
Using Constraint Logic Programming for Using Constraint Logic Programming for
Modeling and Verifying Hierarchical Modeling and Verifying Hierarchical

Hybrid AutomataHybrid Automata

Ammar MohammedAmmar Mohammed
Frieder StolzenburgFrieder Stolzenburg

Nr. Nr. 6/20096/2009

Arbeitsberichte aus demArbeitsberichte aus dem
Fachbereich InformatikFachbereich Informatik

Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung
vorläufiger Ergebnisse, die in der Regel noch für spätere Veröffentlichungen
überarbeitet werden. Die Autoren sind deshalb für kritische Hinweise dankbar. Alle
Rechte vorbehalten, insbesondere die der Übersetzung, des Nachdruckes, des
Vortrags, der Entnahme von Abbildungen und Tabellen – auch bei nur
auszugsweiser Verwertung.

The “Arbeitsberichte aus dem Fachbereich Informatik“ comprise preliminary results
which will usually be revised for subsequent publication. Critical comments are
appreciated by the authors. All rights reserved. No part of this report may be
reproduced by any means or translated.

Arbeitsberichte des Fachbereichs Informatik

ISSN (Print): 1864-0346
ISSN (Online): 1864-0850

Herausgeber / Edited by:
Der Dekan:
Prof. Dr. Zöbel

Die Professoren des Fachbereichs:
Prof. Dr. Bátori, Prof. Dr. Beckert, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr. Ebert,
Prof. Dr. Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,
Prof. Dr. Sure, Prof. Dr. Lämmel, Prof. Dr. Lautenbach, Prof. Dr. Müller, Prof. Dr.
Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese, Prof. Dr. Rosendahl, Prof. Dr.
Schubert, Prof. Dr. Staab, Prof. Dr. Steigner, Prof. Dr. Troitzsch, Prof. Dr. von
Kortzfleisch, Prof. Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Zöbel

Kontaktdaten der Verfasser

Ammar Mohammed, Frieder Stolzenburg
Institut für Informatik
Fachbereich Informatik
Universität Koblenz-Landau
Universitätsstraße 1
D-56070 Koblenz
EMail: ammar@uni-koblenz.de, fstolzenburg@hs-harz.de

mailto:ammar@uni-koblenz.de

Using Constraint Logic Programming for
Modeling and Verifying Hierarchical Hybrid

Automata

Ammar Mohammed
Universität Koblenz-Landau

Computer Science Department
Universitätsstr. 1

56070 Koblenz, Germany
ammar@uni-koblenz.de

Frieder Stolzenburg
Hochschule Harz

Automation and Computer Sciences Department
38855 Wernigerode, Germany

fstolzenburg@hs-harz.de

Hybrid systems are the result of merging the two most commonly used models for
dynamical systems, namely continuous dynamical systems defined by differential
equations and discrete-event systems defined by automata. One can view hybrid
systems as constrained systems, where the constraints describe the possible process
flows, invariants within states, and transitions on the one hand, and to characterize
certain parts of the state space (e.g. the set of initial states, or the set of unsafe states)
on the other hand. Therefore, it is advantageous to use constraint logic programming
(CLP) as an approach to model hybrid systems. In this paper, we provide CLP
implementations, that model hybrid systems comprising several concurrent hybrid
automata, whose size is only straight proportional to the size of the given system
description. Furthermore, we allow different levels of abstraction by making use of
hierarchies as in UML statecharts. In consequence, the CLP model can be used for
analyzing and testing the absence or existence of (un)wanted behaviors in hybrid
systems. Thus in summary, we get a procedure for the formal verification of hybrid
systems by model checking, employing logic programming with constraints.

1 Introduction

1.1 Motivation

Hybrid automata [20] are a standard means for the specification and analysis of dynamical sys-
tems, where computational processes interact with physical processes. Essentially, hybrid au-
tomata are state machines for describing discrete-event systems, augmented with differential
equations for the treatment of continuous processes. They are widely used for the specification
of embedded systems. There are numerous applications, e.g. in the fields of robotics, logistics,

1

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

multiagent systems, and for technical systems in general, especially in safety-critical contexts,
where formal verification of system properties is desirable.

There are several model checking tools for hybrid automata available, e.g. HyTech [23] or
PHAVer [14]. In the context of hybrid automata, the terms formal verification and model check-
ing usually refer to reachability analysis, i.e. to the question whether some (un)wanted state
is reachable from the initial configuration of the specified system. For this, systems of (linear)
(in)equations have to be solved, which is usually implemented by algorithms manipulating sets
of convex polyhedra. In this paper, it is demonstrated that model checking of hybrid systems can
be understood as constraint solving. Hence, it appears to be a good idea to employ constraint
logic programming (CLP) [31] for this task, which extends logic programming with Prolog [11].

In this paper, we therefore propose a methodology that exploits CLP for the specification and
analysis of hybrid systems. CLP has already been applied to model hybrid systems including
solving differential equations (see e.g. [26]). However, efficiency can only be expected, if a full
CLP language is employed as e.g. Eclipse Prolog [4], where a multitude of constraint solvers is
available. By introducing hierarchies (as in UML statecharts, cf. [33]) different levels of abstrac-
tion besides representation of concurrency in the specification are expressible, which is certainly
advantageous.

Usually hierarchical specifications of hybrid systems are transformed into flat standard finite
hybrid automata (see e.g. [5, 15, 35]). Concurrent automata have to be composed, which leads
to the state explosion problem, because the number of states in the resulting flat automaton is
the product of the number of states of all concurrent automata. As demonstrated in this paper,
computing the composition of automata can be avoided by employing CLP, where in addition
many efficient constraint solvers e.g. for interval constraints and finite domains are available.

1.2 Overview on the Rest of the Paper

In summary, the main contributions of this paper are as follows: First, we present a lean but ef-
fective implementation of hybrid automata, that hosts an explicit formulation of hierarchies and
concurrency. Second, compositions of automata do not have to be computed explicitly, which
avoids the state explosion problem. Instead, we generate configurations of the whole system only
if required, and thus the size of the corresponding CLP program is only straight proportional to
the size of the given hierarchical hybrid automaton description. Last but not least, by employing
CLP, constraints can be derived automatically, under which certain states of the system can be
reached. This enhances standard formal verification and model checking methodologies.

In the following, we therefore introduce our formalism of hierarchical hybrid automata
(HHA) with a running example, namely a railroad gate controller, that is well-known in the
literature [21] (Sect. 2). Then, we describe its implementation with CLP (Sect. 3), by introduc-
ing an abstract state machine for HHA eventually. We briefly compare different implementations
for model checking hybrid automata and discuss related works (Sect. 4), before we end up with
conclusions (Sect. 5).

2

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

System

far near past

t := 0

x≥ 0 x≤ 100

g = 9

t≥ α t≥ α

g = 0

t := 0
t := 0t := 0

g = 0g≥ 0

g≤ 90 g = 90

x≥ 1000

g = 90

Train

Controller

Gate

down

up

closed

idle to raiseto lower

open

x = 2000 in

x =0

ẋ ∈ [−50,−30]

raise

lower

raise

to close

app

raise

exit

lower

appapp

app

ẋ ∈ [30,50]
x =1000

ẋ ∈ [−50,−40] exit
x =100

ġ = 9 ġ = 0

ġ =−9

to open

ṫ = 1 ṫ = 1ṫ = 0

ġ = 0

x: =2000

app

lower

exit

Figure 1: Specification of the train gate controller automata.

2 Example and Formalism

Before we are going to present the definitions and formalism for HHA, we first introduce an
illustrating running example that we use throughout the paper, followed by the basic formalism
which we use to demonstrate the CLP implementation.

