
GraphGraph--based Traceability based Traceability ––
A Comprehensive ApproachA Comprehensive Approach

HannesHannes SchwarzSchwarz
JJüürgenrgen EbertEbert

Andreas WinterAndreas Winter

Nr. 4/2009Nr. 4/2009

Arbeitsberichte aus demArbeitsberichte aus dem
Fachbereich InformatikFachbereich Informatik

Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung
vorläufiger Ergebnisse, die in der Regel noch für spätere Veröffentlichungen
überarbeitet werden. Die Autoren sind deshalb für kritische Hinweise dankbar. Alle
Rechte vorbehalten, insbesondere die der Übersetzung, des Nachdruckes, des
Vortrags, der Entnahme von Abbildungen und Tabellen – auch bei nur
auszugsweiser Verwertung.

The “Arbeitsberichte aus dem Fachbereich Informatik“ comprise preliminary results
which will usually be revised for subsequent publication. Critical comments are
appreciated by the authors. All rights reserved. No part of this report may be
reproduced by any means or translated.

Arbeitsberichte des Fachbereichs Informatik

ISSN (Print): 1864-0346
ISSN (Online): 1864-0850

Herausgeber / Edited by:
Der Dekan:
Prof. Dr. Zöbel

Die Professoren des Fachbereichs:
Prof. Dr. Bátori, Prof. Dr. Beckert, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr. Ebert,
Prof. Dr. Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,
Jun.-Prof. Dr. Hass, Prof. Dr. Krause, Prof. Dr. Lämmel, Prof. Dr. Lautenbach, Prof.
Dr. Müller, Prof. Dr. Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese, Prof. Dr.
Rosendahl, Prof. Dr. Schubert, Prof. Dr. Staab, Prof. Dr. Steigner, Prof. Dr. Troitzsch,
Prof. Dr. von Kortzfleisch, Prof. Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Zöbel

Kontaktdaten der Verfasser

Hannes Schwarz, Jürgen Ebert, Andreas Winter
Institut für Informatik
Fachbereich Institut für Softwaretechnik
Universität Koblenz-Landau
Universitätsstraße 1
D-56070 Koblenz
EMail: hschwarz@uni-koblenz.de, ebert@uni-koblenz.de; winter@uni-koblenz.de

mailto:hschwarz@uni-koblenz.de
mailto:ebert@uni-koblenz.de

Graph-based Traceability – A Comprehensive
Approach

Hannes Schwarz, Jürgen Ebert, Andreas Winter

Institute for Software Technology

University of Koblenz-Landau

Koblenz, Germany

February 17, 2009

In recent years, traceability has been more and more universally accepted as be-
ing a key factor for the success of software development projects. However, the
multitude of different, not well-integrated taxonomies, approaches and technologies
impedes the application of traceability techniques in practice. This paper presents a
comprehensive view on traceability, pertaining to the whole software development
process. Based on graph technology, it derives a seamless approach which combines
all activities related to traceability information, namely definition, recording, identi-
fication, maintenance, retrieval, and utilization in one single conceptual framework.
The presented approach is validated in the context of the ReDSeeDS-project aiming
at requirements-based software reuse.

1 Introduction

In the course of software development many different artifacts are produced, ranging from col-
lections of requirement statements over architecture and design models to source code and test
cases. All these artifacts are strongly coupled. They may build on each other, or their individual
elements may contain references to other elements in other software artifacts. This fact leads to
a high degree of interdependence. Thus, changing one element in one artifact may lead to the
need of changing others, possibly leading to an avalanche of inferred changes.

In order to keep all relevant documents in a consistent, but still interconnected state, their in-
terdependencies have to be managed appropriately to support tracing the impact of change for
concrete software elements. The common recognition of this necessity has led to the notion of
traceability management.

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

3

Besides impact analysis, closely related to software maintenance, other areas of application
for traceability have emerged, including program comprehension, project management, quality
assurance, and reuse of software artifacts.

The need for an appropriate treatment of traceability information has even increased with the
advent of model-driven development methods. Focusing on models and model transformations
leads to even more explicit knowledge on the traceability connections between different software
elements.

This paper promotes a comprehensive view on traceability, taking into account the whole soft-
ware development and maintenance process. The approach is comprehensive in two senses.
First, it incorporates all traceability-related activities ranging from the definition of a metamodel
for traceability information to the retrieval and maintenance of traceability information. Second,
the approach is not limited to a specific kind of artifacts, for example requirements or source
code, but is supposed to encompass all artifacts created or used in the course of software devel-
opment projects.

The approach presented in this paper features a seamless combination of all activities related
with traceability information in one single conceptual framework with an accompanying im-
plementation. All relevant traceability-related activities (defining, recording, identifying, main-
taining, retrieving, and utilizing traceability information) are supported by a common graph-
based implementation technology leading to a smooth integration of these activities to a com-
plete methodological approach. By using graph technology, the various challenges posed by
traceability can be tackled on a joint technological foundation. This foundation is simultane-
ously precise and efficient and allows for the application of a great body of knowledge on graph
algorithms and graph analysis. The applied technology is based on the TGraph approach to
graph-based modeling [Ebe08b].

The approach described here, has been applied in the ReDSeeDS1 project aiming at the develop-
ment of a Requirements Driven Software Development System [Śmi06]. More precisely, the goal
of ReDSeeDS is to foster the reuse of software engineering artifacts by comparing the require-
ments specification of a software system to be developed to the requirements specifications of
already accomplished development projects. Then, based on identified similar requirements, it
is feasible to follow traceability relationships to find other artifacts realizing these requirements,
possibly being candidates for reuse in the current project. Furthermore, ReDSeeDS features a
model-driven approach for transforming requirements specifications to architecture and detailed
design models and further on to source code fragments. The overall approach is validated in an
industrial context on the basis of real-life projects.

The paper starts with a general discussion of the term traceability, its related activities in section
2, including a short survey of related work. Section 3 introduces the TGraph approach. The fol-
lowing sections discuss the relevant activities against the background of applying the introduced
graph technology: section 4 deals with definition and recording of traceability information, sec-
tion 5 describes the identification and maintenance of this information, and section 6 presents

1http://www.redseeds.eu.

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

4

http://www.redseeds.eu

retrieval and utilization. These sections are augmented by showing concrete applications of the
described technologies in the context of ReDSeeDS. Section 7 concludes the paper.

2 Traceability

Looking at the existing body of literature, it becomes obvious that the origins of traceability
as a field of research lie in requirements management [Aiz06]. Many authors dealing with
traceability leaned towards putting a system’s requirements specification into the center of re-
search activities, resulting in the term requirements traceability to have been used extensively
[Got94, Ram01, Wil75]. In recent years, the research community started to devote more effort
to exploring traceability of other artifacts of a software development project, such as source
code, design, and documentation [Ant02, Mur95, Wit07]. In [Aiz06, Asu07, Str02], traceability
is understood as a comprehensive concept encompassing the whole development process, with-
out putting special emphasis on the requirements specification. Referring to this interpretation,
Spanoudakis and Zisman coin the term software traceability [Spa05].

The following section 2.1 introduces the notion of traceability by discussing various definitions.
Then, in section 2.2, different traceability-related activities are described, each one covering
different aspects of this field of research. Categorized according to these activities, a short survey
of related work is given. Finally, section 2.3 formulates the traceability challenge addressed by
the approach presented in this paper.

2.1 Definitions of Traceability

The probably most cited definition of traceability to be found in literature has its origins in a
work of Gotel and Finkelstein [Got94]:

“Requirements traceability refers to the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction [...]”

It can easily be noticed that this definition focuses on requirements traceability, severely limiting
its usefulness for the comprehensive traceability approach which is promoted in this paper.

A more general definition can be found in the IEEE’s Standard Glossary of Software Engineering
Terminology [IEE90]:

“The degree to which a relationship can be established between two or more prod-
ucts of the development process [...]”

Spanoudakis and Zisman offer another definition considering traceability in the scope of the
whole development process, additionally including stakeholders and demanding for rationales
[Spa05]:

“[Software traceability] is the ability to relate artefacts created during the develop-
ment of a software system to describe the system from different perspectives and

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

5

levels of abstraction with each other, the stakeholders that have contributed to the
creation of the artefacts, and the rationale that explains the form of the artefacts.”

Both of these definitions are sufficient to cover traceability in the varieties and forms treated in
the following, consequently dispensing the need to formulate an own definition. However, in
order to avoid the more coarse-granular connotation of artifact, the more general term (traced)
entity shall be used in the following.

An important categorization of traceability used in this paper is the distinction between intra-
level and inter-level traceability [Kur07], referring to the abstraction levels of traced entities.
“Usual” abstraction levels are, for instance, a software system’s requirements specification, its
architecture, detailed design, and its source code. While intra-level traceability applies to trace-
ability relationships between entities on the same abstraction level, inter-level traceability refers
to the relationships between entities on different levels.

To a certain degree, the distinction of abstraction levels depends on the specific case or even
the observer. For example, a requirements specification could be split into a set of abstract user
requirements and more specific system requirements.

2.2 Traceability-related Activities

In order to structure the field of research, different aspects of traceability can be classified into
six activities, taken and adapted from [Pin96, Kne02]: defining, recording, identifying, main-
taining, retrieving, and utilizing traceability information, i.e. traceability relationships together
with traced entities. In the following, these activities are discussed in more detail, including
related work.

Definition of traceability information refers to the determination of entities to be traced and
traceability relationships between them which are of interest for a specific application. Existing
literature on this activity can be roughly categorized into two groups.

Publications falling into the first one are concerned with the design of reference metamodels
providing a set of entity and interconnecting relationship types [Let02, Poh96, Ram01]. How-
ever, it has to be noted that these metamodels focus on requirements traceability, thus neglecting
traceability of other entities such as architecture components or source code fragments. Other
approaches include tracing variability in requirements and architecture in the context of product
line engineering [Moo07] and the usage of ontologies for traceability between source code and
documentation [Wit07].

In [Esp06], a so-called traceability meta-type specifies required or recommended elements a
concrete traceability relationship type should possess. This generic concept allows for the defi-
nition of customized, application-specific relationship types.

