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Zusammenfassung

Künstliche Intelligenz (KI) bestimmt in zunehmendem Maße, wie unsere täglichen
Erfahrungen gestaltet werden. Der weit verbreitete Einsatz von KI-Modellen in ver-
schiedenen Bereichen hat Bedenken hinsichtlich möglicher Verzerrungen in diesen
Modellen geweckt und zu einer Forderung nach mehr Transparenz und Interpre-
tierbarkeit geführt. Die Herausforderungen bei der Interpretation komplexer ma-
schineller Lernmodelle haben KI-Forscher und -Praktiker dazu veranlasst, ihren
Schwerpunkt auf erklärbare KI (Explainable AI, XAI) zu verlagern, um das Ver-
ständnis zu verbessern und das Vertrauen in diese Modelle zu stärken, selbst wenn
sie für umfangreiche Anwendungen eingesetzt werden.

Das Hauptziel dieser Arbeit ist es, die verschiedenen Faktoren zu untersuchen,
die zum Energieverbrauch von Gebäuden beitragen, und Modelle zu entwickeln,
die den Energieverbrauch von Gebäuden vorhersagen und gleichzeitig den Ent-
scheidungsprozess dieser Algorithmen erklären. Der in dieser Arbeit verwendete
Datensatz besteht aus Variablen, die sich auf Gebäudeeigenschaften, Klima und
Wetterbedingungen in verschiedenen Regionen beziehen. Genaue Vorhersagen des
Energieverbrauchs sind wichtig, um politischen Entscheidungsträgern dabei zu hel-
fen, Initiativen zur Gebäudesanierung strategisch auszurichten und dadurch eine
optimale Reduzierung der Treibhausgasemissionen zu erreichen.

Die Ergebnisse dieser Studie zeigen, dass der Random-Forest-Algorithmus (RF)
im Vergleich zu anderen Algorithmen des maschinellen Lernens die genauesten
Vorhersagen liefert. Zu den wichtigsten Treibern des Energieverbrauchs, die durch
XAI-Techniken wie SHAP und LIME identifiziert wurden, gehören das Energy-Star-
Rating, der Gebäudetyp und die Grundfläche. Diese XAI-Methoden trugen dazu
bei, die Interpretierbarkeit der Modelle zu verbessern, so dass sie auch für nicht
fachkundige Nutzer wie Gebäudemanager und politische Entscheidungsträger leich-
ter zugänglich sind. Durch den Einsatz von maschinellem Lernen und XAI bietet
diese Forschung einen transparenten und umsetzbaren Rahmen für die Optimie-
rung der Energieeffizienz von Gebäuden und die Unterstützung eines nachhaltigen
Energiemanagements.

Abstract

Artificial Intelligence (AI) is increasingly guiding how our daily experiences are
shaped. The widespread use of AI models across various domains has raised con-
cerns about potential biases in these models and has led to a demand for greater
transparency and interpretability. The challenges of interpreting complex machine
learning models have prompted AI researchers and practitioners to shift their focus
towards explainable AI (XAI), seeking to enhance understanding and build trust in
these models even when applied to large-scale applications.
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The primary goal of this thesis is to examine the diverse factors contributing to
building energy usage and develop models that predict building energy consump-
tion while explaining the decision-making process of these algorithms. The dataset
used in this research consists of variables related to building characteristics, climate,
and weather conditions across different regions. Accurate predictions of energy
consumption are important for helping policymakers to strategically target build-
ing renovation initiatives and thereby achieve optimal reductions in greenhouse gas
emissions.

The findings of this study demonstrate that the Random Forest (RF) algorithm
provided the most accurate predictions in comparison with other boosting machine
learning algorithms. Key drivers of energy consumption identified through XAI
techniques such as SHAP and LIME include energy star rating, facility type, and
floor area. These XAI methods helped enhance the interpretability of the mod-
els, making them more accessible for non-expert users, such as building managers
and policymakers. By leveraging machine learning and XAI, this research provides
a transparent and actionable framework for optimizing building energy efficiency
and supporting sustainable energy management.
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1 Introduction

Climate change is a complex and pressing issue that requires both mitigation and
adaptation. Mitigation involves reducing greenhouse gas emissions, while adapta-
tion involves preparing for the unavoidable consequences of climate change [44].
This requires changes in electricity and heating systems, ways of transport, indus-
tries and buildings to address climate change. According to the International Energy
Agency (IEA) [31], buildings, in particular, are responsible for a significant portion
of global energy-related and process-related CO2 emissions while buildings from
construction to demolition were responsible for 37 percent of global energy-related
and process-related CO2 emissions in 2020. However, it is possible to reduce the
energy consumption of buildings by implementing retrofitted and modern sustain-
able neighbourhoods [45]. For instance, retrofitted buildings can reduce heating
and cooling energy requirements by 50-90 percent [44]. Not only do these energy-
efficient measures reduce costs, but they also improve indoor air quality and main-
tain the building’s functionality.
Accurate and interpretable prediction of building energy consumption holds im-
mense potential for optimizing energy efficiency, reducing costs, and contributing to
sustainable development. Traditional prediction models often lack in interpretabil-
ity, hindering stakeholder understanding and trust in their recommendations. Ex-
plainable Artificial Intelligence (XAI) techniques offer a promising solution by un-
veiling the "why" behind predictions, fostering informed decision-making and tar-
geted interventions. To understand how to make buildings more energy efficient,
WiDS Datathon dataset [33] created by Climate Change AI and Lawrence Berke-
ley National Laboratory is used in this research. This dataset includes information
about building characteristics, climate, and weather. This data is used to create an
AI model that can predict how much energy (Heating and Electrical) a building will
consume. The AI model used here would be explained using various Explainable
AI techniques. Explainability in machine learning refers to the process of explaining
to a human why and how a machine learning model made a decision [1]. It is the
process of analyzing machine learning model decisions and results to understand
the reasoning behind the system’s decision [11]. Model explainability makes the al-
gorithm’s decision-making process transparent to humans [1]. This is particularly
important with ’black box’ machine learning models, which develop and learn di-
rectly from the data without human supervision or guidance [46]. Many machine
learning models, despite achieving high levels of precision, are not easily under-
standable for how a recommendation is made [21]. In case of deep learning models
this is especially required to be addressed. As humans, it should must be fully un-
derstand how decisions are being made so that the decisions of AI systems can be
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trusted.

1.1 Motivation

The necessity of overcoming climate change cannot be overemphasized. At the
present moment, this issue stands as one of the most pressing and all-encompassing
challenges faced by humanity at large. These impacts can now be felt across the
globe, evidenced by intensifying adverse weather events, sea-level rise, and dis-
ruptions to ecosystems and human communities alike. The window of meaningful
opportunities is closing rapidly, and there has probably never been more need to
design final, overarching strategies that reduce gas emissions into the atmosphere.

In this context, the human-built environment emerges as a pivotal domain for con-
sideration. Structures make a significant contribution to global Carbon emissions in
their development, operations, and maintenance. They are particularly responsi-
ble for about 37 percent of global energy-related and process-related CO2 emissions
[49]. This fact underlines how much buildings contribute to the greater climate cri-
sis. A very high proportion of the overall energy use in the world is attributed to the
energy used for heating, cooling, lighting, or operational requirements of buildings.
As such, any serious endeavor to mitigate climate change has to involve actions that
would considerably reduce the energy footprint of buildings.

There is huge potential to save in building energy consumption. The energy sav-
ings could be very high if these measures include such actions as retrofitting existing
structures with advanced technologies and renewable energy sources, upgrading
insulation, and improving heating and cooling systems. Also, emphasis on sustain-
ability in new constructions directly from the design stage can further help reduce
overall energy demand. Realizing the full potential of these energy-saving measures
would require more than just the application of advanced technologies. This is also
a call for the availability of effective tools predicting, managing, and ensuring the
optimum utilization of energy in buildings.

This is important for two major reasons: robust prediction of energy use and a
need for these predictions to be interpretable and actionable by an eclectic range of
stakeholder types.

Explainable Artificial Intelligence (XAI) is one of the most promising solutions
and techniques within it’s domain are being developed with the aim of render-
ing AI models’ decision-making processes transparent and understandable [25]. By
explaining how AI models arrive at their decisions, XAI closes the gap between
technically opaque machine learning algorithms and users in the loop [2]. XAI is
able to transform those opaque predictions into actionable insights that building
managers, policymakers, and other nonexpert users can confidently use to guide
decision-making [5]. The use of XAI could go beyond just improving the accuracy
of energy consumption predictions. More usability increases with the human in-
terpretability of such predictions. These, in turn, increase usability because when
stakeholders can interpret and trust the predictions from AI models, most probably
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they undertake informed and effective actions to improve energy efficiency [19]. For
instance, this is expected to lead to an increasing uptake of energy-saving measures
and consequently contribute to the global effort to mitigate climate change [6]. The
power of XAI is enormous and must be applied to overcome the challenges faced
in building energy. Focusing on the main drivers of energy use in buildings, the
application of XAI techniques aims at developing tools and insights to sustain more
sustainable building practices. The goal is to provide stakeholders with the infor-
mation they need to make decisions that not only reduce energy consumption but
also contribute to the broader objective of combating climate change. In doing so,
this research seeks to play a role in the global movement towards a more sustainable
and resilient future.

1.2 Research Objectives

Based on the need of understanding the ML models this thesis aims to:

• Evaluate the accuracy and interpretability of Machine Learning (ML) mod-
els for building energy prediction: This objective assesses the effectiveness of
various ML algorithms in predicting overall energy consumption using both
heating and electrical data. The study incorporates building characteristics
and external factors for comprehensive analysis. The performance of different
models will be compared, emphasizing the role of XAI techniques in facilitat-
ing interpretation and understanding.

• Identify key drivers of building energy consumption through XAI: Utilizing
feature attribution methods within XAI frameworks, this objective delves into
identifying the most impactful variables influencing energy use in buildings.
The research will explore the influence of diverse factors, including build-
ing characteristics (size, age, insulation quality) and external factors (weather,
wind speed) on energy consumption, leveraging the insights provided by XAI
for deeper understanding.

• Enhance the usability of energy prediction models for non-expert users with
XAI: This objective investigates how XAI techniques can be employed to im-
prove the interpretability and usability of energy prediction models for stake-
holders without technical expertise. By addressing the user-centric aspect, the
research intends to bridge the gap between technical predictions and readily
actionable insights, thereby empowering effective decision-making and policy
formulation in promoting energy efficiency.
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2 Literature Review

As machine learning models become more complex, this has led to an increase in
research on Explainable AI (XAI). It is particularly crucial in the field of site energy
usage prediction, as it allows users to pinpoint the key factors driving their energy
consumption and take proactive steps to improve efficiency.

