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Summary 

Population genetics investigates genetic diversity and its changes within and between 

populations over space and time. Genetic diversity is important for fitness, adaptive 

capacity, and the survival of populations and is influenced by several factors, such as 

mutation, selection, genetic drift and gene flow. Copper butterflies (Lycaena) are 

suitable for analysing structures influencing population connectivity as they potentially 

form more or less closed populations. However, very little is known about their genetic 

diversity and what influences it. Therefore, this thesis (1) provides newly developed 

microsatellite markers and uses genetic markers (2) to investigate genetic diversity 

across four different Lycaena species in the European Alps and to determine (3) which 

geographic and species-specific factors influence population structure, (4) which large- 

and small-scale structures impact the population structure, (5) how natural and 

anthropogenic structures influence the population structure within an Alpine valley, and 

(6) whether and how genetic diversity changes over time. It was shown that the 

postglacial relict species L. helle has a relatively high genetic diversity compared to the 

other three species investigated. This suggests that L. helle is still able to adapt to 

environmental changes. Low genetic diversity was found in L. tityrus subalpinus, 

although high gene flow was found within one population of this species. High mountain 

ridges and large river valleys can act as dispersal barriers for Copper butterflies and 

thus have an impact on population structures. Here, dispersal ability as a species-

specific factor also plays an important role, as some barriers are less likely to affect 

the population structure in the more mobile species L. virgaureae. Furthermore, 

forests, ravines and roads, but not small rivers, represent dispersal barriers for L. tityrus 

subalpinus within an Alpine valley. Finally, over ten years, the genetic diversity of L. 

hippothoe eurydame has decreased, whereas that of L. helle has remained stable. 

Against the backdrop of increasing global changes, it is important to understand the 

genomic underpinning of population structure and adaptation as well as to investigate 

and monitor whether populations are able to adapt to changing environmental 

conditions.  
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Zusammenfassung 

Populationsgenetik untersucht die genetische Diversität und dessen Änderungen 

innerhalb und zwischen Populationen über Raum und Zeit. Genetische Diversität ist 

entscheidend für die Fitness, Anpassungsfähigkeit und das Überleben einer 

Population und kann von verschiedenen Faktoren wie Mutation, Selektion, genetischer 

Drift und Genfluss beeinflusst werden. Feuerfalter (Lycaena) sind repräsentativ für die 

Analyse von Strukturen, die die Konnektivität von Populationen beeinflussen, da sie 

potenziell mehr oder weniger geschlossene Populationen bilden. Allerdings ist nur sehr 

wenig über deren genetische Vielfalt und wodurch diese beeinflusst wird bekannt. 

Diese Arbeit (1) stellt neu entwickelte Mikrosatelliten-Marker zur Verfügung und 

untersucht anhand von genetischen Markern (2) die genetische Diversität von vier 

verschiedenen Lycaena Arten in den Europäischen Alpen, (3) welche geographischen 

und artspezifischen Faktoren und (4) welche groß- und kleinräumigen Strukturen einen 

Einfluss auf die Populationsstruktur haben, (5) den Einfluss von natürlichen und 

anthropogenen Strukturen innerhalb eines alpinen Tals und (6) ob und wie sich die 

genetische Diversität über Zeit verändert. Die Ergebnisse zeigen, dass die postglaziale 

Reliktart, L. helle im Vergleich zu den anderen drei untersuchten Arten eine relativ 

hohe genetische Diversität besitzt. Dies deutet darauf hin, dass L. helle in der Lage ist, 

sich an Umweltveränderungen anzupassen. Eine geringe genetische Diversität wurde 

in L. tityrus subalpinus festgestellt, obwohl innerhalb einer Population dieser Art ein 

hoher Genfluss gefunden wurde. Hohe Gebirgskämme und große Flusstäler können 

für Feuerfalter eine Ausbreitungsbarriere darstellen und somit einen Einfluss auf die 

Populationsstrukturen haben. Hierbei spielt die Ausbreitungsfähigkeit als 

artspezifischer Faktor eine Rolle, da einige dieser Barrieren die Populationsstruktur 

der mobileren Art, L. virgaureae weniger stark beeinflussten. Des Weiteren stellten 

Wälder, Schluchten und Straßen, aber keine kleinen Flüsse Ausbreitungsbarrieren für 

L. tityrus subalpinus innerhalb eines alpinen Tals dar. Schließlich verringerte sich die 

genetische Diversität über zehn Jahre in L. hippothoe eurydame, blieb aber stabil in L. 

helle. Angesichts zunehmender globaler Veränderungen ist es wichtig, die 

genomischen Grundlagen der Populationsstrukturen und Anpassung zu verstehen und 

außerdem zu untersuchen und beobachten, ob Populationen in der Lage sind, sich an 

veränderte Umweltbedingungen anzupassen.  
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General introduction 

To understand evolutionary processes, it is important to have a thorough 

understanding of population genetics (Hedrick 2011). Population genetics examines 

genetic diversity within and between populations and includes investigating changes 

in the frequencies of alleles (variation of a gene) or genes in populations over space 

and time (Clark 2001; Templeton 2006; Nève 2009). Genetic diversity is the variety of 

DNA in different individuals of a species or population (Frankham et al. 2002). The 

source of genetic diversity is mutations (Frankham et al. 2002). The dynamics of 

genetic diversity over population history (time) can be explained as changes in the 

allele frequencies caused by genetic drift and selection (Gillespie 2004; Templeton 

2006; Hedrick 2011). Additionally, genetic diversity can be influenced by geographic 

distribution (space), which can be caused by the subdivision of a population by 

geographic and/or mating barriers or by the diffusion of populations through gene flow 

caused by migration or dispersal (Gillespie 2004; Templeton 2006; Hedrick 2011).  

 

The importance of genetic diversity 

Genetic diversity is considered to be of crucial importance for population fitness, 

survival of species, and adaptive capacity (Reed and Frankham 2003; Ellegren and 

Galtier 2016; Ørsted et al. 2019). Adaptive capacity is the potential of a species or 

population to tolerate or adapt to environmental and climate change; it varies among 

species and populations (Dawson et al. 2011; Hoffmann and Sgrò 2011; Ofori et al. 

2017). High levels of genetic diversity in a population often indicate increased fitness 

and therefore higher probability of survival and a higher adaptive capacity (Booy et al. 

2000; Reed and Frankham 2003; Vellend and Geber 2005). In contrast, low genetic 

diversity may result in reduced reproductive performance and lower stress resistance. 
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This can decrease the adaptive capacity of a species, which thus faces a higher risk 

of extinction (Saccheri et al. 1998; Spielman et al. 2004; Frankham 2005a,b; Willi et al. 

2006; Kahilainen et al. 2014). Reduced genetic diversity may stem from a small 

population size, which potentially leads to inbreeding and hence inbreeding depression 

(reduced fitness due to inbreeding), which is likely to further reduce the population size 

(Keller and Waller 2002; Day et al. 2003; Willi et al. 2006; Bijlsma and Loeschcke 2012; 

Hoffmann et al. 2020). Threatened species often occur in small and isolated 

populations; hence a loss of genetic diversity in these populations may reduce their 

adaptive capacity in comparison to widespread generalist species with large population 

sizes, which are described in chapter two (Spielman et al. 2004; Willi et al. 2006; 

Habel et al. 2013).  

