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1. Introduction
The drawback of using software testing to increase a program’s quality is the additional
need of time which has two causes. Firstly, test cases need to be written and evaluated
and secondly, running a test case costs time, as well. The first problem has been dealt
with by introducing methods to generate test cases automatically. Those methods
generate the oracle that decides whether a test case succeeded or failed out of the
specification’s postcondition [Engel, 2006, Peters and Parnas, 1994, Cheon et al., 2005].
A possible drawback of this approach might follow from the non uniform view

whether specifications have to be executable or not [Hayes and Jones, 1990, Fuchs,
1992a, Gravell and Henderson, 1996], which leads to two problems:

1. A specification can be not executable.

2. A specification can be written in such a way that the performance is slow.

The first case arises from the higher expressiveness of the specification, written as
logical formula, compared to programming languages. For example the datatypes of
a logical specification can be unlimited, but they are limited for the programming
language as there are software, respectively hardware restrictions [Andersen et al.,
1992].
As specifications are normally not written to be executed, but to describe the be-

haviour of a program, the generated program might have a slow runtime [Gravell and
Henderson, 1996] which is the second cause for the high time consumption of testing.
As a high number of evaluated tests is desirable to increase the quality of the software
a short runtime is wanted.
This thesis addresses both of the latter problems. To solve the first problem the given

specification is modified to a new one that can be translated by introducing bounds so
that the values of occurring datatypes are inside the programming language’s limits.
The obtained specification is not semantically equal to the original one, but similar in
such way that it describes an approximation of the original one for a bounded set of
values. The drawback of this method, that is a reduced expressiveness, is accepted as
the possibility of execution is a benefit for this thesis.
The idea, presented in this thesis, for reducing the runtime of testcases is to change

the structure of the postcondition to achieve a more performant oracle.
This thesis presents the theoretical approach and the implementation into the KeY

system (see Section 5), as well as a case study to evaluate the method. Example 1.0.1
illustrates the motivation of this work.

Example 1.0.1 Assume formula F =
∃i.(

i = a ∗ a− 1 ∧ ∀j.(
0 > j ∨ j > 100 ∨ (

(i < j ⇒ p(j)) ∧ (!(i < j)⇒ q(j)) ∧ r(a) ∧ s(b)
)

)
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)
is a postcondition and is translated (see Section 2.5) to the oracle program in Listing

1. As one can see in lines 2 and 7 the ranges for both loops are MIN_INT and MAX_INT
which results in (MAX_INT - MIN_INT )2 iterations in the worst-case for the inner loop.
Lines 16 and 17 show that there are 7 expressions that have to be evaluated in each
iteration in the worst-case.

1 boolean o r a c l e ( int a , int b){
2 return ex i s t s_0 (MIN_INT,MAX_INT, a , b ) ;
3 }
4
5 boolean ex i s t s_0 ( int min , int max , int a , int b){
6 int i = min ;
7 while ( ! ( i==a∗a−1 && f o r a l l _ 1 (MIN_INT,MAX_INT, a , b , i )) &&
8 i <= max){
9 i ++;
10 }
11 return ! i==max ;
12 }
13
14 boolean f o r a l l _ 1 ( int min , int max , int a , int b , int i ){
15 int j = min ;
16 while ( 0 > j | | j > 100 && j <= max && (
17 ( i<j ?p( j ) : q ( j )) && r ( a) && s (b)
18 ) ){
19 j ++;
20 }
21 return j==max ;
22 }

Listing 1: Not optimised generated oracle

By using the techniques explained in Section 4 the result (see Listing 2) is more
efficient due to following points:

• Loop execution is omitted if r(a) or s(b) are false (line 2).

• The nested loop is eliminated.

• Iterations of the loop are reduced (line 2).

• Statements in loop body are reduced (lines 6,12).

2



1 boolean o r a c l e ( int a , int b){
2 return r ( a) && s (b) && f o r a l l _ 0 (0 , a∗a−1) && f o r a l l _ 1 ( a∗a , 1 0 0 ) ; }
3
4 boolean f o r a l l _ 0 ( int min , int max){
5 int j = min ;
6 while ( q ( j ) && j <= max){
7 j ++;
8 } return j==max ; }
9
10 boolean f o r a l l _ 1 ( int min , int max){
11 int j = min ;
12 while (p( j ) && j <= max){
13 j ++;
14 } return j==max ; }
15 }

Listing 2: Optimised generated oracle

2. Preliminaries
2.1. Specifications
Specifications or more particularly formal specifications are used to describe the in-
tended behaviour of a program1 in a precise and definite way by using well defined
keywords of a specification language. One possible way of specifying the behaviour
is the definition of preconditions, respectively postconditions for methods, which is
supported by many specification languages like VDM-SL[John, 1991], Z[Smith, 1999],
OCL[OCL, OMG] or JML[Leavens and Cheon, 2006, JML].
They are logical formulæ with a meaning similar to Hoare formulæ:
If a method is started in a state in which its preconditions hold, and the method

terminates gracefully, then it will terminate in a state in which its postconditions hold.
There are several different specification languages of which some (like OCL and

JML) are widely used and supported by verification and testing tools [Hussmann
et al., 2002, Burdy et al., 2005]. In this thesis JML was chosen to be used for examples
because the programming language used is Java and as Fuchs [1992b] summarises
KowalskiKowalski [1979]:’Kowalski further emphasises that expressing specifications
and programs in the same language eases the task of verification.’. Although Kowalski
and Fuchs talk about verification, this is beneficial for testing as well. Although JML
and Java are not equal, a developer being familiar with Java should be able to read
and understand JML specifications.

JML The Java Modelling Language (JML)[Leavens and Cheon, 2006, JML] was de-
signed as a specification language especially tailored to be used with Java. Therefore

1The terms ’program’ and ’method’ are used synonymously throughout the thesis.
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the syntax is similar to Java and one can use the program’s methods2 and variables
in the specification according to their visibility. The specification can be added as
a so called JML-comment to the method directly inside the Java source file. This
comment is treated like an ordinary Java-comment by Java-compilers and therefore
the compilation of the program is not affected by the specification.
The concept of defining a program’s pre- and postcondition as mentioned in Section

2.1 is realised by using the requires-, respectively ensures-keyword followed by a
boolean expression3 which represents the pre- or postcondition. Such expressions are
allowed to consist of all valid combinations of regular boolean statements in Java and
some additional features. The only extension to Java expressions that is considered in
this thesis is the possibility to introduce quantified variables in the boolean expressions.
This can be achieved by using the \forall or \exists keyword, followed by the type
of the quantified variable, its name, a boolean expression that defines in which ranges
the variable should be quantified and finally the formula, containing the quantified
variable.
In this work only quantification over integers is regarded, but not quantification over

objects. The quantification of objects is harder to handle as it is not uniquely defined
how the quantification of objects is interpreted [Leavens et al., 2008]. It is not clear
if all objects that are present in the JVM are regarded or even all objects that can
possibly be created.
Additionally, it has to be mentioned that the semantics of quantifiers in JML seems

not be clearly defined [Leavens et al., 2008, Engel, 2005].
Listing 3 shows a short example to illustrate the principle of pre-, postcondition and

quantification in JML. The only precondition that has to hold for the input variable
ar is that it is not null. The postcondition contains a quantified formula stating that
all elements of the created array being returned whose indices are between 0 and the
length of the array contain the value 1.

2.2. A Common Testing Technique
As mentioned in Section 1 the growing complexity and size of today’s software makes
it difficult to write software that is error-free and behaves as it is intended in the first
attempt. Therefore a developer has to ensure these properties with additional effort.
One possible method for this purpose is the use of Software Testing.
Software Testing is a collective term for several methods to check for errors by run-

ning the code with different input values and comparing the results with the expected
values. One particular technique of testing is called Unit Testing and is explained
in Engel [2005] A single run is called a test case and consists of three steps that are
illustrated in Figure 1 and explained below:

1. In the Preamble the test case is set up. Used variables are instantiated and ev-
erything needed for the execution of the test is prepared. There are two different

2Only methods that are denoted with the JML modifier pure can be used in specifications. This
modifier states that the method’s execution does not cause any side effects.

3Also called formula
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1 /∗@ pub l i c normal_behaviour
2 @ r e q u i r e s ar != n u l l ;
3 @ ensures \ f o r a l l i n t a ;
4 @ 0 <= a && a < \ r e s u l t . l ength ;
5 @ \ r e s u l t [ a ] == 1;
6 @ ∗/
7 public stat ic int [ ] setToOne ( int [ ] ar ){
8 int [ ] r e s = new int [ ar . l ength ] ;
9 for ( int i ; i<r e s . l ength ; i ++) {
10 r e s [ i ]=1;
11 }
12 return r e s ;
13 }

Listing 3: Code and specification for a method that sets all elements of an array to 1

Preamble IUT Oracle

Figure 1: Main steps in testing

ways to check wether the input satisfies the precondition. One is to check right
after its generation, before the code is executed, and the other is to check after
the execution. In the first case, new values are generated until the input satisfies
the precondition and the code is run afterwards. In the second case the current
test case is not taken into account and a new test case is executed.

2. In the Implementation Under Test (IUT) the code to be tested is executed with
attributes and parameters initialised with the values of the preamble. Normally
the IUT is encapsulated with safety measures, namely a catch block, to prevent
a possibly occurring runtime error in the code from tearing down the whole test
case.

3. The Oracle checks if the test case failed or succeeded. To do this it compares
the results computed by the IUT with the expected results.

The collection of multiple test cases for one program is called test suite. Testing
increases the chance of finding faults in a program. A higher coverage of the test
cases, i.e. more test cases in the test suite, to cover more parts of the code, leads to
a higher chance to find existing errors. In theory one can write as many test cases
as exists permutations of input values4 to achieve the maximal probability for finding
errors.

4This is only possible if the amount of inputs is finite.
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A test suite where no test case fails does not state that the program is error-free or
like Dijkstra [1979] says: ’Program testing can be used to show the presence of bugs,
but never to show their absence!’.

2.3. Logic
This thesis uses first-order logic (FOL) as formalism which allows expressions like ‘For
all natural numbers x holds: if x is even then x + 2 is even as well.’ Its syntax and
semantics are introduced in the following similar to Fitting [1996].

2.3.1. Syntactical Structure

The set of syntactical elements can be divided into two subsets, where one set is static
throughout all the first-order logic formulæ and the elements of the second one vary.
The set of elements that are the same in all the first-order logics are introduced first
and the altering afterwards.

Definition 2.3.1 The following elements are symbols for all FOL languages:

Logic Constants > and ⊥.

Logical Connectives ∧,∨,⇒,⇔.

Quantifiers Q where Q ∈ {∀,∃} and
∀ is the universal quantifier, read as ‘for all’
and
∃ is the existential quantifier, read as ‘there exists’

Punctuation ‘)’,‘(’ and ‘.’

Variables v1, v2, ... for the sake of simplicity written as x, y, z...

After the static elements have been introduced all the elements that can change
from FOL language to FOL language are introduced.

Definition 2.3.2 A first-order language L(P,F,C) is determined by specifying:

1. A finite or countable set P of predicate symbols each of which having a positive
integer associated with it, denoting its arity. This set includes the relational
operators: =, 6=, <,≤, >,≥.

