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PREFACE

Abstract

This thesis focuses on the utilization of modern graphics hardware (GPU) for
visualization and computation purposes, especially of volumetric data from
medical imaging. The considerable increase in raw computing power in recent
years has turned commodity systems into high-performance workstations. In
combination with the direct rendering capabilities of graphics hardware, visual
computing and computational steering approaches on large data sets have become
feasible. In this regard several example applications and concepts such as the
“ray textures” have been developed and are discussed in detail.

As the amount of data to be processed and visualized is steadily increasing,
memory and bandwidth limitations require compact representations of the data.
While the compression of image data has been investigated extensively in the
past, the thesis addresses possibilities of performing computations directly on the
compressed data. Therefore, different categories of algorithms are identified and
represented in the wavelet domain. By using special variants of the compressed
format, efficient implementations of essential image processing algorithms are
possible and demonstrate the potential of the approach.

From the technical perspective, the GPU-based framework CASCADA has
been developed in the course of this thesis. The introduction of object-oriented
concepts to shader programming, as well as a hierarchical representation of
computation and/or visualization procedures led to a simplified utilization of
graphics hardware while maintaining competitive performance. This is shown
with different implementations throughout the contributions, as well as two
clinical projects in the field of diagnosis assistance. On the one hand the semi-
automatic segmentation of low-resolution MRI data sets of the human liver
is evaluated. On the other hand different possibilities in assessing abdominal
aortic aneurysms are discussed; both projects make use of graphics hardware.
In addition, CASCADA provides extensions towards recent general-purpose
programming architectures and a modular design for future developments.
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Zusammenfassung

Die Arbeit beschäftigt sich mit dem Einsatz moderner Grafikhardware (GPU)
für die Visualisierung und Verarbeitung medizinischer Volumendaten. Die
zunehmende Steigerung der Rechenleistung ermöglicht den Einsatz von Stan-
dardsystemen für Anwendungsgebiete, die bisher nur speziellen Workstations
vorbehalten waren. Zusammen mit dem wesentlichen Vorteil von Grafikhard-
ware Daten direkt anzeigen zu können, sind Verfahren wie visualisierungs-
gestütztes Berechnen (visual computing) oder interaktives Steuern von Berech-
nungen (computational steering) erst möglich geworden. Darauf wird anhand
mehrerer Beispielanwendungen und umgesetzten Konzepten wie den “ray tex-
tures” im Detail eingegangen.

Da die zu verarbeitenden und darzustellenden Datenmengen stetig ansteigen,
ist aufgrund von Speicher- und Bandbreiteneinschränkungen eine kompakte
Repräsentation der Daten notwendig. Während die Datenkompression selbst
eingehend erforscht wurde, beschäftigt sich die vorliegende Arbeit mit Mög-
lichkeiten, Berechnungen direkt auf den komprimierten Daten durchführen
zu können. Dazu wurden verschiedene Algorithmenklassen identifiziert und
in die Wavelet-Domäne übertragen. Mit Hilfe von speziellen Varianten der
komprimierten Repräsentation ist eine effiziente Umsetzung grundlegender
Bildverarbeitungsalgorithmen möglich und zeigt zugleich das Potential dieses
Ansatzes auf.

Aus technischer Sicht wurde im Laufe der Arbeit die GPU-basierte Program-
mierumgebung CASCADA entwickelt. Sowohl die Einführung von objektorien-
tierten Konzepten in die Shaderprogrammierung, als auch eine hierarchische
Repräsentation von Berechnungs- und/oder Visualisierungsschritten verein-
facht den Einsatz von Grafikhardware ohne wesentliche Leistungseinbußen.
Dies wird anhand verschiedener Implementationen in den jeweiligen Beiträgen
und zwei klinischen Projekten im Bereich der Diagnoseunterstützung gezeigt.
Hierbei geht es zum einen um die semi-automatische Segmentierung der Leber
in niedrig aufgelösten MR-Datensätzen, zum anderen um Möglichkeiten zur
Vermessung von abdominalen Aortenaneurysmen; jeweils unterstützt durch
Grafikhardware. Darüber hinaus ermöglicht CASCADA auch die Erweiterung
hinsichtlich aktueller Architekturen für den universellen Einsatz von Grafikhard-
ware, sowie künftige Entwicklungen durch ein modulares Design.
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INTRODUCTION

During the past years graphics hardware has evolved at an increasingly fast pace.
After graphics cards started to become user-programmable around 2001, graph-
ics processing units (GPU) have turned into almost general purpose processors
with an extremely high arithmetic intensity (see figure 1). Primarily driven by
the entertainment industry, commodity hardware offers computational perfor-
mance up to orders of magnitude higher than standard processors – even at
entry-level prices.

Figure 1: Performance development of GPUs and
CPUs in recent years.

Therefore, graphics hardware
has also become of interest
for applications in almost ev-
ery scientific context. In
order to meet the require-
ments of such non-graphics
applications, vendors have re-
cently introduced dedicated
programming interfaces in
order to use the graphics
hardware as standard, yet
massively parallel processing
units. In addition to the in-
crease of raw computing per-
formance, graphics hardware
has another advantage: the data to be displayed already resides in video memory
and thus can be visualized at almost no additional cost. This is also expressed in
the term ”visual computing” for research and applications that integrate both
visualization and computation on programmable graphics hardware.1

A comparable development can be seen in the medical imaging field. To-
day, a variety of image acquisition systems are available for different kinds of
examinations, most of them being non-invasive. In particular, devices based on
tomographic reconstruction such as computed tomography (CT) or magnetic

1As this term, that has been originally introduced by Markus Groß in 1994 [Gro94] is used in
different contexts, chapter 3 will discuss the concept in detail.
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resonance imaging (MRI) are capable of acquiring highly detailed images of
anatomical structures in a very short time. Consequently, storage, display, and
software systems have to keep up with the rapidly growing amount of data
being acquired. While the former is no longer an issue due to large archiving
systems and high disk capacities, visualizing and especially analyzing the large
amount of data is a challenging task. Given that medical staff has to examine all
of the data for diagnostic reasons, computer guidance and proper visualization
is highly desirable. However, as the examiner is responsible for any decision
made upon the data, software can only support diagnostics with appropriate
quantification of errors and uncertainties. Additionally, advanced algorithms
require considerable interaction, tedious parameter setting, and often take too
long to compute – especially on the large amounts of data acquired today. This
often prevents these functions from actually being used in the clinical practice
and workflows on a regular basis.

These two developments – the rapidly increasing performance of graphics
hardware and the assessment of large amounts of medical data – lend themselves
to be combined. In fact, almost all workstations and software of radiological
devices already have many capabilities of visualizing the data. However, di-
rect volume rendering is rarely used for diagnostic procedures: the parameter
setting is too complex, no additional (or even loss of) information compared
to conventional two-dimensional images, etc. On the other hand, many image
processing and analysis methods can benefit from multi-dimensional informa-
tion (e.g. edge-preserving volumetric filter, analysis of time-varying data), but
usually at the cost of higher algorithmic complexity.

This leads to the most recent field of investigation, namely the (additional)
utilization of graphics hardware for computations, often referred to as ”General
Purpose GPU” (GPGPU). Several applications, from tomographic reconstruction
to image processing and segmentation, have been implemented in hardware
and demonstrate the GPU’s superiority for almost all of these algorithms. Nev-
ertheless, using the graphics hardware is not always advantageous. Firstly,
creating software for graphics processors required a thorough knowledge of
graphics concepts and hardware until the advent of dedicated APIs2. There was
no alternative to writing programs using graphics interfaces and terminology,
let alone being limited by a graphics-centered architecture. The second challenge
are the short development cycles of GPUs: a new generation with evolved or
new feature sets is introduced approximately every year. As no abstraction
level has yet been available across all platforms (i.e., operating systems and
graphics hardware), GPU programmers have to get used to new hardware im-
plementations and driver details, to a much greater deal than for standard CPU
software. Yet another disadvantage of using the GPU (or any other ”external”

2API = Application Programmers Interface
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device) for computations is the fact that its memory is different from the host’s
memory. Therefore, data to be processed has to be transferred to and from the
graphics hardware. As this bandwidth has developed much slower than the
raw computation performance, this gap often causes applications to be severely
”bandwidth limited”. To date, a significant improvement of this situation is not
conceivable, at least not for current architectures.

Motivation

Based on these introductory aspects, the motivation of this thesis is to integrate
the computational and visualization potential of modern graphics hardware for
medical applications. Although there are numerous algorithms and techniques
for high-quality rendering of medical data, simple two-dimensional views are
still the preferred visualization in diagnostic practice nowadays. Apart from the
fact that acceptance plays an important role, there is currently not much benefit
from three-dimensional visualizations; it is usually regarded as a nice by-product.
Therefore, this thesis is going to present approaches towards a combination of
three-dimensional visualization into common workflows to demonstrate its
advantages.

Furthermore, the rapid increase of GPU performance in recent years enables
the use of more complex algorithms as well as the processing of very large
datasets. As such large amounts of data can be acquired today, processing and
analyzing all of this data is still a computationally demanding task. Graphics
hardware can thus come to the rescue, if programming such devices can be
further generalized and made accessible for non-graphics experts. While recent
developments already indicate this trend, the available techniques and inter-
faces are at a rather low, hardware-oriented level. In contrast, the framework
developed and described in this thesis can be regarded as an additional layer,
abstracting from the individual realizations, say software or hardware imple-
mentations. Above that, the concept of working directly on compressed data
would be beneficial in several aspects, especially for graphics hardware with its
limited memory resources.

Contributions

In order to give an overview of the main contributions of this thesis from a more
technical point of view, they will be outlined in the following list:

Integration of computation and visualization This thesis will discuss progress
in both computer graphics and medical imaging in order to develop a flexi-
ble GPU-based framework for the processing and visualization of volumetric
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(medical) data. Related work in this field, as well as recent developments in
GPU computing interfaces provide techniques and functionality at a very low,
hardware-centered level. The focus of this contribution is in contrast rather
problem-oriented. Building upon basic components which can be implemented
using either graphics or GPGPU interfaces, or even software implementations,
more complex procedures such as image filtering, segmentation, or other func-
tionality can be realized. As mentioned above, the graphics hardware allows an
integrated visualization of the (intermediate) results, with negligible run-time
overhead. While this enables to display intermediate results – in particular for
iterative algorithms – it also makes it possible to really interact with the data and
algorithms applied thereon.

Reduction of memory bottleneck In addition to developing such a framework
with software engineering concepts in mind, two other areas will be addressed.
Firstly, using the graphics hardware as an additional computing device requires
data to be transferred from the host to the graphics memory, which can become
critical for large volumetric data. Therefore, approaches towards reducing
the amount of data by compression techniques are going to be developed in
the course of this thesis. While this reduces the total amount of data to be
transferred, processing and visualizing the data requires decompression and
thus imposes a considerable algorithm and memory footprint. In order to tackle
this issue, strategies for the direct processing of compressed data will be developed
and discussed. The second approach to reduce the transfer costs is to keep the
GPU as busy as possible. By providing means for concatenating single programs
to complete procedures or workflows, this can be regarded as a lazy evaluation
approach: only the data that is actually needed on the other device will be
transferred.

Establish object-oriented concepts for GPU framework The developed sys-
tem is based upon the idea to perform as many operations of a whole workflow
as possible on the GPU in order to compensate for the expensive data trans-
fer. Therefore, the framework CASCADA employs a hierarchical approach to
represent computations at different levels of granularity. From a theoretical
point of view, main concepts from software engineering such as object-oriented
programming and design patterns will be applied to GPU programming. It will
be shown that the run-time overhead introduced by these concepts is relatively
small, especially in consideration of the benefits for implementation and mainte-
nance. In addition, different projects and a description of the software system
itself make up the practical part of the thesis.

Assessment of computations for GPU implementations Although the im-
plementation of algorithms on graphics hardware is advantageous for many
applications, not all procedures benefit from a GPU implementation. There



INTRODUCTION 5

are several factors that might hamper the performance: for example, algorithm
structure, size of data, or number of computations per data element. Providing
decision criteria would allow the system to manage the utilization of the GPU,
ideally automatically; also in the context of working on compressed data. This
involves an evaluation of the individual algorithms that will be applied, as
well as the infrastructure that is currently available. In the course of this thesis,
approaches towards such a classification will be discussed theoretically, based
on the results and findings of the contributions from part two.

Structure

The thesis is comprised of three parts. The contents of each part are shortly
described in the following list:

PART I: FUNDAMENTALS The first part provides basics from both the technical
and medical field. The chapter on graphics hardware provides an in-
depth discussion of architectures, programming languages, and (volume)
visualization. Medical imaging and image processing methods will be
presented in the second chapter with a focus on topics that are relevant for
this thesis, as well as references to related work and applications.

PART II: CONCEPTS Building upon the theoretical basis from part one, the sec-
ond part will develop different concepts including reviews of relevant
work and an evaluation of the results. Firstly, the integration of visualiza-
tion and processing will be discussed with references to the term “visual
computing”. As such an integration involves a considerable amount of
communication between the CPU and GPU, these issues will be covered
in-depth in the context of working with compressed data in the second
chapter. Finally, the third chapter introduces object-orientation for GPU
programming with an elaboration of relevant entities, abstraction layers,
and other aspects of software engineering.

PART III: APPLICATIONS The third part introduces the GPU-based framework
CASCADA which has been developed during the course of this thesis. This
part will rather present the implementation of the theoretical concepts
and important features and components than provide an exhaustive docu-
mentation of the software itself. Subsequently, different applications and
projects (partly) realized with CASCADA are presented; again, with a focus
on important techniques and solutions. The contributions of this thesis are
finally summarized and discussed in the context of latest developments.
In addition, a classification approach will be outlined to decide whether
a hardware implementation is beneficial at all. Considering the rapid
changes and advances in this field of research, some prospects in the field
of visual computing and the medical imaging conclude this chapter.
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CHAPTER 1

GRAPHICS HARDWARE

As graphics hardware plays a key role in this thesis, it will be introduced in
this chapter. Firstly, its architecture and programming possibilities are going to
be outlined, with references to historical developments. As the performance of
programmable graphics hardware has started to soar during the past years, it has
become interesting for non-graphics applications to exploit the computational
power as well. This general purpose use of graphics processing units (”GPGPU”)
is an active field of research of its own and will be the focus of the second section.
In the subsequent sections relevant concepts of visualizing volumetric data,
i.e., three-dimensional grids/arrays of values, are going to be outlined. Some
references and discussions of further concepts for real-time volume rendering
will conclude this chapter.

1.1 Basics

Using parallel hardware for accelerating computations on large amounts of input
data has become the de-facto standard in computer graphics for several decades.
Since then, the “graphics processing unit” (GPU) has turned into an extremely
powerful processor, especially with the introduction of programmable stages.
This increasing flexibility has attracted many non-graphics applications – a trend
that has led lately to dedicated streaming systems. Although this simplifies
the access to the high computational performance by means of generalized
programming languages, the underlying hardware is still based on computer
graphics considerations and evolutions.

Therefore, this section will provide an overview of graphics hardware, with
a focus on the topics relevant for this thesis. Starting from an architectural point
of view, recent changes and additions to the graphics pipeline are presented.
Subsequently, programming languages and related concepts will be shortly
introduced. Finally, information on shader development and debugging will
conclude this chapter. All of these topics will provide references to relevant
literature.
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1.1.1 Architecture

In principle, there are two basic rendering methods for image synthesis: rasteriza-
tion and ray tracing. While the former has undergone tremendous developments
and technical advancements – primarily due to the graphics hardware fueled
by the large game and entertainment industry – the latter is a simple, yet very
powerful method. Nevertheless, there are lots of extensions and variations to the
original ray tracing algorithm, as well as intensive research for accelerating ray
tracing to reach interactive performance on commodity systems. In comparison,
rasterization requires very complex algorithms for convincing and competitive
results, but achieves real-time rendering performance at multi-million pixel
resolutions easily; however, at the cost of inaccuracies and many workarounds.
Ray tracing, on the other hand, can simulate much more advanced effects at
an (almost) arbitrary level of physical correctness1. This comes at the price of
rather slow rendering performance – even at moderate image sizes and/or scene
complexity. Approaches towards dedicated ray tracing hardware have not been
successful, while current advancements indicate a trend towards hybrid solu-
tions or highly optimized software implementations. As ray tracing in general is
beyond the scope of this thesis, the reader is referred to according literature.

Every GPU is basically a (massively parallel) hardware implementation of
the graphics pipeline, illustrated in figure 1.1. The model can be further divided

Figure 1.1: The graphics pipeline with programmable (yellow) and fixed or config-
urable (blue) stages. (Illustration based on Engel et al. [EHK+06].

into the vertex processing, fragment processing, and compositing stage.2 This
separation is also reflected in the different hardware units contained in the
processor. While the fixed-function pipeline has provided several configurable
entities from the very beginning, programmable stages have been introduced

1Of course, this is still an approximation due to the discrete representation in computers, as
well as inherent physical limitations introduced by the ray model for light simulation.

2DirectX uses the term “pixel shader” instead of “fragment shader” in Cg or OpenGL. In this
thesis, the latter will be used because it describes the functionality more precisely: as a “pixel
candidate” the term does not imply further processing steps or settings such as multi-sampling,
blending, etc.
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approximately eight years ago. Since then, the pipeline became much more
programmable, as is indicated for the current generation by the yellow steps in
figure 1.1. Historically, vertex processors have been introduced first, whereas the
fragment processor was the much more powerful unit, especially for complex
computational tasks. Although this separation is alleviated by the shift to the
unified shader model (i.e., all shader types use the same processing units, leading
to better hardware utilization, load-balancing, etc.), the fragment processor
has been the predominant stage for several years. Another evidence is the
number of parallel fragment processors compared to vertex units in earlier GPU
generations.

As the exact delineation of different GPU generations varies in literature, and
is in addition subject to frequent changes and updates due to recent develop-
ments, the evolution of shader programming and the notion of “Shader Model”
(SM) can be used as a good indicator. The following table summarizes this
evolution and is based on the discussion by Akenine-Möller et al. [AMHH08].

Generation Year Shader Model Features

First 2001 DX 8.0/SM 1.1 programmable vertex shaders, very
limited fragment shaders

Second 2002 DX 9.0/SM 2.x Further programmability of both ver-
tex and fragment shaders (e.g. flow
control), introduction of Cg/HLSL
and GLSL

Third 2004 DX 9.0c/SM 3.0 Extensions to existing shader types
(e.g., vertex textures, increased limits)

Fourth 2007 DX 10.0/SM 4.0 Introduction of geometry shaders,
further extensions (e.g., integer tex-
tures, bitwise operations), concept of
unified shaders

Table 1.1: Historical outline of the programmable graphics hardware

While most of the developments have clearly improved preceding gener-
ations and simplified implementations, several very important features have
been introduced with the latest generation. Geometry shaders enabled for the
first time the creation or deletion of data within the pipeline. This allows in
combination with immediate feedback mechanisms (i.e., “transform feedback”
in OpenGL) the implementation of advanced algorithms such as displacement
mapping, subdivision surfaces, isosurface construction, etc. in hardware.

Nevertheless, there are still fundamental limitations of graphics hardware
from the programming point of view. Although most of them are going to
be alleviated or removed by the upcoming streaming approaches (e.g., Nvidia
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CUDA), many existing implementations or the continued support of older
graphics hardware face several problems:

• Random write-access (“scattering”) is a key feature of many algorithms
(see section 1.2.2), but is not supported by fragment shaders. Although
there exist implementations using vertex shaders or multi-pass approaches
for such operations, these are far from efficient and flexible to use.

• Using the same texture for reading from and writing to is not possible in
any shader. This can be overcome by a technique referred to as “ping-pong
textures”, where the input is duplicated beforehand and the two textures
are used alternatingly. Again, this is neither intuitive nor memory efficient,
and can become critical for large input textures (double memory footprint).

• While the representation of image data as textures is reasonable from a
graphics point of view, using textures as storage for general data – as
is also common for graphics applications – is hampered by the limited
texture types (dimensions), formats, sizes, etc. In addition, using textures
as target for offscreen computations has been further limited in that only
few formats and types are supported.

The current advances already provide several solutions for these limitations,
but usually face the challenging trade-off between functionality and performance.
Graphics hardware has become extremely powerful because of its focused ap-
plication and the removal of data dependencies enabling the parallel streaming
concept. With further developments in the direction of generalized program-
ming systems in tight combination with graphics concepts for immediate and
efficient visualization, the graphics hardware is likely to remain highly relevant
in the foreseeable future.

1.1.2 Programming languages

Graphics programming has evolved a lot since the introduction of programmable
pipeline stages. While custom shader programs had to be written in assembly
language in the first years of shader programming, high-level shading languages
have improved this tedious and error-prone situation. Especially these dedicated
languages have initiated the use of graphics hardware for non-graphics purposes,
although an in-depth knowledge of graphics concepts was still required; the term
“shading language” itself reflects this quite well. In addition, multiple platforms
and APIs have become available with systems such as Nvidia’s Cg [FK03] so that
one shading language could be used for both OpenGL and DirectX applications.

This section is going to shortly introduce the characteristics of high-level
shading languages and some syntactic details. The focus will be on the OpenGL
Shading Language (GLSL) [Ros05], as this is the preferred language throughout
the thesis and is – in addition to Cg – commonly used in the GPGPU community.
While section 1.2 introduces programming concepts for GPGPU applications,
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chapter 5 will provide a more detailed discussion of other shader programming
environments and languages. Further information can be found in many other
references as well: language details in the according specifications and program-
ming books [FK03, Ros05]; a general and up-to-date overview in Akenine-Möller
et al. [AMHH08]; other languages in the GPGPU context in the extensive surveys
by Owens et al. [OLG+07, OHL+08].

OpenGL Shading Language

Initially developed by 3Dlabs in 2001, the OpenGL Shading Language (GLSL,
also “GLslang”) has become part of the OpenGL standard in 2003 via exten-
sions, and a core component since OpenGL 2.0. As practically all high-level
shading languages, GLSL is based on the programming language C with several
additions for graphical data types and operations, access to OpenGL states etc.
However, some features of the C language are not supported, most notably
pointers, recursive constructs, type casts, or arbitrary data types.

GLSL program objects are assembled from strings that define the different
shader programs, i.e., vertex and fragment shaders.3 In contrast to other ap-
proaches, the program code is compiled within the graphics driver. While this
simplifies the programming workflow on the one hand, as no additional external
tool is required, the hardware manufacturer is responsible for providing an
up-to-date compiler on the other hand. This can lead to different behaviour and
results, depending on the driver’s feature set and quality.

As mentioned above, in addition to (most of the) standard data types found
in C programs there are graphics oriented vector and matrix types in GLSL, for
example: vec4, mat3, or bvec2, for a vector of four floats, a 3× 3 matrix of
floats, and a vector of two booleans, respectively. Accessing the vector compo-
nents can be done by array indices or – very common and efficient in shader
programs – field positions (x,y,z,w etc.). Additional features such as swizzling
or masking (i.e., replicating/changing field components for read or write access),
as well as component-wise arithmetic operations and comparisons, or geomet-
rical computations (e.g., scalar products) are natively supported and are thus
extremely efficient.

Depending on the type of shader program, different sets of operations are
available. For example, the vertex shader can only read from vertex input
data and textures, but cannot access the frame buffer or neighboring elements.
Fragment shaders, on the other hand, are optimized for texture fetches and
can thus operate on multiple textures (for read and write operations), thereby
using advanced texture filtering and mip-mapping. Communication between
the different shaders, and between shaders and application is provided by
classifiers that specify the handling of the parameters: while uniform elements

3As for other languages, geometry shaders are considered optional in the current shader
generation.
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are constant for all input data, attributes define individual properties of the
input; varying variables are used for inter-shader communication, usually
interpolated during rasterization. Due to the general concept of parallelism,
there are several limitations for all types of shaders to ensure data independency.

Cg

Nvidia’s “C for graphics” has been the first widely available and multi-target
shading language.4 That is, Cg programs can be compiled for different graphics
APIs and hardware platforms/generations by specifying hardware profiles. This
allows an improved matching of the program’s functionality with the according
hardware capabilities, and thus the identification of potential incompatibilities
already at compile-time.

While GLSL programs are compiled and assembled within the graphics
driver, Cg uses an external compiler that can be executed during run-time or
as separate building step (fig 1.2). The latter approach allows further, low-
level optimization in the assembly code, which is still common practice for
games and other highly optimized shaders. However, the increasing complexity
and growing number of shader programs used in one application renders this
impractical, especially taking Cg’s powerful error class system into account.
This allows the identification and handling of both conventional and profile-
dependent errors during compilation at application run-time.

ApplicationApplication

Shader source code

OpenGL Driver

Linker Program
Object

OpenGL API

Shader source code

Graphics hardware

executable code

Compiler Shader
Object

compiled code

Cg Translator

Application

Cg source code

Cg Translator

OpenGL or
DirectX Driver

Assembler assembly
program

OpenGL or DirectX API

Assembly source code
(source or binary)

Graphics hardware

executable code

Provided by application
developer

Provided by Nvidia

Provided by graphics
hardware vendor

Figure 1.2: Comparison of the system environment for GLSL (left) and Cg (right).
(Illustration based on [Ros05])

In addition to these differences, Cg provides the higher level concept of
interfaces adopted from Java or C# – however, without the full potential of
these object-oriented languages. By using interfaces in shader programs, the
code structure can be improved by “outsourcing” custom type declarations. In

4Microsoft has also developed Cg, but provides their own language (HLSL) which is practically
identical with Cg. It is, however, limited to the DirectX API and will not be considered here
separately.
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combination with the advanced include mechanisms in recent Cg versions, this
allows a very clean and modular programming style.

Finally, a large amount of profiles enables the transition to other APIs. There-
fore, the Cg program is compiled using profiles such as gp4fp or vs 4 0 for
OpenGL fragment programs or Direct3D 10 vertex shader, respectively. Due to
the differences of the shading languages, however, suboptimal code and side-
effects might be introduced, so that lots of tests are needed to ensure consistent
results and behaviour among the different platforms in practice.

CgFX/glFX

Yet another concept of shader programming is the combination of multiple
shaders into an effect. This introduces another level of abstraction in that the
collaboration of the shaders in different contexts is specified. There are varying
approaches for the graphics APIs, with “glFX”5 being the latest one. These
systems are used predominantly for graphics effects, and thus play a minor
role in GPGPU applications. Nevertheless, further information and the relation
between effect systems and other approaches will be addressed in chapter 5.

1.1.3 Shader Debugging

Tools for developing shaders have been available for quite a long time, with
various systems and environments by different vendors and graphics APIs. An
extensive discussion of available shader development tools would be out of
scope of this chapter, however. In addition, such a discussion would become
outdated very quickly due to the dynamic developments in this area. Some of the
subsequently presented debugging tools incorporate development functionality,
but further information can also be found at the websites of the different shader
languages introduced before. References to according tools can be found in the
plethora of literature on shader programming as well. The book by Akenine-
Möller et al. [AMHH08] is an excellent and up-to-date starting point.

The focus in this section is on the analysis and debugging of shaders. As the
context of this thesis (and the developed framework CASCADA) is the utilization
of graphics hardware especially for non-graphics applications, debugging tools
will be discussed from this point of view. Several of these methods and tools
have been used for working with and assessing shader programs in the course of
this thesis and related projects; additional information can be found in chapters 3,
6, and 5. Nevertheless, most concepts apply to both GPGPU and standard shader
programming.

In general, the execution of shader programs on dedicated hardware (i.e.,
the GPU) does not allow direct access to low-level information such as memory
addresses, internal states, etc., as is possible for CPU implementations. Thus,

5see http://www.khronos.org, last visit Feb 18 2009

http://www.khronos.org
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there are basically two approaches to still provide tools for GPU programming:
software emulation, and shader code instrumentation.

The former approach is rather obvious and known from other applications,
such as programming portable systems, game consoles, future hardware, etc.
However, architectural properties are hard to simulate: first and foremost the
massively parallel layout of GPUs. As Owens et al. [OLG+07] and Strengert et
al. [SKE07] postulate in their review of debugging tools, debug code can only
be executed on the GPU to allow an efficient workflow and powerful means for
debugging. Consequently, emulation approaches are not considered here.

Shader code instrumentation, on the other hand, uses the actual hardware
for computing the results. Depending on the type or complexity of these compu-
tations, the data to be analyzed has to be read without introducing side effects,
considerable performance overhead, numerical issues, etc. While being advanta-
geous with respect to emulation approaches, code instrumentation is technically
a very challenging task.

Selected debugging methods

“printf-style” This very simple yet effective approach uses the fragment shader
for displaying the variable or result in question. As the name implies, this
requires the manipulation of shader code, similar to its counterpart for software
implementations. However, due to the separation of the GPU into different
processing stages with diverse capabilities, this approach is very limited in
practice. Debugging implementations that consist of multiple passes, or the
inspection of geometry shader functionality is not possible. Nevertheless, the
direct visualization of (non-graphical) data is useful in many cases and a common
technique in GPGPU programming, which has been adapted in most debugging
toolsets.

gDEBugger The debugging and profiling system “gDEBugger” for the OpenGL
API has been developed by Graphic Remedy since 2004 6. Their commercial tool
is available for virtually all platforms and allows to monitor the application’s
activity and behaviour, including additional shader debugging functionality for
all types of shaders. Therefore, shader code and dependent information such
as OpenGL states, variable values, etc. can be edited and visualized. Several
logging mechanisms, viewers for texture data or input buffers provide additional
information during run-time or as external log files.

glslDevil In addition to the different commercial solutions, Strengert et al. [SKE07]
have proposed a flexible non-commercial system for debugging GLSL shader
programs called “glslDevil”. Although breakpoints are currently not supported,

6http://www.gremedy.com, last visit Feb 14 2009

http://www.gremedy.com
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their system provides powerful tools for inspecting shader entities or stepping
through loops. As the preceding system, glslDevil supports all types of shaders
and makes explicit use of code instrumentation. Therefore, the shader code’s syn-
tactic structure is analyzed to automatically manipulate the code and integrate
performance-neutral debug information.

Summary

The preceding section provided a short overview of shader development and
debugging. This is still an active field of research, as the graphics hardware is
evolving fast and, especially for GPGPU programming, the paradigm seems
to shift towards generic approaches such as CUDA. Above that, implement-
ing advanced tools for different platforms, APIs, and operating systems is a
challenging and tedious task.

1.2 GPGPU

After introducing the concepts of graphics hardware for traditional computer
graphics applications, this section discusses “general purpose” uses of GPUs,
GPGPU in short. Different scientific communities have developed approaches
for using graphics hardware for non-graphics applications. This is mainly due
to the huge performance increase of graphics processors, in combination with
more flexible programming languages during the last years. Recently, dedicated
APIs have been proposed by major vendors of (graphics) hardware that abstract
completely from the underlying hardware; see also chapter 5 for a discussion of
programming languages.

In the following sections introductory information about GPGPU will be
given. Firstly, analogies between traditional computer graphics (as outlined in
section 1.1) and GPGPU approaches will be presented, with references to current
advances. Secondly, the building blocks of implementations – algorithms and
data structures – will be outlined in the subsequent paragraphs. Dedicated
APIs and streaming architectures are the focus of the third section, and will be
summarized with a short discussion in the remainder of the section.

1.2.1 From CPU to GPU computing

Implementing programs on the graphics hardware requires other structures
and concepts than CPU implementations. Although current programming lan-
guages and streaming APIs allow an almost similar programming style, the
underlying hardware is still optimized for graphics-like program layout (i.e.,
parallel and independent streams of data). Additionally, thorough knowledge
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of computer graphics concepts is needed to implement GPGPU programs effi-
ciently. In Owens et al. [OHL+08] the different approaches for writing graphics
programs, GPGPU programs using graphics APIs, and new streaming concepts,
respectively, are compared and discussed.

GPU programming

Before dedicated streaming architectures have been introduced, Harris [Har05]
identified analogies between software implementations and their GPU coun-
terpart, as summarized in table 1.2. Although the new streaming APIs do not
require these graphics structures anymore, it helps to understand the underlying
concepts and effects. In addition, the framework developed in the course of this
thesis is based on graphics concepts for most of its functionality, as dedicated
systems have not been available during development. However, CASCADA 2
already supports CUDA, which will be both introduced later.

CPU GPU Description
Arrays Textures Data is usually transferred as vertex arrays or

textures to the GPU.
Inner Loop Shader pro-

gram
A kernel (or operation) is applied to multiple
elements of the input stream in parallel on the
GPU. Software implementations usually con-
sist of a loop iterating over all elements.

Feedback Render-to-
Texture

Algorithms are usually a concatenation of mul-
tiple small computations. Offscreen textures
and sequential passes implement the data con-
nection. General APIs such as CUDA provide
unified memories for flexible read/write ac-
cess.

Invocation Rasterization Operations on data are performed by execut-
ing the according shader program with the
data as input. As the fragment processor is
primarily used, fragments are created by ras-
terizing primitives, with correct data at the
vertices for texture access etc.

Table 1.2: CPU–GPU analogies

Streaming programming

Although these concepts can be applied to practically all algorithms, structuring
complex computations “along the graphics pipeline” is not very intuitive and
requires in-depth knowledge of computer graphics systems. Therefore, modern
APIs provide dedicated computing modes that allow the CPU-like usage of
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graphics hardware. As most of these applications are in the field of visual
computing (see also chapter 3), a tight and efficient connection to rendering
facilities is still available.

1.2.2 Operations and algorithms

GPGPU applications are usually built from fundamental algorithms and com-
mon operations similar to the development of general software. These operations
are referred to with common terms in stream computing, and thus should be
shortly outlined in the following list. Further information can be found in the
cited literature, as well as in Owens et al. [OLG+07, OHL+08] for a broader
overview.

Gather Reading data from an array by randomly indexing (i.e., v = d[a]).
This resembles a texture fetch in GPU programming.

Scatter Writing data to an array at arbitrary position (i.e., d[a] = v). Fragment
processors do not support scattering, in contrast to vertex and geometry
programs.

Map The application of a function to every stream element, executing GPU
programs on primitives.

Reduce Reduction of the stream by performing “unifying” operations (e.g.,
averaging); see figure ?? for an example. Related to reduction is filtering,
where a subset of a stream is computed.

Figure 1.3: Reduce operation for determining the maximum. In every iteration,
four adjacent elements are compared, with the largest value being
written to the output position. (Image courtesy of Harris [Har05])

Scan Scanning, also known as “parallel-prefix-sum” computes the sum for
every element in the stream over the preceding elements (e.g., summed
area tables, histograms).

Sort Sorting algorithms usually based on sorting networks (i.e., non-recursive
structure), for example bitonic merge sort.
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Search Algorithms similar to sequential software implementations, but usually
performed in parallel. Examples are binary search or k-nearest-neighbor,
as in Zhou et al. [ZHWG08].

1.2.3 Data structures

After outlining common algorithms and procedures, this section will shortly
introduce typical approaches for GPU data structures and libraries providing
such functionality. As the architecture of graphics hardware is considerably
different from CPUs, an adaptation of standard approaches is required for
optimal performance. In general, data structures are regular arrangements of
similar objects in order to optimize access to and processing of data elements
with respect to computational and memory efficiency. Depending on different
criteria (number of elements, insertion/deletion, access pattern, etc.) sequential
structures such as arrays or stacks, tree-based structures, or hash tables are
typically used.

For GPU implementations, two-dimensional texture memory is still the
“first-class citizen” for storing data. This is mainly due to the fact that memory,
caches, etc. are highly optimized for parallel, two-dimensional access patterns.
Above that, other dimensions are less flexible because of driver limitations (e.g.,
maximum texture size) or write access. Although this situation is less critical
for streaming APIs that provide even more flexibility and replace the notion of
texture by arbitrary memory buffers, an understanding of the graphics concepts
is beneficial for reasonable performance.

During the past years, numerous data structures have been implemented on
graphics hardware. In the following list, the most important approaches will be
outlined, with a focus on structures that are used in CASCADA (see chapter 6).
Also, some of the concepts will be addressed in chapter 5 in the context of object-
oriented GPU programming. An extensive discussion of different approaches
is given in Owens et al. [OLG+07]. Lefohn et al. [LKS+06] provide a thorough
comparison and classification of various techniques.

Arrays Continuous multidimensional memory as preferred data structure in
GPGPU applications, with 2D textures being the natural choice for GPU
architectures. Address translators (Lefohn et al. [LKS+06]) or other lay-
outs (Harris et al. [HBSL03]) allow the implementation of practically all
applications.

Adaptive structures Generalized arrays for implementing data structures such
as quadtrees or k-d trees (Zhou et al. [ZHWG08]). See see chapter 4 for
further examples (e.g., mip-mapping based approaches).

Other Data structures that do not support random access, such as stacks, sets,
or queues. Although there exist some implementations of stacks and hash
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maps, they are clearly not as efficient as data-parallel structures and are
still subject of active research.

Although the different data structures already cover a wide range of applica-
tions, their reuse and maintainability has become a challenging task. Designs
too general usually lead to suboptimal performance and the integration into
existing systems usually requires considerable code changes. Therefore, libraries
provide an abstraction and help reducing the additional implementation efforts.
An early approach is the “Glift” system proposed by Lefohn et al. [LKS+06].

While Glift has been implemented using graphics API and the Cg shading
language, the success of streaming systems such as CUDA is also due to an early
available toolset. The “CUDA Data Parallel Primitives Library”7, CUDPP in
short, is a library of data-parallel algorithm primitives, as presented in the pre-
ceding section. It was initially developed in the context of Harris et al. [HSO07],
and runs on processors that support CUDA. As for Glift, CUDPP strives to
provide optimal performance and modularity, and is designed for working on
GPU data originating from GPU computations and data transferred from the
host application.

1.2.4 Systems

In the preceding paragraphs, streaming approaches and dedicated GPGPU
architectures have been mentioned. Since its introduction in early 2007, Nvidia’s
CUDA has become the de-facto standard for stream computing. Alternatives
such as OpenCL or Brook+ have been released just recently, so that further
developments are hard to project. Nevertheless, these generalized architectures
will play a key role in the near future of high-performance visual computing and
thus should be outlined shortly in the following sections.

CUDA

The “Compute Unified Device Architecture” is a technology by Nvidia that
generalizes the use of graphics hardware for non-graphics purposes. It has many
concepts with BrookGPU in common, which has been developed by Buck et
al. [BFH+04, Buc05]; see also section 5.1.2 for further information. Furthermore,
in chapter 6 the integration of CUDA in the framework CASCADA will be de-
scribed, so that only a short overview of CUDA’s concepts is provided in this
section.

The novel concept of CUDA is its abstraction model in order to exploit
parallel structures. A hierarchy of threads, shared memory, and synchronization
mechanisms allow a combination of data and thread parallelism, as well as task
parallelism. This concept can be regarded as a “divide-and-conquer” approach:

7http://www.gpgpu.org/developer/cudpp (last visit Jan 19th 2009)

http://www.gpgpu.org/developer/cudpp
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the problem is divided into sub-tasks to be processed independently, and further
into cooperative sub-tasks to be solved in parallel. From a technical point of view,
CUDA implementations scale to an (almost) arbitrary number of processors, also
across multiple graphics boards or computation units: the underlying run-time
system manages the setup and communication.

CUDA is realized as an extension of the C/C++ programming language, i.e.,
functions are directly written in the C/C++ code using dedicated specifiers and
other keywords. Therefore, an additional compilation step is required to separate
the CUDA-specific, device code from standard application code executed on the
host. The nvcc compiler forwards the standard code to the system’s compiler
(gcc, Intel compiler, etc.). The device code will be executed on the GPU and is
controlled by the host, thus being similar to graphics-based approaches. While
the application code can use the full range of the C++ language, the device code
(i.e., the kernels) are limited to a streaming variant of C. This is again akin to the
traditional GPGPU approach which will be addressed in chapter 5.

In addition to the separation of device and host, the following terms are
commonly used during CUDA development:

Kernel Simple functions or complete programs implementing the operation to
be performed on the data.

Thread Addressable unit managed by the processors on the graphics hardware
that contain the kernels.

Block Organizational unit containing fixed number of concurrent threads. Co-
operation and communication is realized by barriers and shared access to
memory within the block.

Grid Highest level of the hierarchy built from thread blocks.

Each of the components are executed in parallel and thus exploit the massively
parallel structure of the hardware. This leads to the very high number of threads
being executed in the order of thousands to tens of thousands. Therefore, cer-
tain restrictions have to be maintained, e.g., recursion is not supported, as the
memory overhead for the stacks would become too large. Finally, configurations
define the layout of blocks in the grid.

Due to a large amount of implementations and examples, the number of
CUDA users is rapidly increasing, with applications from practically all kinds of
fields with high computational requirements. This demand, on the other hand,
supports the advances and development of the underlying hardware, drivers,
libraries, and the software itself.

Brook+

At the time of writing, CUDA can be used only on Nvidia hardware. Nvidia’s
main competitor AMD has extended the BrookGPU since 2007 in the course of
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the AMD Stream Computing development [Bro07]. This further development
led to Brook+ featuring an enhanced compiler, support for multiple GPUs, etc.  !

 
AMD Stream Computing Software Stack 
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Figure 1.4: Brook+ architecture

As depicted in figure 1.4, the
system consists of the source-to-
source compiler brcc, and the
run-time library brt executing
precompiled kernel functions.

Although there are already
some applications and demos
available that utilize AMD/ATI
streaming hardware, the devel-
opment seems to be way behind
CUDA. However, such progresses
strongly correlate with the avail-
able hardware, where ATI’s con-
sumer and workstation systems
outperform Nvidia’s equivalents by both computational performance and en-
ergy efficiency.8.

OpenCL

While the aforementioned systems are vendor-specific, a large group of prac-
tically all industry-leading companies and several research institutions has
worked on the open standard “OpenCL” (Open Computing Language [Khr])
for parallel programming of heterogeneous systems. That is, it is supposed
to provide a uniform programming environment for developing efficient and
portable code for high-performance computing on servers, desktop systems, and
handheld devices. In addition, the processors can be a set of different types such
as multi-core CPUs, GPUs, Cell architectures, etc. The first specification has been
released in December 2008, thus resulting in only few implementation examples
available at the time of writing. Furthermore, OpenCL is going to be a main
concept of the upcoming release of Apple’s operating system Max OS X.

The architecture is similar to other approaches in that there is one host and
one or multiple OpenCL devices. Each device is comprised of one or many
computing units, that consist of one or multple processing elements. The kernels
that are assigned by the host are either OpenCL kernels, written in OpenCL C,
or native kernels. As for other GPGPU approaches, OpenCL is a subset of the C
language with extensions for parallel computing, which is also translated by the
(integrated) OpenCL compiler and executed at run-time. Aside from standard,
SIMD-like9 types, OpenCL also supports advanced vector types (e.g.,float8 or

8This has become an important issue with modern GPUs requiring dedicated power supplies
9SIMD = single instruction, multiple data
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int16), and proposes further types double or quad10, as well as combinations
(e.g., complex numbers).

As for other GPGPU concepts, the efficient combination with standard
shaders is inherently provided by direct access to OpenGL objects such as
textures or offscreen buffers, as well as interfaces to Nvidia’s CUDA.

The preceding section has shortly introduced the use of graphics hardware
for general purpose computations. This field of research has evolved very
fast, not only due to the rapid development of GPUs. Clear advances such as
the increasing flexibility of programming languages and dedicated streaming
approaches, and the combination of high-performance computing and visualiza-
tion have led to powerful applications. This topic will be addressed in detail in
chapter 3, and is the general motivation of the developed framework CASCADA.
The fundamentals of visualizations, especially for volume data, will be presented
in the following section.

1.3 Volume visualization

As volumetric data plays an essential role in this thesis, basic principles and
current techniques for rendering volume data will be introduced in this sec-
tion. The notion of scientific visualization for displaying large amounts of data
from complex computations and acquisitions goes back to McCormick in 1987.
These visualizations have been performed by means of computer graphics from
the very beginning, as the data has geometric meaning in most cases. While
only dedicated, special purpose systems were capable of performing the exten-
sive computations back then, commodity graphics hardware has exceeded the
performance of these expensive machines by far during the last years.

The volume data that should be visualized is usually of various origin,
format, and complexity: numerical simulations, geological measurements, video
sequences, or data from medical imaging are some common examples. As the
focus of this thesis is the processing and visualization of medical volume data,
the subsequent sections and chapters are usually limited to this kind of data.
However, lots of the methods presented in this section are applicable to other
data as well. Especially in chapter 3, some remarks on extending approaches to
other volume data will be given in the context of visual computing.

The following sections will introduce fundamental concepts for rendering
volume data and interacting with it. As an extensive and thorough discussion

10128-bit floating point
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of volume visualization would be beyond the scope of this work, the interested
reader is referred to the wealth of (introductory) literature available. The book
by Engel et al. [EHK+06] provides a broad overview and several starting points.
In particular, the articles by Engel et al. [EE02] and Ikits et al. [IKLH04] present
excellent and concise introductions. The coverage here follows the volume render-
ing pipeline depicted in figure 1.5, with an emphasis on steps that are relevant for
concepts and discussions throughout the thesis.

Transfer function

Data acquisition

Medical imaging 

(e.g., CT, MRI), simulations

Application/Hardware

External Systems

Sampling

Number/distance 

of slices/samples

along viewing ray

Filtering

Interpolating data

from samples
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color and opacity/

transparency

Shading

Evaluation of 

lighting and 

shading model

Compositing

Integration of

data into image

Rendering

Displaying 

the final result

Figure 1.5: The volume rendering pipeline containing common processing steps
(dark gray) and optional stages (light gray). The acquisition of data is
usually accomplished by external systems, with medical imaging being
extensively described in section 2.1.

1.3.1 Theoretical background

As mentioned before, volume data can be generated by simulations, be the result
of three-dimensional imaging techniques such as CT scans, etc. Data in general
computer graphics is denoted as three-dimensional and objects usually consists
of a set of points (with or without topological information) or mathematical
formulae that describe a surface in three-dimensional space. Volume data is also
made up of a set of 3D data, but resembles a solid structure, with information
given at every (discrete) position within the object’s boundary. See section 2.2
for further information on the data representation.

In general, there exist two basic ways to visualize such data: by extracting
a surface for standard rendering, or by displaying an “accumulation” of the
complete data. The former is referred to as indirect method, while the latter is
denoted direct volume rendering, as classified in figure 1.6. The extraction of such
a surface representation from the volume data is usually done by specifying a
threshold, referred to as iso-value. All positions with a value (close to or) equal to
this threshold are converted to an intermediate surface representation, that can
then be rendered using standard methods. The seminal method for constructing
surfaces is the Marching Cubes algorithm by Lorensen et al. [LC87], that has
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Volume Rendering
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Software Hardware

Image-space Object-space Other
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view-parallel volume-parallel
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Figure 1.6: Overview of common volume rendering methods.

been extended and improved since then in various contributions.11 However,
an extensive discussion of indirect methods would be beyond the scope of this
thesis, as the focus is mainly on direct rendering methods.

Due to the fact that computational performance has increased considerably
during the past, direct volume rendering methods have become widely available
and much more flexible than in the first years of volume visualization. Based
on the mathematical concepts of light transport, the so-called emission-absorption
model is a reasonable approximation of the general formulation, and thus the
most preferred method in real-time volume rendering. The basic idea is depicted
in figure 1.7.

Figure 1.7: Concept of direct volume rendering using the emission-absorption model:
The initial radiance L is absorbed differently along the optical path, with
a light-emitting element contributing to the visible radiance at sout. (Illus-
tration based on [Pal08])

11In the context of GPU implementations, the marching cubes method has been implemented
using geometry shaders (see section 1.1) as well. Although the performance exceeds that of
software implementations by far – mainly due to parallelism – it can be only considered as proof
of concept.
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In its general form, the volume rendering integral is given by:

L(sout) = L(sin)e−
∫ sout

sin
κ(t)dt +

∫ sout

sin

q(s)e−
∫ sout

s κ(t)dtds (1.3.1)

and computes the radiance at the exit point L(sout) as the sum of the (back-
ground) radiance entering the volume L(sin), attenuated along the optical path
depending on the material’s absorption coefficient κ, and the integrated contri-
bution of the (light emitting) source terms q attenuated by the medium along
the remaining path (i.e., starting from s instead of sin). In the context of vol-
ume rendering the absorption integral is often substituted by the optical depth
τ to further introduce the more intuitive term “transparency”. See according
references for further details.

1.3.2 GPU-based volume rendering

In addition to the two rendering methods, i.e., direct and indirect rendering,
the aforementioned concepts can be implemented in software or using pro-
grammable graphics hardware. Implementations using the graphics hardware
can be further divided into fixed-function approaches relying on considerable
collaboration with the host application, and (almost) purely GPU-based imple-
mentations. While the former are still relevant for limited hardware (e.g., on
mobile devices), the focus here will be on implementations exploiting modern
programmable graphics hardware. The following paragraphs are organized
in the order of the volume rendering pipeline from figure 1.5 and discuss dif-
ferent limitations and characteristics, in addition to referring to state-of-the-art
techniques.

Sampling and filtering

Rendering volume data requires the computation of the volume integral from
equation 1.3.1. As there exists no analytical solution for this integral in prac-
tice, and due to the discrete nature of data representation and computations,
numerical approximations are needed. This leads to the following equation:

L(sout) ≈
n

∑
i=0

ciαi

n

∏
j=i+1

(1− αj) (1.3.2)

where n denotes the number of samples used for approximation, ci the emitted
(colored) radiance at the current position, and αi the opacity, respectively.12 The
colors are defined by assigning optical properties to the volume data at position
i by means of a transfer function, as will be described later.

12Note that the colors have to be weighted with the according opacity, as non-associated colors
are assumed.
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Hence, the volume has to be sampled and integrated along the observer’s
viewing direction. If special purpose methods, such as Fourier-based volume
rendering, are omitted due to their marginal relevance in practical applications,
basically two approaches remain (see figure 1.6). First, so-called object-space
methods process the volume in its domain, and thereby contribute to the result-
ing image. On the other hand, image-space techniques start from the image to be
created, and assemble its content by sampling the volume, as will be discussed
below. Note the resemblance to methods for surface rendering: scanline con-
version resembles an object-space, and ray tracing an image-space algorithm,
respectively.

Both methods have the sampling process in common, i.e., the volume data
is sampled at different locations in order to approximate the volume integral
(equation 1.3.2). Sampling a three-dimensional scalar field addresses mainly
two issues: the number of samples, and the discrete structure of the data. As is
obvious from the discrete equation, an infinitesimally small distance between
two samples converges to the continous integral. However, the data itself
is already discrete, and the Nyquist-Shannon theorem limits the number of
samples needed to represent the signal: twice the maximum frequency, i.e., two
samples per voxel are sufficient to reconstruct the signal. Below this sampling
distance the result is subject to artefacts due to undersampling. Therefore,
there are techniques to reduce errors by adjusting the sampling rate or position;
see [EHK+06] for further details.

The second issue is the fact that the positions for sampling the volume data
are in most cases not exactly at the voxels’ centers. Therefore, the value at
the sample’s position has to be computed by applying a reconstruction filter.
This can be accomplished by taking the value of the closest position (nearest
neighbor), a linear interpolation of the neighboring voxels, or a higher-order
reconstruction filter. While the two former techniques are available as hardware
implementations with most graphics hardware, more advanced filter kernels or
reconstruction of non-standard formats (e.g., compressed data as in chapter 4)
require custom shader programs.

Texture-based volume rendering This method has been the most common
direct volume rendering approach and resembles an object-space method. Al-
though there exist again two approaches, only the view-parallel method will
be taken into account here, as it has displaced the volume-aligned in practice
due to superior visual quality, simpler code, and less memory consumption.
The concepts of both methods are depicted in figure 1.8. In order to sample
the volume data, a stack of parallel polygons is created. For the view-aligned
approach, these polygons are parallel to the viewing plane, that is, each poly-
gon is computed by clipping its plane with the volume’s boundaries (usually a
cuboid). The distance of the slices then resembles the sampling distance. The
sampling itself is performed by the rasterized polygons where each fragment
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Engel and Ertl / High-Quality Volume Rendering
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If only 2D texture mapping is supported by the graphics

hardware, i.e. the hardware is able to perform bi-linear inter-

polation, the slices have to be aligned orthogonal with one

of the the three major axes of the volume. For this so called

object-aligned slicing (see Figure 11), the volume data is

stored in several two-dimensional texture maps. To prevent

unfavorable alignments of the slices with the viewers line of

sight, that would allow the viewer to see in between indi-

vidual slices, one slice stack for each major axis is stored.

During rendering, the slice stack that is most perpendicular

to the viewer’s line of sight is chosen for rendering (see Fig-

ure 12).
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tripled, which is critical especially in the context of lim-

ited memory of consumer graphics hardware. Second, the

number of slices that are rendered is limited to the reso-

lution of the volume, because the insertion of interpolated

slice will increase the memory consumption. Typically, un-

dersampling occurs most visibly on the side of the volume

along the currently used major axis. Another disadvantage

is, that switching from one slice stack to another when ro-

tating the volume leads to an abrupt change of the currently

used sampling points, which becomes visible as a popping

effect (see Figure 13). Finally, the distance of sampling point

depends on the viewing angle as outlined in Figure 14. A

constant sampling distance is however necessary in order to

obtain correct results.