 

Factors affecting genetic diversity 

Genetic diversity can be affected by several factors interacting in a complex dynamic 

way, including mutation, selection, founder and bottleneck events, genetic drift, 

inbreeding, and gene flow (Hughes et al. 2008; Ellegren and Galtier 2016). With each 

generation, new alleles can arise by mutation, thus increasing genetic diversity (Eyre-

Walker and Keightley 2007; Ellegren and Galtier 2016). Selection may either maintain 

genetic diversity by purging deleterious mutations or decrease it by promoting specific 

alleles (Reed and Frankham 2003; Ellegren and Galtier 2016). A reduction or loss of 

genetic diversity, specifically heterozygosity, occurs in almost all founder events due 

to a strong genetic drift, which is the random fluctuation of allele frequency across 

generations (Charlesworth 2009; Ellegren and Galtier 2016; Ørsted et al. 2019). In 

contrast, inbreeding is a stochastic process, which reduces heterozygosity if closely 

related individuals mate (Frankham 1995; Day et al. 2003; Bijlsma and Loeschcke 

2012). Gene flow may compensate for the effects of inbreeding and genetic drift by 
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exchanging genes between populations, but it is affected by geographic distance and 

isolation of populations (Bohonak 1999; Frankham 2010; Kahilainen et al. 2014).  

 

Factors affecting population structures 

Environmental and species-specific factors are important for understanding the spatial 

patterns of genetic diversity and population structure (Banks et al. 2013; Vernesi et al. 

2016; Després et al. 2019). On a spatial scale, the heterogeneity of environments is 

the principal factor influencing the patterns of populations and their genetic diversity. It 

can be further divided into large- and small-scale structures, which are reported on 

chapters three and four (Manel et al. 2003; Manel and Holderegger 2013; Yang et al. 

2017). The impacts of large- and small-scale barriers are often species-specific 

(chapter three); they depend on the size and extent of (un-)suitable habitats as well 

as on the ability of a species to adapt (Hewitt 1999; Keyghobadi 2007; Sheth et al. 

2020). Large-scale structures comprise oceans, deserts, and mountain ranges, for 

instance, the European Alps and the Pyrenees formed geographic barriers after the 

Last Glacial Maximum (Hewitt 1996, 1999; Taberlet et al. 1998). Small-scale structures 

include both natural barriers, such as lakes, rivers, forests, mountain ridges, and 

gorges and anthropogenic barriers, such as human settlements, agriculture, railways, 

and roads (e.g. Storfer et al. 2010; Heidinger et al. 2013; Miles et al. 2019; Sheth et al. 

2020). On a finer scale, i.e. even within populations (chapter five), natural and 

anthropogenic structures can fragment habitats and may thus hamper dispersal (e.g. 

Riley et al. 2006; Fraser et al. 2011; Muñoz-Mendoza et al. 2017; Schmidt et al. 2018). 

Furthermore, these structures can force organisms to disperse across unfavourable 

areas in order to locate suitable habitats, which increases time, energy, and survival 

costs (Bonte et al. 2012; Schloss et al. 2012; Baguette et al. 2013).  
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Dispersal is defined as any movement to suitable habitat patches, potentially resulting 

in gene flow (Dieckmann et al. 1999; Bowler and Benton 2005), and it reflects a major 

part of a species’ ability to respond to environmental change (Senner et al. 2018). It 

comprises three stages: departure from the current patch, inter-patch movement, and 

settlement in a new patch (Bowler and Benton 2005; Clobert et al. 2009). Dispersal 

allows connectivity among populations, which reduces genetic differentiation and 

therefore has an impact on population dynamics and structure (Dieckmann et al. 1999; 

Bowler and Benton 2005; Willi et al. 2006).  

Many alpine environments are shaped by natural habitats and structured by 

landscapes with various natural barriers and are therefore suitable locations for 

investigating the impact of barriers on genetic structures of populations and the 

dynamics of genetic diversity in a mostly intact area (Leidner and Haddad 2010; 

Getzner et al. 2016). Furthermore, alpine systems are characterised by high landscape 

heterogeneity, steep ecological gradients, and the high vulnerability of alpine species 

due to global climate change (Engler et al. 2011; Schmitt et al. 2014; Cortés and 

Wheeler 2018). However, changes arising from land-use by humans, such as the 

intensification of agriculture and increasing anthropogenic barriers, are also occurring 

in alpine environments (Tasser et al. 2005; Mottet et al. 2006). In this thesis, I also 

address the effects of these land-use changes on Alpine systems (chapters two – 

six).  

 

Long- and short-term dynamics 

On a temporal scale, past climates have the most influence on the current distributions 

of species, e.g. oscillations of cold and warm periods in the Pleistocene in Europe 

(Hewitt 1996, 1999; Schmitt et al. 2006). This resulted in latitudinal and altitudinal range 

shifts. During cold periods, species were restricted to southern refuges, and they 
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expanded northwards in warm periods, see chapters three and four (Hewitt 1996; 

Taberlet et al. 1998; Després et al. 2019). Short-term effects, such as overexploitation, 

habitat fragmentation and destruction as well as a decline or loss of population 

abundance caused by human-induced changes in land-use and by the climate can 

lead to genetic erosion and a loss of genetic diversity (Dirzo et al. 2014; Miraldo et al. 

2016; Hoban et al. 2020). These two factors may undermine population fitness, the 

potential to adapt to future environments, and the survival of a species (Reed and 

Frankham 2003; Frankham 2005b; Hoban et al. 2020). Therefore, monitoring changes 

in genetic diversity in populations over time (chapter six) can provide valuable 

information, e.g. for species conservation management.  

 

Genetic markers 

Gene flow, genetic differentiation, genetic diversity, and relatedness can be estimated 

in and among populations using genetic markers (Bohonak 1999; Ouborg et al. 1999). 

In this thesis, the focus will be on three genetic markers: nuclear gene sequences, 

microsatellites – also named short tandem repeats (STRs) or simple sequence repeats 

(SSRs) – and single nucleotide polymorphisms (SNPs).  

Gene sequences are relatively conserved, evolve slowly, and may be under selection 

(e.g. Ballard and Whitlock 2004; Hoffmann and Daborn 2007; Jasso-Martínez et al. 

2018). Hence, they are less suitable for revealing recent gene flow and population 

genetic structures. However, they are useful when analysing the origin of populations 

and past colonisation routes, e.g. during and after the last glacial period (e.g. Seddon 

et al. 2001; Pecsenye et al. 2018). Furthermore, there are two different types of genetic 

diversity: adaptive and neutral. Neutral genes have almost no or no effect on fitness, 

while adaptive genes have an effect on fitness, meaning neutral genetic diversity does 

not necessarily equate with adaptive genetic diversity (Holderegger et al. 2006; 
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Whitlock 2014; Ellegren and Galtier 2016). This seems to be of importance when trying 

to assess the adaptive potential of populations as a response to environmental and 

climate-related change (Hoffmann and Daborn 2007; Reusch and Wood 2007; 

Hoffmann and Willi 2008; Donihue and Lambert 2015). In chapter two, I used nuclear 

gene sequences and microsatellite markers.  

