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KurzfassungDie Koloskopie ist der Goldstandard zur Aufspürung von gefährlihen Darmpo-lypen, die sih zu Krebs entwikeln können. In einer solhen Untersuhung suhtder Arzt in den vom Endoskop gelieferten Bildern nah Polypen und kann diesegegebenenfalls entfernen. Um den Arzt bei der Suhe zu unterstützen, erforshtdie Universität Koblenz-Landau zur Zeit an Methoden, die zur automatishen De-tektion von Polypen auf endoskopishen Bildern verwendet werden können. Wieauh bei anderen Systemen zur Mustererkennung werden hierzu zunähst Merk-male aus den Bildern extrahiert und mit diesen ein Klassi�kator trainiert. DieserKlassi�kator kann dann für die Klassi�kation von ihm unbekannten Bildern ein-gesetzt werden. In dieser Bahelorarbeit wurde das vorhandene System zur Poly-pendetektion um Merkmalsdetektoren erweitert und mit den bereits vorhandenenverglihen. Implementiert wurden Merkmale basierend auf der Diskreten WaveletTransformation, auf Grauwertübergangsmatrizen und auf Loal Binary Patterns.Vershiedene Modi�kationen dieser Merkmale wurden getestet und evaluiert.AbstratColonosopy is the gold standard for detetion of oloretal polyps that an progressto aner. In suh an examination physiians searh for polyps in endosopiimages. Thereby polyps an be removed. To support experts with a omputer-aided diagnosis system, the University of Koblenz-Landau urrently makes somee�orts in researh di�erent methods for automati detetion. Comparable to tradi-tional pattern reognition systems, features are initially extrated and a lassi�eris trained on suh data. Afterwards, unknown endosopi images an be lassi�edwith the previously trained lassi�er. This bahelor thesis onentrates on theextension of the feature extration module in the existing system. New detetionmethods are ompared to existing tehniques. Several features are implemented,inorporating Graylevel Co-ourrene Matries, Loal Binary Patterns and Dis-rete Wavelet Transform. Di�erent modi�ations on those features are applied andevaluated.
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Chapter 1Introdution
1.1 Medial BakgroundCaner is a leading ause of death worldwide. It desribes the transformation froma normal ell into a tumor; a progression from a pre-anerous lesion to malignanttumours. Aording to the World Health Organisation (WHO) 655,000 people diefrom olon aner per year [WHO06℄. One third of the aner burden ould beured if deteted early and treated adequately. In Germany, the number of ini-denes mounts to 70,000 per year with approximately 30,000 fatalities [SPRS+08℄.Coloretal or intestinal polyps are the most frequently ourring pre-ursor ofolon aner. Polyps an be broadly lassi�ed as neoplasti and nonneoplastipolyps. Among neoplasti polyps one di�erentiates between adenomatous andmalignant. Approximately 95% of all oloretal arinomas arise from adenomas,a fat that underlines the importane of treatment of oloretal polyps [TA07℄.The abnormality of polyps is mainly deteted when the surfae of the lipomais eroded or irregular in ontrast to a smooth surfae. The ourring forms anbe lassi�ed in tubular, tubulovillous, or villous, primarily based on the overallperentage of villous omponent. The risk of progression to aner of adenomas isrelated to their marosopi appearane (size, villous omponents) as well as theirmirosopi arhiteture and degree of dysplasia. Considering the size, smalleradenomas (< 1 m) have a lower risk of malignant potential [TA07℄.Colonosopy is the aepted gold standard for sreening olon aner or ol-oretal polyps. It allows diagnosis, therapy as well as biopsy. In most ases, thepolyps are removed diretly when deteted. Nevertheless, there is a 6-12% missrate for adenomas that are 1m or larger; the miss rate for smaller adenomas isup to 25% [TA07℄. This is due to the fat that the polyp an show up on thesreen but is not identi�ed by the physiian beause of non-attention or subjetive9



10 CHAPTER 1. INTRODUCTIONdiagnosis. Furthermore, endosopi analysis does not over all parts of the olon.As a onsequene, parts remain unseen by the amera.It is reommended to have ontinuing surveillane of patients with previouslyremoved adenomas. The interval between olonosopies depends on the size, num-ber, and histologial type of polyp, as well as the patient's family history. Polypreurrene rates are 20% at 5 years and 50% at 15 years [TA07℄.A olonography is a visual reording of the olon obtained using omputedtomography (CT) tehnology. This is a new proposed tehnique for detetion ofadenomas. Although this method produes a virtual representation of the olonwhih an speed up the visual analysis by the physiian, it also holds some disad-vantages: the extensive amount of radiologist working time during CT sanning,the osts of suh an exam and of ourse the radiation that the patient is subjetedto [ACN07℄. When polyps are deteted and must be removed, the patient under-goes olonosopy analysis one more, whih �nally leads to a double intervention.Moreover, virtual olonosopy has lower sensitivity than optial olonosopy forsmall (<1 m) adenomas [TA07℄. Thus the potential to miss small polyps is higher.The visual analysis of the endosopi images has some drawbaks suh as in-terpretational variation and non-suitability for omparative evaluation. Hene aomputer-aided system for detetion will help onsiderably in the quantitative har-aterization of abnormalities, thereby improving patient's are. It is desirable todevelop a system that marks polyps reliably during the sreening proess leadingto a signi�antly dereased miss-rate.1.2 Pattern Reognition ShemesComputer-aided systems for detetion often inorporate the appliation of patternreognition and lassi�ation. Traditionally, they onsists of several moduli takingover spei� tasks explained in the following.In a �rst step sensor data is sampled and quantized, for example a video frame.Then a preproessing might be applied to the image in order to improve the resultsof subsequent steps of proessing. This either results in redution of omplexity orimprovement of performane, or both. Additionally, features are extrated fromthe image leading to a notieable redution of representational spae. They are nowrepresented by vetors holding numeri or nominal values. After this, two disjuntsets of feature vetors have to be hosen, namely a training set for learning of thelassi�er and a test set for evaluation of the omplete system.Basially, one di�erentiates between supervised and unsupervised learning. Su-pervised learning deals with lasses that are known before the training is applied.Features are extrated and mapped to these prede�ned lasses. Otherwise, duringthe training phase disjunt lasses have to be reated, whih involves lustering the



1.3. CONTENT OF THIS WORK 11PSfrag replaements
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Figure 1.1: Traditional sheme for lassi�ation of patterns.features in feature spae. The trained lassi�er an then be used for lassi�ationof unknown patterns in the so alled testing phase [Nie07℄.100 perent of orret lassi�ed patterns is desirable but often hard to realize,depending on the omplexity of the patterns. On this note, an analysis of theresults is neessary to evaluate the performane and orretness of the system.Computer-aided diagnosis onerning medial themes requires image aquisi-tion, image proessing, feature extration and lassi�ation as depited in thepipeline above (�gure 1.1). Ameling [AWP+09℄ proposed a polyp detetion sys-tem onsisting of the above mentioned steps. Several feature extration methodshave been already implemented. Nevertheless, there is a potential to inrease theperformane of the system by examining the single modules.1.3 Content of this WorkThe approah of this work is to inrease the quality of feature extration on endo-sopi images in the system of [AWP+09℄. In �gure 1.1 this module is depited bythe third step in the pipeline, whih omputes desriptors suh as feature vetorsfrom the images. The existing extration methods will be ustomized to the taskof polyp detetion by testing di�erent adjustments and versions of the features.Sine there is a high dependeny between feature extration and lassi�ationonerning the performane of the whole system, lassi�ation will be examinedadditionally.To start with, a number of existing shemes for the detetion of abnormalitiesin the olon are presented in the following hapter. In hapter 3, texture featuremethods are introdued suh as Graylevel Co-ourene Matries, Loal BinaryPatterns and the Wavelet Transform. Chapter 4 gives an overview about di�erent



12 CHAPTER 1. INTRODUCTIONlassi�ers and the methods of evaluation. Subsequently, the system as well as theexperimental �ow is desribed in hapter 5. Chapter 6 explains the features thatare implemented in this work and shows the results of the applied tests. Finally,hapter 7 gives a summary about this work and and lists some aspets aboutpossible further work.



Chapter 2Related WorkThis hapter gives an overview about the state of the art of omputer aided de-tetion systems in endosopi images. It is espeially foussed on the detetion ofolon aner as well as intestinal polyps.2.1 Form-based DetetionAs desribed in 1.1, polyps an have tubular, tubulovillous or villous form. Thefollowing approahes take advantage of this, trying to �nd ontours or segmentson endosopi images.Krishnan et al. [KYC+98℄ desribe a form-based approah for detetion of ab-nonormalities in the olon. First the image ontours are extrated using the CannyEdge Detetor, and the urvature of eah ontour is omputed. Zero-rossings ofurvature along the ontour are deteted then. Afterwards ontour segments are�ltered whih are positioned between two zero-rossings. If this ontour segmenthas the opposite urvature signs to those of its two neighboring ontour segments,the presene of polyps or tumors will be rated as high.The method of Hwang et al. [HOT+07℄ relies on the elliptial shape of olonpolyps. In a �rst step a watershed-based image segmentation is applied to a frame.Then a binary edge map is onstruted for eah segmented region using a partiularthreshold. The map is used as input for an ellipse �tting algorithm. Ellipses aredesribed as seond order polynomials. They are mapped to the omputed edgemap using a least square �tting method. Among deteted ellipses, those are �lteredwhih do not represent atual polyps. The strength of the edge and the intensityvalue inside the ellipse serves as riteria for �ltering.Dhandra et al. [DHHM06℄ do not onsider the edges like the methods men-tioned previously. Their approah onverts the endosopi olor image into HSIolor spae and then a watershed segmentation tehnique is applied. The lassi-13



14 CHAPTER 2. RELATED WORK�ation of the image as abnormal is simply based on the number of watershedregions present in the image, ompared to a ertain threshold.Another tehnique for deteting polyps was introdued by Kang et al. [KD03℄.The endosopi images obtain a ontrast enhanement whih is aomplished byperforming a histogram strething operation in RGB olor spae. In a next step,the Canny Edge Detetion Algorithm is applied to eah RGB olor hannel sepa-rately. The deteted edges are ombined afterwards to one result. Morphologialoperations suh as dilation for edge thikening and onneting of disjoint edges are�nally used. The resulting image segments are analyzed and �ltered onsideringarea, olor and elliptial shape of the segment.2.2 Texture-based DetetionTexture analysis is frequently used in image proessing and pattern reognition forharaterization of regions from digital images. Texture arries information aboutthe miro-struture of the image regions and the ourring distribution of graylevels [Nie07℄.Wang et al. [WKKT01℄ propose a feature extration method alled Loal Bi-nary Pattern (LBP) whih is a loal texture desriptor. The LBP an be ombinedwith the image intensities to LBP/I. This LBP/I distribution is represented in adisrete two dimensional histogram. A log-likelihood-ratio alled the G-statisti,whih is a modi�ation from Kullbak's riterion, is used as a pseudometri foromparing LBP/I distributions. A Neural Network formed by Self-OrganizingMaps (SOM) provides means for lassi�ation.The onept of Li et al. [LCK05℄ is to transform the RGB endosopi imagesinto CIELab olor spae to analyze olor and luminane separately. Pathes of�xed size are used, whih overlap 50% to eah other. A two level Disrete WaveletTransform deomposition is applied to eah path and CIELab hannel separately.Afterwards, mean as well as standard deviations are alulated from the absolutevalues of approximation and detail oe�ients of the seond level of Wavelet de-omposition. Another feature inludes 1-dimensional histograms of the luminanehannel L (with 16 bins) and 2-dimensional histograms of the a and b omponentsin CIELab spae (with 64 bins). Support Vetor Mahines serve as lassi�ationsheme.Tjoa et al. [TK03℄ determine a so alled texture spetra in the hromatiand ahromati domains in the olonosopi image (HSI and RGB omponents).Therefore texture units and texture unit numbers are alulated, whih are usedto form a histogram. Six statistial measures are extrated from eah texture spe-trum: Energy, Mean, Standard Deviation, Skew, Kurtosis and Entropy. PrinipalComponent Analysis (PCA) redue the size of the features, whih are afterwards