2. A finite or countable set F of function symbols each of which having a positive
integer associated with it, denoting its arity.

3. A finite or countable set C of constant symbols.

Definition 2.3.3 The family of terms of L(P,F,C) is the smallest set meeting the
conditions:

6



• Any variable is a term of L(P,F,C).

• Any x ∈ C is a term of L(P,F,C).

• If f ∈ F and t1, . . . , tn are terms of L(P,F,C), then f(t1, . . . , tn) is a term of
L(P,F,C).

A term that is free of variables is called closed.

Definition 2.3.4 An atomic formula of the language L(P,F,C) is any string of the
form P (t1, . . . , tn) where P ∈ P and t1, . . . , tn are terms of L(P,F,C); also > and ⊥
are taken to be atomic formulæ of L(P,F,C).
The family of formulæ of L(P,F,C) is the smallest set meeting the following con-

ditions:

1. Any atomic formula of L(P,F,C) is a formula of L(P,F,C).

2. If A is a formula of L(P,F,C) so is ¬A.

3. For a binary connective ◦, if A and B are formulæ of L(P,F,C), so is (A ◦B).

4. If A is a formula of L(P,F,C) and x is a variable, then Qx.A is a formula of
L(P,F,C).

Definition 2.3.5 Immediate subformulæ are defined as follows:

1. An atomic formula has no subformulæ.

2. The only immediate subformula of ¬A is A.

3. For a binary symbol ◦, the immediate subformulæ of (A ◦B) are A and B.

4. For Qx.A, the immediate subformula is A. It is called matrix (of the quantifier).

Definition 2.3.6 Let X be a formula. The set of subformulæ SfX of X is the small-
est set S that contains X and contains, for each member, the immediate subformulæ
of that member.

Definition 2.3.7 For every FOL formula F an abstract syntax tree (AST) TF can
be derived by using the syntax of the FOL. The tree’s nodes are logical operators and
their subtrees are the operator’s subformulæ. The only nodes that have no subtree are
the leaves of the tree which are the atomic formulæ of F .

Example 2.3.1 If F = ∀x.(q(x) ∧ (r(x) ∨ s(x))) then TF is
∀x

∧

q(x) ∨

r(x) s(x)
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Definition 2.3.8 IterF is an iterator that traverses TF and returns the current sub-
formula. It is a pointer to the current position in the tree. Therefore changes to the
current subformula lead to a change of the whole formula F .
There are two different kinds of iteration directions UpF and DownF .
DownF starts at the root of the tree and traverses all the nodes in order of a breadth

first search. The traversal is finished when the last leaf was visited.
UpF starts at the deepest leaf of the tree. All the nodes are visited in the reverted

direction of a breadth first search. The last node visited is the root node.

Definition 2.3.9 The free-variable occurrences in a formula are defined as follows:

1. The free-variable occurrences in an atomic formula are all the variable occur-
rences in that formula.

2. The free-variable occurrences in ¬A are the free-variable occurrences in A.

3. The free-variable occurrences in (A ◦ B) are the free-variable occurrences in A
together with the free-variable occurrences in B.

4. The free-variable occurrences in (Qx)A are the free-variable occurrences in A,
except for occurrences of x.

Definition 2.3.10 A variable occurrence is called bound if it is not free.

Definition 2.3.11 A sentence (also called closed formula) of L(P,F,C) is a formula
of L(P,F,C) with no free-variable occurrences.

2.3.2. Types

The logic used in this thesis is typed which restricts the syntax. I.e. the possible values
for constants and variables and the results of functions are restricted to a certain set
of values.
The two types that are used in this thesis are integer (Z) and array of integer.
The array of integer is a logical representation of an array of integer in a program-

ming language.

Definition 2.3.12 An array arr is a list {x0, . . . , xn} where each xi ∈ Z for i ∈
{0, . . . , n}. The set A is the set that contains all elements of type array.

Definition 2.3.13 The function length : A → N0 returns the length of the given
array’s list.
For all arr ∈ A the notations length(arr) and arr.length are equivalent.

Definition 2.3.14 There exists an operator [] : A×N0 → Z that for all arr ∈ A and
for all i ∈ N0 where 0 ≤ i and i < arr.length [](arr, i) returns the i-th element of
arr’s list.
The notations [](arr, i) and arr[i] are equivalent.
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2.3.3. Substitution

A substitution defines how variables can be replaced by terms. In the following, T is
the set of all terms of a given language L(P,F,C) and V is the set of its variables.

Definition 2.3.15 A substitution is a mapping σ : V → T from the set of variables
to the set of terms.

Definition 2.3.16 Let σ be a substitution. Then we set:

1. cσ = c for a constant symbol c

2. [f(t1, . . . , tn)]σ = f(t1σ, . . . , tnσ) for an n-place function symbol f .

Definition 2.3.17 The support of a substitution σ is the set of variables x for which
xσ 6= x. A substitution has finite support if its support set is finite.

Definition 2.3.18 Suppose σ is a substitution having finite support; say {x1, . . . , xn}
is the support, and for each i = 1, . . . , n, xiσ = ti. {x1/t1, . . . , xn/tn} is the notation
for σ, where {} is the identity substitution.

Definition 2.3.19 Let σ be a substitution and σx the substitution that is like σ but
does not change the variable x. That is for any variable y:

yσx =
{
yσ if y 6= x

x if y = x

Definition 2.3.20 A substitution σ is extended to formulæ as follows:

1. For the atomic cases:
• [A(t1, . . . , tn)]σ = A(t1σ, . . . , tnσ)
• >σ = >
• ⊥ σ =⊥.

2. [¬X]σ = ¬[Xσ].

3. (X ◦ Y )σ = (Xσ ◦ Y σ) for a binary symbol ◦.

4. [∀x.X]σ = ∀x.[Xσx].

5. [∃x.X]σ = ∃x.[Xσx].

9



2.3.4. Semantics

Until now only the syntax of the logic is defined, i.e. at this point one can decide
whether or not a given String is a well formed first order logical formula by examining
its structure. At this point terms and formulæ have no meaning yet.
In contrast to other logics like propositional logic, where all formulæ are decidable,

this is not possible for all FOL-formulæ. This fact is no real drawback because the
undecidable formulæ are of such a complex structure that they are normally not of
interest in practical issues.
First of all, a model is needed which determines of which domain constants and

variables are and what the source and target set of functions are. Besides this, the
model defines the interpretation which maps a meaning to the symbols of C, F and
P. A mapping being called an assignment can be defined that associates elements of
the domain to variables.
Therefore the model is introduced first and the assignment afterwards. The last

step in defining the FOL’s semantics are the associations of truth values to which we
will come at the end of this section.

Definition 2.3.21 A model for the first-order language L(P,F,C) is a pair M =
〈D, I〉 where:

1. D is a nonempty set, called the domain of M where D ⊆ Z ∪ A.

2. I is a mapping, called an interpretation that associates:
• to every constant symbol c ∈ C, some member cI ∈ D
• to every n-ary function symbol f ∈ F, some n-ary function f I : Dn → D
• to every n-place predicate symbol p ∈ P, some n-ary predicate pI ⊆ Dn

Definition 2.3.22 An assignment in a model M = 〈D, I〉 is a mapping A from the
set of variables to the set D. The image of the variable v under an assignment A is
denoted by vA.

Definition 2.3.23 Let M = 〈D, I〉 be a model for the language L(P,F,C) and let A
be an assignment in this model. To each term t of L(P,F,C), we associate a value
tI,A in D as follows:

1. For a constant symbol c, cI,A = cI

2. For a variable v,vI,A = vA

3. For a function symbol f ,[f (t1, . . . , tn)]I,A = f I(tI,A
1 , . . . , tI,A

n )

As no statement is made how to decide the truth of a given formula, the methods
are explained now. It is started by defining the set of truth values in the first step and
some operators on it in the second step. Finally it is introduced how the truth value
of a formula can be deduced.
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Definition 2.3.24 The set of truth values is Tv = {true, false}.

Definition 2.3.25

1. Negation

¬(X) : Tv→ Tv :=
{

false for X = true
true for X = false

2. Conjunction

X ∧ Y : Tv,Tv→ Tv :=
{

true for X = true and Y = true
false else

3. Disjunction

X ∨ Y : Tv,Tv→ Tv :=
{

false for X = false and Y = false
true else

Two more binary operators, i.e. ⇒ and⇔, are abbreviations for the combination of
known operators:

Definition 2.3.26

1. X ⇒ Y : Tv,Tv→ Tv := ¬X ∨ Y

2. X ⇔ Y : Tv,Tv→ Tv := (¬X ∧ ¬Y ) ∨ (X ∧ Y )

For later use, the concept of an x-variant has to be introduced.

Definition 2.3.27 Let x be a variable. The assignment B in the model M is an x-
variant of the assignment A provided A and B assign the same values to every variable
except possibly x.

Definition 2.3.28 Let M = 〈D, I〉 be a model for the language L(P,F,C), and let
A be an assignment in this model. To each formula Φ of L(P,F,C), we associate a
truth value ΦI,A (true or false) as follows:

1. For atomic cases,
• [P(t1, . . . , tn)]I,A = true , iff 〈tI,A

1 , . . . , tI,A
n 〉 ∈ PI,A,

• >I,A = true,
• ⊥I,A = false.

2. [¬X]I,A = ¬[XI,A].

3. [X ◦ Y ]I,A = XI,A ◦ Y I,A.
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4. [(∀x)φ]I,A = true ↔ φI,B = true for every assignment B in M that is an x-
variant of A.

5. [(∃x)φ]I,A = true ↔ φI,B = true for some assignment B in M that is an x-
variant of A.

Definition 2.3.29 A formula φ of L(P,F,C) is true in the model M = 〈D, I〉 for
L(P,F,C) provided, φI,A = true for all assignments A. A formula φ is valid iff φ is
true in all models of the language. A set S of formulæ is satisfiable in M = 〈D, I〉
provided there is some assignment A (called a satisfying assignment) such that φI,A =
true to all φ ∈ S. S is satisfiable if it is satisfiable in some model.

2.4. Notations on Quantifiers
There are several notations related to quantifiers that are of importance for this ap-
proach and that are introduced now:

• The range of a quantifier or quantified formula describes over which elements it
is quantified.

• If the range is not infinite the quantifier has bounds, i.e. for all ranges, that are
not infinite it is quantified over the set of elements that are between the lower
and the upper bound.

• A range predicate is a predicate whose operator is ’=’, ’≤’, ’≥’, ’<’ or ’>’ and
one of the operators argument is the current quantified variable. Bounds are a
special kind of range predicates.

• The range predicates argument being not the quantified variable is called range
value.

• A range restriction is a subformula that is part of the quantifiers matrix. It
consits of one bound or a conjunction of two bounds, where one is an upper bound
and the other is a lower bound. For a universal quantifier the range restriction
is connected with an implication to the matrix ( ∀x.((a < x ∧ x < b)⇒F ) ) and
for an existential quantifier it is connected with ∧ ( ∃x.((a < x ∧ x < b)∧F ) ).

Example 2.4.1 shows some examples for those concepts.

