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1 Preface

1.1 Aim and methods used

This dissertation provides an interdisciplinary contribution to the project ReGLaN-

Health & Logistics. ReGLaN-Health & Logistics, as described in chapter 2, is an

international cooperation deriving benefits from the capabilities of scientists work-

ing on different fields. The aim of the project is the development of a so-called

Spatial Decision Support System that supports decision makers working within

health systems with a special focus on rural areas. In this dissertation, one impor-

tant component for the development of the Decision Support Systems (DSS) named

Early Warning And Response System is proposed and described in detail. This

component called “Spatial-Toolbox” is developed with the intention of dealing

with spatial data, i.e. data with additional geocoded information with regard to

the special requirements of the Early Warning And Response System (EWARS).

An important component in the process of developing the EWARS is the concept

of Geographical Information Systems. Classically, geocoded information with a

vectorial character numerically describing spatial phenomena is managed and pro-

cessed in a GIS. For the system GRASS that will be used within this project,

these capabilities and possibilities are described in detail in [Net08] and for GIS in

general, the book [Lan07] can be recommended. But for the development of the

EWARS, the manageability of the type of data exemplarily given by (x, y, o) with
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1 Preface

coordinates (x, y) and O3-concentration o is not sufficient. As described in section

3.2 of chapter 3 and later on in chapter 9, the manageable data has to be extended

to data of type (x, y, f), where (x, y) are the geocoded information, but where f is

not only a numerical value but a functional description of a certain phenomenom.

An example for the existence and appearance of that type of data is the geocoded

information about the variation of the O3-concentration in time or depending on

temperature. In section 3.1 of chapter 3, a knowledge-base as important subsystem

of DSS containing expert knowledge is mentioned. This expert-knowledge can be

made manageable when using methods from the field of fuzzy logic (more detailed

information about them can be found in section 9.2). Thereby mappings, so-called

fuzzy-sets, are generated. Within the EWARS, these mappings will be used with

respect to additional geocoded data. The knowledge about the geocoded mapping

information only at a finite set of locations (xi, yi) associated with mapping in-

formation fi, i ∈ {1, . . . , n} is not sufficient in applications that need continuous

statements in a certain geographical area. To provide a contribution towards solv-

ing this problem, in section 9.3 of chapter 9, methods from the field of computer

geometry and Computer Aided Design, so-called Béziermethods, are used for inter-

polating this geocoded mapping information. Classically, these methods operates

on vectors in the space Rd, d ∈ N , but in terms of dealing with mapping infor-

mation, there has to be an extension on topological vector spaces since mapping

spaces can be defined as such spaces. This builds a new perspective and possibility

in the application of these methods. Therefore, the according algorithms have to

be extended; this work is presented in chapter 8.

The field of Artificial Neural Networks plays an important role for the process-

ing and management of the data within the EWARS, where features of biological

processes and structures are modeled and implemented as algorithms. Gener-

ally, the developed methods can be divided as usable in terms of interpolation

2



1 Preface

or approximation functional coherences and in such being applicable to classifi-

cation problems. In this dissertation one method from each type is regarded in

more detailed. Thereby, the classical algorithms of the so-called Backpropaga-

tion Networks for approximation and the Kohonen Networks for classification are

described in chapter 4. In chapter 9, an extension of these algorithms is then

proposed using coherences from mathematical measure-theory and approximation

theory described in chapters 7 and 8. Thereby, the training data is of the type

{(f1, c1) , . . . , (fn, cn)} with mapping data fi : X −→ C and associated vec-

torial data ci, i ∈ {1, . . . , n}. Measure theory operating on mappings plays an

important role if the data is of the following type: {(K1, c1) , . . . , (Kn, cn)}, where

the Ki are compact subsets of the domain X, which is a topological vector space.

The mentioned extension of these algorithms is based on a preprocessing of the

mapping data using integration methods from measure theory.

1.2 Structure of the dissertation

In this section, the structure of this thesis is described to provide an overview for

the reader.

Chapter 2 Contribution to the project ReGLaN-Health & Logistics: Here the

aim and the objectives of the project are described in more detail and the

contribution of this dissertation is specified. It describes which methods will

be used, where the proposed SPATTB is located in the EWARS and which

applications are possible in this context.

Chapter 3 Embedding in the context of current research: In the process of de-

veloping methods for handling spatial respectiveley geocoded data, the knowl-

edge about the understanding of these terms in publications within the ac-

cording scientific field is essential. Hence in this chapter, possibilities and

3
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applications in the context of managing spatial data, especially referring to

current publications, are described. Additionally, basic coherences about

DSS are described with appropriate references to relevant parts of this the-

sis. Finally, the specific contribution of this dissertation to the scientific

community is described highlighting its pertinence.

Chapter 4 Artificial Neural Networks: The field of Artificial Neural Networks is

huge and growing rapidly. Within this chapter basic historical facts from

the beginning through to actual applications and methods are described.

In addition the biological background and a common model of an artificial

neuron are depicted, followed by a possibility of classification. Subsequent

to this, the relevant Artificial Neural Network (ANN)-models for this thesis,

the Backpropagation Networks and the Kohonen Networks are characterised

in more detail, describing mathematically the relevant algorithms on which

the developments and extensions in chapter 9 are based.

Chapter 5 Principles of object-oriented analysis: Handling semi-structured or

unstructured problems or dealing with complicated situations is a challenge

in every scientific field. A way of dealing with this problem is the application

of the so-called Object Oriented Analysis. This method provides a possibility

of structuring complicated systems in a standardised way, that provides the

possibility of simplifying the working relationships within a project. This

method will also be used for the development of the EWARS. Important

elements of Object Oriented Analysis (OOA) are depicted in this chapter.

One of that is a so-called object, which exemplarily can be a representa-

tion of a concrete element within the regarded health system, for example

a doctor treating a patient. For the process or even the viability of that

treatment, several circumstances can play a role. E.g., the kind of disease

can be mentioned , the distance between the two people, the available infras-
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tructure or the actual weather situation. If the doctor for example has the

possibility of using telemedicine and the regarded disease allows this treat-

ment, the availability of electric current and the risk of having heavy rainfall

become essential information. So regarding them in terms of OOA, these

circumstances have an important influence on the behaviour of the repre-

senting objects. If geocoded mapping information is the basis information

for a relevant influence statement that has to be given in a continuous way,

the methods for dealing with the kind of data proposed in chapter 9 play an

important role for providing appropriate information to particular objects

and influencing their behaviour.

In the process of describing the EWARS with methods from Object Oriented

Analysis, the SPATTB should also be regarded in this way. The SPATTB

itself represents an object-class with the ability of deriving several meth-

ods as sub-classes. The methods important to this thesis are the extensions

of the Backpropagation Network (BPN)- and the Kohonen Network (KN)-

algorithms for processing geocoded mapping information. These can there-

fore be regarded as subclasses of the SPATTB, which a user can call providing

geocoded mapping information.

Chapter 6 Proposal of a “Spatial Toolbox”: Here the general structure of the

SPATTB is proposed and a localisation within the whole concept of the

EWARS is provided. Additionally, the importance of OpenSource software

components within the whole system and particularly for the SPATTB is

described. Finally, a workflow for the development of additional components

for the toolbox is proposed and illustrated.

Chapter 7 Measure theory on topological and function spaces: Geocoded map-

ping information is considered as elements of a topological vector space of

functions. When regarding data of the type {(f1, c1) , . . . , (fn, cn)} already

5
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mentioned above, the described preprocessing in terms of extending the algo-

rithms from the field of ANN and the extended Bézier-interpolation require

the theoretical background of measure theory. Characterizing differences

in a mathematical way requires adequate methods of measuring. As men-

tioned above, there are components developed for managing geocoded map-

ping information, so if the differences should be described in this context,

appropriate methodologies have to be used. In this chapter the basic facts

about topological spaces and generalised concepts of convergence in terms

of so-called nets and filters are given. Furthermore, the concept of topolog-

ical vector spaces is characterised and finally the important methods from

mathematical measure theory are described. Thereby, the approach inter

alia mainly proposed by Bourbaki in [Bou04] based on linear functionals is

used, but also shown is the coherence to the measuring approach based on

systems of sets like σ-algebras. This coherence is described by the theorems

of Riesz, whereof one formulation is described in this chapter.

Chapter 8 Coherences of approximation theory: As mentioned above, there is

a proposed method for interpolating geocoded mapping information by ap-

proaches from the field of computer geometry and Computer Aided Design

(CAD). In this chapter these approaches are described, but the according co-

herences are not depicted in the classical way as given in common literature,

but in an extended way. Conventually, these methods are based on vectorial

described elements out of a space Rd, d ∈ N. This concept is extended

to gain the ability of elements out of an arbitrary topological vector space.

This description is in chapter 9 for application of this on a special topological

vector space, whose elements are of the type (x, y, f) with (geo-)coordinates

(x, y) and a mapping of the type f : X −→ C . The above mentioned

fuzzy sets are of this type and the interpolation of them can then be realised

6
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through this method.

Chapter 9 Results of measure theory applied to the “Spatial-Toolbox”: At this

point, the described and partly extended methods from the fields of ANN,

parameter-based Bézier-interpolation and measure theory are combined with

respect to the operation of geocoded mapping information. Within this chap-

ter, the already described approach of interpolating geocoded mapping infor-

mation using Béziermethods is proposed. Furthermore, an algorithm is devel-

oped, which extends the classical BPN-algorithm described in chapter 4 for

gaining the ability of training them but using mapping information. Finally,

a similar extension is described for the KN-algorithm, where a programmed

application as a component of the SPATTB based on the KN-algorithm and

a proposed gearing of several OpenSource components (GRASS, maxima,

R) is described. This application provides a possibility of gaining continuous

statements about the density of the given discrete geocoded data.

7



2 Contribution to the project

ReGLaN-Health & Logistics

The methods which are developed and described in this thesis should offer a con-

tribution to the project ReGLaN-Health & Logistics. The description of the co-

herences in this context will be the topic of the current chapter.

The project ReGLaN-Health & Logistics (ReGLaN = Research Group Learning

and Neurosciences) deals with the development and description of adaptive meth-

ods and algorithms in the context of health services and decision support.

The project was founded by the South African Gerhard Ackermann. The main

aim is the development and provision of methods and applications for improving

the health system especially of rural areas.

In this project there is an international collaboration of different institutions and

people. The main persons leading this project are Dipl.-Ing Gerhard Ackermann,

Prof. Dr. Engelbert Niehaus, Prof. Dr. Dr. Marlien Herselman, Dr. med. Ruth

Niehaus and Dipl.-Ing David Niehaus.

The advantage drown from the heterogeneity of those participating is the access

to the expert knowledge and points of view in the particular scientific field.

