y) ≈ 1 (B′

3)

∀x, y πi
r(x, y) ≈ 1→ F (y, x) ≈ 1 (B′

4)

∀x, y F (x, y) ≈ 1→ F (y, x) ≈ 1 (B′
5)

160

We prove the correctness of the newly obtained axiomatization.

Proof: Let FB = ∃E (B1∧ ...∧B5) and GB = B′
1∧ ...∧B′

5. We show that for any structure
A we have A |= FB if and only if A |= GB.

1. (“⇒”): We show that A |= FB implies A |= GB.

Assume A |= FB. Then there exists a structure B with the same universe and the same
interpretations for πe, πi

r and F as A and, in addition, an interpretation EB for E such
that

(1) B |= ∀x, y (πi
r(x, y) ≈ 1→ E(x, y) ≈ 1),

(2) B |= ∀x, y (πe(x, y) ≈ 1→ E(x, y) ≈ 0),

(3) B |= ∀x, y (F (x, y) ≈ 1→ E(x, y) ≈ 1 ∨ E(y, x) ≈ 1),

(4) B |= ∀x, y (E(x, y) ≈ 1→ F (x, y) ≈ 1),

(5) B |= ∀x, y (E(y, x) ≈ 1→ F (x, y) ≈ 1).

We can observe the following:

• From (1) and (2) it follows that
B |= ∀x, y (πi

r(x, y) ≈ 1 ∧ πe(x, y) ≈ 1→ ⊥), i.e. B |= B′
1.

• From (2) and (3) it follows that
B |= ∀x, y (πe(x, y) ≈ 1 ∧ πe(y, x) ≈ 1→ F (y, x) ≈ 0), i.e. B |= B′

2.

• From (1) and (4) it follows that
B |= ∀x, y (πi

r(x, y) ≈ 1→ F (x, y) ≈ 1), i.e. B |= B′
3.

• From (1) and (5) it follows that
B |= ∀x, y (πi

r(x, y) ≈ 1→ F (y, x) ≈ 1), i.e. B |= B′
4.

• From (3), (4) and (5) it follows that
B |= ∀x, y (F (x, y) ≈ 1→ F (y, x) ≈ 1), i.e. B |= B′

5.

Since all the predicate symbols except for E are interpreted the same in A and B, we then
also have A |= B′

i for i ∈ {1, ..., 5}. Thus, A |= GB, so A |= FB implies A |= GB.

2. (“⇐”): We show that A |= GB implies A |= FB.

Assume A |= GB. Then the following hold:

(1) A |= ∀x, y (πi
r(x, y) ≈ 1 ∧ πe(x, y) ≈ 1→ ⊥),

(2) A |= ∀x, y (πe(x, y) ≈ 1 ∧ πe(y, x) ≈ 1→ F (y, x) ≈ 0),

(3) A |= ∀x, y (πi
r(x, y) ≈ 1→ F (x, y) ≈ 1),

(4) A |= ∀x, y (πi
r(x, y) ≈ 1→ F (y, x) ≈ 1),

(5) A |= ∀x, y (F (x, y) ≈ 1→ F (y, x) ≈ 1).

We define a new structure B which has the same universe and the same interpretations for
πe, πi

r and F as A and, in addition, an interpretation EB such that E(x, y) ≈ 0 if and only
if F (x, y) ≈ 0 ∨ πe(x, y) ≈ 1. We can observe the following:

• From the definition of EB together with (1) and (3) it follows that
B |= ∀x, y (πi

r(x, y) ≈ 1→ E(x, y) ≈ 1), i.e. B |= B1.

161

• From the definition of EB it follows that
B |= ∀x, y (πe(x, y) ≈ 1→ E(x, y) ≈ 0), i.e. B |= B2.

• From the definition of EB together with (2) and (5)it follows that
B |= ∀x, y (F (x, y) ≈ 1→ E(x, y) ≈ 1 ∨ E(y, x) ≈ 1), i.e. B |= B3.

• From the definition of EB it follows that
B |= ∀x, y (E(x, y) ≈ 1→ F (x, y) ≈ 1), i.e. B |= B4.

• From the definition of EB together with (5) it follows that
B |= ∀x, y E(y, x) ≈ 1→ F (x, y) ≈ 1), i.e. B |= B5.

Then, since A is interpreted the same as B on all predicates except for E and there exists
an interpretation EB such that B |= Bi for i ∈ {1, ..., 5}, we have A |= ∃E (B1 ∧ ... ∧B5).
Thus, A |= FB, so A |= GB implies A |= FB. □

Hierarchical Reasoning / Property-directed Symbol Elimination

In the previous step we have obtained the axiomatizations GA and GB for graph classes A
and B, respectively.

GA

∀x, y πi
r(x, y) ∧ πe(x, y) → ⊥

∀x, y πi
r(x, y) ∧ πi

r(y, x) → F (y, x)
∀x, y πe(x, y) → ¬F (x, y)
∀x, y πe(x, y) → ¬F (y, x)
∀x, y F (x, y) → F (y, x)

GB

∀x, y πi
r(x, y) ∧ πe(x, y) → ⊥

∀x, y πe(x, y) ∧ πe(y, x) → ¬F (y, x)
∀x, y πi

r(x, y) → F (x, y)
∀x, y πi

r(x, y) → F (y, x)
∀x, y F (x, y) → F (y, x)

We first analyze whether graph class A is contained in graph class B, i.e. whether A ⊆ B.
For this we have to check whether GA |=T GB, i.e. whether GA ∧ ¬GB is unsatisfiable
w.r.t. T , where ¬GB is the disjunction of the following ground formulae (we ignore the
negation of the first clause and last clause, as these clauses are obviously implied by GA):

(g1) πe(a, b) ∧ πe(b, a) ∧ F (b, a)
(g2) πi

r(a, b) ∧ ¬F (a, b)
(g3) πi

r(a, b) ∧ ¬F (b, a)

Here we have T = Td ∪ UIF r, where Td is a theory describing the properties of d and r is
considered to be an uninterpreted function symbol. Let T0 be the disjoint combination of
the theory of an infinite set TIS (sort p) and linear real arithmetic (sort num). We consider
Td to be one of the following extensions of T0:

(1) T m
d = T0 ∪ Km, where Km are the axioms of a metric, i.e.

(d1) ∀x, y d(x, y) ≥ 0
(d2) ∀x, y, z d(x, y) ≤ d(x, z) + d(z, y)
(d3) ∀x, y d(x, y) ≈ d(y, x)
(d4) ∀x, y x ≈ y → d(x, y) ≈ 0
(d5) ∀x, y d(x, y) ≈ 0→ x ≈ y

(2) T s
d , the extension of T0 with axiom (d3)

(3) T p
d , the extension of T0 with axiom (d1)

(4) T u
d , the extension of T0 with an uninterpreted function d

162

In Section 6.1 we proved that all these theories satisfy suitable locality properties. For
testing entailment, we can consider the set of all instances of GA in which the variables
of sort p are replaced with constants a, b and then use a method for checking ground
satisfiability of GA[T]∧ gi w.r.t. Td ∪UIF r, where Td ∈ {T u

d , T p
d , T

s
d , T m

d }. For this we use
H-PILoT, in which we enforce the right instantiation by adding relevant instances to the
query. This allows us to check that GA[T] ∧ gi is unsatisfiable for i = 1, but satisfiable for
i ∈ {2, 3} (this is the case for all four theories). For cases 2 and 3 can use Algorithm 2 to
derive conditions on parameters under which GA[T]∧gi is unsatisfiable. We use SEH-PILoT
for this, with specification type HPILOT and specification theory REAL_CLOSED_FIELDS
in mode GENERATE_CONSTRAINTS. The computed formulae are then constraints over
the given parameters which guarantee that the inclusion between the classes holds. We
here give two examples:

(i) We consider d and r to be parameters, i.e. we eliminate only F from GA[T]∧ gi. For
T m
d we obtain using SEH-PILoT the condition

Cd,r = ∀x, y(x ̸≈ y ∧ d(x, y) ≤ 1 ∧ d(x, y) ≤ r(x)→ d(y, x) ≤ r(y)).

