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Kurzfassung

In diese Arbeit werden drei Verfahren zur Objektentfernung aus Bildern einander ge-
geniibergestellt. Zwei der ausgewdhlten Verfahren stammen aus dem Bereich der soge-
nannten Inpainting-Verfahren, wihrend das Dritte aus dem Forschungsgebiet der medi-
zinischen Bildverarbeitung entnommen ist. Die Evaluation dieser Verfahren zeigt ihre
jeweiligen Vor- und Nachteile auf und priift ihre Anwendbarkeit auf das spezifische
Problem, ein Farbkalibiermuster aus strukturdominierten Bildern zu entfernen. Auf der
Grundlage dieser Eigenschaften werden schlussendlich mehrere Erweiterungen vorge-
stellt, die eine verbesserte Anwendbarkeit auf das gestellte Problem erreichen.

Abstract

This work evaluates automated techniques to remove objects from an image and pro-
posed several modifications for the specific application of removing a colour checker
from structure dominated images. The selection of approaches covers the main research
field of image inpainting as well as an approach used in medical image procesing. Their
results are investigated to disclose their applicability to removing objects from struture-
intense images. The discovered advantages and disadvantages are then used to pro-
pose several modifications for an adapted inpainting approach suitable for removing the
colour checker.
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Chapter 1

Introduction

In the last few years, images have become more and more important in our society
and its every day communication. Pictures are taken anywhere, at any time and for
an infinite number of reasons. It is not surprising that these images offer an equally
growing number of new applications and areas of processing, improved and modified.
One of many applications is the recovery of unknown pixel intensities. This can be
applied to the removal of objects from an image where the area occupied by the object
is first erased and then reconstructed using an available source to sample from. This is
a task that occurs frequently in every day life when an image is taken inattentive and
shows objects that were not desired to be in the picture, e. g. a couple making out in the
background on your nephew’s birthday party. Which is why many image applications
already implement tools that allow the removal of those objects.

The focus of this work is a similar application where the removal of a specific object
is desired. The object is a colour checker that is placed somewhere in an image taken on
campus at the University of Koblenz as shown in Figure 1.1. This scenario is borrowed
from a deprecated project named Enhanced Reality [3] that aimed at enriching the real
world with artificial content. A person is equipped with a see-through display hidden in
a pair of glasses that allows her to see the real world as well as displayed content. One
of the big challenges in this sort of application is to re-create the exact same lighting
conditions and corresponding colour impressions for artificial objects. This is required
to integrate them well into the real world. One possible solution to extract reproducible
colour information from an image is to place a colour checker inside the image. It
contains a set of normed colours arranged in a checker pattern. Knowing the correct
colour values of each square on the colour checker makes it possible to normalise the
colours in the image and adapt the colouring of an object according to the lighting
conditions in the image.

The unfortunate side effect of this setup however is that the colour checker is not
only visible to the application but also by the person that uses the see-through display.
It is, therefore, evaluated if it is possible to achieve an automated solution to remove the

17



18 CHAPTER 1. INTRODUCTION

Figure 1.1: Colour checker in the campus image depicting the assumed scenario of the En-
hanced Reality project [3].

colour checker, assuming that its location inside the image is known or provided by a
previous object recognition algorithm.

The removal of objects from images is not a development or discovery of the mod-
ern age of digital imaging. It goes far back into the early days of analogue photography
where image retouching was used to alter images. Stalin, for instance, is well-known
for letting professional retouching artists remove political opponents from important
images [Kin99]. The used techniques required highly experienced professionals to
obliterate all indicators that could expose its manipulation. Image retouching became
much easier when digital images started to take over and image processing applications
evolved quickly. Professional tools such as Adobe® Photoshop® [5] and free open-
source derivatives such as The Gimp! [7] provide the instruments required for digitally
retouching images. Complemented with application specific [Bra98, Fit08] or more
general handbooks [Bus03] this provides the foundation for manually removing objects
from images. Nonetheless, professional skills are still required to obtain a high quality
of the altered image.

Automating this process is as challenging as it is helpful for inexperienced users or
automated procedures where no user-interaction is desired. The latter is the solution
required for an automated removal of the colour checker. A whole field of research has
developed over the last years trying to find a solution for this problem. An approach that
first introduced the term inpainting was presented at the SIGGRAPH [6] conference in
2000 by its authors Bertalmio and Sapiro [BSCB0O0]. They tried to actually replicate
the manual process used by retouching artists and other related professions. They con-
solidated conservators at the Minneapolis Institute of Arts and based their method on
their manual workflow. Its imitation lead to coining the term “image inpainting” for
this type of research. A variety of approaches succeeded providing similar or extend-
ing techniques which range from texture-based inpainting to the exploitation of spectral
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properties. This provides a wide-ranging repertoire of potential solutions to choose
from.

The objective of this work is to investigate an extract of these approaches and iden-
tify the most promising works. In addition, an unusual candidate is included from an
entirely different field of research focussing on a related topic. The reconstruction of de-
fect pixels in medical images has been extensively researched and intriguing solutions
have been provided for medical applications. The intriguing question of its applicability
to real images lead to a more comprehensive evaluation and comparison of promising
approaches in both areas to determine their qualitative eligibility for the removal of
the colour checker. Their advantages and disadvantages are interrogated to generate a
comprehensive understanding for their requirements and preconditions. The associated
discovery of existing weaknesses concerning the high complexity of images with archi-
tectural content eventually motivated the proposal of several modifications to adjust the
inpainting quality.

The Outline

An overview on the research in image inpainting and related topics is provided in Chap-
ter 2 where the approaches mentioned above are put into the context of other works.
This is followed by a comprehensive description of these approaches in Chapter 3.
Their respective quality is then evaluated using a variety of test images. The discov-
ered weaknesses of either approach are summarized in Chapter 4 and starting points for
own modifications are defined. The actual modifications are then described and com-
pared to the results of the major approaches in Chapter 5. A summary of the achieved
results and a few notions for future modifications conclude this work in Chapter 6.






Chapter 2

State of the Art

The task of removing an object from a still image has been the subject of many research
projects that collected a broad knowledge of the characteristics of this problem and its
possible solutions. The very first approaches to remove damages from images simply
had to deal with missing data with the size of a few pixels. Introduced by image pro-
cessing operations such as resizing, skewing and rotating some pixel intensities on the
grid where lost and could only be filled by interpolation. Consequently, many different
methods were developed such as nearest neighbour, bilinear and bicubic interpolation
[GWO06]. Almost any image processing application today incorporates them.

Another field of research that might seem helpful at first but cannot be applied is
noise removal. It deals with information that is lost through the insertion of noise such as
Salt and Pepper or Gaussian noise. The intensity of a pixel, however, is not completely
lost. It is contained in a mixture of colour or grey level intensity and noise. There-
fore, the noise has to be mathematically modelled before it can be removed from the
image. Inpainting, however, deals with the reconstruction of unknown pixel intensities
containing no information at all. This requires the extraction of intensity information
from known intensities in undamaged regions of an image.

Another technique [KMFR95a, KMFR95b], developed to restore film material, ex-
tracts this missing information from neighbouring frames in the sequence. They often
contain the additional data required to reconstruct missing intensities. Nowadays, more
sophisticated techniques [PSBOS, PSB07] allow the removal of large objects from a se-
quence extrapolating information from its temporal neighbourhood. This requirement
remains unmet in a single frame environment. A different route has to be taken to find
the most suitable intensities in the known region and use them to fill the missing regions.

In summary, the major difficulty in image inpainting is that the amount of reliable
information in an image is restricted by its size and the amount of missing data. These
difficulties are addressed in a wide range of approaches concerning inpainting research.
This chapter provides an insight into this field of research to be able to justify the selec-
tion of approaches that are investigated more comprehensively.

21
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non-

parametric
texture

synthesis
exemplar-
based

combined
synthesis & inpainting

structure
inpainting

Figure 2.1: Recent techniques in image inpainting try to combine texture synthesis and struc-
ture inpainting. They are both research fields that originally attempted to solve different prob-
lems. Texture synthesis can still be partitioned into non-parametric and exemplar-based syn-
thesis. Combined approaches eventually used ideas from both exemplar-based synthesis and
structure inpainting.

2.1 Texture Synthesis and Structure Inpainting

Automated algorithms that allow inpainting of large unknown regions have slowly emerged
from two fields of research, namely texture synthesis and structure inpainting. Research
concerned with texture synthesis expects a small texture sample and tries to automati-
cally create a much larger texture image. In contrast, structure inpainting initially fo-
cusses on the removal of small damages by reproducing intensities based on neighbour-
ing pixels. The connection between texture synthesis and structure inpainting is illus-
trated in Figure 2.1 which shows that exemplar-based synthesis and structure inpainting
eventually lead to combined approaches in image inpainting. This chapter provides the
required insight into preceding and related research.

2.1.1 Texture Synthesis

It has been explained that texture synthesis describes the practise of creating new syn-
thesised textures from a small texture sample. Typically, textures are classified as either
stochastic or regular, although most textures in real images are located somewhere in
between. The application of synthesising near-regular textures [LLLHO4] in real im-
ages is a challenge pointing in the same direction as image inpainting. The approaches
that emerged to provide sufficient solutions are generally divided into parametric and
non-parametric or exemplar-based techniques. The latter have contributed a lot to the
research in image inpainting.

A very early attempt to tackle the problem of purging an item based on exemplar-
based synthesis has been developed by Harrison [HarO1]. It is closely based on the
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acquired findings by Graber [GS81] and Efros et al. [EL99]. They proposed algorithms
to create a new intensity value by sampling it from its best-matching neighbouring pix-
els. Although [EL99] is a very important approach in texture synthesis, the size of a
neighbourhood of sample pixels is restricted to the size of the largest textural pattern.
Therefore, it is extended in [WLOO] to combine a texture- and an exemplar-based tech-
nique working through different levels of coarseness in a pyramid scheme.

The procedure Harrison describes compares neighbouring pixels in two images, the
sample texture and the input image. An output image contains the synthesised result
where the unknown region is filled with data from the sample texture. He is the first
to introduce the concept of a priority value to define the fill-order of this process. The
similarity in the filling process is calculated using a normalised weight of a pixel and its
neighbourhood. It relates the amount of information carried by a pixel in respect to its
neighbours. As opposed to many others, the distance measure for patches is calculated
using the Manhattan instead of the Euclidean distance because “it is more forgiving of
outliers” [Har01].

One outcome of his research was a plugin for the image processing application
The Gimp! [7] called “Resynthesizer” [4] that provides the described functionality in
a ready-to-use environment. The approach adds another important piece to the puzzle
that was assembled in [CPT04], where the priority value is adapted and improved.

2.1.2 Structure Inpainting

In contrast to texture synthesis, structure inpainting looks at the problem of filling
in missing data from an artistic point of view. As part of their work, Bertalmio et
al. [BSCBO00] consolidated inpainting artists at the Minneapolis Institute of Arts to learn
how they proceed when restoring a painting or drawing. They described in [BSCB00]
that there is no such thing as the “right” way for inpainting. It is simply an attempt to
conserve the unity of the painting by adapting the style as closely as possible. Consid-
ering these observations, they extracted four steps a conservator would take to restore
the integrity of a masterpiece:

1. The unity of the picture determines its conservation.
2. Structures surrounding the target are continued into it.
3. Newly created regions are filled with appropriate colours.

4. Small details are recovered to add texture to the image regions.

With these guidelines in mind, they tried to replicate the methodical procedure in
manual inpainting. Their idea was to propagate the known intensity information into
the region of unknown intensities. The propagation direction of a pixel location p is
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given by its corresponding vector in the field N(p) = V*-I(p). The direction represents
the smallest spatial change of intensities. Filling the unknown region step by step along
the isophote is completed by an image diffusion step after every few iterations. They use
the anisotropic diffusion equation from [PM90] to ensure the propagation directions are
correct. An additional problem is inherent in handling colour planes individually. They
inhibit associated artefacts using their own perception oriented colour space similar to
CIELUV [KAO8]. This algorithm forms the foundation for research in image inpainting
and is well-cited by many research groups who have adapted and improved their ideas.
In particular, the idea of isophotes are a central aspect of more recent approaches such
as [CPTO04] and [1JO7].

2.1.3 Combined Inpainting and Synthesis

The work on the previously described method of structure inpainting [BSCBO0O0] resulted
in the discovery that “different techniques work better for different parts” [BVSOO03].
Hence, they started to develop a new approach [BVSOO03] based on the decomposi-
tion of an image into two parts. One part represents the structure, the other part, the
texture of the damaged image. They use the decomposition techniques proposed by
Vese and Osher [VOO03], a total variation minimisation [ROF92] to extract the structure
component and the space of oscillating functions [Mey01] for the texture component.
Thereafter, structure inpainting and texture synthesis are applied to the separated com-
ponents respectively. The image inpainting process is based on their own approach,
whereas texture synthesis is borrowed from [EL99].

Drori et al. [DCOYO03] headed into a similar direction trying to combine texture
synthesising and structure inpainting. Their work, however, is based on the idea of cap-
turing both global and local structures of various sizes using fragments. These circular
sets of pixel locations, as opposed to the usual rectangular ones, adapt to different struc-
tures in an image by varying their sizes. The main idea of their approach is to operate
on different scales, from coarse to fine. On each level, they approximate the missing
region from its coarser predecessor. This is followed by computing a corifidence map
of the intensities and a level set that defines the filling order of pixels. Based on these
values, the pixels in the unknown region are iteratively filled depending on an adaptive
neighbourhood and their most suitable sample consisting of known intensities. The re-
sults of this approach stand out considering the size of the removed object relative to the
size of the image. Its major drawback, however, is the high computation times that lay
“between 83 and 158 minutes for 384 by 256 images” [DCOYO03].

Similar to the fragments used in [DCOYO03], Criminisi et al. [CPT04] proposed an
approach employing rectangular patches that are iteratively filled. Their main concept is
the calculation of priorities for each patch. Along the boundary between the regions of
known and unknown pixel intensities, each patch is assigned a priority value depending
on the reliability of its contained pixel intensities, the confidence of a pixel, and its
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structural information denoted by its gradient. The resulting values determine the order
in which these patches are filled. In each iteration, the patch with the highest priority is
selected, the best-matching sample is retrieved and corresponding pixel intensities are
copied from the sample to the search patch. It is, therefore, a very simply and effective
approach that became well-cited in image inpainting followed by several extension and
adaptations.

2.2 Inpainting in the Wavelet Domain

Over the last years, wavelets have made their way into a lot of different fields in im-
age processing. Image compression is the most established one. In 2000, the JPEG
Committee, former creator of the JPEG standard, introduced a new format called JPEG
2000 [2] that was meant to supersede the old standard. One of the improvements was
that they used a compression method based on wavelets instead of the discrete cosine
transform. This drew a wider attention to the potential of wavelets for applications
in image processing. Works in denoising and reconstructing damaged images emerged.
Various researchers started addressing the problem of image data reconstruction exploit-
ing the properties of wavelet coefficients. The total variation minimisation proposed in
[CSZ06], uses a wavelet framework, which was a novel approach at the time. In con-
trast, Rane et al. related to the block-shaped origin of JPEG images and developed a
patch-based approach [RRS02] implementing the wavelet transform. They use the de-
tail coefficients in the wavelet domain to classify each missing block. The classification
relies on the high-frequency response encoded in the horizontal, vertical and diago-
nal subband coeflicients. They allow to identify so called edgy and non-edgy blocks
which then can be handled differently according to their characteristics. These blocks
are reconstructed based on the high-frequency data encoded in the coefficients of neigh-
bouring blocks. Similar neighbours are used to interpolate the missing data in the block
where similarity is measured by minimising the sum of squared errors.

A very recent approach [OHO7], in contrast to most other wavelet-based approaches,
attempts to fulfil the task of reconstruction using the continuous wavelet transform
(CWT). Its authors exploit the properties of magnitude and phase exhibiting strong
geometrical regularities around edges and within texture areas. These are then used
separately in an iterative process to reconstruct missing data with respective properties.
A limitation is, however, that each iterative step requires a forward and inverse trans-
form. Although they describe it as an image inpainting technique they simply focus on
small blocks of missing data with block size 16 x 16, similar to [RRS02]. In summary,
both techniques do not qualify for actual inpainting due to their focus on small blocks.

Much of this work, however, has been crucial to develop approaches that are di-
rected towards inpainting and texture synthesis. A proposal [PS03] to recover missing
pixel intensities uses a strategy similar to [HT96], employing bandwidth limitations on
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frequencies. The major difference is the use of a different frequency space. [PS03]
operates in the spatio-frequency domain of wavelets, as opposed to the Fourier space
in [HT96]. However, both share the use of a technique known as prcjection onto con-
vex sets (POCS). Considering [PS03], the image is first transformed using a specific
wavelet function. Thereafter, each coeflicient corresponding to a damaged or unknown
pixel intensity is restricted by the minimum and maximum coefficient of its neighbours.
Inverting the transform, a new estimate is generated and used to update the inpainting
region of the input image. This process is repeated iteratively until the desired quality of
the inpainted image is reached. This technique illustrates the potential of wavelet-based
inpainting. Artefacts in the results demonstrate, however, that further improvements are
needed to suffice the needs of image inpainting.

An additional very recent approach was proposed by Ignécio and Jung [1J07] deriv-
ing a wavelet-based inpainting method from [CPT04]. They transform the image and
the provided binary mask into the wavelet domain and apply an inpainting technique
similar to the one proposed in [CPT04]. A similar fill-order guided by priorities is used,
where the gradient information is extracted from high-frequency wavelet coefficients
and an additional structure component is introduced. The latter also exploits structure-
related information incorporated in the detail coefficients. The priority is completed by
the confidence defined in [CPT04] to balance the structure components by representing
texture reliability.

2.3 Supplementary Approaches

The border between two distinguishable objects or textures in real images is the most
important element to reconstruct, yet the most difficult to reproduce. Examining these
edges leads to multiple approaches focussing on the completion of edges before filling
the remaining unknown regions. Sun and his colleagues proposed a graph-based ap-
proach [SYJSO5] that separates the propagation of texture and structure. The general
idea is similar to [BVSOO03], where structure inpainting and texture synthesis are ad-
dressed individually. However, the solution in [SYJS05] differs in two aspects. First,
the approach requires initial user interaction to define the structures that should be con-
tinued into the unknown region. Second, user-defined lines are generated into a graph
that determines the fill-order of its patches. After this step is completed, the remaining
regions are filled using a combination of texture propagation and photometric correc-
tion.

An inpainting method titled sketch-guided inpainting [CLLAO6] implements the
concept of [SYJSO5] and aims at eliminating the user-based component. The attempt
is based on the mathematical theory of primal sketch models proposed in [eGZWO03].
Sketches in the target region are reconstructed with this model and pixels along these
sketches are filled first, followed by the remaining regions. Similar results can be ob-
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tained using a tensor voting algorithm [JTO3] to reconnect structures that are likely to
run through the unknown region. The expenses of the required segmentation steps is
the downside of the algorithm. In fact it is another restriction that can be avoided in
[CPTO04].

A solution that makes extensive use of the internet service Flickr [9] is described in
[HEOS]. The algorithm compares an image with an area marked for removal to a large
quantity of images from the database and tries to find the most suitable image to sample
the data from. They use a gist descriptor from [RFMTO03, OT06] to recognise image
similarities and find the best matching image in a large set of samples.

With such a sample subset, they have restricted the type of images to semantically
similar ones that are then matched with the inpainting image based on contextual prop-
erties. The most similar region is then extracted from the selected image and inserted
using Poisson blending [PGBO03]. In contrast to most approaches they loosen the restric-
tion of never altering known pixel intensities. They actually allow overwriting known
intensities similar to [WBTCO0S5] but employ a confidence value discouraging it the fur-
ther away a pixel is located from known and already filled pixel locations.






Chapter 3

Description of Inpainting Techniques

The search for possible solutions to the problem of removing the colour checker from an
image was to evaluate two different approaches from unrelated fields of research. Since
medical image processing is the subject of several lectures and courses at the University
of Koblenz, it was an intriguing idea to test the applicability of a technique developed to
recover unknown pixel intensities in X-ray images. The approach proposed by Aach et
al. [AMO1] exploits the periodicity of spectral lines in the Fourier space and iteratively
estimates a corrected frequency spectrum. Fourier analysis as an established instrument
in image processing and the usually exceptional quality of algorithms used in image
processing made it the first choice.

The existing and ongoing research in the field of image inpainting suggested the con-
sideration of an additional approach that has been developed to recover unknown pixel
intensities from real images. The outline of approaches concerning this topic, described
in Chapter 2, offered a wide range of techniques to choose from for a closer examina-
tion. One approach, however, stood out. It was proposed by Criminisi et al. [CPT04] as
a combination of texture synthesis and structure inpainting. Researching the inpainting
literature revealed that it is a well-cited approach and many alternative proposals test and
validate their results against it. Furthermore, the concept of using a patch-based algo-
rithm that tries to replicate the manual workflow, as it was first proposed in [BSCBO0O0],
appeared sensible and also straight-forward to implement. Additionally, the use of the
image gradient in determining the order of propagating patches suggested a good re-
sponse to dominantly structured images and presented promising results in the proposal
itself. These initial assumptions where substantiated by numerous extension, such as
[CHL*05], providing an improved algorithm and further insights into the properties and
limitations of the approach.

