(%‘5 UNIVERSITAT
KOBLENZ - LANDAU

EU-Schadensbericht
Back-Office

Bachelorarbeit

zur Erlangung des Bachelors
im Studiengang Informationsmanagement

vorgelegt von

Alexander Rippert

Betreuer: Diplom-Informatiker Stefan Stein,
Institut fir Wirtschafts- und Verwaltungsinformatik,
Fachbereich Informatik

Gutachter: Prof. Dr. J. Felix Hampe,
Institut flr Wirtschafts- und Verwaltungsinformatik,
Fachbereich Informatik

Koblenz, im Juli 2010

Erklirung

Ich versichere, dass ich die vorliegende Arbert selbstandig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmuttel benutzt habe und dass die
Arbeit 1 gleicher oder dhnlicher Form noch keiner anderen Priifungsbehérde
vorgelegen hat und von dieser als Teil emner Prifungsleistung angenommen
wurde. Alle Ausfithmingen. die wortlich oder sinngemal iibernommen wurden,

sind als solche gekennzeichnet.

Die Richtlinien der Arbeitsgruppe fiir Studien- und Diplomarbeiten habe ich

gelesen und anerkannt, msbesondere die Regelung des Nutzungsrechts.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einverstanden.

jal] nein[]

Der Verdffentlichung dieser Arbeit im Internet stimme 1ch zu.
ja L] nein[]

Koblenz.den ... Unterschraft

ii

German Summary / Deutsche Zusammenfassung

Im Rahmen dieser Bachelorarbeit wurde ein Back-Office fiir die elektronische Version des
Europaischen Schadensberichtes erstellt. Es wurden bereits in anderen Arbeiten ein mobiler
Client, welcher auf einem Windows Mobile Handy lauft, sowie ein Polizei Client erstellt.
Diese greifen auf das Back-Office zu, um Daten, wie z.B. die Autodaten (Automarke, der Typ,
das Baujahr und Bilder eines 3D-Modells des Autos) zu einem bestimmten Kennzeichen oder
die Personendaten des jeweiligen Autobesitzers zu erhalten. Der mobile Client sendet zudem
die Unfallakte an das Back-Office, damit die Daten tber einen Unfall in diesem abgespeichert
und weiter bearbeitet werden kdnnen.

Ziel der Arbeit war es ein erweiterbares, modulares System zu entwickeln, welches spater um
weitere Module erganzt werden kann, um neue Funktionen bereitstellen zu kénnen. Diese
Module kénnen jeweils beliebige Daten in einer Datenbank abspeichern und diese von der
Datenbank auch wieder abfragen, sowie verandern, ohne dass das relationale Schema der
Datenbank verdandert werden muss. Diese Funktionalitit wird von dem Kernsystem
bereitgestellt.

Als Teil dieser Bachelorarbeit wurden fiinf Module entwickelt, die alle auf dem Kernsystem
aufbauen und verschiedene Funktionen fiir unterschiedliche Zielgruppen bereitstellen:

Das Modul fur den mobilen Client stellt einen Webservice zur Verfligung, iiber den der mobile
Client Daten Uber Fahrzeuge sowie Uber die Fahrzeughalter abfragen kann sowie den
Unfallbericht als XML-Datei an das Back-Office Gibermitteln kann.

Das Modul fur den Polizei Client stellt einen Webservice bereit, liber welchen Daten Uber
Fahrzeughalter abgefragt werden kénnen.

Das Modul fiir die Versicherung besteht sowohl aus einen Webservice, der eine Integration in
die Softwareinfrastruktur des Versicherungsunternehmens ermdoglicht, als auch aus einer
Webanwendung, lber die ein Mitarbeiter einen Unfallvorgang bearbeiten kann. Dabei kann er
alle noétigen Daten sehen und bearbeiten sowie Schdaden beurteilen und festlegen, wie hoch
die Kosten fiir eine Reparatur der Schaden sind und ob die Versicherung fiir den Schaden
aufkommt.

Das Modul fur den Autobesitzer verfiigt, genauso wie das Modul fiir die Versicherung, Gber
einen Webservice sowie eine Webanwendung. Der Webservice ermoglicht auch hier eine
Integration in bereits existierende Systeme. Uber die Webanwendung kann der jeweilige
Autobesitzer die Daten Uber einen Unfall ansehen, sowie den Bearbeitungsstatus erkennen. Er
kann auch Autowerkstatten auswahlen, die dann die Schaden seiner Autos beurteilen durfen.

Das Modul fiir die Autowerkstatt besteht aus einem Webservice sowie einer Webanwendung.
Ein Mitarbeiter kann die Schaden zu einem Unfall in das System einpflegen sowie die Kosten
zu dessen Reparatur angeben.

Zudem gibt es noch eine Weboberflache fir Administratoren des Systems, lber die die
Benutzer des Systems, die Automodelle, sowie Versicherungen und Autowerkstatten
verwaltet werden konnen.

iii

Das System besteht aus einem Kernsystem, welches aus der Entity-Framework Schicht
inklusive der Datenschicht und der eigentlichen Datenbank, sowie der Geschaftsschicht
besteht (siehe Abbildung 0.1). Dieses Kernsystem stellt ein abstraktes Objektmodell sowie
Methoden zur Verfligung, die es ermdglichen, Daten abzuspeichern, zu verandern und
abzufragen. Es stellt auch sicher, dass alle Anderungen versioniert (protokolliert) werden.

W

Fortgeschrittener
9 Mobiler Client Weboberflache fiir Weboberflache fiir Wehoberflache fiir Auto-
& fir die Polizei Versicherung Autobesitzer Werkstatt / Gutachter
= b))
Q
Qo
Mobiler
Client Webservice Webservice Webservice Webservice Auto-Werkstatt
Mobiler Client Polizei Versicherung Autobesitzer Gutachter

Logik fur Webservice | | Logik fur Webservice Logik fiir Webservice
Mobiler Client Polizei Versicherung
JC JC JC

Geschéftsschicht

ac

Entity-Framework

Datenschicht

Datenbank

Abbildung 0.1: Aufbau des Systems

Daten werden in sogenannten Container-Objekten, welche Entities enthalten, abgespeichert.
Container-Objekte haben jeweils einen Namen und fungieren als Behélter fiir die einzelnen
Werte, die als Entity-Objekte abgespeichert werden. Entity-Objekte kénnen jeweils als Parent
weitere Entity Objekte enthalten und kénnen daher eine Referenz zu alten, veranderten Daten
enthalten (siehe Abbildung 0.2). Entity-Objekte kénnen beliebige Daten abspeichern.

Container

Entity
Entity

Entity

Entity

o

Entity

Abbildung 0.2: Container Entity Modell

iv

(%‘ UNIVERSITAT
KOBLENZ - LANDAU

EU-Accident-Report
Back-Office

Bachelor Thesis

in order to obtain a bachelor degree
in the degree program Information Management

provided by

Alexander Rippert

Supervising Tutor: Diplom-Informatiker Stefan Stein,
Institut fur Wirtschafts- und Verwaltungsinformatik,
Fachbereich Informatik

Reviewer: Prof. Dr. J. Felix Hampe,
Institut fur Wirtschafts- und Verwaltungsinformatik,
Fachbereich Informatik

Koblenz, July 2010

Table of Contents

Contents
I [4 o Te [¥ T 4 o o WU T OO PPTOUPTOPRPTOUPTRUPROt 1
11 IMIOTIVATION it e st e s e e s s e e s snee e e e sameeeessanee 1
1.1.1 The European AcCident REPOIt.....ciccuiiiiiiciiiie ittt e e e s sare e e s ssnraeeesnes 1
1.1.2 The Electronic Version of the European Accident Report on a Mobile Client............. 3
B R Y= T Y= G Yy = o o PNt 4
1.2 Bachelor-Thesis Project TASKcuueiicciiieieiiiie ettt e e erae e e e eta e e e rae e e esnaaeeeens 5
1.3 OVEIVIEW ..eeeieetee ettt ettt ettt e ettt e e ettt e e sttt e e sttt e e snbe e e e snne e e e sanseeeesnseeeesannaeeesnnnneenan 6
2. CUITENT SITUGTION ettt e e e e st e e s e bt e e s s ne e e e s eareeeessneeeessanreeessanee 7
2.1 Sketch TOOl 0N the WED ...coeeiiiii et 7
2.2 Pre-filled fOrMS ...ttt ettt e st bbb 8
2.3 Processing the forms in the insurance COMPaNIescceccieeeeciiiee e e 8
2.4 MODIIE ClIBNT. ..ttt st sttt et sb e s be e st sab e e b e beens 8
2.4.1 First Prototype by Janek Klass and Tobias KNOPP......cccueeeevirieeiiiiieeccieeeeiee e 8
2.4.2 Second Prototype by Nading Gillecoovuiiieiiiiiieicieee e 9
2.4.3 Third Prototype by Stephan Arlt........ccueeeeciieeecee e 10
2.4.4 Prototype for the Police by Stephan Arlt..........cccvieiiiiei e 10
2.5 3D-Damage Visualization by Thomas Lempa.......ccccoeieeiiciiiee e 11
R T | = N o 4 1V [V O PP PUPPPS PP 12
R ol 1 (=T (U = O PSP P PRSP 13
4.1 Peer-to-Peer ArChiteCTUIEcocuiiiiiiieieee e e e 13
4.2 Repository-Style Archit@CtUre.......cuviieie e e e e e e e e nanees 15
4.3 STrUCTUIre Of The SYSTEM ...eeiiieee ettt e et e e e ba e e e e ata e e e e easaeeaeas 17
4.4 Structure of the Database.......cooui ittt 18
LT =Tl o1 g Y] Fo =4 SRR 20
5.1 Microsoft SQL SErver 2008cccceeeueerrierieereenee et ete et e sieesieesresreere e s e sreesseesanesanees 20
5.2 Microsoft .NET-Framework 3.5 SPL........cociiiiiiiiiieiieeeeieeseesee et 20
52 L AP INET 3.5 ettt et e e e et e e e e e e s nnreeee e e e e e e nenee 21
5.2.3 ADO.NET ENtity-FrameWorkooeoio ittt e et e e e e 22
5.2.4 Windows Communication Foundation (WCF)ooociiiiiiiiieeeeciee et 22
5.3 T00IS ettt h e st st e b e b b e e s bee st e eare s 23

vi

5.3.1 Microsoft Visual STUAIO 2008oeeiiiiiiiiiieeeeeeeeetiee e e ettt e e e e e e s ea e e e e e s eeaaaaaans 23

5.3.2 Microsoft EXpression WED 2........uuiiiiiiiiiiiiieec et srtee et e e e e s e e s avee e s 23

6. Prototype IMplementationoocuiiiiiciie e 24
Lo A g TN o I V] Y 1 [PPSR 24
6.1.1 The Entity-Framework LAYer......cuueiiiciieeeeciiee ettt et e e ree e e avee e e aaae e e e 24
6.1.2 ThE BUSINESS LAY ceiiuiiiiiieiiieeieitee ettt ettt e ettt e e e sae e s s bae e e s s b e e e e s sbeeeesabeeessnreeas 28

6.2 AdMINISTIATION ..einiiiietie ettt e e st e s b e e sb e e s e e e saee e sareesneeesaneens 36
6.2.1 Managing Car Brands, Car Types and Years of Manufacturecccccevvvvveeeeeeeccnnns 36
6.2.2 MANAGINEG USEIS ..ceiieiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeseeeeeeeteeeereereeeeesereeeeeeeeeeeeeeeeeerene 38
6.2.3 Managing INSUranCe COMPANIES.....cuuiiiieiiiiiieieieieieeeeeeeeeeeeeeeeeereeeererereeeeeeeeeeeeeereseeeeeee 41
6.2.4 Managing Car Repair COMPANIES.....cuviiiiiiiiiiiieieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseeeeseeeeeeseeen 43

6.3 Web Service for the Mobile ClieNnt.........cooviiriiiiiiiceeeee e 45
6.4 Web Service for the POlICE.......cocuiiiii et 48
SRR L YU =T e [ol =T @] 1 0] o X-] o VPRt 49
B.5. 1 WED SEIVICE ...ttt ettt et ettt et st b e b e b e saeeeateeneeas 49
(R I ATV LY o3 AN oY o] oF= 1 4 Lo o TSR 54

6.6 Car OWNEI ittt 65
5.6. 1 WED SEIVICE ...eonieiriiieieeieeee ettt ettt et eeeene s 66
N I ATV LY o3 AN oY o] [ToF= 1 d o I SRR 68

oI A O T o (=T o - | Rt 72
5.7. L WED SEIVICE ...ttt ettt ettt et e be e sae e st st et e e be e beesaeeeateennean 72
6.7.2 WeED APPIICATION ..eiieiiiiieceeee ettt e e et e e et e e e e e e e ata e e e e araeas 75

7 CONCIUSION ..ttt ettt ettt et st et et e s bt e s bt e sae e st e sab e e bt e b e e nneesmeesmneenneen 77
7.1 SUMMAry and RESUILSoeiiiiiiiie ittt e e e st e e e s bae e e e s areeeesanes 77
7.2 OUTIOOK ..ttt st ettt e b e b e sat e st s bt bt e b e b e s reesaeeeare s 78
2T o [To =421 o] o V2SS USSRt 79

vii

Table of Figures

Abbildung 0.1: AUfbau deS SYSTEMS ...c.eiii ittt st st s ben s s iv
Abbildung 0.2: Container Entity Modellcooociiiiiiiiiiiie et iv
Figure 1.1: Development of the road network and load on roads in Germany [ADACQ9a]......... 1
Figure 1.2: Paper form of the European Accident Report [Unfa09b]........cccccvevviiiieiinicieene e, 2

Figure 2.1: Online Sketch Tool that makes it easier to draw a sketch of an accident [Unfa09a].6

Figure 2.2: The first prototype of a mobile client for the European Accident Report by Janek

Klass and Tobias Knopp implemented as a Java application[KIKnO7]...........c..cc......... 9
Figure 2.3: Screenshots from the second prototype by Nadine Gille [GillO8]........cccccceecvveeeennens 9
Figure 2.4: Screenshots from the third prototype by Stephan Arlt [Arlt09b]...........cccvvveennnneen. 10

Figure 2.5: Screenshot of the user interface of the police client: Adding a vehicle [Arlt09a]....10
Figure 2.6: Screenshot of the user interface of the police client: Streets [Arlt09a]................... 11

Figure 2.4: 3D-Visualization prototype for the European Accident Report and Netcar24 by

Thomas Lempa [LEMPOB].....ccoiiuiiieeiiiieie ettt e erree s s e e s iver e e e s sarbe e e e s s rbeee s e earees 11
Figure 4.1: A Peer-To-Peer-like ArchiteCture.........cooviiiii i 14
Figure 4.2: Repository-Style Archit@CtUre.........ooiiciieiii i e e e 15
Figure 4.3: Structure of the SYStemMi.. ..o e e e 18
Figure 4.4: Database SChEMa......coo i rrae e e areeas 19
Figure 5.1: .NET-Framework [Trai00]......ccueeiecuiiieiicieeeeecieeeee st e e esree e s s ssavae e e e ssnavaeesesesnneeeeas 20
Figure 5.2: Overview of the .NET-Framework 3.5 [CONRO7].....ccccceeevuieeeieiiieee e 21
Figure 6.1: Overview of the Core SYSteMi......uiiii et e e e ee e 24
Figure 6.2: The Entity-Framework Model........c..uiiiiiiiiiiicieee e e 25
Figure 6.3: Mapping Details of ENTity.....cccccvuiiiiiiciiee st e e e e 26
Figure 6.4: Mapping Details of CONtAINEr.......cccuviiiiiiiiieiecee et 26
Figure 6.5: Mapping Details of DataType....cceiiicieiiei ettt 27
Figure 6.6: Entity Framework Metadata [Lerm09].........ccoccuveeeiiiiiiie e eree e 27
Figure 6.7: Structure of the Core SYSteM.......ccuiiii i 28

viii

Figure 6.8: UML-Diagram of the Object Model of the Core System.......ccccceevcivieeeeiiiieeecccinieenn, 29

Figure 6.9: Container and ENTItiES.....ccccuuiii ittt ettt e e e e evre e e e e eraee e e eaes 30
Figure 6.10: A newer Version of an ENtity.......cccceiieiiiiie i 30
Figure 6.11: VersioniNg ENTitiEs......uiiiiiiiiiiiiiiiiiiiiciriiiie e ee e s s s e e e es 31
Figure 6.12: Container: YearOfManuUfaCtUre........ccccccuuviieeiciieee ettt ee e et 31
Figure 6.12: The Administration MOAUIE..........ccocciiieiiiiiiiec e erae e e 36
Figure 6.13: Container Data Diagram of the car models.........cccouveeiiiiiiie i 36
Figure 6.14: Screenshot of managing car Models........ccccuviieeeiiiie e e 37
Figure 6.15: Screenshot of adding a new year of manufacture with the car modeis................. 38
Figure 6.16: Container Data Diagram of User Profile..........cccccoueeiiiiiniiiee e 39
Figure 6.17: Screenshot of Managing USEIS.......ccueiiieiuiiiieeiciiiee e et e e e ete e e e e e e eaee e e e areeas 39
Figure 6.18: Screenshot: AddiNg @ NEW USE......ccccuuiiiieciiieeeeeiiieeeeecteeeeeeerraeeeeeereaeeeeesnraeeeeennes 40
Figure 6.19: Container Data Diagram of insurance CoOmpanies........ccccccveeeeeciieveeeeicieeeeesnnneen 41
Figure 6.20: Adding a customer to an iNSUranNCe COMPANY......cceeeeeeeiiiiciiiirirereeeeeeeeeeeeeeceveeseenes 41
Figure 6.21: Managing iNSUranCe COMPANIES.....ccceeeiiiieieeeeeeeeeeitereeeerererrrssess e s e eeeaaaaaaaaaaaaaens 42
Figure 6.22: Container Data Diagram of car repair Companies.........ccceeeeecvieeeeeccrieeeeecreee e 43
Figure 6.23: Adding an employee to a car repair COMpPany......cccccccueeeeeeeciieeeeeecieeeeeeecreee e e 43
Figure 6.24: Managing Car repair COMPANIES. iiriieieeeeeeieeeeeeeeeeeeeeeeeeeerrreererere e eeeas 44
Figure 6.25: The Mobile Client MOAUIE..........ooociiiiieeiee ettt 45
FIUIre 6.26: ProXy WED SEIVICE.....uuiiiiii e ettt e ettt e e e e e e e e e e e s areare s beeaeeeeeeaeeeeennnnnnenns 46
Figure 6.27: Container Data Diagram of ACCIENT...........ueeieiiiiiieeciee et e 47
Figure 6.28: The PoliCE MOAUIE ...t e e e e e e e e e e ae e e e e e e e 48
Figure 6.29: The INSUrance MOAUIE........coeii it e e e e et e e e e e e e e e e enanrenes 49