2.1 The Railroad Gate Controller Example

A train gate controller [21] is a system consisting of three automata components: the train, the
gate, and the controller. In this system, a road is crossing a train track, that is guarded by a gate,
which must be lowered to stop the traffic when the train approaches, and raised after a train
passed the road. The gate is supervised by a controller that has the task to receive signals from
the train and to issue lower or raise signals to the gate. Initially, a train is at a distance of 2000 m
far from the gate and moves at a speed between 40 and 50 m/s. When the train reaches the gate
at a distance of 1000 m, it issues an app signal to the controller (with the meaning that the train
approaches the gate) and may slow down to 30 m/s.

When the controller is idle upon receipt of the approach event app, it requires up to α seconds
to send the command lower to the gate. At the distance of 100 m past the gate, the train issues an
exit signal to the controller, which after another delay of up to α seconds, it sends the command
raise to the gate. Initially, the gate is completely opened in a position of 90 radius degrees. Upon
receiving the lower signal at the open position, the gate is lowered from 90 radius degrees to 0
degrees at a constant rate of 9 degrees per second, and the same holds when it is closed upon
receipt of the command raise.

3

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

The three hybrid automata that model the train, the gate, and the controller are shown in Fig. 1.
In the graphical representation, the variable x represents the distance of the train from the gate.
The variable t represents the delay time of the controller, while the position of the gate in radius
degrees is represented by the variable g.

First, the train gate controller system must satisfy a safety property. The purpose of the safety
property is to ensure that the system cannot reach an unsafe state, i.e. a state where the train is in
the crossing but the gate is not closed. Second, in addition to safety property, a utility property
has to hold. The purpose of the utility property is to avoid degenerate solutions, e.g. lowering
the gate and keeping it lowered. Basically, safety critical system must not only operate safely.
To be useful, they must perform certain functions within specified time intervals, i.e., they must
exhibit response times within given bounds. For example, the train leaves the crossing within
36 s after its approach. Third, another interesting property that appears generally in systems with
synchronization is a simple logical property. That is a property that depends on logical and/or
temporal dependences between events.

2.2 Formalism

Let us now define formally the notation used in this paper, before we introduce a CLP imple-
mentation of hybrid automata (in Sect. 3). We first define basic components of hybrid automata
(Def. 1). Then, we introduce state hierarchies and concurrency (Def. 2 and 3), before we de-
fine the semantics of HHA (Def. 4). For further details and examples, especially on the latter
definitions, the reader is referred to Sect. 3.3.

Definition 1 (basic components) A hybrid automaton is a tuple H =
(X ,Q, Invq,Flowq,E,Jump,Event, Init) where:

• X ⊆ IRn is a finite set of n real-valued variables.

• Q is a finite set of control locations. For example, the train automaton (Fig. 1) has the
locations far, near, and past.

• Invq is the invariant predicate, which assigns a constraint on variables X for each control
location q ∈ Q. For example, the location far in the train automaton has the invariant
x≥ 1000. When the hybrid automaton H is in a control location q ∈Q, the variables in X
must satisfy the invariant Invq.

• Flowq is the flow predicate on variables X for each control location q ∈ Q, which defines
how the variables in X evolve over the time at location q. In the graphical representation,
a flow of a variable x is represented as ẋ. For example, ġ = 9 describes the continuous
activity of the gate.

• E ⊆ Q×Q is the discrete transition relation over the control locations. Each edge e ∈ E
is augmented by the following annotations:

Jump: jump condition (guard), which is a constraint over X; if the jump condition holds,
the transition e fires and may change the values of the variables X by executing a
specific action;

4

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

Event: synchronization label, used to synchronize concurrent automata; the train au-
tomaton contains the synchronization labels app, exit, and in, that must be synchro-
nized with all automata sharing the same synchronization labels.

• Init is the initial condition that assigns an initial condition to the variables X to each con-
trol location q ∈ Q. For example, x = 2000 is the initial condition of the train automaton,
while it is g = 90 at the location open in the gate automaton.

Hybrid systems typically consist of several components which operate concurrently and com-
municate with each other. Each component usually is described as a separate hybrid automa-
ton. The automata are coordinated through shared variables and synchronization labels on the
transitions [20]. For example, in Fig. 1, the train automaton communicates with the controller
automaton via the synchronization labels app and exit. Describing the behavior of the hybrid
automata demands for a mechanism to coordinate the execution among automata. This can be
accomplished by means of automata composition. The result of the composition process is an
automaton that describes the entire behavior of the hybrid system. Basically, the composition of
automata is done by means of the Cartesian product of the automata, but automata with mutual
synchronization labels have to be considered simultaneously, which helps to reduce the com-
plexity of automata composition.

In hierarchical hybrid automata (HHA), locations are generalized to states, stemming from the
set of states S. It is partitioned into three disjoint sets: Ssimple, Scomp, and Sconc — called simple,
composite and concurrent states, containing one designated start state s0 ∈ Scomp ∪ Sconc. In
essence, the locations of plain hybrid automata correspond to simple states in HHA. Composite
and concurrent states belong to the definition of statecharts [19] and have become part of UML
[33]. They are useful for expressing the overall system on several levels of abstraction. Events
are treated as global variables in this context. Based on this, we will now introduce the concepts
of HHA. For the sake of completeness, we adopt and restate some of the definitions of [15],
which describes some case studies with standard model checking tools, not employing CLP. For
more details on this and the synchronization concept of HHA, the reader is referred to this paper.

Definition 2 (state hierarchy) Each state s is associated with zero, one or more initial states
α(s): a simple state has zero, a composite state exactly one, and a concurrent state more than
one initial state. In the latter case, the initial states are called regions. Moreover, each state
s ∈ S \ {s0} is associated to exactly one superior state β (s). Therefore, it must hold β (s) ∈
Sconc∪Scomp. A concurrent state must not directly contain other concurrent ones. Furthermore,
it is assumed that all transitions (s1,s2) keep to the hierarchy, i. e. β (s1) = β (s2). Variables x∈X
may be declared locally in a certain state γ(x) ∈ S. A variable x ∈ X is valid in all states s ∈ S
with β n(s) = γ(x) for some n ≥ 0 (i.e. in all states below γ(x) in the state hierarchy), unless
another variable with the same name overwrites it locally.

For the example in Fig. 1, we consider the states train, gate, and controller as composite
states, that are regions of one concurrent state, that represents the whole system. Thus, according
to the previous Def. 2, it holds e.g.: α(train) = f ar, α(gate) = open, α(controller) = idle,
α(system) = {train,gate,controller}; β (near) = train, β (train) = system; γ(x) = train, γ(g) =
gate, γ(t) = controller.

5

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

Definition 3 (configuration and completion) A configuration c is a rooted tree of states where
the root node is the topmost initial state s0 of the overall state machine. Whenever a state s is
an immediate predecessor of s′ in c, it must hold β (s′) = s. A configuration is completed by
applying the following procedure recursively as long as possible to leaf nodes: if there is a leaf
node in c labeled with a state s, then introduce all α(s) as immediate successors of s.

A hybrid automaton may change in two ways: discretely, from location q1 to another location
q2, when the transition e ∈ E between the two locations is enabled (i.e., the jump condition
holds) and continuously within a control location q ∈ Q, by means of a finite (positive) time
delay t. The semantics of our automata can now be defined by alternating sequences of discrete
and continuous steps. Following the synchrony hypothesis, we assume that discrete state changes
happen in zero time, while continuous steps (within one state) may last some time.