2.2. TEXTURE-BASED DETECTION 15evaluated by a Bakpropagation Neural Network (BPNN). They found that usingtexture and olor features improves lassi�ation results when ompared to usingonly one type of information.The method of Alexandre et al. [ACN07℄ takes the olor of a pixel (RGB om-ponents) and its position as feature vetor dimensions. This implies a requirementof a high dimensional input spae for SVM. In a preproessing step they divide theoriginal image into subimages of 40 × 40 pixels and lassify eah path separately.Karkanis et al. [KMGS99℄ propose a sheme whih uses textural desriptorsbased on seond order gray level statistis alled Graylevel Co-ourene Matries(GLCM), intitially proposed by Haralik [HDS73℄. This method evaluates a seriesof matries that desribe the spatial variation of gray level values within a loalarea. In this approah four GLCM have been omputed and four statistial featureswere determined: Angular Seond Moment (Energy), Correlation, Inverse Di�er-ene Moment and Entropy. This forms a 16-dimensional feature vetor, whih isused as input for lassi�ation with Neural Networks.In [KIM+00℄ a one dimensional Disrete Wavelet Transform (DWT) deompo-sition is performed on raster sanned images, resulting in four wavelet subimagesfor eah path. Then GLCMs are alulated on the wavelet domain and four sta-tistial measurements are estimated. A Multilayer Feedforward Neural Network(MFNN) is employed for lassi�ation of the 16-dimensional feature vetor. As ex-periments with both proposed methods indiate, the Wavelet Transform performsbetter than the simple GLCM method.A one dimensional Disrete Wavelet Transform is performed by Karkanis etal.[KIKM01℄, resulting in approximation and detail omponents. The Daubehieswavelet basis is utilized due to their orthogonal property. Subsequently, GLCMsare extrated from the detail oe�ients (without the lowpass-�ltered hannel) andfour statistial measurements alled Angular Seond Moment, Correlation, InverseDi�erene Moment and Entropy are alulated. 48-omponent feature vetorsform the input to the Multilayer Feedforward Neural Network arhiteture. Thisproposal was implemented in CoLD (Coloretal Lesion Detetor) [MIKK03℄ withinorporation of another lassi�er alled Multilayer Pereptron Neural Networks(MLP).Karkanis et al. [KIM+03℄ propose a new olor feature extration sheme namedColor Wavelet Covariane (CWC) based on a �xed size sliding window. A three-level DWT deomposition is performed and GLCMs are extrated from the seondwavelet level on eah olor hannel separately. Afterwards, the aforementionedstatistial measurements are omputed. Covariane values of pairs of the estimatedfeatures onstitute the 72-dimensional CWC feature vetor. Linear DisriminantAnalysis is used for lassi�ation of the features.



16 CHAPTER 2. RELATED WORKIn [IMK06℄ di�erent preproessing methods and various feature extration teh-niques are ompared to eah other. Color spae transformations (e.g. RGB, K-L,CIE-Lab, HSV) are tested and inorporated with eah extrated feature for in-stane Loal Binary Patterns (LBP), Opponent-Color LBP (OC-LBP), Wavelet-Energy and CWC. Linear and non-linear lassi�ation modules are investigated.Ameling et al. [AWP+09℄ ompares existing feature extration methods suhas GLCM and LBP, exploiting the path approah. Four di�erent polyp senes arehosen for testing. The GLCM6 feature as well as the GLCM16 feature omputesfour matries on gray level pathes. For GLCM6, six statistial measurementsalled Energy, Entropy, Inverse Di�erene Moment, Inertia, Cluster Shade, ClusterProminene are extrated and the mean is omputed from the extrated values.GLCM16 utilizes only four statistial measures, the same measures like [KMGS99℄use in their appliation without averaging. LBP and OC-LBP features are alsoinvestigated. OC-LBP performed best on the preseleted four senes, ombiningtexture and olor information.2.3 Combined MethodsAs shown in the previous setions, there are many approahes for detetion oflesions. However, there is not a single method to detet all kinds of lesions. Con-sidering this fat, Zheng et al. [ZK01℄ ombines multiple tehniques. A multisensordata fusion tehnique based on Bayesian Inferene is applied. This approah wasfurther improved to an intelligent fusion-based linial deision support in [ZKT05℄.Subdeisions are estimated based on assoiated omponent feature sets ([TKK+01℄[KWL+00℄ [WKHS02℄) derived from the endosopi images. Bayesian probabilityomputations are employed to evalutate the auraies of subdeisions and areutilized in estimating the probability of the fused desision.2.4 DisussionThe results of the researh groups are di�ult to ompare beause of the usageof di�erent data bases, whih are beside this often too small to make reliablepreditions. Additionally, the systems are not trained for all types of polyps.Another aspet to onsider is the resolution of the endosopi images, whih donot omply with tehnial progress. It is possible today to use full-high de�nitionresolution instead of images of size 320 × 240 like in [IMK06, LCK05, KIM+03℄.High resolution endosopi images have the advantage to provide more oniseinformation about the mirostrutures of the intestinal wall.



2.4. DISCUSSION 17The miro-struture of the intestinal wall is de�ned by vasulature and muosa,while the appearane of polyps is determined by the degree of dysplasia. Onthis note, texture features an be a disriminating aspet in deteting polyps.Graylevel Co-ourene Matries and Loal Binary Patterns are popular methodsas desribed in setion 2.2. They estimate strutural relationships between pixelswhih are neessary to provide adequat texture modelling.The analysis of the form of polyps is often realized by �nding edges or throughregion segmentation. It is di�ult to predit whether this approah will lead toa reliable detetion of polyps, beause many similar shaped strutures are foundin the olon, for instane intussuseptions. Furthermore, there are di�erent typesand sizes of polyps having varying forms. These aspets results in a very omplexsegmentation task.Other approahes are onerned with transform methods suh as the WaveletTransform, whih has an advantageous e�et on the representation and modellingof texture [CR95℄. It is possible to perform multiresolutional analysis, whih ouldhave an enormous potential in examing endosopi images. Due to the fat thatthe endosope most likely has di�erent distanes to the intestinal wall duringendosopy sale variant features are omputed when no adequate proessing isapplied. In this way the Wavelet Transform might be an appropriate mean.Considering the lassi�ation tehniques, two methods are frequently used inthe presented omputer-aided detetion systems, namely SVMs and Neural Net-works. A Support Vetor Mahine found also appliation in [AWP+09℄.All in all the here disussed and positive evaluated approahes have a potentialin deteting polyps reliable. The overall aim is to inlude olor in the featureextration tehniques from [AWP+09℄, whih seems to be one of the most promisinginformation base for polyp detetion. A subset of the introdued texture methodssuh as Wavelet Transform, Graylevel Co-ourrene Matries and Loal BinaryPatterns an be ombined in di�erent ways. Some of the ombinations already havereferene in literature, while other are never tested so far on endosopi images.





Chapter 3Texture FeaturesTexture an be seen as a rih soure of visual information that is easily pereivedby humans. Nevertheless, there is no strit de�nition of image texture. Generallyspeaking, textures are omplex visual patterns omposed of entities, or subpatternsthat have speial harateristis. Hene, texture an be regarded as a similaritygrouping of suh entitites in an image [RK82℄.3.1 Transform methodsTransform methods of texture analysis represent an image in a spae whose oor-dinate system has an interpretation that is losely related to the harateristisof texture. Methods based on Fourier Transform perform poorly in pratie, dueto its lak of spatial loation, while the Wavelet Transform method posseses aapability of time (spae) loation of signal spetral features [Mal89℄.Several psyho-visual studies [RL93℄[Jul86℄ demonstrate that the human visualsystem proesses images in a multi-sale manner. This knowledge motivates theuse of multi-sale or multi-resolution approahes for texture analysis. Therefore,the sale is the most important parameter, whih is determined by the size of thetextural element or the onsidered neighborhood. The Wavelet Transform providesa formal tehnique for suh an approah [CR95℄.Wavelet TransformThere are two advantages to mention onsidering Wavelet Transform. It has beendemonstrated that Disrete Wavelet Transform an lead to better texture modeling[Mey93℄. Varying spatial resolution allows it to represent textures at the mostsuitable sale. Additionally, the wide range of hoies for the wavelet basis funtionmakes it easily adjustable. 19



20 CHAPTER 3. TEXTURE FEATURESThe disadvantage of Wavelet Transform is that it is not translation-invariant[LCC97℄ and thus results in di�erent oe�ients as soon as the soure signal isshifted.The Wavelet Transform utilizes a basi funtion ψ(t), the so-alled `motherwavelet', whih is saled with a fator α and shifted to the position τ of the timeaxis. The following integral desribes the Wavelet Transform (WT) of a signal f
WT (τ, α) =

∫ ∞
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f(t)ψα,τ (t)dt. (3.1)Limiting the range of α and τ to the following disrete values,
α = 2−µ , τ = kα , µ, k = ..., 0,±1,±2, ... (3.2)generates a family of Wavelets ψµ,k(t) from one basis funtion ψ by
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2µψ(2µt− k), ψ0,0(t) = ψ(t). (3.3)The orthogonal property of a wavelet family is of importane, sine it maintainsthe textural struture along the di�erent sales of the transform.Two funtions mutually orthonormal are initially adopted: the saling funtion
φ, whih inreasingly redues the resolution of the funtion f and the motherwavelet funtion ψ . Saling funtion and wavelet funtions take over the generaltask of low- and highpass �ltering. Other wavelets are then produed by translationof the saling funtion φ and dilations of the mother wavelet ψ, aording to theequations:

φµ,k(t) =
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2µφ(2µt− k) (3.4)
ψµ,k(t) =

√
2µψ(2µt− k). (3.5)