Figure 6.30:
Figure 6.31:
Figure 6.32:

Figure 6.33:

UML Diagram of Classes used by the Web Service for the Insurance Company....52

Insurance CompPany CUSTOMEIS.....cccciiiiiiiieeeeeeeeeeceeee e e e e e e s e e e e e e e e e e e e e eeeeeeeeeeaeenes 54
Container Data Diagram of Insurance Company Customer Datacccceeeenneee. 55
L0 T D =Y - 1 LSS ST 55

ix

Figure 6.34:
Figure 6.35:
Figure 6.36:
Figure 6.37:
Figure 6.38:
Figure 6.39:
Figure 6.40:
Figure 6.41:
Figure 6.42:
Figure 6.43:
Figure 6.44.
Figure 6.45:
Figure 6.46:
Figure 6.47:
Figure 6.48:
Figure 6.49:
Figure 6.50:
Figure 6.51:
Figure 6.52:
Figure 6.53:

Figure 6.54:

Manage Insurance Company CUSTOMET......ccciiiiiiiiiiiiiiiiiiiiirrrsres e s e eeeeeeeeeeeeenes 56
FYe o [- S TSP PSPPSR OUP PRSP 57
Container Data Diagram of Car Repair Company CUStOMErS........ccccvee cevveeeernnnnen. 57
Adding a car repair COMpPany t0 @ USEI......ccccciuireeeriiirieeeeiiieeeeeeecireeeeecneeeeesnnnneeeas 57
AcCident OVErVIEW Part L.......cocieieiieerie ettt e et s 58
AcCident OVEIrVIEW Part 2.......cocuiiieiie ettt 58
Overview: Display all Versions of Data.........ccccceciieeiiiiiiieee et 61
Show Original XML DOCUMENT ...cceceiiieeeeiiee ettt ecte e et e e rae e e e naee e e e 62
Bt ACCIARNT ...ttt st st st 63
e Tl DY a T =TSR 64
The Car OWNEr MOUIE.....c.eiiiieiieiieete ettt s 65
UML Diagram of Classes used by the Web Service for the Car Owner................... 66
Car OWNEE OVEIVIEW......eiiiiiiiiieei ittt e s s ree e s 68
Managing Car Repair COMPANIES......uuuuuuuiiiiiiiiiieeeieeee e ee e eeeeeee e 69
OVEIVIEW ACCIOENTS. ..eeiiiieiiiieiiiee ettt st esree s snee s 69
Overview of Accident for Car OWner Partccccueeveerviinieiiiee et 70
Overview of Accident for Car OWNer Part 2.......ccc.oeveereeriieeneenieeseeeee e 71
The Car Repair MOAUIE.........cooccieeee ettt e e e et e e e e aeeeee e 72

UML Diagram of Classes used by the Web Service for the Car Repair Company...73
Car Repair COMPaNy OVEIVIEW......ccueiicereceeeeeesieseesteeste s eeeesteessesessss sssasaessnsssesssesns 75

o YA DT o T T OO 76

Table of Listings

Listing 6.1: Creating @ NEW CONTAINETueiiiiiiiie ettt et e e e e e e st eaeeeeeaeeeees 31
Lisitng 6.2: Adding an Entity t0 @ CONtAINEr......ccveiiiiiiiiie e e 32
Listing 6.3: Code for creating the YearOfManufacture Container and its Entities..................... 32
Listing 6.4: Retrieving a Container Via itS id.......cccueeiiiiiiiiiiiiieee e 33
Listing 6.5: Retrieving Containers via an Entity’s Value......ccccoeceeiiiciiiie e 33
Listing 6.6: Retrieving the Entity with the name “Year”.......ccov i 34
Listing 6.7: Deleting @ CoNtaiNer......ccuuiiii ittt rre et ee e e sree e e e e sabe e e e e enrees 34
Listing 6.8: Updating @an ENtity......ccccuiiiiiiiiiiii et e e s 35
Listing 6.9: Using @ new Entity Variable.......c.oeiiiiiiiiiiiieccee et 35
Listing 6.10: Converting a byte array to @ bitmap.....ccccceeivciiiii e e 46
Tables

Table 6.1:

Table 6.2:

Table 6.3:

Table 6.4:

Table 6.5:

Table 6.6:

Table 6.7:

Table 6.8:

Table 6.9:

Web Service for the Mobile Client........cocoiiiiiiii e 45
Proxy Web Service for the Mobile Client...........ccccuviieeeiiiiee e 46
Web Service for the POlICe.oouiiiieieee e 48
Web Service for the Insurance CoOmMpPany.......cccccveeeeeeiiieeeecccieee et eecreee e 49-51
Insurance Company Module Methods...........ooccciiiiiiieiieii e, 53-54
Web Service for the Car OWNET......coui ettt sttt 66
Car Owner Module Methods...........cooeiiiiiiiiiiiee e 68
Web Service for the Car Repair COmMPany.......ccccueeeeeeiieieeeeiiieeeeeeecireeeeeecveeeeeeaens 72-73

Car Repair Company Module Methods..........cccceeieeiieccciiiie e 74

Xi

1. Introduction

The amount of cars on Germany’s roads has been increasing during the last decades. There
had been 41.183.594 cars according to the ADAC in Germany in 2008. There were 3.148.163
new car registrations in 2007. 3.566.122 motorbikes existed in 2008 [ADAC09]. In addition to
cars and motorbikes there are also trucks on our roads.

o I N I N \’
s Amount of motorized vehicles -
220 1 v | » >
s Driving performance of vehicles /
-l
200 +—H Roads of trans-regiomal traffic 1
-t
(=] /
S 180 / iSNEn
I
§ 160 ’
% P
)
5 140
S
120 > |
100 -—‘A4
80
1975 1977 1979 1981 1983 1985 1987 1989 1991* 1993 1995 1997 1999 2001 2003 2005 2007

Figure 1.1: Development of the road network and load on roads in Germany [ADACQ9]

Figure 1.1 shows that the amount of motorized vehicles is continually rising while there are
not significantly more roads being build (the high rise of roads in 1990/1991 is due to the
opening of the Berlin Wall and the Union of Western- and Eastern-Germany and does
therefore not indicate a high rise of new roads being build). This means that there is an ever
growing amount of vehicles on the roads and the gaps between vehicles is getting smaller.

This inevitably leads to a higher risk of making an accident.

1.1 Motivation

If an accident happens, it should be as easy as possible to create a report about the accident.
In a lot of cases it is not necessary to call the police. In those cases the people involved in the
accident have to create the report by themselves and send it to their insurance company. The
insurance company will then process the accident case. It is of interest that this process is as
cheap as possible.

1.1.1 The European Accident Report
In order to make it easier to document an accident the European Accident Report has been

created. This is a standardized form for recording an accident case. It contains fields, which
the user can fill out, for all data about an accident that the insurance company needs in order
to be able to process the case.

The form can be seen in figure 1.2.

Page 1

Does not consitule an admission of Fabiity, just

European Accident Statement 3 s by w0 e et

Unfallskizze.de

[loae of accident Time J Locality - Country - Place

Injuries even if slight
= 0O 0O

other than to vehicles Aand B: | objects other than vehicles:

o O yw[O o O s

.

Circumstances

-
N

& Insured/policyholder*
Sumame.. ... Put a cross in each of the relevant boxes to help
Firstname ... explain the drawing -* delete where appropriate:
ACMeSS . o o oiss vy s
Postcode

Tel. or e-mail

What happened?
* parked / stopped

*:

Vehicle
Motor: Trailer:
Make, type

a vehicle door
entering a parking space
*emerging from a parking space, from private
premises, from a track
“entering a parking space,
private premises, 3 track
entering a roundabout
circulating a roundabout
strking the rear of the other vehicle in the same
Iine of traffic and travelling in the same direction

B
3|
&
e
et A B
m|
m|
B
m|
=

Registration No. Registration No.

Country of registration | Country of registration
hlnsurance company
Sumame........

Policy No.

Green Card No.

Insurance Certficate

or Green Card valid from
Agency (or bureau, or broker)

1
BB EEEEED DO 0 0E0E->

changing lines of traffic
oovertaking

tuming to the right

Address ...

Country. .

Tel. or e-mail e

Does the policy cover matenal damage 1o the

vehicle? no El yesD

et 2] had not observed prorty sign or a red ight []
Sumameiiiiiiiei
S State the number of

L S D € boxes markedwithacross — I:]
Date of birth g

Address. ... * m Sketch of accident when impact occurred
Tel.oremal ... Indicate 1. the Layout of the road 2. by arrows the direction
Driving ficence No..cociiiiiiiieiins of the vehicles A, B 3. their position at the time of impact
Category (A.B, ...} - o coneen i 4. the road signs 5. names of the streets or roads
Driving licence valid until:.

reversing
changing to a lane reserved for fraffic in

& Insuredipolicyholder*

Vehicle B

Stname. RS
Fistname
Postcode. ...
Tel. or e-mad

0
* leaving a parking space / opening E h\’ehicle

Motor: Trailer:
Make, type

R

Country of registrati Country of reg

h Insurance company

Policy No.

Green Card No.

Insurance Certificate

or Green Cardvalid from ..
O s e i i s

Agency (or bureau, or broker)

AIORs AR TR

Country . .

Tel.ore-mad

Does the policy cover matenal damage 10 the

coming from the right (at a junction) vehicle? no D yes El
h Driver (zes dsng i

Surname

First name . .

Date of birth

Address

Country

Tel. or emad

Driving licence No....
Category {(A.B, ...)..
Driving licence valid until:

p Y <h
Indicate the point of mitial Your tch of the accident:

t to vehicle Aby an 7 fs T s s i e s s s e 5 S
amow >

h\'lslble damage to

vehicle A

m indicate the point of initial

mpact to vehicle B by an
arrow >

n Visible damage to

vehicle B:

W\

hMyremarﬁs: @ Signatures of the drivers g

B

My remarks: ..

AccidentSketch.com | Ein Service der ClaimMS GmbH | Postfach 111248 | 57258 Freudenberg | www.Claim MS
Infoline: +49 271 222 9 222 | eMail: Info@Claim.MS | www.Unfallskizze. de

Figure 1.2: Paper form of the European Accident Report [Unfa09b]

Page 2

It can be used in accidents in which two parties are involved. Both parties can write down
what has happened and what damages exist. It also includes space to create a simple drawing
of the accident. Using this standardized form ensures that no important data is missing in the
report. It also helps to build trust because the form will be accepted by insurance companies.
It is much easier to document an accident with this form than if a person needs to start with
an empty page. Another advantage is that insurance companies can more easily work with the
reports because they include all necessary data in a standardized form. This reduces costs.

The paper form of the European Accident Report has also got some drawbacks. Only about 1
in 15 people had the form in their car due to a survey by Nadine Gille [Gill08]. Not all people
have a writing that is easily readable. This is especially true if people are nervous, which they
are after an accident. This makes it difficult for the insurance company to read the form. It
also leads to misunderstandings. In the paper form it is possible to make wrong statements.
E.g. it is possible to answer yes and no at the same time to the question “Material Damage
other than to vehicles A and B”. It is also possible to make contrary statements on the left and
right side of the form. The place for the sketch of the accident is very small and therefore it is
difficult to draw a good sketch. Another problem is that not all people are good drawers and
therefore sketches might not be easily readable. Damages cannot be documented in detail. It
is only possible to show where damages are. The insurance company will later need a more
detailed report to process the accident case.

Another big disadvantage of the paper based form is that the insurance companies need to
manually insert the data from the forms into their computer systems. Some of those forms are
already scanned and inserted into those computer programs via writing recognition, though,
this only works if the writing is well readable. In a lot of cases insurance employees need to
read and manually insert the data into their programs. This is a very costly process. Insurance
companies have an interest in decreasing those costs.

1.1.2 The Electronic Version of the European Accident Report on a Mobile Client
Because of these disadvantages of the paper based European Accident Report an electronic
version has been developed that runs on a mobile phone. This has a lot of advantages. The
program guides the user through the form on a step-by-step basis, so that the he does not
forget writing down important data. The user can get help in each step. This is important,
because the user will probably not use the program very often. Making contrary statements is
not possible. Therefore the user can no longer answer yes and no at the same time. Another
big advantage is that the user can use GPS in order to figure out his location. The mobile client
also helps the user create a sketch. He automatically gets a map of his current location. He can
then insert the cars that were involved in the accident.

The user does not have to enter all data. E.g. his name, address and car information can be
retrieved from a database. The insurance companies can insert this data when a new contract
is made. This makes the process easier and helps avoiding errors.

A second client has been developed that runs on a tablet PC and can be used by the police to
document an accident.

Page 3

1.1.3 Server System

As mentioned above, the mobile clients have already been developed and it is therefore
possible to create a report of an accident from a mobile phone. This does not only help the
users by making documenting an accident easier, but also helps the insurance companies
reducing costs, because they do no longer have to manually process paper-based reports.
In order to create a paperless workflow it is necessary to have a server system that can receive
and save the data from the accident reports that have been created on the mobile client.
It should be possible to save, change and view data about accident cases via this server
system. Such a system would eliminate the need to manually input the data from reports into
a system and therefore help reduce costs.

The system should also provide a web interface for insurance company employees. Via this
interface it is possible to see all data about an accident case. The mobile client provides an
easy way to mark where car damages are on the car by showing an image of a car. The user
can also make photos of the damages. This helps insurance companies understand how an
accident has happened. Because the insurance employees can more easily reconstruct an
accident case, they can also see which damages are not results of this accident case.
This helps insurance companies identify insurance fraud.

The system could also provide a web interface for car owners. The car owner can then log in
to this website and see all his accident reports and can also the current processing state of the
accident reports. This reduces calls to the insurance companies from customers who want to
know if their accident cases have already been processed.

Because of all those advantages such a server system is being implemented in this bachelor-
thesis.

Page 4

1.2 Bachelor-Thesis Project Task
The goal of this bachelor-thesis is to create a central system, which insurance companies can
use to process their accident cases.

It should provide a web service interface that can receive the accident documents from the
mobile client. It should also offer a user interface for insurance companies, which those
companies can use to add data about their customer’s cars, as well as process their accident
cases.

The system should also have web services via which it is possible to access data about cars
from the mobile client and from the police client.

The system is implemented as a generic framework that includes basic functionality to write
all necessary data into the database and to read this data from the database. It also ensures
that all data is versioned, that means that it is not possible to delete or change data without
being able to precisely see who did those changes and when changes have been made. It
therefore implements an object model that can be used to work with the data from the
database. This object model provides certain functionality to save, read, update and delete
data, while ensuring versioning.

On top of this basic framework are modules which provide certain functionality for different
application areas, e.g. there is a module that implements the web service for the mobile
client, a web service for the police, a web service for insurance companies and a web surface
for insurance companies. Those modules use the object model and its functionality from the
basic framework (core system) that lies below it to access data from the database and to write
and update data to the database.

Due to this modular architecture it is easily possible to extend the system by adding more
modules or to change the functionality of the system by modifying single modules. The
developer who modifies a module only needs to know how this module works, how the core
system works and what data he wants to use. He does not have to know how all the other
modules work. Therefore it is easily possible to add new functionality to the system, as for
example integrating 3D-models of the cars. It is not necessary to change the core system or
the database when adding new modules, because the core system can store any kind of data.
This avoids accidentally breaking functionality of the system.

The focus of this bachelor-thesis is to create a modular framework that can be used by other
projects to add additional functionality by either modifying the existing modules or adding
new modules.

The modules contained in this bachelor-thesis are meant to be examples of how modules can
be created. Therefore they are very simple and do not provide a lot of functionality.
Developers can use those modules as a starting point for developing their own modules that
can be used by the system. It is also easily possible to replace an existing module with a new
one, as long as the data used by the module is the same.

Page 5

1.3 Overview
An overview of the European Accident Report as well as of the project task of this bachelor
thesis has already been given.

Chapter 2 describes existing tools and prototypes that make it easier to report an accident
case. This includes the mobile clients that make it possible to fill in the form on a mobile
phone.

Chapter 3 talks about important privacy requirements that need to be considered.
Chapter 4 gives an overview of the architecture of the system.
Chapter 5 describes the technologies and tools used to build the system.

Chapter 6 is a detailed description of the system.
It consists of several chapters that all describe certain parts of the system:

Chapter 6.1 is about the core system and describes how new modules can be created on top
of the core system. It gives detailed examples that show how the functionality of this
framework can be used to enhance the system.

Chapter 6.2 gives an overview of the part of the system used by administrators of the system.
Chapter 6.3 describes the web service for the mobile client.

Chapter 6.4 is about the web service for the police.

Chapter 6.5 describes the module for the insurance companies.

Chapter 6.6 gives an overview of the module for the car owner.

Chapter 6.7 describes the module for the car repair companies.

Chapter 7 summarizes the results of this bachelor thesis and talks about possible future
enhancements of the system.

Page 6

2. Current Situation

Today people can use the paper based form of the European Accident Report to document an
accident. This was a big step forward. It provided a standardized form that contains fields for
all data needed by an insurance company to process a case. But the paper based version of
the European Accident Report is not without problems (See chapter 1.1 for more information
about the advantages and disadvantages of this form).

2.1 Sketch Tool on the web

ACCIDENT DEPICTION

B EE] BE] 3

Imprint - Privacy Policy

Figure 2.1: Online sketch tool that eases drawing of an accident sketch [Unfa09a]

Various projects exist that help the user fill out the form, for example an online tool which
makes it easier for the user to draw sketches of an accident. See figure 2.1 for a screenshot of
this application. The user can draw a road by choosing different road parts, add traffic signs,
add the vehicles and persons involved in the accident and draw arrows to indicate the
directions in which the vehicles were driving during the accident.

This tool helps insurance companies better understand how the accident happened. The tool
is web based which makes it difficult to use it on a mobile phone, because the screen of this
device is too small to display the tool. The tool can also only be used when the user is online.
A person therefore either needs a notebook with internet access to draw the sketch, which is
very unlikely. He can draw the sketch later, but then he has probably already forgotten some
details of the accident at the time he creates the sketch.