The extended research also revealed another approach that employs the same con-
cept as [CPTO04], using a patch-based inpainting technique which is guided by priorities
determining the order of inpainting patches in the unknown region. The novelty, how-
ever, was to transform the image into the wavelet domain and exploit its spectral prop-

29
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(a) (b)

Figure 3.1: The partitions of an image as used in inpainting: source region (pink), target region
(green) and boundary (blue). A schematic representation is shown in (a) and applied to a real
image in (b).

erties. Its conceptual similarity to both [CPT04] and [AMO1] made it a suitable third
contestant in a comparative evaluation. Furthermore, the representation of edge-related
information in the detail coeflicients of the wavelet transform suggested an even better
applicability to structure-rich images then [CPTO04].

3.1 Defining Terms and Symbols

At first, a look at the terminology of this topic is required. Image inpainting has been the
subject of research for several years and has therefore an established set of terms that
are used throughout literature and research documents. Some of them might be used
differently in various contexts, which makes it even more important to clarify the mean-
ing that will be used in this work. In general, it is compliant with the definitions used
in [CPTO04] and [1JO7]. This is, except for the excursion into medical image processing,
where a different terminology applies.

Inpainting is generously used in literature covering any topic that is related to the re-
moval of objects from and filling in of missing regions in an image. It was originally
coined in [BSCBO0O0] where the authors borrowed it from the profession of conservators
to inpaint restorable art work, thus, leading to the title of structure inpainting for their
type of approach explained in Chapter 2.1. The inconsistent use throughout the literature
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can cause confusion where structure inpainting is combined with other techniques. To
avoid this, the term structure inpainting is only be used, in this work, when the specific
practice of structure inpainting is addressed. Image inpainting, or simply inpainting,
applies to the general idea of filling unknown image data and is used accordingly.

The image is the most important element of image inpainting. A two-dimensional im-
age [ is defined as a mapping / : Loc — Val that maps coordinates (x,y) from Loc to
intensity values in Val. Considering only colour images in this work, Loc is given by
Loc = [0,W—-1]x][0, H-1], where W and H denote its width and height respectively. A
colour intensity is represented by a vector in Val = [0, 2"|3. Therefore, a pixel is defined
as a tuple P € Loc x Val. Its two components can be described separately as loc(P)
to denote its position and val(P) to denote its intensity value in position space and its
coefficient in the wavelet domain. The latter are addressed as intensity and coefficient
respectively, whereas the location is represented by a position vector p = (x,y)".

A neighbour pixel is a pixel P that is adjacent to P’ in I. Two pixels are considered
neighbours if the difference in location holds |[loc(P)—loc(P")|| < V2 with loc(P), loc(P’) €
Loc. This defines that each pixel P is surrounded by 8 neighbouring pixels, i.e. an 8-
neighbourhood. The only exception applies to border pixel locations where the neigh-
bourhood amounts to number of pixels not exceeding the border.

A region R in image processing usually denotes a connected set of pixel locations in
an image /. Such a set of pixels is called connected when any two pixels P and P’ in
R are connected by a path X that lays always in R. A region can therefore be defined
as R € I where YVP,P’ € R : 3X € Rwith P = Py and P’ = P,. In image inpainting,
an image [ is partitioned into two disjointed sets of pixel locations named rarger and
source region. Therefore, the definition of a region to be a connected set is softened to
allow disconnected pixels as well. For these two regions, it holds that QU® = I.

The target region Q) can be described as the area of the image that is covered by the
object to be removed and can be specified in several different ways. The target region
is assumed to be provided as a user-defined binary mask but could also be given by
segmentation or object recognition routines. A pixel location in the binary mask is
assigned to the target region if val(P) = 0. All pixel locations in the target region are
considered unknown and will be filled during inpainting.

The source region @ provides the data used to fill the target region. It includes all pix-
els that are not part of the target region, which translates to @ = I — Q. A pixel location
in the source region is considered a known pixel. In general, it remains unchanged
throughout the inpainting process. It will be explicitly stated otherwise.

The boundary 6€2 denotes the border between the source and target region. A pixel
location P is considered a boundary pixel if its location loc(P) is in the source region
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(a) Search patch restrictions. (b) Sample patch restrictions.

Figure 3.2: A search patch is always centred at a boundary pixel as shown in (a), whereas a
sample patch has to lay completely in the source region, as shown in (b).

and at least one of its neighbouring pixels P’ is part of the target region. This can be
formalised as:

6Q = {zoc(P) ce® AP €Q:|lloc(P) - loc(P)|| < \/5}

Therefore, the boundary is a subset of the source region, formally 62 ¢ ®. This set of
pixel locations is of special interest in multiple inpainting approaches, most importantly
in [CPT04] and [1JO7].

A patch is defined as a set of pixel locations ¥(p) centred at location p € Loc. It has a
square size M x M where M denotes the width and height in number of pixels. The only
exception for a patch to have a non-square shape is to prevent the violation of the image
border where clipping is applied. There are two types of patches with a specific meaning
in [CPTO4, 1JO7]. In the following, they are defined as search patch denoted W(p) and
sample patch denoted W(q). The search patch defines a patch centred on the boundary
that contains unknown pixel intensities for val(P) as Figure 3.2(a) shows. Figure 3.2(b)
shows a sample patch that contains only known pixels and functions as a template for
the missing values in W(p). In addition, the search patch with the highest priority at a
given iteration is defined as W(p) with its best-matching sample patch denoted W(§).

Corresponding pixel locations in a search patch W(p) and a sample patch W(q) are
pixels R and S which hold loc(R) € Y(p) and loc(S) € W(q) respectively. Their cor-
respondence is determined by their relative location to their respective patch centres p
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and ¢. That is, the pair of corresponding pixels hold loc(R) — loc(P) = loc(S) — loc(Q).
Their locations are denoted as position vectors r and s, as defined above. These corre-
spondences imply that W¥(p) and ¥Y(q) have the same size M X M.

The search window is defined as a set of pixel locations ®(p) centred at location p €
Loc with p € W(p). It contains all pixel locations ¢ that correspond to possible sample
patches W(q) to select the best-matching patch W(§) from. The size of O(p) is defined
as 0 = aM x aM with a € IN.

The fill-order denotes, in a completed inpainting process, the order in which search
patches have been filled. In each iteration, the search patch W(p) that is to be filled is
determined by the highest priority value for each corresponding pixel location p € 6€).

3.2 Interpolation in the Fourier Domain

The advent of digital technology into medicine started a new field of research, medical
image processing. A wide range of applications emerged from developments such as
image intensifiers, and later, flat panel detectors [BKK*00]. Their application in ra-
diography, however, requires extended image processing algorithms to deal with their
technical shortcomings. Several of these works are focussing on the reconstruction
of missing data in images acquired by faulty flat panel detectors, a problem which is
caused during the manufacturing process of the panels. Although a new panel would
be expected to be immaculate, the reality is different. Companies define that a small
amount of defects are acceptable and sell them without further ado. Looking at med-
ical imaging, it had disastrous consequences for patients if such a faulty panel would
be used, as is, in an X-ray imaging device. The medical software, therefore, had to
provide solutions and reconstruct the values of defect pixels. One of the major ideas for
a solution was to extrapolate frequencies instead of intensities, exploiting their periodic
properties in frequency space.

The preconditions for defect pixel interpolation in medicine correspond to those in
image inpainting, as formally described in Chapter 3.1. The formal notation differs,
however. The observed image is g with a defect window w and the desired undistorted
image, or estimate, is formalised as f. w is equivalent to the binary mask that defines
the target region in Chapter 3.1 partitioning the captured image into active and inactive
pixels. The set of inactive pixels resembles €2, whereas @ corresponds to all active
pixels. To retrieve w, an initial calibration of the panel is required which identifies the
condition of each element. In summary, it can be rephrased as recovering an image f
by inpainting the target region in g, defined in the binary mask w.

In an early attempt, an approach proposed by Papoulis introduced the concept of
exploiting the periodicity of frequencies in Fourier space [Pap75]. It is assumed that
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Figure 3.3; lustration of the deconvolution algorithm by Aach et al. [AMO1]. It shows
that only a single transform is required in each direction while the iterative process operates
completely in the spectral domain. This is the original illustration used in [AMO1].

a missing intensity in the spatial domain yields frequencies that exceed a known band-
width. Missing values can, therefore, be recovered by recursively enforcing a bandwidth
limitation. This is applied to an image by decomposing it into its frequencies using
Fourier analysis. Their bandwidth is then limited to the known frequency band before
the inverse Fourier transform returns a new estimate f. Afterwards, g is updated using
intensities in f for elements that are considered inactive in w. Recursively repeating
these steps converges the optimal undistorted image.

The downside of [Pap75] is that a large amount of spectral decompositions are re-
quired, which highly increases computational expenses. Aach et al. [AMO1] developed
an approach to succumb this limitation. A single transform into frequency space with
its inverse correspondence are sufficient since the extrapolation is carried out entirely in
the Fourier domain. In general, the undistorted image is recovered by deconvolving the
defect window and the acquired image based on the concept of selective deconvolution
[SIA90]. This concept exploits the convolution theorem, a description can be found in
[PHO3], modelling the observed signal as a convolution of the undistorted image and
the mask, which is formally defined as

gn) = f(n) - wn) o— Gk) = % Fky=W(k) 0<n,k<N 3.1

where a univariate signal is assumed for simplicity.
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(a) ® ©

Figure 3.4: The reconstructed image in (¢) shows an X-ray of a hand after applying [AMO1].
The defect input image was generated by applying the binary mask (b) to an optimal X-ray in
(c). The black pixel intensities in (b) denote inactive elements.

The deconvolution of the observed signal G(k) is broken down into the iterative
correction of spectral lines. In each iteration, the most dominant pair of spectral lines
are selected and a corrected frequency is estimated. The selection of line pairs G(s)
and G(N — s) are justified by the symmetric property of a real-valued signal in Fourier
space. A dominating pair of corresponding frequencies in a iteration i are identified by
maximising the error function

2 1GT (O W(0) — 2 - Re {(G!(s)* - W*(2s))

Ae =N IWO)P — [W(2s)P

(3.2)

and, therefore, produces the highest error in G(k). The error can be reduced by estimat-
ing new lines £(s) and F(N — §) from the selected pair and updating the estimate F(k).
Adding the difference of the current to the previous estimate reduces the frequency of
the dominant pair. Thereafter, the quality of the modified signal F(k) is measured using
equation (3.2). If the minimal acceptable error threshold & is smaller then the error Ag
another correcting iteration starts. Otherwise, the estimate F(k) is inverse transformed
and the undistorted signal f(n) is recovered. The whole process is illustrated in Fig-
ure 3.3.

As a well-established algorithm in medical image processing, the results satisfy the
high standards required in the medical field as the example in Figure 3.4 shows. The
fact that the results suffice medical requirements for X-ray images, qualifies it for further
investigation to its adaptation to real images.
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3.3 Exemplar-Based Inpainting

Chapter 2.1.1 describes the process of using texture synthesis instead of image inpaint-
ing to fill holes in an image. It also shows that there are some drawbacks to these
methods that made further research necessary to reach a higher quality of results. Meth-
ods like [BVSO03] and [DCOYO03] addressed this issue by trying to combine the ad-
vantages of texture synthesis and structure inpainting. Criminisi and two colleagues at
“Microsoft Research” adapted this idea and created their own approach [CPT04] con-
joining a patch-based technique with a defined fill-order.

Intensive evaluation of existing works in structure inpainting and texture synthesis
unfolded interesting observations regarding the quality of either field. One discovery
concerned promising results of synthesising texture exceeding its main purpose of gen-
erating large textures. They realised that applying it to real images provided results
promising enough to serve as a basis for their approach. In addition, they observed that
patch-based approaches, such as [DCOY03] and [LLX*01], seemed to represent struc-
tural properties much better than operating on a single pixel. Using an exemplar-based
texture synthesis approach, therefore, seemed to be the most appropriate choice.

A downside of many approaches, however, turned out to be the order in which pix-
els or patches were filled. [CPT04] indicates that the fill-order was usually carried out
by an ad-hoc iteration over all boundary pixel locations. The result was a spiralling
order omitting to take structural or textural properties into account. Hence producing
disruptive artefacts such as disconnected edges, displaced patterns and structural dis-
continuities. To incorporate a more structure-oriented fill-order, [CPT04] looks at the
concept of isophotes represented by their gradient vectors denoted VI. This structural
representation is implemented into the texture synthesis by defining the fill-order of
patch-based synthesis.

3.3.1 Determining the Fill-Order

The control over the fill-order is the main objective in [CPT04] for the reasons described
above. The translation of the idea into an algorithmic description motivated a priority
to determine the rank of a patch in the filling process. Priorities have been used before
[HarO1], however, the assembly of a balanced priority value is a novelty in [CPTO04]. It
is calculated for each pixel location p of the boundary 6. The highest priority deter-
mines the search patch W(p) that is processed in this iteration, filling its unknown pixel
intensities.

The most accurate fill-order, according to [CPT04], can only be retrieved by balanc-
ing textural information and isophote direction. The priority P(p) of a pixel located at p
is, therefore, defined as

P(p) = K(p)- D(p) (3.3)
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where the corfidence term K(p) and the data term D(p) weigh these characteristics
respectively.

The Confidence Term

This term measures the reliability of pixel intensities in a patch-sized neighbourhood.
The required confidence is an additional value assigned to each pixel location. It indi-
cates the probability of a colour intensity at a location p being correct. A high confi-
dence corresponds to a high probability with its maximum value defined as 1. At the
other end of the scale, the lowest value is defined as O for absolute uncertainty. In the
beginning, the confidence values are initialised by assigning the maximum confidence
to source pixels and the minimum to target pixels. As the target region shrinks, confi-
dences of newly filled pixels are updated to resemble the decreasing confidence when
moving away from the initial source.

The confidence term for a patch is computed based on these values and can be de-
scribed as the average reliability of source pixels within Y(p). It is formally defined
as

re‘{’(zp:)mll) ¢
K(p)= ——— 34
(p) ¥ p) (3.4)

with |W(p)| denoting the number of pixel locations in the patch and ® being the source
region of the image at the current iteration. C(r) is the confidence value at a pixel
location r. It, therefore, reflects only values that have already been filled. This implies
that not only high confidence neighbourhoods are favoured but also that patches with
more filled pixels are rewarded. In summary, a patch with more known information and
a high reliability is filled before patches with less confidence or less known intensities.

The Data Term

The term formulates the counterweight to the confidence term and measures the strength
and direction of an isophote relative to the boundary 6€2. It can be interpreted as nu-
merical representation of the angle between the isophote direction VI+(p) and the cor-
responding boundary normal rp originating at p. This structural weight is defined as

VIt .
D(p) = % (3.5)

where « is a simple normalisation value that depends on the range of colour intensities
in the image, e.g. @ = 255 in a grey level image. Its direction is perpendicular to
the connecting line between the preceding and successive pixel locations of p. The
counterpart vector VI+(p) is orthogonal to the gradient of the isophote, where the vector
VI(p) is the maximum image gradient in WY(p).
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(a) (b)

Figure 3.5: The data term is defined by the gradient of the patch as illustrated in (a). Vector
VI+(p) is orthogonal to the gradient and represents the direction of the isophote. The angle
between its direction and the boundary normal depicted in (b) provides the scalar weight D(p).

Figure 3.5 shows that the two vectors in (3.5) are parallel if an isophote is perpen-
dicular to the boundary and, therefore, runs right into the unknown region. This results
in a high value when calculating the inner product and in smaller values when closer to
the orthogonality. Consequently, an isophote that hits the boundary in an obtuse angle
produces a high data term value increasing its likelihood to be propagated into the target
region.

The Priority

The priority value is eventually composed of these two terms balancing the textural and
structural characteristics of each patch. The data term ensures that isophotes abutting
the boundary are continued into the target region to avoid discontinuities, a typical arte-
fact in texture synthesis. Its dominance however is limited by the confidence term to
prevent incorrect isophote continuation. Together, they define a well-balanced priority
that indicates the fill-order. The highest priority P(p) then denotes the next patch W(p)
to be processed.

3.3.2 Finding the Best Match

In the next processing step, the best-matching sample W(§) for the selected search patch
has to be determined. Possible samples suffice an additional condition to improve the
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matching results. All values within the patch have to lay completely in the source region
to be considered a valid sample patch. Its data in this patch will then be used to fill the
missing pixels in the search patch, preventing the search patch from being filled with
values from an incomplete patch.

The best sample can now be retrieved by comparing each sample to the search patch.
Restrained by the presence of unknown values in the search patch, only the set of pre-
filled pixels in the search patch can be compared to the corresponding set in each sample.
Formally, this can be described as

¥(§) = argmin  d( ¥(p), ¥(q)) (3.6)
Y(g) ecd

where W(p) and W(q) denote search and sample patches respectively. The distance
function d(W(p), ¥(q)) incorporates the sum of squared differences of each two patches,
which is similar to [EL99]. Although this seems to be a simple but effective solution,
the RGB colour space does not resemble perceptual distances. Instead, this is achieved
by computing the differences in the CIE Lab colour space described in [SHI8]. It adds
some additional computations, the distance calculation, however, is kept simple.

3.3.3 Filling the Search Patch

The retrieved best-matching sample is used in a final filling process to update the un-
known pixel intensities. Criminisi et al. [CPT04] pointed out that simply updating the
missing value in YW(p), with its correspondences in W(q), produces the best results. In
fact, limitations of other approaches, e.g. blurriness as result of diffusion [BSCBO00],
are prevented and texture, as well as structure, are maintained. Therefore, they even
discourage further altering of the sample intensities to preserve these qualities.

Updating the Confidence

At the end of each iteration, the confidences are updated. It reflects the changes made
to W(p) by filling its unknown pixels in the previous step. The certainty of their colour
intensities has decreased in respect to their samples. Modelling this decay of confidence
involves only the pixels altered in the filling process. The update process involves only
the previously filled pixel location in W(p). Their new confidence value C(r) is set to
the average confidence K(§) given by (3.4). The update is formally defined as

C(r)=K(@G) Yr € ¥(p)nQ (3.7)

This ensures that the confidences dissolve as the boundary moves towards the centre
of the target region resembling the reduced reliability of colour values for those pixel
locations.
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The major improvement to [EL99, LLX*01] is the introduction of a fill-order that
is automatically generated throughout the process compared to approaches where the
fill-order is predefined and hard-coded into the process. In contrast, the priority value
described in this chapter provides a fill-order determined by the characteristics of tex-
ture and structures. The data term especially contributes to an improvement in results
because it reduces block-shaped and misaligned artefacts by enforcing the early prop-
agation of edges into the target region. Hence, no additional processing is required to
decrease the effect of those artefacts.

3.3.4 Important Extensions

After the work in [CPT04] was presented, it became a very well-cited approach in tex-
ture synthesis and related topics. Numerous adaptations and modifications were pub-
lished proposing improvements to the original approach. In the following, two exten-
sions are described that proposed successive works. The first is a simple extension that
tries to prevent repetitive sampling [WOO08]. The second [CHL*05] investigated its pre-
decessor to identify its weaknesses and proposed improvements to circumvent them.

Sampling from Multiple Patches

A very straight-forward extension was developed by Wong and Orchard [WOO08] inte-
grating the generation of new pixel intensities instead of copying existing intensities. It
is reasoned that the target region would not have exactly the same intensities as they can
be found in the source region. The solution that is proposed describes the “mixing” of
a patch with new intensities from a set of sample patches acquired by the same routine
described in Chapter 3.3.2.

Instead of searching for the best-matching sample, a set of N samples with the high-
est similarities to W(p) is returned, where the similarity is calculated using equation
(3.6). These patches are then mixed together to create a template patch with colour
intensities that are composed of corresponding pixel values in all N patches. A straight-
forward method would be to calculate the average of all patches and use it as a template.
This would, however, result in a smearing of colours with a blurring target pixel inten-
sities. Avoiding such blurry artefacts is achieved by weighting the samples in respect to
their similarity to W(p). The weight of patch W(g;) is, therefore, defined as

_c(W(p), ¥(qy) ))

A (3.9)

where c(\P(p), WY(g;)) resembles the similarity distance between the search patch W(p)
and the sample W(q;). & controls the influence of a patch ¥(q;) on the mixed sample
depending on its similarity to W(p). A patch’s influence decays slowly when /4 is small
and decreases faster when a greater value is chosen for 4. Although the weighing of the

w( ¥(gi)) = exp(
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Figure 3.6: Plot (a) shows the highest priority at each iteration using [CPT04]. They drop
quickly to zero as opposed to the priorities in (b) when calculating the priority proposed by
[CHL*05]. The plots are produced using a modification of the code provided by [1] and repli-
cates those depicted in [CHL*05].

composing sample patches apparently reduces wrong intensities, it still suffers from an
increased energy in the patch. Hence, the sum of all weights is used to normalise each
colour intensity, leaving the following formal definition:

zl Ww(P(q:) ¥(q:)
W(g) = = (3.9)
5 w¥(g0)

The result is a sample patch that is a composition of intensities that prevents repeti-
tive insertion as it occurs when sampling from similar nearby source regions. The plau-
sibility of the generated colours, however, depends highly on the decay 4. The quality
of the inpainting results depends on a suitable 4.