CA B

Figure 13: Abrupt change of the location of sampling points,

when switching from one slice stack (A) to another (B).
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Figure 14: The distance between adjacent sampling points

depends on the viewing angle.

However, almost all of these disadvantages are circum-

vented by using multitextures and programmable rasteriza-

tion units. The basic idea is to render arbitrary, tri-linearly

interpolated, object-aligned slices by mapping two adja-

cent texture slices to a single slice polygon by means of

multitextures37. The texture environment of the two 2D tex-

tures performs two bi-linear interpolations whilst the third

interpolation is done in the programmable rasterization unit.

This unit is programmed to compute a linear interpolation of

two bi-linearly interpolated texel from the adjacent slices. A

linear interpolation in the fragment stage is implementable

on a wide variety of consumer graphics hardware architec-

tures. A register combiner setup for the NVIDIA GeForce

series is illustrated in Figure 15. The interpolation factor !

(variable D) is mapped into a constant color register and in-

verted by means of a corresponding input mapping to obtain

the factor 1 ! (variable B). The two slices that enclose the

position of the slice to be rendered are configured as tex-

ture 0 (variable A) and texture 1 (variable C). The combiner

is configured to calculate AB CD, thus the final fragment

contains the linearly interpolated result corresponding to the

specified fractional slice position.

With the aid of this extension it is now possible to freely

adjust the sampling rate without increasing the required

memory. Furthermore, by adapting the sampling distance

to the viewing angle, the sampling rate is held constant, at

least for orthogonal projections. There remains the problem

c The Eurographics Association 2002.
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texture stacks.
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tion units. The basic idea is to render arbitrary, tri-linearly

interpolated, object-aligned slices by mapping two adja-

cent texture slices to a single slice polygon by means of

multitextures37. The texture environment of the two 2D tex-

tures performs two bi-linear interpolations whilst the third

interpolation is done in the programmable rasterization unit.

This unit is programmed to compute a linear interpolation of

two bi-linearly interpolated texel from the adjacent slices. A

linear interpolation in the fragment stage is implementable

on a wide variety of consumer graphics hardware architec-

tures. A register combiner setup for the NVIDIA GeForce

series is illustrated in Figure 15. The interpolation factor !

(variable D) is mapped into a constant color register and in-

verted by means of a corresponding input mapping to obtain

the factor 1 ! (variable B). The two slices that enclose the

position of the slice to be rendered are configured as tex-

ture 0 (variable A) and texture 1 (variable C). The combiner

is configured to calculate AB CD, thus the final fragment

contains the linearly interpolated result corresponding to the

specified fractional slice position.

With the aid of this extension it is now possible to freely

adjust the sampling rate without increasing the required

memory. Furthermore, by adapting the sampling distance

to the viewing angle, the sampling rate is held constant, at

least for orthogonal projections. There remains the problem

c The Eurographics Association 2002.

(b) Texture based volume rendering using
view aligned polygons and a single 3D tex-
ture.

Figure 1.8: Texture-based volume rendering using volume aligned (a) or view
aligned (b) polygons. Note the superior quality for the view aligned
method. (Images courtesy of [EHK+06])

samples the volume data that has been assigned as texture to the proxy geometry
before. As mentioned above, filtering is needed for reconstructing values at the
fragment positions and usually depends on the data format and layout, desired
visual quality, and performance. As shown in figure 1.6, texture-based volume
rendering is only resonable as hardware implementation, because it exploits
several graphics hardware concepts to achieve useful performance.

Ray casting As its equivalent for rendering surfaces, ray casting is an image-
space method. This technique was introduced long before graphics hardware
has been widely available (e.g., Levoy [Lev90]). The term “ray casting” refers
to the process of creating primary rays from the viewpoint only.13. First im-
plementations were pure software approaches that required highly optimized
data structures to achieve tolerable performance. However, they were still far
from real-time except for very small data sets or coarse renderings. GPU imple-
mentations usually follow the concept proposed by Krüger et al. [KW03a] that
represents a full GPU-based solution, as the rays’ creation is also performed on
the graphics hardware. In general, the idea behind ray casting is to generate
rays starting from the viewpoint through the viewing plane, and sample the
volume data along each ray at certain intervals from its entry to exit position
with respect to the volume’s boundary (see figure 1.9(a)). Note that also other
criteria or optimization strategies such as empty space skipping can be applied
here. GPU-based ray generation, as depicted in 1.9(b), renders the front and back
faces of the boundary geometry. The fragment position in volume coordinates
is then stored in RGB-textures, resulting in the typical color encoding. The ray
vectors are finally constructed from the fragment pairs in the textures.

Sampling is performed similar to the texture-based approaches, but without
explicit proxy geometry: the volume texture is accessed directly within the

13There exist other terms such as volume ray tracing or ray marching that emphasize the process
of sampling along the ray, contrary to standard ray tracing where only intersections with geometry
are evaluated.
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50 Course 28: Real-Time Volume Graphics

eye

rays

view plane

Figure 5.3: Ray casting. For each pixel, one viewing ray is traced. The ray is
sampled at discrete positions to evaluate the volume rendering integral.

(a) Concept of ray casting. (b) GPU ray generation using color-coded textures.

Figure 1.9: Ray casting principles: sampling the volume using viewing rays (a), and
textures for GPU-based ray generation (b).

shader program. This allows both the use of hardware filtering, or custom
reconstruction. In contrast to texture-based rendering, ray casting is more flexible
with respect to sampling strategies:

• rays can be adaptively created, manipulated, etc., as will be shown in
section 3.2.1

• the integration of optimizations such as empty space skipping or jittering
is much easier (see [EHK+06] and [Pal08] for details)

• iso-surface rendering is as simple as using the sampled fragment if the
value is within the threshold, or discarding it otherwise.

However, hierarchical data structures such as octrees require additional steps to
adjust to the different resolution levels, as is discussed in Guthe et al. [GWGS02],
for example. Due to its advantages in general, GPU-based ray casting is used
in the framework developed in the course of this thesis. Hence, subsequent
discussions and techniques will put an emphasis on this volume rendering
method.

Classification

After the volume data has been sampled, the values have to be assigned visual
properties. This classification process is usually done by so-called transfer func-
tions, as indicated in figure 1.5. Depending on the type of input data, the transfer
function maps input values to optical information, that is, usually color and
opacity. Therefore, one-dimensional RGBA textures resemble the lookup tables
for standard approaches. This allows an efficient and straightforward integra-
tion of optical properties, but is in practice limited with respect to delineating
structures for visual inspection of complex data.

Transfer functions have been a research topic for several years, as they pro-
vide powerful means to visualize complex data. However, one-dimensional
lookup textures are limited in that they assign the same input value equal visual
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properties – without taking other information into account. Therefore, struc-
tures of a certain density cannot be separated from samples that have the same
value due to interpolation (e.g., at the boundary of dense structures to air, see
figure 1.10(a)). In order to overcome this situation, multi-dimensional transfer
functions have been introduced. Instead of a simple, one-dimensional function,
two or more input parameters are assigned visual properties. Typical examples
for additional parameters are gradient information, temperature, multiple MRI
modalities (see section 2.1), etc.

Furthermore, the additional computational complexity of multi-dimensional
transfer functions becomes a considerable user interaction challenge. While
for one-dimensional classification a function editor is rather intuitive, two-
dimensional transfer functions already require higher-order manipulation tools
(e.g., polygonal widgets). Higher dimensional interaction is practically not fea-
sible without simplifications, special input metaphors and/or devices, etc. In
figure 1.10 transfer functions of different dimension are applied to a CT volume
data set, with custom mean-value coordinate interpolation for arbitrary polygon
widgets. Note the clear separation of the structures’ boundaries using the 2D
transfer function.

(a) 1D transfer function (b) 2D transfer function

Figure 1.10: Direct volume renderings of the same data set in CASCADA, using (a)
one- and (b) two-dimensional transfer functions, respectively.

Rezk-Salama et al. [RSKK06] propose in their work the use of high-level
interaction semantics. Therefore, a large amount of transfer function settings
for medical data sets have been analyzed to extract representative information.
Using their system, the user can control the visualization by adjusting parameters
related to anatomical details (e.g., transparency of vessels or bones) instead of
gray levels etc.
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Compositing and rendering

The integration for the final image is usually denoted as compositing step. Here,
the samples from the preceding step are assembled, taking their visual proper-
ties into account. Independent from the volume rendering technique used for
visualization, this process is based on the second part of equations 1.3.1 and 1.3.2,
respectively. In order to implement this computation efficiently, different ap-
proaches are possible, with graphics hardware acceleration playing an important
role in most implementations today. While texture-based approaches mainly
rely on alpha blending capabilities of graphics hardware, ray casting approaches
accumulate the classified samples manually. Although the former provide high
performance even on older GPUs, the focus here will be on ray casting methods
due to their superior visual quality and flexibility. Equation 1.3.3 summarizes
the blending operation for back-to-front rendering mode, where C denotes the
color, and α the opacity, respectively.

Cdst = Csrcαsrc + Cdst(1− αsrc) (1.3.3)

The integration step for the ray casting method is either performed using
multi-pass techniques, or – especially on newer hardware – by single-pass
programs. The latter consist of a loop that iterates along the ray and calculates
the contribution to the integral at the current position. This also allows the
natural integration of further concepts, such as early ray termination or adaptive
sampling; see Engel et al. [EHK+06] for details.

However, the complex architecture of graphics hardware might introduce
side-effects that hamper the overall performance, as discussed by Leung et
al. [LNM06]. For example, fragments at object boundaries do not have to be
integrated for the whole ray, whereas neighboring fragments might require full
evaluation. The organization of fragments in groups (fragments “in flight”)
thus introduces a performance dependency. In contrast, multi-pass algorithms
inherently separate the “slower” fragments from those already finished by the
information update between rendering passes. Due to the additional overhead
from state changes, CPU-GPU communication, etc., the performance savings are
often more than outweighed, however.

The presentation of important concepts of the volume rendering pipeline
could be extended with many further techniques, but would be beyond the
scope of the thesis. For more detailed information on the fundamentals and a
wide coverage of further approaches, see Engel et al. [EHK+06].



CHAPTER 2

MEDICAL IMAGING AND PROCESSING

Today, practically all medical procedures rely on image data that has been
acquired beforehand: from ECG1 ablations or ultrasound slices to multidimen-
sional MRI data – the information is usually represented digitally and undergoes
several processing steps. In order to discuss different approaches in the course of
this thesis for medical applications, this chapter starts with an overview of medi-
cal imaging. Therefore, relevant imaging methods and modalities are presented,
followed by considerations on workflows in clinical practice. The concept of
computer assistance with a focus on diagnostics (in contrast to therapy, surgery,
etc.) will be addressed in the subsequent section.

As an integral part of computer diagnosis is the processing of acquired data,
background on image processing is provided in the second part of this chapter.
The first section provides basic information and definitions for representing and
manipulating image data. While many algorithms process the data in their raw
representation, compressing the data becomes also increasingly important due
to the huge amounts of data being acquired. Thus, the concept of compression
computing introduced in chapter 4 is motivated. Subsequently, important meth-
ods in image processing, segmentation, as well as visualization applications are
going to be summarized. A short discussion concludes this chapter.

2.1 Medical Imaging

In order to examine a patient, there is a variety of methods for acquiring informa-
tion. Depending on the exigence, i.e., an emergency situation or some less severe
illness, the medical staff collects information based on the patient’s descriptions.
This anamnesis is then the basis for further examinations, that might involve the
control of internal body functions, testing the musculoskeletal system, analysis
of blood or other liquids, etc. However, especially for trauma patients these
procedures are usually not possible as immediate action is required. Therefore,

1ECG = Electrocardiogram



34 CHAPTER 2. MEDICAL IMAGING AND PROCESSING

medical imaging techniques are used for getting an overview of the situation
and initiate further procedures.

The focus in this work will be on data from medical imaging, more pre-
cisely on radiological imaging. An in-depth coverage of all imaging techniques
would be beyond the scope, thus the following paragraphs only outline the
principles of morphological and functional imaging. The interested reader is
referred to the large amount of literature, with books by Dhawan et al [DHK07],
Suetens [Sue02], or Preim et al. [PB07] being excellent starting points.

2.1.1 Modalities

In medical imaging, the term modality describes the type of data or equipment
that acquires information of the subject to be examined. As is common for
all digital sampling processes, the data is an approximation of the real signal
due limited spatial resolution, bit depth, etc. In addition, the data has to be
stored in a reasonable format that provides optimal quality with respect to file
size. Although storage is practically infinitely available today, data has to be
transferred on a regular basis as well; these issues will be addressed in the
subsequent section.

The variety of modalities in use today can be separated into morphological
and functional imaging. While the former describes the anatomical relation (e.g.,
shape, size, vascularity) of different organs or structures, functional imaging
focuses – as the name implies – on the structures’ functions, metabolic activity,
behaviour, etc.

Morphological imaging

Radiography/Angiography Radiography is the use of X-rays to image the in-
ternal structure of objects. As X-ray imaging creates a projected image, the
attenuations of the different materials along the ray are summed. Modern ra-
diographical imaging uses digital detectors instead of film, mainly because of
their superior flexibility and better contrast ratio. Fluoroscopy is a variant of
radiography, where the image is displayed immediately through the use of
image intensifiers. It requires less radiation and therefore allows the continous
screening during interventions (see also section 7.2), for example.

Angiography is a dedicated imaging method to visualize the lumen of vascular
structures. Therefore, contrast agent is administered through the use of catheters
or other injection devices resulting in enhanced structures. The image, referred
to as angiogram, is then created at time intervals of optimal uptake. Optionally,
a contrasted angiogram is subtracted from an image without contrast agent,
which is referred to as Digital Substraction Angiography (DSA) for depicting only
the contrasted areas.
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Computed tomography As already mentioned in the preceding paragraph,
X-ray imaging does not allow the exact determination of structures along the ray,
i.e., the third spatial dimension due to the summation process. By taking multiple
radiographies from different angles, computed tomography can reconstruct three-
dimensional data.

Since the first CT devices, the technical setup has been optimized in numer-
ous ways leading to different generations of CT scanning systems, which in turn
results in a wide clinical use of third-generation devices today. Another great
improvement regarding acquisition times and spatial resolution – especially in
axial direction – has been accomplished by Multi-Slice CT. Here, multiple rows of
detectors enable the acquisition of several slices at once. Current devices consist
of 64-256 rows, whereas one of the latest systems features 320 slices. Most of the
scanners in use today have a spiral configuration, i.e., the table with the patient
is moved continuously, thus further reducing scanning time – despite the more
complex reconstruction algorithms. Finally, so-called Dual Source CTs contain
two X-ray sources that are arranged at offset angles. These are run either at
different energy levels resulting in different imaging properties available at one
time, or at the same level for further reducing the acquisition time by a factor
of two if fast imaging is crucial (e.g., for high-quality imaging of the coronary
arteries).

Aside from the relatively moderate costs for device purchase and mainte-
nance, computed tomography has several disadvantages. Most importantly,
the radiation exposure is rather high, especially if detailed images are required
or large portions of the body are examined. For example, the effective dose
of a thoracic CT is approximately 400 times higher than an overview X-ray
image of the same region [Wet07]. As CT imaging has become relatively cheap
per examination, scans require a critical consideration to prevent nonessential
exposure. In addition, many diagnostic problems involve vascular structures
that require the application of contrast agents due to the low discrimination to
other tissue in X-ray based modalities. Therefore, CTA2 imaging is considered
as an invasive method and requires additional precautions (agent intolerances,
additional stress for the cardiovascular system, etc.).

As CT data is the basis for one of the projects presented in chapter 7, addi-
tional information such as imaging details or specific data properties will be
provided in the according section. Further information on the value ranges and
different processing and viewing options will be given in section 3.1.2 as well.

2short for CT Angiography
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Magnetic resonance imaging Magnetic resonance imaging (MRI)3 has been
used and improved extensively since its invention in the late 1970s. As the
details of the imaging process and the different uses are more complex than for
CT, the following discussion will be limited to main differences and applications
with respect to CT. Several authors, such as Wetzke [Wet07], Suetens [Sue02], or
Preim et al. [PB07] provide an in-depth review of the imaging process.

In contrast to computed tomography, magnetic resonance imaging does
not use X-radiation and thus does not impose any ionizing exposure dose on
the patient. Instead of measuring the varying attenuation of rays by different
structures, MRI uses specific properties of tissue in external magnetic fields. As
this imaging process requires a sufficient amount of protons (i.e., water and/or
fat) for a measurable signal to be generated, not all structures of the human body
can be depicted: for most parts of the lung or the cortical bone, for instance, MRI
is not suited. Computed tomography, on the other hand, cannot discriminate
different types of soft tissue (e.g., brain matter) due to the identical attenuation
of X-rays. As MRI allows a very detailed differentiation of these structures, it is
an ideal complement in radiological imaging, as can be seen in figure 2.1.

Figure 2.1: Comparison of MRI sequences: T1-weighted (A), contrasted T1-weighted
(B), T2-weighted (C); and a later CT-scan (D), clearly showing the differ-
ences to MR images. The images depict brain tissue with severe hemor-
rhage in the parts of the right hemisphere (arrows).

However, there are also several disadvantages with magnetic resonance
imaging. Firstly, MRI is a very expensive technique, especially for high-field de-
vices with more than 1.5 Tesla. To achieve a good signal-noise-ratio, the external
magnetic field has to be extremely homogenous and strong – which can only be
achieved by using superconducting magnets. This results in turn in extremely
high installation and maintenance costs. Secondly, the very high magnetic field
intensities require precaution with respect to metallic structures. Therefore, pace-
makers and cochlea implants are currently a strict contraindication, prostheses
or other implanted parts such as surgical clips or stent-grafts (see section 7.2)
should be subject to further consideration. Depending on the type and location

3Originally, the term “nuclear magnetic resonance” (NMR) was used and describes the basic
principle more precisely. However, due to the negative associations with the word “nuclear”
especially in the public, the more neutral MRI has replaced the old term soon.
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of the object, injuries can be caused by mobilization, thermal induction, and/or
failure of electronic components. Finally, MRI scanning has acquisition times in
the order of several minutes and is thus much slower than CT. This results in
artefacts, especially from breathing, heart motion, or general pulsation.

Ultrasonography Another modality to examine preferably soft structures of
the body is ultrasound. Due to the very inexpensive and mobile devices, this
method has become the de-facto standard for initial diagnoses, follow-up rou-
tines, and for monitoring pregnancy. There are neither contraindications nor
negative effects known in practice, although ultrasound is not suited for bone
structures and (large) regions of air. In contrast to intraoperative MRI, where only
few devices are available worldwide, ultrasound is used during interventions
on a regular basis, also due to its real-time capabilities. As it is not relevant for
projects discussed in this thesis, further information can be found in according
literature, such as Wetzke [Wet07] or Suetens [Sue02].

Functional imaging

In contrast to morphological imaging, functional modalities acquire information
about processes and functions of anatomical structures for diagnostic purposes.
Except for functional MRI, this involves the use of radionuclides and is therefore
often referred to as nuclear imaging. These methods are only addressed in
section 3.1.2 and summarized in the following paragraphs.

Functional MRI This variant of MRI is a rather new technique based on
changes of blood flow and oxygen contentration due to neural acitivity, and is
therefore currently used only for cerebral imaging. Functional MRI (fMRI) is
basically a collection of multiple scans measuring the aforementioned parame-
ters, while the scanned patient is performing certain tasks such as finger tapping
or reacting to visual patterns. This set of MRI volume data then contains both
the anatomy (i.e., morphological imaging) and differences in oxygen concen-
tration (functional imaging) over time for each voxel. As the acquisition times
for such experiments are rather long, motion artefacts hamper the analysis of
this complex data, and lead to a low signal-noise-ratio and spatial resolution.
However, fMRI is an active field of research and is already used on a regular
basis for planning intricate neurosurgical interventions for tumor patients.

Although not directly a functional imaging modality on its own, diffusion
tensor imaging (DTI) is another variant of MRI that is often used in combination
with functional MRI. In DTI, a series of diffusion gradients is applied to the
subject and therefore computes a tensor for each voxel. This tensor describes the
anisotropy (i.e., principal direction) of water diffusion in the tissue. When used
for brain imaging, so-called fiber tracts are computed by tracing the different
directions locally, resulting in a coarse approximation of fiber morphology. This
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is of great help for neurosurgery, as paths can be found to avoid the impairment
of essential structures, as described for example in Rieder et al. [RRRP08].

Nuclear imaging In order to assess the activity of structures in question, as
well as their (coarse) spatial location, radionuclides are used by means of tracer
molecules. These radiopharmaceutical substances accumulate in certain organs
or pathological structures (e.g., melanoma) due to increased metabolism, vas-
cularization, etc., and therefore give rise to measurable concentration changes.
The main field of applications are thus oncology, neuroimaging, or regarding
perfusion processes.

Figure 2.2: Different visualizations of a scintigram of the thyroid gland. Original
data (A), color-encoded version (B), color-encoding with noise removal
at different levels (C, D). While noise is removed successfully, important
structures are lost in the last version. (Image courtesy of M. Hoffmann)

Scintigraphy is the most basic nuclear imaging method and can be compared
to X-ray. Except for the fact that radiation is not caused by an external source but
from radioactive decay, a gamma camera is used to detect the emitted radiation
of the marked substances. While this process results in planar projections of
the examined structure, Single-Photon Emission Computed Tomography (SPECT)
uses tomographic reconstruction for three-dimensional imaging. However, the
spatial resolution of SPECT data is very low4 due to the filtering of radiation for
correct reconstruction. Therefore, advanced filtering and visualization methods
are used for enhancing image structures without losing important information,
as depicted in figure 2.2.

Finally, another commonly used method in nuclear imaging is the Positron
Emission Tomography (PET). Although the measured data is also located by means
of tomographic reconstruction algorithms, the detected signals are caused by an-
nihilation events that occur due to the radioactive decay. However, the resulting
resolution is significantly lower than CT, but still better than for SPECT. Another
disadvantage of PET systems are the higher costs due to the more complex
devices and the expensive supply of special radionuclides.

4Currently no more than 128× 128 pixels per slice
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2.1.2 Communication and Storage

The different imaging modalities outlined above can be regarded as a single
procedure in clinical practice, but usually involve several departments and/or
the coordination with external medical staff (e.g., family physician). Optimizing
these workflows is also an active field of research, as not only the situation for
the patient is improved, but also costs can be reduced.

Most of the aforementioned imaging devices are comprised of different
entities. Firstly, the acquisition device itself is usually controlled by specialized
hardware and software systems close to the device. Secondly, the examination of
the acquired data is performed on workstations with dedicated display systems,
analysis software, etc. This can be performed either immediately after the
imaging procedure, or – as is common in most cases – a considerable time later.
Therefore, the original data has to be stored and should be available (almost)
independently from the original device or workstation. This requires means
for archiving the data with all relevant meta-information (e.g., annotations,
different modalities), as well as a standard for communication among different
departments, clinics, etc. As several projects in the course of this thesis work
with clinical data, interfaces to these facilities have been integrated and adapted;
see chapter 7 for details.

DICOM

The representation and exchange of practically all kinds of data in medical
practice is defined by the worldwide standard DICOM (Digital Imaging and
Communications in Medicine)5. Starting in the early 1980s, different institutions
have proposed common protocols and interfaces to work with images of all
kinds of modalities independent of the acquisition device and its software. This
collaboration of manufacturers as well as clinicians and software developers
resulted in a global network of working groups that define new or revise existing
specifications on a regular basis. The DICOM standard in its current structure
has been proposed 1993, starting with 9 parts and approximately 750 pages. In
2008 it contained 18 parts and covered as much as 3800 pages – with additional
supplements, drafts and correction proposals being continously worked on.
Therefore, only a short overview of important features can be provided here.
The interested reader is referred to literature such as Preim et al. [PB07] or
Kramme [Kra02], or to the standard itself.

DICOM is comprised of various services that inherently specify distributed
operations across a network. These represent basic functionality such as Store
for sending/saving image data, Query/Retrieve for database communication,
or Print for X-ray printouts. The standard also defines a file format (denoted
as “offline media” in part 10), as well as the DICOMDIR file, which provides

5Official website at http://dicom.nema.org/ (last visit Feb 23 2009)

http://dicom.nema.org/
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additional information about multiple files or directories. Furthermore, DICOM
data is organized hierarchically: one patient can have one or more studies; per
study several series are possible; and each series can contain multiple images.
DICOM data objects are basically a collection of attributes that are grouped
in the data set. Each of these groups contains tags that denote the individual
attributes, e.g., patient ID, modality, or pixel spacing. Although only one at-
tribute can be used to specify pixel data per object, this can contain multiple
frames or multi-dimensional data. However, one object usually represents a
two-dimensional image, that is, volume data is in general comprised of multiple
files for the consecutive slices. Finally, compressed pixel data is also supported,
with different compression formats available, such as JPEG (incl. lossless), JPEG
2000, or RLE.6

PACS

While the DICOM standard specifies the individual operations as well as the
file format, PACS (Picture Archiving and Communication Systems) denote com-
puters or networks that are explicitly used for storing, retrieving, distributing,
and presenting the images. These systems do not only handle images of various
modalities, but also additional information such as annotations or filter opera-
tions, which are encoded using the DICOM standard. Originally, PACS were
introduced to reduce (or replace) the amount of hard-copies, i.e., print-outs or X-
ray films. Today, the second, more important objective is the availability of data
independent of its location by means of networks. This allows off-site viewing
(“teleradiology”), either asynchronously or during collaborative sessions.

PACS are usually designed in a traditional server–client fashion, where the
client can be a stand-alone application or based on web technology. In addition,
the server usually has to interface several infrastructures, that often exist already,
such as HIS (hospital information system) or RIS (radiology information system).
When taking external clinics/facilities or multiple (referring) doctors in own
practice into account, this integration becomes rather challenging due to the
individual workflows, policies, or applications used at the different sites.

2.1.3 Computer assistance

As outlined at the beginning of this section, medical imaging technology has
evolved a lot during the past decades. Especially the high image quality of
modern CT and MRI devices led to new or clearly improved medical procedures.
In addition, most of the techniques have become faster and widely available.
This results in a steady increase of the amount of data that is acquired and
consequently has to be diagnosed. Today, the number of images produced
by CT scanners, for example, easily exceed a few hundred per examination.

6See chapter 4 for more information on compression techniques and references.
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Other modalities often provide additional information which result in multiple
dimensions for the image data (e.g., fMRI/DTI studies). Reviewing all of this
data in clinical practice is very demanding and limited – even for highly trained
personnel.

Therefore, supporting diagnosis by means of software is an active field of
research and a large segment in the health care market. Most manufacturers of
medical imaging devices usually provide several applications or modules for
this computer assistance in addition to standard functionality (e.g., tomographic
reconstruction, viewers or archives). In general, these systems strive to provide
assistance in that the huge amount of data is processed and presented in a
“compressed” way, that is, with (only) relevant information for the current
problem being highlighted, extracted, etc. However, there are differences in the
terms used for such systems, as well as the range of features varies considerably.
The following paragraphs address the terminology of these systems first, while
validation strategies are discussed in the second part of this section. As this
thesis emphasizes the utilization of graphics hardware for the processing and
visualization of volume data acquired using radiological imaging methods, other
applications of computer guidance such as “computer assisted surgery” (CAS)
or “computer-based training” (CBT) will not be addressed here.

Terminology

Literature varies in denoting support systems for diagnosis, but two levels of
software assistance are commonly used: computer-assisted/-aided detection and
diagnosis.7 While the former is used for systems that indicate regions of interest
(e.g., potentially pathological tissue), the latter performs different analysis steps
to provide a classification, quantification, etc., and is therefore often based on
preceding detection. Several authors or companies have introduced additional
letters for distinguishing the different levels of computer assistance:

CADe Detection of regions of interest based on different criteria

CADx Diagnosis by providing additional data for detected/marked regions

CADq Quantification of selected structures using measurement tools etc.

Apart from such differentiations and terms, all assisting systems have in
common that they do not replace the diagnosis itself. That is, the decision still
has to be done by a clinician, which is very unlikely to change in the foreseeable
future due to ethical and legal reasons. However, supporting the doctor’s
decision is very important, especially taking the aforementioned increase in the
amount of medical images into account.

7Although the short form “CAD” has been already used for engineering and product design
software for many years, the acronym is also an established term in the medical context.
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Another advantage of using software for assistance is to reduce varying
results on the same data. While an intra-observer variability can be tolerated in
most cases, inter-observer differences are often critical in diagnosis, especially
for follow-up routines. This situation changes for the worse if the expert level of
the different people examining the data varies considerably. As will be outlined
in section 7.2, software guidance can reduce this variability for aortic aneurysm
evaluation and accelerate the manual process by semi-automatic steps.

Validation and performance measurement

Software assistance has become an integral part of medical imaging today. Lots
of procedures rely on measurement tools, display systems, or other functionality
for further assessment and diagnostic guidance. As most of these tasks have
been performed without the help of software before, computer assistance has
to prove being beneficial – ideally in terms of costs, workflow, and accuracy.
Regarding the latter aspect, such systems have to be evaluated and compared
against a gold standard, that is, the traditional approach to the problem in most
cases. Some solutions, however, have become possible only because of utilizing
software; these procedures are in general harder to assess.

Bowyer [Bow00] addresses in his article different types of challenges in
validating medical image analysis, as well as common pitfalls in evaluating their
performance. Although an extensive discussion of the various considerations
would lead too far here, fundamental information on metrics and terms is still
going to be provided, especially in the context of segmentation of volume data.
Further information can be also found in Udupa et al [ULZ+06] and Preim et
al. [PB07], for example.

In general, an objective information about the “reality” is assumed to be
available and is thus usually referred to as ground truth. This can be a binary clin-
ical diagnosis (e.g., presence or absence of malignant tissue), a known quantity
from phantoms8, or a collection of manual segmentations by clinicians. These ex-
amples are of different complexity levels: the first resembles a detection problem,
whereas the other involve the quantification of the examined structures.

Detection performance An evaluation of detection problems often uses terms
that refer to the diagnostic notions: true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). While positive/negative indicates the
decision of the algorithm, true is used if the algorithm matches the actual result;
figure 2.3 depicts the different combinations:

There are some metrics derived from these relations and commonly used in
different contexts. Sensitivity specifies the rate of correctly detecting an existing

8Phantoms are crafted devices or artificial models that simulate real objects and allow the exact
measurements of sizes, volumes, etc. According examples would be a hose containing a known
amout of contrast agent for vessel segmentation, or a synthetic data set, respectively
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abnormality present abnormality not present

abnormality
present

true positive false negative

abnormality
not present

false positive true negative

Algorithm Detection

Truth of
Clinical

Situation

Figure 2.3: Definition of true/false positives and negatives (Image after [Bow00]).

abnormality, whereas specificity refers to the rate of correctly detecting the ab-
sence of an abnormality as such.9 Each term is used as a fraction or percentage
value; a perfect algorithm would result in 1 for both values (or 100%, respec-
tively). Equation 2.1.1 summarizes the definition of both terms as ratio of the
total number of the basic results. In addition, the values are only meaningful if
used in combination; otherwise there would exist trivial solutions.

Sensitivity =
|TPs|

|TPs|+ |FNs| Specificity =
|TNs|

|TNs|+ |FPs| (2.1.1)

Quantification performance While the aformentioned measures assess the
performance of detection algorithms by means of binary values, software that
computes additional information such as lengths, volumes, etc. requires other
metrics. Depending on the details of the algorithm, either distance measures such
as the mean symmetric average, Hausdorff or Euclidean distance, or volume
measures are appropriate. The latter typically assess the quality of a segmented
region S with respect to a ground truth GT by taking the intersection of both
volumes into account. This leads to the following metrics that have been used,
for example, in Priese et al. [PSW05] or Sturm et al. [Stu04]:

Coverability Rate =
|S ∩ GT|
|GT| Error Rate =

|S\GT|
|S| (2.1.2)

Originally used for assessing information retrieval, the Dice coefficient is an-
other common value for measuring the similarity of two sets, as in equation 2.1.3
for two sets R and S. Here, the ratio of the sets’ intersection and their sum is
computed, that is, a single value suffices for denoting the quality of the overlap.
As the sets are taken into account regardless of their spatial relation, there are
cases where suboptimal segmentations would still result in a high coefficient.

Dice coefficient =
2 · |R| ∩ |S|
|R|+ |S| (2.1.3)

9Depending on the scientific discipline, these metrics are also called precision and recall.
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The aforementioned metrics have been used in this thesis mainly for assess-
ing the results of the GPU-based segmentation of low-resolution liver data sets
presented in section 7.1. Further information on different testing methods, as
well as a thorough discussion of estimating the performance in practice can be
found in the article by Bowyer [Bow00].

2.2 Data representation

The data that is acquired by the different imaging modalities is the very basis for
subsequent steps, such as diagnostic review, image processing, visualization, etc.
As many examples and applications in this thesis are based on medical data, an
overview of the fundamentals will be provided in the following paragraphs. In
addition, the focus of this work is on processing and visualization of volumetric
data, i.e., three-dimensional information. The discussion will thus be limited
to modalities that typically acquire 3D data, such as imaging methods based
on tomographic reconstruction. Nevertheless, references to other dimensions
will be given where appropriate or concepts apply to other representations as
well (e.g., sequence of ultrasound images as volume). More information on
image and volume representation can be found in literature such as Schroeder et
al. [SML04] or Preim et al [PB07].

Three-dimensional image data from medical imaging is usually comprised of
consecutive two-dimensional slices. In order to properly describe the orientation
and axes, the DICOM standard10 defines the LPS standard that is depicted in
figure 2.4. A right-handed coordinate system is used, with the longitudinal axis
(i.e., along the patient) defined as z-axis.

Figure 2.4: The DICOM standard LPS coordinate system (Image based on ITK/VTK
documentation).

Image data can be represented in a variety of forms, with different appli-
cations and disciplines preferring one representation over the other. In the
following sections, general aspects of image data will be described in a non-

10As introduced later, the DICOM standard contains numerous meta-information. Here, the
DICOM Plane Attribute Descriptions C.7.6.2.1.1 specify the image position orientation.
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formal fashion. For more fundamental and formal details, the reader is referred
to according literature such as Jähne [Jäh97] or Sonka et al. [SHB99], as well as
Bender et al. [BB03], Schroeder et al. [SML04] or Engel et al. [EHK+06] for an
implementation-oriented introduction.

2.2.1 Grid

In order to represent and describe discrete image data, one can use different
properties or categories. Images consist of an (ordered) collection of similar
elements that represent a sampling of a continuous signal. These pixels11 satisfy
a spatial relation, depending on the type of ordering, usually referred to as
“topology”. For medical imaging, processing and visualization applications
the most common types are cartesian or regular grids. While the former are
comprised of equidistant samples in all dimensions (e.g., square pixels in 2D), the
latter represent data with different spatial resolutions. Often the term anisotropy is
used in this context, whereas cartesian data is referred to as isotropic, respectively.

In addition, there exist two different representations of regular image data
that can be considered equivalent in practice. Pixels are samples of finite size
(defined by the image’s resolution), with the samples’ position at the center of
the pixels. Grids represent the image’s information at the grid points, with the
image resolution specifying the distance of the individual grid points in each
dimension. As can be seen in figure 2.5, each representation can be transformed
into the other by translating the position of the samples by half the resolution.

(a) Pixel (b) Grid (c) Voxels

Figure 2.5: Layout of image data. In (a) the individual elements are addressed within
the center of the pixels; for grids (b) the data is stored at grid points. The
concept of pixels extends to three-dimensions (c) analogously denoted as
“voxels” (Image (c) courtesy of [EHK+06])

After this short introduction about the layout of the image data, several
categories were identified and will be used to outline characteristics of image
data from different points of view. Most of these concepts are the basis for the
contributions presented in this thesis on the visualization and processing of
three-dimensional image data in diverse settings and application contexts.

11Artificial term derived from “picture element”.
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2.2.2 Properties

In medical applications the acquired data is usually subject to multiple process-
ing stages, where the first operations are usually performed directly within the
acquisition devices, e.g., the CT system. In order to abstract from the different
imaging modalities (see section 2.1.1) with their individual internal data formats,
the following properties emphasize various aspects of data representation in
general and its processing.

Dimensionality

The first category uses the dimension of the data as distinctive feature. Although
the technical representation of the data in memory is in general independent
from the logical dimension (i.e., usually contiguous chunks of linear memory),
regarding the data as images, volumes and the like is a natural choice. Also,
the dimension here is defined by the logical layout of the data in contrast to the
data type. That is, dimension is considered to be the degree of the higher-level
representation of the whole data set. For example, a single image of a DTI
data set where each pixel consists of a 7-dimensional vector12 will have the
same dimension as data from a two-dimensional CT reconstruction with only
scalar values per pixel: both are two-dimensional images. Following the terms
for image data in computer graphics [Ope00] (i.e., textures) the external format
describes the arrangement or dimension properties. The internal format refers
to the internal representation, respectively, and resembles the attribute data in
VTK [SML04], for example.

At the beginning of this section, different representations of image data
have been introduced. There exist other structures that are usually inspired by
theoretical considerations (e.g., the hexagonal layout for its single neighborhood
type), but will not be considered here. In addition, the dimension is not limited
to spatial coordinates only: depending on the usage of the data, each axis can be
regarded as an arbitrary base vector of time, pressure, single wavelength, etc.
Within the scope of this work, mixed types that are comprised of usually two
dimensions (e.g., flat-3D textures by Harris et al. [HBSL03]) are used extensively
in CASCADA, and will be described in detail in chapter 6.

Domain

Apart from the dimension is the data’s domain a typical property. Depending on
the acquisition of the information, data can be in different native representations,
with the spatial layout (for element access, etc.) as a grid of pixels/voxels being

12As introduced in section 2.1.1, DTI contains anisotropic diffusion data of brain tissue. This
information results in six values per voxel (symmetric tensor) plus an optional scalar value
specifiying the confidence in some applications.
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the most common type. There exist several transformations from one domain
to the other, for example the Fourier transform between spatial and frequency
domain.

Spatial domain Data in the spatial domain is defined by samples that are ar-
ranged in a grid of (equidistant) elements, with functions that access
and/or manipulate the data are defined in the same domain.

Range domain Here, the elements’ values are taken into account, regardless of
(or in combination with) their position. For example, the bilateral filter (for
details, see Tomasi et al. [TM98]) works in both spatial and value domain.

Frequency domain Spatial information is converted into frequencies of differ-
ent wavelengths and amplitudes, with the Fourier transform being the
most often used transform. Details can be found in Jähne [Jäh97] or Sonka
et al. [SHB99].

Temporal domain Here, the data resembles (spatially fixed) samples at differ-
ent time steps leading to temporal representation. Based on theoretical
work such as Jähne [Jäh93], several analogies to the spatial domain can be
identified. For example, Langs et al. [LB07] have extended edge-preserving
filter to the time dimension, i.e., applying 3D bilateral filter kernels to a
volume of video frames, instead of 2D kernels on the individual images.

Compression domain Computations in this domain, as discussed in detail in
chapter 4, are inspired by the fact that certain representations simplify op-
erations that are more complex in other domains. The term “compression
domain” is often used for volume rendering only, and describes visualiza-
tion techniques that exploit the compact representation.

Hierarchies

A common technique to accelerate procedures in both computer graphics and
image processing is to structure (image) data hierarchically. There exist two basic
approaches: space partitioning, and scale-space (or pyramidal) methods, which are
shortly outlined in the following description:

Space partitioning This approach imposes an additional structure to the data,
in order to locally adapt to features, partition spatial information into
different logical levels, etc. The most common realizations for both im-
age processing and graphics applications are tree-like structures (e.g.,
quad-trees/octrees, k-d-trees; see [AMHH08] for details). These logical
structures allow a more efficient representation of the data with respect to
interesting information, and consequently an acceleration of computations
on this data.
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Scale-space methods By means of diffusion processes the image information
is blurred controllably. This introduces another dimension, so that for
two-dimensional images a whole series of images (i.e., volume) is cre-
ated. While this concept is quite appealing due to its mathematical basis
(see [Jäh97] for details), the considerable overhead due to the additional
dimension is challenging in practice. However, there exist efficient and
commonly used representations resulting in a pyramidal layout, as de-
picted in figure 2.6(a). These “mip-maps” have been supported in graphics

(a) Mip-Mapping (b) Gaussian pyramid (c) Laplacian pyramid

Figure 2.6: Pyramidal layout of an image representation at multiple scales
(a); Gaussian (b) and Laplacian (c) pyramids of a two-dimensional
image, with coarser levels being magnified to the original resolution.
(Images courtesy of Gamasutra and Wolfram Research, respectively)

processors for several hardware generations already. While these pyra-
mids are ideally created by recursively applying Gaussian filter kernels,
and are therefore usually referred to as Gaussian pyramids, yet another
representation is used for multiple applications. By recursively subtract-
ing subsequent levels in scale-space, the so-called Laplacian pyramid (see
figure 2.6(c)) is created and corresponds to the differential scale-space.
This representation is an essential part the Wavelet transform as used for
compression, and is further addressed in sections 4.1.2 and 4.2.

2.3 Methods

Many algorithms and discussions throughout this thesis are in the field of image
processing, segmentation, and visualization. Therefore, a common basis for
terms and procedures is required and will be established in this section. On
the other hand, there is a wealth of scientific literature available on each topic
alone, so that this introduction cannot cover all methods thoroughly. In addition,
other subjects such as image registration or computer vision are not going to be
addressed, but can be found in most of the references cited below.

2.3.1 Preprocessing

As will be discussed in several contributions in this thesis, acquired image
data contains noise and imaging artefacts. There are usually several reasons
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for these deteriorations, but limitations of the acquisition device (e.g., spatial
resolution, inhomogenities, physical properties) and moving objects (e.g., heart
motion, indirect movements during surgery) are the most common issues. Hence,
image data is usually processed to improve the signal-to-noise ratio, that is, to
emphasize the image’s information content for subsequent purposes.

For the different properties of image data outlined in section 2.2.2, as well
as for further criteria (e.g., texture information) there exists a large number
of methods. While the different approaches presented in chapters 3, 4, and 7
introduce most of the algorithms and refer to related work and seminal literature,
a coarse classification should introduce processing algorithms here.

Several authors such as Sonka et al. [SHB99], Jähne [Jäh97], or Preim et
al [PB07] use different criteria for categorizing image processing algorithms, but
there are common features. In general, algorithms have one set of data X as
input and another set of data as output Y, and perform a mapping from one set
to the other. The input data can range from a single data element or an image to
a whole set of multiple volumes. Likewise, the output can be one or multiple
data elements, images, etc. Let x be a single element from the input set X, and
the function f the mapping (i.e., algorithm including parameters) into the output
set Y. Then the following categories can be defined:13

1. x → f (x): result depends only on source element (e.g., scaling gray values,
look-up tables)

2. x → f (x, {xi}): result depends on source and limited set of neighbors (e.g.,
linear/non-linear filter with constant or adaptive window size)

3. x → f (x, X): result depends on source element and whole set (e.g., his-
togram equalization)

4. x → f (X): result depends on input data set only (e.g., image properties,
Fourier transform)

Practically all algorithms and methods presented in the course of this thesis
can be assigned to one of the groups. As the focus of this work is on graphics
hardware, some of the categories are well suited for GPU implementations.
Operations using lots of inter-element communication or scattering approaches,
however, are usually not directly portable to hardware for efficient applications.
See chapter 1 and section 8.2.1 for additional information and the discussion of
using such a classification for performance estimation.

2.3.2 Segmentation

Image segmentation denotes the process of separating objects of interest from
other structures and background. This delineation is a fundamental step in image

13Note that practically all categories are independent of the dimension.
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analysis, especially as all further information extraction depends on the outcome
of the segmentation. In the medical context, segmentation is required for basic
tasks, such as volume or length measurement, as well as for complex three-
dimensional model extractions for intervention or advanced therapy planning.
However, medical image segmentation is a challenging problem: insufficient
discrimination of different tissue (i.e., low contrast), deteriorated image quality
from noise or imaging artefacts, or a high variability in shapes (i.e., for applying
a-priori knowledge) are some of the complicating issues. Thus, segmentation
is still a highly active research field, targeting at different levels of interactivity
(see section 2.3.4), for example.

The following list outlines a selection of different categories of segmentation
methods with several examples and references; several have been implemented
in the CASCADA framework as well. For a more detailed discussion and further
references see pertinent literature, as well as the coverage in the contributions in
the second part of the thesis.

Thresholding As the simplest segmentation method, thresholding algorithms
are typically used in combination with further procedures. Examples are
the manual determination of binary or multi-level thresholds, automatic
procedures (Otsu’s method, see [Jäh97]), or local adaptive thresholding
(see Lehmann et al. [LOPR97]).

Edge-based Another group of algorithms uses edge information in the images
for segmentation purposes. These edges can be computed by dedicated
edge operators (e.g., Sobel, Prewitt), or resemble direct or extended gra-
dient information, such as the gradient vector flow (Xu et al. [XP97]). For
easily paramerizable object (lines, circles, etc.), the Hough transform is
another edge-based method; see Sonka et al. [SHB99] for details.

Region-based This group of algorithms represents methods using the informa-
tion of (connected) regions within the image data for segmentation. A fun-
damental algorithm is region growing, proposed by Adams et al. [AB94],
and extended by many others; see section 7.1.1 for further information.
Other approaches are hierarchical algorithms (e.g., split and merge, color
structure code [Stu04]), the watershed segmentation, etc.

Graph-based Another powerful approach is to represent image information by
means of graphs and operations thereon. Usually, these algorithms assign
costs to edges in the graph, and algorithms evaluate this information after-
wards. A well-known example is the Live-Wire algorithm by Mortensen
et al. [MMBU92], or other graph algorithms in combination with distance
transforms (e.g., for centerline computation, see also section 7.2.2).

Model-based While most of the aforementioned algorithms use the image in-
formation only, model-based methods incorporate additional, high-level
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knowledge. One common approach are deformable models that strive to
fit general models to the specific data set. Therefore, different constraints
for the model (and in some approaches also for the image) are considered.
Another large group of algorithms are based on level sets that describe the
boundary of regions as function over time; see Preim et al. [PB07] for an
introduction and references.

As the field of image segmentation is exceedingly wide, additional groups
can be defined. However, procedures based on statistical or texture information
would be beyond the scope of this thesis, and are thus not addressed. Further-
more, atlas-based methods use a very large set of acquired image data as a-priori
knowledge for segmentation. This usually involves image registration, which
is only addressed shortly at the end of this section. The interested reader is
therefore referred to according literature, such as Sonka et al. [SHB99], Lehmann
et al. [LOPR97] or Jähne [Jäh97] for segmentation in general, and Maintz et
al. [MV98] or Fitzpatrick et al. [FHCRM00] for registration, respectively.

2.3.3 Visualization

In section 1.3 the visualization of volumetric data was introduced, preferably
using direct rendering methods. While the focus there has been on (GPU-based)
volume rendering in general, the role of visualization for medical applications
is going to be addressed in this section. This topic is also a highly active field
of research, especially due to the widely available and very powerful graphics
hardware. Thus, many modern workstations used in radiology today utilize
commodity hardware for advanced volume rendering, usually with predefined
look-up tables (i.e., transfer functions) for different modalities and/or anatomies.

Nevertheless, most clinicians work with standard, two-dimensional visu-
alizations of the acquired data on a regular basis. In addition, the range of
values in the images are interactively adapted to the display’s capabilities and
diagnostical purpose for optimal information using combined window–level
parameters (see also section 3.1.2). These visualizations can either be the native
format of the image data (e.g., standard radiographs), or reformatted versions
of a tomographically reconstructed data set. This technique denoted as “multi-
planar reformation” (MPR) is usually used along the main axes of the reference
system (i.e., in axial, sagittal, and coronal direction), or additionally in arbitrary
directions. Furthermore, advanced imaging systems allow so-called “curved
MPR” visualizations, where three-dimensional curves – instead of a single plane
– can be defined for image reformation; see also section 7.2.2 for applications.

This seems to question the relevance of volume visualization in clinical
practice. However, several medical applications can be found where volume
rendering is advantageous with respect to traditional display techniques. Virtu-
ally all approaches outlined in the following list make explicit use of graphics
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hardware today, so a detailed overview of the rendering methods in general can
be found in Engel et al. [EHK+06]. The medical context is emphasized in the
state-of-the-art report by Klein et al. [KBF+08], as well as in Preim et al. [PB07].

Surface rendering The visualization of surfaces is used extensively for virtual
endoscopy or anaplasty applications. This includes the interactive recon-
struction process (e.g., GPU-based marching cubes implementations), as
well as the integration of the surface data with direct volume rendering.
Scharsach et al. [Sch05, SHN+05] proposed several techniques using graph-
ics hardware. In addition, the CASCADA framework presented in chapter 6
includes isosurface rendering based on ray casting.

Emphasized rendering A typical problem of volume rendering is its visual
complexity: the large amount of details in direct volume rendering com-
promises its benefit. Therefore, several authors proposed to attenuate (or
completely hide) unimportant structures, whereas regions of interest are
enhanced. The structures’ importance can be modelled explicitly, e.g.,
by segmentation and labelling, or implicitly by evaluating the current
viewing parameters etc. Among many approaches discussed in Preim
et al. [PB07], Bruckner et al. [BG05, Bru08] were the first to exploit GPU
techniques for advanced interactive illustrations, and Viola et al. [VKG04]
for importance-driven rendering, respectively.

Multi-modal rendering Although multiple modalities merged into one visu-
alization can be examined using traditional 2D views as well, volume
rendering techniques are commonplace for this rather modern application.
In combination with additional data, such as fiber tracts and activation
areas for DTI/fMRI visualization, for example, the combined rendering of
2D (MRI planes) and 3D information (fiber tracts) are also used for neu-
rosurgical planning, depicted in figure 2.7. See Rieder et al. [RRRP08] for
supplemental rendering of widgets, or Preim et al. [PB07] for a thorough
discussion of tensor imaging and visualization applications.

Rieder et al. / Interactive Visualization of Multimodal Volume Data for Neurosurgical Tumor Treatment

LAIDLAW D. H.: An Introduction to Visualization of Dif-
fusion Tensor Imaging and its Applications. In Visual-
ization and Image Processing of Tensor Fields. Springer-
Verlag, 2005, pp. 121–153.

[WEE03] WEISKOPF D., ENGEL K., ERTL T.: Interac-
tive Clipping Techniques for Texture-Based Volume Vi-
sualization and Volume Shading. IEEE Trans. on Visual-
ization and Computer Graphics (2003), 298–312.

[WLM02] WILSON B., LUM E. B., MA K.-L.: Interac-
tive Multi-volume Visualization. In Proceedings of ICCS
(2002), pp. 102–110.

[ZDT04] ZHOU J., DÖRING A., TÖNNIES K. D.: Dis-
tance based enhancement for focal region based volume
rendering. In BVM (2004), pp. 199–203.

(a) (b)

(c) (d) (e)

Figure 7: The three implemented views. In (a) the internal view shows the functional data and the presented techniques for en-
hancing the perception of the spatial depth. Figure (b) displays the corresponding external view with synchronized perspective.
Each MPR view (c-e) shows a slice of the volume data, the virtual access path and functional as well as anatomical data.
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Figure 8: Average frame rates of the internal view (left)
and external view (right), with additional rendering features
from left to right, respectively. The computation of the access
path reduces performance by a factor of two. All other meth-
ods have negligible influence on the rendering performance.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Figure 2.7: Multi-modal volume rendering of combined CT/MRI/fMRI/DTI
data set, including additional widgets (left) and enhanced clipping
(right). Image from Rieder et al. [RRRP08]
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Volume clipping Volume clipping describes the limitation of the whole volume
data to a subset, with geometry defining new, interactively changeable
boundaries. This is a powerful technique for visual inspection and is thus
often used for medical purposes. However, care has to be taken at the
clipped boundaries as shading information is needed: usually the gradient
is ill-conditioned. Fundamental research can be found in Weiskopf et
al. [WEE03] and Engel et al. [EHK+06]. Clipping is supported in practically
all volume rendering systems, and has been integrated in CASCADA as
well.

Fly-through rendering Moving the viewpoint into the volume data (e.g., for
virtual endoscopy) requires some preparation, especially for ray casting.
This technique is also denoted as “fly-through rendering”, and is covered
in detail in Scharsach [Sch05].

2.3.4 Discussion

As already mentioned at the beginning of this section, addressing further meth-
ods of medical image analysis would be beyond the scope of this introduction.
The three topics covered in the preceding paragraphs – preprocessing, segmen-
tation, and visualization – also represent most of the implemented methods
in CASCADA. However, further techniques are the focus of current investiga-
tions, especially image registration; see Maintz et al. [MV98] or Fitzpatrick et
al. [FHCRM00] for an introduction. Graphics hardware is well suited for such
algorithms due to their inherent parallelism and arithmetic intensity as shown
by Köhn et al. [KDR+06], for example. Furthermore, interfaces such as Nvidia
CUDA provide adequate flexibility, with the CascadaCUDA implementation
outlined in section 6.3 offering an additional programming abstraction.

