UNIVERSITAT ‘3
KOBLENZ - LANDAU <

Integrating TwoUse and OCL- DL

Studienarbeit

in computer science

presented by

David Saile

Advisor: Fernando Silva Parreiras, FB4

Koblenz, january 2010

Contents

1 IntroducCtion e 1
1.1 ConteXt . e 1
1.2 Problem 1
1.3 Motivation 2
1.4 Scopeofthiswork........ ... 2
15 OVEIVIEW .t 2

2 Background 3
2.1 IntroducCtiont e 3
2.2 Theexamplemodel........ ... 3
2.3 The Object Constraint Language OCL 4

2.3 1 OVEIVIEW . o ettt e e e e 4
2.3.2 BasicelementsinOCLttt 5
2.3.3 Relation to the correspondingmodel 5
2.3.4 OperationsSoui i 5
235 OCLIneclipse ... 6
2.4 TWOUSE. ..o e 7
241 Motivation 7
242 Problem i 7
243 ddea ... 7
244 OCL-DL e e e 9

3 First approach: Extending the EMF OCL implementation 13
3.1 Introduction e 13
3.2 The OCLINterpretert e e 13
3.3 Adding customoperations 14
3.4 EvaluationontheMllevel............ oo ... 16
3.5 Adding custom operations to a model and making thematail

AtrUNtIMe ... 16
3.5.1 Adding OCL expression to model elements 16
352 Parsing..........iii 17

vi

Contents

3.5.3 Enable evaluationatruntime..................c.... 20
3.6 Adding a metamodel binding for TwoUsecc..... 20

3.6.1 Abstractapproach.......... ... i 20
3.6.2 Classestoimplement, 21
3.6.3 Concrete 21
3.7 Problems 23
The second approach: Extending the Dresden OCL toolkit. 25
4.1 INtroducCtion e 25
4.2 DESION . o ottt 25
4.3 Adding metamodel binding e 26
4.3.1 Problem binding the TwoUse metamodel 26
4.3.2 OWIANY ... 26
4.4 Adding OCL-DLoperations.oiiiiiiiiiinan... 27
4.4.1 Concrete implementation of owllsInstanceOf 27
442 TeStNg ...t 29
Comparison of EMF and Dresden OCL toolkit 33
5.1 INtroducCtiont e 33
5.2 Metamodelbinding.......... e 33
5.3 Adding operations to the OCL standard library 33
5.4 Addressing qUeStions e 34
55 Theplug-ins.o e 34
CoNCIUSION . . o . 37
6.1 Solved Problems - Added functionalitiescc........ 37
6.1.1 Problems ... 37
6.1.2 Added functionalitesforEMF 37
6.1.3 Added functionalities fordresden..................... 38
6.2 Future Tasks.t 38
6.3 CONCIUSIONo e 38

REfEreNCeS . ..o 39

Chapter 1
Introduction

Abstract This section introduces the context of this work. We menti@nproblem,
and the motivation that led to the start of this researchalfsia short overview over
the scope of this work and the remaining chapters is given.

1.1 Context

OCL[1] is a modeling language to create and enhance softwarelsdd general,
OCL is used in combination with modeling languages like tthdfied Modeling
Language (UML)[2] because every OCL expression is based on a type, defined
in a diagram. Formally designed only for UML, OCL may now bedsvith any
Meta-Object Facility (MOF [3]) Object Management Group (GN4]) metamodel,
including UML. Information like specific constraints andhaioral specifications
for methods of UML classes is not expressible by UML. The taSKOCL is to

add information to object-oriented models, that is not espible by the diagrams
themselves. The information added to a model by OCL is espre application-
specificconstraints Further, OCL can be used to specify completely programming
language independent expressions on models, that canlbatedbby an interpreter
over a specific model instance.

1.2 Problem

In recent development, attempts have been made to intddkdkeand OWL into
one hybrid modeling language, namely TwoUse [5]. This aitmaaking use of the
benefits of both modeling languages and overcoming thdetstrs of each. In or-
der to create a modeling language that will actually be usediftware development
an integration with OCL is needed. This integration hasaalyebeen described at
the contextual level in [6], however an implementation ikiag so far.

2 1 Introduction

1.3 Motivation

The integration of TwoUse and OCL allows the software dgwetdo make use
of the predefined OCL standard library with several preddfingerations. Since
TwoUse introduces the integration of ontologies into UMLdwbing, it is obvious
to also make use of the benefits provided by the ability of logies to query a
reasoner. A reasoner can infer logical consequences froradelnand therefore
return information, not explicitly modeled in the diagraihis leads to the scope
of this work to not only integrate OCL and TwoUse on the progiray level, but to
also extend the OCL standard library with several predefopetations, that make
use of ontology reasoning.

1.4 Scope of this work

[6] introduces the integration of TwoUse with OCL. The scaop¢his paper is the
programatical implementation of the integration of Twolgth OCL. In order to
achieve this, two different OCL implementations that adiyeprovide parsing and
interpretation functionalities for expressions over lagWML, as well as an imple-
mentation of the conventional OCL standard library areoiditiced. The attempt of
an implementation of our goal, that extends the first OCL enpntation produced
problems, that could easier be dealt with using the second i@lementation.
This paper presents the two attempts to extend the OCL ingai&ations, as well as
a comparison of both approaches.

1.5 Overview

The remainder of this paper is organized as follows: Chapferesents the back-
ground for this work, and introduces the most important epte. Based on these
we tried to extend two different OCL implementations, thatkeimplement OCL
including its standard library. Our aproaches to extendhthee presented in chap-
ter 3 and 4 respectively. Chapter 5 compares the two appesdxased on our expe-
riences, before chapter 6 finally concludes.

Chapter 2
Background

2.1 Introduction

In this section the context for thiBtudienarbeits presented. The context of the re-
sults, presented here is a new modeling approach c@lledJse Since the goal

of this Studienarbeits to integrate theDbject Constraint LanguagéOCL) and
TwoUseon the programatical level, both of these concepts aredotred. First there

will be a short description of the use of OCLtodel-driven developmersecond

the concepts and ideasbifoUseare explained. Since there are several papers about
both of these topics, there is no need to go much into detail.

2.2 The example model

To show the new possibilities created by TwoUse and to exgeveral operations
and problems on an example, we chose an existing examplelfi@iiterature, that
has already been used in the original TwoUse paper [6]. Wehesgevelopment of
an international e-commerce system that is described inodel as an example.
The corresponding class diagram can be seen in Figure 2.1.