Page 7

2.2 Pre-filled forms of the European Accident Report

Another way of assisting the user is to use a partly filled out form. This is often the case when
people get the form from their insurance companies. They fill out the customer’s name,
address, the car’s information as well as the insurance company’s information.

2.3 Processing the forms in the insurance companies

Today no technology exists which would make it possible to send the data from the European
Accident Report to the user’s insurance company in a digital form. All forms are sent to the
insurances in paper form. They can then be scanned and transformed into digital form via
hand writing recognition or they need to be inserted into those systems in a manual way. If
data is missing, the insurance company employee needs to either send the customer a mail or
call him via telephone and request the missing data. Oftentimes the insurance company needs
to wait for a detailed evaluation of the damages on a car. This analysis is also sent to the
insurance company in an analog way. The insurance companies use their own software to
process accident cases.

2.4 Mobile Client

2.4.1 First Prototype by Janek Klass and Tobias Knopp

Janek Klass and Tobias Knopp have developed a mobile client application at the University of
Koblenz that makes it possible to document an accident on location [KIKnO7]. It is
implemented as a Java application that can be run on a mobile phone. The user can insert the
required data into a step-by-step form. This ensures that all data is being inserted. It is also
ensured that the user cannot make contradictory statements. For example the user can
sometimes only select one option out of several options and therefore the risk of checking
both “yes” and “no” at the same time is eliminated. Today most people carry a mobile phone
with them. Therefore they would constantly have the form with them. This was not the case
with the paper based form that a lot of people did not carry around with them. Another
advantage of the system is that the data will be inserted in a digital form. This makes it easier
to use the data in an insurance company, because the data does not have to be manually
inserted into their system. Figure 2.2 shows screenshots of the mobile client. It can be seen
how a person can create notes about damages on the car. They can select where the damage
is.

Page 8

16 von 21

Auf welchen Ansichten sind die
beschadigten Bereiche zu sehen?
rontansichl
Seftenansicht
Ruckansicht

Je nach Handygeneration kann der Ubergany
zwischen den einzelnen Ansichten langer
dauern

Eitte Gedluld.

Bitte Navigieren Sie zu dem
Anfang des Schadensbereich
und klick Sie
auf 'select'.

hlieRend

Bitte Havigieren Sie zu dem
Anfang des Schadensbereich
und klicken Sie anschlieBend
auf "select’.

Figure 2.2: The first prototype of a mobile client for the European Accident Report by Janek

Klass and Tobias Knopp implemented as a Java application [KIKn07]

2.4.2 Second Prototype by Nadine Gille

A second client application has been developed by Nadine Gille [Gill08], who made it easier to
use the application. The first prototype was only black and white and it was a very
rudimentary application. The second prototype featured a modern user interface. The user
can now ask for help in each step if he does not know how to use the application. The client
application is now multi-lingual. As can be seen in Figure 2.3 the user can now see an image of
a car and can use either a rectangle or a freehand pen to mark damages. He can also choose
which kind of damage has occurred. The user can zoom into the car to make it easier to mark
damages. He can also take pictures of the damages and add them to the report. The client
application uses GPS to retrieve the current location of the person using the mobile phone. It
then displays a map of this location onto which the user can place cars and indicate how the

accident has happened. This replaces the traditional sketch.

& | Unfallbericht e W3 159 [X

Kratzer Delle Loch

0 s (ERVEN

2urtick

weiter

' | Unfallbericht G e X

Kratzer Delle Lotl_l

32 | Acddent Report

Mark the directions of the cars

Figure 2.3: Screenshots from the second prototype by Nadine Gille [Gill08]

Page 9

3 W€ 8:33 ‘x‘

2.4.3 Third Prototype by Stephan Arlt
A third prototype of the mobile client is being developed at the same time as this bachelor

thesis is written [Arlt09b]. It will use the web service described in chapter 6.3 to retrieve data
about drivers and cars and send the report to the back-office. This prototype uses a map in
order to display the area where the accident happened instead of a satellite image, as used in
the second prototype. This makes it easier for people to figure out where they are, because
some things are not easily found on a satellite image (e.g. a road in a forest).

*s | EU Accident Rej

%% | EU Accident Rej

s | EU Accident Rej

Please mark the accident's place in the
map.

Please choose. With my vehicle I... Please click "capture" to take a photo.

() was parked on the road

() was leaving a parking place

() was turning into a parking place

) leaving a driveway or lane £ é

e A ,

() was tuning inta a driveway or emq, I 1 I

lane T // ’ / i
] It

none of the issues applies

O a® [Ret | @B

Back Back (=] Nerﬁ

Figure 2.4: Screenshots from the third prototype by Stephan Arlt [Arlt09b]

2.4.4 Prototype for the Police by Stephan Arlt

In addition to the mobile client that can be used by car drivers, a second client that runs on a
tablet pc has been created. This client can be used by the police to document an accident case
[Arlt09a]. The police can insert all data needed to document an accident case into the
application. The application can retrieve data about the drivers and the cars involved in the
accident via the web service described in chapter 6.4. This reduces the amount of time needed
to create an accident report. It also helps avoiding errors.

-
=) - e P I [ESE)
32 EU Accident Report Police —[Opened Accident Blel - ™|)
W File Edit View Help .8 xl
DEH &R0
o T e
B
MName Person | Vehicle | Statement
Gates, Bl Regration
dob, Steve No 0123456789
|
Car owner
Tl r -
Lastriome Gates
Frstname Bl
Strest Test Street
2P 01zH Giy Redmond
Phons 012456783 Mobils 0123456783
S Apply
Dt
Bond Volkswagen Model Gof V
Chassisno. D123456739
Bereit

Figure 2.5: Screenshot of the user interface of the police client: Adding a vehicle [Arlt09a]

Page 10

The application is very flexible in order to make it possible to document complex accident
cases. The user can add text and audio recordings to the report. This client is also being
created at the same time as this bachelor thesis.

Open Street Map 4 b

© Pixel Image () Vector mage

Sparkasse Hragy
[Postion | Name | .}
Name koblenz e =
Volksbank Koblen Mittelchein

et Hapor
O P
Name Category & = tr
place | :

Koblenz place i
Koblenz place
Koblenz place
KoblenzGils ~ place
Waldeschbe... place
Sankt Sebas... place
non 8- Aare-.

Koblenz Dot~ raiway

N

Figure 2.6: Screenshot of the user interface of the police client: Streets [Arlt09a]

These clients represent only the client side of the system. The task of this bachelor-thesis is to
create a back-office system that can save the data created by the client applications and
display them to an insurance company employee. The clients currently save the data as an
xml-document locally on the mobile client.

2.5 3D-Damage Visualization by Thomas Lempa

Thomas Lempa has created an application that uses a 3D-model of a car to visualize
information about its damages [Lemp08]. The 3D-model contains special markers on which
the user can click in order to see more information about damages. It is also possible to see
pictures of the damages on the car. This is a prototype that illustrates how a 3D-model could
be used to ease to evaluation of a car’s damages.

Netcar24 / Uni Koblenz Visualisierung 81 11 B0

Alfa Romeo fa 156 Sportwagon 1.9 3TD 16V ¢ sc.. | ar- | &0

7 Schaden vorhanden

17023

Figure 2.4: 3D-Visualization prototype for the European Accident Report and Netcar24 by
Thomas Lempa [Lemp08]

Because this bachelor-thesis develops a base framework of the back-office and only
implements a simple user interface for the insurance company, the 3D-model has not yet
been implemented. This feature can be added in the future if needed.

Page 11

3. Data Privacy

Insurance companies must adhere to German privacy laws. The use of personal data is
therefore limited. The German privacy laws regulate, that someone may only collect the data
that he needs to process a case. That means insurance companies may only save and use data,
which they need in order to be able to process an accident case. They may not build and use a
database containing data which they do not need for working on an accident case. If they
collect and use more than the essential data needed to process a case they need the explicit
written consent of the person for this data. This could be problematic, because this consent
must be voluntarily. It therefore cannot be enforced for all insurance company customers. The
privacy law also regulates that the data collected may only be used for the purpose that they
had been collected for. They may not be used for other things. This means that e.g. an
insurance company is not allowed to use their customer’s address to send them
advertisements about hotels, because the customers provided their address only for
processing accident cases. This means that the system must ensure that the data is not used
for purposes other than the ones that are needed by the insurance companies to process
accident cases. !

This has several consequences for the system described in this bachelor-thesis.
Only a minimum amount of data is collected from the customers including his name and
contact information, which consists of his address and telephone numbers. The identity card
number, passport and driver’s license number are saved as well. The insurance companies also
need to save the license plate number of the cars as well as information about the cars (brand,
type and year of manufacture). This data is needed to be able to process an accident case.
The identity card number, passport and driver’s license number are only used by the police
client. They cannot be seen by the insurance company. The system does not collect additional
data (e.g. birthday, job, income) that is not needed by insurance company employees.

Data about an accident case can only be accessed by the insurance company of the car owner
who was involved in the accident. Other insurance companies cannot see this data.

Only car repair companies who are chosen by the insurance company or the car owner can see
the owner’s data and evaluate damage.

No car owner can see other car owners’ data.

Administrators of the central organization cannot access accident case data. They can only see
the user’s personal data, because they are responsible for maintaining this data.

The whole system is built in a way that ensures that only people who have got the right to see
data can access this data. It is not possible to see private data of other people.

'Read more about Data Privacy in Germany at [Date09]

Page 12

4. Architecture

A back-office for the Electronic Version of the European Accident Report has several
requirements that need to be considered. First it must be possible to access all relevant data
needed to process an accident case. Because not all car-owners have the same insurance, it is
possible that a car accident case needs to be handled by more than one insurance company.
Therefore it must be possible to access this data from all insurance companies of users
affected by the accident. To avoid insurance fraud it may also be necessary to look up the
accident history of their insurants.

Second all changes made to data in the system must be logged. This assures that no person
can change any data to manipulate an accident case. Changes might be possible out of several
reasons, like for example when the car owner or car driver made wrong entries when using
the mobile client due to a shock he had after the accident. It is also possible that an insurance
employee makes a mistake when processing a case and needs to correct that mistake.
Third most insurance companies already have an existing software infrastructure to process
their accident cases. It should be possible to integrate the back-office of the Electronic Version
of the European Accident Report into those systems and therefore possible to enable each
insurance company to create an integrated workflow.

Third data privacy must be ensured. Each entity in the system must only have access to data
relevant to solve a case. It must be prevented that a person can access all data at all times. For
example an insurance company may not access personal data like an address of a person from
another insurance company that is not involved into an accident processed by that company.

There are two basic variants of such a system:

4.1 Peer-to-Peer Architecture

The first is a peer-to-peer-like architecture. This means that each insurance company would
implement their own system. All systems would need to communicate with all other systems
of all insurance companies through a standardized protocol (see figure 4.1). This has several
advantages. Data is only saved in the insurance company that processes an accident case. This
ensures that other companies cannot access this data. Access to data is only granted when
needed. Access can be granted for each case. This way it is easy to control which data can be
read by which people. Another advantage is that, because the system will be implemented by
each insurance company, each company can perfectly integrate the system into their existing
software infrastructure. This makes it easier to comply with company policies, like for example
where data may be saved. This way each insurance company is in control of their system.

There are also some disadvantages. Each company has its own unique system. Therefore a lot
of different systems are used, written in different programming languages and running on
different operating systems. This can make it difficult to connect all those systems with each
other. By sending data from one system to another system, data might get lost due to
encoding limitations, e.g. when converting a 64 bit integer to a 32 bit integer.
Another problem is that duplicate data will be saved, because the data needs to be saved in
each insurance company that needs to process an accident case. It is difficult to ensure that all
this data will always stay up to date.

Page 13

It is also difficult to handle people, who are car drivers but not car owners, because they do
not appear in the insurance’s database. In many cases the car driver is not the car owner, e.g.
in a car lending company. It can also be difficult to maintain such a system. Each time a new
insurance company is added to the system, all companies must update their system to
connect to the new insurance company.

Insurance 4

Insurance 8

Figure 4.1: A Peer-To-Peer-like Architecture

Page 14

4.2 Repository-Style Architecture

|.|.

g’g

Insuyfance 5

Central Organization

Insurance 4

Insurance 8

Figure 4.2: Repository-Style Architecture

The second version is a repository-style architecture. This means that there is a central
database and a central software system that is being used by all entities (see figure 4.2). This
implies that there is a separate organization which is responsible for maintaining the
database. This organization can add and manage users. It can also add and manage insurance
companies and other organizations that need to access the data saved in the database. All the
organizations can access the data through a standardized protocol or through a web interface.
Data access can be controlled through access rules. This way only organizations with proper
rights can access certain data and data protection can be ensured. It is easy to administer and
manage the system because all changes will only have to be made to a centralized system.
Another advantage is that there are contact persons in the organization who can help
insurance companies when they have problems related to the system.

This version has also got some disadvantages. There must be a centralized organization which
is responsible to manage and maintain the system. It might be difficult to create such an
organization.

Page 15

All data will be saved in one big database system and therefore it is volatile to misuse because
an attacker only needs to break into one system to get access to all data. If the data were
saved in several systems an attacker would have to get access to all systems in order to get
the data. It is also not as easy to integrate the system into the existing software systems of the
software companies, because there would be one centralized workflow and one standardized
data model.

The back-office of the Electronic Version of the European Accident Report is implemented in
the second, repository-style architecture. This eases management and maintenance of the
system. Another advantage is that it is possible to add people to the system who do not have
a car insurance, like for example car drivers that drive cars owned by other people, e.g.
parents or car lending companies. It also makes it easier to create a standardized data model
that all companies will use. For example all car models can be inserted into this centralized
database, therefore it is not possible that two insurance companies process the same accident
case but get problems because the car model saved in their database is not the same, because
they have two different data models for saving the car model. This also means that there is
only one version of the mobile client software that will be used by all insurance companies.
This client software will access the centralized back-office system. If the system was created in
a peer-to-peer-style architecture, there would either have to be a standardized protocol via
which the mobile client could access all the systems of all insurance companies related to the
car accident or each insurance company would have to create their own software, which
would make it difficult to use another person’s mobile device to record an accident. It is also
possible to access the data via a web interface without having to implement a software client
for each insurance company. Another advantage is that the software needs to be
implemented only once. Each insurance company can use the system. They can either access
the data via standardized protocols and integrate the system into their existing software
infrastructure or use the web interface to access the data. This greatly reduces costs because
insurance companies do not have to implement their own systems. It would also be possible
to use the centralized system to create detailed anonymous statistics of car accidents,
because all data is saved in one database in opposition to saving all data inside of separate
databases in insurance companies, where the data cannot be accessed for statistical purposes.
This can be interesting for insurance companies as well as for research institutions.
History has shown that it is possible to create a centralized organization that can manage the
system. In Germany the Schufa [Schu09] was founded in order to record data about people’s
debt and to avoid fraud. This made it more secure for stores and banks to give a person a
credit. The back-office of the Electronic Version of the European Accident Report could also
help to protect the insurance companies from insurance fraud. Therefore they might be
willing to pay some money for the service.

Page 16

4.3 Structure of the System

The software-implementation of the back-office of the Electronic Version of the European
Accident Report is built on top of a Microsoft SQL-Server 2008 database instance, in which all
data about accident cases as well as all user data is stored in.

The ADO.NET Entity-Framework layer [LermQ9] is located on top of the database. The Entity-
Framework creates an object model from the data in the database. These objects can be used
to work with all the data used in the system. The Entity-Framework also enables CRUD-
operations (Create, Read, Update and Delete) that make it possible to save, read, update and
delete data to and from the database (for more Information about the Entity-Framework read
section 5.2.3). The entity-framework layer acts as an access layer to the database. It therefore
includes the data-access-layer.

On top of the entity-framework layer is the business layer (see figure 4.3). In this layer all the
logic needed by the system is implemented. It acts as a further abstraction of the object model
found in the entity-framework layer. Additional functionality is added in this layer that ensures
that only users with appropriate privileges can access certain data and that no data can be
directly changed or deleted. Changes to data happen in an indirect way via a functionality that
archives all changes and therefore ensures that all changes can be reviewed in the future.

The entity-framework layer and the business layer form the core of the system. This core is a
platform that provides all functionality for working with the data in the system. All other parts
of the system are on top of this platform and use the functionality provided by the core. The
core provides a user management system as well as functionality for data access.
Encapsulating all functionality needed to work with the data in the system eases enhancing
the system in the future. Those enhancements can be made via modules. A module is a certain
set of functionality that is targeted toward a certain group of users, e.g. car owners. Each
module is independent of all other modules in the system. This improves maintainability of
the system, because the developers who make changes to a module only need to know how
the module they want to change works and how to use the core. They do not need to know
how all the other modules are implemented. Using the core is easy, because it can be used via
APIs and therefore it is not necessary that the developer knows how the core is implemented.
Changing a module cannot break other modules, because a module is only dependent on the
core and not on other modules. Data can be shared between modules via Containers and
Entities.

Page 17

Mobile
Client

Webservice
Mobile Client

Advanced Mobile Client

for Police

Webservice
Police

Webservice
Insurance

Webservice
Car Owner

Car-Repair
Car-Expert

Web-Interface
for Insurance

Web-Interface for
Car Owner

Web-Interface for
Car-Repair / Car-
E)g{ert

L

Logic for Webservice
Mobile Client

Logic for Webservice
Police

Logic for Webservice
Insurance

Administration

JC

JC

JC

T S,

Business Layer

a0

Entity-Framework

Data-Access-Layer

Database

Figure 4.3: Structure of the system

4.4 Structure of the Database

The database of the back-office of the Electronic Version of the European Accident Report
consists of three tables. An Entity stores a simple atomic value. It has a name (EntityName)
and an ID, through which it can be accessed. An Entity is of a certain type (e.g. Integer). This
type is represented by the DataType table, which saves the type’s name (TypeName) and its
value. The value represents a .NET-Framework type. A module can use this value in order to
convert the data saved in the Value property of the Entity into a .NET-Framework type (e.g.
System.Int32). The data is saved as a varbinary in the database and can therefore save all
kinds of data. The module accessing this data is responsible for converting the data into an
appropriate data type so that it can use the data. The Parent property is used for versioning
an Entity. If an Entity is changed it is not deleted in the database, but it is set to inactive (via
the Active property) and the Parent property saves a link to this old Entity. Therefore it is
always possible to access older versions of an Entity. If an Entity is deleted its Active property
is set to false. No data is completely removed from the database.

The Container stores several Entities and therefore is similar to a table in a database. The
Entities are like the columns of that table. The tables are only accessed via the core system. All
modules use the core system to access the data in the database. No module directly uses
these tables.