2.4 Summary

The preceding sections provided a short overview of medical imaging and
processing methods relevant for the remainder of this thesis. However, as both
topics make up large research areas of their own, only some aspects have been
covered. After addressing medical imaging modalities and the role of computer
assistance, the second part of this chapter introduced the technical representation
and properties of data. Subsequently, a selection of image processing methods
were outlined, as well as references to further reading. As visualization plays an
important role in this thesis, additional concepts were presented, based on the
concepts from section 1.3.
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In the third part of this thesis the GPU programming framework CASCADA

will be introduced. As will be shown in several contributions, the utilization
of graphics hardware is beneficial for many applications. In order to develop
such algorithms and examples, the framework contains basic functionality for
handling volume data, preprocess image data, perform segmentation opera-
tions, etc. Of course, such a system cannot be directly compared with large
libraries or applications for image processing and (volume) visualization such
as ITK/VTK 14 or Amira 15.

Another well-known system is MeVisLab [MeV07] that is available for free
in a basic version. As this system also provides interfaces to the aforementioned
ITK/VTK as well as a powerful user interface, it has been used in several projects
in this thesis; see chapter 7. A comparison of MeVisLab with other systems can
be found in Bitter et al. [BUW+07], as well as in section 3.1.3 for an evaluation
regarding CASCADA.

14Insight/Visualization Toolkit, Kitware Inc., http://itk.org and http://vtk.org, last
visit April 2, 2009

15Amira, Visage Imaging Inc., http://www.amiravis.com, last visit April 4, 2009

http://itk.org
http://vtk.org
http://www.amiravis.com
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CONCEPTS





CHAPTER 3

INTERACTIVE VISUALIZATION OF
COMPUTATIONS

The integration of visualization and computation has become increasingly im-
portant during the last years. As introduced in the preceding chapters, the
advances of modern graphics hardware provide enough computational perfor-
mance and usually push the limit further with each generation. The term “visual
computing”, that is used today in the context of computer graphics and scientific
computing, describes this very well. For example, Nvidia refers to its range
of graphics products, dedicated computing hardware and the programming
architecture CUDA as visual computing systems. In addition, visual computing
has become a research area of its own in recent years due to the ubiquity of
high-performance graphics hardware.

Originally, however, visual computing has been coined by Groß for integrating
computer graphics, visual perception and imaging [Gro94]. This notion com-
prises both the creation and acquisition/analysis of information based on images.
Especially the latter refers to natural as well as artifical concepts, that is, human
vision and computer vision. Although several aspects of human vision will be
taken into account in this chapter (sections 3.1.1 and 3.1.2), the focus in this thesis
is on the combination of computer graphics and visualization techniques on the
one hand, and image processing methods on the other hand.

In the course of this chapter, different approaches towards such an integration
are proposed and discussed. These concepts, as well as the software engineering
aspects described in chapter 5, have led to the development of the GPU-based
framework CASCADA, presented in the third part of this thesis. With respect to
visual computing, strategies for utilizing graphics hardware for non-graphics
tasks are outlined first. The combination of visualization and computations
also enables the direct interaction with whatever is rendered: time-consuming,
iterative algorithms displaying intermediate results or real-time simulations,
where user interaction directly affects entities or rendering parameters.
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Interacting with rendering of (mainly) volumetric data is another important
facet of what is here referred to as visual computing and will be discussed in
the second part of this chapter. Firstly, an approach for the direct manipulation
of the ray casting process is presented in order to allow controlling of different
parameters on a per-ray level. While this concept is not limited to GPU im-
plementations, the possibilities in the context of visual computing are various.
The second interaction technique focuses on the computation aspect. Here, the
user influences iterative algorithms by directly manipulating input data, thus
providing an additional and direct source of information for the algorithm. This
relates to the notion of computational steering, as will be discussed below.

3.1 GPU-based computations

Combining expensive computations with the visualization of (intermediate)
results is quite obvious, given the various advantages mentioned in the intro-
duction. Although software, i.e., CPU implementations benefit from advances
in processor technology as well as implementations on graphics hardware, there
is still the need to transfer the data to the display device for any visualization.
The fusion of GPU and CPU is a current issue, as several recent developments
indicate (e.g., Intel’s Larrabee [SCS+08], or APIs as the proposed computing
language OpenCL [Khr]). However, available hardware, let alone stable drivers,
applications or performance details are still on the horizon. In addition, these de-
vices seem to be not as powerful and extensible as their “external” counterparts
due to thermal restrictions, compromises in die area, etc. Consequently, imple-
menting algorithms on graphics hardware is still a reasonable choice, especially
for computing-intense applications and complex visualization requirements.

3.1.1 Filtering Video Volumes using the GPU

The first application developed in the course of the thesis towards this integration
of computing and visualizing procedures on the GPU was presented by Langs
et al. [LB07]. It was originally inspired by image processing, more precisely
improving video frames by means of denoising algorithms. Video images are
very suited for visual computing for two reasons. Firstly, video data is meant to
be visualized at the end of the pipeline by its very nature. Above that, graphics
hardware has been capable of rapidly processing large amounts of RGB image
data ever since, as the predominance of fragment processors indicates (see
section 1.1 for details).

Also, denoising videos is an important preprocessing step, especially for
video material captured under dim lighting conditions. In the context of medical
image processing, noise is a permanent issue, especially when the radiation
exposure is limited or the external magnetic field is limited in strength; see
section 2.1.1 for information. As this thesis focuses on computations for medical
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applications, the original contribution is shortened and updated to become more
relevant for such applications.

The contribution is organized as follows. After a short introduction, the
approach of filtering video sequences of arbitrary lengths by means will be
explained. Quality and performance comparisons in the following section, as
well as an outlook on improvements and filtering in other domains will conclude
the contribution.

Introduction

Data acquired by any type of analog-digital converter, such as CCD and CMOS
image sensors or sensors in CT/MRI scanners contains noise. This can be
observed in video sequences or images captured in dim lighting conditions
and applies to medical imaging as well (e.g., low-dose CT). As a result, further
processing such as segmentation becomes difficult for these data sets.

In order to enhance the distorted data, filtering is a common first step in
the workflow. Typical examples for such noise filters are the Gaussian or me-
dian filter as linear and non-linear filters, respectively. In order to enhance the
distorted data, homogeneous regions should be smoothed while maintaining
region boundaries, i.e., edge-preserving smoothing. Therefore, the well-known
bilateral filter [TM98] will be used here.

Figure 3.1: Streaming video frames for vol-
ume filtering.

The target data sets are video se-
quences, i.e., a sequence consisting of
individual frames. However, the con-
cepts also apply to three-dimensional
data in medical applications, espe-
cially as such data is acquired as se-
ries of two-dimensional slices (e.g., CT
scans, ultrasound sequences). Thus,
there is the possibility of filtering
each frame separately with a two-
dimensional kernel for comparison.
The video sequence is regarded as a
volume and consequently the bilateral filter is applied in all three dimensions.
Areas in the video sequence that are not changing or moving from one frame
to the next are then homogeneous regions in time. Thus, the parameters of the
bilateral filter can be chosen in a way that the influence of each frame is limited
and compensates for the lack of denoising with the now available temporal
dimension.

Representing video sequences as volumes and operations thereon is no
new idea. See Jähne [Jäh93], Hájek [Háj02], or Daniel et al. [DC03] for related
work. However, advanced filtering is rarely used due to its high computational
costs. To perform filtering on reasonably sized video sequences in an acceptable
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amount of time, recent graphic processing units (GPU) found in commodity
hardware are therefore utilized. This approach allows for performing high
quality volumetric filtering of video sequences at PAL resolution in realtime.

Approach

With respect to the architecture of GPUs, only the fragment processing unit is
utilized. The vertex shaders are not used in this approach1, as is obvious for
pure pixel data such as video frames. Following the traditional approach (see
section 1.2), a quadrilateral in size of the input data (i.e., video frame resolution)
is drawn using the graphics API to initiate data processing. Here, the source
video frame is the input data to be processed by the initial shader, i.e., the first
render pass. A one-dimensional bilateral filter is then applied to this texture
resulting in one filtered pixel value, which is written to the framebuffer (or
some equivalent off-screen target). This result is used in subsequent processing
steps to realize three-dimensional filtering in the entire application, and can be
extended to other dimensions as well.

Bilateral filtering on the GPU As image denoising is a common research topic,
various filter types and algorithms have been proposed. Among these ap-
proaches anisotropic diffusion and wavelet based filters are well studied and
widely used, mainly due to their edge preserving properties (for the latter see
also chapter 4). In the context of GPGPU, however, anisotropic diffusion as
an iterative solution is less suited for GPU implementations due to the extra
communication and setup needed.2

Barash has shown in [Bar00] that bilateral filtering resembles anisotropic
diffusion by using adaptive smoothing as a link between the two approaches.
Therefore, it is possible to implement bilateral filtering as a more GPU-friendly
algorithm because of its “local operation” nature, while maintaining their com-
mon basis. Thus the bilateral filter could be realized as a GLSL shader program
without significant changes to the original algorithm.

The bilateral filter itself was introduced in 1998 by C. Tomasi und R. Man-
duchi [TM98]. Its basic idea is to combine the domain and the range of an image.
The domain describes the spatial location or closeness of two pixels, while the
range describes their similarity, or the distance of the pixel values. In traditional
filters only a pixel’s location in the spatial domain is taken into account, resulting
in less influence for more distant pixels, for example; the bilateral filter, however,
takes also the similarity into account.

In addition, the bilateral filter is inherently non-linear because of the image’s
range term, and therefore is not directly separable. In this implementation,

1Geometry shaders have not been available back then.
2This has become less critical due to features such as shared memories on current architectures.
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however, the separated bilateral filter introduced by Pham et al. [PvV05] is used.
As described in their work, it is not a true separation of the original bilateral
filter, thus leading to approximated rather than equal results. Nevertheless, for
the purpose of filtering video sequences the introduced error (due to truncated
sampling in the different directions) is negligible, especially considering the
potential increase in performance. In the approach presented here, the source
frame is convolved with the separated, two-dimensional bilateral filter, that is,
applying the one-dimensional kernel twice. The internal video volume is then
built from these filtered slices and finally reused several times for the convolution
in the third dimension. The whole procedure is described in more detail in the
following section.

Streaming concept Filtering video data in a volumetric manner cannot be done
directly for sequences of reasonable lengths, as the entire data usually does not fit
in the graphics memory. Therefore, a streaming approach has been implemented
to process videos of arbitrary length. When choosing the parameters for the
kernel so that n previous and n subsequent frames are used to filter the current
frame, 2n + 1 frames have to be kept in the graphics memory at one time. In
every filtering step the next video frame is loaded to the GPU, which is then
processed separately in x and y direction using the separated bilateral filter. This
two-dimensionally filtered slice is subsequently added to the video volume, thus
replacing the oldest slice in the volume. The last step is to generate the processed
video frame by filtering the video volume in z direction. The final video frame is
then displayed and/or downloaded into the CPUs memory, to be written to a
file or processed further. The whole process is depicted in figure 3.2.

bilateral filter
in x directionunfiltered

horizontally
convolved

2D 
convolved

bilateral filter
in y direction

bilateral filter
in z directionfiltered

Figure 3.2: Processing steps of the separable bilateral filtering approach

In order to minimize data transfers during copying to and from the GPU
and inside the GPU’s memory, a ring buffer storage scheme is used for the video
volume. Thus, it is possible to constantly add slices to the volume until the
maximum number of slices is reached. The texture has to be updated only in a
subregion leading to further optimization. Due to limitations of the maximum
texture size on the graphics hardware, “flat3D” textures as proposed by Harris
et al. [HBSL03] are utilized.
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Results

The subsequent paragraphs summarize the results of the approach presented
before. In addition to a comparison and evaluation of the different filter kernel
dimensions, both volume representations are discussed.

Comparison 3D and 2D filtering In order to assess the quality of the filtering –
especially the difference between the 2D and 3D version – a full reference compar-
ison has been applied. This method requires both the original (i.e., undistorted)
image and the filtered image for comparison. In general, however, the origi-
nal image is not available, or little information is known about the distortion
at the most.3 Therefore, synthetic noise has been added to a video sequence
without noise (the reference sequence), where the noise is made up of an evenly
distributed random value between -50 and 50 added to the R, G, and B chan-
nel of every pixel independently. This is motivated by the nature of noise of
commodity sensors, especially when used in dim lighting conditions. The video
sequences have then been compared with two different measures by performing
a frame-by-frame comparison, averaging the measured error values for the en-
tire sequence. The first video sequence that was compared is an outdoor video
sequence captured in daylight without noticeable noise. The second video is a
synthetic animation showing a typical pre-video countdown, combined with a
testbar screen for broadcasting, thus being completely noise free.

The two measures for comparison are the SSIM (Structural Similarity Index
Measure) introduced by Wang et al. [WBSS04] and the MSE (Mean squared
error). The SSIM is a measure specially designed to compare two images in a
perception based manner, whereas the MSE measure is purely mathematically
based and straightforward to compute:

MSE =
1

MN

M

∑
y=1

N

∑
x=1

(I1(x, y)− I2(x, y))2 (3.1.1)

However, by its nature the MSE is not capable of measuring the difference
from an observer’s point of view. Enhancing the contrast, for example, would
result in significantly different pixel data while the overall impression is equal
(or better). Related to this measure is the (peak) signal-to-noise-ratio (PSNR):

PSNR = 10 · log10

(
I2
max

MSE

)
(3.1.2)

This term, commonly used in engineering, describes the ratio between the
maximum possible value of the image and the value of noise which affects
the fidelity of the original representation. As the numerator in the quotient is
constant for all images in this application (8 bit per channel), the MSE is used
throughout this work.

3The former is usually referred to as no-reference, the latter as reduced-reference comparison.
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outdoor synthetic
SSIM MSE SSIM MSE

unfiltered 0,393 669,6 0,311 626,3
“2D bilateral filter” (GPU-BF 2D) 0,737 135,0 0,720 125,7

“3D bilateral filter” (GPU-BF 3D/flat3D) 0,844 87,3 0,890 73,9
AfterEffects “Remove grain” 0,829 89,7 0,908 68,3

“Neat Video” 0,909 53,9 0,954 48,1
Table 3.1: Quality comparison

After computing an error value for the distorted video sequence in compari-
son to the original sequence, the distorted video sequence filtered with the 2D
and 3D bilateral filter, respectively, can be compared with the reference sequence.
The results can be seen in table 3.1. The filter methods used by the commercial
programs are not disclosed, thus only a visual comparison of the results has
been possible and is shown in figure 3.4(a). As can be seen there is no significant
difference of the filter quality between the two very different types of video
sequences: both error metrics indicate the same relationship: the quality of 3D
filtering surpasses the quality of the 2D filter.

In addition, the time needed for filtering a single frame has been measured.
The application was tested on a commodity Windows PC that featured the
following components: Intel CoreDuo 6400 (2.13 GHz), 2 GB RAM, NVIDIA
GeForce 8800 GTX 768 MB PCIe 16x. The video sequence “outdoor”, used for
comparison, has a resolution of 720 × 576 and consists of 1085 frames. The
denoted time per frame is an average over all frames of the filtering only, that is,
excluding the time needed for reading or writing the video file or loading the
data to the GPU. The results are given in figure 3.3.

Sheet2

Page 2

After Effects

Neat Video

CPU-BF (3D)

GPU-BF (flat3D)

GPU-BF (3D)

GPU-BF (2D)

1 10 100 1000 10000  ms

2,2

4,8

3,3

985

770

2563

Figure 3.3: Performance comparison (time per frame)

Performance 3D and flat-3D volume The processing time for the implementa-
tion using the flat-3D volume storage concept indicated a performance gain of
approximately 25% on the aforementioned hardware in contrast to native 3D
volume textures, as can be seen in figure 3.3. On previous graphics hardware
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the difference using the flat volume was even higher, up to a factor of two. This
indicates a trend for improved and complete 3D texture processing in graphics
hardware and extends to volumetric data sets (e.g., CT scans), as will be dis-
cussed further in the course of this thesis. Therefore, if no advanced texture
access (e.g., trilinear filtering) is needed, flat volume textures are an appropriate
alternative to native 3D textures.4 Despite the additional overhead for address
translation, they offer a considerable performance increase, especially with older
graphics hardware.

(a) Comparison of different filtering methods
for the example video with additional noise

(b) Filtering of video sequence with natural
noise due to low lighting.

Figure 3.4: Visual comparison of filtered video data: example sequence “outdoor”
with additional noise (a) and real world example taken in dim lighting
conditions with natural noise (b).

Conclusion and future work

In this contribution the use of a 3D bilateral filter for noise reduction on video
sequences was shown to result in higher quality than frame-by-frame 2D bi-
lateral filtering. In figure 3.4(b) another real world example with comparable
performance results is given, which depicts a video frame acquired in a very
dark room, lit only indirectly by a projection screen. In this case denoising the
captured data is crucial to visual quality and further processing. These concepts
apply for practically all noisy image data, especially in the medical context:
low-dose CT scans show considerable noise, for example. Utilizing modern
commodity graphics hardware clearly decreases processing time for this rather
costly volumetric filter operation. In order to exploit their capabilities even
better, flat volumes offers advantages for three-dimensional data compared to
true 3D textures for a wide range of graphics hardware.

4This implies that the maximum size of 2D textures for the specific hardware meets the
application’s requirements, of course.
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Based on this application, it is also possible to perform fast filtering of real
3D data sets to enhance the results of subsequent processing steps. However,
the size of the volume is then directly limited by the available memory on the
graphics card, so that other approaches like bricking or compression have to be
employed. The latter approach will be discussed in detail in chapter 4.

Finally, the dramatic decrease in filtering time by using the GPU has been
shown with video data of 8 bit per channel. It would be interesting to see
how well the approach extends to data of 16 bit per channel or even other
representations, e.g., high dynamic range data. This is going to be addressed in
the following section.

3.1.2 Using a GPU-based Framework for Interactive Tone Mapping
of Medical Volume Data

The contribution in the preceding section presented the clear advantage of
GPU implementations for image processing applications compared to software
solutions. While this application can be generalized to other image or volume
data, some hardware-centric limitations might hamper an extension to arbitrary
data. As already mentioned in the outlook, data of higher bit depth or non-
scalar types require a different handling. In addition, the limited bandwidth for
transferring the data might become an issue due to the larger amount of data.

The following work presented in Raspe et al. [RM07] discusses the applica-
tion of tone-mapping algorithms on medical data. This serves in the context
of visual computing as both an extension of image processing algorithms to
non-trivial data, as well as an approach to integrate the computational workload
into the visualization process. Although the algorithms are limited to global
tone-mapping functions due to reasons discussed later on, the rather complex
functions indicate again an advantage of GPU implementations.

Especially data from functional imaging modalities has a much higher dy-
namic range and requires considerable interaction for proper visualization using
the traditional windowing approach. As can be seen in figure 3.5, the details of
the data sets are much less visible for linear mapping than for a tone-mapped vi-
sualization. Therefore, one approach is the integration tone mapping algorithms
into the visualization pipeline of volume data by exploiting modern graphics
hardware. Different tone mapping methods in consideration of miscellaneous
medical modalities will be discussed, as well as the role of transfer functions in
the context of high dynamic range rendering.
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Introduction

As the data acquired and processed with medical imaging systems usually has a
higher value range than standard output devices, different approaches can be
applied to map the range of values to the display. For medical data, controlling
a window of varying width and center that defines a linear mapping within
this window is the de-facto standard in examining image data (see section 2.3.3).
While this is straightforward to use and allows for fast implementations, its
results are limited and often require lots of manual interaction. Depending on
the focus of the diagnosis this can become a tedious manual process.

Figure 3.5: Direct volume rendering of high dynamic range volume data: CT data set
(a,b), and whole body PET scan (c,d), with insets depicting single slices
for reference. While the linear mapping (a, c) reveals only the maxima
of the data sets, tone mapping algorithms (b,d) can display the whole
dynamic range in real-time.

In the field of computer graphics and computer vision, high dynamic range
images are a common approach to represent simulated or captured illumination
without introducing errors by band-limiting the signal. These images are stored
in data types of a larger numerical range and/or precision, typically 16 or 32 bit
integers or floating point. However, displaying such HDR data by mapping the
input data linearly to the output device’s range is not sufficient, as only the bright
areas would be visible (see figure 3.5). To overcome this issue, a lot of research
has been done in both the computer graphics and computer vision community.
With such a foundation it is quite obvious to apply those techniques to medical
data in order to improve the visualization. As each modality in medical image
acquisition requires a different interpretation – depending on the protocol even
single acquisitions – this topic has to be discussed more thoroughly to avoid a
misinterpretation of the results.

The remainder of this contribution is structured as follows: In the next section
existing approaches are discussed, with a focus on both GPU implementations
and tone mapping algorithms in general. The possible application to different
modalities of the different tone mapping algorithms will then be considered.
The results of applying the techniques to medical volume data will be described
afterwards with a discussion of both performance and visual results, concluding
with directions of further investigation.
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Related work

In this paragraph existing approaches and techniques are discussed to outline
the context of this contribution. Therefore, high dynamic range imaging in both
general and medical applications is described first, followed by a more closer
look on tone mapping methods.

High dynamic range imaging Mainly initiated by the seminal work of De-
bevec et al. [DM97], a lot of research on high dynamic range imaging, i.e., image
data with luminance values of multiple orders of magnitude, has been done
since then. However, such HDR data is usually displayed on devices with a
much lower dynamic range. Although first prototypes of HDR displays are
available, so-called tone mapping (or tone reproduction) algorithms still need to
be applied to visualize the data adequately. For further reference, Reinhard et
al. review various existing approaches and address the whole “pipeline” of high
dynamic range imaging in their book [RWPD05].

Basically, tone mapping operators can be categorized into global or local,
some of them with an additional time-dependency. Global operators define
some function that maps equal input values to equal output values, thus being
computationally inexpensive. These functions can be as simple as a linear
function, whereas more advanced operators are more complex and usually
incorporate a logarithmic term and other properties of human perception. The
results of such tone mapping functions are illustrated in figure 3.6 and show the
already high potential of global operators.

Figure 3.6: Overview of all the tone mapping algorithms implemented, applied to a
human head/neck PET scan (coronal view). The linear mapping (a) is
compared to the operators by Reinhard (b), Drago (c) and the logarithmic
(d) and exponential (e) methods. The bottom row shows the difference
to the linear mapping, with blue colors denoting positive, red colors
denoting negative values, respectively.

In contrast to this “constant” mapping, local operators are able to adapt
to changes by considering the neighborhood of each value. While this ap-
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proach is very powerful, applying such locally varying operators to medical
data needs some discussion. Lately, Bartz et al. [BSC+06] have proposed to use
tone mapping operators on medical data for improved visual representation.
Their algorithm is based on the local operator from Reinhard et al. [RSSF02]
with an additional variant for regarding a three-dimensional neighborhood, as
is advantageous for most volumetric data. Due to the local nature of the algo-
rithm, the processing time of several seconds for moderately sized volumes is
obviously not interactive. They also use datasets of traditional modalities as CT
and MRI only, the former providing even a constant mapping (i.e., Hounsfield
units) of the measured values. More involved data such PET or non-scalar MRI
from functional or diffusion-tensor imaging, that cannot be tone mapped locally
without introducing errors, has not been considered or left as future work.

Finally, plenty of work has been done to implement the techniques on graph-
ics hardware, as image processing is a particularly suitable application for GPUs.
In 2003 already, Goodnight et al. [GWWH03] have successfully implemented
a time-dependent (i.e., adapting over time, thus mimicking the human visual
system) tone mapping system for color images. Due to the much lower perfor-
mance and more restricted programming of graphics hardware back then, they
have not been able to achieve real-time frame rates. Vollrath et al. [VWE05] have
proposed a generic, real-time capable framework to implement the volume ren-
dering pipeline on the graphics hardware. Their system implements Reinhard’s
tone mapping operator successfully, but they do not discuss it in the context
of medical data. Another representative work is that of Yuan et al. [YNCP06]
who have developed a sophisticated system for visualizing large high dynamic
range data volumes at interactive rates. The three- and four-dimensional data is
mainly from numerical simulations, geosciences, etc. and is thus processed with
special attention for precision issues. However, they have not investigated the
applicability of their methods on medical data sets as well.

Medical data For medical diagnosis and, of course, depending on the current
problem, there are lots of different imaging modalities available. As discussed
in the introductory sections in chapter 2.1, the majority of acquired radiological
data is of tomographic nature nowadays. These data usually consist of scalar
values, i.e., gray or luminance values within some range defined by the image
acquisition system. Due to technical and computational reasons the currently
used range for morphological imaging is usually 16 bits, where not all bits have
to be used; special DICOM tags specify the exact layout. Functional imaging
uses a higher bit depth. The following table lists typically used bit depths and
value ranges for the modalities discussed here.

Aside from these properties the data differ in their interpretation and thus
need consideration for tone mapping alorithms. Computed tomography data,
for example, has a fixed relation between the value at some position within the
volume and the subject’s tissue density at that position. That is, the higher the
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Modality Bit depth Typical range
CT 12 (integer) -1k...3k

MRI 10/12/16 (integer) 0...1-32k
fMRI 16 (integer/float) -32k...32k
DTI 16/32 (float) -32k...32k
PET 16 (integer/float) 0...32k

Table 3.2: Typical properties of data in common modalities

measured volume the lower the radiographic density, and vice versa – a relation
represented by the Hounsfield scale. Here, transforming a CT signal I with some
nonlinear global tone mapping function Φ would imply to interpret the data
as if the Hounsfield function H had also been transformed, thus leading to the
result IH, that can be used for classification etc.:

IH = H(I) ⇐⇒ Φ(IH) = Φ(H(I)) (3.1.3)

In principle, only positron emission tomography (PET) also allows for a pro-
portional relation between the measured intensity and the corresponding data
(usually metabolic acitivity). All other modalities discussed here do not provide
a direct mapping between the values and some scale, as even the values of dif-
ferent acquisitions can have different meaning. Based on these considerations it
is clear that only global tone mapping provides a reasonable chance to maintain
an interpretation of the data. In addition, global tone mapping algorithms are
especially suitable for GPUs due to their inherent parallelism.

Tone mapping Tone mapping is an important procedure in high dynamic
range imaging. In diagnostic visualizations the data is manually compressed by
specifying a window of controllable width and center position. Although this
linear interpolation between the minimum and maximum of the output device
can also be regarded as the tone mapping function, it cannot achieve proper,
data-driven results automatically. In addition, the mapping will result in an
information loss if the input range is larger than the output range – which is usu-
ally the case for medical data. In order to investigate the results of applying tone
mapping algorithms from high dynamic range imaging to medical volume data
while not sacrificing the real-time visualization of the system, global operators
are practically the only option.

All of the following algorithms require some information about the data
itself and some global user definable parameter. First, the so-called background
intensity Iavg has to be estimated. Instead of simply averaging the intensities
by computing the arithmetic mean, the geometric average as suggested by
Reinhard [RWPD05] is used:

Iavg = exp

(
1
N

N

∑
i=1

log(Ii + ε)

)
(3.1.4)
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In addition, the unitless parameter α is known as the key and represents the
overall light level of the data in an interval of [0...1]. Let L be the luminance of
the input data, then α can be estimated according to [RWPD05] by: 5

f =
2 log Lavg − log Lmin − log Lmax

log Lmax − log Lmin
, α = 0.18 · 4 f (3.1.5)

While α can also be controlled by the user, providing a reasonable default value
is usually preferable. Some of the following algorithms that have been imple-
mented introduce further parameters that will be discussed accordingly.

Logarithmic and exponential scaling Using the logarithm or an exponen-
tial mapping function is straightforward and has its background in Weber-
Fechner’s law considering the relationship between measured and perceived
stimuli. However, these approaches only achieve reasonable results for medium
ranged images, i.e., in this context CT or low-valued MRI data. First, the loga-
rithmic function is given: 6

Lo(~x) =
log(1 + Li(~x))
log(1 + Limax)

(3.1.6)

The exponential function in (3.1.7) maps input luminances to output luminances,
where input values close to zero are mapped to zero, infinitely bright values are
mapped to 1.0. This implies a renormalization because the output will never
cover the full range available. Reinhard [RWPD05] reports that exchanging Limax

with Liavg and vice versa yields a different effect, also shown in the corresponding
graph in figure 3.7.

Lo(~x) = 1− exp

(
−Li(~x)

Liavg

)
(3.1.7)

Extended logarithmic scaling Following the logarithmic behaviour of the
human visual system, Drago et al. [DMAC03] have further investigated improve-
ments of logarithmic functions. They proposed to adjust the logarithm’s base
with the input value and thus achieve a wider range of values to be reasonably
mapped. As can be seen in the second term of the following equation, this base
is interpolated within the range of 2 and 10:

Lo(~x) =
Lomax · 0.01

log(1 + Limax)
· log(1 + Li(~x))

log

(
2 + 8

(
Li(~x)
Limax

) log(p)
log(0.5)

) (3.1.8)

5Note that the logarithms used in the following equations are assumed to be to the base of 10,
if not stated otherwise.

6For the equations in the following subsections the luminance function’s input parameter is
used as n-dimensional vector ~x, where n denotes the dimension of the data (n = 3 for volumetric
scalar data)
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There are two parameters which can be specified by the user: the bias p controls
the contrast, with larger values reducing the contrast. Also, the maximum output
luminance Lomax (in cd/m2) can be set, with a default value of 100.
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Figure 3.7: Graphs for the default logarithmic/exponential tone mapping curves
with varying parameters, and tone mapping after [DMAC03] with vary-
ing parameters.

Photoreceptor Model While the assumption that the human visual systems
is of logarithmic nature is basically correct, Reinhard et al. [RD05] propose that
this holds only for a certain range of values. As logarithms produce negative
values and have no upper bound, they need to be modified for an adequate
model. This leads to the following relation:

Lo(~x) =
Li(~x)

Li(~x) + σ(Lia(~x))
(3.1.9)

σ(Lia(~x)) = ( f Lia(~x))m (3.1.10)

k =
Limax − Liavg

Limax − Limin

, m = 0.3 + 0.7k1.4 (3.1.11)

In the equations (7) and (8), the term Lia denotes the adaptation level and can
be set to Liavg in our case, as no temporal or chromatic adaptation is needed. In
addition, σ is often regarded as semisaturation constant. The following graphs
illustrate the influence of the parameters k and f on the result:
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Figure 3.8: Graphs for the tone mapping curves according to [RD05] with varying
luminance parameter (top) and key parameter (bottom).
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Results and Discussion

Different kinds of datasets have been used, focusing on modalities with a large
dynamical range. Therefore, the data sets used here are CT and PET data, with
properties specified in the following table. As can be seen from the images, the
rendering has been done without using transfer functions. This is mainly due to
the different ways of how transfer functions can be used in the context of high
dynamic range rendering and is subject to further investigation.

Data set Resolution Bit depth min/max
CT backpack 512× 512× 373 12 (int) 0 / 4072

PET body 168× 168× 715 16 (int) 2 / 32767
PET head 128× 128× 83 16 (int) 0 / 32767

Table 3.3: Properties of the data sets used for this study.

Performance As expected, the higher the dynamic range of values, the larger
the improvement over linear mapping. MRI data sets, for example, usually
provide values up to approximately 1k and thus do not benefit much from tone
mapping. As can be seen in figure 3.6, the implemented algorithms result in
quite different renderings, with Drago’s algorithm being a good candidate. In
addition, with only one parameter this operator is very easy to use.

The algorithms have been implemented directly within the rendering shader
programs. Without exhaustive optimization, the performance overhead is negli-
gible for all renderings: even ray casting the whole volume maintains real-time
performance on commodity hardware. Adjusting the user parameters as well
as the statistical data of the volume data is done via uniform variables that are
transferred to the graphics hardware only when updated and thus do not impose
a performance penalty.

Usability In comparison to the standard windowing scheme, only little in-
teraction is needed with the approach presented here. While this automatic
initialization of the visualization parameters is generally considered positive,
radiologists still put an emphasis on the need to manually focus on specific
ranges. The parameters for the tone mapping algorithms, however, are hard
to relate with the traditional approach. Therefore, a combination of the two
techniques by approximating the automatically determined tone mapping func-
tion linearly with adequate windowing parameters would be preferable. Also,
for multi-modal registration purposes, the visualization of the whole range of
values was considered to be useful. The more detailed structures in the tone
mapped data (as in figure 3.5b, for example) provide a better visual guidance
when specifying landmarks in two modalities with different value ranges, e.g.
PET and CT or MRI data.
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Conclusion and future work

In this contribution, the advantage of using the GPU for improving the visu-
alization of volume data of higher dynamic range than the output device has
been shown. After reviewing several approaches to compress high dynamic
range data, their applicability to medical data has been discussed. Global op-
erators offer a good way of transforming the data while being computationally
less expensive and inherently amenable to parallel architectures. On the other
hand, local operators would introduce an uncertainty into the visual representa-
tion impeding diagnostic interpretation. Therefore, some representative global
operators in the GPU framework have been implemented.

As the results are promising, there are some options for further investigation.
Firstly, applying such operators to other, more specific image modalities such
as fMRI/DTI has not been addressed in detail yet. Especially the growing
importance of functional imaging with data that does not simply correspond
to scalar properties such as luminance or density will lead to more complex
algorithms. With the real-time performance at hand, visual approaches such
as the “design galleries” by Marks et al. [MAB+97] would improve both the
handling of the algorithms’ parameters and multiple dimensions.

Another direction of research is the role of the transfer function in the context
of high dynamic range imaging. Similar to pre-/post-classification in volume
rendering (see section 1.3), one can use the (HDR) transfer function with the
original data and apply tone mapping procedures afterwards. Alternatively, the
transfer function can be accessed by (low dynamic) values of the volume that
has been tone mapped before. The implications are subject to further research,
as well as its applicability to different modalities, especially for non-scalar types.

3.1.3 Evaluating the Performance of Processing Medical Volume Data
on Graphics Hardware

As discussed in the preceding sections, GPU implementations of complex com-
putations are superior to software algorithms. Also, such computations are not
limited to rather simple, image processing filters: in Erdt et al. [ERS08] consider-
able mathematical operations were implemented, for example. Especially for
reasonably large amounts of data and non-standard data types, many appli-
cations can benefit from hardware implementations as well, as discussed by
Owens et al. [OHL+08] in the context of recent APIs and hardware.

However, the integration of computation and visualization is sensitive to
data transfer. With GPUs as external devices (with respect to the CPU and
its memory), all data has to be loaded to the graphics memory for further
processing. Whereas the computational performance of graphics hardware
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has grown exponentially during the past years, the memory bandwidth has
increased only moderately, as shown in figure 3.9.

Figure 3.9: The development of GPU’s memory bandwidth (in gigabytes per second)
over the last decade. (Image courtesy of GPUReview)

As already mentioned in the introduction of this chapter, and as addressed
by Buck et al. in [BFH+04, Buc05], the performance of GPU implementations
mainly depends on the arithmetic intensity. This term describes the ratio of
computations and memory accesses, where GPUs perform better the higher the
ratio becomes. This suggests on the one hand to hide the memory’s latency by
reordering programs (i.e., interleaving texture fetches with multiple arithmetic
operations). On the other hand, transferring data from the host’s memory has to
be done as infrequent as possible.

Therefore, the following contribution by Raspe et al. [RLM08] focuses on
a comparison of image processing and segmentation algorithms as single op-
erations, as well as a sequence of operations. Whereas GPU implementations
for the former can only exceed their software counterpart if the operation is
rather complex, concatenating hardware operations to perform a whole work-
flow clearly outperforms software implementations; even for larger amounts
of data. Considering the focus on visual computing, not only the much higher
performance of hardware implementations is attractive. The fact that the compu-
tation results can be visualized directly, i.e., without introducing any overhead
or data transfer, allows for literally interactive applications.

Introduction

With the advances of computer graphics hardware during the last few years,
the computational performance of such commodity hardware is able to clearly
outperform modern multi-core processors. As shown recently in [OLG+07],
many areas are able to benefit from the computing performance of programmable
graphics processors (GPU). In medical application, however, visualization tasks
are still the primary use for graphics hardware.
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While many general purpose applications have been successfully addressed,
image processing remains a particularly interesting field due to the architecture
of graphics hardware. Being optimized especially for two-dimensional textures,
processing such image data is obvious and achieves optimal performance. How-
ever, lots of image data is represented three-dimensionally, especially in the
medical field. This imposes several issues for applications targeting at graphics
hardware. Firstly, the available on-board memory becomes critical for large
volume data being easily produced by modern imaging systems. Secondly, 3D
textures are limited in flexibility thus preventing their use as target memory.
However, the main problem is still the data transfer to and especially from
the graphics memory. For certain applications this is not as problematic as it
might seem. As shown in Langs et al. [LB07], by using the graphics hardware
for filtering large volumes representing video frames a performance gain of
several orders of magnitudes with respect to commercial CPU implementations
is achievable. Köhn et al. [KDR+06] have implemented image registration algo-
rithms on the GPU and also report a clear performance improvement that has
only been flawed by some graphics driver limitations.

In order to evaluate the discussion for processing (medical) volume data,
different types of operations will be discussed with respect to their run-time
performance as CPU and GPU implementations, respectively. Therefore, the
GPU-based framework CASCADA, which is already used in the context of med-
ical segmentation (see chapter 7) regards computation processes at a more ab-
stract level and handles processing and visualization tasks uniformly. The
cross-platform system also provides basic functionality for handling (medical)
volume data and integrates different visualization techniques and input devices.
In chapter 6 both versions of the framework will be described in detail, while
CASCADA 1 was used in this contribution.

Material and Methods

The system for (general purpose) GPU programming focuses on processing
volume data, mainly from tomographic imaging systems such as CT or MRI.
While conceptual and implementation details of the framework will be described
in chapters 5 and 6, respectively, the remainder of this section outlines the
methods for evaluating and comparing its performance.

In order to provide a measure for the efficiency of the framework, its pro-
cessing performance has been compared with MeVisLab [MeV07], a widely
used software system for efficient medical data processing and visualization.
Although CASCADA also provides software implementations of the algorithms,
these are not as optimized as established tools in this regard. Most of MeVisLab’s
core algorithms are based on an image processing library that, in combination
with the powerful frontend, allows the flexible and rapid development of applica-
tions. At the time of writing, however, the system does not utilize programmable
graphics hardware, except for visualization purposes, simple modifications
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of primarily visual results via shader programs, and some experimental filter
implementations.

As mentioned before, an important factor for leveraging the performance of
GPUs is the amount of data transfer relative to the processing. Obviously, a much
better performance can be achieved by loading the data once to the graphics
memory and perform as much computations as possible there. This is also
preferable for the simultaneous visualization of the results during computation.
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Figure 3.10: Test setup for evaluating the performance of an example pipeline con-
sisting of different types of operations.

Two different scenarios for comparing the systems have been set up. The first
one is intended to show the performance at operations with different levels of
computational complexity, ranging from simple thresholding to gradient compu-
tation in a 3D neighborhood. The second performance benchmark (figure 3.10)
aims at mimicking a reasonable procedure for volume processing, so the focus
is on combining different operations while limiting data transfer to the extent
needed.

All the experiments were performed on an Intel Core2Duo (2.4 GHz) with 2
GB RAM and an Nvidia Geforce 8800 GTS with 640 MB of VRAM. For MeVisLab
the SDK version 1.5.1 available from the website with default settings was used.
The algorithms were applied in both applications to the same datasets, depicted
in figure 3.11: a 512× 512× 223 CT scan and an MRI scan 256× 256× 256, both
with 16 bit values, available in DICOM and raw format, respectively.

Results

In the following tables all the timings from the aforementioned experiments
have been collected. The first table shows some details on the single operations
with increasing complexity (no neighborhood, 4/6-neighborhood, and 8/26-
neighborhood, respectively). In addition to their behaviour in the different
dimensions, the transfer overhead is measured in detail.

The second table gives an overview of reasonable concatenations of varying
operations. No additional time for data transfer and/or conversion is measured
here, as both systems work in their appropriate format for subsequent execution.
In MeVisLab, special caching modules have been integrated to decouple the
different processing steps for more comparable measurements.
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(a) Abdomen CTA (b) Head MRI

Figure 3.11: The datasets used for evaluating the performance of GPU and CPU
implementations: a CT scan of the abdomen (a) and a smaller MRI scan
of a head (b).

Operation MeVisLab Cascada (all) Cascada (GPU)
Binary 0.73 / 0.21 1.9 / 0.55 0.038 / 0.011

Gradient 2D 10.1 / 2.9 2.6 / 0.7 0.06 / 0.017
Gradient 3D 14.9 / 3.9 2.6 / 0.72 0.059 / 0.018

Gauss 2D 1.36 / 0.37 2.48 / 0.73 0.061 / 0.017
Gauss 3D 3.65 / 1.01 2.59 / 0.78 0.09 / 0.026

Table 3.4: Computation times in seconds for the two data sets (CT scan/MRI scan).
The GPU version excludes data transfer from/to the video memory and is
averaged over multiple runs.

Operation MeVisLab Cascada (GPU) ∅ speedup
Gauss+Difference 3.6 / 1.48 0.74 / 0.23 5.5
Binary Threshold 0.7 / 0.23 0.125 / 0.049 5.2
Dilation 3D (5x) 27.12 / 7.6 1.14 / 0.343 23

Count Voxels 1.1 / 0.7 0.33 / 0.078 6
Total 32.9 / 10.8 2.41 / 0.76 14

Table 3.5: Single computation times in seconds for the two data sets (CT scan/MRI
scan). The GPU version includes the shader and all setup steps between
the stages; the initial upload is omitted here (see table 3.4). Total time does
not include data I/O for both platforms
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Discussion and Extension

As shown in the results, the GPU is able to clearly outperform CPU implementa-
tions for all operations, with speed-up factors of up to 250 – even for non-trivial
algorithms. In contrast, including the additional time for the data transfer to and
from the GPU reveals the severe impact on the performance: depending on the
type and dimensionality of the operation, and the size of the volume the soft-
ware implementation can surpass the GPU’s performance. Aside from several
optimizations that are left as future work for the GPU system to tackle this issue,
reloading the whole volume in every stage is not very likely. Therefore, the
second benchmark has been set up to provide a more realistic scenario where the
GPU is still more than one order of magnitude ahead of CPU implementations,
and is thus well suited for computationally demanding task of medical data
processing.

While the image processing filters presented here have been limited to small
32 or 33 neighborhoods and rather simple operations, in Erdt et al. [ERS08]
more complex settings have been used. In order to implement a segmentation
of hepatic vessels, the volume data is preprocessed by using a customized
vesselness filter, based on Frangi et al. [FNVV98]. This results in a high response
for tubular structures in the data, and thus requires a larger neighborhood for
reasonable detection. The authors have used a 73 window and compared a
CPU solution with a GPU implementation based on CASCADA. Especially for
this filter operation the hardware implementation achieves a speed-up of up to
100, even for non-separated filter kernels. In addition, the computation of the
Hessian matrix that involves six partial derivatives is still more than one order of
magnitude faster than the software version. This results in a total performance
gain of a factor of more than 15 if the data transfer is taken into account.

Of course, there is still room for improvement and investigation, aside from
just technical optimizations. Software performance is not only measured in raw
computing performance, but also in programming effort where a research system
as CASCADA has to be compared to other platforms (see chapters 5 and 6 for an
extensive discussion). Also, graphics hardware vendors have already started
to simplify the use of their hardware by regarding GPUs more as devices than
purely graphics oriented hardware, where the technical realization of ”visual
computing” is subject to change. Regarding the fast development cycles of
graphics hardware, the performance advantage will most likely be increasing as
can be easily seen from speedups with past hardware generations.
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3.2 Interaction

After discussing the possibilities of combining visualization and computations
by means of GPU implementations, the following approaches focus on the
interaction with the data. In particular, interacting directly with processing steps
performed on the data will be addressed. Techniques used for direct volume
render already provide interactivity by means of editing transfer functions,
apply cutting tools, etc. However, the notion of interaction will be extended to
computations, especially for the application of iterative segmentation methods.

This idea was originally introduced several years ago, mainly by Ben Shnei-
derman’s direct manipulation [Shn83]. This early work investigated fundamental
concepts such as the desktop metaphor for office applications or – in general –
information visualization; see Card et al. [CMS99] for an overview. Later contribu-
tions led to the notion of computational steering where the interactive control of
parameters with (ideally immediate) visual feedback is suggested.

Before the fast evolution of graphics hardware, such interaction was only
possible with specialized systems and/or clusters, as discussed for example
in Wright [Wri04]. Today, many researchers utilize the computational perfor-
mance of GPUs7 for virtually all kinds of simulations – often with interaction
capabilities, as will be addressed in the following sections.

3.2.1 Controlling GPU-based Volume Rendering using Ray Textures

This contribution by Raspe et al. [RM08] introduces a novel approach to control
different rendering parameters of volume ray casting interactively. Since the in-
troduction of ray casting implementations on programmable graphics hardware,
both performance and flexibility have increased and are able to outperform
texture-based techniques. In addition, by using rays for computing the volume
integral instead of proxy geometry (see section 1.3.2), one has more control
over local settings. Therefore, dependent texture lookups to user editable 2D
textures are utilized, thus allowing for interactive parameter setting on a per-ray
basis, at negligible performance overhead on modern graphics hardware. By
those means, volume rendering can be controlled in a way impossible with
proxy-based techniques and exemplary uses are demonstrated. Furthermore,
data-driven initializations of the ray textures are going to be addressed as well.

Introduction

Direct volume rendering (DVR) plays an important role in visualizing three-
dimensional data, with datasets from modern image acquisition systems in

7Several groups even employ CPU–GPU clusters, which has become much more attractive
due to dedicated programming APIs such as Nvidia CUDA or OpenCL.
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medicine being the most prominent. Several methods for solving this computa-
tionally demanding problem have been proposed in the past decades and form
the foundations of many volume rendering systems in a variety of applications.
Sections 1.3.2 and 2.3.3 discuss the techniques in general and in the medical
context, respectively.

In this contribution, the control of rendering parameters at ray level by em-
ploying intermediate textures used as parameter lookup table is proposed. As
a ray casting extension it is, of course, not limited to pure GPU implementa-
tions. However, to achieve reasonably interactive performance on commodity
hardware the focus will be on a GPU-only implementation. In addition to the
step size as the basic internal parameter for ray casting, these computations
typically introduce different parameters. Controlling them individually across
the volume domain (as proposed here) is usually not possible, but would offer
numerous possibilities: starting the rays at different intervals for local cut-away
views; decreasing the step size (i.e., better image quality) only in areas of interest
or importance; weighting optical properties during integration, etc.

Related work

A clear advantage of ray casting is the easy integration with geometry, as is
particularly interesting for clipping techniques or correct rendering. Kratz et
al. [KSFB06] have established a flexible solution utilizing depth buffer informa-
tion. Related to ray–geometry intersection is the correct rendering while moving
the camera within the volume, which is can be regarded as interacting with the
visualization as well. Therefore, the bounding geometry generating the rays
must not be clipped by the view-frustum (i.e., near plane), but reset to resemble
the ”new” starting point of rays; details can be found in [SHN+05], for example.

The concept of controlling the ray itself has been further extended by Rezk-
Salama et al. [RSK06] to allow the flexible exploration of the volume. Especially
in medical datasets, inner structures often cannot be revealed by editing the
transfer function only, due to the viewpoint dependency of occlusion. Their ap-
proach aligns well with GPU-based ray casting and also exploits other hardware
features for interactive performance, but does not work on individual rays or
their properties. This idea has been proposed by Malik et al. [MMG07], whose
method evaluates the profile of each ray through the volume, thus achieving a
more flexible peeling technique.

Another category of research aims at controlling the rendering of the vol-
ume by defining clipping data, usually consisting of basic geometry like planes,
spheres etc. This quite simple, yet effective technique is integrated in almost ev-
ery commercial system and provides basic interaction functionality. In addition,
this can also be extended to volume data (e.g., segmentation results) specifying
the rendering/clipping of individual voxels. Although Weiskopf et al. [WEE03]
have presented this approach originally for texture-based systems, their concepts
can be easily extended to a ray casting environment.
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Approach

Implementing the ray texture concept requires the discussion of several topics.
Aside from technical issues for a flexible GPU implementation, different types of
parameters and interaction modes are introduced and defined in the following
sections.

As introduced before, the goal is to provide means for controlling volume
rendering parameters down to the level of single rays. Of course, this implies
that it should also be possible to build groups of rays for equal properties, thus
simplifying user interaction. Thereby, the possible levels of control range from
a single ray up to all rays at once, i.e., standard ray casting. Apart from the
level of control, the parameters’ type and semantics are of interest as well. One
basic parameter in ray casting is the step size specifying the interval at which
the volume is sampled along the ray: the larger the step size, the coarser the
sampling, and vice versa. Another set of parameters closely related to the ray
itself is the offset specifying the valid interval of sample positions along the
ray. Figure 3.12 illustrates these geometric parameters, with the offset parameters
defining only two intervals for clarity in the example.
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Figure 3.12: Controlling geometric parameters per ray: step size (blue dashes) and
two intervals (”inN/outN”) are set individually, thus sampling the
volume along different intervals (thick black lines)

Classification of parameters In contrast to the ray geometry, another class of
parameters can be defined as value parameters that control the computations dur-
ing integration (i.e., within the ray casting loop for single-pass implementations).
The following list names a few typical parameters:

• threshold for early-ray termination (ERT)

• weighting directional properties, e.g. gradients

• combining optical properties by blending different rendering modes (MIP,
transfer functions, etc.)
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In addition to the different applications, these parameters are of increasing
complexity. That is, a simple threshold will be easier to implement and to control
than the weighting of rendering modes or different transfer functions. As well
as the geometric parameters described before, the uses are not limited to the
examples listed here; they are rather to outline the idea. In addition, both sets
of parameters can be combined in order to increase, for example, the quality of
early terminated rays by reducing the step size for low ERT thresholds.

Controlling the texture To edit the ray texture during run time, two different
approaches have been identified – no matter if the texture is set up automatically
or via direct user input. As depicted in figure 3.13, the texture can be aligned
with the screen or with the volume. For the former, the data in the texture is set
in viewport coordinates, i.e., keeping the texels at fixed positions while changing
the volume rendering in terms of rotation, position, etc. This method will be
referred to as view aligned, also to emphasize the analogy to view aligned slices
for proxy-based volume rendering. The second method maps the additional
texture to the bounding geometry of the volume. This way the ray texture is
transformed together with the volume and represents a volume aligned texture
mode. Note the difference in the sampling of the volume with the ray texture
specifying the step size, indicated by the different dashes in figure 3.13.

screen

ray texture

Figure 3.13: Different rendering modes: initial view (left), view aligned (middle) and
volume aligned (right) application of ray textures to rotated volume.

Shader handling This approach focuses on a GPU-only implementation of ray
casting which means that the computations are performed by shader programs.
These programs are compiled once and loaded for drawing the geometry. Thus,
the functionality of a shader cannot be changed without loading a recompiled
program. To minimize the overhead of providing several complete shader pro-
gram, two different strategies will be applied. Firstly, the framework developed
in the course of this thesis (see chapter 6) supports the concatenation of shader
code fragments. Using this approach, different modules integrating the param-
eter types introduced before into a default ray casting fragment program can
be used. Depending on the user’s selection the corresponding shader is then
assembled and loaded. This approach is discussed extensively in chapter 5.
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The second method does not employ the assembly of shader programs
from small components, but uses one complete shader program. The different
“semantics” (i.e., controlling the step size, ERT threshold, etc.) are used directly
in the code by accessing different textures (or channels thereof) that have been
initialized accordingly. Section 3.2.1 will show example code and the different
approaches will be discussed.

Implementation

Setup CASCADA already provides some basic tools for working with and
rendering volume data. In addition to the data itself, which is represented as
volume and array objects, respectively, the system also provides the correspond-
ing texture objects for wrapping OpenGL states, handles, etc. Also mentioned
before, “flat3D textures” are utilized that unfold volumetric data into a large
two-dimensional texture

The ray casting itself is implemented as a typical two-pass algorithm, as de-
scribed in section 1.3. It should be noted that the approach proposed here is also
applicable to optimized bounding geometry as presented by Scharsach [Sch05],
because only the rays’ parameters are controlled, independent of how the rays
are computed. The shader program implementing the integration along the
ray (i.e., the loop) is the main part of the ray casting algorithm and will be
augmented with the additional texture for controlling the individual rays. In
addition to extending the shader code as shown in listing 3.1, a two-dimensional
texture is also initialized as needed for the further steps.

