
Fa
hberei
h 4: Informatik

Collision-free path planning for aroboti
 arm in RoboCup �Home
Studienarbeitim Studiengang Computervisualistikvorgelegt vonKevin ReadBetreuer: Dipl.-Inform. D. Gossow, Institut für Computervisualistik,Fa
hberei
h Informatik, Universität Koblenz-LandauErstguta
hter: Dipl.-Inform. D. Gossow, Institut für Computervisualistik,Fa
hberei
h Informatik, Universität Koblenz-LandauZweitguta
hter: Prof. Dr.-Ing. Dietri
h Paulus, Institut fürComputervisualistik, Fa
hberei
h Informatik, Universität Koblenz-LandauKoblenz, im Juni 2010

KurzfassungDas Ziel dieser Studienarbeit ist es, einen Roboterarm in einen bestehenden Software-Sta
k zu integrieren, damit ein darauf basierender Roboter beim Wettbewerb Ro-boCup �Home teilnehmen kann.Der Haushaltsroboter Lisa (Lisa Is a Servi
e Android) muss für den �Home-Wettbewerb unter anderem Gegenstände aus Regalen entnehmen und an Personenweiterrei
hen. Bisher war dafür nur ein Gripper, also ein an der mobilen Plattformin Bodennähe angebra
hter �Zwi
ker� vorhanden. Nun steht dem Roboter ein�Katana Linux Robot� der S
hweizer Firma Neuroni
s zur Verfügung, ein Roboterin Form eines Arms. Dieser wird auf LISA montiert und nimmt über vers
hiedeneS
hnittstellen Befehle entgegen. Er besteht aus se
hs Gliedern mit entspre
hendvielen Freiheitsgraden. Im Robbie-Softwaresta
k muss ein Treiber für diesen Armintegriert und eine Pfadplanung erstellt werden. Letztere soll bei der Bewegung desArms sowohl Kollisionen mit Hindernissen vermeiden als au
h natürli
h wirkendeBewegungsabläufe erstellen.Abstra
tThe goal of this minor thesis is to integrate a roboti
 arm into an existing roboti
ssoftware. A robot built on top of this sta
k should be able to parti
ipate su

ess-fully RoboCup �Home league.The robot Lisa (Lisa is a servi
e android) needs to manipulate obje
ts, liftingthem from shelves or handing them to people. Up to now, the only possibility to dothis was a small gripper atta
hed to the robot platform. A �Katana Linux Robot�of Swiss manufa
turer Neuroni
s has been added to the robot for this thesis. Thisarm needs a driver software and path planner, so that the arm
an rea
h its goalobje
t �intelligently�, avoiding obsta
les and
reating smooth, natural motions.

5ErklärungI
h versi
here, dass i
h die vorliegende Arbeit selbständig verfasst und keine an-deren als die angegebenen Quellen und Hilfsmittel benutzt habe und dass die Ar-beit in glei
her oder ähnli
her Form no
h keiner anderen Prüfungsbehörde vorgele-gen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. AlleAusführungen, die wörtli
h oder sinngemäÿ übernommen wurden, sind als sol
hegekennzei
hnet.Die Vereinbarung der Arbeitsgruppe für Studien- und Abs
hlussarbeiten habei
h gelesen und anerkannt, insbesondere die Regelung des Nutzungsre
hts.Mit der Einstellung dieser Arbeit in die Bibliothek bin i
h einver-standen. ja � nein �Der Verö�entli
hung dieser Arbeit im Internet stimme i
h zu. ja � nein �

Koblenz, den 27th July 2010

Contents
1 Introdu
tion 131.1 The RoboCup �Home league . 131.2 The software sta
k . 141.3 The robot Lisa . 141.4 The Katana 450 arm robot . 152 The state of segmented robot motion planning 172.1 Potential fun
tions . 172.2 Roadmaps . 183 Integrating an arm into the Robbie software sta
k 213.1 Basi
s . 213.1.1 General
onventions and de�nitions 213.1.2 Anatomy of the Robbie software sta
k 223.2 Robot arm interfa
e and hardware abstra
tion 243.2.1 Restri
tions for Robbie Devi
es and Modules 243.2.2 Abstra
t base
lass: Roboti
ArmInterfa
e 253.2.3 Physi
al arm devi
e: KatanaM400Devi
e 263.2.4 Arm
ontrol Module: KatanaArmModule 273.2.5 Arm path planning Module: ArmPlanModule 283.3 Foundation for path planning . 303.3.1 Forward kinemati
s and
ollision avoidan
e 303.3.2 Choosing a planner . 333.3.3 About graph-based planning with motion primitives 343.3.4 On heuristi
 sear
hing . 343.4 Algorithm implementation . 353.4.1 The A-Star heuristi
 sear
h 353.4.2 Graph
onstru
tion . 363.4.3 Path re
onstru
tion and post-pro
essing 377

8 CONTENTS4 Evaluation and lessons learned 414.1 Evaluating performan
e and su

ess 414.1.1 Basi
 fun
tionality . 414.1.2 Planning time and su

ess rate 434.2 Evaluation of su

ess in the �home setting 455 Outlook 475.1 Further work . 475.2 A
knowledgments . 48

List of Tables
3.1 Path
ost depending on distan
e to
losest obsta
le 37

9

List of Figures
1.1 Lisa showing of the roboti
 arm during the RoboCup �Home 2010Open Challenge . 152.1 Di�erent kinds of roadmaps: topologi
al, geometri
 and grid-based.Sour
e: [CLH+05, p.108℄ . 183.1 Axis enumeration . 213.2 S
hemati
 overview of the Robbie ar
hite
ture 223.3 Class diagram for the hardware abstra
tion interfa
e Roboti
ArmInter-fa
e and its implementations KatanaM400Devi
e and VirtualKatanaDe-vi
e . 253.4 Class diagram for the hardware Module KatanaArmModule 273.5 Class diagram for the path planningModule ArmPlanModule. Somemember variables removed for legibility. 293.6 The algorithm used for smoothing in pseudo
ode. 383.7 Path smoothing: The yellow line is the unsmoothed path, the redline
lose to it is the smoothed
opy. 394.1 S
reenshot of debug visualization. The blue wireframe arm on theleft represents the
on�guration the planner is examining. 424.2 S
reenshot of path planner having
ompleted the
omplex path s
e-nario used for evaluation . 444.3 Treemap of path planning CPU usage distribution, a
quired withGoogle Performan
e Tools and k
a
hegrind 45

11

Chapter 1Introdu
tionIn this minor thesis a path planner for a roboti
 arm and ne
essary driver infras-tru
ture to interfa
e the Katana M400 arm will be added to the roboti
s softwaresta
k developed at the A
tive Vision Working Group (AGAS) at the University ofKoblenz-Landau. The goal is to parti
ipate in the RoboCup �Home league teststhat require obje
t manipulation.This
hapter will give an overview of the RoboCup �Home league with aneye on the
hallenges that involve obje
t manipulation. Next, an overview of theroboti
 software sta
k used shall be presented. Finally the hardware platform�Lisa� and the roboti
 arm shall be introdu
ed.1.1 The RoboCup �Home leagueRoboCup is an international roboti
s
ompetition that aims to further resear
h inroboti
s and arti�
ial intelligen
e by �providing a standard problem where widerange of te
hnologies
an be integrated and examined, as well as being used for inte-grated proje
t-oriented edu
ation.�1 This standard problem was originally de�nedas a football mat
h, building on the games well-de�ned rules, its high popularityand the multitude of te
hnologies that
an used as the foundation for a su

essfulso

er team, as in multi-agent
ollaboration, autonomy, sensor fusion and otherresear
h topi
s. RoboCup events also house
onferen
es and workshops.The
ompetition was split into various leagues that
on
entrate on di�erentresear
h topi
s or sub-problems of so

er. In 2001 the �rst non-so

er league�RoboCup Res
ue� was added to the
ompetition, whi
h fo
uses on the use ofrobots in disaster re
overy. In 2006 a new league was
reated to resear
h the useof robots in a household environment, where they
an help with everyday needs andtasks. This league was named �RoboCup �Home�, and has sin
e attra
ted very1sour
e: http://www.robo
up.org/ 13

14 CHAPTER 1. INTRODUCTIONlarge interest. At this years RoboCup 2010 in Singapore, the �Home
ompetitionwas attended by twenty-four teams from around the globe, whi
h ne
essitated twogames being exe
uted in parallel to
onserve time.Re
urring topi
s in RoboCup �Home are obje
t, spee
h and fa
e re
ognition,path and motion planning and Human-Computer Intera
tion. This is re�e
ted inthe
ompetition
hallenges,
alled games, that parti
ipants have to absolve. Anexample would be the game �Shopping Mall�, where the robot goes into saidstru
ture and tries to
orre
tly identify and then
olle
t items from shelves. Thisgame also highlights the ne
essity for obje
t manipulation.1.2 The software sta
kThe A
tive Vision Working Group of the University of Koblenz-Landau has beeninvolved with RoboCup sin
e 2006. The software sta
k was originally developedfor student proje
ts and resear
h into roboti
 topi
s, but
ould be adapted to theneeds of the RoboCup teams. It is written in C++ and has been designed withextensibility in mind and has been re-used and extended sin
e the �rst RoboCup.Initially used in the Res
ue
ompetition, it serves as the basis for the �Home teamnow, too.The sta
k is modelled after the mediator pattern, utilizing a
entral messagequeue and a subs
ription system. Appli
ation logi
 is partitioned into modulesthat subs
ribe to
ertain messages and
an send messages of their own. Modules
an be proa
tive (they wake up in regular intervals and on message re
eption) orrea
tive (they wake up only on message re
eption). Sensors and a
tuators residewithin driver modules, data pro
essing is done in Worker modules, whi
h
anembed external libraries.1.3 The robot LisaLisa is a re
ursive a
ronym that stands for Lisa Is a Servi
e Android and is theplatform of the �Home team �Homer�. It
onsists of a MobileRobots Roboti
sPioneer P3AT2 platform, a four-wheeled platform with a front-mounted gripper.On top of this platform the
ustom-made framework designed and built by Centreof Ex
ellen
e of the Chamber of Crafts in Koblenz[GWB+10℄ is mounted, whi
h
arries most sensors and the
ontrolling notebook. The framework
onsists of asolid base that
overs the platform, and an elongated tower-like stru
ture towardthe read end of the platform that
arries a pan-tilt unit with a sensor array.2http://www.a
tiverobots.
om