Modified Fill-Order Calculation

Cheng et al. [CHL*05] chose a more investigative path in their work. They evaluated
the fill-order priority and its composing terms by recording the highest priority in each
iteration. The first observation was that the confidence term “drops rapidly to zero”
[CHL*05] during the whole process. This highly effects the priority value as a result
of confidence and data term in (3.3) being multiplied. It, therefore, decays almost as
quickly as the confidence term, which is illustrated in the plot in Figure 3.6(a).
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This motivated a slight change of the priority equation (3.3). The multiplication is
replaced by an addition to reduce the unproportional influence of either component on
the overall priority. The new priority is defined as

P(p) = K(p) + D(p) (3.10)

which is the first step towards an improved progression of the priority. The dominance
of the confidence value is reduced, which is depicted in Figure 3.6(b).

Another observation concerned the data term which is more consistent throughout
the iterations than the confidence. This makes it difficult to compare or even balance
them in a composed priority. Making the confidence more consistent also lead to a
regularisation controlled by a single weighting factor w, empirically set to 0.7. It is
formulated as

Re(p)=(1-w)-K(p)+w with0<w<1 (3.11)

where w denotes the value that is approximated by the decreasing curve. This avoids its
decay to zero which, in turn, prevents the priority to be dragged towards zero as well.

Finally, they observed a discrepancy in quality when applying their method to im-
ages with very different texture and structure characteristics. A look at the original
approach shows this effect was inevitable. Confidence and data term are supposed to
balance each other out and are modelled into the priority calculation accordingly. This
creates a rigid relation between both values. To achieve good inpainting results an image
has to resemble this correlation between texture and structure.

A solution to reduce this limitation is to replicate the irregular correlation of struc-
ture and texture in a weighted priority function Rp(p). The new priority is assembled
from the regularised confidence (3.11) and data terms (3.5) multiplied by the weighting
factors we and wp respectively. Formally, it is defined as

Rp(p) = wc - Re(p) + wp - D(p) (3.12)

with the weights justifying we + wp = 1 and 0 < we,wp < 1. Indeed, these weights
make it possible to adjust the fill-order to the distinct properties of an image, but they
also increase the amount of required user interaction.

In summary, [CHL"05] presents a modified calculation of the priority value reducing
the domination of the confidence and improving the flexibility of the modelled balance
between texture and structure properties. As a result, the priorities are more consistent
with a better response to the data term.
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3.4 Inpainting in the Wavelet Domain

The review of inpainting approaches in section 2.2 showed that several works attempted
to exploit spectral properties of images for better results. A new idea, however, was to
apply an exemplar-based technique in the frequency domain. Ignécio and Jung [1JO7]
proposed an adjusted approach closely related to [CPT04], which processed wavelet
coefficients instead of colour intensities. The image is transformed into the wavelet do-
main, the inpainting process is completed using frequency information and the inpainted
result is retrieved by applying the inverse transform. A basic introduction to wavelets
and the wavelet transform can be found in Appendix A.

As usual, an input image I and a binary mask defining Q are expected. The first step
is to transform them both into the wavelet domain using a Haar wavelet. This wavelet
was chosen because of its small support. Applying wavelets to image and binary mask
results in artificial edges especially at the boundary of the masked area in I and the target
region in the binary mask. They result from high-pass filtering in the discrete wavelet
transform described in Chapter A.3. The detail coeflicients respond to those edges and
produce a high-frequency response appearing as artificial edges. The extent of those
undesired frequency responses depends on the wavelet and its characteristics. Choosing
a wavelet with a small support restricts the effect locally to nearby coeflicients. The Haar
wavelet provides a very small support and is, therefore, the most suitable candidate for
this application, although other wavelets, e.g. Daubechies4, could be used as well.

An additional precondition limits the wavelet transform to an one-level decomposi-
tion. It produces four subbands, illustrated in Figure A.6(a), containing the approxima-
tion coeflicients in W, and corresponding detail coeflicients in horizontal W, vertical
W, and diagonal W, direction respectively. The advantage of this constraint is that it is
not required to correlate the coefficients in subbands of different levels. The algorithm
can, therefore, operate on all four subbands simultaneously with corresponding coef-
ficients identified by their location in respect to the top-left corner of their respective
subbands. In addition to the implied simplifications, it reduces the inpainting domain to
the size of a single subband.

A final preparation is required before the main procedure can start. It involves the
generation of the binary mask in the wavelet domain denoted as Qy, with its boundary
0Qyy. After it is decomposed into four wavelet subbands, the approximation coeflicients
in W, almost represent a binary mask except for the previously explained spreading
of coeflicients along the edges. The same applies to the detail subbands W, W, and
W,, where non-zero coefficients depict artificial edge information. As a result, a new
subband-sized binary mask has to be created to define the target region. An element in
this mask is described as part of the target region Qy if at least one of the coeflicients
in all four subbands is different to zero. The retrieved mask then provides the required
data to start the iterative inpainting process by determining the fill-order.
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3.4.1 Determining the Fill-Order

In equivalence to [CPT04], the key concept of this approach is the fill-order of its bound-
ary patches controlled by a priority value assigned to each patch. The highest priority in
each iteration denotes the patch centre of the next search patch W(p). The priority value
is composed of three terms, denoted as components, reflecting similar properties to those
described in the data and confidence term. More precisely, the confidence component
represents the reliability of the coefficients enclosed in a patch, whereas its structural
properties are measured by structure significance and structure orientation, which were
originally named edge strength and edge orientation in [1J07]. This work refrains from
using these terms for two reasons. Firstly, the same terms have a different meaning in
image processing techniques concerned with edge detection. Secondly, the structural
components are composed of detail coefficients in W, W, and W, responding to high
frequencies due to high-pass filtering. Although these high frequencies are related to
edge direction and edge strength [Wal08], they are not equivalent to edges in the spatial
domain. Their exact meaning is described as follows.

The Structure Significance

The structure significance is a measure introduced to provide information on the in-
tensity of structural information. Under the previous assumption of edge-related infor-
mation being implicitly incorporated into the coefficients, this can be described as an
indicator for the strength of an edge in a patch-sized neighbourhood. Considering a
search patch W(p) € 6Qy, the structural significance is described as the energy of its
highest detail coeflicient. Formally, it is written as

S¢(p) = max  max }{(Wb)z(r)} (3.13)

re¥(p)  b=lhvd

where W, denotes the coeflicients in the horizontal, vertical and diagonal detail sub-
bands respectively. In short, all squared coeflicients in the three subbands are compared
and the highest energy is selected to represent the structural energy of the patch.

The Structure Orientation

The structure orientation is the equivalent to the data term that is used in [CPT04]. It
represents the direction of the linear structure, or isophote, in a patch. Once again, the
orientation is calculated as the inner product of two vectors VI=(p) and np. VI-(p)
denotes the direction of the structure in W(p) orthogonal to its gradient VI(p), whereas
np is orthogonal to the boundary 6Qw at the patch centre. In contrast to [CPT04], where
VI(p) is the most significant gradient vector in the patch, [[JO7] exploits the properties
of the wavelet coeflicients in the horizontal and vertical subbands, W, and W,;. Both
subbands contain coeflicients representing the high-frequency response in horizontal
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and vertical direction respectively [Wal08]. Consequently, the coefficients in W, and W,
can be used to approximate the gradient vector of the patch centre p as follows

Wiu(p)
VI(p) = [Wv(p)] (3.14)

The retrieved approximated gradient VI(p) has to be normalised before the com-
putation of the structure orientation is concluded. This ensures that the strength of an
isophote is exclusively encoded in the structure significance of a patch W(p), whereas
the orientation is provided by the structure orientation. The representative scalar value,
denoting the orientation, is, therefore, defined as

So(p) = VL, (p) - npl (3.15)
where the normalised gradient approximation is described by
VI-(p)
VI:(p) = 3.16
P = W) (19

The structure orientation takes on a high value when the structure direction is almost
parallel to the boundary normal and decays to zero as the vectors become orthogonal.
The correlation between the two vectors is illustrated in Figure 3.7.

The Confidence

The confidence value expresses the same reliability for coefficients, in the same way
as the confidence value in [CPT04] for pixel locations. The confidence in [1JO7] is not
assigned to a single coefficient but to a pixel position in the subband, assigning the same
confidence C(r) to the four coefficients at position r in the respective subbands. This
is justified by inpainting the image on a subband-level, as described at the beginning of
this chapter.

Apart from this minor difference, the confidence is initialised in the same way setting
it to O for each pixel position in €2, whereas all other positions are set to 1. Whenever
a patch W(p) is updated with coefficients from W(§), new confidences are assigned to
these positions based on the average confidence in W(§). Its degeneration is induced by
a decay parameter o leading to the update equation

C(r) = ac K(§) (3.17)

The decay is limited to 0 < a¢ < 1 with a suggested value of 0.8 in [IJO7]. The
confidence value for a search patch W(p) is then calculated according

re\y(%:mg )
K(p)=——— 1
p) ¥ p) (3.18)
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structure orientation
Vi(p) —
np

structure orientation

Figure 3.7; The small example image in the x-z-plane is a small example depicting the priorities
as grey level values. The calculated orientation values are equal to the length of the vertical
vectors (orange). The orthogonal gradient VI;-(p) (red) and the boundary normal np (blue)
are their compositing vectors depicting the relationship between their respective angles and the
resulting orientation.

where [W(p)| is the number of confidences in search patch W(p).

The Priority

The priority for a patch centre p is now determined by the product of these three com-
ponents. The structure orientation and structure significance provide the weight on
structural information. The confidence weighs the reliability of coeflicients to promote
patches with a smaller amount of unfilled coeflicients. Combining the weights produces
the following equation to compute the priority:

P(p) =Ss(p) - Solp) - K(p) (3.19)

The fill-order is then determined by calculating the priority for each patch centre
p € 0Qyw and retrieving the highest priority. The patch with the highest priority is the
next search patch, which is then compared to sample patches to find the best-matching
sample W(§) for filling the missing region.
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3.4.2 Finding the Best Match

The best-matching sample patch W(q§) is the subject of the next step in the iterative
process. It is a patch of the same size and shape as W(p), as defined in section 3.1, that
is the best match for the search patch W(p). Ignacio and Jung defined “best match” as the
smallest difference between patches W(p) and W(q). The similarity measure they used
minimises the sum cf squared differences (SSD) between corresponding coeflicients in a
search and a sample patch. It is the same metric as in [TWJ06, TWJ05], where it defines
the distance for synthesising a large texture from a sample. Although good results for
plain texture synthesis can be produced with this approach, it is limited by its fixed
patch size. A similar observation was demonstrated in [DCOYO03] justifying the use of
fragments (the circular equivalent to patches) of variable size. It is argued that in real
images the textural and structural patterns vary from image to image and even within
the same one.

In [1JO7] this idea is apprehended by using an adaptive matching algorithm to find
the best sample. Instead of comparing only samples of the same size M, they proposed
to compare a range of sizes M € {M,;, ..., M,,..}. Y(P) is resized in respect to its centre
p for each size M and compared to all candidates ¥(g)" of equal size. This results in a
best match for each size M. Finding the most similar patch between those of different
sizes requires a normalisation of the similarity. Otherwise, the smallest would always
provide the shortest distance to W(p). The distance of two patches W(q) and W(p) is then
given by

Ap= Y D, W@y - H ) (3.20)

belahvdl  (xy) € ¥(P) N Oy

which is, in turn, normalised to

Ap
| P(P) N Oy |

The best sample W(§) is then defined as the patch minimising |Ap| for all sizes M.
The search for W(§) with a variable size, however, comes at a price. The computation is
increased by M — 1 searches, compared to a fixed-size search. As a counterweight, the
search is restricted to a search window ®(p). Its size is motivated by the connectivity
principle assuming that neighbouring patches are more likely to minimise the distance
to W(p) then others. The search window ©(p), centred at p, has the defined size 3M x3M
in [LJO7].

|Apl| = (3.2D)

3.4.3 Filling the Search Patch

The sample patch W(§), retrieved by the previous search, provides the required coef-
ficients to fill the unknown regions in all four subbands. Earlier in this chapter it was
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stated that the subbands are processed simultaneously. The same applies to the filling
of the search patch. The patches W(p) and W(§) provide a centre position p and § re-
spectively as well as a patch size. This information is used to identify the corresponding
regions in the subbands. The search patch W(p), for instance, encloses unknown coef-
ficients in W, and W(§) marks corresponding sample coefficients in the same subband.
The missing coefficients in W(p) are then simply copied from W(§). The detail subbands
are processed in the same way.

An update of the components is the last step to be carried out in an iteration after
W(p) was filled. At first, the new boundary positions are computed by updating Qy and
0Qyw. For each new patch centre p, the confidence is updated according to (3.17) be-
fore structure significance and structure orientation are calculated. Finally, the priority
values are recomputed from equation (3.19). This whole process is iteratively repeated
until all unknown coefficients are filled.



Chapter 4

Evaluation of Inpainting Techniques

The comprehensive explanation of the three approaches in Chapter 3 provided an insight
into their concepts without considering their respective quality. These properties are the
subject of the comparison carried out in this chapter. The inpainting quality as well as
problems and limitations are described and illustrated for either approach. The defect
pixel interpolation [AMO1] is examined in section 4.1, followed by the exemplar-based
image approach [CPT04] in section 4.2. Finally, the wavelet-based approach [1J07] is
investigated in section 4.3.

The three approaches are examined according to the scenario described in Chap-
ter 1, where a colour checker has to be removed. This defines the environment as
the campus of the University of Koblenz which implies that images contain mostly
structure-rich and complex architectural content. A representative set of images has
been selected containing different views of the campus and resembling the characteris-
tic content. These images and their respective binary masks are shown in Appendix B
and are used throughout the following sections.

4.1 Interpolation in the Fourier Domain

The concept of the Aach approach to reconstruct missing pixel intensities in X-ray im-
ages is described in section 3.2. It is widely used in medical applications, implying that
it provides exceptional interpolation results for its specific operative range. This is a
basic requirement for any algorithm used in the medical field to ensure highly reliable
images and prevent misdiagnosis through malicious image processing. An example im-
age in Figure 3.4(c) shows a regular X-ray image of a foot. The interpolation result
in Figure 3.4(c) depicts the result of the unoptimised MATLAB® [8] implementation.
It has to be noted, however, that the interpolation quality differs slightly from the re-
sults presented in [AMO1]. The reconstructed images are nonetheless sufficient for this
investigation.

49
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(a) (b)

Figure 4.1: Image (a) shows a common X-ray images of a foot as it was used in [AMO1] to
illustrate the result of interpolation. Its Fourier spectrum is depicted in (b). Its dominantly low
frequencies are represented by the horizontal and vertical frequency bands crossing at the center.

It was already stated that the main application of [AMO1] is the interpolation of
X-ray images. Before this algorithm is applied to real images it is helpful to look at
some general characteristics of its input data and the spectral decomposition carried out
by Fourier analysis. The input data is an X-ray image similar to that in Figure 4.1(a).
It exposes a general property of these images that is closely related to their method
of acquisition. The X-rays penetrating the patients body, in this case the foot, are ab-
sorbed by the tissue and bones. On the other side, the remaining energy of each ray
is measured and produces the output image. The degree of detail in such an image is,
therefore, very limited. It is slightly noisy with multiple regions of homogeneous inten-
sity. Furthermore, the number of edges is limited to the outlines of the bones which are
less distinctive and more transcending into the background. In terms of Fourier analy-
sis, the lack of edges is reflected in a dominantly low-frequent representation. It can be
substantiated based on the spectral representation in Figure 4.1(b). The response to low
frequencies towards the centre of the spectrum is much denser then in the outer areas of
the image. In fact, the spectral information is mostly restricted to a narrow vertical and
horizontal band as well as a circular region in the centre. These correspond mainly to
low frequencies with a few higher ones at their outer ends. X-ray images in general can,
therefore, be expected to be low-frequency dominated.

It is important to be aware of this spectral characteristic because the main concept of
[AMO1] and [Pap75] builds on exploiting the periodicity of frequencies in Fourier space.
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Section 3.2 describes that missing pixel intensities are reconstructed by estimating a cor-
rected frequency spectrum for the X-ray image. This can be achieved by exploiting the
property of Fourier analysis that its frequency representation discards spatial informa-
tion and exhibits only periodic frequencies, implying that each frequency has a global
influence on the image intensities in position space. Frequency coeflicients, therefore,
correspond to a combination of a certain vertical and horizontal periodic frequency
whereas a pixel intensity is composed of different magnitudes of all these frequencies.
On the one hand, this dependency allows recovery of unknown pixel intensities from
its known frequencies. The estimation of a corrected spectrum on the other hand has a
global influence on all pixel intensities. Although this effect is limited in [AMO1] by
including the information about unknown intensities into the interpolation, this fact has
to be kept in mind when applying the procedure to real images.

Application to Real Images

The application of [AMO1] to a real image is evaluated using an example image taken
on campus at the University of Koblenz, as shown in Figure 4.2(a). It is a frontal view
of the library with a colour checker located at its bottom centre. The target region is
provided by a user-defined binary mask identifying the pixels belonging to the colour
checker. The image itself is converted to grey level intensities due to the limitation of
the common Fourier transform to single channel images. Alternatively, a quaternion-
based Fourier transform [SH98] would be able to handle colour images directly, its use,
however, would exceed the scope of this work. The colour intensities are, therefore,
removed from the image by desaturating it using the HSV colour space. The obtained
grey level image can then be processed by the examined approach with its iterative
interpolation controlled by selecting a fixed number of iterations. The results produced
by applying the interpolation algorithm with 100, 400 and 2000 iterations are depicted
in Figure 4.3 using the image in Figure 4.2(a) as input.

Looking closer at these results reveals the shortcomings of the algorithm when ap-
plied to real images. The image in Figure 4.3(a), obtained by iterating 100 times, il-
lustrates the impact of estimating the unknown intensities using periodic frequencies.
Reconstructed intensities in the target region indicate a horizontal and vertical pattern
introduced by composing them from multiple frequencies in the same directions. The
most dominant frequencies in the image are dominating the target regions as well which
leads to the blurred region resembling the shape of the pillar in the background. The in-
fluence in the frequency domain is very high and, therefore, contributes predominantly
to the estimated frequencies. Increasing the iterations to 400 in Figure 4.3(b) or 2000 in
Figure 4.3(c) distorts the regular pattern in the target region of Figure 4.3(a), the quality
of the reconstructed intensities, however, are not improved at all.

In addition, all three results in Figure 4.3 show that the interpolated target regions
are smoothed as if they were processed using a low-pass filter. Sharp and distinctive
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(b)

Figure 4.2: An exemplar image taken on campus at the University of Koblenz-Landau is shown
in (a). It is a frontal view of the library with a colour checker positioned at the bottom centre.
Its Fourier spectrum is shown in (b) illustrating the diversity of frequencies incorporated in the
image. Compared to 4.1(b), it has an increased response to higher frequencies.

edges are almost non-existent. The reason for such a smooth reconstruction is the better
response of [AMO1] to low frequencies which is a result of the periodic properties of
the Fourier transform described above. Low frequencies have a large impact on pixel
intensities because their resemblance of large wavelengths dominates the shorter wave-
lengths represented by higher frequencies. This is then reflected in the recombination
of frequencies when applying the inverse Fourier transform. Real images, however,
contain more high-frequency information as Figure 4.2(b) illustrates compared to Fig-
ure 4.1(b). Consequently, it is more difficult if not impossible to reconstruct all details
in a real image by applying [AMO1].

In summary, it can be stated that this approach is highly effective at interpolating
images with dominantly low frequencies as in X-ray images. Its capabilities of repro-
ducing high frequencies, however, are limited which makes it unsuitable for real images,
especially for the campus images since they contain even more edges and structural data
due to their architectural content. This approach is, therefore, not considered any further
due to its poor results and restricted potential for this application.
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Figure 4.3: Images in the first row show the results of frequency interpolation using 100 (a), 400
(b) and 2000 (c¢) iterations. The colour checker in the original image, shown in Figure 4.2(a),
was removed by a provided binary mask corresponding to the colour checker. (d), (e) and (f)
exhibit detail excerpts from their respective original above.

4.2 Exemplar-Based Inpainting

The realisation that frequency interpolation fails on real images lead to the conclusion
that more subject-related research in the field of image inpainting should be consid-
ered. Chapter 2 describes that recent developments in texture synthesis and structure
inpainting produced promising techniques. A major approach in this field of research
is [CPT04] which is explained in section 3.3. As an algorithm that is well-cited and
produces widely respected results it provides a more suitable solution for the described
problem. In addition, it has been extended by [CHL*05] described in section 3.3.4 with
suggested improvements on the inpainted results. They will, therefore, be subject to a
combined evaluation in this chapter.

The application used to generate the inpainted images for both approaches relies on
a MATLAB® [8] implementation by Sooraj Bhat [1]. It provides the code to generate
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images as described in [CPT04]. In additon, it was extended as part of this work to in-
clude the modifications proposed in [CHL*05]. It is limited to a non-adjustable priority
calculation as opposed to the description in section 3.3.4. It implements the regularised
confidence equation (3.11) and additive priority equation (3.10) which provides suffi-
cient results for the following comparison.