Application As described in the section before, both controlling options have
the advantage of providing a fast and simple setup and manipulation on the
application side, and being easily accessed during the ray casting process in
the shader program. The two approaches differ only slightly in terms of shader
implementation, so that the whole procedure can be summarized as follows:

Pseudocode 1 Ray Textures
initialize 2D texture in viewport size
manipulate the texels according to user input from window coordinates
update the texture/coordinate information and load it to the GPU
while (ray casting) do

if (view aligned) then
access the ray texture using the window relative coordinates

else
access the ray texture using the starting position of the ray

end if
end while
control the ray parameters within the shader
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The first step should be clear and does not need further explanation. If the
ray texture is initialized with pre-computed results, the second step is optional.
In case the step is used, a circular neighborhood of the current pixel position,
with varying size and fall-off has been implemented. Taking the basic idea of ray
textures to controlling rays from a single ray to all rays at once one step further,
a hierarchical approach has also been implemented. Therefore, editing the ray
texture can be performed at different resolution levels: using a coarser level will
result in many rays being changed at once, and vice versa. However, this permits
only square areas to be edited due to the very nature of texture mip-mapping.
A possible extension to that will be reviewed at the end. In combination with
the “manual” approach, this allows for further customization of the editing
area, with results being presented and discussed later on. The subsequent step
transfers the changes to the graphics hardware, so that this has to be done per
frame. As this is the most expensive part, pure GPU implementations will be
outlined at the end of this section to alleviate the communication burden. The
following steps are performed within the shader and will be described in the
next paragraph in detail.

Shader implementations As mentioned before, accessing the texture is done
in the second pass of the ray casting algorithm for both methods. For the view
aligned mode, the ray texture is simply indexed using the relative window coor-
dinate of the current fragment via GLSL’s gl FragCoord. When using volume
aligned access, the same texture coordinates as for the color-coded ray positions
from the preceding pass (i.e., the fragments from rendering the bounding geom-
etry) are used for fetching the corresponding texel from the ray texture. This is
shown in the example code in listing 3.1, controlling the step size as an example.
Note how the current ray texture’s value can be used differently by using texture
channels, sets of ray textures, etc.

Implementing the functionality itself is also straightforward, as will be shown
with some examples that address both classes of parameters described before.
For the first example, the effect of decreasing the step size in regions of interest
to improve rendering with an initially low step size (1/10 instead of 1/256) is
shown. Therefore, the user draws into the texture to lower the value stored in
one of the channels. This value is then read within the shader to set the step size,
which is then used as increment of the inner loop. Figure 3.14 shows a vessel
data set (3842×72, 16 bit) with an accordingly edited ray texture to increase
rendering accuracy in regions of interest.

The second example (figure 3.15) blends two shading modes by using a value
parameter for linear interpolation. Thus, the user is enabled to control the exact
application of transfer functions, simple shading, or other techniques on a per
ray basis.
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uniform sampler3D volTex; // volume data
uniform sampler2D rayTex; // control texture
uniform sampler2D startTex; // ray start pos.
uniform vec2 rcpWinSize; // reciprocal win size
uniform float stepsize; // default: 1/256.0
uniform bool volAligned; // mode (default: true)
varying vec3 texcoord; // ray stop positions

void main()
{

// compute ray
vec2 tc = gl_FragCoord.xy * rcpWinSize;
vec3 raystart = texture2D(startTex, tc).xyz;
vec3 ray = raystart - texcoord;

vec4 control;
if ( volAligned )

control = texture2D(rayTex, raystart.xy);
else

control = texture2D(rayTex, tc);

// ...

// set step size from first channel of rayTex
stepsize = max( 0.00390625, control.x ); // limit: 1/256

// integrate
for ( float t = 0.0; t <= ray_len; t += stepsize )
{

vec3 pos = texcoord + t * ray;
vec4 sample = texture3D(volTex, pos);
// ...

}

// weight result from ray texture
gl_FragColor = finalcolor * control.y;

}

Listing 3.1: GLSL shader code (simplified) showing the use of ray texture within a
standard ray casting shader.

Results

In this section the results of the approach will be presented, both in terms of
rendering performance and level of control. All implementations and tests have
been done using the GPU-framework CASCADA 1, running on an Intel Core2
Duo (2.4 GHz) with 2 GB RAM and an Nvidia Geforce 8800 GTS under Windows
XP. The viewport size for the ray casting has been 5122 pixels, with a default
setting of 256 loop iterations. Ray casting is performed as a two-pass approach
as described before, without further optimizations. The data set used in the
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Figure 3.14: Decreasing the step size for a region of interest (right section vessel) in
an example dataset. The inset depicts the corresponding ray texture.

Figure 3.15: Blending a one-dimensional transfer function and simple accumula-
tive shading by using value parameters, with the inset showing the
interpolation weight.

figures and the timings below is an MRI volume of 2563 voxels, with 16 bit
floating-point scalar values per voxel (represented as IEEE-754r compliant type
“half”). The rendering performance is averaged over a full rotation of the volume
to account for view dependency, with the volume covering at least 90% of the
viewport.

Performance As stated before, the overhead for the additional texture lookup
is negligible on current graphics hardware. Aside from the number of the pixels
used for casting ray, the rendering performance is mainly influenced by the
number of iterations due to the multiple texture fetches along the ray. Accessing
the ray texture imposes only one additional texture fetch per fragment and does
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not contribute to the overall performance, as set out in the table below (static ray
texturing).

While editing and reloading the texture as described in the preceding section,
the performance is limited by the CPU–GPU communication bottleneck, of
course. Note that this includes setting a whole neighborhood of values, not
only the pixel currently “selected”, so that there is some additional computation
performed by the CPU. In order to reduce the performance hit by updating the
texture per frame, the transfer should be limited to the actually edited region of
the texture. In addition to the initial resolution of the ray texture, the hierarchical
approach for updating an area of rays comparable to that of direct update has
been used. This results in a clear performance gain compared to working with
an equally large area at the full resolution. However, a detailed control of the
neighborhood with arbitrary shapes is not directly possible when using the
hierarchical approach.

Rendering Mode Average FPS
Default ray casting (RC) 61

RC with static ray texturing 59
Direct update 9

Hierarchical update 33
Table 3.6: Average performance for standard ray casting, additional ray textures,

and update strategies, respectively.

Although it is quite difficult to compare the two classes of parameters (ge-
ometric and value, respectively) due to their different usage, equally complex
scenarios have been used to estimate the difference. Therefore, the intervals
have been decreased in equal steps resulting in an increased number of loop
iterations. For the value parameters the threshold for early ray termination has
been increased likewise, which yields also more iterations (due to the delayed
termination of the loop). As expected, the performance is not related to the direct
type of parameter, but to its syntactic use within the shader.

Control The two methods of transforming the ray texture have led to different
behaviour while editing the texture. For the view aligned approach, the function-
ality can be interpreted as looking through a “window of altered properties”.
This is similar to the idea of ray casting as image space method, where rays are
cast through the viewing plane and sample the volume along the ray (usually
within the volume’s boundaries). As expected, this works only intuitively for
fixed viewing positions due to the view dependency: for example, an increased
level of detail applied to a specific region of interest will affect other regions
once the camera is moved.

A more intuitive control is to transform the ray texture with the volume (i.e.,
volume aligned). This approach counteracts to some degree with the ray casting
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concept where the rays are all in viewing direction. Their properties, however,
are changed only partially depending on the visibility and transformation of the
edited ray texels.

Figure 3.16: Comparison of the two editing modes: ”view aligned” (left) and ”vol-
ume aligned” (right). Note the inset illustrating the different effects

Thus, the former method can be used, for example, as a tool for inspecting
parts of the volume, analog to a filter being applied to data. As both can be
interchanged easily during rendering, manipulations of the texture can be made
on-the-fly in one view or the other. Figure 3.16 shows the different results for
the volume and view aligned mode, respectively.

Conclusion and Future Work

In summary, the concept of ray textures for controlling parameters of individual
rays in volume rendering was presented as a tight coupling of visualization
and interaction. Therefore, parameters were classified as geometric and value
properties that can be edited and used separately, as well as in combination.
Additionally, two modes of applying the ray texture were described: view aligned
or volume aligned, which differ only slightly in terms of implementation and thus
can be used interchangeably during run-time. In addition to a neighborhood of
the current position for changing of a whole set of rays at once, a hierarchical
approach has shown to be more efficient, if a simple quadratic neighborhood is
sufficient.

As a direct improvement of the limitation imposed by the hierarchical ap-
proach would be a GPU-based solution. There, only the coordinates of the user’s
interaction would be transferred to the GPU, and preset textures of arbitrary size
and shape would be applied. This would also enable procedural texturing or
even an integration of feedback from the preceding rendering step. Initializing
the ray textures is yet another direction of investigation. Therefore, the volume
would be rendered first to an offscreen buffer to extract relevant information
(e.g., gradients, silhouettes). Finally, the application of the ray texture concept to
offscreen rendering would be of high interest for further parameter setting.



3.2. INTERACTION 89

3.2.2 Controlling iterative algorithms

While the concept of ray textures provides interaction with the visualization,
direct interaction is also interesting for the manipulation and control of compu-
tations. In general, two different classes of such techniques can be identified.
At a very coarse level, the user interaction can represent parameter settings
that control an algorithm. In the following, this concept is referred to as global
interaction, to express the setting of properties for the whole process. In contrast,
local interaction denotes the second level of interaction, where parameters are
manipulated locally. As approaches for the former are rather obvious, the focus
will be on concepts to implement local interaction.

Global interaction

In the context of iterative algorithms, one example for such a global interaction
is the incremental region growing for vascular segmentation proposed by Selle
et al. [SPSP02], and later by Boskamp et al. [BRL+04]. In their work, multiple
thresholds are precomputed and the overall volume of the segmented region is
evaluated. By plotting the data as graphs (see figure 3.17), the user or algorithm
can select the optimal threshold with minimal error.

(a) Selle et al. [SPSP02] (b) Boskamp et al. [BRL+04]

Figure 3.17: Interactive region growing to determine the optimal threshold in order
to segment vascular structures from CT/MRI data sets. The graphs
depict the total volume of the segmentation depending on the threshold.
In (a) for liver vessel segmentation, in (b) for aortic vessels, with the
insets illustrating the different results, respectively.

In Erdt et al. [ERS08] this concept has been adopted and extended to allow
interactive settings based on transfer functions, to achieve real-time performance
for whole volume segmentations on GPUs. Therefore, the segmentations results
based on region growing are stored by augmenting the initial values with offsets
from the different thresholds used. This results in high values where the voxel
belongs to the region for a whole range of thresholds, in contrast to lower values
for outliers; figure 3.18 illustrates the approach.



90 CHAPTER 3. INTERACTIVE VISUALIZATION OF COMPUTATIONS

Figure 3.18: Real-time preview of region growing segmentation in [ERS08]. A dy-
namic transfer function is applied to a (precomputed) volume contain-
ing additional information from the iterative segmentation process of
hepatic vessel structures.

Local interaction

Whereas the aforementioned examples provide only an indirect level of inter-
action, controlling computations locally is also desirable. There exist many
applications for direct interaction with computations in the field of physical
simulation, for example. Closer related to GPU-based computations are the
fundamental contributions by Krüger et al. [KW03b] and Harris [Har04]. Based
on the linear algebra operations and demo applications introduced by Krüger
et al., Harris implements Navier-Stokes fluid simulation on a two-dimensional
grid. They have been able to run their simulations on reasonably sized grids
in real-time on hardware available back then, mainly due to the high degree of
parallelism of such applications. Nevertheless, this performance in combination
with the direct mapping of the visual results to the underlying simulation (i.e.,
textures, see figure 3.19) allows the direct, local manipulation of the physical
properties. As a result, the user can “draw” properties such as velocity, pressure,
or temperature, or edit obstacles that interact with the simulated matter with
immediate visual feedback.

Figure 3.19: GPU-based fluid dynamics simulation by Harris [Har04] with direct
interaction during rendering. The images depict from left to right: ink,
velocity (scale-biased), pressure, and vorticity.

After many years of GPGPU research and the availability of increasingly
programmable hardware, these applications have been extended to practically
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all kinds of physical simulations, three-dimensional grids, more complex solvers,
etc. Due to the fact that the details of these implementations go beyond the scope
of this thesis, the focus will be only on applications for (medical) image data,
preferably of three-dimensional type.

During an early stage of this thesis, one project has been on interactively
segmenting the liver from low-resolution MRI data of the human abdominal
section utilizing graphics hardware (figure 3.20). While further details of the
“LiverGPU” project will be presented in section 7.1, the following paragraphs
discuss the concept of combining visualization, computation, and interaction.

(a) Initialization (b) Without blockers (c) With blockers

Figure 3.20: Interactive region growing of low-resolution abdominal MRI in “Liv-
erGPU”. After initialization (a) the segmentation converges with severe
leakage (b); blocking pixels are drawn to avoid such errors (c). (Green
color depicts rough manual segmentation, red the automatically seg-
mented region, and blue the manually drawn blockers. Iteration is
performed in 3D, but for clarity only one slice is shown.)

Introduction The basic idea is the observation that region growing algorithms
usually suffer from local artefacts. As a result, gaps in delineating structures
(i.e., edges) give rise to leakage. That is, the segmentation process continues
into regions that are not part of the desired object. Global parameter tuning can
reduce this sensitivity to local irregularities, but is often too data dependent,
time-consuming, and in the end the results are usually still not satisfying. Also,
the approaches mentioned in the preceding section for detecting leakages as
sudden increase in segmentation volume are only useful with well defined
structures in terms of image contrast, modality, resolution, etc.

Relatively simple algorithms such as region growing usually do not have
a high-level view of the structure to be segmented, whereas the human user
generally does. While being good at detecting and recognizing known objects
even in complicated settings, determining the exact contour of structures is often
too tedious and error prone for the user. There are many approaches to combine
the two advantages using semi-automatic segmentation tools, e.g., the LiveWire
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technique introduced by Mortensen et al. [MMBU92] and Udupa et al. [USB92],
which is the basis for selection tools in many commercial products. The user
draws a contour freely by dragging some pointer roughly along the desired
border. The algorithm evaluates the neighborhood of the current position based
on a cost function that has been derived from the image before. By choosing
the path of minimal costs, the final outline of the object is created. In spite of
several improvements of the technique, such as Falcão et al. [FUS+98], or Salah
et al. [SOB05], this process can become quite tedious depending on the image’s
details to be segmented.

Quite recently, Chen et al. [CSS08] have presented a set of tools for interactive
volume sculpting and segmentation. While the manipulation of the volume itself
is beyond the scope of this chapter, interactively controlling the segmentation
process is of high interest. In their work, the concept of splatting (i.e., combin-
ing a set of 2D point sprites into a volumetric structure) is implemented using
geometry shaders and further advanced GPU techniques. Their segmentation
framework allows the parallel execution of seeded region growing, where the
seeds are defined by user-drawable primitives. In addition to the standard region
growing, the shrinking of the segmented region is supported to provide further
interaction. Their system achieves clear real-time performance for the paral-
lel segmentation and visualization of typical volume data sets on commodity
graphics hardware.

Blockers For iterative, non egde-based algorithms such as region growing,
other methods are needed as the user should not guide the segmentation process
completely. Therefore, the concept of blockers has been used in the project for
interactive liver segmentation. These user-drawable structures define local
boundaries or obstacles, which cause the segmentation process to stop at the
“blocked” position.8

Although segmentation based on region growing cannot be directly com-
pared with such, usually solver-based physical simulations, some of the concepts
mentioned above can be adopted. In case of region growing the following com-
putation steps describe the procedure discussed here.

Adding or removing the blocking structures can be done on a per-pixel basis,
with modifiable size, or predefined shapes, of course. For clarity, we limit the
discussion and terms here to the two-dimensional case, where the mapping of
the user’s interaction is obvious. The extension of the approach to the final three-
dimensional segmentation, as well as other features of the developed application,
will be discussed in chapter 7.

By drawing such blockers, the growing process can be kept from leaking
across weak or incomplete boundaries, as shown in figure 3.20. These small

8Note the resemblance to the local, user-definable modifications in the aforementioned fluid
systems, where such obstacles influence or even steer the simulation.
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Pseudocode 2 Region growing with local interaction
preprocess image data, e.g., denoising filters, gradients
seed definition for region growing by user input
while (region growing is not converged) do

add/remove blockers by drawing into offscreen image
pause/re-run iteration

end while
postprocessing, e.g., morphological operations, volumetry

areas can cause the region to degenerate even if – depending on the algorithm’s
details – there are only few single pixels connected to the outer region9. As such
critical spots are assumed to occur infrequently and only locally – otherwise the
whole image data might not be suited for further segmentation – the workload
for the user is rather low. The optimal case, however, would be to block just a
single pixel.

Recorded iterations To further reduce the manual interaction needed by the
user, the iterative nature of the region growing algorithm can also be exploited.
This approach can be extended to other iterative algorithms as well, and is
addressed in the discussion below. Reviewing the segmentation process from
one time step to the next leads to the following observation. Given is a set R of
pixels at time t. During the next iteration t + 1 another set of pixels P from the
region’s neighborhood (depending on the algorithm) is determined to belong
to the region, and thus should be added. This set then contains the “newest”
elements, whereas the elements from set R become “older”. This process is
repeated until the segmentation converges. The pixels’ age is stored as an integer
value, so that the final region consists of a set of pixels with increasing values
towards the seed point/region. This concept is depicted in figure 3.21.

In combination with flexible visualization techniques (e.g., via shaders), the
approach using dynamic transfer functions mentioned in the beginning of this
section can be used to interact with the “recorded” segmentation process. As
shown in Erdt et al. [ERS08], the user selects the optimal threshold for the seg-
mentation, and then further processing steps are performed. In contrast, the
selection here is to determine the time in the segmentation where errors (i.e.,
leakage) occur. The user would then block the spots causing the leakage in the
image data and restart the segmentation process, with the current segmenta-
tion as seed region to avoid redundant computations. As outlined before, the

9This becomes more obvious in the three-dimensional case, where such “bridges” cause
the segmented region to expand across neighboring slices and then back to the area not to be
segmented.
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Figure 3.21: Principle of recording the region growing process by using integer IDs.
Starting from the seed region (a) each iteration increments the ID, thus
providing means to separate the region later on (b,c).

contribution by Chen et al. [CSS08] takes this concepts even further to realize a
completely interactive segmentation based on seeded region growing.

Implementation issues

Until recently, graphics hardware has been limited to floating point data only. Al-
though shading languages have provided integer formats, floats have been used
internally and thus caused rounding errors in addition to extra computations
for scaling/biasing; see also chapter 1. Due to the recently introduced integer
formats, the aforementioned algorithm can be implemented without numerical
issues, however.

Regardless of the data format, the upper limit of the ID values can be de-
termined from the image data itself: in the limit case, the seed is placed at the
very end of the image while the region expands to the other end. Thus, there
are values in the range of [1, ..., d

√
w2 + h2e], where w and h denote the image’s

width and height, respectively. For example, the values for recorded region
growing of a 512× 512 image would range at most from 1 to d(

√
2 · 512)e = 725.

As a result, 16-bit unsigned integer values would support square images of more
than 46k pixels per side, which seems to be sufficient for a wide range of data.

Extensions

The concept of controlling iterative algorithms is not limited to segmentation
algorithms in general, or region growing methods in particular. Morphological
operations such as dilation, erosion, or combinations thereof (i.e., closing and
opening) can also be controlled by the technique described above. In spite of the
fact that these operations resemble processing filters – in contrast to segmentation
methods such as region growing – the concept of local “time-stamps” can be
applied as well. The only difference to the recorded iterations as depicted in
figure 3.21 is that the set of pixels does not represent regions; hence, the data
elements can be processed independently.
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Another category of algorithms are diffusion filters. These methods transfer
the theory of diffusion processes to image data in order to reduce noise by equal-
izing “concentration” differences. Several types of diffusion algorithms exist and
differ in the handling of edges, dimension, etc. In the following, anisotropic diffu-
sion ([PM90, Jäh97]) as a commonly used diffusion filter should be discussed.10

This anisotropic variant is an iterative edge-preserving smoothing process and
has been widely adopted in image (pre-)processing. The basic idea is to use
partial differential equations to describe the diffusion process over time, with
intraregional smoothing being preferred over interregional diffusion. While the
diffusion coefficient for inhomogeneous diffusion is directly dependent on the
gradient strength, for anisotropic diffusion this process also varies in different
directions. In discrete representations, this process is computed iteratively until
convergence, while gradient information is usually approximated by differenc-
ing schemes (e.g., central differences).

In order to interact with the iterative process locally, an appropriate rep-
resentation of every time-step has to be stored per data element. Whereas an
integer counter has been sufficient for the aforementioned algorithms, diffusion
processes require additional information: the change in image intensity from
each iteration has to be recorded. There are different optimizations imaginable
(e.g., only altered pixels are tracked, compression scheme to store differences
only), but basically a sequence of (difference) images has to be kept for the whole
procedure. This would be reasonable only for a moderate number of iterations,
due to the additional dimension introduced by the difference images. As such,
this strategy is somewhat related to the work presented in section 3.1.1 where
sequential video frames have been filtered volumetrically. As shown there, the
computational complexity is feasible, especially when additional means such as
compression would be used. In the following pseudo-code an approach for a
diffusion filter with N iterations is summarized that does not store the change
information of the filtering itself. Moreover, the local interaction is stored as
image and is used to change the filter’s parameter settings at the according
iteration step.

This enables the compact representation of the user’s input without the
need to store any difference information of the iterative computations directly.
While the roll-back of the filtering (e.g., to adjust some parameters locally for
improved results) would still be possible by restarting the iteration from the very
beginning, an intermediate ”key frame” every k-th iteration would be a good
trade-off between good performance and reasonable memory footprint.11 As

10Barash [Bar00] establishes a link between this iterative, computationally expensive diffusion
process and bilateral filtering as non-iterative algorithm with similar results. However, here the
focus will be explicitly on the iterative nature of the diffusion algorithm.

11Note that this bears resemblance to the concept of video compression, where intermediate
frames are stored in total, and adjacent frames only as (encoded) difference information.
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Pseudocode 3 Recorded filtering (here: diffusion) with local interaction
Input image I0
for (i = 1 to N) do

if (Interaction performed) then
Create interaction image Ii
Store local change information in Ii
Perform diffusion computation evaluating Ii

else
Perform diffusion computation

end if
end for

should become clear from this example, the concept of recorded local interaction
can be extended to different kinds of operations that are of iterative nature and
process image data locally.

3.3 Conclusion

Several approaches in the context of visual computing were presented and dis-
cussed in this chapter. In accordance with current developments of scientific
computation and visualization, using the GPU was shown to be highly advan-
tageous for computationally intensive tasks. Although individual processing
steps can often be accelerated by hardware implementations, most applications
benefit even more due to two aspects. Firstly, the utilization of the graphics hard-
ware allows the direct visualization of (intermediate) results. If combined with
advanced volume rendering techniques (see section 1.3) or concepts for directly
interacting with the computations (as shown in the preceding section), there
are even more possibilities. The second aspect is to execute as many sequential
processing steps as possible on the graphics hardware, in order to minimize the
bandwidth gap for data transfer. As will be discussed in detail in chapter 5, there
are only few and very limited approaches available to date for implementing
whole workflows on programmable graphics hardware. The framework CAS-
CADA is an attempt to provide such functionality.

A final example for a well-suited integration of different disciplines in the
medical context is the application presented by Dietz [Die05]. In this work,
deformable registration methods are combined with direct visualization, while
the acquisition of data points is updated interactively at the same time, based
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Abbildung 3.10: Neun Iterationen der Deformation des Femurmodells

litätsnähe der deformierten Modelloberfläche ist direkt aus der Anzahl der
Kugeln ableitbar, die sichtbar sind und sich in der Nähe der Modellober-
fläche befinden. Abbildung 3.10 macht deutlich: je höher diese Anzahl ist,
desto realitätsnäher wird der noch zu erfassende Bereich dargestellt.

Je nach Verteilung der Punkte, die davon abhängig ist, auf welche Art
abgetastet wird, sind nur wenige Deformationen nötig, um das Femurmodell
annähernd an die Ausdehnung der Punktwolke anzupassen. Ab diesem Zeit-
punkt wird der noch zu erfassende Bereich bereits ausreichend genau darge-
stellt, um den Chirurgen bei der Erfassung visuell unterstützen zu können.
Da sich ab jetzt die Ausdehnung des Femurmodells nicht mehr bedeutend
verändert, wird der Fortschritt der Erfassung durch die grünen Vertices ge-
nau visualisiert. Im Vergleich zu dem dritten Ansatz ist diese Fortschrittsan-
zeige genauer und aussagekräftiger, da die Größe des Femurmodells in guter
Annäherung der Größe des realen Femurs entspricht.

Ein Anwender des dritten Ansatzes konnte nur dann halbwegs sicher
sein, einen Bereich vollständig erfasst zu haben, sobald dieser ohne größere
Lücken grün gefärbt war. Durch die angepasste Modelloberfläche ist diese
umfassende Einfärbung nicht mehr zwingend notwendig. Der Chirurg kann
jetzt interaktiv beurteilen, ob die bereits erfassten Punkte die wesentlichen

65

(a) Iterations of deformable registration Abbildung 4.7: Navigationsinterface der fertigen Umsetzung

gen Dreieckspolygonen, die alle auf einer Ebene liegen. Die Polygone sind so
angeordnet, dass sie annähernd einen im dreidimensionalen Raum liegenden
Kreis bilden. Dieser Kreis wird in der dreidimensionalen Szene positioniert,
indem dessen Mittelpunkt an die Position der sechsten anatomischen Land-
marke translatiert wird. Anschließend wird der Kreis so ausgerichtet, dass
er in einer Ebene senkrecht zur Femurachse liegt.

Wenn der Chirurg die Bohrführung ausrichtet, bewegt sich der Kreis
zusammen mit der Punktwolke und dem Femurmodell. Dabei wird die Dar-
stellung des Kreises durch die selben Clipping-planes beeinflusst, die auch
das Femur- und Implantatmodell beeinflussen. Dadurch ist der Kreis wie in
Abbildung 4.7 als weiße Linie zu sehen. Diese Linie wird im Folgenden als
!virtueller Pin" bezeichnet. Der obere rechte Quadrant in Abbildung 4.7 de-
monstriert dessen Verwendung. Dort ist das Implantat so ausgerichtet, dass
der K-Draht die virtuelle Pinregion an der durch den virtuellen Pin mar-
kierten Stelle schneidet. Als zusätzliche Orientierungsmöglichkeit wird die
dritte anatomische Landmarke zur visuellen Repräsentation des Trochanter
minor mittels einer großen blauen Kugel dargestellt. Diese Kugel wird von
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(b) Final screen

Figure 3.22: Visualization of interactively acquired samples for deformable registra-
tion (a) of generic bone model to patient-specific anatomy in hip joint
endoprosthesis surgery (b). (Image courtesy of [Die05])

upon the visual feedback. The medical application is the registration of a generic
bone model (here: femoral head) during navigated surgery for hip joint endo-
prosthesis preparation and placement. Therefore, the clinician uses a tracked
input device to manually sample the bone’s surface. In order to optimize the
registration process, this procedure requires an equal distribution of the samples.
As the positions already collected are not visible in reality, this information is
only available through visual feedback (figure 3.22). Due to the fact that graphics
hardware had not been widely available and flexible back then, all of the com-
putation steps were implemented in software. The rendering was performed by
the fixed-function graphics pipeline. In order to ensure an acceptable response
time, the system is hence limited to a moderate number of samples, relatively
coarse geometry representation and registration parameters, etc.

With respect to the methods introduced in this chapter, this scenario inte-
grates many of these aspects and lends itself to be implemented completely in
hardware. Firstly, the rendering of the bone geometry or sample points is obvi-
ously suited for graphics processors, with current generations being virtually
unlimited in scene complexity and dynamic update/creation of geometry. Sec-
ondly, the transfer of tracking information from the navigation device also does
not impose any restriction, as the bandwidth needed is clearly not performance
critical. Finally, the deformable registration implementation based on radial
basis functions (see Dietz [Die05] for details and discussion) is also well-suited
for GPU implementation, as recent contributions in this field, such as Samant et
al. [SXMOO08] account for.
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CHAPTER 4

COMPRESSION COMPUTING

In the preceding chapter different approaches and concepts towards an integra-
tion of computation and visualization were presented and discussed. Following
the term “visual computing” for such an integration, this chapter proposes the
direct visualization and processing of compressed data. While the former has been
subject of intensive research – especially in the context of GPU-based rendering
– the direct processing has not been studied amply yet. The benefits for such
algorithms, however, are obvious:

• the amount of data to be transferred is reduced due to the more compact
representation, which enables

– the processing and visualization of larger data sets (without addi-
tional techniques such as bricking etc.)

– faster algorithms, if data transfers are required frequently

• processing operations can potentially be implemented more efficiently in a
compressed representation

• depending on the compression method other techniques (e.g., multi-reso-
lution approaches) are available

As mentioned in the introduction of this thesis, the increasing computational
graphics performance provides means for more complex and interactive visual-
izations. On the other hand, the amount of image data acquired and generated
today demands efficient solutions. Especially medical imaging technology has
evolved rapidly and high-resolution three- and four-dimensional data sets are
acquired on a regular basis today. With the latest dual-source CT scanners, for
example, two data sets are created at the same time, each with different imaging
properties. And as for the multi-slice scanning technology, the trend to even
more sources is just a matter of time and market development. Although graph-
ics hardware strives to keep up with such developments in terms of on-board
video memory, the maximum size is limited by both technology and price. Ad-
vanced workstation graphics systems currently provide up to 1.5 GB of available
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memory per graphics board, where multi-GPU configurations usually share
the memory and are thus limited to the amount of a single board. In contrast,
time-resolved tomographic scans of the beating heart easily exceed this limit,
even at moderate resolutions.

Yet another example is virtual autopsy, where the amount of images is even
higher due to the less relevant radiation exposure (see figure 4.1). However,
the data set has to be analyzed as a whole for sophisticated diagnosis and
visualization purposes, where bricking or other subdivision strategies are out
of question, especially for time-resolved data. Therefore, there will always be a
demand for handling data too large for the available (video) memory.

(a) CT scan used for virtual autopsy (b) 4D cardiac CT scan

Figure 4.1: Full body CT scan from virtual autopsy (a) with approx. 3800 slices at
512× 512 axial resolution. (Image courtesy Patric Ljung et al. [LWP+06]);
4D CT scan of beating heart (b) with approx. 400× 400× 300 at 25 time
steps. (Image courtesy OsiriX [Osi])

From a theoretical point of view, the basic idea is inspired by the relation
between convolution in the spatial domain, and multiplication as its analogon
in the frequency domain (see Jähne [Jäh97] for details). Whereas the Fourier
transform does not provide any compression by itself, different compressed
representations useful for image data will be discussed below. If it was possible
to map different types of basic operations from the uncompressed, i.e., spatial do-
main into the “compression domain”, image processing would be considerably
faster in the ideal case. For reasons to be shown in the following sections, not
all compression schemes are suited for such an approach, nor are all operations
compatible with a compressed representation.

This chapter is structured as follows: In the first section, the notion of the
compression domain and the resulting requirements are discussed, followed by
a summary of mathematical and theoretical foundations of main compression
methods. The different compression schemes are then compared and reviewed
from a technical point of view. The second part of this chapter introduces the
concepts for directly processing and visualizing the compressed data. Therefore,
common operations are discussed in order to establish a mapping from an
uncompressed representation into the compression domain. As some categories
of algorithms are more compatible with the compressed representation than
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others, a classification leads to an evaluation and the proposal of alternative
solutions where needed. While the implementation in general will be described
in the third section, programming details in the context of CASCADA will be
given in part three of the thesis. Sections two and three describe approaches for
the direct rendering of compressed (volume) data, including a short review of
relevant work in this field. The chapter finally concludes with an evaluation
of the achieved results, as well as prospects for further research. Considerable
work in this chapter has been contributed by Thomas Höllt during his diploma
thesis [Höl08] and subsequent research.

4.1 Compression domain

The term “compression domain” has been first introduced by Westermann in
1995 [Wes95]. In this early work he proposed a multi-level approach to ana-
lyze and render time-resolved volumetric data. As this analysis requires the
inspection of the whole data set, processing the uncompressed data is not feasi-
ble. Among several authors who have developed efficient techniques especially
for rendering directly from compressed data, the contribution by Schneider
et al. [SW03] makes explicit use of programmable graphics hardware. More
recently, Fout et al. [FM07] reconsider the transformation pipeline of data com-
pression in favour of modern GPUs. They were able to improve the rendering
performance considerably by reducing the decompression workload during the
rendering process.

However, working in the compression domain has been limited to rendering
directly from the compressed data as well as to GPU-based encoding (e.g., Wong
et al. [WLHW07]), with few related applications so far. In the course of this
chapter the concept of working directly in the compression domain is extended
to reasonable (image) processing operations.

Compression generally yields a more compact representation of the same
data by means of other bases, algorithms or storage methods. As an exhaustive
discussion of this topic would be beyond the scope of this thesis, only compres-
sion methods and approaches related to graphics hardware will be reviewed.
This is, however, not limited to rendering from compressed formats, which Fout
et al. [FAM+05, FM07] and Kniss et al. [KLF05] provide thorough and up-to-date
discussions for. Especially in Fout’s second contribution [FM07], the symmetry
of a coding scheme helps to assess the performance for rendering directly from
compressed data sets. While the pipeline of compression and decompression
is usually divided symmetrically between preprocessing and rendering (i.e.,
decompression together with visualization on the GPU), they propose a shift
of computation steps towards the preprocess. While their improvement with
respect to the rendering performance is only moderate, their approach achieves
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better compression rates and less intricate GPU programming for decompression
and visualization.

Basically, there are two general classes of compression procedures: lossless
and lossy algorithms. The former allows the reconstruction of the input signal
without any change or error, while the latter introduces quantization. Lossy
algorithms are (by their nature) able to achieve a higher compression rate on non-
synthetic image data, depending on the specific algorithm and error tolerance.
Such compression formats are typically used for audio, image and video material
that should be consumed by humans and often exploit certain properties of the
human visual/audio system to further improve the results.

In this section general information on lossless and lossy compression meth-
ods will be provided, with attention to medical image data. Theoretical and
mathematical basics of selected methods, as well as details on relevant compres-
sion techniques will be given further in this chapter. A broader overview on
data compression can be found in [Ble01], for example.

Lossless compression As the name implies, lossless compression allows the
exact reconstruction of the original data from the compressed representation.
While this is appealing for practically all applications, its use is limited due to the
relatively low compression rate: only synthetic (image) data can be reduced rea-
sonably, due to noise in all other images. There exists a wealth of such encoders
which are usually categorized into dictionary-based and entropy methods.

In the context of medical volume compression, Komma et al. [KFDB07]
provide a broad discussion of different techniques. As the different lossless
methods only play a minor role in the remainder of this thesis, these methods
will not be discussed in detail here; see the references in Komma’s work. Quite
interestingly, the authors also compare the results with the lossless variants
of JPEG and Wavelet-based algorithms, which do not always provide the best
compression rates. Komma et al. conclude that especially for sparse data sets
with lower bit depth (in their case 8 bit) the lossless BZIP2 algorithm provides
optimal performance, both in terms of encoding time and compression rate.
Although the results are quite promising, the authors do not provide information
about the details of the wavelet transform (esp. if multiple levels have been
used).

Lossy compression Lossy algorithms are typically distinguished further into
transform codecs1 and predictive schemes. The former use another basis for
representing (parts of) the signal, whereas the latter exploit coherence informa-
tion to define errors and process these. Although transform codecs are more
suited to the aforementioned mapping, and are in addition not restricted to se-
quential information (i.e., video or audio frames), practically all schemes include

1Artificial term built from ”compression” and ”decompression”, describing both directions
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quantization steps where the transformed information is reduced. Consecutive
entropy encoding reduces the resulting information further by applying lossless
algorithms. These algorithms play an important role in the remainder of this
chapter.

4.1.1 Requirements

As discussed in the preceding section, compression methods can be divided
into lossless and lossy procedures. Whereas the former would be preferable –
especially for medical data – they have two clear disadvantages. Firstly, lossy
algorithms are much more suited to measured natural image data as they are
not dependent on numerical sequences (e.g., for run-length encoding) or do
not necessarily construct dictionaries that would become too complex for such
image data. Secondly, the algorithms used for entropy coding, for example,
provide no starting point for a mapping of common operations: a convolution
filter has obviously no meaning on run-length or Huffman encoded data.

Lossy procedures on the other hand provide more flexibility in terms of
compression rate, underlying transform, and compatibility with further pro-
cesses (e.g., direct rendering). Also, the internal representations, such as vector
quantization or wavelet transform provide the possibility of mapping processing
operations at all.

In order to establish the proposed mapping into the compression domain,
the following requirements provide criteria for a discussion of the different
compression methods:

1. All operations should be available in the compression domain, with an
adequate fallback solution for operations that cannot be mapped.

2. The performance of operations in the compression domain should be
superior, or at least equal to the standard approach.

3. The compression rate (alternatively, the signal-noise-ratio) should be con-
trollable and reasonably high, including the possibility of no or lossless
compression.

4. The additional memory consumption for compression and processing
should be minimal.

5. The compressed representation should be compatible with direct visual-
ization methods.

The first requirement is obviously the basic motivation for this chapter. When-
ever the direct processing of compressed data is impossible and a fallback is
needed (e.g., a block-wise decompression to apply standard operations), the
computational overhead for (de-)compression is taken into account. In contrast,
the second requirement does not include the (re-)compression of the whole data



104 CHAPTER 4. COMPRESSION COMPUTING

set, as the benefit of the operations themselves are of interest. Especially for
medical image data, the third property is an important requirement as the error
introduced by compression has to be known. The additional memory needed for
the compression infrastructure should be kept as low as possible to maintain the
overall memory requirements and exploit the savings from compressing the data.
Finally, the key idea is not only to process the data efficiently, but to continue the
approaches with the visual computing procedures that were discussed in the
preceding chapter. Therefore, established volume rendering methods such as
ray casting should not impose prohibitive computational overhead compared to
displaying uncompressed data.

4.1.2 Methods

Based on the aforementioned requirements, several compression methods have
been selected as potential candidates. As a basic understanding of their theoreti-
cal foundations is vital for the subsequent discussions, the mathematical basics
will be presented in the following paragraphs. In addition, references to related
work will be given where appropriate. As mentioned before, there is practically
no way to realize computations directly on lossless (entropy) encoded data, so
that these compression methods are not considered further here.

Wavelet Image Compression

Wavelet compression is a transform coding technique, which is used for example
in the JPEG 2000 standard [JPGb] and consists of two passes: the first pass is the
actual wavelet transform, and the second pass is the quantization or compression
step. After the transform, the wavelet representation of the image consists of as
much coefficients as there are pixels in the image. This first step is used because
quantization in the original image domain (i.e., spatial domain and values) often
results in poor quality. Applying the same quantization technique to a properly
transformed image can yield remarkable results by exploiting certain features
of the transformation domain. The following paragraphs only summarize the
mathematical basics; for an in-depth discussion see Mallat’s book [Mal99].

The basis functions for the wavelet transform are translations and dilations
(scaling). These function are based on the function ψ, referred to as the mother
wavelet. The one dimensional discrete wavelet transform of a function f (x),
with the discrete scale and translation step size a and b, and the discrete scale
and translation variable m and n is defined by

Wm,n
ψ ( f ) = |a0|−

m
2

∫
f (x)ψ(a−m

0 x− nb0)dx. (4.1.1)

Typical examples for mother wavelets are the basic Haar wavelet ψ(x) with
its scaling function φ(x):
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ψ(x) =


1 for 0 ≤ x < 1

2
−1 for 1

2 ≤ x < 1
0 otherwise

φ(x) =
{

1 for 0 ≤ x < 1
0 otherwise (4.1.2)

or the Daubechies wavelet with the corresponding scaling function, respec-
tively,

ψ(x) =
N−1

∑
k=0

akφ(2x− k) , φ(x) =
M−1

∑
k=0

bkφ(2x− k) (4.1.3)

where (a0, . . . , aN−1) and (b0, . . . , bM−1) are appropriate finite sequences of
real numbers. Both mother wavelets are depicted in the plots in figure 4.2.
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Figure 4.2: The Haar mother wavelet and the corresponding scaling function (a) and
the Daubechies D4 mother wavelet with its scaling function (b)

The wavelet transform can be regarded as a combination of low- and high-
pass transformations. As such, the resulting coefficients can be represented as a
low- and a high-band. The low-band coefficients usually consist of high energy
and have no advantage over non-transformed values regarding compression.
Thus in most cases the transform is applied recursively on the low-band. The
number of recursions is called the level of transformation. For two-dimensional
images the 1D wavelet transform is applied line-wise, followed by the same trans-
formation applied row-wise to the intermediate result. This procedure yields
four subbands at each level: one being low-pass filtered twice and three being
high pass filtered at least once. The representations for one level are depicted in
figure 4.3(a), and for three levels in figure 4.3(b), respectively. The low-band is
on the top left, the high bands on the right and/or bottom, corresponding to the
direction the high-pass filter has been applied. The two-dimensional transform
can be applied in two ways, called the standard and non-standard transform.
In the standard transform, the rows are transformed first until the desired level
is reached, then the multi-level 1D transform is applied to the columns. In the
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(a) Wavelet decomposition (one level) of knee
MRI. (Sagittal view, data set courtesy of [Osi])

(b) Wavelet decomposition (three levels) of tho-
racic CT. (Axial view, data set courtesy of [Osi])

Figure 4.3: Slices from MRI- (a) and CT scan (b), respectively, each with Haar wavelet
decompositions. For clarity, the coefficients are weighted and color-coded
(red/blue depicts positive/negative values).

non-standard transform the 1D transforms are applied alternatingly at each level.
This representation is often advantageous with respect to the original image
representation. Neighbouring pixels tend to have very similar or even the same
values in natural images, meaning that the high-pass filtered coefficients are
often (close to) zero. These characteristics of the coefficients can be used in the
second pass to compress the image. Compression can then be done using differ-
ent methods. Usually only the high-pass coefficients are compressed, while the
low-pass values remain unchanged. Thus, in the following only the high-pass
filter coefficients are considered.

The basic method is quantization, that is using fewer bits to store the coeffi-
cients than for the original image. As the coefficients are usually very small one
can delimit the range to a smaller area around zero and use a smaller data type
to represent the coefficients. As a naı̈ve approach, cutting off the bits of higher
values might be a reasonable solution as there are very few coefficients in the
upper section of the interval. However, as these coefficients contain essential
detail information, a more sophisticated approach is needed. Another possibility
would be to divide the coefficients by a given value and store only the integer
value of the results. In either case, quantization usually results in a loss of visual
quality.

A second approach, the Wavelet Zerotree Encoding by Rogers et al. [RC98] is
also a lossy compression scheme. The individual recursion steps in the wavelet
transform can be interpreted as levels in a tree where the low-band coefficients
after the last recursion step resemble the root node, and the coefficients after the
first recursion step are the leafs.

Yet another approach stores only the non-zero entries. However, information
of the position in the image is indirectly stored by the array position and would
be lost if the zero-elements are discarded. Storing the array position with the
value, however, is only reasonable if there are many zero-coefficients, because
every coefficient that needs to be stored (i.e., all non-zero coefficients) needs
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additional memory to store the position.2 A modification of this approach uses
a binary importance map that has the same size as the original image. This
technique will be discussed in more detail in section 4.3.

The last two methods are lossless by default, whereas the compression rate
can be increased for all methods by specifying a certain threshold. All coefficients
that are within this interval around zero are dropped as well. This is a lossy
process, of course, and as such it affects the signal. On the other hand, lots of the
coefficients are very close to zero anyway, so this often increases the compression
rates considerably without introducing visible artefacts.

Decompression of wavelet transformed data is straightforward and only
depends on the options discussed before. First, the coefficients belonging to
the current section are indexed. Depending on the dimension of the data, such
sections are often referred to as tiles (2D) or blocks (3D). The reconstruction can
then be done according to the chosen mother wavelet. For higher levels these
steps have to be done iteratively from the last to the first level.

Fractal Compression

Fractal image compression has been introduced by Barnsley et al. [BH93] as
a vector based technique. It is a lossy compression that represents an image
by using a set of transformations. Ideally an image can be stored as only one
such transformation function. A unique fixpoint of this function has to be (a
close approximation of) the image itself. In order to store such a function, only
a fraction of the storage amount for representing the original image is needed.
Decompression is then done by iteratively applying this function on an arbitrary
starting image until the original image is reached. This concept can be illustrated
with a simple fractal, the Sierpinski triangle (figure 4.4). The Sierpinski triangle
is self-similar, i.e., one can copy scaled versions of the triangle into its corners,
yielding the same image. In other words, if ω1 is the transformation that maps
the triangle in its upper corner, and ω2 and ω3 map the triangle to the lower
corners, respectively, the Sierpinski triangle can be described by the fixed point
of the transformation

ω = ω1 ∪ω2 ∪ω3 (4.1.4)

as the transformation applied to the triangle leaves it unchanged.
The transformation ω is contractive, meaning the distance between two

points p and q
d(p, q) = (px − qx)2 + (py − qy)2 (4.1.5)

after a transformation is never larger than before, because all of the transfor-
mations ωi are contractive. With the Sierpinski triangle as the fixpoint to the
transformation ω, and as ω is contractive according to the ”Banach Contractive

2This can take up considerable memory, as for example 2 · 16 bit for an image larger than
256× 256 pixels are already needed.
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Fixed-Point Theorem” (see [Val05] for details), the Sierpinski triangle is a limit
of the sequence

X, ωX, ω2X, . . . (4.1.6)

with X representing an image and ωi the composition of ω with itself i-times.
That is, by iteratively applying ω on an arbitrary image the Sierpinski triangle
with an arbitrary accuracy can be computed (see figure 4.4). In other words,
the transformation ω alone can be used as a representation for the image of the
Sierpinski triangle; a concept also known as Iterated Function System (IFS). Such

Figure 4.4: Multiple iterations from a random image to the Sierpinski Triangle

a compact form as in equation 4.1.4, however, can only be found for fractals such
as the Sierpinski triangle. On the other hand, also many natural images have
areas of self-similarity. Therefore, so-called Partitioned Iterated Function System
(PIFS) can be applied to real world images. The image is therefore partitioned
into a grid commonly known as range blocks. These range blocks are all of the
same size and non-overlapping. For each of these blocks a region in the image
has to be found which can be transformed with a set of contractive functions to
match the original range block as close as possible. In a typical application the
range blocks are matched to a fixed set of domain blocks in the image. These
blocks are usually twice the size of range blocks, and are not arranged in a fixed
grid, i.e., they can overlap. The transformations applied to the domain blocks
consist of scaling, translation, rotation and reflection, as well as adjustments
in brightness and contrast. As only the transformations are stored and not the
domain blocks, this codebook is called virtual.

In order to decompress the image, a new image with the size of the original
image is created. The functions of the PIFS are then applied iteratively to the
starting image until the changes in the image between two iterations are smaller
than a defined threshold. Due to the nature of fixed points the starting image
can be random. However, the time to compose the final image or the number of
iterations may vary depending on the starting image, yet the image quality will
be the same.

Discrete Cosine Transform

Just as the wavelet transform, the discrete cosine transform (DCT) is a transform
coding technique, which is used for image compression. In fact, the DCT is a
widely used image coding technique due to its use in the well-known JPEG com-
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pression [JPGa], which is the de-facto standard for compression of photographic
images today.

A detailed description of the DCT used in the JPEG compression standard
can be found in Wallace [Wal91], which will be only summarized here. The
DCT-based encoder works in three steps. A forward discrete cosine transform
(FDCT) is applied to the image first. Then the resulting cosine coefficients are
quantized, and finally run through an entropy encoder. This process is not done
on the complete image, but on 8 × 8 blocks. For color images, each channel
is transformed separately. The image is usually transformed into the YCrCb
(luminance-chrominance) color format in advance.

The decompression is simply the inverse of the aforementioned transform,
that is, the inverse versions of all steps in reverse order. The compressed image
data is entropy-decoded first, then dequantized, and finally the inverse discrete
cosine transform (IDCT) is applied.

After the FDCT the quantization step is performed, where the resulting
8× 8 coefficient matrix is divided component-wise using a quantization table.
This table depends on the specified compression rate and takes the fact into
account that the human eye is more sensitive to lower frequencies. Subsequently,
the normalized quantized coefficients contain many zeroes which are usually
separated from the non-zero coefficients by a diagonal line. This is used for the
so called zig-zagging. Instead of coding the block line- or rowwise the coefficients
are rearranged in a zig-zag line from the upper left to the lower right. The better
coherence resulting from this pattern can then be exploited by a final entropy
encoding step.

Vector Quantization

Just as fractal image compression, vector quantization described in Gersho et
al. [GG92] is a vector based image compression technique. By nature, vector
quantization is a lossy compression scheme as its main concept is to approximate
a range of values by a single value. A simple example for a one-dimensional
vector quantization is rounding to the nearest integer: all values in the range
]x− 0.5 . . . x + 0.5] are mapped to the single value x.

In image compression vector quantization is used in the following way. The
input image is partitioned into a regular grid of non-overlapping blocks, just as
for fractal compression, where these blocks build the set of input vectors. Then,
the input vectors are matched with the codebook, which can be a set of vectors
from the input image, similar to the virtual codebook in fractal compression, or
a global set of vectors defined independently from the input image. Contrary
to fractal compression, input vectors and codevectors need to be equally sized.
When the closest match is found, a pointer to the vector in the codebook is stored
(figure 4.5).

Also in contrast to fractal compression, the codebook needs to be stored to
lookup the blocks in the decompression step in addition to a lookup map, which
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is the vector quantization equivalent to the PIFS. Thus, the compression rate
mostly depends on the size of the codebook3. The essential (and computationally
expensive) part in this procedure is to find a codebook which is small enough to
yield the desired compression ratio, yet large enough to map all input vectors
with minimal error.

The decompression is a simple inversion of this process. For all entries in
the lookup table the corresponding codebook vectors are fetched and placed
in the appropriate position in the target image that is defined by the position
of the pointer in the lookup table. Figure 4.5 shows an example of a vector

50 20 20 50

50 30 25 50

50 20
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50 30 30 50

Figure 4.5: Vector quantization example

quantization. The input image on the left is partitioned in 1× 2 blocks which
are the input vectors. These are matched (red arrows) against the codebook
(center) and instead of the input vectors the address in the codebook (green
arrows) is stored in the lookup table (bottom), which has the extents of the input
image scaled by the vector size. For decompression (blue arrows) codevectors
are placed in the target image at the appropriate positions given by the lookup
table.

Vector quantization can thus be regarded as an asymmetrical scheme, i.e.,
compression is computationally much more expensive than decompression.
Therefore, this compression method is often used for applications that focus on
direct rendering from compressed data.

4.1.3 Discussion

Based on the preceding introduction of common compression procedures, as
well as the discussion of relevant criteria, the methods will be reviewed from a
technical point of view. As not all of them can be implemented and evaluated
in detail within the scope of this thesis, the following paragraphs discuss the
methods to select the one most suited for further implementation of direct
processing and visualization.

3The size of the lookup map is defined by the size of the input image, the size of the input
partitioning and the size of the pointers to the codebook entries.
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Fractal compression

With the utilization of graphics hardware for fractal compression algorithms,
this time-consuming procedure can be accelerated several orders of magnitude,
as shown by Erra [Err05]. This makes the extension to three-dimensional data
feasible and is thus an adequate option for the target applications of this thesis.
While the compression process is computationally demanding because all possi-
ble transforms have to be determined, the decompression (e.g., for visualization)
is markedly simple: the transformations only have to be applied to the seeds. In
addition, fractal compression provides high compression rates, given optimal
parameter settings.

On the other hand, however, there is no way to keep all information of the
original image, as fractal compression does not provide a reasonable lossless
representation. Depending on the implementation, notable artefacts can occur
if some block-based processing is used. The most severe disadvantage of this
method for direct processing is that there is no codebook or other intermediate
representation to work with (see the preceding section for details). Therefore, it
is practically impossible to apply any processing in the compression domain. In
addition, if some block-wise standard processing was expedient, re-compression
would require the whole original image as input – and thus would not be
competitive anymore.

Wavelets

Compression methods based on wavelets have been thoroughly investigated for
more than a decade. Aside from being the basis of the JPEG2000 image format,
representative work has been done on volume data by Muraki [Mur93], multi-
resolution volume rendering by Westermann [Wes94] and Guthe et al. [GWGS02],
and general computer graphics applications in Schröder [Sch96]. Also, the uti-
lization of graphics hardware for wavelet compression and direct volume ren-
dering has been investigated by Hopf et al. [HE99], or more recently, by Kniss
et al. [KLF05] and Fout et al. [FAM+05]. Wavelet compression offers relatively
good control of the compression rate by means of different levels, with the multi-
resolution property as an additional benefit for various applications. It should be
noted that the wavelet transform itself does not introduce any loss of information
and is thus also suited for applications requiring the exact reconstruction of the
original data. However, the additional memory needed for the infrastructure
might reverse the effect of data compression when storing/processing the data
uncompressed.

The wavelet representation is also suited for direct image processing as
shown by numerous contributions. Early work in this field has focused on image
denoising due to the relatively simple relation between noise and image details
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in the coefficients.4 Dorrell et al. [DL95] have proposed more general processing
procedures on wavelet data. Although only basic operations such as scalar
multiplication or image addition have been realized, several other operations
can be built upon their concepts. Also, edge detection as fundamental procedure
in image processing is inherently supported by the wavelet, because the detail
coefficients resemble high frequency information (i.e., edges). For other types
of processing methods, the usual wavelet compression cannot be used directly
(or only with considerable overhead), as will be explicated later in section 4.2.3.
Due to the compact block size, however, the fallback plan (i.e., to decompress
locally and process the data using conventional methods) is still competitive.