Definition 4 (semantics) The state machine starts with the initial configuration, i.e. the com-
pleted topmost initial state s0 of the overall state machine. In addition, an initial condition must
be given as a predicate with free variables from X ∪ {t}. The current situation of the whole
system can be characterized by a triple (c,v, t) where c is a configuration, v a valuation (i. e. a
mapping v : X → IRn), and t the current time. The initial situation is a situation (c,v, t) where
c is the initial configuration, v satisfies the initial condition, and t = 0. The following steps are
possible in the situation (c,v, t):

discrete step: a discrete/micro-step from one configuration c of a state machine to a configura-
tion (c′,v′, t) by means of a transition (s,s′) ∈ E with some jump condition in the current
situation (written c→ c′) is possible iff:

1. c contains a node labeled with s;
2. the jump condition of the given transition holds in the current situation (c,v, t);
3. c′ is identical with c except that s together with its subtree in c is replaced by the

completion of s′;
4. the variables in X ′ are set according to the jump condition.

continuous step: a continuous step/flow within the actual configuration to the situation
(c,v′, t ′) requires the computation of all x ∈ X that are valid in c at the time t ′ accord-
ing to the conjunction of all state conditions (i.e. flow conditions plus invariants) of the
active states s ∈ c, where it must hold t ′ > t.

The cautious reader may have noticed that invariants (see Def. 1) are merged here with the
flow conditions in continuous steps (see Def. 4). In particular, while jump conditions are checked
during a discrete transition, flow and invariant conditions are only tested at the beginning and
at the end of a continuous flow within one configuration, i.e. only at the boundaries. Hence, it
would not be detected that a variable x(t), that is checked only at the times t1 and t3 with e.g.
x(t1) = x(t3) = 0, does not satisfy an an invariant, say x ≤ c for some constant c > 0, if there
exists a time point t2 with t1 < t2 < t3 and x(t2) > c. Since it appears to be time-consuming to
detect such cases, we do it without such tests. In practice, these case should not occur very often.
For monotonous flow functions x(t) and linear inequalities of the form x≤ c such an expensive
test is not necessary at all.

6

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

3 Implementation with CLP

In this section, we provide CLP models of hybrid automata in two steps. The first one is a
straightforward implementation of plain hybrid automata without explicitly computing the com-
position of different parts of automata. There, we enforce the time constraints over the generated
events during transitions to coordinate the execution of hybrid automata. After that, we present
an implementation of HHA that allows modeling hybrid automata at different levels of abstrac-
tion by expressing hierarchies and concurrency directly, based on an explicit abstract state ma-
chine programmed in Prolog (Sect. 3.3). In all cases, we employed the ic library for interval
constraints, available with ECLiPSe Prolog [4], which also includes finite domain constraint
solving. SWI Prolog [36] also offers interesting functionality and could be used alternatively.

3.1 Straightforward Implementation

In the following, we give a CLP model for analyzing hybrid systems consisting of different
interacting concurrent automata. Our model follows the formal definition of hybrid automata
(Def. 1) and the semantics of the labeled transition semantics of hybrid automata, too (cf. [20]).

We start by modeling locations. They are implemented in the automaton predicate, ranging
over the respective locations of the automaton, real-valued variables, and the time:

automaton(+Location,?Vars,+Vars0,+T0,?Time):-
Vars#c2(Vars0,T0,Time),
c1(Inv),Time $>=T0.

Here, automaton is the name of automaton itself, and Location represents the current lo-
cations of the automaton. Vars is a list of real variables participating in the automata, whereas
Vars0 is a list of the corresponding initial values. c1(Invs) is the invariant constraint inside the
location, and the constraint predicate Vars on c2(Vars0,T0,Time) , where on∈ {<,≤,>,≥,=}
are constraints, which represent the continuous flows of the variables in Vars wrt. time T0 and
Time , given initial values Vars0 of the variables Vars at the start of the flow. T0 represents the
initial time at the start of continuous flow, while (Time-T0) is the delay inside the location. For
example, the location far is modeled as:

train(far,Y,Y0,T0,Time):-
Y $>= Y0-50*(Time-T0),
Y $=<Y0-40*(Time-T0),
Y $>=1000, Time $>=T0.

At any instance of time, a state of a hybrid automaton is a pair (loc,v), where loc is a location
and v is the assignment of values for the variables. Intuitively, the semantics of (standard) hybrid
automata can formally be described as runs of labeled transition systems [20], where the execu-
tion of a hybrid automaton corresponds to a sequence of transitions from a state to another. Thus,
hybrid automata have two kinds of transitions: continuous transitions, capturing the continuous
evolution of variables, and discrete transitions, capturing the changes of location. For this pur-
pose, one can encode the transition system into CLP clauses. The predicate evolve achieves this
mission:

evolve(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event) :-
continuous(Automaton,(L1,Var1),(L1,Var2),T0,Time,Event);
discrete(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event).

7

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

Each transition is accompanied with a guard that must fire, when a discrete transition takes
place. In our model, the guard is represented as constraint relation of c(T 0,Time), where Time
is the minimum elapsed time needed to generate an event (a discrete transition) and is computed
during the evolvement of automata. When a discrete transition occurs, it gives raise to update the
initial variables from Var1 into Var2 , where Var1 and Var2 are the initial variables of locations
L1 and L2 respectively. Otherwise, a delay transition is taken using the predicate continuous .
In addition, an event ∈ EventAutomaton is associated with each transition, that defines the paral-
lel composition from the automata individual sharing the same event. To this end, we augment
the predicate evolve with a constraint variable Event that ranges over symbolic domains. It
guarantees that whenever an automaton generates an event, the corresponding synchronized au-
tomata have to be taken into consideration simultaneously. When an automaton generates an
event, the symbolic domain solver will exclude all the domain values that are not coincident
with the generated event from the automata having the common event. This means that only
one event is generated at a time. Consequently, it shows that the automata composition can be
implicitly constructed efficiently on the fly, during the computation. The following is the general
implementation of the discrete predicate, which defines transitions between locations:

discrete(automaton,(Loc1,Var1),(Loc2,Var2),T0,Time,Event):-
automaton,(Location,Var1,Var,T0,Time),

jump(Var), reset(Var2)
Event &::events,Event &=event.

Here, Jump(Var) represents the constraints of the jump condition on the variables Var,
whereas reset(Var2) is a constraint predicate used to reset the variable Var2 before the control
of the automaton goes to the location Loc2. Here, the Event must be a member in EventAutomaton.
The & symbol is the constraint relation for symbolic domains (library sd in ECLiPSe Prolog),
while the $ symbol (see below) marks interval constraints (library ic). It follows an instance
showing the implementation of the discrete predicate between locations far and near in au-
tomaton train.

discrete(train,(far,[X0]),(near,[XX0]),T0,Time,Event):-
train(far,[X0],[X],T0,Time),

X $=1000, XX0 $=X,
Event &::events,Event &=app.

The description of the above discrete predicate means that a transition between the locations
far and near in the train automata takes place if the continuous variable X , based on the initial
value X0 , satisfies the jump condition given as X=1000 . If such a case occurs, then the new
variable, denoted XX0 , is updated, and the event app is fired. The executed events afterwards
synchronize the train automaton with the automata sharing the same event.

Once the transition rules have been modeled, a driver program needs to be supplied:

drive(_,_,..,_,_,0,[]):- !.
driver((L1,Var01),(L2,Var02),...,(Ln,Var0n),T0,Steps,

[(L1,L2,..,Ln,Var1,Var2,..,Varn,Time,Event)|NextReached]) :-
automata1(L1,Var1,Var01,T0,Time1),

8

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

automata2(L2,Var2,Var02,T0,Time2),
... ,
automatan(Ln,Varn,Var0n,T0,Timen),
Time1 $=Time2, Time1 $=Time3, ..., Time1 $=Timen
evolve(automata1,(L1,Var01),(NextL1,Nvar01),T0,Time1,Event),
evolve(automata2,(L2,Var02),(NextL2,Nvar02),T0,Time2,Event),
... ,
evolve(automatan,(Ln,Var0n),(NextLn,Nvar0n),T0,Timen,Event),
get_bounds(Time1,_,Newstarttime),
Steps > 0,Steps1 is Steps -1,

driver((NextL1,Nvar01),(NextL2,Nvar02),...,(NextLn,Nvar0n),
Newstarttime,Steps1,SNextReached).

