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Multi-agent systems: Modeling and Verification using
Hybrid Automata

Ammar Mohammed and Ulrich Furbach

Universität Koblenz-Landau, Artificial Intelligence Research Group, D-56070 Koblenz,
{ammar,uli}@uni-koblenz.de

Abstract. Hybrid automata are used as standard means for the specification and
analysis of dynamical systems. Several researches have approached them to for-
mally specify reactive Multi-agent systems situated in a physical environment,
where the agents react continuously to their environment. The specified systems,
in turn, are formally checked with the help of existing hybrid automata verifica-
tion tools. However, when dealing with multi-agent systems, two problems may
be raised. The first problem is a state space problem raised due to the composition
process, where the agents have to be parallel composed into an agent capturing all
possible behaviors of the multi-agent system prior to the verification phase. The
second problem concerns the expressiveness of verification tools when model-
ing and verifying certain behaviors. Therefore, this paper tackles these problems
by showing how multi-agent systems, specified as hybrid automata, can be mod-
eled and verified using constraint logic programming(CLP). In particular, a CLP
framework is presented to show how the composition of multi-agent behaviors
can be captured dynamically during the verification phase. This can relieve the
state space complexity that may occur as a result of the composition process.
Additionally, the expressiveness of the CLP model flexibly allows not only to
model multi-agent systems, but also to check various properties by means of the
reachability analysis. Experiments are promising to show the feasibility of our
approach.

1 Motivation

Specifying behaviors of (physical) multi-agent systems is a sophisticated and demand-
ing task, because of the high complexity of the interactions among agents and the
dynamics of the environment. An important aspect of multi-agent systems is that the
agents interact with a physical environment. Such interactions typically consist of con-
tinuous changes of behaviors of agents (e.g. a movement of a robot, or an agent is
waiting for occurrence of an event), as well as discrete changes of behaviors. Those
scenarios can be captured by means of hybrid automata [12]. Here the discrete changes
are modeled using a form of transition diagrams dialect like statecharts [26], while the
continuous changes are modeled using differential equations. Hybrid automata formal
semantics make them accessible to formal validation of systems, especially for systems,
which are situated in safety critical environments.Thus, it is possible to prove desirable
features as well as the absence of unwanted properties for the modeled systems auto-
matically with the help of hybrid automata verification tools [13, 8, 3].
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Hybrid automata can be used to model and verify multi-agent plans (we call it mod-
eling multi-agent systems), especially for those agents that are defined through their
capability to continuously react to a physical environment, while respecting some time
constraints. With the help of the versification’s tools of hybrid automata, one can val-
idate/verify and control of multi-agent plans. For this reason, several researches, for
example [6, 7, 9, 22, 23], have approached hybrid automata as a framework in oder to
model multi-agent systems in a dynamic environment, where the time is critical. There
are authors, for example [18], who have modeled multi-agent systems with a simple
form of hybrid automata that are called timed automata [2]. Nevertheless, two prob-
lems occur when applying hybrid automata to multi-agent systems. Firstly, multi-agent
systems are specified as a network of synchronized hybrid automata that have to be par-
allel composed statically into an automaton (synonymy agent). By statically we mean
that agents have to be parallel composed prior to the verification phase. Technically, the
composition of hybrid automata is obtained from the cartesian product of the number
of states of all concurrent automata, unless the automata have mutual synchronization
messages. In this case, the states have to be considered simultaneously. As a result of
the composition process, an agent captures all possible behaviors that may occur in the
multi-agent systems. In turn, the resulting composed agent afterwards is checked by
hybrid automata verification tools. Consequently, this composition process may lead to
a state explosion problem.

The second problem concerns the expressiveness of the modeling tools. Standard
hybrid automata tools are not flexible enough to model multi-agent systems. This is for
the reason that they are special purpose tools, which model the agents’ decision depend-
ing on the evaluation of continuous dynamics. However, there are favorable situations
of modeling multi-agent systems where the agents’ decision steps do not depend on
the evaluation of continuous dynamics, but on evaluation functions (e.g. shortest dis-
tance, max, or min) happening during the continuous dynamic. Imagine, for example,
an agent who wants to cooperate with the nearest agent to conduct certain tasks in a
rescue team of a multi-agent system. To our knowledge, this type of decision making
is beyond the capabilities of the current hybrid automata verification tools. Therefore it
is necessary to have expressive tools that can handle such situations. Ideally, modeling
tools are favorable when they are flexibly able to verify the systems’ requirements.