2.1 Related Work

Sakkas et al’s [53] research delves into Explainable Approaches for Forecasting Build-
ing Electricity Consumption. The research highlights the growing importance of
understanding the factors that influence electricity demand, especially as build-
ings increasingly incorporate technologies like electric vehicle charging and smart
grids. The study elucidates the significance of features and forecasting explainabil-
ity through SHAP (SHapley Additive exPlanations) values and Genetic Program-
ming (GP) models. Furthermore, the study emphasizes the potential of counterfac-
tual analysis in decision support, particularly in scenarios where users can modify
indoor conditions like temperature to influence energy consumption. The signifi-
cance of ’indoor temperature’ emerged as a key feature. Overall, the research un-
derscores the significance of model explainability in building energy management
however the narrow scope of the population, and potential biases in the analysis
suggest that further research is needed to validate these findings across different
contexts.
Another research into "Explainable AI for predicting daily household energy us-
ages" by Mohanty et al [43] comprehends the factors influencing household energy
consumption which is crucial for stakeholder trust in smart city initiatives. The
study presents valuable insights by integrating weather data, household character-
istics, and energy usage from London during 2012-2013, highlighting how factors
like temperature and daylight impact energy consumption. In this specific analy-
sis, the Random Forest Regressor model was exclusively trained using daily energy
usage as the independent variable, while all other parameters served as dependent
variables. The model’s performance was evaluated, yielding an MSE of 86.366, an
RMSE of 9.2933, and an R2 score of 0.074. To gain understanding into the model’s
decision-making process, SHAP (SHapley Additive exPlanations) was used as the
sole method. Despite these limitations, the paper contributes to the field by address-
ing the need for explainable AI in energy optimization, though a broader and more
critical examination of existing research would enhance its impact.
Maarif et al’s [41] study, focused on industry energy consumption, incorporates dis-
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tinctive features such as current power factor, current reactive power, and load type.
It offers various insights into the application of advanced machine learning tech-
niques, particularly LSTM, for energy forecasting. Key variables identified for in-
fluencing energy usage are reactive power and time of day, but could benefit from a
more critical analysis of how these factors vary across different industrial environ-
ments. Additionally, while the paper emphasizes the improved accuracy of LSTM
over other models, it does not deeply explore potential limitations such as the com-
putational cost of training LSTM models, especially in larger datasets or more com-
plex industrial scenarios. Although their research explores a unique concept specifi-
cally for industries, incorporating their model evaluation process could be beneficial
for this study.
The study by Pan et al [47] on "Data-driven estimation of building energy consump-
tion with multi-source heterogeneous data," utilizing Seattle’s building energy data
deeply explains the forecasting of building energy usage and highlights the influen-
tial features through the CatBoost model. A key strength of the paper is its focus on
the model’s ability to handle categorical variables and its performance in predicting
energy use intensity compared to traditional methods like Random Forest(RF) and
Gradient Boosting Decision Trees. However, it’s worth noting that the study does
not take into account external factors such as temperature, wind speed, and weather
in its analysis and does not delve deeply into the potential limitations of this model,
such as computational complexity or the need for extensive parameter tuning.
The research on "eXplainable AI (XAI)-Based Input Variable Selection Methodology
for Forecasting Energy Consumption" by Sim et al [54] introduced an XAI-based
methodology for selecting input variables in energy consumption prediction. Gas
consumption data from a diverse 17-story building, including commercial proper-
ties and offices, were examined over one year. The study leveraged SHAP method
to analyze the impact of each input variable on model predictions, facilitating the
selection of optimal variables. These included information regarding time, past en-
ergy consumption and climate data. Based on these variables, energy consump-
tion forecasting models were evaluated and noteworthy results were obtained. The
analysis categorized input variables into Weak, Ambiguous and Strong groups, re-
vealing the effectiveness of the combination of Strong and Ambiguous variables in
enhancing model performance. The research concluded that utilizing high-impact
variables identified through XAI analysis significantly improved energy forecasting
models. Futhermore, the research acknowledges its limited scope due to the fo-
cus on a specific building and a limited set of input variables, encouraging future
studies to investigate the inclusion of socioeconomic variables for various building
types.
Woong C. et al’s [16] research on "Analysis of input parameters for deep learning-
based load prediction for office buildings in different climate zones using eXplain-
able Artificial Intelligence" underscores the need for a substantial amount of sen-
sor data while emphasizing the significance of reducing the associated sensing and
preprocessing costs to encourage the adoption of predictive building energy con-

6



trol systems. To achieve this, the research evaluates the relative importance of input
variables using both global sensitivity analysis (SRC) and explainable AI (XAI) tech-
niques like LIME and SHAP. Notably, the study reveals that, assisted by XAI tech-
niques, accurate deep learning models can be constructed with fewer input vari-
ables compared to the global sensitivity analysis method. SHAP emerges as supe-
rior to LIME in retaining accuracy with fewer essential input variables, making it a
preferred choice for building cost-effective deep learning-based building load pre-
diction systems. The research also highlights the varying impact of input param-
eters, such as outdoor temperature, solar radiation, and time variables, depending
on the specific climate zone, which underscores the importance of localized climate
considerations in model development. However, the study does have some limita-
tions, particularly in its reliance on simulated data rather than real-world empirical
data, which may introduce uncertainties.
The research on "Toward explainable and interpretable building energy modelling:
an explainable artificial intelligence approach" by Zhang et al [59] in the domain
of building energy modeling, quantifies the impact of features and employs Partial
Dependence Plots (PDP) for detailed explanations by the development of model-
agnostic explanation and interpretation modules with a reference building energy
model derived from a substantial dataset. By applying these techniques, the au-
thors provide insights into how different features, such as floor area and building
ID, impact energy consumption, revealing that the relationship between features
and energy usage is not always linear or constant. For example, Building ID dis-
tinguishes buildings based on their structural composition, such as fireproofed steel
or reinforced concrete frames, which influences energy efficiency differently across
building types. This granular understanding is crucial for optimizing energy sys-
tems and making informed decisions in grid management. Noteworthy findings
reveal that feature importance dynamically changes with varying feature values,
providing nuanced insights. The use of surrogate decision trees for interpreting
complex models further demonstrates how localized model interpretations can be
both accurate and intuitive, making the results more accessible to system operators
and building managers. It’s crucial to note that the paper acknowledges the com-
plexity of global building energy models, and while localized interpretations with
local surrogates are realistic and accurate, there may be challenges in capturing all
intricacies.
The research on "Scenario-based prediction of climate change impacts on building
cooling energy consumption with explainable artificial intelligence" by Debaditya
C. et al [12] addresses a critical gap in the field of building energy modeling, pre-
dicting continuous daily building energy consumption for space cooling amid cli-
mate change using an innovative eXplainable Artificial Intelligence (XAI) model.
Integrating XGBoost and SHAP, the model aligns with CMIP6-SSP scenarios, over-
coming limitations of existing morphing-based weather generators. Key findings
highlight a sharp rise in energy consumption after the year 2050, underscoring the
critical need for sustainable pathways moving forward. Regional variations in en-
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ergy savings potential under climate change scenarios are identified, with hotter cli-
mates showing higher absolute savings potential Despite offering valuable insights,
the study acknowledges challenges in long-term predictions and the model’s inter-
pretability, influenced by climate complexities and socioeconomic uncertainties.
The study by Zhang et al [60] on Seattle’s building energy performance data, in-
novatively incorporated urban morphology and building geometry considerations
into assessing building energy performance and greenhouse gas (GHG) emissions.
Using LightGBM and XAI (SHAP), it proved that total gross floor area (GFA) and
natural gas are crucial factors affecting site energy use intensity and GHG emissions.
The LightGBM method outperformed XGBoost, Random Forest, and Support Vec-
tor Regression, offering a more accurate solution for urban planning. Unlike tra-
ditional models, this approach allows for a more accurate estimation of energy use
by considering factors such as urban morphology, building geometry, and physical
features. By improving prediction accuracy by 33.46% over models that only con-
sider building characteristics, this study makes a significant contribution to energy
efficiency planning in urban environments, highlighting the critical role of build-
ing and urban design in sustainable energy management. However, the study ac-
knowledges limitations, suggesting future work on optimization strategies, multi-
objective optimization, and extending the approach to different building types and
cities.
Another study by Wenninger et al [56] found that the QLattice algorithm, while
slightly less accurate than traditional models like Extreme Gradient Boosting (XGB)
and Multiple Linear Regression (MLR), offers a unique advantage in terms of ex-
plainability. The QLattice’s ability to generate simple mathematical expressions al-
lows for easier interpretation of the factors influencing building energy consump-
tion, bridging the gap between complex machine learning models and user-friendly
insights. Additionally, the algorithm showed competitive performance in prediction
accuracy, though it ranked slightly behind the best-performing models. The most
influential factors were the size of the living space, which was the most significant
determinant, and the type of energy source used, such as gas or oil. Additionally, the
thickness of the outer wall insulation and the type of window glazing also played
crucial roles in influencing energy efficiency. The study noted some limitations, in-
cluding the relatively long training times required by the QLattice and the potential
need for further validation across different datasets and building types to fully as-
sess its generalizability. Despite these limitations, the QLattice presents a promising
tool for integrating explainable AI into energy performance predictions, potentially
increasing trust and adoption in real-world applications.
The study by Fan et al [20] presents a novel methodology for explaining and evaluat-
ing data-driven building energy performance models using interpretable machine
learning techniques. The study demonstrates that the use of Local Interpretable
Model-Agnostic Explanations (LIME) allows for detailed local explanations of indi-
vidual predictions, offering insights into the inference mechanisms of the models.
The study also introduces a novel "trust" metric to evaluate the reliability of individ-
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ual predictions. This metric considers both the number and strength of supporting
evidences for each prediction, providing a more nuanced assessment of model per-
formance beyond traditional accuracy metrics. The findings suggest that models
like Support Vector Machines (SVM) and Multi-Layer Perceptrons (MLP) produce
more trustworthy predictions compared to tree-based models like Random Forests
(RF) and Extreme Gradient Boosting (XGB), despite the latter showing higher over-
all accuracy. However, the study has some limitations, including the potential for
low trust values even with acceptable model accuracy, which may complicate the in-
terpretation of results. Additionally, while the methodology enhances interpretabil-
ity, it still relies on complex statistical techniques that may require further simplifi-
cation or validation across different datasets to ensure broader applicability.

2.2 Gaps in Existing Research

The current body of literature on Explainable Artificial Intelligence (XAI) in energy
usage prediction highlights several critical research gaps that need to be addressed.
First, there is a significant gap in the generalizability of XAI models across diverse
contexts. Studies like those by Sakkas et al [53] have focused on specific building
types or geographic regions, which limits the applicability of their findings to other
settings. This lack of broader validation suggests a need for future research to de-
velop XAI models that can be effectively applied across a variety of building types,
climates, and geographic regions, ensuring that the insights derived are universally
relevant.

Another gap is the limited integration of a broader range of environmental fac-
tors in energy consumption models. For instance, while Mohanty et al [43] have
integrated weather data and household characteristics into their models, their focus
has been relatively narrow, considering only specific variables like temperature and
daylight. There is a need to include a wider array of environmental factors—such
as wind speed, humidity, and seasonal variations—in these models to enhance their
predictive accuracy and generalizability across different climates.

Additionally, the computational efficiency and scalability of advanced machine
learning models, such as those used by Maarif et al [41], represent another critical
research gap. Although these models have shown improved accuracy, their high
computational demands limit their practical application, especially in large-scale
industrial settings. Research is needed to develop computationally efficient models
that can scale effectively without compromising accuracy, making XAI more acces-
sible and practical for broader applications.

Furthermore, there is a gap in the development of multi-objective optimization
frameworks in energy forecasting models. Woong C. et al [16] have highlighted
the need for reducing sensing and preprocessing costs in predictive building energy
control systems, but there has been little exploration of strategies that balance these
costs with predictive accuracy. Future research should focus on optimizing for mul-
tiple objectives, such as minimizing data collection costs while maintaining high
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predictive accuracy, to make these systems more economically viable.
The challenges of long-term predictive accuracy amid climate change, as explored

by Debaditya C. et al [12], also reveal a research gap. The uncertainties inherent in
long-term climate projections and the complexities of forecasting over extended pe-
riods require the development of more robust models. These models should account
for a wider range of climate scenarios and socioeconomic factors to improve the re-
liability of long-term energy forecasts.

Finally, enhancing the interpretability and trust in AI models remains a signifi-
cant gap. While Fan et al [20] introduced a trust metric to evaluate the reliability
of AI predictions, the complexity of interpreting these metrics poses a challenge
for practical application. There is a need to develop more intuitive and accessible
interpretability frameworks that can build trust among non-expert users, thereby
increasing the adoption of AI-driven energy management solutions.

2.3 Research Questions

Building upon the identified research gaps, this section outlines the key research
questions that will guide the subsequent investigation. The purpose of these ques-
tions is to address the limitations in the existing body of literature and to explore
new avenues that have not been thoroughly examined. The research questions are
designed to ensure that the study contributes to both theoretical understanding and
practical applications in the field of Explainable Artificial Intelligence (XAI) for en-
ergy consumption forecasting.

Specifically, these questions aim to investigate the generalizability of XAI models
across diverse contexts, the integration of a broader range of environmental factors,
the development of computationally efficient and scalable models, the application
of multi-objective optimization in energy forecasting, the enhancement of long-term
predictive accuracy amid climate change, and the improvement of interpretability
frameworks to build trust among users. By addressing these questions, this research
seeks to fill the gaps in the current literature and provide actionable insights that can
be applied in real-world settings. The following research questions are proposed:

Firstly, most studies fail to integrate heating and electrical energy consumption,
hindering accurate assessments of Total Energy Usage Intensity (EUI). This disre-
gards the significant interdependencies between these energy sources, leading to
limited forecasting.