µ, k ∈ ZZ are the sale and translation indies, respetively; the fator √2µ isan inner produt normalization.The Wavelet Transform an easily be extended to multiple dimensions, beauseone an utilize a separable desription. In the ase of a two-dimensional image
f = [fj,k], the wavelet deomposition is obtained by separable �ltering along therows and olumns of an image. The use of a pyramid-struturedWavelet Transformfor texture analysis was �rst suggested in the pioneering work of Mallat [Mal89℄.Pairs of wavelet �lters inluding a lowpass �lter g (saling funtion) and a highpass�lter h (wavelet funtion) are utilised to alulate the wavelet oe�ients. Inpratie, the transform is omputed by applying a separable �lter bank to theimage:
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Figure 3.1: Twodimensional Wavelet Transform. fµ is subsequently subdivided.
fµ =

[

gx ∗
[

gy ∗ fµ−1

]

↓2,1

]

↓1,2
(3.6)

d0,µ =
[

hx ∗
[

gy ∗ fµ−1

]

↓2,1

]

↓1,2
(3.7)

d1,µ =
[

hx ∗
[

hy ∗ fµ−1

]

↓2,1

]

↓1,2
(3.8)

d2,µ =
[

gx ∗
[

hy ∗ fµ−1

]

↓2,1

]

↓1,2
(3.9)where ∗ denotes the onvolution operator, ↓ 2, 1(↓ 1, 2) denotes the downsam-pling along the rows (olumns) and f is the original image.Every subimage ontains information of a spei� sale and orientation of theoe�ients. Spatial information is retained within the subimage. The original im-age f is thus represented by a set of subimages at several sales at level µ. Subim-age fµ is obtained by lowpass �ltering and is referred to as the low resolutionimage. Its oe�ients representing the approximation image, while the subbandslabeled d0,µ,d1,µ,d2,µ represent the detail images at sale µ. The latter are obtainedby bandpass �ltering in a spei� diretion and thus ontain diretional informa-tion. Subimage d1,µ represents diagonal details while d2,µ gives horizontal highfrequenies (vertial edges) and d0,µ ontains vertial high frequenies (horizontaledges).At the subsequent sale of analysis, the image fµ undergoes the deompositionusing the same g and h �lters, having always the lowest frequeny omponentloated in the upper left orner of the image as illustrated in �gure 3.2. Eahstage of the analysis produes four subimages whose size is redued to the halfompared to the previous sale.A simple example for a saling funtion as well as a wavelet basis funtion isthe Haar funtion, de�ned as
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Figure 3.2: Example of a three level Wavelet deomposition of an image with Haarbasis [Nie07℄
φ(t) =

{

1, 0 ≤ t < 1

0, otherwise
ψ(t) =











1, 0 ≤ t < 1

2

−1, 1

2
≤ t < 1

0, otherwise

(3.10)and applied in �gure 3.2. The Haar saling funtion and wavelet funtion isillustrated in �gure 3.3.PSfrag replaements φ ψ

111 1 tt -1Figure 3.3: Haar funtions φ(t) (saling funtion) and ψ(t) (wavelet funtion).Other examples for wavelets are the Daubehies family [Dau92℄, a speial formthat was invented by Ingrid Daubehies or the Odegard wavelet [OB96℄.



3.2. STATISTICAL METHODS 233.2 Statistial methodsStatistial methods deal with observed ombinations and relationships between thegray levels at spei�ed positions. Statistis are lassi�ed into �rst-order, seond-order and higher-order aording to the level of pixel ombination. The mostpopular seond-order statistial features for texture analysis are derived from theso-alled Co-ourrene Matrix [HDS73℄. They are known to have a potential for ef-fetive texture disrimination in biomedial images [LSS+93℄. Beside this, texturefeatures provide measures of properties suh as ontrast, smoothness, oarseness,randomness, regularity, linearity, diretionality, periodiity, and strutural om-plexity. Loal Binary Patterns (LBP) are another promising method for texturedesription.3.2.1 Co-ourrene Matrix (GLCM)A Graylevel Co-ourrene Matrix P an be regarded as a seond-order histogramof dimensions equal to the number of intensity levels, G, in the image. The matrixelement P∆x,∆y(i, j) represents the absolute frequeny with whih two pixels withintensity i and j our within a given neighborhood separated by a pixel distane
∆x and ∆y . Given a M × N image size of an input image I ontaining G graylevels, let I(m,n) be the intensity at image row m and olumn n.

P∆x,∆y(i, j) =

N−∆y
∑

n=1

M−∆x
∑

m=1

{

1, if I(m,n) = i ∧ I(m+ ∆x, n + ∆y) = j

0, otherwise (3.11)To ompute the relative frequenies of eah GLCM value, one must normalizethe absolute values of P∆x,∆y(i, j) by using the following fator α
α =

1

(M − ∆x)(N − ∆y)
. (3.12)A small 5 × 5 subimage with 4 gray levels and its orresponding GLCM P 1,0is illustrated in �gure 3.4.Another ommon notation of the GLCM is the usage of a distane-angle rep-resentation P a,θ as depited in �gure 3.5, where in most ases the omputation islimited to the angles θ = 0◦, 45◦, 90◦, 135◦, sine the knowledge of P a,180, P a,225,

P a,270, P a,315 adds nothing to the spei�ation of the texture. For instane P a,180an be regarded as the transpose of the matrix P a,0. Additionally, one an onsiderto ompute a symmetri Co-ourrene Matrix out of this dependeny.If a rotation-invariant version of the GLCM wants to be ahieved, one analulate an average matrix out of the four matries θ = 0◦, 45◦, 90◦, 135◦.
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Figure 3.4: Example image and its Graylevel Co-ourene Matrix with ∆x = 1 and
∆y = 0. The graylevel relation i = 3 and j = 1 is emphasized with an ourene of 2.
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Figure 3.5: Geometry for angle representation for four distanes a and four angles θIt is obvious that oarser textures require larger values of the distane a, whileit is reommanded to hoose a = 1 for �ner resolutions to represent mirostruturesin the image.A number of GLCM-based statistial features m an be alulated using theCo-ourene Matrix for the purpose of texture desrimination; 14 of them wereinitially proposed by Haralik [HDS73℄. The denotation of those measurementsrequire the introdution of the following variables. The row and the olumn sums ofthe GLCM are desribed by Px and Py. Mean and standard deviation of those sumsare denoted by µx, µy, σx, σy. Px(i) is the ith entry in the marginal-probabilitymatrix obtained by summing the rows of P (i, j).
Px(i) =

G−1
∑

j=0

P (i, j) (3.13)
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µx =

G−1
∑

j=0

i

G−1
∑

j=0

P (i, j) =

G−1
∑

j=0

iPx(i) (3.14)
σ2

x =

G−1
∑

j=0

(i− µx)
2

G−1
∑

j=0

P (i, j) =

G−1
∑

j=0

(Px(i) − µx(i))
2 (3.15)This is equally de�ned for µy, σy. The following list ontains the statistialmeasurements whih an be extrated from the Co-ourene Matrix.

• Angular Seond Moment (ASM):
s0 =

G−1
∑

i=0

G−1
∑

j=0

P (i, j)2 (3.16)Angular Seond Moment an be regarded as a measure of homogeneity of animage. A homogeneous sene will ontain only a few gray levels, resulting ina GLCM with only a few but high values of P(i,j). Thus, the sum of squaresof those values will be high.
• Correlation:

s1 =

G−1
∑

i=0

G−1
∑

j=0

ijP (i, j) − µxµy

σxσy

(3.17)Correlation is a statistial tehnique that shows whether and how stronglypairs of gray levels are related.
• Inverse Di�erene Moment (IDM):

s2 =
G−1
∑

i=0

G−1
∑

j=0

P (i, j)

1 + (i− j)2
(3.18)IDM is in�ueend by the homogeneity of the image, for example IDM willget small ontributions from inhomogeneous areas. The result is a low IDMvalue for inhomogenous images and a high value for homogeneous images.

• Entropy:
s3 = −

G−1
∑

i=0

G−1
∑

j=0

P (i, j)log2P (i, j) (3.19)Entropy desribes the average information ontent and is a statistial mea-sure of randomness.
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• Cluster Shade:

s4 =
G−1
∑

i=0

G−1
∑

j=0

(i+ j − µx − µy)
3P (i, j) (3.20)

• Cluster Prominene:
s5 =

G−1
∑

i=0

G−1
∑

j=0

(i+ j − µx − µy)
4P (i, j) (3.21)Cluster Shade and Cluster Prominene are measures of the skewness of thematrix, whih an be seen as a lak of symmetry. When Cluster Shade andCluster Prominene are high, the ontent of the image is not symmetri.

• Inertia (Contrast):
s6 =

G−1
∑

i=0

G−1
∑

j=0

(i− j)2P (i, j) (3.22)Inertia is a measure of loal intensity variation that favours ontributionsaway from the diagonal of the GLCM.3.2.2 Loal Binary Pattern (LBP)
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g6 g7 g8Figure 3.6: Calulation of the L8ode from an example neighborhoodThe Loal Binary Pattern is de�ned as a graysale invariant texture measure,derived from a general de�nition of texture in a loal neighborhood. It was �rst in-trodued as a omplementary measure for loal image ontrast in [OPH96℄ and hadalready found appliation in several polyp detetion systems [KWL+00, WKKT01℄.Several versions of this operator have been developed [POX00, OPM00, MOPS00℄and will be shown here.



3.2. STATISTICAL METHODS 27The original LBP method an be desribed as follows. Traditionally, the LBPworks on a 3 × 3 neighborhood, therefore a subsript 8 for the eight neighbors isused in the following. The value of the enter pixel g0 is used as threshold for eahof its eight neighbors as depited in �gure 3.6. If the value of the neighborhoodpixel gi, i = 1, 2, ...8 is higher than the enter pixel, 1 will be inserted at theorresponding position in the LBP, 0 otherwise. The LBP ode for a neighborhoodis then produed by multiplying the thresholded values with binomial weights givento the orresponding pixels, and summing up the result. The weights onsist ofpower of two values. The following equation shows the omputation of the LBPode L8.
L8(g0) =

8
∑

i=1

s(gi − g0)2
i−1 s(x) =

{

1, if x ≥ 0

0, otherwise
(3.23)A histogram an then be omputed over the frequenies of the L8 odes whihour in an image. The LBP is by de�nition invariant against any monotonitransformation of the gray sale. This means that only the ontrast between theneighborhood and the enter pixel is of importane instead of the gray value itself.Opponent-Color LBPAn opponent-olor version of the LBP was introdued [Mä03℄ and found applia-tion in [AWP+09℄. The signi�ant di�erene to the original LBP is the usage ofsingle olor hannels of the RGB olor spae instead of the graysale range. Further-more, the feature onsists of inter hannel information, beause the neighborhoodis derived from a di�erent olor hannel than the enter pixel. All ombinationsof olor hannels result in six histograms. Additionally, three LBP-histograms areomputed from eah olor hannel separately. At the end, the frequenies held innine histograms make up a feature vetor.Rotation-Invariant-LBP8The original LBP ode is not rotation invariant. It produes 256 di�erent outputvalues, orresponding to the 28 = 256 di�erent binary patterns that an be formedby the 3 × 3 neighborhood. Thus, rotating a partiular binary pattern results ina di�erent LBP ode. From a loal binary pattern, a 8-bit ode an be lokwisegenerated as illustrated in 3.7 [POX00℄. For the rotation invariant approah it isadvisable to index the neighbor set in a way that they form a irular hain andinterpolate the diagonal pixels as illustrated in �gure 3.8.
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Figure 3.8: Interpolation of 3 × 3 neighborhood (left) and 5 × 5 neighborhood (right).Gray irles notate non-interpolated pixel, white irles are interpolated.To remove the e�et of rotation, an unique identi�er is assigned to a pattern,that rotated has always the same bitsequene [OPM00℄.
Lri