(ii) We consider only r to be a parameter, i.e. we eliminate the symbols F and d. For
T s
d we obtain using SEH-PILoT the condition

Cr = ∀x, y(r(y) < 1 ∧ x ̸≈ y → r(y) ≥ r(x)).

This condition holds for example if r(x) ≈ r(y) for all x, y, i.e. if r is a constant
function. Adding this as an additional condition we get unsatisfiability of GA[T]∧ gi
with i ∈ {2, 3} for T m

d and T s
d , but not for T u

d and T p
d .

Checking the Other Inclusion

We now analyze whether B ⊆ A. For this we check whether GB ∧ ¬GA is unsatisfiable
w.r.t. T , where ¬GA is the disjunction of the following ground formulae (we ignore the
negation of the first and last clause, as these clauses are obviously implied by GB):

(g1) πi(a, b) ∧ πi(b, a) ∧ ¬F (b, a)
(g2) πe(a, b) ∧ F (a, b)
(g3) πe(a, b) ∧ F (b, a)

We check ground satisfiability of GB[T] ∧ gi w.r.t. T ∈ {T u
d , T p

d , T
s
d , T m

d }. For T s
d and

T m
d we obtain unsatisfiability of GB[T] ∧ gi for i ∈ {1, 2, 3}, thus we have proved that the

inclusion holds for these two theories. For T p
d and T u

d we get satisfiability for cases 2 and
3. We can use Algorithm 2 to obtain conditions on parameters such that GB[T] ∧ g2 and
GB[T]∧ g3 is unsatisfiable. If we consider d and r to be parameters, i.e. we eliminate only
F from GB[T] ∧ gi, we obtain the condition

Cd,r = ∀x, y(d(y, x) > 1 ∨ d(x, y) ≤ 1 ∨ d(x, y) ≤ r(x) ∨ x ≈ y).

It is easy to see that this condition holds if d is symmetric, since from d(x, y) ≈ d(y, x) it
follows that d(y, x) > 1 ∨ d(x, y) ≤ 1 holds.

Combining the conditions for A ⊆ B and B ⊆ A we can conclude that the two graph
classes A = (MinDG(r) ∩MaxDG(1))− and B = (MinDG(r) ∩MaxDG(1))+ are
identical for instance if the communication range r is constant (i.e. all vertices have the same
communication range) and the distance function d is symmetric (i.e. it satisfies condition
(d3) of the metric axioms). ■

163

6.4 Conclusion

In this chapter we demonstrated by example that hierarchical reasoning and quantifier
elimination is a powerful tool to analyze properties of graph classes defined by general and
Euclidean metrics. For this, we established locality results for theory extensions involving
distances.

First, we looked at simple geometric graph classes which can be described by specifying
when an edge between two vertices in the graph exists and when it does not exist. We
illustrated how proving properties of such graph classes can be done by showing inclu-
sion between graph classes. As an example, we proved planarity of Gabriel graphs and
relative neighborhood graphs by showing that the classes of Gabriel graphs and relative
neighborhood graphs are contained in the class of plane drawings.

Secondly, we considered classes of geometric graphs which can be described using suitable
inclusion, exclusion and transfer predicates. We defined simple transformations on such
graph classes which lead to a class of symmetric subgraphs or to a class symmetric su-
pergraphs. Checking containedness of such transformed graph classes can be done similar
to the case of the simple classes of graphs. As an example, we analyzed the inclusions
between the class of symmetric supergraphs and symmetric subgraphs of quasi unit disk
graphs.

For checking containedness of graph classes we use a two-layered approach combining
general second-order symbol elimination and property-directed symbol elimination. For
eliminating existentially quantified predicates from universal first-order formulae we used
hierarchical reasoning and symbol elimination, but other methods can also be used, for
instance a version of the ordered resolution calculus. This first step yields solely geometric
conditions for class inclusion, which can be checked easily. If class containment cannot
be proved, we can compute conditions on parameters that guarantee containedness, using
property-directed symbol elimination.

6.4.1 Future Work

There are several ways in which the work described in this chapter can be continued. On
the one hand, we plan to significantly expand the set of graph classes that can be analyzed
with our tool set. On the other hand, we would like to consider more transformations than
the ones presented in this thesis. In [17] Böltz and Frey define a set of 8 base graph classes
(including MinDG, MaxDG and QUDG) and a class of 16 simple graph transformations
(including .+ and .−) and analyze, using different methods, all possible containedness
conditions between the 128 classes obtained by applying those transformations on the base
graph classes. For future work it would be interesting to check these results automatically
with the methods presented in this thesis.

As a further direction for subsequent work it is also possible to investigate more kinds
of graph properties, for example spanner properties (Euclidean, topological, energy) and
degree limitation. These concepts are of interest for algorithm design in wireless graph
models but also for graphs in general.

164

7 Conclusion

In this thesis we studied methods for reasoning in complex theories based on hierarchical
reasoning and symbol elimination, and investigated the applicability of these approaches
in three different application areas. First, we showed how to use hierarchical reasoning and
symbol elimination in the verification of parametric systems, by proposing an algorithm for
the goal-directed generation of inductive invariants. Secondly, we investigated an approach
for finding high-level explanations for subsumption in EL and EL+, based on the compu-
tation of ≤-interpolating terms in the theory of semilattices with monotone operators.
Thirdly, we illustrated on different examples how to reason about geometric graph classes
and transformations thereof, using general and property-directed symbol elimination to
show containedness between such graph classes.

In Chapter 3 we analyzed methods for symbol elimination in combinations and extensions of
theories. On the one hand, we established a result for quantifier elimination in combinations
of disjoint theories and we showed that virtual substitution can be used to apply quantifier
elimination in the combination of the theory of an infinite set and the theory of real
closed fields. On the other hand, we presented an algorithm for property-directed symbol
elimination in local theory extensions and proposed an improvement.

The invariant strengthening algorithm proposed in Chapter 4 uses property-directed sym-
bol elimination to iteratively strenghten an initial property to an inductive invariant. We
proved correctness of the algorithm under certain assumptions, but also analyzed situations
in which these assumptions can be relaxed. We showed that termination can be guaranteed
in some situations, but not in general. However, in some cases the choice of the parameters
can have an effect on the termination, as it was shown on an example. Several refinements
of the algorithm were presented and the applicability of the algorithm and its refinements
was illustrated on examples. The implementation of the algorithm was described briefly.
In the conclusion of Chapter 4 we discussed benefits of our approach compared to other
approaches.

In Chapter 5 we proposed an algorithm for computing a certain kind of interpolants in
the description logics EL and EL+, which serve as high-level explanations for subsumption
relations that occur as a result of combining two ontologies or extending one ontology with
another. The approach is based on the reduction to the uniform word problem in classes of
semilattices with monotone operators and the computation of ≤-interpolating terms using
resolution. In the presence of role inclusions, hierarchical reasoning is also necessary. As
it may impose so-called mixed instances, a separation of those, also using ≤-interpolation,
can be necessary. To reduce the number of axioms to consider, we use unsatisfiable core
computation. An implementation and three illustrative examples were presented.

Certain types of geometric graph classes as well as simple transformations yielding sym-
metric graph classes were investigated in Chapter 6. Those classes are defined by exclusion,
inclusion and transfer predicates which describe geometric conditions based on a distance
function. For checking containedness of graph classes we first used a form of second-order
quantifier elimination to eliminate the edge predicate E. In a second step we then could

165

use hirearchical resoning and property-directed symbol elimination to either prove con-
tainedness or to obtain geometric conditions on parameters such that containedness is
guaranteed.