To this end, the purpose of this paper is to cope with the mentioned problems when
approaching hybrid automata to model multi-agent systems. In particular, we present
a novel approach which models hybrid automata based on constraint logic program-
ming. This approach is appropriate to represent multi-agent systems specified as hybrid
automata. The novelty of the presented approach is that the composition of hybrid au-
tomata is built dynamically on the fly, where only the reached behaviors are captured
dynamically, rather than building all possible behaviors in advance. On the other hand,
the expressiveness of CLP does not only allow us to model multi-agent systems, but
also to check various properties by representing requirements with a suitable query.
We show the feasibility of our approach with experimentation on standard benchmarks
taken from the hybrid automata context.
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Fig. 1. Specification of the train gate controller as hybrid automata.

1.1 Overview on the Rest of the Paper

In summary, the main contributions of this paper are as follows: First, an effective
framework, implemented in CLP, is presented, which is suitable to model and verify
multi-gent systems based on hybrid automata. Second, compositions of automata do
not have to be computed explicitly prior to verifying multi-agent systems. Instead, the
composition of automata is built dynamically during the verification phase, which can
relieve the state explosion problem that may raise as the result of multi-agent systems.
Last but not least, by employing CLP, constraints can be derived automatically, under
which certain states of a system can be tested for reachability. This enhances standard
model checking methodologies.

In the sequel, we first introduce a running example that will be used throughout
the paper to illustrate our approach in Sec. 2. Then hybrid automata syntax and se-
mantics are discussed in Sec. 3. In Sec. 4 a CLP implementation model is discussed,
before showing how to specify and verify requirements in Sec. 5. The evaluation of our
CLP implementation model is discussed in Sec. 6. Then Sec. 6.1 briefly reviews related
works, before we end up with the conclusion Sec. 7

2 Running Example

Before we present both syntax and semantic of hybrid automata, we first introduce an
illustrating running example that we use throughout the paper, before we shows the
basics formalism which we use to demonstrate the CLP implementation.
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A train gate controller [14] is a reactive multi-agent system consisting of three agent
components: the train, the gate, and the controller. In this system, a road is crossing a
train track, which is guarded by a gate, which must be lowered to stop the traffic when
the train approaches, and raised after a train passed the road. The gate is supervised by
a controller that has the task to receive signals from the train and to issue lower or raise
signals to the gate. Initially, a train is at a distance of 1000 meters away from the gate
and moves at a speed 50 meter per second. At 500 meters, a sensor on the tracks detects
the train, sending a signalapp to the controller. The train slows down, obeying the
differential equation ˙x = − x

25−30. After a delay of five seconds, which is modeled by
the variablet, the controller sends the signallower to the gate, which begins to descend
from 90 degrees to 0 degrees at a rate of -20 degrees per second. After crossing the gate,
the train accelerates according to the differential equation ˙x = x

5 +30. A second sensor
placed 100 meters past the crossing detects the leaving train, sending a signalexit to the
controller. After five seconds, the controller raises the gate.

The specification of the previous multi-agent system is graphically illustrated as
concurrent hybrid automata in Fig. 1. The variablex represents the distance of the train
from the gate. The variablet represents the delay time of the controller, while the posi-
tion of the gate in radius degrees is represented by the variableg.

3 Hybrid Automata Preliminaries

In this section, we show the basics syntax and the semantics of hybrid automata.

3.1 Hybrid Automaton: Syntax

A hybrid automaton is represented graphically as a state transition diagram dialect like
statecharts, augmented with mathematical formalisms on both transitions and locations.
Formally speaking, a hybrid automaton (agent in continuous domain) is defined as fol-
lows.

Definition 1 (basic components). A hybrid automaton is a tuple H=
(X,Q, Inv,Flow,E,Jump,Reset,Event, Init ) where:

– X ⊆ℜn is a finite set of n real-valued variables that model the continuous dynamics.
– Q is a finite set of control locations. For example, the train automaton (Fig. 1) has

the locations far, near,and past.
– Inv(q) is the invariant predicate, which assigns a constraint on variables X for each

control location q∈ Q. The control of a hybrid automaton remains at a location
q∈ Q, as long as Inv(q) holds. For instance, the locationfar in the train automaton
has the invariant x≥ 500

– Flow(q) is the flow predicate on variables X for each control location q∈Q, which
defines how the the variables in X evolve over the time at location q. It constrains
the time derivative of the continuous part of the variables at location q ( Basically,
we represent the flow as a constrain relation of the real variables to the time). In the
graphical representation, a flow of a variable x is denoted asẋ. For example,̇x =
x
5 + 30 describes the speed of the train at the locationpastin the train automaton
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(Fig. 1). If ẋ = c, then the hybrid automaton is called linear (a special case of
linear hybrid automata are a timed automata [2], where c= 1). if ẋ = c1x+ c2,
then a hybrid automaton is called non-linear.

– E ⊆ Q×Q is the discrete transition relation over the control locations. Each edge
e∈ E is augmented by the following annotations:
Jump: jump condition (guard), which is a constraint over X that must hold to fire

transitions. Omitting a jump condition on a transition means that the jump con-
dition is always true and it can be taken at any point of time. Conventionally,
writing Jump(e)[v] means that the jump condition on a transition e holds, if the
valuations of variables on the transition are v.