1.4. THE KATANA 450 ARM ROBOT 15

Figure 1.1: Lisa showing of the roboti
 arm during the RoboCup �Home 2010 OpenChallengeThe framework houses two laser range �nders. One is mounted dire
tly abovethe platform and is used for navigation purposes. The se
ond LRF is part ofsaid sensor array, using the �exible positioning for 3-dimensional s
anning. Othersensors found in the array are a
amera and a time-of-�ight
amera for fa
e orgesture dete
tion and re
ognition and a mi
rophone. There is a LCD tou
h s
reenembedded into the tower part of the framework that typi
ally shows Lisas �fa
e�,an i
oni
 human fa
e that
an show di�erent emotions and moves its lips duringspee
h output through the loudspeaker next to the s
reen.The arm is mounted on the surfa
e in front of the tower whi
h slopes slightlytowards the front fa
e of the framework, so that the roboti
 arm
an rea
h downinto the working area of the platforms gripper. Both sides are free of obsta
les, andthe tower slants ba
kwards, away from the arm, to maximize its available room.The robot is depi
ted in �gure 1.1.1.4 The Katana 450 arm robotThe Neuroni
s Katana 4503 is a standalone, segmented arm-shaped robot that
onsists of a
ontroller box running an embedded Linux system and three joinedarm segments with a maximum operation radius of 517mm ending in a
on�gurable3http://www.neuroni
s.
h/

16 CHAPTER 1. INTRODUCTIONappendage, in our
ase a two-pronged gripper. There are six motors built into therobot, leading to six degrees of freedom (in
luding one in the gripper). The robot
an be interfa
ed via USB or Ethernet. More information on the robot
an be foundat http://www.neuroni
s.
h/
ms_en/web/index.php?id=244&s=katana.

Chapter 2The state of segmented robotmotion planningMotion planning for robots is not a young �eld of resear
h, and there are manywell-understood and do
umented approa
hes in use today. A good overview
anbe found in [CLH+05℄. Most general-purpose motion planning algorithms applyto segmented robots, although their high dimensionality makes some approa
hesless feasible or even infeasible.I will present the state of robot motion planning algorithms with a fo
us onthose that work well for robots with at least six degrees of freedom, whi
h is avery
ommon
on�guration for segmented robots.2.1 Potential fun
tionsA well-understood group of algorithms are potential fun
tions. They are not suitedfor high-dimensional sear
h problems. Intuitively, if a robot where a positively
harged parti
le, potential fun
tions employ gradients that a
t as a negative for
eto attra
t this parti
le to the goal. Obsta
les a
t as positively
harged for
esto repel the robot. �The
ombination of repulsive and attra
tive for
es hope-fully dire
ts the robot from the start lo
ation to the goal lo
ation while avoidingobsta
les.�[CLH+05, p. 77℄A logi
al approa
h to this problem would be gradient des
ent: �Starting at theinitial
on�guration, take a small step in the dire
tion opposite the gradient. Thisgives a new
on�guration, and the pro
ess is repeated until the gradient is zero.�[CLH+05, p. 84℄ To
al
ulate the repelling for
e from obsta
les, the distan
e tothese must be established. [CLH+05, p. 86℄ introdu
e the Brush�re algorithm asan e�
ient algorithm to
ompute this distan
e. Intuitively, a map is
reated inform of a grid of pixels. All non-o

luded pixels are initialized with zero, all other17

18CHAPTER 2. THE STATE OF SEGMENTED ROBOTMOTION PLANNING
Figure 2.1: Di�erent kinds of roadmaps: topologi
al, geometri
 and grid-based. Sour
e:[CLH+05, p.108℄pixels with one. Now all zero-valued pixels that have a neighbour with a value ofone are set to two. In the next step, all zero-valued pixels with a neighbouringpixel of two are set to three, and so on. When a four-point
onne
tivity is usedas basis for the neighbour sear
h, the pixel value
orresponds to the Manhattandistan
e to the next obsta
le.One problem of potential fun
tions is that the sear
h
an easily end in nestledin a
on
ave obsta
le or a set of
onvex obsta
les that are too
lose together,essentially be
oming
on
ave. Be
ause the repelling for
e of the obsta
les and theattra
tive for
e of the goal that lies behind the obsta
le
an
el themselves out,the sear
h deadlo
ks. This is known as the lo
al minimum problem as stated in[CLH+05, p.90℄, where the solution is given as �the wave-front planner [...℄ a�ordsthe simplest solution to the lo
al minima problem, but
an only be implementedin spa
es that are represented as grids.� A good visualization of the wave-frontplanner is a wave front that starts from the goal and expands outwards, endingwhen it hits the start position. When the wave passes over a grid
ell, it storesthe distan
e to the goal in this
ell. O

luded
ells are avoided by the wave. Thegradient des
ent then uses this distan
e in the
ells as the gradient fun
tion. �Thewave-front planner essentially forms a potential fun
tion on the grid whi
h has onelo
al minimum and thus is resolution
omplete�[CLH+05, p.91℄.2.2 RoadmapsMaps form the basis of many path planning approa
hes. They are used whenin
rementally building a map of the environment based on sensor information,or to pre-
al
ulate planning information for an environment that
an be reusedoften. [CLH+05, p.107℄ distinguishes between topologi
al, geometri
 and grid-based maps.Topologi
al maps
onsist of a graph with the nodes representing sensor infor-mation and the edges showing possible transitions between these nodes. Geomet-ri
 maps try to �t sensor observations into geometri
 shapes and note these onthe map. Line segments or triangles are often used here. Grid-based maps note

2.2. ROADMAPS 19the �likelihood that its
orresponding portion of workspa
e or
on�guration spa
eis o

upied�[CLH+05, p.108℄ in ea
h grid
ell. These o

upan
y grids are usedthroughout the Robbie sta
k for navigation and mapping. Di�erent kinds of mapsfor the same physi
al lo
ation are shown in �gure 2.1.Of parti
ular interest for high-dimensional problems are roadmaps: Think ofa map of railway stations, like a standard London underground map - a graphwith the nodes representing phyis
al lo
ations and the edges showing possibletransitions between these lo
ations. [CLH+05, p.108℄ on roadmaps:Robots use roadmaps in mu
h the same way people use highway sys-tems. Instead of planning every possible side-street path to a desti-nation, people usually plan their path to a network of highways, thenalong the highway system, and �nally from the highway to their des-tination. The bulk of motion o

urs on the highway system, whi
hbrings the motorist from near the start to near the goal.Many roadmap planners expe
t an expli
it representation of obsta
les in form oftheir geometry. Given expli
it geometry, these planners are powerful. Examples ofsu
h planners are Visibility Maps[CLH+05, p.110℄, Deformation Retra
ts[CLH+05,p.117℄ or Pie
ewise Retra
ts[CLH+05, p.138℄. The underlying approa
h is to
om-pute valid paths from obsta
le geometry. As our
on�guration spa
e is at leastfour-dimensional, deriving the geometry of obsta
les in the
on�guration spa
e Qfrom R3 is not straightforward. Ea
h point on the
onvex hull of the obsta
le in
R3 might
orrespond to an unlimited number of points in Q, thereby renderingthese planners impra
ti
al for our needs. [CLH+05, p.197℄.[CLH+05, p.197℄ propose an alternative approa
h by sampling the
on�gura-tion spa
e and thereby generating a graph of
on�gurations and inter
onne
tingpaths that lie in Qfree, the non-o

luded part of
on�guration spa
e. It is, ine�e
t, a spa
e-time tradeo�, investing
omputational power in advan
e to save itlater. Resear
h into this area laun
hed after Canny showed that the generalizedmovers problem (in whi
h a robot
onsists of a
olle
tion of polyhedra freely linkedtogether at various verti
es) was PSPACE-
omplete (polynomial
omplexity), soa less
omplex approa
h was needed.The �rst su
h algorithm was PRM, the Probabilisti
 RoadMap planner. Theassumption is that
he
king if a given
on�guration q is in Qfree or not is
heap.�It uses rather
oarse sampling to obtain the nodes of the roadmap and very �nesampling to obtain the roadmap edges, whi
h are free paths between node
on�g-urations.� [CLH+05, p.198℄ To answer a query, only the
onne
tion from the startposition to the roadmap and from there to the goal need to be
he
ked against
Qfree. The path through the roadmap from the start entry point to the goal exitpoint
an be
omputed by doing graph sear
h. The roadmap
an be re-used for sub-sequent planning work as long as the environment does not
hange. The approa
h

20CHAPTER 2. THE STATE OF SEGMENTED ROBOTMOTION PLANNING
an also be used for one-shot planning, where the starting and goal positions arealso added to the map and the planning stops as soon as the goal is rea
hed.Spe
ial
are has to be taken when
hoosing a sampling strategy. Using a ran-dom distribution of q ∈ Q might produ
e an even
overage, but if the majorityof planning work takes pla
e in
ertain area of Q some of the work is wasted. In-
reasing the sampling resolution leads to longer planning times. Alternate strate-gies are to sample
lose to obsta
les to enable
lose-quarter movement without
ollision[CLH+05, p.216℄. Another approa
h is to
reate a sparse graph by build-ing on the
on
ept of visibility by only adding new nodes that are o

luded byobsta
les from the vantage point of all other nodes, i.e. they �lie in the shadow� ofobsta
les.[CLH+05, p.218℄ Grid-based planners sample the spa
e along the pointsof a grid,
reating a very uniform distribution. Using hierar
hi
al data stru
turesthe resolution
an be in
reased spatially.The strategy to
onne
t adja
ent nodes should also be sele
ted with
are. Astandard approa
h is to
onne
t ea
h node to k
losest neighbours, whi
h wouldlead to short
onne
tions but
luttered graphs. The opposite approa
h would betrying to
reate a sparse roadmap, where edges are only
reated if this in
reasesthe
onne
tivity of the graph [CLH+05, p.225℄. Using a lazy evaluation approa
h,
he
king for
ollisions only when ne
essary
an lead to very e�
ient planning. The
onne
tions to the k neighbours are assumed free of
ollisions. On
e the query isstarted, these paths are tested on-the-�y.Advan
ed sampling-based planners exist, most of them
reated spe
i�
ally forone-shot planning. An example of su
h a planner would be Expansive-Spa
e Trees(EST), that lends itself to kinodynami
 planning too. In e�e
t, the planner growstwo trees, Tinit growing from the start point and Tgoal, growing from the goalposition. They grow towards ea
h other until they
an be merged into one. Theadvantage over PRM is that with this approa
h only the part of Qfree is
overedthat is really needed for the query.The algorithm employed in this thesis shares
ertain aspe
ts with roadmaps,espe
ially the
on
ept of lazy evaluation.