This example has been elaborated in [7]. The system repseaesales order
system for Canada and the United States. The taxes and hotaird a customer
has to pay is calculated depending on the country the preduetdelivered to. The
taxes can be divided into Government Sales Tax (GST) andirRialSales Tax
(PST) for sales going to Canada. Sales orders are contimfléte classTaskCitrl.
The SalesOrder itself is either dJSSalesOrder or aCanSalesOrder, according
to the Country the Customer lives in. The operatioffireight() on which we will
focus later on queries the country of the customer and rettira corresponding
freight amount, depending on whether the order is a USSatkes@or a citizen of
the United States or a CanSalesOrder for a citizen of Carfsidae UML class
diagrams alone are not expressive enough to demonstrabeltiagior of this oper-

4 2 Background

+customer
TaskCtrl SalesOrder |, Customer
- torder
salesOrder : SalesOrder price on 1
customer : Customer L - — 3 -
total() 0..n +customer
process() taxes()
getSalesOrder() freight()
4 1 | +country
| | Country

CanSalesOrder USSalesOrder| |name : String

Fig. 2.1 SalesOrder

ation, a textual query language such as OCL [1] may be usquktifg such a query:

context SalesOrder:: freight():Integer
body:
if self.owllslnstanceOf(CanSalesOrder)
then 10
else
if self.owllslnstanceOf(UsSalesOrder)
then 5
else
20
endif
endif

2.3 The Object Constraint Language OCL

2.3.1 Overview

OCL is a declarative language to specify expressions over raptlelt cannot be
expressed in a diagram. Initially it was only used in combarawith UML [2],
but due to its high popularity it was extended to be used withMOF OMG meta-
model. The OCL standard defined by the OMG [8] distinguisheddllowing pur-
poses for which OCL can be used:

As a query language

To specify invariants on classes and types in the class model
To specify type invariant for stereotypes

To describe pre- and post conditions on operations and etho
To describe guards

To specify target (sets) for messages and actions

To specify constraints on operations

2.3 The Object Constraint Language OCL 5

e To specify derivation rules for attributes for any expreagsiver a UML model.

For explanations of the different items, please see the Qe€tifcation [8].

2.3.2 Basic el ementsin OCL

In OCL, every value has a specific type no matter if it is an oja class or an
instance of a component or a datatype. OCL types are grounped i

e predefined types (as defined in the OCL standard librarylydhcg
basic types
collection types

e custom types (defined by users)

Integer, Real String andBooleanare predefined basic types, comparable with
datatypes in other languagé3ollection Set Bag OrderedSetand Sequencare
the predefined collection types, used to specify concrstdteof a navigation over
compounds of a class diagram. Custom types like the classs#ei@er and SalesOr-
der in our example are defined by users in an UML-diagram.\Ewverdel element
of an UML-diagram that can be instantiated is automaticatilDCL type. A special
type that has to be mentioned specifically is OclAny, sinsethie supertype of all
the types, except for the pre-defined collection types. @gligself is an instance of
the metatype AnyType. All classes in an UML model inheritagderations defined
on OclAny (you can recognize them on the prefix 'ocl’ (eoglIsKindOf().

2.3.3 Relation to the corresponding model

Each OCL expression is written in the context of an instarieespecific type. This
instance can be referred to by the variabdf and is callectlassifier Since there
already exist some predefined operations in OCL, the typbheotbntext specifies
which operations are applicable. For example if the OCL eggion is written in the
context of an instance of the tyj8alesOrdelsee the example model in Fig. 2.1),
only the operations corresponding $alesOrderan its supertypes are applicable.
In this case we could use the operatfagight() because it is defined in the model,
but also operations that are defined in the supertyj@atdsOrdernamelyAnyType
(e.g.oclIsKindOf().

2.3.4 Operations

Operations are bound to a specific OCL type, and are appdicaidy in the con-
text of this type. This means, that they can only be appliethstances of this

6 2 Background

type, and to instances of subtypes of this type. Some opesatire defined on the
previously mentioned OCL super tyf#clAny This makes these operations avail-
able for all types. "In general, OCL allows the definition afditional operations
and attributes usindef: expressions. This is very convenient for the formulation
of constraints” [9] but for the definition of complex operats that are supposed to
become a part of the OCL standard library another mechargamed. The OCL
standard library is a collection of predefined types (as rilgsd in section 2.3.2)
and operations.

2.3.5 OCL in eclipse

2.3.5.1 EMF OCL

Many different programatical approaches to OCL have beetfenrathe past. It is
not intended to compare these here. Since we used the Estiftsare platform in
our project from the beginning, we initially used the eoig3CL project [10]. The
eclipse OCL project provides the basic libramg.eclipse.octhat provides a defini-
tion of the extensible environment API for OCL parsing andleation. It consists
of the basic interfaces that have to be implemented by a etmenetamodel to
create and evaluate OCL expressiamg.eclipse.ocl.ecorandorg.eclipse.ocl.uml
are implementations of an OCL binding for a concrete metahddere, the con-
crete mechanisms to parse and evaluate OCL constraints delsnare imple-
mented. Further, these packages "extend the types of the Yf3és package to
define the generalization relationships to the ... metafi®deunterparts to the
UML Classifier (EClassifier) and DataType (EDataType) miasses. This ensures
a consistent type system in the OCL binding for Ecore, so aligypes are rep-
resented as EClassifiers” [11]. An implementation of an gdarm®CL interpreter
(org.eclipse.emf.ocl.examples.interprgtaiready exists. Therefore, we would not
have to implement one ourselves from scratch but would betaljust extend this
one, since it is open source. Another nice fact is, that theUse metamodel is
created under the Ecore metamodel. Since the OCL interpatady allows to
evaluate OCL expressions on Ecore models, we should bead¥dand this imple-
mentation (packagerg.eclipse.ocl.ecoje

2.3.5.2 Dresden OCL Toolkit

The Dresden OCL Toolkit is an other implementation of OCL dalipse. It con-
sists of a collection of libraries, allowing for integratese of modeling languages
like UML with OCL. The toolkit is provided in several diffené¢ versions, one of
which is a plug-in collection for Eclipse. The core of the lidbis a pivot model.
This model works as an abstraction layer between the metalnobthe modeling
language and the metamodel of the OCL library. This allowf@luation of OCL

2.4 TwoUse 7

expressions over instances of arbitrary domain-specifigdages (DSL) without
adapting the OCL implementation to the DSL.

Beside the adaption of metamodels to OCL, the Dresden OClkit@mables the

user to parse and interpret OCL expressions as well as gamgelava code, enforc-
ing constraints specified in OCL.

2.4 TwoUse

2.4.1 Motivation

In Model-Driven Engineeringlifferent modeling approaches exist, with different
strengths and weaknesses. Therefore they become appedprithe specification

of different aspects of software systems. Two of these nioglepproaches are
UML [2] and OWL[12]. The idea of TwoUse is to combine these approaches in a
coherent framework for developing integrated models, awsitg the benefits of
UML models and OWL ontologies and overcoming their reswoits. While map-
pings from one model to the other have already been estadlialwhile ago, the
goal of TwoUse is to be able to denote them in a hybrid diagram.

2.4.2 Problem

Considering the example class diagram of an e-commeroersystsection 2.2, we
see that some operations need to be modeled with addititioamation, presented
for example in OCL. Unfortunately the declarations of thesskedJSSalesOrder
andCanSalesOrder occur at least twice: "once in the class declaration and once
implicitly, as an expression of the operatitaskCtrl.freight()” [6]. We try to avoid
such redundancy in the context of TwoUse by describing tleeifip type of Sale-
sOrder exactly once. For this we use the language OWL, camdlibgical class
definition which is in fact more expressive than UML. The OWagtam, corre-
sponding to our example domain would look like depicted inffigg2.2.