The applications shown in this thesis have in common that the problems are described
using complex theories, for which efficient resoning is in general difficult. By reducing the
problems in a suitable way, for instance using hierarchical reasoning to make a reduction to
the base theory, these problems become easier to solve. We can not only check satisfiability
of the reduced formulae, the parametric nature of many problems also allows us to use
property-directed symbol elimination to derive conditions on parameters which guarantee
unsatisfiability.

In conclusion, it was shown in this thesis that combining different methods for symbol
elimination, i.e. property-directed as well as general symbol elimination, and hierarchical
reasoning, in particular for theory extensions satisfying a locality property, is a useful
approach to solve interesting problems in a wide range of application areas.

166

Bibliography

[1] Mohammad Abdulaziz, Kurt Mehlhorn, and Tobias Nipkow: Trustworthy Graph Al-
gorithms (Invited Talk). In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter
Katoen (editors): Proc. 44th Int. Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2019), volume 138 of LIPIcs, pages 1:1–1:22. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019.

[2] Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, and Natas-
ha Sharygina: An extension of lazy abstraction with interpolation for programs with
arrays. Formal Methods in System Design, 45(1):63–109, 2014.

[3] Christian Alrabbaa, Franz Baader, Stefan Borgwardt, Patrick Koopmann, and Ali-
sa Kovtunova: Finding Small Proofs for Description Logic Entailments: Theory and
Practice. In Elvira Albert and Laura Kovács (editors): LPAR 2020: 23rd Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Alicante, Spain, May 22-27, 2020, volume 73 of EPiC Series in Computing, pages
32–67. EasyChair, 2020. https://easychair.org/publications/volume/LPAR23.

[4] Franz Baader: Terminological Cycles in a Description Logic with Existential Re-
strictions. In Georg Gottlob and Toby Walsh (editors): IJCAI-03, Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, Acapul-
co, Mexico, August 9-15, 2003, pages 325–330. Morgan Kaufmann, 2003. http:
//ijcai.org/Proceedings/03/Papers/048.pdf.

[5] Franz Baader, Sebastian Brandt, and Carsten Lutz: Pushing the EL Envelope. In
Leslie Pack Kaelbling and Alessandro Saffiotti (editors): IJCAI-05, Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, UK, July 30 - August 5, 2005, pages 364–369. Professional Book Center,
2005.

[6] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider (editors): The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, 2003, ISBN 0-521-78176-0.

[7] Franz Baader and Bernhard Hollunder: Embedding Defaults into Terminological
Knowledge Representation Formalisms. J. Autom. Reasoning, 14(1):149–180, 1995.
https://doi.org/10.1007/BF00883932.

[8] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn: Efficient Reasoning in
EL+. In Bijan Parsia, Ulrike Sattler, and David Toman (editors): Proceedings of the
2006 International Workshop on Description Logics (DL2006), Windermere, Lake
District, UK, May 30 - June 1, 2006, volume 189 of CEUR Workshop Proceedings.
CEUR-WS.org, 2006. http://ceur-ws.org/Vol-189/submission_8.pdf.

[9] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn: Is tractable reaso-
ning in extensions of the description logic EL useful in practice? Journal of Logic,

167

https://easychair.org/publications/volume/LPAR23
http://ijcai.org/Proceedings/03/Papers/048.pdf
http://ijcai.org/Proceedings/03/Papers/048.pdf
https://doi.org/10.1007/BF00883932
http://ceur-ws.org/Vol-189/submission_8.pdf

Language and Information, 2007. Special Issue on Method for Modality (M4M),
2007.

[10] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn: Pinpointing in
the Description Logic EL. In Diego Calvanese, Enrico Franconi, Volker Haars-
lev, Domenico Lembo, Boris Motik, Anni-Yasmin Turhan, and Sergio Tessaris
(editors): Proceedings of the 2007 International Workshop on Description Logics
(DL2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, 8-10 June, 2007, volume
250 of CEUR Workshop Proceedings. CEUR-WS.org, 2007. http://ceur-ws.org/
Vol-250/paper_16.pdf.

[11] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn: Pinpointing in the
Description Logic EL+. In Joachim Hertzberg, Michael Beetz, and Roman Englert
(editors): KI 2007: Advances in Artificial Intelligence, 30th Annual German Con-
ference on AI, KI 2007, Osnabrück, Germany, September 10-13, 2007, Proceedings,
volume 4667 of Lecture Notes in Computer Science, pages 52–67. Springer, 2007.
https://doi.org/10.1007/978-3-540-74565-5_7.

[12] Franz Baader and Boontawee Suntisrivaraporn: Debugging SNOMED CT Using Axi-
om Pinpointing in the Description Logic EL+. In Ronald Cornet and Kent A.
Spackman (editors): Proceedings of the Third International Conference on Know-
ledge Representation in Medicine, Phoenix, Arizona, USA, May 31st - June 2nd,
2008, volume 410 of CEUR Workshop Proceedings. CEUR-WS.org, 2008. http:
//ceur-ws.org/Vol-410/Paper01.pdf.

[13] Leo Bachmair and Harald Ganzinger: Resolution Theorem Proving. In John Alan
Robinson and Andrei Voronkov (editors): Handbook of Automated Reasoning (in 2
volumes), pages 19–99. Elsevier and MIT Press, 2001. https://doi.org/10.1016/
b978-044450813-3/50004-7.

[14] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann: Refutational Theorem Pro-
ving for Hierarchic First-Order Theories. Appl. Algebra Eng. Commun. Comput.,
5:193–212, 1994.

[15] Lali Barrière, Pierre Fraigniaud, Lata Narayanan, and Jaroslav Opatrny: Robust
position-based routing in wireless ad hoc networks with irregular transmission ran-
ges. Wireless Communications and Mobile Computing, 3(2):141–153, Mar 2003,
ISSN 15308669.

[16] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko:
Invariant Synthesis for Combined Theories. In Byron Cook and Andreas Podelski
(editors): Verification, Model Checking, and Abstract Interpretation, 8th Interna-
tional Conference, VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings,
volume 4349 of Lecture Notes in Computer Science, pages 378–394. Springer, 2007.

[17] Lucas Böltz and Hannes Frey: Automatically Testing Containedness between Geo-
metric Graph Classes defined by Inclusion, Exclusion, and Transfer Axioms un-
der Simple Transformations. Inf., 13(12):578, 2022. https://doi.org/10.3390/
info13120578.

[18] Lucas Böltz, Hannes Frey, Dennis Peuter, and Viorica Sofronie-Stokkermans: On
Testing Containedness Between Geometric Graph Classes using Second-order Quan-
tifier Elimination and Hierarchical Reasoning (Short Paper). In Renate A. Schmidt,

168

http://ceur-ws.org/Vol-250/paper_16.pdf
http://ceur-ws.org/Vol-250/paper_16.pdf
https://doi.org/10.1007/978-3-540-74565-5_7
http://ceur-ws.org/Vol-410/Paper01.pdf
http://ceur-ws.org/Vol-410/Paper01.pdf
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.3390/info13120578
https://doi.org/10.3390/info13120578

Christoph Wernhard, and Yizheng Zhao (editors): Proceedings of the Second Work-
shop on Second-Order Quantifier Elimination and Related Topics (SOQE 2021) as-
sociated with the 18th International Conference on Principles of Knowledge Re-
presentation and Reasoning (KR 2021), Online Event, November 4, 2021, volume
3009 of CEUR Workshop Proceedings, pages 37–45. CEUR-WS.org, 2021. https:
//ceur-ws.org/Vol-3009/short1.pdf.

[19] Alexander Borgida, Enrico Franconi, and Ian Horrocks: Explaining ALC Subsumpti-
on. In Werner Horn (editor): ECAI 2000, Proceedings of the 14th European Confe-
rence on Artificial Intelligence, Berlin, Germany, August 20-25, 2000, pages 209–213.
IOS Press, 2000.