 

A microsatellite is a specific repetitive DNA motif with a length of two to six base pairs, 

which can be amplified by a polymerase chain reaction (PCR) with labeled primers (Litt 

and Luty 1989). Microsatellites are locus-specific, highly polymorphic, and codominant. 

In addition, only a small amount of DNA is needed for a PCR (Queller et al. 1993; Jarne 

and Lagoda 1996). Furthermore, they are suitable for revealing recent gene flow and 

population genetic structures (Ellegren 2004). The development of microsatellites is 

described in chapter one, and chapters two, three and six report on their use. 

However, microsatellites are taxon-specific and very expensive to develop, and null 

alleles can occur (Queller et al. 1993; Jarne and Lagoda 1996; Putman and Carbone 

2014). A null allele is any allele that consistently fails to amplify in a PCR reaction 

because a variation in the flanking region of the primer prevents the primer from 

annealing to the template DNA (Dakin and Avise 2004; Chapuis and Estoup 2007). 

The presence of null alleles is relatively high in some species. For example, in 

butterflies, there are multiple copies of microsatellite loci with highly similar flanking 

regions (Meglecz et al. 2004). In population genetic studies, microsatellites have been 

the marker of choice but, due to the development and use of SNPs as genetic markers, 

SNPs are replacing microsatellites (Morin et al. 2004; Liu et al. 2005; Putman and 

Carbone 2014).  
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An SNP is a single base variation in a DNA sequence, in which typically two different 

nucleotides can be found (Collins et al. 1998). SNPs as genetic markers are highly 

stable due to their low mutation rate, have a high frequency in the genome, usually do 

not need any information about the target regions, and can detect outlier loci even in 

non-model organisms (Brookes 1999; Butler et al. 2007; Helyar et al. 2011). Outlier 

SNPs or loci are loci with significantly lower or higher genetic differentiation between 

populations than expected under neutrality and are potentially under selection (Feng 

et al. 2015). They can provide insight into the genetic basis of local adaptation to 

specific environmental variables (Ahrens et al. 2018), such as altitude (chapters four 

and five). However, the sequencing methods for SNPs are time-consuming and cost-

intensive, high-quality DNA is required, a high number of SNPs are needed, and large 

data sets have to be handled (Butler et al. 2007; Helyar et al. 2011; Flanagan and 

Jones 2019). This relatively new genetic marker is used in landscape genetics to 

analyse gene flow, dispersal, and population structures on a temporal scale as well as 

on large and small spatial scales (chapter four) and on a fine spatial scale (chapter 

five) (Nève 2009; Segelbacher et al. 2010; Fountain et al. 2018).  

 

The European Alps as a field lab for population genetics 

The European Alps are the highest and most extensive mountain range system in 

Europe, and their species composition has been influenced by dynamics since the Last 

Glacial Maximum (Taberlet et al. 1998; Hewitt 1999). They currently harbour hybrid 

zones and endemic species across heterogeneous environments, including unsuitable 

and suitable habitats in close proximity (Martin et al. 2002; Hewitt 2004; Dirnböck et al. 

2011; Dagnino et al. 2020). Due to their heterogenic structure and complex geography, 

the European Alps are a suitable area for investigating population genetic structures 

and the dynamics of genetic diversity. Additionally, Alpine species seem to be 
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particularly vulnerable to global climate change compared to other species (Engler et 

al. 2011; Schmitt et al. 2014). Furthermore, the adaptation of species can be expected 

in Alpine environments due to the steep gradients in altitude, temperature, oxygen 

concentration, and ultraviolet radiation (Collinge et al. 2006; Karl et al. 2008a; Cheviron 

and Brumfield 2012; Polato et al. 2017; Montero-Mendieta et al. 2019).  

 

Study organisms 

Butterflies (Lepidoptera: Rhopalocera) are suitable model organisms for analysing the 

impact of climate and habitat change as they are sensitive environmental indicators 

(Parmesan et al. 1999; Warren et al. 2001; Mair et al. 2012). Within the butterfly family 

Lycaenidae, the genus Lycaena (Copper butterfly) is ecologically well characterised 

and its biology is particularly well understood, including its life history evolution, habitat 

use and preference, (mating) behaviour, the interactions of butterfly larva and host 

plant, stress biology, and local adaptation (e.g. Fischer et al. 1999; Fischer and Fiedler 

2001c; Karl et al. 2008a; Fischer and Karl 2010; Strausz et al. 2012; Haaland 2015; 

Klockmann et al. 2016; Klockmann and Fischer 2017). However, less is known about 

the population genetic structure of Copper butterflies. In this thesis, four species of the 

genus Lycaena, which probably have limited dispersal ability, were investigated 

(Figure 1). Mark-recapture studies have revealed that these species originated from 

more or less closed populations with individuals moving mainly within patches. They 

therefore may occur genetically in strong population structures (Fischer et al. 1999; 

Fischer and Fiedler 2001c; Ricketts 2001; Settele et al. 2008; Finger et al. 2009). This 

makes the four Lycaena species suitable organisms for analysing factors that influence 

population genetic structures. Nevertheless, although they belong to the same genus, 

thus suggesting that their genetic constitution is relatively similar, these four species 

differ regarding their level of threat and, at least to some extent, regarding their 
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population connectivity (Tolman and Lewington 2008; Settele et al. 2008; Klockmann 

et al. 2016; Klockmann and Fischer 2017). Lycaena helle (Denis & Schiffermüller, 

1775) probably shows the lowest dispersal ability and, thus, population connectivity, 

as indicated by ecological and genetic data (Fischer et al. 1999; Bauerfeind et al. 2009; 

Habel et al. 2010). The three other species’ preferences of habitat and patterns of 

distribution indicate a higher dispersal ability, specifically for L. virgaureae (L., 1758), 

which is possibly the most mobile species (Ebert and Rennwald 1991; Settele et al. 

2008; Barua et al. 2011; Kudrna et al. 2015).  

 

  

  

Figure 1 Pictures of the four investigated Copper butterflies: upper left Lycaena helle, 

upper right L. hippothoe, lower left L. tityrus, and lower right L. virgaureae (all pictures: 

© Klaus Fischer).  
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Lycaena helle, the Violet Copper, has a largely boreal distribution, ranging from 

Western Europe to Scandinavia and Northern Asia (Kudrna et al. 2015). In Central 

Europe, it is a postglacial relict species with only a few isolated relict populations (Habel 

et al. 2010, 2011). It inhabits mires, spring habitats, swampy grasslands, and moist 

meadows (Fischer et al. 1999; Settele et al. 2008; Finger et al. 2009). The species has 

one to two generations per year and hibernates as pupa (Tolman and Lewington 2008; 

Settele et al. 2008). In Central Europe, the larva feeds on a single plant, Bistortia 

officinalis Delabre (Polygonaceae) (Ebert and Rennwald 1991; Fischer et al. 1999). 