2.4.3 ldea

The ideal solution is a model using the advantages of both Wkid OWL mod-
els, namely a TwoUse model. TwoUse was developed in ordeulfitl §ix basic
requirements:

1. Full Expressiveness of UML an OWL.
2. Cross-referencingrom UML part to the OWL part and vice versa.

8 2 Background

<oniCiass,]rorder *+customer +customer
7| «owlClass» +country_| «owlIClass»
SalesOrder |0..n Customer Countr
0..n 1 ountry
«owlIClass» «owlIClass» IF\" e
«Owl riction»
CanSalesOrder USSalesOrder ?JSCﬁ:tor%eor

«owlValue» {hasValue = USA} country:Country

T
1
X «equivalentClass»
. 1

«equivalentClass» X
| Vi «owlValue»
1 {someValuesFrom=USCustomer} customer
1
1
1

«owlIRestriction»

Vv «owlIRestriction»
o CanadianCustomer
«owlRestriction» «owlValue» {hasValue = Canada} country:Country

| «owlValue» {someValuesFrom=CanadianCustomer} customer II\

Fig. 2.2 Ontology of the SalesOrder example.

. Compatibility with UML Tools.

. Concrete Syntax for Hybrid Diagrams
. Metamodeling Support

. Model-driven Engineering

o0k w

Two use is based on four core ideas to fulfill these requirésémat were orig-
inally presented in [6]. First, a MOF based metamodel is joled that integrates
UML, OWL, and OCL. Second, adML profileis used to provide a syntactic basis.
This choice was made in order to support standard UML2 eidemaechanisms.
It also enables mappings from the profile onto TwoUse mod#is. third idea is
to provide a canonical set of transformation rules to the.id@s aims at enabling
the integration at the semantic level. The fourth idea iswost important one from
the point of view of this paper. In order to make use of the saa®y capabilities
of OWL ontologies, an extension of the OCL basic libraryedlDCL-DL is intro-
duced.

The TwoUse metamodel (fig. 2.3) imports the OWL, UML and OCltangodel.

+nestingPackage LOJ +OWLImports

+/nestedPackage "| Package TUPackage > OWLOntology
(from uml) < }— (from odm.owl) 0.*
? +owner -
+classes
Class TUClass OWLClass
(from uml) (from odm.owl)

Fig. 2.3 TwoUse Metamodel

2.4 TwoUse 9

A big advantage of the integration of OWL is the ability to @seeasoner. Rea-
soners can be used to check the consistency of a model, wieiahsithat it makes
sure that there are no contradictions. It can further be tsatheck for concept
satisfiability. This makes sure, that a concept definition aetually be fulfilled,
for example whether a class can have an instance. Thirdgmeescan be used to
classificate concepts. This allows to conclude informagibout the relationship of
different concepts to each other. An example here is thetipnesvhether every in-
stance is automatically an instance of a certain class, Aasasoner can classificate
an instance, which means it can determine whether it is &arine of a certain class,
or not. To use these features provided by the possibilityseothe OWL reasoner,
an extension to OCL calle@CL-DL is introduced.

2.4.4 OCL-DL

For the best use of TwoUse, existing and additional OCL esgioas are needed.
So our goal was not only to implement a metamodel binding feoUse, but also

to provide additional, TwoUse-specific operations. Simre tdid not permit the ac-

tual implementation, instructions where and how to impletibe operations are
given later. [6] already introduced OCL-DL, an extentiontteé OCL standard li-

brary with pre-defined operations that call the OWL reasdbar goal is the actual
implementation.

2.4.4.1 Problem

To demonstrate the use of OCL-DL we consider our running g@t@ndescribed in
section 2.2. Let us consider the case of a dzessSalesOrder, which is a subtype
of the classSalesOrder. To be more specific we state, that thalesOrder class
must have an attribut€ustomer. The object in this attribute must itself have an
attributeCountry with the value 'Canada’ to be @anSalesOrder. There are two
predefined OCL operations for the tyPelAny, namely

1. oclisTypeOf(typespe®©clType): Boolean
2. ocliskindOf(typespedclType): Boolean

The first onepclisTypeOfreturnstrue if the model element it is applied to is of the
type of its argument. So applied to an instance of the dmsSalesOrder, the
operation would only evaluate taue, if its argument is the clagsanSalesOrder.
The second operatiarclisKindOf returnstrue if the model element it is applied to
is of the type of its argument or is a subtype of it. Appliedmdrastance of the class
CanSalesOrder, the operation would evaluate taue, if its argument is the class
CanSalesOrder or it's supertypeSalesOrder, or any supertype obalesOrder
(e.g. OclAny). The problem here is the scenario, if we havisatance of the class
SalesOrder and ask if it is also an instance of the cl&anSalesOrder (i.e. its

10 2 Background

attributeCustomer has the value 'Canada’ in its attribuB®untry). In this context,
both of the operations described above would evaluaf@de. "The reason is that,
in any object-oriented paradigm, the compiler cannot dyinalty subtype classes
based on their descriptions” [6].

2.4.4.2 Solution

Since TwoUse-classes can be hybrids of UML and OWL-claskegetSalesOr-
der() operation can be specified without using complex OCL exprassbut by
taking advantage of the OWL part of TwoUse by queryind?NL reasoning ser-
vice To decide whether a class is a subclass of an other clasgnwduce an OCL-

DL namedowlisinstanceOfthat makes use of a reasoner and tests if a given in-
stance is an instance of the operation’s argument by chgdkinmeets the given
constraints.

context TaskCtrl::getSalesOrder (): SalesOrder
body:
salesOrderoclAsType(
salesOrder .owlMostSpecNamedClass ()
)

In the context of this operation an OCL-like query may chedhkether the
given SalesOrder instance fulfills all the logical requirements 0SSalesOrder
or CanSalesOrder. The basic OCL operatiooclAsType does the casting in the
subclass, referred by its parameter. To determine whicklask ofSalesOrder
is applicable, the OCL-DL operatiamwlMostSpecNamedClass is invoked. This
operation "queries a reasoner to return the reference tsuit@ble named subclass
according to the OWL ontology.” [6] The advantage of thisckof specification of
getSalesOrder() is the separation of two sources of specification compleXitg
specification of complex classes remains only in the OWL rhadd the specifi-
cation of the operations needed by the developed systemmemby in the OCL
expression, and stay small, more comprehendible and easilytainable by the
use of the OWL class definition and the application of thearas The same is the
case for theSalesOrder operationfreight which calculates the freight amount of
an order depending on the type of tBalesOrder. As presented in the listing in
section 2.2freight can be specified using OCL including the OCL-DL operation
owllsIinstanceQfwithout querying the home country of a coustomer to deteemi
the kind ofSalesOrder it is applied to. This avoids the redefenition of tBale-
sOrder subclasses in the body eight.

[6] introduces four OCL-DL operations namely:

1. owlisinstanceOf(typespe@clType): Boolean Evaluates tdrue if the object
satisfy all the logical requirements of the OWL class dgxin typespec

2. owlAlINamedClass()Set(OclType) Returns all named classes classified by a
reasoner, whose the object satisfies the logical requiresmen

2.4 TwoUse 11

3. owlAllinstances()Set(T). This is an introspective operation which returns all in-
stances that satisfy the logical requirements of the OWksctbescription of the

given object.
4. owlMostSpecNamedClassDcltype. Returns the intersection of owlAllNamed-

Class().
[6]

Chapter 3

First approach: Extending the EMF OCL
implementation

3.1 Introduction

In this section, the existing projects we initially based i@search on are presented.
While working on this approach several problems occurreal &re described in
section 3.7 and led to the decision to choose a differenteur;, presented in chap-
ter 4.