The second group of publications related to the definition activity deals with the types, forms, or
meaning of traceability relationships. While the previously cited metamodel- or ontology-based
approaches distinguish between different types of relationships, the meaning of these types is

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

6

informally given, either by a description in natural language or only implied by the type’s name.
An exception is [Poh96], where traceability relationships are augmented by integrity constraints.
A similar approach is pursued in [Dri08].

A further step towards formalization is taken in [Car01, Dic02], where relationship types be-
tween requirements are mapped to logical and mathematical expressions. So-called cost/value
interdependencies are employed in [Dah03] to denote positive or negative effects of the imple-
mentation of some requirement on the cost or value of another requirement’s implementation.
In [Aiz05], relationship semantics are formalized by event-condition-action rules. The specifi-
cation of relationship semantics by logic formulae is proposed in [Gok08].

A shortcoming of many traceability approaches is that they treat traceability relationships as
binary links, i.e. as a connection between two entities only. By allowing for n-ary relationships,
UML [Obj07] and the approach pursued in [Mal05] are two of the few exceptions here.

Recording is concerned with physically holding traceability relationships in the form of data
structures. There exist two basic variants: On the one hand, relationships can be recorded within
traced entities by introducing textual references [Son98, Wie95] or hyperlinks [Kai93]. On
the other hand, numerous concepts for holding traceability information externally have been
developed, based on different technologies.

The most primitive form of external recording is the usage of a spreadsheet for creating trace-
ability matrices, where rows and columns correspond to traced entities and cell entries repre-
sent traceability relationships between respective entities. More serious approaches include the
usage of relational databases as employed by many traceability tools [Ram01], logic-based
repositories [Con95], and open hypermedia [She03]. Latest research investigates the applicabil-
ity of graph-based repositories [Bil08], XML and related technologies [Mal05], and ontologies
[Wit07].

The listed approaches for external recording all require a definition of the structure of traceability
information to be stored, e.g. by database schemas or metamodels.

Identification is the activity of discovering previously unknown traceability relationships be-
tween entities. In principle, it is possible to distinguish between manual and automatic iden-
tification. Pure manual identification of relationships is expensive and susceptible to mistakes
[Aiz06]. Although automatic approaches still do not achieve high levels of precision and re-
call [Spa05], they relieve developers from the time-consuming burden of manual relationship
creation.

Some semi-automatic approaches still demand for manual identification, though to a lesser ex-
tent. They automatically infer new relationships based on the ones created by the developers
[Cle03b, Egy01, She03].

Most authors working on fully automated identification rely on using information retrieval for
text comparison [Ant02, De 07, Huf06, Lin06, Mar03] or model transformations, interrelating
source and target elements of transformations [Ama08, Jou05, Old06, Per05, Ric03]. Obviously,

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

7

these techniques are applicable for particular entities only. While information retrieval requires
text-intensive entities such as requirements documents or user documentation, transformation-
based techniques necessitate a model-driven development approach.

Another possibility is to provide guidance on how to create correct relationships by integrating
with the development process [Poh96]. More precisely, when developers manipulate entities, a
system based on this approach suggests suitable relationships to be created, based on the specific
steps in the process model they just performed.

More recent approaches comprise the identification of traceability relationships based on rules
[Cys08] or runtime analysis and machine learning [Gre07].

Maintenance is the activity of updating and modifying already existing traceability relation-
ships. Since during the lifetime of a system, traced entities are subject to constant change, trace-
ability relationships have to be adapted accordingly in order to accommodate for these changes.
Thus, they are prevented from deteriorating.

Regarding maintenance, similar techniques as for the identification of traceability relationships
can be applied [Kne02]. A concept based on the event-action paradigm specifically addressing
maintenance can be found in [Cle03a]. It requires traced entities to be registered at a so-called
event server which monitors them for changes and subsequently adapts incident relationships
as needed. A tool based on the same paradigm is traceMaintainer [M0̈8], using rules in an
XML-based syntax to specify the actions to be performed.

Another approach can be found in [Ant01]. It employs edit distance and a maximum match
algorithm to maintain relationships between design and code entities.

Retrieval addresses the finding and gathering of traceability information which is relevant to
specific applications, provided it has already been identified and recorded. Subsequently the
retrieved information is delivered to the user.

Existing literature on this activity almost exclusively deals with suitable technologies for re-
trieval, depending on the employed recording approach. Examples are SQL for relational data-
bases, the Graph Repository Query Language (GReQL) [Kul99, Sch08] for graph-based reposi-
tories, and ontology query languages such as SPARQL [W3C08] and nRQL [Haa04, Wit07] for
ontologies.

Utilization deals with using previously retrieved traceability information in concrete applica-
tion scenarios. This activity takes a somewhat special role among the six traceability activities.
Although being an important step in the “lifecycle” of traceability information, this transcends
research on traceability in the narrower sense. For this reason and due to the multitude of differ-
ent applications, a discussion of related work is out of scope here.

However, instead being further processed, traceability information can also be presented to the
user directly, demanding for means of visualizing traceability information. In [Mar05], a pro-

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

8

totypical tool for visualization is presented, going beyond straightforward approaches such as
simple graphs or matrices.

2.3 A Challenge for Traceability: A Comprehensive Approach

The short literature survey given in section 2.2 shows that there exist many different techniques,
methods, and approaches dealing with traceability. However, most of them are concerned with
one or two specific aspects of traceability only, be it, for instance, defining a reference meta-
model for tracing requirements, identifying traceability relationships between code and docu-
mentation, or using particular query languages for retrieving traceability information.

All of them are developed in a clearly defined and often optimized embedding, using most ap-
propriate implementation techniques. But they are also defined rather isolated, using different,
not necessarily combinable techniques, which hamper their integration into a comprehensive
traceability environment. Current research on traceability is lacking a consistent approach en-
compassing all traceability activities.

Consequently, a pressing challenge of traceability is the development of a comprehensive ap-
proach, i.e. an approach supporting all traceability-related activities from defining, recording,
and identifying, to maintaining, retrieving, and utilizing traceability information. Furthermore,
the traceability approach has to be seamless, meaning that there exists a consistent conceptual
and technological foundation for the definition and recording of traceability information, span-
ning all abstraction levels of a software system. This enables the integration and subsequent
smooth interaction of different identification and maintenance techniques. Finally, uniform re-
trieval and utilization of traceability information has to be facilitated, again regardless of the
types of the involved entities and relationships.

As explained in the remainder of this paper, graph technology together with accompanying
representation, transformation, and querying facilities provides such an integrated and consistent
approach to encounter this challenge.

3 Graph Technology

Seamless support for traceability requires an integrated approach, supplying assistance for all
the traceability-related activities identified in section 2. It has to allow formal definition, al-
gorithmic identification, persistent recording, query-based retrieval, support for interoperable
utilization, and transformation and evolution during maintenance of traceability links.

This paper claims that graphs are a versatile means for all the cited purposes, since they are
equally well suited for formal reasoning about software engineering artifacts and for efficient
implementation of software engineering tools. Here, the TGraph approach [Ebe08b] to graph-
based modeling is proposed as the basis for a seamless integrated support of the cited activities.

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

9

TGraphs proved to be a powerful means for creating and using the KOGGE-MetaCase-Tool
[Ebe97], for defining metamodels for visual languages [Win00], for the implementation of
repositories in software engineering tools [Ebe02], and are applied in the ReDSeeDS project, as
well.

Section 3.1 introduces the concept of a TGraph and explains its foundation based on an example.
In section 3.2, the corresponding metamodeling approach is added. Section 3.3 gives a sketch
of the transformation language MOLA applicable on top of a TGraph-based repository. Finally,
section 3.4 introduces the GReQL query language for extracting data from TGraphs.

CRM

Bill ing

Send Bill Receive Payment

Figure 1: Use cases of billing subsystem

As a small running example of a software engineering artifact being represented as a graph, a
minimalistic use case diagram introducing two use cases of the billing subsystem of a customer
relationship management system: Send Bill and Receive Payment, respectively. In order to
group the use cases with respect to the addressed (sub)system, so-called RequirementsPackages
are used (cf. figure 1).

3.1 TGraphs

TGraphs are directed graphs which are typed, attributed, and ordered. Since all elements, i.e.
vertices and edges have a type, appropriate light-weight conceptual modeling is directly sup-
ported. Depending on their type, graph elements may carry attribute-value pairs which may be
used for modeling data associated to them. The combination of types and attributes leads to an
object-based style of modeling. Ordering of the vertices, the edges, and the incidences between
vertices and edges also allows for a direct modeling of the sequences of occurrences of objects.
In TGraphs, edges are first class citizens, i.e. they have all properties such as type and attributes,
analogously to vertices. They may be stored in variables and their traversal is supported in both
directions.

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

10

There is a highly efficient API for creating, manipulating, and traversing TGraphs: JGraLab2.
There are several supporting technologies, as well, especially concerning schema support (cf.
section 3.2) and querying (cf. section 3.4).

TGraphs may be used to store the abstract structure of software engineering artifacts and their
traceable entities. Usually all relevant entities are modeled by vertices, and occurrences of enti-
ties in some context are modeled by edges. Sequences of occurrences are expressed by the order
of edges.

v1 :RequirementsPackage

name = "CRM"

v2 :RequirementsPackage

name = "B ill ing"

v3 :UseCase

name = "Send B ill"

v4 :UseCase

name = "Receive Payment "

1

e3 :Contains

3

1

e2 :Contains

2

1

e1 :Contains

1

Figure 2: ASG for the use case diagram in figure 1

Figure 2 gives an example of a TGraph, sketched in the style of a UML object diagram. It
contains four vertices and three edges forming a graph which can be viewed as an abstract syntax
graph (ASG) of the sample use case diagram in figure 1. For illustrative purposes, the order of
vertices and edges is represented by their identifiers: v1, v2, . . . and e1, e2, . . . , respectively.
The order of incidences is displayed by the numbers resembling UML multiplicities.