One important part of our contribution to the optimisation of the described health

systems is the development of a so-called digital decision support system (DDSS).

8



2 Contribution to the project ReGLaN-Health & Logistics

This should be used to provide decision support to the different decision makers

within the regarded health system. In rural areas, particularly in non-industrial

nations, the circumstances within which first-aid is applied are often not optimal.

Therefore it is important to get the best results by using the resources available.

The system will help to make a decision on the treatement of a patient by pro-

cessing the existing resources and analysing the possible treatments.

The system that will be developed within this project is called EWARS. The

focus here lies on the ability to early warn, especially in terms of epidemiology

and in providing a logistically optimised response that optimises the usage of

medical resources in rural areas. In [Nie09], Niehaus, Herselman and Babu write,

“the objective of a spatial decision support provided by EWARS is to optimize

the deployment of the existing limited resources in rural areas to improve health

service and delivery according to risk”.

In this context, the EWARS is additionally under the umbrella of Action Team

6 of the United Nations, and has been presented to the Scientific and Technical

Subcommittee of the Committee on the Peaceful Uses of Outer Space in Vienna

([Nie08]).

In this thesis, a so-called SPATTB is proposed with the aim of providing a contri-

bution to the development of the EWARS. In figure 2.1, the processing within the

EWARS is illustrated, where a so-called expert knowledge layer is visible. This ex-

pert knowledge has to be expressed in a mathematical way for further processing.

One possibility to do this consists in using methods from fuzzy logic as described

in section 9.2. With these mappings, so-called membership mappings, the grade

validity of linguistic values as “warm” or “fast” can be described in a fuzzy way.

Regarding geocoded data, such statements and mappings are located on certain

geographical coordinates. This information should not only be used within the

system on the given coordinates but also on the area “in between”. This thesis

9



2 Contribution to the project ReGLaN-Health & Logistics

proposes a method for approximating the geocoded mapping information in sec-

tion 9.3 for a whole area based on “discrete” mapping information only at a finite

number of locations. This method is proposed as part of the SPATTB as described

in chapter 6.

Coherences drawn from the expert knowledge in coherence with measured data

are also of high importance for the processing within the system. An example

is the relationship between expert knowledge about the amount of oxygen and

temperature concerning a certain body of water and an associated number of

insects acting as disease vectors, that develop in this body of water within a period

of time. In section 9.2, a method of approximately describing such coherences

as mappings that provide the ability to calculate the associated information for

variations of the mappings is proposed.

The proposed SPATTB described in chapter 6 is thereby considered for interacting

in different situations within the EWARS. Another field of application is described

in section 9.4. The ability of providing suitable statements in the context of health

and epidemics is obviously related to the available information; so regard to the

original data and its relation is thus essential before drawing a conclusion on a

certain application. In the mentioned section, a method based on an algorithm

from the field of neuroempiricism and an according software implementation is

proposed for describing the density of given measurement data.
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3 Embedding in the context of

current research

3.1 Description and limitation of the context of

current research

3.1.1 General concepts of spatial analysis

As mentioned in chapter 2, the EWARS inter alia deals with spatial data. At this

point, some general information about the processing of spatial data in the context

of spatial analysis is given. Furthermore important characteristics related in terms

of research and application in this field are pointed out and some explicit studies

of current interest are mentioned.

In the introduction of [San07] it described that the terms spatial analysis and

spatial modeling cannot be defined in a universal way. It is stated that within

the modeling of spatial phenomena and processes, there is a need for scientific

knowledge and skills from various fields. The special part of each discipline stands

in close relation to the regarded application and/or modeling process. So on the

one hand, different disciplines can provide methodologies and frameworks in the

content of spatial analysis and spatial modeling. On the other hand, methods as

12



3 Embedding in the context of current research

well as models developed within different fields such as mathematics can be tested,

applied and evaluated using spatial data.

In this context, the term modeling is important and thus its meaning and definition

has to be outlined and defined. This term can be interpreted in different ways. At

this point, the following general definition based on the one given in [Hag65] should

be mentioned:“(...) a model is a schematic representation of reality, developed with

the goal of understanding and explaining it.” ([San07], p.1). In section 4.2 the term

modeling and in particular the term mathematical modeling is looked at in more

detail.

In the context of dealing with spatial data and developing models, the relevant aim

is of crucial importance, because the usage of methods and concepts is dependent

on this. One example is the spatial dynamics of population growth, where the aim

can only be the description and a clear presentation of the given data or it can be

an attempted explanation or even a forecast. In addition to this, the type of data

given is also important because for example methods for computing discrete data

in general cannot deal with non discrete data directly.

In chapter 9 extensions of algorithms that provide the ability of not only dealing

with vectorial data but also with geocoded mapping information are proposed.

Throughout modeling in terms of spatial analysis, the following steps are important

(basing on [San07], p.2):

• Regard to the real situation, detection of the existing logical structure and

making a choice about the relevant components.

• Formalizing the given facts and chosen components.

• Undertaking a calculation and/ or processing in oder to gain concrete results

from the model/ the models.

• A comparison of these results with empirical observations and evaluation of

13



3 Embedding in the context of current research

the developed model/ models.

• Highlighting the “gaps” between modeling and observations and trying to

improve the model/ models.

The study of these gaps, which in some literature are called residuals, can suggest

the usage of new models or lead to a modification of the developed model/ models

e.g. by taking into account additional important parameters and factors.

These steps are very similar to the ones in the so-called modeling cycle for math-

ematical modeling mentioned in section 4.2.

Spatial models can be represented and illustrated by so-called flow-diagrams or

sagittal-diagrams.

According to [San07], p.16 et seqq., the following criteria or characteristics for the

classification of spatial models can be stated:

• The model is aggregated, i.e. a group of factors and parts are regarded as

whole system, or the model is disaggregated, i.e. they are regarded individu-

ally.

• The model is either a static or a dynamic one.

• The model is deterministic and/ or probabilistic.

No model in spatial analysis can create a perfect representation of reality. Hence it

makes sense in many applications to not only use one kind of modeling, but to take

different models into account. This way a multi-perspective view on the regarded

situation can be achieved. In doing this, the advantages and disadvantages of each

used model and methodology must not be disregarded to get appropriate results.

Dealing with spatial data, there is often a need to regard the factor of time as

well ([San07], p. 97) highlighting the process which evolve the regarded spatial

structure. In the consideration of time, two main approaches can be mentioned.
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3 Embedding in the context of current research

On the one hand, the evolution of the spatial structure is in the foreground and

time is regarded for measuring the differences of certain periods. As examples

models of urban growth or diffusion models in epidemics can be given. On the

other hand, the time of the individuals is regarded, while space is regarded as a

variable in their life path. This approach is applied in demographic models using

biographic data.

In the following, some methodologies of spatial modeling are described. According

to [San07], p. 160 et seqq., one possibility of gaining an understanding of a complex

system consists of regarding the basic entities of this system. This idea of so-

called spatial microsimulation models goes back to Orcutt, who attempted an

employment forecast in the 1960s not by regarding a high macroeconomic model

but looking at the household level. With the increasing development of computers,

this kind of modeling became more and more relevant for multiple disciplines like

population dynamics, epidemics and even for computer graphic technology (refer

e.g. on [Nvi]).

The basic idea of microsimulation is the formalising of change at an individual

level and in this way describing the whole system. This formalising can be realised

in two different ways. The first approach uses statistical procedures. The models

developed therewith are based on probabilistic rules for the impact of certain

events on certain types of individuals in certain situations. An example from the

field of population dynamics is the case of a women giving birth to a baby in a

certain period of time. This depends inter alia on her age, her income and her

education. Population models using this type of approach are the CORSIM (USA),

the DYNACAN (Canada) and the SVERIGE (Sweden).

The other approach mentioned above is the agent based or multi-agent systems.

Here, there are defined rules for the behaviour of the regarded individuals, but

them is given a certain degree of autonomity. In this way, the used agents can

15



3 Embedding in the context of current research

interact with each other following the given rules. At this point, two definitions of

multi-agents are given. Durfee defines the following in [Dur89]:

A Multi-agent system (MAS) is a network loosely coupled with entities acting to-

gether to resolve problems that were beyond their individual capabilities.

Another definition is given by Wooldridge in [Woo02]:

An agent is a computer system that is situated in some environment, and that

is capable of autonomous action in this environment in order to meet its design

objectives.

An example for the usage of MAS is located in the field of epidemiology. The

spreading of a disease distributed by a certain virus can be described using the

so-called SIR approach based on the work of Kermack and McKendrick (refer

to [Krä03] and [Prü08]). In this approach the three stadiums susceptible (S),

infectious (I) and resistant (R) are regarded. The passage from one stadium to

another can be described using rules and therewith, the spreading of the disease

can be described by multi-agents. There are several simulations in existence but

exemplary is [Xjt] and should be mentioned at this point.

Furthermore, the field of fractals is regarded as a supply of methodologies, which

is useful for certain problems in spatial analysis. According to [San07], p.281 et

seqq., this geometric approach is used in certain applications dealing inter alia with

contour problems. Mandelbrot gave the following definition in 1982 (see [Man82]):

“(A fractal is) a rough or fragmented geometric shape that can be split into parts,

each of which is (at least approximately) a reduced-size copy of the whole.” For

more information about this field refer to [Man82] or [Pei04] for example. In figure

3.1, an application of fractals in terms of spatial data is illustrated.
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Figure 3.1: Fractal analysis of the urban perimeter of Cardiff ([San07], p.296
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3.1.2 Usability of ANNs and GIS in the context of spatial

analysis

In actual research ANNs are used in many contexts. In section ??, there is given

an overview of important applications and according references is given. In this

section actual applications in the context of spatial data and GIS are discussed.

In these studies, some special types of ANNs are used in the according situation

with different results. The reason for mentioning these studies at this point is

on the one hand to clarify the actuality of ANNs and the resulting necessity of

conducting research in this field in a theoretical and practical way. On the other

hand, I would like to point out that there are real situations for the application of

the SPATTB as a generalised concept.

In 1996 Zhou and Civco published an article ([Zho96]) in which they described one

of their studies. In this study they used sample data of their GIS IDRISI ([idr])

and an exercise out of the instruction manual concerning the optimal location of

a light manufacturing plant. As the name of the article suggests, they used an

ANN with a genetic learning algorithm and compared the results with those from

conventional methods such as multi-criteria evaluation produced in this case. A

detailed description of this method is not given at this point, but for further details

the reader can refer to [Van77]. They pointed out, that there are certain problems

using the conventionell methods. There is the heterougenity of spatial data, the

required knowledge for the usage of these methods and the mostly complex user

interfaces.