Page 18

Container

Column Name Data Type Allow Nulls
g ID int =
ContainerName varchar(50)
CreateDate datetime
CreateUser varchar(50)
Active bit
Entity
Column Name Data Type Allow Nulls
% ID int
EntityName varchar(50)
Type int
Value varbinary(MAX)]
Parent int
CreateDate datetime
CreateUser varchar(50) [
Active bit =
Container int

Figure 4.4: Database Schema

Page 19

DataType
Column Name Data Type
¢ ID int
TypeName varchar(50)
Value varchar(50)

Allow Nulls

G0 00

5. Technology
The server infrastructure for the back-office of the Electronic Version of the European
Accident Report is using Microsoft technologies. All services run on the Internet Information

Services (IIS) on a Windows XP computer. The system can easily be transferred to a Windows
2003 or Windows 2008 Server if needed.

5.1 Microsoft SQL Server 2008

All data associated with the European Accident Report is saved in Microsoft SQL Server 2008.
This is a relational database management system. It consists of the Database Engine Services
which are responsible for saving the data and retrieving it. It is possible to query data by using
Structured Query Language (SQL) or by using Common Language Runtime (CLR) Languages, for
example C#. SQL Server 2008 also includes services for creating reports (Reporting Services,
Analysis Services, Data Mining), data transformation (Integration Services), synchronization
(Sync Framework) and Messaging (Service Broker). In this bachelor thesis Visual Studio 2008
Team Suite and Microsoft SQL 2008 Server Management Studio were used to create the tables
for the system.?

5.2 Microsoft .NET-Framework 3.5 SP1

The .NET-Framework is a programming environment developed by Microsoft. It consists of the
CLR (Common Language Runtime) which is responsible for the execution and compilation of
the source code. Similar to Java the CLR provides an intermediate language (IL) which is
executed at runtime. A lot of different languages exist which can be used in the .NET-
Framework, for example C#, Visual Basic.NET, C++. All of those languages are compiled into
the intermediate language and executed at runtime. The .NET-Framework also provides a rich
library consisting of thousands of classes and methods that help the programmer achieving his
goals.?

The following diagram gives an overview of the .NET Framework:

1%
£
a
=]

z
m
-

Common Language Runtime

COM Services Windows

Figure 5.1: .NET-Framework [Trai09]

® To learn more about Microsoft SQL Server 2008 read: [BKSKO6], [BSWK06], [DoKo03], [DrRa06],
[BenG09], [Micr09a], [Stan09]
®To learn more about the .NET Framework read: [LoSt02], [Nort09], [Plat04], [Rich06], [Schw05]

Page 20

The .NET-Framework 3.0 and 3.5 are enhancements of the 2" Version of the Framework. The
subsequent graphic displays the different parts of the .NET-Framework Version 3.5:

' NET Framework 3.5 \\

.NET Framework 3.0 + SP1

Windows Windows Windows
Presentation’ Communication Workflow:
Foundation Foundation Foundation

\/J!J.JJ JJJ

.NET Framework 2.0 + SP1

Figure 5.2: Overview of the .NET-Framework 3.5 [CONRO7]

5.2.1 ASP.NET 3.5

ASP.NET is the successor of ASP (Active Server Pages). ASP.NET is a server side programming
environment for creating interactive internet applications. It is part of the .NET-Framework
and leverages its capabilities. Programming is possible with languages that run on the CLR
(Common Language Runtime). In this bachelor-thesis C# is used for programming all ASP.NET
pages.

ASP.NET uses xml-markup, which will be parsed at runtime and converted into HTML
(Hypertext Markup Language) to create a user interface. Though it is possible to combine
markup and code in one file, it is recommended to use code behind files for storing all code.
Therefore code will be saved in separate files. This makes it possible to separate functionality
from representation, which makes it easier to maintain the application later, because it is
possible to change the design of the application, e.g. by a designer, without touching the
functionality.

The functionality from the code behind files is saved into dlls (dynamic link libraries) at
runtime out of performance reasons. ASP.NET also provides rich functionality concerning user
and membership management and security. The membership-services are used by all server
side applications in the electronic version of the European Accident Report to authenticate
and authorize users. Access permissions to pages and directories can be configured in the
web.config of the application. This configuration can be made per user or it can be role-based.
The membership-services, too, handle state and session management. ASP.NET also includes
functionality for creating a navigation system for the website. The hierarchy of the website is
saved in an xml-file. It is possible to automatically create menus, a bread-crump navigation
element and a sitemap from this file. When adding or deleting pages, only the xml file needs
to be changed, all other pages do not need to be touched. This makes it easy to add, change or
delete pages.*

*To learn more about ASP.NET read: [SSVGO5], [Espo08], [LoMii03], [Prei05], [ASPNO9],

Page 21

5.2.3 ADO.NET Entity-Framework

The Entity Framework is a data access and modeling technology. It is built on top of ADO.NET
and uses LINQ (Language Integrated Query) to access data from a data source. Enterprise
applications are often implemented as a three-tier architecture. The lowest of those tiers is
usually a data access layer that is responsible for accessing data from a certain data source
and providing functionality for accessing this information through methods. The middle tier is
the business logic layer that contains objects representing the data from the data source and
methods that implement the functionality of the system. The third tier is the presentation
layer that is responsible for displaying the data via a user interface. The ADO.NET Entity
Framework makes it easier to create the business logic layer and access the data from the
data source, which can for example be a database. In our case this is a Microsoft SQL 2008
Server. It is possible to create a data model for the business logic layer and a mapping via an
xml file that maps the fields from the database to the fields in the objects. The Entity
Framework than figures out how to access the data from the data source and enables CRUD
(Create, Read, Update, Delete) operations. Therefore a developer does not have to implement
a data access layer and can create his application in an object oriented manner by using the
objects found in the business logic layer. LINQ to Entity is a technology that provides an easy
way to query data. With LINQ to Entity it is possible to use SQL style syntax, like for example
select, from, where statements, inside of a C# program. In contrast to SQL statements, which
in C# are handled as strings, LINQ to Entity commands can be validated by the compiler which
reduces programming errors. It also represents an easy and object oriented way to access and
work with data.’

5.2.4 Windows Communication Foundation (WCF)

The Windows Communication Foundation is a programming framework for creating
distributed systems. It provides a common environment for different kind of communication
technologies like for example xml web services, TCP/IP, Microsoft Message Queuing (MSMQ)
and named pipes. WCF is also extensible, that means it is possible to add new messaging
technologies to the framework. The three main components of a WCF application are an
address, a binding and a contract. The address represents the location where the service is
saved. The binding defines how an application processes, sends, and receives messages. This
could for example be through xml web services. The contract defines the endpoints in a
receiving application. This means it determines which parts in the message will be saved in
which fields in the respective .NET CLR type. WCF with xml web services has been used in the
back-office of the electronic version of the European Accident Report for all messaging
between different parts of the application.

> To learn more about ADO.NET Entity-Framework read: [MSDNOQ9], [Lerm(Q9]
® To learn more about the Windows Communication Foundation read: [Gail04], [Plat04], [Smit07]

Page 22

5.3 Tools
Several tools have been used to create the back office and the front ends of the electronic
version of the European Accident Report. The following section gives an overview of those
applications:

5.3.1 Microsoft Visual Studio 2008

Visual Studio is an integrated development environment from Microsoft.
It is available in several Versions: Visual Studio 2008 Express, a free light weight version for
beginners and hobbyists; Visual Studio 2008 Standard; Visual Studio 2008 Professional, which
also contains some advanced features as well as some more wizards as well as a tool for
creating and using unit tests; Visual Studio 2008 Team Developer, an edition that includes
team work features; Visual Studio 2008 Team Test, a version for testing engineers; Visual
Studio 2008 Database, a version for database experts; Visual Studio 2008 Architect, a version
for Software Architects and Visual Studio 2008 Team Suite, a comprehensive version
containing all the features of all the other versions. Visual Studio can be used to program
.NET-applications in C#, Visual Basic and C++. It is also possible to create native C++
applications with Visual Studio. Through the use of plug-ins other programming languages like
the functional programming language F# can also be used. Visual Studio can be used to
develop for different target platforms through various project types like for example dynamic
websites (ASP.NET, Silverlight), windows desktop applications (Windows Forms, WPF),
internet communication (asmx-web services, WCF, .NET-Remoting), Windows services, plug-
ins, Microsoft Office applications, database applications.’

All functionality of the electronic version of the European Accident Report has been created
with Visual Studio 2008 Team Suite.

5.3.2 Microsoft Expression Web 2

Expression Web is a WYSIWYG (What You See Is What You Get) tool for creating websites.
It contains graphical tools for creating web pages as well as text editors with intelli sense for
HTML, CSS, PHP, JavaScript as well as ASP.NET. It also provides functions which help to publish
a website on a server. Expression Web was used for designing the markup ASP.NET pages. The
functionality in the code behind files where created with Visual Studio 2008 Team Suite.?

’ To learn more about Microsoft Visual Studio read: [Hund06], [Micr09b]
& To learn more about Microsoft Expression Web read: [Micr09c]

Page 23

6. Prototype Implementation

This chapter describes the prototype implementation of the back-office of the electronic
version of the European Accident Report. It starts by describing the core system, which can be
used by all modules of the system. It is also shown how a developer can program new
modules by using the container-entity-model provided by the core system. The chapter then
describes how the administration interface, the module for the insurance company, the car-
owner and the car-repair company has been created. It also gives an overview of the web
service for the mobile client and the police.

6.1 The Core System

The core system is the basement for all the modules used in the system. It was created in a
way that makes it easy to enhance the system by adding new modules or changing exiting
modules that sit on top of the core system. All modules use the core system to read, write and
update data from the database. No module accesses the database in a direct way. They all use
the API of the core system to work with data in the database. Therefore the core system is in
full control over all data that is being used by the system.

The following diagram shows the structure of the Core System:

Business Layer

aC

Entity-Framework

Data-Access-Layer

Database

Figure 6.1: Overview of the core system

As can be seen in Figure 6.1 the core system consists of the database, the entity-framework
layer and the business layer. The database stores all data used by the system. It consists of
three tables in which all data is being saved (for more about the database see chapter 4.4
Structure of the Database).

6.1.1 The Entity-Framework Layer

The entity-framework layer is responsible for accessing the data from the database. It includes
the data-access-layer that is being implemented by using the Microsoft Entity-Framework.
The entity-framework layer consists of three parts: the Conceptual Model, the Mapping and
the Storage/Logical Model. The Conceptual Model is defined in the Conceptual Schema
Definition Language (CSDL) which is an XML-language that can be used to create a data model.

Page 24

It is represented by the Entity-Framework as objects that can be used by the developer to
work with the model. That means the developer does not directly access the database but
uses the objects defined by the CSDL definition and created by the Entity-Framework. He can
use them like normal .NET objects. Each object has methods for saving, updating and deleting
objects in the database. The Entity-Framework loads the data from the database and
transforms it into objects that can be used by the developer. A graphical representation of
the Entity-Framework object model can be seen in figure 6.2. The object model consists of
three classes: the DataType, representing a data type, the Entity, which saves atomic data and
the Container which contains Entities. The model also represents the relationships between
the different classes. It is possible to move from one object to another via navigation
properties, e.g. from an object of type Entity to its Container object via the container
navigation property. The Entity-Framework model mirrors the database model described in
chapter 4.4. It is an object oriented representation of this database model.

Q2 Entity %)
G2 DataType ® = _Scalar Properties
¥ 1D
=l Scalar Properties ?]: \E‘nlmtyName
2 T Value
31D
R s || o ¥ Parent
34 ;I'/y;l)eName 1 * “F CreateDate
- 5T Value ¢ CreateUser
= Navigation Properties o Active
%, Entity = Navigation Properties
=l Container
&%, DataType
@< Container #)
= Scalar Properties
¥
% ContainerName
¥ CreateDate 1
% CreateUser
= Active

= Navigation Properties

2 Entity

Figure 6.2: The Entity-Framework Model

Page 25

The Storage/Logical Model is defined in the Store Schema Definition Language (SSDL) which is,
as the CSDL, an XML-language. It creates a model that represents the database model. Every
time the database changes, this model will be changed as well. The Entity-Framework uses
this model so that it knows what the database model looks like. It uses this model to access
the tables and fields from the database.

Since the Conceptual Model is an object oriented model that should make it easier for the
developer to work with the database, this model can differ from the relational Storage/Logical
Model that represents the database schema. In order for the Entity-Framework to connect
classes and fields of the Conceptual Model with the tables and fields of the Storage/Logical
Model a mapping must be defined. This mapping is being defined in the Mapping in the
Mapping Specification Language (MSL) which is also an XML-Language. The Mapping tells the
Entity-Framework which fields of the database map to which fields in the classes defined in
the Conceptual Model.

Figures 6.3 — 6.5 show the mapping of the Entity, Container and DataType classes:

Mapping Details - Entity @
Column Oper... Value / Property
& | ={Tables |
=[] Mapsto Entity
% <Add a Condition>
24 Column Mappings
-4 1D :int “ ¥ 1D : Int32
--[Z] EntityName : varchar 57 EntityName : String
2] Type :int “ iy
--[Z] Value : vabinary(max) +» 4 Value : Binary
[Z] Parent :int oy ¢ Parent : Int32
[Z] CreateDate : datetime > ' CreateDate : DateTime
--Z] CreateUser:varchar 4 5 CreateUser : String
2] Active : bit “ 5 Active : Boolean
--[Z] Container : int “ =
[<Add a Table or View>
\?Em!@Mapping Details l& Pending Changes 1"{1 Find Symbol Results

Figure 6.3: Mapping Details of Entity

Mapping Details - Container
Column Opera... Value / Property
3 |={Tables e |
B3] Maps to Container
...E8 <Add a Condition>
-3 Column Mappings

¥ D : Int32

¢ ContainerName : String
% CreateDate : DateTime
¢ CreateUser : Sting
5 Active : Boolean

ID :int

ContainerName : varchar
CreateDate : datetime
CreateUser : varchar
Active : bit

-3 <Add a Table or View>

1138t

{ﬂm&]@ Mapping Details l:ﬁﬁai@fhanges [;‘J—,I:’i;d"gymbol Resultsj

Figure 6.4: Mapping Details of Container

Page 26

Mapping Details - DataType |8

Column Ope... Value / Property

&} |E- Tables

=1+ Mapsto DataType

. B <Add a Condtion>

=3 Column Mappings
2] 1D sint « ¥ D:Int32
-'Z] TypeName : varct+> “# TypeName : String
‘-] Value :varchar 4 5 Value : String

Figure 6.5: Mapping Details of DataType

As can be seen, the mapping contains information about which fields of the Conceptual Model
(right side) are to be connected with which fields of the Storage/Logical Model (left side),
which represents the database schema. The various data types shown in Figures 6.3 — 6.5 are
saved in the Conceptual Model and in the Storage/Logical Model.’

Figure 6.6 shows how those three definitions (Conceptual Model, Storage/Logical Model and
Mapping) work together to make it possible to use the object oriented model to work with the

database:

Entity Framework Metadata

Conceptual Model Map Storage/Logical Model

Database
Objects
Schema

Entity Data
Model
Schema

Presentation
(Forms/Reports)

Relational
Database

A
00
(lasses

Figure 6.6: Entity Framework Metadata [Lerm09]

° To learn more about the inner workings of the Microsoft Entity-Framework read: [Lerm09], [MSDNO09]

Page 27

6.1.2 The Business Layer

The entity-framework layer makes it is possible to access data in the database. It is also
possible to store new data into the database and update existing data. The entity-framework
layer does not version data, therefore it is not recommended to directly use this layer. If
modules used this layer to load, store, save and change data, each module would have to
make sure that data is versioned. Therefore it would be possible to create modules that
change data and do not save the old version. It would also be possible to completely delete
data from the database. This should not be possible. If changes occur, a new version of the
entity should be created that contains a link to the old version. If data needs to be deleted, it
should be set to inactive. It should not be possible to completely remove data from the
database. This way it is possible to track all changes and to look up older versions of data.

Because of these requirements another layer is needed. This functionality is implemented in
the business layer. This layer provides an API that can be used by module developers to work
with data in the database. The business layer ensures that all data is being versioned and that
no data can be entirely removed from the database. Therefore all modules use the business
layer’s APIs to work with data in the system. The business layer is an enhancement of the
entity-framework layer. Figure 6.7 illustrates this:

Business Layer

Entity-Framework
Layer

Database

Figure 6.7: Structure of the core system

The database stores all data needed by the system and all its modules.
The entity-framework layer creates, updates and deletes data. It is also possible to access data
from the database via the entity-framework layer. It provides an object model that can be
used to work with data from the database. The business layer uses the object model from the
entity-framework layer to work with data. It provides additional functionality that ensures
that all changes are versioned and that no data can be entirely removed from the system.
Module developers use the APl provided by the business layer to work with the data used in
the system. They must not use the entity-framework layer or connect directly to the database

Page 28

to access the database or write data to the database, because this would break the versioning
functionality.

Figure 6.8 shows the classes of the object model:

Container

+ID :int
+CreateDate: DateTime -Entities
+ContainerName : string
+CreateUser : string
+Active : bool 1
-Entities: List<Entity>

-Container()

+Container(containerName: string, createUser: string)()
+Delete()

+AddEntity(in entity: Entity) : bool Entities
+GetContainerByID(id: int): Container()

+GetContainersByName(name: name): List<Container>()
+GetContainersByDateTime(DateTime date): List<Container>()
+GetContainersByEntityValue(name: string, value: object): List<Container>()
-ConvertObjectToByteArray(obj: object): byte[]()

-CompareByteArrays(arral: byte[], array2: byte[])() : bool

Entity

+ID : int
+EntityName : string -Parent
+Type : string

+Value : object
+Parent: Entity
+CreateDate: DateTime
+CreateUser : string Parent
+Active : bool

-Entity()

+Entitiy(entityName: string, type: string, value: object, createUser: string, container: Container)()

+Entitiy(entityName: string, type: string, value: object, parent: Entity, createUser: string, container: Container)() 0.1
+Delete()
+Update(updatedValue: object, user: string)() D

-ConvertObjectToByteArray(obj: object): byte[]()
-ConvertByteArrayToObject(byteArray: byte[])() : object
+GetEntitiyBylD(id: int): Entity()

Figure 6.8: UML-Diagram of the object model of the core system

Only two classes exist: the Container class and the Entity class. The Entity class stores the data
in the Value field. The Value field is of type object and can therefore save any type of data.
Every Entity has an ID and an EntityName via which it is possible to access the Entities.
The Active field signals whether the Entity is deleted (false) or not (true). If an Entity is
updated the Active field is set to false and a new Entity is created. The new Entity contains a
link to the old entity in its Parent field. Via this field it is possible to navigate to all previous
versions of the Entity. The Entity also saves the DateTime of the creation of the Entity and the
username of the user who created the Entity. This creates a full protocol of all changes to an
Entity.