3.2 Metamodeling TGraphs – grUML

Sets of TGraphs are specified by a subset of UML class diagrams as schemas. This UML sublan-
guage is called grUML (graph UML) and contains all elements of UML class diagrams that are
compliant with a graph-like semantics: classes represent vertex types and associations stand for
edge types. The attributes of types are noted in UML style, too, where the notation of associated
classes is used to specify edge attributes. Generalization/specialization is used for vertex and
edge classes, as well, and multiple generalization is explicitly allowed. Finally, multiplicities
are used to note degree restrictions. The modeling power of these kinds of diagrams is slightly
higher than EMOF [Ebe08b, Obj06].

A TGraph is compatible to its schema, i.e. it constitutes an instance of the schema, if its element
types and attribute assignments as well as the incidences of the edges respect the corresponding

2http://jgralab.uni-koblenz.de

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

11

http://jgralab.uni-koblenz.de

RequirementsPackage Requirement

{abst ract}

UseCase

Component

Port Interface

RequirementsSpecificationElement

{abst ract}

- name: St ring

PackageableE lement

{abst ract}

- name: St ring

- vis ibil it y: VisibilityKind

NonFunctionalRequirement

satisfy ing

0..*

Satisfiessat isf ied

0..*

packagedE lement

0..*

Owns

0. .1

0..*

Provides

provided

0..*

nestedElement

0..*

Contains

nest ingPackage 0. .1

Figure 3: Schema for the ASGs in figures 2 and 5

descriptions in the schema and if the vertex degrees conform to the multiplicities. All these
conditions must respect inheritance.

The notion of a TGraph schema is explained by means of the sample schema in figure 3. The left
part of this schema constitutes a suitable metamodel for the ASG in figure 2. In addition to that,
it contains an excerpt of the UML metamodel along with the Satisfies edge class, applicable for
modeling and tracing architecture elements generated from the use cases (cf. section 3.3).

3.3 Transforming TGraphs – MOLA

Transformations of software engineering artifacts can be defined on the basis of their abstract
syntax, i.e. their TGraphs. A transformation system that is compatible with TGraph modeling
and JGraLab is the MOLA-Tool which has been developed by the University of Latvia [Kal04].

MOLA is a programmable graph transformation language, which builds on rules consisting of a
pattern and some actions and adds control structures – mainly loops – to control the execution of
these rules. A MOLA transformation consists of one or more MOLA procedures. A procedure
connects a start node to an end node via some executable vertices.

Figure 4 shows an example of a MOLA transformation that takes the ASG of figure 2 and
extends it by adding corresponding architectural Components, Ports, Interfaces and traceability
links, respectively – leading to the graph depicted in figure 5. This example contains three loops
(large bold rectangles) each of which iterates a rule. Rules are expressed by gray rectangles
with rounded corners. Each rule has one small bold rectangle which denotes a graph vertex and
some light black edges and vertices which together specify the context of the particular vertex.
The loop iterates over all instances in the graph that match this vertex and its context. For each
instance the red dashed vertices and edges are added to the graph.

Thus the example consists of the following three steps:

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

12

Figure 4: Rule for transforming requirements to architecture

Step 1: For each UseCase uc1 which is nested in a RequirementsPackage rp1, an Inter-
face i1 and a Port p1 is created. i1 is connected to uc1 by a Satisfies edge. A Provides
edge connects p1 to i1.

Step 2: For each RequirementsPackage rp2 nesting a UseCase uc2 handled in step 1 (i.e.
a corresponding Interface i2 and Port p2 was generated), a Component c2 is created. It is
linked to rp2 and p2 by Satisfies and Owns edges, respectively.

Step 3: For each RequirementsPackage rp3-1 nesting another RequirementsPackage rp3-
2 which is connected to a satisfying Component c3-2, another Component c3-1 is created,
linked to c3-2 by an Owns edge.

Applying this MOLA-transformation to the graph presented in figure 2 results in the graph
shown in figure 5, which itself complies to the graph schema given in figure 3.

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

13

v1 :RequirementsPackage

name = "CRM"

v2 :RequirementsPackage

name = "B ill ing"

v3 :UseCase

name = "SendBill"

v4 :UseCase

name = "ReceivePayment "

v5 :Component

name = "CRM"

v6 :Component

name = "B ill ing"

v7 :Port v8 :Port

v9 :Interface

name = "ISendB ill"

v10 :Interface

name = "IReceivePayment "

1
e10 :Satisfies

2 1

e9 :Sat isf ies

2

1e12 :Satisfies2

1e11 :Satisfies
4

3

e6 :Owns

1

2

e5 :Owns

1

4

e4 :Owns

2

2

e8 :P rovides

1

2

e7 :P rovides

1

1

e3 :Contains

3

1

e2 :Contains

2

1

e1 :Contains

1

Figure 5: Resulting graph after transformation

3.4 Querying TGraphs – GReQL

Complementing the graph-based approach for the definition of traceability relationships based
on grUML, its identification using MOLA transformations, its recording as a TGraph, and its
utilization and maintenance using algorithms on TGraphs, a special TGraph query language,
named GReQL (Graph Repository Query Language) [Kul99] is provided, which allows the re-
trieval of all kinds of information out of the graph repository.

GReQL is an expression language which describes the data to be retrieved from a given graph by
nested expressions. The most important kind of expression is the from-with-report expres-
sion which returns the data described in the report-clause as a bag. The bag is constructed by
deriving all instances of the variables described in the from-clause which fulfill the constraint
given in the with-clause.

In order to compute the bag of the name attributes of all vertices of type Interface that are
connected to a vertex of type UseCase via a Satisfies link, where the latter has the string "Send
Bill" as its name attribute, a suitable GReQL query might look as follows:

from u:V{UseCase}, i:V{Interface}
with u.name = "Send Bill"

and u <--{Satisfies} i
report i.name
end

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

14

Expressions in GReQL may make use of regular path expressions to denote more complicated
connections in the graph. As an example the names of all outer Components, i.e. which are not
contained by other Components are computed by the following query. A further condition is
that the Components directly or indirectly contain a Port which provides an Interface satisfying
a given UseCase.

from u:V{UseCase}, c:V{Component}
with u.name = "Receive Payment"

and u <--{Satisfies}<--{Provides}
<--{Owns}* c

and indegree(c) = 0
report c.name

GReQL is an elaborate language and comes with an optimized query evaluator that works on
TGraphs [Hor09].

4 Defining and Recording Traceability Information

As a first building block towards a comprehensive and seamless traceability approach, means to
define and to record traceability information from any abstraction level must be available. These
two activities are closely related because depending on the defined characteristics of traceability
relationships, specific requirements are imposed on the recording technology.

In section 4.1, the Traceability Reference Schema (TRS), a reference schema, or reference meta-
model, for traceability spanning all abstraction levels of a software development process, is
introduced. The following section 4.2 describes the repository concept as a means of externally
recording traceability information and details the implementation of a concrete, graph-based
repository technology. In section 4.3, it is shown how in ReDSeeDS, so-called software cases,
conforming to an application-specific adaptation of the TRS, are stored in a graph-based reposi-
tory.

4.1 The Traceability Reference Schema

In accordance with the goals and characteristics of reference models [Win00], the TRS represents
a generally applicable and adaptable metamodel for defining traceability relationships and traced
entities, spanning different levels of abstraction from requirements specification to source code,
test cases, and documentation. The TRS is modeled by using grUML, allowing for the modeling
of traceability relationships as TGraph edges which may be specialized and may carry attributes.

Adapted from the requirements reference metamodel in [Sch08], the core package of the TRS
depicted in figure 6 distinguishes between TraceableEntities on the one hand and TraceabilityRe-
lationships connecting two TraceableEntitys in the roles of source and target on the other hand.
The entities package contains specializations of TraceableEntity covering different levels of ab-

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

15

TraceableEnti ty

{abst ract}

- id: Integer

- name: St ring

- version: Integer

Traceabi lityRelationship

{abst ract}

source 0..*

Traceabilit yRelat ionship

target 0. .*

Figure 6: The core package of the TRS

straction. A possible selection of such specializations is shown in figure 7. Depending on the
specific application, the generalization hierarchy of TraceableEntity is to be modified accord-
ingly. The specializations of Requirement and CodeElement exemplify how to refine the TRS
in order to achieve a finer level of granularity.

Concrete traceability relationship types are defined by specializing TraceabilityRelationship in
the relationships package, illustrated in figure 8. TraceabilityRelationship is defined in figure 7
by using an associated class, leading to the definition of an edge class. Thus, following the
grUML semantics, all specializations in figure 8 define edge classes as well.

Relationship types may be restricted with respect to the entity types they are able to connect.
The example in figure 9 shows that traceability relationships of type IsResponsibleFor connect
any TraceableEntity to the Stakeholders responsible for their creation or maintenance. Besides,

Requirement

- priority: Integer

- liabilit y: Integer

- status: Integer

- text : String

FunctionalRequirement NonFunctionalRequirement

TestCase

- situation: St ring

- event : St ring

- expectedResult : St ring

CodeElement

Class

Method

DesignElement

Field

ArchitectureE lement

core::

TraceableEnti ty

{abst ract}

- id: Integer

- name: St ring

- version: Integer

Stakeholder

- af fi liat ion: S tring

DocumentationE lement

member 0..*

1

member0..*

1

Figure 7: The entities package of the TRS

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

16

core::

Traceabi lityRelationship

{abst ract}

Confl ictsWith

Fulfills

DependsOn

Refines Implements

Real izes Tests

DocumentsIsResponsibleFor

Figure 8: The relationships package of the TRS

IsResponsibleFor features two attributes: established and rationale, holding the relationship’s
creation time and a justification for its existence, respectively.

Similar to TraceableEntity, specializations of TraceabilityRelationship have to be created when
adapting the TRS to suit specific applications.