DCT

Although the discrete cosine and Fourier transform are very closely related from
a theoretical point of view, only the DCT is of practical use for data compres-
sion. As for the Fourier transform, there exist fast implementations based on
the divide-and-conquer principle. In addition, the algorithmic complexity for
three-dimensional data sets is usually reduced by applying a one-dimensional
transform sequentially (see section 4.1.2 for background information). While the
DCT-based approaches offer high, controllable compression rates, they suffer
in some situations from the underlying block-size of 8× 8 for two-dimensional
(or 8× 8× 8 for three-dimensional) data, respectively. First, the block artefacts
can become visible with higher compression rates as the processing results per
tile/block diverge too much. Also, the direct visualization of the compressed
data is more expensive than for smaller block sizes, such as 2× 2 for wavelet
or vector quantization compression. This problem is even intensified by the
additional dimension for volume data. Although there are some approaches
based on the Fourier slice theorem for an efficient rendering of the volumetric
data, these are by nature limited to simple projective visualizations.

In spite of these critical issues, several work has been done on the direct
processing of DCT-compressed data, with fundamental contributions from Smith
et al. [SR93, SR96] and Shen et al. [SS96] for algorithms such as edge detection
based on convolution. While practically all types of operations are covered, the
entropy coding step of the JPEG pipeline5 requires the partial inversion of the
process (i.e., decompression) to access the raw DCT data. Another disadvantage
is the computational overhead of up to multiple orders of magnitude with their
tensor-based representation. Furthermore, the aforementioned larger block size
is a disadvantage for fallback solutions.

4Noise appears in the wavelet representation as non-zero coefficients with small absolute
values. Therefore, noise can be removed by thresholding approaches without sacrificing quality
because important image details are usually represented by larger coefficients.

5This also extends to three-dimensional and time-varying data as well, but most work is based
on the commonly used JPEG process for image data.
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VQ

There has been a lot of research in vector quantization for data compression,
going back to the fundamental work by Gray [Gra84] and, for volume rendering,
by Ning et al. [NH92]. The method has many applications and is usually imple-
mented by determining vectors that approximate the input signal as close as
possible, and store the set of vectors in a codebook. Therefore, the compression
rate as well as the memory overhead depends on the size of the codebook. While
the compression is computationally very expensive due to the exhaustive search
for optimal codewords, decompression reduces to a simple lookup. This fact
makes the method well suited for hardware implementations, and several direct
rendering techniques have been proposed, e.g., by Schneider et al. [SW03].

The direct processing of vector quantization compression data has also been
the focus of early research. In Cosman et al. [CORG93] different image process-
ing methods are presented. Simple point based filters can be realized by directly
operating on the codebook. In order to maintain optimal compression, however,
the codebook needs to be rebuilt afterwards. On the other hand, more complex
operations involving a local neighborhood require additional information in the
codebook, thus resulting in a significant increase in size and lower compression
rates. Although the authors suggest another representation especially for edge
detection, the results are not competitive with standard high pass filters, as
illustrated in figure 4.6.

Figure 4.6: Edge detection using variable rate vector quantization (VRVQ) as pro-
posed by Cosman et al. [CORG93], applied to an MRI scan (left). Their
results (center) are hardly of use for further processing when compared
to standard edge filters, such as Sobel filter (right).

Conclusion

After reviewing contemplable compression methods focusing on both the direct
processing and visualization of the compressed data, one of the procedures
has to be selected. At the beginning of this section, several criteria have been
identified that are important for working in the compression domain. Also,
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the different techniques have been discussed against the background of these
requirements. The following table and the subsequent facts summarize the
properties of each method and lead to the final decision.

Equal or
better per-
formance

Mapping/
fallback
possible

Lossless
mode

available

Low
memory
overhead

Compatible
with DVR
techniques

FC n.a. no no yes yes
DCT no yes yes no no
VQ partly yes yes partly yes

WVL yes yes yes partly yes
Table 4.1: Table summarizing the criteria for comparing compression methods eligi-

ble for realizing the direct processing in the compression domain.

In spite of its hardware-friendly compression and rendering features, fractal
compression is the least appropriate method due to the fact that the direct
processing is virtually impossible. Also, a fallback implementation for operations
not realizable would be far from competitive. Finally, the application to medical
images is problematic as there is no chance in maintaining the original data.

Although widely used in image compression, DCT-based approaches are not
applicable because of mainly two facts. Firstly, the relatively large block size
imposes a considerable performance penalty for operations requiring a block-
based access and/or decompression. In case of a local decoding, the additional
steps in the whole JPEG pipeline intensify the problem. Secondly, there exists
no competitive approach to directly visualize the (volume) data by means of
standard rendering techniques; only X-ray-like projection is possible.

Vector quantization is also discarded, although it seems to be a good alterna-
tive as the large number of contributions about compression and visualization
indicate. However, due to the fact that local processing operations introduce a
substantial loss of effective compression, this technique seems not well suited
for the desired system.

Finally, wavelet based compression provides the most advantages. In spite
of the relative memory overhead (especially for GPU-based implementations),
the most important assets are the inherent multi-resolution property with many
applications, the good compatibility with visualization techniques, and feasible
fallback implementations for incompatible processing operations.

Therefore, the wavelet approach has been selected to be most advantageous
with respect to the given criteria, and offers additional features that might be of
interest for further extensions.
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4.2 Wavelet compression

The general possibility and existing approaches for working in the compression
domain have been discussed so far. Different criteria have finally led to wavelets
as the underlying compression scheme for realizing the direct processing of
compressed data, ideally in tight combination with visualization. This leads to
the ultimate goal to utilize the graphics hardware for the whole pipeline, i.e., also
for the encoding process. As this step is usually computationally very expensive
– but also inherently parallel – it can benefit from hardware implementation, as
shown by Wong et al. [WLHW07], for example.

However, the focus in this chapter is on designing a basis for the direct
processing in the compression domain, as well as to propose an according
implementation based on CASCADA. Therefore, approaches to GPU-based
compression/decompression will not be addressed here. Once this foundation is
established, further steps towards an integration of compression, computations,
and visualization will be done.

4.2.1 Haar wavelet transform

The fundamentals of the wavelet compression have already been introduced
before. In what follows, the Haar wavelet transform will be reviewed briefly
and less general to discuss the processing of the compressed data. In addition
to theoretical considerations on this direct processing, some alternatives will be
described that are regarded as “fallback solution” for operations not compatible
or efficiently feasible with the wavelet representation.

To simplify matters, only one-dimensional image data will be considered in
the following examples. Also, the transformations will be limited to the first level
of the wavelet transform. Although this limits the compression rate considerably
in practice, it further simplifies the following theoretical explanations and nota-
tions; it will be considered in the implementation section below, however.6 As
explained in section 4.1.2, the wavelet transform using the Haar basis resembles
an averaging and detailing process. For a one-dimensional image i = [i1, i2, i3, i4]
averaging of neighboring pixels leads to

a1,0 = (i1 + i2)/2
a1,1 = (i3 + i4)/2

(4.2.1)

Note, that for averages the letter a, and for detail values the letter d is used,
respectively. The first subscript denotes the level, whereas the second indicates
the position in the sub-band. The result of this process is a coarser image

6Implementing multiple levels requires a considerable amount of additional computations
for each pixel/voxel to be reconstructed (e.g., 8level multiplications for three-dimensional data).
However, the computational performance of modern hardware compensates for this, especially
taking the clearly reduced amount of data into account.
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consisting of only two pixels: iavg = [a1,0, a1,1]. Information will be lost if i1 and
i2, and i3 and i4, respectively, have different values: the original image can be
reconstructed only to [a1,0, a1,0, a1,1, a1,1]. Therefore, the details (or coefficients)
are computed

d1,0 = (i1 − i2)/2
d1,1 = (i3 − i4)/2

(4.2.2)

and have to be added to the image representation for exact reconstruction,
resulting in the wavelet form ı̃level1 = [a1,0, a1,1, d1,0, d1,1]. The original image can
then be reconstructed without introducing errors by:

i′1 = (a1,0 + d1,0)
i′2 = (a1,0 − d1,0)
i′3 = (a1,1 + d1,1)
i′4 = (a1,1 − d1,1)

(4.2.3)

Although the discussion is currently limited to one-level decompositions only,
the computation of higher levels is straightforward: the averaging and differ-
encing process is performed recursively on the average image iavg, where the
image sizes have to be multiples of 2level per dimension. Usually this recursion
is done until the number of uncompressed averages is as small as specified by
the user, or a certain threshold is reached. The transformed representation of the
next level, for example, is then ı̃level2 = [a2,0, d2,0, d1,0, d1,1], where a2,0 and d2,0 are
computed by:

a2,0 = (a1,0 + a1,1)/2
d2,0 = (a1,0 − a1,1)/2

(4.2.4)

The extension of this procedure to three-dimensional data is the same as for sep-
arable filters: the averaging and differencing process is performed consecutively
in every dimension of the data. This process can be summarized in the following
equation for first level decompositions of each 2× 2× 2 block

f (u, v, w) =
1
8

7

∑
n=0

s · cn , s ∈ {−1, 1}. (4.2.5)

where u, v, w denote the index in local block coordinates, and s the sign of the
according coefficient c. The inverse process, i.e., image reconstruction can be
formulated analogously by summing the eight signed coefficients.

Now that the averages and coefficients have been computed, the (lossy)
compression process is finally realized by discarding coefficients whose abso-
lute value is below a threshold (see sections 4.1.2 and 4.3.2 for more details).
Performing this task and the layout of the remaining values is critical for effi-
ciently reconstructing the image information. From a theoretical point of view,
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numerous operations are required for this “decompression” step, especially for
multi-level representations. Thus, direct processing approaches should strive to
avoid this reconstruction to gain performance over their uncompressed counter-
parts. As stated in the previous section, however, there should be an alternative
available for operations that cannot be mapped into the compression domain.
In addition, direct (volume) rendering also necessitates the unpacking of the
compressed data, albeit the representation can be optimized for rendering-only
approaches, as will be covered in the next section.

4.2.2 Rendering

After introducing the wavelet transform the focus will be now on the direct
rendering of the compressed data. As this topic has been addressed thoroughly
in multiple publications during the past years, only approaches utilizing graphics
hardware with reference or applicability to wavelet based compression will
be reviewed. For the implementation described in section 4.3, not all of the
methods have been applied as the focus of this work is not on rendering only.
However, the contributions provide good insights to the underlying concepts
and foundations and inspire further development.

Hardware-Based Wavelet Transformations One of the first approaches for us-
ing the graphics hardware to render and transform volume data in the wavelet
domain was proposed by Hopf et al. [HE99]. Although their performance results
were comparable to software implementations, the lack of floating point data
types back then degraded the accuracy visibly. However, as both the decom-
position and reconstruction step were implemented completely in hardware,
the expensive transfer of the data to be displayed could be avoided. They also
comment on the fact that decomposition is approximately three times faster than
reconstruction due to the much simpler implementation.

Interactive Rendering of Large Volume Data Sets The work presented by
Guthe et al. [GWGS02] employed several techniques to increase the rendering
performance. Their combination of a multi-resolution approach and wavelet
based techniques allowed the decompression on-the-fly at optimal rendering
quality. In a later work [GS04], they extend the system by adjusting the reso-
lution level using error estimations of the visual quality in screen-space. They
used block-based wavelet compression with entropy encoding of the coeffi-
cients for further reducing the memory overhead. Also, their system employed
higher-order wavelet basis functions that result in better visual quality than
simpler approaches (e.g., Haar basis); at the expense of additional computations,
however.
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High-Quality Rendering of Compressed Volume Data Formats A completely
different approach is described by Fout et al. [FAM+05], that was introduced in
Kniss et al. [KLF05]. In their approach, the concept of deferred filtering is used
to implement high quality rendering directly from compressed (or otherwise
packed) volume data. By splitting the procedure into two rendering passes,
redundant and potentially expensive work can be avoided. While the first pass
reconstructs data in its original resolution and layout, the second pass renders
the prepared data, thereby exploiting hardware features such as native texture
filtering.7

Although the authors do not explicitly mention wavelet based compression
techniques – vector quantization is described instead – the concepts can be
applied for other schemes as well. In principle, the procedure uses offscreen
textures to store adjacent, decompressed slices that will be processed and ren-
dered onscreen in the second pass. This second step usually employs advanced
techniques such as bi-/trilinear filtering, gradient computations, etc. The separa-
tion of the originally combined decompression and rendering procedure results
in up to 20 times faster rendering performance on modern graphics hardware,
despite the additional overhead from context and state changes.

4.2.3 Computations

After recalling the fundamentals of the wavelet transform, as well as related
rendering approaches, the implementation of direct computations in the wavelet
domain is the subject of this section. As discussed in section 4.1.3, there exist
some approaches for working in the compression domain. Based on these
experiences, a classification was established to evaluate different algorithms. In
addition, an extended version of the wavelet basis will be utilized to account for
incompatibilities with commonly used operations.

Classes of operations

In order to apply (image) processing operations on compressed data, a classifica-
tion of operations seems reasonable. While the idea of an estimation of benefits
from graphics hardware implementations will be shortly outlined in section 8.2.1,
Höllt defined different classes of operations on wavelet compressed data [Höl08].
Therefore, the mathematical definitions of various operations are reformulated,
taking the properties of the wavelet transform into account (i.e., the separate
data in the average values and coefficients). Details of these substitutions can be
found in [Höl08], and eventually lead to the following four classes:

7Note that this technique has been originally introduced for graphics applications, where the
deferred shading is used to speed up complex rendering computations, including multiple passes,
lighting computations, etc. As a thorough discussion of such applications would be beyond the
scope of this thesis, the focus is here on GPGPU implementations.
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Class 1 Operations of this type (e.g., invert, histogram spread) are considered
as point based and do not require any roll-back of the compression process.
That is, these operations maintain zero coefficients and, if additional run-
length encoding is used, the encoded sequences remain valid. These
operations can be applied directly on the non-zero (i.e., compressed and
sparse) coefficients and the average values.

Class 2 Operations such as image/volume sums or differences involve inho-
mogeneous additions and thus require the decompression of the zero
coefficients, as well as changes on the run-length encoding sequences. The
operation is then applied to all coefficients (and averages), but without
complete re-compression.

Class 3 These operations are also point based, but cannot be performed in
the compression domain. Therefore, the current voxel needs to be re-
compressed after applying the procedure in the spatial domain. Examples
are gamma correction, thresholding, and other operations that require
comparisons, the absolute operator, or potentiation.

Class 4 This class subsumes all non-point based operations, i.e., where neigh-
boring or other voxel data is required to be re-compressed (as in class 3).
Both linear and non-linear local filter operations fall into this category and
are applied in the spatial domain.

Especially the last two classes require additional discussion. Obviously, they
resemble the “fallback solution” as the operator is applied in the spatial do-
main, and thus impose a considerable loss of performance due to the full re-
compression. While the impact of class three operations is moderate (and of
linear complexity with respect to the number of voxels to be reconstructed), the
fourth class operation will be clearly outperformed by applying the spatial equiv-
alent in the first place. Hence, the main reason for processing the compressed
data is the more compact representation: larger data sets can be processed as
they are unpacked only locally and thus still fit in the memory.

Convolution filters (as typical linear operations) can also be reformulated
by shifting the image data spatially and using it multiple times in a weighted
sum. The principle is shown in the figures below, with further details being
discussed in [Höl08]. In figure 4.7, the traditional implementation of applying a
convolution kernel with respect to its pivot (circle in center pixel) is depicted.
While scalar multiplication and image addition can be transferred easily into the
wavelet domain, the shift operation (for moving the filter kernel) is not directly
possible, as the wavelet transform is shift-variant (see next section). Therefore,
convolution is described by creating n copies of the original data, where n is
the number of kernel elements. For every position in the kernel, the image has
to be shifted in the opposite direction relative to the kernel’s pivot. The sum
of these images weighted by the respective kernel value results in the desired
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Figure 4.7: The principle of convolution in the spatial domain

convolution, as shown in figure 4.8. In the illustration pixels with dotted outlines
are not part of the original image domain and require border handling (e.g.,
simple extrapolation).
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Figure 4.8: An alternative representation of onvolution by applying the kernel to the
input image at shifted positions.

Representing linear filters this way would alleviate the need for full re-
compression, but also has considerable drawbacks. Copying the whole image
or volume to realize the different filter window locations would lead to a pro-
hibitively high memory consumption for reasonable kernel sizes: for 3× 3× 3
kernels, 26 translations would have to be processed for one level, and 2n − 1
shifts per direction for n levels in general!8 On the other hand, using dedicated
variants of the wavelet transform to avoid this complex workaround (i.e., shift
invariant transforms) diminishes the effective compression rate and performance
due to their additional requirements, as will be discussed in the next section.

8As will be shown later, this spiraling number of shifts can be reduced by discarding redundant
combinations.
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Over-complete wavelet representation

Many applications in signal and image processing, data compression, or multi-
resolution analysis rely on the powerful basis provided by the wavelet transform,
as is thoroughly described in the excellent book by Mallat [Mal99]. The benefits
of this transform were also discussed in the first part of this chapter and ulti-
mately led to using wavelets for the compression computing approach. However,
the standard wavelet transform9 (SWT) is based on a recursive down-sampling
between the different levels (see sections 4.1.2 and 4.2 for details) that intro-
duces a shift invariance: the coefficients are highly dependent on their location
within the sampling grid. That is, minor translations in the input signal (e.g.,
frame-to-frame relations in image series, neighborhood information for filter
kernels) result in severe changes of the wavelet coefficients that propagate and
thus potentiate through the different levels. This process can also be regarded
as aliasing, which – quite interestingly – disappears if (and only if) all of the
coefficients are used for the inverse wavelet transform, i.e., the reconstruction
of the original signal. However, as this is not practical for discrete, multi-level
implementations due to quantization errors or partial (bricked) reconstruction,
the shift variance still plays an important role for a wide range of applications in
the wavelet domain; see Struzik [Str01] for details.

Therefore, several authors have proposed numerous representations and
strategies that introduce redundant information for an (approximate) shift-
invariance, as discussed in Bradley [Bra03]. While these extensions usually
have specific names, they are usually based on the “algorithme à trous” or –
the term that will be used in this chapter – over-complete wavelet transform
(OCWT). The disadvantage of these approaches, however, is their inherent re-
dundancy leading to an increase in required memory. Hence, Bradley proposes
the combination of the standard method (i.e., the Mallat algorithm) for its com-
putational efficiency and compact representation, and the à trous algorithm
for the shift-invariance property. The two algorithms have been shown to be
interchangeable by Shensa [She92]. In practice, the over-complete representation
uses the Mallat algorithm for a given number of higher levels before switching
to the full sampling of the second algorithm for the remaining (lower) levels,
thus leading to an easily controllable trade-off between accuracy and memory
footprint. As for the objective of this discussion – to increase the efficiency of
class 4 operations – the conversion of linear filters as outlined in the preceding
section can be directly implemented using the over-complete representation.

9As defined in Bradley [Bra03], the wavelet transform considered here is based on a discrete
mother wavelet recursively applied at dyadic scales.
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4.3 Implementation

The theoretical concepts described before and in [Höl08] have been implemented
in the CASCADA framework10, in the original version without multi-level sup-
port. However, information about the extension to multi-level decomposition
and compression will be also given as it has been implemented in a second
research phase. Due to the fact that the system works primarily on volume data,
the wavelet specific computations are performed on three-dimensional data.
While these concepts can be applied to data of other dimensions as well, most of
the illustrations depict the two-dimensional case, mainly to clarify matters. In
order to store the original data in the wavelet representation, some additional
data structures are needed. This infrastructure will be described in the following
paragraphs, with special attention to GPU compatibility. As already mentioned
in the fundamentals section above, the non-standard wavelet transform is advan-
tageous for image data, especially in the context of multi-level decompositions.
Therefore, this type of transform is used throughout the implementation.

4.3.1 Data structures

Average values

Following the decomposition based on the Haar wavelet, the input data is sepa-
rated into averages and detail coefficients. As the averages are not compressed,
it is natural to store them in a dedicated structure. Therefore, an average volume
is set up that contains all averages. Due to the fixed relationship between the
averages and the input values – two data elements per dimension are averaged –
the original position can always be reconstructed; this extends directly to multi-
level decomposition via recursion. Hence, the data structure containing the
averages is of size n/2 (for single levels), where n is the number of elements in
each spatial dimension, as depicted in figure 4.9.11

As all multi-dimensional data in CASCADA are represented internally as
a linear vector, this extends naturally to the average data structure, including
additional information for correctly indexing the original data. For a multi-
level implementation, this would even simplify to a singe value for the highest
level (i.e., a data structure with 1n elements, for n-dimensional input data); the
remaining averages are then reconstructed recursively.

10More precisely, all implementations presented here have been done in CASCADA 1 due to the
fact that various underlying functions have been readily available by the time of the diploma thesis.
Nevertheless, the second version of CASCADA will support compressed data and processing in a
future release as well.

11Obviously, the size of the input data in each dimension has to be a multiple of two for
single-level, and a power of two for multi-level decompositions, respectively.
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Figure 4.9: During decomposition, the pixels in every 2× 2-block are averaged (blue)
and compactly stored in a separate data structure.

Detail coefficients

In an uncompressed wavelet representation the input data structure for the
detail information (i.e., coefficients) would have to be maintained. However, this
case is just of theoretical interest, as there would be no benefit from the wavelet
form at all: the additional infrastructure would even increase the total memory
consumption. In the following it is therefore assumed that the coefficients are
compressed by means of removing values below a certain threshold. As a result,
all non-zero coefficients12 resemble a sparse data structure and thus should
be converted into a more compact representation. Storing the data linearly,
however, would result in a loss of the original position that is in turn needed for
reconstruction. This correlation can be implemented by storing the coefficients
in a map with their spatial position as key. Querying a certain coefficient will
then result in logarithmic complexity with respect to the number of elements in
the map (for standard, tree-based internal representations), or even lower costs
for specialized versions such as hash maps. However, the zero coefficients had
to be included in both cases to ensure correct key-value mapping, thus leading
again to a larger memory footprint. Therefore, a mixed strategy inspired by
Grosso et al. [GEA96] is used, as indicated in figure 4.10.

Figure 4.10: To maintain spatial information, the detail coefficients are stored in a
mixed data structure (center image). For optimization only the non-zero
coefficients (yellow) are marked in an importance map (right image).

12This denotes coefficients that should be maintained, i.e., are above the given threshold.
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For the two-dimensional case, the y-coordinates of the coefficients are main-
tained and used as index into a look-up table. For each entry, a list of the
remaining coefficients of the same vertical position is created, resulting in vec-
tors of different lengths. To further reduce the amount of memory needed, the
data in each list is run-length encoded by actually maintaining two arrays: the
first array contains the actual coefficient values, the second the number of repeti-
tions of the according element. This extends analogously to other dimensions:
e.g., for a three-dimensional setup two dimensions are used as index, while the
third dimension is “substituted” by the run-length encoded list.

Especially for higher compression rates where more detail coefficients be-
come zero there are options for further optimizations. It is unnecessary for these
coefficients to search the aforementioned data structure as zero values do not
contribute to the result and are thus not stored in the list. Therefore, the first
implementation introduced an additional data structure to decide whether the
data to be reconstructed can be fetched from the coefficients list or not. In order
to keep the memory footprint as small as possible, a binary “importance map” of
the same dimension and size as the original data structure was used as look-up
table (see figure 4.10). In order to achieve fast access to random coefficients for
each two-dimensional coordinate of the current wavelet block volume, an offset
for the two aforementioned coefficient arrays is also stored. This collection of off-
sets (“entry point map”, EPM) is half the size of the original data in both x- and
y-dimension as each block is comprised of two coefficients in each dimension.

While the first implementation required both data structures, i.e., importance
map and EPM, the latter is sufficient for the second version. This helps reducing
the memory footprint considerably, despite the higher bit depth that is needed
to represent both coefficient values and run length coding in one data element.
For a full n-level decomposition of a 2n × 2n × 2n data set with 16 bit data
elements the compression using the importance volume needs 1

16 · (1 + 1
8 + 1

82 +
. . . + 1

8(n−1) ) + 2
z · (1 + 1

4 + 1
42 + . . . + 1

4(n−1) ) of the data set’s size for both the
importance map and the EPM. The new representation, however, requires only
2
z · (

1
4 + 1

42 + . . . + 1
4n ). Using the example of a 2563 volume with 16 bit per voxel

(i.e., 32 MB of user data), this results in 12.95 MB of overhead for the first, and
only 2.67 MB for the second implementation, respectively.

Discarding the importance volume does not only reduce the memory over-
head. In the context of GPU implementations a reduced number of texture
accesses can further improve the overall performance, especially for different
data structures. Although the EPM has to be accessed more often than by query-
ing the importance volume beforehand, the memory layout of graphics hardware
is able to optimize sequential texture fetches.
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4.3.2 Compression / Decompression

The theoretical concepts of wavelet compression were described in the introduc-
tory part of this chapter, as well as at the beginning of this section. Consequently,
the implementation of this process is also comprised of two steps: the wavelet
decomposition, and the actual compression.

1 // single-level wavelet decomposition for volume data
2 for ( all even voxels )
3 {
4 // collect 2x2x2 block to be decomposed
5 waveletBlock[ 8 ] = getBlock( input( voxelPos ) );
6

7 // decompose
8 coefficients[ 8 ] = decomposeToWavelet( waveletBlock );
9

10 // extract the average coefficient
11 averageVolume[ voxelPos / 2 ] = coefficients[ 0 ];
12

13 // sort seven remaining coefficients temporarily
14 for ( remaining coefficients )
15 {
16 // coefficient not discarded?
17 if( abs( coefficient ) > compressionThreshold )
18 {
19 // volume position for current coefficient
20 position = volumePosition( coefficient );
21

22 // put coefficient into temporary volume
23 tempCoeffVolume[ position ] = coefficient;
24 }
25 }
26 }

Listing 4.1: Simplified code showing the wavelet decomposition of input volume.

The pseudo-code in listing 4.1 shows the block-wise, single-level wavelet
decomposition for volume data. The decomposition function in line 8 is the
implementation of equation 4.2.5 (page 116). Other basis functions than the
Haar basis could be used here, of course. While the average coefficients can be
directly written into the aforementioned data structure averageVolume (i.e.,
a volume with 1/8 the size of the input volume), the detail coefficients have to
be processed further. Therefore, they are only separated from the values that
should be discarded by means of the user-specified threshold, and stored in a
temporary volume at the original position.13

13As the importance map was discarded in the second version of the implementation, the
according code section was also omitted in the example.
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1 // initialize index, 0 for first level
2 index = coefficients.size();
3 // reorder and run-length encode detail coefficients
4 for ( all even voxels in slice )
5 {
6 // set entry point
7 entryPoints[ voxel.xy / 2 ] = index;
8

9 // sort coefficients in z-direction
10 for ( all even slices )
11 {
12 // get detail coefficients block from decomposition
13 tmpDCs[ 7 ] = getBlock( tempCoeffVolume( voxel ) );
14

15 // store coefficients run-length encoded
16 for ( all tmpDCs )
17 {
18 // if not the same
19 if ( current != predecessor )
20 {
21 // store and increment index
22 coefficients.push_back( current );
23 index++;
24

25 // store length (0 for separation)
26 coeffSequence.push_back( 0 );
27 }
28 // increase sequence length in any case
29 coeffSequence[ last ]++;
30 }
31 }
32 }

Listing 4.2: Simplified code showing the reordering and run-length encoding of the
detail coefficients.

The entry point map and the coefficient vector are filled in the second step.
This procedure is depicted in listing 4.2. For the current x, y-coordinate the
index value is stored in the entryPoints map. Then all the non-zero coeffi-
cients in z-direction (that have been determined in the decomposition step) are
put consecutively into the coefficients vector. Here a run-length encoding
is applied, that is, sequences of equal values are reduced to a single value, and
the number of occurrences is kept in a second list (coeffSequence). After the
processing of one array in z-direction the next x, y-coordinate is processed. The
updated index is recorded in the entryPoints map, and so on.

Decompression is the inversion of the preceding steps, which is accom-
plished block-wise by fetching the average value from the averageVolume
first (listing 4.3, line 5). The corresponding coefficients are reconstructed from
the encoded values afterwards. This process can be summarized as follows:
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1 // reconstructing values from RLE-based wavelet representation
2 for ( all even voxels )
3 {
4 // get average coefficient
5 average = averageVolume[ voxel.xy / 2 + zOffset ];
6

7 // get entry point from x,y-position
8 entryPoint = entryPoints[ voxel.xy / 2 ];
9

10 // get remaining seven coefficients
11 for ( remaining coefficients )
12 {
13 // seek coefficient position
14 for ( half of output length )
15 {
16 // sum up sequence values
17 seqLen = offset + coeffSequence[ entryPoint ];
18 // break if exceeds desired z-position
19 if ( seqLen > seqPos ) break;
20

21 // update offset and increment
22 offset = seqLen;
23 entryPoint++;
24 }
25 // get value at computed position
26 detailCoeffs = coefficients[ entryPoint ];
27 }
28

29 // recompose voxel data from current block
30 composeVoxelValues( average, detailCoeffs );
31 }

Listing 4.3: Simplified code for decompressing the wavelet representation.

1. look up the offset at (x/2, y/2) in the EPM

2. compute the sum of all repetition values, until the sum is equal or greater
than the desired z-position

3. the coefficient can then be looked up by using the last value’s index

The voxel values are then composed by applying the according equations
(see [Höl08] for details), and stored in the uncompressed target volume.

Extending the (de-)compression to multiple levels is straightforward, es-
pecially given the aforementioned procedures for single level transforms. By
looping over all levels (starting with the lowest), and using the resulting average
volume from one iteration as input for the next one, an n-level transform was
implemented. As the volumes’ sizes must be multiples of 2n for this operation,
the volume might has to be resized to meet this constraint. The code listings
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have already indicated some data structures shared among the different levels
(e.g., coefficients) to reduce the additional memory requirements during
(de-)compression, and thus allow for more efficient computations.

Parallel implementations play an increasingly important role, especially
with ubiquitous multi-core architectures nowadays. Although an excessive
optimization in terms of parallel execution has not been the focus of this work,
some of the preceding steps lend themselves to be parallelized. Therefore, the
decomposition and composition steps (listing 4.1 and partly 4.3) work on disjunct
sub-regions of the input volume simultaneously. In contrast, the reordering steps
used to construct the look-up tables etc. requires the coefficients to be set into
the vector in the correct, deterministic order, so that (direct) parallelization
has not been applicable here. All parallelization for CPU implementations
has been realized by using the omp parallel for construct of the OpenMP
library [OMP] with good results; for details see Höllt [Höl08].

4.3.3 Rendering

While the (de-)compression procedures were implemented in software only,
the visualization is performed on the GPU. Therefore, the compressed data is
reconstructed on-the-fly in the fragment shader. The main difference between
compressed and uncompressed data is in accessing the current voxel: instead of
a single texture look-up, the voxel has to be reconstructed from the compressed
data. That is, the eight adjacent coefficients of the according 23 wavelet block
have to be fetched, and the inverse wavelet transform has to be applied to this set
of coefficients. As described before in section 4.2.2, native texture interpolation
modes cannot be used directly on compressed data. Therefore, the interpolation
has to be implemented manually or by means of deferred filtering. The latter
would have required considerable changes to the underlying shader handling
and management, and is left for future development; hence, linear interpolation
has been implemented manually. Due to the clear impact on the rendering
performance (see the results in section 4.4), interpolation is not activated by
default. The required functionality (e.g., fetching single coefficients, accessing
complete wavelet blocks) has been sourced out into a separate shader file.14 This
allows to reuse the code also in shaders that implementing computations on
wavelet data.

The transition from single- to multi-level transform required only simple
adaptations to the rendering shaders, while most of the changes had to be done
in the external shader file. As described before, additional data structures for the
entry point map were implemented. While the latter is simply converted into a
two-dimensional texture – just as the coefficient map – the entry point map uti-
lizes mip-mapping for efficient access on the GPU. Due to the fact that the EPM’s

14As will be described in chapter 6, CASCADA provides means to assemble valid GLSL shader
programs from incomplete shader code fragments.
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size always changes by a factor of two between adjacent levels, mip-maps are an
ideal representation on the GPU. In addition, current shading languages provide
dedicated functions for accessing mip-maps (texture3DLod(...) in GLSL,
for example). Note that this mip-map is not used as traditional level-of-detail
storage, however: the data in each mip-map level is completely independent
from the content of the other levels. A disadvantage of using mip-maps for the
EPM is the fact that mip-maps have to have complete levels in current imple-
mentations. That is, the additional memory consumption is independent from
the number of levels actually used. Thus, in the worst case (i.e., single-level
compression) 50% more texture memory is needed.

Reconstructing a single voxel from the (complete) multi-level representation
requires the reconstruction of the average voxel from the average and detail
coefficients of the next level. Unfortunately, (GP)GPU programming does not
support recursion, so that all recursive algorithms have to be unrolled into itera-
tive procedures. These functions are again implemented in a separate shader file
to provide at least some modularity.

In addition to the support of multiple levels, the second version of the
implementation allows enhanced rendering modes thanks to the increased de-
compression performance. Simple MPR-like rendering with enabled trilinear
interpolation achieved only interactive framerates in the first version, compared
to real-time performance with the revised one. This is mainly due to the more
efficient coefficient access and thus enabled the implementation of direct vol-
ume rendering, including the use of one-dimensional transfer functions (see
figure 4.11). Extending the functionality has been as simple as replacing “fixed”
functions for voxel reconstruction with flexible versions that access neighboring
values instead of a wavelet block.

4.3.4 Computations

While rendering can be regarded as a read-only process, computations per-
formed on the compressed data require both read and write operations. As
GPU-based implementations using textures cannot write into the same memory
as is used for reading, an additional data structure has to be available. Some
of the operations classified in section 4.2.3 do not require a complete copy of
the input data, however. Homogeneous point-based operations, for example,
do not require the reordering of the coefficients, so that only the average value
and coefficient vector need to be copied. The result for all other operations has
to be written into a temporary coefficient volume containing all coefficients,
including even those below the threshold. The compressed coefficient map has
to be rebuilt then in a postprocessing step.

For all of the classes introduced before, procedures have been implemented
both on the GPU and in software. In particular for class 4 operations, a basic im-
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(a) Wavelet-based DVR (b) Standard DVR

Figure 4.11: Wavelet-based DVR (a) of compressed CT data set (512× 512× 256, 16
bit, compression ratio ≈ 1 : 20) at interactive frame rates, compared to
standard DVR (b) in CASCADA. Both renderings use a one-dimensional
transfer function and nearest neighbour interpolation.

plementation of the over-complete wavelet transform has been evaluated as well.
The following sections review the theoretical basis needed for implementing the
algorithms and estimate the computational complexity. Experimental results
with timings and further remarks are going to be summarized in the subsequent
section.

Class 1: Inversion and histogram spreading

These two operations work directly on the compressed data and will be pre-
sented first. The main difference between the two operations is that the his-
togram spread operator incorporates a user-specified parameter; the invert
operator is only dependent on the volume data. As a result, the input and output
volume can be the same for the inversion.

As shown in detail in [Höl08], both operations can then be applied as gray
value transformations on the wavelet coefficients. The software implementation
can thus be realized by a loop over the average volume, where every value is
transformed following Tavg · (−1) + gmax for the invert, and Tavg · (G−1)

gmax−gmin
−

gmin
gmax−gmin

for the histogram spread operation, respectively; gmax denotes the
maximum gray value of the volume data. The elements of the coefficient map
are transformed in a second loop with Tc · (−1) for invert, and Tc · (G−1)

gmax−gmin
for

the histogram spread, respectively. Note that these loops can be implemented
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using multiple threads as there are no dependencies between elements in the
data structures during the computations.

The implementation on the GPU is a bit more involved. In order to load the
data on the GPU, both data structures are converted to two-dimensional RGBA
textures. Using textures with four channels allows the parallel computation
of four values in one step.15 Each data structure has to be treated separately,
because both the operations Tavg and Tc differ, as well as the two textures are
usually of different sizes. The shader programs for the operations themselves
are rather simple functions, as shown in listing 4.4, for the inversion operation,
for example.

1 // invert averages
2 {
3 gl_FragColor = maxVal - texture2D( avgTex, gl_TexCoord[0].st );
4 }
5

6 // invert coefficients
7 {
8 gl_FragColor = - texture2D( coeffTex, gl_TexCoord[0].st );
9 }

Listing 4.4: Shader code detail for direct inversion.

Class 2: Image addition

Algorithms of this class can be performed directly in the wavelet domain in
principle, but require both the decompression of all coefficients (i.e., also zero
entries) and an update of the RLE sequences due to inhomogeneous operations.
For the given implementation that uses additional run-length compression, this
also entails the dissolving and reapplication of the encoding. Here, the addition
of two volumes has been implemented, but extends trivially to subtraction as
well.

Operations of class 2 require fundamentally different implementations on
the CPU and on the GPU. The former consists of an iteration over the run-
length encoded data and storing the coefficient at the respective position in
the target array which resembles a scatter operation (see section 1.2). For a
GPU implementation based on standard shaders, this scattering is not available.
Thus, every target coefficient has to be represented by a fragment and fetched
independently from the run-length encoded data, i.e., converting the process to
a gather operation. This is of course computationally much more expensive than

15Of course, further parallelization techniques such as multiple render targets or data packing
could be employed, but would require some more preparation and are out of scope here.
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the CPU algorithm.16 Therefore, the estimated performance of class 2 operations
depends on the platform used. While the results are going to be discussed in
detail below, CPU implementations are expected to benefit to a much higher
degree than their hardware counterpart, but are sensitive to the input due to the
data dependency of run-length encoding.

Class 3: Binary thresholding

Binary thresholding has been implemented as example for operations that re-
quire block-wise decompression. As a point based operation, binary threshold-
ing is ranked as a class three operation. Operations that require decompression
are applied in two steps. First, the block that is to be processed is decompressed,
followed by applying the operation in the spatial domain and transforming
the result back into the wavelet domain. The second step is for reordering the
resulting coefficient vector.

In order to reduce overhead for the decompression and recompression op-
erations in the software version, the complete eight-voxel wavelet block is de-
compressed, processed and re-transformed. For binary thresholding this means
that one indirect coefficient fetch is needed, instead of a simple array access per
voxel. For computations on one level, seven additions are needed to transform
each voxel (in the current block) from the wavelet into the spatial domain. After
the threshold operator has been applied – as for non-compressed data – the
re-transformation into the wavelet domain has to be performed and requires
another seven additions.

Due to the fact that the wavelet data is encoded as colors in the GPU version,
not all eight coefficients can be computed at once; RGBA textures offer at most
four values. However, in order to compute the four voxels in the spatial domain,
all eight coefficients of the corresponding block are needed, just as all eight
voxels of the block are needed to compute the resulting coefficients of the re-
transformation. Hence, the effective cost per voxel for decompression and
re-transformation into the wavelet representation is twice the cost of the CPU
version, i.e., two coefficient fetches and 28 additions per operation and voxel.

Class 4: Laplace filter (SWT)

Although Laplace filtering also requires block-wise decompression of the data,
it is regarded as class four operation due to the fact that it accesses neighboring
data. That is, applying the Laplace filter is very similar to the binary threshold
operation described before, but additionally requires the neighborhood of the

16As already mentioned in the first part of this thesis (and in chapter 5), dedicated APIs
such as Nvidia CUDA provide scattering operations, shared memory, etc. Therefore, the “GPU”
implementation will not require expensive workarounds and could thus exploit the performance
potential of graphics hardware to a much higher degree.
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current block to be fetched. The Laplace filter is implemented as a 3× 3× 3
mask, but can be extended to other sizes, of course.17 In the special case of the
Laplace operator, only the six direct neighbors of the pivot and the pivot itself
are non-zero. Therefore, only the six directly adjacent voxels of each processed
voxel contribute to the result, and thus have to be fetched. In terms of wavelet
blocks this means additionally to the current block the six direct neighbors have
to be fetched. However, for the 3× 3× 3 filter mask only a 4× 4× 4 voxel
neighborhood has to be reconstructed for processing the current block, as a
subset of the neighboring voxels is always within the current 2× 2× 2 block.

This results in seven coefficient fetches and 21 more additions per voxel for
the software implementation. On the GPU effectively 14 fetches and 42 additions
are needed for reconstruction and recompression, that is again twice as much
than the CPU version for the same reasons mentioned above. Although not
implemented, the following statistics estimate the complexity for other kernels:

• For a 5× 5× 5 Laplace filter kernel the 12 neighboring blocks sharing one
edge with this block have to be fetched and reconstructed, increasing the
number of fetches to 19 (GPU: 38), and the number of additions to 70 per
voxel on the CPU (GPU: 140).

• A general 3× 3× 3 filter mask would require 27 fetches and 28 additions
on the CPU, and twice the amount on the GPU, respectively.

These indirect coefficient accesses are computationally very expensive, com-
pared to simple array look-ups/texture fetches. Therefore, a significant perfor-
mance decrease has to be expected for these neighborhood operations. After
these computations the reordering of the coefficient map has to be performed
(as for the wavelet compression), which is less expensive in total, however.

Class 4: Laplace filter (OCWT)

In section 4.2.3, the concept of the over-complete wavelet transform was in-
troduced to provide a compression representation capable of handling shift
operations that are needed for filter kernels. The implementation described
here is regarded as proof of concept in that it does not exploit the full potential
of the representation at the current stage of development. Hence, the focus
was on the acceleration of class 4 operations by means of the over-complete
transform, with less attention to memory efficiency and flexibility. As a matter
of fact, the additional representation results in considerably larger data sets for
the single-level decomposition implemented here. However, a similar benefit

17Note that this would result in much longer code (and thus might introduce problems due
to instructions limits etc.), if larger masks were implemented straightforward. Basic approaches
such as separable filter kernels should be applied then to limit the computational complexity and
will be addressed in the context of compressed data in section 4.4.4.
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for a complete integration should be possible, just as indicated by the extension
of the first version described in Höllt [Höl08] to the multi-level implementation.

As mentioned before, for an n-level decomposition based on Haar wavelets,
in general 2n − 1 shifts in each direction are required. This results for single
level decomposition and three-dimensional data in 26 translated copies, plus
the original volume. For the single-level Haar wavelet transform only two
neighboring voxels per direction are dependent. That is, a translation by two
voxels (or a multiple thereof) is equivalent to translating the wavelet transformed
image by the desired number of voxels. As a result, all translations can be
computed with inverted signs directly in the wavelet domain, i.e., a shift by
(−1, 0, 0) from the volume translated by (1, 0, 0). Thus, only 7 instead of 26
shifted volumes are sufficient to represent the over-complete transform: (1, 0, 0),
(0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1).

Based on these considerations – and recalling the fact that convolutions
can be decomposed into translation, gray value scaling, and image addition –
the over-complete wavelet transform supports all required operations. Thus,
linear filters can be applied directly within the wavelet domain without any
decomposition. In other words, procedures requiring class 4 computations can
be mapped to class 2 operations which gives rise to considerably speed-up. Just
as for the standard implementation, a Laplace filter has been implemented both
in software and hardware. This simplifies matters, as the Laplace kernel allows
some optimizations due to several zero entries. Generalizing this to arbitrary
masks is possible, of course, resulting in accordingly more texture accesses.
Therefore, the performance gain with respect to the standard representation will
increase for more non-zero entries, i.e., more fetches.

While the expensive workaround for shader-based implementations hampers
the performance of the GPU version considerably18, the software version can be
expected to be orders of magnitude faster than the standard approach due to
much fewer instructions.

4.4 Results

In the following sections, the results that were achieved by implementing the
aforementioned concepts in CASCADA will be presented. As mentioned at the
beginning of this chapter, the focus was on mapping computations into the com-
pression domain, mainly as proof of concept. Therefore, the (de-)compression
and rendering results will be outlined only shortly, as this has been already
addressed in numerous other contributions in detail. Above that, both the
memory efficiency and quality of the results will be assessed. The results will

18In addition, the performance varies significantly with different graphics cards (of the same
GPU generation) and driver versions.
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be discussed at the end, with references to particular implementation features,
possible extensions, or open problems.

(a) Thorax (CT, 16bit, 5122 × 64) (b) Head (MRI, 8bit,
2563)

(c) Spine (CT, 16bit, 643)

Figure 4.12: Data sets used for evaluating the compression computing approaches

For most of the experiments, three different data sets were used that are
depicted in figure 4.12. In addition to these rather moderately sized volume
data, the data set shown in figure 4.11 on page 130 were used. The concepts can
be translated to larger data sets as well, but would require the integration of
further techniques such as bricking or – in general – out-of-core approaches. All
the experiments were performed on two systems running Windows XP:

• System A: Intel Core2Duo 2.4 GHz, 2 GB RAM, Nvidia Geforce 8800 GTS
640MB (G80)

• System B: Intel Dual Xeon Quad-Core 2.8 GHz, 6 GB RAM, Nvidia Geforce
8800 GT 512MB (G92)

4.4.1 Compression

The first version of the implementation, i.e., using only single-level decomposi-
tion and no run-length encoding, has been evaluated in detail in Höllt [Höl08].
As discussed in the theoretical part of this chapter, the wavelet basis allows
lossless compression as well. For the single-level representation, this results in a
compression rate of approximately 1 : 2 for the type of data sets considered here.
However, for the multi-level approach, lossless compression leads to an increase
in size of up to 50% due to the additional infrastructure. The over-complete
wavelet transform applied here results – as expected – in excessive memory
consumption of more than 10× the original size for lossless, and between 400%
and 150% overhead for lossy compression, respectively.

Lossy compression achieves much higher compression rates, of course, but at
the cost of a worse SNR due to information loss. This is illustrated in figure 4.14
on page 137, where the result for lossless compression (i.e., threshold of 0%) is
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infinity and therefore has been omitted. By introducing a parameter relative to
the value range of the respective data set, the compression rate (or error) can
be controlled. Here, this parameter denotes a percentage, i.e., a threshold of 2
results in discarding detail coefficients which are below 2% of the data set’s max-
imum value.19 The graphs in figure 4.13 summarize the achieved compression
performance at different hierarchy levels for typical data sets. Depending on the
bit depth, the compression results are considerably different, both in terms of
total and relative compression rate.
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Figure 4.13: Compression results using the standard wavelet transform for the thorax
(left) and head (right) data set. Both the compression rate at varying
error thresholds and the timings are given for different hierarchy levels.

In terms of computational performance, the results mainly depend on the
following three factors in descending importance: the size of the data set; the
number of available processors; and the quality threshold. The first relation is
rather obvious and scales linearly in practice, whereas the threshold parameter
affects the performance almost constantly: except for lossless compression,
virtually equal time is needed (see also figure 4.13). Finally, the compression is
implemented only in software, but exploits multiple processors due to inherent
parallelism, as described in section 4.3.2; this results in considerable speed-up
for a multi-core system (esp. System A), as discussed in detail in [Höl08].

Decompression performance is approximately 25% higher than for the com-
pression procedure. This is mainly due to the fact that compression requires the
allocation of additional memory for the internal representation.

4.4.2 Rendering

As already mentioned in the preceding section, the rendering performance could
be clearly improved by revising the first implementation and the extension to

19Other error measures, such as MSE, visual image metrics (SSIM), etc. are applicable for
controlling the compression quality, as well. An integration and discussion would be beyond the
scope here, however.
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Figure 4.14: Compression quality measured by the peak signal-to-noise ratio (PSNR)
using the standard wavelet transform for the thorax (left) and head
(right) data set. The results are given at varying error thresholds for
different hierarchy levels.

multi-level decomposition. Although rendering has not been the main focus
of this research, some optimization strategies have been applied. This allows
a comparable quality of direct volume rendering at interactive framerates, as
depicted in figure 4.15. The differences originate from the block structure of the
wavelet transform and lossy compression: coefficients below approximately 2%
of the maximum value (i.e., 61 for the thorax data set) are discarded and cause
high frequent noise. Obviously, the visual differences become less obvious for

(a) Wavelet DVR (b) Standard DVR (c) Difference (20×)

Figure 4.15: Wavelet-based DVR (a) of Thorax/Abdomen CT data set (5122 × 256,
16 bit, compression ≈ 1 : 20), compared to standard DVR (b) resulting
in interactive performance. All renderings use a one-dimensional trans-
fer function and nearest neighbor interpolation. Image (c) shows the
amplified difference with negative values in blue, positive values in red.

lower compression rates, whereas the rendering performance remains practically
unaffected, in spite of the larger amount of data.

In direct comparison to the first implementation, the MPR rendering per-
formance could be increased by a factor of nearly 10 for nearest neigbour and
trilinear interpolation, respectively. This is mainly due to more efficient texture
fetches and the more compact multi-level representation, despite the consider-
ably higher number of computations needed for reconstruction and run-length
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decoding. As addressed thoroughly in the preceding chapter, hardware imple-
mentations are much more suited for such computing intense tasks and unveil
their full potential especially in combination with direct visualization methods.

4.4.3 Computations

After presenting the results for (de-)compression and rendering, major interest
is in the performance of computations on compressed data. As motivated in
the preceding sections, the Haar wavelet transform was chosen as compression
method due to its flexibility and efficiency with respect to GPU implementa-
tions and visualization procedures. Therefore, evaluating the computational
performance requires the consideration of the wavelet transform’s properties
and parameters, i.e., the compression level and threshold that were introduced
in section 4.2. All timings were performed using System A, with comments or
additional information about the other system where appropriate. In addition,
all measurements were performed on the Thorax data set (see figure 4.12 for de-
tails), except for the comparison of different data sets. Finally, for diagrams 4.16
and 4.18, 2 levels and a threshold of 1 are used as compression parameters,
respectively.

Compressed / Uncompressed data

The first evaluation is the direct comparison of operations in the spatial and
compression domain. As can be seen in figure 4.16, the performance of most
operations on compressed data cannot compete with their standard equivalent.
Especially for GPU implementations, all but the simplest computations (class1)
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Figure 4.16: Comparison of different operations on uncompressed and compressed
data, both for CPU (left) and GPU (right) implementations.

are considerably slower in the compression domain. However, the hardware
implementation of the over-complete wavelet transform for class 4 operations
is far from optimal due to programming limitations, as already discussed in
section 4.3.4. The GPU version is even outperformed by the standard wavelet
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representation, and with a performance comparable to software implementa-
tions across different data sets. If the GPU code was able to use scattering,
an acceleration comparable to the CPU would be possible, resulting in a clear
benefit for complex image operations in the compression domain.

For CPU implementations, the situation is somewhat different. Class 1 oper-
ations are approximately one order of magnitude faster in the wavelet domain
than in the spatial domain; again for different data sets. As these operations only
have to process the average volume20 and coefficient map, this depends strongly
on the compression ratio; see the top-left diagram in figure 4.17. Operations of
class 4 are practically unusable in the standard wavelet representation, as the
computational overhead is prohibitively high. The performance results have
been in the order of several minutes (e.g., more than 12 minutes for the Spine
data set!), indicated by the discontinuous bar in diagram 4.16. On the other hand,
the implementation of the Laplace filter using the over-complete representation
clearly outperforms the same operation in the spatial domain.

Different classes

The diagrams in figure 4.17 show the influence of compression parameters on
the computations’ performance. With two sets of data points – for GPU and
CPU implementations, respectively – in the diagrams, different aspects can be
read from the results.

Firstly, the performance differs notedly between software and hardware
versions for the different operations. While class 1 computations are practically
comparable, the performance gap becomes more visible for class 2 operations.
As noted before, however, the GPU version cannot exploit the full potential of
modern graphics hardware due to the complicated workaround and is slower for
all compression levels. In contrast, computations that require block-wise recom-
pression, such as the binary threshold depicted at the lower left, benefit clearly
from hardware implementations. Considering the results from the previous para-
graph, the performance is obviously inferior for compressed computations with
respect to operations on uncompressed data. Although not directly comparable,
the implementation of class 4 operations based on the over-complete wavelet
transform indicates a trend similar to the one for class 2 computations. This
becomes clear when reconsidering the fact that the additional information in
the over-complete representation implies neighborhood accesses and therefore
reduces the computational complexity to (approximately) class 2 operations.

Secondly, the results indicate varying dependencies on the compression pa-
rameters. In general, the GPU implementations are less sensitive to compression
rates than their software counterparts. This is mainly due to the fact that ac-
cessing storage on graphics hardware (i.e., textures) is practically of constant

20Note that the size of the average volume depends on the hierarchy level and requires less
time the more levels are used (i.e., down to a single computation for complete hierarchies).
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Figure 4.17: The computation performance of the different classes at varying com-
pression parameters, for both CPU and GPU implementations. Note that
class 4 operations have been realized using the OCWT implementation.

complexity with respect to the texture’s size. Software operations usually have
linear complexity in this regard. However, the first diagram (top left) in fig-
ure 4.17 shows some variance, which is also due to the detailed scaling of the
diagram’s range. In this context, the performance for most computation classes
varies at different hierarchy levels, especially for software implementations.
As described in section 4.3, the extension to multi-level hierarchies introduced
a computational overhead for traversing the levels in order to decompose or
reconstruct the data. This becomes clearly visible for class 3 operations (bottom
left of figure 4.17) where the performance drops significantly for each additional
level: for the thorax data set of up to 50%, for example.