[20] Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia: Routing with Gua-
ranteed Delivery in Ad Hoc Wireless Networks. Wireless Networks, 7(6):609–616, nov
2001.

[21] Aaron R. Bradley: IC3 and beyond: Incremental, Inductive Verification. In P. Ma-
dhusudan and Sanjit A. Seshia (editors): Computer Aided Verification - 24th Inter-
national Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings,
volume 7358 of Lecture Notes in Computer Science, page 4. Springer, 2012.

[22] Aaron R. Bradley and Zohar Manna: The calculus of computation - decision proce-
dures with applications to verification. Springer, 2007. https://doi.org/10.1007/
978-3-540-74113-8.

[23] Aaron R. Bradley and Zohar Manna: Property-directed incremental invariant gene-
ration. Formal Asp. Comput., 20(4-5):379–405, 2008.

[24] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma: What’s Decidable About
Arrays? In E. Allen Emerson and Kedar S. Namjoshi (editors): Verification, Model
Checking, and Abstract Interpretation, 7th International Conference, VMCAI 2006,
Charleston, SC, USA, January 8-10, 2006, Proceedings, volume 3855 of Lecture Notes
in Computer Science, pages 427–442. Springer, 2006.

[25] Christopher W. Brown and James H. Davenport: The complexity of quantifier elimi-
nation and cylindrical algebraic decomposition. In Dongming Wang (editor): Sym-
bolic and Algebraic Computation, International Symposium, ISSAC 2007, Waterloo,
Ontario, Canada, July 28 - August 1, 2007, Proceedings, pages 54–60. ACM, 2007.
https://doi.org/10.1145/1277548.1277557.

[26] Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise: Quantifier-free interpola-
tion in combinations of equality interpolating theories. ACM Trans. Comput. Log.,
15(1):5:1–5:34, 2014.

[27] Diego Calvanese, Silvio Ghilardi, Alessandro Gianola, Marco Montali, and An-
drey Rivkin: Model Completeness, Uniform Interpolants and Superposition Cal-
culus. J. Autom. Reason., 65(7):941–969, 2021. https://doi.org/10.1007/
s10817-021-09596-x.

[28] Diego Calvanese, Silvio Ghilardi, Alessandro Gianola, Marco Montali, and Andrey
Rivkin: Combination of Uniform Interpolants via Beth Definability. J. Autom. Rea-
son., 66(3):409–435, 2022. https://doi.org/10.1007/s10817-022-09627-1.

169

https://ceur-ws.org/Vol-3009/short1.pdf
https://ceur-ws.org/Vol-3009/short1.pdf
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1007/s10817-021-09596-x
https://doi.org/10.1007/s10817-021-09596-x
https://doi.org/10.1007/s10817-022-09627-1

[29] George E. Collins: Quantifier Elimination for the Elementary Theory of Real Closed
Fields by Cylindrical Algebraic Decomposition. Second GI Conf. Automata Theory
and Formal Languages, pages 134–183, 1975.

[30] Sylvain Conchon, Amit Goel, Sava Krstic, Alain Mebsout, and Fatiha Zaïdi: Cubicle:
A Parallel SMT-Based Model Checker for Parameterized Systems - Tool Paper. In
P. Madhusudan and Sanjit A. Seshia (editors): Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Procee-
dings, volume 7358 of Lecture Notes in Computer Science, pages 718–724. Springer,
2012.

[31] Bruno Courcelle: On the Expression of Monadic Second-Order Graph Properties Wi-
thout Quantifications Over Sets of Edges (Extended Abstract). In Proceedings of the
Fifth Annual Symposium on Logic in Computer Science (LICS ’90), Philadelphia,
Pennsylvania, USA, June 4-7, 1990, pages 190–196. IEEE Computer Society, 1990.
https://doi.org/10.1109/LICS.1990.113745.

[32] Bruno Courcelle: The Monadic Second-order Logic of Graphs VI: On Several Repre-
sentations of Graphs by Relational Structures. Discret. Appl. Math., 63(2):199–200,
1995. https://doi.org/10.1016/0166-218X(95)00006-D.

[33] Bruno Courcelle: The Expression of Graph Properties and Graph Transformations in
Monadic Second-Order Logic. In Grzegorz Rozenberg (editor): Handbook of Graph
Grammars and Computing by Graph Transformations, Volume 1: Foundations, pages
313–400. World Scientific, 1997, ISBN 9810228848.

[34] Bruno Courcelle: The monadic second-order logic of graphs XVI : Canonical graph
decompositions. Log. Methods Comput. Sci., 2(2), 2006. https://doi.org/10.2168/
LMCS-2(2:2)2006.

[35] Bruno Courcelle: Monadic Second-Order Logic for Graphs: Algorithmic and Language
Theoretical Applications. In Adrian-Horia Dediu, Armand-Mihai Ionescu, and Car-
los Martín-Vide (editors): Language and Automata Theory and Applications, Third
International Conference, LATA 2009, Tarragona, Spain, April 2-8, 2009. Procee-
dings, volume 5457 of Lecture Notes in Computer Science, pages 19–22. Springer,
2009. https://doi.org/10.1007/978-3-642-00982-2_2.

[36] William Craig: Three Uses of the Herbrand-Gentzen Theorem in Relating Model
Theory and Proof Theory. J. Symb. Log., 22(3):269–285, 1957. https://doi.org/
10.2307/2963594.

[37] James H. Davenport and Joos Heintz: Real Quantifier Elimination is Doubly Ex-
ponential. J. Symb. Comput., 5(1/2):29–35, 1988. https://doi.org/10.1016/
S0747-7171(88)80004-X.

[38] Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan: Inductive invariant
generation via abductive inference. In Antony L. Hosking, Patrick Th. Eugster, and
Cristina V. Lopes (editors): Proceedings of the 2013 ACM SIGPLAN Internatio-
nal Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013,
pages 443–456. ACM, 2013.

170

https://doi.org/10.1109/LICS.1990.113745
https://doi.org/10.1016/0166-218X(95)00006-D
https://doi.org/10.2168/LMCS-2(2:2)2006
https://doi.org/10.2168/LMCS-2(2:2)2006
https://doi.org/10.1007/978-3-642-00982-2_2
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1016/S0747-7171(88)80004-X

[39] Christian Doczkal and Damien Pous: Graph Theory in Coq: Minors, Treewidth, and
Isomorphisms. J. Autom. Reason., 64(5):795–825, 2020. https://doi.org/10.1007/
s10817-020-09543-2.

[40] Andreas Dolzmann: Algorithmic strategies for applicable real quantifier elimination.
PhD thesis, University of Passau, Germany, 2000. http://elib.ub.uni-passau.
de/opus/volltexte/2001/6/index.html.

[41] Andreas Dolzmann and Thomas Sturm: Redlog: Computer Algebra Meets Computer
Logic. ACM SIGSAM Bulletin, 31(2):2–9, 1997.

[42] Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning: A New Approach for
Automatic Theorem Proving in Real Geometry. J. Autom. Reason., 21(3):357–380,
1998. https://doi.org/10.1023/A:1006031329384.

[43] Johannes Faber, Swen Jacobs, and Viorica Sofronie-Stokkermans: Verifying CSP-
OZ-DC Specifications with Complex Data Types and Timing Parameters. In Jim
Davies and Jeremy Gibbons (editors): Integrated Formal Methods, 6th International
Conference, IFM 2007, Oxford, UK, July 2-5, 2007, Proceedings, volume 4591, pages
233–252. Springer, 2007.

[44] Stephan Falke and Deepak Kapur: When Is a Formula a Loop Invariant? In Narciso
Martí-Oliet, Peter Csaba Ölveczky, and Carolyn L. Talcott (editors): Logic, Rewri-
ting, and Concurrency - Essays dedicated to José Meseguer on the Occasion of His
65th Birthday, volume 9200 of Lecture Notes in Computer Science, pages 264–286.
Springer, 2015.