3.2 The OCL interpreter

The OCL interpreter can be found in the packagg.eclipse.emf.ocl.examples.in-
terpreter "This example-interpreter illustrates the usage of theegie OCL Parser
API to parse and evaluate OCL query expressions and camtstigithin the SDK.”
[13] It extends the Ecore example editor with a console, phavides two fields.
You can enter an OCL expressions in the bottom field and et to evaluate
them on the model, while output and errors are shown in théiéth

The console provides the opportunity to choose (usirigr@p-Down-Action
whether to evaluate expressions either on an UML or an Ecodem”These ac-
tions automatically select the appropriate metamodelénctinsole.” [13] Further,
the user is able to determine the model level on which theygisetrexecuted’,
namely either the model-lev®l1 or the metamodel-levéli2. While parsing of ex-
pressions is provided on both the M1 and the M2 level, theuawiin of expressions
is only implemented for the M2 level.

13

14 3 First approach: Extending the EMF OCL implementation

3.3 Adding custom operations

The first task was to determine how to add custom operationthd EMF OCL
implementation, the basic steps are to create a cuBtorimonmenthat knows how
to look up this operation, and dwvaluationEnvironmerthat knows how it is im-
plemented. Concrete, tl8wvironmenhas to extend either thbstractEnvironment
(this means you have to do a lot of work on your own, but somegiieinescapable)
or an existing Environment implementation (e.g. EmreEnvironment The new
Environment needs a constructor and a mechanism to defimetheperations and
add them to a type. A possible solution can be seen in listihg 3

Listing 3.1 "An Environment to look up the custom operatiowllsinstance Of

icl ass MyEnvi ronnent ext ends Ecor eEnvironnent {
EQper ati on regexat ch;

/[l Initialize the root environnent
s MyEnvi ronnent (EPackage. Regi stry registry) {

super (registry);
def i neCust omOper ati ons() ;
}

10

/1 Add our custom operation to OCLAny
private void defineCustonOperations() {
15
ow | sl nstanceO™ = EcoreFact ory. el NSTANCE.
creat eEQperati on() ;
ow | sl nstanceOf . set Nane("ow | sl nstanceOi ") ;
ow | sl nstanceOf . set EType(get OCLSt andar dLi brary() .

20 get AnyType());

/'l Create and add its paraneter
EPar anet er parm = Ecor eFact ory. el NSTANCE.
creat eEPar anet er () ;
2 parm set Nane("pattern");
par m set EType(get OCLSt andar dLi brary().
get AnyType());
ow | sl nstanceOf . get EPar anet er s() . add(parmnm ;

30 /1l Annotate it so that we will recognize it
/1l in the eval uation environnent
EAnnot ati on annotation =
Ecor eFact ory. el NSTANCE. cr eat eEAnnot ati on() ;

3.3 Adding custom operations 15

Next the correspondirigvaluationEnvironmenteeds to be implemented. Again,
we extend théecoreEvaluationEnvironmesb it knows how to handle calls to the
added custom operation:

Listing 3.2 "An EvaluationEnvironment to execute the code dovlisinstanceOf

1

10

15

20

25

30

16 3 First approach: Extending the EMF OCL implementation

/1 unknown operation
t hrow new Unsupport edQOperati onException();

The final step is to create d&nvironmentFactoryhat creates the custom envi-
ronments.

3.4 Evaluation on the M1 level

As mentioned in section 3.2, the original OCL console did/@tlow for evaluation

on the M2 level. Some of th@CL-DL operations we want to define operate on the
M1 level. For example the operatiowllsinstanceOfs applied to an instance, gets
a class as its argument, and queries, whether all consttaizit need to be fulfilled
for an object to be an instance of this class can be evaluatéii¢. Therefore
we needed to enable evaluation on the M1 level. The first step tev alter the
OCLConsolePagelass, specifically in the case distinction of the modeliexgl

at caseM1, not only parsing, but also evaluation of the query had to ribked.
Using the the same code as in cds2produced wrong results. So we had to make
code changes on the concrete implementation of each ape(atig.ocllsTypeOf
ocllskindOf ...). Since they are implemented differently and at défgrocations
for different model elements, we had to work on the impleragon of every single
one.

3.5 Adding custom operations to a model and making them
available at runtime

3.5.1 Adding OCL expression to model elements

The next idea was to allow the user to create operations imthael, and enhance
them with OCL expressions that describe their behavior. Ug¢ex should be able

to execute these operations on instances of the model hedr@aeEMF sample
editor already allows the user to adeDperationsto ecore models (and TwoUse
models, since ecore is the metamodel of TwoUse). The edgormaovides the op-
portunity to addEAnnotationdo a model element. These can further be extended
with Details Entrieghat consist of &eyand avalue We decided to use the follow-
ing mechanism:

1. The user adds @Operationto the metamodel.

3.5 Adding custom operations to a model and making themahlailat runtime 17

2. This operation is annotated with te&nnotatioi’'OCL”" .
3. TheEAnnotationgets aDetail Entrywith thekey”body” . The OCL expression
describing the operation is written to thaluefield.

To enhance user-defined operations with OCL expression$egedhis mech-
anism, because it sounded very convenient and intuitives i@t course the other
advantage was that we could use existing mechanisms. Anptissibility could
have been to add a field calleéddyto the properties-view of thecore sample ed-
itor and let the user write his OCL expression there. The problestive fact that
instead of being able to use the existing editor, we woulcehead to extend the
EMF sample editgrand also add the modified project as one of our plug-insauaiste
of just using the version provided by tl&VF plug-in. Since from the beginning
our goal was to edit as few existing plug-ins as possible, hase to use thEAn-
notationmechanism as shown in figure 3.1.

& Java - Test/My.ecore - Eclipse Platform

Fle Ed Navigate Search Project Run SempleEcoreEdtor Windon Help

ri- i #-0Qr (EHEG: @O i e £ (& 2ava |
1% package Expler 23 T8 Herarchy| = 01 |(&) *My.ecore 22 = 0§ rasks 2 =0
=k GEEE urce/TestiMy ecore CAE |87
=B Book Fdi[| raAF

ool
@ getAuthor(): Author (5 Uneategorized

ocL
3 body -> sef writtengy
= wrizendy ; Author

B Auther

[2i Problems | @ Javadoe |2, Declaration | = Properties ©3 &l console | 5|5 o
Property. Walue
Key
Yaluz

Fig. 3.1 EAnnotation

It is important, that the OCL expression describes the dpegradequately so it
can be fully evaluated at runtime. To check whether a wriggpression is seman-
tically correct, the user has to be able to parse his OCL ssfoe.

3.5.2 Parsing

Again, the first idea was to add this function to the existidgas, specifically to
the window into which the user writes the OCL expression.aBse of the same
reasons as in the previous section, and also the dependéhisiesolution would
create we chose a different approach. Since this task isnoeefd by the console,

18 3 First approach: Extending the EMF OCL implementation

the most convenient solution to us was to add a button toat,dlows the user to
parse the OCL expression of the currently chosen opera®shown in figure 3.2).