4.2.1 Investigating the Fill-Order

One of the main ideas introduced by [CPTO04], as described in section 3.3, is to control
the order in which the patches are filled. It is stated that the order is a very crucial
element of the filling process in general and their algorithm in particular. This makes it
the first step in the algorithm to investigate. It is very difficult, however, to measure the
quality of the fill-order since there is no “correct” order of filling unknown intensities.
Too many unknown parameters influence the outcome of a particular order such as the
number of isophotes abutting the boundary, different textures and varying structures.
This makes a direct comparison of the fill-order in [CPT04] and [CHL*05] impossible.
It can only be evaluated by comparing the resulting images of both approaches.

(a) (b) () (d)

Figure 4.4: A circular target region is removed from the ideal image (a) containing two textures
of different intensities. The successive images (b), (¢) and (d) show the process of filling the
unknown pixel intensities along the separating isophote first and then the remaining textures.
The result is a perfect reconstruction of the ideal image.

A schematic example illustrates the difficulty of comparison. The main idea behind
the Criminisi approach is to reconnect isophotes before filling in the unknown pixel
intensities in the remaining textured areas. This is a very straightforward idea looking
at a synthetic image consisting of two regions as shown in Figure 4.4(a). Each region has
one intensity assigned to each of its pixels which creates a border between the regions
that is the only edge in the image. A certain amount of the image is now removed
and the missing intensities are to be reconstructed by one of the inpainting algorithms.
The perfect way of inpainting this specific image would be to follow the routine of
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conservators as described in section 3.3. At first, the edge is continued through the target
region and connected to its counterpart, as shown in Figure 4.4(b) and Figure 4.4(c).
Afterwards, the remaining regions are filled with the intensity of their respective region.
The result is a perfectly reconstructed image, illustrated in Figure 4.4(d).

(a) (b) () (d)

Figure 4.5: Image (a) depicts three textures of different intensities creating two isophotes in-
tersecting in the target region. Applying the isophote-driven inpainting procedure continues the
vertical isophote first, as shown in images (b) and (¢). The reconstructed image (d) exposes the
problem of intersecting isophotes with a displaced horizontal isophote.

Adding another texture and, therefore, another isophote to such an image, shown
in Figure 4.5(a), reveals the difficulty when inpainting real images. Applying the same
strategy as above struggles with this type of image as shown in the images in Fig-
ure 4.5(b) and Figure 4.5(c). The reconstructed image in Figure 4.5(d) contains a dis-
placed isophote as opposed to its original in Figure 4.5(a). To reconstruct it correctly a
more sophisticated fill-order has to be determined that enforces a simultaneous inward
motion of all isophotes to enhance the possibility of reconnection towards the centre.
Real images with a multitude of isophotes that have to be connected within the target
region make it even more difficult to find a suitable fill-order. The Criminisi approach
[CPT04] and the Cheng extension [CHL*05] each define such a fill-order that is tailored
to the complexity of real images.

Looking at the results in Figure 4.6 shows that altering the fill-order produces very
different results indeed. The close-up of a zebra skin in Figure 4.6(a) shows that the
Criminisi algorithm reconnects the border separating the black and white segments and
fills the remaining areas convincingly. The extended version [CHL05] using additive
priority calculation, however, suffers from artefacts that are introduced in the textured
areas. Interestingly, the isophote is still connected correctly but the remaining pixels are
filled wrongly due to their fill order. The second image in Figure 4.6(b) reveals the exact
opposite. The obtained pixel intensities using the original approach introduce wrong
intensities that are sampled from one of the dogs’ tails whereas the Cheng extension
provides a good result connecting the edges of the pole correctly. A direct comparison of
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Figure 4.6: Inpainting results obtained by the Criminisi approach and the Cheng extension.
Both examples are used in the original Criminisi proposal [CPT04].

these two images exhibits the importance of the fill-order as it was described in [CPT04].
Simply changing the priorities and, therefore, the fill-order produces different inpainting
results. Their quality depends on the specific image and the suitability of the fill-order
to reconstruct its structural and textural regions. This observation is emphasised in
[CHL*05] where it is assumed that adjusting the correlation between the confidence and
data term individually for an image is required to obtain sufficient inpainting results. It
allows to make the fill-order more dependent on its image-specific characteristics.

In the case of Figure 4.6(b), the fill-order produced by the Cheng extension is better
as opposed to the images in Figure 4.6(a), where the one calculated by the Criminisi
approach is more suitable. This illustrates very well the problem of statically modelling
the correlation between data and confidence terms. The outcome of an algorithm is
bound to the conformity of its modelled fill-order calculation and the corresponding
correlation between textural regions and isophotes in the input image.

A more challenging set of images is provided by those taken on campus. Their
architectural content makes them more structured and detailed with a large number of
isophotes running in different directions. Three examples are given in Figure 4.7 where
the leftmost image is the original, the second depicts the target region and the follow-
ing two are the results produced by the Criminisi approach [CPT04] and the Cheng
extension [CHL*05] respectively. A look at these images reveals that the Cheng exten-
sion [CHL*05] provides much better results for this specific type of images with highly
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Figure 4.7: Details of inpainted images of the campus image test set. The inpainting results are
obtained using the Criminisi and Cheng approaches repsectively.

structural contents. Applying the Criminisi approach [CPT04] in contrast introduces
visible artefacts in all three images. The excerpt in Figure 4.7(a) shows, for instance,
that edges confining the dark stone wall are not continued correctly and pixel intensities
belonging to the pavement are inserted into the wall stones. The same image computed
using the Cheng extension [CHL*05] exposes correctly continued and connected edges.
Although the pavement in the front and the back of the wall are distorted the overall
impression is much improved. Similar observations apply to the second set of results
in Figure 4.7(b). [CPT04] inserts an artificial pillar next to the existing one whereas
the extended algorithm creates a much better result with only a few artefacts at the top
of the pillar. These two examples indicate the superiority of [CHL*05] in this specific
application due to a fill-order that is more suitable to their structure and contents. The
respective fill-order in [CPT04] fails because its priority calculation does not resemble
their image-specific correlation of structure and texture. [CHL*05], however, is not a
perfect solution. It also struggles to provide good results for some images such as the
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one in Figure 4.7(¢). It can be observed that the priority calculation used in [CHL*05]
does not respond well to the small isophotes in the pavement. Adding confidence and
data terms in equation (3.10) allows textural information incorporated in the confidence
to dominate the inpainting process. This corresponds to an unsuitable fill-order which
encourages additional problems in the sampling step.

4.2.2 Investigating the Sample Search

The main problem with the search for the best-matching sample is that it returns a
sample patch W(§) that is wrongly considered to be the best match. This becomes an
even more important issue when looking at the implications. Using an unsuitable W(§)
to fill unknown intensities in W(p) distorts the priority calculation in the next iteration
and, therefore, has a negative influence on the fill-order. This, in turn, increases the
likelihood of further errors in finding the next sample patch. Hence, it is impossible to
pinpoint the reason for a bad inpainting result on either of the two steps. This makes it
important to understand the problems that can occur when searching for W(g).

Patch Distance Calculation

As described in section 3.3.1, a best-matching sample W(§) for the selected search patch
W(p) is determined by their minimum distance based on the SSD of pixel intensities.
This distance is computed for each potential sample located anywhere in the source
region and the search patch. In [CPT04] and [CHL*05] this leads to the problem of
finding a sample that has the smallest distance but is contextually different to the search
patch. This can be observed in the images in Figure 4.7(c) where fragments of a bicycle
wheel are inserted into the pavement. The corresponding intensities are sampled from
somewhere else in the image which is the result of a search for samples in the whole
source region.

The miscalculation of the distance between W(p) and W(§) can have one of two
reasons. Assuming the selected W(p) contains pixel locations that correspond to homo-
geneous texture as depicted in the images in Figure 4.8(a) and 4.8(c). The search patch
in both images contains known pixel intensities in the right half and unknown ones in
the left half. Searching for the best-matching sample for W(p) is then carried out by
comparing the distances of all possible sample patches. The first problem that can occur
is illustrated in Figure 4.8(a). A sample patch located at an isophote contains intensi-
ties equal to those that are known in W(p). Their distance will, therefore, be zero and
the unknown intensities in \W(p) are filled with corresponding intensities in W(§). This
produces an isophote in the resulting image depicted in Figure 4.8(b). Furthermore, this
artificial isophote has a negative influence on the updated fill-order in the next iteration
and on the corresponding search for a sample patch. The second image 4.8(c) shows a
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(a) (b) () (d)

Figure 4.8: Image (a) illustrates a search patch P(p) and a best-matching sample W(§) that is a
perfect match for the known pixel locations but introduces an artificial isophote in (b) due to its
location on an isophote. (¢) shows the contrasting example where the isophote is interupted in

(d).

similar artefact created by a sample patch that is completely located in one of the tex-
tured regions. The right half of the patch contains intensities comparable to \P(p). The
intensities enclosed in the other half of the patch are once again used to fill ¥(p). In
contrast to the previous example the isophote between the two textures is disrupted by
unsuitable intensities in the sample patch. The lamppost image in Figure 4.7(b) exhibits
these artefacts when [CPTO04] is used for inpainting. The selection of suboptimal sam-
ple patches create an artificial pillar next to the real one with a frayed right edge. It
illustrates the effect caused by an insufficient sample search and its recursive influence
on the inpainting quality.

Patch-Shaped Artefacts

Another sampling artefact that can be observed in both algorithms concerns patch-
shaped artefacts. They are a direct result of the fill-order that is defined to propagate
the source region from the boundary inwards towards the centre of the target region.
Multiple textures are, therefore, simultaneously growing into the target region which
leads to the necessity of neighbouring textures to be adjoined at some point in the pro-
cess. Depending on the similarity of these textures this can result in a visible seam that
is usually rectangular due to the shape of the patches. Figure 4.9(a) shows a peninsula
of unknown pixels that extends into the source region. The neighbouring texture regions
contain different intensities and are separated by a distinguishable isophote. Assuming
that the selected search patch W(p) is placed on this peninsula, the locations denoting
unknown intensities should continue the isophote abutting the boundary from the top.
The sample patch W(§) with the smallest distance to W(p) is located in the rightmost
texture and contains only homogeneous intensities. W(p) is then only filled with intensi-
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ties of this texture and an artefact is created corresponding to the shape of the peninsula
depicted in Figure 4.9(b). The isophote in the first image is now displaced due to the
wrong sample patch providing the unknown intensities. It shows that even in a very sim-
ple example the quality of the algorithm can be reduced by erroneous filling of unknown
intensities.

(a) (b)

Figure 4.9: Image (a) shows a search patch W(p) enclosing a peninsula of target pixels between
two different textures. An insufficient sample patch W(§) selected from the right-most textures
procudes the displaced isophote in (b).

A correspondence in a real image can be observed in the image in Figure 4.7(a)
inpainted using [CPT04]. The inward growing textures adjoin close to the stone wall
where step-like seams occur to the left and right of the bright spot in the centre of the
target region. The amount of artefacts, in this case, reflects the increased complexity of
the textures compared to the example above. Similar to the previous sampling problem,
these artefacts can result in a snowball effect where they put negative influence on the
fill-order which reflects in suboptimal selection of a search patch. Hence, encouraging
similar artefacts.

4.3 Inpainting in the Wavelet Domain

An alternative approach [IJO7] trying to overcome some of the described limitations was
introduced in section 3.4. Its conceptual similarity to [CPT04] and [CHL05] and the
exploitation of spectral information as in [AMO1] triggered the interest in this approach.
It is, therefore, evaluated in this chapter to provide an insight into its qualities. Since it
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uses a priority-based fill-order that is closely related to [CPT04] and [CHL*05] it will
be compared to the results obtained in the previous chapter. The inpainting results used
in this evaluation are provided by the software framework developed as part of this work
and are solely based on the description provided in [1JO7].

4.3.1 Investigating the Fill-Order

The fill-order described in section 3.4 calculates a priority from a confidence value and
two structural components, namely structure orientation and significance. The confi-
dence is similar to the value described in [CPT04] whereas the latter two components
can be interpreted as the separation of the data term into two distinctive values denot-
ing the orientation and significance of isophotes. Consequently, the priority value is
balanced by confidence and structural information as in [CPT04]. The actual fill-order
determined using wavelet coefficients, however, is very different. The corresponding
inpainted images in Figure 4.10 show the influence of the new priorities on the results
obtained by wavelet inpainting where the first two images in each row correspond to the
results of [CPT04] and [CHL"05] respectively. The last inpainted images are generated
using the wavelet-based approach [1JO7].

As shown in the rightmost image in Figure 4.10(c), the new fill-order reconstructs
the target region much better then the two previous approaches. The isophotes in the
neighbouring source region are continued more accurately and the misplaced pixel in-
tensities have disappeared. The lamppost image in Figure 4.10(b) is still a much bet-
ter result then [CPTO04] but introduces a repetitive pattern that does not occur in the
corresponding result of the Cheng extension [CHL*05] whereas the last image in Fig-
ure 4.10(a) is as bad as the one produced by [CPT04].

These results demand the examination of the modified priorities and the difference
to the fill-order in the previous chapter. The plot in Figure 4.11 shows the development
of the highest priority value during the inpainting process of the image in Figure 4.7(b)
for [CPT04] and [1JO7] respectively. The curve generated by the Ignicio approach uses
fewer iterations since it operates on the wavelet subbands simultaneously which reduces
the processed image by a fourth in size. This, however, does not affect the considered
curve behaviour. The curve in Figure 4.11(a) corresponds to the priorities computed
using the Criminisi approach. The priority values are highly fluctuating for the first
100 iterations and are then starting to decay quickly. This complies with the observa-
tions described in [CHL*05]. In contrast, the priorities calculated using wavelet coeffi-
cients are more consistent for the whole iterative process and do not decay as quickly.
This results in a better comparability of the priority values over time and prevents the
structure-related terms from becoming less relevant. [CHL*05] stated that this increases
the fill-order and in turn the quality of the obtained results.

This observation leads to the conclusion that determining the fill-order using wavelet
coefficients in the corresponding priority equation (3.19) improves the result compared
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Figure 4.10; Excerpts from the inpainted images using Criminisi, Cheng and Igndcio ap-
proaches respectively.

to [CPTO04] and stabilises the development of priority values over time. The actual result
of the inpainting process, however, still depends on the correlation texture and structure
represented in the input image and how closely it is matched by the modelled correlation
in the priority equation. In an example such as Figure 4.10(a) where this condition is
not satisfied the same weaknesses as in section 4.2 are implied.

4.3.2 Investigating the Sample Search

The behaviour of observable artefacts in the search for the best-matching patch are also
very similar to those described in section 4.2. The patch-shaped artefacts as depicted
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Figure 4.11: Plot (a) depicts the development of the highest priority in each iteration during a
complete inpainting process using the Criminisi approach. (b) shows the corresponding priority
development using the Igndcio method.

in Figure 4.9 are still a problem when seams between different texture regions occur.
An inpainting example using [[JO7] is shown in Figure 4.10(a), where the isophote at
the bottom of the wall is displaced. This is still a problem that depends mainly on the
fill-order to prevent it.

Another weakness of [CPT04] and [CHL*05] was stated to be the search for sam-
ple patches in the whole source region. This leads to filled patches that are completely
misplaced, as Figure 4.7(c) shows. [1J07] reduces these misplacement artefacts by re-
stricting the search region. Section 3.4 describes that sample patches are only consid-
ered in a small search window O(p). It is centred at the corresponding patch centre p
of W(p). This constraint is justified by the connectivity principle [PTN98] and assumes
that the most suitable sample patch W(§) can be found in the neighbourhood of W(p).
Figure 4.10(c) emphasises the correctness of the assumption. The reconstructed target
region only contains pixel intensities related to the paving stone pattern as opposed to a
malicious reconstruction produced by [CPT04] or [CHL*05]. Its quality has increased
compared to these two approaches.

Unfortunately, this advantage comes at a price. The inpainted lamppost image in
Figure 4.10(b), although a qualitative improvement to [CPT04], contains repetitive pat-
terns in the target region which are not corresponding to any neighbouring texture. This
is caused by the limited number of sample patches W(q) available in ®(p). A small
set of samples obviously provides a higher risk of picking a less suitable sample. It is
even increased by a search window ©(p) that contains a large amount of target pixels
since this reduces the amount of samples even more. For instance, the synthetic im-
age in Figure 4.12(a) shows a small textured area within an otherwise uniform texture.
Assuming the depicted selection of W(p) and W(§) results in a repetition of the small
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(a) (b) (c) (d)

Figure 4.12; The images illustrate the cause of repeating texture during the search for the best-
matching sample W(§) and successive filling of W(p). (a) shows a found W(§) containing a small
texture that is copied into W(p) in (b). This happens again in (¢) and (d), resulting in a repetitive
pattern,

texture in Figure 4.12(b). The successive sampling steps, illustrated in Figure 4.12(c)
and 4.12(d), then retrieve sample patches containing the same small texture. It is, in
turn, repeated multiple times and propagated into the target region. The emerging pat-
tern is easily recognised as an artificial pattern. Transferring this to real images results
in similar repetitive patterns that are obstructive to a human recipient. Figure 4.10(b)
is an example of such an artificial pattern. Its mainly vertical filling direction results in
repeating the same small texture over and over. As an additive deficiency, it encourages
the patch-shaped artefacts described in section 4.2.2. The overall artefacts and weak-
nesses introduced by finding the best-matching sample are, therefore, mainly similar to
those in [CPT04] and [CHL*05].



Chapter 5

Inpainting Modifications and Results

The investigation of the approaches in the previous chapter shows that their results are
very sufficient for some images and really poor for others. Unfortunately, the images
taken on campus pertain to the second set of images where their target regions are gen-
erally inpainted insufficiently. Several causes have been identified limiting the quality
of the approaches which makes it possible to adjust these limitations for a better appli-
cability to the specific set of images that is used in this work. The Ignacio approach
is the subject of these adjusting modifications since it is suspected to have the highest
potential. A description as well as the reasoning for their implementation is the focus of
section 5.1. It is followed by their evaluation in section 5.2 of the inpainting results that
can be obtained with these modifications.

5.1 Wavelet-Based Inpainting Modifications

The description of the Ignicio approach in section 4.3 already discussed the modified
fill-order in comparison to the Criminisi approach and the Cheng extension. Its result-
ing priority values behave very similar to the proposed modification in [CHL*05] which
aimed at a reduction of the quickly decaying priority values in [CPT04]. The priority
equation (3.19) used in the Ignécio approach is defined as a combination of three com-
ponents where the structure orientation and structure significance are separated from
one another and counterbalanced by the confidence component. Since the equation uses
wavelet coefficients instead of pixel intensities a difference in the resulting fill-order is
obvious. It can be observed that the influence of the confidence component on the pri-
ority has increased in equation (3.19). This results in a fill-order that is more circular
and less isophote-driven. The confidence plots in Figure 5.1(a) illustrate this change and
show a more constant decay of the confidences in comparison to the Criminisi approach.

The increased influence of confidences maps this behaviour of the curve onto the
corresponding priority curve as shown in the second plot in Figure 5.1(b). They rep-
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Figure 5.1; The two plots in (a) show the development of the confidence value during the
inpainting process using the Criminisi and Ignicio approach. The confidence value in each
iteration contributes to the highest selected priority. The corresponding priority values and their
development over the required amount of iterations are displayed in (b).

resent an inpainting procedure that fills high-reliability patches first responding less to
structural influences along the boundary. This reduces the impact of noise and unrepre-
sentative occurrences of either component on the priority. The gained influence of the
confidence value however comprises a new deficiency of the fill-order. The inpainted
image in Figure 5.2(a) shows that the confidence outweighs the structure components
and mainly inpaints the textures. The isophotes incorporated in the structural compo-
nents are disregarded which leads to displaced and disconnected structures and eventu-
ally poor inpainting results. The following modifications proposed an improved priority
equation to reduce this effect.
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5.1.1 Weighted Additive Priority

The superiority of the confidence is amplified by the multiplicative calculation of the
priority in equation (3.19). Limiting this unproportional response is similar to the pro-
posal in [CHL"05] where the multiplicative priority in [CPT04] is transformed into the
additive equation (3.10). This makes the equation less prone to extreme values in either
component. The same strategy can be used to reduce the impact of the confidence on
the priority in equation (3.19). The modified priority equation obtains priority values by
adding the respective components. It is formally defined as

P(p)=K(p) + Ss(p) + So(p) (5.1)

The inpainting result responds immediately to these changes. Figure 5.2 substanti-
ates that inpainting the same image using the weighted additive priority increases the
continuation of isophotes and reduces the amount of artefacts. The corresponding prior-
ity plots show that the highest priorities obtained by equation (5.1) span a larger interval
of values using the additive equation instead of the equation proposed in [[JO7]. The
fluctuation of the curve remains minimal. The slope of the curve however is steeper
produced by more distinguishable values. It is the direct result of adding the compo-
nents that produce the increased range of priority values which corresponds to a better
balance of confidence and structure components. The influence of either component is
equalised by computing normalised values as described in section 3.4.