[45] Melvin Fitting: First-Order Logic and Automated Theorem Proving, Second Editi-
on. Graduate Texts in Computer Science. Springer, 1996, ISBN 978-1-4612-7515-2.
https://doi.org/10.1007/978-1-4612-2360-3.

[46] Marie Fortin, Boris Konev, and Frank Wolter: Interpolants and Explicit Definiti-
ons in Extensions of the Description Logic EL. In Gabriele Kern-Isberner, Gerhard
Lakemeyer, and Thomas Meyer (editors): Proceedings of the 19th International Con-
ference on Principles of Knowledge Representation and Reasoning, KR 2022, Haifa,
Israel. July 31 - August 5, 2022, 2022. https://proceedings.kr.org/2022/16/.

[47] Dov M. Gabbay and Hans Jürgen Ohlbach: Quantifier Elimination in Second-Order
Predicate Logic. In Bernhard Nebel, Charles Rich, and William R. Swartout (ed-
itors): Proceedings of the 3rd International Conference on Principles of Knowledge
Representation and Reasoning (KR’92). Cambridge, MA, USA, October 25-29, 1992,
pages 425–435. Morgan Kaufmann, 1992.

[48] Harald Ganzinger: Relating Semantic and Proof-Theoretic Concepts for Polynominal
Time Decidability of Uniform Word Problems. In 16th Annual IEEE Symposium on
Logic in Computer Science, Boston, Massachusetts, USA, June 16-19, 2001, Pro-
ceedings, pages 81–90. IEEE Computer Society, 2001. https://doi.org/10.1109/
LICS.2001.932485.

[49] Harald Ganzinger, Viorica Sofronie-Stokkermans, and Uwe Waldmann: Modular
Proof Systems for Partial Functions with Weak Equality. In David A. Basin and
Michaël Rusinowitch (editors): Automated Reasoning - Second International Joint
Conference, IJCAR 2004, Cork, Ireland, July 4-8, 2004, Proceedings, volume 3097
of Lecture Notes in Computer Science, pages 168–182. Springer, 2004.

171

https://doi.org/10.1007/s10817-020-09543-2
https://doi.org/10.1007/s10817-020-09543-2
http://elib.ub.uni-passau.de/opus/volltexte/2001/6/index.html
http://elib.ub.uni-passau.de/opus/volltexte/2001/6/index.html
https://doi.org/10.1023/A:1006031329384
https://doi.org/10.1007/978-1-4612-2360-3
https://proceedings.kr.org/2022/16/
https://doi.org/10.1109/LICS.2001.932485
https://doi.org/10.1109/LICS.2001.932485

[50] Harald Ganzinger, Viorica Sofronie-Stokkermans, and Uwe Waldmann: Modular
proof systems for partial functions with Evans equality. Inf. Comput., 204(10):1453–
1492, 2006.

[51] Silvio Ghilardi: Model-Theoretic Methods in Combined Constraint Satisfiabili-
ty. J. Autom. Reason., 33(3-4):221–249, 2004. https://doi.org/10.1007/
s10817-004-6241-5.

[52] Silvio Ghilardi, Alessandro Gianola, and Deepak Kapur: Uniform Interpolants in
EUF: Algorithms using DAG-representations. Log. Methods Comput. Sci., 18(2),
2022. https://doi.org/10.46298/lmcs-18(2:2)2022.

[53] Silvio Ghilardi and Silvio Ranise: Backward Reachability of Array-based Systems by
SMT solving: Termination and Invariant Synthesis. Logical Methods in Computer
Science, 6(4), 2010.

[54] Robert Givan and David A. McAllester: New Results on Local Inference Relations.
In Bernhard Nebel, Charles Rich, and William R. Swartout (editors): Proceedings
of the 3rd International Conference on Principles of Knowledge Representation and
Reasoning (KR’92). Cambridge, MA, USA, October 25-29, 1992, pages 403–412.
Morgan Kaufmann, 1992.

[55] Robert Givan and David A. McAllester: Polynomial-time Computation via Local
Inference Relations. CoRR, cs.LO/0007020, 2000. https://arxiv.org/abs/cs/
0007020.

[56] Bernhard Gleiss, Laura Kovács, and Simon Robillard: Loop Analysis by Quantifica-
tion over Iterations. In Gilles Barthe, Geoff Sutcliffe, and Margus Veanes (editors):
LPAR-22. 22nd International Conference on Logic for Programming, Artificial Intel-
ligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, volume 57 of EPiC
Series in Computing, pages 381–399. EasyChair, 2018.

[57] Arie Gurfinkel, Sharon Shoham, and Yakir Vizel: Quantifiers on Demand. In Shuve-
ndu K. Lahiri and Chao Wang (editors): Automated Technology for Verification and
Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA, USA, Oc-
tober 7-10, 2018, Proceedings, volume 11138 of Lecture Notes in Computer Science,
pages 248–266. Springer, 2018.

[58] Reiko Heckel, Leen Lambers, and Maryam Ghaffari Saadat: Analysis of Graph Trans-
formation Systems: Native vs Translation-based Techniques. In Rachid Echahed and
Detlef Plump (editors): Proceedings Tenth International Workshop on Graph Com-
putation Models, GCM@STAF 2019, Eindhoven, The Netherlands, 17th July 2019,
volume 309 of EPTCS, pages 1–22, 2019. https://doi.org/10.4204/EPTCS.309.1.

[59] Lawrence J. Henschen and Larry Wos: Unit Refutations and Horn Sets. J. ACM,
21(4):590–605, 1974. https://doi.org/10.1145/321850.321857.

[60] Krystof Hoder, Laura Kovács, and Andrei Voronkov: Interpolation and Symbol Eli-
mination in Vampire. In Jürgen Giesl and Reiner Hähnle (editors): Automated
Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July
16-19, 2010. Proceedings, volume 6173 of Lecture Notes in Computer Science, pages
188–195. Springer, 2010.

[61] Wilfrid Hodges: Model theory, volume 42 of Encyclopedia of mathematics and its
applications. Cambridge University Press, 1993, ISBN 978-0-521-30442-9.

172

https://doi.org/10.1007/s10817-004-6241-5
https://doi.org/10.1007/s10817-004-6241-5
https://doi.org/10.46298/lmcs-18(2:2)2022
https://arxiv.org/abs/cs/0007020
https://arxiv.org/abs/cs/0007020
https://doi.org/10.4204/EPTCS.309.1
https://doi.org/10.1145/321850.321857

[62] Matthias Horbach and Viorica Sofronie-Stokkermans: Obtaining Finite Local Theory
Axiomatizations via Saturation. In Pascal Fontaine, Christophe Ringeissen, and Re-
nate A. Schmidt (editors): Frontiers of Combining Systems - 9th International Sym-
posium, FroCoS 2013, Nancy, France, September 18-20, 2013. Proceedings, volume
8152 of Lecture Notes in Computer Science, pages 198–213. Springer, 2013.

[63] Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans: On Local Re-
asoning in Verification. In C. R. Ramakrishnan and Jakob Rehof (editors): Tools
and Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theo-
ry and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 265–
281. Springer, 2008.

[64] Carsten Ihlemann and Viorica Sofronie-Stokkermans: On Hierarchical Reasoning in
Combinations of Theories. In Jürgen Giesl and Reiner Hähnle (editors): Automated
Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July
16-19, 2010. Proceedings, volume 6173 of Lecture Notes in Computer Science, pages
30–45. Springer, 2010.

[65] Carsten Ihlemann and Viorica Sofronie-Stokkermans: System Description: H-PILoT
(Version 1.9). CoRR, abs/1009.0673, 2010. http://arxiv.org/abs/1009.0673.