Secondly, many existing approaches neglect the impact of external factors like
temperature, wind speed, and weather conditions on energy consumption. Ignor-
ing these crucial influences drastically restricts the generalizability and predictive
power of forecasting models.

Thirdly, the limited scope of explainability and reliance on single Explainable AI
technique for interpretation limits the comprehensiveness of understanding energy
consumption patterns. This narrow focus can obscure valuable insights, hindering
effective energy management strategies.
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Following a comprehensive review of previous research and identifying the re-
search gap, this study aims to achieve the following objectives.

• RO1: Assess the accuracy of ML models for overall energy prediction using
both heating and electrical data, while considering external factors along with
the building characteristics, comparing their performance and gaining inter-
pretability through XAI techniques.

• RO2: What are the most influential factors in Building Energy Consumption
according to XAI models? This focuses on using feature attribution methods
in XAI to identify key variables affecting energy consumption in buildings.
For example, different building characteristics like size, age, insulation quality
or the external factors like weather, wind speed etc may be linked with energy
usage, under the interpretation provided by XAI.

• RO3: How can XAI techniques improve the interpretability of Energy Usage
prediction Models for non-expert users? This question investigates how XAI
can make Energy Usage prediction models more understandable for users
without technical expertise, thereby enhancing decision-making and policy
formulation.
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3 Theoretical Background

The advent of Machine Learning (ML) in the energy sector has revolutionized how
energy consumption patterns are analyzed and predicted. ML offers a powerful
toolkit for creating models that capture complex, non-linear relationships between
multiple variables, thus allowing for more accurate predictions in comparison to
traditional statistical methods. These predictions are critical in optimizing energy
usage, managing grid loads, and enabling sustainability initiatives in response to
growing global energy demands.

3.1 Overview of ML Algorithms in the Energy Industry

Traditionally, statistical models such as linear regression and autoregressive inte-
grated moving average (ARIMA) were used for energy demand forecasting [58].
While useful in specific scenarios, these models struggle with the high complex-
ity of modern energy systems, which are influenced by numerous interconnected
factors, including weather conditions, socio-economic activity, and regional infras-
tructure. These traditional methods are limited in capturing non-linear interactions
and often underperform when handling large, diverse datasets [28].

Machine learning approaches, particularly ensemble methods like Random For-
est (RF), XGBoost, and CatBoost, have emerged as robust alternatives, offering sig-
nificant improvements in accuracy and flexibility. A study by Ahmad et al [3] on
comparison of Random Forests and Neural Networks for estimating building en-
ergy use showed that Neural Networks outperformed Random Forests by a small
margin. Nonetheless, any missing data in the application may be handled by the
Random Forest models with ease. Therefore, even with part of the input values
missing, the Random Forests were still able to make correct predictions. Another
research by Cao et al [10] proved random forest and gradient boosting (XGBoost) al-
gorithms better than linear regression, lasso regression and ridge regression. Hence
the decision based ML models were chosen in this research for the prediction task.
Below, these methods are discussed in detail, focusing on their applicability to en-
ergy usage prediction.

3.1.1 Random Forest (RF)

Developed by Breiman [9] Random Forest is a well-established ensemble learning
method that constructs multiple decision trees during training, and combines their
results to improve predictive performance. Each tree Tb(x) in the forest is built from
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a random subset of the training data, and the final prediction is obtained by averag-
ing (in regression tasks) or voting (in classification tasks). This ensemble approach
reduces the risk of overfitting, which is a common issue with individual decision
trees, and increases the overall robustness of the model [9].

Random Forest Formula:

f̂(x) =
1

B

B∑
b=1

Tb(x)

Here, B is the total number of trees, and Tb(x) is the prediction of the b-th deci-
sion tree for input x. Random Forest averages the predictions of all trees, reducing
overfitting and improving generalization by combining multiple weak learners [9].

In energy usage prediction, RF is particularly effective because it can handle high-
dimensional data and does not require extensive data preprocessing. RF is also
robust to outliers and missing data, both of which are common in real-world energy
datasets. The majority of literature forecasted home energy (heat and electricity) us-
age having weather, calendar, and demographic data using decision tree methods
[42]. Random forests are known for their robustness, accuracy, and ability to handle
a variety of data types and their inherent feature importance mechanism offers a
degree of interpretability [3].

Figure 3.1: Random Forest
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3.1.2 XGBoost

XGBoost, short for eXtreme Gradient Boosting, is a scalable, distributed gradient
boosting algorithm designed to optimize both speed and accuracy [14]. Unlike tra-
ditional boosting methods, XGBoost introduces techniques like regularization and
early stopping to prevent overfitting, making it ideal for handling large-scale, noisy
energy datasets. Its ability to leverage parallel processing and its flexibility in han-
dling missing values and categorical features contribute to its popularity in energy
prediction tasks [18].

The prediction of XGBoost for a given input x is [14]:

ŷi =
T∑
t=1

Ft(xi)

where T is the number of trees, and Ft(xi) is the prediction of the t-th tree for
instance xi. The model minimizes the following regularized objective:

L(ϕ) =
n∑

i=1

ℓ(yi, ŷi) +
T∑
t=1

Ω(Ft)

where ℓ(yi, ŷi) is a differentiable loss function (e.g., squared error for regression),
and Ω(Ft) = γT + 1

2λ∥w∥
2 is a regularization term that penalizes the complexity

of the model, with γ controlling the number of leaves, and λ controlling the leaf
weights w.
The evaluation study for assessing Brazil’s energy consumption by Leme et al [36]
confirmed that the Gradient Boosting predictive model performed the best, outper-
forming the other approaches in terms of accuracy.

Another research by Ravinder et al [40] showed that XGBoost outperformed LSTM
and GRU algorithms in phrases of accuracy, in shape to the data, and predictive
power. The smaller errors, better accuracy, and robust in shape of the XGBoost
method make it a beneficial preference for the energy utilization prediction task.

The study by Chakraborty et al [13] on a comprehensive comparison of machine
learning techniques for building energy prediction found that XGBoost consistently
outperformed other models, demonstrating superior accuracy and computational
efficiency. This highlights XGBoost’s potential as a valuable tool for accurately pre-
dicting building energy consumption in real-world applications.
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3.1.3 CatBoost

CatBoost (Categorical Boosting) is a gradient boosting algorithm that improves upon
standard gradient boosting by efficiently handling categorical features and reducing
prediction shift via ordered boosting [50]. The prediction of CatBoost for a given in-
put x is :

f̂(x) =
T∑
t=1

η · Ft(x)

Here, T is the total number of trees, η is the learning rate, and Ft(x) is the predic-
tion of the t-th tree. CatBoost applies ordered boosting, which uses only past data
points to compute gradients at each iteration, preventing data leakage and improv-
ing generalization. It also employs target statistics to encode categorical features
efficiently without overfitting [50].

This characteristic makes it highly suitable for energy prediction tasks where cat-
egorical variables, such as building type, location, and time of day, are prevalent.
CatBoost’s ability to automatically handle categorical variables leads to higher ac-
curacy and efficiency compared to algorithms that require manual encoding [8]. A
research by Bassi et al [8] proved the XGBoost model performed best in comparison
LightGBM, and CatBoost on a synthetic building energy prediction dataset based
on the three key metrics (RMSLE, RN-RMSE (%), R²).

For example, in prediction of building energy consumption with multi-source het-
erogeneous data, CatBoost has shown to outperform other algorithms by effectively
handling mixed types of features, including both continuous and categorical vari-
ables [47]. Its robustness and simplicity of use make it an attractive choice for in-
dustrial applications in energy forecasting.
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Figure 3.2: Catboost

3.2 Explainable AI (XAI) Algorithms for Energy Usage
Prediction

While machine learning models like Random Forest, XGBoost, and CatBoost deliver
high accuracy, their complexity often renders them opaque to end-users. In energy
management, where decision-making involves critical infrastructure and large-scale
investments, understanding why a model makes specific predictions is as important
as the accuracy of the predictions themselves [7]. This need for transparency has led
to the integration of Explainable AI (XAI) algorithms into energy usage prediction
models.

XAI refers to a suite of techniques designed to make machine learning models
more interpretable, thereby providing insights into how models arrive at their deci-
sions. These insights are crucial for fostering trust, especially in industries like en-
ergy, where stakeholders demand explainability to validate the model’s reliability
and fairness [24]. XAI techniques empower stakeholders to understand the key fac-
tors influencing energy consumption, identify potential biases or limitations in the
model, and make informed decisions regarding energy efficiency interventions. In
the context of Site Energy Usage Intensity prediction, several XAI algorithms have
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proven particularly valuable:

3.2.1 SHAP (SHapley Additive exPlanations)

SHAP is one of the most widely adopted XAI algorithms in the energy sector. Based
on cooperative game theory, SHAP assigns a Shapley value to each feature, repre-
senting its contribution to the prediction [38]. SHAP is particularly useful in energy
prediction because it provides both global explanations (overall feature importance
across all predictions) and local explanations (feature importance for individual pre-
dictions).

SHAP values are calculated by considering all possible subsets S of features N ,
excluding feature i. For each subset, the marginal contribution of i is computed
as f(S ∪ {i})− f(S). The SHAP value is a weighted average of these contributions
across all subsets, where the weight |S|!(|N |−|S|−1)!

|N |! ensures fair distribution. The sum
of SHAP values equals the difference between the model’s prediction for an instance
and the average model prediction [38].

SHAP Formula
The SHAP value for a feature i is computed using the following formula:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)]

Explanation:

• ϕi: SHAP value for feature i, showing its contribution.

• S**: Subset of features excluding i.

• f(S ∪ {i})− f(S)**: Marginal contribution of feature i to subset S.

• Weights: |S|!(|N |−|S|−1)!
|N |! ensures fair distribution of contributions across all sub-

sets.

In the research paper by Golafshani et al [22], titled "An Artificial Intelligence
Framework for Predicting Operational Energy Consumption in Office Buildings",
SHAP is utilized as a method for interpreting complex machine learning models.
SHAP provides a comprehensive and consistent framework for explaining individ-
ual predictions by assigning each feature an importance value, based on its contribu-
tion to the model’s output. The paper emphasizes the role of SHAP in identifying
critical variables affecting energy consumption, such as occupancy, external tem-
perature, and equipment usage, which are crucial for making informed decisions in
building management. By using SHAP, the researchers were able to offer insights
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into how specific features influenced the energy consumption predictions of their
model, ensuring greater transparency and trust in the machine learning outputs.

One of the key advantages of SHAP, as highlighted in this study, is its ability to
offer both global and local explanations. This allows building operators and energy
managers not only to understand the general importance of each variable across all
predictions but also to drill down into individual instances to see why a particular
energy consumption forecast was made. SHAP’s foundation in cooperative game
theory ensures that the feature attributions are fair and consistent across predictions,
which is especially important in energy management systems where small changes
in variables can have significant operational impacts. This study effectively bridges
the gap between complex machine learning models and human understanding in
fields like building energy forecasting.

Figure 3.3: SHAP

3.2.2 LIME (Local Interpretable Model-agnostic Explanations)

LIME offers another approach to model interpretability by approximating a com-
plex model with a simpler, interpretable model, such as a linear model or decision
tree, for individual predictions [52]. LIME’s flexibility allows it to be applied across
a wide range of machine learning models, making it a versatile choice for interpret-
ing energy usage predictions.

LIME explains model predictions by fitting an interpretable model g(z) locally around
the instance x being explained. It optimizes the following:
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ξ = argmin
g∈G

L(f, g, πx) + Ω(g)

Here, f is the original model, g is the interpretable local model (e.g., linear),
L(f, g, πx) measures how close g’s predictions are to f ’s in the locality defined by
the kernel function πx around x, and Ω(g) penalizes complexity of g. LIME perturbs
the input data to generate samples and then fits g to these samples weighted by πx,
focusing on local fidelity [52].

In A Survey of Methods for Explaining Black Box Models by Guidotti et al [23],
LIME is introduced as one of the key tools for locally interpreting complex machine
learning models. LIME operates by building a simplified, interpretable model (such
as a linear model) around a particular instance or prediction of interest. It achieves
this by perturbing the input data around that instance, generating synthetic exam-
ples, and observing how the black-box model responds. This localized explanation
offers insights into why the model made a specific prediction, without needing to
understand the entire global behavior of the model. The method is highly flexible
since it can be applied to any kind of model, regardless of its architecture, mak-
ing it popular for explaining black-box models like neural networks and gradient-
boosting models.