& Java - Test/My.ecore - Eclipse Platform [BEE
File Edt Navigate Search Projert Run Sample Ecors Edtor Window Help
ti-E B0 Q- EHG BE V- (S [|8 2ava |
12 Package Explor 52 8 Hierarchy| = O || @] #tly.ecore 2 = O[] Tasks 5 =0
gt
T Ll

(5 Uncategorized

5= outline 32 =8

Selected Object; qetAuthor() : Authar

Fig. 3.2 Parsed custom operation

We then only had to ensure that the parsing of both, M1 and MRzessions
would succeed. This is done, by first parsing the expressanavil expression.
The code for this parsing (listing 3.3 lines 14 - 22) is sumded by atry-catch
block, that catches any occurring exception (most likeBaaserException

Listing 3.3 "Code to parse custom operations”

el se i f(((EOperation)context).get EAnnotation("OCL").
getDetail s().get("body") == null)

error (OCLI nt er pr et er Messages. consol e_enpt yCcl Expr) ;
5
el se {
String expression = ((EOperation)context).
get EAnnot ati on("OCL").getDetai |l s().get("body");

1wocl = ocl Factory. creat eOCL(Model i ngLevel . ML) ;
OCLHel per<Obj ect, ?, ?, ?> helper = ocl.
creat eOCLHel per();

bool ean niparse = fal se;

15try {

mlparse = true;
OCLEval uati onModel i ngLevel . nodel i ngLevel = 1;

3.5 Adding custom operations to a model and making themahlailat runtime

19

20 3 First approach: Extending the EMF OCL implementation

65}
}

If the exception occurred during the parsing or evaluatiitp@ OCL expression
(shown by thenlparse flag) it is very likely that this exception occurred, because
it is actually a M2 expression. Therefore ttetch-block handles the exception by
restarting the parsing from the beginning, but this timesjpay the expression as a
M2 expression. Again this part is surroundedtby-catch block. If an exception
occurs again, the expression is not valid OCL.

3.5.3 Enable evaluation at runtime

The next idea was to let the user execute the operations legladd the instances
of his model. Luckily the operations provided in the metarloate available in
the OCL console when the metamodel they are described in is registered. Thi
functionality (registering a model as metamodel) is alyepbvided by the AM3
plug-in [14]. The custom functions are even available ondbetent-assist of the
console (ctrl+space). So our task was to implement the atialuof the operation.
For this we used th&valuationEnvironmentve created in the process of adding
OCL-DL operations to th©CL standard library . As shown in listing 3.3 (lines 1

- 8) we only had to check, if the chosen operation haBAnnotatiorwith the value
"OCL™ and ensure that tHeetailEntrywith the key’body” is not null. Once this
was ensured we could use the code of @@LConsolePage evaluation method

to evaluate the body as a query.

3.6 Adding a metamodel binding for TwoUse

3.6.1 Abstract approach

Before the actual implementation of the new operations, tamedel binding for
TwoUse has to be established (the TwoUse metamodel can be foufig. 2.3).
While determining how to add custom operations, we noted ttiea metamodel
binding does not occur in therg.eclipse.emf.ocl.examples.interprepdug-in it-
self, but in the org.eclipse.ocl.ecore respectively algpse.ocl.uml package. This
interfered with our original plan to just extend the intexfgr plug-in. So we had to
create a package calledg.eclipse.ocl.twousthat realizes the metamodel binding
for TwoUse and will be used by the interpreter. To create ametlel binding "you
need to ensure that your metamodel implements the cornstreqguired by OCL
in some fashion: Operation, Property, etc. Your metamodedtrbe Ecore-based
(Ecore is the meta-metamodel).” [15]

3.6 Adding a metamodel binding for TwoUse 21

3.6.2 Classesto implement

If these requirements are satisfied, you need to create anod# specific plug-
in, that serves as the connection between the metamodel @hd This plug-in
(org.eclipse.emf.ocl.twougkas to implement Classes for the following concepts:

EnvironmentFactory
Environment
UMLReflection
OCLStandardLibrary
EvaluationEnvironment

An EnvironmentFactorymplementation is needed, since it createsEngiron-
mentand theUMLReflectionclasses. The implementation of tB@vironmentre-
quires suitable substitutions for the generic type pararseepresenting the meta-
modeling constructs required by OCL to provide relationsveen the OCL meta-
model and your metamodel. TREMLReflectioris needed for introspecting models
(instances of the target metamodel), while the implementatf theOCLStandard-
Library as an instance of your metamodel provides the instances ai¢iamodel’s
Classifier metaclass that implement the OCL standard {ibiygses. AnEvalua-
tionEnvironments needed that knows how your metamodel 'works’ for accessin
properties of run-time instances of models. These are thie paemises to create a
metamodel binding for OCL. Our approach is presented ir83.6.

3.6.3 Concrete

As described in section 3.6.1, the main entry point to cradimding for a custom
metamodel is the implementation of BnvironmentFactorywith generics that suit
your metamodel. Our approach was to create, a separatérplogfwoUse similar
to org.eclipse.ocl.ecorgnamedorg.eclipse.ocl.twouse

3.6.3.1 Renaming generics - the idea

The first step was to create generics belonging to our metlth{dUClass TU-
Classifier TUOperation ...). Since in the beginning, our package should behave
exactly like the ecore package for simplicity reasons, tist iilea was to copy all
the ecore genericEClass EClassifief EOperation ...) and just rename them from
E...to TU... (e.g.EClass— TUCIasg. This is possible, because eclipse projects
are open-source, and their source code can be downloadadtieo CVS reposi-
tory. The exact 'tuning’ of the interfaces belonging to trengrics to adjust them

to the TwoUse metamodel was supposed to follow later. Sineggenerics were
now behaving exactly like the ecore ones, it was conveniugt copy the the
EcoreEnvironmentFactory

22 3 First approach: Extending the EMF OCL implementation

3.6.3.2 Renaming generics - the problem

Unfortunately this caused a lot of errors, since now metloma other packages,
called in method bodies in our package were not called wighctrrect types any
more. Some of these errors could be solved by adding castspme of them re-
quired code changes in the called method itself. One prolihatioccurred were
methods withELi st <ECI ass> as return-type. After changing the return-type to
ELi st <TUC ass>, the called method itself had to be altered, so it returrislast
of the new type, but again the same error occurred, that rdstballed within this
method returned ecore types and sometimes, again a casbwa@saugh. This lead
to some deep and very complex changes in code, that sooredrtiss boarder to
other packages, imported byg.eclipse.ocl.ecorg.g.org.eclipse.emf.ecoyeSince
we wanted to alter as few packages as possible, and the tedees became very
complex and numerous, we had to think of a new approach.

3.6.3.3 Creating interfaces that extend the ecore generics

The next idea was to create interfaces, that simply extem@dhresponding ecore
generics (EClass, EClassifier, EOperation, ...) and itistarthe TUEnvironment-
Factory with them.

i nport org.eclipse.enf.ecore.inpl.EC ass;

public interface TUC ass extends EC ass{

}

Again, we copied and renamed tBeoreEnvironmentFactoryut now, since we
had different argument-types and return-types for the @mginted methods, their
signatures had to be changed (EClassTUClass). This raised another problem:
since some methods called methods that had the 'old’ ecarerigs as parameter
or return-type, again there were many errors in the melEnvironmentFactoryin
conclusion, we came to the same problem as in the first apperatdiscarded this
idea as well.