8 (g0) = min {ROR(L8(g0), i)| i = 0, 1, ...7} (3.24)Equation 3.24 de�nes a irular bit-wise right shift ROR on the 8-bit lj itimes. The supersript ri stands for rotation invariane. This orresponds torotating the neighborhood lok-wise as many times as the maximal number ofmost signi�ant bits is 0. Figure 3.9 shows the 36 possibilities for rotation invariantloal binary patterns. Their frequenies are ounted over the image and insertedinto a histogram. It is super�uous to multiply the binomial weights with theLBP to ompute the LBP ode. Instead, the 8-bit pattern onverted to a deimalnumber an be used as label.
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Figure 3.9: 36 unique rotation invariant LBP odes. Gray squares notate number 1,white squares 0.Certain desriptions of mirostrutures an be expressed in L8
ri onsidering the�rst row of �gure 3.9. For example, pattern a) detets bright spots, pattern i) darkspots, while pattern )-e) serves as edge desription.Subset-LBP8Another LBP approah is to use subsets of the proposed shemes. Using all of the36 patterns in �gure 3.9 lead to a suboptimal result aording to [MOPS00℄. Theystate that some patterns sustain rotation better than other; the latter only onfusethe analysis. They are more likely to be similar to a di�erent struture uponrotation. To overome this, only patterns are hosen for individual representation,that have a spatial transition (bitwise 0/1 hanges) of at most two. For example,pattern 00000000 and 11111111 have 0 transitions, while the other seven patternsin the �rst row of �gure 3.9 have two 0/1 transistions. Let U be a funtion thatounts the 0/1 transitions in eah pattern then the SubsetLBP8 is de�ned by thefollowing equation:

Lsubset
8 =

{

L8(g0) , if L8(g0) ∈ S

59 , otherwise
(3.25)

S = { x | 0 ≤ x ≤ 255 ∧ U(x) ≤ 2} (3.26)Equation 3.25 assigns an unique label to the nine uniform patterns and their ro-tated versions, as illustrated in 3.9 a)-i) (11111111, 01111111, 00111111, 00011111,00001111, 00000111, 00000011, 00000001, 00000000). This ends up in 58 frequeny



30 CHAPTER 3. TEXTURE FEATURESbins. The 27 other rotation invariant patterns in �gure 3.9 are being grouped un-der the misellaneous label (59). Supersript set orresponds in this ase to theuse of rotation invariant uniform patterns as well as a subset of rotation variantpattern.Rotation-Invariant-Subset-LBP16A last LBP approah whih is examined in this work is to use a bigger neighborhoodthan the L8 operator does. The oarse 45◦ quantization level of the angularspae through the 8 pixel neighborhood leads to a non-optimal representation[OPM00℄. To address this, �gure 3.8 shows a modi�ation, where a lokwisede�ned neighborhood onsisting of 16 pixel is presented. In this way, a �nerresolution of 22.5◦ an be obtained. The gray values of neighbors whih do notfall exatly in the enter of pixels are omputed by interpolation. The di�erentspatial resolution an also be seen as advantegous when performing multiresolutionanalysis.
L16(g0) =

16
∑

i=1

s(gi − g0)2
i−1 (3.27)The L16 operator de�ned in equation 3.27 has 216 = 65536 output values and 243rotation invariant patterns.

Lsubset,ri
16 =

{

∑16

i=1
s(gi − g0) , if U(L16) ≤ 2

17 , otherwise
(3.28)The �rst ase shows that again only 17 patterns are used for individual label-ing that have at most two 0/1 transitions. These orrespond to the number ofones ouring in the bitode, for example from 0 (pattern 0000000000000000) to16 (pattern 11111111111111111). Label 17 groupes the frequenies of all otherpatterns.



Chapter 4Classi�ation and EvaluationAfter applying feature extration methods on the image, learning a lassi�er isthe subsequent step in a traditional pattern reognition system. A lassi�ationtask usually involves training and testing data whih onsists of data samples. Thedisjunt separation into training and test sets an be done by rossvalidation. Eahsample in the training set has one target value ωi from a prede�ned set of lasslabels Ω = {ω1, ω2, ..., ωk} and values of the feature vetor.4.1 CrossvalidationCrossvalidation is a ommonly used tehnique to partition sample sets into om-plementary subsets. For instane, the k-fold rossvalidation separates the originalsample into k subsets. k − 1 subsets are then used for training of the lassi�er,while the remaining data set serves as validation. This proedure is repeated ktimes, with eah of the subsamples used one as testing data. The k results arethen averaged over the folds. A strati�ed k-fold rossvalidation implies that thelass distribution is retained in eah subset.4.2 Support Vetor MahinesThe Support Vetor Mahine (SVM) is a lassi�er that is already used in severalapproahes for the detetion of polyps [IMK06℄ [LCK05℄ [KIM+03℄ [ACN07℄.The goal of SVM is to produe a model whih predits lasses of samples inthe testing set, where only the features are given [CV95℄. It an be seen as anextension of linear lassi�ers, where a linear deision funtion f : IRn −→ IRmaps eah feature to a positive or negative lass. Linear lassi�ers are limited toertain appliations, beause not every problem is linearly separable as depited in�gure 4.1. To solve non-linear problems, a kernel funtion is utilized to projet the31



32 CHAPTER 4. CLASSIFICATION AND EVALUATIONfeatures into higher dimensional spae. The approah for linear separable problemsan be then applied in higher dimensions.One representative kernel funtion is the radial basis funtion (RBF) that willommonly be used if the number of training objets is higher than the number ofdimensions of the feature vetors [HCL08℄.A hyperplane is used to separate the feature spae in a way that featuresbelonging to the same lass are loated on one side of a hyperplane. The mostimportant property onerning hyperplanes is the distane between the featureand the hyperplane. The goal is to �nd the largest possible distane between thehyperplane and the features in the set.

Figure 4.1: Example for linear separable feature spae (left) and non-linear separablefeature spae (right).4.3 k-Nearest Neighbor Classi�erThe k -NN algorithm is a very simple approah for lassi�ation. It is a type ofinstane-based learning, or lazy learning, where all omputation is deferred untillassi�ation. No expliit training step is required, beause it onsists only ofstoring the feature vetors and lass labels of the training samples.The multidimensional feature spae is ideally partitioned into regions by loa-tions and labels of the training samples. The objets, represented as vetors, arelassi�ed based on the losest training examples in the feature spae. They areassigned to the lass most ommon amongst its k nearest neighbors, based on amajority vote (�gure 4.2).On the one hand, large values of k redue the e�et of noise on the lassi�ation,on the other hand larg values of k make boundaries between lasses less distint.It is reommended to hoose k to be an odd number in two lass lassi�ationproblems to avoid ambiguous situations. Commonly, one uses Eulidean distaneto determine the nearest neighbors, but in general any distane funtion ould beapplied [AKA91℄.
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Figure 4.2: Example for k-Nearest Neighbor lassi�er.sik person healthy personpositive test true positive (tp) false positive (fp)negative test false negative (fn) true negative (tn)Table 4.1: Medial onfusion matrix for a two lass lassi�er4.4 Evaluation of ResultsThe results of the lassi�ation have to be evaluated. The motivation is to use astandard for evaluation suh as a onfusion matrix. Table 4.1 shows the onfusionmatrix for a two lass lassi�er onerning medial issues.The performane of a system is ommonly evaluated using the data in thematrix for omputing two statistial measures: spei�ity and sensitivity.The spei�ity s measures the relation between determined healthy tissue andthe real ourrene of healthy tissue. Hene it indiates the proportion of negativeswhih are orretly identi�ed.
s = P ( negative test| healthy person) =

tn

tn + fp
(4.1)The sensitivity t measures the proportion of atual positives whih are orretlyidenti�ed as suh and is de�ned by the following onditional probability

t = P (positive test| sick person) =
tp

tp + fn
. (4.2)Considering lassi�ation of polyps, sensitivity desribes the relation betweenatually deteted polyps to the real number of polyps.



34 CHAPTER 4. CLASSIFICATION AND EVALUATIONAn optimal predition an ahieve 100% sensitivity (i.e. predit all people fromthe healthy group as healthy) and 100% spei�ity (i.e. predit all people fromthe sik group as sik).sensitivity and spei�ity are losely related to the onepts of type I (α) andtype II (β) errors. For example a false-positive result (healthy people wronglyidenti�ed as sik) is a type I error, while false-negative result (sik people wronglyidenti�ed as healthy) is a type II error.Besides this, the reeiver operating harateristi (ROC)-graph [GJ66℄ providesa further method for evalution of lassi�ers. While sensitivity and spei�ity onlyrely on either positive or negative ases, the ROC-graph ombines both. A thresh-old desribing whih objet is assigned to eah lass an be varied by grouping pairs
(s, t) of sensitivity and spei�ity together. Those pairs �nally form the ROC-urveas illustrated in �gure 4.3. The higher the true positive rate and smaller the falsenegative rate, the better is the predition auray and the lassi�er.The area under the ROC urve (AUC) an be omputed from the ROC-graphas indiation for the performane of the lassi�ation in one value. Considering
(si, ti), i = 1, 2..n with s0 = 0, t0 = 0, sn = 1 and tn = 1 as the points of theROC-graph. The AUC a an be omputed by the following equation