[66] Swen Jacobs and Viktor Kuncak: Towards Complete Reasoning about Axiomatic Spe-
cifications. In Ranjit Jhala and David A. Schmidt (editors): Verification, Model
Checking, and Abstract Interpretation - 12th International Conference, VMCAI 2011,
Austin, TX, USA, January 23-25, 2011. Proceedings, volume 6538 of Lecture Notes
in Computer Science, pages 278–293. Springer, 2011.

[67] Deepak Kapur: A Quantifier-Elimination Based Heuristic for Automatically Genera-
ting Inductive Assertions for Programs. J. Systems Science & Complexity, 19(3):307–
330, 2006.

[68] Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba: Interpolation for data
structures. In Michal Young and Premkumar T. Devanbu (editors): Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2006, Portland, Oregon, USA, November 5-11, 2006, pages 105–
116. ACM, 2006.

[69] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky, and Sha-
ron Shoham: Property-Directed Inference of Universal Invariants or Proving Their
Absence. J. ACM, 64(1):7:1–7:33, 2017.

[70] Brad Karp and H. T. Kung: GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks. In Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, pages 243–254, 2000.

[71] Boris Konev, Dirk Walther, and Frank Wolter: Forgetting and Uniform Interpola-
tion in Large-Scale Description Logic Terminologies. In Craig Boutilier (editor):
IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 830–835, 2009.
http://ijcai.org/Proceedings/09/Papers/142.pdf.

173

http://arxiv.org/abs/1009.0673
http://ijcai.org/Proceedings/09/Papers/142.pdf

[72] Laura Kovács and Andrei Voronkov: Finding Loop Invariants for Programs over
Arrays Using a Theorem Prover. In Marsha Chechik and Martin Wirsing (editors):
Fundamental Approaches to Software Engineering, 12th International Conference,
FASE 2009, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5503
of Lecture Notes in Computer Science, pages 470–485. Springer, 2009.

[73] Laura Kovács and Andrei Voronkov: Interpolation and Symbol Elimination. In Renate
A. Schmidt (editor): Automated Deduction - CADE-22, 22nd International Confe-
rence on Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings,
volume 5663 of Lecture Notes in Computer Science, pages 199–213. Springer, 2009.

[74] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger: Ad hoc networks beyond unit
disk graphs. Wireless Networks, 14(5):715–729, Oct 2008, ISSN 1022-0038.

[75] Carsten Lutz, Inanç Seylan, and Frank Wolter: An Automata-Theoretic Approach
to Uniform Interpolation and Approximation in the Description Logic EL. In
Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith (editors): Principles of
Knowledge Representation and Reasoning: Proceedings of the Thirteenth Interna-
tional Conference, KR 2012, Rome, Italy, June 10-14, 2012. AAAI Press, 2012.
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4511.

[76] Carsten Lutz, Inanç Seylan, and Frank Wolter: The Data Complexity of Ontology-
Mediated Queries with Closed Predicates. Log. Methods Comput. Sci., 15(3), 2019.
https://doi.org/10.23638/LMCS-15(3:23)2019.

[77] Philipp Marohn: Verifikation und Constraint-Generierung in parametrischen Syste-
men. Bachelor’s thesis, Universität Koblenz-Landau, Deutschland, 2021.

[78] Philipp Marohn and Viorica Sofronie-Stokkermans: SEH-PILoT: A System for
Property-Directed Symbol Elimination - Work in Progress (Short Paper). In Re-
nate A. Schmidt, Christoph Wernhard, and Yizheng Zhao (editors): Proceedings
of the Second Workshop on Second-Order Quantifier Elimination and Related To-
pics (SOQE 2021) associated with the 18th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2021), Online Event, November
4, 2021, volume 3009 of CEUR Workshop Proceedings, pages 75–82. CEUR-WS.org,
2021. http://ceur-ws.org/Vol-3009/short2.pdf.

[79] Leonardo Mendonça de Moura and Nikolaj S. Bjørner: Z3: An Efficient SMT Solver.
In C. R. Ramakrishnan and Jakob Rehof (editors): Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963
of Lecture Notes in Computer Science, pages 337–340. Springer, 2008. https://doi.
org/10.1007/978-3-540-78800-3_24.

[80] Oded Padon, Neil Immerman, Sharon Shoham, Aleksandr Karbyshev, and Mooly
Sagiv: Decidability of inferring inductive invariants. In Rastislav Bodík and Rupak
Majumdar (editors): Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pages 217–231. ACM, 2016.

[81] Dennis Peuter and Viorica Sofronie-Stokkermans: On Inductive Verification and
Synthesis. In Christoph Benzmüller, Xavier Parent, and Alexander Steen (ed-

174

http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4511
https://doi.org/10.23638/LMCS-15(3:23)2019
http://ceur-ws.org/Vol-3009/short2.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

itors): Selected Student Contributions and Workshop Papers of LuxLogAI 2018,
volume 10 of Kalpa Publications in Computing, pages 1–8. EasyChair, 2018. http:
//www.easychair.org/publications/paper/C1mW.

[82] Dennis Peuter and Viorica Sofronie-Stokkermans: On Invariant Synthesis for Para-
metric Systems. In Pascal Fontaine (editor): Automated Deduction - CADE 27 -
27th International Conference on Automated Deduction, Natal, Brazil, August 27-
30, 2019, Proceedings, volume 11716 of Lecture Notes in Computer Science, pages
385–405. Springer, 2019. https://doi.org/10.1007/978-3-030-29436-6_23.

[83] Dennis Peuter and Viorica Sofronie-Stokkermans: Finding High-Level Explanations
for Subsumption w.r.t. Combinations of CBoxes in EL and EL+. In Stefan Borgwardt
and Thomas Meyer (editors): Proceedings of the 33rd International Workshop on
Description Logics (DL 2020) co-located with the 17th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2020), Online Event
[Rhodes, Greece], September 12th to 14th, 2020, volume 2663 of CEUR Workshop
Proceedings. CEUR-WS.org, 2020. http://ceur-ws.org/Vol-2663/paper-18.pdf.

[84] Dennis Peuter and Viorica Sofronie-Stokkermans: Symbol Elimination and Appli-
cations to Parametric Entailment Problems. In Boris Konev and Giles Reger (edit-
ors): Frontiers of Combining Systems - 13th International Symposium, FroCoS 2021,
Birmingham, UK, September 8-10, 2021, Proceedings, volume 12941 of Lecture No-
tes in Computer Science, pages 43–62. Springer, 2021. https://doi.org/10.1007/
978-3-030-86205-3_3.

[85] Dennis Peuter and Viorica Sofronie-Stokkermans: Symbol Elimination and Applica-
tions to Parametric Entailment Problems (Abstract). In Renate A. Schmidt, Chri-
stoph Wernhard, and Yizheng Zhao (editors): Proceedings of the Second Work-
shop on Second-Order Quantifier Elimination and Related Topics (SOQE 2021)
associated with the 18th International Conference on Principles of Knowledge Re-
presentation and Reasoning (KR 2021), Online Event, November 4, 2021, volume
3009 of CEUR Workshop Proceedings, pages 83–91. CEUR-WS.org, 2021. https:
//ceur-ws.org/Vol-3009/abstract3.pdf.

[86] Dennis Peuter, Viorica Sofronie-Stokkermans, and Sebastian Thunert: On P-
Interpolation in Local Theory Extensions and Applications to the Study of Inter-
polation in the Description Logics EL, EL+. In Brigitte Pientka and Cesare Ti-
nelli (editors): Automated Deduction - CADE 29 - 29th International Conference
on Automated Deduction, Rome, Italy, July 1-4, 2023, Proceedings, volume 14132
of Lecture Notes in Computer Science, pages 419–437. Springer, 2023. https:
//doi.org/10.1007/978-3-031-38499-8_24.

[87] Andrey Rybalchenko and Viorica Sofronie-Stokkermans: Constraint solving for inter-
polation. J. Symb. Comput., 45(11):1212–1233, 2010. https://doi.org/10.1016/
j.jsc.2010.06.005.