The species is declining within its European range and is therefore listed in the EU 

Habitat Directive (van Swaay and Warren 1999; Settele et al. 2008; Habel et al. 2014b).  

 

I focussed on the Alpine populations or subspecies of the following three Lycaena 

species: 

Lycaena hippothoe (L., 1761), the Purple-edged Copper, is a widespread temperate-

zone butterfly, ranging from northern Spain in the West throughout most of the northern 

Palearctic area eastwards to the easternmost parts of Siberia and China (Ebert and 

Rennwald 1991; Tuzov 2000). Within Central Europe, two subspecies are found: 

Lycaena hippothoe euridice (Rottemburg, 1775), which occurs throughout most parts 

of the species’ range in Central Europe, and the Alpine subspecies Lycaena hippothoe 

eurydame (Hofmannsegg, 1806), which is confined to the higher elevations of the Alps 

(Ebert and Rennwald 1991; Tolman and Lewington 2008). Its habitats include 

unimproved grassland and meadows (Ebert and Rennwald 1991; Settele et al. 2008). 

The Alpine subspecies has one generation per year and hibernates as half-grown larva 

(Fischer and Fiedler 2001b; Tolman and Lewington 2008). The larva feeds mainly on 

Rumex acetosa L. (Polygonaceae) and R. scutatus L. (Ebert and Rennwald 1991; 

Westenberger 2005).  
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Lycaena tityrus (Poda, 1761), the Sooty Copper, is a widespread temperate-zone 

butterfly, and its distribution ranges from Western Europe to Central Asia (Ebert and 

Rennwald 1991). Within Europe, two subspecies are known: Lycaena tityrus tityrus 

(Poda, 1761), which occurs throughout most parts of the range, and the alpine form 

Lycaena tityrus subalpinus (Speyer, 1851), which can be found only in the Alps and 

some other mountain ranges (Tolman and Lewington 2008). This species occurs on 

moist, dry meadows, and in open woodland (Brunzel et al. 2008; Settele et al. 2008). 

Lycaena tityrus subalpinus has one generation per year and hibernates as half-grown 

larva (Fischer and Fiedler 2000; Tolman and Lewington 2008). The larva feeds mainly 

on R.acetosa but also utilises some congeneric plant species, such as R. acetosella L. 

and R. scutatus (Ebert and Rennwald 1991; Tolman and Lewington 2008; Settele et 

al. 2008).  

 

Lycaena virgaureae, the Scarce Copper, is a butterfly with a widespread temperate-

zone distribution, ranging from the northern Iberian Peninsula and southern France 

across Central Europe to Central Asia and Mongolia (Bräu et al. 2013). It inhabits 

different kinds of unimproved grassland, such as moist to semi-dry, nutrient-poor and 

often acidic meadows, forest edges, and clearings (Ebert and Rennwald 1991; Bräu et 

al. 2013). This species has one generation per year and hibernates as eggs (Tolman 

and Lewington 2008). The larva feeds on R. acetosa and R. scutatus (Ebert and 

Rennwald 1991; Westenberger 2005; Bräu et al. 2013). The populations of Lycaena 

virgaureae have declined substantially in Central Europe but the species is still 

relatively common and widespread in the Alps (Bräu et al. 2013; Haaland 2015).  
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To study genetic diversity and differentiation, microsatellite markers were developed 

for three Lycaena species: L. hippothoe, L. tityrus, and L. virgaureae: 

 

Chapter I: Development of microsatellites 

 

After verifying the microsatellite markers, in the second chapter, I tested whether 

genetic diversity is reduced in a postglacial relict species with isolated populations. 

Lower genetic diversity limits the adaptive capacity of a relict species compared to 

more widely distributed species such as L. h. eurydame, L. t. subalpinus, and L. 

virgaureae:  

 

Chapter II: Genetic diversity across species 

 

The Lycaena populations seem to be structured within the European Alps. To compare 

two different species within this area may help to determine whether barriers are 

common in both species and identify which species-specific factors impact their 

genetic structure and diversity. Therefore, the hypothesis set out in the third chapter 

is that geographic but also species-specific features affect the population genetic 

structures of L. h. eurydame and L virgaureae:  

 

Chapter III: Geographic and species-specific factors affect population genetic 

structures 

 

In the fourth chapter, I report on how genome-wide SNPs were used to more precisely 

characterise large- and small-scale geographic features and their influences on the 

population genetic structure. Therefore, I hypothesized that mountain ridges, river 
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valleys, and postglacial range expansions affect the population structure of L. t. 

subalpinus, and populations from different altitudes show signatures of local adaption 

based on outlier loci:  

 

Chapter IV: Effects of large- and small-scale structures on population genetic 

structures 

 

Because SNPs provide a fine-scale resolution, in the fifth chapter, I analysed the 

population genetic structure of L. t. subalpinus in one valley in the European Alps. I 

hypothesized that small-scale barriers constrain dispersal, affecting the genetic 

structure within populations and that individuals from different altitudes adapt to local 

conditions: 

 

Chapter V: Fine-scale genetic structures in an Alpine valley 

 

Natural and anthropogenic barriers can fragment habitats of species. This is important 

as anthropogenic barriers are increasing in the Alpine region, e.g. due to intensified 

agriculture (e.g. Tasser et al. 2005). Against the backdrop of these trends, in the sixth 

chapter, I described my hypothesis that the genetic diversity of L. helle and L. h. 

eurydame is decreasing and their genetic differentiation is increasing over recent 

years: 

 

Chapter VI: Genetic diversity over time 

 

Each of the six studies is described in an individual chapter, including an abstract, 

introduction, material and methods, results, and discussion section. The manuscripts 
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of the chapters have been either submitted, accepted or published in peer-reviewed 

journals.  
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This chapter is based on the following journal publication. Due to copyright issues, the 
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Trense, D., Reim, E. & Fischer, K. (2019). Characterisation of polymorphic 

microsatellite loci in three copper butterfly species (Lycaena spp.). Molecular Biology 
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DOI: 10.1007/s11033-019-05056-3 

 

 

Abstract 

The genus Lycaena is widely used for studying life history evolution, local adaptation, 

stress biology, and behaviour. Furthermore, several species are currently declining 

and thus of conservation concern. In order to provide the molecular basis for population 

genetics and conservation biology, we report the development of 36 microsatellite 

markers for Lycaena spp.. Loci were screened in 21 individuals each per species using 

individuals from Greifswald, north-eastern Germany (L. tityrus) or the Italian and 

Austrian Alps (L. hippothoe and L. virgaureae). Ten, 16, and ten polymorphic 

microsatellite loci are characterized in L. tityrus, L. hippothoe, and L. virgaureae, 

respectively. Allele numbers per locus ranged from three to 20 and expected 

heterozygosity from 0.37 to 0.94. Nineteen out of the 36 loci were successfully cross-

amplified in at least one other taxon, resulting in a total of 13 loci for L. tityrus tityrus, 