The driver is a simulator predicate that is responsible to generate and control the execution
behavior of the concurrent hybrid automata, as well as to provide the reachable states symboli-
cally. Recall again, Event is a symbolic domain variable shared among all automata, where the
solver uses it to ensure that only one event is generated at a time. All automata sharing the same
events have to be synchronized. During the computational procedure, from the times of all au-
tomata the minimum time among the automata is determined. This minimum time is the time
needed to fire an event. Consequently, the predicate evolve, based on this time, alternates each
automaton between continuous and discrete transitions. To prevent the driver from infinite runs,
the number of discrete steps should be provided in advance. The last argument of the predicate
driver is the list of finitely reachable regions. At each step of the driver, a region of the form
(location,Variables) represents symbolically by arithmetical constraints the set of states reach-
able to each control location. Additionally, each region contains the time delay of the continuous
variables. Finally, each region contains the event generated immediately before the control goes
to another region using a discrete step. The driver of the train gate controller example (Fig. 1)
takes the form

driver(_,_,_,0,[]) :- !.
driver((S1,X0),(S2,G0),(S3,T0),Steps,[(S1,S2,S3,Time,Event,X)|Rest]).

where S1,S2 , and S3 represent the locations of the train, the gate, and the controller respectively,
while X0 , G0 , and T0 represent their corresponding initial values consecutively. The last argument
is a list of possible reached states along with the variable X represents symbolically the possible
reached values of the train distance. Time is the global time of the reached states, and Event is
the event generated immediately before the control changes to another configuration. It seems
to be a good idea that the reachable states contain only the variables that are important for the
verification of a given property. Therefore, the last argument list of the predicate driver can
be expanded or shrunk as needed to contain the really important variables involved, e.g. the
variables G,T , and α of the automata named gate and controller.

3.2 Verification as Reachability Analysis

After setting up the driver, we have an executable CLP model for hybrid automata, and several
properties can now be investigated. In particular, one can check properties on states using reach-
ability analysis of hybrid automata. The reachable set consists of all states that can be reached
by dynamical evolution, starting from an initial state. However, it is well-known, that checking

9

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

reachability for (linear) hybrid automata is undecidable in general (while it is decidable for timed
automata) [22].

Reachability analysis consists of two basic steps: computing the state space of the automaton
under consideration and searching for states that satisfy or contradict given properties. In terms
of CLP, a state is reached iff the constraint solver succeeds in finding a satisfiable solution for the
constraints representing the intended state. In other words, assuming that Reached represents the
set of all reachable states computed by the CLP model from an initial state, then the reachability
analysis can be generally specified, using CLP and checking whether Reached |= Ψ, where Ψ is
the constraint predicate that describes a property of interest.

In practice, many problems to be analyzed can be formulated as a reachability problem. For
example, a safety requirement can be checked as a reachability problem, where Ψ is the con-
straint predicate that describes forbidden states, then checking Ψ is not satisfiable wrt. Reached.
For example, one can check that the state, where the train is near at distance X = 0 and the gate
is closed, is a disallowed state. Even a stronger condition can be investigated, namely that the
state where the train is near at distance X = 0 and the gate is down, is a forbidden state. The
CLP computational model, with the help of the standard Prolog predicate member/2, gives us
the answer no as expected, after executing the following query:

?- driver((far,2000),(open,90),(idle,0),Steps,Reached),
member((near,down,_,Time,_,X,),Reached), X $= 0.

Other properties concerning the reachability of certain states can be verified similarly.
As demonstrated in Sect. 3.1, the set of reachable states Reached contains the set of finite,

reachable regions. Within each region, the set of all states is represented symbolically as a math-
ematical constraint, together with the time delay. Therefore, ideally constraint solvers can be
used to reason about the reachability of interesting properties within some region. For example,
an interesting property is to find the shortest distance of the train to the gate before the gate is
entirely closed. This can be checked by posing the following query:

?- driver((far,2000),(open,90),(idle,0),Steps,Reached),
member((near,_,_,Time,to_close,_),Reached), get_max(Time,Tm),
member((near,_,_,Tm,_,X),Reached), get_min(X,Min).

Setting α = 9.8, the previous query returns Min = 9.99, which is the minimum distance of
the train that the model guarantees before the gate is completely closed. This query gets the
interval value of the variable X , when the event to close is raised. Consequently, the distance,
that is reached when the event to close is generated, is constrained to 406.0≥ X ≥ 9.99. Hence
Min = 9.99 is the minimum distance of the train that the model guarantees before the gate is
completely closed.

As just said, the previous verification experiments run with setting α = 9.8. The ability to
compute the value of a parameter, however, is a great advantage of the CLP approach. Ideally,
CLP can be used to find a condition on some parameters that violates a given safety property.
For this purpose, we can use our model to provide us e.g. with the value of the cutoff point α for
the controller to issue commands that causes a bad state to be reached. In particular, we can find
the minimum value required for α to reach to a forbidden state, where the train is at distance
x = 0 to the gate and the gate is opened.

?- driver((far,2000),(open,0),(idle,0),Steps,Reached),
member((near,open,to_lower,Time,_,X,T,Alpha),Reached), X $= 0.

10

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

complete(T,Rest,State,[State:Var|Complete]) :-
init(T,State,[Var|Rest],Init,_),
maplist(complete(T,[Var|Rest]),Init,Complete).

discrete(T,Rest1,Rest2,[State1:Var1|_],[State2:Var2|Conf]) :-
trans(T,State1,[Var1|Rest1],State2,[Var2|Rest2]),
complete(T,Rest2,State2,[State2:Var2|Conf]).

discrete(T,Rest1,Rest2,[Top:Var1|Sub],[Top:Var2|Tree]) :-
Sub \= [],
maplist(discrete(T,[Var1|Rest1],[Var2|Rest2]),Sub,Tree).

continuous(T1,T2,Rest1,Rest2,[State:Var1|Sub],[State:Var2|Tree]) :-
flow(T1,T2,State,[Var1|Rest1],[Var2|Rest2]),
maplist(continuous(T1,T2,[Var1|Rest1],[Var2|Rest2]),Sub,Tree).

Figure 2: Code for the abstract state machine for HHA in CLP. The Rest variables host nested
lists of the variables declared in the states superior to the current state. The built-in
predicate maplist is a macro for applying a predicate call (first argument of maplist)
to a list of arguments (second and third argument) one by one.

We augment the reached states Reached in the previous query with the local timer T of the
controller automaton together with the cutoff point α . Then the CLP system returns α ≥ 20.
Therefore setting α to any value in this open interval, the forbidden state can be reached.

Since the events are recorded in the reached states, in particular, at the end of the continuous
evolution of each reached regions, verifying timing properties or computing the delay between
events are further tasks that can be done within our approach, too. For instance, we can find the
maximal time delay between in and exit events, by stating the following query:

?- driver((far,2000),(open,0),(idle,0),Steps,Reached),
append(A,[(_,_,_,Time1,in,_)|_],Reached),
append(B,[(_,_,_,Time2,exit,_)|_],A),
get_max(Time1,Tmax1),get_max(Time2,Tmax2),
Delay $= Tmax1-Tmax2.

The constraint solver answers yes and yields Delay = 3.33. This value means that the train
needs maximally 3.33 s to be in the critical crossing section before leaving it. Similarly, other
timing properties can be verified.

3.3 Treating Hierarchies and Concurrency More Explicitly

The previous sections described a direct CLP implementation of hybrid automata. Now we will
show, how to implement an abstract state machine for HHA, treating hierarchies and concurrency
more explicitly. This leads to a lean implementation of hybrid automata, where efficient CLP
solvers are employed for performing complex analyses.