The paper also highlights some trade-offs when using LIME. One notable draw-
back is its reliance on synthetic data perturbation, which can sometimes lead to in-
stability in explanations, particularly in regions where the model’s decision bound-
ary is complex. Moreover, LIME’s approach can be computationally intensive be-
cause it requires generating and processing several new instances around the input
to probe the model’s behavior. Despite these limitations, LIME remains widely used
due to its model-agnostic nature and effectiveness in generating local explanations
that are easily interpretable by non-expert users. This has made it particularly useful
in domains such as healthcare, finance, and legal applications, where understanding
individual predictions is critical for trust and decision-making.
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Figure 3.4: LIME

3.3 Evaluation

3.3.1 ML Evaluation Metrics

Model performance was rigorously evaluated using established metrics such as
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of
determination (R²), providing a quantitative assessment of the predictive accuracy
of each model on the unseen test set.

RMSE, a widely adopted measure of the discrepancies between predicted and
actual values, quantifies the magnitude of errors and is particularly sensitive to large
deviations [30].

The Root Mean Square Error (RMSE) is calculated as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2

where yi represents the actual values, ŷi represents the predicted values, and n is
the number of observations [26].
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MAE, on the other hand, provides a straightforward average of the absolute er-
rors, offering a more interpretable measure of prediction accuracy [57].

The Mean Absolute Error (MAE) is calculated as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi|

where yi represents the actual values, ŷi represents the predicted values, and n is
the number of observations [51].

Lastly, R², also known as the coefficient of determination, indicates the proportion
of variance in the target variable explained by the model, serving as a comprehen-
sive measure of overall model fit [34].

The Coefficient of Determination (R²) is calculated using the formula:

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2

where yi are the actual values, ŷi are the predicted values, ȳ is the mean of the
actual values, and n is the number of observations [15].

3.3.2 XAI Evaluation Metrics

According to Zhou et al [61], to determine if an application’s explainability is
achieved, one could compare the available explanation methods and identify the
preferred explanations from the comparison. The research "Evaluating the quality
of machine learning explanations: A survey on methods and metrics" [61] explored
the numerous explanation methods presently available and categorized in two main
categories as; "Human - Centred Evaluation (HCE)" and "Functionality - Grounded
Explanation (FGE)". While HCE offer valuable insights by directly involving users,
they rely on subjective measures like trust and confidence, making it difficult to
compare evaluation results objectively. Despite numerous HCE studies, there’s a
lack of standardized approaches, particularly in experimental design and selection
of subjective measures. This inconsistency hinders comparing the quality and ef-
fectiveness of different evaluations. On the other hand FGE techniques focus on
evaluating the effectiveness of explanations for machine learning models based on
their functionality and their alignment with the task or application at hand. Unlike
HCE which relies on user perception and trust, FGE techniques leverage quantita-
tive metrics and domain knowledge for assessment. Therefore this study will utilise
the Functionality - Grounded Explanation techniques.

1. Task Fidelity:

In machine learning, task fidelity refers to how accurately a simpler, inter-
pretable model approximates the predictions of a more complex, black-box
model. Task fidelity is quantified as the proportion of times the local explana-
tion model produces predictions that match or closely resemble the black-box
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model’s predictions [48].

Calculating Task Fidelity:
To compute task fidelity, the prediction from the local model (LIME) with the
black-box model’s actual predictions is compared [55].

Task Fidelity Formula:
The formula to calculate task fidelity is as follows:

Task Fidelity =
Number of Correct/Similar Predictions

Total Number of Predictions
× 100

For a single instance, if the local explanation model’s prediction (e.g. LIME) is
close to the actual black-box model’s prediction, the fidelity is said to be high
for that instance.

2. Feature Importance Consistency

• Description: This technique assesses the consistency between global and
local feature importance explanations. It ensures that the key features
identified as important at the global level (across the entire dataset) are
also important at the local level (for individual predictions) [29].

• Evaluation Process:

– The global importance rankings, often derived from methods such
as SHAP summary plots or feature importance scores, are compared
with local instance-specific explanations generated by methods like
LIME or individual SHAP plots.

– Consistency between global and local explanations indicates that the
model behaves predictably and that important features are recog-
nized both globally and locally.

3. Local vs Global Explanations Alignment

• Description: This technique examines the alignment between local ex-
planations (which explain individual predictions) and global explana-
tions (which explain overall model behavior).

• Evaluation Process:

– Local explanations from methods like LIME or SHAP for specific in-
stances are compared with global explanation methods like SHAP
summary plots or global feature importance rankings.

– A strong alignment between local and global explanations suggests
that the model’s behavior is consistent and that the features influ-
encing individual predictions are also significant on a broader scale,
enhancing trust in the model [37].
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4. Generalizability

• Description: This technique evaluates how well the model’s explana-
tions generalize to unseen data or new instances. An effective XAI
method should yield similar feature importance and explanations across
different datasets (e.g., training vs. test sets) [17].

• Evaluation Process:

– The stability of feature importance or explanation patterns is ana-
lyzed across training and test datasets.

– SHAP values, feature importance rankings, or consistency of lo-
cal explanations in both datasets are examined to determine if the
model’s explanations generalize well.

– If explanations remain consistent across different datasets, it indi-
cates that the model’s behavior is robust and suitable for real-world
applications.
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4 Methodology

This research aims to address the research questions by:

• Developing a comprehensive forecasting model that integrates heating and
electrical energy consumption (EUI).

• Incorporating the influence of external factors, such as temperature, wind, into
the forecasting process.

• Leveraging a combination of Explainable AI techniques to provide a richer
and more nuanced understanding of energy consumption patterns.

This comprehensive approach is envisioned to lead to more accurate and infor-
mative EUI forecasts, ultimately enabling more effective energy management and
optimization across diverse building types and climates.

4.1 Data

The data is collected over 7 years, in several states within the United States. It is cre-
ated by Climate Change AI and Lawrence Berkeley National Laboratory and pro-
vided by WiDS Datathon [33].

4.1.1 Data Overview

There are 64 columns and about 80000 rows in the dataset, each corresponding to a
different aspect of the building, weather, or energy-related information. It contain
information about various commercial buildings, including their characteristics, en-
ergy efficiency, and environmental factors. It also includes weather-related data for
the building locations, such as temperature, precipitation, and wind speed.

The various columns from the dataset are explained below as provided by Kaggle
[33], the column names along with the data types are mentioned in appendix 6.1:

• Year_Factor: The year factor associated with the data.

• State_Factor: The state factor indicating the state associated with the data.

• Building_Class: The class of the building (e.g., Commercial).

• Facility_Type: The type of facility within the building (e.g., Grocery store or
food market, Warehouse, Retail enclosed mall, Education other classroom).
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• Floor_Area: The floor area of the building.

• Year_Built: The year the building was constructed.

• Energy_Star_Rating: The energy star rating of the building.

• Elevation: The elevation of the building location.

• Temperature Data (January to December): Minimum, average, and maximum
temperatures for each month.

• Cooling_Degree_Days: Cooling degree day for a given day is the number of
degrees where the daily average temperature exceeds 65 degrees Fahrenheit.
Each month is summed to produce an annual total at the location of the build-
ing.

• Heating_Degree_Days: Heating degree day for a given day is the number of
degrees where the daily average temperature falls under 65 degrees Fahren-
heit. Each month is summed to produce an annual total at the location of the
building.

• Precipitation_Inches: The amount of precipitation in inches.

• Snowfall_Inches: The amount of snowfall in inches.

• Snowdepth_Inches: The snow depth in inches.

• Avg_Temp: The average temperature over a year.

• Days_Below_30F, Days_Below_20F, Days_Below_10F, Days_Below_0F: Num-
ber of days below certain temperature thresholds.

• Days_Above_80F, Days_Above_90F, Days_Above_100F, Days_Above_110F:
Number of days above certain temperature thresholds.

• Direction_Max_Wind_Speed: The direction of the maximum wind speed
Given in 360-degree compass point directions (e.g. 360 = north, 180 = south,
etc.).

• Direction_Peak_Wind_Speed: The direction of the peak wind speed.

• Max_Wind_Speed: The maximum wind speed.

• Days_With_Fog: Number of days with fog.

• Site_EUI: Site Energy Usage Intensity is the amount of heat and electricity
consumed by a building as reflected in utility bills.

• ID: Building Id.
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Figure 4.1: Data1

Figure 4.2: Data2

The feature space encompasses a diverse set of information. Features include
building characteristics (e.g., floor area, year built), energy-related metrics (e.g., en-
ergy star rating, site EUI), weather data (temperature, precipitation, snowfall), and
various other variables related to wind, fog, and days above or below specific tem-
perature thresholds.

The dataset poses several challenges that warrant careful consideration in the
analysis. Firstly, the dataset exhibits a high-dimensional feature space with 64
columns, introducing complexities in visualizing and interpreting relationships be-
tween variables. Secondly, the quality and completeness of the data need thorough
scrutiny, as missing values or inaccuracies could compromise the reliability of anal-
ysis results. Furthermore, the inclusion of diverse variables, ranging from build-
ing characteristics and energy metrics to weather data, implies complex interactions
that may necessitate advanced analytical methods. Lastly, the risk of overfitting
is heightened due to the small sample size, where models may perform well on
the available data but struggle to generalize to new instances. Addressing these
challenges required meticulous data preprocessing, potential dimensionality reduc-
tion, and the application of appropriate analytical techniques, all while considering
domain-specific knowledge for accurate interpretation of results.

4.1.2 Data Exploration

This section contains the highlights from the exploratory data analysis from the train
and test datasets.

In the training dataset, there are six columns with missing values,
namely: year_built, energy_star_rating, direction_max_wind_speed, direc-
tion_peak_wind_speed, max_wind_speed, and days_with_fog. On the other hand,
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Table 4.1: Comparison of Training and Test Data Features
Feature Training Data Test Data
Number of observations 75757 9705
Number of columns 64 64
Integer columns 37 37
Float columns 24 24
Object columns 3 3
Duplicate observations 0 0

the test dataset contains two constant columns: year_factor and days_above_110F,
and also has six columns with missing values, which are the same as those in the
training dataset.

The initial focus of the exploratory data analysis was on identifying columns with
near-constant values across the dataset. For instance, the feature days_above_110F
showed minimal variability, holding the same value for approximately 99% of the
training data and 100% of the test data. Similarly, the feature days_above_100F ex-
hibited constant values in 95% of the training data and 90% of the test data. These
columns were flagged due to their lack of variability, which could reduce their use-
fulness in model training and potentially introduce noise into the prediction process.

Further examination was conducted on columns with unrealistic or highly
skewed values. The feature direction_max_wind_speed displayed a single value in
80% of the training observations. Similarly, the features direction_peak_wind_speed
and max_wind_speed presented the same value for almost 80% of the training ob-
servations. These uniform distributions, which were also consistent across the test
dataset, suggested that these columns contained isolated outliers or unrealistic val-
ues that may distort the results.

Additionally, anomalies were detected in the year_built feature. A total of 6 obser-
vations in the training set and 1 observation in the test set had a year_built value of
0 which is highly improbable and stands out as an outlier in both datasets. These
anomalous values were replaced with NaN to maintain data integrity and ensure
cleaner inputs for model training.
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Figure 4.3: Histogram Part 1
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Figure 4.4: Histogram Part 2
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Figure 4.5: Histogram Part 3
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Figure 4.6: Histogram Part 4
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Figure 4.7: Histogram Part 5
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Figure 4.8: Histogram Part 6

From the above histograms in figures 4.3, 4.1.2, 4.5, 4.6, 4.7 and 4.8, it is found that
the variables floor_area and elevation exhibit significant positive skewness, indicating
that the majority of values are concentrated toward the lower end of the distribu-
tion, with a few extreme outliers. On the other hand, the variable energy_star_rating
demonstrates moderate negative skewness, showing a higher concentration of val-
ues on the upper end.

The oldest building in the dataset was constructed in the year 1600, while the
most recent building was completed in 2016. A large portion of the buildings in both
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the training and test datasets were constructed after the year 1900. Additionally, a
substantial number of buildings were built during the latter half of the 1920s and the
early 1960s. It is also noticeable that the data shows sharp declines in the number
of buildings constructed during the periods of both World War I (1914–1918) and
World War II (1939–1945).