14 for L. tityrus subalpinus, 20 for L. hippothoe, and 18 for L. virgaureae. These 

markers will be useful for addressing population genetic issues in L. tityrus, L. 

hippothoe, and L. virgaureae, and potentially other Copper butterflies.  
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Keywords cross-species amplification, Lepidoptera, Lycaenidae, NGS microsatellite, 

SSR, STR 
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Abstract 

Genetic diversity is of crucial importance for population fitness and the potential of 

populations to adapt to environmental change. Population-level genetic diversity is 

expected to be reduced in specialists having small and isolated populations. We 

analysed genetic structure and diversity in (pre-)Alpine populations of four Copper 

butterfly species, differing in the degree of habitat specialisation (Lycaena helle > L. 

hippothoe > L. virgaureae > L. tityrus). Despite substantial variation among genetic 

markers and molecular indices, genetic diversity and thus evolutionary potential tended 

to be highest in L. hippothoe and lowest in L. tityrus. Microsatellite analyses revealed 

that genetic diversity tended to be higher in L. hippothoe and L. virgaureae than in L. 

helle and L. tityrus. MDH sequencing indicated only few differences among species, 

while GAPDH sequencing showed higher genetic diversity in L. hippothoe and L. tityrus 

than in L. virgaureae and L. helle. These results do not match our a priori predictions 

of a high genetic diversity in L. tityrus and a particularly low one in the glacial relict L. 

helle. In L. helle, populations showed strong genetic differentiation but without clear 
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spatial structure, while the other species showed genetic differentiation among clusters 

according to cardinal directions. We conclude that (1) genetic diversity and therefore 

evolutionary potential may not be generally reduced in rare relict species and that (2) 

it is more meaningful to focus on specific populations of concern to assess genetic 

vulnerability to environmental change.  

 

Keywords conservation genetics, genetic differentiation, glacial relict species, global 

change, Lycaena, population genetic structure 
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Trense, D., Jager, L. & Fischer, K. (2022). The central Alps comprise a major dispersal 

barrier between western and eastern populations of two butterfly species. Journal of 

Biogeography 49 (8): 1508-1520. 

DOI: 10.1111/jbi.14397 

 

 

Abstract 

Aim: Environmental and species-specific factors shape spatial patterns in genetic 

diversity and population structure. Comparing different species within the same area 

helps to disentangle more general from species-specific factors affecting such 

geographic patterns. Here, we examined genetic diversity and population structuring 

through geographic features in two alpine butterfly species.  

Location: European Alps.  

Taxon: Copper butterflies (Lycaena spp.).  

Methods: We used 14 and nine microsatellite markers to analyse the genetic diversity 

and structure of 21 Lycaena hippothoe and 14 L. virgaureae populations, respectively.  

Results: We found a higher genetic diversity and a more pronounced population 

structure in L. hippothoe than in L. virgaureae. Both species displayed a major genetic 

barrier in the central Alps. Western and eastern L. hippothoe populations but central 

L. virgaureae populations showed the highest genetic diversity.  



  Chapter IV 
 

25 

Main Conclusions: The population genetic structures of both Copper butterflies 

seemed to be strongly affected by population history and demography. Patterns 

indicate for both species a western and an eastern glacial refuge. The high genetic 

diversity and pronounced population structure found in L. hippothoe seems to be 

related to a low dispersal ability and closed populations with high local abundances as 

opposed to L. virgaureae. The higher dispersal of the latter likely caused hybridization 

in the central alpine contact zone boosting genetic diversity, which was not the case in 

L. hippothoe. These findings suggest that different conservation strategies are needed 

for these closely related species.  

 

Keywords dispersal ability, genetic diversity, Lycaena, microsatellites, population 

genetics, population structure 
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Trense, D., Hoffmann, A. A. & Fischer, K. (2021). Large‐and small‐scale geographic 
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Abstract 

Aim: Understanding factors influencing patterns of genetic diversity is of particular 

importance in the current era of global climate change and habitat loss. These factors 

include the evolutionary history and range dynamics of a species as well as the spatial 

heterogeneity in the environment it currently occupies. Here, we investigate to what 

extent populations of the Sooty Copper butterfly (Lycaena tityrus) are structured by 

mountain ridges, large river valleys, and post-glacial range expansions in a 

topographically complex Alpine environment. Additionally, we explore if different 

evolutionary lineages are present within this species, and search for signatures of local 

adaption to different altitudes.  

Location: European Alps.  

Methods: We analysed population structure and genetic diversity across the European 

Alps, using genome-wide SNPs identified through RADseq.  

Results: We found substantial genetic differentiation within the Alps caused by high 

mountain ridges and large river valleys. A strong reduction of genetic diversity from 
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west to east suggests that the Alps were recolonized from a southwestern refuge after 

the last glacial period. We detected 40 outlier loci likely under altitudinal selection, 

including several loci related to membranes and cellular processes.  

Main conclusion: We suggest that efforts to preserve alpine L. tityrus should focus 

on the genetically diverse populations in the western Alps, and that the dolomite 

populations should be treated as genetically distinct management units. This study 

demonstrates the usefulness of SNP-based approaches for understanding patterns of 

genetic diversity, gene flow and selection in a region that is expected to be particularly 

vulnerable to climate change.  

 

Keywords barrier to dispersal, evolutionary significant unit, genetic differentiation, 

genetic diversity, glacial refuges, SNP outlier loci 
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Chapter V: Fine-scale genetic structures in an Alpine valley 
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Abstract 

Dispersal is a key biological process serving several functions including connectivity 

among populations. Habitat fragmentation caused by natural or anthropogenic 

structures may hamper dispersal, thereby disrupting genetic connectivity. Investigating 

factors affecting dispersal and gene flow is important in the current era of 

anthropogenic global change, as dispersal comprises a vital part of a species’ 

resilience to environmental change. Using fine-scale landscape genomics, we 

investigate gene flow and genetic structure of the Sooty Copper butterfly (Lycaena 

tityrus) in the Alpine Ötz valley system in Austria. We show surprisingly high levels of 

gene flow in L. tityrus across the region. Nevertheless, ravines, forests, and roads had 

effects on genetic structure, while rivers did not. The latter is surprising as roads and 

rivers have a similar width and run largely in parallel in our study area, pointing towards 

a higher impact of anthropogenic compared with natural linear structures. Additionally, 

we detected eleven loci potentially under thermal selection, including ones related to 

membranes, metabolism, and immune function. This study demonstrates the 
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usefulness of molecular approaches in obtaining estimates of dispersal and population 

processes in the wild. Our results suggest that, despite high gene flow in the Alpine 

valley system investigated, L. tityrus nevertheless seems to be vulnerable to 

anthropogenically-driven habitat fragmentation. With anthropogenic rather than natural 

linear structures affecting gene flow, this may have important consequences for the 

persistence of species such as the butterfly studied here in altered landscapes.  

 

Keywords ddRAD, gene flow, habitat fragmentation, landscape genetics, SNP outlier 

loci, thermal adaptation 
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Chapter VI: Genetic diversity over time 
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Abstract 

1. The global loss of biodiversity is one of the most urgent challenges in contemporary 

conservation biology.  