In this study, they used different network configurations for the calculation of a

grade of suitability based on multi-dimensional information like slope or forest cov-

erage. Comparing the results with those from the conventional methods produced,
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they drew the conclusion that the ANNs are in this case more appropriate in deal-

ing with the inaccuracy of the data. In addition they mentioned that in their

opinion the user interface concerning the ANNs is less complex and less difficult

to use, because the main interaction of the user is the input of training data. As a

main result they pointed out that for them, the used ANNs are a real alternative

to the conventional methods.

Lee, Ryu, Won and Lee studied landslides in a corean area called Boun. In this

context they undertook a study where they used a special type of ANNs called

Backpropagation Networks (BPNs). Their goal was to detect susceptible areas

in which landslides can occur, using several information sources such as aerial

photographs, data on the soil type, timber cover and land use. The results they

obtained where published in 2003 in [Lee03]. With the available data, they trained

the BPN and made a susceptibility map of the regarded area using the network

data in combination with a GIS. To verify their results, they compared this map

with actual landslide occurrences. They used three different networks, each basing

on a different number of input factors such as slope, aspect and soil material,

and drew the conclusion that the network using eight factors is more suitable to

this case than the ones with fourteen or four factors. To determine which of the

fourteen factors were available to use, they used a certain algorithm described in

the article. As a main result they pointed out that the ANN they used can be

applied for effectively producing a susceptibility map in the regarded area and for

gaining qualitative results.

For the usage of wireless communication especially in Wireless Local Area Net-

works (WLAN), the electromagnetic coverage is essential. In this context, Şen,

Gümüşay, Kavas and Bulucu completed a study in 2008 on indoor radio wave

propagation using a GIS database and a BPN for interpolation. Therefore, they

used the electromagnetic field values of 1085 observation points and stored the data
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in the GIS database. The applied BPN uses the three dimensional coordinates of

the observation points and calculates a number that represents the intensity of

the electromagnetic field. To verify the results they divided the data into 672

observation points for the training and 413 points for testing. In addition, they

undertook a comparison of the results produced by the BPN and the results ob-

tained through a statistical interpolation method named kriging (for more details

refer e.g. to [Fah09], p. 331) and came to the conclusion, that both methods

produced suitable predictions, but the results of the kriging were more accurate.

However they drew the conclusion that the use of such a BPN is viable in this

context because of the underlaying learning algorithm, which allows an update of

the existing interpolation using new data easily.

This study is a good example to show the importance of a generalised description

of ANNs and has the ability to compare different models in a better way. A

generalisation of the BPN-algorithm is proposed in chapter 9 for extending its

capabilities.

3.1.3 General concepts of decision support systems

According to the introduction of [Tur00], DSS is nowadays becoming more and

more important, especially due to the possibility of providing access to databases

and web-based applications. In this subsection, basic information about DSS is

provided based on [Tur00].

People have to make decisions every day. Thereby, in most cases there has to

be a choice among several alternatives with the aim of achieving possibly the best

results for the regarded problem. The term “best” in this context depends strongly

on the problem, the available alternatives and the aims and abilities of the decision

maker respective to the decision maker. Turban et alt. mention ([Tur00], p.41):
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Figure 3.2: Phases of decision making ([Tur00], p.50)

“each discipline has its own set of assumptions about reality and methods. Each

also contributes a unique, valid view of how people make decisions. Finally, there

is a lot of variation in what constitutes a successful decision in practice.”

The process of decision making can be classified according to Simon ([Sim77]) in

four phases: intelligence, design, choice and implementation. In figure 3.2 the deci-

sion making process is illustrated. The intelligent phase includes the identification

of the problem and the formulation of the aim or aims that should be achieved.

Furthermore, the availability and quality of data is analysed. In [Tur00], p.54, it is

mentioned that the collection of data is one of the most difficult steps in analysis.

In the design phase, models are generated with look at possible alternatives. Ad-
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ditionally here, the principle of choice has to be selected to define criterions for the

evaluation of the model outcomes. At this point it should be decided what a model

has to accomplish and what restrictions can be accepted in the regarded context.

In the choice phase one or more of the found solutions are chosen. Thereby, a sen-

sitivity analysis to determine the robustness of the choices has to be performed.

Furthermore, a plan for implementation is made and realised in the next imple-

mentation phase. As illustrated in figure 3.2 the outcomes of implementation are

used as logical reasons to adapt the decision and possibly reiterate some of the

described phases to improve the results.

Turban et alt. describe in [Tur00], p. 27 et seqq., that computerisation of the deci-

sion process can improve it. On p. 23 et seqq. and additionally on p. 72 et seqq.,

how the single phases can be supported by different technologies and computerized

algorithms is described and methods from the field of Artificial Intelligence (AI)

are especially mentioned. This field is illustrated in figure 3.3, where three as-

pects are highlighted: experts systems, fuzzy logic and Artificial Neural Networks

among others relevant for the EWARS. In the course of this thesis, the terms fuzzy

logic (section 9.2) and Artificial Neural Networks (chapter 4) will be regarded in

more detail in the coherence of dealing with spatial data and particularly geocoded

mapping data. As mentioned in chapter 2, expert systems play an important role

in the EWARS.

Figure 3.4 illustrates important key characteristics and capabilities of Decision

Support Systems. Dealing with semistructured and unstructured problems men-

tioned in this figure will be realised within the description of the EWARS using

the advantages of Object Oriented Analysis described in chapter 5.

Basing on [Tur00], p.109 et seqq., the following subsystems of a DSS are important:

(DSS-S1) Data-management subsystem for storing and managing the relevant data.

22



3 Embedding in the context of current research

(DSS-S2) Model management subsystem managing necessary models from relevant sci-

entific fields.

(DSS-S3) User interface subsystem for managing the interaction with possible users.

(DSS-S4) Knowledge-based management subsystem supporting other subsystems as a

repository of expert knowledge or acting as an independent component.

Coherences between these subsystems are illustrated in figure 3.5.

Regarding the conception of the EWARS, an important component of the (DSS-S1)

is the Geographical Information System GRASS and the basing database, where

geocoded information is stored and administrated. Thereby, the database-type is

not restricted to the specific GRASS-database, but there is the possibility of using

other interfaces e.g. to a MySQL- or PostgreSQL-database. The elements within

the (DSS-S2) inter alia will be integrated as scripts (e.g. written in PHP or Perl)

accessable by appropriate web-interfaces which belong to the (DSS-S3). In section

9.4 of chapter 9, a component of the (DSS-S2) as a collection of Perl-scripts is

developed, which make use of the OpenSource softwares maxima and R interacting

with GRASS using the according web-interface. The expert knowledge within

the (DSS-S4) will be implemented using methods from fuzzy theory. Thereby,

geocoded mapping information, which can be handled with the methods developed

in chapter 9 of this thesis is generated.

3.1.4 Decision support in current research

Decision support and the developement of decision support systems plays an im-

portant role in current research concerning industry regarding the field of data

warehousing and also the field of epidemics and medical informatics.

In this subsection, there are mentioned representative examples from both fields.
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As it is described in [Nem02], DSS plays an important role in the context of data

warehousing within firms. The authors mention, that information is conventually

stored and provided by data warehouses, but that there also is a huge amount of

implicit knowledge that is not taken into account. So, they propose a so-called

knowledge warehouse, that “enhances retrieval and sharing knowledge across the

organisation.”

They deal with so-called knowledge management for retrieving explicit data basing

on impicit one. In this article, the regarded data is text data and the process of

knowledge management concerning this is described and proposed to be supported

by methods from the fields of IT and AI (a good overview of that field is illustrated

in figure 3.3).

The authors are regarding the following different phases of knowledge management:

Sharing tacit (implicit) knowledge, converting tacit knowledge to explicit knowl-

edge, converting explicit knowledge to new knowledge and learning new knowledge.

Thereby, methods from AI, especially ANNs (also see chapter 4), are proposed to

be used more or less within a certain phase. Exemplarily, in the phase of con-

verting explicit knowledge into new knowledge, methods for data clustering are

mentioned whereby the Kohonen algorithm (also see chapter 4) is one possibility.

As written down in the article, the main goal is to provide and/or propose an

“intelligent analysis platform” enhancing all phases of knowledge management.

In this proposition the inclusion of AI mathods should “amplify the cognitive

capabilities of the decision maker”. This knowledge warehouse is proposed there

as an extension of existing data warehouse systems like Warehouse 5.0 from SAP.

Yang et alt. published an interesting approach in [Yan07]. There, they propose a

DSS concept basing on the GIS ArcGIS using the technologies COM or additionally

DCOM, ASP and ActiveX for the prevention of epidemic deseases. It is especially
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highlighted the fact of inadequate integration of epidemic models in Geographical

Information System on which is mainly focussed in that article. In figure 3.6, there

proposed system configuration is illsutrated. There, the approach of implementing

epidemic models as SIS/SIR models using the Component Object Model (COM)

technology developed by Microsoft, is visible.

In a study for improving vector control programmes in Madagascar, Rakotomanana

et alt. draw the conclusion, that “a geographical information system is a poten-

tially valuable tool for decision-making and optimising interventions” (see [Rak07]).

3.2 Integration of this thesis

In this thesis, a SPATTB is proposed and described. This will be a part of the

Spatial Decision Support System EWARS that is developed within the project

Research Group Learning and Neurosciences (ReGLaN)-Health & Logistics (see

chapter 2). An important tool in this context is the GIS GRASS, that will be used

for the storage and the visual representation of the data. In common GIS software

like GRASS ([GRA10]), raster- and vector-data are managed and stored. With

vector-data, elements like boundaries, streets or cities can be represented, whereas

raster-data is used for describing continuous data such as the amount of pollutants

(x,y,p), the altitude (x,y,a) or the pH-value at any location (x,y) in the regarded

area (see [Lan07], p.45 et seqq.). But as described in chapter 2, the handling

of (x,y,f) as geocoded mapping information f : X −→ C at location (x,y) is

essential within the concept of the EWARS. In chapter 9 solutions for this problem

are developed and described. Therefore the approaches proposed and described

are innovative in this field and extend the ability of dealing with geocoded data

especially in the context of GIS-useage. In section 9.2, an algorithm from the

field of Artificial Neural Networks, that is classically used for the approximation
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of functional relationships basing on discrete vector data, is extended to gain

the ability of handling mapping information. A possibility of gaining continuous

statements about geocoded mapping information within a certain geographical

area is described in section 9.3. Thereby, geometrical methods from the field of

Computer Aided Design described in section 8.3 of chapter 8 are used.

To gain the ability of classify mapping information in clusters, the classical Kohonen-

algorithm (see section 4.3) is extended based on the propositions made in section

9.2.