4.2 Implementation – Graph-based Repositories

Adaptations of the TRS reference schema can be used for defining which traceability links are
expected to be identified in a given software engineering project, exemplified based on ReD-
SeeDS in section 4.3.

grUML schemas are regarded as being tool-ready, i.e. they serve as the data schema language in
tools. This property is hard to achieve with metamodels conforming to full CMOF and was the
main reason for the introduction of EMOF. Similarly, grUML was purposely defined as UML
subset to provide tool-readiness. Thus, all relevant information on software engineering arti-

entities::Stakeholder

- af fi liat ion: S tring

core::

TraceableEnti ty

{abst ract}

- id: Integer

- name: St ring

- version: Integer

TraceabilityRelat ionship

relationships::

IsResponsibleFor

- established: DateTime

- rationale: St ring

stakeholder

0..*

IsResponsibleFor

entity

0..*

Figure 9: The IsResponsibleFor traceability relationship type

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

17

facts can be stored in a fact repository directly corresponding to a grUML schema, keeping the
abstract syntax of all relevant documents and their interconnections by traceability relationships.

The repository is populated by a set of fact extraction tools which derive the facts from the
respective artifacts. Fact extractors are usually fast enough to be applied regularly to the artifact
base in order to generate the corresponding facts, but there are also incremental approaches
which allow to replace an artifact’s subgraph in the repository [Kam98] on the fly.

JGraLab is especially suited to implement fact repositories, based on grUML as its schema
language. Since grUML is a proper subset of UML supplied with a formal graph semantics, any
standard-compliant UML tool can be used to edit schemas. Only minor transformations, e.g.
replacing associations between associations, which contradict a pure graph interpretation, by
appropriate new classes, are necessary to make MOF-like metamodels tool-ready using grUML.

In ReDSeeDS, fact extraction is done by using the API of a UML tool3 in order to convert
respective models into TGraphs. As result, one integrated graph is delivered which contains all
information relevant for retrieving and utilizing traceability (cf. section 6).

Using grUML and JGraLab as repository technology allows for the use of GReQL as repository
query language which is especially suited to support transitive closure efficiently using its regular
expressions. (see section 6.2 and 6.3)

4.3 Application – Software Cases in ReDSeeDS

In ReDSeeDS, so-called software cases [Śmi06] comprise all artifacts created in conjunction
with single development projects. A small simplified excerpt of the schema of the Software Case
Language (SCL) used to formulate such software cases is shown in figure 10. For modeling
entities on the four supported levels of abstraction – requirements specification, architecture,
detailed design, and source code – the SCL integrates three sublanguages: the Requirements
Specification Language (RSL) [Kai07], UML for creating architecture and detailed design, and
Java [Gos05]. MOLA is employed for performing model transformations from requirements to
architecture to detailed design and finally to source code (cf. section 5).

Comparing the SCL schema to the TRS, the SCL can be regarded as an adaptation of the
TRS: SCLElement and SCLRelationship in the SCL can be directly mapped to TraceableEntity
and TraceabilityRelationship in the TRS. The metamodels of RSL, UML, and Java are plugged
into the schema by modeling the topmost classes of the respective generalization hierarchies,
RSLElement, Element from UML, and JavaElement, as specializations of SCLElement.

However, concerning traceability, note that instead of using EdgeClasses as in the TRS, an
SCLRelationship is modeled as a VertexClass together with two EdgeClasses connecting it to
the SCLElements to be related. This design decision was made due to the technical integra-
tion of JGraLab with the transformation language MOLA (cf. section 5.2). Furthermore, SCL
contains some SCLRelationships which are not relevant for traceability, thus necessitating the
specialization of SCLRelationship by TraceabilityLink.

3Prototypically, Enterprise Architect by Sparx Systems is used – http://www.sparxsystems.com.

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

18

http://www.sparxsystems.com

scl ::SoftwareCase

scl::SoftwareArti fact

{abst ract}

rsl ::RequirementSpeci fication

scl ::ArchitecturalModel

scl ::Detai ledDesignModel

scl ::SourceCode

scl::SCLElement

{abst ract}

- uid: S tring
scl::SCLRelationship

{abst ract}

- uid: S tring

rsl::RSLElement

{abst ract}

- name: St ring

uml::E lement

{abst ract}

scl ::Traceabili tyLink

{abst ract}

- isGenerated: Boolean

java::JavaElement

{abst ract}

scl ::Satisfies

scl ::Implements

rsl ::DependsOn

rsl::RequirementRelationship

{abst ract}

rsl::ConflictsWith

rsl ::Refines

0..*ToSatisfying
satisfy ing1

0..*ToSatisf ied

sat isf ied

1

0..*

ReqSpecContainsE lement

0. .1

0..*

ToDependingdepending1

1 ContainsArt ifact

art ifact 0..*

0..*

ContainsJavaE lement
1

0..*ArchitectureContainsElement

0. .1

0..*

DesignContainsE lement

0. .1

0..*

ToImplemented

implemented

1

implement ing

1

ToImplement ing

0..*

0..*ToRefined

ref ined1

0..*ToRef ining

ref ining

1

0..*

ToConf lic ting

2

0..*

ToProvidingproviding1

Figure 10: The SCL schema

Concrete inter-level traceability relationship types are Satisfies, IsDependentOn, and Imple-
ments, connecting an RSLElement with a satisfying architecture UML Element, an architecture
UML Element with a depending detailed design UML Element, and a detailed design UML El-
ement with an implementing source code JavaElement, respectively. Examples for intra-level
relationship types are the subclasses of RequirementRelationship for connecting RSLElements.

Since JGraLab is employed as common repository technology in ReDSeeDS, it is also used
for recording traceability information. The choice of JGraLab over other technologies such as
relational databases and ontologies is based on various criteria relevant for the project [Bil07a].
Among them are the possibility to integrate with model transformation facilities, the suitability
for calculating similarity between requirements, and the expressiveness of available querying
mechanisms.

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

19

5 Identifying and Maintaining Traceability Information

By defining a schema for traceability information and selecting an adequate recording infrastruc-
ture, the prerequisites for instantiating concrete traceability relationships are met. Subsequently,
identification techniques have to be applied in order to create a population of such relationships,
be it either manually or (semi-)automatically. As mentioned in section 2.2, similar techniques
can be used to maintain already existing relationships.

Section 5.1 generally introduces the identification and maintainance of traceability relationships
in a model-driven context, i.e. employing model transformations. In section 5.2, the technical
integration of the transformation language MOLA with JGraLab as a graph-based repository
for traceability information is described. Finally, section 5.3 exemplifies the approach on the
basis of ReDSeeDS by automatically generating traceability relationships between requirements,
architecture, and design in the course of respective transformations.

5.1 Identifying and Maintaining Traceability Relationships with Model
Transformations

There exist various concepts for drawing on model transformations in order to aid in the auto-
matic identification of traceability relationships. A closer look at these concepts reveals that they
rely on the generation of traceability relationships in the course of model transformation execu-
tion. However, another thinkable approach is to derive traceability relationships subsequent to
model transformation execution, based on the employed transformation rules.

Regarding the common approach, users are typically required to explicitly encode the genera-
tion of relationships within transformation rules (see, for example, [Jou05]). Alternatively, ap-
proaches such as OMG’s QVT [Obj08] propose to automatically create traceability relationships
between source and target entities of model transformations.

Maintenance of traceability relationships using model transformations is usually triggered by the
reexecution of transformation rules upon the change of one of the entities in the source model.
However, this results in discarding the previous target model and generating a new one, naturally
entailing the regeneration of all traceability relationships. A more sophisticated approach is to
selectively update only those entities of the target model which are affected by the change,
referred to as incremental update by QVT. Existing relationships between changed source and
target entities could then be updated accordingly.

5.2 Implementation – Using MOLA for Traceability Relationship Generation and
Maintenance

The usage of the TGraph approach as foundation for handling traceability information, espe-
cially with the intention to identify traceability relationships based on model transformations,
necessitates the incorporation of an adequate transformation language. In the course of the ReD-
SeeDS project, the MOLA transformation language and its underlying technology proved to be

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

20

a suitable candidate for an integration with JGraLab. Besides some technical issues, the main
reason for this decision was that the meta-metamodel of MOLA is similar to EMOF [Kal05],
whose modeling power can in turn be compared to grUML.

In EMOF, however, there is no direct equivalent for attributed EdgeClasses which possibly stand
in a generalization hierarchy. Therefore, as shortly explained in section 4.3, it is necessary to
model a traceability relationship as a VertexClass in conjunction with two EdgeClasses con-
necting it to the traced entities to be related (cf. figure 10). This allows for a corresponding
representation in EMOF by employing Classes with respective Properties.

Having a schema usable by both JGraLab and MOLA, there exist two basic alternatives for
accomplishing the technical integration. On the one hand, it is possible to establish a map-
ping between the contents of the JGraLab repository and the internal repository of the MOLA
transformation execution environment. Due to its straightforwardness, this approach was im-
plemented for obtaining a first solution. Since MOLA technology is implemented in C++, Java
Native Interface (JNI) or JGraLab’s XML-RPC interface has to be employed in order to facilitate
such an integration [Kal07].

On the other hand, latest integration efforts showed that MOLA transformations could be directly
compiled to work on JGraLab as repository, thus avoiding the need to maintain two repositories
[Sos08]. Consequently, this approach has emerged as being the integration alternative of choice.

5.3 Application – Generating Traceability Relationships in ReDSeeDS

The ReDSeeDS project features the automatic transformation of software cases’ requirements
specifications to architectural models and further on to detailed design models and source code.
Generally, this transformation-based approach is applicable for any architectural style. However,
the transformation of a requirements specification to the common 4-tier architecture, consisting
of presentation, application logic, business logic, and data storage tiers, has been chosen for a
prototypical development in ReDSeeDS.

A simplified example illustrating the creation of an application tier Component together with
its Interfaces is described in section 3. As shown in figure 5, architecture entities and their
originating entities of the requirements specification level are linked by Satisfies traceability
relationships. Other transformations from requirements to architecture include the generation of
business tier components from the requirements specification’s vocabulary and the creation of
application and business logic tier interface operations from RSL scenario descriptions [Boj08].

Going on to detailed design, transformations serve to add further details to the architecture
model, such as factory classes and implementation classes for the previously generated inter-
faces. Here, DependsOn instances serve to represent traceability relationships between corre-
sponding architecture and design entities. Finally, instances of Implements denote traceability
relationships between Java source code fragments and their originating detailed design entities.

Altogether, ReDSeeDS features about forty MOLA procedures realizing these transformations,
each one consisting of several rules [Kal07].