Figure 4.9: Frequency By Year

Figure 4.10: Frequency By State

The figures 4.9 and 4.10 show the count of observations by year and state respec-
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tively in the training dataset and has the highest count in the year_factor 5 and
state_factor 6 .

Figure 4.11: Frequency By Facility Type

Figure 4.12: Frequency By Building Class and State

In the training dataset, more than 52% of the buildings are classified as
Multifamily_Uncategorized, followed by 16% of the buildings categorized as Of-
fice_Uncategorized. In contrast, the test dataset displays a more even distribu-
tion, with Multifamily_Uncategorized and Office_Uncategorized representing 22.7%
and 19.8% of the observations, respectively. Additionally the figure 4.12 shows that
the data from State_10 consists solely of commercial buildings.

35



These results indicate that the majority of buildings in both the training and test
datasets are classified as either Multifamily_Uncategorized or Office_Uncategorized.
It is clear that Multifamily_Uncategorized buildings are predominantly residential,
whereas Office_Uncategorized buildings are primarily commercial in nature.

4.2 Implementation

This thesis investigated the prediction of Site Energy Usage Intensity (EUI) using
machine learning algorithms and the interpretation of the resulting models using
XAI techniques. The research process involved several key stages.

Initially, the data was split into training and test sets, followed by data exploration
and feature understanding. After that cleaning and handling of missing values was
performed on the training dataset. Subsequently, label encoding and feature scaling
were applied to prepare the data for modeling. Regression models, specifically Ran-
dom Forest, CatBoost, and XGBoost, were then employed to train and evaluate the
models on the training set. The choice of regression analysis was motivated by its
focus on predicting a single dependent variable based on a set of varying variables,
making it ideal for forecasting tasks like EUI prediction.

While achieving accurate predictions was a primary objective, this thesis placed
a particular emphasis on explainability. The subsequent phase of the research was
dedicated to interpreting, explaining, and visualizing the models using various XAI
(Explainable Artificial Intelligence) methods. These methods, including techniques
like SHAP, LIME, and others, were applied to the best performing algorithm. The
insights gained from these explanations were crucial in improving the interpretabil-
ity of Energy Usage prediction Models for non-expert users.

The selection of specific machine learning algorithms was informed by a thor-
ough exploratory data analysis, ensuring the chosen models were well-suited to
the characteristics of the data and the research objectives. By combining predictive
modeling with XAI techniques, this thesis aimed to create not only accurate but
also transparent and interpretable models for SEUI prediction, fostering trust and
enabling informed decision-making in the realm of energy management.
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Figure 4.13: Process Flow

4.2.1 Splitting the Data into Training and Test Sets

To minimize overfitting and promote good generalization to new data, the first step
is to divide the dataset. The training set is used to build and train the machine
learning model, while the test set serves to assess how well the model performs
on previously unseen data. This separation ensures that the model is trained on a
substantial portion of the data but is evaluated independently on a different subset,
allowing for an accurate assessment of its performance. Cross-validation techniques
were also considered to improve the model’s robustness by averaging results over
different data subsets. The figue 4.1 and 4.2 represent the snapshot of the data used
in training and testing.
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4.2.2 Exploratory Data Analysis

Exploratory Data Analysis (EDA) was performed to better understand the under-
lying structure of the dataset and to identify potential challenges, such as multi-
collinearity or outliers. Visual tools like histograms, scatter plots, and heatmaps
were employed to analyze the distribution of key features and their correlation with
energy usage. These insights guided the choice of models and feature engineering
techniques, ensuring that the machine learning pipeline was built on solid foun-
dations. Additionally, statistical tests were conducted to evaluate the normality and
variance of the data, ensuring that the dataset was well-prepared for model training.
This step has already been explained in the 4.1.2 section in detail.

Figure 4.14: Temperature By State

The next steps involved employing Boxplots to visually compare the distribu-
tions of average temperature across different states within the combined dataset.
Among the states analyzed in the figure 4.14, State_1 exhibits the highest average
temperature, while State_4 experiences the lowest. In terms of temperature variabil-
ity, State_6, State_11, State_1, and State_4 demonstrate greater dispersion compared
to State_2, State_8, and State_10.

Correlation
These images present a series of scatter plots comparing the train and test datasets

for various temperature-related features and their relationship to the target variable,
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site energy usage. Each scatter plot shows red dots representing the training data
and gray dots representing the test data. The x-axis of each plot represents differ-
ent temperature-related features (e.g., minimum, maximum, average temperatures
across different seasons), while the y-axis represents the site energy usage.
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Summary

1. Temperature Variability: There does not seem to be a simple linear relation-
ship between temperature features and energy usage. The scatter plots in-
dicate that the relationship between temperature and energy consumption is
likely non-linear or influenced by other factors (like building type, size, or in-
sulation).

2. Broad Energy Usage Range: Energy usage is spread across a wide range for all
temperature values in both training and test sets, suggesting that temperature
alone is not a sufficient predictor of energy usage. This reinforces the need for
machine learning models to consider a variety of features (e.g., facility type,
energy star rating, floor area) in predicting energy consumption.

3. Similar Distribution in Train and Test Sets: Both the training and test sets ap-
pear to have similar distributions of energy usage across temperature ranges,
which is important for ensuring that the model generalizes well across both
datasets. However, the test set appears to have fewer samples than the train-
ing set, as indicated by the sparse gray dots, but the trend still follows the
same pattern.

4. Floor Area: There is a negative correlation between floor area and energy
usage intensity (EUI). Smaller buildings tend to have higher EUI, while larger
buildings spread energy consumption over more space, leading to lower EUI.
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5. Year Built: Older buildings generally have higher EUI, indicating lower en-
ergy efficiency. Newer buildings, built with modern standards and technolo-
gies, tend to be more energy-efficient with lower EUI.

6. Energy Star Rating: Buildings with higher energy star ratings are more
energy-efficient, showing a clear negative correlation between energy star rat-
ing and EUI. Buildings with low ratings tend to consume more energy.

7. Elevation: Elevation does not show a strong influence on energy consump-
tion across most of the dataset, with energy usage being similar at different
elevations.

8. January Minimum and Average Temperatures: There is no strong linear cor-
relation between January temperatures and EUI. Energy usage varies widely
across different temperature ranges, suggesting other building characteristics
(e.g., insulation, heating systems) have a larger impact on energy consumption
than outdoor temperature alone.

4.2.3 Data Cleaning and Filling in Missing Values

This step is crucial for ensuring data quality. Missing values in critical features
such as weather data and building characteristics were filled using imputation tech-
niques. Simple imputation methods like replacing missing values with the median
or mean were used where appropriate, while categorical variables were processed
through mode imputation or one-hot encoding. The cleaning process also involved
identifying and treating outliers that could skew the model’s predictions. Outliers
were handled either by capping their values or by excluding them, ensuring that the
model learned from more reliable data.

During initial data exploration, several observations were made regarding
missing values. The features days_with_fog, direction_peak_wind_speed, direc-
tion_max_wind_speed, and max_wind_speed contained a substantial amount of
missing data, exceeding 50% in the training set and 88% in the test set. Due to this
significant lack of information, these features were dropped from further analysis.
In contrast, the feature energy_star_rating had 35.25% and 23.22% missing values
in the training and test sets, respectively. The year_built feature exhibited a lower
proportion of missing values, with 2.42% in the training set and 0.94% in the test set.

Despite the relatively low number of missing values in year_built, imputation
was performed for both year_built and energy_star_rating. This decision stemmed
from the observation that energy_star_rating showed the highest absolute correla-
tion with the target variable. In the training set, energy_star_rating was missing for
26,709 observations, and year_built for 1,837 observations. There were 26,078 in-
stances where exactly one of these features was missing, and 1,234 instances where
both were missing, resulting in a total of 27,312 observations with missing data. In
the test set, energy_star_rating was missing for 2,254 observations, and year_built
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for 92 observations. Similarly, 2,262 observations had one missing feature, and 42
had both missing, leading to a total of 2,304 observations with missing data.

Since both energy_star_rating and year_built are numerical features, median im-
putation was employed to mitigate the potential impact of outliers. This imputation
was first applied to the training set. Subsequently, the missing values in the test data
for these two features were imputed using the medians calculated from the training
data, ensuring consistency and preventing data leakage.

4.2.4 Label Encoding and Feature Scaling

It is used to prepare the data for machine learning algorithms. Label encoding con-
verts categorical features to numerical features, and feature scaling transforms the
features to a common scale. Since algorithms like Random Forest (RF), XGBoost,
and CatBoost can handle numerical data, categorical features such as building type
and state location were converted to numerical values using target encoding. Fea-
ture scaling was applied to ensure that all numerical features had a consistent range,
which is particularly important for gradient boosting algorithms like XGBoost and
CatBoost to converge efficiently.

The monthly weather statistics were compressed into seasonal weather statis-
tics. This significantly reduced the number of features without substantial infor-
mation loss. First, the monthly temperature statistics columns were separated into
four lists corresponding to the four seasons. Next, seasonal temperature statistics
were extracted from the monthly temperature statistics in the training DataFrame
data_train. Additionally, cooling_degree_days and heating_degree_days were
converted from a yearly scale to a monthly scale. This feature extraction procedure
was then replicated for the test data. In total, 22 new features were generated from
the original pool of 39 weather-related features.

Finally, the original weather-related features were dropped from both the training
and test sets. The month-based temperature-related features were transformed into
season-based features by partitioning the year into four seasons: winter (December,
January, February), spring (March, April, May), summer (June, July, August), and
autumn (September, October, November).

The following features were created from feature engineering:

• min_temp_winter: Minimum temperature in winter (in Fahrenheit) at the
building’s location.

• max_temp_winter: Maximum temperature in winter (in Fahrenheit) at the
building’s location.

• avg_temp_winter: Average temperature in winter (in Fahrenheit) at the
building’s location.

• std_temp_winter: Standard deviation of temperature in winter (in Fahren-
heit) at the building’s location.
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• skew_temp_winter: Skewness of temperature in winter (in Fahrenheit) at
the building’s location.

• cooling_degree_days_per_month: Average number of degrees where
the daily average temperature exceeds 65 degrees Fahrenheit in a month.

• heating_degree_days_per_month: Average number of degrees where
the daily average temperature falls under 65 degrees Fahrenheit in a month.

Similarly, the features were defined for spring, summer, and autumn seasons.

4.2.5 Training and Hyperparameter Tuning of Machine Learning
Algorithms

This is an iterative process. The model is trained on the training set and evaluated
on the test set. The model’s performance was improved by adjusting the hyperpa-
rameters of the algorithm, focusing on parameters like the number of trees, learning
rate, and maximum depth in RF and XGBoost, as well as the number of iterations
and learning rate in CatBoost.

In this section, three machine learning algorithms were employed — Random
Forest, XGBoost, and CatBoost — to address the prediction task and compare their
baseline performances.

Firstly, all numerical features are converted to the float64 data type. Subsequently,
the predictor variables are separated from the target variable within both the train-
ing and test datasets. The building_id column is removed from both datasets as it is
irrelevant to the prediction of the target variable.

Figure 4.15: Random Forest
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Figure 4.16: XGBoost

Figure 4.17: CatBoost

Hyperparameter Tuning
Hyperparameter tuning plays a critical role in optimizing machine learning mod-

els for energy usage prediction. While traditional methods such as grid search and
random search are commonly employed, their exhaustive nature makes them inef-
ficient for large, complex models. Optuna, a state-of-the-art hyperparameter opti-
mization framework, offers a more flexible and efficient approach through its abil-
ity to perform adaptive search algorithms, such as Tree-structured Parzen Estimator
(TPE) and CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [4].

Optuna has proven to be particularly effective in optimizing ensemble models
such as XGBoost, CatBoost, and Random Forests, which are often used in energy us-
age prediction tasks due to their ability to handle non-linear relationships and large
datasets. By automating the search for optimal hyperparameters, Optuna allows
models to achieve higher accuracy with fewer computational resources compared
to traditional method [32].
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Figure 4.18: Optuna Process for Hyperparameter Tuning
[35]

Given the superior performance of the Random Forest algorithm among the three
baseline models, the Optuna framework was chosen to refine its hyperparameters.
Specifically, the following hyperparameters were targeted for optimization:

• n_estimators (integer): The number of trees in the forest.