2. Apart from species declines and lowered abundances, the loss of their genetic 

diversity is equally concerning as it may undermine their fitness and potential to adapt 

to future environmental change.  

3. We compared genetic diversity of historical and recent pre-(alpine) populations of 

two butterfly species, Lycaena helle and L. hippothoe, over a period of about ten years.  

4. Using microsatellite markers, we found no changes over time in L. helle, while 

genetic diversity decreased, and differentiation increased in L. hippothoe.  

5. Lycaena helle inhabits peat bogs and fallows with populations being typically 

isolated, while L. hippothoe occurs in population networks on hay meadows, with the 

latter being strongly exposed to agricultural intensification.  
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6. We conclude that currently L. hippothoe populations are strongly declining due to 

land use change, resulting in genetic erosion potentially due to the collapse of 

population networks.  

 

Keywords agricultural intensification, biodiversity loss, comparative genetics, genetic 

differentiation, genetic diversity, glacial relict, Lycaena butterflies, microsatellite 

marker, population networks, population structure 
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General discussion 

Development of microsatellites 

Microsatellite loci can be used as genetic markers, which allow investigation of the 

population genetic structure and the genetic diversity of species (Estoup and Angers 

1998). Therefore, 16, ten, and ten microsatellites were developed and characterised 

for L. hippothoe eurydame, L. tityrus, and L. virgaureae, respectively.  

Twenty-six of these 36 microsatellite loci deviated significantly from the Hardy-

Weinberg equilibrium (HWE). Such a deviation could be due to several reasons: 

heterozygosity deficiency, inbreeding, missing data, population substructure, 

selection, and a small sample size (Ewers-Saucedo et al. 2016). In this case, the most 

likely explanations are the small sample size of 21 individuals used to test the 

microsatellites in each species and the heterozygosity deficiency, which can be caused 

by the occurrence of null alleles (Brookfield 1996; Meglecz et al. 2004). Usually, null 

alleles are caused by dissimilarities in the flanking regions of the PCR primers 

(Meglecz et al. 2004; Chapuis and Estoup 2007). In addition, a common phenomenon 

in Lepidoptera is the presence of multiple copies of microsatellite loci with highly similar 

flanking regions (Meglecz et al. 2004; Zhang 2004). This may reduce the utility of these 

markers and potentially affect the results of studies that use these microsatellites. 

However, these microsatellites are essential for analysing the population genetic 

structure and diversity in Lycaena butterflies.  

 

Genetic diversity across species 

The second chapter outlined my investigation of genetic diversity and, hence, the 

putative adaptive potential of a postglacial relict species L. helle in comparison to more 

widely distributed species with lower habitat specialisation such as L. hippothoe 

eurydame, L. tityrus subalpinus, and L. virgaureae. The genetic diversity was 
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comparatively high in three species: L. h. eurydame, which displayed the highest 

genetic diversity, followed by L. helle and L. virgaureae (Figure 2). The fourth species, 

L. t. subalpinus showed the lowest genetic diversity. Lycaena hippothoe eurydame 

exhibited a high genetic diversity, even though this species has a comparably high 

habitat specificity and its population has declined severely throughout Central Europe 

(Settele et al. 2008; Binot-Hafke et al. 2011). This is probably related to its large 

population sizes. A similarly high level of genetic diversity was found in L. virgaureae, 

which exhibited less habitat specificity in comparison to L. h. eurydame. In both 

species, I found a rather strong divergence among eastern and western populations. 

My detailed investigation of this divergence was described in chapter three.  

 

 

Figure 2 Boxplots of observed heterozygosity based on five microsatellite loci in eleven 

populations of Lycaena helle, L. h. eurydame, L. virgaureae, and L. t. subalpinus. The 

boxes represent 50% of the data, indicated by the first quartile (lowest line), median 

quartile (middle line), and third quartile (upper line). The whiskers show the ranges of 

observed heterozygosity. The asterisk indicates that the observed heterozygosity of L. 

t. subalpinus is significantly lower than that of the other three species.  
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Although L. helle is a postglacial relict species with high habitat specificity (Habel et al. 

2010), which contradicts my hypothesis, it exhibited high genetic diversity. This might 

be caused by higher levels of gene flow in the past and high local population 

abundance (Finger et al. 2009). As high genetic diversity is expected to be 

advantageous for evolutionary potential and fitness (Booy et al. 2000; Reed and 

Frankham 2003; Bijlsma and Loeschcke 2012; Ørsted et al. 2019), L. helle is probably 

still able to adapt to changes in the environment (Finger et al. 2009). Furthermore, I 

detected a much more pronounced genetic structure in L. helle than in the three other 

species, even when the populations occur in close proximity. This potentially indicates 

limited gene flow and a strongly reduced dispersal ability of this species (Fischer et al. 

1999; Guschanski et al. 2007; Stoeckle et al. 2017; Goudarzi et al. 2019).  

 

However, contrary to my expectations, L. t. subalpinus was found to exhibit low genetic 

diversity in comparison to the three other species. I assume that L. t. subalpinus has 

suffered population losses due to agricultural intensification, characterised by too 

frequent mowing and eutrophication of many meadows in the Alps (Cizek et al. 2012; 

Grüebler et al. 2015). These land-use changes may affect L. h. eurydame and L. 

virgaureae equally, but probably L. t. subalpinus occurs in panmictic populations in the 

Alps, and thus needs gene flow to maintain its genetic diversity. Its rather low genetic 

diversity is of concern and could negatively affect its evolutionary potential in the future 

(Karl et al. 2008a).  

 

These findings indicate that glacial relict species or other vulnerable species are not 

necessarily threatened by reduced genetic diversity. Furthermore, focusing on specific 

populations seems to be more informative than trying to assess species-level diversity, 

as each population is influenced by its specific history.  
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Geographic and species-specific factors affect population genetic structures 

In the third chapter, I examined the geographic and species-specific factors that affect 

the population genetic structures of L. h. eurydame and L virgaureae in the European 

Alps. I found a higher genetic diversity and a more pronounced population structure in 

L. h. eurydame than in L. virgaureae. The genetic diversity of L. h. eurydame 

populations seems to be influenced by high mountain ridges and large river valleys. 

This is probably the result of the lower dispersal capacity of L. h. eurydame. This 

species has been found to occur in closed populations with, at least in part, large 

population sizes (Fischer 1998; Fischer and Fiedler 2001a). In contrast, L. virgaureae 

seems to occur in more open population structures with lower population sizes 

(Chuluunbaatar 2004; Barua et al. 2011).  

Furthermore, the pronounced genetic structure of L. h. eurydame may also be 

influenced by more recent environmental changes such as habitat fragmentation 

caused by the agricultural intensification of alpine habitats (Mottet et al. 2006; Locatelli 

et al. 2017). This may indicate that L. h. eurydame is more vulnerable to land-use 

change than L. virgaureae, a phenomenon which might correlate with the differences 

in their dispersal ability.  