3.6.3.4 Copy the ecore plug-in

Since the implementations of the model eleme@€léssimpl, EClassifierimpl,
EOperationimpl,...) are located irorg.eclipse.emf.ecorehis plug-in had to be
copied as well, to allow code changes to be made here. Thiwedl us to create a
closed workspace (see figure 3.3), that contained the copkaj-in Org.eclipse.emf.-
ocl.examples.interpretgrthe plug-in providing the metamodel binding for TwoUse
(org.eclipse.ocl.twoudand the plug-in containing the model implementatiarg (-
eclipse.emf.ecojeThe only other plug-in needed by the interpretenis.eclipse.ocl

3.7 Problems 23

Since this plug-in provides the basic OCL concepts, theenveaneed to make any
changes there, and it could be added to the build-pathas a

] Package Explorer &3 %Plug-ins =g

B &7
:LjLJ- de.uniko.isweb, bwouse, oclinterpreter
:-L,;—LJ- de,uniko.isweb, bwouse, ool bwouse
:Lij- org.eclipse.emf, ecore

Fig. 3.3 Closed workspace

3.7 Problems

Because of the problems we experienced while creating artgridr the TwoUse
metamodel we came to the conclusion, that there is no usgingtto extend or
modify theorg.eclipse.ocl.ecorglug-in. A complete programatical implementation
of the TwoUse metamodel would be needed, that needs to biemvfibm scratch.
Another approach, that addresses this problem in a veryecoent way is the Dres-
den OCL toolkit for Eclipse. It solves the process of creptirmetamodel binding
for a custom DSL in a far more elegant way. This led us to théstetto discard
the first approach using the EMF-OCL implementation, andthiseédresden OCL
Toolkit as the platform to implement our OCL-DL operations.

Chapter 4

The second approach: Extending the Dresden
OCL toolkit

4.1 Introduction

In this section, the second approach of extending an egi€i@L toolkit is pre-
sented. This involves adding a metamodel binding for Twodls# modifying the
OCL parser in order to be able to parse the OCL-DL operatibradso comprises
implementing the method bodies of these operations to eetabhterpret expres-
sions using these new standard library operations, as welttending the java code
generation from OCL constraints, provided by the Dresdeh @Glkit. This chap-
ter presents our approach in dealing with these tasks.

4.2 Design

The Dresden OCL toolkit [16] is implemented as an eclipsgiy and provides
an implementation of OCL including the OCL standard librarye toolkit enables
users to parse and interpret OCL expressions over modahicss, as well as gen-
erating java code for the specified expressions. The plegrisists of the following
parts:

Pivot model

OCL standard library implementation
OCL parser

OCL interpreter

Java code generator

The most notable aspect of the toolkit is the pivot model,chtis kind of a proxy
that is situated between the OCL metamodel and the metarbted target mod-
els. This provides an intermediate abstraction layer,ltmethe user to connect any
custom metamodel to the toolkit. Instantiation of the OCGinskard library types be-
comes independent of the used metamodel, and thereforalh@ecessary steps
are the suitable implementation of the pivot model intezfac

25

26 4 The second approach: Extending the Dresden OCL toolkit

4.3 Adding metamodel binding

4.3.1 Problem binding the TwoUse metamodel

4.3.1.1 Idea

Adding a metamodel binding, allowing to use the OCL impletagan with a cus-
tom DSL is very easy using the Dresden OCL toolkit. Since thMFEapproach
caused us a lot of problems creating the metamodel bindirgwas the main mo-
tivation to choose this OCL implementation. In the DresdeZiQoolkit, binding
the metamodel only requires establishing bindings fronctigtom DSL classes to
the corresponding pivot classes [17].

4.3.1.2 Problem

The difficult part here is the fact, that the TwoUse metamodatains two types, i.e.
UMLClassand TwoUse ClasslUClasy, where the second one is a subclass of the
first one, but also inherits from OWL ontologies (as desdiing6]). The problem
is, that both of these classes must have a corresponding Gethclass, allowing
for the newly implemented special OCL-DL operations to bgliag to instances of
TUClassesbut not to instances of regulaiMLClasses This stems from the fact,
that the OCL-DL operations make use of an ontology reasdrarrequires the
queried model instance to inherit from OWL. The problemhsaj the existing OCL
metamodel only has one supertype for all types, nar@shAny. As described in
section 2.3, all operations owned ©¢lAny(e.g.oclisKindOf) are applicable to all
instances that are subtypes@€¢lAny; i.e. all types. As can be seen in figure 4.1,
the typeUMLClassis connected to the pivot cla3ype which is on the other hand
connected to the OCL typ&nyType To make the distinction betwedsMLClass
andTUClasswhile parsing the OCL expressions, a mechanism to decidéhnehan
object is an instance of BUClass and therefore applicable to OCL-DL operations
is needed in the OCL engine.

4.3.2 OWlAny

Our idea was to add a subclasgQolAny, calledOwlAny, as well as adding a sub-
class taPivot: TypecalledTuTypeand finally connectingu Typewith OwlAnyon one
side, andrUClasson the other (as depicted in figure 4.1). After trying to mypdiife
existing Dresden OCL toolkit implementation in order to d@delse new classes we
experienced a lot of errors that were difficult to resolveergfore we contacted the
developers of the toolkit who were very doubtful regarding possibility to make
these changes without rewriting huge parts of the toolkitc&the only need for

4.4 Adding OCL-DL operations 27

this modification is the ability to throw parsing errors whH@@L-DL operations are

applied to UML classes, we decided to move this error detedt the code gener-
ation and interpretation process, and leave the task tceimgiht a suitable parsing
error detection for this case for the future.

DSL (Twolse) Pivot OCL OCL standardlib

UmiClass - Type = AnyType —~—— OclAny

TUClass ——— TuType -=—— TuAnyType a-—— OwlAny

Fig. 4.1 Idea how to bind the TwoUse metamodel to the pivot model

4.4 Adding OCL-DL operations

For dresden an approach is described in [18], that is silpiéample as the adding
of a metamodel, described in the previous section. Thiscgmpr relies on simply
modeling the new operations in a model of the standard lbramelyoclstandard-
library.types which can be found in the packagedresden.ocl20.pivot.modelbus
After adding a new operation to the model, a rebuild of the vhmoject is sup-
posed to add the necessary code to parse and interpret thepeeation. Unfortu-
nately this is not fully implemented yet, so in praxis methaal parse and interpret
a new operation have to be added to several classes of thé tool

4.4.1 Concrete implementation of owl | sl nstanceOf

This section describes how to exemplarily implement onehef@CL-DL opera-
tions. Due to the fact that a metamodel binding for TwoUsetilsmissing, and
therefore the bridge from UML class specifications to the O¥soner cannot be
established yet, the scope of this work does not allow tauitela complete im-
plementation of one of the OCL-DL operations. However, watded parsing for
owllsinstanceQfand the following describes where exactly the respectiamges
have to be made in order to add and implement the OCL-DL ojpeasafThis should
serve as kind of a manual for future implementation of theratpens. The imple-
mentations of the operations differ only very little. In fathere are only very few
places where the code for the other operations will be diffethan the code for

28 4 The second approach: Extending the Dresden OCL toolkit

owllsinstanceQfMainly, this will be the actual implementation of the resfiee
operation (discussed in section 4.4.1.2) and the temptate for the java code gen-
eration from OCL expressions (discussed in section 4.%.1.3

4.4.1.1 Parsing

The main entry point is the '.types’ model of the OCL standivchary. It can be
found in thetudresden.ocl20.pivot.modelbus.resouricdder and is calleaclstan-
dardlibrary.typesIn order to enable parsing for an operation that is supptusbd
added to the standard library, the operation needs to belptbdere. As described
in the beginning of this section, it is not implemented yeatwomatically generate
the rest of the code from here, but mechanisms to parse thatapehave to be
added to several java classes.