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

21

Maintenance of traceability relationships is envisioned to be eased by marking elements of trans-
formations’ target models which have been manually changed afterwards. Upon a subsequent
change to the source model, developers would be asked if the manually changed target ele-
ments shall be overwritten in the course of the reexecution of the transformation [Kal07]. The
traceability relationships connecting elements which are not overwritten then are candidates for
(manual) maintenance, for it is up to the developers to decide whether the relationship between
source and target element is still valid.

6 Retrieving and Utilizing Traceability Information

Once a repository has been populated with traceability information, be it by model transforma-
tions as described in section 5 or by other techniques, sought-for traceability information can be
retrieved for visualization or other utilizations.

Section 6.1 introduces three patterns which categorize “typical” problems observable when deal-
ing with traceability information retrieval, together with possible fields for utilization. In addi-
tion to the general problem statements, the patterns also feature generic queries acting as possible
solutions. Therefore, section 6.2 further elaborates on the patterns by giving a selection of such
queries formulated in GReQL, including some details on GReQL’s implementation. Conclud-
ing, section 6.3 shows the concrete retrieval problem addressed in ReDSeeDS and the utilization
of the so-called slice pattern in order to solve this problem.

6.1 Common Retrieval Patterns

An analysis of various industrial application for traceability has been conducted in the MOST
project4, leading to a collection of requirements towards the traceability approach to be devel-
oped in that project. Based on these requirements, often recurring problems dealing with the
retrieval of traceability information could be identified. It is possible to abstract these problems
into three patterns for retrieval. A look at traceability-related literature reveals that many of the
traceability problems described therein can be mapped to one of these patterns:

• existence

• reachable entities

• slice

The first pattern, named existence, treats the question whether there exists a path of traceability
relationships between any two traced entities out of given sets of such entities. More formally,
the condition is fulfilled if, given two sets of traced entities Ee1 and Ee2, there exist ee1 ∈ Ee1 and
ee2 ∈ Ee2 with a path of traceability relationships between ee1 and ee2. Instead of accepting any
path between ee1 and ee2, in many cases it is required to restrict eligible paths with respect to the

4http://www.most-project.eu

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

22

sequence, direction, or type of the involved traceability relationships. These constraints are, for
example, expressible by regular path descriptions.

An important area of application for the existence pattern is quality assurance, e.g. in order to
check whether there exists a realizing architecture component for each requirement. Conversely,
investigating if every design element or source code fragment can be traced back to a requirement
avoids gold plating [Jar98], i.e. the implementation of unneeded features. Another usage is to
test every design class for the existence of a dedicated test case.

Reachable entities is concerned with the determination of all traced entities which are reachable
from a given set of entities: Given a set of traced entities Er1, the set Er2 of traced entities
reachable from some er1 ∈Er1 by following a path of traceability relationships is to be computed.
Similar to the existence pattern, most often it is reasonable to impose various constraints on the
structure of the paths which are to be taken into account. It is important to understand that only
those entities at the end of a path are part of Er2. This aspect makes no difference as long as any
path is accepted. But restricting the eligible paths to those of length two, i.e. consisting of two
traceability relationships, for instance, would result in intermediate entities not to be included in
Er2.

Ranging from change management and maintenance to reverse engineering and project man-
agement, the variety of applications for the reachable entities pattern is manifold. Two concrete
examples are the detection of Java classes implementing a specific system component and the
determination of stakeholders in order to clarify open questions on particular requirements.

The third pattern, slice, resembles the reachable entities pattern, with the distinction that not only
the “endpoints” of a path of traceability relationships, but also all intermediate entities lying on
that path and their interconnecting relationships are of interest. More precisely, given set of
traced entities Es1, the set of traced entities Es2 incorporated by a so-called slice corresponds
to the set of all entities lying on paths starting at some entity es1 ∈ Es1. Furthermore, the slice
also contains the relationships which are part of the regarded paths. Naturally, restrictions of
the paths to be considered play an important role here, too. Referring to graph terminology, a
slice is effectively a subgraph of the graph formed by the entirety of traced entities and their
interconnecting traceability relationships.

The breadth of possible applications of the slice pattern strongly overlaps with that of the reach-
able entities pattern. However, there exist many specific use cases which profit from the addi-
tional information on intermediate entities provided by a slice. A typical usage is the analysis of
a traced entity’s origins, i.e. to determine which entities have played a role in the creation of that
particular entity. Another application, the reuse of software artifacts as pursued by ReDSeeDS,
is presented in more detail in section 6.3.

6.2 Implementation – Retrieval with GReQL

GReQL, the Graph Repository Query Language, is tightly integrated with JGraLab and conse-
quently the main candidate for retrieval of traceability information stored in a graph-based repos-
itory. As sketched in the following, GReQL proves to be well-suited for formulating queries

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

23

capable of dealing with the problems represented by the three traceability retrieval patterns. The
example queries are based on the transformed graph in section 3.3.

Starting with the existence pattern, the following GReQL query checks if every UseCase can be
traced to an Interface by a Satisfies relationship:

forall u:V{UseCase} @ exists i:V{Interface}
@ u <--{Satisfies} i

This query does not make use of from-with-report expressions, but directly uses a quantified
expression returning a boolean value. Obviously, looking at the graph in figure 5, the result of
this query is true.

When intending to apply the reachable entities pattern, the GReQL feature forward vertex set
can be employed: The query below returns all vertices which can be reached from vertex v1 by
following a path of arbitrary length whose edges are of any type and direction.

v1 <->*

Naturally, this will result in all vertices, i.e. traced entities, somehow reachable from v1 to be
returned by that query. Note that for reasons of brevity, the binding of the variables to vertices,
e.g. the representation of vertex v1 taken from the example graph by the variable v1, is omitted
in this and following queries.

The expressiveness of regular path descriptions supported by GReQL is useful for narrowing the
selection of paths to be taken into account when applying the reachable entities pattern:

v6 -->{Owns}-->{Provides}

This query serves to get the set of Interfaces {v9, v10} which is provided by Ports owned by the
Component v6.

For computing slices, GReQL offers a dedicated function called slice, taking a set of vertices
and a regular path expression as parameters. In analogy with the program slicing approach
[Wei84], the combination of these input parameters is called slicing criterion:

slice(set(v3, v4),
<--{Satisfies}<--{Provides}<--{Owns})

The slice returned by the query above yields the UseCases v3 and v4 together with their satis-
fying Interfaces, the Ports providing them, and the owning Component. This corresponds to the
subgraph consisting of the set {v3, v4, v6, v7, v8, v9, v10} of vertices and the set {e5, e6, e7,
e8, e9, e10} of edges.

GReQL queries are evaluated by first parsing them and representing their abstract syntax as di-
rected, acyclic TGraphs. Subsequent to potential optimizations, the syntax graphs are evaluated
by synthesizing the results of specific vertices from the results of their child vertices. In order
to evaluate regular path expressions, deterministic finite automatons are built based on the path

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

24

expressions. Although theoretically, the number of states of such an automaton may explode ex-
ponentially, the used algorithms are known to be benevolent. So this will generally only happen
with artificial examples. Finally, the DFAs are used to drive the traversal of the graph and to
mark relevant vertices and edges. [Ebe08a]

6.3 Application – Slicing in ReDSeeDS

The slicing approach can be employed for finding reusable software artifacts in ReDSeeDS.
The slicing criterion consists, on the one hand, of a given set reqs, denoting traced entities
representing requirements of a past software case identified to be similar to requirements of a
current software case. On the other hand, the regular path expression is tailored to retrieve all
entities of the past software case which are responsible for realizing one or more of the given
requirements.

ReDSeeDS distinguishes between three different notions of a slice: maximal slice, minimal slice,
and ideal slice [Amb08]. While maximal slices include every traced entity somehow related
to a requirement in reqs, minimal slices almost exclusively consider inter-level traceability
relationships, only taking into account intra-level relationships on the requirements level. A
GReQL query computing such a minimal slice might look as follows:

slice(reqs , (<--{ToRefined}-->{ToRefining})*
<--{ToSatisfied}-->{ToSatisfying}
<--{ToDepending}-->{ToProviding}
<--{ToImplemented}-->{ToImplementing})

As it can be gathered from this query, the path expression considers inter-level traceability re-
lationships, i.e. Satisfies, DependsOn, and Implements, as well as the Refines intra-level rela-
tionship in order to involve requirements which do not belong to those in the reqs set, but are
closely related to them (cf. figure 5).

However, both maximal and minimal slices are likely to not meet users’ expectations: Maximal
slices probably are equivalent to the whole software case. Minimal slices ignore entities on the
architecture, design, or code level which are not directly linked to some requirement, but which
are important because entities within the minimal slice depend on them.

Therefore, the concept of ideal slice tries to formulate a suitable path expression for capturing
entities which are essential for the proper functioning of entities directly linked to requirements
by inter-level relationships. Due to the complexity of the SCL schema, of which figure 5 shows
only an excerpt and omits many intra-level relationships, these path expressions are very intri-
cate. More information can be found in [Bil07b].

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

25

7 Conclusion

This paper introduces the TGraph-based approach for formalizing and implementing of trace-
ability information in software engineering projects. The TGraph-approach for traceability man-
agement was developed and realized in the ReDSeeDS project which aims at the support of
software reuse based on similarity of requirement definitions. In order to derive reusable soft-
ware elements, a comprehensive and seamless approach for all traceability related activities was
requested. TGraph-based graph-technology provides a comprehensive and smoothly integrated
means to traceability management comprising all traceability-related activities during software
development and maintenance.

TGraph-based metamodeling, using an adaptable and extensible reference structure for defining
traceability information via grUML-class diagrams provides a formal description of project rel-
evant traceability data. Coincidentally, these metamodels define graph based data structures to
record traceability information in the JGraLab-graph repository. Graph-based transformations,
using the MOLA modeling transformation engine, are used to identify and maintain traceabil-
ity information, and graph queries, using the GReQL graph query engine, support efficient and
comprehensive retrieval and utilization of traceability interrelations.