The Container class is a bucket that can hold several Entities. The Entities of a Container can
be accessed via the Entities field. A Container has a name and saves the DateTime and the

username as do the Entities.

The following part describes the methods of the Entity and Container classes and how

Containers and Entities can be used to store, update, delete and retrieve data:

Page 29

Container Data Diagrams
Figure 6.9 shows how the data stored in a Container and its Entities can be visualized.

Container

Entity
Entity

Entity

Entity

Figure 6.9: Container and Entities
The Entities can be accessed via their Containers.

Because all data needs to be versioned, it is not possible to completely remove or change an
Entity. If an Entity is changed, a new Entity is created that contains a link to its old version.
Figure 6.10 illustrates this. The green Entity is the old version of the Entity. A new Entity (the
yellow one) has been created that contains a link to the green Entity.

Container

Entity
Entity

Entity

Entity

Entity

o

Figure 6.10: A newer version of an Entity

It is therefore always possible to access the older versions of an Entity. If the Entity is changed
another time, once again a new Entity is created. Figure 6.11 shows the new Container after
the Entity has been changed. The yellow Entity is the new Entity. It has a link to the green
Entity which in itself has a link to the red Entity.

In code the green Entity can be accessed via the yellow Entity’s Parent field.

If a user wants to see the red Entity he needs to use the green Entity’s Parent field.

Page 30

Container

Entity
Entity

Entity

Entity

o

Entity

Figure 6.11: Versioning Entities

Figure 6.12 shows an example of a Container that is used in the system (see chapter 6.2.1 for

more information about this Container). All of the following examples will use this Container.

YearOfManufacture

Year

Front

Rear
LeftSide

RightSide

CarTypelD

Figure 6.12: Container: YearOfManufacture

Creating Containers and Entities

A new Container can be created by using the constructor of the Container class. The
constructor has two parameters: The name of the new Container (“YearOfManufacture”) and
the username of the user who created the Container. Listing 6.1 shows how a new Container
can be created.

BackOffice.BusinessLayer.Container container = new
BackOffice.BusinesslLayer.Container ("YearOfManufacture",
User.Identity.Name) ;

Listing 6.1: Creating a new Container

Creating a new Entity is possible in the same way: The constructor of the Entity class is used.
It has four parameters: The name of the Entity (“Year”), the data type (“String”), the value of
the Entity (retrieved via a text box) and the container that the Entity will belong too (The
YearOfManufacture Container). The Entity will automatically be added to the Container.

Later it is possible to retrieve this Entity via this Container.

Page 31

A second constructor exists that has another parameter: It is used when changing an Entity.
The additional Entity is the parent Entity. This constructor is not to be used directly by the
developer.

BackOffice.BusinessLayer.Entity entityl = new
BackOffice.BusinesslLayer.Entity("Year", "String", TextBox Year.Text,
User.Identity.Name, container);

Lisitng 6.2: Adding an Entity to a Container

The value of an Entity is of type object. Therefore it is possible to store any .NET-type in an
Entity. Listing 6.3 shows how the YearOfManufacture Container is created in C# and how the
Entities belonging to this Container are created and added to the Container.

Bitmap imageFront =
(Bitmap)Bitmap.FromStream (FileUpload Front.PostedFile.InputStream);

Bitmap imageRear =
(Bitmap)Bitmap.FromStream(FileUpload Rear.PostedFile.InputStream) ;

Bitmap imagelLeftSide =
(Bitmap)Bitmap.FromStream(FileUpload LeftSide.PostedFile.InputStream);

Bitmap imageRightSide =
(Bitmap)Bitmap.FromStream(FileUpload RightSide.PostedFile.InputStream)

’

BackOffice.BusinessLayer.Container container = new
BackOffice.BusinessLayer.Container ("YearOfManufacture",
User.Identity.Name) ;

BackOffice.BusinessLayer.Entity entityl new
BackOffice.BusinessLayer.Entity ("Year", "String", TextBox Year.Text,
User.Identity.Name, container);

BackOffice.BusinessLayer.Entity entity2 new
BackOffice.BusinessLayer.Entity ("Front", "Bitmap", imageFront,
User.Identity.Name, container);

BackOffice.BusinessLayer.Entity entity3 = new
BackOffice.BusinessLayer.Entity ("Rear", "Bitmap", imageRear,
User.Identity.Name, container);

BackOffice.BusinessLayer.Entity entity4 = new
BackOffice.BusinesslLayer.Entity ("LeftSide", "Bitmap", imageleftSide,
User.Identity.Name, container);

BackOffice.BusinessLayer.Entity entity5 = new
BackOffice.BusinessLayer.Entity ("RightSide", "Bitmap", imageRightSide,
User.Identity.Name, container);

BackOffice.BusinessLayer.Entity entity6 = new
BackOffice.BusinesslLayer.Entity ("CarTypeID", "Integer", CarTypelD,
User.Identity.Name, container);

Listing 6.3: Code for creating the YearOfManufacture Container and its Entities

Page 32

As can be seen, the four Entities (Front, Rear, LeftSide and RightSide) store values of type
System.Drawing.Bitmap. After this code has been executed the Container, with all its Entities,
has been saved into the database.

Retrieving Containers and Entities
Several different methods exist that can be used to retrieve a Container from the database:

e Container GetContainerByID (int id)

e Tist<Container> GetContainersByName (string name)

e IList<Container> GetContainersByUserName (string username)

e TList<Container> GetContainersByDateTime (DateTime date)

e TList<Container> GetContainersByEntityValue (string name, object
value)

GetContainerByID returns a Container via its ID. All other methods return a generic List of
Containers. This is needed because it is possible to retrieve more than one Container by using
those parameters. The GetContainersByName method returns all Containers that have a
certain name. The GetContainersByUserName method returns all Containers that have been
created by a certain user. GetContainersByDateTime retrieves Containers by their date and
time. GetContainersByEntityValue can be used to retrieve Containers by the value of one of
its Entities.

Listing 6.4 shows how a Container can be retrieved using its id.

BackOffice.BusinessLayer.Container container =
BackOffice.BusinessLayer.Container.GetContainerByID (
Convert.ToInt32 (ListBox YearOfManufacture.SelectedvValue)) ;

Listing 6.4: Retrieving a Container via its id

Listing 6.5 shows how Containers can be retrieved via a value of one of their Entities.
It has two parameters: The name of the Entity and the value of the Entity. This method
searches through all the Entities of a Container and checks if there is an Entity with this name
and if this Entity has got the value that the users is searching for. If this is true, the Container
will be returned. This is equivalent to retrieving the data of tables in a database by searching
by the values of its columns. In the following example all Containers are retrieved that contain
an Entity with the name CarType which has the value selected in a list box.

List<BackOffice.BusinessLayer.Container> containers =
BackOffice.BusinesslLayer.Container.GetContainersByEntityValue ("CarType
ID", Convert.ToInt32(ListBox CarTypes.SelectedItem.Value));

Listing 6.5: Retrieving Containers via an Entity’s value

Page 33

Entities can be retrieved in three ways:

e Entity 2 Entity GetEntityByID(int id)
e Container 2 List<Entity> Entities
e Container 2 Entity getEntityByName (string name)

The Entity class contains a static method (GetEntitiesByID) that returns an Entity by its id.
This method is used internally to retrieve Entities. The Container class contains a property
(Entities) via which it is possible to access all the Entities of a Container. This is a generic List
of type Entity. It is read only. The third way is to use the Container’s getEntityByName
method. Via this method a certain Entity of a Container can be retrieved by the name of the

Entity. E.g. it is possible to retrieve the Entity with the name “Year” (see listing 6.6).

BackOffice.BusinessLayer.Entity entity =
container.getEntityByName ("Year") ;

Listing 6.6: Retrieving the Entity with the name “Year”

Deleting Containers and Entities
The Container class and the Entity class contain a Delete method:

® (Container = void Delete ()

® Entity Dvoid Delete ()

If those methods are called, the Container or the Entity is set to inactive. Therefore the data is
not entirely deleted and versioning is ensured. If a Container is deleted, the Delete method of
all its Entities is called. Listing 6.7 shows how a Container can be deleted.

container.Delete () ;
Listing 6.7: Deleting a Container

The developer should always use these methods to delete Containers and Entities. They
should never delete them via the entity-framework layer or directly, by deleting the data in
the database, because this would break versioning.

Page 34

Updating Entities
It is possible to change the value of an Entity. This is done by using the Update method:

e [Entity Update (object updatedvValue, string user)

This method has two parameters: updatedValue which contains the new value that is to be

stored in the Entity and user which saves the username of the user who made the change.

The method deletes the old Entity (sets it to inactive) and creates a new Entity. It also creates
a link to the old Entity. It returns the new Entity. This ensures versioning. All changes can be
monitored.

Listing 6.8 shows how the value of an Entity can be changed.

entityl.Update (TextBox ChangeYearOfManufactureYear.Text,
User.Identity.Name) ;

Listing 6.8: Updating an Entity

If the new entity is used later in the program, a new variable should be created. It gets its
value via the return value of the Update method. The new Entity can then be used in the

program. See listing 6.9 for an example of how to use the new Entity variable.

BackOffice.BusinessLayer.Entity newEntity =
entityl.Update (TextBox ChangeYearOfManufactureYear.Text,
User.Identity.Name) ;

TextBox Value.Text = newEntity.Value.ToString();

Listing 6.9: Using a new Entity variable

Page 35

6.2 Administration
The administration module is used by administrators of the central organization to manage car
models, users, insurance companies and car repair companies.

ced Mobile Client

for Police

Web-Interface for

Web-Interface

%]
@ or Insurance Car-Repair / Car-Expert
ICE
rance
Lo)service Logic for Webservice Logic for Webservice Logic for Webservice
Insurance Car-Owner Car-Repair / Car-Expert
Administration El,—:' Business Layer
Entity-Framework
Data-Access-Layer

Database

Figure 6.12: The Administration Module

This module can only be accessed by administrators of the central organization that maintain
the system. Insurance company employees do not have access to this module.

6.2.1 Managing Car Brands, Car Types and Years of Manufacture
The system provides car modules that can be used by the mobile client to display a model of a
car. Those models are saved as four pre-rendered images of the car.

——————— CarType fr——————— YearOfManufacture
BrandName: String

Year: String

Front: Bitmap
Rear: Bitmap
LeftSide: Bitmap

RightSide: Bitmap

CarTypelD: Integer

Figure 6.13: Container Data Diagram of the car models

Page 36

Each car brand will be stored in the database in a CarBrand Container. This Container has one
Entity that saves its name. Car brands often manufacture more than one car type (e.g. VW
Golf I, VW Golf Il, VW Golf Ill, VW Lupo, VW Fox ...). Those car types are saved in the CarType
Container. The CarType Container has two Entities: the name of the car type (e.g. VW Fox)
and the brand id. The brand id saves the id of the CarBrand Container of the company which
created the car type. This id functions as a foreign key, though, the core system does not
ensure referential integrity. Since changes can be made to car types, modules are saved as
year of manufacture. That means there is a module for each year that the car has been
manufactured. This is saved in the YearOfManufacture Container which has six Entities. The
Year Entity saves the year of manufacture. The CarTypelD saves the id of the CarType
Container of the car type of the model. This functions as a link to the car type. The four
remaining Entities save the pre-rendered images of the car module. Figure 6.13 shows the
container data diagram of the car models.

Car Brands:
Add new Car Brand
cnange Car Brand
Delete Car Brand
Car Types:
Golf1 ‘ Add new Car Type
|Golf Il
Change Car Type
Delete Car Type
Year of Manufacure:
[Add Year of Manufacture |
Change Year of Manufactur
Delete Year of Manufacture
Year of Manufacture
Year: 1997

Figure 6.14: Screenshot of managing car models

Page 37

Figure 6.14 shows the user interface of the car models management module. Car brands, car
types and years of manufacture can be added, changed and deleted via this user interface. It
consists of three list boxes. If a user clicks on one of them the certain details are displayed, e.g.
if a user clicks on a car brand the car types are displayed. If a user clicks on a car type the years
of manufacture are displayed. If a user clicks on a year of manufacture the year and the
images of the model for this year of manufacture are displayed.

Figure 6.15 shows the user interface that can be used to add a new year of manufacture.
The user can upload the images from his computer. The models are then saved to the
database.

Add new Year of Mamuifacture
Y ear : 1998

Prerendered Images of Model :

Front: C:\Windows\Web\Wallpap | Browse...

Rear: Browse...

Left

Side - Browse...
1;3'}; Browse...

Sawve Year of Manufacture]

Figure 6.15: Screenshot of adding a new year of manufacture with the car models

6.2.2 Managing Users

Administrators of the central organization can add, delete and change users and their profile
data. Insurance company employees do not need to manage the user data. They will only
manage insurance specific data, like for example the insurance number of a customer.
The data managed by the administrators of the central organization is basic data needed by
the system. It saves the title, first name and last name of a person, as well as their address
containing the street, ZIP, city, telephone number and mobile phone number. The identity
card number, passport number and driver’s license number are saved as well. If some of this
data changes (e.g. the user moves to another city), he will have to contact the central
organization and ask them to change the data.

Page 38

UserProfile

Title: String

FirstName: String

LastName: String

Street: String

ZIP: String

City: String

NN N N N

TelephoneNumber: String)

MobilePhoneNumber: String)

IdentityCardNumber: String)

Passport: String)

DriversLicenseNumber: String)

Ao bILL L] DL L

Username: String } ________ User

Figure 6.16: Container Data Diagram of User Profile
Manage Users

Include Admimstrators

Bishop (bishop@testtesttest.com) [Add new User]

[Change User]

[Delete User]

Figure 6.17: Screenshot of managing users

Page 39

Figure 6.17 shows the user interface for managing users. New users can be added, existing
users changed or deleted. An option exists that prevents displaying administrators in the list.

Figure 6.18 shows how a new user can be added to the system:

Add new User

Username:
Password :
E-Mail -

Title:

First Name:
Last Name:
Address
Street:

ZIP:

City:
Telephone Number:
Mobile Phone

Number:
Identitv Card
Number:
Passport:

Drivers License

MNumber:

Add User

Figure 6.18: Screenshot: Adding a new user

Page 40

6.2.3 Managing Insurance Companies

The central organization will manage all insurance companies. The administrators of this
organization can add new insurance companies, change the name of existing insurance
companies or delete insurance companies. They can also add and remove users as an
employee to and from an insurance company or add and remove users as a customer to and
from a company.

InsuranceCompany

InsuranceCompanyName: String >

< InsuranceCompanyEmployee >

InsuranceCompanyID:: Integer } 4 InsuranceCompanyID:: Integer } 4

Userame: String >» 1 Userame: String }‘

Figure 6.19: Container Data Diagram of Insurance Companies

Each insurance company will be saved in the database in an InsuranceCompany Container.
This Container has one Entity (InsuranceCompanyName) which saves the name of the
insurance company. There are two more Containers, InsuranceCompanyEmployee, which
saves which users are employees of the insurance company and InsuranceCompanyCustomer,
which saves the users who are customers of the insurance company. Both save a reference to
the InsuranceCompany Container (InsuranceCompanylD) and to the user object (Username).

Figure 6.20 shows how a new customer can be added to an insurance company:

Add new Customer

Customer: Bishop [«]

| Add new Customer |

Figure 6.20: Adding a customer to an insurance company

Page 41

Figure 6.21 shows how an insurance company can be managed:

Insurance Companies

Koblenz Insurance [Add Insurance Company |

[Zhange Insurance Company]

[Delete Insurance Company]

Koblenz Insurance

Emplovees:
Bishop [Add Employee |
[Remove Employee]
Customers:

[Add Customer]

[Remove Customer]

Figure 6.21: Managing insurance companies

Employees of an insurance company can later access the website for insurance companies and
process their customers’ accident cases.

Page 42

6.2.4 Managing Car Repair Companies

The central organization will manage all car repair companies. The administrators of this
organization can add new car repair companies, change the name of existing car repair
companies or delete car repair companies. They can also add or remove users as an employee
to and from a car repair company.

CarRepairCompany

Userame: String)- _______ User

Figure 6.22: Container Data Diagram of Car Repair Companies

The CarRepairCompany Container has one Entity (CarRepairCompanyName) which saves the
name of the car repair company. This Container represents a car repair company. The
CarRepairCompanyEmployee Container saves all employees that work at the car repair
company. It has two Entities: CarRepairCompanyID saves the id of the car repair company’s
Container. This id functions as a link to the CarRepairCompany Container. Username saves
the usersname of the employee.

Figure 6.23 shows how a new employee can be added to a car repair company:

Add new Emplovee

Employee: |Bishop |[«]

| Add new Employee |

Figure 6.23: Adding an employee to a car repair company

Page 43

Figure 6.24 shows how car repair companies can be managed:

Car Repar Companies

Car Repair Koblenz [

Add Car Repair Company

)

[

Change Car Repair Company

)

)

[Delete Car Repair Company
Car Repair Koblenz
Emplovees:
Bishop | AddEmployee |

[

Remove Employee

)

Figure 6.24: Managing car repair companies

Page 44

6.3 Web Service for the Mobile Client

Advanced Mobile Client
for Police Web-Interface Web-Interface for Web-Interface for
for Insurance Car Owner Car-Repair / Car-Expert
é) .\'- \ I/' A "-.‘. \
1 4 2 Y 3)
l«) 5 3 A) 1‘)
Client Webservice Webservice Webservice Webservice Car-Repair
Mobile Client Police SL 2 Car ner Car-Expert
Logic for Webservice | | Logic for Webservice Logic for Webservice Logic for Webservice Logic for Webservice
Mobile Client Police Insurance Car-Owner Car-Repair / Car-Expert
Administration Business Layer

Entity-Framework

Data-Access-Layer

Database

Figure 6.25: The Mobile Client Module

The mobile client module provides a web service which contains three methods that can be
used by the mobile client to retrieve and send data.

Method Name Parameters Return Type
GetPersonalData TelephoneNumber: string PersonalData
password: string
GetModels brand: string Bitmap(]
type: string
yearOfManufacture: string
SendAccidentData accidentData: string bool

Table 6.1: Web Service for the Mobile Client

The first method, GetPersonalData, has two parameters. TelephoneNumber is the car owner’s
telephone number. The second parameter is a password.