Fig. 2 shows parts of the abstract state machine in Prolog, namely the code for completion and
for performing discrete and continuous steps according to Def. 3 and 4. Discrete steps take zero

11

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

gate controllertrain

far open idle

System

x =2000 g =90

[none,α]

t =0 gate controllertrain

near open to lower

System [app,α]

g =90 t =0x =1000

Figure 3: Configuration trees of the running example.

time because of the synchrony hypothesis; continuous steps remain within the same configura-
tion, but the variable values may differ. The flow conditions of active states (in the configuration)
must be applied, as time passes by. In this context, configurations are encoded in Prolog lists,
where the head of a list corresponds to the root of the respective configuration tree. In addition,
each state is conjoined by a colon : with its list of local variables. Thus, according to Def. 3, the
completed start configuration will be represented as shown below. Here, the event and the delay
α (here represented by the variable Alpha) are treated as global variables of the whole system.

[system:[none,Alpha],
[train:[2000],[far:[]]],
[gate:[90],[open:[]]],
[controller:[0],[idle:[]]]]

The corresponding configuration is shown also as a tree in Fig. 3 (left). Certainly, trees could
be represented more efficiently, i.e. consuming less space, than by Prolog lists as shown above.
But the use of lists is straightforward and allows us to implement the abstract state machine
for HHA (Fig. 2) within only a dozen lines of CLP/Prolog code. By this technique, explicit
composition of automata is avoided. For each state, its initial states have to be declared plus
their continuous flow conditions. For all discrete transitions, the jump conditions have to be
stated. Local variables are expressed by nested list of variables valid in the respective state.
Since the abstract state machine is of constant size and the abstract machine computes complex
configurations only on demand, there is a one-to-one correspondence between the elements of
the HHA and its CLP/Prolog implementation. Thus, the program size is linear in the size of the
HHA.

In the concrete implementation of the example, the overall start state s0 is indicated by the
predicate start , while init defines the initial states for each state (α values according to
Def. 2). The flow and the jump conditions have to be expressed by means of the predicates
flow and trans . The reader can easily see from Fig. 4, that the size of the CLP program is
only straight proportional to the size of the given HHA, because there is a one-to-one correspon-
dence between the graphical specification and its encoding in Prolog, whereas computing the
composition of concurrent automata explicitly leads to an exponential increase. Furthermore,
since the overall system behavior is given by the abstract state machine (Fig. 2), this approach is
completely declarative and concise.

For reachability analysis, iterative deepening seems to be best suited as search strategy, be-
cause an explicit cycle test or breadth-first search is difficult, because otherwise constraints
would have to be buffered somehow. After one continuous and one discrete step according to
Def. 4, the configuration shown below (see Fig. 3, right) will be reached after 0.0–25.0 s. The
event app occurs, when the train has traveled 1000 m. Then, the simple states near and to lower
in the composite states train and controller, respectively, are entered.

12

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

%%% system
start(system).
init(T,system,[[Event,Alpha]],[train,gate,controller],_) :-

Event = none.
flow(T1,T2,system,[[Event,Alpha]],[[Event,Alpha]]).

%%% train
init(T,train,[[X]|_],[far],system) :-

X $= 2000.
flow(T1,T2,train,_,_).

init(T,far,[[]|_],[],train).
flow(T1,T2,far,[[],[X1]|_],[[],[X2]|_]) :-

X2 $>= 1000,
X2 $>= X1-50*(T2-T1),
X2 $=< X1-40*(T2-T1).

trans(T,far,[[],[X],[Event1,Alpha]],far,[[],[X],[Event2,Alpha]]) :-
Event2 = lower ; Event2 = raise.

trans(T,far,[[],[X],[Event1,Alpha]],near,[[],[X],[Event2,Alpha]]) :-
Event2 = app,
X $= 1000.

Figure 4: First part of the HHA implementation of the running example.

13

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

[system:[app,Alpha],
[train:[1000],[near:[]]],
[gate:[90],[open:[]]],
[controller:[0],[to_lower:[]]]

Our experiments with the implementation in ECLiPSe Prolog are encouraging. Employing
the ic library for interval constraints, the query whether a situation can be reached where the
train is at the gate, i.e. x = 0, but the gate is open, yields the answer yes and the constraints
40.0≤ T ≤ 58.3 for the time and α ≥ 15 for the delay of the controller with the smallest possible
solution α = 20 (after applying the so-called squash procedure [4]). This means, this forbidden
state is reached if the delay α of the controller is too long, namely greater or equal than 20 s after
40.0–58.3 s overall time. The answer is as expected, as can be easily checked. Employing the
eplex library, also available in ECLiPSe Prolog, the lower bound α = 20 can also be computed.
This library is related to the CPLEX system [27] which provides a more powerful optimization
engine that also can be applied for optimization analyses of hybrid systems (see also [34]).

4 Comparison with Other Approaches

This section demonstrates the feasibility of our approach described above. Generally, real-time
verification tools vary from simple formalisms for restricted problem classes like timed automata
to more expressive formalisms like hybrid automata. It should be remarked that the latter for-
malisms are more expressive than the former ones. Therefore, tools following the former for-
malisms as e.g. Uppaal [6, 7] are not discussed here. We did several experiments comparing our
approach with HyTech [23]. In contrast to our approach, HyTech treats the continuous dynamics
by using a polyhedral manipulation library [18]. We chose HyTech as reference tool, because it
is the most well-known tool for verification of hybrid automata, and it tackles verification based
on reachability analysis similar to the approach in this paper. It is noteworthy that the major
strength of HyTech compared to the other hybrid automata verification tools is its ability to per-
form parametric analysis. In HyTech, the automata working in parallel are composed, before
they are involved in the verification phase. Obviously, this may lead to state explosion as stated
earlier.

4.1 Benchmark Examples

In the following, we will refer to standard benchmarks of verification of real-time systems, well-
known from the literature, querying these benchmarks in order to check safety properties (cf.
Fig. 5). First, in the scheduler example [18], it is checked whether a certain task (with number 2)
never waits. Second, in the temperature control example [1], it has to be guaranteed, that the
temperature always lies in a given range. Third, in the train gate controller example [21], it has
to be ensured that the gate is closed whenever the train is within a distance less than 10 m toward
the gate. The second version of the train gate controller example, as formulated in this paper,
is used to calculate a parameter analysis, i.e. finding the condition on the parameter α . Last but
not least, in the water level example [1, 18] the safety property is to ensure that the water level
is always between given thresholds (1 and 12). For more details on the examples, the reader is
referred to the cited literature.

14

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

Example HyTech CLP/HA CLP/HHA
seconds seconds iterations seconds steps

Scheduler 0.12 0.07 6 0.34 12
Temperature Controller 0.04 0.02 6 0.02 12
Train Gate Controller 0.05 0.02 7 0.03 12
Train Gate Controller 2 0.10 0.05 10 0.02 9
Water Level 0.03 0.01 4 0.02 8

Figure 5: Experimental results.

The benchmarks can be solved by all considered implementations, namely HyTech, the
straightforward implementation of hybrid automata (column CLP/HA), and the HHA imple-
mentation with CLP, within milliseconds. Fig. 5 shows the concrete run-time results. It reveals
that the CLP/HA implementation of hybrid automata (middle column) performs quite well. The
CLP/HHA implementation (last column) allows the briefest problem formulations because of
the use of the abstract state machine, but with slightly longer run-times. Since in this approach
the time points of performing discrete steps are not computed explicitly, it is susceptible for
rounding errors. In order to guarantee termination of the CLP implementations, the search depth
is fixed in advance: For the CLP/HA implementation, the number of iterations, i.e. the number of
time points of discrete state changes, is bounded; for the CLP/HHA implementation, the number
of continuous plus discrete steps is given. These limits are also listed in the table.