Reset: is a constraint, which may reset the variables by executing a specific as-
signments. For example, the variable X in the train automaton on the transition
between locationspastand far is reset to X:= 1000. Resetting variables are
omitted on transition, if the values of the variables do not change before the
control goes from a location to another location.

Event: synchronization label, used to synchronize concurrent automata. For in-
stance, the train automaton contains the synchronization labelsapp, in, and
exist, which must be synchronized with all automata sharing the same syn-
chronization labels. These synchronization labels define the composition of the
automata.

– Init is the initial condition that assigns an initial values to the variables X to each
control location q∈ Q. For example, x= 1000is the initial condition of the train
automaton.

3.2 Hybrid Automaton: Semantics

Informally speaking, the semantics of a hybrid automaton is defined in terms of a la-
beled transition system between states, where a state consists of the current location of
the automaton and the current valuation of the real variables. To formalize the seman-
tics of the hybrid automaton, first we need to define the concept of a hybrid automaton’s
state.

Definition 2 (State).At any instant of time, a state of a hybrid automaton is given by
σi = 〈qi ,vi ,t〉, where qi ∈Q is a control location, vi is the valuation of its real variables,
and t is the current time. A stateσi = 〈qi ,vi ,t〉 is admissible if Inv(qi)[vi ] holds.

A state transition system of a hybrid automatonH starts with theinitial state σ0 =
〈q0,v0,0〉, where theq0 andv0 are the initial location and valuations of the variables
respectively. For example, the initial state of thetrain (see Fig. 1 ) can be specified as
〈 f ar,1000,0〉.

In fact, a hybrid automaton evolves depending on two kinds of transitions: contin-
uous transitions, capturing the continuous evolution of states, and discrete transitions,
capturing the changes of location. More formally, we can define hybrid automaton se-
mantics as follows.

Definition 3 (Operational Semantic).A transition rule between two admissible states
σ1 = 〈q1,v1,t1〉 andσ2 = 〈q2,v2,t2〉 is defined as follows:
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discretely: iff e= (q1,q2) ∈ E, t1 = t2 and Jump(e)[v1] holds, then variables are reset
according to v2 such that Inv(q2)[v2] holds at location q2. In this case an event
a∈ Event occurs. Conventionally, it is written q1

a
→ q2.

continuously(time delay): iff q1 = q2, and (t2− t1 > 0) is the duration of time passed
at location q1, during which the invariant predicate Inv(q1) continuously holds, v1
and v2 are the valuations of the variables according to the flow predicate Flow(q1).

Intuitively, an execution of a hybrid automaton corresponds to a sequence of transi-
tions from a state to another. Therefore we define the valid run as follows.

Definition 4 (Run:Micro level). A run of hybrid automaton∑ = σ0σ1σ2, .., is a finite
or infinite sequence of admissible states, whereσ0 is the initial state.

In the run∑, the transition from a stateσi to a stateσi+1 is related by either a discrete
or a continuous transition according to Def. 3. It should be noted that the continuous
change in the run may generate an infinite number of reachable states. It follows that
state-space exploration techniques require a symbolic representation way in order to
represent the set of states in a appropriate way. In this paper, we use CLP to represent
the infinite states symbolically as finite intervals. we call a symbolic interval as a region,
which is defined as follows:

Definition 5 (Region).A regionΓ = 〈q,V,Time〉 is the set of possible states reached
at location q by means of continuous transitions, where V and Time represent interval
of reached valuations of the variables together with their reached time at location q
respectively. A regionΓ is admissible if inv(q)[v] holds for all v∈V.

Now, the run of hybrid automata can be rephrased in terms of reached regions,
where the change from one region to another is fired using a discrete step.

Definition 6 (Run:Macro level). A run of hybrid automaton H is∑H = Γ0Γ1, ... a se-
quence of (possibly infinite ) admissible regions, where a transition from a regionΓi to
a regionΓi+1 is enabled (written asΓi

a
→ Γi+1), if there is qi

a
→ qi+1, where a∈ Event

is the generated event before the control goes to the regionΓi+1. Γ0 is the initial region
reached from a start stateσ0 by means of continuous transitions.