Example 2.4.1 Both formulæ ∀x.p(x) and ∃x.p(x) have no range infos and therefore
no bounds, that is their range is infinite. Therefore there is no range restriction.
In contrast the formulæ (1) and (2) have three range predicates, namely 0 < x,

x < 100, and x < 50 where 0 < x and x < 100 are bounds. The range restriction for
both formulæ is (0 < x ∧ x < 100). That is the quantified formulæ have finite range.
Occurring range values in (1) and (2) are 0, 50 and 100

∀x.(0 < x ∧ x < 100)⇒ ((x < 50⇒ p(x)) ∧ q(x)) (1)
∃x.0 < x ∧ x < 100 ∧ ((x < 50⇒ p(x)) ∧ p(x)) (2)
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2.5. Translation
As explained in Section 1 the translation of a specification to a program has to reflect
the structure of the formula to be usable for this approach. An example for such an
translation is the one that is used for the examples in this thesis which is introduced
now. Other translation methods are usable as long as they are similar to the given
one, i.e. they are not changing the structure of the input formula. The Oracle is a
Java method with return type boolean and all the free variables and constants of the
formula as parameter. Its return statement for a given formula F is T (F ) with the
following rules for T (F ) :

T (F ) :=



TA(F ) if F atomic
!T (A) if F = ¬A
T (A)&&T (B) if F = A ∧B
T (A)||T (B) if F = A ∨B
T∀(A, x) if F = ∀x.A
T∃(A, x) if F = ∃x.A

TA(F ) translates atomic formulæ into equivalent expressions in Java, where atomic
formulæ can be classified into the following two types:

• =, <,≤, >,≥

• predicates that represent a Java method of type boolean

In the first case the logical relational operators are replaced be their corresponding
Java operator (==, <, <=, >, >=) and in the second case the method is called with the
appropriate parameters.
T∀(∀x.A, x) and T∃(∃x.A, x) introduce a new boolean method with the signature

forall_ctr(min,max, v) and exists_ctr(min,max, v), where ctr is a consecutively
numbered variable, min is the lower bound of the quantification, max is the upper
bound and v is a set of program variables representing the constants and free variables
of the quantifiers matrix.
Their body is as follows:

1 boolean f o r a l l _ c t r (
2 int min , int max , v ){
3 int x = min ;
4 while ( T (A) && x < max){
5 x++;
6 }
7 return x == max ;
8 }

Listing 4: Forall

1 boolean e x i s t s _ c t r (
2 int min , int max , v ){
3 int x = min ;
4 while ( ! T (A) && x < max){
5 x++;
6 }
7 return ! x == max ;
8 }

Listing 5: Exists
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3. Problem
To improve the quality of a program, as many errors as possible have to be eliminated.
Before this can be achieved the failures in the code have to be revealed first which can
be done using software testing. By extending the amount of code that is covered by
test cases, which can be achieved by raising the number of test cases run, the chance
of finding failures is increased.
The general drawback of testing, i.e. an increased need of time and human interac-

tion, can be reduced by trying to generate test suites or part of them automatically
instead of creating them manually. This can be done by using the specification’s
postcondition as source to derive a part of the test case, namely the oracle, automat-
ically and save manpower. In this work, the oracle is generated out of the program’s
postcondition, which is represented as a FOL formula.
As mentioned in the introduction (see Section 1) specifications are not written to be

executed and therefore the translation might lead to a program with slow execution
time, which reduces the amount of test cases that can be run per hour. The main cause
that leads to a blowup of runtime is the use of quantifiers because they are translated
into loops in the oracle program.
One possible way of handling quantifiers would be to omit the quantification of vari-

ables in the specification and therefore substitute the quantified variable with another
variable that has to be set up in the preamble of the test case. Although this is possible
it wouldn’t be wise as one wants to have a certain confidence in the test case which
would be reduced by this operation. By simplifying the circumstances of a test case
too much one loses this ability and the resulting tests have a lowered probability of
finding errors.
A possible way to increase the confidence is the increase of amount of tests run

which leads to a higher amount of different starting values for the variables.
But as the newly introduced variable might not influence the runtime behaviour of

the IUT this would result in several test cases where the result of the method is exactly
the same but only the value of the variable in the specification differs.
To avoid this overhead of redundant IUT executions and keep a high confidence in

the test case, quantifiers are not omitted but processed in a logical correct way.
The problem is to find a formula with the same or similar5 semantics like a given

one which can be executed in less time. Let

• SeF be the set of all formulæ, that are semantically equivalent to a given formula
F

• O(F ) be the oracle generated out of formula F

• Rt(p) be the time that is needed to execute the program p

The problem is to find a formula F ′ ∈ SeF where Rt(O(F ′)) < Rt(O(F )) if such a
formula F ′ exists.
For example, For F = true there exists no F ′ with the given properties.

5describing an approximation of the original formula for certain values (see Section 1).
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4. Approach
The idea, presented in this thesis, to reduce the runtime of testcases is to change the
structure of the postcondition to achieve a more performant oracle. This approach is
only applicable if the program that generates the oracle is using the given postcon-
dition’s structure without changes, i.e. the translation is done according to Section
2.5.
The starting point of this approach is a formula representing a program’s postcon-

dition where the only datatypes that are permitted in it are boolean and integer types
and arrays of type integer. Instead of processing this formula by one huge mechanism
the work is split into different independent modules where each is responsible for a
single technique.
Before the different parts are explained, Algorithm 1 gives an overview of the whole

procedure and the interaction of the singel modules. The algorithm is processed as
long as at least one part is applicable to the given formula (lines 1,3). In the case that
a preceding module can be applied on the result of a module this is possible as the
main modules are executed in a loop.

Algorithm 1 Main Algorithm for Optimising Runtime
1: Fold := true;
2: while Fold != F do
3: Fold := F .clone();
4: F := simplify(F );
5: F := negationNormalForm(F );
6: F := removeAbbreviation(F );
7: F := reducingRanges(F );
8: F := reducingScopes(F );
9: end while
10: F := changeEvaluationOrder(F );
11: F := reorderFomulae(F );

4.1. Simplification
The goal of this part is the reduction of the formula’s complexity by using well known
simplification techniques. Not all of them are mentioned here but this mainly covers
the application of boolean axioms like

simplifyFormula(F ) :=



A if F = (A ∨ (A ∧B))
A if F = (A ∧ (A ∨B))
A if F = (A ∨A)
A if F = (A ∧A)
true if F = (A ∨ ¬A)
false if F = (A ∧ ¬A)
. . .
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The Algorithm 2 illustrates the approach, where the method simplifyFormula()
tries to alter the given formula by applying the procedure mentioned above.

Algorithm 2 simplify()
1: while UpF .hasNext() do
2: simplifyFormula(UpF .next());
3: end while
4: return F

4.2. Negation Normal Form
In the first step, the formula is transformed into Negation Normal Form (NNF), i.e.
the negation symbol (¬) can only occur in front of an atomic formula. This normal
form is chosen to simplify the following procedures.
The Example 4.2.1 and the Algorithm 3 illustrate the transformation into NNF. TF

is traversed by DownF (lines 1,2) whereas it is checked if the current node represents
negation and if its subnode is not an atomic formula (line 3). If both conditions are
fulfilled, the method distNeg() alters the formula like defined in Definition 4.2.1.
After termination, F is in NNF and returned.

Algorithm 3 negationNormalForm(F )
1: while DownF .hasNext() do
2: Node tmp = DownF .next();
3: if tmp.op() == ’¬’ && !tmp.sub(0).isAtomic() then
4: distNeg(tmp);
5: end if
6: end while
7: return F

Definition 4.2.1

distNeg(F ) :=



distNeg(¬A) ∧ distNeg(¬B) if F = ¬(A ∨B)
distNeg(¬A) ∨ distNeg(¬B) if F = ¬(A ∧B)
∃x.distNeg(¬A) if F = ¬∀x.A
∀x.distNeg(¬A) if F = ¬∃x.A
F else

Example 4.2.1 Let p(), q(), r() be well defined predicates. The transformation of F
is done with the following steps, where the used rule is shown after the ’‖’:

1. F = ¬∃x.(p(x) ∧ (q(x) ∨ r(x))) ‖¬∀x.A� ∃x.¬A

2. F = ∀x.¬(p(x) ∧ (q(x) ∨ r(x))) ‖¬(A ∧B) � ¬A ∨ ¬B

3. F = ∀x.(¬p(x) ∨ ¬(q(x) ∨ r(x))) ‖¬(A ∨B) � (¬A ∧ ¬B))

4. F = ∀x.(¬p(x) ∨ (¬q(x) ∧ ¬r(x)))
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4.3. Remove Abbreviations
One main reason that leads to an increase in runtime is the occurrence of quantifiers
in the formula which are represented by loops in the oracle.
A special case where it is possible to get rid of the quantifier without changing the

semantics occurs if the quantifier was introduced as an abbreviation for a term, i.e.
the formula has the following structure:

∃x.(· · · ∧ (x = t) ∧ . . . )

This use of the existential quantifier as an abbreviation of an complex term simplifies
the understanding of the specification as in all places where the complex term t has
been before there’s only the symbol x now.
After removing this abbreviations, there is one loop less that must be executed which

results in a reduced runtime.
The Algorithm 4 illustrates the main steps how abbreviations are detected and

removed where Algorithm 5 shows how the abbreviations are determined in detail.
TF is traversed from the root to the leaves and it is checked if the current node

represents an existential quantification (line 3).
If so, the quantified variable is saved (line 4). Afterwards a equation that contains

this variable is searched in the node’s subtree, i. e. the representation of the quantifiers
matrix (Line 5).. This method (see Algorithm 5) checks if the current node is an

Algorithm 4 removeAbbreviation(F )
1: while DownF .hasNext() do
2: Node tmp = DownF .next();
3: if tmp.op() == ’∃’ then
4: Variable quanVar = tmp.getQuanVar();
5: Equation eq = getEq(tmp.sub(0),quanVar);
6: if eq != NULL then
7: if eq.sub(0)== quanVar then
8: tmp = substitute(eq.sub(0),eq.sub(1),tmp.sub(0));
9: else
10: tmp = substitute(eq.sub(1),eq.sub(0),tmp.sub(0));
11: end if
12: end if
13: end if
14: end while
15: return F

equation (line 1) or the conjunctive operator (line 6). In all other cases the method
returns NULL. If the node is an equation lines 2 and 3 return this equation if it contains
the quantified variable. In the case that the node is an ’∧’ the method is called
recursively on the left subformula (line 7). If this call returns not NULL the result is
returned in line 11. Lines 8,9 execute the recursive call on the right subformula and
return its result.
Back in removeAbbreviation() (see Algorithm 4) line 6 checks if the result of

getEq() is NULL. In this case no abbreviation was found in this quantified formula’s
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matrix and the iteration continues. In the other case line 7 checks if the quantified
variable is on the left or the right side of the equation which results in call of the
method substitute(old,new,formula) with the appropriate parameters in lines 8
or 10, so that all occurrences of the quantified variable are replaced by the term it is
equal to.

substitute(old,new,formula) replaces all occurrences of old in formula with new
and works like the logical substitution (see Section 2.3.3) [formula]{old/new}.

tmp.getQuanVar() returns the variable that is quantified in the node tmp.