[88] Stefan Schlobach and Ronald Cornet: Non-Standard Reasoning Services for the De-
bugging of Description Logic Terminologies. In Georg Gottlob and Toby Walsh (ed-
itors): IJCAI-03, Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pages 355–362. Morgan
Kaufmann, 2003. http://ijcai.org/Proceedings/03/Papers/053.pdf.

175

http://www.easychair.org/publications/paper/C1mW
http://www.easychair.org/publications/paper/C1mW
https://doi.org/10.1007/978-3-030-29436-6_23
http://ceur-ws.org/Vol-2663/paper-18.pdf
https://doi.org/10.1007/978-3-030-86205-3_3
https://doi.org/10.1007/978-3-030-86205-3_3
https://ceur-ws.org/Vol-3009/abstract3.pdf
https://ceur-ws.org/Vol-3009/abstract3.pdf
https://doi.org/10.1007/978-3-031-38499-8_24
https://doi.org/10.1007/978-3-031-38499-8_24
https://doi.org/10.1016/j.jsc.2010.06.005
https://doi.org/10.1016/j.jsc.2010.06.005
http://ijcai.org/Proceedings/03/Papers/053.pdf

[89] Viorica Sofronie-Stokkermans: Decision Procedures for Verification, Slides from Ja-
nuary 9, 2023, Pages 30-31. Lecture. Universität Koblenz.

[90] Viorica Sofronie-Stokkermans: Hierarchic Reasoning in Local Theory Extensions. In
Robert Nieuwenhuis (editor): Automated Deduction - CADE-20, 20th International
Conference on Automated Deduction, Tallinn, Estonia, July 22-27, 2005, Procee-
dings, volume 3632 of Lecture Notes in Computer Science, pages 219–234. Springer,
2005.

[91] Viorica Sofronie-Stokkermans: Interpolation in Local Theory Extensions. In Ulrich
Furbach and Natarajan Shankar (editors): Automated Reasoning, Third Internatio-
nal Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Procee-
dings, volume 4130 of Lecture Notes in Computer Science, pages 235–250. Springer,
2006.

[92] Viorica Sofronie-Stokkermans: Automated theorem proving by resolution in non-
classical logics. Ann. Math. Artif. Intell., 49(1-4):221–252, 2007. https://doi.
org/10.1007/s10472-007-9051-8.

[93] Viorica Sofronie-Stokkermans: Interpolation in Local Theory Extensions. Logical
Methods in Computer Science, 4(4), 2008.

[94] Viorica Sofronie-Stokkermans: Locality and Subsumption Testing in EL and Some
of its Extensions. In Franz Baader, Carsten Lutz, and Boris Motik (editors): Pro-
ceedings of the 21st International Workshop on Description Logics (DL2008), Dres-
den, Germany, May 13-16, 2008, CEUR Workshop Proceedings 353. CEUR-WS.org,
2008. http://ceur-ws.org/Vol-353/Sofronie-Stokkermans.pdf.

[95] Viorica Sofronie-Stokkermans: Locality and subsumption testing in EL and some
of its extensions. In Carlos Areces and Robert Goldblatt (editors): Advances in
Modal Logic 7, papers from the seventh conference on “Advances in Modal Lo-
gic”, pages 315–339. College Publications, 2008. http://www.aiml.net/volumes/
volume7/Sofronie-Stokkermans.pdf.

[96] Viorica Sofronie-Stokkermans: Hierarchical Reasoning for the Verification of Para-
metric Systems. In Jürgen Giesl and Reiner Hähnle (editors): Automated Reasoning,
5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010.
Proceedings, volume 6173 of Lecture Notes in Computer Science, pages 171–187.
Springer, 2010.

[97] Viorica Sofronie-Stokkermans: Hierarchical Reasoning and Model Generation for the
Verification of Parametric Hybrid Systems. In Maria Paola Bonacina (editor): Auto-
mated Deduction - CADE-24 - 24th International Conference on Automated Deduc-
tion, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, volume 7898 of Lecture
Notes in Computer Science, pages 360–376. Springer, 2013.

[98] Viorica Sofronie-Stokkermans: On Interpolation and Symbol Elimination in Theory
Extensions. In Nicola Olivetti and Ashish Tiwari (editors): Automated Reasoning
- 8th International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 -
July 2, 2016, Proceedings, volume 9706 of Lecture Notes in Computer Science, pages
273–289. Springer, 2016.

[99] Viorica Sofronie-Stokkermans: Representation Theorems and Locality for Subsumpti-
on Testing and Interpolation in the Description Logics EL, EL+ and their Extensions

176

https://doi.org/10.1007/s10472-007-9051-8
https://doi.org/10.1007/s10472-007-9051-8
http://ceur-ws.org/Vol-353/Sofronie-Stokkermans.pdf
http://www.aiml.net/volumes/volume7/Sofronie-Stokkermans.pdf
http://www.aiml.net/volumes/volume7/Sofronie-Stokkermans.pdf

with n-ary Roles and Numerical Domains. Fundam. Informaticae, 156(3-4):361–411,
2017. https://doi.org/10.3233/FI-2017-1612.

[100] Viorica Sofronie-Stokkermans: On Interpolation and Symbol Elimination in Theory
Extensions. Logical Methods in Computer Science, Volume 14, Issue 3, September
2018. https://lmcs.episciences.org/4848.

[101] Viorica Sofronie-Stokkermans and Carsten Ihlemann: Automated Reasoning in So-
me Local Extensions of Ordered Structures. In 37th International Symposium on
Multiple-Valued Logic, ISMVL 2007, 13-16 May 2007, Oslo, Norway, page 1. IEEE
Computer Society, 2007. https://doi.org/10.1109/ISMVL.2007.10.

[102] Kent A. Spackman: Normal forms for description logic expressions of clini-
cal concepts in SNOMED RT. In AMIA 2001, American Medical Informa-
tics Association Annual Symposium, Washington, DC, USA, November 3-7,
2001. AMIA, 2001. http://knowledge.amia.org/amia-55142-a2001a-1.597057/
t-001-1.599654/f-001-1.599655/a-126-1.599761/a-127-1.599758.

[103] Kent A. Spackman, Keith E. Campbell, and Roger A. Côté: SNOMED RT: a
reference terminology for health care. In AMIA 1997, American Medical In-
formatics Association Annual Symposium, Nashville, TN, USA, October 25-29,
1997. AMIA, 1997. http://knowledge.amia.org/amia-55142-a1997a-1.585351/
t-001-1.587519/f-001-1.587520/a-127-1.587635/a-128-1.587632.

[104] Thomas Sturm: Selected Topics in Automated Reasoning. Lecture, Juni 2011. Max-
Planck-Institut für Informatik, Saarbrücken.

[105] Thomas Sturm: Thirty Years of Virtual Substitution: Foundations, Techniques, Ap-
plications. In Manuel Kauers, Alexey Ovchinnikov, and Éric Schost (editors): Pro-
ceedings of the 2018 ACM on International Symposium on Symbolic and Algebraic
Computation, ISSAC 2018, New York, NY, USA, July 16-19, 2018, pages 11–16.
ACM, 2018. https://doi.org/10.1145/3208976.3209030.

[106] Boontawee Suntisrivaraporn: Polynomial time reasoning support for design and main-
tenance of large-scale biomedical ontologies. PhD thesis, Dresden University of
Technology, Germany, 2009. http://hsss.slub-dresden.de/deds-access/hsss.
urlmapping.MappingServlet?id=1233830966436-5928.

[107] Alfred Tarski: A Decision Method for Elementary Algebra and Geometry. RAND
Corporation, 1948.

[108] Sebastian Thunert: Automatization of Computing High-Level Explanations for Sub-
sumptions in EL and EL+. Master’s thesis, Universität Koblenz-Landau, Deutsch-
land, 2021.