Chapter 3Integrating an arm into the Robbiesoftware sta
k
3.1 Basi
s3.1.1 General
onventions and de�nitionsAll �le names are relative to the root of the Robbie software sta
k as found in theuniversity subversion repository. The Robbie sta
k is not generally a

essible tothe publi
, so the se
tions dis
ussing Robbie-spe
i�

hanges might not be help-ful to external readers. Also all Robbie
omponents (Modules, Workers, Devi
esand Messages) are written in upper
ase to di�erentiate them from the
on
eptsasso
iated with these terms.File names are written in bold, variable,

Figure 3.1: Axis enumeration

lass and method names in itali
s. Membervariables begin with �m_�. All angles arestored internally as the data type double (withdouble pre
ision). The term �
on�guration�is used as follows: A robot
on�guration ofa robot system is �a
omplete spe
i�
ationof the position of every point of that system.The
on�guration spa
e, or C-spa
e, of therobot system is the spa
e of all possible
on-�gurations of the system [...℄ The number ofdegrees of freedom of a robot system is thedimension of the
on�guration spa
e, or theminimum number of parameters needed tospe
ify the
on�guration.�[CLH+05, p. 40℄.21

22CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACK
System

Core

Device

Message queue

Worker

Device
driver

Hard-
ware

Third-
party

software

Application

Device

Worker

Hard-
ware

Glue code

Technical software

Application indep. software

Application software

Module

ModuleModule

Figure 3.2: S
hemati
 overview of the Robbie ar
hite
tureWhen referring to the anatomy of the Katana arm, the axes are enumeratedfor simpli
ity's sake, starting from the base and as
ending to the gripper. Figure3.1 depi
ts the enumeration. The following des
ription assumes the viewer looksat the ba
k of the arm, with the arm sitting on top of a table. The �rst or lowestaxis is the rotational base embedded into the �foot� of the robot, whi
h rotatesaround the y-axis. The se
ond axis sits on top of the �rst and rotates around thex-axis. The third and fourth axes
onne
t the �rst and se
ond or respe
tively these
ond and third limb and rotate around the x-axis. The �fth axis rotates thegripper around the z-axis, while the sixth axis opens and
loses the gripper.3.1.2 Anatomy of the Robbie software sta
kAs mentioned brie�y in se
tion 1.2, the Robbie software sta
k is designed to behighly modular. The same
ode base should be usable for simulating a robot, mak-ing a Res
ue league robot autonomously explore a maze, monitoring the Res
uemission over a network, playing ba
k a sensor log �le to test software
hanges inthe lab without using a real robot and, of
ourse, parti
ipating in the �Homeleague.This requirement leads to �ve basi
 building blo
ks of sta
k
omponents thatintera
t in a well-de�ned manner. The system is modelled after the Mediatordesign pattern, whose intent is de�ned in [GHJV95, p. 305℄ as �De�ne an obje
tthat en
apsulates how a set of obje
ts intera
t. Mediator promotes loose
ouplingby keeping obje
ts from referring to ea
h other expli
itly, and it lets you vary theirintera
tion independently�. This is realized as a message passing system where

3.1. BASICS 23a
entral
ore will store subs
ription requests from
omponents and allow ea
h
omponent to send messages to all other
omponents that have subs
ribed to thiskind of message. This system
an be implemented e�
iently in C++ through theuse of pointers to messages. The ar
hite
ture is shown s
hemati
ally in �gure 3.2.Ea
h parti
ipant of the message system is
alled a Module. A Module runsin its own thread of exe
ution and sub
lasses Module or A
tiveMessageModule. It
an send messages at any time after initialization, whi
h will be re
eived by the
ore and distributed to other Modules. During initialization, the Module tells the
ore what message types it wants to subs
ribe to, and if it wants to re
eive onlythe latest message of ea
h type, or ea
h message. The Module has an inbox, intowhi
h in
oming messages are sorted. On re
eption of a new message, the methodpro
essMessages is
alled, whi
h
an query the inbox for ea
h message type. Aftera message has been a
ted upon, it
an be �agged for deletion.These messages are implemented as sub
lasses of Message, whi
h lays the foun-dations for serialization. Serializability is an important aspe
t espe
ially for sensordata, as these
an be logged to disk and then deserialized at a later stage in log�le playba
k. In the s
ope of this do
ument, a sub
lass of Message will be termed(upper
ase) Message. Ea
h Message has an asso
iated type. Types are de�nedin a
entral registry and form the identi�er for the subs
ription pro
ess. To fa-
ilitate ar
hiving log �les, Message instan
es in
lude a version number, and thedeserialization
ode must be able to unthaw older versions.The next
omponent is the Worker, a
ode blo
k that
an be re-used fromdi�erent Modules. Generally all shared
ode is to be grouped into a Worker.The last
omponent type is the Devi
e, driver
ode for talking to hardware. BothDevi
es and Workers are
on
epts of the semanti
 level and do not sub
lass spe
i�

lasses or implement
ertain interfa
es. Con
eptually, Workers
an be instantiatedoften and used within any Module, Devi
es should only be instantiated on
e andused from within a Module that is spe
i�
 for this Devi
e, typi
ally found inModules/Hardware.The system is
on�gured via an XML
on�g �le. Here we de�ne pro�les to setvariables that the sta
k
an read at run time. Pro�les
an in
lude other pro�lesand overwrite
ertain settings in the pro
ess, providing inheritan
e. So a log�leplayba
k pro
ess will load the same
on�guration as the real game, but will ad-ditionally load the playba
k module. Also
on�gurable via XML is the model ofthe robots physi
al geometry, the s
enegraph. The Module S
eneGraphModulealways keeps an up-to-date version of the s
enegraph, in
orporating any
hangeslike rotation of appendages or the pan-tilt-unit or movement of the platform. Thiss
enegraph is broad
ast periodi
ally via a Message. Other Modules
an load theirprivate
opy of the s
enegraph at any time, whi
h will then re�e
t the initial
on�guration of the robot, not the up-to-date one.

24CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKIntegrating a roboti
 arm into the sta
k ne
essitated
hanges and additions toModules, Devi
es, Workers and Messages.3.2 Robot arm interfa
e and hardware abstra
tionIntegrating the arm into the robot
onsists of several, loosely
oupled tasks.The most obvious of these is the installation of the a
tual hardware onto theroboti
 platform Lisa. In the
ourse of development, this was shifted ba
k as faras possible, so that work on the arm would not stall other a
tivities that needthe robot. Be
ause the RoboCup team needed the arm mounted on the platformmid-way through the proje
t, a virtual roboti
 arm needed to be implemented sothat development was not bound by time
onstraints of sharing the robot betweendi�erent proje
ts.So the �rst a
tion was to write a hardware Devi
e, virtual arm Devi
e andhardware abstra
tion layer for the sta
k, as all other aspe
ts depend on this. Thena
ontrol Module for roboti
 arms was implemented, followed by a graphi
al userinterfa
e and a path planning Module. The last a
tion item was hooking the
ontrol Module into the sensor data and Message system and the integration ofthe arm into the �Home games.It should be pointed out that
ertain restri
tions exist for Robbie Devi
es ingeneral and Human-Computer Intera
tion restri
tions for RoboCup, both of whi
hin�uen
ed the software design pro
ess. These shall be glossed over �rst.3.2.1 Restri
tions for Robbie Devi
es and ModulesDevi
es in the Robbie sta
k are run in the
ontext of a Devi
e-spe
i�
 Moduleand hen
e in their own thread of exe
ution. They typi
ally have full a

ess to thehardware and need to maintain little to no state. Their intera
tion with the rest ofthe sta
k is limited to whatever API they want to o�er to their Module. Still, theDevi
e
ode that sits between the sta
k and the hardware needs to ful�ll
ertainrequirements that the sta
k imposes on hardware drivers:1. Non-blo
king: Calls into Devi
e
ode should not blo
k unless absolutely ne
-essary, so that the
alling Module
an ful�ll periodi
 tasks.2. Emergen
y stop:The hardware needs to be able to respond to the emergen
ystop Message if it is an a
tuator by stopping the motion of all movable parts,i. e. by exposing a pause method to the Module. This is assumed to bean important rule in roboti
s in general and also a rule for RoboCup, whi
hwill be enfor
ed and tested by the jury. The movement should
ontinueseamlessly on
e the un-pause
ommand is
alled.

3.2. ROBOT ARM INTERFACE AND HARDWARE ABSTRACTION 25
RoboticArmInterface

+connect(ip:const char *): bool
+reset(): bool
+motorOn(): bool
+motorOff(): bool
+getNumMotors(): int
+readAxes(lastMovementResult:MoveResultT
+getMaxAngles(): vector<double>
+getMinAngles(): vector<double>
+getID(): string
+setAngles(newpos:const vector<double>
+readDefaultAxes(): vector<double>
+doPath(path:ArmPlanner::Path): void
+freeze(): void
+unfreeze(): void
+axesToString(axes:vector<T>): string

KatanaM400Device

#m_MovementTarget: vector<int>
#m_MovementAngle: vector<double>
#m_PathNodes: deque<ArmPlanner::PathNode>
-m_MovementStartTime: uint
#m_MotorFrozen: bool
#m_MotorPower: bool

VirtualKatanaDevice

#m_Path: deque<ArmPlanner::PathNode>
#m_T: int
#m_IsFrozen: bool
#m_MotorPower: boolFigure 3.3: Class diagram for the hardware abstra
tion interfa
e Roboti
ArmInterfa
eand its implementations KatanaM400Devi
e and VirtualKatanaDevi
e3. Error robustness:The driver should not throw ex
eptions or leave the hard-ware in an unknown state and must re
over gra
efully from any error
ondi-tions.4. Safety:The Devi
e should move a
tuators in a way that
annot harm humansor damage the robot or environment.These items will be referen
ed whenever
orresponding
ode is examined.To enable an easy transition between the virtual and physi
al arm, a pro-gramming interfa
e Devi
es/KatanaArm/Roboti
ArmInterfa
e for roboti
 armdrivers needed to be
reated. This is not a generi
 interfa
e for all possible roboti
arms, but only for arms that are similar to the Katana M400 arm, hen
e the foldername.3.2.2 Abstra
t base
lass: Roboti
ArmInterfa
eThe interfa
e is implemented as an abstra
t virtual
lass and is the base
lassfor KatanaM400Devi
e and VirtualKatanaDevi
e, as shown in �gure 3.3. Thephysi
al devi
e driver shall be examined more
losely, as the virtual driver merelymimi
s behaviour of the physi
al one.

26CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACK3.2.3 Physi
al arm devi
e: KatanaM400Devi
eThe Devi
e for the Katana 400 series uses the o�
ial driver from Neuroni
s, the�Katana Native Interfa
e� 1 (KNI). For this implementation version 4.2.0 was used.KNI
onsists of a low-level wrapper for motor
ontroller
ommand submission, ahigh-level interfa
e whi
h a

epts movement
ommands, and a kinemati
s library.Apart from the kinemati
s library the sour
e
ode is available under the GNUPubli
 li
ense. An analysis of the o�ered solutions showed that the high-levellibrary is a good foundation. The low-level
ode requires in-depth knowledge ofmotor
ontroller
ommands and o�ers no advantage over the high-level interfa
e.In the
onne
t() method, the Devi
e
onne
ts to the roboti
 arm and readsthe hardware revision. The Module will next
all reset(), whi
h will reset thehardware into a known state, read the number of axes and
alibrate the motors ifne
essary. Calibration is required after the Katana was powered down. The pro
essinvolves moving all motors to their me
hani
al stops and reading minimum andmaximum en
oder positions. The Katana will not exe
ute move
ommands untilit is
alibrated. Un
onditionally exe
uting
alibrations takes too mu
h time if therobot appli
ation needs a restart during a
ompetition, so the Devi
e exe
utes avery small movement of the gripper axis in the reset() method, and if this fails(KNI throws an ex
eption when an un
alibrated motor re
eives a move
ommand),
alibrates the arm.A very
entral method is the setAngles
ommand, whi
h tells the Devi
e tomove the arm into the given goal
on�guration. The position is passed as a ve
torof angles, one for ea
h axis. If the goal
on�guration is not within the
on�gurationspa
e as established during arm
alibration, false will be returned as error
ode.Due to restri
tions �non-blo
king� and �emergen
y stop� from
hapter 3.2.1 thesetAngles
all
annot blo
k. The non-blo
king version of the
orresponding KNI
ommand moveRobotToEn
 is
alled to start the movement. The goal
on�gura-tion is stored in the member variable m_MovementTarget so we
an
he
k if thegoal
on�guration has been rea
hed.Conversely, the getAngles method does not only read the
on�guration of thearm, but also
he
ks if the last movement has �nished. It is the ideal
andidate forthis
he
k, as it is
alled periodi
ally from its Module. If the last movement
ouldnot be
ompleted, the referen
ed variable lastMoveResult will be set to �FAILED�.This typi
ally happens when the goal
on�guration
annot be a
hieved by the armalthough it is within the
on�guration spa
e. Polling the movement state is arequirement for restri
tion �non-blo
king�.The Devi
e also has the
apability to exe
ute
omplex movement operations
alled paths. A path
onsists of an ordered list of
on�gurations. The asso
iated1Available from http://www.neuroni
s.
h/
ms_de/web/index.php?identifier=downloads

3.2. ROBOT ARM INTERFACE AND HARDWARE ABSTRACTION 27
ActiveMessageModule

-m_IdleInterval: uint

-m_LastIdleTime: uint

+idleProcess(): void
+processMessages()(): set<Message*>
+run(): void

#setIdleInterval(sleepTime:uint)

#getSleepTime(): uint

#lastIdleTime(): uint

KatanaArmModule

-m_ModuleMachine: StateMachine<ModuleStateT>

-m_CurrentPos: uint

-m_InitToIdle: std::vector<std::vector<double> >

#m_Katana: RoboticArmInterface*

#m_NumMotors: int

#m_AxisMin: vector<double>

#m_AxisMax: vector<double>

#broadcastArmInfo(): void

#checkAxesLimits(): void

#setInstance(inst:RoboticArmInterface*)

+()Figure 3.4: Class diagram for the hardware Module KatanaArmModulemethod is doPath. The
all does not blo
k either, to observe restri
tions �non-blo
king� and �emergen
y stop�. Hen
e, the
aller should regularly poll the stateby
alling isMoving(), whi
h returns true if the arm is still moving.3.2.4 Arm
ontrol Module: KatanaArmModuleA Devi
e is always interfa
ed by a
ontrol module, in this
aseKatanaArmModule. A
lass diagram is shown in �gure 3.4. Upon
onstru
tion, it
he
ks the
entral Robbie
on�g �le to see if the physi
al or virtual arm shouldbe used for the running pro�le and instantiates the member m_Katana
orre-spondingly. Also a state ma
hine is initialized that tra
ks the arm state fromdis
onne
ted over initialized to idle, and os
illates between this state, moving and,as a worst
ase,
ollided in
ase of a motor
rash.After initializing a Module, the
ore
alls its init() method. Here the Devi
e isprobed,
onne
ted to and then reset. If no error o

urred during reset, minimumand maximum angles are read. An arm information Message of type RobotArmIn-foM is sent,
ontaining the number of axes and minimum/maximum angles. Thearm
an also exe
ute a set of initial movements to get into a known starting
on-�guration. This pro
ess is started here if requested by the pro�le.

28CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKNext, the Module waits for in
oming Messages and a
ts upon these. It sub-s
ribes to Messages of types RobotArmMoveM (sets a
ertain
on�guration forall axes), RobotArmMoveAxisM (
hanges the angle of one axis), RobotArmPathM(exe
ute a movement path) and PioneerDataM (
he
k for emergen
y stop). Itbasi
ally exposes the Devi
e API to the rest of the sta
k, doing sanity
he
kingand error handling in the pro
ess.As a so-
alled a
tive Module, it will periodi
ally wake up and exe
ute theidlePro
ess method. Here, the
on�guration of the arm and its state is read andbroad
ast in a RobotArmStateM. If the arm was moving and has either su

eededin attaining the
on�guration or failed to do so, a RobotArmMoveFinishedM issent with the status of the movement.3.2.5 Arm path planning Module: ArmPlanModuleThe ArmPlanModule is responsible for path planning and pro
essing. It is notspe
i�
 to roboti
 arms similar to the Katana M400, so the word is omitted in this
lass name. The algorithms used are the topi
 of
hapter 3.4, the dis
ussion herewill fo
us on the interfa
e.The path planning Module is quite
omplex, as
an be seen in the
lass diagramin �gure 3.5. During
onstru
tion it reads its
on�guration values and initializesa private
opy of the s
enegraph. A state ma
hine is initialized, too. The Modulethen subs
ribes to the Messages S
eneGraphM (
opy of the up-to-date s
enegraph),RobotArmInfoM (information on the roboti
 arm hardware like min/max angles),RobotArmStateM (
on�guration of the
urrent roboti
 arm and movement state),RobotArmPlanM (path planning request), PointCloudM (three-dimensional sensordata for obsta
le avoidan
e).Before aRobotArmInfoM is re
eived, no work
an be done by the Module. Afterre
eiving su
h a Message, the
ontained minimum and maximum angles are used topre-
al
ulate a set of transformation matri
es needed for the Forward Kinemati
s,one ea
h for all possible rotational angles for the �rst four axes (
ounting fromthe base, so the gripper axes are ignored). The re
eption of a RobotArmStateMtriggers the
al
ulation of the Forward Kinemati
s, transforming the
urrent arm
on�guration into the lo
ation of the end e�e
tor in working spa
e, along withthe distan
e to the
losest obsta
le. This data is sent in a RobotArmPoseM forvisualization.The real work of the planner starts after re
eption of a RobotArmPlanM, thepath planning request. It
ontains a starting
on�guration and the goal e�e
torposition. Originally planned but not implemented was a way to tell the planner toadd an item into the s
enegraph, pla
ing it in the gripper. This is needed when ana
tual item is held by the gripper, as otherwise the planner might propose a paththat will
ause this item to
ollide with obsta
les. This item is always modelled as

3.2. ROBOT ARM INTERFACE AND HARDWARE ABSTRACTION 29
ArmPlanModule

#m_Segments: vector<ArmPlanner::ArmSegment>

#m_GripperSegments: vector<ArmPlanner::ArmSegment>

#m_GrippedObjects: vector<CapsuleObstacle>

#m_CapsuleObstacles: vector<CapsuleObstacle>

#m_BoxObstacles: vector<BoxObstacle>

#m_GripperHasItem: bool

#m_KatanaToRobot: BaseLib::Math::Mat4d

#m_HardwareLimitsMin: vector<double>

#m_HardwareLimitsMax: vector<double>

#m_Seg4ToSeg3: BaseLib::Math::Mat4d

#m_EndEffectorToSeg4: BaseLib::Math::Mat4d

#m_TransMiddleToItemUp: BaseLib::Math::Mat4d

#m_TransMiddleToItemDown: BaseLib::Math::Mat4d

#m_MaxGoalDist: float

#m_DesiredGoalDist: float

#m_TargetPos: BaseLib::Math::Vec3d

#m_DoObstacleDetection: bool

#m_KDTree: KDTree::Node*

#m_PlanningStarted: time_t

#m_BestNode: ArmPlanner::PlanNode*

#m_BestNodeGoalDist: float

#m_CurrentAxesPos: vector<double>

#m_ObstacleCollisions: double[3]

#m_CapsuleCollisions: double[4]

#m_BoxCollisions: double[4]