Applying the approach to real development projects, contributed by various industrial partners
in the ReDSeeDS project, facilitated the development and validation of an applicable technique
for traceability management

Acknowledgements This work has been partially funded by the European Commission within the
6th Framework Programme project ReDSeeDS, no. IST-2006-33596, http://www.redseeds.eu,
and the 7th Framework Programme project MOST no. ICT-2008-216691, http://most-project.
eu.

References

[Aiz05] AIZENBUD-RESHEF, Netta ; PAIGE, Richard F. ; RUBIN, Julia ; SHAHAM-GAFNI, Yael ;
KOLOVOS, Dimitrios S.: Operational Semantics for Traceability. In: ECMDA Traceability
Workshop (ECMDA-TW) 2005 Proc., 2005

[Aiz06] AIZENBUD-RESHEF, N. ; NOLAN, B. T. ; RUBIN, J. ; SHAHAM-GAFNI, Y.: Model traceabil-
ity. In: IBM Systems Journal 45 (2006), Nr. 3, S. 515–526

[Ama08] AMAR, Bastien ; LEBLANC, Hervé ; COULETTE, Bernard: A Traceability Engine Dedi-
cated to Model Transformation for Software Engineering. In: ECMDA Traceability Workshop
(ECMDA-TW) 2008 Proc., 2008, S. 7–16

[Amb08] AMBROZIEWICZ, Albert ; BOJARSKI, Jacek ; NOWAKOWSKI, Wiktor ; STRASZAK, Tomasz:
Can Precise Requirements Models Drive Software Case Reuse? In: Proceedings of the 2nd
International Workshop on Model Reuse Strategies (MoRSe 2008), 2008, S. 27–34

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

26

http://www.redseeds.eu
http://most-project.eu
http://most-project.eu

[Ant01] ANTONIOL, G. ; CANFORA, G. ; CASAZZA, G. ; DE LUCIA, A.: Maintaining traceability
links during object-oriented software evolution. In: Softw. Pract. Exper. 31 (2001), Nr. 4, S.
331–355. – ISSN 0038–0644

[Ant02] ANTONIOL, Giuliano ; CANFORA, Gerardo ; CASAZZA, Gerardo ; DE LUCIA, Andrea ;
MERLO, Ettore: Recovering Traceability Links between Code and Documentation. In: IEEE
Trans. Softw. Eng. 28 (2002), Nr. 10, S. 970–983

[Asu07] ASUNCION, Hazeline U. ; FRANÇOIS, Frédéric ; TAYLOR, Richard N.: An End-To-End
Industrial Software Traceability Tool. In: ESEC-FSE ’07: Proc. of the the 6th joint meeting
of the European Software Engineering Conference and the ACM SIGSOFT symposium on the
Foundations of Software Engineering. New York, NY, USA : ACM Press, 2007, S. 115–124

[Bil07a] BILDHAUER, Daniel ; EBERT, Jürgen ; RIEDIGER, Volker ; KREBS, Thorsten ; NICK, Markus
; SCHWARZ, Hannes ; KALNINS, Audris ; KALNINA, Elina ; NICK, Markus ; SCHNEICKERT,
Sören ; CELMS, Edgars ; WOLTER, Katharina ; AMBROZIEWICZ, Albert ; BOJARSKI, Jacek:
Repository Selection Report / ReDSeeDS Project. 2007 (D4.4). – Project Deliverable

[Bil07b] BILDHAUER, Daniel ; EBERT, Jürgen ; RIEDIGER, Volker ; WOLTER, Katharina ; NICK,
Markus ; JEDLITSCHKA, Andreas ; WEBER, Sebastian ; SCHWARZ, Hannes ; AM-
BROZIEWICZ, Albert ; BOJARSKI, Jacek ; STRASZAK, Tomasz ; KAVALDJIAN, Sevan ; POPP,
Roman ; SZEP, Alexander: Software Case Marking Language Definition / ReDSeeDS Project.
2007 (D4.3). – Project Deliverable. www.redseeds.eu

[Bil08] BILDHAUER, Daniel ; EBERT, Jürgen ; RIEDIGER, Volker ; SCHWARZ, Hannes: Using the
TGraph Approach for Model Fact Repositories. In: Proc. of the Second International Work-
shop MoRSe 2008, 2008, S. 9–18

[Boj08] BOJARSKI, Jacek ; STRASZAK, Tomasz ; AMBROZIEWICZ, Albert ; NOWAKOWSKI, Wiktor:
Transition from precisely defined requirements into draft architecture as an MDA realisation.
In: Proceedings of the 2nd International Workshop on Model Reuse Strategies (MoRSe 2008),
2008, S. 35–42

[Car01] CARLSHAMRE, Pär ; SANDAHL, Kristian ; LINDVALL, Mikael ; REGNELL, Björn ; NATT OCH
DAG, Johan: An Industrial Survey of Requirements Interdependencies in Software Product
Release Planning. In: RE ’01: Proc. of the Fifth IEEE International Symposium on Require-
ments Engineering, 2001

[Cle03a] CLELAND-HUANG, Jane ; CHANG, Carl K. ; CHRISTENSEN, Mark: Event-Based Traceability
for Managing Evolutionary Change. In: IEEE Trans. Softw. Eng. 29 (2003), Nr. 9, S. 796–810

[Cle03b] CLELAND-HUANG, Jane ; SCHMELZER, David: Dynamically Tracing Non-Functional Re-
quirements through Design Pattern Invariants. In: Proc. of the 2nd International Workshop on
Traceability in Emerging Forms of Software Engineering, 2003

[Con95] CONSTANTOPOULOS, Panos ; JARKE, Matthias ; MYLOPOULOS, John ; VASSILIOU, Yannis:
The Software Information Base: A Server for Reuse. In: The VLDB Journal 4 (1995), Nr. 1,
S. 1–43. – ISSN 1066–8888

[Cys08] CYSNEIROS, Gilberto ; ZISMAN, Andrea: Traceability and Completeness Checking for
Agent-Oriented Systems. In: Proc. of the 2008 ACM symposium on Applied computing (SAC
’08), 2008, S. 71–77

[Dah03] DAHLSTEDT, Åsa G. ; PERSSON, Anne: Requirements Interdependencies - Moulding the
State of Research into a Research Agenda. In: Requirements Engineering Forum on Software

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

27

Quality (REFSQ), 2003, S. 71–80

[De 07] DE LUCIA, Andrea ; FASANO, Fausto ; OLIVETO, Rocco ; TORTORA, Genoveffa: Recover-
ing Traceability Links in Software Artifact Management Systems using Information Retrieval
Methods. In: ACM Trans. Softw. Engin. Method. 16 (2007), Nr. 4, S. 13. – ISSN 1049–331X

[Dic02] DICK, Jeremy: Rich Traceability. In: Proc of the 1st International Workshop on Traceability
in Emerging Forms of Software Engineering, Edinburgh, 2002

[Dri08] DRIVALOS, Nicholas ; PAIGE, Richard F. ; FERNANDES, Kiran J. ; KOLOVOS, Dimitrios S.:
Towards Rigorously Defined Model-to-Model Traceability. In: ECMDA Traceability Work-
shop (ECMDA-TW) 2008 Proc., 2008, S. 17–26

[Ebe97] EBERT, J. ; SÜTTENBACH, R. ; UHE, I.: Meta-CASE in Practice: a Case for KOGGE. In: A.
Olivé, J. A. Pastor (eds.): Advanced Information Systems Engineering, Springer, LNCS 1250.
1997, S. 203–216

[Ebe02] EBERT, Jürgen ; KULLBACH, Bernt ; RIEDIGER, Volker ; WINTER, Andreas: GUPRO.
Generic Understanding of Programs - An Overview. In: Electronic Notes in Theoretical Com-
puter Science, http://www.elsevier.nl/locate/entcs/volume72.html 72 (2002), Nr. 2

[Ebe08a] EBERT, Jürgen ; BILDHAUER, Daniel: Querying Software Abstraction Graphs. In: Proceed-
ings of Query Technologies and Applications for Program Comprehension (QTAPC 2008),
2008

[Ebe08b] EBERT, Jürgen ; RIEDIGER, Volker ; WINTER, Andreas: Graph Technology in Reverse En-
gineering, The TGraph Approach. In: GIMNICH, Rainer (Hrsg.) ; KAISER, Uwe (Hrsg.) ;
QUANTE, Jochen (Hrsg.) ; WINTER, Andreas (Hrsg.): Proc. of the 10th Workshop Software
Reengineering (WSR 2008) Bd. 126. Bonn : GI, 2008, S. 67–81

[Egy01] EGYED, Alexander: A Scenario-Driven Approach to Traceability. In: Proc. of the 23rd
International Conference on Software Engineering, 2001, S. 123–132

[Esp06] ESPINOZA, Angelina ; ALARCÓN, Pedro P. ; GARBAJOSA, Juan: Analyzing and Systematiz-
ing Current Traceability Schemas. In: SEW ’06: 30th Annual IEEE/NASA Software Engineer-
ing Workshop SEW-30, 2006, S. 21–32

[Gok08] GOKNIL, Arda ; KURTEV, Ivan ; VAN DEN BERG, Klaas: Change Impact Analysis based
on Formalization of Trace Relations for Requirements. In: ECMDA Traceability Workshop
(ECMDA-TW) 2008 Proc., 2008, S. 59–75

[Gos05] GOSLING, James ; JOY, Bill ; STEELE, Guy ; BRACHA, Gilad: The Java Language Specifica-
tion. 3. Prentice Hall, 2005

[Got94] GOTEL, Orlena C. Z. ; FINKELSTEIN, Anthony C. W.: An Analysis of the Requirements
Traceability Problem. In: Proc. of the First International Conference on Requirements Engi-
neering, Colorado Springs, CO, USA, IEEE Computer Society Press, April 1994, S. 94–102

[Gre07] GRECHANIK, Mark ; MCKINLEY, Kathryn S. ; PERRY, Dewayne E.: Recovering And Us-
ing Use-Case-Diagram-To-Source-Code Traceability Links. In: ESEC-FSE ’07: Proc. of the
6th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT
symposium on The Foundations of Software Engineering, 2007