Algorithm 5 getEq(node,var)
1: if node.op() == ’=’ then
2: if node.sub(0) == var || node.sub(1) == var then
3: return node;
4: end if
5: else
6: if node.op() == ’∧’ then
7: result = getEq(node.sub(0),var);
8: if result == NULL then
9: return getEq(node.sub(1),var);
10: else
11: return result;
12: end if
13: end if
14: end if
15: return NULL;

Example 4.3.1 shows the benefit of this procedure.

Example 4.3.1 In the following example the formula

∃i.(i = a ∗ a ∧ (a < 0⇒ result = −i) ∧ (a ≥ 0⇒ result = i))

is given, which defines the postcondition of a method that calculates the square for
a given positive number a and the negative square if a is negative. The quantified
variable i is introduced to prevent writing a ∗ a multiple times. The oracle resulting
from this formula is shown below (see Listing 6) and contains a loop which increases
the runtime.
The application of Algorithm 4 leads to an elimination of the existential quantifier

and the resulting formula is:

a < 0⇒ result = −(a ∗ a) ∧ a ≥ 0⇒ result = a ∗ a

The translation of this formula into an oracle contains only a case distinction and one
equality check which results in a shorter runtime (see Listing 7).

4.4. Reduce Range
As quantified formulæ are the main problem in achieving a short execution time and
it is not possible to get rid of them with the method in Section 4.3 in all cases,
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1 boolean o r a c l e ( int a ){
2 return ex i s t s_0 (MIN_INT,MAX_INT, a ) ; }
3
4 boolean ex i s t s_0 ( int min , int max , int a )
5 int x = min ;
6 while ( ! ( x == a∗a &&
7 ( ! a < 0 | | r e s u l t == −x) &&
8 ( a < 0 | | r e s u l t == x )
9 ) && x < max) { x++; }
10 return ! x == max ; }

Listing 6: Not optimised oracle for a2 ∗ a/|a|

1 boolean o r a c l e ( int a ){
2 return ( ( ! a < 0 | | r e s u l t == −a∗a) && ( a < 0 | | r e s u l t == a∗a ) ;
3 }

Listing 7: Optimised oracle for a2 ∗ a/|a|

another optimisation method is introduced now. It aims at reducing the range of the
quantification and thus the number of loop iterations by trying to find range predicates
in the given quantifier’s matrix and use them to create new ranges. A side effect is the
shortening of the quantifier’s matrix which results in less statements to be executed
per loop iteration. Therefore it looks for range predicates in the given matrix and
tries to divide the range into disjunctive sections. This approach assumes that if a
quantified formula contains at least 2 range predicates, they are bounds and therefore
the quantifier has a finite range. If there are less then 2 range predicates, MIN_INT and
MAX_INT are introduced as bounds. Algorithm 6 shows a way to cut down the range
which is illustrated in Example 4.4.1.

Algorithm 6 reducingRanges(F)
1: while DownF .hasNext() do
2: Node tmp = DownF .next();
3: if tmp.op() == ’∃’ || tmp.op() == ’∀’ then
4: Variable quanVar = tmp.getQuanVar();
5: List preds = findRangePreds(tmp.sub(0),quanVar);
6: if preds.length() < 2 then
7: preds.add(MIN_INT);
8: preds.add(MAX_INT);
9: end if
10: tmp = rewrite(tmp.sub(0),preds,var,tmp.op());
11: end if
12: end while
13: return (F )
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The tree is iterated from the root to the leaves (lines 1,2). If a node is a quantifier
(line 3), all range predicates in its subtree are collected by findRangePreds() (see
Algorithm 7).

Algorithm 7 findRangePreds(node,var)
1: List ranges;
2: if node.op() ∈ {’=’,’≤’,’≥’,’<’,’>’} then
3: if node.sub(0) == var || node.sub(1) == var then
4: ranges.add(node);
5: end if
6: else if node.op() ∈ {’∧’,’∨’} then
7: ranges.add(findRangePreds(node.sub(0),var))
8: ranges.add(findRangePreds(node.sub(1),var))
9: end if
10: return ranges

This methods stores the current node in the list ranges if it is a range predicate
(lines 2-5) or adds the results of calling itself on both subformulæ (lines 6-9) to ranges
if the node is a junctor.
ranges is then returned to the method rewrite() (see Algorithm 8) that creates a

new formula .

Algorithm 8 rewrite(matrix,bounds,var,quan)
1: List comps = new List();
2: for i = 0 to bounds.length()-1 do
3: for j = i to bounds.length() do
4: comps.add(newFormula(’<’, bounds.get(i), bounds.get(j));
5: end for
6: end for
7: Formula pos, neg, not, curr = true;
8: for i = comps.length()-1 to 0 do
9: pos = newFormula(’⇒’, comps.get(i), curr);
10: not = newFormula(’¬’, comps.get(i));
11: neg = newFormula(’⇒’, not, curr);
12: curr = newFormula(’∧’, pos, neg);
13: end for
14: Map occ = new Map(bounds.length());
15: for i = 0 to bounds.length() do
16: occ.put(bounds.get(i),0);
17: end for
18: return createConclusion(curr,matrix,occ,var,quan);

To create new disjoint ranges the range values need to be sorted. As they can be
program variables that are not instantiated while the formula is created, it is not
possible to create the right order directly. Therefore a set of case distinctions has to
be established in the formula to introduce a generic way of sorting the range values.
The first step of this approach is to create predicates to compare the range values

with each other and store those predicates in a list (lines 1 to 6). This list is iterated
from the last to the first element in lines 8 to 13 to create one formula that describes
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all the possible relations between the bounds by using conjunctions of implications
(lines 9 to 12).
In the tree representation of the formula each path through the tree that doesn’t

contain the left hand side of an implication defines another ordering of the range values.
This procedure introduces some combinations as well that are not possible but they

don’t harm this approach as they are going to disappear by simplification later.
In the next step the map occ is introduced which maps each range value to an integer

(line 14). This is needed for the sorting process later on which is based on counting
occurrences of range values. The value is then set to zero for each entity of occ (lines
15 to 17). The formula being returned to reducingRanges() is then generated by the
method prepareConclusion() (see Algorithm 9).

Algorithm 9 prepareConclusion(newForm,oldMatr,occ,var)
1: if newForm == ’∧’ then
2: Formula left = prepareConclusion(newForm.sub(0),oldMatr,occ);
3: Formula right = prepareConclusion(newForm.sub(1),oldMatr,occ);
4: return left ∧ right;
5: else if newForm == ’⇒’ then
6: Bound b1 = newForm.sub(0).sub(0);
7: Bound b2 = newForm.sub(0).sub(1);
8: if sub == ’¬’ then
9: occ.put(b1, occ.get(b1) - 1);
10: occ.put(b2, occ.get(b2) + 1);
11: else
12: occ.put(b1,occ.get(b1) + 1);
13: occ.put(b2,occ.get(b2) - 1);
14: end if
15: return prepareConclusion(newForm.sub(1),oldMatr,occ);
16: else if newForm == ’true’ then
17: return createConclusion(oldMatr,occ,var,quan);
18: end if

The main task of prepareConclusion() is to determine the ordering of the range
values for a certain path through the tree where only paths including right subtrees
of an implication are of interest. This methods main idea is to store the occurrences
of the different range values in the map occ and establish an ordering on those values.
The occurrences are counted in the following way:

• If a range value occurs on the left hand side of < its corresponding value in occ
is increased (line 12).

• If it occurs on the right hand side it is decreased (line 13).

• If the range predicate is negated, both operations are swapped (lines 9,10).

Lines 1 to 4 call the method recursively on both subformulæ of a conjunction, where
the current values of occ are used as a parameter.
If the formula true is reached, which has been introduced in the beginning by

rewrite(), the iteration through the tree is finished and a newly created formula
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is returned. This formula is created by the method createConclusion() (see Algo-
rithm 10) which uses the information on the range values for the current path through
the tree which are stored in the parameter occ

Algorithm 10 createConclusion(oldMatr,occ,var,quan)
1: List sortedB = sortBounds(occ);
2: if quan == ’∀’ then
3: Operator op == ’⇒’;
4: else
5: Operator op == ’∧’;
6: end if
7: Formula b1 = newFormula(<, sortedB.get(0), var);
8: Formula b2 = newFormula(<, var, sortedB.get(1)-1);
9: Formula bounds = newFormula(’∧’, b1, b2);
10: Formula matr = newFormula(op, bounds, oldMatr);
11: Formula curr = newFormula(quan, var, matr);
12: for i = 1 to occ.length()-1 do
13: b1 = newFormula(<, sortedB.get(i), var);
14: b2 = newFormula(<, var, sortedB.get(i+1)-1);
15: bounds = newFormula(’∧’, b1, b2);
16: matr = newFormula(op, bounds, oldMatr);
17: curr = newFormula(’∧’, curr, newFormula(quan, var, matr));
18: end for
19: return curr;

The method createConclusion() uses the ordering of the range values stored in
occ to create quantified formulæ with disjunctive ranges. Their matrix consists of
the matrix of the original quantified formula. In the first step (line 1) the method
sortBounds() creates a list of the range values that is ordered descending by the
integer that is stored in occ for each range value. In lines 2 to 6 the operator that
connects the range restriction to the remaining matrix is selected which is ⇒ if the
quantifier is a universal quantifier and ∧ if it’s a existential quantifier. In the next
step the first two range values are taken out of the list and are used to create the
range predicates for the upper and lower bound (lines 7,8) which are used to create
the range restriction (line 9). The range restriction and the original matrix of the
quantified formula are then conjunctively joined to the new matrix of the quantifier
(line 10). In line 11 the quantified formula with the new matrix is created. At this
point the new formula consists only of one bounded quantified formula. By using a
loop to iterate through all range values and repeat the steps of creating a bounded
quantified formula the result is a conjunction of quantified formulæ with disjoint ranges
(lines 12 to 18). This formula is then returned to createConclusion() which returns
it to rewrite().
After the application of reducingRanges() the formula consists of conjunctions of

implications, where each conjunct describes one ordering of the range values and the
corresponding disjunctive quantified formulæ. This whole procedure can lead to a
blowup of the formula which can be reduced by using simplification (See Section 4.1).
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1
2 boolean o r a c l e ( int a , int b , int c ){
3 return f o r a l l _ 0 (MIN_INT,MAX_INT, a , b , c ) ; }
4
5 boolean f o r a l l _ 0 ( int min , int max , int a , int b , int c )
6 int x = min ;
7 while ( (
8 0 > i | | a+1 > i | | i < c + 1 | | i < b + 1 | |
9 o ld [ i ] = ar [ i ]
10 ) && x < max ) {
11 x++; }
12 return x == max ;
13 }

Listing 8: Not optimised oracle for a method that checks if all elements of an array
stay unchanged

Example 4.4.1 In the formula (3)