The operational semantics is the basis for verification of a hybrid automaton. In
particular, model checking of a hybrid automaton is defined in terms of the reachabil-
ity analysis of its underlying transition system. The most useful question to ask about
hybrid automata is the reachability of a given state. Thus, we define the reachability of
states

Definition 7 (Reachability).A regionΓi is called reachable in∑H , if Γi ⊆ ∑H . Conse-
quently, a stateσ j is called reachable, if there is a reached regionΓi such thatσ j ∈ Γi

The classical method to compute the reachable states consists of performing a state
space exploration of the system, starting from a set containing only the initial state
and spreading the reachability information along control locations and transitions until
a stable region is obtained. Stabilization is detected by testing if the current region is
included in the union of the reached regions obtained in previous steps. It is worth
mentioning that checking reachability for hybrid automata is generally undecidable. It
is decidable, However, for certain classes of hybrid automaton [15].
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3.3 Hybrid Automata: Composition

To specify complex systems, hybrid automata can be extended by parallel composition.
Basically, the parallel composition of hybrid automata can be used for specifying larger
systems (multi-agent systems), where a hybrid automaton is given for each part of the
system, and communication between the different parts may occur via shared variables
and synchronization labels. Technically, the parallel composition of hybrid automata
is obtained from the different parts using a product construction of the participating
automata. The transitions from the different automata are interleaved, unless they share
the same synchronization label. In this case, they are synchronized during the execution.
As a result of the parallel composition, a new automaton, called composed automaton,
is created, which captures the behavior of the entire system. In turn, the composed
automata are given to a model checker that checks the reachability of a certain state.

Intuitively, the composition of hybrid automataH1 andH2 can be defined in terms
of synchronized or interleaved regions of from the regions produced from run of both
H1 andH2. As a result from the composition procedure, compound regions are con-
structed that consists of a conjunction of one region fromH1 and another fromH2.
Therefore, each compound region takes the formΛ = 〈(q1,V1),(q2,V2),T〉 (shortly
written asΛ = 〈Γ1,Γ2,T〉), which represents reached region at both control locationsq1

andq2 the during a time interval T. Now the run of composed automata is the sequence
∑H1◦H2

= Λ0,Λ1, ..., where a transition between compound regionΛ1 = 〈Γ1,γ1,T1〉 and

Λ2 = 〈Γ2,γ2,T2〉 (written asΛ1
a
→ Λ2) is enabled, if one of the following holds:

– a∈ EventH1 ∩EventH2 is a joint event,Γ1
a
→ Γ2, andγ1

a
→ γ2. In this case , we say

that the regionΓ1 is synchronized with the regionγ1.
– a∈ EventH1 \EventH2 (respectivelya∈ EventH2 \EventH1 ), Γ1

a
→ Γ2 andγ1 → γ2,

such that bothγ1 andγ2 have the same control location (i.e., they relate to each
other using a continuous transition).

The previous procedures give the possibility to construct the composition dynamically
during the run/verification phase. Obviously, computing the composition in such a way
is advantageous. This is for the reason that the only the active parts of the state space
will be taken into consideration during the run, instead of producing the composition
procedure prior to verification phase. This can relieve the state space problem raised
from modeling multi-agent systems.The coming section shows how the previous pro-
cedure, with the help of constraint logic programming, can be performed.

4 CLP Model

In the following, we will show how to encode the syntax and semantics of hybrid au-
tomata, described in the previous section, as a Constraint Logic ProgramCLP [19].
There are diverse motivations for choosing CLP. Firstly, hybrid automata can be de-
scribed as a constraint system, where the constraints represent the possible flows, in-
variants, and transitions. Further, constraints can be used to characterize certain parts
of the state space (e.g., the set of initial state or a set of unsafe state). Secondly, there
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are close similarities in operation semantics between CLP andhybrid automata. Ide-
ally, state transition systems can be represented as a logic program, where the set of
reachable states can be computed. Moreover, constraints enable us to represent infi-
nite states symbolically as a finite interval. Hence, the constraint solver can be used
to reason about the reachability of a particular state. In addition, CLP is enriched with
many efficient constraint solvers for interval constraints and symbolic domains, where
the interval constraints can used to represent the continuous evolution, whereas sym-
bolic domains are appropriate to represent the synchronization events (communication
messages ).

Our implementation prototype was built using ECLiPSe Prolog [21]. A preliminary
implementation model was introduced in [25]. The prototype follows the definitions
of both the formal syntax and semantics of hybrid automata, which are defined in the
previous section. We start modeling each hybrid automaton individually. Therefore, we
begin with modeling locations of automata that are implemented in theautomaton
predicate, ranging over the respective locations of the automaton, real-valued variables
and the time:

automaton(+Location,?Vars,+Vars0,+T0,?Time):-
Vars#c2(Vars0,(Time-T0)),
c1(Inv),Time $>=T0.

Here,automaton is the name of automaton itself, andLocation represents the ground
name of the current locations of the automaton.Vars is a list of real variables par-
ticipating in the automata, whereasVars0 is a list of the correspondent initial val-
ues.c1(Invs) is the invariant constraint onVars inside the location. The constraint
predicateVars # c2(Vars0,(Time-T0)), where#∈ {<,≤,>,≥,=} are constraints,
which represent the continuous flows of the variables inVars wrt. time T0 andTime,
given initial valuesVars0 of the variablesVars at the start of the flow.T0 is the initial
time at the start of the continuous flow, while(Time-T0) represents the delay inside
the location. The following is an example showing the concrete implementation of lo-
cationfar in the automatontrain Fig. 1. The $ symbol in the front of (in)equalities is
the constraint relation for interval arithmetic constraints (libraryic in ECLiPSe Prolog).

train(far,[X],[X0],T0,Time):-
X $= X0-50*(Time-T0),
X $>=500, Time $>=T0.