When comparing HyTech to the approach depicted in this paper, several issues have to be
taken into consideration. The first issue concerns the expressiveness of the dynamical model.
HyTech restricts the dynamical model to linear hybrid automata in which the continuous dynam-
ics is governed by differential equations. The nonlinear dynamics e.g. of the form ẋon c1∗x+c2,
where c1,c2 ∈ IR,c1 6= 0,on∈ {<,≤,>,≥,=} are firstly approximated either by a linear phase
portrait or clock translation [24]. Then, the verification phase is done on the approximated model.
CLP, on the other hand, is more expressive, because it allows more general dynamics. In par-
ticular, CLP can directly handle dynamics expressible as a combination of polynomials, expo-
nentials, and logarithmic functions explicitly without approximating the model. For instance the
last equation can be represented in CLP form as X $on X0−c2/c1+c2/c1∗exp(c1∗ (T −T 0)),
where (T −T 0) is the computational delay. Although clearly completeness cannot be guaran-
teed, from a practical point of view, this procedure allows to express problems in a natural
manner. The CLP technology can be fully exploited; it suspends such complex goals until they
become solvable. Recall that decidability of model checking is given only for limited classes of
hybrid systems.

Another issue that should be taken into account is the type of verifiable properties. HyTech
cannot verify simple properties that depend on the occurrence of events, despite of the fact
that synchronization events are used in the model. On the other hand, simple real-time duration
properties between events can be verified using HyTech. However, to do so, the model must
be specified by introducing auxiliary variables to measure delays between events or the delay
needed for a particular conditions to be hold. Bounded response time and minimal event sep-

15

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

aration are further properties that can be verified using HyTech. This properties, however, can
only be checked after augmenting the model under consideration with what is called a monitor
or observer automaton (cf. [21]), whose functionality is to observe the model without chang-
ing its behavior. It records the time as soon as some event occurs. Before the model is verified,
the monitor automaton has to composed with the original model. As demonstrated in this paper
(Sect. 3), however, there is no need to augment the model with an extra automata for the reason
that during the run, not only the state of variables are recorded, but also the events and the time,
where the constraint solver can be used to reason about the respective properties.

4.2 Related Works

Using hybrid automata [20] is a well accepted method to model and analyze (mobile) multiagent
systems [2, 3]. Hierarchical hybrid automata (HHA) can be used for building up and describing
multi-layer control architectures based on physical motion dynamics of moving agents [9, 15].
In many applications they form a link between multi-robot systems and theories of hybrid sys-
tems as in [37]. CLP as a programming paradigm has already been applied to modeling hybrid
systems including solving differential equations [26]. Several authors propose the explicit com-
position of different concurrent automata by hand leading to one single automaton, before a CLP
implementation is applied. This is a tedious work, especially when the number of automata in-
creases. The latter case is exemplified in [35, 29], where approach to model and analyze hybrid
systems using CLP(R) [28] is introduced.

In [5], it is shown how reachability analysis for linear hybrid automata can be done by means
of CLP, again by computing compositions of (simple) hybrid automata. Events are handled as
constraints, which avoids some of the effort for computing composition, which leads to an ex-
ponential increase in the number of clauses in general. In our approach, however, we compute
configurations of the overall system only if required.

In contrast to our approach, some authors approached modeling the behavior of hybrid sys-
tems as an automaton using CLP, but they do not handle a hybrid system consisting of different
interacting hybrid automata. For example, [25] presents a hybrid system modeled as an automa-
ton using CLP(F) [26], but neither handling concurrency nor hierarchies. Other authors employ
CLP for implementing hybrid automata [10, 12, 17], but restrict attention to a simple class of
hybrid systems (e.g. timed systems). They do not construct the overall behavior prior to model-
ing, but model each automaton separately. However, the run of the model takes all possible paths
into consideration, resulting from the product of each component, which leads to unnecessary
computation.

Another interesting approach on model checking hybrid systems is presented in [16]. There,
an analysis technique is proposed that is able to derive verification conditions, i.e. constraints
that hold in reachable states. These conditions are universally quantified and transformed into
purely existentially quantified conditions, which is more suitable for constraint solving. For this,
an implementation in Lisp is available employing a satisfiability modulo theories (SMT) solver,
whereas the Prolog implementation proposed in this paper, allows to express discrete transitions
explicitly and allows the use of several constraint solvers.

Another approach for verification of a hybrid systems is presented in [13]. In particular, the
authors apply so-called bounded model checking (BMC) [8] to linear hybrid automata, by en-

16

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

coding them into predicative formulae suitable for BMC. For this reason, they developed a tool
called HySAT that combines a SAT solver with linear programming, where the Boolean vari-
ables are used for encoding the discrete components, while real variables represent the contin-
uous component. The linear programming routine is used to solve large conjunctive system of
linear inequalities over reals, whereas the SAT solver is used to handle disjunctions. Similar to
this approach, this paper has the essence of BMC. However, instead of checking the satisfiability
of a formulae to some given finite depth k, we find the the set of reachable states and verify var-
ious properties on this set. In [8], neither concurrency nor hierarchy of hybrid automata is taken
into consideration.

Differently to this paper, [30] introduces symbolic reachability analysis of lazy linear hybrid
automata. They provided a verification technique based on bounded model checking and k-
induction for reachability analysis. In their technique, SAT-based decision procedures are used
to perform a symbolic analysis instead of an enumerative analysis. However, they did not show
how the interacting concurrent components can be handled in their approach.

5 Conclusion

In this paper, we used CLP to model and to analyze hybrid systems composed of several inter-
acting concurrent hybrid automata. We have proposed novel CLP implementations that model
concurrent interacting hybrid automata in two steps. In the first step we presented, how to con-
trol the behavior of hybrid automata without explicitly composing the interacting automata by
using constraints, while in the second step, we modeled hybrid automata at different levels of
abstraction by making use of hierarchies among the participating automata. Both CLP imple-
mentation models are able not only to analyze hybrid systems, but also to handle the complexity
that may raise due to the interacting parts of hybrid system. We illustrated the implementations
by modeling a train gate controller system, and showed how several properties can be analyzed
and proved.

As a future work, we plan to extend our CLP approaches to be used for symbolic model
checking in conjunction e.g. with computational temporal logic. Additionally, solving more op-
timization problems will be taken into consideration in our approaches, too.

Acknowledgements

This research has been supported partly by the grant Sto 421/2 from the German research foun-
dation DFG within the special priority program 1125 on Cooperating Teams of Mobile Robots
in Dynamic Environments. A shorter and preliminary version of this paper appeared as [32].

References

[1] R. Alur, C. Courcoubetis, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid systems. In ICAOS: International Con-
ference on Analysis and Optimization of Systems – Discrete-Event Systems, Lecture Notes

17

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

in Control and Information Sciences 1994, pages 331–351. Springer, Berlin, Heidelberg,
New York, 1994.

[2] R. Alur, J. M. Esposito, M. Kim, V. Kumar, and I. Lee. Formal modeling and analysis of
hybrid systems: A case study in multi-robot coordination. In World Congress on Formal
Methods, pages 212–232, 1999.

[3] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded
systems. IEEE Transactions on Software Engineering, 22(3):181–201, 1996.

[4] K. R. Apt and M. Wallace. Constraint Logic Programming Using Eclipse. Cambridge
University Press, Cambridge, UK, 2007.

[5] G. Banda and J. P. Gallagher. Analysis of linear hybrid systems in CLP. In M. Hanus,
editor, Pre-Proceedings of LOPSTR 2008 – 18th International Symposium on Logic-Based
Program Synthesis and Transformation, pages 58–72. Technical University of Valencia,
Spain, 2008.

[6] G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In M. Bernardo and
F. Corradini, editors, Proceedings of 4th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems – Formal Methods for the
Design of Real-Time Systems (SFM-RT), LNCS 3185, pages 200–236. Springer, Berlin,
Heidelberg, New York, 2004.