[Haa04] HAARSLEV, Volker ; MÖLLER, Ralf ; WESSEL, Michael. Querying the Semantic Web with
Racer + nRQL. 2004

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

28

[Hor09] HORN, Tassilo: Ein Optimierer für GReQL2. München : Grin Verlag, 1. 2009. – ISBN
978–3640250561

[Huf06] HUFFMAN HAYES, Jane ; DEKHTYAR, Alex ; SUNDARAM, Senthil K.: Advancing Candidate
Link Generation for Requirements Tracing: The Study of Methods. In: IEEE Trans. Softw.
Eng. 32 (2006), Nr. 1, S. 4–19

[IEE90] IEEE: IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990.
1990

[Jar98] JARKE, Matthias: Requirements Tracing. In: Communications of the ACM 41 (1998), Nr. 12,
S. 32–36

[Jou05] JOUAULT, Frédéric: Loosely Coupled Traceability for ATL. In: ECMDA Traceability Work-
shop (ECMDA-TW) 2005 Proc., 2005, S. 29–37

[Kai93] KAINDL, Hermann: The Missing Link in Requirements Engineering. In: SIGSOFT Software
Engineering Notes 18 (1993), Nr. 2, S. 30–39

[Kai07] KAINDL, Hermann ; ŚMIAŁEK, Michał ; SVETINOVIC, Davor ; AMBROZIEWICZ, Albert
; BOJARSKI, Jacek ; NOWAKOWSKI, Wiktor ; STRASZAK, Tomasz ; SCHWARZ, Hannes ;
BILDHAUER, Daniel ; BROGAN, John P. ; MUKASA, Kizito S. ; WOLTER, Katharina ; KREBS,
Thorsten: Requirements Specification Language Definition / ReDSeeDS Project. 2007 (
D2.4.1). – Project Deliverable

[Kal04] KALNINS, Audris ; BARZDINS, Janis ; CELMS, Edgars: Model Transformation Language
MOLA. In: MDAFA: Model Driven Architecture: Foundations and Applications, 2004

[Kal05] KALNINS, Audris ; CELMS, Edgars ; SOSTAKS, Agris: Tool Support for MOLA. In: GraMoT:
Workshop on Graph and Model Transformation, GPCE’05, 2005, S. 162–163

[Kal07] KALNINS, Audris ; KALNINA, Elina ; CELMS, Edgars ; SOSTAKS, Agris ; SCHWARZ, Hannes
; AMBROZIEWICZ, Albert ; BOJARSKI, Jacek ; NOWAKOWSKI, Wiktor ; STRASZAK, Tomasz
; KAVALDJIAN, Sevan ; FALB, Jürgen: Reusable Case Transformation Rule Specification /
ReDSeeDS Project. 2007 (D3.3). – Project Deliverable

[Kam98] KAMP, Manfred: Managing a Multi-File, Multi-Language Software Repository for Program
Comprehension Tools — A Generic Approach / Universitt Koblenz-Landau, Institut fr Infor-
matik. Koblenz, 1998 (1/98). – Forschungsbericht

[Kne02] VON KNETHEN, Antje ; PAECH, Barbara: A Survey on Tracing Approaches in Theory and
Practice / Fraunhofer IESE. 2002 (095.01/E). – Forschungsbericht

[Kul99] KULLBACH, Bernt ; WINTER, Andreas: Querying as an Enabling Technology in Software
Reengineering. In: VERHOEF, C. (Hrsg.) ; NESI, P. (Hrsg.): Proc. of the 3rd Euromicro Con-
ference on Software Maintenance & Reengineering. Los Alamitos : IEEE Computer Society,
1999, S. 42–50

[Kur07] KURTEV, Ivan ; DEE, Matthijs ; GOKNIL, Arda ; VAN DER BERG, Klaas: Traceability-based
Change Management in Operational Mappings. In: ECMDA Traceability Workshop (ECMDA-
TW) 2007 Proc., 2007, S. 57–67

[Let02] LETELIER, Patricio: A Framework for Requirements Traceability in UML-based Projects. In:
Proc. of 1st International Workshop on Traceability in Emerging Forms of Software Engineer-
ing, 2002, S. 173–183

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

29

[Lin06] LIN, Jun ; LIN, Chan C. ; CLELAND-HUANG, Jane ; SETTIMI, Raffaella ; AMAYA, Joseph
; BEDFORD, Grace ; BERENBACH, Brian ; KHADRA, Oussama B. ; DUAN, Chuan ; ZOU,
Xuchang: Poirot: A Distributed Tool Supporting Enterprise-Wide Automated Traceability. In:
RE ’06: Proc. of the 14th IEEE International Requirements Engineering Conference, 2006, S.
356–357

[M0̈8] MÄDER, Patrick ; GOTEL, Orlena ; PHILIPPOW, Ilka: Rule-Based Maintenance of Post-
Requirements Traceability Relations. In: Proceedings of the 16th IEEE International Require-
ments Engineering Conference, 2008, S. 23–32

[Mal05] MALETIC, Jonathan I. ; COLLARD, Michael L. ; SIMOES, Bonita: An XML Based Approach
to Support the Evolution of Model-to-Model Traceability Links. In: Proc. of 3rd International
Workshop on Traceability in Emerging Forms of Software Engineering, 2005, S. 67–72

[Mar03] MARCUS, Adrian ; MALETIC, Jonathan I.: Recovering Documentation-to-Source-Code
Traceability Links using Latent Semantic Indexing. In: ICSE ’03: Proc. of the 25th Inter-
national Conference on Software Engineering, 2003. – ISBN 0–7695–1877–X, S. 125–135

[Mar05] MARCUS, Andrian ; XIE, Xinrong ; POSHYVANYK, Denys: When and How to Visualize
Traceability Links? In: Proc. of 3rd International Workshop on Traceability in Emerging
Forms of Software Engineering, 2005, S. 56–61

[Moo07] MOON, Mikyeong ; CHAE, Heung S. ; NAM, Taewoo ; YEOM, Keunhyuk: A Metamodeling
Approach to Tracing Variability between Requirements and Architecture in Software Product
Lines. In: Proc. of the 7th IEEE International Conference on Computer and Information
Technology. Washington, DC, USA : IEEE Computer Society, 2007, S. 927–933

[Mur95] MURPHY, Gail C. ; NOTKIN, David ; SULLIVAN, Kevin: Software Reflexion Models: Bridg-
ing the Gap between Source and High-Level Models. In: SIGSOFT ’95: Proc. of the 3rd ACM
SIGSOFT symposium on Foundations of software engineering, ACM Press, 1995, S. 18–28

[Obj06] Object Management Group: Meta Object Facility (MOF) Core Specification, OMG Available
Specification, Version 2.0. January 2006

[Obj07] Object Management Group: OMG Unified Modeling Language (OMG UML), Superstructure,
V2.1.2. 2007

[Obj08] Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Version 1.0. 2008

[Old06] OLDEVIK, Jon ; NEPLE, Tor: Traceability in Model to Text Transformations. In: ECMDA
Traceability Workshop (ECMDA-TW) 2006 Proc., 2006

[Per05] PERINI, Anna ; SUSI, Angelo: Automating Model Transformations in Agent-Oriented mod-
elling. In: Proc. of Agent-Oriented Software Engineering VI, 6th International Workshop,
2005

[Pin96] PINHEIRO, Francisco A.: Design of a Hyper-Environment for Tracing Object-Oriented Re-
quirements, University of Oxford, Dissertation, 1996

[Poh96] POHL, Klaus: Process-Centered Requirements Engineering. Research Studies Press Ltd.,
1996

[Ram01] RAMESH, Balasubramaniam ; JARKE, Matthias: Toward Reference Models for Requirements
Traceability. In: IEEE Trans. Softw. Eng. 27 (2001), Nr. 1, S. 58–93

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

30

[Ric03] RICHARDSON, Julian ; GREEN, Jeff: Traceability Through Automatic Program Generation.
In: Proc. of the 2nd International Workshop on Traceability in Emerging Forms of Software
Engineering, Montreal, 2003

[Sch08] SCHWARZ, Hannes ; EBERT, Jürgen ; RIEDIGER, Volker ; WINTER, Andreas: Towards
Querying of Traceability Information in the Context of Software Evolution. In: 10th Workshop
Software Reengineering (WSR 2008), 2008

[She03] SHERBA, Susanne A. ; ANDERSON, Kenneth M. ; FAISAL, Maha: A Framework for Mapping
Traceability Relationships. In: Proc. of the 2nd International Workshop on Traceability in
Emerging Forms of Software Engineering, Montreal, 2003

[Śmi06] ŚMIAŁEK, M. Towards a requirements driven software development system. Poster presenta-
tion at MoDELS, Genova, Italy. 2006

[Son98] SONG, Xiping ; HASLING, William M. ; MANGLA, Gaurav ; SHERMAN, Bill: Lessons
Learned From Building A Web-Based Requirements Tracing System. In: ICRE ’98: Proc. of
the 3rd International Conference on Requirements Engineering, 1998. – ISBN 0–8186–8356–
2, S. 41–50

[Sos08] SOSTAKS, Agris ; KALNINS, Audris: The Implementation of MOLA to L3 Compiler. In:
Computer Science and Information Technologies. Riga, Latvia : Latvijas Universitate, 2008
(Scientific Papers University of Latvia 733)

[Spa05] SPANOUDAKIS, George ; ZISMAN, Andrea: Software Traceability: A Roadmap. In: CHANG,
S. K. (Hrsg.): Handbook of Software Engineering & Knowledge Engineering: Recent Ad-
vances Bd. 3. World Scientific Publishing Company, 2005, S. 395–428

[Str02] STRAS̆UNSKAS, Darijus: Traceability in Collaborative Systems Development from Lifecycle
Perspective – A Position Paper. In: Proc. of the 1st International Workshop on Traceability in
Emerging Forms of Software Engineering, Edinburgh, 2002

[W3C08] SPARQL Query Language for RDF – W3C Recommendation 15 January 2008. 2008

[Wei84] WEISER, Mark: Program Slicing. In: IEEE Transactions on Software Engineering 10 (1984),
S. 352–357