a =

n
∑

i=1

1

2
(ti + ti−1) (si − si−1) (4.3)
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Chapter 5System DesriptionThis hapter introdues the single omponents of the system and gives an exatdesription of the lassi�ation sheme. Espeially it is foussed on the hangeswith regard to the system of [AWP+09℄. The software was programmed in C++.The following libraries are utilized:
• ITK - Segmentation and Registration Toolkit [ISNC05℄
• QT - A ross-platform appliation and UI framework [QT℄
• QWT - Qt Widgets [QWT℄
• Wavelet - a Class Library for Wavelet Transforms on Images [Wav℄.5.1 DataThe data base onsists of four hours of video data from di�erent olonosopiesinitially used in [AWP+09℄. The data has been evaluated by medial speialistsfrom the Beaumon Hospital Dublin. The obtained ground-truth data was usedto extrat four senes with polyps under varying illumination, view angle anddistane. Eah of the four senes onsists of approximately 400 single frames witha resolution of 800 × 800 pixel.From the four senes a heterogenous set of 130 frames is randomly hosen whihis an important fat. In ontrast to the test and training sets in the work fromAmeling [AWP+09℄, this data set an be seen as quite heterogenous. [AWP+09℄hose subsequent frames from the videos whih are very similar leading to a dupli-ation of nearly the same data in test and training set despite the use of rossvali-dation.To represent ground-truth data image masks are reated as depited in �gure5.1. The white region in the referene images desribes the exat loation, sizeand shape of a polyp. 35
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Figure 5.1: Endosopi image and its referene mask5.2 PathesA path approah is seleted in the proessing of eah image. An image is subdivedinto several square subimages, the so-alled pathes. Their size and degree ofoverlapping an be de�ned.For eah path, a feature vetor is omputed and lassi�ed as polyp or non-polyp.This is a ommon tehnique in appliations examing texture beause texture fea-tures an be estimated on eah of those subimages resulting in a loal lassi�ation.The whole image was utilized for omputation of texture features but the exatposition of the polyp, if deteted, would remain unknown.Another tehnique is to apply region segmentation on endosopi images suh asWatershed Transform [VS91, DHHM06℄ or Region Growing [SC80℄. Features anbe omputed separately from the deteted regions instead of estimating them frompathes. This method hardly depends on the performane of region segmentationand thus has not been onsidered here.In [AWP+09℄ pathes will be assigned to a lass if the path is ompletely �lledwith blak or white pixels. Thereby the so alled mask image serves as referene forlass labeling, see �gure 5.2. Two general remarks an be made on this approah.Pathes whih ontain polyp and non-polyp information at the same time are notonsidered in the system. Thus, the border of a polyp remains ompletely unseen,although it may also ontain important information for feature distintion andlassi�ation. Another aspet is that small polyps will not be deteted, if thehosen path size is bigger than the polyp. Consequently, the omputed false-negative rate does not orrespond to the real false-negative rate.The approah in this work is to onsider all pathes. Pathes that ontainpolyp as well as non-polyp information are lassi�ed orresponding to the following
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Figure 5.2: up left: endosopi image divided in pathes; up right: orrespond-ing mask image down left: mask image - red olored pathes are not onsidered in[AWP+09℄; down right: mask image - the pathes must ontain over 625 of white pixelsto be assigned to the polyp lass
sheme: All intensity values in the mask image are ounted. If the sum is equal orhigher than value 625, the path will be mapped to the polyp domain, otherwiseit is a non-polyp path.Another aspet of the path approah to onsider is that some images are notfully subdivided depending on the endosopi image size (800 × 800 pixel in thisase) and the spei�ed path size as illustrated in �gure 5.3 (left). Consequentely,parts of the right and lower border remain unseen on eah image due to the rastersan algorithm. To ounterat this situation, a path overlapping an be utilized,whih is depited in �gure 5.3 (right). Neighboring pathes overlap eah other andall parts of the image are onsidered.
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Figure 5.3: left: situation where the image size is not divisible without remainder bythe path size; right: applied path overlapping5.3 Experimental FlowThe extrated features must be lassi�ed and evaluated for instane through anAUC value. Therefore, a data mining software alled WEKA [WEK℄, developedat the University of Waikato in New Zealand, provides adequate means. Thesoftware is written in Java and ollets several mahine learning algorithms. Taskssuh as data pre-proessing, lassi�ation, regression, lustering and visualizationare manageable.[AWP+09℄ utilizes in his work a library for Support Vetor Mahines alledLibSVM [CL01℄. The SVM is also available in WEKA whih ontains a wrapperlass for LibSVM.WEKA uses the attribute-relation �le format (ARFF) as input. Suh �leshave two distint setions as shown in �gure 5.4. The �rst setion is the headerinformation (1) whih is followed by the data information (2). The header ontainsthe name of the relation, e.g. the name of the feature and a list of the attributeswhih are the dimensions of the feature vetor and their types. One attributedimension is used as lass assigner. In this ase, the non-numeri lasses polypand nonpolyp serve as lass labels. The seond part onsists of all data samplesdenoted by �data. Their attributes must orrespond to the types de�ned in theheader setion. In �gure 5.4 �ve data examples are given.WEKA provides a knowledge �ow interfae for planning experiments with sev-eral lassi�ers at a time. In �gure 5.5 the experimental �ow of the tests andexperiments presented in this work (hapter 6) is depited. In (1) an ARFF-�leis loaded, whih is the output of the feature extration module written in C++.



5.3. EXPERIMENTAL FLOW 39The ClassAssigner in (2) tells WEKA, whih of the attributes desribes the lass.The ClassValuePiker (3) allows to hoose the lass label to be evaluated in theROC. Step (4) produes a random subsample of the dataset and ensuring a speialdistribution spread of the lasses. Di�erent adjustments are possible in SpreadSub-sample for instane a 1:1 or 1:2 lass distribution of polyp samples to non-polypsamples an be hosen. [WP01℄ shows that a balaned training set produes betterresults. Thus, the lass distribution in a training set an have a signi�ant e�et onthe lassi�ation. Nevertheless, it is hard to predit whih distribution is the bestfor a given problem. In the performed experiments, a �xed value of 1:1 has beenhosen to overome the problem that non-polyp pathes our more frequentlythan polyp pathes. In step (5) all attributes are standardized to have zero meanand unit variane. Another preproessing step was tested at this on�gurationstep, alled normalization. The Standardization resulted in a better performaneand hene was integrated in the experimental �ow.A CrossValidation (6) is applied afterwards, whih produes separated trainingand test sets for eah of the n folds with n = 4. Subsequently, two di�erentlassi�ers are trained on the generated set and both are validated on the test sets,alled SVM (7a) and k-NN lassi�er (7b). For (7a) the same kernel type as in[AWP+09℄ is hosen whih is a radial basis funtion (RBF). The RBF-kernel isuseful for lassi�ation problems, where the number of training samples is muhhigher than the number of dimensions of the feature vetor [HCL08℄. (7b) is a k-nearest neighbor lassi�er with k = 11. The PerformaneEvaluator (8) evaluatesthe results of eah lassi�er, given its results to a visualization tool (9a) as wellas to a TextViewer (9b). In 5.6 an example output �le illustrates the resultsof the lassi�ation with SVM. Di�erent statistis an be analyzed, suh as truepositive rate, false positive rate, onfusion matrix, ROC Area as well as orretlyand inorretly lassi�ed instanes.



40 CHAPTER 5. SYSTEM DESCRIPTION

Figure 5.4: Example ARFF-File of the GLCM6-feature from [AWP+09℄.

Figure 5.5: Experimental �ow of the following tests with steps from (1)-(9a,9b)

Figure 5.6: Example output WEKA text�le of step (9b).



Chapter 6Feature Desriptions andExperimentsThis hapter gives an overview over the implemented features, starting with thefeatures from [AWP+09℄ in setion 6.1. They are tested on the new image set.Subsequently, new texture features are illustrated and evaluated. All of the appliedmethods suh as Wavelet Transform, Graylevel Co-ourrene Matrix and LoalBinary Patterns are already desribed in hapter 3, whih provids the theoretialbakground. At the end of this hapter, a disussion about the performane of thefeatures is attahed.In the following experiments these general aspets are examined onsideringthe task of polyp detetion:
• the performane of the lassi�ers
• the impat of olor, olor spae and olor hannel
• the performane of texture features suh as GLCM and LBP
• the impat of Wavelet Transform
• the impat of omputing varianes and ovarianes from the statistial mea-surements
• the path size6.1 Existing featuresThe polyp detetion system of [AWP+09℄ implementes four features, namely GLCM6,GLCM16, LBP and OC-LBP. For the purpose of a better omparison to the fea-tures implemented in this work, they are evaluated again by the new experimental�ow desribed in setion 5.3. The heterogeneous set of 130 endosopi images isused as data base for feature extration.41



42 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTS6.1.1 GLCM6, GLCM16, LBP, OC-LBPThe following table 6.1 shows the lassi�ation results for a path size of 64 × 64.They are spei�ed by the area under the ROC urve (AUC) values of a k-Nearest-Neighbor lassi�er (k-NN) and a Support Vetor Mahine (SVM).RGB-Channel AUCFeature R G B Path Size k-NN LibSVMGLCM6 graysale 64 × 64 0.72 0.74GLCM16 graysale 64 × 64 0.735 0.735LBP graysale 64 × 64 0.75 0.76OC-LBP × × × 64 × 64 0.80 0.818Table 6.1: Classi�ation AUC values of the features implemented in [AWP+09℄6.1.2 DisussionThe AUC results from the tests applied in [AWP+09℄ are onsiderably higher thanthose depited in table 6.1. The four homogeneous training and test sets used in[AWP+09℄ provide an easier way to lassify polyp and nonpolyp pathes. Someimages hardly di�er from eah other, beause suessive frames are hosen and�nally resulting in a loss of disjuntion between training and test set.Nevertheless, the overall essene of the tests from [AWP+09℄ orresponds tothese results. The OC-LBP feature performs best by reason of using the RGBolor spae instead of graysale images, sine olor has obviously a positive e�eton lassi�ation of tissue images.6.2 Wavelet FeaturesThe Wavelet features introdued in the setions below are implemented due to thefat, that Wavelet Transform ontributes to a better texture modelling [Mey93℄.Varying spatial resolution allows it to represent textures at the most suitable sale.It is examined, whether the Disrete Wavelet Transform has a positive e�eton the lassi�ation of polyps. Therefore, di�erent adjustements are tested suhas deomposition level and basis funtion. This annot be seen separately fromthe path size, whih determines the sizes of the subimages in subsequent levels ofdeomposition.Additionally, the olor approah has been further examined by testing di�erentolor spaes and olor hannels.



6.2. WAVELET FEATURES 436.2.1 Color Wavelet and Color Wavelet CovarianePSfrag replaements
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Figure 6.1: Wavelet detail omponents di
l,µ with deomposition level µ and waveletband l on olor hannel i and approximation omponent fµ.The Color Wavelet Covariane (CWC) feature, initially proposed by Karkaniset al. [KIM+03℄ was implemented and tested with di�erent parameter adjustments.This method onsiders texture and olor as information for desriminating polypsfrom normal tissue. In the following, several adjustments are desribed.Considering the original image I, one an obtain its olor transformation fromRGB in HSV, K-L, Cie-Lab spae. Eah of them results in three deomposed olorhannels Ii, i = 0, 1, 2. Then a two level Disrete Wavelet Transform is appliedon eah olor hannel (I i) separately. The resulting nine subimages of the detailomponents di

l,µ, l = 0, 1, 2, from the seond deomposition µ = 2 are used forfurther proessing (�gure 3.1). Four GLCMs P a,θ, with a = 1, θ = 0◦, 45◦, 90◦, 135◦are omputed on eah of the nine subimages, resulting in 36 matries.
P a,θ(d

i
l,2) i = 0, 1, 2, l = 0, 1, 2, a = 1, θ = 0◦, 45◦, 90◦, 135◦ (6.1)The number of intensities to ompute GLCMs is redued to 64 without anyharmful impliation in the resulted overall sensitivity, speeding up omputationwith only a minor loss of textural information. Four statistial measures sm, alledEnergy (m = 0), Correlation (m = 1), Inverse Di�erene Moment (m = 2) andEntropy (m = 3) are extrated from these GLCMs, resulting in 144 texture val-ues. They were initially proposed by Haralik [HDS73℄ from a set of 14 measures,de�ned in subsetion 3.2.

sm(P a,θ(d
i
l,2)) m = 0, 1, 2, 3 (6.2)



44 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTSIn the proposed sheme, the CWCl
m(i, j) textural measure is �nally estimatedfrom ovarianes of the same statistial measure between olor hannels i, j atsubimage dl,2.

cov[sm(P a,θ(d
i
l,2)), sm(P a,θ(d

j
l,2))]

=
∑

θ

[sm(P a,θ(d
i
l,2)) − E(sm(P a,θ(d

i
l,2)))] × [sm(P a,θ(d

j
l,2)) − E(sm(P a,θ(d

j
l,2)))](6.3)This results in a 72 dimensional feature vetor, onsisting of 36 varianes, as theyrelate features from the same olor hannel and 36 ovarianes from di�erent han-nels.