[7] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In J. De-
sel, W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and Petri Nets,
LNCS 3098, pages 87–124. Springer, Berlin, Heidelberg, New York, 2004.

[8] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In Proceedings of 5th International Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS), LNCS 1579, pages 193–207. Springer, Berlin, Heidel-
berg, New York, 1999.

[9] J. Borges de Sousa, K. H. Johansson, J. Silva, and A. Speranzon. A verified hierarchi-
cal control architecture for coordinated multi-vehicle operations. International Journal
of Adaptive Control and Signal Processing, 21(2-3):159–188, 2007. Special issue on au-
tonomous adaptive control of vehicles.

[10] A. Ciarlini and T. Frühwirth. Automatic derivation of meaningful experiments for hybrid
systems. Proceeding of ACM SIGSIM Conf. on Artificial Intelligence, Simulation, and
Planning (AIS’00), 2000.

[11] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer, Berlin, Heidelberg,
New York, 4th edition, 1994.

[12] G. Delzanno and A. Podelski. Model checking in CLP. In Proceedings of 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS),
LNCS 1579, pages 223–239. Springer, Berlin, Heidelberg, New York, 1999.

18

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

[13] M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded model checking
of hybrid systems. Formal Methods in System Design, 30(3):179–198, 2007.

[14] G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In M. Morari
and L. Thiele, editors, Hybrid Systems: Computation and Control, 8th International Work-
shop, Proceedings, LNCS 3414, pages 258–273. Springer, Berlin, Heidelberg, New York,
2005.

[15] U. Furbach, J. Murray, F. Schmidsberger, and F. Stolzenburg. Hybrid multiagent systems
with timed synchronization – specification and model checking. In M. Dastani, A. El Fallah
Seghrouchni, A. Ricci, and M. Winikoff, editors, Post-Proceedings of 5th International
Workshop on Programming Multi-Agent Systems at 6th International Joint Conference on
Autonomous Agents & Multi-Agent Systems, LNAI 4908, pages 205–220. Springer, 2008.

[16] S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid systems. In
J.-F. Raskin and P. S. Thiagarajan, editors, Proceedings of 20th International Conference
on Computer Aided Verification (CAV 2008), LNCS 5123, pages 190–203, Princeton, NJ,
2008. Springer, Berlin, Heidelberg, New York.

[17] G. Gupta and E. Pontelli. A constraint-based approach for specification and verification of
real-time systems. Proceedings of IEEE Real-time Symposium, pages 230–239, 1997.

[18] N. Halbwachs, Y. Proy, and P. Raymond. Verification of linear hybrid systems by means of
convex approximations. In Static Analysis – Proceedings of 1st International Static Anal-
ysis Symposium (SAS’94), LNCS 864, pages 223–223, Namur, Belgium, 1994. Springer,
Berlin, Heidelberg, New York.

[19] D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM Transactions
on Software Engineering and Methodology, 5(4):293–333, 1996.

[20] T. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual Sym-
posium on Logic in Computer Science, pages 278–292, New Brunswick, NJ, 1996. IEEE
Computer Society Press.

[21] T. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In Proceedings of Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS 1019, pages 41–71. Springer, Berlin, Heidelberg, New York, 1995.

[22] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s Decidable about Hybrid Automata?
Journal of Computer and System Sciences, 57(1):94–124, 1998.

[23] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: The Next Generation. In IEEE
Real-Time Systems Symposium, pages 56–65, 1995.

[24] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear hybrid
systems. IEEE Transactions on Automatic Control, 43:540–554, 1998.

19

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

[25] T. J. Hickey and D. K. Wittenberg. Rigorous modeling of hybrid systems using interval
arithmetic constraints. In R. Alur and G. J. Pappas, editors, Proceedings of 7th Interna-
tional Workshop on Hybrid Systems: Computation and Control (HSCC 2004), LNCS 2993,
pages 402–416, Philadelphia, PA, USA, 2004. Springer, Berlin Heidelberg, New York.

[26] T. J. Hickey and D. K. Wittenberg. Using analytic CLP to model and analyze hybrid
systems. In Proceedings of the 17th International Florida Artificial Intelligence Research
Society Conference. AAAI Press, 2004.

[27] ILOG. CPLEX 10.0, User’s Manual, 2006.

[28] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) language and system. ACM
Transactions on Programming Languages and Systems, 14(3):339–395, 1992.

[29] J. Jaffar, A. Santosa, and R. Voicu. A clp proof method for timed automata. Real-Time
Systems Symposium, IEEE International, 0:175–186, 2004.

[30] S. Jha, B. A. Brady, and S. A. Seshia. Symbolic reachability analysis of lazy linear hy-
brid automata. In J.-F. Raskin and P. S. Thiagarajan, editors, Proceedings of 5th Interna-
tional Conference on Formal Modeling and Analysis of Timed Systems (FORMATS 2007),
LNCS 4763, pages 241–256, Salzburg, Austria, 2007. Springer, Berlin, Heidelberg, New
York.

[31] K. Marriott and P. J. Stuckey. Programming with Constraints. MIT Press, Cambridge, MA,
London, 1998.

[32] A. Mohammed and F. Stolzenburg. Implementing hierarchical hybrid automata using con-
straint logic programming. In S. Schwarz, editor, Proceedings of 22nd Workshop on (Con-
straint) Logic Programming, pages 60–71, Dresden, 2008. University Halle Wittenberg,
Institute of Computer Science. Technical Report 2008/08.

[33] Object Management Group, Inc. UML Version 2.1.2 (Infrastructure and Superstructure),
November 2007.

[34] C. Reinl, F. Ruh, F. Stolzenburg, and O. von Stryk. Multi-robot systems optimization and
analysis using MILP and CLP. In P. U. Lima, N. Vlassis, M. Spaan, and F. S. Melo,
editors, Workshop 1: Formal Models and Methods for Multi-Robot Systems at 7th Inter-
national Joint Conference on Autonomous Agents and Multi-Agent Systems, pages 11–16,
Estoril, Portugal, 2008. International Foundation for Autonomous Agents and Multi-Agent
Systems (IFAAMAS).

[35] L. Urbina. Analysis of hybrid systems in CLP(R). In Proceedings of 2nd International
Conference on Principles and Practice of Constraint Programming (CP’96), LNAI 1118,
pages 451–467, 1996.

[36] J. Wielemaker. SWI-Prolog 5.6 – Reference Manual. University of Amsterdam, Amster-
dam, The Netherlands, August 2008. Updated for version 5.6.59.

20

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

[37] S. Zelinski, T. J. Koo, and S. Sastry. Hybrid system design for formations of autonomous
vehicles. In Proceedings of 42nd IEEE Conference on Decision and Control, volume 1,
pages 1–6, 2003.