A remaining shortcoming of the additive priority equation concerns the diversity
of image contents and the corresponding correlation between its texture and structure.
[CHL*05] described that the quality of the fill-order depends on the correct combi-
nation of texture and structure in the input image. Since the correlation of these two
elements is hard-wired into equation (3.19) a large amount of images with unsuitable
characteristics cannot be inpainted correctly. The Cheng extension addresses this by
applying another change to their priority equation (3.12) introducing two parameters
to weight the structure and texture correlation. This concept is once again adapted by
modifying equation (5.1). Two parameters ws and w¢ are implemented for adjusting
the proportional dominance of the components. ws is the structure weight and controls
the relative importance of structure orientation and significance resulting in a weighted
structure value S (p) defined as

Sp) = -ws)Solp) + ws Ss(p) (5.2)

with 0 < ws < 1. Setting the structure weight to ws = 0.5 levels both components
corresponding to the normalised sum of both values. Increasing ws stresses the struc-
ture significance S g which resembles the strength of isophotes in a patch W(p). S (p) is
therefore dominated by the strength of these structures with less influence of their orien-
tation relative to the boundary of the target region. On the contrary, reducing ws boosts
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Figure 5.2; The plots show the development of the highest priority value during the inpaint-
ing process and the obtained inpainting results. The curve produced by the Igndcio approach,
shown in (a), consists of less distinguishable priorities than (b), displaying the additive priorities
described in equation (5.1).

the orientation-related characteristic of isophotes disregarding their possible difference
in significance. Adjusting this weight provides enhanced control over the influence of
either structural property.

Assuming an adjusted wg with the obtained S (p) is then weighted against the con-
fidence value. The second weight parameter wc is therefore similar to the proposed
modification in [CHL"05] where two parameters are used to balance their confidence
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and data term in equation (3.12). Formalising this returns the final additive priority
equation

Py(p) = (1 - wc) K(p) + wc S(p) (5.3)

where S (p) is the weighted structure value in equation (5.2) and w¢ holds 0 < we < 1.
Obtaining a normalised and unweighted priority the confidence weight can be set to
wce = 0.5. In case the settings hold ws = w¢ = 0.5, the calculated priority corresponds to
an unweighted additive priority that has been normalised in two separate steps. Altering
the fill-order by using a higher w¢ results in a dominance of the structure component
where inpainting is mainly isophote-driven. Accordingly, setting w¢ to a value lower
then 0.5 exaggerates the propagation of texture into the target region with less influence
of structure properties. This approximates a similar behaviour of the priority curve in
the top plot in Figure 5.2.

5.1.2 Weighted Mixed Priority

Experimenting with the additive priority equation above inspired a second concept to
modify the priority. It aims at achieving an equivalent solution with only a single pa-
rameter we. It recombines the structure components for orientation and significance
similar to the data term used in [CPT04]. The data term incorporates orientation and
significance of an isophote in a single value, whereas structure orientation and signif-
icance separate this information into two distinguished components, as described in
section 4.3.1. The structure orientation is therefore normalised to only represent the
direction of an isophote in respect to the boundary. Reverting this separation is very
simple and just a multiplication away. This weights the direction of an isophote with its
respective strength and makes the previous structure weight wg obsolete. The priority
equation, referred to as mixed priority in the following, is formally defined as

Pyu(p) = (1 —wc) K(p) + we (So(p) - Ss(p)) (5.4)

with 0 < we < 1. The plots and inpainted images in Figure 5.3 substantiate that its
results are similar to those produced using the additive priority.

The exemplar result shows that the most important isophotes are continued correctly
with only a few exposed artefacts. The priority plot reveals that the curve behaviour us-
ing a mixed priority implies a similar behavioural change to the curve. Priority values
in successive iterations are more distinguishable than in the Ignacio approach, although
remaining less fluctuating. The added advantage towards the additive priority equation
(5.3) is the reduction of the adjustable parameters with a remaining quality of the ob-
tained results. This increases the usability of the inpainting procedure in opposition to
the previous modifications and maintains the possibility to adjust the fill-order to spe-
cific image characteristics.



70 CHAPTER 5. INFAINTING MODIFICATIONS AND RESULTS

0.2

Ignécio Priority ———
E
<
>
» 01
kel
&
0
0 100
Iterations e
(a) Ignécio priorities and inpainting result
0.6 : —
Mixed Priority ——
0.5

Priority Value
<
~

o
o

0.2
100

(=)

Iterations

(b) Additive priorities and inpainting result

Figure 5.3: The plots illustrate the development of the highest priority value during the inpaint-
ing process using the Igndcio approach in (a) and the mixed priority method in (b). The curves
illustrate that equation (5.4) produces more distinctive values resulting in better inpainting re-
sults as the corresponding inpainted images show.

5.1.3 Blended Filling of Patches

The implementation of an adjustable fill-order improved the inpainting results but leaves
three visible types of artefacts exposed in the inpainted images. The first two are dis-
placed isophotes and patch-shaped artefacts caused by adjoining textures. The two ex-
amples in figures 5.2 and 5.3 corresponding to the respective fill-order modifications
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show this type of artefacts in the texture of the dark stone wall. The bottom isophote
confining the texture is displaced and differently shaded textures are producing rectan-
gular artefacts at their seam. The third type is the repetitive pattern in the texture in the
background. Section 4.3 described the rationale for all of them. To reduce the impact
and most importantly the visibility of these artefacts an additional processing step has
to be introduced. Manual inpainting tools in image processing applications, such as the
healing or clone brush, use a blending mask for the brush to provide a smooth transition
between the added intensities and those in the background. The further away a pixel
location is from the centre of the brush the more impact is induced by the background
intensity on the new value. This concept is adapted by using a blending method when
filling the search patch W(p).

blended‘

Figure 5.4: The image shows a search patch W(jp) centred on the propagated boundary 5Q.
The green area denoted copied corresponds to unknown coefficients that are filled by copying
coeficients from W(§). The yellow area, denoted blended, corresponds to alterable coefficients
in the filled source region. The small piece of the patch pointing into the initial source region is
ignored in the blending method.

Filling the unknown pixel locations in W(p) using sample coefficients from W(§) is
described in section 3.4. It is defined that only unknown pixel locations are altered and
all source pixels remain unchanged. The coefficients in ¥(§) corresponding to these
unknown locations are simply copied to fill ¥(p). The filling of these pixel locations re-
mains unchanged to ensure the correct filling of the target region. This leaves the known
source pixel coeflicients to be used in the blending process. The limitation of these co-
efficients remaining unaltered, therefore, has to be softened. Only pixel locations con-
tained in the initial source region are considered unchangeable. Figure 5.4 illustrates
this softened restriction and shows the parts of W(p) that are copied or blended. Each
pixel location in the source region is then considered in the blending process in which
its coefficient is weighted against its corresponding coefficient in W(§).
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Figure 5.5: Image (a) illustrates the horizontal distances of pixel locations in respect to the
patch centre for a patch of size 5 x 5. Image (b) depicts the corresponding distances in vertical
direction.

It is assumed that a search patch W(p) and its best-matching sample ¥(§) have been
retrieved by the sample search. Let r; be a pixel location in W(p) holding r; € Oy N W(p)
and its corresponding location s; € W(§). The new coefficient at location r; is calculated
by weighting the current coefficient at r; with the one corresponding to s;. To ensure a
smooth transition of coefficients in the patch their composition is weighted depending
on the location of s; in respect to its patch centre s. The weight is formally defined as

1 d; +d;
wa exp|— (8.5

= 2n02 2072

where d, and d, denote the distance of s; to its patch centre in horizontal and vertical
direction respectively. The distance is defined as a fraction of the patch size M with
ﬁ at its centre and 1 at the outer locations of the patch. Figure 5.5 illustrates the
distances in both directions for an exemplar patch of size M = 5. The weight wg is then
determined by a Gaussian distribution applied to these distances and is used to weight
the pairs of coeflicients against each other. According to the separate filling of patches
in each subband, described in section 3.4 the weighting of coeflicients is carried out in
each subband. The blended filling for the approximation subband is therefore defined

as

Wu(#) = (1 —we) - Wu(r) + we - Wu(si) (5.6)

and stands representative for the three detail subbands which are calculated accordingly.
The resulting coefficient maintains its energy by reducing the coeflicient at r; by the
same amount the coeflicient at s; is contributing to it. This requires w¢ to hold 0 <
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wg < 1. In the case that wg exceeds 1 due to the selected o the original coefficient at r;
is maintained.

(a) No Blending (b) Blending with o = 0.4

Figure 5.6: Two excerpts of the same area in the inpainting result of the image
Bib_ColourChecker_Entrance. The entire image is shown in Figure C.15. (a) shows the
inpainted region without blending applied in the filling step whereas (b) uses blending. o de-
notes the standard deviation used to control the slope of the Gaussian curve.

The integration of the blending method into the inpainting procedure changes the
obtained result, as shown in Figure 5.6. The amount of blending can be controlled by
adjusting the parameter o in equation (5.6). It controls the decay of the Gaussian distri-
bution that is applied to the distances in the patch described above and, therefore, affects
wg 1n the same way. Using a lower value for o results in a higher contribution of the
coefficient at a location s; close to the patch centre, decaying for outer locations. In-
creasing o on the other hand determines a lower contribution of the sample coefficients
close to the centre, decaying quickly towards its outer locations.

Applying the blending modification is not only reducing path-shaped artefacts it also
has an influence on the fill-order. Blending source pixel coefficients changes the input
to equations (5.3) or (5.4) defining a different fill-order in comparison to a non-blended
inpainting procedure using the same priority equation.

5.2 Evaluation of the Modifications

The modifications proposed in the previous section were developed to improve the in-
painting quality for highly structured images based on the Ignédcio approach. Although
they are based on the discovered shortcomings of the approaches compared in Chapter 4
and try to eliminate the causes, their results have not been analysed yet. The following
sections, therefore, evaluate the results obtained using the modified fill-orders as well
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as the blending method. The two fill-order modifications will be addressed as additive,
described in section 5.1.1, and mixed, described in section 5.1.2. Before these results
are investigated individually and compared to the Criminisi, Cheng and Ignécio ap-
proach, a short evaluation of the dynamic patch size and the dependant limitation of the
search window ®(p) is presented. It provides the justification for assumed settings in
the evaluation. After these individual investigations, the modifications are compared to
one another to find the most suitable combination of modifications and their respective
parameters.

The evaluation uses a representative selection of campus images with correspond-
ing binary masks which are included in Appendix B. These images contain no objects
that are removed. Their binary masks specify certain target regions that are to be re-
constructed and allow the comparability of the inpainted images with their respective
originals, the so called ground truths. The peak-signal-noise-ratio (PSNR) is used to
measure their differences including a few constraints described in the next section. Ad-
ditionally, a subjective qualification of the inpainting quality is used to define the percep-
tual plausibility of the results. The characterising properties of the results are illustrated
using details of the images in the test set to ensure that they are conspicuous. The most
sufficient inpainted images for each modifications are depicted in Appendix C.

5.2.1 Inpainting Quality Measure

To compare the inpainting results a measure to determine their quality is required. PSNR
is one existing measure to define the difference between images and is widely used in the
field of image processing. In research concerning lossy image and video compression,
for instance, it is important to define the quality of the decompressed result. This is
achieved using PSNR which computes the pixel-wise difference of two images using
their mean squared error (MSE) and represents it on a logarithmic scale. It is usually
expressed in decibel (dB) and values between 30 and 50 dB are considered sufficient in
this specific field of research. The preferred results in applications using PSNR is that
there is no difference between the two images at all, corresponding to an infinite PSNR
and an MSE equal to zero.

Unfortunately, it is not a well-suited quality measure for image inpainting. The
main objective of image inpainting is to fill in the target region with intensities that
create an authentic impression. Hence, it is not required to achieve the most accurate
or even identical reconstruction of the original, which is not even possible when an
object is actually removed from it. Finding a plausible inpainting result is satisfactory.
This contradicts with the concept of PSNR where the highest value defines the most
accurate result. This can lead to a deceptive PSNR in images that are authentically
inpainted but their texture intensities are displaced by a few pixel locations in respect
to the original. This can be illustrated on the inpainted image in Figure 5.7(b) which
is not identical to its original in Figure 5.7(a) but can be considered a sufficient result.
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Zebra Gravel

-

(a) Original (b) Inpainted: (¢) Original (d) Inpainted:
PSNR: 23.77 dB PSNR: 33.88 dB

Figure 5.7: The images show inpainting results using the Criminisi approach [CPT04]. The
images are compared to their respective originals using the PSNR metric calculating the pixel-
wise difference.

Computing its PSNR, however, defines it as an insufficient result with a value below
30 dB. The image Figure 5.7(d) substantiates an additional problem using the PSNR
measure. The inpainted target region is a complete mess. Intensities from all over the
image are inserted and render it a very bad result. Considering its PSNR, however,
claims otherwise by providing an even higher value than for image in Figure 5.7(b).
This shows that using PSNR inconsiderately results in an usable evaluation.

Original Mask Criminisi Ignécio

(b) (c) PSNR: 41.68 dB (d) PSNR: 40.55 dB

Figure 5.8: The images show details from the original image Gravel and the corresponding bi-
nary mask in (a) and (b) respectively. The region enclosed by the pink lines and semi-transparent
background denotes the comparable region used to calculate the modified PSNR values. Images
(c) and (d) depict the pixel locations covered by the comparable region and illustrate the problem
with the modified measure.

An attempted solution to define an objective quality measure that can be used in
the evaluation of inpainting results restricted the PSNR to a comparable region. 1t is
a set of corresponding pixel locations in the original and inpainted image, as shown in
Figure 5.8. It encloses an equivalent amount of ten pixels to each side of the boundary
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between the initial source and target region. The image in Figure 5.8(b) shows the binary
mask with the overlaid comparable region. Only pixel locations enclosed in this region
are then considered in calculating the PSNR. The main idea was to measure the correct
continuation of isophotes into the target region. Their progression within the target
region, however, is ignored, preventing the reduction of the PSNR if the continuation
of an isophote is not pixel accurate. The aim was to provide a PSNR-based quality
measure that produces values with a higher approximation to the perceived quality.

The comparison of the original PSNR with the comparable region revealed that the
latter provides a more meaningful PSNR for some images. However, the problem de-
scribed above remains, as shown Figure 5.8(c). Its insufficiently inpainted target region
is not represented in the comparable region. The result is a higher PSNR compared to
the image in Figure 5.8(d) depicting a more authentic result. Additionally, the data in
Table 5.1 contrasts the PSNR for these images exhibiting the same tendencies for both
measures. Using a selected amount of pixel locations to compare their corresponding
intensities is, therefore, no improvement over the regular PSNR.

PSNR (dB)

Pixels considered in  Criminisi Cheng Ignidcio Additive Mixed

Whole image 35.25 3370  33.88 30.66  33.09
Comparable region 41.68 32.55 40.55 40.61  40.66

Table 5.1: Data generated by computing the PSNR between the respective inpainted image and
it original image. The first row computes the PSNR using all pixels in the image whereas the
second row uses a defined test region to measure the difference.

This constitutes that PSNR is not suitable to measure and evaluate the quality of
inpainting results. Even the attempt to adapt it to this specific objective is not providing
any improved outcomes. In absence of any other established measure and the use of
PSNR in inpainting-related literature, the original PSNR is considered in the following
evaluation. The obtained values are consulted to illustrated trends in choosing different
parameters without being used to define the actual quality. This is carried out by a visual
examination of the inpainting results which remains a subjective measure of quality of
quality of quality of quality.

The PSNR data in the following comparison uses a colour-coding scheme to indicate
the highest and lowest PSNR obtained for each test image. The lowest value is coloured
in [, whereas denotes the highest value. If the same highest or lowest value
occurs more than once both values are coloured accordingly.
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5.2.2 Search Window and Dynamic Patch Size

Studying the Igndcio approach thoroughly posed a question concerning their proposal of
a dynamic patch size and the dependant search window O(p). It was suggested to search
for a sample patch using various sizes to improve the quality of the best-matching W(§).
The adaptation of its size to potentially different structures and textures in the neigh-
bourhood of W(p) provided the justification for it. A result of the dynamic patch size
and the search window ®(p) results in a noticeable increase of computational expenses.
Investigating the qualitative improvement they induce was, therefore, self-evident.

Dynamic Patch Size

The first assumption was that using a single patch size, in the following referred to as
static, provides similar results to those obtained by a dynamic patch size. To confirm
this assumption, the latter is compared to a set of static patch sizes according to the
settings defined in [IJO7]. That is, a range of M,,;, = 9 to M,,,, = 17 is used with a
search window 8 = 3M. The patch size is increased by to ensure odd-sized patches with
a valid patch centre p. Static and dynamic patch sizes are tested using the originally
proposed algorithm in [1JO7].

PSNR (dB)
Dynamic size Static size

Image 9-17 9 11 13 15 17

G_Entrance_Pillar 48.81 4893 49.04 48.78 INEIR
G_Entrance_Top 48.00 46,71 EEEER 47.51 47.30 NS
G_Entrance_2sq 43.65 EEmE 4210 EEEE 3943 3992
MikadoPlatz_TopLeft 48 10 49.19 WOEE 4891 49.36 4848
LibFront_HorizLong 39.33 39.25 37.35 36.04 INEE
LibFront_RightBottom 40.82 41.18 40.85 41.70 EvKeE NN
Gravel 33.88 EERE 3305 33.67 32.65
Menseria_LeftBottom 42.63 4230 42.66 42.66 42 1/
Menseria_Top 33.65 a8 3529 3481 EEE 3290
Obelisk_Centre 33 301 33.60 3375 33.66 HHEE 3147
CampusWater 35.14 35.17 ERER 3430 3520 R

Table 5.2: PSNR values retrieved by varying the fixed patch size. The dynamic patch size
denotes the reference data corresponding to the Ignicio approach. The inpainting process is
carried out using the original priority equation (3.19) and a search window size 8 = 3M.

Computing the PSNR for the results obtained using the different setting for the patch
size provided the data shown in Table 5.3. The distribution of the highest PSNR for each
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image suggests an improved inpainting quality for static patch sizes which tends towards
lower sizes instead of higher ones. Static patch sizes M = 9 and M = 11 are leading the
table with 55% of the highest PSNR values. In addition, the data shows that the smallest
patch size M = 9 produces a predominantly higher PSNR than the dynamic patch size
for the test set. Larger static patch sizes, however, suggest a regression of the quality
with mostly lowest PSNR values the patch size M = 17. This provides that the previous
assumption is correct and static patch sizes produce equivalent or better results than
their dynamic counterpart. In addition, smaller patches are preferable to larger ones.

Dynamic 9-17 Static 9 Static 11 Static 15

(a) CampusWater

(b) Gravel

Figure 5.9: Exemplar excerpts from inpainting results using the patch size settings specified
above each column. The inpainting process used the original fill-order calculation from the
Ignécio approach with a search window size 8 = 3M.

Based on the description in section 5.2.1, the results have to be visually examined to
substantiate these suggestions. The detail images in Figure 5.9 show exemplar results
corresponding to the data in Table 5.2. The inpainted regions provide different degrees
of sufficiency depending on the selected patch size. Although none of the results are
sufficient and they all suffer from repetitive texture, they expose the expected properties.
The target regions in Figure 5.9(a) for the dynamic patch size and static patches with
M =9 and M = 15 are poorly inpainted with repeating texture disrupting the strong
isophotes traversing the image from back to front. The best results are obtained by the
patch size M = 11 complying with the previous suggestion that static patch sizes are
sufficient. The images in Figure 5.9(b) emphasis this as well. Admittedly, the results
for M = 9 and M = 11 are less sufficient with disrupted isophotes and gravel wrongly
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inserted into the grass texture. The last image, however, shows that a similar inpainting
result is obtainable using the static patch size M = 15. The isophotes are continued
correctly and repeating texture is equivalent to result for the dynamic patch size.

Using a static patch size is, therefore, considered the sufficient choice for inpainting.
The suggested superiority, assured in [[JO7], could not be reproduced and small static
patch sizes provide similar results with less computational expense. In some cases,
as shown in Figure 5.9(a), even better results can be obtained. Hence, the following
sections assume a static patch size, generally set to M = 9, unless stated otherwise.

Search Window Size

It has already been stated that the target regions depicted in Figure 5.9(a) contain a large
amount of repeating textures, a problem that was discussed in section 4.3.2. The cause
for such disrupting patterns is suggested to be the limitation of the search region O(p)
to a very small size of & = 3M. The reason for introducing ®(p) was to reduce the
high computation times accompanying the dynamic patch size. Since this is no longer
a concern, the question is raised whether to eliminate this constraint. The investigation
in section 4.3.2, however, described that it also prevents some artefacts inherent in the
Criminisi and Cheng approaches. A compromise is to increase the search window size
to reduce the repetitive patterns but refrain from abandoning it completely.