First of all, the operations signature has to be added tauitiesden.ocl20.pivot.-
sessentialocl.standardlibrary.OclRoioterface. This was done by by creating an-
other interface calle®clRootTuin the same package, that extends @&Root
interface and implements the operation’s signature. Nessteral files in theu-
dresden.ocl20.pivot.ocl2parser.gen.parserfppaskage have to be modified in or-
der to enable parsing. This can be done accordingly to atireiady implemented
operations (e.gocllsKindOf). Finally the actual parser filecl2.parserin the tu-
dresden.ocl20.pivot.ocl2parsetug-in is automatically generated by running the
ant-script [19].

4.4.1.2 Interpreting

The actual implementation of the operations themselvescbs done irtudres-
den.ocl20.pivot.standardlibrary.java.internal.libsaJavaOclRoatAs mentioned pre-
viously, what keeps us from implementing the operationag, fisissing connection
between the (UML) Class and the ontology. This connectiareided, in order to
allow a reasoner to infer knowledge about a class, whicheisrithain idea behind the
OCL-DL operations [6]. A possible approach has been digmligs section 4.3.2,
however a working implementation is lacking so far.

4.4.1.3 Code generation

To make use of the ability of theresden OCL Toolkito generatéspect] codghe
templates which are responsible for generating the code twakie extended. The
template that needs to specify what kind of code needs to iergted for a certain
operation isudresden.ocl20.pivot.ocl2java.resources.templave joperations.stg
Here an entry for the respective operation that is suppasée tadded has to be
included, along with the code specifying the AspectJ codenlill be generated.

4.4 Adding OCL-DL operations 29

4.4.2 Testing

In order to test the implementation afvlisinstanceOthe example model that has
been introduced in section 2.2 can been used. We createdaaa Bodel of the
WebShomnd, generated model code from this model. This can simptolne by
using the EMF functionality to generate java code frogeamodelAfter creating
the model code, an OCL query using the newly added OCL-DLatmerowlIsIn-
stanceOfhas been created as described in section 2.2 (the OCL queilyecseen
in section 2.2). Since we added the signatur@wflsinstanceOfto the standard
library, the query is now successfully parsed (as can beisdegure 4.2).

& Java - Model[Test/constraints/freight_body. ocl - Eclipse SDK.
File Edt Mavigate Seorch Project Run Dresden OCLZ Window Help

(S -2 R EHE I E&D - {8 ava |
Hofl oo
[t Model Browser 52 o v =0
Z | & # webshop &
] i E Taskcel B
% - salesordsr

H cansalesorder - > SalesOrder
B Ussalesorder - » Salesorder
B Customer ot

1if sef] OF(CanSelesOrder[]) then 10 else i selff].owlisInstanceOf{ UsSalesCrder(]) then 5 else 20

¢ >
[freight_body,odl £33 ModelTest =0
package WebShop A
context SalesOrder::freighc(): Integer
hody:
if self.owlIsInstanceOf (CandalesOrder)
then 10
else
if self.owllsInstanceOf (UsSalesOrder)
then 5
else
zo
sndiz
endif
-
o | writable Insert 1is 2l eR 9

Fig. 4.2 A parsed OCL impression that uses the newly added owlIsinstaf operation

We used the Dresden OCL toolkit functionality to generatpeksJ code (as de-
scribed in [20]) to create code from the parsed OCL condtraiis example can be
used together with theain-methodshown in listing 4.2 to test the implementation
of owllsInstanceQfonce it is implemented. So far, it only shows that the Aspect
template code foowllsInstanceOhas been added in the right places.

Listing 4.1 "The generated AspectJ code for the OCL bodyreight’
1package WebShop. constrai nts;

@=ener at ed
public privileged aspect BodyAspectl {
5

| **

* <p>Poi ntcut for all calls on

30 4 The second approach: Extending the Dresden OCL toolkit

Listing 4.2 "The main-methodo test the generated AspectJ codedatIsinstanceOf

1_

4.4 Adding OCL-DL operations 31

Chapter 5
Comparison of EMF and Dresden OCL toolkit

5.1 Introduction

The EMF implementation of OCL with the example interpretanf) and the Dres-
den OCL toolkit firesdef are two useful, but diverse approaches of implementing
OCL for eclipse and providing means to parse and interpretessions. This sec-
tion aims at comparing these approaches, since we used btitaro in trying to
implement OCL-DL. Several aspects that distinguish the &pproaches are de-
scribed in the following.

5.2 Metamodel binding

The first aspect that was important to us, is the way the twocgmhes enable the
binding of a customized metamodel. As described in sectiériEmfrequires the
user to implement several classes in a way that is specifteetonietamodel. This
requires deep understanding of the architecture oéthiplug-ins and is quite com-
plicated.Dresdensolved this in a far more elegant approach. As describeddh [1
the user can bind his metamodel by only mapping the eleméihtis onetamodel,
to the corresponding pivot model elements. This does noiiregny programming,
and can be done by simply following the provided tutoriahatly very little meta-
modeling knowledge.

5.3 Adding operations to the OCL standard library

Since the main goal of this work was to add new operationseédaEL standard
library, the way to do this was similarly important as addangnetamodel binding.
For dresden several changes have to be made to various classes, agegpia

33

34 5 Comparison of EMF and Dresden OCL toolkit

section 4.4. This cannot be done in a clear and cohesive veyd&veloper must
explore which classes and packages to alter, since no agsealiption of how to do
this could be found. Emf on the other hand also requires cbeages to be made,
but a clear description of the classes that need to be modéietia description of
the changes that need to be performed in order to add newtmperaan be found

in [9]. This has already been elaborated in section 3.3.

So in theorydresderoffers a more elegant approach as described in 4.4, which in
praxis has not been fully implemented yet. The mechaniswiged byemf on the
other hand is well documented and easy to implement.

5.4 Addressing questions

Another aspect that led us to the decision to choosaltiedenimplementation
is the way questions and problems can be addressed. TheeDr&XdL toolkit
has been developed at tlechnische Universit Dresdentherefore a team of de-
velopers can directly be contacted. Further, an OCL Disondsst exists under
Dr esden- ocl - di scussi on@i sts. sour cef or ge. net . Foremf on the
other hand an eclipse newsgroup exists [15], where probtam$e discussed. Un-
fortunately there is very little participation in this negveup.

5.5 The plug-ins

The different layouts and ways to use the plug-ins are warthe discussed as
well. In dresderthe model, and an instance of the model if needed, can bedoade
Each of them is opened in its own tab in the eclipse view (segdig.2) Xmifiles
containing OCL expressions and constraints can then bestbadd parsed. The
successfully parsed constraints are displayed in the nmindiince tab. The user
can then choose a specific constraint, and evaluate it ogentidel instance. The
results are displayed in an additional tab.

Emf offers a different approach. The model and model instanees@ened as sep-
arate windows in the EMF model editor. The OCL interpretersmie is opened as
a view tab, providing a section for entering expressionsaselction displaying the
results of an evaluated expression (see figure 5.1). Likdrésderplug-in the con-
sole allows the import of xmi-files containing OCL expressioFurther, direct input
of expressions over the input field is possible. By pressatgrn, the user parses
and evaluates the query over a selected model object, andshks are displayed
in the upper section of the console.