The method returns an object of type PersonalData. This object contains the Title, FirstName,
LastName, Street, ZIP, TelephoneNumber and MobilePhoneNumber of the car owner. It also
contains an array of Car objects. These represent the car owner's cars. A car object consists of
the LicensePlateNumber, Brand, Type, YearOfManufacture and Models (pre rendered bitmap
images of the car model). If an error occurs or no car owner can be found, an empty
PersonalData object is returned with the Valid field set to false.

Page 45

The second method, GetModels, can be used in order to retrieve images of pre rendered
models of a certain car. The brand, car type and year of manufacture are required by this
method. It returns an array of type bitmap.

The third method, SendAccidentData, can be used in order to send a report about an accident
case from the mobile client to the central system. It has one parameter that contains a string
representation of the xml-document that contains the accident data. The method returns a
boolean value. This value is set to true if the report has been successfully saved in the central
system. It is set to false if an error occurred.

Proxy Web Service

It was not possible to access the WCF web service via a Windows Mobile client. Therefore a
proxy web service has been created that is located between the web service for the mobile
client and the mobile client itself. Figure 6.26 illustrates this. The proxy web service is a classic
asmx-web service.

Figure 6.26: Proxy Web Service

There were also some problems transmitting the bitmap images via the asmx-web service.
That is why the images are transferred as byte arrays. Listing 6.10 shows a method via which it
is possible to convert a byte array to a bitmap.

private Bitmap ConvertByteArrayToBitmap (byte[] byteArray)
{
System.IO.MemoryStream stream = new
System.IO.MemoryStream(byteArray) ;
System.Drawing.Bitmap bitmap = new Bitmap (stream) ;
return bitmap;

}

Listing 6.10: Converting a byte array to a bitmap

Method Name Parameters Return Type
GetPersonalData TelephoneNumber: string PersonalData
password: string
GetModels brand: string byte[][]
type: string
yearOfManufacture: string
SendAccidentData accidentData: string bool

Table 6.2: Proxy Web Service for the Mobile Client

Page 46

Figure 6.27 shows how the data, that has been submitted by the mobile client, is saved in the
back-office:

|

777777777777777777 | !

T o »
_ |

|

|

ID: String AccidentID: String }

Language: String LicensePlateNumber: String)

|
|
|
|
|
|
|
|
|
|
Language: String LastName: String) :
|
PersonDamage: Boolean FirstName: String) |
|
LoginTelephoneNumber: String Address: String) }
|
LoginPassword: String Miscellaneous: String > |
|
LicensePlateNumber: String }
|
OwnerLastName: String (Model) |
|
OwnerFirstName: String _ : |
AccidentID: String } -
OwnerAddress: String
Image: Bitmap)
OwnerMiscellaneous: String ’
ModelPoints: Points)
OwnerCarBrand: String

LicensePlateNumber: String)

OwnerCarType: String

OwnerCarYearOfManufacture: String

D
D)
D)
D)
D)
D)
D)
D)
D)
D)
D
D
D
D
DriverLastName: String) Damage
D)
D)
D)
D)
D)
D)
D)
D)
D)
D)
D)
>
D

DriverFirstName: String

AccidentID: String

DriverAddressr: String

Description: String

DriverMiscellaneous: String

LicensePlateNumber: String

Time: String

Notes: String

Location: String

Costs: String

Witness: String

UUUUUT

Accepted: Boolean

Description1: String

Description2: String

Photo

Description3: String

AccidentID: String

Description4: String

— LicensePlateNumber: String >
Description5: String

Image: Bitmap >

Username: String

Statuse: String

|

| p .

| —(PhotoPoints: Points)
|

|

AccidentID: String

AccidentReportXML Image: Bitmap)
— MapPoints: Points
ID: String >—‘ B >

XMLDocument: String >

Figure 6.27: Container Data Diagram of Accident

The data is saved in seven containers: Accident, Person, Model, Damage, Photo , Map and
AccidentReportXML, which saves the original xml file that has been submitted by the client.

Page 47

6.4 Web Service for the Police

Advanced Mobile Client
%) for Police Web-Interface Web-Interface for Web-Interface for
[0 for Insurance Car Owner Car-Repair / Car-Expert
(C

VWebservice Webservice Webservice vice Car-Repair
Mobile Client Police Insurance Car Owner Ce er
Log vice | | Logic for Webservice | | Logic for Webservice | | Logic for Webservice Logic for Webservice
Police Insurance Car-Owner Car-Repair / Car-Expert
Administration Business Layer
Entity-Framework

Database

Figure 6.28: The Police Module

The web service for the police consists of only one method via which it is possible to retrieve
data about a person who is registered in the system.

Method Name Parameters Return Type
GetPersonalData number: string PersonalData
type: Type

Table 6.3: Web Service for the Police

The data can be requested in several ways: The identity card number, passport number,
driver's license number or license plate number can be used in order to get a person's data.

The first parameter contains the number. The second parameter is an enumeration of type
Type (which can have the following values: Type.ldentityCardNumber, Type.Passport,
Type.DriversLicense, Type.LicensePlateNumber), which indicates which kind of number is
used. The Method returns an object of type PersonalData. This object contains the Title,
FirstName, LastName, Street, ZIP, TelephoneNumber and MobilePhoneNumber of the car
owner.

If an error occurs or no car owner can be found, an empty PersonalData object is returned
with the Valid field set to false.

The police client uses this service in order to pre fill forms. This makes it easier and faster for
the police to fill out the form.

Page 48

6.5 Insurance Company

Advanced Mobile Client

o for Police Web-Interface Web-Interface for Web-Interface for
] for Insurance Car Owner Car-Repair / Car-Expert
| . N .
@ en \ [\
~ \ (/) \ \
Q- Q2 Qa
3) X
Mobile - ~ .\
Client Webservice Webservice Webservice Webservice Car-Repair
Mobile Client Police Insurance Car Owner Car-Expert
Logic for Webservice | | Logic for Webservice | | Logic for Webservice | | Logic for Webservice Logic for Webservice
Mobile Client Police Insurance Car-Owner Car-Repair / Car-Expert
TN 15 > S
Administration < Business Layer

Entity-Framework

Data-Access-Layer

Database

Figure 6.29: The Insurance Module

The module for the insurance company provides a web service which can be used in order to
integrate the system into the software infrastructure of the insurance company.

6.5.1 Web Service

The web service for the insurance company consists of several methods via which an
insurance company can manage customers and manage accidents. Table 6.4 lists all the
methods of the web service for the insurance company:

Method Name Parameters Return Type

GetCustomers insuranceCompanyID: int Customer(]
employeeUsername: string
password: string
GetCarRepairCompaniesForAUser insuranceCompanylD: int CarRepairCompany(]
employeeUsername: string
password: string
GetCarRepairCompanies CarRepairCompany(]
AddCarRepairCompanyToUser carRepairCompany:
CarRepairCompany
username: string
employeeUsername: string
password: string
RemoveCarRepairCompany carRepairCompany:
FromUser CarRepairCompany
username: string
employeeUsername: string

Page 49

SaveCustomerChanges

GetCarBrands
GetCarTypes
GetYearsOfManufacture
AddCar

GetCarsForUser

GetCarsForUserFor
InsuranceCompany
(GetCarForUser)

DeleteCar
GetCarbyLicensePlateNumber

GetAccidentsForUser

GetAccidentsForUserFor
InsuranceCompany
(GetAccidentsForUser)
GetAccident
GetOtherCar

GetDamage

AddDamage

ChangeDamage

DeleteDamage

password: string
customer: Customer
employeeUsername: string
password: string

carBrand: CarBrand
carType: CarType

car: Car

username: string
employeeUsername: string
insuranceCompanylD: int
password: string
username: string
employeeUsername: string
password: string
username: string
insuranceCompanylD: int
employeeUsername: string
password: string

car: Car
employeeUsername: string
password: string
licensePlateNumber: string
employeeUsername: string
password: string
username: string
employeeUsername: string
password: string
username: string
insuranceCompanylD: int
employeeUsername: string
password: string

id: string
employeeUsername: string
password: string

id: int
employeeUsername: string
password: string

id: int
employeeUsername: string
password: string

damage: Accident.Damage
accident: Accident
employeeUsername: string
password: string

damage: Accident.Damage
accident: Accident
employeeUsername: string
password: string

damage: Accident.Damage
accident: Accident

CarBrand(]
CarTypel]
YearOfManufacture[]

Carl]

Carl]

Car

Accident(]

Accident]]

Accident

Accident.OtherCar

Accident.Damage

Page 50

ChangeOtherCar

ChangeAccident

GetAccidentReportXML

GetModel

GetPhoto

GetMap

employeeUsername:

password: string

otherCar:
Accident.OtherCar

accident: Accident

employeeUsername:

password: string

accident: Accident

employeeUsername:

password: string
accidentlID: string

employeeUsername:

password: string
id: int

employeeUsername:

password: string
id: int

employeeUsername:

password: string
id: int

employeeUsername:

password: string

string

string

string

string

string

string

string

XmIDocument

Accident.Model

Accident.Photo

Accident.Map

Table 6.4: Web Service for the Insurance Company

The web service uses several classes in order to save and transfer data. Those classes are
shown in figure 6.30. The Customer class saves data about a customer of the insurance
company. The Accident class, which contains the OtherCar, Damage, Model, Photo and Map

class, saves all data about an accident case. The Car class represents a car.

Methods in the web service get the username and the password of the insurance company
employee who is calling a method and validates if they are correct. The methods also check

whether a user is allowed to access the data or do the action he is about to do.

The web service methods call methods of the insurance company model which retrieve data,
save data, change data or delete data. This helps to keep the web service methods clean. They
only contain the authentication and authorization code as well as the method calls to the
module methods. The module (InsuranceCompany.cs) contains all the functionality needed.

Table 6.5 lists all the methods of the insurance company module.

Page 51

Customer Car 1 1 CarBrand
+Username : string +LicensePlateNumber : string 1 +BrandName : string
+Title : string +Brand: CarBrand +ID : int
+FirstName : string +Type: CarType
+LastName : string +YearOfManufacture: YearOfManufacture
+Street : string +Models: System.Drawing.Bitmap[] 1
+City : string 1 CarType
+ZIP : string 1 +CarTypeName : string
+TelephoneNumber : string +ID :int
+Mobi‘IePhqneNumber : string CarRepairCompany YearOfManufacture +Brand: CarBrand
+EMail : string - ear : string
+InsuranceNumber : string +Name : string 1D - int

+Miscellaneous : string +ID @ int

-CarType: CarType

Accident.OtherCar
+ID : int
* |+LicensePlateNumber : string
+FirstName : string
+LastName : string
+Address : string
+Miscellaneous : string

Accident

+ID : string

+Language : string
+PersonDamage : bool
+LoginTelephoneNumber : string
+LoginPassword : string
+LicensePlateNumber : string 1
+OwnerLastName : string

+OwnerFirstName : string

+OwnerAddress : string

+OwnerMiscellaneous : string

+OwnerCarBrand: CarBrand

+OwnerCarType: CarType
+OwnerCarYearOfManufacture: YearOfManufacture
+DriverLastName : string 1
+DriverFirstName : string
+DriverAddress : string
+DriverMiscellaneous : string
+Time : string

Accident.Damage
+ID :int
* |+Description : string
+LicensePlateNumber : string
+Notes : string
+Costs : string
+Accepted : bool

+Location : string . Accident.Model
+Witness : string 1 +ID : int
+Descriptionl : string h“mage: Bitmap
+Description2 : string +Points: List<List<string[]>>
+Description3 : string 1
+Description4 : string
+Description5 : string
+OtherCars: OtherCar[] Accident.Photo
+Damages: Damage[] +ID - int
+Mr(])dels: MhOdel[? +Im:;\ge: Bitmap
+Photos: Photo e | ; :
+AccidentMap: Map +Points: List<List<string[]>>
+Status : string
Accident.Map
1 1 +ID :int
+Image: Bitmap
+Points: List<List<string[]>>

Figure 6.30: UML Diagram of Classes used by the Web Service for the Insurance Company

Page 52

Method Name

Parameters

Return Type

FillCustomer

FillCustomers
FillCarRepairCompanies
FillCarRepairCompaniesFor
User
SaveCarRepairCompany

RemoveCarRepairCompany

SaveUserChanges

FillCarBrands
FillCarTypes
FillYearOfManufacture
SaveCar

FillCarsForUser
FillCarsForUser

RemoveCar
FillCarByLicensePlateNumber
FillAccidentsForUser
FillAccidentsForUser
FillAccident

FillOtherCar

FillDamage
SaveDamage

SaveDamageChanges

DeleteDamage

SaveOtherCarChanges

SaveAccidentChanges

FillAccidentReportXML

customerUsername: string
insuranceCompanylD: int

username: string

carRepairCompany:
CarRepairCompany
username: string
employeeUsername: string
carRepairCompany:
CarRepairCompany
username: string
employeeUsername: string
customer: Customer
employeeUsername: string

carBrand: CarBrand
carType: CarType

car: Car

username: string
employeeUsername: string
insuranceCompanylD: int
username: string
username: string
insuranceCompanylD: int
car: Car
licensePlateNumber: string
username: string
username: string
insuranceCompanyID: int
id: int

id: int

id: int

damage: Accident.Damage
accident: Accident
employeeUsername: string
damage: Accident.Damage
accident: Accident
employeeUsername: string
damage: Accident.Damage
employeeUsername: string
otherCar: Accident.OtherCar
accident: Accident
employeeUsername: string
accident: Accident
employeeUsername: string
accidentlD: string

Customer
List<Customer>
List<CarRepairCompany>
List<CarRepairCompany>

List<CarBrand>
List<CarType>
List<YearOfManufacture>

List<Car>
List<Car)

Car
List<Accident>
List<Accident>

Accident

Accident.OtherCar
Accident.Damage

XmIDocument

Page 53

FillModel

FillPhoto

FillMap
CheckIifEmployeeBelongs
TolnsuranceCompany
ChecklflnsuranceCompany
EmployeelsAllowedToSee
DataOfUser
FillUsernameOfCarOwner
FillusernameOfOtherCar
Accident
FillusernameOfDamage
FillAccidentOfAccidentModel
FillAccidentOfAccidentPhoto
FillAccidentOfAccidentMap

id: int

id: int

id: int

username: string
insuranceCompanylD: int
customerUsername: string
employeeUsername: string

car: Car
car: Accident.OtherCar

damage: Accident.Damage
model: Accident.Model
photo: Accident.Photo
map: Accident.Map

Accident.Model
Accident.Photo
Accident.Map
bool

bool

string
string

string

Accident
Accident
Accident

Table 6.5: Insurance Company Module Methods

6.5.2 Web Application

Insurance company employees can use the web application in order to manage their
customers and the accident cases and damages of those customers. Figure 6.31 shows the
starting page of the web application. It contains a list with all customers of the insurance
company to which the insurance company employee belongs.

European Accident Report - Insurance Company .
Logout

Overview
Manage Customers

Customers:

A Rippert (Mr. Alexander Rippert)
Mustermann (Mr. Max Mustermann)
Mayer (Mr. Markus Mayer)
Maraney (Mr. Laurence Moraney)
Santry (Mr. Patrik Santry)

Figure 6.31: Insurance Company Customers

Insurance company specific data about a customer is saved in the

InsuranceCompanyCustomerData Container. This container consists of three entities. The
Username saves the username of the customer. Miscellaneous can contain random data that
does not fit into other fields. InsuranceNumber contains the insurance number of the

customer.

Page 54

(InsuranceCompanyCustomerData)

Userame: String } ———r— User

Miscellaneous:: String)

InsuranceNumber:: String)

Figure 6.32: Container Data Diagram of Insurance Company Customer Data

Clicking on a customer in the above list (shown in figure 6.31) opens a detailed overview about
the customer (see figure 6.34). It contains the name and address of the customer, his
insurance number, which can also be changed via this form, a text field for inserting
miscellaneous data, as well as a list with the customer's cars, another list with the customer's
car repair companies, and finally a list with the accidents.

It is possible to add and delete cars to and from the customer (see figure 6.35). The car brand,
type and year of manufacture as well as the license plate number are saved for each car.
Clicking on a car in the list displays its details including pre-rendered images of the car model
that belongs to the car (see figure 6.33).

Car Details
Car Brand: VW
Car Type: Goff IV

Year of Manufacture: 1997

License Plate Number: KO-DG 45

Figure 6.33: Car Details

Page 55

Customer

Title: Mr.

First Name: Markus

Last Name: Mayer
Address:

Street: GymnasiumstraBe 45
City: Koblenz

ZIP: 56068

Telephone Number: 3453 254566
Mobile Phone Number: 24356 23547

Insurance Number: 2354365432

Miscellaneous:

Save Miscellaneous

Cars:

Save Insurance Number

VW: Golf IV: 1997 (KO-DG 45)

Details]

Add Car]

Delete Car]

Car Repair Companies:

Car Repair Koblenz

Add Car Repair Company]

Remaove Car Repair Company]

Accidents:

KO-DG 45 (Europakreisel Koblenz: 2009-07-13T14:53:21)

Edit Accident

Figure 6.34: Manage Insurance Company Customer

Page 56

Add Car
Car Brand -\ VW [~ |
Car Type: Golf| |E|
Year of Manufacture: | 1981
License Plate Number:
' Add Car |
Figure 6.35: Add Car

An insurance company employee can add a car repair company to a user. After this, the car
repair company can access the user’s data and create a damage evaluation for the user’s cars.
The Container shown in figure 6.36 saves the link between a user and a car repair company.
It consists of two Entities: CarRepairCompanyID saves a link to the company and Username
saves a link to the user.

(CarRepairCompanyCustomer) CarRepairCompany

I
|
|
CarRepairCompanyID:: Integer >— _

Userame: String)— |
|

Figure 6.36: Container Data Diagram of Car Repair Company Customers
Figure 6.37 shows how a car-repair company can be added to a user:
Add Car Repair Company

Car Repair Koblenz | «|

Add Car Repair Company |

Figure 6.37: Adding a car repair company to a user

Selecting an accident in the accidents list (figure 6.34) opens its details (see figure 6.38 and
6.39).