PSNR (dB)
6 (Dynamic 9-17) 0 (Static 9)

Image M M AM 6M &M

G_Entrance_Pillar 48.81 4893 EEN® 48.81 NN
G_Entrance_Top 3.00 RNl 4688 4741 47.29
G_Entrance_2sq 43.65 EENGY HEER 42.15 42.11
MikadoPlatz_TopLeft 48 10 49.11 49.56 49.67
LibFront_HorizLong 39.33 3991 4047 40.59
LibFront_RightBottom 10 8] 41.18 41.53 41.26
Gravel 33.88 33.95 3385 HEE KEE
Menseria_LeftBottom 42.63 BRIl 4276 42.75
Menseria_Top £ O BRI 3568 3562 35.11
Obelisk_Centre 33 %)) BREEE 33.73 33.74 KM
CampusWater 35.14 35.17 35.71 WK EEE

Table 5.3: PSNR values computed from inpainting results using a varying search window size
0. Inpainting is carried out using the original fill-order from the Ignécio approach and static
patch size M = 9. The dynamic patch size denotes the reference data set.
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The impact of this change is investigated using the original settings of the Ignicio
approach with a dynamic patch size and the smallest static patch size M = 9. The
retrieved PSNR data is shown in Table 5.3. Although, it is not offering a direct in-
sight into the increase or decrease of repeating textures, the values show a tendency
for higher PSNR values towards a larger ®(p). More specific, the search window sizes
6 = 6M and 6 = 8M produce the highest PSNR for 64% of the inpainting results. The
remaining 36% are almost equally distributed between the other settings. This indicates
that the suggested increase of the search window size leads to better inpainting results.
The reduction of repeating texture could be derived from that assuming that pixel-wise
differences increase with repetitive patterns where the original image contains diffuse
textures. The PSNR, however, does not provide the sufficient measure to substantiate
more then just a assumable trend.

6 = 3M (dynamic) 6 = 3M (static) 6 = 6M (static) 6 = 8M (static)

(a) Gravel

(b) LibFront_HorizlLong

Figure 5.10: Excerpts from inpainting results computed with a varying search window size. The
size used for the corresponding images is specified above each column. The inpainting results
are obtained using [[JO7] with a patch size of 9 pixels where a static size is used.

The confirmation for this suggestion is, therefore, to be found in visually investigat-
ing the images in Figure 5.10. Comparing the images in Figure 5.10(a), in particular,
expose the expected influence of @(p) on the inpainted image. The excerpt of the im-
age computed with the dynamic patch size, although it contains sufficiently continued
isophotes, is dominated by repetitive grass texture close to the stone texture in its cen-
tre. Using the same setting for ®(p) with a static patch size M = 9 in the second image
illustrates that reducing the patch size inpaints the target region creating an even less ac-
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ceptable result. Choosing larger sizes for ®(p), as shown in the two successive images,
shows sufficient isophotes combined with reduces repeating textures. This validates the
tendency observed in Table 5.3. Choosing 6 = 6 or 6 = 8 provides a larger set of sample
patches which makes it more likely to find an optimal best-matching patch W(§). The
similar can be observed looking at the results in Figure 5.10(b), where the first image
depicts an unacceptable result with disrupted isophotes in the shutter texture and the
pillar to the left. Selecting a larger ®(p) shows an improved image with each increment,
eventually producing an improved inpainted image at 6 = 8M. Assuming, however,
that larger and larger sizes produce better and better results was already stated to be
misleading, as described in section 4.2.2. A closer look at the result in Figure 5.10(a)
using 6 = 8M reveals that small pieces of stone texture are placed in the grassy part of
the target region.

These examples confirm the PSNR-based assumption that using an increased O(p)
used with static patch sizes improves the results compared to the Ignacio approach. Fur-
thermore, it is demonstrated that abandoning ®(p) is not a solution since wrongly sam-
pled textures start to occur when ®(f) becomes too large implying that a intermediate
solution is the most sufficient. Evaluating the test set and their representative examples
in Figure 5.10 lead to the conclusion that the size 6 = 6M satisfies the desired quality
and is, therefore, used in all further evaluations unless it is stated otherwise.

5.2.3 Weighted Additive Priority

The major realisation throughout chapters 3 and 4 was that the fill-order and, therefore,
the calculation of the priority value for each search patch W(p) is the most important
element of all three algorithms. It has the largest influence on the inpainting result.
Improving these results can only be achieved by improving the quality of the fill-order.
After investigating the shortcoming of the the approaches in Chapter 4, two modifica-
tions were suggested in sections 5.1.1 and 5.1.2. The first modification considers an
additive priority calculation allowing to weigh the three components confidence, struc-
ture orientation and structure significance against each other using equation (5.3). This
section evaluates the test results retrieved using this new calculation and shows how the
weighing effects the inpainting process. The structure weight wg and the confidence
weight w¢ are investigated independently to illustrate the impact either value has on the
fill-order.

The Structure Weight

Applying the additive priority approach using only the structure weight is the first step
in this evaluation. The existence of two parameters implicates a higher complexity
investigating them at the same time. The confidence weight wc is, therefore, assume to
be we = 0.5 to simplify the process. The structure weight wy, as described in section
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5.1.1, is used to weigh structure orientation and the structure significance. Using a
higher value for ws results in a dominance of the significance component, whereas
lowering it increases the influence of the orientation of the structure. The PSNR data
obtained by applying the inpainting method using several different settings for wy is
shown in Table 5.4. An attempt to identify trends towards certain settings from these
results is unsatisfactory. Highest and lowest PSNR values are spread over all columns
with no particular response for a specific wg. As it was pointed out in section 3.3.4
concerning the Cheng extension, this is justified by the statement that different images
required different adjusted parameter settings. Hence, the data suggests an individual
adjustment of wg to improve the inpainting quality.

PSNR (dB)

Structure weight with we = 0.5
Image 0.2 0.4 0.5 0.6 0.8

G_Entrance_Pillar ERNEE Bl 49.19 49.07 49.01
G_Entrance_Top 4775 4732 4741 KNG HEE

42770 4230 EEE 4401
49.02 49.02 48.73

G_Entrance_2sq
MikadoPlatz_TopLeft

s BN

A :
- e

e @) TN

LibFront_HorizLong g 39.53 3955 3976 KR
LibFront_RightBottom 41.23 HiNE 41.76 IEE 42.34

(O8]
(O8]
(8]
()

Gravel . 33.66 33.58
Menseria_LeftBottom 43.13 EENE 4321 43.14 IXNEE
Menseria_Top 3563 ENMER 3511 HEERR 3571
Obelisk_Centre EBRER 3383 EEEE 33.58

3373 ERER 33.56 3341

CampusWater

Table 5.4: PSNR values obtained by varying the structure weight wg in equation (5.2). The
inpainting was carried out using a fixed confidence weight we = 0.5, a static patch size M = 9
and a search window size 8 = 6 M.

Another visual examination of the test set is required to find a regularity of adjusting
ws and to understand the impact of the structural weight on the results. The image in
Figure 5.11(a), for instance, was generated with wg = 0.2 defining the structure orienta-
tion as the dominant structural component. Although it does not provide a perfect result,
it illustrates that the strongest isophotes in the image are continued correctly into the tar-
get region. Even their intersection in the centre of the target region is reasonably good
regardless of its complexity. In contrast, a higher weight ws = 0.8 inverts the previous
ratio stressing the structural significance. Strong isophotes in Figure 5.11(b) are still
continued, such as the vertical beam and the glass facade, but their intersection is less
appealing. The dominant structure significance increased the priority of patches close to
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the beam due to its more significant coefficients. Consequently, its isophotes are propa-
gated with higher priority and eventually displace the horizontal isophote bordering the
glass facade.

Menseria_Top Gravel

(a) Wws = 0.2 (b) Wws = 0.8 (C) ws = 0.2 (d) Wws = 0.8

Figure 5.11: Excerpts of inpainting results computed using the additive priority approach with
a fixed confidence weight we = 0.5. The inpainting process used a static patch size M = 9 and
a search window 6 = 6M.

The second image reveals a different effect that the weighing of the structural com-
ponents can have. It illustrates the true complexity of finding the most suitable ws.
Figure 5.11(c) depicts an image inpainted with a dominating orientation component.
The first assumption is to have the isophotes, traversing from left to right, continued
and connected. Unfortunately, the orientation of isophotes is more important than their
significance and therefore the small isophotes present in the gravel texture are contin-
ued into the target region at the same pace as those framing the grey paving stone. This
leads to the disrupted isophotes, where the gravel texture grows into the grass texture.
Swapping the dominance for the same image produces the inpainting result in image
5.11(d). It shows a better connection of the major isophotes in the centre. However, the
result is still not really sufficient.

The two exemplar images illustrate that, as suggested, the weight ws has to be ad-
justed individually to each image for satisfactory results. The magnitude of impact on
the fill-order is obvious in the images in Figure 5.11. Provided the most suitable ws is
found for an image, its inpainted quality can be increased, as shown in Figure 5.11(d).
However, the complexity of adjusting ws, especially in images with a large number of
isophotes, makes it difficult to find this most suitable value. Figure 5.11 even illus-
trated that opposing weights in different images can create equivalent inpainting results
depending on their structural characteristics. The adjustment of this parameter is, there-
fore, highly empirical and requires a certain degree of experience.
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The Confidence Weight

The second weighing parameter w¢ is used in equation (5.3) where it balances the con-
fidence component and the weighted structure obtained from equation (5.2). A low w¢
lets the priority tend towards the confidence reducing the importance of the structural
components and vice versa. To evaluate only the influence of w¢ on the inpainting re-
sults the structure weight is set to ws = 0.5. Applying the additive priority approach
using several settings for w¢ obtained inpainting results corresponding to the PSNR data
in Table 5.5.

PSNR (dB)

Confidence weight with wg = 0.5
Image 0.2 0.4 0.5 0.6 0.8
G_Entrance_Pillar 49.04 49.11 IENE EEE 49.08
G_Entrance_Top 4724 HERE 4741 4728 HNEY
G_Entrance_2sq 4249 EPEER 4230 42.15 HEE
MikadoPlatz_TopLeft 4899 HEEE 49.02 49.07
LibFront_HorizLong EEEE 3981 39.55 4046
LibFront_RightBottom 42.14 EPNR 41.76 41.01 HiEE
Gravel 33.61 33.82 3423 N EEKE
Menseria_LeftBottom 42.93 43,08 INIRE
Menseria_Top 35.88 35.80 AN 35.27
Obelisk_Centre EBEEE 3371 3383 33.10 KR
CampusWater B 3344 EEEE 30.80 33.30

Table 5.5: PSNR values for inpainting results obtained by varying the confidence weight wc.
The structure weight is set to ws = 0.5 and a static patch size of 9 pixels is used. The search
window size is set to 6 = 6M.

As opposed to the data shown in Table 5.4 the PSNR values in Table 5.5 are more
orderly arranged. Investigating the highest and lowest values for each image reveals
that a high PSNR for a low w¢ always responds with a low PSNR for the higher w¢
results. Image LibFront_RightBottom for instance has its highest values at we = 0.4
and the corresponding lowest PSNR at the other end of the tested range of settings with
wc = 0.8. This confirms the statement in section 3.3.4 as well as the assumption this
modification is based on. The correlation between texture and structure in an image
can be represented in the fill-order by adjusting w¢ resembling this correlation. Since
an image is either texture or structure dominated, the PSNR data responds accordingly
with high and low PSNR values at opposite ends of the range of settings. In addition,
the PSNR data reveals another tendency for w¢. The medium value 0.5 produces several
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highest PSNR values and, in average, is only 0.46 dB below the highest PSNR for each
result. Therefore, it suggests that this value tends to provide good results for images
regardless of their texture and structure correlation.

LibFront_HorizLong LibFront_RightBottom

(a) We = 0.2 (b) We = 0.8 (C) We = 0.2 - (d) We = 08

Figure 5.12: Excerpts of inpainting results computed with different confidence values wce. The
structure weight in the additive priority calculation is set to wg = 0.5. A static patch size M = 9
is used with a corresponding search window 6 = 6M.

Substantiating these observations and suggestions, once again, requires the visual
investigation of examples. Figure 5.12(a) contains a high amount of structure with
isophotes of different strengths and directions. Using a low w¢ in the inpainting process
limits the influence of the isophotes and proceeds mainly based on high confidences.
This leads to displaced and disconnected isophotes, especially, for the stronger vertical
ones. Increasing w¢ inverts this behaviour and emphasises the structural information
in the priority. As a result, most of the vertical isophotes are continued and connected
correctly with a few artefacts near the pillar on the left side. The opposite behaviour
is observable in Figure 5.12(d) where the emphasis on the structure introduces strong
isophotes in the target region cutting through the texture of the pavement. The domi-
nance of strong isophotes in the fill-order overrules smaller isophotes intersecting in the
target region and disrupts them. Reducing w¢, however, provides a more texture-driven
fill-order that allows less strong isophotes to be connected as well and returns a more
uniform pavement.

The results in Figure 5.12 substantiate the observations based on the PSNR data in
Table 5.5. Depending on the correlation between structure and texture, the obtainable
results adjusting w¢ are more satisfying than without. Furthermore, the change induced
by modifying w¢ is compliant with its expected behaviour. If a higher w¢ produces an
improved inpainted image, a lower value is less sufficient and vice versa. This makes
the adjustment of w¢c much more intuitive and is, therefore, the preferable weight to
adjust.



86 CHAPTER 5. INFAINTING MODIFICATIONS AND RESULTS

Comparing Approaches

The difficulty of finding the most suitable parameters ws and wc¢ for each image individ-
ually poses the question if the inpainting results obtained by an optimal set of parameters
provides the desired improvement compared to the three existing approaches. Empiri-
cally retrieving the most suitable settings for ws and w¢ and the images in the test set
provides the data in Table 5.6. These data, however, suffer intensely from the prob-
lem described in section 5.2.1. The PSNR values for the image Gravel, for instance,
represent a quality of results that is absolutely misleading and do not resemble their ac-
tual quality at all. The corresponding inpainted images in Figure 5.13(c) illustrate this.
The PSNR data is presented for completeness but is ignored in favour of comparing the
quality based on exemplar images.

PSNR (dB)
Image Criminisi Cheng Ignédcio Additive Additive (9-6)
G_Entrance_Pillar 44 67 49,17  48.81 48.37 49 .29
G_Entrance_Top 14 6) 48.72  48.00 48.01
G_Entrance_2sq 44.26 44.5 43 69 44 7/ 44.64
MikadoPlatz_TopLeft 20 R 45.10 49.61 49.20
LibFront_HorizLong 40.93 39.82 IEEE 40.00
LibFront_RightBottom s 40.55 40.82 41.01 42 60
Gravel 33.70  33.88 30.60) 34.38
Menseria_LeftBottom 47 43 EREN  42.63 42.65 43.24
Menseria_Top 36,45 28 .9 33.65 34.87 35.89
Obelisk_Centre 29.72 EBER 3382 33.20 33.0)
CampusWater 31,89 R 35.14 34.14 33.85

Table 5.6: PSNR values computed from the respective inpainting results of the denoted ap-
proaches. The additive priority approach uses a dynamic patch size with 8 = 3M and weights
set to we = 0.5 and ws = 0.5 respectively. The second additive approach represents the highest
PSNR value determined during the evaluation above. It uses a static patch size M = 9 and the
search window size 6 = 6M. The abbreviation 9-6 denotes the minimum patch size and selected
factor for the search window size.

The examples in Figure 5.13 compare the results created by these three approaches
respectively to those created using an optimal set of parameters for equation (5.3). The
patch size is set to a static size of 9 pixels. It turns out that the result produced using
additive instead of multiplicative priorities are a visual improvement to the results ob-
tained by the Ignécio approach. It suffers from visible patch-shaped artefacts in the cor-
responding excerpt in Figure 5.13(a) and repetitive texture in Figure 5.13(c). They can
both be reduced using the additive fill-order approach. The comparison with [CPT04]



5.2. EVALUATION OF THE MODIFICATIONS 87

and [CHL*05] is more difficult since the results vary dramatically. Their results de-
picted in Figure 5.13(a) are very good with the Cheng extension superseding Crimin-
isi and producing a very plausible inpainted region. It connects the most important
isophotes correctly and provides reasonable inpainting in the textured area. This can
also be applied to the results in Figure 5.13(b) where the only difference is that the
additive approach reconstructs the gully cover slightly better than the Cheng extension.

Criminisi Cheng Ignacio Additive

e

(b.) G_

T Mo

Entrance_2sq

(c) Gravel

Figure 5.13: Excerpts of inpainting results obtained by the Criminisi, Cheng and Ignécio ap-
proaches as well as the proposed additive priority approach. The used approach is specified
above the corresponding column. Additive inpainting uses a static patch size M = 9, the search
window size 6 = 6M and the respective weights ws = 0.5 and we = 0.5.

In contrast, the results presented in Figure 5.13(c) are the very opposite of the previ-
ous observation. Inpainted solutions provided by [CPT04] and [CHL*05] are not even
close to plausibility with elements from the surrounding building being introduced in
the gravel and grass texture, as shown in Figure B.8. The Igndcio approach as well
as the proposed additive modification provide much better results with the latter being,
once again, the most plausible result with the least artefacts. It substantiates the sugges-
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tion that the additive priority approach produces similar or improved results compared
to the most sufficient ones obtained by Criminisi, Cheng or Igndcio.

5.2.4 Weighted Mixed Priority

The second modification proposed in section 5.1.2 tries to reduce the complexity of
finding the correct set of parameters for an image by using a single weight w¢. There
is no corresponding weight to ws, the structure components are multiplied without any
additional weighing. It was explained in the previous section that obtaining good results
by adjusting wy is difficult due to the complexity of correlation between the strength and
orientation of isophotes. The mixed priority method is therefore an approach to simplify
this by using a single more intuitive weight wc.

The Confidence Weight

The priority value, calculated using the w¢ in equation (5.4), is reverting the splitting
of the structure value defined in [IJO7] and provides a single scalar denoting the com-
bined structural information of orientation and significance. This value is then weighted
against the confidence value as described in section 5.1.2. It is similar to the confidence
weight in section 5.1.1 and is, therefore, denoted with the same symbol.

PSNR (dB)
Confidence weight w¢
Image 0.2 0.4 0.5 0.6 0.8
G_Entrance_Pillar 49.11 49.09 49.02 NN
G_Entrance_Top 47.08 4728 4661 HIE NEE
G_Entrance_2sq 4448 4490 4494 [ENAN

35 24]
MikadoPlatz_TopLeft [EENIE 49.72 49.13 48.58 NN
LibFront_HorizLong EEE 40.00 MR 40.22 39.99

LibFront_RightBottom 41.58 4191 42.07 A
Gravel 33.08 EEEHN 33.67 W 33.87

BN 4252 4232 EBER 4255
Menseria_Top BERE 3568 R 35.04 3515
Obelisk_Centre BREE 31.16 32.01 33.07 ¢EKE
CampusWater 20 04 33.01 3297 30.87

Menseria_LeftBottom

Table 5.7: PSNR value for different confidence weights w¢ using the mixed priority equation
(5.4). The static patch size M = 9 and search window size 8 = 6M were used for inpainting.
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The PSNR data produced by the inpainted test set is shown in Table 5.7 and is
not providing very sufficient information on the quality of mixed priority inpainting.
Compared to the data in Table 5.5, there is no distinguishable tendency for a suitable w¢
per image and the pattern of highest and lowest PSNR being located at opposite ends of
the table has also disappeared. The only observable property is that we = 0.5 produces
inpainted results that tend to be close to the highest PSNR value. More precisely, their
difference averages 0.33 dB. This suggests, at least, this setting is generally suitable to
a larger number of images and can, therefore, be considered a good default value. This
is illustrated by the inpainted images in Figure 5.15.

LibFront_HorizLong LibFront_RightBottom

. '”:_'!:Tt_"i

|

(a) We = 0.2 (b) We = 0.8 (C) We = 02 | (d) We = 08

Figure 5.14: Inpainting results obtained by using varying confidence weights in the mixed
priority approach. The inpainting procedure used a static patch size M = 9 with 6 = 6M.

Adjusting wc to the proportion of texture and structure in an image, however, is de-
sired for an improved quality. Changing the values for w influences the fill-order equiv-
alently to the additive priority methods, as illustrated in the examples in Figure 5.14.
The comparison of these inpainting results to those presented in Figure 5.12 exposes
their high similarity. It illustrates that the impact of w¢ in both cases produces simi-
larly sufficient inpainted images. The increase of w¢ puts emphasis on the isophotes in
the image and provides their propagation into the target region. The isophotes in Fig-
ure 5.14(d) are better continued than those in Figure 5.14(c). In this image the higher
amount of structural elements requires an increased w¢ to provide more suitable results
for the isophotes. The image in Figure 5.14(c) in contrast has an improved result us-
ing a lower wc¢ since the complexity of intersecting isophotes abutting the target region
responds better to texture-driven inpainting. In equivalence to the statement in section
5.2.3, increased emphasis on inpainting the texture improves the results because of nu-
merous isophotes crossing the target region. Their varying significances make it difficult
to continue all isophotes equivalently without disrupting any of them. Emphasising the
structure components in the image in Figure 5.14(d), however, decreases its quality due
to several strong isophotes continued into the target region. They are cutting through it
disrupting the texture of the pavement and its contained, but less significant, isophotes.
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LibFront_HorizLong LibFront_RightBottom G_Entrance_2sq Gravel

(a) we = 0.5 ) we = 0.5 (©) we =0.5 (d) we = 0.5

Figure 5.15: Inpainting results computed using the mixed priority approach. The static patch
size M =9 and 6 = 6M was used.

This emphasises that an adjustment of the fill-order to the correlation of texture and
structure is crucial to produce sufficient results. wc is considered a suitable parameter
that allows this exact adjustment and responds as expected in terms of empirical retrieval
of suitable settings.