There, methods from measure theory operating on mappings are used in a similar

way as when extending the approximation-algorithm as mentioned above.
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Figure 3.3: Overview of the scientific field of AI with possible applications

([Tur00], p.545, modified)
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Figure 3.4: Key characteristics and capabilities of DSS ([Tur00], p.107)
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Figure 3.5: Schematic view on subsystems of a DSS ([Tur00], p.109)
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Figure 3.6: Proposed system configuration ([Yan07])
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4.1 Historical development

In this section a description of the historical development of the field of Artificial

Neural Networks is given. According to [Zel96], p.23, artificial neural networks

can be described as systems for processing information, which consist of a more

or less huge number of atomic units called neurons.

In general, there are two main motivations to examinate this field. Many models

are based on biological models of the information processing of a mammal’s brain.

So some scientists tried to gain new knowledge on biological neural networks by

regarding connected artificial neurons.

Another motivation is based on the fact that artificial neural networks can be re-

garded and treated as massively parallel systems which can be used as a special

kind of algorithms in different fields of science such as physics, informatics, bioin-

formatics and mathematics. This connection of different scientific fields with the

field of artificial neural networks is described in [Zel96], pp.23-24.

Zell mentions the ability of “learning” as a main feature of an ANN which is

the main reason for the huge amount of possible applications. Some learning

algorithms will be part of the next section.

The following summary of the historical development of ANNs is based on the
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description in [Zel96], pp.28-33.

Neural networks are not only used from the perspective of mathematicians, many

scientific areas can use them for research in their respective fields. Thus the models

partially orientate themselves to the biological model, which is why biologists,

psychologists and doctors can use particulary similar models to better understand

biological neural networks.

Besides information scientists use neural networks as massively parallel algorithms

for carrying out many arithmetic steps at the same time. Physicists use them to

gain the ability to better describe complicated functional coherences of physical

models. In this possibility where neural networks are considered as functions,

mathematics is also interested. It is for this reason that it is even more exactly

entered in this thesis on neural networks. In addition, certain neural networks

are able to learn using training patterns and thus a special meaning comes into

consideration of suitable learning algorithms (compare [Zel96], p. 23-24).

The development of neural networks since 1943 will now be described. In this

year, the article “A Logical Calculus of the Ideas Immanent in Nervous Activity”

was published by McCulloch and Pitts in the journal Bulletin of Mathematical

Biology ([McC43]), which describes a model that is able to represent every limited

boolean function ([Pat00], p. 22). Some years later (1949) Hebb published a theory

where the connection of two nerve cells becomes stronger, if the synaptic activity

becomes bigger. This is called ”‘Hebb’s learning rule”’.

To simulate the processing of sensory inputs, Rosenblatt developed a special form

of neural networks, so-called Perceptrons. He published his knowledge in 1958

([Ros58]). The basic construction exists of a layer which takes up photo-sensory

inputs and passes them to a processing layer. Aside from this, different connections

of the nerve cells of the input layer exist with those of the processing layer. Over
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these connections, signals are passed on and compared by the respective nerve cells

of the processing layer to a threshold value. If the signal is big enough, 1 is passed

on to the so-called output layer, otherwise 0. Then, the nerve cells of the output

layer calculate the output of the whole neural network ([Pat00], S.23).

Moreover, Rosenblatt developed a learning algorithm for the Perceptron, which

allows the learning of certain outputs. The discoveries of this time enabled many

scientists to suppose that thereby the bases of self-learning systems were already

known.

Nevertheless, this acceptance was disproved in the book Perceptrons by Minsky

and Papert ([Min69]). They carried out an exact mathematical analysis of this

kind of neural networks and showed that they cannot solve many problems at all,

especially the so-called “XOR-problem”. The interest in the field of research of

the neural networks thereby decreased and many scientists turned to other areas.

However, some did not cease their research and thus compiled the base for many

models that were developed later. At this point, only some of them should be

named. The delta rule developed by Widrow and Hoff is a specialised case of

the Backpropagation Network-algorithm, which will be looked at in more detail

further below.

The mathematician Teuvo Kohonen published works about the so-called self-

organising maps which can adapt themselves by unsupervised learning indepen-

dently to different input patterns (compares [Zel96], p. 31). The different pos-

sibilities of the learning with neural networks are explained in [Zel96], p.93 et

seqq.

Rumelhart and Hinton made an important contribution to today’s interest in neu-

ral networks with the publication of the Backpropagation rule in 1986 ([RHW86]).

This was already discovered some years before (1974) by Werbos in his thesis
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([Wer74]), but was not perceived until later by a broader public. By this algo-

rithm it was possible to also solve some of the problems which could not be solved

by the Perceptrons ([Pat00], p. 25).

Newer research deals with the recognition of patterns, for example Fukushima

and his colleagues developed the so-called Neokognitron which is able to process

handwritten texts. Another example is the ability of robots to orientate themselves

in the available space (compare [N.91], p. 6).

4.2 Fundamental mathematical modeling of

Artificial Neural Networks based on Biological

Neural Networks

In this section, the fundamental ideas and approaches of assigning the concepts

of Biological Neural Networks (BNNs) to ANNs are presented. In this regard,

the term modeling plays a decisive role. Hence, in the first part of this section,

information about modeling in science is pointed out whereupon the application

to ANNs is regarded.

According to [Imb03], p.4-9, the term model is in close connection to the term

system. In ancient Greek, the word syśtema stands for integrated whole, which

means a combination of different elements and processes, that are naturally given

or human made. In this context, the system boundary is important but also are

the inner relations of the regarded system. The following quote illustrates this in

a significant way: “A system is more than its elements sum” ([Imb03], p.4).

Systems can be very simple but also very complex. An example in the context of

this thesis is the health system in rural areas, which contains complicated inner
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relations. Important in this section are Biological Neural Networks as part of the

human brain and the dealing with information within them.

To analyse systems, models can be used. In [Tur00], p.47, it is said that:“Models

can represent systems or problems with various degrees of abstraction”. Imboden

and Koch ([Imb03], p.8) illustrate the relationship between a system and a model

with the association of glasses. A model is the glasses we use for regarding a

system. Obviously, there is not only one possible model for a certain system.

The construction of the model eachtime is related to the point of view or the

perspective of the creators and their meanings. So when modeling a health system,

a very rough point of view can consist in only considering the number of treated

persons. An even finer model would take the different layers of this system and

their relationship into account.

With regard to a Biological Neural Network (BNN), it is similar. A “simple”

model would for example only regard the input of information and the reaction

of the whole network. But if the inner computation of this network is taken into

account, the model would be more complex.

If mathematics are used to develop a model, one could name it a mathematical

model.

The stages of mathematical modeling are clearly arranged as illustrated by figure

4.1.

For more information about mathematical modeling regarding applications in eco-

logics and economics, refer to [Son01] and [Kra97].

At this point, basic information about the biological information processing in

neurons and BNNs are described following a possibility of modeling some of these

coherences in terms of Artificial Neural Networks.

Biological neurons are used for gathering information, processing and trans-
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Figure 4.1: Modeling cycle ([Blu05])

porting it. An important part of each neuron is the so-called soma (cell body),

which contains the nucleus and is responsible for the cellular metabolism. From

the soma, the neurits starts. These are thin appendages and they are divided into

the two main categories of dendrites and axons. Dendrites are branched out.

Their task is it to get signals from other neurons and lead them to the soma. Af-

ter processing, signals are transported from the soma by the axons. The bundled

Figure 4.2: Different occurrences of nerve cells ([G.99], S. 48)
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Figure 4.3: Important components of a nerve cell ([G.99], p. 92, modified)

up axons which leave the central nervous system and move through the body are

called nerves (see [R.00], p. 133). Different types of neurons are shown in figure

4.2 and the most important parts of a single neuron can be found in figure 4.3.

The equilibrium rest potential of the membrane denotes a voltage (70-90

mV) between the inner and the surface of the cell. This is a reason for an asym-

metrical ion distribution between both rooms. Ions are electrically loaded particles

which originate from the atoms that take up electrons or deliver them. Moreover,

the permeability of the membrane is differen for different kinds of ions. Aside

from this, the concentration of the K+-ions and the protein-ions is greater in the

inner than in the outer where the concentration of Na+- and Cl−-ions is greater.

This different ion distribution originates from the fact that an equilibrium appears

between the existing concentration slope and the counter-acting electric potential.

The rest potential is formed by the equilibria of the involved ions and the respec-

tive concentration gradients are maintained by the ion pumps. Nerve cells and
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other cells have the ability to bring on a so-called action potential ([R.00], p. 152).

This consists of a short depolarisation up to possibly 30 mV and the following re-

polarisation. Thereby, a posthyperpolarisation appears, before the rest potential

appears again. In addition, the passed on information is encoded by the frequency

and the unloading pattern.

For a nerve cell to pass on a stimulus, the nerve cell must be depolarised strongly

enough so that a threshold value is crossed and an action potential can be gener-

ated. With weak stimuli no action potential is brought on because the threshold

value is not crossed. Numerous Na+ canals on the body and the axon hill are

opened by the incoming action potential by which the conductivity of the mem-

brane is increased to Na+. Through this Na+ follows the concentration gradient

by which another depolarisation takes place and therefore increasingly Na+ canals

are opened. This is called the Hodgkin cycle. The whole process forms the be-

haviourdepolarisation phase of the action potential (see [H.96], p.132-160).

After the aperture of the Na+ canals, the K+ canals are activated with a short

delay and at the same, time the Na+ canals are closed. This leads to the fact, that

K+ flows out outwardly. Through this, the membrane potential becomes negative

again. One calls this process the repolarisation-phase of the action potential. The

activation of the K+-and the deactivation of the Na+ canals continues for some

milli-seconds, then the Na+ canals return in an activatable and closed state, the

K+ canals shut but nevertheless do not become inactive. The control of the K+-

and the Na+ canals is dependent on the actual voltage.

Often it still comes to a posthyperpolarisation by which for a short time no other

action potential can be brought on, because the Na+ canals are still inactive. This

is called an absolute refractory period.

An action potential is passed on within an axon as follows (see figure 4.4). Within
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the axon it comes to local currents beginning at the location where only just an

action potential appears. These are then passed outwardly and are led back by

the K+ canals. Through this a depolarisation appears in the neighbouring areas

of the membrane by which an action potential is also brought on. By the period

of absolute refractory it is prevented that an action potential can be passed on in

the opposite direction (compare [R.00], pp.134-170).

In the course of the evolution, the original axons without a mark which own no

boundary have developed themselves into myelinated fibres. These are surrounded

by the so-called myelin sheath which are separated by the nodes of Ranvier. This

development is important for the quick excitation forwarding in the vertebrates

brain.