∀i.((0 > i) ∨ (a+ 1 > i) ∨ (i < ar.length+ 1) ∨ (i < b+ 1) ∨ (old[i] = ar[i])) (3)

there are the four range predicates (0 > i), (a+ 1 > i), (i < ar.length+ 1), (i < b+ 1)
and the range values (0), (a+ 1), (ar− length), (b+ 1). Without any optimisations the
translated formula looks like Listing 8.
The loop iterates from MIN_INT to MAX_INT which results in a lot of obsolete steps

as only some values, i.e. the values where i is larger than 0 and a but smaller than b
and ar.length, are of real interest here. In the worst-case there are 6 evaluations that
are executed in every step.
To optimise the formula Algorithm 6 is applied and some intermediate steps of the

application are shown to clarify the procedure:
It is started by computing the list comps = [(0 < a), (0 < b), (0 < ar.length), (a <

b), (a < ar.length), (b < ar.length)].
Then the formula that represents an ordering is created. The recursive steps that

build the formula are shown below. To improve the readability of the whole formula the
subformulæ of the previous are replaced by the variable currx where x is the iteration.

curr0 = ((b < ar.length)⇒ true) ∧ (¬(b < ar.length)⇒ true)
curr1 = ((a < ar.length)⇒ curr0) ∧ (¬(a < ar.length)⇒ curr0))
curr2 = ((a < b)⇒ curr1) ∧ (¬(a < b)⇒ curr1))
curr3 = ((0 < ar.length)⇒ curr2) ∧ (¬(0 < ar.length)⇒ curr2))
curr4 = ((0 < b)⇒ curr3) ∧ (¬(0 < b)⇒ curr3))
curr5 = ((0 < a)⇒ curr4) ∧ (¬(0 < a)⇒ curr4))
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After the creation of the formula the map
occ = [

(‘0′ → 0),
(‘a+ 1′ → 0),

(‘ar.length′ → 0),
(‘b+ 1′ → 0)

]
is initialised and then the right values are calculated for the paths trough the formula.
As example for the calculation the steps for the path in Figure 2 are shown in Table 1
where the resulting map is:

occ = [
(‘0′ → 3),

(‘a+ 1′ → 1),
(‘ar.length′ → −1),

(‘b+ 1′ → −3)
]

Step ‘0′ ‘a+ 1′ ‘ar.length′ ‘b+ 1′
0 1 −1 0 0
1 2 −1 0 −1
2 3 −1 −1 −1
3 3 0 −1 −2
4 3 1 −2 −2
5 3 1 −1 −3

Table 1: Single steps for determining the ordering

The list {‘0′, ‘a+1′, ‘ar.length′, ‘b+1′} is returned by the method sortBounds(occ).
This list is then iterated to create the new formula:

(∀i.(0 < i ∧ i < a)⇒
((0 > i)∨(a+ 1 > i) ∨ (i < ar.length+ 1) ∨ (i < b+ 1) ∨ (old[i] = ar[i])))∧

(∀i.(a+ 1 < i ∧ i < ar.length− 1)⇒
((0 > i)∨(a+ 1 > i) ∨ (i < ar.length+ 1) ∨ (i < b+ 1) ∨ (old[i] = ar[i])))∧

(∀i.(ar.length < i ∧ i < b)⇒
((0 > i)∨(a+ 1 > i) ∨ (i < ar.length+ 1) ∨ (i < b+ 1) ∨ (old[i] = ar[i])))
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∧

⇒

0 < a + 1 ∧

⇒

0 < b + 1 ∧

⇒

0 < l ∧

⇒

a + 1 < b + 1 ∧

⇒

a + 1 < l ∧

⇒

l < b + 1 true

. . .

. . .

. . .

. . .

. . .

. . .

Figure 2: One path through the formula (l is used instead of ar.length)
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After simplifying the whole formula, that is the case distinction and the newly created
conclusion

(
(0 < a + 1⇒

(0 < b + 1⇒
(0 < ar.length⇒

(a + 1 < b + 1⇒
(a + 1 < ar.length⇒

(ar.length < b + 1⇒
(
∀i.

(
(0 < i ∧ i < a)⇒
(old[i] = ar[i])

)∧
∀i.

(
(a + 1 < i ∧ i < ar.length− 1)⇒
(old[i] = ar[i])

)∧
∀i.

(
(ar.length < i ∧ i < b)⇒
(old[i] = ar[i])

)
)

) ∧ . . .

) ∧ . . .

) ∧ . . .

) ∧ . . .

) ∧ . . .

)∧
(¬0 < a + 1⇒

. . .

)
)
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As the optimised formula has a larger size than the original one, leading to a larger
translation, and the formula allows to see the effects on the runtime of the generated
program, the latter is not shown.
Although the optimised program contains more lines of code, one can see that the

worst case runtime is shorter than the original one, as there are only 2 expressions to
be checked per loop iteration. This only holds if the range of the quantified formula
contains a large amount of elements.

4.5. Reduce Scope
After trying to get rid of quantified formulæ and reducing the range of the quantified
variable the next step is trying to reduce the size of the matrix and getting rid of
redundant evaluations. Therefore the matrix of the quantified formula is examined for
formulæ that don’t need to be in the scope of the quantifier. If such a formula is found
we try to pull it out of the scope. The procedure to decide if a formula can be pulled
out and how it can be done is described by Algorithm 11 and illustrated in Example
4.5.1.
Like in the two preceding modules, the tree is iterated from the root to the leafs. If

a node is a quantifier its subtree is examined by the method restructure(). If the
subtree consists only of a conjunction of disjunctions (CNF) or disjunctions of conjunc-
tions (DNF) it is checked if one conjunct (disjunctive) contains the bounded variable.
If not, the whole subtree is pulled out and prepended conjunctively (disjunctively)
before the quantified formula. If the formula is neither in CNF nor DNF a decision
can only be made on the top level operator of the matrix. I.e. the tree is descended
until the nodes’ type differ from the first node’s type. At this level all the subtrees are
checked for the bounded variable. If it does not occur the subtree is pulled out like
before.

Algorithm 11 reducingScopes()
1: while DownF .hasNext() do
2: Node tmp = DownF .next();
3: if tmp == ∃ || tmp == ∀ then
4: Variable quanVar = tmp.getQuanVar();
5: restructure(tmp);
6: end if
7: end while
8: return (F )

Example 4.5.1 The following simple formula:

∀i.(p(a) ∨ q(b) ∨ r(i))

is translated into the program (see Listing 9)
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1 int i = MIN_INT;
2 while ( ( p( a ) | | q (b ) | | r ( i )) &&
3 i < MAX_INT){
4 i ++;
5 }

Listing 9: Not optimised oracle for a constructed example

1 return p( a ) | | p (b ) | | evalR ( ) ;
2
3 boolean evalR ( ){
4 int i = MIN_INT;
5 while ( r ( i ) && i < MAX_INT){
6 i ++;
7 }
8 return i = MAX_INT;
9 }

Listing 10: Optimised oracle for a constructed example

The two predicates p(a) and q(b) are in the scope of the quantifier but they need
no quantification. Therefore they can be pulled out what leads to the formula
p(a) ∨ q(b) ∨ ∀i.r(i)
respectively the program (see Listing 10)
In this optimised form it is possible that the loop is not evaluated. Even if it is

executed, there are two evaluations less to be done per loop iteration.

4.6. Change Evaluation Order
After all applications of the above mentioned modules are finished, the algorithm is
neither capable of manipulating the range nor the scope of the quantifiers anymore.
One remaining possibility that might lead to a shorter runtime is the alteration of
the quantifier’s evaluation order. This is achieved by trying to find a significant in-
stance, like boundaries, for the quantified variable in the postcondition and instantiate
the matrix with it. Depending on the type of quantifier, the instantiated formula is
conjunctively (if the quantifier is ∀) respectively disjunctively (if the quantifier is ∃)
added before the original formula. This offers the possibility of a fast success (existen-
tial quantification) or fail (universal quantification) of the test.
Due to the fact that quantified formulæ can be nested, this procedure might lead to

a blowup in space, i.e. more formulæ in the scope of the quantifier, which can have a
negative influence on the runtime of the oracle as well. This fact and the possibility
that some instances might be evaluated twice (explicitly before the loop and again
during loop iteration) are accepted to gain the possibility of skipping a loop execution.
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The Algorithm 12 shows the procedure, which is illustrated in Example 4.6.1. If a
quantifier is found during the top-down iteration, its quantified variable is extracted
and its matrix is examined by findSignificantInstances(). This method searches
for predicates containing the quantified variable and alters the relation with sound
mathematical operations so that the bounded variable is the only element on one of
the operator’s sides.
In the next step createInstantiations() instantiates the matrix with the values

found by findSignificantInstances(). This is achieved by replacing all occurrences
of the quantified variable in the matrix with the collected instances and storing the
resulting formula. If n values have been found, the matrix is instantiated n times and
therefore n new formulæ are added.

createCombinedTree() connects all the created formulæ and the original quantified
formula in such way, that the quantified formula is the most right element, i.e. during
evaluation, this formula is evaluated last. The newly generated subtree is used to
replace the original formula and the algorithm moves on with the iteration.

Algorithm 12 changeEvaluationOrder()
1: while DownF .hasNext() do
2: Node tmp = DownF .next();
3: if tmp == ∃ || tmp == ∀ then
4: Variable quanVar = tmp.getQuanVar();
5: SetOfIntegers inst = findSignificantInstances(tmp,quanVar);
6: SetOfNodes newNodes = createInstantiations(inst,tmp);
7: createCombinedTree(tmp,newNodes);
8: end if
9: end while
10: return (F )

Example 4.6.1 The Java program shown in Listing 11 is specified by the formula

∀ int i.((0 ≤ i ∧ i < ar.length)⇒ ar[x] == 1)

1 publ ic int [ ] setToOne ( int [ ] ar ){
2 for ( int i = 0 ; i < ar . l e n g t h −1; i ++){
3 ar [ i ]=1;
4 }
5 }

Listing 11: An incorrect implementation of a method that sets all elements of an array
to 1

This formula offers 2 significant instantiations

• 0

• ar.length− 1
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1 int i = 0 ;
2 while ( ar [ i ] == 1 && i < ar . l ength ) {
3 i ++;
4 }

Listing 12: Not optimised oracle for the example

The translation of this formula is shown in Listing 12. This oracle has to execute
the loop ar.length-1 times to get the chance of finding the error in the implementation.
If the found significant instantiations are use the following formula can be created.

ar[0] == 1 ∧ ar[ar.length− 1] == 1 ∧ ∀ int i.((0 ≤ i ∧ i < ar.length)⇒ ar[x] == 1)

If this formula is translated into an oracle and executed, the possibility of finding the
error occurs while executing the second expression. Therefore the execution of the loop
can be skipped.