5.5 The plug-ins

Project ditar Window Help

PO Q- B R N 1 E
o -

] webshop.ecore 50
platformsjresaurce TestiebShop. ecore:
] - WebShop B
B Taskctr

[salesCrder

@ total(} ; ElntegerObject

@ taxes() : EFioat

@ freighti) : EInt

T awner ; Customer

= price ; EFlost

[CanSalesOrder -> SalesOrder
[Us3alesOrder -> SalesOrder

B customer

B Country

Search

o

oe

&8

B8 a8

ordered : EBaalean =0
CelType) : T =
| ocllsInState(statespec: State) : Boolean g
oclisInvalid() ; Boalean
self.ocllsTypeOf (ECperation ocllskindOftypespec: OdType) : Boolean]
| oclIsTypeOf(typespec: OclType) : Boolean i
Resulte: aelfsUndsfinedr) : Boolean

rikeractive OCL

true

bady inv: if{self onllsInst anceOf{CansalesOrder) then 10 else if{self.o.

il

Fig. 5.1 The EMF OCL console to parse and interpret OCL expression

Chapter 6
Conclusion

6.1 Solved Problems - Added functionalities

6.1.1 Problems

In order to extend the OCL standard library we had to overcamember of prob-
lems. One that posed itself during the research for this yweak the decision which
existing implementation should be extended. In fact twdkit®existed that were
suitable candidates for our work, i.e. the EMF OCL impleraént with the exam-
ple interpreter, and the Dresden OCL toolkit. This papes@néed both approaches,
the work we did trying to extend them, their differences, #rereasons that led us
to chose the Dresden implementation. The most importargcasp our decision,
and also the task that presented the most problems was tiregaafch metamodel
binding for the TwoUse metamodel. Unfortunately we weregyatile to solve this
task partly, as discussed in the previous chapters.

6.1.2 Added functionalitiesfor EMF

For the EMF example interpreter we enabled M1 model levekpreting (in addi-
tion to the existing M2 model level interpreting). We alsalad the functionality to
enhance the ecore-model-elemE@perationwith OCL definitions that implement
the behavior of this operation. These OCL definitions candregul and evaluated,
which enables the user to use these operations in OCL expnedse enters into
the console. Further we added the signature of one of the DICbperations to the
OCL standard library (i.eowllsInstanceOf, enabling parsing but not interpreting
expressions using this operation. Interpretation coutcbramplemented since we
had problems adding a metamodel binding for TwoUse for ths@ach.

37

38 6 Conclusion

6.1.3 Added functionalitiesfor dresden

For the Dresden OCL toolkit we also added the the signaturthe@foperation
owlisinstanceOto the OCL standard library as an example of one of the OCL-DL
operations. This allows for parsing OCL expressions makiseg of this operation
as one of the new standard library functions. Unfortunatedywere not able to
fully implement interpretation and code generation fos thinction. This is due to
the problems we had in finding a connection between the Twaktamodel and
the OCL metamodel. However we gave instructions how and evteeadd future
implementations for the OCL-DL operations, in order to daaterpreting as well

as code genration, once these problems have been overcome.

6.2 Future Tasks

Because of several problems that occurred during this wuak have been elab-
orated in previous sections, we were unable to add a proptnmoelel binding
for TwoUse. Fortunately this was tolerable in our final impéntation that extends
the Dresden OCL toolkit. TwoUse Models can simply be impbde UML mod-
els, leaving TwoUse classes as simple UML classes. Theudistabe here is, that
OCL-DL operations can be added to, and parsed with simple dM&ses that do
not have reasoning ability. An error wont be thrown befoteripretation of the OCL
query or the execution of generated aspectj code. As a ftdake a concrete meta-
model binding for TwoUse should be added, that allows thieidihtiation between
UML and TwoUse classes as well as error detection of OCL-Dérafions that are
applied to UML classes.

As a result of the numerous problems we were not able to imgi¢rane of the
OCL-DL operations. While this is left as a future task, thégppr offers instructions
on how exactly to to this.

6.3 Conclusion

In the scope of this work we explored two approaches thatémpht the OCL stan-
dard library, compared both of them and tried to enable teet©CL with TwoUse
models. This posed several problems that could be parthcowse by extending the
Dresden OCL toolkit. We also tried to add one of the OCL-DLmapiens introduced
in [6], enabling users to create OCL expressions for TwoUedefts, that use this
operation. The advantage of these operations is, that tiakg mse of the reasoning
ability of TwoUse models. OCL expressions containing theeatdOCL-DL oper-
ation can be parsed, but not interpreted and used to gerfespeet] code yet. In
order to enable users to make use of the complete OCL-DLriibsame more work
needs to be done in the future.

References 39

References

o)

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.
20.

. Group, O.M.: Object Constraint Language Specificatiension 2.0. Object Modeling Group.

(June 2005)

. Group, O.M.: Uml resource paget t p: / / www. um . or g/
. Group, O.M.: Official mof specification from omft t p: / / ww. ong. or g/ spec/ MOF/

2.0/

. Group, O.M.: Official website of the object managementgrdnt t p: / / www. ong. or g/
. Koblenz-Landau, U.: Transforming and weaving ontolegied uml in software engineer-

ing (twouse)ht t p: / / www. uni - kobl enz. de/ FB4/ I nsti t ut es/ | FI / AGSt aab/
Proj ect s/t wouse

. Parreiras, F., Staab, S., Winter, A.: Using ontologieth wiml-based modeling: The twouse

approach. (2007)

. Shalloway, A., Trott, J.R.: Design Patterns ExplainedNéw Perspective on Object-Oriented

Design (2nd Edition) (Software Patterns Series). Addidtesley Professional (2004)

. Group, O.M.: OCL specification
. Foundation, T.E.: Ocl developer guide programmer’s guide— advanced topics- cus-

tomizing the environmentht t p: / / hel p. ecl i pse. or g/ ganynede/ i ndex. j sp
Foundation, T.E.: The eclipse foundation. the objenstaint language (ocl) projedit t p:
/I ww. ecl i pse. or g/ nodel i ng/ ndt/ ?pr oj ect =ocl (2007)

Foundation, T.E.: Ocl developer guide- reference — ocl api reference —
org.eclipse.ocl.ecoréht t p: / / hel p. ecl i pse. or g/ ganynmede/ i ndex. j sp
Consortium, W.W.W.: OWL Web Ontology Language Refeeenc

Foundation, T.E.: Ocl developer guideexamples guide> ocl interpreter examplent t p:
/I hel p. ecli pse. or g/ ganynede/ i ndex. j sp

Foundation, T.E.: The eclipse foundation. atlas meginmanagement (am3) project.
http://ww. ecli pse.org/gnt/anB/ (2007)

Foundation, T.E.: Subject: 'other model backendshtt p://www. ecl i pse. or g/
newsportal /t hread. php?gr oup=ecl i pse. nodel i ng. ndt. ocl

Dresden, T.U.. Project pages of the dresden ocl toolKit t p: / / dr esden- ocl .
sour cef orge. net/

Dresden, T.U.: Pivot model adapter generation. http://dresden- ocl.
sour cef or ge. net/ paper s/ pi vot Adapt er Gen. pdf

Brauer, M., Demuth, B.: Model-level integration of tbel standard library using a pivot
model with generics support. (2008) 182-193

Dresden, T.U.: Readme. tudresden.ocl20.pivot.ocs2p&README.txt

Dresden, T.U.: How to use the java code generator o@?2jatt p: / / dr esden- ocl .
sour cef orge. net/ 4ecl i pse_usage. ht m