Page 57

Accident
License Plate Number Owner: KO-DG 45

Owner Car:

Car Brand VW

Car Tvpe: Golf IV

Year Of Mamufacture: 1997

Driver:

First Name: Markus

Last Name: Mayer

Address: Gymnasimstralie 45, 56068 Koblenz
Miscellaneouns: Geschiftstelefonmummer: 463563 87545

Other Cars:

License Plate Number: HE-XY 12

First Name: Theodor

Last Name: Richter

Address: Lechinger Stralie 20, 75742 Hendrichshausen
Miscellaneous: Fuhr mit Mietfahrzeng (Audi A 8)

Info:
Date and Time: 2009-07-13T14:53:21
Location: Europakreisel Koblenz

Witness: Maria Jehrings (Tel: 7432 2883)
Description:

+ patkte ich auf der Strale
* keiner der Punlcte trifft zu
+ keiner der Punkdte trifft zu
* keiner der Punkte trifft
* lkeiner der Punlcte trifft zu

Damages:

+ (Glassplitter im Innenraum [-]

+ Schiden am Unterboden [-]

* Rahmen verzogen (Rahmen muss angepasst werden): 100,00 € [+]

* Delle in der Tiir (Kleine Delle an der linken Tiir. Kann ausgebessert werden.): 80,00 € [-]

Figure 6.38: Accident Overview Part 1

Page 58

'. U"'.V“efs’-tétsstﬁ,/é;e /l // / //
. !-,//'/V/:/

Status: In Process

Show all Versions Show Original XML Document

Figure 6.39: Accident Overview Part 2

Page 59

The details about the accident contain the name and address of the car owner, as well as the
car driver. A list exists containing all other cars that had been involved in the accident. Clicking
on a car opens its details that contain the name and address as well as the license plate
number of the car. In order to add random data, there is a miscellaneous field. The next
section states the location and the time of the accident. Next a list of witnesses who saw the
accident, followed by a list of descriptions of the accident is displayed. After this, the damages
are listed. Each damage contains a short description. It can also contain the costs of repairing
the damage and detailed notes about the damage. The minus or plus symbol indicates
whether the insurance company has accepted the damage (plus) or not (minus). If a damage is
accepted the insurance company will pay for it. After this, pre-rendered images of the model
are displayed, including marks of the damages that had been made on the mobile client while
creating the accident report. Below this, a list of photos can be found that can contain marks.
The photos were also made on the mobile client and can help evaluate a damage or help
recreating the accident. Then, a map of the location where the accident happened is
displayed. This map can contain marks and cars that show where the cars involved in the
accident were located. Last, the status of the accident case is displayed. This status can be
changed by the insurance company and indicates if the case is new, in process, on hold or
finished.

After this, two links can be found:

Show all Versions opens a page that lists all data about an accident case, including all versions
of the data (see figure 6.40). That means that it is possible to access old versions of data that
have been changed. Each version contains the value of the element, the creation date and the
user who has created the element or who has changed the data. This way an insurance
company employee can see which data has been changes at which time and who changed the
data.

Show Original XML Document opens the xml document that has been sent by the mobile
client (see figure 6.41). This can be handy if there are legal problems because of changes made
to the report by insurance company employees. In such a case the original xml document can
be used to see what has been send from the mobile client (in addition to the page that shows
all versions of the data of an accident case). This can also be used to validate that no errors
have been made while parsing the xml file and saving the data into the system.

Page 60

Accident All Versions

License Plate Number: KO-DG 45 (Mayer 27.10.2009 22:35:51)
Owner Last Name: Mayer (Mayer 27.10.2009 22:35:51)
Owner First Name: Marlus (Mayer 27.10.2009 22:35:51)
Owner Address: GymnasimmstraBe 45, 56068 Koblenz (Mayer 27.10.2009 22:35:51)
Owner Miscellaneous: Geschiftstelefonmmmmer: 46563 87564 (Mayer 27.10.2009 22:35:51)
Owner Car Brand: VW (Mayer 27.10.2009 22:35:51)
Owner Car Type: Golf IV (Mayer 27.10.2009 22:35:51)
Owner Car Year Of Manufacture: 1997 (Mayer 27.10.2009 22:35:51)
Driver Last Name: Mayer (Mayer 27.10.2009 22:35:51)
Driver First Name: Marlums (Mayer 27.10.2009 22:35:51)
Driver Address: GymnasiumstraBe 45, 56068 Koblenz (Mayer 27.10.2009 22:35:51)
Driver Miscellaneous: Geschiftstelefonmmmmer: 46563 87545 (Bishop 27.10.2009 22:59:58)

= Geschiftstelefonmmmmer: 46563 87564 (Mayer 27.10.2009 22:35:51)
Time: 2009-07-13T14:53:21 (Mayer 27.10.2009 22:35:51)
Location: Europaloreisel Koblenz (Mayer 27.10.2009 22:35:51)
Witness: Maria Jehrings (Tel: 7432 2883) (Bishop 27.10.2009 23:12:51)

o Maria Jehnings (Tel: 7432 2883) (Bishop 27.10.2009 22:59:58)

m Maria Jehnings (Tel: 7432 2983) (Mayer 27.10.2009 22:35:51)

Description: parkte ich auf der Strafe (Mayer 27.10.2009 22:35:51)
Description: keiner der Punkte trifft zu (Mayer 27.10.2009 22:35:51)
Description: keiner der Punkte trifft zu (Mayer 27.10.2009 22:35:51)
Description: keiner der Punkte trifft zu (Mayer 27.10.2009 22:35:51)
Description: keiner der Punkte trifft zu (Mayer 27.10.2009 22:35:51)
Status: In Process (Bishop 27.10.2009 23:12:52

= On Hold (Bishop 27.10.2009 23:11:21)

m In Process (Bishop 27.10.2009 22:59:59)
m New (Mayer 27.10.2009 22:35:51)

Other Cars:

+ Other Car:

= License Plate Number: HE-XY 12 (Mayer 27.10.2009 22:35:51)

= Last Name: Richter (Mayer 27.10.2009 22:35:51)

= First Name: Theodor (Mayer 27.10.2009 22:35:51)

= Address: Lechinger StraBe 20, 75742 Hendrichshansen (Bishop 27.10.2009 23:06:52
m Lechinger StraBe 21, 75742 Hentrichshausen (Mayer 27.10.2009 22:35:51)

= Miscellaneous: Fuhr mit Mietfahrzeng (Audi A 8) (Bishop 27.10.2009 23:06:52
m Fubr mit Mietfahrzeng (Mayer 27.10.2009 22:35:51)

Damages:

+ Damage:
= Description: Glassplitter im Innenranm (Mayer 27.10.2009 22:35
= License Plate Number: KO-DG 45 (Mayer 27.10.2009 22:35:51
= Notes: (Mayer 27.10.2009 22:35:51)
= Costs: (Mayer 27.10.2009 22:35:52)
= Accepted: False (Mayer 27.10.2009 22:35:52)
+ Damage:
= Description: Schiden am Unterboden (Mayer 27.10.2009 22:35:52)
= License Plate Number: KO-DG 45 (Mayer 27.10.2009 22:35:52)
= Notes: (Mayer 27.10.2009 22:35:52
= Costs: (Mayer 27.10.2009 22:35:52)
= Accepted: False (Mayer 27.10.2009 22:35:52)
+ Damage:

519
)

= Description: Rahmen verzogen. (Mayer 27.10.2009 22:35:52)
o License Plate Number: KO-DG 45 (Mayer 27.10.2009 22:35:52)
= Notes: Rahmen muss angepasst werden (Bishop 27.10.2009 23:08:09)

m (Mayer 27.10.2009 22:35:52
= Costs: 100,00 € (Bishop 27.10.2009 23:08:43)

m 100.00 e (Bishop 27.10.2009 23:08:09)

m (Mayer 27.10.2009 22:35:52)

= Accepted: True (Bishop 27.10.2009 23:08:09)

m False (Mayer 27.10.2009 22:35:52)

+ Damage:

= Description: Delle in der Tiir (Zeldman 27.10.2009 23:15:59)
= License Plate Number: KO-DG 45 (Zeldman 27.10.2009 23:16:00)
= Notes: Kleine Delle an der linken Tiir. Kann ausgebessert werden. (Zeldman 27.10.2009 23:16:00)
= Costs: 80,00 € (Zeldman 28.10.2009 18:00:20)

m 40,00 € (Zeldman 27.10.2009 23:16:00)
o Accepted: False (Zeldman 27.10.2009 23:16:00)

Figure 6.40: Overview: Display all Versions of Data

Page 61

Accident All Versions

I (& http://localhost:1849/Madules/Insurance%20Co... Mo~ ~ [mm > Page~ Safety~ Tools~ '@"

<?xml version="1.0" encoding="utf-8" 7=

- <Unfallakte xmins:xsi="http:/ /www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http:/ /www.w3.org/2001/XMLSchema">
<Sprache>de</Sprache>
<Personenschaden=false </Personenschaden=> L4
<Login=true</Login>
<LoginTelefonnummer=3453 254566</LoginTelefonnummer=
<LoginPasswort> Password </LoginPasswort>

m

<KennzeichenHalter >KO-DG 45 </KennzeichenHalter> [
- «<PersonHalters
<MNachname:>=Mayer</Nachname: |

<\Vorname>Markus </Vorname =
<Anschrift>GymnasiumstraBe 45, 56068 Koblenz</Anschrift=

<Sonstiges >Geschaftstelefonnummer: 46563 87564 </Sonstiges> |
</PersonHalter=
- <FahrzeugHalter>
=Marke >WW </Marke > |

=Typ>Golf IV</Typ=>
<Baujahr=1997 </Baujahr=
</FahrzeugHalter=
- <PersonFahrer:
<Nachname:=Mayer</Nachname:>
<Vorname>Markus </Vorname = |
<Anschrift=GymnasiumstraBe 45, 56068 Koblenz</Anschrift=
<Sonstiges >Geschiftstelefonnummer: 46563 87564 </Sonstiges =
</PersonFahrers |
- «<PersonGegnerz
- <Entry>
<Key xsi:type="xsd:string">HE-XY 12</Key=>
- <Value xsi:type="Person":> 1
<MNachname=Richter</Nachnamez=
<Vorname >Theodor</Vorname >
<Anschrift=Lechinger StraBe 21, 75742 Hentrichshausen</Anschrift=
<Sonstiges>Fuhr mit Mietfahrzeug</Sonstiges>
</Value=
</Entry=
</PersonGegner:> I
- <Info>
<Zeitpunkt=2009-07-13T14:53:21 </ Zeitpunkt:> I
<Unfallort=Europakreisel Koblenz </UnfallOrt=>
<Zeugen=Maria Jehnings (Tel: 7432 2983)</Zecugen=
</Info=
<Umstandl=parkte ich auf der StraBe </Umstandl:
<Umstand2=keiner der Punkte trifft zu</Umstand2> 8
4 n_r T : - o T ’ - 2 I

| Done e Internet | Protected Mode: On g v M100% v

Figure 6.41: Show Original XML Document

By clicking the edit button at the right side of the accidents list (see figure 6.34) the insurance
company employee can change the data of an accident case (see figure 6.42). The name and
address of the driver and car owner cannot be changed, because they are managed by the
central organization that is responsible for administrating the back-office of the electronic
version of the European Accident Report.

Damages can be added, deleted and changed. The insurance company employee can write a
short description, a longer note and add the costs of the damage. He can also decide whether
the insurance company will pay for the damage repair by checking the accepted check box

(see figure 6.43).

Page 62

Edit Accident

License Plate Number Owner: | VW Golf [V: 1997 (KD-DG 45)

Driver:

First Name: Markus

Last Name: Maver

Address: Gvmnasiumstrale 45, 56068 Koblenz

Miscellaneous: Geschaftstelefonnummer: 46563 87545

Other Cars:

License Plate Number: HE-XY 12

First Name: Theodor
Last Name: Richter

Address: Lechinger Strafle 20, 75742 Hendrichshausen

Miscellaneous: Fuhr mit Mietfahrzeug (Audi A 8)
Save

Info:
Date and Time: 2009-07-13T14:53:21

Location: Europakreisel Koblenz
Witness: Maria Jehrings (Tel: 7432 2883)
Description:

+ parkte ich auf der Stralte
* keiner der Punkte trifft zu
* keiner der Punkte trifft zu
* keiner der Punkte trifft zu
* keiner der Punkte trifit zu

Damages:

[=]

Glassplitter im Innenraum [-]
Schaden am Unterboden [-]
Rahmen verzogen.: 100,00 € [+]
Delle in der Tir: 80,00 € [-]

Status: |In Process E|

Save Changes

Figure 6.42: Edit Accident

Page 63

[

Add Damage

)

[

Edit

[

Delete

)

Damage
Damage Description: Delle in der Tur

Notes:

Kleine Delle an der linken Tir. EKann
ausgebessert werden.

Costs: 80,00 €

[l Accepted

Save

Figure 6.43: Edit Damage

Page 64

6.6 Car Owner

0
W

for Police Web-Interface Web-Interface for Web-Interface for

for Insurance Car Owner Car-Repair / Car-Expert

3 i i]

Q () l
@ i-é

Mobile
Client

GPs

Advanced Mobile Client ‘

Wepsew?ce Webservice Webservice Webservice Car-Repair
Mobile Client Police Insurance Car Owner Car-Expert
Logic for Webservice

Logic for Webservice | | Logic for Webservice
Mobile Client Police Insurance
j C JC JC
Administration ﬁujnf Business Layer

3

Entity-Framework

‘ Data-Access-Layer

Database

Figure 6.44: The Car Owner Module

The module for the car owner provides a web service which can be used to access data about
accidents by the car owner.

Page 65

6.6.1 Web Service

The web service for the car owner consists of several methods via which a car owner can get
an overview of his accidents and manage his car repair companies. Table 6.6 lists all the
methods of the web service for the car owner:

Method Name Parameters Return Type
GetCarRepairCompaniesFor username: string CarRepairCompany(]
User password: string

GetCarRepairCompanies CarRepairCompany(]

AddCarRepairCompanyToUser carRepairCompany:
CarRepairCompany
username: string
password: string

RemoveCarRepairCompany carRepairCompany:

FromUser CarRepairCompany

GetOwnerData username: string Owner
password: string

GetAccidentsForUser username: string Accident(]
password: string

GetAccident id: int Accident

username: string
password: string

GetOtherCar id: int Accident.OtherCar
username: string
password: string

GetModel id: int Accident.Model
username: string
password: string

GetPhoto id: int Accident.Photo
username: string
password: string

GetMap id: int Accident.Map
username: string
password: string

Table 6.6: Web Service for the Car Owner

Page 66

Owner

+Username : string

+Title : string

+FirstName : string
+LastName : string

+Street : string

+City : string

+ZIP : string
+TelephoneNumber : string
+MobilePhoneNumber : string
+EMail : string
+ldentityCardNumber : string
+Passport : string
+DriversLicenseNumber : string

Car

+LicensePlateNumber : string
+Brand: CarBrand
+Type: CarType

+YearOfManufacture: YearOfManufacture

1 CarBrand

+BrandName : string
+ID :int

+Models: System.Drawing.Bitmap[] 1

11

CarRepairCompany

+Name : string
+ID :int

Accident

+ID : string

+Language : string
+PersonDamage : bool
+LoginTelephoneNumber : string
+LoginPassword : string
+LicensePlateNumber : string
+OwnerLastName : string
+OwnerFirstName : string
+OwnerAddress : string
+OwnerMiscellaneous : string
+OwnerCarBrand: CarBrand
+OwnerCarType: CarType

+DriverLastName : string
+DriverFirstName : string
+DriverAddress : string
+DriverMiscellaneous : string
+Time : string

+Location : string
+Witness : string
+Descriptionl : string
+Description2 : string
+Description3 : string
+Description4 : string
+Description5 : string
+OtherCars: OtherCarf]
+Damages: Damage][]
+Models: Model[]
+Photos: Photo[]
+AccidentMap: Map
+Status : string

+OwnerCarYearOfManufacture: YearOfManufacture

YearOfManufacture

-Year : string
-ID :int
-CarType: CarType

CarType

+CarTypeName : string
+ID : int
+Brand: CarBrand

Accident.OtherCar

+ID : int

+LicensePlateNumber : string

+FirstName : string
+LastName : string
+Address : string

+Miscellaneous : string

Accident.Damage

+ID : int
+Description : string

+LicensePlateNumber : string

+Notes : string
+Costs : string
+Accepted : bool

Accident.Model

+ID : int
+lmage: Bitmap

+Points: List<List<string[]>>

Accident.Photo

+ID : int
+lmage: Bitmap

+Points: List<List<string[]>>

Accident.Map

+ID :int
+lmage: Bitmap

+Points: List<List<string[]>>

Figure 6.45: UML Diagram of Classes used by the Web Service for the Car Owner

The web service uses several classes in order to save and transfer data. Those classes are
shown in figure 6.45. The Owner class saves data about the car owner. The Accident class,
which contains the OtherCar, Damage, Model, Photo and Map class, saves all data about an

accident case. The Car class represents a car.

Methods in the web service get the username and password of the car owner who is calling a

method and validates if they are correct.

The web service methods call methods of the car owner model which retrieve data, save data,
change data or delete data. This helps to keep the web service methods clean. They only
contain the authentication and authorization code as well as the method calls to the module

methods. The module (CarOwner.cs) contains all the functionality needed.

Page 67

Table 6.7 lists all the methods of the car owner module.

Method Name

Parameters

Return Type

FillCarRepairCompanies
FillCarRepairCompanies
ForUser

SaveCarRepairCompany

RemoveCarRepairCompany

FillCarBrands

username: string

carRepairCompany:
CarRepairCompany
username: string
carRepaircompany:
CarRepairCompany
username: string

List<CarRepairCompany>
List<CarRepairCompany>

List<CarBrand>

FillCarTypes carBrand: CarBrand List<CarType>
FillyearsOfManufacture carType: CarType List<YearOfManufacture>
FillOwnerData username: string Owner
FillAccidentsForUser username: string List<Accident>
FillAccident id: string Accident

FillOtherCar id: int Accident.OtherCar
FillModel id: int Accident.Model

FillPhoto id: int Accident.Photo

FillMap id: int Acciden.Map

Table 6.7: Car Owner Module Methods

6.6.2 Web Application
The car owner can see his personal information in the web application. This includes his name,
address, contact informaiton, and identity car number, passport number and driver's license
number (see figure 6.46).