According to operational semantics defined in Def. 3, a hybrid automaton has two
kinds of transitions:continuoustransitions, capturing the continuous evolution of vari-
ables, anddiscretetransitions, capturing the changes of location. For this purpose, we
encode transition systems into the predicateevolve, which alternates the automaton be-
tween a discrete and a continuous transition. The automaton evolves with either discrete
or continuous according to the constraints appeared during the run.

evolve(+Automaton,(+L1,+Var1),(+L2,+Var2),+T0,+Time,-Event) :-
continuous(Automaton,(L1,Var1),(L1,Var2),T0,Time,Event);
discrete(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event).
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When a discrete transition occurs, it gives rise to update the initial variables from
Var1 into Var2, whereVar1 andVar2 are the initial variables of locationsL1 andL2
respectively. Otherwise, a delay transition is taken using the predicatecontinuous. It is
worth noting that there are infinite states due to the continuous progress. However, this
can be handled efficiently as interval constraint that bounds the set of infinite reachable
state as a finite interval (i.e., 0≤ X ≤ 250).

In addition to the variables, each automaton is augmented with set of events, which
we call it ∈ EventAutomaton. For example,Eventtrain = {app, in,exit}. Fro this reason,
each transition is augmented with the variableEvent, which is used to define the parallel
composition from the automata individuals sharing the same event. The variableEvent
ranges over symbolic domains. It guarantees that whenever an automaton generates an
event, the corresponding synchronized automata have to be taken into consideration
simultaneously. It should be mentioned that the declaration of automata events must be
provided in the modeling example. For instance, the declaration of the possible events
domains of Fig. 1. are coded as follows :

:- local domain(events(app,in,exit,raise,lower, to_open)).

The previous means that the domains of events are declared symbolically to capture
the set of all possible applicable events to the underlying modeled system. The appro-
priate solver of symbolic domain deals with any constraints defined in terms of the
declared domains. Now after defining the domains of events, a variable of type events
can be declared as follow:

Event &::events,Event &=domain_value.

The previous means that a variableEvent is declared with domain values defined
by events, and is initialized with a specific value from its domain. The & symbol is a
constraint relation for symbolic domains (librarysd in ECLiPSe Prolog).

An automaton generates an event thanks to a discrete transition (generating an
events means, the variableEvent takes a value from its domain). This event has to
be synchronized with the other automata sharing the same event. For this reason, each
transition is augmented with the variableEvent. This variable takes a value from its
domain, during firing a discrete transition. The following is the general implementation
of the predicatediscrete, which defines transitions between locations.

discrete(+Automaton,(+Loc1,+Var1),(?Loc2,?Var2),+T0,+Time,-Event):-
automaton,(Loc1,Var1,Var,T0,Time),
jump(Var), reset(Var2),
Event &::events,Event &=domain_value.

In the previous predicate,domain value must be a member inEventAutomaton.
The following is an instance showing the implementation of thediscrete predicate

between locationsfar andnear in automatontrain.

discrete(train,(far,[X0]),(near,[XX0]),T0,Time,Event):-
train(far,[X0],[X],T0,Time),
X $=500, XX0 $=X,
Event &::events, Event &=app.
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The description of the previousdiscretepredicate means that the transition between
the locationsfar andnearin thetrain automata takes place, if the continuous variableX,
based on the initial valueX0, satisfies the jump condition given asX=500. If such a case
occurs, then the new variable, denoted asXX0, is updated and the eventappis fired. The
executed events afterwards synchronize thetrain automaton with the automata sharing
the same event.

Once the transition rules have been modeled, a driver program needs to be supplied:

driver((+L1,+Var01),(+L2,+Var02),...,(+Ln,+Var0n),+T0,
[(L1,L2,..,Ln,-Var1,-Var2,..,-Varn,-Time,-Event)|-NextRegion],+PastReg) :-

automaton1(L1,Var1,Var01,T0,Time1),
automaton2(L2,Var2,Var02,T0,Time2),
... ,
automatonn(Ln,Varn,Var0n,T0,Timen),
Time1 $=Time2, Time1 $=Time3, ..., Time1 $=Timen,
evolve(automaton1,(L1,Var01),(NextL1,Nvar01),T0,Time1,Event),
evolve(automaton2,(L2,Var02),(NextL2,Nvar02),T0,Time1,Event),
... ,
evolve(automatonn,(Ln,Var0n),(NextLn,Nvar0n),T0,Time1,Event),

+\member((L1,L2,..,Ln,Var1,Var2,..,Varn,_,Event), PastReg),
NpastReg =[L1,L2,..,Ln,Var1,Var2,..,Varn,Time,Event)|PastReg],

driver((NextL1,Nvar01),(NextL2,Nvar02),...,(NextLn,Nvar0n),Time1,
NextRegion,NpastReg).