Data sets

The last criterion for assessing the performance of computations in the com-
pression domain is for data sets of different sizes and bit depths. Therefore,
the examples depicted in figure 4.12 are compared with respect to all operation
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classes. Again, the results are different for GPU and CPU implementations, as
shown in the diagrams in figure 4.18.
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Figure 4.18: Computation performance for different data sets, using both CPU and
GPU implementations. (See figure 4.12 for data set details)

Although the head and thorax are of same dimension, the former is half the
bit depth (8 bit), resulting in half the size in memory – for the uncompressed
data. After being converted into the wavelet domain using equal settings (i.e.,
level of 2 and threshold of 1), the compression ratio is significantly lower for
the head data set (1 : 1.565 vs. 1 : 8.55); see also figure 4.13. This results in clear
differences for the operations implemented in software. The computations are
in general slower than for the thorax data set, but can benefit from the over-
complete representation to a higher degree.21 In addition, for the data set of
comparable compression ratio but different size, the findings are as expected
in that the results scale with the according computational complexities of the
operations.

For hardware implementations, the results align well with the aforemen-
tioned properties of the data sets (i.e., compression ratio, size). However, the
internal data structures are more sensitive to hardware features, such as max-
imum texture sizes or data types, which results in several irregularities for
differently sized data sets and are subject of further investigation.

4.4.4 Discussion

After presenting the results of compression computing described in the course
of this chapter, some of the findings require further discussion. The concepts
and results presented should prove the feasibility of the concept of performing
computations directly on compressed data, as well as indicate trends and lim-
itations. Especially these limitations have influenced the implementation on
graphics hardware, as the (traditional GPGPU) programming model is not as

21Although not directly comparable due to the missing multi-level support, the over-complete
version has been included for reference.
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flexible as for software implementations. Modern APIs such as Nvidia CUDA
(see section 1.2 for details) provide several concepts such as shared memory
or random write access, thus enabling more powerful and less cumbersome
implementations.

Another example for optimization addresses operations that require neigh-
borhood information (i.e., class 4 operations). A common approach to reduce
the computational complexity in image processing is using separable filter ker-
nels. This would be also possible in the wavelet domain, especially using the
over-complete wavelet transform. Therefore, the application of the filter mask
in one dimension would imply the parallel computations for multiple “filter
rows” at once, as the representation already accounts for translation in different
dimensions. However, as this separation pays off for larger kernels only, the over-
complete representation has to be highly optimized to result in a performance
gain in the end.

Yet another relevant factor of the methods presented here is the underlying
representation. While advanced techniques such as the over-complete wavelet
transform provides means for reducing the computational complexity of ex-
pensive operations, several simplifications are based on the Haar basis used
throughout the implementations. Although this representation is in particular
suited for discrete computations and hardware implementations, its quality is
limited for reasonable compression parameters, i.e., hierarchy levels. As shown
by several authors, other wavelets such as the Daubechies functions provide
superior signal-noise ratios at equal settings – at the cost of more complex compu-
tations. But this computational intensity is exactly where GPU implementations
can outperform software implementations. With more computations being per-
formed “on-the-fly” the more compact representations would be possible at the
same quality.

Finally, several classes have been defined to assess the different implemen-
tation approaches with respect to the computations. While simple operations
are faster or at least of comparable performance in the compression domain
(as shown by several authors before), more complex operations usually cannot
compete with operations on uncompressed data; this is especially the case for
GPU implementations. On the other hand, graphics hardware provides only a
limited amount of memory so that costly additional techniques such as bricking
to process and visualize large amounts of data are needed. As mentioned in the
beginning of this chapter, especially algorithms that require frequent transfer
of data could benefit from performing computations directly on data stored
in compressed form in the graphics memory – both to reduce the (initial) data
transfer and the overall memory consumption.
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4.5 Conclusion

The main objective of this chapter has been to evaluate the possibility and ef-
ficiency of mapping computations into the compression domain. In general,
performing computations directly on compressed data has been shown to be
feasible in the thesis by Höllt [Höl08] and by the extensions presented here. Al-
though the performance is not as optimal as desired – especially for non-trivial
operations – there is still considerable room for improvement regarding the
implementation. This section is going to summarize the main findings before
discussing further topics.

During the initial research phase, the wavelet transform was identified as the
most advantageous one in different aspects. Firstly, practically all requirements
that have been defined for realizing compression computing in section 4.1.2
are met by using the wavelet transform. Although the support of multiple
levels requires additional memory, the compression results clearly outweigh
this increase in terms of both storage and computational workload. Especially
the possibility of lossless compression, the compatibility with GPU-based direct
(volume) rendering, and the compact block size are key advantages for the target
applications.

Secondly, the wavelet transform is flexible with respect to the underlying
representation. On the one hand, there are several options for the wavelet basis,
such as the Haar, Daubechies, or Meyer functions; see Mallat [Mal99] for further
reference. On the other hand, the introduction of the over-complete wavelet
transform to overcome the problem of shift variance would have not been
possible for other comparable compression methods. With vector quantization,
for example, neighborhood information can only be represented at prohibitively
high memory consumption which cannot be reduced by algorithmic means (as
for the over-complete wavelet transform). In addition, the flexible combination
of both standard and over-complete representation allows for a convenient
trade-off between memory consumption and computation performance.

Finally, the implementations have shown to cover different types of data.
In the medical imaging context, different modalities produce data of varying
bit depths and value ranges; see sections 2.1 and 3.1.2 for further information.
First experiments have indicated that the implementations are applicable to
higher bit depths as well, with clear performance advantages for operations
performed on the GPU: modern graphics hardware is able to handle 32 bit
floating point data at negligible performance penalties with respect to lower
precision or integer types – in contrast to software implementations. Yet another
aspect are multi-dimensional data types, such as fMRI imaging data. Although
computations on compressed data are adaptive to these data types in theory,
general problems as the independent processing of the individual channels also
apply in the compression domain.



144 CHAPTER 4. COMPRESSION COMPUTING

Aside from technical improvements (e.g., porting the (de-)compression to the
GPU), an appealing extension is to exploit the multi-level support for hierarchical
interaction and processing. Therefore, expensive computations can be performed
and previewed interactively on a coarse level, and then applied to the full
resolution after finishing parameter setting etc. This concept can also be extended
to a combined GPU–CPU solution, where the GPU implementation is used for
real-time preview by means of direct volume rendering on a smaller version of
the data set due to the limited size of texture memory. Once the operation(s) are
set up, the computations can be performed on the full data set on the CPU, or
even by using out-of-core techniques for extremely large data sets.

In section 8.2.1, a classification of (GP)GPU procedures will be outlined
in order to target at an (automatic) selection of the optimal implementation,
i.e., hardware or software, for a given workflow. On the subject of integrating
GPU and software implementations, this approach can be extended by the
concepts presented in this chapter: depending on the data, given platform, and
type/sequence of operation, a conversion to the compression domain might
be beneficial. For example, if the data set to be processed exceeds the graphics
memory, but should be frequently updated and rendered, transferring it only for
display is likely to be slower than compressing it once and perform all further
operations on the GPU. This requires all operations to be compatible with the
compressed representation and the quality of the compression process being
sufficient for the purpose at hand, of course. As evaluated in this chapter, some
computations in the compression domain outperform their spatial equivalent
while leaving considerable potential for further optimization, especially using
dedicated computing devices and APIs.



CHAPTER 5

OBJECT-ORIENTED GPU PROGRAMMING

The exponential growth of computational performance for graphics hardware
has led to an increasing interest in utilizing this additional resource, also for
traditional graphics tasks. Until recently, however, programming GPUs has been
complex, error-prone, and rather low-level – and required thorough knowledge
of computer graphics concepts. Although graphics hardware has become more
programmable and flexible, it can still be regarded as a special purpose device
with its own distinct architecture. Hence, the creation of GPU-based applications
is still not as established and proven as their software counterparts. McGuire et
al. allude to this development in [MSPK06]: �Modern GPUs manifest another
turn of Ivan Sutherland’s “Wheel of Reincarnation”, where general-purpose and
specialized hardware alternate as the best implementation technology.� With
respect to the development tools, for example, there are only few programs
available for shader programming. Usually these are non-standard tools based
on research projects which are often far from mature products. For other aspects
of development, such as debugging, things are even worse: there is no support
for maintenance or proper design at all.

Recently, some developments got the field of available programming inter-
faces for graphics hardware moving. During the last quarter of 2006, Nvidia
introduced the dedicated API “CUDA” (Compute Unified Device Architecture)
for using the graphics hardware as computational device. Along with their
toolbox of special drivers and libraries, compilers, preprocessors, etc., the newly
released generation of graphics hardware removed or simplified several limita-
tions of programming. Based on the stream processing concept (see chapter 1)
that has been applied to graphics hardware mainly by Buck [Buc05], computer
graphics concepts have been replaced by standard parallel-programming no-
tions, such as threads, streams, barriers, etc. Also, the programming language is
an extension of standard C, which addresses the majority of programmers well,
and does not render existing legacy code obsolete.
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As such vendor-specific developments often turn out to become a problem
for standardized and commonly used solutions, multiple vendors and research
groups have joined the establishment of a standard in spirit of the widely ac-
cepted OpenGL. This so-called “Open Computing Language” (OpenCL), has
been officially proposed at SIGGRAPH 2008 together with basic driver sup-
port [SIG], with the first version released in November 2008 [Khr]. Consequently,
there are neither many experiences, nor mature applications available at this
time, but early details indicate some resemblance to CUDA.1

However, all of these developments have one thing in common: they use
rather low-level, procedural programming concepts. While this aligns well with
the underlying hardware and allows access to intricate, performance critical
details, aspects from software engineering such as modular design or code
maintenance are still not addressed. On the other hand, traditional software
implementations benefit from an established knowledge and research in object-
oriented programming, which is the de-facto standard for most applications.
Hence, this chapter introduces higher-level programming concepts to GPU
programming, based on the contribution by Raspe et al. [RLP08]. Existing
work in the context of (GP)GPU programming is presented and discussed first,
extending the investigations by Palmer [Pal08]. Different aspects of object-
oriented programming are discussed in the subsequent section, with references
to the framework CASCADA developed in the course of this thesis. In the
third section, a hierarchical representation of functionality to provide different
abstraction levels is proposed as a key feature of the system. The fourth section
addresses several concepts from software engineering that are relevant for the
implementation of the framework. The chapter finally concludes with a short
comparison of the results, and leads to a technical description of the proposed
concepts that will be introduced in the next chapter.

5.1 Related work

With the increasing programmability of graphics hardware, considerable re-
search has been done on improving the creation of shader programs and abstract-
ing from the intricate details of the underlying hardware. Quite naturally have
most of the contributions focused on graphics applications, i.e., the utilization of
the GPU in its original design. General purpose applications, however, often re-
quire other functionality or program logic. Therefore, this section will introduce
representative and fundamental work in the field of shader programming, to

1For more details on CUDA see section 1.2 in the introduction, and chapter 6 for the CUDA
interface within CASCADA 2.
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lead to an object-oriented approach. Some of the languages and concepts have
been already described in general in chapter 1, so the focus here is on discussing
the programming features and possible limitations thereof.

5.1.1 Shader programming

As introduced in the first part of this thesis, shader programming has quite
rapidly evolved from pure assembly programming into what is usually referred
to as high level shading languages. The mainly used languages are Cg, GLSL,
and HLSL, the latter being the DirectX variant of Cg. These C-like languages
provide means for graphics-oriented programming, i.e., additional data types
are available, textures are accessible, etc. Also, some higher level of description
has been available for both Cg and HLSL, which are again practically identi-
cal: CgFX [FK03] defines self-contained shader units called effects. These text
files bundle vertex and fragment shader code with render passes, states and
parameters to describe a complete shading procedure that can be applied to any
geometry. Many advanced modeling packages support this format to allow the
creation of complex shaders without explicit programming, e.g., for artists in
game development. This purely graphics-based approach has been extended
by Eissele et al. [EWE04] for their system working with data in image-space.
While providing support for multiple render passes and simple GPGPU-like op-
erations, the effects cannot be used to model arbitrary computations, especially
under dynamic, data-driven conditions.

The majority of authors have proposed strategies for combining shaders at
the level of GLSL or Cg code, however. To this end, shader programs are usually
split into smaller building blocks, and augmented with additional semantic
information. Graph representations allow for a flexible logical representation
and evaluation of common execution paths, shared variables, states, etc. This
representation of shader functionality as directed graph, with nodes represent-
ing shader fragments connected by input and output parameters, has been
proposed long before the advent of shader hardware by Cook [Coo84]. Abram
and Whitted [AW90] have extended this seminal work by introducing additional
dependencies between the nodes not realizable with the data flow paradigm
only. In addition, they propose automatic type conversion for parameters where
applicable.

Abstract Shade Trees McGuire et al. [MSPK06] have implemented automatic
parameter matching, although their approach involves multiple steps includ-
ing some intermediate representation and abstract connections between the
parameters. Thus, they are able to represent complex functionality at a higher,
more user-friendly level and deferring the specific type matching to internal
processing. They were also the first to apply the concepts with programmable
graphics hardware in mind. However, their effect-based abstraction does not
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map directly to non-graphical, offscreen computations and is thus not applicable
to the context of this thesis.

Dynamic Shader Generation for Flexible Multi-Volume Visualization
The work by Rößler et al. [RBE08] is also for visualization purposes only. How-
ever, their application to multi-volume rendering and interaction is of high
interest. They separate graph nodes into structural and shader nodes: the for-
mer implement operations like splitting or transforms, the latter represent the
visualization. The underlying graph is exposed to the user in order to provide
an easy graphical interface for composing such functionality. Their approach
achieves decent real-time performance on commodity graphics hardware, where
some penalties from expensive structural nodes and the linear complexity in the
number of volumes are the main limiting factors.

Automated Combination of Real-Time Shader Programs In contrast to the
aforementioned approaches, Trapp et al. [TD07] make no explicit use of graphs.
They propose a system for an automatic combination of high-level shader pro-
grams during run-time. Therefore, shader code is split into small fragments
and augmented with predefined semantic information. A two-step approach
converts these tagged fragments into executable code that is controlled by an
additional shader2. The different execution paths are represented by a look-up
table in combination with static branching, thus limiting the performance penalty
on modern graphics hardware. Although the examples given are for building,
combining, and reusing graphics shaders only, the extension to GPGPU shader
programs seems possible.

Shader Algebra In 2004, McCool et al. [MTP+04] have proposed an approach
that realizes the combination of shaders in an algebraic way. Therefore, their
meta-programming system Sh (see next section) is extended to support two
basic operations, connection and combination, that act upon shaders and kernels
as objects. While the former operation concatenates shaders with matching
interfaces, the second integrates multiple shaders with one unified interface.
In addition, they provide further optimizations (e.g., dead code elimination)
and manipulators. For more complex (GPGPU) applications they only suggest
extensions such as striding, sort, or scatter/gather operations, however.

SuperShader Another approach has been proposed by McGuire et al. [McG05]
with their “SuperShader”. Here, the key idea is to utilize the preprocessor
available in most programming languages (GLSL in their case) to “templatize”

2These shaders are usually referred to as “uber-shader” (alluding to the German word for
“over”), and are related to the SuperShader described below.
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shader code. Preprocessor directives implement different feature sets for more
general functionality, thus avoiding potentially expensive branches during run-
time; all the program’s logic is finalized at compile-time instead. In addition,
a caching strategy within the application (i.e., the C++ code) optimizes the
performance for (re-)loading the shaders. However, this approach can hardly
be extended to GPGPU applications, as non-graphics computations such as
offscreen passes cannot be directly regarded as “effects” built by their modular
control shader.

Object-Oriented Shader Design Before current developments of the different
APIs (i.e., CUDA, Direct3D 11) have started to provide object-oriented shader
programming, Kuck has introduced object-oriented concepts to shader program-
ming in [Kuc07]. His work is comprised of two main components that implement
the proposed system: an object system for GLSL and corresponding proxy objects
in C++. In order to achieve a lightweight system without any overhead, con-
cepts such as compile-time polymorphism and template meta-programming are
heavily used and thus rely on compiler optimization. Although some examples
are outlined and motivate the problem-oriented (rather than hardware-oriented
programming), the problem of tight coupling is not addressed and might lead to
less reusable code.

5.1.2 Programming systems

The approaches reviewed in the preceding section provided additional layers
and/or concepts for existing shading languages. On the other hand, several
authors have investigated systems that abstract the functionality even further
from the underlying driver or hardware. Although the graphics hardware
is, of course, also utilized in the end, these systems either extend the GPU
programming tool chain with additional layers, or replace complete processing
steps with custom tools.

Shader Metaprogramming In 2002, McCool and others [MQP02, MT04] have
presented a completely different approach, which has become the basis for the
commercial RapidMind3 platform in 2006. Their meta-language concept in-
tegrates shader functionality directly into the application code, where special
macros and an additional library provide information when and where the
code should be executed. Different backends implement the functionality for
the particular platforms, including standard software solution or support for
other processor types. In addition, two modes are distinguished: the so-called
immediate mode corresponds to using Sh as a standard matrix/vector library,
with all commands being sequentially executed. The retained mode, in contrast,

3http://www.rapidmind.net/, last visit Feb 22 2009

http://www.rapidmind.net/
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compiles the functionality into shader programs (or the equivalent for the speci-
fied target platform) and issues the execution later. As Sh is built within C++, no
additional compiler or other tool is required. Also, by exploiting scope rules of
C/C++, their approach can handle uniform parameters elegantly and is able to
delegate the necessary API code completely to the according backend. However,
the performance of the generated code is inferior to manually written GLSL code
due to redundancies or suboptimal constructs, as shown in [Mar06]. Although
this has improved with newer and more flexible hardware, complex GPGPU
applications have been realized with the commercial RapidMind system only. In
addition, the integration of the shader implementation into the application code
impedes the modification of (shader) functionality during run-time.

Brook for GPUs Quite a different approach has been developed by Buck et
al. [BFH+04, Buc05]. Their platform-independent system “BrookGPU”, that is
based on a more general streaming model, completely hides graphics concepts
and can thus be regarded as a pure GPGPU system. In section 1.2.4 the further
developed system “Brook+” was introduced, which is based on the BrookGPU
system outlined here. BrookGPU requires an additional (pre-)compilation step
with the source-to-source compiler “brcc“. This separates the implemented
functionality into legal C/C++ code4 and shader code (Cg). The emitted code
can then be compiled into a standard application that uses the additional library
“BRT” to invoke the kernels.

While this is rather similar to Sh, the outstanding feature is the support of
user-defined data types. In addition to the standard, graphics-oriented types
(see chapter 1) arbitrary representations are possible. However, as BrookGPU
defers the specific functionality as well as Sh to backends (OpenGL, DirectX,
and software), these data types have to be mapped to the underlying hardware.
Yet another relevant contribution of Buck’s work is the establishment of a per-
formance model. Therefore, the notion of “arithmetic intensity” is extended to
“computational intensity” to deduce influential performance factors during run-
time. As these concepts are important for the overall performance of GPU-based
implementations, this topic is reviewed in section 8.2.1.

Accelerator While for Brook programmers have to divide the computations
into kernels manually, the system proposed by Tarditi et al. [TPO06] does this
automatically. In addition, the system performs the compilation process at run-
time and is thus more flexible to use, especially with older hardware. Accelerator
is implemented in C# and is based on data parallel operations translated to pixel
shaders on DirectX. Thus, parallel arrays, i.e., standard arrays without index

4Brook programs are implemented using an extension of the C/C++ language that requires
processing before handing it over to the standard compiler. This is a common approach for many
programming systems.
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operator, are the principal data type, both for application and GPU code. Several
operations are defined for them: element wise operations are available, as well
as reduction and transformation functions. The mapping to pixel shaders is
performed by evaluating the computation in an internal graph representation,
with additional operations on it. However, the performance that has been
achieved is inferior to hand-written code, with some scenarios even reversing the
gain: computing the sum or matrix-vector multiplication is multiple times slower
than software implementations. In addition, the authors give no information on
the capability of the system to integrate visualization shaders or the platform
dependency of the system.

GPU++ Another integrated GPU programming system has been presented
by Jansen [Jan07]. His system called “GPU++” is comparable to Sh in that it
incorporates the shader functionality into the host application, but uses a more
generic class interface that completely abstracts from graphics processing. It uses
a unified kernel definition for hiding the individual shader types (i.e., vertex or
fragment shader) depending on the computation frequency, thus providing bet-
ter utilization of the different units.5 Also, Jansen proposes a novel approach to
ease the strict vector processing paradigm (i.e., SIMD data types) by vector com-
ponent decomposition and an efficient vector fusion. In order to further improve
the performance for processing the underlying expression graph, simplifications
of otherwise expensive language features (e.g., run-time type identification) are
applied within the limited conditions for shader graph traversal.

The concepts are evaluated by implementing various GPGPU applications
that achieve a performance gain of (multiple) orders of magnitude compared
to software implementations. Code complexity is reduced in almost all cases in
addition to the less GPU-specific code and thus required knowledge. However,
the author does not address the visualization of (intermediate) results or the
performance of mainly graphical applications. In addition, the influence of data
transfer, especially for complex user-defined data types is discussed only briefly.

Bulk-Synchronous GPU Programming Recently, Hou et al. [HZG08] have
transferred the paradigm of bulk-synchronous parallel (BSP) processing to the
GPU. This model describes parallel computations by grouping code into se-
quential sections of parallel threads, communication between these entities, and
barriers where all threads are synchronized. These groups – they are called “su-
persteps” in their approach – represent one unit of computation. This allows the
utilization of implicit data dependencies, with shared and visible local variables
within such a unit. A custom compiler transforms this code into valid GPU
instructions, that are in their case implemented using CUDA. Special care has

5Current graphics hardware uses the unified shader model to address this load balancing (see
section 1.1). However, this enhancement has not been available during Jansen’s work.
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been taken to realize the barriers efficiently (i.e., without stalling the processing
too much), as well as analyzing the data flow for rapid streaming code. Further-
more, they provide novel features like thread creation and deletion6, efficient
communication between threads (as is crucial for the BSP model), and typical
GPGPU operations such as reduce, scan, sort (see section 1.2.2 for fundamentals).

When compared to the aforementioned approaches, BSGP is advantageous
in several ways. Brook (and CUDA) implementations, as well as other GPGPU
approaches require the explicit handling of data dependencies, so that larger
applications can become too complex to realize. Sh allows for simpler ker-
nel implementations, but is not aware of dependencies between the kernels.
The authors also show the benefit of their approach both regarding run-time
performance and code complexity. For different applications, the BSGP imple-
mentations is often clearly faster than hand-written CUDA code. In addition, the
code is less complex and even allows for the realization of otherwise unfeasible
applications, such as an X3D parser. Although not explicitly discussed, the
examples suggest that the system addresses the visual computing concept well,
i.e., a seamless and efficient integration of visualization modules is possible.

5.1.3 Summary

In most of the shader programming approaches reviewed before, little informa-
tion is given about how parameters shared by the main program and the shader
code – referred to as uniform variables in Cg and GLSL – can be handled efficiently
with minimal programming effort. Modular approaches that concatenate shader
fragments [RBE08, AW90, MSPK06, TD07] focus on input and output param-
eter handling between individual shading modules, but do not address the
question of how to incorporate shader parameters into an application. Among
the shader programming methods, the object-oriented framework proposed
by Kuck [Kuc07] is the only one that addresses the topic appropriately. In his
approach, parameters can be exchanged between main program and shader
code as members of common objects. Kuck stresses the fact that his system is
lightweight, which certainly applies to the fact that it has no additional run-time
costs. Yet, implementing a class shared by C++ and GLSL using his framework
seems to be less intuitive than proper object-oriented programming in standard
C++, mainly due to the heavy use of templates and macros in his approach.

For the complete programming systems, most of them implicitly address pa-
rameter handling. The metaprogramming approach by McCool et al. [MQP02],
as well as Jansen’s work [Jan07] allow the simple exchange and update of pa-
rameters, since both the main program and the shader code are written in C++.
Although not specifically designed for GPU applications, BrookGPU [BFH+04]
also provides means for convenient handling and exchange of host and “device”

6This corresponds to the fork and kill commands for software processes.
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data. While Accelerator [TPO06] is built upon a dedicated data representation
and tailored operations with inherent updating facilities, its focus is too narrow
and achieves only suboptimal performance. However, such an integration can-
not be applied to the solution that is developed in this thesis, as the intention
is to use manually written and optimized GLSL code instead of monolithic
applications; the reasons are elaborated in the remainder of this chapter. As such,
BSGP by Hou et al. [HZG08] pursues a similar strategy and integrates advanced
parallel computation paradigms into an existing environment (CUDA imple-
mentations in their case), and is thus able to outperform preceding approaches.
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Figure 5.1: Classification of different GPU programming approaches with respect
to general purpose or graphics applications. The illustration is based
on [Pal08].

Although a direct comparison of the aforementioned approaches is not sim-
ple, an attempt to classify the systems is depicted in figure 5.1. Therefore, two
dimensions have been identified: first, the focus of application, with pure graph-
ics/visualization and pure GPGPU systems at both ends; the second axis is
the level of abstraction from low-level programming to virtually no relation to
the implementation details. Systems such as CUDA, for example, are mainly
intended for GPGPU applications and thus ranked at the according position in
the graph. While they are usually combined with visualization systems such as
GLSL for display, their classification here is limited to their principal domain.
Consequently, CASCADA covers a relatively wide range in both dimensions, as
it integrates visualization and computation methods, and offers different levels
of abstraction due to its basis on standard shading languages.
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5.2 Object-orientation

Among the different programming paradigms, object-oriented programming
has become very important, especially for large and complex software. Going
back to the late 1960’s (Simula) and later in the mid-1970’s (Smalltalk), languages
such as Java, C++, or C# have become mature and widely used systems. An
extensive discussion of this topic would be way beyond the scope of this thesis,
however. The focus in this section is moreover on introducing the elements that
are relevant for “porting” object-oriented concepts to GPU programming.

Some of these ideas were already mentioned in the preceding section, where
different existing approaches were reviewed. GPU programming based on high-
level shading languages such as Cg or GLSL can be regarded as procedural
programming, as these languages are usually both a subset and extension of
the C language.7 Therefore, the introduction of object-orientation to shader
programming cannot be a full realization of all concepts of the object-oriented
paradigm: the augmented functionality still has to be compatible with the
underlying architecture, as GPUs are not general processing units as CPUs. In
other words, as long as no object-oriented concepts are available for the graphics
API8, object-oriented programming is mainly limited to the application code,
and shader code being extended only by few custom constructs.

In the following subsections, different aspects of object-orientation are dis-
cussed. After a short introduction of the main object-orientation concepts, enti-
ties that represent the building blocks for such an implementation on graphics
hardware are outlined first. The communication of objects to realize data transfer,
parameter control, etc., is the focus of the subsequent section. Although the
concepts are not specific to one of the (currently) two versions of CASCADA,
references to both version are given where appropriate.

5.2.1 Fundamentals

Following the object-oriented programming paradigm, the application to be
implemented is comprised of objects that model the scenario. These objects
usually encapsulate data and are so-called instances of classes. The classes
serve as “templates” 9 for the objects’ structure, where every single instance
can have its own properties by setting the object’s internal data accordingly.
This control of the object’s features is performed by methods with different
access levels implemented by the object itself, thus defining a distinct interface

7A subset in the sense that not all constructs are available (e.g., pointers), and extension because
additional means are provided (texture samplers, matrix types, etc.).

8Just recently, Shader Model 5.0 [Mic08] has been proposed and provides preliminary object-
orientation within the shader/API, thus proving the concept of object-orientation for GPUs of
being attractive.

9This is not related to the templates available in C++, or Java’s generics, respectively.
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to its environment (i.e., other objects). This principle is usually referred to as
encapsulation of data.

Another key characteristic of object-orientation is polymorphism. Here, ob-
jects of different types can perform diverse operations (i.e., behave differently)
through the same interface. This allows the system to implement dynamic be-
haviour that depends on the object and its internal functionality, and is thus
not controlled in advance by the application logic. Therefore, entities can react
at run-time by means of so-called late binding according to their current state,
feature set, etc. Using this technique, the creation and/or replacement of objects
that might be not known in advance is possible, for example.

Building upon the preceding concepts, and to enable the creation of complex
applications, inheritance is another essential building block.10 Accordingly, a
subclass is a specialization of its base class and usually implements specialized
features in addition to the ones inherited by the base class. This involves some
issues regarding the implementation within the subclasses, that might be affected
by different capabilities and specifics of the available programming languages.
Where needed for the proposed C++ framework developed during this work,
more details will be discussed; for information on other systems and languages,
the reader is referred to the wealth of relevant literature on object-oriented
programming.

5.2.2 Entities

The following paragraphs outline relevant parts of applying object-oriented
concepts to GPU programming from the application’s point of view. If there are
noteworthy differences, both CASCADA versions will be described.

Wrapper classes Although there exist approaches to incorporate the shader
code into the host application (see section 5.1.1), the underlying hardware is
still controlled by API calls and programs executed in hardware. As mentioned
before, applying object-oriented concepts to GPU programming is mainly re-
stricted to the application. Wrapper classes provide therefore an additional layer
of abstraction for this lower-level functionality. This allows on the one hand the
utilization of object-oriented mechanisms of the respective language (i.e., C++ in
this case), on the other hand concealing platform-dependent hardware details.
Such a class that models a ShaderObject, for example, can provide a common
interface to the user, while supporting implementations for different graphics
APIs, generations, etc.; the term “back-end” describes this well.

10For the sake of simplicity, inheritance will here be regarded as both inheriting the class’s
specification (i.e., interface) and implementation. Depending on the programming language used,
multiple inheritance is used as well.
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Parameters Yet another fundamental entity in GPU programming are parame-
ters, as they are used for the exchange of information. Although the details of this
communication in the context of shader programs are subject of the next section,
parameters are also interesting from an object-oriented point of view. Instances
of classes such as ShaderObject, for example, represent specific functionality
and are controlled by the application. Also, there are Parameter objects that
contain (potentially complex) information to be passed between the application
and the shader programs. When modeling reasonable scenarios, there will be
several instances of ShaderObject that implement the workflow (usually on
the graphics hardware), as well as a variety of Parameters. However, there
would be some parameters that belong to one specific program only (e.g., a
lookup texture), whereas others are the same for several program objects (e.g.,
the current size of the rendering window). Obviously, some sharing mechanism
is needed to prevent inconsistencies and, especially for large parameter objects,
redundancies.

In CASCADA 1, parameters have been therefore separated into local and global
entities, and require different handling. While local parameters can be imple-
mented as instances created by the specific shader program, a superordinate
mechanism is needed for controlling the global parameters’ creation/deletion
process, update of values, etc. Both are managed by a ParameterSet where
one is part of the sequence or pass, while the other one is made globally available.
Every set holds instances of the Parameter class template to support different
types of parameters, such as single values, vectors, or textures.

Parameters play a different role in CASCADA 2. Here, each Component man-
ages the input parameters that are needed for its computation, and provides the
results as output parameters; both using the same interface via ParameterSet.
Above that, there are local parameters available that represent properties (e.g.,
name) or states of the component. While Modules have “real” input and output
parameters, hierarchical components such as Sequences and Loops merge the
parameters of their child components by using different join operations. As
will be shown below and in the third part of the thesis, the use of design patterns
provides efficient and adequate solutions for handling the different, potentially
shared parameters.

Containers Similar to the aforementioned wrapper classes, there are custom
types and containers for representing data in the context of GPU programming.
In addition to the standard low-level numerical types provided by the applica-
tion programming language, elements of different complexity are needed for
a convenient handling of data. At the first level, multi-component data types
are provided that resemble the additional types in shading languages, such as
vec4 or mat4x4 in GLSL. Since arrays of these basic elements are also directly
supported in most shading languages, custom types can be created (e.g., for ten-
sors). However, providing large amounts of data using such low-level uniform
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parameters is cumbersome, inefficient, and also severely limited by hardware
resources. In order to overcome this situation, two more levels are used. Firstly,
data can also be transferred per primitive, i.e., by assigning additional data to
the elements the shader performs computations on: usually vertices for vertex
shaders (as the first stage in the pipeline). These values are defined as specifically
allocated memory and accessed in GLSL shaders using the attribute classifier.
They are typically used to specify locally varying or sparse data.

The resources for such attribute data, however, are also limited per element.
At the highest level in the hierarchy established here, texture objects are there-
fore the most commonly used representation for larger data, both for GPU and
GPGPU applications. Consequently, there exist several graphics-oriented for-
mats (e.g., RGBA), as well as “raw” formats that have become more flexible to
use in recent years. These containers are also represented by wrapper classes
in the framework to exploit object-oriented mechanisms, for example to hide
the specific texture type. They use a single uniform sampler parameter of
the particular type to be accessed from within the shader. Using textures for
write-access is also a natural choice – actually the only possibility in current APIs
– to read data back from the GPU.11 The details of this communication process,
and the choice of the according hierarchy layer (i.e., default numerical types,
custom uniform parameters, and texture objects) is the focus of the following
section.

5.2.3 Communication

After considering different entities for an object-oriented GPU framework, the
communication between these objects will now be discussed, again with a focus
on GPU programming. Practically all the data that is transferred between the
application and the shaders, and between the shaders themselves are referred to
as parameters. However, there are certain limitations in the accessibility of these
data elements (i.e., read-write modes), the size per parameter, or the overall
number of parameters. Although depending on the specific graphics API that is
used, most parameters can be separated by their classifiers:

uniform This type of parameter provides information for all shader programs
during a single execution, i.e., one pass. These are read-only values for
shaders.

attribute This parameter allows the transfer of data per primitive (usually
per vertex). These parameters are also read-only for shader programs.

11Especially for GPGPU applications the graphics-oriented notion of a texture is replaced by
plain memory or buffer objects leading to a more flexible handling. Also, in dedicated systems
such as CUDA, there exist other means for storing and exchanging data, but currently only
under certain circumstances and performance considerations. See sections 1.1 and 6.3 for more
information.
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varying These values are transferred (and interpolated) between different
shaders, but are not accessible from the application. They are writeable for
the first stage (vertex program), and read-only for the subsequent stages
(geometry/fragment program).

Application ShaderObject

uniform

varying

attribute

Figure 5.2: Communication between application and (GLSL) shader programs.

Figure 5.2 illustrates this relationship, where the unidirectional flow of in-
formation from the host application to the GPU dominates this communication.
Actually, most of the data that is transferred in GPGPU applications is accessed
via uniform parameters. Note that textures, for example, are also considered as
uniform parameters. The application and/or framework employs optimization
strategies to achieve reasonable performance. One of these strategies is the
so-called “lazy evaluation”, denoting the delay of data transfer until it is actually
needed. This aligns well with the efforts to utilize the optimal device (i.e., CPU
or GPU, depending on the algorithm, amount and type of data to be processed,
etc.), which will be addressed in section 8.2.1.

Setting up the connections between the host application and the parameters
is only relevant for uniform and attribute data; varying values are set up
within the shader code only. As stated before, the shader code is parsed before
being handed over to the graphics API, so that for every uniform parameter an
according Parameter object is created. For convenience, an initialization with
default values directly from the shader code is also provided.12

The actual implementation of this communication process is realized by
Connection objects in CASCADA 2. These objects resemble connections be-
tween output parameters of one component to the input parameter of another
component. The input parameter is observing the output parameter in order to
adapt its value. Such a connection instance is managed by dedicated connect
and disconnect methods provided by each component. As already men-
tioned before, Sequences (as specialized components) can contain any other
component, i.e., also sequences.

12This feature can also be found in other systems such as CgFX [FK03]. The implementation
details will be presented in chapter 6



5.3. HIERARCHICAL REPRESENTATION 159

5.3 Hierarchical representation

After introducing object-oriented concepts for GPU programming in general,
using a hierarchical representation for rendering and computation components
offers additional benefits. Quite obviously, the abstraction from graphics pro-
gramming details has many advantages, especially if performance-critical set-
tings and functions are still accessible. While object-oriented programming
already wraps low-level interfaces into classes, describing whole workflows
would still be rather tedious in a one-level representation. Therefore, the de-
veloped framework represents its functionality using different hierarchy levels.
The main benefits of this approach are:

1. Representing algorithms hierarchically emphasizes the desired workflow
rather than the hardware-specific tasks (such as render texture setup,
shader initialization, etc.)

2. The workflow’s functionality and behaviour can be easily controlled at
run-time in a graph-like structure.

3. Internal communication can be simplified at coarser hierarchy levels due
to the higher-order semantics.

4. Different parts of the workflow can be easily re-used and interchanged,
especially for both GPU and CPU implementations.

The first statement describes the overall motivation of the developed system,
as a problem-oriented representation is more natural and powerful, while the
lower levels allow a detailed and optimized implementation that takes the un-
derlying hardware into account. As will be discussed later, the workflow can be
regarded as a graph13 or, more specific, as a tree with additional constraints and
conditions. Therefore, the behaviour at run-time can be easily controlled, e.g.,
activating a visualization sub-tree within an iterative computation only at certain
intervals. The third aspect relates to the aforementioned communication between
the different entities in such a system. While different kinds of parameters imple-
ment this communication at the shader code level, higher-order semantics can
be defined for the exchange of (potentially data-driven) information for whole
sequences, e.g., stopping criteria depending on preceding computations. Finally,
re-using components is in general of high interest, whereas the approach pro-
posed here also enables the interchangeability of different implementations (i.e.,
software, GPU code, or other bindings). These aspects are further introduced
and discussed in the following paragraphs with respect to CASCADA 1. Where
appropriate, additional information or references to related work is provided.

13Actually, the graph representation has many features in common with scene graphs that
are widely used in real-time computer graphics. For more information on scene graphs, see
Akenine-Möller et al. [AMHH08], for example.
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5.3.1 Hierarchical rendering components

The focus in this section is on the architectural and software engineering aspects
in order emphasize the advantages over traditional approaches, i.e., using only
high-level shading languages and standard APIs. The hierarchy of the frame-
work is structured into three levels, as can be seen in the conceptual illustration
on figure 5.3.

Sequence
RenderPass C

ShaderProgram
Vertex
Program

Fragment
Program

Geometry

RenderTarget

Q until 
converged

RenderPass B
ShaderProgram
Vertex
Program

Fragment
Program

Geometry

RenderTarget

RenderPass A
ShaderProgram
Vertex
Program

Fragment
Program

Geometry

RenderTarget

Figure 5.3: Conceptual illustration of the rendering hierarchy in CASCADA 1 with
a focus on GPU functionality. Sequences are comprised of Passes,
that in turn contain ShaderPrograms; note the additional semantics for
data-driven control.

At the highest level there are sequences that encapsulate procedures ranging
from simple thresholding to more complex operations such as region growing,
for example. Although one sequence can contain all stages of a workflow, it is
advantageous to keep sequences smaller to enable the reuse of their functionality
in different contexts, as will be described later on. By utilizing the composite pat-
tern (see 5.4.1), sequences are implemented as subclasses of RenderComponent
and thus can contain sequences themselves, which allows for even more flex-
ible and complex designs. Additional control is given by (de-)activating each
component separately by setting according flags during run-time.

At the next level are passes that draw geometry with assigned shader pro-
grams to a defined target. For convenience, subclasses that already allow for
offscreen rendering (i.e., screen-filling quadrilaterals to offscreen buffers), on-
screen rendering of arbitrary geometry, volume raycasting, etc., are provided.
These passes can resemble single operations or repeatedly run passes, controlled
by a fixed number of iterations, or until some condition is met (e.g., region
growing has converged). Especially for iterative algorithms, RenderLoops that
wrap a render sequence being executed multiple times are additionally provided;
this loop is then controlled by some RenderLoopCondition, which serves as
an example for the higher order semantics mentioned above. The output of
one pass is then used as input to the subsequent pass by setting the texture
parameters accordingly.
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Finally, shader programs resemble objects that contain GLSL programs. Fig-
ure 5.4 summarizes the relations of the hierarchical layout in a simplified class
diagram:

RenderSequence
components: List<RenderComponent>
 

RenderLoop
sequence: RenderSequence
condition: RenderLoopCondition
 

RenderLoopCondition
 
 

RenderComponent
 
execute()

RenderPass
geometry: Geometry
shader: ShaderProgram
 

Geometry
 
 

ShaderProgram
uniforms: List<UniformVariable>
 

Parameter
 
 

Type

UniformVariable
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Figure 5.4: Simplified class diagram illustrating the main rendering components
(yellow) and uniform variables (blue) in CASCADA 1.

5.3.2 Case Study

After describing the approach from a conceptual point of view, a reasonable
scenario will be described. In this example, a segmentation sequence based
on region growing is implemented. Input data in this case is volume data,
but translates also to other data, of course. As can be seen from the legend
in figure 5.5, most components of the sequence are implemented on the GPU,
as the system focuses on GPU implementations. In addition to the superior
performance – especially for volume algorithms – the data can be visualized
during run time with a negligible overhead, as the data being processed is
already in video memory. See chapter 3 for an extensive discussion of the
benefits for such applications.

The whole workflow of the segmentation example depicted in figure 5.5
is represented as a (simplified) tree that is traversed in depth-first order. The
preprocessing sub-sequence is executed first by traversing all active components.
In the example the bilateral filter has been deactivated, for instance, and is thus
omitted. Additional information such as the histogram or gradients is computed
on the following steps. CPU and GPU algorithms can be used interchange-
ably, for example based on a strategy taking the underlying hardware and the
respective funtionality into account, as will be outlined in section 8.2.1.
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Figure 5.5: Example workflow for a volume segmentation procedure using the hier-
archical approach and illustrated as graph. Note the annotations and the
different components (specified in the inset legend).

The region growing (as example for iterative algorithms) is implemented
as a RenderLoop that is executed until convergence. In the example, a simple
implementation is skipped leading directly to the computation of the input
data’s mean value. A reduction shader iterates until the texture is at minimum
size to compute the mean value (see section 1.2.2 for details). Afterwards, a
conditional dilation is performed that uses the mean value for determining
neighboring voxels. Then the difference between the current output and the
output of the step before is computed, resulting in the number of fragments
determined via occlusion queries (as optional property of GLRenderPass). If
this number is zero, the region growing has converged (i.e., iteration n and n− 1
do not differ) and the RenderLoopCondition can be set accordingly. Also, a
visualization sequence is executed every n-th iteration, which comes at almost
no performance overhead for GPU computations because no image/volume
data has to be transferred. Finally, postprocessing is applied to the segmentation
data: a typical morphological operation, followed by counting the number of
voxels segmented in the given example. As mentioned before, different parts of
the tree can also be reused, either separately (e.g., the DVR sequence) or in other
sequences such as preprocessing.

This approach makes explicit use of the parameters involved in such a se-
quence to implement the communication between the components, as described
in the preceding section. Examples for global parameters are in this case study
the texture size (for neighbor access) or statistical values of the data itself. Local
parameters, however, are specific to the individual sequences and/or passes: a
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threshold for the region growing, a structuring element for the morphological
operations, etc. Most of the parameters are provided during run-time, that
is when data-specific properties are available with each data set loaded. This
results in an immediate update of all dependent parameters such as the number
of iterations for the reduction shader, for example. The remaining values such as
thresholds or quality settings for the raycasting sequence can be specified by the
user, usually with a default initialization.

Although the proposed hierarchical representation offers a convenient model
both for the internal implementation and the external description, the addi-
tional infrastructure and layers might impose a loss of performance with re-
spect to plain GPU programming. In addition, the approach presented here
does not built upon run-time neutral techniques such as macros or template
meta-programming, as used extensively by Kuck [Kuc07], for example. Quite
contrary to such thin layers, CASCADA actually utilizes multiple concepts from
object-oriented programming including design patterns, in favour of clarity,
extensibility and maintainability. Hence, this approach has to be evaluated in
terms of run-time performance in order to justify the use of these potentially
expensive concepts. Before assessing the system in section 5.5, however, some
aspects of software engineering and related topics will be introduced first to
complete the discussion of employed concepts.

5.4 Software engineering aspects

As discussed throughout this chapter, introducing object-oriented concepts
to GPU programming is beneficial in different aspects. In addition to clearly
definable interfaces, exchangeable and modular components, and hierarchical
concepts, the maintenance and scalability of such software can be improved
considerably. Without covering the full range of methods and strategies from
software engineering, some aspects will be introduced and outlined here. More
details with respect to the implementation in CASCADA will be provided in the
next chapter.

5.4.1 Design patterns

In general software design, reusable approaches for common problems are
usually referred to as design patterns. There exist different categories of these
patterns, with more than 20 patterns being defined and extensively described
in the seminal reference by Gamma et al. [GHJV95]. During the discussion of
applying object-orientation to shader programming, some problems suggest the
use of patterns. Actually, the evolution of CASCADA has led to the dedicated
integration of commonly used patterns, either directly implemented within the
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system or indirectly through the use of libraries, such as Boost [Boo08]. While
further technical details are going to be provided in chapter 6, the application
of important patterns in the second version of the framework is outlined in the
following list:

Observer In order to propagate change information, the observer pattern is
a useful approach. Therefore, a subject notifies registered observers by
calling their update function. The current implementation uses Boost’s
signals concept.

Composite This pattern is used for uniformly representing objects and compo-
sitions of these objects by means of an abstract class Component. While
standard computations are referred to as Module, dedicated classes such
as Loop or Sequence are further specializations.

Singleton Global data, such as preferences or universal states are implemented
by means of the singleton pattern. The implementation often uses tem-
plates to allow a lightweight infrastructure.

Visitor Separating object structures and algorithms performing computations
(or other operations) on these structures is the idea of the visitor pattern.
Boost’s Variant package provides means for using different objects uni-
formly and implements different versions of visitors.

Factory As another creational pattern, the factory method pattern is imple-
mented to provide deserializations, i.e., to load and recreate objects persis-
tently stored in files.

Proxy As a structural pattern, a proxy implements a substitute for other objects
and controls the access to the real subject. This concept is used for referring
to components being loaded at run-time by the PluginLoader.

Usually, the final implementation differs slightly from the general pattern, as
is typical for applying design patterns to individual programming problems. In
addition, some programming concepts are not directly implemented as patterns
but realize related functionality; examples can be found especially in CASCADA 1.
Finally, external libraries such as Boost or toolkits such as Qt 14 provide powerful
and proven implementations of patterns, e.g., the signals-and-slots concept as
realization of the aforementioned observer pattern. Where appropriate, existing
implementations are thus preferred over self-written code.

5.4.2 Plugins

Plugins are widely used in software engineering and provide several advantages
in contrast to static implementations. Due to the fact that these modules are

14http://qtsoftware.com/products (last visited: Jan 12th 2009)

http://qtsoftware.com/products
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external components, the main library or application can be very lightweight and
compact; only the interface has to be disclosed. In addition, plug-ins are usually
connected to the host application during run-time as shared library, i.e., they
do not require any changes or recompilation of the whole application. Hence,
the host program can be extended dynamically with additional functionality.
Plugins are above that often provided by a third party.

Although the exact definitions vary, there are some concepts related to plu-
gins. Extensions actually modify or augment features already provided by the
host. Services, on the other hand, resemble an addressable set of operations that
implement further functionality. The boundary to the functions provided by
the host application is in contrast well-defined for plugins, due to the clearly
specified interface.

Implementing plugins in a cross-platform15 environment is, however, rather
challenging: for every operating system there are different concepts and tech-
niques to implement the dynamic loading of external functionality. Although
there exist implementations for handling plugins across all major platforms (e.g.,
the plug-in system of Qt) CASCADA’s implementation is custom-built. On the
one hand, this keeps the infrastructure as lightweight as possible, especially as
no external library is involved. On the other hand, different wrapper classes hide
the platform-specific details from the user, but can be adapted or extended, if
needed. The PluginLoader uses the aforementioned instances of Component
implementations as template parameter. Its use is related with the proxy pat-
tern, in that a ProxyComponent can be used as base class for components that
wrap other components. For example, the PluggedComponent encapsulates a
Component dynamically loaded from a plugin.

5.4.3 Further concepts

Introducing object-orientation to GPU programming is usually limited to the
application code, or at least the API binding. As mentioned in section 5.2, the
lately presented Shader Model 5.0 [Mic08] transfers classes, interfaces, and other
object-oriented concepts into the HLSL shading language. Although this enables
shader programming at a higher level, it is currently restricted to the DirectX
API. The OpenGL standard faced severe problems with its latest version in
that it lags behind the developers’ needs and recent hardware advances: no
information about the implementation of an object model has been available
yet. Therefore, the discussion here is mainly limited to application code, where
relevant previous was already presented in section 5.1. The evaluation in the
subsequent section provides more detail on shader code.

15As will be described in chapter 6, CASCADA supports the major operating systems Windows,
Mac OS X, and Linux. For graphics hardware, there is no such separation needed, whereas Nvidia
systems are preferred due to their wider and more flexible driver support.
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Unit tests have been introduced as another software engineering method for
CASCADA 2. It is used for verifying the proper functionality of small, testable
source code units. In object-oriented programming these units are usually
methods that belong to classes within a limited scope of the class hierarchy.
In order to benefit from the advantages of unit testing (faster identification
of errors, integration support, additional documentation, etc.) and keep the
additional workload to a minimum, the external framework “UnitTest++”16 is
used throughout the development and testing of CASCADA 2.

Finally, the concept of persistence has become an integral part of practically
all components within the framework. Persistence refers to the possibility of
storing information about the program beyond its execution, e.g., after restarting
the application. Therefore, all relevant data has to be collected and written
into one or multiple files. The files’ format should allow the reloading of this
information to restore all components, data, etc. In CASCADA 2, persistence is
implemented using XML, where all relevant classes provide writing functionality.
Reading is realized by applying the factory method pattern mentioned before.

5.5 Evaluation

After discussing related work and several concepts for hierarchical, object-
oriented GPU programming, these concepts should be evaluated with respect
to code reusability and flexibility, as well as overall performance. While the
former aspects are discussed based on examples and representative scenarios,
the rendering performance is compared to plain OpenGL code, as far as possible
in practice. Hence, the main questions are:

• How well can the (shader) components be re-used in practice, also with
respect to the different versions of the framework?

• What is the impact on the computation/rendering performance introduced
by object-oriented methods?

In order to answer the questions, the different approaches will be outlined
from a technical point of view first, with reference to related systems or current
(GP)GPU developments. Although CASCADA is presented in-depth in the
following chapter, the required details are introduced here. Subsequently, the
results are presented and discussed, and the chapter is finally concluded by a
short summary. Other criteria such as code maintenance, debugging, or the level
of difficulty (i.e., the training curve) do not differ from standard applications
programming and are thus addressed only briefly.

16http://unittest-cpp.sourceforge.net/ (last visited Jan 12th 2009)

http://unittest-cpp.sourceforge.net/
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5.5.1 Reusability

In section 5.1 several approaches in different fields of application were discussed.
While most of them differ substantially from a technical point of view, the
common purpose is the simplification of shader programming by means of
abstraction, modularization, etc. – either on the application side or directly in the
shader programs. Some systems (e.g., Sh/RapidMind) integrate both aspects,
but virtually no information is provided about factors such as code reuse or
flexibility in real life examples.

CASCADA has evolved from a specific project in the medical context (see
section 7.1 for background information) in two diverse directions, that will be
described in detail in chapter 6. Although at different stages of development,
the concepts and techniques for handling shader code are practically equal for
both versions.17 On the other hand, the non-rendering, i.e., application-side
components are much more coupled and interrelated in CASCADA 1 than in the
second version. Thus, the two frameworks are treated alike for shader code reuse,
whereas in the discussion of application code the systems are differentiated.

Shader code

Reusing shader code is a highly relevant topic for practically all rendering
systems which is mainly due to two facts. Firstly, the utilization of custom
shaders has superseded the use of the fixed function pipeline almost completely
today. This results in a large number of shaders that are created for advanced
effects and computations. Secondly, using the different shaders in various
contexts leads to what is usually referred to as “combinatorial explosion”: for
every new effect to collaborate with all other shaders another dimension is
added, thus entailing a factorial number of combinations. For example, if there
are three different materials that should be lit by six types of lights, this already
totals to 18 shaders. Adding four different environmental effects (e.g., fog) leads
to no fewer than 72 combinations, and so on.

Although the situation for GPGPU shaders is less dramatic – there are fewer
“dimensions” with less variations – reusing as much shader code as possible will
be of great benefit. As complete object-oriented concepts are not fully available
in shader programming today18, different authors have proposed to assemble
fully functional shaders from small code fragments; see Trapp et al. [TD07] or
McCool et al. [MTP+04], for example. This concept is also available in CASCADA

by means of either application-controlled concatenation of different shader
programs, or the direct inclusion within the shader code; a feature that has

17CASCADA 2 also supports Nvidia’s CUDA, which requires rather different handling and
cannot be directly compared here. However, the CUDA module is designed to directly interface
the GLSL components, so that the discussion is relevant for the CUDA module as well.