#m_SelfCollisions: double

-m_ModuleMachine: StateMachine<ModuleStateT>

-m_CurrentSceneGraph: SceneGraph

#getObstaclesFromScenegraph(): void

#calculateForwardKinematics(): void

#requestLaserscan(): void

#angleToIndex(angle:double,axis:uint): int

#indexToAngle(index:int,axis:int): double

#indicesToAngles(indices:vector<int>): vector<double>

#anglesToIndices(angles:vector<double>): vector<int>

#doPlan(): void

#forwardKinematics(angleIndexes:const vector<int>,

dist:double

collisionDetected:bool

jointSkew:double

distToGoal:double=50000,

sendPoints:bool=false)

#calculateEuclidianDistance(fromNode:ArmPlanner::PlanNode*,

goal:BaseLib::Math::Vec3d

#calculateEuclidianDistance(effectorPos:BaseLib::Math::Vec3d

goal:BaseLib::Math::Vec3d

#calculateEuclidianDistance(fromNode:ArmPlanner::PlanNode*,

toNode:ArmPlanner::PlanNode*): double

#addNeighbor(config:vector<int>,nodeStore:set<ArmPlanner::PlanNode*,

ArmPlanner::angleComp>

vector<ArmPlanner::PlanNode*>,

ArmPlanner::fComp>

thisNode:ArmPlanner::PlanNode,

goal:BaseLib::Math::Vec3d

#skewTransform(skew:double): double

#distanceTransform(dist:double): double

#reconstructPath(node:ArmPlanner::PlanNode*,

pathPoints:vector<BaseLib::Math::Vec3d>

path:ArmPlanner::Path

#pathSmoothing(fromNode:ArmPlanner::PlanNode*,

toNode:ArmPlanner::PlanNode*): double

#smoothPath(path:ArmPlanner::Path

#processData(laserscanDirectedM:LaserscanDirectedM*,

kdTree:KDTree::Node*,aabbItem:BaseLib::Geometry::AABBd*): void

#processData(laserscanDirectedM:LaserscanDirectedM*,

kdTree:KDTree::Node*,aabbItem:BaseLib::Geometry::AABBd*): void

ActiveMessageModule

-m_IdleInterval: uint

-m_LastIdleTime: uint

+idleProcess(): void
+processMessages()(): set<Message*>
+run(): void

#setIdleInterval(sleepTime:uint)

#getSleepTime(): uint

#lastIdleTime(): uint

Figure 3.5: Class diagram for the path planning Module ArmPlanModule. Some mem-ber variables removed for legibility.

30CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKa
apsule, a
ylinder with half-spheres at both ends. The length of this bounding
apsule
an be spe
i�ed in the Message. This is not implemented yet.After this Message is re
eived, the path is
al
ulated as per the algorithmsshown in
hapter 3.4. The resulting path will be the shortest possible, but mightbe
omposed of many path points that only
ause a slight
hange in the
on�gura-tion of the arm. The path is smoothed to
reate a less
omplex
opy that deviatesonly by a �xed distan
e from the original path, so that
ollision avoidan
e is notjeopardized. This path is then sent in a RobotArmPathM, whi
h the KatanaArm-Module re
eives and passes on to the Devi
e for exe
ution. The
ompletion of theplanning pro
ess is signalled to the software sta
k by broad
asting a RobotArm-PlanFinishedM Message. If an error o

urred during planning, the error
onditionis signaled in this Message too.3.3 Foundation for path planningMost path planners need utility fun
tions for Forward Kinemati
s and
ollisionavoidan
e. Before diving into the spe
i�
s of the
hosen path planner, these generi
fun
tions and their implementations need to be investigated.3.3.1 Forward kinemati
s and
ollision avoidan
eForward kinemati
s are used to
al
ulate the pose of the robot from the
on�gu-ration.Roboti
 arms fall under the
ategory of
hain-linked segmented robots. The for-ward kinemati
s for these
an be
al
ulated using Denavit-Hartenberg parameters[HD64℄. These lead to a matrix that
an transform a parameter in
on�gurationspa
e into the working spa
e. For this proje
t the working spa
e
oordinate forea
h segment was needed to re-use this information during
ollision avoidan
e.Collision avoidan
e and forward kinemati
s are exe
uted in the same
ode blo
k.To a
quire
oordinates for the start and end points of ea
h segment, a transfor-mation matrix is a

umulated. The matrix is initialized with the transformationneeded to transform the
oordinate system of the �rst axis into the robot
oordi-nate system. This
onsists of a rotation taken from the
on�guration for this axis,and a transformation along the length of the �rst segment:
MSegment1 to ArmBase = MRotation Segment 1 ∗MTranslation length Segment 1Using this transformation matrix, we
an translate a point in the
oordinatesystem of the �rst arm segment into the
oordinate system of the arm base bymultipli
ation. This in turn
an be transformed into the robot
oordinate system

3.3. FOUNDATION FOR PATH PLANNING 31by multiplying with the transformation matrix MArmBasetoRobot. Multiplying trans-formation matri
es that transform from ea
h segment into its prede
essor segment,until we arrive at a formula that translates a position in the
on�guration spa
einto one in the working spa
e, resulting in the end e�e
tor position. All segmentlo
ations are more than a by-produ
t, they are noted and re-used for
ollisionavoidan
e purposes.Be
ause motion primitives are
hanges to an axis by a �xed in
rement, in our
ase by one, two or three degrees, it is possible to pre-
al
ulate these transformationmatri
es for all possible axis rotations and for all axes as
MSegment m to Segmentm−1[j] = MRotation by j ∗MTranslation by length Segment mwith j = minAngle...maxAngle. This optimization is used by [b
o10℄ too. Thepre
al
ulation is done as soon as the minimum and maximum angles are re
eivedfrom the KatanaArmModule. The robot geometry is stored
entrally in thes
enegraph to avoid redundan
y. This information naturally
ontains the lengthof ea
h arm segment. This is used as the transformation along the arm.All obsta
le avoidan
e algorithms used need to be highly optimized, as they are
alled many thousands of times in the
ourse of planning. We di�erentiate threekinds of obsta
les. Stati
 obsta
les are �xed to the robot and remain at a �xedposition in the robot
oordinate system. Dynami
 obsta
les are segments of thearm that
ould
ollide with other arm segments. Although atta
hed to the robot,these
hange position dynami
ally, although this position is known with a highdegree of a

ura
y. Arm segments are modelled as
apsules2 The biggest groupof obsta
les are external obsta
les. These are not atta
hed to the robot and aredetermined by on-robot sensors as a three-dimensional point
loud. As with allsensors, there is a
ertain amount of error through noise or
alibration issues, soto be on the safe side ea
h measured obsta
le needs to be enlarged. These threekinds of obsta
les
an have di�erent kinds of geometry. Stati
 obsta
les
an bemodelled as a
apsule or an axis-aligned bounding box, dynami
 obsta
les have tobe
apsules and external obje
ts
ome as points.External obsta
les are re
eived as a PointCloudM Message from the sta
k'ssensors. This Message
ontains an unordered list of three-dimensional measure-ment points in the robot
oordinate system. They are entered into a k-d tree[Ben75℄for high-speed lookups. A k-d tree is a k-dimensional binary tree whi
h subdividesthe working spa
e along a split axis when adding points. Both
hildren of ea
hnode lie on di�erent sides of this splitting plane. The tree is sub-divided untilthe bounding box surrounding all points in all subnodes is su�
iently small, in2A
apsule is a
ylinder of radius r with half-spheres of radius r at both ends. Visualize it asa straight sausage.

32CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKthis
ase 10
m, at whi
h point leafs are generated, whi
h
ontain the a
tual datapoints. Points are only added to the tree if they lie within the arms working radiusto
onserve resour
es.For performan
e reasons, only the last arm segment and the gripper elementsare
he
ked against obsta
les. The �rst and se
ond segments
annot physi
allyrea
h obsta
les before the last segment
ollides with them.Ideally, obsta
le dete
tion will also give the minimum distan
e to the obsta
le.This information is very valuable for the planner to ensure that the planned routeis indeed safe, and to maximize the distan
e to obsta
les. Che
king arm segmentsagainst
apsules is based on the segment-to-segment distan
e test by
al
ulatingthe �Closest Point of Approa
h�[Sun10℄. Given two lines
L1 : P (s) = P0 + s(P1 − P0) = P0 + suand
L2 : Q(t) = Q0 + t(Q1 −Q0) = Q0 + tv[Sun10℄ explain�In any n-dimensional spa
e, the two lines L1 and L2 are
losest at uniquepoints P (sc) and Q(tc) for whi
h w(sc, tc) attains its minimum length. Also, if

L1 and L2 are not parallel, then the line segment P (sc)Q(tc) joining the
losestpoints is uniquely perpendi
ular to both lines at the same time. No other segmentbetween L1 and L2 has this property. That is, the ve
tor wc = w(sc, tc) is uniquelyperpendi
ular to the line dire
tion ve
tors u and v, and this is equivalent to itsatisfying the two equations: u ∗ wc = 0 and v ∗ wc = 0.�This
an be transformed via
a = u ∗ u, b = u ∗ v, c = v ∗ v, d = u ∗ w0, e = v ∗ w0to

d(L1, L2) = |P (sc)−Q(tc)| = |(P0 −Q0) +
(be− cd)u− (ae− bd) ∗ v

ac− b2
|whi
h gives the minimum distan
e. If the distan
e is less then the
ombinedsegment radii, a
ollision has o

ured.When both lines are parallel (ac− b2 = 0) a �xed position on one line is
hosen.Testing axis-aligned bounding boxes against
apsules is
omputationally ex-pensive, espe
ially if the
losest point of approa
h is to be
omputed. Instead of
apsules, simple line segments were used. To a

ount for the
apsule radius, thebounding boxes were in�ated by the
apsule radius, If the
lipping pro
ess
lipsaway the whole line, there is no interse
tion 3.3Based on http://www.gamedev.net/
ommunity/forums/topi
.asp?topi
_id=433699&whi
hpage=1�

3.3. FOUNDATION FOR PATH PLANNING 33The distan
e between external obsta
les and arm segments is straightforward.The k-d tree is traversed by a re
ursive
all to the fun
tion re
urseTreeLineDist,whi
h �rst
al
ulates the distan
e for ea
h point in this tree node to the line andsaves it if is the smallest distan
e found yet. Then it de
ides to follow only the�rst, the se
ond or both
hildren of ea
h node. Both
hildren are followed if the
apsules segment straddles the splitting plane or if the segment does not straddlethe plane but the
apsule radius means it would. Otherwise, only the
hild that is
loser to the segment is followed. Following means in this
ontext that the fun
tionis
alled for the spe
i�ed
hild or
hildren. As only the leaf nodes have data pointsin them, only a small per
entage of all dynami
 obsta
le geometry needs to beinspe
ted.3.3.2 Choosing a plannerMany motion planners rely on inverse kinemati
s to establish a valid robot
on�g-uration for the given goal e�e
tor position, examples would be the aformentionedWave-Front Planner or most uses of Roadmaps. The planner then
onne
ts starting
on�guration and goal
on�guration within the
on�guration spa
e. This simpli�esthe planners, as even a linear interpolation between start and goal
on�gurationwill lead to a path with a
ontinuos movement. A good approa
h to in
orpo-rate obsta
le avoidan
e for high-dimensional robots are a

ording to [CLH+05℄roadmaps or the
onversion of obsta
le working spa
e geometry into
on�gurationspa
e geometry, whi
h is non-trivial.I found relying on inverse kinemati
s to have drawba
ks that limit their use-fulness severely, the most obvious of whi
h is the
omplexity of the algorithmsinvolved. Although Neuroni
s supplies a
omplete Inverse Kinemati
s library withtheir API, the sour
e
ode is not available. The pro
ess be
omes a bla
k box witha simple API that will only take a start
on�guration and goal position. This is-sue would not be
riti
al if the pro
ess itself where not very
omplex. Convertinga three-dimensional robot pose into a six-dimensional
on�guration leads is not astraight 1:1 mapping - for a given pose there
an be multiple
on�gurations. Avoid-ing obsta
les means that not all goal
on�gurations that Inverse Kinemati
s o�erup are feasible. If the initial goal
on�guration o�ered by the Inverse Kinemati
library is insu�
ient, there is no possibility of
al
ulating other
on�gurationsex
ept by o�ering other start
on�gurations. This in turn might lead to highlysuboptimal goal
on�gurations being emitted.Other drawba
ks of using Inverse Kinemati
s are that as [b
o10℄ mention, IKas a numeri
al approa
h
an generate visually �awkward� paths in the sense ofnot being the path a human arm would take. It is also di�
ult to in
orporateadditional
onstraints into the goal
on�guration, like keeping a glass of water inthe e�e
tor gripper balan
ed evenly or not planning
lose to joint limits.

34CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKBe
ause of these issues an alternate approa
h was investigated.3.3.3 About graph-based planning with motion primitivesThe idea of using graphs as data stru
tures in motion planning is not novel. Indeedmost planning algorithms use graphs internally. Roadmaps tend to use graphs veryintensely. Typi
ally these graphs
ontain nodes that signify valid
on�gurationsand the edges show
ollision-free paths between these
on�gurations. The approa
hused in this proje
t di�ers from this usage signi�
antly and should not be
onfusedwith the latter.To es
ape the need to rely on inverse kinemati
s, other methods of obtaininga valid
on�guration for a given e�e
tor position are needed. The idea of usinga graph built on simple motion primitives emerged and we found that other re-sear
hers where already working on similar approa
hes through the slides of thepresentation of Benjamin Cohens summer proje
t at Willow Garage, where hetalked about using motion primitives to plan in
luttered environments 4. Ben Co-hen sent me a preliminary paper he was working on, where he detailed his e�ortsand results using this approa
h[b
o10℄. The results seemed good, so we de
idedon this route.The general
on
ept is to build a dire
ted graph with the nodes being valid
on�gurations and the edges representing a single, atomi

on�guration
hange
alled a motion primitive. Typi
ally this would be a minimal
hange on one axis,although [b
o10℄ uses primitives
onsisting of a
hange in two axes at the sametime. For this proje
t only simple primitives for the �rst four axes where used,as the gripper
on�guration is not part of planning here. This gives a total ofeight motion primitives. The edges have a weight that des
ribes how optimal this
on�guration is. This optimality
an be based on di�erent
riteria, we
hose tomaximize the distan
e to the next obsta
le.Initially, the graph only
ontains the start
on�guration. From here all motionprimitives are expanded and added to the graph as new nodes. Con�gurationsthat would interse
t the arm with an obsta
le are not added to the graph. Thenthe edge weights are
al
ulated. This pro
ess will be repeated until we get
loseenough to the goal position or all
on�gurations have been expanded.3.3.4 On heuristi
 sear
hingThe importan
e of heuristi
 sear
h in roboti
s is highlighted in [b
o10℄: �Heuristi
sear
hes su
h as A* sear
h [PEHR68℄ have often been used to �nd su
h traje
tories.There are a number of reasons for the popularity of heuristi
 sear
hes. First, most4http://www.s
ribd.
om/do
/20233019/2009-09-Ben-Cohen-SBPL

3.4. ALGORITHM IMPLEMENTATION 35of them typi
ally
ome with strong theoreti
al guarantees su
h as
ompletenessand optimality or bounds on suboptimality (...). Se
ond, there exist a numberof anytime heuristi
 sear
hes that �nd the best solution they
an within the pro-vided time for planning (...) . Third, there exist a number of in
remental heuristi
sear
hes that
an re- use previous sear
h e�orts to �nd new solutions mu
h fasterwhen previously unknown obsta
les are dis
overed [16℄, [9℄. Finally, treating aplanning problem as �nding a good quality path in a graph is advantageous be-
ause it allows one to in
orporate
omplex
ost fun
tions,
omplex
onstraints andrepresent easily arbitrarily shaped obsta
les with grid-like data stru
tures (...).�[b
o10℄
ontinue by highlighting why heuristi
 sear
hes have not yet been usedfor �high-DOF roboti
 manipulators�, as the Katana arm is: High-dimensionalplanning problems lead to a huge and
omplex graph, making even informed graphsear
h infeasible. The authors suggest limiting all motion to a pre-de�ned set ofmotion primitives to limit graph growth: �...the majority of
omplex motion plans
an be de
omposed into a small set of basi
 (small) motion primitives.�3.4 Algorithm implementationThe algorithm used for this proje
t shares the basi
 idea with [b
o10℄. As thegoal here is to minimize planning
osts as opposed to planning in
luttered areasunder adverse
onditions, the implementation details di�er. The di�eren
es willbe denoted.3.4.1 The A-Star heuristi
 sear
h[b
o10℄ use the anytime sear
h algorithm ARA*[LGT04℄ that
an deliver subopti-mal results at any time but will improve on them as time goes on. I have foundthat, if a solution for the planning problem in our un
luttered environment exists,it will be found before the time limit is rea
hed. Using an anytime sear
h wouldnot be bene�
ial in these
ir
umstan
es, so a standard A* sear
h[PEHR68℄ wasused.The A* algorithm is an informed graph sear
h algorithm. Instead of sear
hingbreadth-�rst or depth-�rst until the goal node is found, an informed sear
h will
hoose the next node to expand by
onsulting a heuristi
 fun
tion for all
andidates.Ea
h edge has a
ost fun
tion asso
iated with it. Resulting paths sum up all edge
osts within the path to obtain the path
ost. The algorithm will �nd the pathwith the minimal path
ost.Ea
h node is asso
iated with the values f , g and h. g is the path
ost ofthe optimal path from the start node to this node and h is the estimate for the
ost to the goal as determined by the heurist
. f is g + h. For ea
h node, all

36CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKsu

essors are pla
ed in the open set, where they are sorted by des
ending f , sotypi
ally a priority queue is used. Ea
h iteration, the algorithm will remove the�rst item from the open set and
he
k if it is the goal node. If not, all su

essorsare expanded and added to the open set if they have not been visited yet. Thealgorithm maintains a
losed set of visited nodes for this
he
k.In this
on
rete implementation, ea
h node
ontains the
on�guration it rep-resents, and also stores the end e�e
tor position and the motion primitive thatwas exe
uted to initialize this node (so the path
an be re
onstru
ted bottom-upafter
ompletion). The nodes are
reated on-the-�y as knowledge of the
ompletestru
ture is not ne
essary for the sear
h to work.All nodes are of type ArmPlanner::PlanNode. On
e a node has been
reated,it is stored in the set nodeStore, whi
h
ompares the nodes on the basis of their
on�guration. If a node is to be in the open set, it is also added to the priorityqueue openQueue, whi
h orders the nodes by their m_F (f) lowest-�rst. Nodesalso have an attribute m_IsOpen to show if they are in the open set. All nodes innodeStore whi
h aren't in the open set are automati
ally in the
losed set.3.4.2 Graph
onstru
tionThe graph initially
ontains one node representing the start
on�guration. Thisnode is pla
ed into the open set. The timestamp is stored in m_PlanningStartedto
he
k for timeouts.The algorithm then begins to iterate over the open set. The topmost item (theitem with the lowest f) is popped o� the open set and stored in
urrentNode. Thedistan
e from
urrentNode to the goal position is
al
ulated. If the distan
e is the
losest en
ountered yet, this node is saved in the attribute m_BestNodeGoal asthe best node seen. If the distan
e is less than the lower limit m_DesiredGoalDist,then the goal has been rea
hed. If the timeout has o

ured and the distan
e fromthe best node to the goal is less than the upper limit m_MaxGoalDist, the goalis
onsidered as rea
hed too, and m_BestNodeGoal will be used as
urrentNode.On
e the goal is rea
hed, the path is re
onstru
ted and smoothed as des
ribed in3.4.3 and then broad
ast via an ArmPathM Message.If the goal has not been rea
hed, the
urrentNode is added to the
losed set.Then new nodes are expanded, one for ea
h motion primitive. Here, we add eightnew nodes, as we in
rease and de
rease the rotation of ea
h of the �rst four axesby the delta value stepSize. This value depends on the distan
e to the goal. The
loser the arm gets to the goal, the smaller the size of these
hanges. Good resultswhere a
hieved with a step size of 3 degrees of
hange if the distan
e to the goal islarger than 10
entimeters, 2 if it is larger than 5
entimeters and 1 otherwise. Ifthe resulting
on�guration of the new node is invalid (if it is not between minimumand maximum angles), it is dis
arded.