Thedriver is a simulator predicate that is responsible to generate and control the
behaviors of the concurrent hybrid automata, as well as to provide the reachable regions
symbolically.

Inside the definition of the predicatedriver, the variableEvent is a symbolic do-
main variable shared among all automata. It is used by the appropriate solver to ensure
that only one event is generated at a time, such that when an automaton generates an
event, thanks to a discrete transition of one of the predicatesevolve of the concurrent
automata, then the symbolic domain solver will exclude all the domain values of the
other automata that are not coincident with the generated event. This means that only
one event is generated at a time. If it happens the case that more than one automaton
generate different events at the same point of time, then the symbolic domain solver
will handle only one of them at a time, but the other events will be handled using back-
tracking.

Since each automaton, at the end of its continuous evolution, generates an event,
then the precedence of events that appear during the run are important to the com-
position and to the verification too. For this reason, an obvious way to deal with this
precedence is to use constraints on the time of the generated events. To be precise,
each automatonAi ,1≤ i ≤ n, produces a timeTimei , which is needed to jump from
the automaton’s current location into another location. Constraining these times of each
automaton together leads to a time holding the minimum time among them. This mini-
mum time in this case, manipulated by the constraints solver, is least time needed to fire
an event. The previous computation partitions the state space into regions, where the
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transition from one region to another depends on the minimum time needed to gener-
ate an event. Consequently, this shows how the automata composition can be implicitly
constructed efficiently on the fly, during the computation. Appropriately, the way that
we construct the composition helps us to construct complex automata in terms of sim-
pler ones.

The last argument of the predicatedriver is the list of reached regions. At each
step of the driver, a region, of the form〈locations,Variables,Time〉 represents sym-
bolically the set of reached states and times to each control location as mathematical
constrains. Additionally, each region contains the event generated before the control
goes to another region using a discrete step. Technically, thedriver computes the set
of reached regions until fixed regions are obtained. This is computed by checking, in
each iteration of driver, if the reached region is not contained in the list of the previously
reached regions. For this purpose, thedriver should be augmented with an extra argu-
ment containing the list of past reached regions. Broadly speaking, the termination of
the driver to reach to a fixed regions is not guaranteed. Fortunately, it does terminate for
all the examples in the experimental result. However, to overcome the non termination
problem generally, one can augment the predicatedriver with some iteration depth in
advance, where the driver is enforced to stop upon reaching this depth. .

Reachable regions should contain only those variables, which are important for the
verification of a given property. Therefore, the last argument list of the predicatedriver
can be expanded or shrunk as needed to contain the significant variables.

The driver has to be invoked with a query starting from the initial states of the hybrid
automata. An example showing how to query the driver on the running scenario (Fig. 1)
takes the form:

?- driver((far,1000),(open,90),(idle,0),0,Reached,[]).

5 Verification as Reachability Analysis

Now we have an executable constraint based specification, which can be used to verify
properties of a multi-agent system. Several properties can now be investigated. In par-
ticular, one can check properties on states using reachability analysis. Fundamentally,
the reachability analysis consists of two basic steps. First, computing the state space of
the automaton under consideration. In our case, this is done using the predicatedriver.
Second, searching for states that satisfy or contradict given properties. This is done us-
ing a standard prolog predicates likemember/2 andappend/3. Therefore, we present
CLP rules, which constitute our verification framework. The validation of these rules
depends totally on the set of reached regions that we described them formally in Sec.3,
and implemented in Sec.4.

In terms ofCLP, a state is reached iff the constraint solver succeeds in finding a
satisfiable solution for the constraints representing the intended state. In other words,
assuming thatReachedrepresents the set of all reachable states computed by theCLP
model from an initial state, then the reachability analysis can be generally specified, us-
ing CLP, by checking whetherReached |=Ψ holds, whereΨ is the constraint predicate
that describes a property of interest. In practice, many problems to be analyzed can be
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formulated as a reachability problem. For example, a safety requirement can be checked
as a reachability problem, whereΨ is the constraint predicate that describes forbidden
states, and then the satisfiability ofΨ wrt. Reached is checked. For instance, one can
check that the state, where the train is near at distanceX=0 and the gate is open, is a
disallowed state. Even a stronger condition can be investigated, namely that the state
where the train is near at distanceX=0 and the gate is down, is a forbidden state. The
CLP computational model, with the help of the standard Prolog predicatemember/2,
gives us the answernoas expected, after executing the following query:

?- driver((far,1000),(open,0),(idle,0),0,Reached,[]),
member((near,down,_,Time,_,X,),Reached), X $= 0.