Within the group of vertebrates a quick further pipe of the action potential is

possible with the myelinated axons. The myelin sheaths have a big ohmic resistor

by which the electrotonic propagation within an axon is improved. Therefore,

a depolarisation can only appear on the nodes of the Ranvier lying in between.

Through this, the so-called saltatoric conduction of impulses occurs.

Now after considering of the forwarding of information by a nerve cell, it should

be explained how this information is transferred between the nerve cells. It was

identified, that no direct connection exists between the axon of a nerve cell and

the dendrite or the cell membrane of another nerve cell, but that at this point

a small space exists. This crossing of two nerve cells is called chemical synapse

and consists of the membrane of the first nerve cell (presynaptic membrane), the

space itself (synaptic gap) and the membrane of the second nerve cell (postsynaptic

membrane). At this point, the electric signal passed on in the axon is converted

into a chemical one. This separation causes the transport of information to always

be directed. Based on [G.99], p.91 these synapses are additionally perceived to

undertake the task of learning and minding, because it has been identified that

39



4 Artificial Neural Networks

Figure 4.4: Action potential within an axon ([R.00], p. 168, modified)
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through frequent use a lighter forwarding of information takes place.

At the end of the axons there exists a so-called synaptic end, which covers numerous

vesicles with chemical carrier substances. If an action potential comes to this

point, then the amount of Ca2+ increases in this area. This leads to the fact,

that the vesicles do melt with the presynaptic membrane and deliver the carrier

substances in the synaptic gap. These the reach the postsynaptic membrane, where

receptors are present. These are connection places to which fitting molecules can

attach themselves. If the carrier substances reach the receptors, this leads to a

change of the second nerve cell’s potential, and exciting and restraining synapses

are distinguished. A depolarisation (excitatory postsynaptic potential, EPSP)

occurs through exciting synapses by which an action potential can be released

in the second neuron. By restraining synapses, a hyperpolarisation (inhibitory

postsynaptic potential, IPSP) occurs, which complicates the release of an action

potential (compare [G.99], p.94-95). The charging of the different synapses is

shown in figure 4.5.

At the dendrites or the cell membrane of a nerve cell generally more than one

synapse exists. By the cooperation of exciting and restraining synapses, it is

decided whether an action potential is brought on, or not. Moreover, the size of

the action potential is dependent on this process. Through these mechanisms it

is possible that a complicated forwarding and processing of information can occur

through the boarding of many nerve cells. An example of this is the retina of the

eye which is shown in figure 4.6. At this point, information is taken up perpetually

over sensors and is processed over a nerve cell network.

41



4 Artificial Neural Networks

Figure 4.5: Chemical synapse ([Sil09], p. 51)
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Figure 4.6: Nerve cell network of the human eye retina ([Sil09], p. 351)
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A possibility of modeling ANNs with respect to the biological coherences as used

by many authors is now described based on [Zel96].

As with the biological model, the atomic units of ANNs should also be called nerve

cells or neurons. Some authors use the terms cells or processing element.

These nerve cells have to take up information, process it and then pass it on.

Because of this fact, a necessarity for input elements which have the same function

as the dendrites exists. These elements connect the nerve cell with other cells and

take up information. It is important that these connections are directed and that

the nerve cell can only take up information from the entrances . These entrances

should be illustrated by lines.

The nerve cell calculates from the entrances value which is passed on by a di-

rected connection to other nerve cells, it can be connected with a finite number

of other nerve cells. The biological nerve cells are connected with each other by

the synapses. With the forwarding of information single nerve cells can work

by restraining or exciting others. This process which is steered in the biological

model through the amount of chemical transmitters and the size of the respective

synapse is realised in the mathematical model with weights assigned to the suitable

connections.

Figure 4.7 illustrates the coherence of input, processing and output. This processing

is looked at in more detail in the following. According to [Zel96], p.72 et seqq.,

three different mappings classically used, a propagation-mapping, an activation-

mapping and an output-mapping. Often one of the last two mappings is the identic

mapping, but for some applications the flexibility of having two different mappings

is necessary. Regarding an nerve cell Nj with I inputs, I ∈ N, the following

definitions can be given.
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Input Processing Output

Figure 4.7: Input, processing and output in general

net : RI × RI −→ R

(Oj,Wj) 7→ net (Oj,Wj)

with

net (Oj,Wj) (s) =
I∑
ĩ=1

oĩ (s) · wĩj (s) (4.1)

Thereby Oj represents a vector of input information with I components also-called

the input-vector. Wj contains the particular weights of the connections and is called

the weight-vector. The s ∈ N0 represents the actual step of iteration, which is

necessary to enable the distinguishment of the different steps. In the following this

should be omitted to gain a clear arrangement. For a shorter notation of the value

of the propagation-mapping, the following is used in the context of neuron Nj:

netj (s) =
I∑
ĩ=1

oĩ (s) · wĩj (s) (4.2)
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The following definition of the activation-mapping is given:

fact : R −→ R

x 7→ fact (x)

with

fact (netj (s)) = aj (s) (4.3)

Thereby, the codomain can often be restricted to a finite interval. The output-

mapping is defined in a similar way:

fout : R −→ R

x 7→ fout (x)

with

fout (aj (s)) = oj (s) (4.4)

According to [Kra91], pp.24 - 25, the generated state of activation can be classified

in the following way:

1. Discrete state of activation

• binary: {0, 1}, {−1, 1}

• non-binary: {−1, 0, 1}, {−100, . . . , 100}

2. Continuous state of activation

• infinite: R

• finite intervals: [0, 1], [−1, 1]
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The following four mappings in oarticular should be mentioned at this point:

fact1 : R −→ R

x 7→ fact1 (x) :=

 0 for x < θj

1 for x ≥ θj

fact2 : R −→ R

x 7→ fact2 (x) :=


−1 for x < −0, 5 · π

sin (x) for − 0, 5 · π ≤ x < 0, 5 · π

1 for x ≥ 0, 5 · π

fact3 : R −→ R

x 7→ fact3 (x) := tanh (x) = ex−e−x
ex+e−x

fact4 : R −→ R

x 7→ fact4 (x) := 1
1 + e−x

The coherences of the different mappings within an artificial nerve cell are illus-

trated in figure 4.8.

Alltogether, the processing of information of a nerve cell consists of the network

input, the state of activation and the output. Such a nerve cell is only one small

elementary component of a neural network. By the description of ANNs, different

topologies can be used according to the use. Here the term topology means the

connectivity structure of the nerve cells.

ANNs can be described with respect to the connectivity structure and the relation-

ships between the single neurons using terms and coherences from graph theory.

At this point, some basic coherences of graph theory are described and then these

methods are applied to the Artificial Neural Networks.
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net  j=∑i=1
3 ei⋅wi act  j = f act net  j  out  j = f out act  j 

e1

e2

e3

w1

w2

w3

Neuron j

Figure 4.8: Coherence of the propagation-, activation- and output-mapping
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Based on [Bal00], pp. 2-3, a graph can be defined and characterised in the follow-

ing way:

Definition 4.2.1 (Graph)

A graph is an ordered triple G = (V (G) , E (G) , IG), where V (G) is a no-

nempty set, E (G) is a set disjoint from V (G), and IG is an incidence map

that associates with each element of E (G), an unordered pair of elements (same

or distinct) of V (G). Elements of V (G) are called the vertices (or nodes or

points) of G, and elements of E (G) are called the edges (or lines) of G. If, for

the edge e of G, IG (e) = {u, v} is valid, the notation IG (e) = uv is used.

Definition 4.2.2 (Characterisation of a graph)

In this definition, some characteristic terms describing a graph are listed.

(1) End or End vertex: If IG (e) = uv, then the vertices u and v are called

end vertices of the edge e.

(2) Incidence: If u and v are the end vertices of the edge e, they are denoted

as incident with e.

(3) Parallelism: If a set of two or more edges have the same ends, these edges

are called multiple or parallel edges.

(4) Adjacency:

• A pair of vertices u and v is called adjacent in G, if, and only if, there

is an edge in G with u and v as its ends.

• A pair of distinct edges e and f is called adjacent in G, if, and only

if, there exists a common end vertex.

(5) Loop: An edge e is called loop, if IG (e) = uu.

(6) Simple graph: A graph is called simple, if there are no loops and multiple
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edges.

According to [Bal00], p. 3, a graph can be represented by a digram, where, the

vertices are drawn as points and the edges as connections joining the vertices. This

representation allows a visualised overview of the described issue using a graph.

Definition 4.2.3 (Finiteness, order and size of a graph)

If both, V (G) and E (G) are finite, a graph is called finite graph. A graph, that

is not finite is called an infinite graph.

The number o (G) of vertices of a graph is called the order of this graph, the

number s (G) of edges is called the size of this graph.

A special form of graphs are the so-called digraphs (see [Nie05], p.24). where for

every edge a direction is set. In addition, the possibility to assign a number, the

so-called weight to every edge exists. Such graphs are then called directed weighted

graphs. This kind of graphs play an important role for describing BPNs.

To maintain the overview about the connecting structure with regard to even more

complicated graphs, the existing connections can be represented in a scheme called

adjacency matrix (compare [Nie05], p.7). If no weights exist, a 1 is put down for

every available connection, otherwise a 0. Here, every column represents a vertex

and the connection to other vertices is represented by the particular rows. If the

edges are weighted, the suitable weights are put down, instead. With directed

graphs the connection is put down only for the vertex from which the edge starts.

A graph and the suitable adjacency matrix are shown in figure 4.9.

As already described neural networks consisting of single neurons are characterised

by a network input, an activation function and an output function. The whole

data processing of a neural network can be adapted by different arrangements and

different kinds of connections. Further, the nerve cells are summarised within most
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Figure 4.9: Directed weigthened graph and according adjacency matrix

models to so-called layers. The first of the layers is often called the input layer

and the last one the output layer. All other layers which are localised between

them are the so-called hidden layers. Common topologies are illustrated in figure

4.10.

Adaptivity of an Artificial Neural Network to a given situation can be realised

by learning procedures to a certain grade. In this respect, three main models

have been developed, the supervised learning, the encouraging learning and the

unsupervised learning (compare [Pat00], p.42). Besides, the nerve cells of the input

layer receive an input. The totality of these inputs which appear together is called

the input pattern.

Supervised learning: With this form of learning a suitable expected output pat-

tern exists for each of the used input patterns. One would like to reach the

point where the neural network adapts itself during the learning process in

such a way that one possibly receives the suitable output pattern or approx-

imately this pattern. Here, a teacher who gives the input patterns and the

expected output patterns to the neural network is necessary. Then from
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Figure 4.10: Network topologies ([Zel96], p. 79, modified)
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the input patterns the generated outputs are compared to the expected out-

puts. This comparison can be realised by an error-function which calculates

the difference between the expected ones and the preserved outputs. Such

functions will be looked at further.