 

For both species, the high and often glaciated ridges of the central Alps comprised a 

dispersal barrier between the western and eastern populations (Figure 3). This 

suggests that the central Alps are colonised from eastern and western glacial refuges. 

In other studies, potential refuges were detected in Western and Eastern Europe 

(Hewitt 1999, 2004; Schmitt 2007, 2009). Within this dispersal barrier in the central 

Alps, genetic diversity was low in L. h. eurydame, but high in L. virgaureae, suggesting 

different species-specific features. Here, the most likely feature seems to be dispersal 
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ability. The higher dispersal of L. virgaureae probably caused hybridization, thus 

boosting the genetic diversity of this more mobile species (Schneider et al. 2003). 

Similar findings on hybridization zones have been found in studies of other species 

(e.g. Petit et al. 2003; Knopp and Merilä 2009). The overall high genetic diversity and 

pronounced population structure found in L. h. eurydame seem to be related to its low 

dispersal ability and the fact that its populations are closed with high local abundances 

(Fischer 1998; Fischer and Fiedler 2001a).  

 

 

Figure 3 Estimated effective migration surface (EEMS) plots for the posterior mean of 

the effective migration surface based on 21 populations of Lycaena hippothoe 

eurydame (a) and 14 populations of L. virgaureae (b), and the effective diversity 

surface of L. h. eurydame (c) and L. virgaureae (e). The colours blue, white, and orange 
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indicate areas of high dispersal, isolation by distance, and low dispersal (dispersal 

barrier), respectively (a, b). The relative effective genetic diversity ranges from high in 

blue to low in orange/brown (c, d). Black dots and lines show the population locations 

and the national borders, respectively. The red square represents the city of Innsbruck.  

 

In summary, the structure of both species are influenced by the central Alps. However, 

the population genetic structures and diversity patterns of the species differ as a result 

of species-specific differences in demography and dispersal ability. Lycaena hippothoe 

eurydame may reach high population densities but has a poor dispersal ability. 

Lycaena virgaureae, in contrast, does not seem to be limited regarding dispersal, but 

shows low genetic diversity.  

 

Effects of large- and small-scale structures on population genetic structures 

In chapter three, I presented results that led me to conclude that high mountain ridges 

and large river valleys affect the structure of populations of Lycaena butterflies in the 

European Alps. Next, in chapter four, I provided further details about the effects of 

large- and small-scale structures on the population genetic structure of L. t. subalpinus.  

I found substantial genetic differentiation of L. t. subalpinus in the Alps, caused by large 

river valleys and high mountain ridges. The river valleys of Rienz and Inn seem to 

separate the L. t. subalpinus populations in the European Alps. This finding is in line 

with other studies which discovered that large rivers affected the genetic patterns of 

insect populations (Mardulyn 2001; Schmitt et al. 2007; Cupedo and Doorenweerd 

2020). Mountains above 2 500 m a.s.l. in the whole study area, especially when 

covered by glaciers, do not constitute suitable habitats for L. t. subalpinus and thus act 

as a dispersal barrier for this species. Again, this is in line with other studies on insects 

which have found evidence that various mountain ranges have a barrier effect on 
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dispersal, thus affecting gene flow among populations (Britten et al. 1995; Hewitt 1996; 

Després et al. 2019; Jaffé et al. 2019).  

 

In two L. t. subalpinus populations, four putative half-sibling pairs were found, 

suggesting occasional long-range dispersal, although Lycaena species are predicted 

to be the least mobile butterfly species (Ricketts 2001). These two populations were 

sampled in the Dolomites and are clearly genetically separated from the other 

populations. Although these populations seem to be the closest to an Italian refuge, 

they exhibited low genetic diversity. This is not consistent with the general assumption 

that genetic diversity decreases from the core of a species’ range to its edge (Brown 

et al. 1995; Eckert et al. 2008). Thus, the Dolomite populations were probably founded 

by another, more distant refuge, explaining their low genetic diversity, the high 

similarity between the two Dolomite populations and their strong separation from all 

other populations. Additionally, the genetic diversity in the whole study area decreased 

from west to east, suggesting the high importance of the southwestern Alps. I suppose 

that there is a glacial refuge present in the southwestern Alps, as L. t. subalpinus 

possibly recolonised the Alps after the last glacial period. The importance of the 

southwestern Alps was also found for other Alpine species (Schönswetter et al. 2005; 

Schmitt 2009; Louy et al. 2014).  

 

I detected 15 loci that could be assigned to membrane transport or proteins, suggesting 

selection on membrane features in L. t. subalpinus along the altitudinal gradient. This 

is probably related to membrane fluidity, which may affect cold tolerance in ectotherms 

(Hazel 1995; Ohtsu et al. 1998; Hochachka and Somero 2002). Furthermore, five other 

loci were detected as potential outlier loci in L. t. subalpinus, which are involved in 

several cellular processes. In line with my findings, studies on other insects have 
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detected some of these loci as potential outlier loci in relation to altitude (Waldvogel et 

al. 2018; Montero-Mendieta et al. 2019; Jackson et al. 2020).  

 

Finally, this chapter showed the impact of local geographic features, such as high 

mountain ridges and large river valleys, acting as dispersal barriers and thus affecting 

the spatial genetic diversity and structure of L. t. subalpinus, along with that of 

postglacial range expansions. Moreover, L. t. subalpinus populations from different 

altitudes adapted to local conditions, suggesting an increased cold tolerance in 

populations exposed to higher altitudes.  

 

Fine-scale genetic structures in an Alpine valley 

On the fine-scale, within the Ötz valley, I detected surprisingly high levels of gene flow 

in L. t. subalpinus, but also genetic structuring across natural (altitude, forests, and 

ravines) and anthropogenic (roads) structures, which apparently acted as a dispersal 

barrier (Figure 4). Specifically, I found that forests, ravines, and roads limited dispersal, 

while rivers did not. Other studies on insects using different genetic markers have also 

found that forests and roads may serve as barriers to dispersal (Schmitt et al. 2000; 

Keller and Largiadèr 2003; Heidinger et al. 2013).  
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Figure 4 The study site within the Ötz valley system on an aerial map. The triangles 

show the location of individuals and the white dot illustrates the village Zwieselstein. 

The yellow lines indicate ravines, and the green half-circles indicate steep wooded 

slopes, putatively comprising barriers to dispersal. The blue lines indicate rivers and 

the black lines represent roads. Blue, red, and white triangles represent individuals on 

the right side of the road, and violet, green, and orange triangles represent indivduals 

on the left roadside. The underlying river and road networks were taken from Austria’s 

’Roads’ and ’Waterways’ shapefiles, available at MapCruzin.com. The map was 

generated with QGIS version 3.14 (www.qgis.org).  

 

Surprisingly, rivers did not have a comparable effect, although rivers and roads run 

largely in parallel and have roughly the same width in this Alpine valley. Either traffic 

and associated roadkills affect the gene flow across roads, or L. t. subalpinus is less 

reluctant to cross familiar natural structures (rivers) than novel structures (roads). 