18Recently, DirectX 11 [Mic08] has been released with respective advancements, esp. dynamic
linkage for reducing the number of shaders.
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not been available in GLSL until recently. While the latter approach is limited
to shader fragments of one shader type (i.e., vertex or fragment programs),
the concatenation of various types into the shader object provides even more
flexibility. This has been shown in the preceding chapter where convenient access
to compressed data is provided, for instance: the external shader fragment
waveletFunctions.frag.glsl is integrated by several shaders working
with wavelet data. Technical details of this feature are provided in section 6.3.4.

Yet another example for reusing shader code is in the context of compu-
tations, that is explicitly for GPGPU applications. The case study described
in section 5.3.2, for example, contains several computations that are relatively
similar and therefore potential candidates for reuse. As depicted in figure 5.5
on page 162, the preprocessing stage provides a Gaussian filter, a (deactivated)
bilateral filter, and the computation of gradients. All of them can be described
by a standard convolution filter, each with different coefficients and potentially
varying mask size, respectively. Different kernel sizes were successfully used
in the collaborative work by Langs et al. [LB07] and Erdt et al. [ERS08], both
outlined in chapter 3. The following example shows a general convolution filter
of fixed size:

1 uniform sampler2D inTex; // input data (flat3D RGBA)
2 uniform float kernel[27]; // weights (3x3x3 mask)
3 uniform vec3 offsets[27]; // neighborhood info
4

5 void main()
6 {
7 vec4 sum = vec4(0.0);
8

9 // convolution
10 for ( int i = 0; i < 27; i++ )
11

12 // get current neighbor and sum up with corresponding weight
13 sum += getNeighbor( offsets[ i ], inTex ) * kernel[ i ];
14

15 // output
16 gl_FragColor = sum;
17 }

Listing 5.1: General convolution shader for 3× 3× 3 kernels.

As CASCADA has been designed to perform complete workflows that are
comprised of single computation steps, the implementation of a filter sequence
is straightforward. The different shaders are usually parameterized, that is,
the individual functionality is controlled either by internal computations (e.g.,
iteration count) or upon user input (e.g., thresholds).

In addition to arbitrary combinations, dedicated filters such as the Laplacian
of Gaussian or morphological closing (see the postprocessing stage in figure 5.5)
are also possible. Nevertheless, their performance can be expected to be infe-
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rior to combined kernels due to additional overhead introduced from multiple
shader executions, as will be discussed below. Also, separating filter kernels
into one-dimensional vectors that are applied n-times for n-dimensional kernels
would also result in a reduced number of operations. In contrast to CPU imple-
mentations, however, the kernels have to be extremely large for the optimization
to pay off; again due to the organizational overhead.

Application code

On the application side, most of the general concepts were already addressed
in section 5.4. As mentioned above, the two versions of the framework vary
considerably. Whereas the second version is in essence designed as a library
consisting of different packages (e.g., CascadaCore or CascadaGL), the first
variant does not provide such a clear separation.

In addition, CASCADA 2 implements several software engineering concepts,
where especially the plugin architecture helps to reuse code. It allows the
flexible handling of modules which can be loaded and combined in different
contexts during run-time. Another, rather obvious feature of object-oriented
programming is the concept of having instances of a class with individual
properties. Translating this to the aforementioned example of the convolution
filter, a (notional) class Convolution would contain the particular settings and
coefficients to represent different kernels for CPU implementations.

5.5.2 Performance

Performance issues are often mentioned as a disadvantage of design patterns
and other object-oriented programming techniques that involve indirections,
virtual methods, etc. Unfortunately, evaluating the performance of such ap-
proaches is rather complicated in comparison to traditional, procedural shader
programming, and can be found only rarely in literature. Most of the publi-
cations discussed in section 5.1 describe their approaches in principle and use
some representative examples to prove the concepts. An extensive evaluation
and comparison for the meta-programming language Sh can be found in the
thesis by Michelle Martin [Mar06]. However, due to the cessation of the open
source development of Sh and the rapid advances of graphics hardware since
then, the results can be transferred to today’s systems only to a limited degree.
Another, more recent example of thorough assessment can be found in [HZG08]
by Hou et al. In their work, code complexity and style, as well as the result-
ing performance and memory consumption are compared to a CUDA-based
system by implementing different scenarios from various fields of applications.
In addition to criteria such as developer time and code complexity, objective
metrics such as rendering/computation performance and memory consumption
are clearly in favour of their approach.
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To assess the performance of the framework developed in the course of this
thesis, an evaluation as complete as Hou’s would be beyond the scope of the
chapter. In addition, CASCADA is currently based on standard GLSL shaders
implementing (mainly) image processing and segmentation functionality, thus
leading to a much narrower focus of applications. A rather coarse estimation of
the system’s performance with respect to software implementations was already
described in section 3.1.3, with a clear advantage for the GPU, especially when
whole sequences are executed on the graphics hardware. In what follows, the
performance achieved by using object-oriented programming is going to be com-
pared to an “unrolled” version of the (on- and offscreen) rendering steps19, i.e.,
sequential OpenGL calls. Two different approaches have been developed and are
described in detail below. Firstly, all OpenGL calls are logged within CASCADA

and replace the original high-level code. Secondly, an additional tool is used
for recording OpenGL calls independent from the underlying implementation
and transforming the information into a code module. While the first method
has been implemented using CASCADA 1 and was used for the measurements
below, the second approach is still under development and outlined only briefly.

The measurements were performed on a commodity PC (Intel Core2Duo
2.4 GHz, 2 GB RAM, Nvidia Geforce 8800 GTS 640MB (G80)) and an MRI data
set (256× 256× 16, 16 bit). The assessed operations are binary thresholding,
Laplacian of Gaussian (3× 3× 3 mask size, two separate passes), and a region
growing sequence similar to the one discussed in section 5.3.2; measurements
for the first two operations were averaged over 100 runs.

Embedded logging

In order to convert object-oriented GPU computations into linear OpenGL code,
a Python script adds code fragments for extracting relevant OpenGL calls from
an executed sequence. This results in a modified version of CASCADA, where
for every OpenGL call an additional message is assembled from the current
function name, its parameters (e.g., texture units, memory addresses) and other
relevant information as conditional macro. This logging mechanism records all
the executed commands into a file, which is afterwards included and compiled
instead of the high-level method call. By embedding this logged sequential code
into the application, the memory addresses, textures, input parameters etc. are
ensured to be initialized and valid.

As can be seen in table 5.1, the run-time performance of the smaller sequences
is even slightly better than the plain OpenGL version, whereas the rather com-
plex region growing implementation does not benefit from object-oriented GPU

19Note the resemblance to “loop unwinding” that is used for optimizing the run-time perfor-
mance of code by transforming loops into sequential code, resulting in a trade-off between code
size and efficiency. This technique was the only method of realizing loops in shaders for early
shader generations.
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Operation OOGPU OpenGL Difference

Binary 6.25 ms 6.87 ms +9.9%
LoG 11.56 ms 12.19 ms +4.6%
RegionGrowing 6.97 s 6.38 s –8.46%

Table 5.1: Performance comparison for different GPGPU operations.

programming. This seems to be related to the fact that especially the region
growing sequence consists of multiple shader programs and requires more than
200 iterations to converge for the given data set. Another factor is the compiler’s
output, as the object-oriented code can be processed differently than the linear
equivalent.

Wrapper library

While the first approach has been customized for CASCADA 1 and requires
the manual modification for every feature addition or code change, the second
method employs the external tool GLIntercept20 to record the OpenGL calls. As
before, this intermediate layer between the framework and the graphics API
creates different types of logs and saves them to files, with XML as the preferred
format due to its inherent structure. Finally, these log files can be transformed
into source code by using XSLT scripts.

The main advantage of this approach is the improved flexibility to changes
in the application, to support new OpenGL extensions, and a much cleaner
integration into the test system. As CASCADA 2 utilizes the concept of plugins,
the complete sequence that should be assessed will be logged into the file and
then compiled into one plugin replacing the whole sequence. Just as for the first
approach, the “environment” for correct execution of the recorded functionality
has to be ensured by loading the according input data, parameters, etc. This can
be done by specifying all data as input parameters of the plugin.

5.6 Conclusion

In the course of this chapter, several approaches for adding object-oriented and
hierarchical approaches to traditional GPU programming were proposed. After
reviewing various contributions of different development stages and generations
of graphics hardware, object-orientation was introduced first. Although this
has been mainly limited to the host application due to current restrictions of
shader programming, some useful extensions and simplifications have been
applicable to shaders as well. The introduction of hierarchical concepts allowed

20http://glintercept.nutty.org, last visited Feb 10th 2009

http://glintercept.nutty.org
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a further abstraction from low-level details in order to provide a more workflow-
oriented view. Therefore, existing entities are represented at different levels
of granularity by exploiting object-orientation mechanisms such as inheritance
or design patterns. This enables the flexible control of detailed features and
parameters on the one hand, and the efficient and integrated specification of
GPU functionality on the other hand. After outlining further concepts from
software engineering that have been used especially in the second version of
CASCADA, the results were evaluated in terms of code reuse and performance.

The methods introduced in this chapter had a positive effect in regard to both
aspects. Firstly, the flexibility and reusability of code has been increased, espe-
cially for shader programs. Modern applications in the field of visual computing
already make use of object-orientation, so the benefits are more of structural
nature. However, several improvements for shader programming led to a con-
siderable reduction of code complexity and thus enabled reuse and flexible
parameterization. While such techniques usually have a negative influence on
the rendering and/or computational performance, only moderate additional
run-time costs – depending on the operation performed – were measureable.
Given that the implementation of complex workflows is greatly simplified by
using the aforementioned approaches, in practice the performance penalty is
clearly outweighed. In addition, both the application and the shader imple-
mentations have not been fully optimized yet, so the performance gap can be
expected to become even smaller.

Recent advancements of graphics hardware and programming platforms in-
dicate that some of the concepts are going to be provided directly by the drivers
or run-time environments of the according graphics APIs. For example, the
latest release of DirectX introduced further techniques from object-oriented pro-
gramming right into their shading language HLSL. Also, the once fixed-function
pipeline continues to become a fully flexible and highly parallel infrastructure,
with larger local memories, additional types of processing units (e.g., compute
shader, hull shader), etc. Finally, dedicated computing systems such as Nvidia’s
CUDA or OpenCL provide a more general, yet still rather low-level view to the
hardware. Approaches towards a higher level of abstraction are still going to be
relevant for these non-graphics systems as well.
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CHAPTER 6

THE FRAMEWORK “CASCADA”

This chapter describes the programming framework that was developed for GPU-
based processing and visualization, as well as the projects and applications based
on it. During its evolution, the system has been named CASCADA because of
the suitability and descriptiveness of the word. With the meaning ”waterfall” in
several languages, it describes the framework’s intention very well: (volumetric)
data is flowing through different stages or levels. In addition, the word contains
the acronym ”CAD” for computer assisted diagnosis/detection as introduced in
section 2.1.3, and as was the main focus of several applications for this work.

After outlining the motivation for implementing such a framework, the
subsequent section will provide an overview of the system. Here, the focus
is on discussing design choices, outlining system requirements and external
libraries, as well as selected extensions. The third section will provide a closer
look on implementation details, also based on the discussion from the preceding
chapters about compression computing and object-oriented concepts. As there
are several differences between the two versions of CASCADA regarding key
concepts such as volume representation or the rendering system, they will be
described separately. Also, the generalization of GPU programming by means
of the CUDA API will be covered as well. The chapter will conclude with final
remarks and prospects to further developments after a short presentation of
approaches for application development.
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6.1 Motivation

There exist several ways of programming the graphics hardware, as already
mentioned in the preceding chapters. While in section 1.1 the focus was primarily
on shading languages, these can serve only as the basic layer of a system for
processing and analyzing data: neither the programmer who, for example,
implements a segmentation method, nor the user who is supposed to control
parameters while interacting with the data should care about intricate details
like texture coordinates, the layout of the render target, and so on.

Therefore, the system should provide an abstraction from its low-level com-
ponents, but at the same time maintain means for programming specific func-
tionality if needed. Hence, the introduction of object-oriented programming
concepts and hierarchical approaches in chapter 5. However, the benefits of an
improved programmability, maintenance, and structure should not be alleviated
by comparatively high performance penalties on the application and/or algo-
rithm due to the abstraction. This led to considerations towards a classification of
computations: for the current situation (e.g., hardware configuration, size/type
of data, algorithm), the most efficient implementation method should be (ideally)
automatically estimated; see section 8.2.1 for further considerations.

Providing a basis for different projects and theses in the educational context
was yet another objective for the framework. The building blocks in shader
programming play an important role in learning modern computer graphics.
However, at a certain level programming everything from scratch hampers ad-
vanced development, becomes error-prone, and might have a negative effect
on the overall motivation. Becoming acquainted with considerable amounts of
external code is also of great importance during student projects. These consid-
erations finally gave rise to the development of a more modular architecture
with clearly defined interfaces in CASCADA 2. Although this version is still work
in progress, several features were addressed in sections 5.2 and 5.4 already. In
the next section, key concepts and related topics are going to be described from
an implementational point of view.

Finally, CASCADA was used for several example applications and projects dur-
ing the course of this thesis. The project “LiverGPU” that will be presented in the
next chapter has been the origin of the framework, and was extended by many
subsequent developments. As this first version has become a rather unwieldy
mixture of both library functionality and application, the second development
started from scratch, with special attention to modular design and utilization of
software engineering concepts and tools. Thus, both versions of CASCADA will
be described in the subsequent paragraphs from different points of view in most
cases: the first version for describing several GPGPU programming concepts,
fundamental representations of data, rendering infrastructure, etc.; the second
because of its advanced object-oriented design and overall flexibility.
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6.2 Overview

6.2.1 Structure

Due to the fact that the implementation of CASCADA 1 originally started to de-
velop a GPU-based segmentation system, its architecture depicted in figure 6.1(a)
consists of both library and application components. Based on different types
for software and hardware implementations alike, denoted as BaseTypes and
GLTypes, respectively, data and rendering infrastructure provides a toolset
for implementing visual computing algorithms. Supplemented by means for
reading/writing data (I/O component) and further tools for type conversion,
logging, etc., as well as a graphical user interface, several entities make up the
application; details about these “managers” are provided in section 6.3.5.

BaseTypes GLTypes Tools

I/OData Rendering

Algorithms + Visualization
GUI 

+ 
App

(a) CASCADA 1

Core

GL

CUDA

Algorithms

(b) CASCADA 2

Figure 6.1: Comparison of both CASCADA versions as broad overview. While CAS-
CADA 1 (a) is a conglomerate of library and application, CASCADA 2 is
realized as library (b) for implementing algorithms.

The building blocks of the framework’s second version are shown in fig-
ure 6.1(b). As can be easily seen, CASCADA 2 consists of a basic core library that
is supplemented by two additional libraries providing support for OpenGL and
CUDA, respectively. Algorithms can either use CascadaCore for basic soft-
ware implementations of volume processing, but usually displaying the data is
also desired: therefore, CascadaGL is available, or additionally CascadaCUDA.
While the latter provides a more general programming interface, visualization
resorts to the graphics API. The creation of applications and algorithms can be
done as for CASCADA 1 via direct programming, or using an external editor, that
will be shortly outlined in section 6.3.5 as well.

6.2.2 System requirements

Since the first prototypes and implementations starting in September 2006, CAS-
CADA has been developed with platform independence in mind. This includes
both the support of all major operating systems (Windows, Mac OS X, and Linux),
and the cross-vendor (Nvidia and AMD/ATI) implementation for graphics func-
tionality – as far as was practical. Therefore, only few external libraries have been
employed: firstly, GLEW [IM08] to allow the convenient use of OpenGL exten-
sions; secondly, OpenEXR [KBH04] for the half data type, in combination with
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the OpenGL extension GL HALF FLOAT NV for the hardware equivalent; finally,
the FramebufferObject (FBO) class provided by the GPGPU community1

has been integrated into the framework.
In addition to utilizing unit tests during development (see section 5.4.3), CAS-

CADA 2 employs the cross-platform build system “CMake” [CMa08]. This tool
is used by numerous other platforms, and supports practically all programming
environments and external systems such as CUDA.

As mentioned in the introduction, the framework uses the OpenGL Shading
Language (GLSL) for all graphics hardware implementations. This is mainly
due to the fact that GLSL was less vendor-dependent than other languages (e.g.,
Cg), despite the somewhat limited flexibility. Additionally, GLSL’s architecture
does not require external tools: the hardware driver contains compiler, linker,
etc., as outlined in section 1.1.2. Although there exist fallback implementations
for systems that support only OpenGL 1.5, the de-facto standard OpenGL 2.x is
recommended, especially for advanced shader functionality. This corresponds to
the actual hardware supported by the framework: Shader Model 3.0 compliant
systems (i.e., NV4x and above) are needed for most implementations. However,
if advanced techniques such as geometry shaders or integer textures are used,
recent hardware (Shader Model 4.0) is required.

CASCADA 2 uses GLSL for shader implementations as well, but additionally
features the support of Nvidia CUDA. While this would have been possible for
the first version, too, the much clearer interfaces and separate modules were
better suited for targeting at the second version. In order to use the CUDA
module, hardware supporting the API as well as corresponding drivers are
obviously needed. In practice, all Nvidia graphics cards of the Geforce Series 8
or above are required.2

6.2.3 Extensions

During the development of CASCADA 1 several student projects extended the
framework’s functions with respect to user interaction. Firstly, standard mouse
functionality can be augmented with 3D input using the SpaceNavigator [3Dc08].
This is useful for coarse navigation or manipulation of the volume visualization,
especially in combination with the mouse for fine-grained control. Secondly,
the Phantom Omni [Sen07] has been integrated to support three-dimensional
interaction at different scales, that is, for coarse navigation as well as for picking,
drawing, etc. As the device also features force feedback, example implementa-
tions demonstrate haptic volume rendering. Combining this with the concept of
RayTextures (section 3.2.1) would be an interesting extension, because of both

1http://www.gpgpu.org/developer/ (last visit Mar 9 2009)
2CUDA is also supported on dedicated GPGPU hardware such as Nvidia Tesla systems.

Although these have not been available for development during the course of the thesis, “porting”
CascadaCUDA should be straightforward, if required at all.

http://www.gpgpu.org/developer/
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the straightforward 3D-to-3D mapping of user input, and the tangible interaction
with parameters.

In addition to the different visualization options for volume rendering in-
troduced in section 1.3, the utilization of three-dimensional displays is another
extension. Based on a student’s project, any OpenGL rendering can be enhanced
for being displayed on a 3D screen by means of shaders. Although the original
implementation was designed for the auto-stereoscopic display C-i by See-
Real [See08] featuring interleaved columns for left-eye/right-eye information, it
is not limited to such configurations only: virtually all types of stereo-rendering
(including anaglyph, time-multiplexed, etc.) can be implemented. The basic idea
of “StereoMaker” is to grab the current camera settings and replace the single
rendering by shifting its position slightly for two-eye sight, and render both
views into an offscreen buffer (i.e., texture) first. The final onscreen rendering
step is then performed by a custom shader that assembles the image depending
on the display’s layout; in the aforementioned setup using columns from both
renderings alternatingly.

6.3 Implementation

The following paragraphs summarize several features of the framework’s imple-
mentation, and discuss special functionality or enhancements. After an overview
of the general architecture and basic entities, the representation and handling
of volume data, as well as important aspects of GPU programming are going
to be addressed. In these sections, the two version of CASCADA are discussed
separately, whereas the subsequent description of internal shader handling is
mostly similar for both versions. Further concepts such as the plugin system,
former approaches to application programming, or the external editor “Fountain”
are shortly outlined at the end of this section.

6.3.1 General information

Many concepts of CASCADA 1 were already described in the preceding chapters,
particularly in chapter 5. As most of the implementation details are also relevant
for the second version, these are going to be shortly reviewed in this section.

Practically all data in CASCADA is based on custom fundamental types.
Inspired by SIMD-like3 vector types used in shading languages, they are also im-
plemented in software by means of template classes: BaseVec{1|2|3|4}<T>
are the base classes. For convenience, typical types are pre-defined, e.g., Vec3f

3The support of native SIMD operations is left as future work, as the focus for CASCADA has
been the utilization of the GPU. Therefore, the CPU performance has to be considered suboptimal,
especially on modern processors.
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(three floats), Vec4ui (four unsigned int), or Vec2b (two booleans). Conversion
between these types is provided by the tool class TypeConversion.

Later in CASCADA 1, the concept of variants has been implemented for manip-
ulating objects of different types in a uniform manner. That is, the class Variant
realizes a data type that can hold data of various kind, but only one at a time,
to avoid internal type conversion. In contrast to the basic union type provided
in C-languages, both the actual data and additional information about the type
are stored, as well as according methods are provided for correct data access.
This concept is extensively used in the core of CASCADA 2 (fig. 6.2), however by
resorting to the implementation provided by the Boost library [Boo08]. In addi-
tion to the basic concept and highly optimized code, the library also implements
the visitor pattern and supports recursive types; see the Boost documentation
for further information.

Loop

SequenceModule

ProxyComponentComponentImplementation

ComponentParameter ParameterSet

0..*0..*

Volume

VolumeInfo

specifies

VolumeData
representedAs

11..*

StandardVolumeData

13

Variant

valueOf

valueType

wraps

0..1

0..*

PluggedComponent

PluginLoader<Component>

1

1

BaseVec1..4
valueType

GeometryContainer

Figure 6.2: Simplified class diagram of CASCADA 2’s core package.

As lots of memory has to be allocated and shared among multiple “owners”
in a system for volume data processing and rendering, the possibility of program-
ming errors due to extensive memory handling is increased considerably. To
reduce this complexity, the idea of smart pointers provides means to automatically
keep track of unused objects. Thus, the framework uses Boost’s implementation
(shared ptr template) for practically all heap-allocated objects.

In addition to Boost, “TinyXML” [TBE08] is integrated as another external
library for XML support. It is a lightweight C++ XML parser that provides all
required functionality, such as parsing, editing, and writing data to XML files.
In contrast to CASCADA 1, where XML files have been used only for defining
parts of the user interface and basic shader functions, the second version of
the framework features persistence for practically all classes. Therefore, an
XMLHelper class disassembles the according objects that provide a toXML()
implementation, and writes the whole structure to a file. Deserialization as the
inverse process is realized by the factory method pattern: ComponentFactory
creates the according objects.
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Finally, Components represent any kind of computation and are thus the
main building blocks of applications that use the CascadaCore library. As
outlined in section 5.2, a component manages the input parameters needed to
perform the computation, and provides its results as output parameters, both
with the same interface via ParameterSet. Objects of this class store the input
and output parameters and provide according access methods, as well as local
parameters for the component’s name or activation state, for example.

Component is an abstract base class: components can be hierarchical, since
there are composite and leaf implementations of Component, according to
the composite design pattern. As illustrated in figure 6.2, the leaf is Module,
while the composite implementations are currently Sequence and Loop. In
addition to the actual realizations of Component – which are subclasses of
ComponentImplementation – there is also ProxyComponent. It can be used
as base class for components that wrap another Component. One such wrapper,
PluggedComponent encapsulates a component that is dynamically loaded
from a plugin library (see also section 6.3.5).

6.3.2 Volume representation

One of the “first class citizens” in CASCADA is the class Volume. From the very
beginning of the framework, data has been represented as three-dimensional
regular grid.4 While the data acquired by medical imaging procedures is usually
organized as a series of two-dimensional slices or images, representing the data
volumetrically is natural and often advantageous for visualization and process-
ing purposes, as shown in chapter 3. Although there exist multi-dimensional
formats (e.g., DTI), all of the volume data considered here consist of scalar values;
vector information such as gradients is either computed on-the-fly or handled
separately. Depending on the specific acquisition method and configuration, the
voxels’ layout, coordinate systems, and other properties are usually given by
meta-information (e.g., DICOM header), or defined by the global setup; see also
section 2.2.

As already mentioned in preceding chapters, the utilization of graphics hard-
ware – especially through the use of graphics APIs – requires special attention
for an efficient handling of large amounts of data. Thus, lots of researchers
have addressed this topic and proposed various approaches to achieve optimal
performance for practically all hardware generations; see Engel et al. [EHK+06]
and Akenine-Möller et al. [AMHH08] for further information and references.
While the contributions and concepts in the course of this thesis have been
implemented with attention to good performance, the focus has not been on
highly advanced optimizations, as they tend to become obsolete with subsequent

4In CASCADA 1 there also exists a class Array, which has turned out to be redundant in
practice: two-dimensional data can be also regarded as volume consisting of one slice.
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driver versions or hardware generations. Furthermore, the implementation of
the CUDA API allowed to overcome several restrictions of graphics interfaces.

CASCADA 1

There are different volume implementations for software and hardware, of
course, but the representations are practically identical. All classes are imple-
mented as templates, therefore providing compile-time support for different
types of data, including conversions between internal formats. Volume data for
CPU usage (class Volume<T>) consists basically of a linear array and additional
property information, such as pixel dimensions or origin. Special operators
for convenient element access, methods for editing sub-regions or computing
statistical information (min/max, histograms, etc.) are provided as well.

This thesis focuses on the utilization of graphics hardware for processing and
displaying volume data, so textures are the workhorse for GPU representation
and are thus comprised of graphics-oriented data types. The most common (and
backward compatible) format is RGBA: here, every data element in the texture
consists of four individual values. Shader languages provide dedicated operators
for accessing these channels efficiently, and many essential GPU techniques
required the RGBA format at the time of development.5 Yet another advantage
of this format is an improved utilization of graphics memory, especially if RGBA
textures are a must. Instead of leaving channels unused, the scalar data can
be packed by rearranging the data: in CASCADA 1 four successive slices of the
scalar volume (e.g. four DICOM slices) are combined into one RGBA slice, as
illustrated in figure 6.3.

Original volume
with n slices

RGBA volume
with n/4 slices

RGBA flat volume
with n/4 tiles

Figure 6.3: Main representation of volumes in CASCADA 1: the scalar volume
is packed into RGBA channels, and finally spread into a tiled two-
dimensional RGBA texture.

5Most notably is the render-to-texture feature, that has been usable for RGB or RGBA formats
only. Also, these formats are a direct realization of the SIMD concept that has been the predominant
paradigm of GPU architectures for many years and are therefore very efficient.
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In addition to the equivalents of volumes and two-dimensional arrays,
GLTexture3D<T> and GLTexture2D<T>, respectively, the system also uses
the two-dimensional representation of volumetric data denoted as “flat-3D”,
GLTextureFlat3D<T> in CASCADA 1. This workaround originally intro-
duced by Harris et al. [HBSL03] to overcome the rudimental support of three-
dimensional textures back then has turned out to be very efficient. As a matter
of fact, accessing the flat-3D texture has better performance than the direct
three-dimensional texture fetch for nearest neighbor interpolation – despite the
conversion from native 3D texture coordinates to the two-dimensional address
(Langs et al. [LB07]). This is mainly due to the two-dimensional memory lay-
out of graphics hardware. The principle of flat-3D textures is also depicted in
figure 6.3.

All specialized versions of GPU data share an abstract class GLTexture,
that contains all common information such as texture IDs, fields for OpenGL
format definitions, etc. Consequently, the (instantiable) subclasses contain
pointers to the according data containers and provide dedicated methods, de-
pending on the particular type: for example, GLTexture3D<float> refer-
ences to a Volume<float>, or a GLTextureFlat3D<Vec3i> contains both
a Volume<Vec3i> and an additional Array<Vec3i> as temporary memory
for conversion. Finally, the GPU equivalents provide means for transferring
the data between host and graphics memory, as well as efficient methods for
(partial) updating and reloading.

At run-time, multiple representations have to be handled and synchronized:
for example, the data set initially loaded from a file (CPU volume) is visualized
on the GPU, and processed by various shaders. Hence, subsequent processing
steps on the CPU require a data transfer from GPU memory back to the host.
Above that, the processing (and visualization) of compressed data introduced
in chapter 4 was implemented using a specialization of the standard volume,
CompressedVolume. In addition to the inherited functionality, it contains
the different coefficient lists and maps, as well as means for multi-level com-
pression. Therefore, the aforementioned handling of different representations
applies to compressed volume data, as well as to other possible features and
formats (e.g., bricked volumes, time-varying data). In CASCADA 1, the class
AbstractVolume is used in conjunction with the observer pattern for this book-
keeping, whereas the second version makes use of a custom type information
system, which is going to be outlined in the next paragraph.

CASCADA 2

The second version of the framework features a completely reworked repre-
sentation of volume data. In CASCADA 1, all volume data, i.e., both meta-
information and the data itself, are contained in a single class. Although several
variants of one volume are possible through the common (abstract) base class
UniformData, sharing information about their properties or internal data be-
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comes cumbersome and memory-inefficient. Hence, the classes are separated
in CASCADA 2, as depicted in figure 6.4: Volume contains a named list of
VolumeData to model one or multiple representations, as well as an instance of
VolumeInfo for meta-information.

Figure 6.4: Simplified class diagram of CASCADA 2’s volume representation in the
different packages.

Volume is the main class used as a Parameter value to pass volumes
between components, as indicated in figure 6.2. Different data representa-
tions are implemented by subclassing VolumeData in order to store the actual
volume data and provide dedicated access methods, operators, etc. A spe-
cific volume data representation can be obtained using the template method
getVolumeData(). For a Volume object, there has to be at least one instance
of a data representation. That is, if a volume does not have a specific repre-
sentation (e.g., StandardVolumeData<T>), the method will try to create one
via conversion from another representation; or returning the existing instance
otherwise. Both Volume and VolumeData implement routines to allow this
behaviour. Most notably, VolumeData has a getType() method to query run-
time type information; therefore, all of its subclasses must have a static TYPE()
method. The conversion process itself is available after registering converter
functions (implemented by the subclasses) using a global macro called once
during initialization.

In addition to specializations within CascadaCore, figure 6.4 also contains
subclasses in the CascadaGL and CascadaCUDA packages, respectively. As
will be described below, an additional infrastructure was needed for efficient
access to the graphics API within CUDA.

6.3.3 Rendering system

The rendering infrastructure has been an integral part of many visual computing
approaches that were already discussed in chapter 3. In addition, its object-
oriented aspects were addressed in section 5.2 and 5.3, respectively, so that this
section is limited to implementation details as well as related topics.
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CASCADA 1

As previously introduced, the rendering system in CASCADA follows a multi-
level approach. That is, a sequence consists of multiple passes, that are in turn
built from (shader) programs. Figures 5.3 and 5.4 on page 160 et seq. depict
the structure, with and without taking the composite pattern into account, re-
spectively. The sequences derive from a common base class, CommonSequence,
which defines the input and output data and the executing device (i.e., CPU or
GPU). Subclasses for the different platforms provide further details, such as the
contained components, parameters, or timers. CPU and GPU implementations
can be used interchangeably, as shown in section 3.1.3. This set of functionality is
supplemented with classes representing condition and state information in order
to implement dynamic, data-dependent loops, complex processes controllable
by external events, etc.

For graphics hardware implementations, GLRenderPasses contained in a
GLRenderSequence – both subclasses of GLRenderComponent – are further
separated into onscreen and offscreen variants. While the former is the default
type and uses the visible framebuffer for rendering geometry (and thus executing
the shader programs), GLOffscreenRenderPass is more complex. In addition
to the FramebufferObject employed for convenient use of offscreen facilities
and related entities, a GLTexture object is used as render target. Due to the
object-oriented structure, using the texture’s content for subsequent passes is
straightforward, regardless of CPU or GPU implementations.

CASCADA 2

The rendering functionality in the second framework version has been out-
sourced into a separate package. This allows the use of CascadaCore as an
individual library, if no utilization of graphics hardware is required at all. On
the other hand, CascadaGL provides the infrastructure to use shader programs
for both visualization and computation purposes, and can be regarded as an ex-
tended implementation of the core library for graphics hardware. This is shown
in figure 6.5: RenderPass derives from Module and implements an adapted
execution method, as well as means for persistently storing the object to XML. It
is also supplemented by the ShaderObject that represents shader programs
and associated parameters via UniformVariable; further details on shaders
are given below. As for all GPU implementations, the shaders are assigned to
geometry collectively stored in GeometryContainer to initiate and control
shader program execution. Finally, TextureVolumeData provides means for
representing volume data in graphics memory by deriving the general base class
VolumeData. Of course, the structure is designed for further specializations
such as compressed data, flat3D layout, hierarchical representations, etc.
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Figure 6.5: Overview of the CascadaGL package of CASCADA 2 as simplified class
diagram.

In addition to the graphics package, Christian Feinen has designed and
implemented a first version of CascadaCUDA in his thesis [Fei09]. The idea has
been to follow the concepts of the core library, as well as establishing the CUDA
package similar to CascadaGL.

On the one hand, this similarity can be found in respective specializations of
core classes such as ExecutionPass, KernelParameter, or KernelObject,
depicted in figure 6.6. On the other hand, CUDA’s architecture differs for

Figure 6.6: Overview of the CascadaCUDA package of CASCADA 2 as simplified
class diagram. (Image based on Feinen [Fei09])

purely non-graphics usage and graphics applications, respectively. While there
are practically no restrictions with respect to memory handling, data formats,
or thread communication for the former (see section 1.2.4), not all buffers or
functions can be used directly with the OpenGL API. Therefore, an additional
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layer for the representation of volume data by the class GenericBaseVolume
was required, mainly to avoid severe performance loss for extra device–to–host
data transfers that would be needed otherwise.

Two other concepts conclude this overview of CASCADA’s CUDA inter-
face. Firstly, CUDAPluginInterface defines the structure of plugins to be
used with the CUDA system. It consists of numerous (function-)macros that al-
low the communication between CUDA implementations and the central entity
KernelObject, considering the fact that CUDA kernels are implemented using
external files (*.cu extension), which require additional pre-compilation steps.
Thus, the interface can be regarded as the equivalent of ShaderObjects’s func-
tionality described in the next section. Secondly, the tool class CardProperties
provides information about the underlying hardware. This is particularly useful
for an efficient CUDA implementation, as lots of parameters such as the optimal
number of threads, grid size, etc. directly correspond to the capabilities of the
available hardware.

6.3.4 Shader handling

Modularization

As mentioned above, CASCADA uses GLSL as shading language. This results in
several shader files usually for all different types of shaders (i.e., vertex/fragmen-
t/geometry programs). In section 5.2, the extension of object-oriented concepts
to shader programming was discussed in detail, where modularization played an
important role. Therefore, the handling of shader files has been realized by defin-
ing small, incomplete shader code sections that are assembled to functional units
as needed. Unfortunately, GLSL has not provided any include-mechanism un-
til the release of version 3.0, so that a custom implementation was needed. While
the initial approach used concatenated strings for multiple shader fragments
– and thus required an application-controlled shader assembly –, the current
version supports include by means of shader code parsing. This enables a
direct combination of code fragments within the shaders, resulting in improved
maintainability, and the possibility of changes during application run-time.

Parsing the shader code has been an important feature already in early ver-
sions of the framework to handle uniform parameters. Custom delimiters
are used for parameter specification and (optional) initialization using com-
ments, thus not affecting any functionality or performance. Listing 6.1 shows an
example for such an initialization in CASCADA 1:

Extensions

During the implementation of more advanced and computationally expensive
operations, some optimizations have been necessary to maintain reasonable
performance. Extensive optimization is common for both shader and GPGPU
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1 // initializing common texture parameters and shader-specific data
2

3 uniform vec3 texelOffsets; /*/ global texelOffsets /*/
4 uniform sampler2D inputTexture; /*/ local gaussTex /*/
5 uniform float kernel[27]; /*/ local gaussian /*/
6 uniform vec4 chWeights; /*/ local ( 1.0, 0.5, 0.5, 0.0 ) /*/
7

8 void main()
9 {

10 \\ some code...
11 }

Listing 6.1: Direct initialization of uniform parameters within shader code.

programming – but at the same time very dependent on hardware details and
driver versions. Therefore, only a few general techniques have been applied,
such as the so-called early z-culling that is provided by all Shader Model 3.0
compliant hardware.

The key motivation is the fact that most GPGPU implementations utilize
the fragment shader because of its high computational performance. However,
these programs are usually rather complex, so executing them for all pixels
(i.e., regardless of their contribution to the result) can lead to a considerable
loss of performance. Basically two approaches are possible to overcome this
situation. Firstly, static regions-of-interest can be realized by drawing geometry
only where shaders should be executed (e.g., by drawing multiple lines instead
of a single large quad), thus effectively controlling the computation domain.
Secondly, depth testing can be exploited to select only “valid” fragments to avoid
unnecessary utilization of the pixel pipeline. This technique is need for dynamic,
i.e., data-dependent shader executions and requires an additional shader for
evaluating the particular condition. If the condition is met (i.e., subsequent
computations should be performed), the current fragment is discarded; or drawn
otherwise, respectively. The actual computation is then initiated by geometry
drawn at a different depth, thus leading to the early culling of the fragments
where the previous shader did not remove the pixels.

The second procedure requires some additional API calls and application
setup, but the intermediate shader is much cheaper than the actual computations,
and thus compensates for the overhead in most cases.6 Further details on the
technique, as well as a discussion of hardware-related effects can be found in
Harris et al. [HB05] and Leung et al. [LNM06], respectively.

Another technique for efficient shader–application communication is occlu-
sion querying. Here, appropriate API calls are needed during rendering for

6By using geometry shaders and features such as “transform feedback”, more flexible and
efficient approaches would be possible with latest graphics hardware.
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specifying counters and enabling/disabling counting mechanisms. This can
be reduced to a simple method call on the RenderPass object by means of
object-orientation. See listing 7.1 on page 202 for an example, or again Harris et
al. [HB05] for further information.

6.3.5 Application programming

This section will address the integration of the framework’s components to be
used as application. Of course, this can only be a short outline, as the variety
of applications and optionally used libraries is virtually unlimited. After the
discussion of basic concepts in CASCADA 1, the second part of this section
outlines both the plugin system and the external editor of CASCADA 2.

CASCADA 1

As mentioned before, the first version of the framework did not separate between
library and application, which led to tight coupling of various parts of the code.
However, the concept of managers as building blocks of the application has
been a rather powerful, yet suboptimal feature from a software-engineering
point of view. Following the singleton pattern (see section 5.4.1), each of the
following facilities makes up the application’s functionality and is accessible
from all components of the framework:

VolumeManager Handling of volume representations by maintaining a named
list of AbstractVolume and several convenience functions. Via multiple
inheritance, it also implements the subject of the observer pattern.

ShaderManager Administration of both GLShaderProgram and GLRender-
Sequence, in addition to a ParameterSet for global parameters. It
resembles the observer in the respective pattern.

HardwareManager This unit is a collection of tools and functions for querying
hardware states and capabilities, as well as handles for external devices
(Phantom, SpaceNavigator; see section 6.2.3).

GUIManager The central unit containing the entry point for the application
loop, and initializes all other units, including the GUI.

Although this centralized approach has been straightforward at the begin-
ning, it has not scaled well with the framework’s complexity. Also, the coupling
of code has become an additional burden for maintenance, compilation time,
and debugging, so that a complete redesign and the development of CASCADA 2
has become necessary. However, the first version consists of approximately
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37,000 lines of code7 and provides lots of algorithms, shader programs and
infrastructure; thus, both versions are still going to coexist for a while.

During the development of CASCADA 1 with several contributions from
student projects and theses, the graphical user interface based on Qt 4 has also
been extended. This will be described in the context of the “LiverGPU” project
in section 7.1.3, with further images shown in figure 1.10 on page 31. Based
on the aforementioned GUIManager, an XML file specifying the application’s
feature set is parsed and according widgets are created by the GUIFactory.
This allows the convenient integration of functionality for different purposes,
but is not as powerful as a true plugin system described in the next section.

CASCADA 2

In section 5.4.2 the plugin concept was introduced, with according references to
the classes in CASCADA 2. Therefore, the following paragraphs shortly describe
the process of plugin creation and usage from an implementational point of view.
The section concludes with technical information about the current state of the
visual editor “Fountain” that has been developed for creating applications based
on the second version of CASCADA.

A plugin library is created by implementing a class that derives a base
class known inside the core application. Typically, a Component plugin is im-
plemented by subclassing Module; note the resemblance to specializations in
CascadaGL or CascadaCUDA, respectively. By means of an additional macro,
the custom class is converted into a valid Component plugin across all sup-
ported platforms.

Once the plugin has been created, the PluginLoader can create instances of
a given base class using code from a SharedLibrary at run-time. This wrapper
class hides the different functions needed on each platform and provides a
common interface to shared libraries (.dll, .so, or .dylib, depending on the
platform). A template parameter specifies the type of the object to be created
in the loader. Destruction of the plugin is performed analogously; listing 6.2
summarizes the concepts.

In addition to standard approaches for application programming, the modu-
lar design of CASCADA 2 allows the rapid development of applications by means
of a visual editor – an approach used by many systems. In the context of medical
image processing and visualization, MeVisLab [MeV07] is a well-known and
widely used example; see also section 2.4. The editor “Fountain” is still in an
early stage of development, but documents the benefits of CASCADA 2 quite
well.

7including all shader files; measured using David A. Wheeler’s SLOCCount http://www.
dwheeler.com/sloccount/ (last visit Mar 11 2009)

http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/
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1 // derive from core class
2 class MyComponent : public Module
3 {
4 // ...
5 };
6

7 // turn into Component plugin
8 CASCADA_PLUGIN( Component, MyComponent );
9

10 // create component from dll-file
11 PluginLoader< Component > pluginLoader( "Plugin.dll" );
12 Component * component = pluginLoader.createInstance();
13

14 // destroy after use
15 pluginLoader.deleteInstance( component );

Listing 6.2: Pseudo code for the usage of the plugin system in CASCADA 2.

Based on a simple Qt user interface, every Component is represented by
an accorting visual item. Each of these ComponentItems (or specializations
thereof) maintain input and output parameters. The communication between
these parameters is modeled by ConnectionItems, as already described in
section 5.2.3. Depending on the type of the parameter, there exist different views
to edit the respective values. These concepts are depicted in the screenshot of a
simple test setup in figure 6.7.

Figure 6.7: Screenshot of an early version of “Fountain”

Although the range of functions of CASCADA 2 is currently still rather limited,
its design and concepts provide an extensible basis for further development. The
building blocks of the library, as well as a basic version of the editor are planned
to be published as open source in the near future.
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CHAPTER 7

PROJECTS

In the preceding chapter, the framework CASCADA has been described from a
technical point of view. Based upon the concepts from part two of this thesis, both
the first and second version of the system integrated several of these approaches.
Although most of these contributions have also considered realistic scenarios
and applications in the medical context of this thesis, this chapter focuses on
prototypes and implementations for clinical projects. In the first section, the
project “LiverGPU” will be described, that has actually been the foundation
for CASCADA. Therefore, the different stages of the development, as well as a
detailed evaluation of the results are provided.

The project described in the second part of this chapter covers a wider range
of platforms and a larger period of time, and is still in the process of further
development and research. Here, the results of mostly collaborative work is
presented based on different publications. While being diverse in the medical
configuration, both projects have the quantification of anatomical structures by
using visual computing approaches in common to realize computer assistance
for the assessment of medical data in clinical practice.

7.1 LiverGPU

During the course of post-graduate research, a collaborative project with the Cen-
tre for Image Analysis at Uppsala University was organized in 2006. The clinical
partner from Uppsala’s University Hospital, Department of Oncology, Radiol-
ogy and Clinical Immunology, Section of Radiology, provided a self-contained
topic of direct relevance, as well as data sets including manual segmentations.
In addition to do research in an image processing environment with consider-
able medical background, the motivation for this three-month visit was also to
establish the basis for a programming framework using graphics hardware.

At the radiology department of Uppsala University studies have been con-
ducted that include imaging and spectroscopy based liver investigations. Spec-
troscopy of the liver allows accurate determination of relative fat content, while
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Motivation

Im Rahmen eines dreimonatigen
Forschungsaufenthaltes an der
Universität Uppsala (Schweden)
wurde ein System entwickelt, um
mit Hilfe der Grafikhardware me-
dizinische Daten effizient zu ver-
arbeiten. Am Beispiel von MRT-
Scans soll das Volumen der Leber
für weitere klinische Untersuchun-
gen bestimmt werden. Obwohl ei-
ne manuelle Segmentierung mög-
lich wäre, ist der Zeitaufwand da-
für zu hoch.
Neben der höheren Performance
moderner Grafikhardware ermög-
lichen diese auch eine direkte Vi-
sualisierung der (Zwischen- )Er-
gebnisse für eine verbesserte In-
teraktion (Abb. 1).

Ablauf

Nach dem Laden der DICOM-
Daten werden diese zunächst in-
tern als 2D-Textur repräsentiert
(sog. »flat3D«, Abb. 2). Dadurch
können – neben höherer Per-
formance im Vergleich zu 3D-
Texturen – auch ältere Grafikkar-
ten verwendet werden. Nach op-

tionaler Auswahl einer Interessen-
region wird durch den Benutzer
ein Punkt innerhalb des Leberge-
webes gewählt. Ausgehend von
den Bildinformationen an dieser
Stelle wird neben anderen Be-
rechnungen in Echtzeit eine Vor-
segmentierung durchgeführt. An-
schließend wird auf Basis des
RegionGrowing-Algorithmus das
Lebervolumen segmentiert (Abb.
3a/b), wobei eventuelle Ungenau-
igkeiten mit Hilfe weniger, manuell
gesetzter Markierungen den itera-
tiven Algorithmus »leiten« (Abb.
3c/d). Durch die Implementation
auf der Grafikhardware benötigt
diese Segmentierung nur wenige
Sekunden und kann somit mühe-
los wiederholt werden.

Framework

Zur Umsetzung der Konzepte
wurde ein Framework zur GPU-
basierten Verarbeitung von Vo-
lumendaten entwickelt. Das Sy-
stem wurde/wird im Rahmen meh-
rerer Arbeiten eingesetzt und wei-
terentwickelt. Es realisiert platt-
formübergreifend Sequenzen von
Algorithmen auf der Grafikhard-

ware, die mit zusätzlich integrier-
ten CPU-Implementationen ver-
glichen werden können. Hier-
bei zeigt sich die mitunter deut-
liche Überlegenheit der GPU
in der Verarbeitungsgeschwindig-
keit, die durch die direkte Visuali-
sierung mittels Volumenrenderer
ergänzt wird.

Team

Matthias Biedermann, Guido Lorenz
(Universität Koblenz-Landau)
Joel Kullberg (Uppsala University
Hospital)
Ingela Nyström (Uppsala University)

Mehr Informationen

http://www.uni-koblenz.de/cg/
LiverGPU

Kontakt

Dipl.-Inform. Matthias Biedermann
Institut für Computervisualistik
Universitätstr. 1
56070 Koblenz
Tel.: +49-261-287-2794
Fax.: +49-261-287-2735
mbmann@uni-koblenz.de

Figure 7.1: GPU-based liver segmentation (1) in low-resolution MRI volume data
sets (2). Direct interaction with the visualization provides guidance for
the segmentation process (3a-d).

MR imaging allows the assessment of liver volume. Today, there is no method
available for automated liver volume determination from MRI volumes at
the department. Investigating the possibility of segmenting the liver (semi-)-
automatically in these MRI data sets has been of high interest. The project
included the creation and validation of an image analysis algorithm imple-
mented on graphics hardware for direct visualization, interaction, and improved
overall performance. As the data sets have a considerably lower resolution in
z-direction than in xy-direction – due to the fast imaging protocol for breathold
acquisitions – slice-oriented approaches might be preferable. In total, 51 MRI
liver data sets have been available that were acquired using the same MR proto-
col, and for which manual segmentations exist. The data sets are of 256× 256
axial resolution, with 16-22 slices, each with 16 bit data. This results in rather
anisotropic spatial resolutions of 1.7× 1.7× 10/12/13 mm.

The following sections will summarize existing work that was related to
GPU-based segmentation back then. Subsequently, the different development
stages and prototypes will be outlined, with a focus on GPU-based computing
and performance results in the project’s context.1 The section will conclude with
a summary and possible extensions.

7.1.1 Related Work

There exists a wealth of segmentation approaches for medical data sets, espe-
cially for main organs, vascular structures, etc. Some of these methods have been
mentioned already in the introductory part of this thesis, as well as in chapter 3
with respect to utilizing graphics hardware. In the context of the liver project and
the implementations developed therein, the work by Sherbondy et al. [SHN03]
was the most relevant and provided some key techniques that are worth dis-
cussing. There are more advanced algorithms available on graphics hardware
nowadays, such as level sets or other model based approaches. However, given

1Details on the framework itself will only be provided as long as they differ from CASCADA as
presented before.
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the settings of the project (time, available data and hardware, etc.) and the
intention to build a general-purpose GPU framework, seeded region growing
has been considered as an appropriate candidate. In section 3.2.2 the highly inter-
active, region growing based approach recently presented by Chen et al. [CSS08]
has been mentioned as an application that exploits state-of-the-art graphics
hardware, which is also closely related to this work. The following paragraphs
shortly summarize contributions relevant for the collaborative GPU-oriented
project, in order to provide a background for the subsequent development stages
and discussions.

Seeded Region Growing The region growing algorithm applied in this project
is based on the method proposed by Adams and Bischof [AB94]. Their seg-
mentation algorithm does not require extensive parameter settings, but the
manual placement of so-called seeds. These sets of pixels influence both the
spatial information and the growing process in that the seeds’ intensities usu-
ally define the initial parameters. While the authors describe their algorithm
for two-dimensional intensity images, Justice et al. [JSS+97] have extended the
approach to 3D data sets, especially for medical applications. The basic idea
of the seeded region growing algorithm is to iteratively expand the initial set
of regions by evaluating certain criteria for the elements to be added. In the
original contribution, this criterion is realized as the difference of intensity values
between the element in question and the mean of the already segmented region;
the criterion can therefore be regarded as static. This requires the definition of
a threshold in order to merge or reject the new elements. These candidates are
direct neighbors of the current region in order to maintain connected regions,
where the definition of neighborhood may depend on the image’s dimension
and structure, or some other criterion.

Lin et al. [LJT01] have proposed an interesting extension in that their ap-
proach is completely parameter-free: no explicit seeds need to be placed by the
user. In addition to the original algorithm, their workflow includes anisotropic
filtering as preprocess. Although they are able to achieve good visual results,
both the details of the underlying algorithm and the validation of the segmenta-
tion results are not clear or even missing.

Segmentation of medical images using adaptive region growing Pohle et
al. [PT01] proposed an automatic adaptation of the homogeneity criterion, as
well as an extension of the original approach towards volume data sets and
different modalities. The idea is to initialize the region growing with the criterion
learned from a preceding step that uses the same seed. Therefore, estimates
based on both the mean value and standard deviation are iteratively computed.
This search for a model of regions is performed randomly and incorporates
the image formation process. That is, variations due to noise (i.e., standard
deviation), partial volume effect, or shading effects in MR data are taken into
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account. By means of additional weights that depend on the iteration count,
they are able to achieve robust and good results, even in difficult settings.

Fast Volume Segmentation With Simultaneous Visualization Using Program-
mable Graphics Hardware In 2003, Sherbondy et al. [SHN03] proposed to
utilize graphics hardware for segmentation procedures on CT data. This work is
quite fundamental in that it provides various techniques for processing volume
data on the rather limited graphics hardware available at that time. In their
implementation, the input volume is represented as three-dimensional texture
containing 32-bit floating point values, where each element encodes both the CT
data and seed information. Consequently, the raw data and number of seeds per
voxel is limited to 16 bit each. After an optional smoothing step, the seeds are
placed into the volume by user-specified locations in cross-sectional views. As
the authors use a specific graphics card (ATI Radeon 9800 Pro), both the render-
ing and processing can be performed directly in native 3D textures.2 This allows
for a true three-dimensional realization of the region growing algorithm, which
is in their case based on simplified Perona-Malik diffusion computations [PM90].
In order to limit the subsequent operations to voxels that are potential candidates
for region growing, another rendering pass is used to set up a computational
mask. This technique has been introduced by Purcell et al. in their graphics hard-
ware implementation of ray tracing (see [OLG+07] for additional information)
and prevents fragments from being generated on modern graphics hardware
(“early z-cull”, see section 6.3.4). After the region growing process for the current
iteration step has finished, the volume is updated for the next iteration. The
performance penalty for the additional direct visualization of the (intermediate)
results is very low and they achieve a complete segmentation of anatomical
structures in a few seconds. However, due to the limited video memory in
older graphics hardware and the fact that a copy of the volume is needed for
reading/writing, their data sets are relatively small.

7.1.2 Prototypes

In the preceding section, different contributions based on region growing as
well as an early GPU implementation have been reviewed. Given the settings
and requirements of the project, the implemented algorithms and concepts are a
combination and adaptation of these approaches. For example, most of the 3D
algorithms assume that voxels are (almost) isotropic. In this project, however,
the slice distance is almost an order of magnitude larger than the in-slice voxel
size, thus requiring additional weights or purely 2D-based approaches. During
the three months, two different prototypes (“MRILiver”) have been developed

2This feature has not been available on Nvidia-based graphics hardware until Shader Model
3.0; see section 1.1 for details.
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with only few existing functionality from external code and libraries. The final
application “LiverGPU” has been the base for subsequent work, and has ulti-
mately led to the development of CASCADA. In the following sections, main
development steps, technical features, as well as results will be presented and
discussed.