If the difference has been calculated, this is the used with the regarded

learning procedure to adapt the components of the neural network.

A realisation of this learning-type is the so-called Backpropagation rule which

is explained in more detail in the following section.

Encouraging learning: The encouraging learning is characterised by the fact that

the neural network does not know the expected issue pattern. The teacher

gives only instructions, while the weights of the components which have

calculated a good issue become bigger, the others smaller.

Unsupervised learning: With this form of learning, the neural network does not

know the expected issue pattern and there is also no teacher. The learning

process now consists because of the fact that the neural network adapts its

components to the input patterns and their structure. A learning proce-

dure from this group is the so-called Kohonen algorithm (see further below).

Further, with every step of the iteration the weights of the nerve cell which

has the biggest state of activation in terms of the actual input pattern are

adapted following a certain rule.

4.3 Description of the relevant models for this thesis

In literature, a huge amount of ANN-models are described and there are many

possibilities for classification. At this point, a possible hierarchical structure con-

cerning the basing topology and processing algorithm is discussed. A concise
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overview at this structure is provided in figure 4.11. This structure is only a pro-

posal and theoretically, the layers shown in figure 4.11 can be arranged in another

way.

Figure 4.11: Hierarchical structures of ANNs. Abbreviations: syn: synchronous

activation, asyn: asynchronous activation, sl: supervised learning,

ul: unsupervised learning, rl: reinforced learning

Based on [Zel96], pp.71-96, there are pointed out three main hierarchical layers

concerning ANNs are pointed out, the network topology, the way of activation

and the used learning strategy.

The network topology can be classified into feed-forward-networks and feedback-

networks.

There are two main application fields of ANNs, approximation and classifica-

tion. In this section the ANN-models that are directly associated with this thesis

are looked at. The so-called Backpropagation Networks are representatives of ap-

proximating networks. These networks are regarded and extended in the context

of mathematical measure-theory in chapter 9 to describe their characteristics in
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the face of usage and applicability in the SPATTB.

The second model are the so-called Kohonen Networks (KNs), which can be used

for classification. For this model an explicit application that has been programmed

as a prototype by the author in the context of the EWARS is described and further

addressed in chapter 9.

The classification of these two network types with respect to the hierarchical struc-

ture described in section 4.2 is shown in figure 4.12.

Figure 4.12: Classification of the BPNs and the KNs in the regarded hierarchical

structure

4.3.1 Backpropagation Networks

Backpropagation Network are multi-layer feed-forward-networks connected by layer

and trained with the Backpropagation-algorithm. This algorithm should be de-

scribed in the following. The aim of the training is to get a network representing

pairs of input-vectors and desired output-vectors using the according de facto
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output-vectors. Thereby, a decreasing of the generated error is aspired.

The idea of the Backpropagation Network-algorithm has been published in the

dissertation of Paul Werbos in 1974 ([Wer74]) the first time, but it only attracted

interest with the publication of Rumelhart et alt. in the journal Nature ([RHW86].

For describing the processing within this kind of networks, the number of so-called

trainable layers is called n ∈ N. Thereby, the regarded network has n+ 1 layers,

whose connections can be represented by n adjacency matrices, if the network is

regarded as directed weigthened graph. Such a network is illustrated in figure 4.13.

The usage of adjacency matrices leads to a more clearer representation. Addi-

tionally, the calculation of the output of the whole network can be managed more

easier. In figure 4.14, the first adjacency matrix of a Multi-layer feed-forward-

network (MLFFN) is illustrated. There, the number of the layer is realised by su-

perscription. The according adjacency matrices should then be denoted as weight

matrices.

In general, weight matrices should be denoted in this thesis in the following way:

Wĩ,̃i+1 (s)

Thereby, ĩ is the position of the first layer, ĩ+1 th one of the second layer counting

in terms of figure 4.13.

In the example shown in figure 4.14, r represents the number of neurons in the

first layer, s the one in the second layer. The following s× r -matrix is generated

W1,2 =


wN1

1 ,N
2
1

wN1
2 ,N

2
1

. . . wN1
r ,N

2
1

...
...

. . .
...

wN1
1 ,N

2
s

wN1
2 ,N

2
s

. . . wN1
r ,N

2
s

 (4.5)
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Figure 4.13: Multi-layer feed-forward-network
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Figure 4.14: Adjacency scheme for generating the first weight matrix
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Regarding the input-vector oL1, the following value of propagation can be calcu-

lated:

W1,2oL1 =


wN1

1 ,N
2
1

wN1
2 ,N

2
1

. . . wN1
r ,N

2
1

...
...

. . .
...

wN1
1 ,N

2
s

wN1
2 ,N

2
s

. . . wN1
r ,N

2
s




oN1
1

...

oN1
r



=


oN1

1
wN1

1 ,N
2
1

+ oN1
2
wN1

2 ,N
2
1

+ . . .+ oN1
r
wN1

r ,N
2
1

...

oN1
1
wN1

1 ,N
2
s

+ oN1
2
wN1

2 ,N
2
s

+ . . .+ oN1
r
wN1

r ,N
2
s



=


r∑
i=1

oN1
i
wN1

i ,N
2
1

...
r∑
i=1

oN1
i
wN1

i ,N
2
s

 =


netN2

1

...

netN2
s


For calculating the output of the n + 1 different layers, the following mapping

F
mĩ+1
ges , ĩ ∈ {1, . . . , n} is defined:

F
mĩ+1

act Rmĩ+1 −→ Rmĩ+1
x1

...

xmĩ+1

 −→ F j̃
act




x1

...

xmĩ+1


 =


fact (x1)

...

fact

(
xmĩ+1

)


and
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F
mĩ+1

out : Rmĩ+1 −→ Rmĩ+1
x1

...

xmĩ+1

 −→ F j̃
out




x1

...

xmĩ+1


 =


fout (x1)

...

fout

(
xmĩ+1

)


Here, mĩ+1 represents the number of neurons in layer ĩ+ 1.

Finally,

F
mĩ+1
ges := F

mĩ+1

out ◦ F
mĩ+1

act

is defined with:

F
mĩ+1
ges : Rmĩ+1 −→ Rmĩ+1

x1

...

xmĩ+1

 −→ F j̃
ges




x1

...

xmĩ+1


 = F j̃

out

Fmĩ+1

act


x1

...

xmĩ+1




After describing the calculation of the output of a MLFFN, there should be given

a description of calculating output errors with regard to the BPN-algorithm.

Because these networks should be used for the approximation of more or less

complicated unknown functions, the coherence between actual output and desired

output has to be regarded. Besides, the input lies in the domain of the unknown

mapping and the output in the codomain. Such a network exactly then has an

optimum compound of the weights, when it calculates the desired output fitting

to the according input. Nevertheless, this will not be generally the case. Even

more it is necessary to use procedures which approximate this state as good as

possible. Thereby, the network is enabled to approximately learn the function.
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The possibilities which components can be changed with such a learning process

were already described. Besides, with the learning procedure basing on the BPN-

algorithm, the topology of the network will maintain. The learning consists in the

fact that the weights of the connections change with every learning step and the

neural network adapts in this way.

So that one can apply such a procedure, it is necessary to know whether and

how the preserved outputs deviate from the expected ones. Then this difference

between preserved and expected output is the mistake which the neural network

makes with the image of the suitable input. How this mistake can be calculated,

is further described in this segment.

If one liked to represent a functional coherence with a neural network, one knows

only an finite amount of inputs and their images, the expected outputs. One

can summarise this into a set of tuples with two components in each case. The

first component is the input and the second one the suitable output. This set is

often divided into a so-called training set and a testing-set. Then, the training is

done with the training-set and after that, the adapted network is tested with the

testing-set.

The following assumptions are made:

P̃ is the number of trainings-patterns.

tP is the desired output-vector of pattern P.

oP is the actual output-vector according to the input-vector oP1 , P ∈
{

1, . . . , P̃
}

.

The training-set T is then the following:

T :=
{(
o1

1, t
1
)
, . . . ,

(
oP̃1 , t

P̃
)}

.

With this, the following error-mapping E is defined:
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E : Rm1 × Rmn+1 −→ R(
tP , oP

)
7→ E

(
tP , oP

)
:= 1

2

mn+1∑̃
j=1

(
tP
j̃
− oP

j̃

)2

Abbreviative, EP is used instead of E
(
tP , oP

)
.

If one liked to receive, nevertheless, an information about the whole amount in

training patterns, it is necessary to summarise the respective errors with another

mapping. An easy possibility consists in forming the sum from the calculated

values.

Eg :=
P̃∑
P=1

EP

=
P̃∑
P=1

1

2

mn+1∑
j̃=1

(
tP
j̃
− oP

j̃

)2

(4.6)

The Backpropagation Network-algorithm is used to minimise the error in the con-

text of feed forward networks with an set of training patterns. Besides, a gradient-

descent procedure is applied.

Thereby, the function E is regarded as a function of the weights of the respective

neural network. At last, these weights are the parameters in a neural network

which form the basis for the calculation of the respective outputs.

To minimise the originating error between expected output and preserved output,

the weights must be changed accordingly. Besides, one receives from the number

of these weights the dimension of the domain. The dimension of the codomain is
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one. The whole number of the weights should be denoted as nwhole. With this, the

mapping E can be described in the following way:

E : Rnwhole −→ R


w1

...

wnwhole

 −→ E




w1

...

wnwhole




Besides, the weight w1 describes the first weight of the neural network. The vector

which summarizes all weights is called weight vector. The remaining components

of the weight vector consists of the remaining weights which are arranged in order

by the input layer up to the output layer.

With the calculation of EP , the respective weights play a big role, because with

other weights one becomes generally also another error for the tuple
(
tP , oP

)
.

Regarding MLFFN, differentiability of the mapping E is necessary because of the

applied gradient-descent processing. This differentiability is given using differen-

tiable component mappings. According to [Zel96]), therefore often the activating

mapping is the identity and the output-mapping is a sigmoid mapping, exemplarily

the logistic mapping defined in 4.2.

The error should be minimised by the fact that the gradient from the partial

derivatives is calculated with respect to the weights of the neural network. With

two-layer networks there is only one layer of trainable weights which are used for

processing the network output directly. If more than one layer of weights exists,

one receives for every hidden layer an output. Then from the output of the last of

these layers and the last weight matrix, the output of the whole neural network is

calculated. Hence, the partial derivatives can be calculated only for the weights in

the last weight matrix directely. The other partial derivatives have to be calculated
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Figure 4.15: Situation within a BPN

using the already calculated partial derivatives of the following layer.