[Wie95] WIERINGA, Roel: An Introduction to Requirements Traceability / Faculty of Mathematics
and Computer Science. 1995 (IR-389). – Forschungsbericht

[Wil75] WILLIAMS, R. D.: Managing the development of reliable software. In: Proc. of the Interna-
tional Conference on Reliable Software, ACM, 1975, S. 3–8

[Win00] WINTER, Andreas: Referenz-Metaschema für visuelle Modellierungssprachen. Deutscher
Universitätsverlag, 2000 (DUV Informatik)

[Wit07] WITTE, René ; ZHANG, Yonggang ; RILLING, Juergen: Empowering Software Maintainers
with Semantic Web Technologies. In: Proc. of the 4th European Semantic Web Conference
(ESCW 2007), 2007, S. 37–52

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

31

Bisher erschienen

Arbeitsberichte aus dem Fachbereich Informatik
(http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte)

Hannes Schwarz, Jürgen Ebert, Andreas Winter, Graph-based Traceability – A
Comprehensive Approach. Arbeitsberichte aus dem Fachbereich Informatik 4/2009

Anastasia Meletiadou, Simone Müller, Rüdiger Grimm, Anforderungsanalyse für Risk-
Management-Informationssysteme (RMIS), Arbeitsberichte aus dem Fachbereich Informatik
3/2009

Ansgar Scherp, Thomas Franz, Carsten Saathoff, Steffen Staab, A Model of Events based on
a Foundational Ontology, Arbeitsberichte aus dem Fachbereich Informatik 2/2009

Frank Bohdanovicz, Harald Dickel, Christoph Steigner, Avoidance of Routing Loops,
Arbeitsberichte aus dem Fachbereich Informatik 1/2009

Stefan Ameling, Stephan Wirth, Dietrich Paulus, Methods for Polyp Detection in Colonoscopy
Videos: A Review, Arbeitsberichte aus dem Fachbereich Informatik 14/2008

Tassilo Horn, Jürgen Ebert, Ein Referenzschema für die Sprachen der IEC 61131-3,
Arbeitsberichte aus dem Fachbereich Informatik 13/2008

Thomas Franz, Ansgar Scherp, Steffen Staab, Does a Semantic Web Facilitate Your Daily
Tasks?, Arbeitsberichte aus dem Fachbereich Informatik 12/2008

Norbert Frick, Künftige Anfordeungen an ERP-Systeme: Deutsche Anbieter im Fokus,
Arbeitsberichte aus dem Fachbereicht Informatik 11/2008

Jürgen Ebert, Rüdiger Grimm, Alexander Hug, Lehramtsbezogene Bachelor- und
Masterstudiengänge im Fach Informatik an der Universität Koblenz-Landau, Campus
Koblenz, Arbeitsberichte aus dem Fachbereich Informatik 10/2008

Mario Schaarschmidt, Harald von Kortzfleisch, Social Networking Platforms as Creativity
Fostering Systems: Research Model and Exploratory Study, Arbeitsberichte aus dem
Fachbereich Informatik 9/2008

Bernhard Schueler, Sergej Sizov, Steffen Staab, Querying for Meta Knowledge,
Arbeitsberichte aus dem Fachbereich Informatik 8/2008

Stefan Stein, Entwicklung einer Architektur für komplexe kontextbezogene Dienste im
mobilen Umfeld, Arbeitsberichte aus dem Fachbereich Informatik 7/2008

Matthias Bohnen, Lina Brühl, Sebastian Bzdak, RoboCup 2008 Mixed Reality League Team
Description, Arbeitsberichte aus dem Fachbereich Informatik 6/2008

Bernhard Beckert, Reiner Hähnle, Tests and Proofs: Papers Presented at the Second
International Conference, TAP 2008, Prato, Italy, April 2008, Arbeitsberichte aus dem
Fachbereich Informatik 5/2008

Klaas Dellschaft, Steffen Staab, Unterstützung und Dokumentation kollaborativer Entwurfs-
und Entscheidungsprozesse, Arbeitsberichte aus dem Fachbereich Informatik 4/2008

Rüdiger Grimm: IT-Sicherheitsmodelle, Arbeitsberichte aus dem Fachbereich Informatik
3/2008

Graph-based Traceability - A Comprehensive Approach, Fachbereich Informatik Nr. 4/2009

32

http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik 2/2008

Markus Maron, Kevin Read, Michael Schulze: CAMPUS NEWS – Artificial Intelligence
Methods Combined for an Intelligent Information Network, Arbeitsberichte aus dem
Fachbereich Informatik 1/2008

Lutz Priese,Frank Schmitt, Patrick Sturm, Haojun Wang: BMBF-Verbundprojekt 3D-RETISEG
Abschlussbericht des Labors Bilderkennen der Universität Koblenz-Landau, Arbeitsberichte
aus dem Fachbereich Informatik 26/2007

Stephan Philippi, Alexander Pinl: Proceedings 14. Workshop 20.-21. September 2007
Algorithmen und Werkzeuge für Petrinetze, Arbeitsberichte aus dem Fachbereich Informatik
25/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS – an Intelligent Bluetooth-
based Mobile Information Network, Arbeitsberichte aus dem Fachbereich Informatik 24/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS - an Information Network for
Pervasive Universities, Arbeitsberichte aus dem Fachbereich Informatik 23/2007

Lutz Priese: Finite Automata on Unranked and Unordered DAGs Extented Version,
Arbeitsberichte aus dem Fachbereich Informatik 22/2007

Mario Schaarschmidt, Harald F.O. von Kortzfleisch: Modularität als alternative Technologie-
und Innovationsstrategie, Arbeitsberichte aus dem Fachbereich Informatik 21/2007

Kurt Lautenbach, Alexander Pinl: Probability Propagation Nets, Arbeitsberichte aus dem
Fachbereich Informatik 20/2007

Rüdiger Grimm, Farid Mehr, Anastasia Meletiadou, Daniel Pähler, Ilka Uerz: SOA-Security,
Arbeitsberichte aus dem Fachbereich Informatik 19/2007

Christoph Wernhard: Tableaux Between Proving, Projection and Compilation, Arbeitsberichte
aus dem Fachbereich Informatik 18/2007

Ulrich Furbach, Claudia Obermaier: Knowledge Compilation for Description Logics,
Arbeitsberichte aus dem Fachbereich Informatik 17/2007

Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML Models
and OWL Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 16/2007

Rüdiger Grimm, Anastasia Meletiadou: Rollenbasierte Zugriffskontrolle (RBAC) im
Gesundheitswesen, Arbeitsberichte aud dem Fachbereich Informatik 15/2007

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus
dem Fachbereich Informatik 14/2007

Björn Pelzer, Christoph Wernhard: System Description:“E-KRHyper“, Arbeitsberichte aus dem
Fachbereich Informatik, 13/2007

Ulrich Furbach, Peter Baumgartner, Björn Pelzer: Hyper Tableaux with Equality,
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems,
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitäten,
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte
aus dem Fachbereich Informatik, 9/2007

Jürgen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung,
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007

Rüdiger Grimm, Robert Krimmer, Nils Meißner, Kai Reinhard, Melanie Volkamer, Marcel
Weinand, Jörg Helbach: Security Requirements for Non-political Internet Voting,
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauß, „grUML – Eine UML-
basierte Modellierungssprache für T-Graphen“, Arbeitsberichte aus dem Fachbereich
Informatik, 5/2007

Richard Arndt, Steffen Staab, Raphaël Troncy, Lynda Hardman: Adding Formal Semantics to
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus
dem Fachbereich Informatik, 4/2007

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich
Informatik, 3/2007

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007

„Gelbe Reihe“
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe)

Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages.
Extended Version, Fachberichte Informatik 3-2006

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets,
Fachberichte Informatik 2-2006

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services,
Fachberichte Informatik 1-2006

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte
Informatik 16-2005

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop ''Reengineering Prozesse'' –
Software Migration, Fachberichte Informatik 15-2005

Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005

Reinhold Letz: FTP 2005 – Fifth International Workshop on First-Order Theorem Proving,
Fachberichte Informatik 13-2005

Bernhard Beckert: TABLEAUX 2005 – Position Papers and Tutorial Descriptions,
Fachberichte Informatik 12-2005

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and
artificial intelligence, Fachberichte Informatik 11-2005

Jürgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte
Informatik 10-2005

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies,
Fachberichte Informatik 9-2005

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering,
Fachberichte Informatik 8-2005

Benno Stein and Sven Meier zu Eißen: Proceedings of the Second International Workshop on
Text-Based Information Retrieval, Fachberichte Informatik 7-2005

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/
http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/

Andreas Winter and Jürgen Ebert: Metamodel-driven Service Interoperability, Fachberichte
Informatik 6-2005

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra,
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League
can benefit from each other, Fachberichte Informatik 5-2005

Torsten Gipp and Jürgen Ebert: Web Engineering does profit from a Functional Approach,
Fachberichte Informatik 4-2005

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of
Multiagent Team Behavior, Fachberichte Informatik 3-2005

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their
Applications in a Mobile Environment, Fachberichte Informatik 2-2005

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms –
 Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005

http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_st
	Foliennummer 1

	Impressum
	comprehensive_traceability_arbeitsbericht
	Introduction
	Traceability
	Definitions of Traceability
	Traceability-related Activities
	A Challenge for Traceability: A Comprehensive Approach

	Graph Technology
	TGraphs
	Metamodeling TGraphs -- grUML
	Transforming TGraphs -- MOLA
	Querying TGraphs -- GReQL

	Defining and Recording Traceability Information
	The Traceability Reference Schema
	Implementation -- Graph-based Repositories
	Application -- Software Cases in ReDSeeDS

	Identifying and Maintaining Traceability Information
	Identifying and Maintaining Traceability Relationships with Model Transformations
	Implementation -- Using MOLA for Traceability Relationship Generation and Maintenance
	Application -- Generating Traceability Relationships in ReDSeeDS

	Retrieving and Utilizing Traceability Information
	Common Retrieval Patterns
	Implementation -- Retrieval with GReQL
	Application -- Slicing in ReDSeeDS

	Conclusion

	Bisher erschienen
	Bisher erschienen