4.7. Reordering of Subformulæ
The last step in the optimisation procedure deals with the order of the formula’s
subformulæ. By using a given heuristic, costs can be attached to the subformulæ.
Those costs are then used the reorder the subformulæ, so that the cheapest formula is
evaluated first.
The idea of this approach is to prevent the evaluation of expensive subformulæ, in

cases where the evaluation of a cheap subformula already determines the result of the
formula.
The heuristic used in this thesis is rather simple6 and considers only the number

of quantified formulæ in the formula and its number of subformulæ. It is shown in
Listing 13. For every node in the formula’s subtree the costs are increased by one.
For each of the subtree’s nodes, that represent a quantifier, costs is increased by 100
additionally.
The procedure to reorder the subformulæ is shown in algorithm 14 and illustrated in

Example 4.7.1. Two new operators are introduced, namely ∧mul and ∨mul. Their only
difference to ∧ and ∨ is their arity which is not 2 but arbitrary. I.e. a formula that
consists of a conjunction (disjunction) of conjunctions (disjunctions) can be represented
with only one operator instead of many. For example A∧B∧C ∧D is equivalent with
∧mul(A,B,C,D). So if a subformular’s operator is a binary junctor, it’s converted to
its n-ary counterpart (lines 1 to 5).
In the next step (line 6) the method calcCosts() (see Algorithm 13) is used to

calculate the costs for the given subformulæ. The connection between formula and
corresponding costs is implemented by using a map (formula -> costs). In line 7 the

6This heuristic was chosen because time constraints forbade proper investigations of heuristics that
promised a higher benefit (see Section 8).
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Algorithm 13 calcCosts(Formula f)
1: int costs=0;
2: while Downf .hasNext() do
3: Node tmp = Downf .next();
4: costs = costs +1;
5: if tmp == ∃ || tmp == ∀ then
6: costs = costs + 100;
7: end if
8: end while
9: return (costs)

subterms are sorted in ascending order according to their costs. The subformulæ are
then transformed back to use only binary junctors in such way, that the first element
of the list is the leftmost element of the junction (see line 8). I.e. the cheapest formula
will be evaluated first.

Algorithm 14 reorderSubformulae(Formula f)
1: Node op = Downf .next();
2: while Downf .hasNext() do
3: Node tmp = Downf .next();
4: if op == ∧ || op == ∨ then
5: List subs = toMulti(tmp);
6: Map costs = getCosts(subs);
7: sort(subs,costs);
8: toBinary(subs);
9: end if
10: end while

Example 4.7.1 The evaluation of the formula

∀x.(∃y.(p(x, y)) ∧ r(x)) ∧ (a < b⇒ p(a, b)) ∧ (s(a))

starts with the leftmost subformula. That is a nested quantified formula has to be
evaluated which is expensive. If the predicate s(a) evaluates to false this previous
evaluation was a waste of time.
After reorderSubformulae is applied the formula has the following form:

(s(a)) ∧ (a < b⇒ p(a, b)) ∧ ∀x.(r(x) ∧ ∃y.(p(x, y)))

If the predicate s(a) evaluates to false now, no expensive evaluation are done and
therefore no time is being wasted.
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5. Implementation
5.1. KeY
The implementation of the developed ideas, which is called Optimiser, is integrated
into the KeY system [KeY, Beckert et al., 2007]. KeY is an automated theorem prover
developed at the University of Karlsruhe, University of Koblenz-Landau and Chalmers
Institute of Technology and is written in Java. It was created as a tool for verification
of JavaCard programs and works by applying a sequent calculus on formulæ in Java
Dynamic Logic [Beckert, 2000]. Although this thesis is not dealing with verification,
KeY has the following features that make it attractive to be used as a base for the
implementation of the described ideas:
• An import mechanism, that allows to use JML, OCL and logical formulæ as
input for specifications.

• An export mechanism, for exporting specifications in JML, OCL or as logical
formulæ and for generating oracles in Java.

• An adjustable mechanism for rewriting formulæ (Rules Applicator).

• A predefined set of rules for the rewriting mechanism to realise logical simplifi-
cation.

• The ability to generate test cases, respectively test suites which can be used to
evaluate this approach [Engel, 2006].

• KeY is licenced under GPL which guarantees access to the sources and allows
their modification.

5.1.1. Overview

At the current state, the implementation of the mentioned ideas is not finished. There-
fore not all the implementation issues are discussed in the following sections.
The integration is done with mainly three interfaces between KeY and the Optimiser

which can be seen in Figure 3.
In the first step the specification is given from KeY to the Optimiser that processes

the formula. Therefore KeY’s Rules Applicator is used with specially defined rule
sets for the different optimisation techniques(see Section 5.1.3) and some additional
operations are executed. Latter are the limitation of the quantifier’s bounds (see
Section 5.1.4) and the reordering of subterms (see Section 4.7). After all possible
algorithms have been applied the formula is given back to KeY and can be exported
into the wanted output format.
Due to the fact that multiple output formats are supported, this tool can be used

in combination with other tools in a flexible way.
As the export part is not finished yet, the resulting formula can only be printed to

the screen.
For the sake of simplicity figures and diagrams show only parts of the system. Ex-

planations of modifications of the KeY source code are simplified and rough as well.
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KeY

Specs
OCL
JML

Importer

JDL

Optimiser

JDL

Exporter Specs’
OCL
JML

Oracle

Rules Appl

Figure 3: Layout of the approach

5.1.2. Import

KeY has several possibilities to import a formula. The key to turn ’some data’ into a
proof that can be worked on by KeY is the ProofOblInput interface. There are several
classes that implement this interface with different nuances. A class that implements
ProofOblInput is called proof obligation.
KeY has a several possibilities to import a formula. The key to turn ’some data’

into a proof that can be worked on by KeY is the ProofOblInput interface. There
are several classes that implement this interface with different nuances. A class that
implements ProofOblInput is called proof obligation.
The class KeYUserProblemFile, for instance, transforms the formulæ from a loaded

.key-file into the appropriate proof. The class EnsuresPostPO on the other hand
combines the source code and the JML specifications that have been extracted from a
.java-file into a proof to verify that the code s correct with respect to the specification.
Figure 4 gives a rough overview over the classes that are involved in opening a .java-file
to proof the correctness of a Java method with respect to the specification.
The ProblemLoader is initiated with the Java-file, that contains the source and the

JML specification. Then the method doWork in ProblemLoader is called. Its first step
is to initialise a new ProblemInitialiser. Then both objects do some operations to
prepare the following steps. The POBrowser is called afterwards. It then creates a new
EnsuresPostPO object. This object then uses the given information to create a new
proof. This proof is then added to a newly created ProofAggregate object which is
returned.
Although there are several different proof obligations, there was none to start a

new proof with a formula which can be selected from a proof that is already loaded.
Therefore the class TermProofObl was written. It implements ProofOblInput and
creates a new proof to show that F ⇒ false holds for a given formula F . This proof
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Figure 4: A simplified view on the cooperation of classes being involved in importing
a Java-file with JML and creating a proof

obligation is not intentend to prove something but to offer a possibility to use KeY’s
Rules Applicator to transform arbitrary formulæ.

5.1.3. Rule Application and Strategies

To show a formula’s validity, KeY tries to rewrite it to the symbol true. This procedure
is called a proof. A formula is rewritten by applying one of about 1500 rewrite rules
that are defined in KeY. The rewrite steps are repeated while the formula is not
syntactically equal to true and there are rules that are applicable7.
A rule defines how and under which circumstances a formula F is transformed to

F ′. Rules with the same purpose are arranged in rule sets where a rule can belong to
several rule sets. For example, the rule that rewrites F ∧ true to F and the rule that
rewrites true∧F to F have the same purpose so they would share at least one rule set.
There are about 140 rule sets in KeY where rule sets can intersect or be sub-/supersets
of each other.
If multiple rules can be applied on the same formula there needs to be a determinate

way of choosing which rule to apply. KeY achieves this by assigning costs to rule sets
and always selects the cheapest applicable rule. Those costs aren’t statically bound to
the rules but can be calculated and changed. Figure 5 gives an abstract overview on
the classes that are involved in calculating those costs.

7Additionally KeY allows to set a maximal number of steps or a time period after which rewriting
is stopped.
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Figure 5: Simplified view on the cooperation of classes being involved in calculating
the costs for a Rule

KeY uses certain classes to decide how to bind costs to a rule set. Those classes
represent strategies, which are all derived from Strategy. This leads to a high flex-
ibility as one can influence the behaviour of the rewriting system by changing the
costs, which can be achieved by introducing a new strategy. In this diagram the class
JavaCardDLStrategy is chosen as example.
It’s the strategy used for verifying Java programs. It implements the method

computeCost from Strategy. This method returns the costs to apply a rule to a
part of a formula. Costs are modeled with the class RuleAppCost and the application
of a rule is modeled by RuleApp.
As the diagram shows, JavaCardDLStrategy does not implement Strategy directly

but extends the AbstractFeatureStrategy. The latter class introduces so called
features.
Classes implementing Feature introduce a language to calculate the costs for rules

dynamically. For example one is able to define something like: if feature A is true for
the given formula and the given rule then set the costs to -500 else check if feature B
is true; if so, the costs are infinite, if not, the costs are -1000. Infinite costs prevent
the rule from being applied at all.
The class ConstFeature is a kind of atomic element of the language, as it does not

represent logical or arithmetical operations but only an integer value.
The interface TermFeature is not derived from Feature but it’s used to calculate

costs as well. In contrast to Feature it does not combine features to compute the
costs but it’s able to examine the formula the rule should be applied on. Therefore
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one can define costs like If the given term’s operator is a junctor and neither the left
nor the right subformula contain a quantifier, the costs are -5000 and infinite else
The class RuleDispatchFeature is a feature that manages the costs for all registered

rule sets. If more than one feature is assigned to a rule set the RuleDispatchFeature
creates a new combined feature and stores it. It also takes care of adding the features
if a rule belongs to multiple rule sets. The computeCost of the JavaCardDLStrategy
delegates to computeCost of RuleDispatchFeature
As the feature language is highly complex and it’s hardly needed for this thesis,

further explanations are omitted.
Figure 6 shows the new strategies that have been implemented for adjusting the

costs to achieve the Rules Applicator’s wanted behaviour for this thesis.

Figure 6: Overview on newly introduced strategy classes

The abstract class RunOptStrategy creates a general base for the other strategies.
In the first step it erases the costs for all known rule sets which might have been set
in a superclass. Therefore it iterates over all elements in the array RULE_SETS which
contains the names of all rule sets, and deletes them from the RuleDispatchFeature.
In the next step the costs of all rule sets in SIMP_SETS are set to -9000. This array
contains the rules that lead to a simplification or reduction of the formula. Those rule
sets, that are wanted in this work are stored in the array WORK_SET and their costs
are set to -7000. The array ZERO_SETS contains those rule sets that intersect with
or are super-/subsets of rule sets which are in SIMP_SETS or WORK_SET. As the costs
are added if a rule is a member of multiple rule sets the costs of all of ZERO_SETS’s
members is set to 0 to avoid the modification of the already processed rule sets.
In addition the cost of rule set that allows splitting of proofs is set to -6000 if splitting

is allowed by an option in the Optimiser. If the option is not set the costs are infinite
and therefore splitting is not used.
For the needed functionality three subclasses with matched behaviour were created.

The first one is RunOptSimplificationStrategy. This class extends the abstract
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class RunOptStrategy without any modification and is used to simplify formulæ and
establish the negation normal form(see Sections 4.1 and 4.2 ). The second class is
RunOptRemAbbrStrategy. It sets the costs of the rule set that is used to eliminate
abbreviations (see Section 4.3) to -6000. RunOptRedScopeStrategy introduces a new
TermFeature to check if the subformulæ contain the quantified variable of the current
quantifier. If both subterms do, the costs for the the rule set that allows distribution
of quantifiers is set to infinite, else to -9000. In combination with a ordering (see
Section 5.1.5) this strategy is used to implement the reduction of the quantifier scope
(see Section 4.5).
The mechanism that KeY uses to apply the rules on a proof is roughly depicted in

Figure 7.