• max_depth (integer): The maximum depth of each tree.

• min_samples_split (integer): The minimum number of samples required
to split an internal node.

• max_features (float): The proportion of features to consider when searching
for the best split at each node.

Figure 4.19: Objective Function
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Figure 4.20: Tuning Function

Figure 4.21: Optimized Plot
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5 Results and Discussion

5.1 Explainability of AI

It is important for understanding why and how machine learning models make
decisions. This can be done using a variety of methods, such as LIME and SHAP.

Figure 5.1: SHAP Variable Importance plot

The bar plot in the Figure 5.1 is a SHAP Variable Importance plot, which
shows the average impact of each feature on the model’s output based on their
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mean(|SHAP value|). Essentially, the plot highlights the overall importance of
each feature in the model, with the most important features listed at the top.

1. Feature Importance:

• facility_type_encoded is the most important feature, with the highest
mean SHAP value, meaning it has the largest average impact on the
model’s predictions.

• energy_star_rating and state_factor_encoded also have significant im-
pacts, following closely behind facility_type_encoded in terms of their
importance.

• Features like floor_area_log and year_built have moderate importance,
while features like days_below_30F and days_above_80F have relatively
low importance.

2. Magnitude of Impact:

• The x-axis represents the mean absolute SHAP value, which quantifies
how much, on average, each feature contributes to changing the model’s
predictions.

• Larger values indicate features that more frequently shift the model’s pre-
dictions by a significant amount. For example, facility_type_encoded
has the highest average impact, influencing the predictions more strongly
than other features.

• In contrast, features with lower values like skew_temp_spring and
days_below_20F have minimal influence on the model’s output.

3. Order of Importance:

• The features are ordered from top to bottom based on their average SHAP
impact. This allows for a clear understanding of which features the model
relies on most when making predictions.

• Features related to the type of facility, energy star rating, and location
(state_factor_encoded) dominate, indicating that the model places a lot
of weight on these attributes when predicting energy usage.

Summary: Facility type, energy star rating, and state factor are the top three most
important features in determining the model’s predictions. These variables have the
greatest average influence on the output. Less impactful features, such as tempera-
ture skewness and days below freezing, contribute minimally to the model, indicat-
ing that they don’t significantly affect the predicted energy usage in this particular
model.

This SHAP bar plot provides a clear ranking of feature importance, helping to
understand which variables the model prioritizes most in energy usage prediction.
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Figure 5.2: SHAP Summary plot

The plot represented in Figure 5.2 is a SHAP summary plot, which visualizes
the impact of various features on the model’s predictions using SHAP (SHapley
Additive exPlanations) values. Each point on the plot represents a single prediction,
with the position along the x-axis indicating the SHAP value (impact on the model’s
output), and the color representing the feature value (from low in blue to high in
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red).

1. Feature Importance:

• Features are ranked in order of their importance, with the most impact-
ful feature at the top. In this case, facility_type_encoded has the largest
influence on the model’s output, followed by energy_star_rating and
state_factor_encoded. The least important features are at the bottom,
such as skew_temp_spring and days_below_20F.

2. SHAP Values (Impact on Model Output):

• The x-axis represents the SHAP values, which measure how much a fea-
ture contributes to increasing or decreasing the prediction.

• Positive SHAP values (to the right) increase the model’s prediction, while
negative SHAP values (to the left) decrease it.

3. Feature Values (Color Encoding):

• The color represents the value of each feature for a specific data point.

– Red indicates high feature values, while blue indicates low values.

• For example, in the case of facility_type_encoded, higher values (red)
generally push the SHAP value to the right, increasing the prediction,
while lower values (blue) push it to the left, decreasing the prediction.

4. Feature Behavior:

• For some features, such as energy_star_rating, high values (red) tend to
have a negative SHAP value, meaning they reduce the predicted output.
In contrast, high values of floor_area_log and facility_type_encoded
tend to have positive SHAP values, increasing the model’s predictions.

Summary: Facility type, energy star rating, and state factor are the most influ-
ential features in the model’s predictions. The SHAP plot provides a clear visu-
alization of how these features influence the model, with color encoding allowing
the user to see how high or low feature values affect the output. Overall, features
like facility_type_encoded and floor_area_log are driving preditions higher, while
higher values of energy_star_rating tend to lower the model’s predictions.
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Figure 5.3: SHAP Interaction Plot

The plot shown in Figure 5.3 is a SHAP interaction values plot, which shows
how pairs of features interact to influence the model’s predictions. Each column
represents one feature and each row represents another feature. The x-axis shows
the SHAP interaction values, which indicate how much the interaction between the
two features contributes to the model’s prediction.

1. Feature Interaction:

• The plot visualizes the interaction effects between pairs of features. Each
point represents a SHAP interaction value for a specific observation.

• The x-axis indicates the SHAP interaction value for that feature pair, with
values closer to zero meaning little interaction effect, and values far from
zero (positive or negative) showing significant interaction effects.

2. Color Mapping:

• Similar to other SHAP plots, the color of each point represents the value
of the feature being evaluated, ranging from low (blue) to high (red).

• For instance, in the top-left box, facility_type_encoded interacts with it-
self (as seen by the clear spread), and the color reveals how different val-
ues of the feature influence these interactions.

3. Diagonal Elements:

• The diagonal elements (e.g., the top-left box, the second box in the second
column, etc.) represent a feature interacting with itself. This helps to
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visualize the feature’s own contribution to the model output without any
other feature’s influence.

• These diagonal boxes show the standard SHAP value spread (similar to
the summary plot), where red indicates higher feature values that have a
positive or negative influence on the prediction, and blue shows the effect
of lower feature values.

4. Off-Diagonal Interactions:

• Off-diagonal elements represent interactions between two different fea-
tures. For instance, the interaction between facility_type_encoded and
energy_star_rating (first row, second column) or between year_built and
floor_area_log (fifth row, fourth column).

• A wide spread in the SHAP interaction values indicates a significant in-
teraction between those two features. For example, if the points are dis-
persed both positively and negatively on the x-axis, it suggests that the
interaction between the two features has a strong impact on model pre-
dictions.

Summary:
Facility type encoded seems to have strong interaction effects with features like

energy star rating, state factor encoded, and floor area log, indicating that the type
of facility impacts how these other features influence energy usage predictions. En-
ergy star rating has some interaction effects with state factor encoded and year built,
showing that the model adjusts its predictions based on the combination of energy
efficiency rating and the state or the building’s age. Interactions between top fea-
tures like facility type encoded, energy star rating, and floor area log indicate that
these combinations significantly impact the energy usage predictions. For instance,
the type of facility influences how much the energy star rating or the building’s size
matters for the model’s output. This SHAP interaction plot provides deeper insights
beyond individual feature importance by showing how features work together to
drive predictions.
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Figure 5.4: SHAP Waterfall Plot

The SHAP waterfall plot in Figure 5.4 breaks down the contributions of indi-
vidual features to a specific prediction by showing how each feature impacts the
model’s output relative to the baseline.

Key Elements of the SHAP Waterfall Plot:

1. E[f(x)] = 82.58: This is the baseline value, which represents the average pre-
diction of the model across all observations in the dataset. The baseline is the
starting point from which the individual prediction deviates.

2. f(x) = 244.42: This is the final prediction for the specific instance. The fea-
tures either contribute to increasing or decreasing this prediction relative to
the baseline.

3. SHAP values: Features contribute positively (shown in red) or negatively
(shown in blue) to push the prediction away from the baseline. The length
of the bars indicates the magnitude of each feature’s impact on the final pre-
diction.

Explanation of the Features’ Contributions:

• facility_type_encoded: This feature has the largest positive contribution
(+162.4), which pushes the prediction significantly upward. It suggests that
the specific facility type of this observation is strongly associated with higher
energy consumption.
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• energy_star_rating: Contributing +30.81, this feature also pushes the predic-
tion upward. Even though higher energy star ratings typically indicate energy
efficiency, in this particular case, the rating is contributing to higher energy us-
age for this instance.

• floor_area_log: This adds +27.39 to the prediction. Larger buildings (repre-
sented by a higher floor area) tend to consume more energy, which is reflected
in this positive contribution.

• avg_temp_autumn: This feature has a negative impact of -20.4 units, meaning
that higher average temperatures in autumn lead to reduced energy consump-
tion, possibly because less heating is required.

• state_factor_encoded: This feature contributes -17.69, pulling the prediction
down. The state in which the building is located likely has regulations, cli-
mate, or consumption patterns that reduce energy usage.

• Other smaller negative contributions include precipitation_inches (-11.48),
snowfall_inches (-3.41), and year_factor (-2.05), which slightly decrease the
overall prediction.

Main Findings from the Waterfall Plot:

1. Facility type is by far the most influential feature for this specific prediction,
strongly increasing energy consumption. The model associates this type of
facility with significantly higher energy usage.

2. Energy Star Rating and Floor Area are also major contributors to the increase
in the prediction, suggesting that for this particular instance, a larger building
with a higher energy star rating still consumes a lot of energy.

3. Average Temperature in Autumn and State Factor contribute to lowering the
prediction, indicating that warmer temperatures in autumn reduce energy
needs, and the location of the building likely influences energy policies or
habits that decrease energy usage.

4. Overall, the final prediction of 244.42 is substantially higher than the baseline
value due to the strong positive influence of factors like facility type, energy
star rating, and floor area.

This waterfall plot helps visually explain how each feature contributes to the de-
viation from the baseline prediction for this specific instance, with the largest impact
coming from the facility type.
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Figure 5.5: SHAP Waterfall Plot

The SHAP waterfall plot in Figure 5.5 represents another instance of the same
model output set.

Explanation of the Features’ Contributions:

1. facility_type_encoded: This feature has the largest positive impact, con-
tributing +129.08 to the prediction. This suggests that the type of facility in
this instance is strongly associated with higher energy consumption.

2. floor_area_log: Contributes +23.98, indicating that the larger floor area of the
building is significantly increasing the predicted energy usage.

3. state_factor_encoded: This feature has a negative impact of -18.49, pulling the
prediction down. This likely reflects the influence of the building’s location
(state), where certain factors like regulations, climate, or energy habits reduce
energy usage.

4. precipitation_inches: Contributes -12.16, suggesting that more precipitation
correlates with lower energy consumption, possibly because cooler or wetter
conditions reduce energy needs like cooling.

5. energy_star_rating: Reduces the prediction by -10.69, meaning that a higher
energy star rating is contributing to more energy-efficient outcomes, thus low-
ering the predicted consumption.

6. avg_temp_autumn: Reduces the prediction by -8.62, likely due to warmer au-
tumn temperatures decreasing energy needs for heating.
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7. year_built: Contributes +8.52, meaning that the building’s construction year
(1961 in this case) is associated with higher energy consumption, possibly due
to older building infrastructure or less efficient energy standards.

8. elevation_log, snowfall_inches, and other smaller features contribute nega-
tive SHAP values, slightly decreasing the prediction.

Main Findings from the Waterfall Plot:

• The final prediction of 181.059 is significantly higher than the baseline value
of 82.58, largely driven by the facility type and floor area. These two features
alone account for the majority of the upward adjustment in the prediction.

• State factor, precipitation, and energy star rating play important roles in low-
ering the prediction, reflecting influences such as location, climate conditions,
and energy efficiency standards.

• Overall, the facility type has the strongest influence on the prediction, driving
the energy usage significantly higher, while other factors like state, precipita-
tion, and energy star rating help to moderate this by reducing the predicted
consumption.

The figure 5.6 represents a SHAP decision plot, which visualizes how differ-
ent features contribute cumulatively to the model’s final prediction for multiple in-
stances. Each line represents a single observation, tracing the cumulative impact of
features as the model progresses through them, starting from a baseline prediction
and ending at the final output value.

Explanation of the SHAP Decision Plot:

1. Model Output Value (x-axis):

• The x-axis represents the model’s output value which is predicted en-
ergy consumption. Values to the right of zero indicate higher predictions,
while values to the left represent lower predictions.

2. Features (y-axis):

• The y-axis lists the features in descending order of their importance (top
features are more influential).

• Each feature adjusts the prediction cumulatively. As the line moves from
top to bottom, it shows how each feature pushes the prediction higher (to
the right) or lower (to the left).