So, the calculation can be described in the following way:

∂EP
∂wij

=

∂ 1
2

mn+1∑̃
j=1

(
tP
j̃
− oP

j̃

)2

∂wij

=
∂ 1

2

((
tP1 − oP1

)2
+ . . .+

(
tPj − oPj

)2
+ . . .+

(
tPml − o

P
ml

)2
)

∂wij

=
∂ 1

2

(
tP1 − oP1

)2
+ . . .+ 1

2

(
tPj − oPj

)2
+ . . .+ 1

2

(
tPml − o

P
ml

)2

∂wij

=

(
∂ 1

2

(
tP1 − oP1

)2

∂wij
+ . . .+

∂ 1
2

(
tPj − oPj

)2

∂wij
+ . . .+

∂ 1
2

(
tPml − o

P
ml

)2

∂wij

)

64



4 Artificial Neural Networks

=

(
0 + . . .+

∂ 1
2

(
tPj − oPj

)2

∂wij
+ . . .+ 0

)

=
∂ 1

2

(
tPj − oPj

)2

∂wij

(∗)
=

∂ 1
2

(
yPj
)2

∂yPj

∂yPj
∂wij
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∂ 1

2

(
yPj
)2

∂yPj

∂
(
tPj − oPj
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∂oPj

∂oPj
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(
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∂fout
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∂
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oP
ĩ
wĩj

)
∂wij
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′
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(
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) ∂ (oP1 w1j + . . .+ oPi wij + . . .+ oPmnwmnj
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∂wij
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′
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)(∂oP1 w1j
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Figure 4.16: Weight within the last but one trainable layer

(∗∗)
= −δPjoBo

P
i (4.7)

(∗) := yPj := tPj − oPj , j ∈ {1, . . . , n+ 1}

(∗∗) := δPjoB :=
(
tPj − oPj

)
f
′
out

(
netPj

)
Using the variables δPjoB the o marks, that the regarded weight wij belongs to the

last weight matrix. B means that the Backpropagation rule is applied.

If one looks, nevertheless, at a weight wîĵ with which the nerve cell i and the nerve

cell j are in two hidden layers following on each other, then the partial derivatives

cannot be calculated directly.

If one considers j as a nerve cell of the last hidden layer, this is connected with

all nerve cells of the output layer. By a change of the weight wîĵ the outputs

of the nerve cells of the output layer change accordingly. The calculation of the

particular partial derivatives can be done in the following way:
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∂EP
∂wîĵ

=
∂ 1

2

((
tP1 − oP1

)2
+ . . .+

(
tPj − oPj

)2
+ . . .+

(
tPml − o

P
ml

)2
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∂wîĵ
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∂ 1

2
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∂f1
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∂wîĵ

)

=

mn+1∑
k=1

(
∂ 1

2

(
yPk
)2

∂yPk

∂
(
tPk − oPk

)
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∂
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∂wîĵ
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
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mn+1∑
k=1
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′
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′
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netPj

)
oPi

=

mn+1∑
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(
−
(
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f
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out

(
netPk
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wjk
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netPj
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=
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(∗∗∗∗)
= δP

′

jhB
oPi (4.8)

(∗ ∗ ∗) := yPk := tPk − oPk , k ∈ {1, . . . , n}

(∗ ∗ ∗∗) := δP
′

jhB
:=

mn+1∑
k=1

(
δPkaBwjk

)
f
′
out

(
netPj

)
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Within the variable δP
′

jhB
, h marks, that the weight wij belongs to a connection of

two neurons lying in two neighbouring hidden layers.

The δ - components of the weights between the hidden layers should be defined in

general and not only for the layers n− 1 and n by the following:

δPjB :=
∑
k

(
δPkBwjk

)
f
′

out

(
netPj

)
Using the Backpropagation Network-rule, the particular partial derivations of the

error-mapping with respect to the single weights can be calculated. With them,

the according gradient-vector can be constructed. In the following, some coher-

ences of minimization methods and especially the algorithm of gradient-descent

are described. The term extremum of a mapping with n-dimensional domain and

one-dimensional codomain can be defined as follows (see [Neu93], p.163).
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Definition 4.3.1

Let

F : U −→ R
x1

...

xn

 −→ F




x1

...

xn




an arbitrary mapping with U ⊂ Rn. Furthermore, let x, x0 ∈ U be arbitrarily

chosen.

Then, the mapping has

1. a locale maximum in x0, if the following is valid:

∃
ε>0

: Bε (x0) ⊂ U , with

∀
x ∈Bε(x0)

: F (x) ≤ F (x0)

2. a locale minimum in x0, if the following is valid:

∃
ε>0

: Bε (x0) ⊂ U , with

∀
x ∈Bε(x0)

: F (x) ≥ F (x0)

If thereby < or > are valid, there exists a strict locale maximum or minimum in

the regarded point.

Clearly regarded, every partial derivation is equal to zero at a maximum or mini-

mum. This coherence is described in the following theorem.

Theorem 4.3.1

Let U ⊂ Rn be an open subset and F : U −→ R partial differentiable. If this

mapping then has a local maximum or minimum in x0 ∈ U the following is valid:

∂F (x0)
∂xi

= 0 for i ∈ {1, . . . , n}, also gradF (x0) = 0.
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Thereby one receives a necessary condition for the existence of a local maximum

or minimum. However, this is insufficient, because the gradient can becomes zero

also at other places on which is entered in the other course.

At this point procedures should be explained by which it is possible to move bit by

bit in the direction of the negative gradient and to reach thus to a local minimum.

The mappings used in this section should be differentiable at least one time at the

regarded element of the domain.

Following [C.99], p. 1 one understands by an unrestringieated minimization prob-

lem the task to get a point xM ∈ U for which is valid:

∀ x ∈ U : F (xM) ≤ F (x)

In general one can distinguish in numerical mathematics direct searching proce-

dures or searching procedures which use locale information about the gradient.

Besides, the second group shows a better convergence and reaches in many cases

to a local minimum (compare [P.93], p. 91).

Methods from the group of the direct searching procedures are applied according to

[A.00], p.316 on the not differentiateable functions or on such whose differentiation

is complicated. Moreover, it is possible to receive by this one start value for

applying methods from the second group.

These consists in methods, where starting from a point x0 ∈ U a direction of

decreasing values of mapping is followed. Thereby, a sequence (xk)k is generated

basing on the following iteration:

xk+1 = xk + ηkdk (4.9)

ηk describes the so-called step range, dk the used direction. Thereby, at every step
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the size of the step is set starting in xk.

With the use of this procedure with respect to the described minimization problem

it is desirable, that the result converges to a value xM ∈ U . Nevertheless, in many

uses it is also enough if a local minimum is reached.

First the step width and the direction should be regarded closer.

So that a suitable direction can be identified, it is necessary to define this in general

([C.99], p. 25):

Definition 4.3.2

Let F : U −→ R and xk ∈ U . Then the following is a necessary condition for

having an adequate direction dk starting from xk:

∃ η′k ∀ ηk ∈
(

0, η
′

k

]
: F (xk + ηkdk) < F (xk)

The so-called Armijo-rule for calculating the actual step width is defined in the

following (compare [C.99], p.36)

Definition 4.3.3

Let F : U −→ R be continuously differentiable. Further, let σ, β ∈ (0, 1) be

fixed for any step of iteration. Then for xk, dk ∈ U with gradF (xk) dk < 0 there

has to be found a ηk := max
{
βl | l = 0, 1, 2, . . .

}
to guarantee the validity of the

following:

F (xk + ηkdk) ≤ F (xk) + σηkgradF (xk) dk (4.10)

The Armijo-rule consists in checking this unequation successively for the βl and in

choosing the value with which it is valid for the first time. This value shows the

maximum of all possible step widths valid for this unequation, because of β ∈ (0.1).
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To be able to apply the Armijo-rule, it is necessary, that it is well-defined.This is

guaranteed by the following coherence:

Theorem 4.3.2

Let F : U −→ R be continuously differentiable and σ, β ∈ (0, 1) fixed. Then, for

xk, dk ∈ U with gradF (xk) dk < 0 there exist a finite l ∈ N with

F
(
xk + βlkdk

)
≤ F (xk) + σβlkgradF (xk) dk

Proof. Suppositionally, for any l ∈ N the following would be valid:

F
(
xk + βlkdk

)
> F (xk) + σβlkgradF (xk) dk

Then, this follows:

F
(
xk + βlkdk

)
− F (xk)

βlk
> σgradF (xk) dk

With this, the following is valid:

lim
l→∞

F
(
xk + βlkdk

)
− F (xk)

βlk
> lim

l→∞
σgradF (xk) dk

⇔ gradF (xk) dk > σgradF (xk) dk
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This is true, because β ∈ (0, 1) and thereby βl is converging to zero.

With σ ∈ (0, 1), the following can be derived

⇒ gradF (xk) dk > 0

This is a contradiction to the prerequisites and so, the Armijo-rule is well-defined.

�

After the concept of the direction was defined and a procedure was introduced to

the regulation of a suitable step width, it should be looked at this point on the

algorithm by which the respective steps of iteration can be calculated (compare to

[C.99], p.26).

Algorithm 4.3.1 (Directed minimization)

(DM1) A x0 ∈ U is chosen and k := 0 is set.

(DM2) If xk suffices to a suitable criteria of stopping, the algorithm stops.

(DM3) A suitable direction dk is chosen.

(DM4) A suitable step width ηk is calculated.

(DM5) The step of iteration xk+1 = xk + ηkdk is done, k := k + 1 is set and it is

gone to step 2.

At this point it should be made clear, that the behaviour of this algorithm and the

result generated with its substantially depend on how the direction and the step

width have been chosen. Though by the choice of the direction it is guaranteed,

that one moves to decreasing functional values there, but the whole consideration

rests only on local information. If one looks, for example, at a direction which

lies near with the gradient in the particular point or which is the gradient, then

74



4 Artificial Neural Networks

it can be that one moves towards a local minimum. However, besides there are

even other areas like saddle surfaces or maxima in which the gradient becomes

smaller. With available saddle surfaces one can imagine that the tangents of

single partial functions become horizontal in a whole area. Then the procedure

will move further in the direction which is given by the course of the other partial

functions. If one is in the area around a maximum, the algorithm “moves” in the

direction of decreasing functional values from there. Nevertheless, an interesting

aspect is if one uses by chance as a start value a point whose gradient is already

equal to zero. Besides, one cannot suppose immediately that it concerns a local

minimum in request. A possibility at this point in which the algorithm is finished

to get on, is to consider itself the functional values in certain environments around

the suitable point.

This can appear not only with the definition of the start value, but also otherwise.