[109] Marco Voigt: Decidable fragments of first-order logic and of first-order linear arithme-
tic with uninterpreted predicates. PhD thesis, Saarland University, Saarbrücken, Ger-
many, 2019. https://publikationen.sulb.uni-saarland.de/handle/20.500.
11880/27767.

[110] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin
Suda, and Patrick Wischnewski: SPASS Version 3.5. In Renate A. Schmidt (ed-
itor): Automated Deduction - CADE-22, 22nd International Conference on Auto-
mated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, volume 5663

177

https://doi.org/10.3233/FI-2017-1612
https://lmcs.episciences.org/4848
https://doi.org/10.1109/ISMVL.2007.10
http://knowledge.amia.org/amia-55142-a2001a-1.597057/t-001-1.599654/f-001-1.599655/a-126-1.599761/a-127-1.599758
http://knowledge.amia.org/amia-55142-a2001a-1.597057/t-001-1.599654/f-001-1.599655/a-126-1.599761/a-127-1.599758
http://knowledge.amia.org/amia-55142-a1997a-1.585351/t-001-1.587519/f-001-1.587520/a-127-1.587635/a-128-1.587632
http://knowledge.amia.org/amia-55142-a1997a-1.585351/t-001-1.587519/f-001-1.587520/a-127-1.587635/a-128-1.587632
https://doi.org/10.1145/3208976.3209030
http://hsss.slub-dresden.de/deds-access/hsss.urlmapping.MappingServlet?id=1233830966436-5928
http://hsss.slub-dresden.de/deds-access/hsss.urlmapping.MappingServlet?id=1233830966436-5928
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/27767
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/27767

of Lecture Notes in Computer Science, pages 140–145. Springer, 2009. https:
//doi.org/10.1007/978-3-642-02959-2_10.

[111] Volker Weispfenning: The Complexity of Linear Problems in Fields. Journal of Sym-
bolic Computation, (5):3–27, 1988.

[112] Volker Weispfenning: Quantifier Elimination for Real Algebra - the Quadratic Case
and Beyond. Appl. Algebra Eng. Commun. Comput., 8(2):85–101, 1997. https:
//doi.org/10.1007/s002000050055.

[113] Greta Yorsh and Madanlal Musuvathi: A Combination Method for Generating In-
terpolants. In Robert Nieuwenhuis (editor): Automated Deduction - CADE-20, 20th
International Conference on Automated Deduction, Tallinn, Estonia, July 22-27,
2005, Proceedings, volume 3632 of Lecture Notes in Computer Science, pages 353–
368. Springer, 2005.

178

https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/s002000050055
https://doi.org/10.1007/s002000050055

Curriculum Vitae

Personal Data
——————————————————————————————————
Name:

Address:

E-Mail:

Date of Birth:

Citizenship:

Homepage:

Dennis Peuter

Universität Koblenz, Universitätsstraße 1,
56070 Koblenz

dpeuter@uni-koblenz.de

20.07.1987

German

https://userpages.uni-koblenz.de/∼dpeuter/

Academic Positions
——————————————————————————————————
since Feb 2017 Research and teaching assistant at Universität

Koblenz, Institute for Computer Science, work-
ing group „Formal Methods and Theoretical Com-
puter Science“ led by Prof. Dr. Viorica Sofronie-
Stokkermans

Education
——————————————————————————————————
2009 – 2016

1998 – 2007

Bachelor and Master of Education with subjects
computer science and mathematics, Universität
Koblenz-Landau, Koblenz

Abitur, Integrierte Gesamtschule Kastellaun

Teaching
——————————————————————————————————
since SS 2017

since WS 2017/2018

since SS 2018

Instructor for Exercises in "Grundlagen der theo-
retischen Informatik"

Instructor for Exercises in "Vertiefung Theo-
retische Informatik"

Assistant for Seminar "Decision Procedures
and Applications"

Publications
——————————————————————————————————

• D. Peuter and V. Sofronie-Stokkermans: On Inductive Verification and
Synthesis. In Selected Student Contributions and Workshop Papers of
LuxLogAI 2018, volume 10 of Kalpa Publications in Computing, pages
1-8. EasyChair, 2018.

• D. Peuter and V. Sofronie-Stokkermans: On Invariant Synthesis for
Parametric Systems. In Proceedings of the 27th International Confer-
ence on Automated Deduction (CADE-27), volume 11716 of Lecture
Notes in Computer Science, pages 385-405. Springer, 2019.

• D. Peuter and V. Sofronie-Stokkermans: Finding High-Level Explana-
tions for Subsumption w.r.t. Combinations of CBoxes in EL and EL+.
In Proceedings of the 33rd International Workshop on Description
Logic (DL 2020) co-located with the 17th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2020),
volume 2663 of CEUR Workshop Proceedings. CEUR-WS.org, 2020.

• L. Böltz, H. Frey, D. Peuter, and V. Sofronie-Stokkermans: On Testing
Containedness Between Geometric Graph Classes using Second-order
Quantifier Elimination and Hierarchical Reasoning (Short Paper).
In: Proceedings of the Second Workshop on Second-Order Quantifier
Elimination and Related Topics (SOQE 2021) associated with the 18th
International Conference on Principles of Knowledge Representation
and Reasoning (KR 2021), volume 3009 of CEUR Workshop Proceed-
ings, pages 37-45. CEUR-WS.org, 2021.

• D. Peuter and V. Sofronie-Stokkermans: Symbol Elimination and
Applications to Parametric Entailment Problems (Abstract). In
Proceedings of the Second Workshop on Second-Order Quantifier
Elimination and Related Topics (SOQE 2021) associated with the 18th
International Conference on Principles of Knowledge Representation
and Reasoning (KR 2021), 2021, volume 3009 of CEUR Workshop
Proceedings, pages 83-91. CEUR-WS.org, 2021.

• D. Peuter and V. Sofronie-Stokkermans: Symbol Elimination and
Applications to Parametric Entailment Problems. In Proceedings of
the 13th International Symposium on Frontiers of Combining Systems
(FroCoS 2021), volume 12941 of Lecture Notes in Computer Science,
pages 43-62. Springer, 2021.

• D. Peuter, V. Sofronie-Stokkermans, and S. Thunert: On P -Interpola-
tion in Local Theory Extensions and Applications to the Study of Inter-
polation in the Description Logics EL, EL+. In: Proceedings of the 29th
International Conference on Automated Deduction (CADE-29), volume
14132 of Lecture Notes in Computer Science, pages 419-437. Springer,
2023.

180

	Introduction
	Illustration
	Related Work
	Contributions of the Thesis
	Publications
	Structure of the Thesis

	Preliminaries
	First-order Logic
	Syntax and Semantics
	Proof Calculi and Interpolation

	Theories
	Local Theory Extensions
	Recognizing Local Theory Extensions
	Hierarchical Reasoning in Local Theory Extensions

	Quantifier Elimination
	Real Quantifier Elimination
	Quantifier Elimination in Theories with Equality

	Provers

	Symbol Elimination
	Quantifier Elimination in Combinations of Theories
	Symbol Elimination in Theory Extensions
	Improvement of the Algorithm
	Implementation of the Algorithm

	Verification of Parametric Systems
	Parametric Systems and Problems Related to Their Verification
	Invariant Strengthening Algorithm
	Correctness

	Refinements
	Applying Quantifier Elimination on Shorter Formulae
	Avoiding Some Conditions
	Termination

	Implementation
	Conclusion
	Future Work

	Finding Explanations in EL+
	The Description Logics EL and EL+
	P-Interpolation Property
	≤-Interpolation for High-Level Explanations
	Implementation and Tests
	Conclusion
	Future Work

	Reasoning About Classes of Graphs
	Locality of Theory Extensions Involving Distances
	Graph Classes Related to Planarity Conditions
	Proof Tasks
	Checking Graph Class Inclusion for Simple Graph Classes

	Graph Classes Obtained by Transformations
	Conclusion
	Future Work

	Conclusion
	Bibliography