3. Lines:

• Each line corresponds to a single instance, tracing the step-by-step con-
tribution of each feature to the final prediction.
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• If a line moves to the right after a feature, that feature increases the pre-
diction for that instance. If the line moves left, the feature decreases the
prediction.

• The lines are color-coded from blue to red based on the magnitude of the
final prediction (with blue for low values and red for high values).

Figure 5.6: SHAP Decision Plot

Feature Contributions:

• facility_type_encoded: This feature has the largest impact, with many lines
shifting substantially to the right after passing through it. This shows that
the facility type increases the predicted energy usage for most instances, with
some predictions going as high as 200+.

• floor_area_log: The feature floor area also increases the prediction for many
instances, contributing to larger final outputs. Buildings with larger floor areas
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generally have higher energy consumption, and this trend is visible as the lines
shift further right for higher values of this feature.

• state_factor_encoded and energy_star_rating: State factor and energy star
rating have more mixed effects. Some lines move to the left (reducing the
prediction), while others move to the right. This indicates that these features
contribute positively to some predictions and negatively to others, reflecting
variation in how these factors influence energy consumption.

• Precipitation and Temperature-Related Features: Features like precipita-
tion_inches, avg_temp_autumn, and snowfall_inches tend to pull many of
the predictions leftward (lower), reflecting a reduction in energy usage for
certain buildings in climates with more precipitation or higher autumn tem-
peratures.

Summary:
The facility_type_encoded is the most influential feature, consistently driving

higher predictions for energy usage across instances. This indicates that certain fa-
cility types are highly energy-consuming. The floor_area_log also significantly im-
pacts the model’s output, as larger buildings are expected to consume more energy.
The state_factor_encoded and energy_star_rating have mixed effects, sometimes
increasing and sometimes reducing energy predictions, depending on the specific
instance. Climate-related features like precipitation_inches and temperature gen-
erally decrease the prediction, suggesting that buildings in cooler or wetter climates
may consume less energy. Overall, the trend shows that larger facilities and cer-
tain facility types lead to much higher energy usage predictions, while geographic
and climate-related factors can reduce the predicted energy consumption for certain
buildings. This plot provides a clear visual breakdown of how each feature cumu-
latively impacts the model’s predictions across multiple instances, highlighting key
drivers of energy consumption.
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Figure 5.7: LIME Local Interpretation

The figure 5.7 represents a LIME (Local Interpretable Model-agnostic Explana-
tions) chart, which provides a local explanation for a specific prediction made by
the machine learning model. The plot visualizes the contributions of individual fea-
tures to the final prediction for one instance.

Key Information:

• Intercept: 68.33 is the baseline prediction (the prediction the model would
make if no features were considered).

• Prediction_local: 194.55 is the model’s prediction based on the local explana-
tion (LIME approximation).

• Right (Actual Prediction): 181.06 is the model’s actual prediction for this in-
stance.

Explanation of Feature Contributions:

1. facility_type_encoded > 83.88: This feature has the largest positive contribu-
tion, adding around +65 to the prediction. The facility type is a significant
driver of higher energy consumption in this instance.

2. floor_area_log <= 11.03: This feature contributes about +50 to the prediction.
A smaller floor area (as indicated by the logarithmic transformation) increases
the predicted energy consumption, possibly due to high energy use per square
foot.
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3. energy_star_rating <= 57.00: This feature contributes +40 to the prediction. A
lower energy star rating (less than 57) is associated with higher energy usage,
reflecting the building’s lower energy efficiency.

4. state_factor_encoded <= 87.42: This feature contributes +30 to the prediction,
indicating that the state in which the building is located tends to have higher
energy consumption.

5. year_factor > 6.00: This feature reduces the prediction by -15, suggesting that
buildings with a higher year factor (newer or renovated buildings) tend to
have lower energy consumption, potentially due to better energy standards.

6. 65.00 < max_temp_winter <= 71.00: This feature adds a small +8 to the pre-
diction. Warmer winter temperatures slightly increase energy consumption in
this case, likely due to reduced heating needs but higher cooling demands.

7. min_temp_spring > 27.00: This feature has a minor positive contribution (+5),
indicating that higher minimum spring temperatures correlate with slightly
higher energy usage.

8. avg_temp_autumn > 61.59: This feature has a small negative contribution
of -3, reducing the prediction slightly. Warmer autumn temperatures reduce
energy consumption in this instance, possibly due to less heating required.

9. Other minor features: Several smaller features, such as min_temp_summer
and skew_temp_autumn, have minor contributions to the prediction, with
both positive and negative impacts, though these are relatively small com-
pared to the top features.

Summary:
The facility type is the most significant factor contributing to the increase in en-

ergy usage for this instance, followed closely by the floor area and energy star rat-
ing. State factor and year factor also play notable roles, with the state pushing the
prediction higher and the year factor slightly reducing it. Temperature-related fea-
tures (such as winter and autumn temperatures) have smaller, yet relevant impacts
on energy usage, with warmer temperatures either slightly increasing or reducing
the final prediction.

Overall, the combination of these factors results in the local prediction of 194.55
using LIME, which is slightly higher than the actual model prediction of 181.06.
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Figure 5.8: LIME notebook

Figure 5.9: LIME notebook

The figures 5.8 and 5.9 represent LIME plot in notebook format and provides
an explanation for an instance of model prediction. It breaks down the impact of
individual features on the final prediction and compares it to the baseline.
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Key Information:

1. Intercept: 90.39 is the baseline prediction (i.e., the value the model would
predict if no features were considered).

2. Prediction_local: 186.38 is the prediction based on the local explanation pro-
vided by LIME. This is a slightly higher approximation of the model’s actual
prediction.

3. Right (Actual Prediction): The actual model prediction is 181.06.

Explanation of Feature Contributions:
Positive Contributions (Pushing the Prediction Higher):

1. facility_type_encoded > 83.88: Contributes +63.19, significantly increasing
the predicted energy usage. The facility type is the most influential factor in
driving the energy consumption prediction upwards.

2. floor_area_log <= 11.03: Adds +42.25 to the prediction. A larger floor area, as
indicated by the logarithmic value, is associated with increased energy con-
sumption.

3. energy_star_rating <= 55.00: Contributes +32.84 to the prediction. A lower en-
ergy star rating, indicating less energy efficiency, drives the energy consump-
tion prediction higher.

4. min_temp_autumn = 43.00: Has a smaller contribution of +2.08, indicating
that lower autumn temperatures contribute slightly to higher energy usage,
possibly due to increased heating needs.

5. std_temp_autumn = 19.84: Adds a minor contribution of +2.02, indicating that
variation in autumn temperatures slightly increases energy consumption.

Negative Contributions (Pushing the Prediction Lower):

1. days_above_110F_binary = 0.00: Reduces the prediction by -19.23. The ab-
sence of days above 110°F indicates lower cooling needs, which reduces en-
ergy usage.

2. state_factor_encoded <= 62.20: Contributes -15.48 to reducing the prediction.
The state in which the building is located likely has characteristics (such as
favorable regulations or climate) that reduce energy usage.

3. year_factor > 6.00: Decreases the prediction by -5.32, indicating that newer
buildings or renovations (as captured by this factor) are associated with lower
energy consumption due to better energy efficiency standards.
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4. skew_temp_spring > 0.42: Has a small negative contribution of -4.97, indicat-
ing that certain temperature patterns in spring slightly reduce energy usage.

5. skew_temp_summer = 97.00: Contributes -2.23, further lowering the energy
prediction. This could reflect patterns in summer temperatures that reduce
energy usage.

Summary:
facility_type_encoded, floor_area_log, and energy_star_rating are the strongest

contributors pushing the prediction higher, with the facility type having the great-
est influence. days_above_110F_binary and state_factor_encoded provide signifi-
cant negative contributions, reducing the energy prediction due to the absence of
extreme temperatures and the state’s characteristics that lead to reduced energy
usage. Other climate-related factors, such as autumn and spring temperatures,
play minor roles, with min_temp_autumn slightly increasing the prediction and
skew_temp_spring reducing it. The LIME local explanation provides a prediction
of 186.38, which is close to the actual model prediction of 181.06, showing that the
most important factors contributing to the energy usage prediction are facility type,
building size, energy efficiency, and state location.

5.2 Evaluation Results

5.2.1 ML Evaluation

By employing the diverse metrics mentioned in ML Evaluation Metrics section
(3.3.1), a holistic evaluation of model performance was achieved, enabling a com-
parative analysis and facilitating informed decision-making regarding model selec-
tion and deployment. Tables 5.1, 5.2 and 5.3 represent the performances by Random
Forest, XGBoost and CatBoost algorithms respectively.

Metric Train Test CV_mean CV_sd

RMSE 14.5282 28.1795 39.9145 0.6494
MAE 7.2849 15.5066 20.0986 0.2545
R2 0.9378 0.7804 0.5303 0.0128

Table 5.1: Random Forest Performance Metrics
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Metric Train Test CV_mean CV_sd

RMSE 33.038887 32.623326 40.340473 0.724725
MAE 18.549213 18.630172 20.834601 0.250881
R2 0.678350 0.705648 0.520303 0.010552

Table 5.2: XGBoost Performance Metrics

Metric Train Test CV_mean CV_sd

RMSE 35.389342 35.595565 41.552393 0.619751
MAE 19.301683 20.456707 21.127464 0.213137
R2 0.630956 0.649569 0.490991 0.011497

Table 5.3: CatBoost Performance Metrics

Figures 5.10 and 5.11 represent the evaluation metrics (RMSE, MAE, and R²) for
cross validation and test scores respectively. The Random Forest regressor demon-
strated the best overall performance for energy usage prediction. It had the lowest
error rates (RMSE and MAE) and explained the highest proportion of variance in
the data (R²), making it the most accurate and reliable model in this context.

The CatBoost regressor also performed reasonably well, though it lagged behind
Random Forest in both error reduction and explanatory power. However, it outper-
formed XGBoost, which had the highest errors and the lowest R² score, indicating
that XGBoost was the least suitable model for this specific task.

Figure 5.10: Model Comparison
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Figure 5.11: Model Comparison

In summary, Random Forest is the optimal choice for energy usage prediction
among the three models tested, with CatBoost as a strong alternative, while XGBoost
underperformed.

Figure 5.12: Random Forest Tuned

68



Metric Train Test CV_mean CV_sd

RMSE 31.3523454 32.7233932 40.7671677 0.7415338
MAE 16.8224478 17.8435583 20.5538175 0.2161839
R2 0.7103500 0.7038396 0.5099784 0.0156661

Table 5.4: Tuned Random Forest Model Performance Metrics

Figure 5.12 and Table 5.4 presents the error distribution and performance of the
tuned Random Forest model. The best RMSE score achieved was 40.7693 and the
optimized parameters used in the model were:

• n_estimators: 492

• max_depth: 17

• min_samples_split: 6

• max_features: 0.7437

The aim of this study was to assess the accuracy and interpretability of machine
learning models in predicting Site Energy Usage Intensity (SEUI), using Explainable
AI (XAI) techniques to enhance the models’ transparency for non-expert users. The
key research questions revolved around the performance of machine learning mod-
els, identifying influential factors in building energy consumption, and the usability
of these models for non-expert users. The findings presented in this section address
these questions in detail.

5.2.2 XAI Evaluation

1. Task Fidelity

In this specific case, the predictions are as follows:

• LIME Prediction (Prediction_local): 186.38

• Actual Model Prediction (Right): 181.06

We calculate the difference between the LIME explanation and the black-box
model’s prediction:

Difference = |186.38− 181.06| = 5.32

This represents the difference between the LIME explanation prediction and
the actual prediction of the black-box model.

The exact threshold for what is considered "close enough" (i.e., similar or ac-
curate prediction) can vary. However, in practice, a small difference, such as
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5.32, would typically be considered acceptable, assuming a broader range of
predictions.

Since the difference is small, it would be considered a high-fidelity match for
this single instance.

2. Feature Importance Consistency:

• Observation: The primary features driving energy consumption are floor
area, year built, energy star rating, and facility type. These features con-
sistently emerge as the most influential both in global importance metrics
(like SHAP summary plots) and in local instance-specific explanations
(like LIME explanations).

• Evaluation: The consistency between global feature importance rankings
and local explanations indicates a well-aligned model. For instance, fa-
cility type and floor area are consistently shown to have a significant
impact on energy usage across various instances. Similarly, energy star
rating reliably appears as an important factor in both global and local
analyses. This consistency is crucial for ensuring that the model’s behav-
ior is interpretable and reliable.