21

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

Bisher erschienen

Arbeitsberichte aus dem Fachbereich Informatik
(http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte)

Ammar Mohammed, Frieder Stolzenburg, Using Constraint Logic Programming for Modeling
and Verifying Hierarchical Hybrid Automata, Arbeitsberichte aus dem Fachbereich Informatik
6/2009

Tobias Kippert, Anastasia Meletiadou, Rüdiger Grimm, Entwurf eines Common Criteria-
Schutzprofils für Router zur Abwehr von Online-Überwachung, Arbeitsberichte aus dem
Fachbereich Informatik 5/2009

Hannes Schwarz, Jürgen Ebert, Andreas Winter, Graph-based Traceability – A
Comprehensive Approach. Arbeitsberichte aus dem Fachbereich Informatik 4/2009

Anastasia Meletiadou, Simone Müller, Rüdiger Grimm, Anforderungsanalyse für Risk-
Management-Informationssysteme (RMIS), Arbeitsberichte aus dem Fachbereich Informatik
3/2009

Ansgar Scherp, Thomas Franz, Carsten Saathoff, Steffen Staab, A Model of Events based on
a Foundational Ontology, Arbeitsberichte aus dem Fachbereich Informatik 2/2009

Frank Bohdanovicz, Harald Dickel, Christoph Steigner, Avoidance of Routing Loops,
Arbeitsberichte aus dem Fachbereich Informatik 1/2009

Stefan Ameling, Stephan Wirth, Dietrich Paulus, Methods for Polyp Detection in Colonoscopy
Videos: A Review, Arbeitsberichte aus dem Fachbereich Informatik 14/2008

Tassilo Horn, Jürgen Ebert, Ein Referenzschema für die Sprachen der IEC 61131-3,
Arbeitsberichte aus dem Fachbereich Informatik 13/2008

Thomas Franz, Ansgar Scherp, Steffen Staab, Does a Semantic Web Facilitate Your Daily
Tasks?, Arbeitsberichte aus dem Fachbereich Informatik 12/2008

Norbert Frick, Künftige Anfordeungen an ERP-Systeme: Deutsche Anbieter im Fokus,
Arbeitsberichte aus dem Fachbereicht Informatik 11/2008

Jürgen Ebert, Rüdiger Grimm, Alexander Hug, Lehramtsbezogene Bachelor- und
Masterstudiengänge im Fach Informatik an der Universität Koblenz-Landau, Campus
Koblenz, Arbeitsberichte aus dem Fachbereich Informatik 10/2008

Mario Schaarschmidt, Harald von Kortzfleisch, Social Networking Platforms as Creativity
Fostering Systems: Research Model and Exploratory Study, Arbeitsberichte aus dem
Fachbereich Informatik 9/2008

Bernhard Schueler, Sergej Sizov, Steffen Staab, Querying for Meta Knowledge,
Arbeitsberichte aus dem Fachbereich Informatik 8/2008

Stefan Stein, Entwicklung einer Architektur für komplexe kontextbezogene Dienste im
mobilen Umfeld, Arbeitsberichte aus dem Fachbereich Informatik 7/2008

Matthias Bohnen, Lina Brühl, Sebastian Bzdak, RoboCup 2008 Mixed Reality League Team
Description, Arbeitsberichte aus dem Fachbereich Informatik 6/2008

Bernhard Beckert, Reiner Hähnle, Tests and Proofs: Papers Presented at the Second
International Conference, TAP 2008, Prato, Italy, April 2008, Arbeitsberichte aus dem
Fachbereich Informatik 5/2008

Using Constraint Logic Programming for Modeling and Verifying Hierarchical Hybrid Automata, Fachbereich Informatik 6/2009

http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte

Klaas Dellschaft, Steffen Staab, Unterstützung und Dokumentation kollaborativer Entwurfs-
und Entscheidungsprozesse, Arbeitsberichte aus dem Fachbereich Informatik 4/2008

Rüdiger Grimm: IT-Sicherheitsmodelle, Arbeitsberichte aus dem Fachbereich Informatik
3/2008

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik 2/2008

Markus Maron, Kevin Read, Michael Schulze: CAMPUS NEWS – Artificial Intelligence
Methods Combined for an Intelligent Information Network, Arbeitsberichte aus dem
Fachbereich Informatik 1/2008

Lutz Priese,Frank Schmitt, Patrick Sturm, Haojun Wang: BMBF-Verbundprojekt 3D-RETISEG
Abschlussbericht des Labors Bilderkennen der Universität Koblenz-Landau, Arbeitsberichte
aus dem Fachbereich Informatik 26/2007

Stephan Philippi, Alexander Pinl: Proceedings 14. Workshop 20.-21. September 2007
Algorithmen und Werkzeuge für Petrinetze, Arbeitsberichte aus dem Fachbereich Informatik
25/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS – an Intelligent Bluetooth-
based Mobile Information Network, Arbeitsberichte aus dem Fachbereich Informatik 24/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS - an Information Network for
Pervasive Universities, Arbeitsberichte aus dem Fachbereich Informatik 23/2007

Lutz Priese: Finite Automata on Unranked and Unordered DAGs Extented Version,
Arbeitsberichte aus dem Fachbereich Informatik 22/2007

Mario Schaarschmidt, Harald F.O. von Kortzfleisch: Modularität als alternative Technologie-
und Innovationsstrategie, Arbeitsberichte aus dem Fachbereich Informatik 21/2007

Kurt Lautenbach, Alexander Pinl: Probability Propagation Nets, Arbeitsberichte aus dem
Fachbereich Informatik 20/2007

Rüdiger Grimm, Farid Mehr, Anastasia Meletiadou, Daniel Pähler, Ilka Uerz: SOA-Security,
Arbeitsberichte aus dem Fachbereich Informatik 19/2007

Christoph Wernhard: Tableaux Between Proving, Projection and Compilation, Arbeitsberichte
aus dem Fachbereich Informatik 18/2007

Ulrich Furbach, Claudia Obermaier: Knowledge Compilation for Description Logics,
Arbeitsberichte aus dem Fachbereich Informatik 17/2007

Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML Models
and OWL Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 16/2007

Rüdiger Grimm, Anastasia Meletiadou: Rollenbasierte Zugriffskontrolle (RBAC) im
Gesundheitswesen, Arbeitsberichte aud dem Fachbereich Informatik 15/2007

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus
dem Fachbereich Informatik 14/2007

Björn Pelzer, Christoph Wernhard: System Description:“E-KRHyper“, Arbeitsberichte aus dem
Fachbereich Informatik, 13/2007

Ulrich Furbach, Peter Baumgartner, Björn Pelzer: Hyper Tableaux with Equality,
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems,
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitäten,
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte
aus dem Fachbereich Informatik, 9/2007

Jürgen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung,
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007

Rüdiger Grimm, Robert Krimmer, Nils Meißner, Kai Reinhard, Melanie Volkamer, Marcel
Weinand, Jörg Helbach: Security Requirements for Non-political Internet Voting,
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauß, „grUML – Eine UML-
basierte Modellierungssprache für T-Graphen“, Arbeitsberichte aus dem Fachbereich
Informatik, 5/2007

Richard Arndt, Steffen Staab, Raphaël Troncy, Lynda Hardman: Adding Formal Semantics to
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus
dem Fachbereich Informatik, 4/2007

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich
Informatik, 3/2007

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007

„Gelbe Reihe“
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe)

Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages.
Extended Version, Fachberichte Informatik 3-2006

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets,
Fachberichte Informatik 2-2006

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services,
Fachberichte Informatik 1-2006

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte
Informatik 16-2005

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop ''Reengineering Prozesse'' –
Software Migration, Fachberichte Informatik 15-2005

Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005

Reinhold Letz: FTP 2005 – Fifth International Workshop on First-Order Theorem Proving,
Fachberichte Informatik 13-2005

Bernhard Beckert: TABLEAUX 2005 – Position Papers and Tutorial Descriptions,
Fachberichte Informatik 12-2005

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and
artificial intelligence, Fachberichte Informatik 11-2005

Jürgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte
Informatik 10-2005

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/
http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies,
Fachberichte Informatik 9-2005

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering,
Fachberichte Informatik 8-2005

Benno Stein and Sven Meier zu Eißen: Proceedings of the Second International Workshop on
Text-Based Information Retrieval, Fachberichte Informatik 7-2005

Andreas Winter and Jürgen Ebert: Metamodel-driven Service Interoperability, Fachberichte
Informatik 6-2005

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra,
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League
can benefit from each other, Fachberichte Informatik 5-2005

Torsten Gipp and Jürgen Ebert: Web Engineering does profit from a Functional Approach,
Fachberichte Informatik 4-2005

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of
Multiagent Team Behavior, Fachberichte Informatik 3-2005

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their
Applications in a Mobile Environment, Fachberichte Informatik 2-2005

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms –
 Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005

http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_inf
	Impressum
	HHA_technical
	Bisher erschienen
	Bisher erschienen