3.4. ALGORITHM IMPLEMENTATION 37Distan
e to next obsta
le Path
ost multiplier
> 90mm 1.0
> 83mm 1.2
> 77mm 1.6
> 70mm 2.0
<= 70mm 2.2Table 3.1: Path
ost depending on distan
e to
losest obsta
leAll freshly expanded nodes (vnew) are then
he
ked against the nodeStore tosee if they exist already. Any that exist but are in the
losed set are dis
arded. Ifa node exists but is in the open set, the path
ost of the
urrent path is
omparedto the
ost of the older node (vold). If the newer path is better i.e. if gnew < goldthen the existing node is updated to re�e
t the new path
ost and its prede
essornode is set to
urrentNode.If the node
annot be found in the node store, it's end e�e
tor position is
al
ulated along with its distan
e to obsta
les. This
al
ulation has not been doneat earlier stages of the algorithm to not waste this e�ort on nodes that would havebeen dis
arded anyway. If the node interse
ts an obsta
le, it is dire
tly added tothe
losed set. Otherwise h, g and f are
al
ulated, and the node is stored in thenode store and in the open set.The path
ost for ea
h graph edge is derived from up to two parameters. Themost important is the distan
e to the next obsta
le. This obviously should bemaximized, hen
e small values lead to big path
osts. The
urrent implementationis a simple distin
tion based on table 3.1.The se
ond parameter penalizes
hanges in arm velo
ity. If a node exe
utes a
ertain movement primitive in the
on�guration spa
e, su

essor nodes exe
utingdi�erent primitives have higher path
osts. A su

essor primitive that only
ausesslight motion deviation would in
ur less
ost. The goal here is to
reate a paththat is as smooth as possible. The idea was pioneered by [b
o10℄. In this imple-mentation it proved
ounter-produ
tive as explained in se
tion 3.2.5 and
urrentlyalways returns 1.0 as
ost fa
tor, thereby not
hanging path
osts.3.4.3 Path re
onstru
tion and post-pro
essingStarting from the goal node found during sear
hing, the standard A* re
ursivealgorithm is applied to re
onstru
t the graph by
alling re
onstru
tPath with thisnode as argument. The motion primitive of this node is taken along with itsend e�e
tor position to
reate a new ArmPlanner::PlanNode instan
e, whi
h isthen pushed onto the sta
k pathPoints. Then re
onstru
tPath re
ursively
allsitself with the prede
essor node as argument. If the node has no prede
essor, the

38CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKm = number of path nodesp = path nodes from 0 to mstartidx = 0limit = 10.0smoothedpath = {p[startidx℄}while startidx < m-2:endidx = startidx + 2do: mididx = startidx + 1while mididx < endidx:if distbetween p[mididx℄ andline between p[startidx℄ and p[endidx℄ > limit:add p[endidx-1℄ to smoothedpathstartidx = endidx - 1mididx = endixelse: mididx = mididx + 1endidx = endidx + 1while endidx < madd p[endidx℄ to smoothedpathFigure 3.6: The algorithm used for smoothing in pseudo
ode.method returns, ending the re
ursion. The sta
k pathPoints now holds all pathpoints in the
orre
t order.This path is optimal with respe
t to the
ost fun
tion thanks to the propertiesof the A* sear
h algorithm and the use of a valid heuristi
. This
an lead toine�
ient paths, as skirting obsta
les leads to jagged edges and �spikes� in thepath. The limited number of motion primitives means that smooth
ir
ling motionsare di�
ult to a
hieve. Therefore, the path is smoothed before being exe
uted.Path smoothing is used in [b
o10℄ too, although the algorithms used di�er.The idea behind the smoothing algorithm is to
reate a new path that maynot deviate from the original path by more than a maximum distan
e (in this
ase1
m) by dropping path nodes. The algorithm is shown in �gure 3.6.The smoothed path is broad
ast via a ArmPathM Message and then exe
utedthe KatanaArmModule.

3.4. ALGORITHM IMPLEMENTATION 39

Figure 3.7: Path smoothing: The yellow line is the unsmoothed path, the red line
loseto it is the smoothed
opy.

Chapter 4Evaluation and lessons learnedAs the stated goal of this thesis was to parti
ipate su

essfully in the Robo
up�home league in manipulation-based games, this parti
ipation will be a
orner-stone of the evaluation. Before robot and team travelled to Singapore, extensivetests and evaluations where performed, the results of whi
h shall be the fo
us here.4.1 Evaluating performan
e and su

essBefore getting into a spe
i�
 setting, the overall performan
e and stable fun
tion-ality of all Devi
es and Modules where evaluated. Considering that higher and
omplex fun
tions of the sta
k require the su

essful operation of basi
 fun
tions,the simpler operations need to be very robust. Also, Robo
up se
urity regulationsfor the safe intera
tion of robots and humans need to be observed, as failing these
an be harmful or result in being banned from the
ompetition. These regulationswhere outlined in
hapter 3.2.1.4.1.1 Basi
 fun
tionalityThe Devi
e KatanaM400Devi
e itself needs to either su

essfully perform a move-ment or path, or return the error state to the sta
k. We found that the Katanaarm will not perform movement
lose to joint limits reliably. How
lose to ea
hjoint limit the motors will operate
annot be pre
isely measured as the e�e
t iserrati
 and di�erent on ea
h joint. This was further
ompli
ated by the fa
t thatmoving too
lose to a limit resulted in a motor timeout, as the motor would justnot exe
ute the move
ommand at all, but also would not reje
t it out of hand.The ArmPlanModule now adds a �dead zone� around all reported joint limits,a setting that is
on�gurable via the parameter fAxisDeadZone in the
on�gura-41

42 CHAPTER 4. EVALUATION AND LESSONS LEARNED

Figure 4.1: S
reenshot of debug visualization. The blue wireframe arm on the leftrepresents the
on�guration the planner is examining.
tion, the default value being eight degrees. After this alteration, move and path
ommands exe
uted �ne.Hitting the emergen
y stop button on the robot should stop all arm movementas soon as possible. Initially, the KatanaM400Devi
e used blo
king
alls when
alling into the KNI library for move
ommands. This was
hanged to use non-blo
king
alls. On re
eiving the emergen
y stop signal, the KNI motor freeze
ommand is issued by the Devi
e. Motion is unfortunately not
eased immediately,it
an take several se
onds to stop. In most
ases, the unfreeze
ommand will also
ause the arm to resume motion as planned. This goal was not rea
hed
ompletelyand further work needs to be done in this area.In order to redu
e the time it takes to start an �home game, arm en
oder
alibration is only exe
uted when ne
essary. This saves about 30 se
onds of setuptime.

4.1. EVALUATING PERFORMANCE AND SUCCESS 434.1.2 Planning time and su

ess rateDuring early stages of development, the planning pro
ess would often time out,giving no result. To get a better understanding of the pro
ess involved, the plannerwill send status information along to the sta
k GUI, whi
h will be displayed in 3Das shown in �gure 4.1. This user interfa
e not only shows the
on�guration thatthe planner is testing at this instant, but also allows manual movement of the arm,planning to a
ertain position and reading end e�e
tor position and the distan
eto the next obsta
le. The OpenGL-based sensor status display proved a great toolto understand the workings of the algorithm and how to optimize it.An in-depth analysis of the planning pro
ess was now possible. To measureplanning performan
e, only the planner runtime was pro�led. Ben
hmarks mea-suring total planning time produ
ed varying results that
ould not be reprodu
ed,as the
omplete Robbie sta
k needs to be running in the ba
kground,
onsumingCPU time. With a pro�ler, non-planner method runtime
ould be dis
ounted, andthe results proved stable. All measurements where taken on a ma
hine with IntelCore 2 Duo 2.4 GHz under Ubuntu Linux 9.10. A
omplex s
enario was usedfor planning: the arm had to evade three large obsta
les pla
ed on a table. Thiss
enario and a valid path is shown in �gure 4.2. The log �le used is to be foundon the a

ompanying CD and is
alled �Zwei_Hindernisse_links.log�. A path isplanned from the starting
on�guration (74, 39, 132, 207, 180, -105) to the e�e
torposition of 430, 374, 467.After ensuring
orre
t algorithm exe
ution, the
ode was pro�led to identify�hot spots�. First, the
ollision avoidan
e was moved to the latest possible pointin time, after having eliminated dupli
ates and invalid
on�gurations. This lazyevaluation
ut time spent on
ollision avoidan
e by 50%. Implementing the time-memory tradeo� of pre-
al
ulating the transformation matri
es for the �rst fourarm axes as detailed in se
tion 3.3.1 de
reased forwards kinemati
s runtime byabout 20%.The next in
rease in planning speed was a

omplished by removing all unne
-essary square root
al
ulations during distan
e fun
tions. All distan
es are nowexpressed internally as squared distan
es in millimeters. The only time this isredu
ed to linear distan
e by performing a square root is when estimating thedistan
e between the arm and an obsta
le. This eliminated two
alls to sqrt perloop and resulted in a de
rease of
ollision avoidan
e and goal distan
e
pu usageof about 10%. Finally,
ollision avoidan
e was aborted as soon as possible, whi
hfurther redu
ed time spent on
ollision avoidan
e by 10 to 20 %, depending on thelength of the path.A big de
rease in planning time was a
hieved by de
reasing the amount ofobsta
le sensor data points. Only points that are in the operational radius of thearm are
onsidered now. Initially, another experiment was to limit the density