Other properties concerning the reachability of certain states can be verified similarly.
Fundamentally, different properties can be checked in this framework As previously

demonstrated, the set of reachable statesReached contains the set of finite, reachable
regions. Within each region, the set of all states is represented symbolically as a math-
ematical constraint, together with the time delay. Therefore, constraint solvers ideally
can be used to reason about the reachability of interesting properties within some re-
gion. For example, an interesting property is to find the shortest distance of the train to
the gate before the gate is entirely closed. This can be checked by posing the following
query:

?- driver((far,1000),(open,0),(idle,0),0,Reached.[]),
member((near,_,_,Time,to_close,_),Reached), get_max(Time,Tm),
member((near,_,_,Tm,_,X),Reached), get_min(X,Min).

The previous query returnsMin=104.8 meters, which is the minimum distance of
the train that the model guarantees before the gate is completely closed.

Since the events and time are recorded particularly at reached regions, verifying
timing properties or computing the delay between events are further tasks that can be
done within the reachability framework too. For instance, we can find the maximal time
delay betweenin andexit events, by stating the following query:

?- driver((far,1000),(open,0),(idle,0),Reached,[]),
append(A,[(past,_,_,Time1,exit,_)|_],Reached),
append(B,[(near,_,_,Time2,in,_)|_],A),
get_max(Time1,Tmax1),get_max(Time2,Tmax2),
Delay $= Tmax1-Tmax2.

The constraint solver answersyes and yieldsDelay=2.554. This value means that
the train needs at most2.554 seconds to be in the critical crossing section before leaving
it. Similarly, other timing properties can be verified.

6 Experimental Results

In the previous section, we have demonstrated how different properties can be verified
within theCLP implementation framework.

We did several experiments comparing our approach with HyTech [16]. We chose
HyTech as a reference tool, because it is one of the most well-known tools for the
verification of hybrid automata, and it tackles verification based on reachability analysis
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similar to the approach in this paper. In HyTech however, the automata working in
parallel are composed before they are involved in the verification phase. Obviously, this
may lead to state explosion as stated earlier.

Now to use our approach to model and verify multi-agent systems, specified as
hybrid automata, we have to demonstrate the feasibility of our proposed approach by
experiments taken from the hybrid automata context. Therefore, we will refer to stan-
dard benchmarks of verification of real-time systems. Querying these benchmarks to
check safety properties (cf. Fig. 2). First, in theschedulerexample [11], it is checked
whether a certain task (with number 2) never waits. Second, in thetemperature control
example [1], it has to be guaranteed, that the temperature always lies in a given range.
Third, in thetrain gate controller1example [13], it has to be ensured that the gate is
closed whenever the train is within a distance less than 10 meter toward the gate. In the
water levelexample [1, 11] the safety property is to ensure that the water level is always
between given thresholds (1 and 12). A non-linear version of both train gate controller
(described throughout this paper) and of the thermostat are taken from [14]. The safety
property of the former one is the same as in the linear version, whereas in the second
one we need to prove that the temperature always lies between 0.28 and 3.76. Last but
not least, nuclearReactorexamples are taken from the verification examples of HyTech
[16]. The safety property of both example is to ensure that only one of the rods of the
reactor can be put in. For more details on the examples, the reader is referred to the
cited literature for more details.

Example HyTech CLP
Scheduler 0.12 0.07
Temperature Controller 0.04 0.02
Train Gate Controller1 0.05 0.02
Water Level 0.03 0.01
Train Gate Controller2 - 0.02
Thermostat - 0.01
Reactor1 0.01 0.01
Reactor2 - 0.01

Fig. 2. Experimental results.

The symbol− in Fig. 2 indicates that the example is inadequate to HyTech. This is
because HyTech can not treat a non-linear dynamic directly. Instead, It checks approx-
imation versions of these examples.

When comparing HyTech to the approach depicted in this paper, several issues have
to be taken into consideration. The first issue concerns the expressiveness of the dynam-
ical model. HyTech restricts the dynamical model to linear hybrid automata in which the
continuous dynamics is governed by differential equations. The nonlinear dynamics e.g.
of the formẋ ⋊⋉ c1∗ x+ c2, wherec1,c2∈ ℜ,c1 6= 0,⋊⋉∈ {<,≤,>,≥,=} are first ap-
proximated either by a linear phase portrait or clock translation [17]. Then, the verifica-
tion phase is done on the approximated model. On the other hand,CLP is more expres-
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sive, because it allows more general dynamics. In particular,CLP can directly handle
dynamics expressible as a combination of polynomials, exponentials, and logarithmic
functions explicitly without approximating the model. For instance the last equation can
be represented inCLP form asX $⋊⋉ X0−c2/c1+c2/c1∗exp(c1∗ (T−T0)), where
(T −T0) is the computational delay. Although clearly completeness cannot be guar-
anteed, from a practical point of view, this procedure allows to express problems in a
natural manner. TheCLP technology can be fully exploited; it suspends such complex
goals until they become solvable.