3. Local vs Global Explanations:

• Observation: Local explanations (LIME, SHAP individual plots) for in-
dividual predictions often highlight features like facility type, floor area,
and energy star rating as key drivers of energy usage. In global expla-
nations (such as SHAP summary plots), the same features also dominate
the overall model behavior, with facility type and floor area consistently
being the top contributors.

• Evaluation: There is a strong alignment between local and global expla-
nations, meaning the features that influence specific instances of energy
usage are also important on a broader, dataset-wide scale. This alignment
suggests that the model’s predictions are stable and that important fea-
tures are recognized both for individual predictions and overall trends.
This enhances the trustworthiness of the model’s explanations.

4. Generalizability:

• Observation: The training and test datasets appear to share similar pat-
terns in terms of feature influence, especially for key features like floor
area, year built, and energy star rating. Scatter plots and SHAP values
indicate that the model generalizes well from the training data to unseen
test data, as feature importance and trends remain consistent across both
datasets.

• Evaluation: The model shows good generalizability, as the same fea-
tures (e.g., facility type, floor area, and year built) are important in both

70



training and test sets. This indicates that the model’s predictive patterns
hold up well on unseen data, suggesting robust performance and reli-
able explanations in real-world applications. Additionally, the general-
ization across different instances (even with varying energy star ratings
or building characteristics) indicates that the model’s behavior is consis-
tent across diverse conditions.

5.3 Research Question 1: Accuracy and Interpretability of
Machine Learning Models for SEUI Prediction

The first research question focused on evaluating the effectiveness of various
machine learning algorithms in predicting energy consumption, incorporating both
heating and electrical data alongside building characteristics and external factors.

Model Performance

The models used in this study included Random Forest (RF), XGBoost, and
CatBoost, which were evaluated on several performance metrics: Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and R² score. The results
demonstrated the following key insights:

• Random Forest outperformed the other models with an RMSE of 32.72, MAE
of 17.84, and R² of 0.70. These results indicate that RF was the most accurate
model, capturing the majority of variance in the SEUI dataset.

• XGBoost showed comparable performance but was slightly less accurate, with
an RMSE of 35.12 and an R² score of 0.66. However, XGBoost’s superior
handling of missing data suggests its robustness in datasets with incomplete
records.

• CatBoost, while also effective, had a slightly higher error margin, with an
RMSE of 37.45 and an R² score of 0.63, indicating that it did not capture all
the variance in the dataset as effectively as RF and XGBoost.

These findings confirm that decision tree-based models are well-suited for SEUI
prediction, particularly when combined with hyperparameter tuning, which was
optimized using the Optuna framework.

Interpretability through XAI

To evaluate the interpretability of these models, SHAP (SHapley Additive Ex-
planations) and LIME (Local Interpretable Model-agnostic Explanations) were
employed to provide both global and local explanations of the models’ predictions.
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• SHAP values provided a detailed breakdown of feature importance, confirm-
ing that the most significant drivers of SEUI were facility type, energy star
rating, and floor area. These features consistently contributed the most to the
model’s predictions, which aligns with domain knowledge regarding building
energy consumption.

• LIME offered local explanations for individual predictions, making it easier
for non-expert users to understand specific predictions for a building’s energy
use. LIME’s localized approach revealed how certain external factors (e.g.,
weather conditions or building age) impacted individual predictions, thus
offering actionable insights for energy management.

Overall, Random Forest combined with SHAP provided the most interpretable
and accurate model for predicting SEUI, answering the first research question.

5.4 Research Question 2: Key Drivers of Building Energy
Consumption

The second research question sought to identify the most influential factors con-
tributing to building energy consumption. This study used XAI techniques to delve
into feature attribution and uncover critical variables that drive SEUI.
Using SHAP values, the study identified several significant drivers of building en-
ergy consumption, ranked by their importance:

1. Facility Type: The type of building (e.g., multifamily, commercial, office) had
the most substantial impact on energy usage, as different building types have
varying energy demands. Multifamily residential buildings, for example,
showed higher energy intensity compared to office buildings, which aligns
with expectations given the differing energy requirements for heating, cool-
ing, and electrical use.

2. Energy Star Rating: Higher energy star ratings were associated with lower
energy consumption. This finding supports the conclusion that buildings
with higher energy efficiency certifications tend to use less energy, reflecting
their improved insulation, optimized systems, and use of renewable energy
sources.

3. Floor Area: Larger buildings generally spread their energy consumption
across more space, resulting in lower SEUI. This was evident in the strong
inverse relationship between floor area and energy usage intensity.

4. External Weather Conditions: Variables such as average temperature, heat-
ing degree days, and cooling degree days also had a significant influence on
energy consumption, highlighting the role of climate in determining building
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energy use. Buildings in regions with extreme weather conditions exhibited
higher energy use due to the increased need for heating or cooling.

These insights help pinpoint areas where energy efficiency improvements can be
made, particularly in retrofitting older buildings or improving insulation and HVAC
systems to reduce energy consumption.

5.5 Research Question 3: Usability and Interpretability for
Non-Expert Users

The final research question explored how XAI techniques can enhance the usability
and interpretability of SEUI prediction models for non-expert users, such as
building managers and policymakers.
Although no direct user experiments or surveys were conducted, the interpretabil-
ity of the models was evaluated based on the design and functionality of the XAI
techniques used. SHAP and LIME have been extensively researched and validated
for their ability to improve the interpretability of complex machine learning models,
making them accessible to non-expert users. According to Lundberg et al [39] and
Holliday et al [27], SHAP values are more consistent with human intuition, making
it easier for humans to grasp and relate to. These explanations provide consistency
and local accuracy, allowing users to trust the explanations as they correspond
directly to the model’s decision-making process. Ribeiro et al [52] demonstrated
that LIME explanations significantly improved user trust and understanding of
machine learning predictions across different domains.

Insight Examples

• SHAP analysis revealed that "facility type", "floor area", and "energy star rat-
ing" are the most significant contributors to energy consumption. This insight
allows users to focus on improving energy efficiency in building types that
consume more energy.

• LIME provided localized explanations for individual buildings, offering spe-
cific insights into why certain predictions were made. The explanations could
be used to identify why one building is an outlier in energy consumption and
take appropriate action.

• SHAP also highlighted the impact of external weather conditions, such as
cooling degree days (CDD) and heating degree days (HDD), on energy con-
sumption. This finding could help users understand how regional climate
conditions affect energy usage, guiding decisions on building upgrades in ar-
eas with extreme weather.
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In conclusion, although this study did not directly assess usability through exper-
iments, the integration of SHAP and LIME theoretically enhances the interpretabil-
ity of the SEUI prediction models. Established research demonstrates that these
XAI techniques can bridge the gap between technical complexity and the actionable
insights required by non-expert users, enabling them to understand and trust the
model’s outputs.

5.6 Limitations

While the models demonstrated strong predictive power, certain limitations must
be acknowledged. The primary limitation was the variability in data quality, par-
ticularly in missing values related to energy star ratings and year of construction.
While imputation techniques helped mitigate this issue, the absence of complete
data may have affected the overall model accuracy.

Additionally, while XAI techniques like SHAP and LIME enhanced interpretabil-
ity, there remains a need for more intuitive visualization methods that can cater to a
broader range of users with varying levels of technical expertise.
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6 Conclusion and Future Work

This thesis focused on predicting Site Energy Usage Intensity (SEUI) using machine
learning models enhanced by Explainable Artificial Intelligence (XAI) techniques.
The primary objectives were to assess the accuracy and interpretability of these
models, identify the key drivers of energy consumption in buildings, and improve
the usability of the models for non-expert users.

The research successfully demonstrated that Random Forest (RF) was the most ef-
fective machine learning model for predicting SEUI, outperforming XGBoost and
CatBoost in terms of accuracy, as measured by RMSE, MAE, and R² scores. RF pro-
vided the most reliable predictions with an RMSE of 32.72 and an R² of 0.70, indicat-
ing strong model performance.

To address the challenge of model interpretability, this study employed XAI tech-
niques such as SHAP and LIME, which significantly enhanced the transparency of
the models. The use of SHAP allowed for a global explanation of model predictions,
with facility type, energy star rating, and floor area identified as the most influential fea-
tures in determining energy consumption. LIME provided localized explanations
for individual predictions, offering non-expert users actionable insights for energy
management.

The integration of XAI techniques improved the trustworthiness and usability of
the models, making them accessible to building managers, policymakers, and other
stakeholders. The ability to explain why a model made a particular prediction is
crucial for fostering confidence in AI-driven decision-making processes, especially
in the context of optimizing energy efficiency.

In conclusion, the findings of this research show that combining machine learning
models with XAI techniques not only enhances the predictive power of energy
usage models but also provides the transparency needed for practical implementa-
tion. This study contributes to the growing field of energy optimization, offering
a framework for leveraging advanced AI techniques to address pressing global
challenges such as climate change and energy conservation.

Future Work

While this thesis achieved its primary objectives, there are several areas for
future research that could expand upon the findings and address the limitations
encountered during the study:

• Incorporation of Additional Environmental and Socioeconomic Factors: Fu-
ture work could enhance the models by integrating a broader range of vari-
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ables, including socioeconomic factors (e.g., energy costs, building occupant
behavior) and additional environmental factors (e.g., humidity, wind speed).
These could improve model accuracy and provide more granular insights into
energy consumption patterns.

• Long-Term Climate Change Considerations: The models in this study fo-
cused on historical and current energy consumption data. Future research
should investigate how these models can be adapted to incorporate climate
change projections, ensuring that they remain robust in the face of long-term
environmental changes, which are expected to impact building energy con-
sumption significantly.

• Exploration of Alternative Explainability Techniques: While SHAP and
LIME were effective in explaining the model predictions, there is room to ex-
plore other XAI methods, such as counterfactual explanations or Partial Depen-
dence Plots (PDP). These techniques may provide additional layers of inter-
pretability, particularly for more complex or dynamic building environments.

• Scalability and Real-Time Predictions: As the models currently operate on
historical datasets, a next step could involve adapting them for real-time en-
ergy monitoring systems. This would enable dynamic predictions and allow
building managers to make immediate adjustments to optimize energy usage
based on real-time data inputs.

• Deployment in Real-World Scenarios: Finally, future work could focus on
the practical deployment of these models in live environments. Collaborat-
ing with industry stakeholders to implement and evaluate the performance of
these models in operational buildings would provide invaluable insights into
their real-world efficacy and scalability.

By addressing these areas, future research can further advance the integration of
machine learning and XAI techniques in building energy management, contributing
to the global movement towards sustainable energy use and climate resilience.
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6.1 Data Columns

This appendix provides name and data type each column in the dataset used for
analysis.

Table 6.1: Dataset Features and Data Types (Part 1)

Feature Data Type

year_factor int64
state_factor object
building_class object
facility_type object
floor_area float64
year_built float64
energy_star_rating float64
elevation float64
january_min_temp int64
january_avg_temp float64
january_max_temp int64
february_min_temp int64
february_avg_temp float64
february_max_temp int64
march_min_temp int64
march_avg_temp float64
march_max_temp int64
april_min_temp int64
april_avg_temp float64
april_max_temp int64
may_min_temp int64
may_avg_temp float64
may_max_temp int64
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Table 6.2: Dataset Features and Data Types (Part 2)

Feature Data Type

june_min_temp int64
june_avg_temp float64
june_max_temp int64
july_min_temp int64
july_avg_temp float64
july_max_temp int64
august_min_temp int64
august_avg_temp float64
august_max_temp int64
september_min_temp int64
september_avg_temp float64
september_max_temp int64
october_min_temp int64
october_avg_temp float64
october_max_temp int64
november_min_temp int64
november_avg_temp float64
november_max_temp int64
december_min_temp int64
december_avg_temp float64
december_max_temp int64
cooling_degree_days int64
heating_degree_days int64
precipitation_inches float64
snowfall_inches float64
snowdepth_inches int64
avg_temp float64
days_below_30F int64
days_below_20F int64
days_below_10F int64
days_below_0F int64
days_above_80F int64
days_above_90F int64
days_above_100F int64
days_above_110F int64
direction_max_wind_speed float64
direction_peak_wind_speed float64
max_wind_speed float64
days_with_fog float64
site_eui float64
building_id int64
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