European Accident Report - Car Owner
Logout

Overview
Accidents Welcome Mayer .
%&m Personal Data:
SOMPATES - Ty My
First Name: Markus
Last Name: Mayer

Address:

Street: GymnasiumstralBe 45
City: Koblenz

ZIP: 56068

Telephone Number: 3453 254566
Mobile Phone Number: 24356 23547

Identity Card: 342652546587546

Passport: 234568576257526
Drivers License Number: 25637857565758756

Figure 6.46: Car Owner Overview

Page 68

A car owner can add and remove car repair companies. If a company is added, it can access
the user’s data and can evaluate damage caused by an accident. Both car owners and
insurance companies can choose which car repair companies can access the data. See chapter
6.5.2 for more information about how the link between car repair companies and users is
saved in a Container.

Figure 6.47 shows how car repair companies can be managed. It contains a button for adding
and a button for removing a car repair company. It displays all car repair companies in a list
that are allowed to access the user’s data.

Manage Car Repair Companies

Your Car Repair Companies:

Car Repair Koblenz | Add CarRepair |

[Remove Car Repair]

Figure 6.47: Managing Car Repair Companies

The car owner can also view his accident cases (see figure 6.48 and 6.49/6.50). The same
information is displayed here as in the web application for the insurance company employee
(see chapter 6.5.2 for a description of the different fields of the overview of the accident
case). The car owner can also see the status of the accident case and therefore knows what
his insurance company is doing.

Accidents

KO-DG 45 (Europakreisel Koblenz: 2009-07-13T14:53:21)

Figure 6.48: Overview Accidents

Page 69

Accident
License Plate Number Owner: KO-DG 45

Owmner Car:

Car Brand: VW

Car Type: Golf IV

Year Of Mamifacture: 1997

Driver:

First Name: Markus

Last Name: Mayer

Address: GymnasiumstraBe 45, 56068 Koblenz
Miscellaneous: Geschiftstelefonmummer: 46563 87545

Other Cars:

License Plate Number: HE-XY 12

First Name: Theodor

Last Name: Richter

Address: Lechinger Strafie 20, 75742 Hendrichshausen
Miscellaneous: Fuhr mit Mietfahrzeug (Audi A 8)

Info:
Date and Time: 2009-07-13T14:53:21
Location: Europakreisel Koblenz

Witness: Maria Jehrings (Tel: 7432 2883)

Description:

+ parkte ich auf der StraBe
* keiner der Punkte trifft zu
» lkeiner der Punlkte trifft zu
» keiner der Punkte trifft zu
+ Lkeiner der Punkte trifft zu

Damages:

» (lassplitter im Innenraum [-]

* Schiden am Unterboden [-]

* Rahmen verzogen (Rahmen muss angepasst werden): 100,00 € [+]

* Delle in der Tiir (Kleine Delle an der linken Tiir. Kann ansgebessert werden) 80,00 € [-]

Figure 6.49: Overview of Accident for Car Owner Part 1

Page 70

-U"V@s'larsg,;{ée/I Il /1y
; ,,//'/t/

Status: In Process

Figure 6.50: Overview of Accident for Car Owner Part 2

Page 71

6.7 Car Repair

Advanced Mobile Client

o for Police Web-Interface Web-Interface for Web-Interface for
5] for Insurance Car Owner Car-Repair / Car-Expert
\
w A L b
() A\ /A g\ A
; é &‘ 2‘ \ \)
l\ } 4 B \! 4
Mobile N - \') e
Client Webservice Webservice Webservice Webservice Car-Repair
Mobile Client Police Insurance Car Owner Car-Expert
Logic for Webservice | | Logic for Webservice Logic for Webservice Logic for Webservice
Mobile Client Police Insurance Car-Owner
Administration < Business Layer

Entity-Framework

Data-Access-Layer

Database

Figure 6.51: The Car Repair Module

The module for the car repair company provides a web service which can be used in order to
access and manage damages of customers.

6.7.1 Web Service

The web service for the car repair company consists of several methods via which a car repair
company can manage customers and manage damages. Table 6.8 lists all the methods of the
web service for the car repair company:

Method Name Parameters Return Type
GetCustomers carRepairCompanylID: int Customer(]
GetCarsForUser username: string Car|[]

employeeUsername: string
password: string
GetAccidentsByCar licensePlateNumber: string Accident[]
employeeUsername: string
password: string
GetDamagesByAccident accidentlD: string Damagel]
employeeUsername: string
password: string
GetDamage id: int Damage
employeeUsername: string
password: string
DeleteDamage damage: Damage

Page 72

employeeUsername: string
password: string

AddDamage damage: Damage
employeeUsername: string
password: string

ChangeDamage damage: Damage

employeeUsername: string
password: string

Table 6.8: Web Service for the Car Repair Company

The web service uses several classes in order to save and transfer data. Those classes are
shown in figure 6.52. The Customer class saves data about a customer of the car repair
company. The Damage class, which belongs to the Accident class, saves all data about a
damage.

The Car class represents a car.

Methods in the web service get the username and the password of the car repair company
employee who is calling a method and validates if they are correct. The methods also check
whether a user is allowed to access the data or do the action he is about to do.

The web service methods call methods of the car repair company model which retrieve data,
save data, change data or delete data. This helps to keep the web service methods clean. They
only contain the authentication and authorization code as well as the method calls to the
module methods. The module (CarRepairCompany.cs) contains all the functionality needed.

Table 6.9 lists all the methods of the car repair company module.

Car 1

1 CarBrand

Customer

+Username : string

+Title : string

+FirstName : string
+LastName : string

+Street : string

+City : string

+ZIP : string
+TelephoneNumber : string
+MobilePhoneNumber : string
+EMail : string

+LicensePlateNumber : string
+Brand: CarBrand
+Type: CarType

+BrandName : string
+ID :int

+YearOfManufacture: YearOfManufacture
+Models: System.Drawing.Bitmap[]

CarType

+CarTypeName : string
+ID :int
+Brand: CarBrand

11
CarRepairCompany YearOfManufacture
+Name : string -Year : string

+ID : int

-ID :int

-CarType: CarType

Accident

+ID : string
+LicensePlateNumber : string
+Time : string

+Location : string

Figure 6.52: UML Diagram of Classes used by the Web Service for the Car Repair Company

Accident.Damage

+ID : int

+Description : string
+LicensePlateNumber : string
+Notes : string

+Costs : string

+Accepted : bool

Page 73

Method Name Parameters Return Type
FillCustomer customerUsername Customer
FillCustomers insuranceCompanylD: int List<Customer>
FillCarsForUser username: string List<Car>

FillAccidentsByCar
FillDamagesbyAccident
FillDamage
DeleteDamage

SaveDamage
SaveDamageChanges

CheckIfEmployeeBelongs
ToCarRepairCOmpany
ChecklIfCarRepairCompany
EmployeelsAllowedTo
SeeDataOfUser
FillusernameByLicensePlate
Number
FillusernameOfDamage

licensePlateNumber: string
accidentlD: string

id: int

damage: Damage
employeeUsername: string
damage: Damage
employeeUsername: string
damage: Damage
employeeUsername: string
employeeUsername: string
carRepairCompanylID: int
customerUsername: string
employeeUsername: string

licensePlateNumber: string

damage: Damage

List<Accident>
List<Damage>
Damage

bool

bool

string

string

Table 6.9: Car Repair Company Module Methods

Page 74

6.7.2 Web Application

The web application for the car repair company enables a car repair company employee to
add, remove and edit damages (see figure 6.53). First a list with all customers of the car repair
company is displayed. Selecting one of them shows a list with the customer’s cars.
When a car is selected all accidents that this car has been involved in are displayed.
Selecting an accident shows a list of all damages that occurred in this accident. The car repair
company employee can now add new damages, delete damages or edit damages.

European Accident Report - Car Repair Company

Logout

Overview Customers

Mustermann: Max Mustermann

Mayer: Markus Mayer

Accidents

KO-DG 45 (Europakreisel Koblenz 200

Damages

Glassplitter im Innenraum Add Damage

Schaden am Unterboden
Rahmen verzogen. .
Delle in der Tiir

Figure 6.53: Car Repair Company Overview

When adding or editing a damage, the car repair company employee can add a short
description, a longer note and the costs of repairing the damage (see figure 6.54).

Page 75

Damage
Damage Description: Delle in der Tir

Notes:

Kleine Delle an der linken Tir. EKann
ausgebessert werden.

Costs: 80,00 €

Save

Figure 6.54: Edit Damage

Page 76

7 Conclusion
This chapter provides a summary of this bachelor thesis and describes what functionality can
be added to the system in the future. It also contains improvement ideas.

7.1 Summary and Results

The electronic version of the European Accident Report, which can be used by filling a form on
a mobile phone, makes it easier to document an accident case, because the user is guided
through the form on a step by step basis and can therefore not forget to include data that is
needed by the insurance company to process the accident. The task of this bachelor thesis
was to create a back-office in which all data needed by an insurance company is saved. This
data should be versioned, that means it must be possible to see when changes have been
made and who made those changes.

A generic framework has been created as a result of this bachelor thesis that can be used to
save data related to accident cases, access, update and query this data, as well as manage
users. New functionality can be added to this system by adding modules. Those can save all
data needed by this module in the database, without needing to change the schema
information of the database. This is done by using the container-entity-model of the core
system. This makes it easy to add new modules to the system, because the module developer
does not need to know how the internals of the framework work; developers only need to
learn the API of the framework. The data, which can be saved into the database, can be of any
type, which makes it possible to save various kinds of data, like images, videos or even 3D-
models into the database.

Five modules have been created that can be used to process accident cases. They can also be
seen as examples of how modules can be developed.

The mobile client module provides a web service via which the mobile phone can get data
about a person and his cars and send the accident report to the system.

The police client module offers a web service via which the police client can access the data it
needs.

The insurance company module provides a web service that enables an insurance company to
integrate the system into their software infrastructure. A web application has also been
implemented that offers basic functionality for processing accident cases.

The car repair company module consists of a web service as well as a web application that can
be used by car repair companies to add and evaluate damages.

The car owner module, provides both a web service as well as a web application that can be
used to see the status of an accident case of the car owner. The car owner can also choose car
repair companies via this web application.

Another web application has been created that can be used by administrators of the central
system to manage users, car repair companies, insurance companies and car models.

Page 77

7.2 Outlook

In this bachelor thesis a generic framework has been created that makes it easy to create
modules that use the functionality of this core system in order to save, query and update data
from and to the database via the use of an abstract model (container-entity-model).
This system is fully working, but performance improvements could be made to make the
system faster and more scalable. This could be achieved by implementing lazy loading to the
qguerying mechanism. Today Containers are loaded that contain all the entities including old
versions of entities. This makes it easy to use the Containers, but it creates overhead. By
adding lazy loading to the system, this could be avoided.

An advanced querying mechanism could be added to the system. Today it is possible to query
data by the Container name, Container id, Entity id and by the value of an Entity. It is possible
to load every container needed from the database by using those methods, but this is not
always easy and convenient. A method that could return all Containers with a certain name
that include an Entity with a certain value would be useful (today the developer must
manually check if the Container, which is returned, is of the type he wants). It would also be
useful to be able to query Containers and Entities by using an SQL-like syntax. This way it
would be possible to return Containers that include several Entities that match certain
conditions. This would make it easier to query data.

The modules have been developed as examples of how modules can be developed.
They only have a basic user interface. This could be improved. More functionality could be
added to the system, e.g. it would be helpful for the car owner to be able to interact with the
insurance company. Today the car owner can only see the accident data. If he could edit this
data and add missing data, he would not have to contact the insurance company if he wants
to correct mistakes he made on the mobile client or add additional data.

Today the insurance company, as well as the car owner can only see an image of a map
including two cars and arrows of the accident location. This map and the cars cannot be
changed. It would be useful to have a detailed, editable map that shows how an accident
occurred (see Figure 2.1 for an example of such a map). This would make it easier to detect
insurance frauds, because the insurance company employee can better see how the accident
occurred and which damages have been caused by the accident and which damages cannot be
caused by the accident. This visualization could also be used on the police client to create a
sketch of the accident.

The current system uses pre-rendered images of 3D-models that can be used to mark
damages. Using real 3D-models would make it easier to see exactly where the damages are on
the car. The user could turn the 3D-model into every direction he needs in order to add a
damage mark (e.g. at the bottom of the car).

Another problem is the security of the system. E.g. today the mobile client uses a telephone
number and a password to verify a user. This is problematic because the user might forget his
password. A better solution to this problem should be implemented.

Page 78

Bibliography

[ADACO9]

[Arlt09a]

[Arlt09b]

[ASPNO9]

[BenG09]

[BKSKO6]

[BSWKO6]

[CONRO7]

[Date09]

[DoKo03]

[DrRa06]

[Espo08]

[Gailo4]

[GillO8]

ADAC Statistik. (2009, February 1). Retrieved February 1, 2009, from ADAC
Statistik: http://www.adac.de/images/Wichtige%20EckdatenStatstik_081128
_tcm8-948.pdf

Arlt, S. (2009) EU Accident Report: Police Client (Presentation)
(2009, October 5). Retrieved

October 5, 2009, from http://userpages.uni-koblenz.de/~arlt/
EUAccidentReport.pptx

Arlt, S. (2009) EU Accident Report: Mobile Client(Movie) (2009, October 5).
Retrieved October 5, 2009, from http://userpages.uni-koblenz.de/~arlt/
MobileClient.mov

The Official Microsoft ASP.NET Site. (2009, January 1). Retrieved January 1,
2009, from ASP.NET: http://www.asp.net/

Ben-Gan, I., (2009). Microsoft SQL Server 2008 - T-SQL Fundamentals.
Redmond: Microsoft Press.

Ben-Gan, |., Kollar, L., Sarka, D., Kass, S., & Campbell, D. (2006).
Inside Microsoft SQL Server 2005: T-SQL Querying. Redmond: Microsoft Press.

Ben-Gan, |., Sarka, D., Wolter, R., Kass, S., & Kollar, L. (2006).
Inside Microsoft SQL Server 2005: T-SQL Programming. Redmond:
Microsoft Press.

Conard, James (2007) Lap Around Visual Studio 2008 and the
.NET-Framework 3.5 (Presentation). Redmond: Microsoft

Datenschutz.de. (2009, August 4). Retrieved August 4, 2009, from
Datenschutz.de: http://www.datenschutz.de/

Doberenz, W., & Kowalski, T. (2003). Datenbank-Programmierung mit Visual
Studio C# .NET. Unterschleilheim: Microsoft Press Deutschland.

Droge, R., & Raatz, M. (2006). Microsoft SQL Server 2005 - Konfiguration,
Administration, Programmierung (2. Auflage). UnterschleiBheim:
Microsoft Press Deutschland.

Esposito, D. (2008). Programming Microsoft ASP.NET 3.5. Redmond:
Microsoft Press.

Gailey, J. H. (2004). Understanding Web Services Specifications and the WSE.
Redmond: Microsoft Press.

Gille, N. (2008). Elektronische Form des EU-Unfallberichts fiir Mobiltelefone
(.Net Client) (Diplomarbeit). Koblenz: Universitdt Koblenz Landau.

Page 79

[Hund06]

[KIKnO7]

[LempO08]

[Lerm09]

[LoMii03]

[LoSt02]

[Micr09a]

[Micr09b]

[Micr09c]

[MSDNO9]

[Nort09]

[PlatO4]

[Prei05]

[Richo6]

[Schu09]

[Schw05]

Hundhausen, R. (2006). Working with Microsoft Visual Studio 2005
Team System. Redmond: Microsoft Press.

Klass, J., & Knopp, T. (2007). Der European Accident Report —
Eine automatische Erfassung des europdischen Unfallberichts (Studienarbeit).
Koblenz: Universitat Koblenz Landau.

Lempa, T. (2008). Schadensvisualisierung (Diplomarbeit). Koblenz: Universitat
Koblenz Landau.

Lerman, J. (2009). Programming Entity Framework. Sebastopol:
O'Reilly Media.

Lorenz, P. A., & Miiller, C. A. (2003). Programmieren lernen in ASP.NET mit C#.
Minchen Wien: Carl Hanser Verlag.

Louis, D., & Strasser, S. (2002). C#in 21 Tagen. Minchen:
Markt+Technik Verlag.

SQL Server 2008 Overview, data platform, store data. (2009, January 1).
Retrieved January 1, 2009, from Microsoft.com SQL Server 2008:
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx

Visual Studio Development System. (2008, January 1). Retrieved January 1,
2008, from Microsoft Visual Studio 2008: http://msdn.microsoft.com/en-
us/vstudio/products/default.aspx

Microsoft Expression Web. (2009, June 5). Retrieved June 5, 2009, from
Microsoft Expression Web: http://www.microsoft.com/expression
/products/Web_Overview.aspx

ADO.NET Entity Framework. (2009, January 2). Retrieved January 2, 2009,
from MSDN:
http://msdn.microsoft.com/en-us/data/aa937723.aspx

Northrup, T. (2009). Microsoft .NET Framework - Application Development
Foundation (Second Edition) (MCTS EXAM 70-536). Redmond: Microsoft Press.

Platt, D. S. (2004). The Microsoft Platform AHEAD. Redmond: Microsoft Press.

Preishuber, H. (2005). ASP.NET 2.0 Crashkurs - Schnelleinstieg in neue
Technologien und Tools. UnterschleiRheim: Microsoft Press Deutschland.

Richter, J. (2006). CLR via C# (Second Edition). Redmond: Microsoft Press.

Schufa. (2009, February 1). Retrieved February 1, 2009, from Schufa:
http://www.schufa.de

Schwichtenberg, H. (2005). Microsoft .net 2.0 Crashkurs - Schnelleinstieg in
neue Technologien und Tools. UnterschleiBheim: Microsoft Press Deutschland.

Page 80

[Smit07]

[SSVGO5]

[Stan09]

[Trai0o9]

[Unfa09a]

[Unfa09b]

Smith, J. (2007). Inside Windows Communication Foundation. Redmond:
Microsoft Press.

ASP.MAG - Das Magazin fiir Web Development mit ASP.NET Vol. 1. 2005
(Sonderausgabe des dot.net magazin). Unterhaching: Software & Support
Verlag GmbH.

Stanek, W. R. (2009). Microsoft SQL Server 2008 - Administrator's Pocket
Consultant. Redmond: Microsoft Press.

Framework. (2009, February 2). Retrieved February 2, 2009, from
trainingon.net: http://trainingon.net/Articles/Articlelmages/
136_Framework.png

Unfallskizze. (2009, July 3). Retrieved July 3, 2009, from unfallskizze.de:
http://unfallskizze.de

European Accident Report. (2009, July 2). Retrieved July 2, 2009,
from www.unfallskizze.de: http://www.unfallskizze.de/ressourcen/Europa-
Unfallbericht_EN.php

Page 81