44 CHAPTER 4. EVALUATION AND LESSONS LEARNED

Figure 4.2: S
reenshot of path planner having
ompleted the
omplex path s
enarioused for evaluationof sensor data points. Some points are positioned
losely together. Avoidingone in
ollision avoidan
e would automati
ally avoid the other, so the additionalinformation on obsta
le geometry was not helpful but in
reased the number ofpoints that the Module needs to test against. A minimum distan
e between sensordata points was added, but pre-pro
essing data points took longer than an averagepath planning pro
ess, so it was removed for now.The biggest gain was the introdu
tion of a step size. In the initial version, theplanner always
hanged an axis by the same �xed small amount when applyinga motion primitive while expanding a new node. When the e�e
tor was still faraway from the goal, this high resolution was not ne
essary. A variable step size wasintrodu
ed as explained in se
tion 3.4.2. Time spent planning dropped by abouthalf. The risk of
olliding with obsta
les does not in
rease be
ause obsta
les areskirted by at least 5
m as enfor
e by the obsta
le transform.In the �nal version, the planner
ould examine between 1000 and 3000 nodesper se
ond. In the
omplex example shown in �gure 4.2, a path would be foundin about two se
onds. Only if additional
onstraints where added would timeoutsstill o

ur. Examples of these
onstraints are keeping a glass of water that is heldby the gripper stable, or planning through very narrow gaps between obsta
les.Although most optimization work went into the
ollision avoidan
e
omplex,these operations still take the biggest
hunk of CPU time. Figure 4.3 shows atreemap, a hierar
hi
al distribution of CPU usage of the doPlan() method and

4.2. EVALUATION OF SUCCESS IN THE �HOME SETTING 45

Figure 4.3: Treemap of path planning CPU usage distribution, a
quired with GooglePerforman
e Tools and k
a
hegrindall
allees and
hild methods. All numbers are per
entage of CPU usage relativeto doPlan() itself. Only 5% of CPU time is spent other tasks apart from
ollisionavoidan
e.4.2 Evaluation of su

ess in the �home settingThe team Homer�UniKoblenz parti
ipated at RoboCup 2010 in Singapore in the�Home league. The
apability to grab obje
ts from shelves or tables and, via theplatform's built-in gripper from the �oor enabled us to parti
ipate in all gamesthat required manipulation skills.The �rst test to use the manipulator was the �Robot Inspe
tion Poster Ses-sion�. The idea of the game is for the robot to introdu
e itself to the jury and thespe
tators. The arm moved along a pre-de�ned path without doing dynami
 obsta-
le avoidan
e. The jury was nevertheless impressed by the idea and the versatilityof our manipulation
ode.

46 CHAPTER 4. EVALUATION AND LESSONS LEARNEDThe next game where the team
ould show the manipulator was the OpenChallenge. This game is very important be
ause it has a high in�uen
e on theteams ranking. There is no �xed s
ript, the robots are supposed to show theirmost advan
ed features while a team member does a presentation on the te
hniquesinvolved. The team homer used their se
ond robot �Waylon�, whi
h followed Lisaaround,
arrying a litter box. Lisa was supposed to �nd trash on the stage �oor,pi
k it up and pla
e it into Waylons box. Although the gripping and droppinga
tions performed well, Lisa tou
hed Waylon slightly at one point. The jury wasimpressed by the autonomous
ooperation between both robots and the arm pathplanning
ollision avoidan
e algorithms involved (bearing in mind that some otherteams use manually generated
ollision avoidan
e information). Team homer wasnow ranked third out of twenty-four teams.The team made the fourth pla
e out of a total of all 24 teams. Homer wasawarded the �Innovation Award� for multi-robot
oordination, good
ollision avoid-an
e during manipulation and intuitive gesture
ontrol. During the
ompetitionthe arm grabbed four obsta
les with full obsta
le avoidan
e, all of them su

essful.All in all, the manipulation
apabilities of the platform gave the team an ad-vantage. Gripping items and pla
ing them in shelves is a
omplex task that never-theless
an be performed by a few �home teams. Our advan
ed
ollision avoidan
efeatures proved ahead of the ra
e and
an be seen as a su

ess. The goal of thisproje
t is a

omplished.

Chapter 5OutlookThe goal of gripping obje
ts, pla
ing them on tables or shelves and avoiding
om-plex obsta
les in real-time was a

omplished by this proje
t. Of
ourse, variousimprovements are possible.5.1 Further workThere are many parameters in the algorithm that
an be tuned to in
rease planningspeed or enable planning while observing a wide range of
onstraints. Most of these�knobs� are already implemented in the
ode and only require tuning of variablesor the
on�guration �le.The stepSize parameter in the doPlan() method sets the angular movementin
rement (the �stride�) for ea
h expansion of a new node. In
reasing this param-eter linearly in
reases planning speed. At the moment an adaptive approa
h isused that will de
rease the step size as the distan
e to the goal de
reases. Apartfrom in
reasing step size generally or allowing larger steps
loser to the goal, thestep size
ould be attuned to the distan
e to the next obsta
le. This way, planning
lose to obsta
les or through di�
ult pat
hes
ould be optimized.Path smoothing as part of the path
ost fun
tion was introdu
ed by [b
o10℄,where it proved bene�
ial in
luttered environments. In this proje
t, it was imple-mented but disabled be
ause it did not show bene�ts to path smoothness in ourmore orderly environments. Further testing is in order to show how this
on
ept
an aid our planning approa
h.The distan
e to the
losest obsta
le is an important fa
tor in the path
ostfun
tion. At the moment this is a non-linear fun
tion based on simple range-basedfun
tion. A
ontinuous fun
tion would probably result in a smoother path withless abrupt transitions. Likewise, the skew transform that is used to keep the armtip stable should be based on a linear fun
tion. This transform
ould also use47

48 CHAPTER 5. OUTLOOKmore �exibility, like swit
hing between a more
onstri
tive skew transform whenholding an obje
t and more lax restri
tions when speed is paramount.More demanding sub-proje
ts would be to revisit the
ollision avoidan
e ap-proa
h. The majority of planning run time is spent on
ollision avoidan
e. Fur-ther limiting input data from sensors or utilizing alternate data stru
tures likespatially
lustering trees might dramati
ally in
rease the planner's speed. A �rstexperiment here done by only adding new nodes to the k-d tree if they was a min-imum distan
e to any neighbor node. Unfortunately the time taken for this
he
kwas longer than the runtime of the whole planning pro
ess. A more intelligentapproa
h might yield good results here, espe
ially using the tree itself to dete
tthe
losest neighbour.The biggest single speed improvement might result from adjusting how often
ollision dete
tion is performed. If the prede
essor node showed that obsta
les arefar away, the su

essor node might skip
ollision avoidan
e
ompletely and onlydo forward kinemati
s.All optimizations mentioned are not required for su

essful path planning in the
urrent setup. Adding more
onstraints to the path
ost fun
tion
an dramati
allyin
rease planning time and might render these optimizations ne
essary. Figure 4.3in se
tion 4.1.2 should o�er starting points for in-depth optimization and otherreworking.Alternatively, the A* sear
h might be repla
ed by an anytime algorithm likeARA*[LGT04℄. Using this algorithm, even tough
onstraints
ould be applied, andat the same time it would be possible to see after only a few se
onds of planningif a solution exists at all.The emergen
y stop solution used at the moment is insu�
ient. The armmight not stop immediately and will sometime not resume the movement after theemergen
y stop is removed. Further work is needed here, although this might bea limitation of the arms �rmware.A very interesting proje
t will also be to implement
ollision avoidan
e withobje
ts residing in the gripper.5.2 A
knowledgmentsThis work was made possible by the A
tive Vision Working Group (AGAS) at theUniversity of Koblenz-Landau headed by Prof. Dietri
h Paulus. Many thanks tothe AGAS team and to the members of the RoboCup team for their assistan
e inthis proje
t.Spe
ial thanks to David Gossow for his work on optimizing this framework on-site at Robo
up Singapore and the IJCA in An
horage, Alaska and to SebastianVetter for supervising this thesis together with David. I am also indebted to Frank

5.2. ACKNOWLEDGMENTS 49Neuhaus who
ame up with the original idea for the heuristi
 sear
h with motionprimitives as path planner. This work was also greatly helped by the
ooperationof Benjamin Cohen et al, wo gave me a

ess to a review
opy of their paper [b
o10℄that they where preparing for IJCA.

Bibliography[b
o10℄ Sear
h-Based Planning for Manipulation with Motion Primitives. An-
horage, Alaska, 2010[Ben75℄ Bentley, Jon L.: Multidimensional binary sear
h trees usedfor asso
iative sear
hing. In: Commun. ACM 18 (1975), Nr.9, S. 509�517. http://dx.doi.org/http://doi.a
m.org/10.1145/361002.361007. � DOI http://doi.a
m.org/10.1145/361002.361007. �ISSN 0001�0782[CLH+05℄ Choset, Howie ; Lyn
h, Kevin M. ; Hut
hinson, Seth ; Kan-tor, George A. ; Burgard, Wolfram ; Kavraki, Lydia E. ; Thrun,Sebastian: Prin
iples of Robot Motion: Theory, Algorithms, and Im-plementations. Cambridge, MA : MIT Press, 2005[GHJV95℄ Gamma, Eri
h ; Helm, Ri
hard ; Johnson, Ralph ; Vlissides, John:Design patterns: elements of reusable obje
t-oriented software. Boston,MA, USA : Addison-Wesley Longman Publishing Co., In
., 1995. �ISBN 0�201�63361�2[GWB+10℄ Gossow, David ; Wojke, Ni
olai ; Bing, René ; Bu
hholz, Urs ;S
hrage, Robin ; Mützel, Andreas ; Read, Kevin ; Thierfelder,Susanne ; Vetter, Sebastian ; Paulus, Dietri
h: RoboCup 2010 -homer�UniKoblenz (Germany) / Universität Koblenz-Landau. 2010.� Fors
hungsberi
ht[HD64℄ Hartenberg, Ri
hard S. ; Denavit, Ja
ques: Kinemati
 Synthesisof Linkages. New York: M
Graw-Hill, 1964[LGT04℄ Likha
hev, Maxim ; Gordon, Geo� ; Thrun, Sebastian: ARA*:Anytime A* with Provable Bounds on Sub-Optimality. In: IN AD-VANCES IN NEURAL INFORMATION PROCESSING SYSTEMS16: PROCEEDINGS OF THE 2003 CONFERENCE (NIPS-03, MITPress, 2004 51

52 BIBLIOGRAPHY[PEHR68℄ P. E. Hart, N. J. N. ; Raphael, B.: A formal basis for the heuris-ti
 determination of minimum
ost path. In: IEEE Transa
tions onSystems, S
ien
e, and Cyberneti
s, SSC-4(2):100?107 (1968)[Sun10℄ Sunday, Dan: http://softsurfer.
om/Ar
hive/algorithm_0106/algorithm_0106.htm.2010