Comparing Approaches

Comparing the mixed priority approach to the three existing approaches allows similar
observations to those provided in section 5.2.3. The PSNR data for each image and
approach in Table 5.8 behaves similar to that in Table 5.6. The PSNR values are not
providing enough insight into the inpainting quality to even consider it as quality mea-
sure. Looking at the data produced by the image Gravel defines the Criminisi approach
as provider of the most sufficient result, whereas the images in Figure 5.16(b) depict the
exact opposite. The only observable tendency is that the mixed priority approach with
M = 9 and 6 = 6M produces, in general, PSNR values that are close to the highest
value. Although this is no proof for its superiority it suggests an improved inpainting
quality.

The visual examination shows that this suggestion can be substantiated. The pro-
posed modification performs better than the Ignacio approach with improved connected
isophotes in Figure 5.16(a) and less repeating patterns in the textures of the image in
Figure 5.16(b). Inpainting results computed using mixed priorities also provides an
improvement to the Criminisi approach. In this specific image, however, the Cheng ex-
tension still performs better than the proposed extension. The reason for the reduced
authenticity is the disrupted isophote in the right part of the inpainting region and the
bright spot near the pillar repeated several times.

In summary, it can be stated that the mixed priority approach provides a simplified
adjustable fill-order as suggested in section 5.1.2. Adjusting the fill-order to an image is
more intuitive than fine-tuning ws in the additive priority approach. Texture and struc-
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PSNR (dB)
Image Criminisi Cheng Ignicio Mixed Mixed (9-6)
G_Entrance_Pillar 44 671 49.17 4881 48.52
G_Entrance_Top 44 671 48.7 48.00 47.95
G_Entrance_2sq 44 90 44,52 4365 44.66 45 10
MikadoPlatz_TopLeft 39.55 R 48.10 4787 49.80
LibFront_HorizLong 30.82 3933 [EER 40.26
LibFront_RightBottom aeE 40.55 40.82  40.37
Gravel 3370 33.88 NN 34.10
Menseria_LeftBottom 42 43 EREN 4263 4263 42.56
Menseria_Top 36.45 BBl 3365 35.19 35.89
Obelisk_Centre 29.72 EER EE 32583 33.34
CampusWater 31.8Y RPeRE 35.14 3375 33.17

Table 5.8: PSNR values calculated for the inpainting results of the specified approaches. The
mixed priority approach uses a dynamic patch size with 8 = 3M for better comparability with
the three original approaches. The approach denoted Mixed (9-6) represents the highest PSNR
value obtained in the preceding evaluation. It used a static patch size M = 9 with § = 6 M.

ture are clearly recognisable in an image and weighing their correlation using wc is,
therefore, more intuitive. Furthermore, using this single weighing parameter produces
inpainted images equivalent to that additive priority approach which makes it the prefer-
able selection when applying it to an image. The downside, however, is that it leaves a
reduced margin for optimisation and adaptation than the additive priority approach.

5.2.5 Blended Filling of Patches

The last modification, proposed in section 5.1.3, focusses on the reduction of artefacts
introduced during filling of the search patch, as explained in Chapter 4.3. A blending of
of the sample patch coefficients with existing source region coefficients is employed to
smooth the transition between the source region and the inserted coeflicients. A reduc-
tion of patch-shaped artefacts is the desired result. Applying the blending method in the
inpainting process together with the additive priority approach reveals an unanticipated
property of the resulting procedure. Blending the sample and search patch coeflicients
is not only generating new coeflicients in the source region depending on the blending
weight wg, it also influences the fill-order of succeeding iterations. This influence is
obvious considering that the coeflicients near the boundary are altered by the blending
method and, therefore, have an impact on the calculated priorities. Consequently, the
blending modification has to be investigated carefully to ensure that its impact on the
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Criminisi Cheng Ignacio Mixed

(a) LibFront_HorizLong

(b) G_Entrance_2sq

Figure 5.16: Inpainting results obtained using the Criminisi, Cheng and Igndcio approach as
well as the mixed priority modification. The used approach is specified above each column
respectively. The mixed priority approach uses a patch size M = 9 with § = 6M and the
confidence weight we = 0.5.

fill-order is either encouraging a better inpainting result and, more importantly, refrains
from having a negative impact.

Additive Method: ws = 0.2, we = 0.5,0 = 8M Additive Method: ws = 0.5, we = 0.8, 0 = 6M

(a) Plain (b)yo=04 (¢) Plain (d)o=04

Figure 5.17; Excerpts of inpainting results obtained by applying the additive priority approach
to the image Gravel. The used weights are specified in the column above the images. All results
were computed using a static patch size M = 9.

Unfortunately, the influence it has on the additive priority fill-order is problematic.
The images in Figure 5.17 show that the results produced by a plain filling is relatively
sufficient with the strongest isophotes connected, merely containing repetitive patterns
in the textures. With applied blending in Figure 5.17(b) the modification is minor and
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it can be observed that the isophotes are a little smoother compared to the plain result
in Figure 5.17(a). The transition of the grass texture and the stone in the centre of the
excerpt is less abrupt and a few of the patch-shape artefacts can be reduced. Addition-
ally, the texture elements related to the stones that are introduced into the grass texture
in Figure 5.17(a) have disappeared in the blended example. This suggest that blending
is an improvement over the plain filling procedure. The second example, however, con-
tradicts this. Figure 5.17(c) is another example of a sufficient inpainting result. Using
the same settings with additional blending returns a less sufficient result with introduced
patch-shaped artefacts and disrupted isophotes.

The reason for this negative impact on the fill-order is that the blending method
smooths the coefficients in all four subbands W,, W), W, and W,. Altering the coef-
ficients in the source region close to the boundary implies that structure and texture
characteristics are change resulting, in turn, in a modified fill-order. This alteration
leads to a high influence on the additive priority method responding with a less suffi-
cient fill-order, as shown in Figure 5.17(d). Although, this impact on the fill-order is not
necessarily negative but can also provide improved fill-order results, it generally tends
to be negative. This makes the application of the blending method in combination with
the additive approach insufficient. Its main limitation is that it cannot be applied to an
image with a sufficient fill-order to simply improving the transition between textures and
reducing the artefacts. Its high impact on the fill-order risks a reduction in inpainting
quality.

Mixed method: we = 0.8, 0 = 6M Mixed method: we = 0.4, 0 = 6M

(a) Plain ®o=04 (¢) Plain (do=04

Figure 5.18: Excerpts of inpainting results obtained by applying the mixed priority approach to
the image Gravel. The inpainting procedure was carried out using patch size M = 9.

Using the mixed priority equation (5.4) with applied blending, on the other hand, is
more stable. The blending of source pixel coeflicients imposes an amount of change that
improves the visual impression with reduced artificial isophotes and repeated texture.
Its impact on the fill-order, however, is limited due to better balanced confidence and
structure components in equation (5.4). The images in figures 5.18(a) and 5.18(b) are
results obtained by the same inpainting routine, the first one using the original filling,
whereas the second one uses the blending method. It can be observed that the connected
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isophotes remain unchanged in the blended example with an improvement of the grass
texture, where the repetitive patterns are slightly reduced.

As a contrasting example, the images in figures 5.18(c) and 5.18(d) both show insuf-
ficient inpainting results. They illustrate, however, that the applied blending method has
only a limited impact on the fill-order. The transition between grass and gravel texture
is smoothed in Figure 5.18(d) with the fill-order remaining mostly similar. On the one
hand, this implies that the blending is incapable of improving the inpainting result gen-
erated by an insufficient fill-order. This ensures, on the other hand, that a more sufficient
fill-order is not dragged into insufficiency by blending coeflicients. This shows that the
combination of the blending method with the mixed priority approach is more solid than
its additive counterpart. The blending has little impact on the fill-order but introduces
a reduction of repetitive patterns and smooths the transition between textures. It can,
therefore, be stated that blending is best used with the mixed priority approach since
it imposes an improvement of results without a noticeably increased influence on the
fill-order.

The Blending Parameter

It remains to evaluate the influence of the blending parameter o, described in section
5.1.3, on the inpainting process. A few different values for o have therefore been se-
lected and applied to the test set using additive and mixed priority calculation respec-
tively. Their weighing parameters haven been set to 0.5 for all corresponding weights
to ensure their comparability with differences mainly imposed by the varying blending
parameter. The obtained PSNR results are displayed in Table 5.9. The data suggests
that the used blended inpainting is an improvement over the Ignacio approach. The
latter only provides a single inpainting result that is considered superior to the blended
examples, whereas the blending imposes increased PSNR values.

Additionally, the data shows that higher values for o tends to produce higher PSNR
values for both inpainting methods. This is an anticipated behaviour since o resembles
the standard deviation of the Gaussian distribution, as described in section 5.1.3. A
higher o reduces the degree of blending by lowering the curve of the Gaussian distri-
bution and, therefore, the influence of sample coefficients. Hence, the data in Table 5.9
suggests that a reduction of the blending increases the inpainting quality. This is jus-
tified by the concept behind the blending method. New coeflicients are created by the
weighed combination of corresponding search and sample coeflicients in each subband.
These coeflicients are less likely to match those in the original image since they are a
combination of coefficients. Furthermore, the blending introduces a certain degree of
blur into the inpainted region which adds to the difference between the inpainted and
the original image. Although this limits the probability of achieving a perfectly accu-
rate image, it is not stated that inpainted images are less sufficient for the PSNR-related
reasons detailed in section 5.2.1.
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PSNR (dB)
o (Additive) o (Mixed)

Image Igndcio 0.2 0.4 0.6 0.2 0.4 0.6

G_Entrance_Pillar EREE 4925 49.04 49,13 4923 49.25
G_Entrance_Top 48.00 48.05 4795 4789 48.47 N
G_Entrance_2sq 43,65 HBEER 4252 4292 4452 43.19
MikadoPlatz_TopLeft BNl 4893 4925 4895 4927 49.25
LibFront_HorizLong EEEE 4033 3352 4040 4039 IODNE 40.34
LibFront_RightBottom HNNEM 4240 4323 4277 43.09 43.32
Gravel 33.88 34.09 3430 EEN EENE 3380 33.94
Menseria_LeftBottom 42,63 4377 HENME 4390 4347 43778 IKEE
Menseria_Top BEEER 3592 3447 3598 36.13 35.37
Obelisk_Centre 33.82 3384 3403 NI EEME 3386 33.86
CampusWater BREE 3265 NN 3288 32.82 3331 3212

Table 5.9: PSNR values computed for varying blending values for o. The mixed and additive
approaches both use a static patch size M = 9 with § = 6 M. The additive weights are set to
ws = 0.5 and we = 0.5. Correspondingly the confidence weight for the mixed priority approach
is set to we = 0.5.

Visually evaluating the examples in Figure 5.19 emphasises that the PSNR data dis-
cussed above is not representative for the quality of inpainting achieved by applying the
blending method. The images in figures 5.19(c) and 5.19(d) depict a similar inpainted
region where most isophotes are connected accurately. The improvement imposed by
the blending mostly concerns the transition of differently shaded texture. The shutter
contains less disrupting seams at the transition of these textures which is well-visible at
the second vertical isophote from the right. The darker texture surrounding the isophote
is blended into the brighter neighbouring texture. A similar effect is exposed by the arte-
facts at the left side of the pillar. Its edge is displaced producing step artefacts which are
smoothed in figures 5.19(a) and 5.19(c). The isophote is still displaced but the blending
reduces the rectangular shape of the displacement making it a less noticeable.

In conclusion, it can be stated that the use of blending in the filling of search patches
can reduce the artefacts imposed by a suboptimal fill-order. The additive priority ap-
proach, however, is highly susceptible to its impact on boundary coefficients. In several
cases, it results in less sufficient inpainting results, where those obtained without blend-
ing are more sufficient. It is, therefore, more important to synchronise the weighing
parameters in the additive priority equation with o to obtain the best result. The mixed
priority method, on the other hand, is a more solid approach, less influenced by the
blending method. Although artificial isophotes and repetitive texture are reduced in the
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Additive method: ws = 0.5, we = 0.5 Mixed method: we = 0.5

(a)oc=0.2 o =028 (©)o=02 (d)o=0.8

Figure 5.19: Inpainting results computed using additive and mixed priority inpainting respec-
tively. The inpainting procedure was carried out using static patch size M = 9 with 6 = 6M. The
images illustrate the results at varying values for the blending parameter o.

inpainted region, it has a minor impact on the continuation of structural elements. Com-
bining the mixed priority approach with the blending method is, therefore, preferable to
the use of the additive priority approach.

5.2.6 Comparing the Modifications

The previous sections investigated the inpainting quality of the proposed modification
individually. It remains to investigate how they perform in direct comparison to each
other. This allows the identification of the modification providing the most suitable in-
painting procedure for removing an object from the campus images. Evaluating the ad-
ditive and mixed priority approaches in sections 5.2.3 and 5.2.4 respectively showed that
both modifications have their advantages and disadvantages. The additive approach, for
instance, is more adjustable to the specific properties of an input image than the mixed
approach. Its parameters, however, are more complicated to adjust correctly. It is to
determine whether a more adjustable approach with higher complexity is preferable or
a method that is more rigid, though more intuitive, to adjust to the image characteristics.

The most important observation, in this respect, is that the optimised results for the
same image using either modification method are almost the same. The inpainted im-
ages in Figure 5.20 and 5.21 clearly illustrate this. They depict the best results obtained
by either modification without blending. They all used a static patch size and increased
search window size for the reasons described in section 5.2.2. A closer look at these im-
ages shows that, although they have minor differences, their perceived quality is mostly
similar. The images in figures 5.20(d) and 5.20(e), for instance, show only small dif-
ferences in the inpainted pavement in the background and the isophotes enclosing the
stone wall in the front are correctly continued through the target region. The similarity
of the other example images depicted in Figure 5.20 and 5.21 are equivalent.
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Additive method Mixed method Blending

(@ ws =05, wc=08,0=38 b)wc=038,0=38 (©)ws = 0.5,
wec =08,0=80=04

(dws = 05, e)wc=04,0=56 Hwc=04,0=6,0=04
we = 05,06 =8

Figure 5.20: Images inpainted using the method specified above each column. All three pro-
cedure used a static path size M = 9. The additive and mixed priority method inpaint without
blending applied. The blending column shows the best obtained result using the blending modi-
fication.

According to these similar inpainting results, they also suffer from a common prob-
lem that is inherited from the three other inpainting approaches. Their main objective
is to connect isophotes abutting the target region correctly and inpaint the remaining
texture around them. As this is a straightforward idea on simple or ideal images as de-
scribed in section 4.2.1 it becomes more and more complex as the number of isophotes
grows. Figure 5.20(a) and the other two corresponding results show such an example
where the shutter consists of numerous isophotes in horizontal and vertical direction.
It is difficult to determine a fill-order that propagates all isophotes in the most suitable
order into the target region. This becomes even more complicated when many of these
isophotes intersect in the target region. Finding the correct sample patch containing a
similar intersection to that required in the target region is difficult and, depending on the
textures in the source region, might not be possible at all. This leads to visible artefacts
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where isophotes are disconnected or displaced, as shown in the images in Figure 5.20.
Retrieving a fill-order that allows to connect all isophotes correctly is hard to achieve
in an image with such a complex structure. The evaluation and proposed modifications
for the fill-order could reduce the problem but are still not able to fully reconstruct the
target region without disconnecting isophotes and corresponding artefacts.

Additive method Mixed method Blending

(A ws = 0.5, (b) we =0.8,0 =8M (¢) Additive: wg = 0.5,
we = 08,0 = 8M wec=08,0=8M,0=04

(D ws = 0.5, e)ws =04,0=6M (f) Mixed: we = 0.4,
we = 05,0 = 8M 0 = 6M,0 =04

Figure 5.21: Inpainted images using additive and mixed priority inpainting with and without
blending applied. The used method is specified above each column. The blending column
shows the best results obtained using either additive or mixed priority inpainting. All methods
used a static patch size M = 9.

A proposed solution to reduces the visibility of this problem was the introduction
of a blending modification that reduces patch-shaped artefacts and smooths small dif-
ferences in inpainted textures. It was described in section 5.2.5 that the combination of
blending with the additive priority method can have a negative effect on the fill-order
and even decrease the quality of the inpainted image compared to its non-blended vari-
ant. Combining it with the mixed priority modification, however, was shown to provide
more stability by not decreasing a good fill-order. Hence, a suitable mixed priority fill-
order for a specific image is generally improved by adding blended filling. In the images
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in figures 5.20(f) and 5.21(f) the patch-shaped artefacts in adjoining textures are reduced
by blending the coeflicients in the filling step and smoothing their transition compared to
the corresponding inpainting results without blending. Blending also reduces the repet-
itiveness of texture described in section 4.3.2 that is introduced by sampling from the
same neighbouring texture multiple times as it is achieved in Figure 5.21(c). Nonethe-
less, the improving influence of the blending modification is limited. Large repeated
textures as well as adjoining textures that are too different are not removed or reduced
by smoothing the coefficients. The repetitive background in Figure 5.21(f), for instance,
is impossible to remove using the blending step. The still suboptimal inpainted texture
produced by the modified fill-order contains too much repeating elements to blur them.

(a) Original (b) Inpainted Image

Figure 5.22: Original and inpainted image with colour checker removed. Inpainting used the
mixed priority approach with we = 0.5. The patch size is M = 9 with the search window size
6 = 12M and blending uses o = 0.4.

Summarising these observations shows that the most sufficient and reliable modifi-
cations the mixed priority approach extended by the blending modification. The simi-
larity of optimised results produced by both an additive and a mixed fill-order lead to
the objection of the additive approach in favour of its more solid counterpart. This re-
quires the adjustment of a single parameter for the fill-order, the confidence weight wc,
to adapt the priorities to the characteristic structure and texture relation in an image.
The most suitable wc is to be retrieved empirically for each image but is more intuitive
than adjusting two parameters in the additive priority approach. Together with the added
blending that co-operates well with the mixed priority fill-order, the resulting approach
provides sufficient results in the majority of examples. It is, therefore, more applicable
to the colour checker problem than those investigated earlier in this work, as Figure 5.22
shows.






Chapter 6

Conclusion

This work investigated three different approaches from the fields of image inpainting
and medical image processing respectively to evaluate their applicability to removing a
colour checker from campus images. The results obtained by an initial evaluation of the
selected approaches showed that applying the defect pixel interpolation used in image
processing [AMO1] provides no suitable solution for this problem due to its reliance on
periodic low-frequency information in the Fourier domain. It, therefore, struggled with
highly detailed and structured images as those provided in the test set which lead to its
exclusion concerning further consideration. Image inpainting, however, turned out to be
a much more solid field of research concerning the removal of objects from real images.
The evaluation of two specific approaches developed to provide an inpainting solution
showed that the Criminisi and Ignécio approaches provide good inpainting results for
real images but still suffer from some several weaknesses. A close examination provided
an insight into these approaches that allowed to identify the source of their shortcomings
and, thereupon, the proposal of modifications to overcome these limitations.

The problem of a fill-order that is not suitable for the specific set of highly structured
images was addressed by proposing two modifications concerning the calculation of pri-
orities. The additive modifications are based on the concepts and observations described
in [CHL*05] which were investigated thoroughly in the first part of this work. A higher
stability with more distinguishable priority values was achieved by adding the compo-
nents in the priority equation instead of multiplying them. Additionally, two weights
were introduced that allow to control the balance between its two structural components
and, in turn, the resulting weighed structure value and the texture-related component.
This offers the possibility of adjusting the fill-order to the specific proportion of struc-
ture and texture in an image. The correct adjustment results in an improved inpainting
result. Finding the optimal set of parameters, however, is highly empirical and can be
counterintuitive.

The second fill-order modification tries to reduce the complexity of the adjustment
process by combining the structural components at equal terms, simply balancing the
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structure and texture components. A single adjustment parameter remains, reducing
the complexity of finding a suitable weight. Furthermore, controlling the balance be-
tween texture and structure is less complicated due to their more intuitive resemblance
in the image. In addition, reducing the number of parameters results in a less flexi-
ble fill-order that offers less control over the priorities than the additive approach. The
inpainting results showed, however, that the results of optimised parameters for both
modifications are in most cases equivalent which made the mixed priority approach the
more appealing. Controlling the adjustment parameters allows a better control over the
connection and continuation of isophotes as well as the inpainting of remaining tex-
tures. This provides good results for several images from the test set assuming the most
suitable parameters are used. Several images, however, contain too complex structures
and too many isophotes to be inpainted with the proposed modifications. Additionally, a
large amount of isophotes intersecting in the target region make it especially difficult to
find a suitable fill-order and construct a sufficient intersection from the available sample
patches.

The last proposed modifications addressed the repetitiveness of texture and artefacts
introduced by adjoining textures. A patch-based blending uses a Gaussian distribution
to determine a blending weight for corresponding search and sample patch coefficients.
The results of applying this modification in the filling process depends mostly on the
used fill-order. It was discovered in the evaluation that the additive priority is easily
influenced by the blended coeflicients and the quality of the fill-order can be reduced.
In contrast, the fill-order determined by the mixed priority approach is more stable and
blending generally improves the inpainting results. It requires, however, a suitable fill-
order for an image to add improving qualities and has no capability of creating sufficient
inpainting results from a less suitable fill-order. Although it reduces the patch-shaped
artefacts and repeating patterns, it is not possible to eliminate them completely.

In summary, it has to be stated that there is no generic solution to automatically
remove an object such as the colour checker from an image. Although the contents of
the images investigated in this work are very similar in terms of their texture and struc-
ture correlation, the remaining differences still require an adjustable solution to provide
sufficient results. An approach proposing an automated solution, therefore, depends
on the identification and classification of different image properties for an automated
adjustment of the described parameters.