Figure 7: Simplified view on the cooperation of classes being involved in applying rules

The KeYMediator does some preparations and checks the existence of an open
proof in KeY that the rules can be applied on. Then it calls startAutoMode in the
InteractiveProver to work on that proof. This class does some checks and prepara-
tions as well and then calls the method start in ApplyStrategy. This method does
some more preparations and creates a new thread that runs the method doWork. This
method is the actual core of the rules application. It executes applyAutomaticRule
while rules can be applied and some other conditions are true. In applyAutomaticRule
the IGoalChooser is used to return a goal from the proof to work on. Then the method
next of the goal’s AutomatedRuleApplicationManager is called. This method en-
sures, that there is a queue containing all the rules that are applicable to the current
formula. next then return the cheapest rule that is applicable which is then applied
in applyAutomaticRule.
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As this mechanism is rather complex and does more things than are actually needed
for this work, the class RunOptProofStarter has been written. It is a simple approach
to combine the tasks of KeYMediator, InteractiveProver and ApplyStrategy. It is
initialised with a formula that is then used to create a proof. In the initialisation the
environment is set up as well. The method applyAutomaticRule is then called and
mainly behaves like a simpler version of the ApplyStrategy’s method with the same
name.

5.1.4. BoundsWorker

The BoundsWorker is the implementation of the ideas shown in Section 4.4. As the
class mainly works on its own, besides the use of KeY’s datastructure for formulæ and
terms and the use of the RunOptStarter for simplification, no diagram is given.
With exception to one point, it’s the Java adaptation of the shown pseudocode.

Therefore only the difference to the pseudocode is explained.
This difference is the treatment of the range values. In the Algorithm 7 all found

range values are put in one list. In the implementation however, there are three lists,
where the first one contains only lower bounds, the second one only upper bounds,
and the third one contains all the range values that are not bounds. This modification
lessens the blowup of the generated formulæ as the generation of the case distinctions
is handled separately for each list and therefore the number of comparisons is reduced.
This has a huge impact on the generated formula’s size as latter growths exponentially
with the number of comparisons.
Additionally, the mechanism to introduce MIN_INT and MAX_INT as lower/upper

bound if needed that is shown in Algorithm 6 only works under the assumption that if
there are at least two range values, there exists at least one upper and one lower bound.
Due to the separate lists for lower/upper bound and range values the processing of
lower and upper bound now works under any circumstances and MIN_INT/MAX_INT are
only introduced if they are really needed.
A slightly changed version of this method for dealing with bounds has been adapted

for the master branch of KeY to augment KeY’s testing capabilities.
As KeY was designed with different goals some of its internal characteristics make the

implementation of the needed simplification difficult. Therefore it was not completely
implemented and human interaction is needed to finish this process.

5.1.5. Reorder

The reordering of subformulæ explained below is mainly the implementation of the
ideas from Section 4.7 but it’s needed for the reduction of quantifier scopes (see Section
4.5) as well.
The main idea was to use the Java classes TreeSet and Comparator to do the

sorting. Figure 8 shows the classes involved.
The class TermSorter offers the two public methods presort and postsort that

both work identically but use different comparators.
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Figure 8: Simplified view on the cooperation of classes being involved in sorting
formulæ

Both used comparators are derived from the class RunOptComparator. This class
implements Comparator and contains a static instance of RunOptTermPresort and
RunOptTermPostsort. Those two instances are the only possibility to get a instance
of the two latter classes.

RunOptTermPresort is used as preprocessing step in the reduction of the quantifier’s
scope. As KeY rules assume that the subformula that can be removed from the scope
is the rightmost element this comparator is used in the following ordering based on
the quantified variables that are in scope in a formula:

1. If one formula contains no quantified variable and the other does, the one with
none is moved to the right.

2. If none contains quantified variables they are ordered by their hash code. This
ordering has no real effect but a ordering was needed to conform Java guidelines
on compare and equal.

3. If both contain quantified variables the ordering is achieved by comparing the
occurring quantified variables with the occurrence of quantifiers. I.e. if there are
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nested quantifiers the formula that contains the quantified variable of the most
nested quantifier goes to the left.

RunOptTermPostsort implements the sorting behaviour that was explained in Sec-
tion 4.7, i.e. counting the number of subformulæ and occurring quantified formulæ.
If presort or postsort is called, the formula, being given as parameter, is then used

to create a RunOptTerm to represent the formula. The class itself is abstract, therefore
no instance can be created of it, but there are several classes derived from it. Each
class represents another kind of formula depending on the formula’s top level operator.
The most important one is JunctorTerm with its derived classes AndTerm and OrTerm
as they are responsible for the reordering. The latter classes use a TreeSet to hold the
subformulæ that, in combination with the type of the class itself, is used to implement
∧mul, respectively ∨mul.
The AtomicTerm is used to wrap the predicates of the original formula.
After the RunOptTerm is created, presort (postsort) calls its method sort with

PRE (POST) as argument. This method initialises the TreeSet with the given com-
parator and the according subformulæ of the current JunctorTerm which leads to the
reordering.
Finally presort or postsort calls the method getTerm of RunOptTerm which leads

to the creation of KeY’s datastructure for formulæ out of the RunOptTerm. This formula
is reordered in terms of this section.

5.2. Jet
JET is an automated unit testing tool for Java classes annotated with JML specifi-
cations[Jet]. It is written in Java by Yoonsik Cheon and Perla M. Escarcega at the
University of Texas at El Paso. It was chosen as it is able to work on Java-files that
have been enriched with JML specifications. Another reason is the license used for
publishing as it is the GPL which allows modification of the code which is needed for
this work.
The version of JET being used is 0.78a with mainly the two following minor adjust-

ments:

1. The original code was tailored to be highly multithreaded which lead to a wide
spread in the runtimes. To optimise the program’s behaviour to be used for
benchmarking, multithreading was stripped from the important methods.

2. A stopwatch to meassure and display the time needed to run a test case method
was incorporated in code.
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6. Evaluation
6.1. Examples
In this section only the classical first order logic notation, i.e. not JML, of the examples’
postcondition are shown. The full code of the examples can be found in the Appendix
A. The following examples have been constructed for the means of evaluation.

Reduce Range. The first method that is to be evaluated is the mechanism to reduce
the ranges of a quantifier. The following formula is used as example.

∀x.
0 ≤ x ∧ x < 2 ∗ a.length⇒

0 ≤ x ∧ x < a.length⇒
result[x] = 13

∧
a.length ≤ x ∧ x < 2 ∗ a.length⇒

result[x] = 17

This formula consists of one quantified formula in whose matrix case distinctions are
made. Those case distinctions depend on the quantified variable are used and splits
the quantifier’s bounds in to ranges. If the quantified variable is in the first half of the
quantifier’s bounds (0 ≤ x ∧ x < a.length) it’s checked if the result is equal to 13. If
the quantified variable is in the last half of the quantifiers bounds (a.length ≤ x∧x <
2 ∗ a.length) it’s checked if the result equals to 17.
The formula being created by this optimisation is shown below. Its quantified for-

mula has been broken up into two quantified formulæ that are conjunctively connected.
The case distinctions of the source formula are used as bounds for the new ones.

∀x.
0 ≤ x ∧ x < a.length⇒

result[x] = 13
∧
∀x.

a.length ≤ x ∧ x < 2 ∗ a.length⇒
result[x] = 17

Remove Abbreviation. The example to evaluate the removal of an abbreviation is
shown below. The quantified variable y is introduced as an abbreviation for the term t.
In this specific case an abbreviation does not improve the readability of the formula,
but the introduction of a more complex term was discarded to keep the examples
simple.
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∀x.
0 ≤ x ∧ x < a.length⇒
∃y.

y = t ∧ result[x] = y

As JET was not able to execute this example due to the fact, that the existential
quantified formula can not be executed, this example could not be used for evaluation.
Therefore the example shown below is used which is similar to the original one and
executable by JET.

∀x.
0 ≤ x ∧ x < a.length⇒
∀y.

− 2147483648 ≤ y ∧ y ≤ 2147483647⇒
y = t⇒ result[x] = y

The optimisation removes the inner quantifier and its quantified variable is replaced
by its value.

∀x.
0 ≤ x ∧ x < a.length⇒

result[i] == t

Reduce Scope The example to evaluate the reduction of the quantifier’s scope is
shown below. The expression ¬wrong = true is evaluated in the quantifier’s scope.
This is not needed as the expression does not depend on the quantified variable.

∀x.
0 ≤ x ∧ x < a.length⇒

result[x] = 13 ∧ ¬wrong = true

By moving the expression out of the quantifiers scope there is one operation less to
be executed in the quantifiers scope.

∀x.
0 ≤ x ∧ x < a.length⇒

result[x] = 13
∧
¬wrong = true
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6.2. Evaluation Approach
To evaluate this approach’s benefit, the 3 main methods, i.e. the reduction of the
quantifier’s scope (see Section 4.5), the reduction of its bounds (see Section 4.4) and
the removal of abbreviations (see Section 4.3), are each applied on an example. Then
the time to test the unmodified and the modified version is measured. For running the
tests KeY’s own testing method and JET are used.

JET. JET’s execution time for a single test case of the examples lies in the magnitude
of 10−4s. This duration is so short, that it is prone to influences, e.g. the Java
garbage collector, or errors of measurement and therefore hardly usable. JET offers
the possibility to execute several test attempts in one test run. The execution of
1000 attempts has been tried and its runtime lies in the magnitude of 10−2s which is
considered less inexact. Therefore the time measured in the evaluation is not the time
for a single attempt but for 1000.
First experiments showed that the execution times for an example vary in huge

margins. As this behaviour makes a reliable judgement of the results hardly possible,
a loop has been added to execute the testing mechanism 1000 times and calculate the
average time for the 1000 gathered test runs.

KeY. In KeY the execution time of a single test lies between 1 and 2 seconds. There-
fore the time needed to run one attempt is considered usable.
As with JET, the test times vary and therefore the test mechanism is executed 1000

times and the mean is calculated and shown in the results.
In both cases the standard deviation σ is given as well to show how strong the single

results scatter. It was calculated by using the formula

σ =

√√√√ 1
n
∗

n∑
i=0

(xi − xavg)2

where n is the number of executions used and xavg is the mean.
All tests were run on the same hardware (an Intel Pentium M (Banias) with 1.4Ghz

and 2GB of DDR2 RAM).

6.3. Results
Running the optimised and not optimised examples with KeY’s test generator leads to
the results shown in Table 2. The most significant result is that running the example for
the remove abbreviation method in its unchanged form takes more than 90 minutes.
After 90 Minutes, not even one single test case was finished and the execution was
cancelled. The test for the optimised formula though takes roughly the same time as
the test of the other examples.
The results of the two remaining test examples (reduce ranges, reduce scope) shows

not significant benefit between the original and the optimised version.
8Execution stopped

43



Name of Method tavg [ms] σ [ms]
Reduce Ranges 1590.953 22.338
Reduce Ranges (opt) 1549.151 30.266
Remove Abbreviation —8 —8

Remove Abbreviation (opt) 1549.040 21.680
Reduce Scope 1566.759 33.523
Reduce Scope (opt) 1549.178 25.674

Table 2: Results for testing the examples with KeY.