CWCl
m(i, j) =

{

cov[sm(P a,θ(d
i
l,2)), sm(P a,θ(d

j
l,2))], if i < j

var[sm(P a,θ(d
i
l,2))], if i = j

(6.4)For instane, detail omponent d0
0,2 of the seond deomposition from the redhannel is used to ompute the GLCMs P 1,0 P 1,45, P 1,90 and P 1,135, where themeasure Energy (s0) is estimated. Those four measurements are used to omputerelations between them (the variane). AUCFeature Basis Path Size k-NN LibSVMColor Wavelet Covariane Haar 64 × 64 0.681 0.741Haar 128 × 128 0.748 0.773Haar 256 × 256 0.679 0.719Daub8 128 × 128 0.724 0.77Table 6.2: Color Wavelet Covariane Feature, test: path size and basis funtion (Haar,Daubehies8) for seond level of deomposition and RGB olor spaeDi�erent modi�ations are performed on this feature, eah time hanging onlyone parameter. The �rst experiment reveals whih basis and whih path size per-forms best. Only path sizes of power of two are seleted, as the author of [Wav℄reommend, otherwise the Wavelet Transform su�ers from a loss of preision. Ta-ble 6.2 shows the results. It turns out that the Haar basis, introdued in setion3.1, performs best with path size 128 × 128 in ontrast to the Daubehies-family(Daub8) and smaller or bigger path sizes. Choosing subimages from the seonddeomposition level in the CWC features indiates, that it is probably not advis-able to take a smaller path size than 128× 128. This path size leads to a size of



6.2. WAVELET FEATURES 45
32 × 32 of the nine resulting subimages due to the wavelet deomposition, whihmight be a su�ient number of pixels to ompute signi�ant GLCMs.A new feature alled Color Wavelet was tested afterwards. This feature issimilar to the Color Wavelet Covariane feature, but omitting to ompute varianesand ovarianes of the di�erent olor hannels. The 144 statistial measures de�nedin equation 6.2 serve as input for the feature vetor.It turnes out that this variant performs signi�antly better than the ompleteCWC feature. The results are depited in table 6.3. AUCFeature Basis Path Size k-NN LibSVMColor Wavelet Covariane Haar 128 × 128 0.748 0.773Color Wavelet Haar 128 × 128 0.793 0.82Table 6.3: Color Wavelet Feature vs. Color Wavelet Covariane Feature for RGB olorspae AUCFeature Deomp Path Size k-NN LibSVMColor Wavelet 1 128 × 128 0.764 0.7692 128 × 128 0.793 0.82Table 6.4: Color Wavelet Feature, test: deomposition for Haar basis and RGB olorspaeConsidering the deomposition of the transform that is inorporated in theColor Wavelet feature, it is also possible to extrat the features from the �rst levelof deomposition. Table 6.4 holds the results and indiates that the seond level isstill a better hoie for 128 × 128 pixel of path size. Thus, the spatial resolutionof the seond sale level holds superior information for polyp detetion.Di�erent basis funtions are tested again for the Color Wavelet feature (table6.5). The Haar basis performs best in omparison to the Daubehies-family (Daub4and Daub8) and to a basis funtion alled Odegard [OB96℄.In a next step it is examined whether a ertain olor spae is adequate for thisfeature. As proposed in [KIM+03℄ eah path is transformed from RGB in eitherHSV, K-L or CieLab olor spae before applying the Disrete Wavelet Transformon eah hannel. Table 6.6 shows that RGB olor spae is still the best hoie forthe Color Wavelet feature.Afterwards it is evaluated whether a ertain olor hannel or olor hannelombination of the RGB spae is superior in deteting polyps. Table 6.7 showsthat the best appliation for the Color Wavelet feature is to use all hannels.



46 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTSAUCFeature Basis Path Size k-NN LibSVMColor Wavelet Haar 128 × 128 0.793 0.82Daub4 128 × 128 0.749 0.801Daub8 128 × 128 0.759 0.798Odegard 128 × 128 0.678 0.727Table 6.5: Color Wavelet Feature, test: basis funtion for RGB-olorspaeAUCFeature Color Spae Path Size k-NN LibSVMColor Wavelet RGB 128 × 128 0.793 0.82K-L 128 × 128 0.773 0.791HSV 128 × 128 0.759 0.781CieLab 128 × 128 0.791 0.801Table 6.6: Color Wavelet Feature, test: olor spaes for Haar-basis funtionNevertheless, the ombination of red and blue hannel performs slightly betterthan AUC values from other hannels.RGB-Channel AUCFeature R G B k-NN LibSVMColor Wavelet × 0.767 0.776
× 0.728 0.758

× 0.713 0.743
× × 0.776 0.803

× × 0.752 0.78
× × 0.796 0.812
× × × 0.793 0.82Table 6.7: Color Wavelet Feature, test: ombination of olor hannel for 128 × 128path size and Haar-basisTo outline the most essential results, the following box shows the best adjust-ments for the Color Wavelet feature, resulting from the applied tests.



6.2. WAVELET FEATURES 47Path size: 128 × 128Disrete Wavelet Transform: Haar-basis, 2nd level of deompositionColor Spae: RGB, all olor hannelsMeasurements: Energy, Correlation, IDM, EntropyBest AUC: 0.82
6.2.2 Wavelet-Deomposition

PSfrag replaements12

EnergyEnergy
Energy

Energy
EnergyEnergyEnergy

IDMIDM
IDM

IDM
IDMIDMIDM

EntropyEntropy
Entropy

Entropy Entropy Entropy
EntropyCorrelationCorrelation

Correlation

CorrelationCorrelationCorrelation
CorrelationEnergy

Energy
IDM

IDM
Entropy

Entropy
Correlation

Correlation
P 1,0

P 1,45P 1,90P 1,135

d0,1d0,1 d1,1d1,1

d2,1d2,1

d0,2d0,2

d0,3d0,3

d1,2d1,2

d1,3d1,3

d2,2d2,2

d2,3d2,3

1
2

f 3f 3

Figure 6.2: Example omputation of sl,µ,i
m for l = 2, µ = 1 (step 1) and sl,i

m for l = 0(step 2) of the Wavelet-Deomposition feature, regarding the statistial measurementsEnergy (m = 0), Correlation (m = 1), Inverse Di�erene Moment (m = 2), and Entropy(m = 3) on olor hannel i.The Wavelet-Deomposition feature is an approah for multiresolutional anal-ysis. Subsequent sales of the Wavelet Transform are used to ompute the feature.A three level DWT is applied to eah olor hannel i = 0, 1, 2 of the RGB olorimage. The detail omponents di
l,µ, µ = 1, 2, 3 of eah subband l = 0, 1, 2



48 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTSare utilized for further proessing. Four GLCMs are omputed on eah of the 27subimages resulting in 27 · 4 = 108 GLCMs.
P a,θ(d

i
l,µ) i = 0, 1, 2, l = 0, 1, 2, µ = 1, 2, 3, a = 1, θ = 0◦, 45◦, 90◦, 135◦(6.5)For eah GLCM four statistial measures sm are extrated, namely Energy,Correlation, IDM and Entropy resulting in 432 measurements.

sm(P a,θ(d
i
l,µ)) m = 0, 1, 2, 3 (6.6)Then for eah subband, the measures of the four GLCMs are averaged over theangle value as shown exemplarily in �gure 6.2.2, step 1. For instane, there isonly one Energy measure per subimage left after averaging the Energy of GLCM

0◦ , 45◦, 90◦, and 135◦.
sl,µ,i

m = meanθ[sm(P a,θ(d
i
l,µ))] =

1

4

∑

θ

sm(P a,θ(d
i
l,µ)). (6.7)Subsequently, the mean is omputed over the measurements from di�erentdeomposition levels, whih is depited in �gure 6.2.2, step 2. For example on-sidering olor hannel red, all Energy values from detail images d0,1, d0,2, d0,3 areaveraged.

sl,i
m = meanµ[sl,µ,i

m ] =
1

3

∑

µ

sl,µ,i
m . (6.8)All in all the feature vetor has 36 dimensions omposed of 12 measures perolor hannel. AUCFeature Path Size Basis k-NN LibSVMWaveletDeomposition 64 × 64 Haar 0.772 0.791128 × 128 Haar 0.796 0.795256 × 256 Haar 0.75 0.776Table 6.8: Wavelet-Deomposition feature, test: path size for RGB olor spaeIn table 6.8 tests for the best path size are shown. Only power of two valuesare applied. Path size 128 × 128 performing best for this feature. A three levelDWT implies, that the subimages on the third level have only a dimension of

16 × 16 using 128 × 128 path size, and only 8 × 8 pixel using path size 64 × 64.In a subsequent step GLCMs are omputed. Thus it would not make sense toderease the path size for this feature.



6.3. GLCM FEATURES 49Subsequently it was tested whether one basis funtion is superior to the otherhoosing a path size of 128 × 128 pixel. Table 6.9 implies that the Daubehies8basis funtion works marginal better than the Haar basis funtion and its relativeDaubehies4, onsidering the LibSVM results. For the k-NN lassi�er, the Haarbasis is still the best hoie. AUCFeature Path Size Basis k-NN LibSVMWaveletDeomposition 128 × 128 Haar 0.796 0.795
128 × 128 Daub4 0.756 0.789
128 × 128 Daub8 0.773 0.799Table 6.9: Wavelet-Deomposition feature, test: basis funtion for RGB olor spaeTo summarize the results the following box shows the best adjustments for theColor Deomposition feature, resulting from the applied tests.Path size: 128 × 128Disrete Wavelet Transform: D8-basis, 3 level of deompositionColor Spae: RGBMeasurements: Energy, Correlation, IDM, EntropyBest AUC: 0.7996.3 GLCM featuresThe Graylevel Co-ourrene Matrix features are implemented in order to omparethem with the Wavelet features whih also inorporate the omputation of GLCMs.The purpose is to identify whether there is a bene�t from the applied numeritransform.Another aspet onsidered here is the impat of olor. Referene values alreadyexist in the graysale features GLCM6 and GLCM16. Di�erent olor hannels andolor hannel ombinations are examined.In GLCM6 and GLCM16 di�erent numbers of statistial features are estimatedfrom the Co-ourene Matries. These adjustements are also tested in the follow-ing.Various path sizes found appliation in the experiments. It is possible tohoose muh smaller sizes than in the Wavelet features beause no deompositionis applied. Additionally, it is examined whether the path overlapping has positivee�ets on the lassi�ation of polyps.