Future Work

Although the proposed modifications produce improved results on the test images com-
pared to the considered existing approaches, several problems remain that offer the op-
portunity for further research. Achieving a fully automated inpainting algorithm is the
most appealing of these remaining challenges. Assuming that an automated inpainting
algorithm is desired, a technique that requires the adjustment of multiple parameters is
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difficult to use. The optimal values for a given input image would have to be retrieved
automatically, determining its proportion of texture and structure. One idea would be
to extract their proportion in an image from the high- and low-frequency coefficients in
the approximation and detail coefficients in the respective subbands. The result could
then be used to determine the most suitable parameter controlling the fill-order in either
modification.

Another limitation of the proposed modifications is that the blending, applied when
filling the search patch, is only producing a limited amount of smoothing and, therefore,
cannot reduce all repeating textures and patch-shaped artefacts. Adjoining textures that
are similar, yet change their shade relative to their position in the image, still persist with
applied blending. The use of Poisson blending [PGBO03] instead of the proposed method
based on a Gaussian distribution could be a better alternative considering its described
qualities concerning a similar application in [HEO8]. It would also be interesting to
investigate the latter approach proposing a database-driven search for sample textures
synthesising images from a contextually similar dataset.

The search window that has been subject to a minor improvement by increasing its
size in the proposed methods also provides a basis for an additional investigation and
potential improvements. It was stated above, that repeated textures remains a problem
in the proposed modifications. Reducing these repetitions depends on the selection of a
suitable search window that increases the amount of available sample patches without
increasing the probability of wrongly sampled patches as in [CPT04]. A possibility to
circumvent this could be to adapt the search window. Instead of using a fixed search
window with a certain size and shape, an initial clustering step that partitions the image
into a few segments could be implemented. Numerous well-known clustering algo-
rithms should be considered and compared in terms of efficiency determined by the
increase in quality and the added computational expense. Possible candidates that come
to mind are Gaussian mixture model (GMM) and a simple intensity quantisation.






Appendix A

The Wavelet Transform

The use of wavelets and the wavelet transform is centre in this work and the approach
described in [IJO7]. This chapter, therefore, provides a short introduction into the world
of wavelets. It discusses the continuous wavelet transform (CWT) and its advantages
in section A.l and compares it to the short-time Fourier transform (STFT) in section
A.2. This leads to the discrete wavelet transform (DWT) in section A.3 and its derived
multiresolution representation which is eventually applied to two-dimensional signals.

A.1 The Continuous Wavelet Transform (CWT)

If spectral information is to be extracted from a signal, the Fourier transform is the
first mathematical procedure that comes to mind. The continuous wavelet transform,
however, describes another way to decompose a signal into its frequencies. Its advan-
tage compared to other spectral transformations is that it allows you to examine spectral
characteristics of a signal in frequency and time simultaneously. Similar to the Fourier
transform, the CWT can be separated into wavelet analysis and synthesis. Wavelet anal-
ysis breaks down a signal into its spectral components, whereas synthesis combines
these components back together, reconstructing the signal.

The basic idea is to use ‘““local” wavelike function[s]” [AddO2] to analyse a signal.
Such a small wave or function is called a wavelet. Figure A.1 shows two commonly
used examples. A wavelet in its fundamental form is the mother wavelet that is used in
the transform process to generate different daughter wavelets. They allow a much more
detailed investigation of the signal. A new daughter wavelet is derived from its mother
by shifting it along the time axis and stretching or squeezing it. These manipulations
are referred to as translation and dilation respectively. Formally, a dilated and translated
mother wavelet is written in normalized form as
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-1 0 1 2 -1 0 1 2

(a) Haar Scaling Function (b) Haar Mother Wavelet

(c) D4 Scaling Function (d) D4 Mother Wavelet

Figure A.1: The plots above show two examples of commonly used wavelets. Plots (a) and (b)
are the simplest wavelet called Haar named after Alfréd Haar who was the first to propose it.
(¢) and (d) are the scaling and mother wavelet from the well-known Daubechies wavelet family
of discrete orthogonal wavelets named after Ingrid Daubechies.

1 t—b
Yap(t) = va ( e ) (A.1)
a being the dilation parameter and b controlling the translation of the mother wavelet
Y(1). With a specific wavelet and a range of parameters, a and b, equation A.1 generates
multiple wavelets that are used to analyse the signal.

To illustrate the specific properties introduced by the wavelet transform, a one-di-
mensional signal (e.g. sound) is considered. One dilated daughter wavelet is then shifted
along the time axis. At each location its shape is compared to the shape of the signal.
The obtained coefficient qualifies the similarity of their respective shapes. Hence, a high
coeflicient indicates a well-matching wavelet, opposed to a low value that indicates the
opposite. These observed coeflicients denote the frequencies captured by this wavelet
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Figure A.2: The top graph illustrates different dilations of a wavelet. b denotes the position at
which the wavelet is centred and a;, a2 and a3 are different dilation parameters resulting in new
daughter wavelets. Each of the daughter wavelets is shifted along the time axis, as shown in the
graph at the bottom. The shifting parameters b; to b4 define the locations the wavelet is centred
at. Each shifted wavelet produces a response coeflicient for these locations.

and how they vary over time. Figure A.2 illustrates the procedure of this comparison
whilst sliding it along the axis. The same procedure is repeated with other wavelets re-
trieved by dilating the mother wavelet. They are shifted along the time axis as well, and
their corresponding coeflicients are collected. After all wavelets have been processed,
the result in the time-frequency plane shows coeflicients representing frequencies from
high to low and how these frequencies change over time. This simultaneous represen-
tation of frequencies and time is of high interest and only has a restricted equivalent in
the Fourier analysis.

A.2 Wavelets and the Windowed Fourier Transform

The windowed Fourier transform was developed to obtain an important set of informa-
tion not provided by a basic Fourier transform. Time-related information is lost when



108 APPENDIX A. THE WAVELET TRANSFORM

transforming into frequency space due to the integration over the whole signal. In short,
a spectral line contributes to the whole signal instead of just a single moment in time.
Hence, it is not possible to identify the frequencies composing the signal at a specific
time. This limits the use of the Fourier transform to applications that require frequency
information only.

An attempt to master this limitation was to provide a window function that provides
a snapshot of the signal and transforms this short interval into the frequency domain.
Applying this to multiple different intervals of a signal returns time-located frequencies
with respect to their interval. This is known as the windowed or short-time Fourier
transform (STFT) and is defined as

]

F(f,b) = f X(Oh(t — b)e Fdy (A.2)

—x

where h(t — D) denotes the window function with b specifying the time shift. The com-
plex sinusoid e ™" is restricted by this window function, which [Add02] describes in
more detail. Common window functions include the Hamming window !, the Gauss
windows and others. All these functions share a property; the time-resolution of all
intervals in the transform is fixed once a window size is chosen.

Comparing the STFT to the previously introduced wavelet transform unfolds a major
difference looking at the time-frequency plans shown in Figure A.3. To understand
the different representation, it is important to remember the Uncertainty or Heisenberg
Principle that applies in both cases. It states that the product of frequency and time
resolution is always greater than a minimum or in a more formal way:

1
ALA > 2 (A.3)

A, specifies the frequency bandwidth and A, denotes time duration. In consequence,
a high resolution in time causes a low frequency resolution, whereas increasing the
frequency resolution eventually leads to a less accurate time resolution. In the STFT,
the fixed window size constrained by the Uncertainty Principle induces a constant time
and frequency resolution (Figure A.3). Therefore, depending on the selected window
and its size, a good resolution to distinguish between high frequencies constitute a bad
resolution for lower frequencies or vice versa.

On the contrary, the dilation of wavelets exploits the Uncertainty Principle to some
extent by adapting its time and frequency resolution. It provides higher accuracy in time
resolution for low frequencies, which usually influence a larger time interval. While the
dilation parameter is modified, the precision changes at a similar pace. This produces

"Window function named after Richard Wesley Hamming who described it in his book “Digital Fil-
ters” [Ham98]
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frequency
frequency

time time

(a) STFT time- (b) Wavelet time-
frequency resolution frequency resolution

Figure A.3: The two time-frequency planes show the difference in time and frequency resolution
using a short-time Fourier or wavelet transform. The shapes of the rectangular boxes correspond
to their respective resolutions enforced by the Uncertainty Principle. The advantage of wavelets
is their adaptation of resolution to frequencies over time whereas the STFT is restricted to the
same time-frequency resolution.

high frequency and low time resolution for low frequencies, which is slowly turned
around towards higher frequencies. Therefore, wavelet transforms are the favourable
choice in applications where the correspondence between frequencies and their location
in spatial or temporal domain are crucial.

A.3 The Discrete Wavelet Transform (DWT)

The continuous dilating and translating of wavelets results in highly redundant infor-
mation. This redundancy has to be eliminated to make the CWT practical and efficient.
Furthermore, to use the wavelet transform in signal processing requires discretely sam-
pled wavelets that are dilated and shifted in discrete steps. Their respective step size is
fixed for a transformation defining two parameters. ay denotes the dilation and by the
translation of the wavelet. They remain unchanged for a certain transformation. The
only constraints applying are agy has to be greater then 1, whereas by can take a value
greater then 0 and is proportional to ay. Under the assumption that m and n are integers,
determining dilation and translation equation (A.1) can be transformed into
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frequency

Figure A.4: The representation of dyadic grid above shows the sampling steps used for the
discrete wavelet transform. It represents a logarithmic sampling controlled by ag = 2 and bg = 1.
The dots represent the position where a discrete wavelet is centred.

1 t — nbyal

Y1) = w( o ) (A4)
This equation postulates a so called discrete wavelet. In general, it is sampled on a

dyadic grid which corresponds to ag = 2 and by = 1. This is shown in Figure A.4.

Multiresolution Representation

The most important development for the use of wavelets in image processing came
from the work of Stéphane Mallat [Mal89]. He found a way to link orthogonal wavelets
to filters commonly used in image processing, namely high-pass and low-pass filters.
This required the introduction of the scaling function. It is used in multiresolution
decompositions to describe the connection between different resolution levels.

The scaling function that could be used for wavelet decomposition has to satisfy
certain conditions. Together with its corresponding mother wavelet, it has to form an
orthogonal basis and, therefore, cannot be dilated. This is to ensure the limitless dilation
and translation of the mother wavelet. An example of two scaling functions and their
respective mother wavelets is shown in Figure A.1.

The idea behind multiresolution decomposition using such a pair of wavelets is now
very simple. The scaling function can be viewed as the low-pass filtering part of the
decomposition and provides its so called approximation coefficients. The approximation
is basically a smoothed version of the signal that is drained of its high detail information.
These details however are encoded in the high-pass-filtered result extracted using the
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Figure A.5; The filter-based decomposition of a discrete signal into the wavelet domain applies a
high-pass and low-pass filter to the signal respectively and downsamples the results. The cascade
above shows the recursive application of these filters to retrieve multilevel decomposition. A
decomposition is only applied to the previous approximation coefficients.

mother wavelets. As a result, coefficients are obtained that are usually referred to as
detail coefficients. The separation of approximation and detail coeflicients can be carried
out recursively to achieve a multiresolution decomposition. The two decomposed parts
of the next resolution level are computed by filtering the approximation coeflicients
on the current level as shown in Figure A.5. A more formal way of describing the
decomposition for an univariate signal is

1
Sm n— = ckSm,Zn k (AS)
+1 \/E Zk: +

to calculate the approximation coefficients ¢; at location k in the previous approxima-
tion S ,, 2.+« Where m and n denote the dilation and translation parameters. The detail
coeflicients are then calculated using

1
T, = T = b Sm, n (A6)
+1 \/E Zk: k 2n+k

where b, denotes the coeflicient at location k of the previous approximation of the signal.
The decomposition at each level creates two transformed signals of equal length that are
half the size of the input signal. This is justified by a downsampling step that follows
each high-pass and low-pass filtering to reduce the amount of redundant information.
Each higher level coefficient can be reconstructed from its lower level approximation
and detail coefficient. This leaves the same amount of coefficients on every level of
the decomposition. Related coefficients on a decomposition level are often summarised
under the name subband.

A signal can now be decomposed using a discrete version of the wavelet transform.
However, to be useful in real applications, the transform has to be reversible. The recon-
struction of a higher level representation and eventually the original signal is formally
defined as
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Wi w7
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(a) Tranform, 1 level (b) Transform, 2 levels

Figure A.6: The two images show the common visual representation of a wavelet-transformed
two-dimensional signal. Subband W} in (a) represents the approximation coefficients and W,
W}} and W; are the detail coefficients in vertical, horizontal and diagonal direction respectively.
(b) represents the second level of decomposition where W/ is decomposed into approximation
and detail subbands.

1 1
Smin=——7=) CraSmrt—= ) bpuTns (A7)

In summary, the multiresolution representation is the tool for applying discrete
wavelets to discrete sampled signals. Analysing a signal into approximation and detail
subbands is easy to compute using orthogonal wavelets resembling image processing
filters.

Two-Dimensional Wavelet Transforms

The last question that remains unanswered is: how to apply this to a two-dimensional
signal, i.e. an image? It turns out that this is very simple. Similar to applying the Fourier
transform, the wavelet decomposition is first carried out in horizontal direction followed
by a second decomposition in the vertical direction. Figure A.6(a) shows the result of
a one-level transform assembled of four wavelet subbands. The top-left subband W/
denotes the approximation subband at the first level. W, W} and W) are the detail
subbands encoding high-frequency responses in a horizontal, vertical and diagonal di-
rection. The next level is computed by transforming only the approximation subband
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W1, as shown in Figure A.6(b). A formal definition to calculate the subbands is given
by

m+1 () — Z Z Cr, ckz m(2n) +ky,2na+k2) (A8)
ko ke

m+1 (nl nz) 2 Z Z blekz m(2n1+k1 2n2+k2) (A.g)
kh k

m+1 () nz) 2 Z Z cklbkz m(2ny +k1,2n3+ks) (AIO)
kh k

m+1 (nl nz) 2 Z Z bklbkz m(2n1+k1 2n2+k2) (A.l 1)
ko Kk

where n; and n, denote the location indices. k; and k, are the scaling indices for the
coefficients in each subband at a given scale m + 1.

This concludes the basic introduction of the wavelet transform. Although it provides
sufficient insight in understanding the techniques used in this work, more comprehensive
research on wavelets can be found in [Add02] and [Hub9§].
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Images: Test Set

B.1 Images With Ground Truth

Original Mask

Figure B.1: Obelisk_Centre
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Original Mask

Figure B.2; G_Entrance_Pillar

Original Mask

. r ST

Figure B.3: G_Entrance_Top
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Original Mask
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Figure B.4: G_Entrance_2sq

Original Mask

Figure B.5: MikadoPlatz_TopLeft
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Original Mask

Figure B.6: LibFront_HorizlLong

Original Mask

Figure B.7;: LibFront_RightBottom
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Original Mask

Tl
LT

Figure B.8; Gravel

Original Mask

Figure B.9: Menseria_LeftBottom
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Original Mask

Figure B.10: Menseria_Top

Original Mask

Figure B.11: CampusWater
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B.2 Images Without Ground Truth

Original Mask

Figure B.12: Bib_People

Original Mask

Figure B.13: Bib_Lamppost
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Original Mask

Figure B.14: Bib_ColourChecker_BikeStand

Original Mask

Figure B.15: Bib_ColourChecker_Entrance
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Images: Inpainting Results

(a) Additive: ws = 0.4, we = 0.5, (b) Additive: ws = 0.5, we = 0.5,
0 = 6M, M = 9, Plain 0 = 6MM = 9,0 = 04

Figure C.1: Obelisk_Centre
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(¢) Criminisi (d) Cheng (e) Ignécio

() Mixed: wec = 0.8, (g) Mixed: we =
0 = 6M,M = 9, Plain 0 = 6M,M = 9,0

0.5,
= 0.6

Figure C.1: Obelisk_Centre
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(d) Additive: ws = 0.5, wc = 0.1, (e) Additive: ws = 0.5, wc
6 = 8M, M = 9, Plain 0 = 6M,M = 9

—

() Mixed: we = 0.5, (g) Mixed: we =
0 = 6M, M = 9, Plain 0 = 6M,M = 9,0

Figure C.2;: G_Entrance_Pillar
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(a) Criminisi (b) Cheng (c) Ignécio
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(d) Additive: ws = 0.5, we = 0.5, (e) Additive: ws = 0.8, wc = 0.5,
0 = 8M,M = 9,Plain 0 = 8M,M = 9,0 = 04

e

[—
wc

(f) Mixed: wc = 0.6, (g) Mixed:

= 0.8,
6 = 6M,M = 9,Plain 06 = 6MM = 9,0 =

Figure C.3: G_Entrance_Top
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(a) Criminisi (b) Cheng (c) Ignécio

At Fris
(d) Additive: ws = 0.2, we = 0.5, () Additive: ws = 0.5, we = 0.8,
0 = 8M.M = 9,Plain 0 = 6MM = 9,0 = 0.4

e

() Mixed: we = 0.8, (g) Mixed: =
06 = 6M,M = 9,Plain 06 = 6M\M = 9,0

[
wce

0.8,

Figure C.4: G_Entrance_2sq
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(a) Criminisi (b) Cheng (c) Ignécio

R SF
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() Mixed: we = 0.5, (g) Mixed: we =
0 = 6M,M = 9, Plain 0 = 6M,M = 9,0

0.8,

Figure C.5: MikadoPlatz_TopLeft
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(d) Additive: ws = 0.5, we = 0.5, (e) Additive: ws = 0.5, we = 0.8,
0 = 8M,M = 9,Plain 0 = 8M,M = 9,0 = 0.4

(f) Mixed: wc = 0.8, (g) Mixed: wce

= 0.8,
06 = 6M,M = 9,Plain 06 = 6M\M = 9,0 =

0.4

Figure C.6: Lib_Front_HorizLong
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(a) Criminisi (b) Cheng (c) Ignécio

(d) Additive: ws = 0.5, wc = 0.8, (e) Additive: ws = 0.5, wc = 0.8,
6 = 6M,M = 9,Plain 6 = SM,M = 9,0 = 04

(f) Mixed: wc = 04, (g) Mixed: wec = 04,
6 = 6M,M = 9,Plain 6 = 6MM = 9,0 = 04

Figure C.7: Lib_Front_RightBottom
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Figure C.8: Gravel
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(d) Additive: wg = 0.5, wc = 0.8, (e) Additive: ws = 0.5, wc
06 = 4M, M = 9, Plain 0 = 8M.M =9

(f) Mixed: wec = 0.6, (g) Mixed: we =
6 = 6M,M = 9,Plain 06 = 6MM = 9,0

Figure C.9: Menseria_LeftBottom
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0.4



133

(d) Additive: ws = 0.4, wc = 0.5, (e) Additive: ws = 0.2, we = 0.5,
0 = 6M, M = 9, Plain 0 = 6MM = 9,0 = 04

() Mixed: we = 0.5, (g) Mixed: we =
0 = 3M,M = 9, Plain 0 = 6M,M = 9,0

0.2,
= 04

Figure C.10: Menseria_Top
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(a) Criminisi (b) Cheng (c) Ignécio

C\™

(d) Additive: ws = 0.5, we = 0.5, (e) Additive: ws = 0.5, wc = 0
0 = 4M, M = 9,Plain 0 = 8M,M = 9,0 = 04

(f) Mixed: wec = 0.6, (g) Mixed: we =
0 = 3M,M = 9, Plain 0 = 6M\M = 9,0

Figure C.11; CampusWater
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(c) Ignécio

(d) Additive: ws = 0.8, wc = 0.5, (e) Additive: ws = 0.5, wc
06 = 6M,M = 9,Plain 06 = 6M,M = 9

0.4,
= 04

() Mixed: we = 04, (g) Mixed: we =
06 = 6M,M = 9,Plain 06 = 6M\M = 9,0

Figure C.12: Bib_People
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(a) Criminisi

(d) Additive: ws = 0.2, wc = 0.5, (e) Additive: ws = 0.8, wc = 0.5,
6 = 6M,M = 9,Plain 6 =AM, M = 9,0 = 04

() Mixed: wec = 0.8, (g) Mixed: we =
0 = 3M,M = 9, Plain 0 = 6M\M = 9,0

0.8,

Figure C.13: Bib_Lamppost
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(d) Additive: ws = 0.2, wc = 0.5, (e) Additive: ws = 0.2, wc¢
6 = 8M,M = 9,Plain 6 = SM,M = 9

(f) Mixed: wc = 0.2, (g) Mixed: we =
06 = 6M,M = 9,Plain 06 = 6M\M = 9,0

0.8,

Figure C.14; Bib_ColourChecker_BikeStand



138 APPENDIX C. IMAGES: INFAINTING RESULTS

(a) Criminisi (b) Cheng (c) Ignécio

(d) Additive: ws = 0.5, we = 0.4, (e) Additive: ws = 0.8, wc = 0.5,

6 = 6M,M = 9,Plain 0 = 6M, M

9,0 = 04

() Mixed: wec = 0.8, (g) Mixed: we =
6 = 6M,M = 9,Plain 06 = 6MM = 9,0

0.8,
= 04

Figure C.15; Bib_ColourChecker_Entrance
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