The results with JET are shown in Table 3. As in KeY there is no significant benefit
visible in the runtimes.

Name of Method tavg [ms] σ [ms]
Reduce Ranges 48.955 10.199
Reduce Ranges (opt) 47.173 6.502
Remove Abbreviation 47.546 6.876
Remove Abbreviation (opt) 47.315 3.453
Reduce Scope 49.073 11.011
Reduce Scope (opt) 48.085 6.606

Table 3: Results for testing the examples with JET.

7. Related Work
While looking for some information for this thesis a lot of projects working on exe-
cutable specifications were found. They are using several languages in their projects
for the specification as well as for the target programming language being executed.
Although the main goal, i.e. execution of specification, is equal in those projects, it is
possible to distinguish them by taking a look at the details. A significant criterion for
classification is the field of application of the generated program. This leads to two
different groups.
In the approach of Fuchs [1992b] he tries to generate the actual program out of

a specification. I.e. one writes the specification of the wanted program as a Hoare
tuple and the program is generated out of it. Fuchs describes two different methods to
generate the program where the first one uses if-halves of the specification in a readable
and easy understandable way. As the program generated with this method has a slow
execution time, he introduces another method that leads to shorter runtimes for the
generated programs and is based on structural induction.
The second group of projects uses the generated program to check the correctness of

their already existing programs. In Peters and Parnas [1994] a way to create a program
out of formal documentations that are given by using Limited Domain Relations and
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tabular expressions is shown. The target language as well as the language of the code
to be tested is C where it is mentioned that the oracle might be implemented in C++
as well. The only statement that is made about an optimised runtime is the fact
that the translation is building the program in such way, that it is tried to get a true
expression in the case of an existential quantification and a false expression in the case
of an universal quantification as fast as possible.
Tim Wahls is involved in two different approaches. In Wahls et al. [2000] and Wahls

and Leavens [2001] he, Leavens and Baker describe and prove methods for translating
Specs-C++ specification into the concurrent constraint programming language AKL.
It is mentioned that the occurrence of an existential quantification leads to a blowup
of the set of constraints, which leads to an increase of the runtime. There is no
optimisation method mentioned to prevent such cases. In contrast to above mentioned
approaches the result is not fixed to creating an oracle but to be used as prototype of
the specified program as well.
In Krause and Wahls [2006] Krause and Wahls are working on a method of trans-

lating the JML ensures-clause to a constraint program that can be executed with the
Java Constraint Kit(JCK). A technique that is mentioned in the paper, that might
lead to a reduced runtime for the generated program is the use of a simplifier on the
set of constraints that have been gathered. This approach focuses on the generation
of prototypes while developing the formal specification.
The paper Zee et al. [2007] describes a method to translate specification written in

Higher Order Logic to a subset of Java. To optimise the runtime of the generated
program the authors describe a technique that is similar to the method explained in
Section 4.3 to remove quantified variables being introduced as abbreviation for a term.
The goal of this work is to support the prover Jahob with runtime checking to prevent
errors in the specification or the code.
In Fröhlich [1997] it is assumed that the postcondition of a program is defined by

using abstract functions that are defined by their behaviour instead of their implemen-
tation. Those functions, written in VDM-SL are given to a framework that allows to
execute them. No statements about optimisation techniques or the runtime are made
in the paper.

8. Conclusion and Outlook
This minor thesis shows a way to optimise a generated oracle to achieve shorter run-
times. Shorter runtimes of test cases allows the execution of more test cases in the same
time. The execution of more test cases leads to a higher confidence in the software’s
quality.
Oracles can be derived from specifications. However specifications are used for dif-

ferent purposes and therefore are not necessarily executable. Even if the are executable
it might be with only a high runtime.
Those two facts come mostly from the use of quantifiers in the logic. If the quanti-

fier’s range is not bounded, respectively if the bounds are outside the target language’s
datatype’s limits, the specification is too expressive to be exported into a program.
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Even if the bounds inside the used datatype’s limits, the quantification is represented
as a loop which leads to a runtime’ blowup, especially if quantifiers are nested.
This work explains four different possibilities to reduce the execution time of the

oracle by manipulating the quantified formulæ whereas this approach is only applicable
if the quantified variables are of type Integer.
The first part shows a way to get rid of a special kind of quantification, i.e. an

abbreviation. An abbreviation is an existential quantifier that contains a conjunctively
added equality that defines the value of the quantified variable.
The second method tries to find information about the quantified variable and use

it to cut down the ranges of the quantifier. It tries to remove case distinction that
depend on the quantified variable by splitting the quantifier in multiple quantified
formulæ with disjunctive ranges.
The third method offer a way to try to shrink the scope of a quantifier by moving

subformulæ that do not depend on the quantified variable out of its scope.
The fourth method is not actually working on the quantified formula, but trying

to achieve its fail respectively its success by introducing instantiations that might be
significant. If they are significant for a certain test case the execution of the loop is
omitted which reduces the runtime. This four core methods are supported by com-
mon logical simplification techniques to ensure that the formula is free of meaningless
subformulæ.
Additionally a method for reordering subformulæ was introduced. The idea is to

achieve an quick fail or success of a formula by using short circuit evaluation and
therefore avoid not needed evaluations.
The benchmarks presented in this thesis show no significant benefits in the time

needed for testing, when using optimisation techniques. The only visible benefit so
far is the reduction of the runtime for the Remove Abbreviation example when KeY
is used as testing tool.
However the method of changing the evaluation order has not been evaluated and

the idea of reordering formulæ hast not been completely developed.
There are some tasks, that are still open and might be of interest.
Besides the completion of the implementation there is one more important step that

might be done to improve the whole approach. The idea of ordering formulæ by costs
could be refined by using other means to calculate the costs. The next step would be to
use their evaluation cost, i.e. define how much it costs to evaluate a formula and take
the cheapest first. Thereby some formulæ are cheap to execute but true respectively
false in most cases so their evaluation does not lead to a real advantage in the test case.
At this point the idea of developing a probability for a formula to be true respectively
false was introduced. The combination of both aspects, called estimated costs, should
be used to order the subformula in such a way that formulæ that are cheap to evaluate
and that have a high value of being false (if it is conjunctively connected) respectively
true (if it is disjunctively connected) are evaluated first.
Another open point is the possibility to use KeY’s Rules Applicator in combination

with a TermFeature (see Section 5.1.3) for the reordering of formulæ. This might be
more elegant then the current approach.
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A. Appendix

1 /∗@ pub l i c normal_behavior
2 @ r e q u i r e s a!= n u l l ;
3 @ ensure s ( \ f o r a l l i n t i ; 0<= i && i < 2∗a . l ength ; (
4 @ (0<= i&&i < a . l ength ==>\ r e s u l t [ i ]==13 &&
5 @ ( a . length<=i&&i <2∗a . l ength ==>\ r e s u l t [ i ]==17))
6 @ ) ) ;
7 @ a s s i g n a b l e \ nothing ;
8 @ ∗/
9 public stat ic int [ ] redBounds1 ( int [ ] a ){
10 int l = a . l ength ;
11 int l l = 2∗a . l ength ;
12 int [ ] r e s = new int [ l l ] ;
13 for ( int i =0; i < l ; i ++){
14 r e s [ i ] = 1 3 ;
15 }
16 for ( int i = l ; i < l l ; i ++){
17 r e s [ i ] = 1 7 ;
18 }
19 return r e s ;
20 }
21
22 /∗@ pub l i c normal_behavior
23 @ r e q u i r e s a!= n u l l ;
24 @ ensure s (
25 @ (\ f o r a l l i n t i ; 0<= i && i < a . l ength ; \ r e s u l t [ i ]==13) &&
26 @ (\ f o r a l l i n t i ; a . length<=i&&i <2∗a . l ength ; \ r e s u l t [ i ]==17)
27 @ ) ;
28 @ a s s i g n a b l e \ nothing ;
29 @ ∗/
30 public stat ic int [ ] redBounds2 ( int [ ] a ){
31 int l = a . l ength ;
32 int l l = 2∗a . l ength ;
33 int [ ] r e s = new int [ l l ] ;
34 for ( int i =0; i < l ; i ++){
35 r e s [ i ] = 1 3 ;
36 }
37 for ( int i = l ; i < l l ; i ++){
38 r e s [ i ] = 1 7 ;
39 }
40 return r e s ;
41 }

Listing 13: The code used for evaluating the reduction of ranges
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1 public stat ic int t = 13 ;
2
3 /∗@ pub l i c normal_behavior
4 @ r e q u i r e s a!= n u l l ;
5 @ ensure s ( \ f o r a l l i n t i ; 0<= i && i < a . l ength ;
6 @ (\ f o r a l l i n t x ; −2147483648 <= x && x <= 2147483647 ;
7 @ x==t ==> \ r e s u l t [ i ]==x
8 @ )
9 @ ) ;
10 @ a s s i g n a b l e \ nothing ;
11 @ ∗/
12 public stat ic int [ ] remAbb1( int [ ] a ){
13 int [ ] r e s = new int [ a . l ength ] ;
14 for ( int i =0; i < a . l ength ; i ++){
15 r e s [ i ] = t ;
16 }
17 return r e s ;
18 }
19
20 /∗@ pub l i c normal_behavior
21 @ r e q u i r e s a!= n u l l ;
22 @ ensure s ( \ f o r a l l i n t i ; 0<= i && i < a . l ength ;
23 @ \ r e s u l t [ i ]==t
24 @ ) ;
25 @ a s s i g n a b l e \ nothing ;
26 @ ∗/
27 public stat ic int [ ] remAbb2( int [ ] a ){
28 int [ ] r e s = new int [ a . l ength ] ;
29 for ( int i =0; i < a . l ength ; i ++){
30 r e s [ i ] = t ;
31 }
32 return r e s ;
33 }

Listing 14: The code used for evaluating the removal of Abbreviations
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1 public stat ic boolean wrong=fa l se ;
2
3 /∗@ pub l i c normal_behavior
4 @ r e q u i r e s a!= n u l l ;
5 @ ensure s ( \ f o r a l l i n t i ; 0<= i && i < a . l ength ;
6 @ (\ r e s u l t [ i ]==13 &&
7 @ wrong!= true )
8 @ ) ;
9 @ a s s i g n a b l e \ nothing ;
10 @ ∗/
11 public stat ic int [ ] redScope1 ( int [ ] a ){
12 int [ ] r e s = new int [ a . l ength ] ;
13 for ( int i =0; i < a . l ength ; i ++){
14 r e s [ i ] = 1 3 ;
15 }
16 return r e s ;
17 }
18
19 /∗@ pub l i c normal_behavior
20 @ r e q u i r e s a!= n u l l ;
21 @ ensure s ( \ f o r a l l i n t i ; 0<= i && i < a . l ength ;
22 @ (\ r e s u l t [ i ]==13) &&
23 @ wrong!= true
24 @ ) ;
25 @ a s s i g n a b l e \ nothing ;
26 @ ∗/
27 public stat ic int [ ] redScope2 ( int [ ] a ){
28 int [ ] r e s = new int [ a . l ength ] ;
29 for ( int i =0; i < a . l ength ; i ++){
30 r e s [ i ] = 1 3 ;
31 }
32 return r e s ;
33 }

Listing 15: The code used for evaluating the reduction of scopes
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