Prototype 1

Starting with the first prototype, different essential functionality and classes
were implemented. In addition to the representation of the volume data by
means of basic vector classes and tool functions, a simple infrastructure for
using the graphics hardware was established. Due to the fact that three different
systems with all three operating systems and both Nvidia and ATI graphics
cards (consumer and workstation class) were available, all implementations
were realized as cross-platform C++ programs using GLSL shader programs.
In addition to getting in-depth knowledge of the details, the reasons for a self-
written platform were the limited capabilities of available GPU programming
systems back then. The only alternative considered was Sh [MT04], but was
excluded due to different reasons; see also section 5.1.2.

(a) MPR-like visualization of the volume
and manual segmentation

(b) First GPU-implementation of region
growing

Figure 7.2: Screenshots of the first prototype

MPR volume rendering was implemented first using shader programs, in-
cluding simple tone-mapping for the 16 bit data. As shown in figure 7.2(a), the
original volume data is overlaid with the corresponding manual segmentation.
Because of the strong anisotropy of the voxels no interpolation is used for the
textures, as can be seen in the screen capture as well. In the second image of
figure 7.2, the very first implementation of simplified region growing using
shaders is depicted. Although leakages are easily noticeable, the focus was on
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implementing such iterative algorithms on graphics hardware only. Therefore,
a simple abstraction for the low-level API calls was established and extended
since then.3

Prototype 2

The second prototype started by reimplementing the test system from the pre-
ceding version in a completely object-oriented manner. While some of the basic
classes only had to be improved slightly, the focus was on providing a sophis-
ticated infrastructure for using the graphics hardware, both for rendering and
non-graphics purposes. This includes platform-independent wrapping of API
calls, representation of simple geometry, texture, shader program, and parameter
handling, etc. Especially the texture handling and representation became rather
involved, as rendering to an offscreen buffer was limited to two-dimensional
textures at that time. Therefore, “flat-3D textures” were implemented in addition
to native 2D/3D textures. In combination with shader code fragments, these
textures can be used as their 3D counterparts; the address translation is hidden
from the user. The layout of the flat-3D texture in the application is depicted in
figure 7.3(a).

(a) Visualization of the flat 3D represen-
tation of the volume.

(b) Some internal improvements on the
region growing algoritm

Figure 7.3: Screenshots of second prototype

Only few improvements were done regarding the segmentation algorithm.
In addition to changing the orientation of the data to the standard view used
in many clinical applications (axial-caudal), the acquisition of samples from
the selected seed point (yellow dot in figure 7.3(b)) was implemented. This
allows the immediate adaptation of region growing parameters to the data set by

3As described in section 1.2, such non-graphics implementations typically use offscreen render
targets. Further details can be found in chapter 6.
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averaging multiple samples around the seed point(s), as well as the generation
of internal information (e.g., gradients) on-the-fly.

Results

Both the performance of the visualization and the combined region growing/vi-
sualization have been clearly real-time. Depending on the driver settings, frame
rates of over 1000 fps have been achieved for rendering only; region growing
has been in the range of 240 fps – 30fps, and 700 fps – 150 fps, on ATI and
Nvidia hardware, respectively.4 All of the measurements have been performed
on 512× 512 rendering viewports (up to 1280× 1280 for offscreen passes, re-
spectively), using 16 bit floating point RGBA textures.

In terms of programming, the main problems during the six week devel-
opment phase have been cross-vendor graphics driver issues and limitations
due to older APIs. For example, OpenGL 1.5 does only support power-of-two-
dimension textures natively and thus requires additional handling (padding
etc.) for an odd number of slices. Also, the mechanisms for error checking of
shader code are limited and – especially for cross-vendor GPU programming –
introduce inconsistencies, incorrect shader code, etc. Being forced to use two-
dimensional RGBA textures as render targets introduced considerable overhead.
Nevertheless, the performance still has been competitive, if not superior to native
3D implementations (as shown in Langs et al. [LB07], for example).

7.1.3 Final version

Figure 7.4: GLUI

The final version of “LiverGPU” reflects several changes
and can be subdivided into two phases. Firstly, the seg-
mentation and interaction functionality of the preceding
prototype was extended in order to improve the segmen-
tation results. In addition to the concept of blockers (see
below and also section 3.2.2), several preprocessing fil-
ters were implemented. Among initial tests with sim-
ple mean and Gaussian kernels, the 2D/3D-Kuwahara
filter [KHEK76] and two-dimensional anistropic diffu-
sion [PM90] were implemented, depending on the GPU’s
capabilities. At the end of the project abroad, the appli-
cation utilized a very simple and limited user interface
using GLUI5, as depicted in figure 7.4. In addition to the
3D standard view, three orthogonal views for the main
anatomical axes were provided. Also, the visualization

4The decreasing performance is due to the increasing number of fragments being processed as
the region grows (i.e., the bounding box expands)

5http://www.cs.unc.edu/˜rademach/glui

http://www.cs.unc.edu/~rademach/glui
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was extended to integrate the segmented volume into the original volume by
means of direct volume rendering.

In the subsequent development phase of the application, lots of enhance-
ments during the “MedGPU” students’ project extended the system. While
several details of the underlying concepts were presented in the preceding chap-
ter already, the main change visible for the user has been the Qt-based interface.
As shown in figure 7.5(a), dialog boxes, menu bar, etc. have greatly simplified
the application and more adaptable to the user’s needs.

(a) Perspective DVR mode with seg-
mentation result

(b) Applying the SmoothThreshold opera-
tion for pre-selection

Figure 7.5: Screenshots of the current version of “LiverGPU”, as a specialized appli-
cation built from CASCADA 1.

Interactive mode While the introduction of concepts for interacting with al-
gorithms in section 3.2.2 was limited to two-dimensional visualization, it is
desirable to interact with the volume rendering in 3D. Therefore, different tech-
niques were implemented. The first method was to compute the 3D position of
the mouse by inverting the OpenGL projection step. The utility package GLU
provides the function gluUnProject that transforms window coordinates back
into object coordinates. While the x- and y-component of the current window
coordinate are at hand, the z-coordinate has to be determined by reading the
depth buffer of the current rendering. This results in correct values for MPR
rendering, but is not directly applicable for volume raycasting: here, the depth
buffer contains the bounding box’s values, instead of the structure being ren-
dered. Although this problem can be alleviated by explicitly writing depth
values during integration along the viewing ray in the fragment shader (e.g.
Kratz et al. [KSFB06]), such an extension was not implemented.
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Extensions As already mentioned before, several enhancements of the under-
lying concepts and algorithms were made, especially for the region growing
procedure. Firstly, an extension of global thresholding has been implemented.
This ”Smooth Threshold” operation classifies all voxels that are within a value
range of interest. By using a combination of smoothstep functions6, different
intervals of the data set’s value range can be selected, as depicted in figure 7.5(b).
Being a simple global operation this pre-selection can be computed in one pass
for the whole volume. The region to be determined by the subsequent segmenta-
tion algorithm is a subset of these voxels. Therefore, “early z-culling” can exploit
this information in order to restrict the subsequent expensive operations to this
set of voxels. Hence, in the case of the region growing algorithm, not all voxels
of the data set have to be evaluated which results in a significant speedup of
the process. Note that this approach is a simplified version of the computation
masks used in the system proposed by Sherbondy et al. [SHN03]. They update
the mask per iteration, thus being more effective on the one hand, but more
expensive on the other hand.

The second extension has been on the region growing step itself. As in
Sherbondy’s approach, “LiverGPU” evaluates the direct neighbors of the current
region for being added. That is, a simple 3× 3× 3 dilation is performed, with
a certain threshold or weight for the differently connected neighbors. While
this leads to reasonably good results and is simple and fast to compute, one can
think of extending the dilation mask to more complex structuring elements, as
they are used in image morphology. This task is rather challenging in terms
of efficient and backward-compatible GPU implementation and it would not
lead to an improvement for the data at hand. Due to the clear anisotropy and
low resolution, larger and more complex masks are hard to determine without
introducing additional errors.

In addition to the iterative algorithms, occlusion queries as described in sec-
tion 6.3.4 was also employed. Here, it was used twofold: firstly, for an automatic
termination of the segmentation after the iterative process had converged; sec-
ondly, for computing the number of segmented voxels, thus realizing volumetry.
Both applications of this method contribute to the reduction of data transfer,
as the calculations can be performed directly on the GPU. In addition to the
occlusion query itself, a so-called discarding shader is needed to separate the
elements to be counted from the whole rendering content. The code in listing 7.1
summarizes the steps that are needed for computing the segmented volume, as
well as shows the use of object-oriented concepts.7

6The smoothstep function implements cubic interpolation for x ∈ [a, b], clamp otherwise.
7Note that this resembles a GPU version of the software volumetry implementation denoted

in the last step of the case study in figure 5.5 on page 162.
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1 // setup region growing
2 m_rg = createRenderPass( "RegionGrowing" );
3

4 // segments counting, with active occlusion querying
5 m_count = createRenderPass( "CountSegmentedFrags" );
6 m_count->setQuerying( true );
7

8 // ...
9

10 // init counter
11 GLuint segcount = 0;
12

13 // iteration
14 while( !m_rg->hasConverged() )
15 {
16 // region growing
17 m_rg->execute();
18

19 // count segmented voxels only
20 m_count->execute();
21 segcount = m_count->getRenderedFragmentsCount();
22

23 // ...
24 }

Listing 7.1: Simplified code showing the setup and execution of volume computation
for region growing by means of shader programs and occlusion queries.

Results

As already mentioned in the introduction of the “LiverGPU” project, the clinical
partners have provided manual segmentations for all 51 MRI data sets. These
segmentations are represented as binary volumes with the same format and
properties and thus allow an easy and direct comparison with the algorithms’
segmentation results. In section 2.1.3, different approaches for assessing and
validating the results have been discussed. Although these computations could
have been implemented as shaders (i.e., within “LiverGPU”), MeVisLab [MeV07]
has been used as an external tool for analyzing the results, in order to avoid
implementation any errors or bias.

The segmentations of the liver data sets were created by a single operator
only, but will be assumed as ground truth data in the following comparison.
Also, the focus will be on the segmentation quality of the system, both for
automatic8 application and direct interaction using the techniques described
before. The time required to complete the task for one data set is, as expected,
of different orders of magnitude: while the fully manual segmentation by a

8This still requires the manual specification of the seed point, of course, but with default
algorithm settings (thresholds etc.) else.
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medical expert requires several minutes, the automatic algorithm takes less than
ten seconds after setting the seed point. Interactive correction has been limited
to one minute for the evaluation, respectively.

Segmentation quality The quality of the automatic segmentation was evalu-
ated for all 51 data sets first. Therefore, each volume was loaded and segmented,
without additional preprocessing or normalization9. One or multiple seed points
were specified by clicking into a representative region of liver tissue in the de-
fault axial view. Although the current version of the application is able to further
accelerate subsequent computations defining an additional volume-of-interest,
this step was omitted for the rather small data sets. Also, the aforementioned pre-
selection was not used, as this would introduce another variable and complicate
the comparison of the procedures. The user-definable thresholds for lower and
upper deviation, and the gradient weight, respectively, were changed similarly
for the same data sets, if necessary at all.



 

























































  

(a) Results without manual interaction





 























































  

(b) Results with interaction (time-limited)

Figure 7.6: Summary diagrams showing the segmentation results without (a) and
with (b) manual interaction; depicted are the minimum, maximum, and
the main quartiles (first, median, and third).

As can be seen in figures 7.6 and 7.7, the results without any local interaction
vary in the range from 0.709 to 0.923 for the Dice coefficient, and approximately
0.35 for both the coverability and error rate. By interacting locally with the region
growing procedure, the results are improved on average by approximately
10% for the Dice coefficient, and around 15% for the coverability/error rate,
respectively. Although the coverability was lower for some data sets, the error
rate was decreased for practially all segmentations.

Preprocessing During additional experiments, the application of preprocess-
ing algorithms was not able to improve the results significantly. This is mainly

9Some data sets suffered from slight MRI shading artefacts as well as some general difference
in the value ranges (i.e., brightness). However, partial volume effects and other impairments due
to the low resolution had more influence on the results.
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Figure 7.7: The upper graph depicts the changes for the Dice coefficient (left scale),
the lower graphs show the differences (right scale) for the coverability
(yellow) and the error (red), repectively.

due to the coarse resolution and resulting degradations such as partial volume
effects of the data sets, where the region growing procedure cannot benefit from
edge-preserving algorithms.

On the other hand, using gradients as an additional delineation metric has
shown a clear impact on the results. While simply using the absolute value
of the three-dimensional gradient introduces a considerable error due to the
strong anisotropy, the gradient vector has to account for the different resolution.
Hence, the inter-slice gradient has to be reduced, where the ratio of voxel sizes
provides a sufficient measure. Although there are more advanced gradient
computation methods available, central differencing has proven to be a very fast
and sufficiently exact approximation in this case.

Discussion The segmentation results were enhanced by interacting locally
with the iterative region growing. However, there are several ways to extend
the approach and further improve the process. As mentioned in the introduc-
tion of this section, the approach by Pohle et al. [PT01] seems to be capable of
improving the parameter setting. Although the thresholds are already adapted
to a considerable number of samples in the vicinity of the seed point(s), this
approach is more subject to outliers due to ambigous interaction.10 In addition,
the region growing algorithm used in the presented GPU implementation does
not evaluate potential candidates in the neighborhood based on the current
region’s mean value, but on two thresholds. This limits the adaptability of the
algorithm during iteration on the one hand, but allows a considerably faster
execution on the GPU – especially on the hardware available at the time of the
project. In addition, experiments using a CPU reference implementation with the

10For example, setting the seed point too close to a boundary might introduce non-representative
values.



7.2. ARCADE 205

given data sets have indicated that the mean of the region during the iterative
process varies only slightly and would not be advantageous for this kind of
application.

7.2 ARCADE

This research project is part of the MTI Mittelrhein11 and a collaboration of the
Central Medical Facility of the German Armed Forces in Koblenz, the University
of Applied Sciences in Remagen, and the Institute for Computational Visualistics
at the University of Koblenz-Landau. The objective of this project is to improve
the assessment of aortic aneurysms based on CT scans.12Quantifying this poten-
tially lethal vascular disease by traditional means requires high efforts for exact
and robust results, especially for long-term monitoring or already implanted
prostheses. The developed software allows an interactive 3D analysis of the
vascular structures by utilizing modern graphics hardware and direct volume
visualization, in order to calculate the parameters for endovascular repair. Vari-
ous software platforms were used for the initial phase of the project, while the
current implementation is planned as a plugin for the DICOM/PACS software
“OsiriX” [Osi], supplemented by different components of CASCADA.

The remainder of this section is structured as follows. After an introduction to
the medical context, current assessment and therapy methods will be described.
As the focus of the project is on improving the assessment by means of image
processing and visualization methods, different approaches and their results – if
already available – will be presented and discussed.

7.2.1 Medical background

Epidemiology

Aortic aneurysms are one of many vascular diseases especially in industrial coun-
tries with a considerable lethal risk. The prevalence of abdominal aneurysms
is estimated at 3-8%, predominantly among men older than approximately 60
years [FWBL05, SLD05]. The aorta itself runs as largest and most important
artery of the human body from the heart through the thorax into the abdomen,
where it forks into the lower extremities, and supplies the regions directly and

11http://www.mti-mittelrhein.de
12The acronym “ARCADE” stands for: Aneurysm Repair by Computer Assisted Delineation

and Evaluation

http://www.mti-mittelrhein.de
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indirectly with oxygen-rich blood. A destabilized aortic wall leads to the dila-
tion of the aorta due to the blood pressure. This process is initially caused by
proteolytic activity with subsequent elastin fibre degradation [MEW+94, Bla99].
Continuous blood pressure on the weakened aorta leads to aneurysm growth
and, if not treated, the patient is at a steadily increasing risk of a rupture result-
ing in high mortality (80-90%). Of course, degeneration affects other sections
of the aortic wall as well. Strained parts such as the aortic arch, thoracical
and abdominal section are primarily subject to the development of aneurysms.
Abdominal aortic aneurysms (AAA) are in the abdominal section of the aorta,
usually starting below the renal arteries down to the iliacal bifurcation (see
figure 7.8).

(a) Anatomy of the
human aorta

(b) Close-up of prein-
tervention aneurysm

(c) Close-up of
aneurysm after EVAR

Figure 7.8: Depictions of aortic aneurysms. (Images courtesy of R. Wickenhöfer)

In order to assess such an aneurysm once it has been detected, measuring
the maximum diameter of the dilated aorta is an established method for differ-
ent imaging modalities. With diameters exceeding a certain threshold and/or
growth rate (usually 50 millimeters [SLD05] or 10 millimeters per year) an in-
tervention is required. This also applies to postoperative assessment in order to
monitor implants that have been placed via endovascular procedures.

While this evaluation seems to be a straightforward and fast approach, mea-
suring the diameter is not a very robust method, as is discussed for example in
the context of endovascular repair by Wever et al. [WBME00]. Firstly, finding the
correct plane for the actual measurement by means of multi-planar reformation
(MPR) is often an error-prone and tedious step. Due to considerable interob-
server variability, the measured value deviates from the real maximal diameter,
as has been investigated by Diehm et al. [DKG+07]. This becomes critical for
long-term screenings, where the patients’ anatomy is subject to changes, and the
examiner is usually not the same person. Secondly, one-dimensional parameters
such as the diameter do neither account for the different types of aneurysms, nor
for the potential implant’s structure. This often leads to diagnostic ambiguities
that need further investigation. While early volumetric approaches as Baskin et
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al. [BKS+96] provide an improved assessment of the anatomy, they are still used
to measure only one-dimensional parameters such as lengths or diameters.

Classification and assessment

The assessment of aneurysms can be divided into three different stages: the
first, potentially incidental examination, the preintervention assessment, and
postintervention imaging (“follow-up” monitoring). The most common situation
is where the patient suffers from diffuse pain in the abdominal region that can
emanate into the back, groin, legs etc., depending on the aneurysm’s location.
Except for incidental cases, where CT scans are acquired for other reasons,
ultrasound imaging is usually the modality used in the first place. If the examiner
finds indications for an aneurysm, as depicted in figure 7.9(a), the dilation is
usually gauged using measurement tools of the ultrasound system.

(a) Ultrasound of AAA, including measurements.
(Image courtesy of Upchurch et al.)

A1

D 1

D 2a

D 2b

D 2c

D 3

H 1

H 3

(b) Typical length and angular pa-
rameters for AAA assessment.

Figure 7.9: Assessment methods for AAA: ultrasound measurement (a), and stan-
dardized parameters (b).

Depending on the stage of the dilation and other factors such as clearness
of results, additional examinations have to be performed. Usually CT scans
(including bolus-triggered application of contrast agent) are acquired due to their
high image resolution. For potential preintervention situations, i.e., where no
metal implants are present, MRI has been proposed as a less invasive alternative.
As mentioned before, an intervention is required if the maximal diameter of
the aneurysm exceeds a certain limit. If the diameter is below the threshold
but considered aneurysmal (i.e., 30-50 mm), an increasing growth rate over
time also indicates an intervention. The maximal diameter represents one of
multiple measurements that are usually performed for aneurysm assessment.
Figure 7.9(b) illustrates the parameters following the EUROSTAR13 registry

13European Collaborators on Stent/graft Techniques for aortic Aneurysm Repair
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program. In this case the acquired image data is reviewed for operation planning
and prosthesis specification. Improving this process, especially for endovascular
procedures (see next section), by means of software assistance is the project’s
objective and will be addressed in the subsequent sections.

From the technical point of view, there are differences for the processing
of pre- and postintervention situations. While for the former practically all
mentioned imaging modalities are applicable (if there are no contraindications,
such as earlier implants), the latter require some attention. If the intervention
involved the placement of metallic structures (e.g., endograft material, surgical
clips), the images will contain artefacts: in CT data, metal appears at maximum
density with streaks and other ringing artefacts; in ultrasound images, typical
effects are resonance, or comet tile artefact; for MRI imaging, the presence of
metal is usually a contraindication. In addition, for follow-up routines the whole
imaging protocol has to be the same to allow a proper comparison of the data
sets.

As will be described in the remainder of this chapter, the assessment of
aneurysms is typically a highly manual and thus variable process. This is mainly
due to the fact that a one-dimensional parameter (i.e., the maximum diameter)
has to be measured within a three-dimensional structure. Although there are
commercial software components available for analyzing vascular structures
semi-automatically, the usability, stability, and overall performance of the tools
often falls short of expectations – especially in clinical practice.

Surgical treatment of abdominal aneuryms, especially endovascular repair
requires the assessment of several properties of the infrarenal aortic section. In
addition to the aforementioned diameter, the length of both the proximal and
distal aortic neck is of vital interest for robust stent-graft placement. If the neck is
too short, the implant will be at risk of migration due to the continuing longitudi-
nal blood pressure. This extends to adjacent or branching vessel structures, e.g.,
the renal arteries for fenestrated implants (f-EVAR). Also, the iliac arteries have
to be examined to ensure a sufficient minimal diameter (in order to allow EVAR
device application) which includes the consideration of possible calcifications,
thrombi, and other impairments. Further parameters are the angulation of the
aortic neck, as proposed by Filis et al. [FARZ03], as well as their discussion of
the arteries’ tortuosity to ensure proper graft placement at all.

Therapies

Once an abdominal aortic aneurysm has been detected and intervention is
required, basically two surgical procedures are available: open surgical repair
(OSR), and endovascular aneurysm/aortic repair (EVAR).14

14Usually the therapies described here are also applicable to other aortic sections (e.g., for
thoracic aneurysms), the discussion will be limited to abdominal aneurysms.
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Open surgery The conventional method is practically always possible, but
represents a rather invasive procedure. The abdominal cavity is opened from
the epigastric region to the hypogastrium first. After freeing the aorta from
occluding structures (i.e., intestines), the vessel is disconnected from blood
circulation above and below the arterial dilation and opened longitudinally.
Then the prosthesis, an artificial fabric hose, is connected to both ends of the
aorta. Depending on the location of the aneuryms, the implant is either a tube
or, for iliacal aneuryms, Y-shaped. Finally, thrombotic residues are removed
from the vascular wall, before it is wrapped around the prothesis to support the
implant as well as protect surrounding organs.

Figure 7.10: Endograft for AAA treat-
ment. (Image courtesy of
Cook Medical Inc.)

EVAR Contrary to the conventional
procedure, endovascular aneurysm re-
pair is a minimally-invasive method.
In addition to the pre-intervention im-
age data, the procedure is guided by
X-ray fluoroscopy. Through small in-
cisions in the femoral arteries, vascular
sheaths are placed first. After the proper
placement of guidewires and catheters,
the tightly folded endograft (also called
stent-graft) is moved into the final lo-
cation. Several angiography images en-
sure the position intraoperatively, and the main part of the endograft is even-
tually unfolded and “modelled” onto the vascular wall. Finally, the complete
prosthesis is assembled from an additional endograft “leg”, that is positioned
in the iliacal section. As for the open surgery, the placed endograft excludes
the aneurysm from the blood pressure by providing an artificial lumen; the
remaining, outer blood will thrombose over time. Figure 7.10 illustrates the
situation.

Discussion Although the EVAR method seems advantageous, there are several
issues. Firstly, the minimally-invasive method is only applicable to approxi-
mately 30% of the patients due to morphological characteristics (e.g., aortic
structure, minimum diameter, calcifications, etc.), and functional configuration
(kidney function, contrast agent compatibility, etc.).15 In addition, the method
requires a regular follow-up protocol to ensure stable positioning and rule out
any type of leakage. Finally, the EVAR procedure is on average twice as expen-
sive as conventional open surgery, mainly due to the very expensive stent-graft
prosthesis and post-intervention surveillance.

15Based on statistical information and limitations of current endograft technology.
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7.2.2 Approaches

This section describes several approaches that were proposed during the first
research phases of the project. While the first focuses on the (semi-)automatic
guidance of manual measurements, the subsequent contribution discusses the
complete determination of relevant parameters, making explicit use of graphics
hardware.

Automatic Path Reconstruction of Aortic Aneurysms in Postintervention CTA
Images

There are two different therapies for abdominal aortic aneurysms, as outlined in
the preceding section. However, EVAR procedures are not always applicable and
the analysis and correlation of follow-up image data is a challenging and time-
consuming task due to the manual process and long time between the different
acquisitions. The following approach proposed by Schmitt et al. [SRW08] strives
to automate the specification of planes orthogonal to the aortic path, and thus
accelerating the whole procedure.

Introduction While there exist several methods for the pre-operative aneurysm
segmentation (e.g., Olabarriaga et al. [ORF+05] or de Bruijne et al. [dBvGVN04]),
follow-up analysis and quantification is usually performed manually today.
During the detection of effects caused by the implant (e.g., leakage of contrast
agent), the maximum diameter as the main parameter is examined. For an exact
measurement, however, it is essential to have a cross-sectional slice orthogonal
to the aortic path. In addition to this challenging task, the determination of the
largest global diameter is also a highly manual process.

In the following workflow, the user specifies only start and end point of the
region to be analyzed. The centerline of the aorta is then automatically com-
puted by means of three-dimensional segmentation methods and graph-based
algorithms. Based on this centerline, the volume data set can be reformatted in
arbitrary directions, so that correct cross-sections can be provided, as well as a
normalized section along the path (i.e., curved MPR). This allows the examina-
tion of the overall shape of the aneurysm, in addition to a single diameter.

Methods After the user selected the region-of-interest 16 (usually from renal
arteries to the aortic bifurcation or iliac arteries), an edge-preserving filter is
applied. Although advanced algorithms such as anistropic diffusion might
achieve better results in general, the subsequent steps are less sensitive to noise.

16This step is optional, as usually the acquired data is limited in axial direction to the interest
region anyway. However, the amount of computation can be reduced considerably by defining
the ROI in sagittal/coronal direction.
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Another disadvantage of complex algorithms is the setting of (multiple) parame-
ters, which is contrary to the goal of minimal user interaction and manual steps.
Thus, in order to automate this process a three-dimensional extension of the
Kuwahara-Nagao filter [KHEK76] is used here as a parameter-free algorithm.

The segmentation is performed by means of the 3D-CSC algorithm developed
by Sturm et al. [Stu04, PSW05]. This method is based on a hierarchical cell
structure that segments arbitrary volume data sets into regions of homogeneous
values. The threshold needed for segmenting the aortic lumen can be usually
determined by the user’s initial input. In order to classify the segmented regions,
the data set’s histogram is computed and divided into five classes based on
the k-Harmonic-Means algorithm proposed by Zhang et al. [ZHD01]. These
clusters represent the different tissue or material types: air, fat tissue, blood
vessels (without contrast agent), contrasted blood, bone/metal. The resulting
thresholds thus enable the classification of the CSC segments into these classes.
As there might occur small inclusions of different classes due to noise or local
artefacts which can deteriorate the centerline computation, a neighborhood
analysis detects and removes such elements.

Based on the classification of every voxel in the data set, a binary volume
can be created: the contrasted lumen is designated as foreground, all other
voxels as background. Then a distance transform on this three-dimensional
data set is performed, with special attention to the usually anisotropic voxel
size. There exist several algorithms for this procedure, where the methods
proposed by Meijster et al. [MRH00] offers the best performance and flexibility
for software implementations, the approach by Cuntz et al. [CK07] for GPU
systems, respectively.

After this distance transform the centerline is determined. Therefore, a
directed, weighted graph is created, where all voxels within the lumen resemble
nodes. For every node there exist 26 neighboring nodes in 3D. Let dmax be the
global maximum of the distance transform of lumen voxels. The weight of one
edge in the graph is then computed by the difference of dmax and the current
voxel’s value that resembles the target node of this edge. Hence, edges that lead
to outer voxels (nodes) are assigned a higher weight than inward edges. This
results in a centerline by means of a Dijkstra-based shortest-path search between
the initially specified start and end point. In order to smooth the centerline, a
Gaussian kernel is applied to the line and ultimately leads to a less noisy path.
Based on this curve it is straightforward to create two-dimensional cross-sections
as well as sections along the whole curve (i.e., curved MPR). The whole process
is summarized in the diagram in figure 7.11.
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Figure 7.11: Flow chart depicting the processing steps in [SRW08] with possible
extensions to GPU implementations.

Results The presented method has been tested on ten pre- and post-intervention
data sets of different patients, with the pre-operative data being as suited for
examination as post-operative data. Figure 7.12(a) depicts a cross-section of
the aorta in axial direction. Due to the non-orthogonal slice orientation and
the resulting distortion, the aorta appears to be of elliptical shape. The correct,
undistorted cross-section with the slice orientation computed by the determined
centerline is shown in figure 7.12(b). The subsequent images 7.12(c) and 7.12(d)
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depict the path of the aortic centerline as white line, and a longitudinal section
of the aorta based on a curved MPR, respectively.17

(a) Axial cross-section
of the aorta.

(b) Orthogonal cross-
section of the aorta.

(c) 3D path of the
aorta (white curve)

(d) Longitudinal cut of
aortic section.

Figure 7.12: Different views of the analyzed aortic section.

Discussion The proposed method is able to analyze CTA data sets of the hu-
man abdominal region robustly, in order to provide visualizations for improved
and more reliable measurements. Firstly, the quantification of the aneurysm’s
diameter requires less interaction, and the automatic computation of the slice
orientation allows stable results. Secondly, the longitudinal section view enables
the assessment of changes at global scale.

While the aforementioned implementation is based on several tools and ap-
plications, the integration of the whole workflow into one platform is of interest.
In addition to this software engineering task, the next step is the integration and
extension of graphics hardware accelerated computations, as indicated by the
tagged processing items in figure 7.11. Many of the computationally expensive
procedures would benefit from GPU implementations, as shown in chapter 3.
From a medical point of view, deriving novel parameters to better describe
aneurysms, as well as the extension of such algorithms to adjacent sections of
the aorta or other vascular systems (e.g., cerebral arteries) is also of interest.

Visualization-based 3D Segmentation and Quantification of Abdominal Aor-
tic Aneurysms

The preceding approach has focused on supporting the assessment of length
parameters by automatically determining cross-sectional images. Although this
allows a more stable measurement of the aneurysm’s diameter, it requires some
user interaction as well as the use of multiple systems. As already indicated in

17The implementation and images are based on a modified version of the MPRPath module in
MeVisLab [MeV07]; see also Boskamp et al. [BRL+04].
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the diagram in figure 7.11 on page 212, several processing steps can be performed
on the graphics hardware. This would accelerate computationally expensive
tasks on the one hand, and support the further integration of the toolchain
into one platform on the other hand. An attempt to combine the processing
and visualization for abdominal aneurysms will be presented in the following
paragraphs and is based on Raspe et al. [RWS07].

Introduction As described before, the diagnosis of (abdominal) aortic aneurysms
is usually based on measurements in two-dimensional images, both for pre- and
postintervention assessment. Therefore, a considerable amount of manual in-
teraction is needed to select a specific slice from a whole three-dimensional
data set. This volumetric nature, however, lends itself to use other, preferably
three-dimensional parameters and additional visualization techniques. How-
ever, performing advanced computations on such volume data sets is complex
and time-consuming, and usually does not go well with the requirements of
clinical workflows.

Therefore, this approach proposes the utilization of programmable graphics
hardware for the processing and quantification of aneurysms. As shown in
chapter 3, various applications benefit from the computational performance of
modern GPUs widely available in commodity systems today.

Related Work The segmentation and quantification of aneurysms has been
covered in numerous contributions. For a broader overview of such algorithms
in the general case, the reader is referred to Preim et al. [PB07] and the references
therein, as only a few will be mentioned here. The following approaches can be
divided into two categories:

• model-based methods (deformable objects, active shape models (ASM))

• combinations of morphological and intensity-based operations

All systems work semi-automatically, i.e., the user has to specify at least
the region of interest; often further parameters have to be set. De Bruijne et
al. [dBvGVN04] utilize algorithms that are based on ASMs, but have been
extended by non-linear parameters for aneurysm segmentation. Subasic et
al. [SKLS02] evaluate two different ASM methods with respect to user interaction
and segmentation results.

The approach by Boskamp et al. [BRL+04] represents the second category in
that they do not employ shape models. In their method, several region growing
iterations are analyzed (see section 3.2.2 for additional information on this aspect)
and serve as input for a skeletonization of the vascular structure. The resulting
path is used for a multiplanar reformation, and watershed segmentation on these
slice images allow for the quantification of the volume.18 Bodur et al. [BGS+07]

18Note that this approach was used in the approach presented in the preceding section.
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perform similar steps, but build a distance graph upon a directly computed
centerline instead. This is also used for the computation of two-dimensional
sections along the path, where these cross-sectional images are analyzed by
algorithms based on the circumference of the aortic section.

Environment The approach proposed in this work was realized using differ-
ent platforms and applications that will be outlined shortly. The underlying
data have resolutions of 512× 512 (0.34− 0.71 mm), with the number of slices
ranging from 61 to 325 (2− 0.5 mm, resp.). Six patients have already undergone
endovascular surgery, whereas the remaining 14 data sets show pre-intervention
anatomy. For all acquisitions contrast agent was used. In addition to the frame-
work CASCADA developed in the course of this thesis, the plug-in oriented
library “KIPL” (Image Recognition Working Group, University of Koblenz-
Landau), and “MeVisLab” [MeV07] was used.

Approach Based on the short review of related work in the preceding para-
graph, the approach outlined here can be categorized as a region-based method
with additional hierarchical information. With respect to the cited contributions,
the approach by Boskamp et al. [BRL+04] is most similar. Here, however, the
GPU is explicitly utilized for different computation steps.

The incorporation of a multi-resolution method is motivated by the following
facts. Firstly, as this implementation is based on graphics hardware, different
resolutions of the data set can be efficiently computed, especially if standard
linear interpolation is sufficient. The second reason is the fact that for discrete
models, geometric information such as gradients is limited by the grid size.
By reducing the resolution incrementally and interpolating the data, however,
smooth gradients can be achieved (see figure 7.13). This allows for a better and
more global characterization of the structure’s surface.

Figure 7.13: Smoothing gradient information (here: color-coded) by resampling in
different resolution levels. Sphere (a), factor 2 (b); segmented structure
from AAA data set (c), factor 2, 4, and 8, resp. (d-f)
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The acquired image data (here: CTA images) are loaded into the application
and represented as volume. The additional reduction of artefacts from metal-
lic structures in post-intervention data will not be addressed here; see Yu et
al. [YZB+07] for reference, for example. Starting at that point, the remaining
steps are:

1. Selection of region-of-interest (usually from renal arteries to the bifurcation
or iliac arteries)

2. Computation of multi-resolution information (factor 2-4)

3. Gradient computation (central differencing or 3D Sobel)

• Direct region growing. (Aortic lumen with the contrast agent is trivial.
For aneurysm/thrombotic tissue the additional resolutions are used
for weighting the growing process)

• Thresholding (binary, interval/multilevel): results in coarse represen-
tation of the (contrasted) volume

Figure 7.14: Segmenting the aorta lumen using GPU-based region growing with
simultaneous volume rendering (MIP). from left to right: initial data
set, after 3 iterations, after 94 iterations (converged), additional MPR
visualization

The good results of the region growing method (see figures 7.14 and 7.15)
with respect to robustness, performance, and segmentation results support this
type of algorithm, especially for GPU implementations. In addition to this
variant, further steps for the quantification of cross-sectional diameters are:

5. Determination of the centerline by skeletonization using the hit-miss oper-
ator or distance transform

6. Creation of cross-sectional images orthogonal to centerline

7. Detection and quantification of aortic sections using circular shapes

The last step is based on the assumption that orthogonal cross-sections
contain mainly circular (or elliptical) shapes, as can be seen in figures 7.12(a)
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and 7.12(b) on page 213. In case of interrupted or strongly deviating shapes,
e.g., due to imaging artefacts or irregular tissue structures, these effects are in
most cases limited to few slices and/or voxels. Despite these deteriorations, the
hierarchical approach in combination with robust algorithms such as the Hough
transform compensate for these local effects.

Figure 7.15: GPU-based region growing segmentation of the thrombotic aneurysm
(converged after 73 iterations). from left to right: MIP rendering, sagittal-
/axial view; note the separation from structures with equal gray value

Discussion As shown in the preceding section, modern graphics hardware is
not only suited for visualizing medical data in real-time. It also allows the fast
processing of the data, as well as the direct interaction with the algorithms, as
discussed in chapter 3. Especially the segmentation based on region growing for
abdominal aortic aneurysms has been improved by means of the hierarchical ap-
proach. Instead of being sensitive to local deteriorations, the global information
enhanced this rather simple algorithm considerably. In addition, the hardware
implementation of certain computations clearly reduced the run-time.

The aforementioned concepts have been preliminary steps towards an ex-
tended assessment of abdominal aortic aneurysms. The utilization of graphics
hardware has to be compared to established methods in terms of performance
and quality. In particular the segmentation quality will be evaluated on a larger
set of example data and manual segmentations from experts.

7.2.3 Resume

The contributions in this project about the assessment of abdominal aortic
aneurysms pursued two different directions. Firstly, the procedure of measuring
the diameter (and other parameters) is supported by an automated determi-
nation of the cross-sectional plane. Although this still requires the manual
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assessment of the diameter(s), the whole process is clearly accelerated and re-
duces the results’ variability due to stable plane derivation. Secondly, the overall
assessment of the lumen and aneurysm by means of segmentation methods.
As outlined in the introductory part of this thesis, as well as the preceding dis-
cussions, there is a large amount of efficent algorithms available. Due to the
utilization of graphics hardware and its interactive visualization possibilities,
preferably region/volume-based methods have been used in the early stage
of the project. It was also shown that GPU implementations could be easily
integrated by using the framework CASCADA.

In addition, first approaches towards a segmentation based on level sets
and extended gradient information (e.g., gradient vector flow [XP97]) have been
followed and will be the focus of subsequent research – especially in combination
with GPU implementations. Moreover, the extension to other modalities or
dimensions (e.g., the aforementioned 4D data sets), as well as the adaptability of
the methods to adjacent structures (i.e., thoracic/iliac aorta, etc.) are of interest.
As a matter of course, the approaches presented in the preceding sections and
for upcoming work require further evaluation and thorough comparison with
procedures in clinical practice.



CHAPTER 8

CONCLUSION

This chapter concludes the thesis by summarizing the contributions and ap-
plications described in part two and three, respectively, in the first section.
Subsequent remarks propose the establishment of a classification to assess and
rate the performance of a hardware implementation for the given configuration
and data at hand during run-time. This is not limited to a decision between
CPU and GPU implementations, but also extends to the notion of compression
computing. As such a system for decision finding can be arbitrarily complex
and would be beyond the scope of this work, the concepts are only outlined
theoretically. Prospects to further extensions and trends in both graphics systems
and medical imaging will round off the thesis.

8.1 Summary

The goal of this work has been to establish methods and applications to use
graphics hardware conveniently for the processing and visualization of medical
(volume) data as basis for diagnosis assistance. While the latter has been the
focus of intensive research for many years, the combination of both techniques
provides various benefits. As shown in the context of “visual computing” ap-
proaches, not only the acceleration of computationally expensive tasks is a clear
advantage of employing hardware implementations. In addition, the inherent
visualization capabilities at real-time performance allow the direct interaction
with processes, parameters, or local properties.

Interactive visualization of computations

Different approaches, such as the extension of edge-preserving filtering to three-
dimensional video sequences or the comparison of tone-mapping procedures for
improving the visualization of medical image data with varying dynamical range
were discussed at the beginning of chapter 3 to emphasize the high potential
of GPU-based implementations. This led to the evaluation of implementation
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variants in order to optimize the computation intensity, that is, the ratio of
arithmetic operations to memory transfers. Supporting the use of the GPU for
as much consecutive computations as possible is one of the key features of the
developed framework CASCADA.

As already mentioned before, extending state-of-the-art volume rendering
techniques such as ray casting provides powerful and flexible methods for in-
teracting with the visualization. The concept of “ray textures” introduced in
section 3.2.1 allows various possibilities to control rendering parameters locally.
Moreover, this approach is not dependent of the specific ray casting implemen-
tation and thus integrates well with software implementations, acceleration
techniques, etc.

Compression Computing

However, one of the main problems with using the graphics hardware for
processing large amounts of data is the limited bandwidth and size of (graphics)
memory. Whereas the processing and visualization of data too large to fit into
the graphics memory can be alleviated or bypassed by divide-and-conquer
strategies (e.g., bricking or hierarchical approaches), the relatively low transfer
rate between host and graphics memory is still an issue. On the other hand, data
compression is an established approach used in virtually all fields of information
technology. Although this allows the reduction of the data at almost arbitrary
levels – depending on the specific quality requirements – accessing the data for
purposes other than storage requires decompression.

Hence, in chapter 4 the concept of data processing within the compression
domain is presented and evaluated in the context of medical volume data. In
addition to the discussion of compression procedures suited for the task, different
topics regarding implementation, visual quality, performance, and possible
extensions are addressed. In spite of the moderate results, combining this
approach with the aforementioned concatenation of GPU-based computations is
certain to break even for practical applications – let alone further optimizations
of the prototypical implementation.

Object-oriented GPU Programming

Yet another aspect is the creation of GPU implementations itself. Many authors
have proposed approaches to abstract from the intricate hardware details, as is
extensively discussed in section 5.1. However, these systems are either limited
to certain applications (e.g., traditional graphics rendering), or too abstract
to map further development of the GPU’s architecture, or require the use of
inflexible programming constructs or systems. Although this situation is going
to improve with dedicated general purpose APIs such as Nvidia’s CUDA that
also alleviate several programming limitations due to hardware restrictions,
established methods from software engineering are still hard to apply.
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Therefore, the introduction of object-orientation and hierarchical concepts to
(traditional) GPU programming is the very basis of CASCADA. The framework
provides a view to hardware implementation more problem- or workflow-driven
than previous approaches, which has several advantages: the implementation’s
layout is natural in that it strives to follow the problem’s structure; existing
functionality is easy to maintain and can be reused; technical advancements such
as CUDA can be integrated straightforwardly, while maintaining abstraction
from low-level details.

Applications

In chapter 7, two projects are described that make use of several concepts men-
tioned above. The medical background for both projects is the assessment of
anatomical structures by means of preprocessing and segmenting volume data
for diagnosis assistance. While the final version of the “LiverGPU” application
uses a subset of CASCADA 1, the still ongoing project “ARCADE” utilizes vari-
ous systems in combination with core functionality of CASCADA. As shown in
section 6.2 there have been additional projects and extensions to the framework.
In a nutshell, the different projects have demonstrated that the framework and
its underlying theoretical concepts allow the utilization of graphics hardware for
non-graphics applications to improve the overall performance and interactivity –
also in collaboration with other systems.

8.2 Prospects

The following paragraphs will discuss current trends that have been touched
on throughout the thesis as well as refer to topics that are subject to further
research. While the first section takes up the idea of assessing the performance of
GPU computations in more detail, the remaining two sections reconsider recent
developments and eventually conclude this thesis.

8.2.1 Classification of computations

As shown in section 3.1.3, utilizing the graphics hardware is not always ben-
eficial. There are several factors that affect the overall performance of such
implementations, aside from the underlying hardware generation: type and
characteristics of the algorithm, properties of the data, etc. It would be therefore
of high interest to forecast the potential benefit of a GPU implementation based on
some generalized criteria. This extends to the direct processing of compressed
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data, as introduced in chapter 4, whether an additional benefit with respect to
memory and/or computation efficiency is possible.

In order to assess the performance gain of GPU algorithms over software
implementations different approaches are imaginable. Software engineering
problems, for example, require an evaluation of development cycles, code com-
plexity, maintainability, or simply the number of developer hours. Although
there exist different measures such as the COCOMO standard1 or the (debatable)
unit SLOC2, these are obviously more difficult to apply to graphics hardware
programming – if relevant at all. Firstly, the code length of shader programs
is often much more important due to technical restrictions of the hardware or
performance reasons. Secondly, some operations can be hardly applied to other
contexts (e.g., swizzling or interpolated texture fetch) or are of very different
complexity (e.g., simple addition vs. computing a reciprocal).

Another approach would be to benchmark the algorithms in question on
current graphics platforms and compare it with standardized software imple-
mentations like sorting algorithms, BLAS routines3, etc. Using such information
is, however, rather unstable due to a large number of factors that might affect
the result: driver version, operating system, data layout, to mention only a few.
Above that, such implementations are usually subject to change because of the
rapid technical advances of graphics hardware today.

As discussed in chapter 5, programming GPUs does not employ high-level
programming paradigms like object-orientation yet. While several authors
have proposed to utilize concepts from object-oriented programming or meta-
languages such as “Sh” [MQP02], application code controlling the GPU shader
programs is often written in plain C, especially in programs using the lately
introduced GPGPU interfaces.

So, if GPU programming is not suitable for standard software assessment,
how can a classification be accomplished? Basic algorithms – no matter the
language they are implemented in – are usually qualified by their big O notation
which is the de-facto standard for specifying the computational complexity of
functions with respect to input data. Although this measure could be applied to
shader programs in principle as well, it would be too coarse, however: different
kinds of data representations, the complex architecture of modern graphics hard-
ware, etc. are not covered (sufficiently) by the notational model. In addition, not
only the single program plays an important role for the algorithmic complexity,
but much more how often it is executed: fragment programs, for example, are
executed lots of million times per second with numerous execution units in
parallel.

1for more information see http://sunset.usc.edu/research/COCOMOII/, last visit
December 10, 2008

2SLOC = source lines of code
3BLAS = Basic linear algebra subprograms

http://sunset.usc.edu/research/COCOMOII/
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Therefore, one approach would be to analyze the system beforehand with differ-
ent types of data sets and algorithms. This preparation step is commonly used
during installation of software components such as libraries, modules, or drivers
and is often referred to as “configure step”.4 There are some means for querying
the current GPUs configuration, but they highly depend on the graphics driver,
the graphics API used (i.e., OpenGL, DirectX, etc.), and the operating system
itself.

The benefit of using such a configuration step is to rate the graphics hardware
at hand and decide during run-time whether utilizing the GPU would improve
the overall performance. This approach would be twofold: the platform has
to be rated as well as the algorithm itself. The former can be queried using
dedicated API tools (see the CascadaCUDA implementation in section 6.3.3), for
example. However, assessing the implemented functionality (i.e., the particu-
lar preprocessing sequence or computation/visualization procedure) is not as
straightforward. Although different computational complexities can be iden-
tified for algorithms, e.g. for image preprocessing as in section 2.3.1, this is
practically impossible for all kinds of applications.

As shown in section 3.1.3, the data transfer plays an important role for GPU
algorithms and their potential benefit. While the pure computation can be
several orders of magnitude faster using hardware implementations, frequent
data transfer can negate the overall performance gain. As the bandwidth be-
tween host and graphics memory is still a technological issue, the system can
overcome this by concatenating multiple computation steps on the graphics
hardware; hence the concepts in CASCADA. Simply said, the more (computa-
tionally expensive) operations are performed on the GPU, the less important
the time-consuming transfer becomes; see Buck [Buc05, BFH+04] for this “arith-
metic intensity”. Additionally, if intermediate results should be displayed during
execution a hardware implementation will be the preferable option in almost
all cases, because the data has to be transferred to video memory for display
anyway.

Especially compression techniques contribute to reducing the amount of
data to be transferred. As discussed in chapter 4, performing computations also
in the compression domain can further increase the benefit of GPU implemen-
tations. Such a classification scheme is already prepared in CASCADA 2 and
will be pursued in subsequent research, as well as the extension of compression
computing.

8.2.2 Graphics systems

In the fundamentals part as well as in chapter 5 the role of the recently intro-
duced programming interfaces (i.e., Nvidia CUDA and OpenCL) was addressed.

4Depending on the operating system this is hidden from the user or directly controllable with
the well-known configure; make; make install command on UNIX systems.
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During the course of this thesis, CUDA has become the major platform for
practically all kinds of GPGPU implementations. In combination with the latest
generation of graphics hardware or dedicated visual computing systems, many
compute-intense applications have been accelerated by multiple orders of mag-
nitude. Although real-time applications are appealing from a computer graphics
perspective, offline computations benefit even more from these rapid advance-
ments – not only because of the direct visualization capabilities addressed in
part two of the thesis.

On the other hand, there are active developments towards an “xPU”, that
is, the fusion of dedicated (graphics) processors with the standard processing
unit. This trend is a rather logical consequence of current advances: while GPUs
become more versatile and programmable, main processors consist of an increas-
ing number of cores. The most prominent and capable candidate that has been
introduced recently is Intel’s Larrabee. Its architecture can be mainly regarded as
a combination of a multi-core CPU and a GPU, with adoptions from both worlds.
As it uses the instructions set of standard processors, programming is supposed
to be as flexible and universal as software implementations today. Although
it is supposed to be available not before 2010, first prototypes already indicate
competitive, if not superior performance especially for “number crunching” ap-
plications due to the large vector units. More details can be found in Seiler et
al. [SCS+08] and, of course, upcoming developments of these systems.

8.2.3 Medical imaging

In functional imaging the anatomical context is of great importance due to the
low spatial resolution provided by the complex acquisition procedure. Therefore,
additional information is generated by means of combining functional and
morphological imaging, as addressed in section 2.1.1. In the past, the patient
has been examined by both conventional CT and PET or SPECT separately;
merging the acquired data has been a very challenging task. On the one hand,
patient movement cannot be avoided due to the time between both scans. On
the other hand, the different modalities acquire data at different resolutions,
value ranges, etc. Thus, aligning one data set onto the other is a very time-
consuming task – if possible at all. Although intensive research has proposed
lots of approaches to perform this registration algorithmically, such procedures
achieve either incorrect results or are not compatible with clinical workflows
regarding time and costs.

A few years ago, devices have become available that combine these modali-
ties; SPECT/CT or PET/CT are typical examples. These systems feature both
acquisition facilities in one device, thus reducing the motion artefacts and over-
all scanning time to a minimum. The workstations’ software already performs
the matching of the different data sets, as the geometrical configuration of the
device is known. In addition, using the higher resolution of the CT scanner,
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the reconstruction quality of the functional imaging can be improved as well.
This results in most cases in near-optimal registrations, and often justifies the
disadvantages of such approaches (increased radiation exposure, very high costs
of devices, etc.).

MRI-based modalities are even more advantageous in that they allow the
acquisition of multiple information “in-place”. That is, except for numerical
inaccuracies during reconstruction, for each position in space different data
can be measured by simply altering the protocol, whereas the aforementioned
devices consist of separate parts. Recent developments take the benefits of
nuclear imaging even further and combine PET devices with MRI – which is
very challenging with respect to manufacturing parts that are both compatible
with the strong magnetic field, and do not deteriorate quality by introducing
(unknown) inhomogenities.

Managing large data sets from these acquisition systems is another challeng-
ing task, especially considering the interactive exploration of such multi-modal
information. Another example are dual-source CTs that use an additional x-ray
source for a second imaging process (section 2.1.1). Following the trends of ear-
lier developments, multiple sources seem probable and may extend the benefits
of dual-source systems.5 This results in even more image data being acquired,
especially regarding the additional advances in spatial and/or temporal resolu-
tion. Therefore, the utilization of graphics hardware for both visualization and
computation, as well as the integration of compression techniques represent key
supplements for future developments.

5Note that CT-based imaging is always connected with (high) radiation exposure where such
multi-source systems add another complexity to controlling the acquisition process.
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Electronic Press, Linköpings universitet, 11 2007.

[RM08] Matthias Raspe and Stefan Müller. Controlling GPU-based Volume
Rendering using Ray Textures. In Vaclav Skala, editor, International
Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision, pages 277–283, 2 2008.

[RRRP08] Christian Rieder, Felix Ritter, Matthias Raspe, and Heinz-Otto Peitgen.
Interactive Visualization of Multimodal Volume Data for Neurosur-
gical Tumor Treatment. Computer Graphics Forum (Special Issue on
Eurographics Symposium on Visualization), 27(3):1055–1062, 2008.



230 PUBLICATIONS

[RWS07] Matthias Raspe, Ralph Wickenhöfer, and Frank Schmitt. Visu-
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[Sch96] Peter Schröder. Wavelets in Computer Graphics. In Proceedings of
the IEEE, volume 84, pages 615–625, 1996.

[Sch05] Henning Scharsach. Advanced GPU Raycasting. In Proceedings of
CESCG 2005, pages 69–76, 2005.

[SCS+08] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael
Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy
Sugerman, Robert Cavin, Roger Espasa, Ed Grochowski, Toni
Juan, and Pat Hanrahan. Larrabee: A Many-Core x86 Architecture
for Visual Computing. ACM Trans. Graph., 27(3):1–15, August
2008.

[SHB99] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing,
Analysis, and Machine Vision. Thomson-Engineering, 2nd edition,
September 1999.

[She92] Mark J. Shensa. The Discrete Wavelet Transform: Wedding the
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Owens. High performance computing for deformable image regis-
tration: Towards a new paradigm in adaptive radiotherapy. Medi-
cal Physics, 35(8):3546–3553, 2008.

[TD07] Matthias Trapp and Jürgen Döllner. Automated Combination
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