50 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTS6.3.1 ColorGLCMThe ColorGLCM-feature is very similar to the Color Wavelet-feature, only omit-ting Disrete Wavelet Transformation. It utilizes di�erent olor hannels of theRGB olor spae for the extration of four GLCMs. The number of intensities toompute GLCMs is redued to 64, whih also holds true for all other features thatinorporates GLCM omputation.
P a,θ(I

i) i = 0, 1, 2, a = 1, θ = 0◦, 45◦, 90◦, 135◦ (6.9)Then for eah of the twelve GLCMs four statistial measures sm are extrated,namely Energy, Correlation, IDM, Entropy and additionally two values in a seondtest, namely Cluster Shade and Cluster Prominene are omputed.
sm(P a,θ(I

i)) m = 0, 1, 2, 3, 4, 5 (6.10)AUCFeature number of m Path Size k-NN LibSVMColorGLCM 4 64 × 64 0.823 0.836 64 × 64 0.828 0.838Table 6.10: ColorGLCM Feature, test: number of statistial measurementsTable 6.10 shows the marginal positive e�et of using additionally ClusterShade and Cluster Prominene as statistial measurements for GLCM desrip-tion. The more measurements are extrated from GLCMs, the more dimensionsthe feature vetor has. For m = 0, 1, 2, 3, the feature vetor holds 48 values whilefor m = 0, 1, 2, 3, 4, 5 it is 72 dimensional. Both are aeptable values with regardto omputational omplexity. Haralik initially proposed 14 features in [HDS73℄,but it is not advisable to use all measurements. Some of them orrelate to eahother. In this ase, Conners et al. [CTH84℄ propose using a set of the six featuresapplied here.In another test, it was examined whether it is advisable to use small path sizes(table 6.11). A path size of 32×32 pixel works very well for this feature, indiatingthat a maximum number of 399 pixel non-polyp information (≈ 40%) is on a polyppath. Remember that a minimum number of 625 pixel, whih orrespond to
25 × 25 pixel must belong to lass polyp to lassify the path as polyp.The best results for the ColorGLCM feature are shown below.



6.3. GLCM FEATURES 51AUCFeature number of m Path Size k-NN LibSVMColorGLCM 6 32 × 32 0.843 0.8356 64 × 64 0.828 0.838Table 6.11: ColorGLCM Feature, test: path sizePath size: 32 × 32Color Spae: RGBMeasurements: Energy, Correlation, IDM, Entropy, ClusterShade, Clus-terPromineneBest AUC: 0.8436.3.2 OC-GLCMThe Opponent-Color GLCM feature relates pairs of olor hannels by alulatingGLCMs from the pixels of di�erent olor hannels. Thus, it an be denoted asan inter-hannel feature onsidering texture as well as olor. Nine GLCMs areextrated from eah ombination of hannels: red-green, red-blue and green-blue(without onsidering permutations). A total of 27 GLCMs are omputed expressedby the following equation
P ∆x,∆y(I

i,j) i, j = 0, 1, 2, i 6= j, ∆x,∆y = −1, 0, 1. (6.11)
∆x and ∆y denote the distane to the enter pixel from another olor hannelin x and y-diretion as depited in �gure 6.3. Four statistial measures sm, alledEnergy, Correlation, IDM and Entropy are estimated from this set of OC-GLCMsforming a feature vetor of 9 · 3 · 4 = 108 dimensions.

sm(P ∆x,∆y(I
i,j)) m = 0, 1, 2, 3 (6.12)Several experiments are performed on this feature. Table 6.12 shows the resultsof running the OC-GLCM feature on di�erent path sizes. The feature works bestwith a path size of 64 × 64.Considering the sizes of the endosopi images (800 × 800) and the appliedpath size, it is notieable that the images are not fully subdivided. Parts of theright and lower border remain unseen on eah image as �gure 5.3 shows, whihis undesirable and a loss of information as well. To solve this problem, pathoverlapping an be applied. A path size of 64 × 64 with 3 overlapping pixels �ts
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Figure 6.3: OC-GLCM feature: depition of pixel relation from olor hannel i (white)and j (gray), where i 6= j. The white pixel represents the enter pixel.AUCFeature Path Size Overlap k-NN LibSVMOC-GLCM 32 × 32 0 0.827 0.81064 × 64 0 0.831 0.832128 × 128 0 0.799 0.81264 × 64 3 0.832 0.84864 × 64 32 0.871 0.856128 × 128 16 0.801 0.795Table 6.12: OC-GLCM Feature, test: path size and overlappingbetter in the given image size and leads to a higher AUC. Another interestingattempt is to use a path size of 64× 64 with 32 overlapping pixels, whih an beseen as sanning the image in two di�erent raster, performs best at all. This isalso superior to applying a smaller path size to the image.It is possible that those very positive results onstitute from the fat thatertain information ours twie or more in the training and test set, leading to aloss of disjuntion. An indiation for this is the superior performane of the k-NNlassi�er, whih takes the most similar feature vetors as a basis for lassi�ation.A proposal is to stritly separate the endosopi images that are used for trainingand testing. At the urrent stage, features are extrated �rst from the pathes ofall images and then the separation in training and test set is done.A seond test series evaluated whether a ertain ombination of olor hannelsis more disriminating in feature spae than other ones. A �xed path size (64 ×
64 pixel) and no overlapping is used for the experiments, shown in table 6.13.Involving all olor hannel ombinations lead to a higher AUC (0.832 for LibSVM)than using only one hannel ombination or two ombinations.The most promising adjustments are illustrated in the following box.



6.4. LBP FEATURES 53RGB-Channel AUCFeature RG GB RB k-NN LibSVMOC-GLCM × 0.728 0.682
× 0.775 0.783

× 0.759 0.767
× × 0.816 0.816

× × 0.808 0.803
× × 0.786 0.790Table 6.13: OC-GLCM Feature, test: ombination of olor hannelPath size: 64 × 64Color Spae: RGB, all olor hannelsMeasurements: Energy, Correlation, IDM, EntropyBest AUC: 0.8326.4 LBP featuresIn the following, several variants of the Loal Binary Patterns are tested. Theaim is to ompare the existing approahes OC-LBP and LBP with the new imple-mented features, evaluating the impat of olor, inter- and intra-hannel ombina-tions. Also the di�erent feature vetor dimensions are examined. Due to the fastomputation speed of LBP, it is not required to attempt a redution of number ofolor hannels.It is foussed primarily on the various LBP approahes. They di�er in the sizeof the neighborhood, in irular and non-irular representation (interpolation)and in the onsidered patterns. It should be evaluated whih variant performsbest.6.4.1 ColorLBPThe ColorLBP feature is the appliation of the LBP-feature on the olor hannels ofthe RGB olor spae, whih is de�ned in setion 3.2.2. This feature an be seen asa subset of the OC-LBP-feature from [AWP+09℄, where the enter pixel g0 as wellas the neighborhood gi, i = 1, 2, ...8 derive from the same hannel. The numberof bins in the LBP histogram is redued to 64 due to omputational e�ieny,resulting in a feature vetor of 3 · 64 = 192 dimensions.



54 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTSTable 6.14 shows the results of the tests, omparing simple LBP-feature, OC-LBP-feature from [AWP+09℄ and ColorLBP-feature as well as di�erent olor han-nels to eah other.RGB-Channel AUCFeature R G B Bins Dimensions k-NN LibSVMLBP graysale 64 64 0.75 0.76graysale 256 256 0.697 0.72OC-LBP × × × 64 576 0.880 0.818ColorLBP × × × 64 192 0.814 0.834
× 64 64 0.785 0.756

× 64 64 0.758 0.781
× 64 64 0.739 0.764Table 6.14: LBP vs. OC-LBP vs. ColorLBP Feature, test: olor hannel and histogrambinsThe �rst two rows show that a redued number of bins in the LBP histogram hasoverall advantageous e�ets on the lassi�ation. Considering the whole table 6.14,it an be observed that the ColorLBP-feature and the OC-LBP feature performsigni�antly better than the simple graysale LBP feature. This indiates againthat olor plays an important role in lassi�ation of tissue.Analyzing the area under the ROC urves of OC-LBP and its subset ColorLBPleads to the assumption that the feature vetor of OC-LBP has too many dimen-sions in feature spae, leading to a more omplex lassi�ation task.The last three rows of table 6.14 indiate that if one ombines the histogramsof all olor hannels will perform superior in omparison to the usage of only onesingle olor hannel. Eah of them has nearly the same AUC rate as the graysaleLBP.A summarization of the feature is given in the following.Path size: 64 × 64LBP-Histogram bins: 64Color Spae: RGB, all olor hannelsBest AUC: 0.834



6.4. LBP FEATURES 556.4.2 Rotation-Invariant-LBP8Introdued in 3.2.2, the rotation invariant Lri
8 is implemented on a 3× 3 neighbor-hood.In a �rst experiment, the Lri

8 is tested on the single olor hannels of the RGBolor spae with path size of 64 × 64 pixel. On eah hannel, the frequenies of36 LBP-invariant patterns are ounted, resulting from the shifted 8-bit odes asillustrated in �gure 3.7 and �gure 3.9. All in all a feature vetor of 3 · 36 = 108dimensions is obtained.Additionally, it was tested whether an interpolation of the diagonal pixels
(g1, g3, g5, g7) (�gure 3.8, left) lead to a better irular representation, partiularywith regard to rotational invariane.RGB-Channel AUCFeature R G B Interpolation k-NN LibSVM
Lri

8 × × × 0.78 0.79
× × × × 0.783 0.792Table 6.15: Rotation-Invariant-LBP8-Feature, test: L8

ri neighborhood diagonal inter-polated vs. non-interpolatedTable 6.15 indiates that the interpolation of the diagonal pixels from the 3×3neighborhood has slightly advantageous e�ets on the lassi�ation.The most important fats of the feature are listed in the following.Path size: 64 × 64Neighborhood: 3 × 3, interpolatedLBP-Histogram bins: 36 per hannelColor Spae: RGB, all olor hannelsBest AUC: 0.7926.4.3 Rotation-Invariant-Subset-LBP16Equation 3.28 de�nes a rotation invariant version of the LBP operator with aneighborhood onsisting of 16 pixel. Only a subset of 17 patterns of the 243 rota-tion invariant patterns are used for assigning their frequenies to single bins. Allother patterns are lassi�ed to a misellaneous label. Hene, the feature vetoronsists of 18 · 3 = 54 dimensions, due to the fat that the feature is appliedon eah RGB olor hannel. A pathsize of 64 × 64 pixel is applied. The pixels
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g1, g2, g3, g5, g6, g7, g9, g10, g11, g13, g14, g15 (�gure 3.8, right) are estimated by inter-polation onerning irular representation.RGB-Channel AUCFeature R G B Interpolation k-NN LibSVM
Lsubset,ri