Several studies have shown that roads may act as a barrier to dispersal for insects and 
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that small insects are overrepresented in roadkill (Soluk et al. 2011; Skórka et al. 2013; 

Muñoz et al. 2015). I assume that roads act as a barrier due to roadkill and thus 

constitute a major threat to L. t. subalpinus in the Ötz valley. Therefore, 

anthropogenically driven habitat fragmentation seems to be a greater threat than 

natural barriers, such as rivers, to genetic connectivity for L. t. subalpinus in this Alpine 

valley.  

 

Five membrane-related proteins were detected along the altitudinal gradient, similar to 

the findings presented in chapter four. Another protein is involved in metabolism and 

may indicate climatic adaptations in L. t. subalpinus. Metabolic cold adaptation, with 

increasing metabolism under thermally challenging conditions, is widespread in 

ectotherms (Addo-Bediako et al. 2002; Shik et al. 2019). The gene product of 

prophenoloxidase inhibits proteins and recognizes bacterial and fungal components 

and is, therefore, an important part of insect immune defence (Söderhäll and Cerenius 

1998). This suggests that prophenoloxidase and, thus, the immune defence of L. t. 

subalpinus have an impact on local adaptation to different altitudes.  

 

In summary, natural and anthropogenic small-scale barriers in the Ötz valley constrain 

dispersal and therefore can affect the genetic structures of L. t. subalpinus populations. 

Furthermore, individuals of L. t. subalpinus from different altitudes adapt to local 

conditions, suggesting temperature to be a selective agent for this species, which is 

expected to be related to altitudinal variation.  

 

Genetic diversity over time 

In the last chapter, I compared the genetic diversity and differentiation of historical and 

recent (pre-)Alpine populations of two Lycaena butterflies over about ten years. In 
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contrast to my a priori hypothesis and due to their isolated populations, the genetic 

diversity of the postglacial relict species L. helle did not decrease over time, but showed 

stable genetic diversity and differentiation. Lycaena helle occurs in relatively large 

populations, which I assume buffers genetic drift and inbreeding (Fischer et al. 1999; 

Finger et al. 2009; Bauerfeind et al. 2009). In addition, a reason for this species’ stable 

genetic diversity over years could be that the investigated populations occur in peat 

bogs or wetland fallows and are thus less likely to be exposed to the effects of 

agricultural intensification.  

 

In contrast, I found decreased genetic diversity and increased genetic differentiation of 

L. h. eurydame over a time period of ten years, suggesting a substantial drop in 

population size. This pattern could be driven by habitat fragmentation, intensive 

management as well as more frequent and early mowing of hay meadows (Cizek et al. 

2012; Krämer et al. 2012; Grüebler et al. 2015). The occurrence of L. h. eurydame is 

strongly associated with hay meadows in the European Alps (Ebert and Rennwald 

1991), and more frequent mowing can cause direct mortality or interfere with the 

successful larval and pupal development of L. h. eurydame. This supports the findings 

of other studies on butterflies, which have shown that they respond negatively to early 

and frequent mowing (Johst et al. 2006; Cizek et al. 2012).  

 

The conclusions made in this chapter reveal that two closely related species have 

shown different genetic responses over time. These differences among the species 

may arise from different population structures. Lycaena hippothoe eurydame certainly 

occurs in population networks which rely on gene flow to maintain genetic diversity, 

while L. helle occurs in disjunctive and isolated populations, which may be able to 

maintain genetic diversity without gene flow (Habel and Schmitt 2012). I assume that 
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each species has a different genetic background, is exposed to different challenges 

arising from habitat fragmentation or anthropogenic land-use, and has a different 

potential to adapt to the changing environment (Reusch and Wood 2007; Hoffmann 

and Sgrò 2011; Engler et al. 2014). However, the decreased genetic diversity of L. h. 

eurydame is of concern as it could reduce the ability of the species to adapt to further 

environmental changes.  

 

Conclusions and limitations 

This thesis provided new insights into the population structure and genetic diversity of 

four Lycaena species in the European Alps. (1) New microsatellite markers were 

developed. (2) A first comparative overview of the genetic structure and diversity of 

four Lycaena species in the European Alps was provided. (3) A relatively high genetic 

diversity of the postglacial relict species L. helle and a low genetic diversity of L. t. 

subalpinus were found. (4) High mountain ridges and large river valleys were identified 

as dispersal barriers for Lycaena populations. (5) Forests, ravines, and roads, but not 

small rivers, were identified as dispersal barriers for an L. t. subalpinus population in 

an Alpine valley. (6) High gene flow was found in L. t. subalpinus. (7) Lycaena 

populations and individuals from different altitudes were found to adapt to local 

conditions. (8) Genetic diversity decreased in L. h. eurydame populations, but 

remained stable in L. helle populations.  

The results may be confounded by the occurrence of null alleles in the studies in which 

microsatellites loci were used as genetic markers, as presented in chapters two, 

three, and six. Hence, the datasets should be interpreted with caution. However, null 

alleles should not hamper the comparative studies of genetic diversity either over time 

or between species, as past and recent datasets or species were probably affected by 

null alleles to a similar extent.  
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The finding that the postglacial relict species L. helle is unlikely to be threatened by 

genetic erosion provides evidence for the ability of L. helle to adapt to environmental 

change. However, more insights into the adaptive potential of this species are needed. 

Future studies should involve more genetic markers or genome-wide SNPs to show 

whether this high genetic diversity persists in L. helle or whether studying five 

microsatellites may not have yielded sufficient evidence to make a statement about its 

overall genetic diversity.  

The decreasing genetic diversity of L. h. eurydame over ten years and the low genetic 

diversity of L. t. subalpinus are of concern. These decreasing trends in these 

populations should be observed in order to monitor future developments. Moreover, to 

address the decrease in their genetic diversity, appropriate conservation strategies 

should be developed for both species. Furthermore, L. t. subalpinus seems to be 

vulnerable to anthropogenic habitat fragmentation, because gene flow is more affected 

by anthropogenic rather than natural linear barriers. One possible explanation is that 

L. t. subalpinus is less reluctant to cross familiar natural structures (rivers) than novel 

structures (roads), which could be tested in future studies by investigating edge-

following and edge-crossing behaviour. This behaviour might have important 

consequences for the persistence of species such as L. tityrus in altered landscapes.  

The result that L. t. subalpinus populations from different altitudes adapt to local 

conditions suggests an increased cold tolerance in populations exposed to higher 

altitudes. This conclusion needs further investigation because only a few outlier loci 

were assigned to a putative function. This is probably related to a missing annotated 

genome of L. tityrus, because an available annotated genome would clearly improve 

the detection of loci with putative functions under selection.  

Increasing global changes, including climate warming (e.g. Shukla et al. 2019), land-

use change (e.g. Nilsson et al. 2013), and resulting habitat fragmentation (e.g. 
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Selwood et al. 2015), have been shown to be even more severe in alpine habitats (e.g. 

Brunetti et al. 2009). Against this backdrop, it is important to understand the genomic 

underpinning of adaptation and to investigate and monitor whether populations are 

able to adapt to changing environmental conditions (Reusch and Wood 2007; Pauls et 

al. 2013).  
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