Another issue that should be taken into account is the type of verifiable properties.
HyTech cannot verify simple properties that depend on the occurrence of events, despite
of the fact that synchronization events are used in the model. On the other hand, simple
real-time duration properties between events can be verified using HyTech. However,
to do so, the model must be specified by introducing auxiliary variables to measure de-
lays between events or the delay needed for a particular conditions to be hold. Bounded
response time and minimal event separation are further properties that can be veri-
fied using HyTech. These properties, however, can only be checked after augmenting
the model under consideration with what is called amonitor or observerautomaton
(cf. [13]), whose functionality is to observe the model without changing its behavior
under consideration. It records the time as soon as some event occurs. Before the model
is verified, the monitor automaton has to be composed with the original model, which
in turns may add further complexity to the model. As demonstrated in this paper, how-
ever, there is no need to augment the model with an extra automaton for the reason that
during the run, not only the states of variables are recorded, but also the events and the
time, where the constraint solver can be used to reason about the respective property

In addition to the benchmarks that demonstrate the feasibility of our approach, we
have recently used our framework to model a case study that has been taken from a
logistic domain [23]. In this case study, we have demonstrated how an agent, in a multi-
agent scenario, selects the most appropriate plan, in case of occurring unexpected events
during the plan’s execution. The agent selects the plan that maximizes its utility func-
tion. The expressiveness of classical tools of hybrid automata lack to model such types
of scenario. This is for the reason that these tools are special purpose tools that model
continuous reactive systems. The Expressive of hybrid automata on multi-agent system,
in terms of modeling and verification, are not the main concerns of these tools.

6.1 Related Works

Since we have presented and implemented an approach to model and verify multi-agent
systems by means of hybrid automata, this section will relate our work to the other
approaches of hybrid automata. The key relation to these approaches to multi-agent
systems is that all of them can be used to model and validate multi-agent systems plans
that are defined through their capability to continuously react in dynamic environments,
while respecting some time constraints.

Several tools exist for formal verification of hybrid automata [13, 8, 3], where a
multi-agent team can be verified. Differently to our approach, however, these tools com-
pose the automata prior to the verification phase.
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Fig. 3.A tool for modeling and Verification based on CLP.

We are not the first one who approached modeling and verifying hybrid automata
using CLP. In contrast to our proposed approach, several authors propose the explicit
composition of different concurrent automata by hand leading to one single automaton,
before a CLP implementation is applied. This is a tedious work, especially in the case
of multi-agent systems, where a group of agents exists. The latter case is exemplified
in [27, 20]. Other authors employ CLP for implementing hybrid automata [4, 5, 10], but
restrict their attention to a simple class of hybrid systems (e.g. timed systems). They
do not construct the overall behavior prior to modeling, but model each automaton
separately. However, the run of the model takes all possible paths into consideration,
resulting from the product of each component, which leads to unnecessary computation.

7 Conclusion

Multi-agent systems need to coordinate their plans especially in a safety critical envi-
ronment, where unexpected events typically arise. Therefore, it is becoming increas-
ingly important to react to those events in real time in order to avoid the risk that may
occur during the planning. For this purpose, various researches have approached hy-
brid automata as a framework to model reactively multi-agent plans. In this paper, we
have showed how multi-agent systems can be formally specified and verified as hybrid
automata without explicitly composing the system prior to the verification phase. The
previous helps to tackle the state space problem that may arise during the composition
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process. We have programmed our approach by means of constraint logic program-
ming, where constraint solvers help us to build dynamically the entire behavior of a
multi-agent system and to reason about its properties. Furthermore, we have showed
how various properties can be verified using our CLP framework. In addition, we have
conducted several experiments taken from the hybrid automata context to show the fea-
sibility of our approach.

Currently we are developing and enhancing a tool environment that aims at simpli-
fying both processes of modeling and verification. In this tool, a model together with
its requirement are specified graphically, then the process of verification is achieved
automatically. The graphical specifications are transformed into executable CLP codes,
which follows the outline of this paper. This can avoid the tedious work, which results
from specifying larger systems. Additionally, this also give the possibility to the non ex-
perts people of CLP to model and verify multi-agent systems based on hybrid automata.
A primary version of the tool (see Fig.3) appears in [24]. In addition to the tool, since
CLP is a suitable framework, where we can reason not only about the time behaviors
of multi-agent systems, bout also about their knowledge, then the combination of both
worlds is subjected to a future work.
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