16 × × × × 0.78 0.799Table 6.16: Rotation-Invariant-Subset-LBP16-featureComparing the L8
ri with the L16

ri feature leads to the onlusion that bothfeatures perform nearly the same. Thus, using a bigger neighborhood and a lessnumber of rotational invariant patterns of the LBP does not have an impat onthe lassi�ation of polyp images.Signi�ant properties of the feature are listed below.Path size: 64 × 64Neighborhood: 16 pixel, interpolatedLBP-Histogram bins: 18 per hannelColor Spae: RGB, all olor hannelsBest AUC: 0.7996.4.4 Subset-LBP8Setion 3.2.2 desribes a feature that ombines rotation invariant and variantvalues alled Subset-LBP8 LBPsubset
8 . Only the loal binary patterns 00000000,00000001, 00000011, 00000111, 00001111, 00011111, 0011111, 01111111, 1111111and their rotated versions are ounted eah of them separately in a histogram bin.The other ouring patterns are grouped under the misellaneous label. All in allthis feature forms a vetor of 59 dimensions, whih are again extrated from thesingle RGB olor hannels, resulting to 177 dimensions. Interpolation is performedon the provided 3 × 3 neighborhood as depited in �gure 3.8 (left).RGB-Channel AUCFeature R G B Interpolation k-NN LibSVM

LBPsubset
8 × × × × 0.816 0.835Table 6.17: Subset8-LBP-feature



6.5. DISCUSSION OF RESULTS 57Comparing L8
subset to the other LBP-features, this feature performs best. TheAUC result is similar to the Color-LBP feature, probably due to the equal vetordimensions.Signi�ant properties of the feature are listed below.Path size: 64 × 64Neighborhood: 3 × 3 pixel, interpolatedLBP-Histogram bins: 59 per hannelColor Spae: RGB, all olor hannelsBest AUC: 0.8356.5 Disussion of Results

• Classi�er: Comparing the lassi�ation results from the Support VetorMahine with the k-NN lassi�er leads to the onlusion that with less exep-tions the SVM has higher AUC values. There is no lear sheme reognizablein whih ases the k-NN is better. For example, for the ColorGLCM featureand OC-GLCM feature the k-NN performs better when a small path sizewas used. Testing a redued number of olor hannels with OC-GLCM andColorLBP features led to a higher AUC than the result of SVM in threetimes. Nevertheless, omparing the best lassi�ation results for eah of thetwelve features, the SVM holds the better results in eleven ases as shownin table 6.18.Applying a path overlapping to the endosopi images yield in training andtest sets to a dupliation of the same data, leading to a better lassi�ation infavor of the k-NN lassi�er. The results are shown in table 6.12. Those �nd-ings are not onsidered in the overall evaluation, beause of non-disjuntionof test and training set.The best AUC result of all applied tests resulted from the ColorGLCM fea-ture. The k-NN lassi�er performed best in this ase with an AUC of 0.843.All in all, the lassi�ation di�erenes between the two lassi�ers are smallwith a maximum di�erene of 0.06 AUC, whih is quite aeptable.
• Color versus gray: Table 6.18 gives an overview about the presented fea-tures in this hapter. Only the best �ndings for eah feature are illustrated.It is obvious that the olor features are more disriminating in feature spaethan the gray level features LBP, GLCM6 and GLCM16 from [AWP+09℄.



58 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTSFor example the best olor feature and the best graysale feature have adi�erene of 0.083 in their AUC values. Thus, olor plays an important rolein lassi�ation of polyps. AUCFeature olor gray LibSVM k-NNColorGLCM × 0.843
Lsubset

8 × 0.835ColorLBP × 0.834OC-GLCM × 0.832Color Wavelet × 0.82OC-LBP × 0.818WaveletDeomp × 0.799
Lsubset,ri

16 × 0.799
Lri

8 × 0.792LBP × 0.76GLCM6 × 0.74GLCM16 × 0.735Table 6.18: Overview over the presented features and their highest AUC
• Color spaes: Di�erent olor spaes are examined in the Color WaveletFeature. RGB, K-L, HSV and CieLab olor spaes are tested. The �ndingwas that RGB olor spae holds the best olor representation when wavelettransform is applied afterwards.
• Redution of olor hannels: In the Color Wavelet, OC-GLCM and theColorLBP feature, whih is in eah ase one representative of the eah group,a redution of the number of olor hannels or olor hannel ombinations wastested, resulting in a less dimensional feature vetor and less omputationalomplexity. It turnes out that in eah ase it is the best hoie to utilizeall olor hannels. No lear superiority of a single olor hannel ould beexamined.
• GLCM versus LBP: Eah feature implemented in this work inorporatesthe usage of either GLCM or LBP. Both are operating with similar perfor-mane. For instane, there is only a marginal di�erene between the AUCvalues from ColorGLCM, ColorLBP and the OC-GLCM feature. The fea-tures ColorGLCM and ColorLBP, whih are the appliation of the GLCMand LBP on eah olor hannel, perform surprinsingly well reahing the bestand the third best AUC values of all tests.



6.5. DISCUSSION OF RESULTS 59The main di�erene between these two texture features is the omputationalomplexity. The omputation of the GLCM is time-onsuming in omparisonto the Loal Binary Pattern.
• GLCM features: ColorGLCM, OC-GLCM, Color Wavelet, WaveletDe-omp, GLCM6, GLCM16 are the features involving Co-ourrene Matri-es, listed in dereasing order of their AUC results. Those features havethe widest range in lassi�ation results, providing the best and the worstfeature.A lear struture an be examined among the listed features. The best onesinorporate olor into the feature estimation (ColorGLCM, OC-GLCM). TheWavelet features (Color Wavelet, WaveletDeomp) perform averagly in this�eld, even though olor information is used in addition. The worst amongthe features are the gray level features GLCM6 and GLCM16.
• LBP features: Lsubset

8 , ColorLBP, OC-LBP, Lsubset,ri
16 , Lri

8 and LBP are thefeatures involving omputation of Loal Binary Patterns. The subset versionof LBP performs slightly better than the appliation of the LBP to eaholor hannel (ColorLBP) or OC-LBP, due to the fat that only the mostfrequent LBP values are used for the ompution of their frequenies. Therotation invariant versions of the LBP (Lsubset,ri
16 , Lri

8 ) perfom worse than theirrotation variant relatives, but still better than the gray level LBP. The biggerneighborhood applied in Lsubset,ri
16 did not ontribute to a better feature spaedisrimination.

• Disrete Wavelet Transform versus Non Numeri Transform: Thenumeri transform represented by the Disrete Wavelet Transform applied inthe Color Wavelet and Wavelet Deomposition feature does not ontributeto a better polyp detetion. Comparing the ColorGLCM feature with ColorWavelet feature, whih is the same feature just without the numeri trans-form, shows the superiority of ColorGLCM. Furthermore omputational ad-vantages are apparent. The Wavelet Transform is variant with regard totranslation, whih is probably the main reason for this result.
• Varianes and Covarianes: Karkanis et al. [KIM+03℄ presented an ap-proah for omputing varianes and ovarianes from the di�erent olor han-nels of the statistial measurements in the wavelet domain. In this work itis pointed out that estimating varianes and ovarianes from the measuresis harmful for lassi�ation results as shown in the Color Wavelet and theColor Wavelet Covariane feature.
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• Path sizes: The best path size learly depends on the seleted feature.Generally, the wavelet features require path sizes with value power of two.They should be higher than the path sizes of other features, due to thewavelet deomposition levels.The path size regulates the amount of non-polyp information when regard-ing pathes that ontain both domains (e.g. the polyp border). It an besigni�ant, how muh non-polyp information ours in a path that is a-tually lassi�ed as polyp path, leading to a redution of disriminane infeature spae.



Chapter 7Summary
7.1 Possible ImprovementsA omprehensive polyp detetion system should inorporate more than only a fea-ture extration module and a lassi�ation. The whole system must be ustomizedto the task of polyp detetion. Some proposals are listed in the following setion.

• Sale invariant features: During olonosopy an additional parameter de-sribing the distane to the intestinal wall ould be stored for eah frame.This ould be helpful for extration of GLCM or LBP ontributing to evalua-tion of the resolution level of the texture. The images an then be normalizedand hene a sale invariane of features ould be ahieved.
• Overomplete Wavelet Transform: In order to ompute translation in-variant features the overomplete version of the Wavelet Transform (OCWT)[Bra03℄ ould be applied. This version overomes the main problem of DWT.
• Disjuntion of test and training set: So far, Images are subdivided intopathes and then features are extrated from eah path. The separationof the obtained feature vetors in training and test set is done via rossval-idation afterwards. It is advisable to group the omplete images �rst intotraining and test set and then extrat features from the pathes. Thus, it ispossible to apply path overlapping without the loss of disjuntion. It is alsopossible to to hek whih image belongs to whih set in a straightforwardway. An inreased transpareny of the training and testing step ould beahieved thereby.
• Preproessing: After image aquisition, an adequate preproessing ouldbe applied to eah frame, removing artifats from endosopi images suh asshifted RGB olor hannels or glossy spots.61



62 CHAPTER 7. SUMMARY
• Validation: Let's assume that a polyp is deteted on one path and thus theloation of the polyp is approximately known. It would be helpful to validatethat result on the urrent as well as on the next frames. The position of thepolyp ould be further analyzed by applying feature extration with pathoverlapping or smaller path sizes. A �xed threshold ould be set indiatinghow many pathes must be lassi�ed as polyps to get reliable results.7.2 Summary of this WorkThe detetion of polyps in endosopi images is a hallenging task. The publishedmethods in literature introdued in hapter 2 are hardly omparable. They workon di�erent and very small data sets, often not onsidering di�erent types of polyps.In this work, a very heterogenous set of images is hosen, ontaining frames fromdi�erent senes and di�erent polyp types.Several investigation are made to inrease the feature extration module of[AWP+09℄. The overall aim was to inlude olor in the feature extration teh-niques, whih is one of the most promising information base for polyp detetion.Primarily, di�erent texture desriptors are ombined to new features, inorpo-rating Wavelet Transform, GLCMs and LBPs. The applied experiments produedthe following results:
• Inluding olor led to a signi�antly higher detetion rate (+0.10 AUC forGLCM features). The single olor methods performed equally well for thehosen data set. Only 0.05 AUC range lie between the best and the worstolor method.
• The ombination of all olor hannels of the RGB olor spae led to the bestresults.
• The Disrete Wavelet Transform does not have the expeted positive impaton polyp detetion.
• The Loal Binary Pattern and the GLCM and their implemented variantsperform equally well.
• The Support Vetor Mahine lassi�er holds superior results in omparisonto k-NN, onsidering the number of higher lassi�ation results.
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