Besides, the choice of the step width plays an important role. With the Armijo-

rule described on top it can appear that one reaches to himself with the calculated

value to a point whose gradient is equal to zero which explains, however, for

example, a local maximum. The step width is so calculated by this procedure

that moves to a smaller functional value in the regarded direction and the biggest

possible step width is chosen in a certain area. However, this does not mean that

closer to the starting point a good minimum exist which is jumped over then. An

other possibility consists in the fact that one reaches though to a local minimum,

however, it would be possible with a bigger step width to find a better one. Some

of the possible problems of this method are illustrate in figure 4.17.

Thereby it should be made clear that the described procedure can only use local

information and, therefore, one can make only statements about a certain area.

This general procedure should be more exactly looked in the next segment by the

definition of a certain direction given by the negative gradient vector in a certain
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Figure 4.17: Problems of the directed minimization ([Zel96], p. 113, modified)
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point.

Algorithm 4.3.2 (Gradient descent algorithm)

(GD1) A starting point x0 ∈ U is chosen, σ, β ∈ (0, 1), ε ≥ 0 and k := 0 are set.

(GD2) If ‖gradF (xk)‖ ≤ ε, then the algorithm stops.

(GD3) dk = −gradF (xk) is chosen.

(GD4) The step width ηk is calculated using the Armijo-rule.

(GD5) The step of iteration xk+1 = xk + ηkdk is done, k := k + 1 set and gone to

step 2.

A sequence (xk)k originates from the described algorithm. According to [C.99],

p.69, to this procedure a convergence result is described which shows, that if there

exist an accumulation point of this sequence, the gradient is of value zero at this

point.

Applying on the partial derivations calculated by the Backpropagation Network-

algorithm, the iterations for the particular weight matrices can be described in the

following way:

gradEP (W (k)) =


∂EP (W (k))

∂w1

...

∂EP (W (k))
∂wnwhole

 (4.11)

Using the gradient descent algorithm, it follows:

W (k + 1) = W (k) + ηk · (−gradEP (W (k))) (4.12)
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With these nets two equations are distinguished, one for a weight in the last

connecting layer and one for a weight in another layer. Besides, the consideration

occurs in this order. One receives

• for a weight from the last connecting layer

wij (s+ 1) = wij (s) + ηk ·
(
−
(
−δPjoBo

P
i

))

= wij (s) + ηk ·
(
−
(
−
(
tPj − oPj

)
f
′

out

(
netPj

)
oPi

))

= wij (s) + ηk ·
(
tPj − oPj

)
f
′

out

(
netPj

)
oPi

• for a weight in another layer

wij (s+ 1) = wij (s) + ηk ·
(
−
(
−δPjBo

P
i

))

= wij (s) + ηk ·

(
−

(
−
∑
k

(
δPkBwjk

)
f
′

out

(
netPj

)))

= wij (s) + ηk ·
∑
k

(
δPkBwjk

)
f
′

out

(
netPj

)

This calculation can be written down more clearly using matrices.

• Calculation for the last weight matrix
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Wl−1,l (s+ 1) = Wl−1,l (s) + ηk · (− (Gl−1,l (s)))

= Wl−1,l (s) + ηk ·

−

−δP1aBo1 . . . δP1aBomn

...
. . .

...

−δPml aBo1 . . . −δPml aBomn




• Calculation for the last weight matrix

Wĩ,̃i+1 (s+ 1) = Wĩ,̃i+1 (s) + ηk ·
(
−
(
Gĩ,̃i+1 (s)

))

= Wĩ,̃i+1 (s) + ηk ·

−


δP1Bo1 . . . δP1Bomĩ
...

. . .
...

δPmĩ+1 B
o1 . . . δPmĩ+1 B

omĩ




In the historical development of analysing feed-forward-networks and especially

BPNs, there was developed a statement of existence concerning the representation

of mappings with certain properties by networks with certain characteristics. This

result is related to the 13. problem of Hilbert postulated in [Hil00] and the solution

given by Kolmogorov and Lorentz (see [Kol57] and [Lor86] for more details).

There, it was proofed, that an arbitrary multidimensional mapping F : K −→ Rm

with a compact domain K ⊂ Rn can exactly be described by a superposition and

composition of onedimensional mappings f : R −→ R .

Hecht-Nielsen used this in [Hec87] to proof, that there exists a feed-forward-network

with three layers, which describes a continuous mapping F : K −→ Rm with
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a compact domain K ⊂ Rn approximately with a certain error using onedimen-

sional mappings of sigmoidal type. In [Hec92], he even showed, that this is valid

for any L2-mapping F : [0, 1]n −→ Rm .

4.3.2 Self Organising Maps and Kohonen Networks

The concept of Self Organizing Maps or Kohonen Maps has been developed by

Teuvo Kohonen in 1982 [Koh82]. The basic idea is to get a representation of a

given input domain by using a neuron layer of a certain dimension, the so-called

Kohonen layer. From the used input domain the network gets certain inputs

and by using the Kohonen algorithm, the input domain is clustered into disjunct

areas. Every neuron of the Kohonen layer is then responsible for a certain of this

clustering areas.

The topology of the original Kohonen Network consists of two layers, an input

layer and the mentioned Kohonen layer. In this Kohonen layer, the neurons are

connected in a certain way, but these connections are only topological ones, there

are no signals transported on them.

The dimension of the input layer depends on the dimension of the regarded input

domain. The input neurons are connected to every neoron of the Kohonen layer

with weigthened connections. Let the dimension of the input domain be n, then

there are n input vectors and n weigthened connections lead to every neuron of

the Kohonen layer (They are called Kohonen neurons from now on). These are

summarized to the so-called codebook vector of each Kohonen neuron. In this

case, an element of the input domain with n components can be presented to the

ANN.

In figure 4.18, there is shown a SOM with an two dimensional input domain and

a two dimensional square Kohonen layer of dimension 3 x 3.
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Figure 4.18: Exemplary SOM with two dimensional input ad a square Kohonen

layer

While proceeding the Kohonen algorithm, stochastic input vectors are presented to

the SOM and the codebook vectors are changed using similarities to these input

vectors. Through this progress, the codebook vectors are moving in the input

domain and so cluster it step by step.

The time, the ANN takes to reach an adequate level of representation depends

on different parameters explainend lateron. According to them, there can also be

some problems like a knotting of the codebook vectors.

The single steps of the Kohonen Algorithm developed by Teuvo Kohonen is well

described in [Roj96],pp.391-399, on which the following description is related but

written down in a precise mathematical way.

Definition 4.3.4 (Characteristics of the Kohonen Networks)

The Kohonen algorithm uses the following parameters and functions:
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• Neighbourhood function φ

φ : R+
0 × N0 −→ [0, 1]

(n, t) 7→ φ (n, t)

where n ∈ R+
0 represents the so-called topological distance and t the actual

iteration step.

Alternatively, φ can be described as a function depending on a certain neigh-

bourhood radius r ∈ R+ instead of t, what according to [Zel96], pp.182, can

be better used for implementations.

• Learning function η

η : N0 −→ [0, 1]

(t) 7→ η (t)

where t represents the actual iteration step.

Furthermore, there are an input layer with a dimension n depending on the regarded

input domain and a Kohonen layer of a certain topology containing m neurons

existing.

The neurons of the Kohonen layer are numbered and named as Ni, i ∈ {1, . . . ,m},

so that each one can be identified in a unique way. According to this, the n -

dimensional codebook vector of each neuron is named as wi ∈ Rn, i ∈ {1, . . . ,m}.

Algorithm 4.3.3 (Kohonen algorithm)

The following steps describe the general algorithm using a given SOM.

The start step would be a stochastical choose of the m weight or codebook vectors

following a certain algorithm.

Then, the following steps are used within each iteration t:
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1. Stochastical choose of an input vector et following a certain algorithm de-

pending on the iteration step t.

2. Compution of the codebook neuron wk with minimal distance to the given

input vector.

3. Changing of the weights using the following rule:

wi (t+ 1) := wi (t) + η (t) · φ (ni,k, t) · (et − wi (t)) , i ∈ {1, . . . ,m} (4.13)

where ni,k is the topological distance of the codebook vectors wi and wk.

The minimal distance mentioned in step two can be mathematically described and

computed by the term metric defined as a real-valued function d : R+
0 −→ R

in chapter 7.1.

Using this term, the codebook neuron k with minimal distance to the given input

vector et at iteration step t can be identified as:

d(wk, et) = min
j ∈ {1,...,m}

d(wj, et) (4.14)

When this so-called “winner neuron” is known, the codebook vectors are updated

following equation 4.13. By this, the single codebook vectors are moved a certain

step in the direction of the regarded input vector depending on the topological

relation to the winner neuron. Because of this, the distance to the input neuron

is only important to get the winner neuron, the update of the codebook vectors

depends on the topological structure of the Kohonen layer and so this topology is

preserved while mapping the input domain. .The topological neighbourhood can
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be defined in different way, the so-called “block party distance” is often used and

is calculated as shown in figure 4.19 (refer to [Hec90], p.140).

  

Kohonen Layer

Winner Neuron

Distance 1

Distance 2

Distance 3

Distance 4

Figure 4.19: Kohonen Layer with block party distance

With all these parameters, the update rule 4.13 can be applied. The neighbourhood

function φ can also be very different, a popular choice is a so-called gauss function

which can be defined as follows according to [Zel96], p. 182:

φgauss : R+
0 × R+ −→ R+

(n, d) −→ φgauss (n, d) := e−(nd )
2

where n is the topological distance and d is the neighbourhood radius. In figure

4.20 the graph of this function is shown on the top. On the bottom, there is shown

a graph, that illustrates the situation of neighbourhood with the neighbourhood

radius 3 of a neuron at the point (0, 0).

As an example, there is a given two dimensional discrete input domain. The used

Kohonen layer is two dimensional with the dimension 10 x 10. The figure 4.21

shows the development of the codebook vectors after certain iteration steps using
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Figure 4.20: A Graph of the function φgauss, B Illustration of the neighbourhood

situation with radius 3

the java applet DemoGNG on [Loo].
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Figure 4.21: Representation process of a discrete input domain: A input data,

B initial codebook vectors, C 10 iterations, D 30 iterations, E 100

iterations, F 30000 iterations
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5 Principles of object-oriented

analysis

When regarding a complex system like the environment or a certain health sys-

tem in cases of modeling, it is necessary to concentrate on a reasonable collection

of important system components using developed and/or existing methods. One

possible perspective is the concept of Object Orientation (OO), which is appli-

cable in many contexts. The advantage of using this method is a quality that

can be described with the term Construction Kit Principle (CKP). Which means

that certain constructs of OO named classes, can be “plugged” together within a

system under the condition of the availability of adequate “interfaces”. There are

thus many advantages for describing a complex system with methods of OO.

In this section, the basic elements and background information concerning OO are

provided.

The term and concept OO is mainly used in informatics as Object Oriented

Programming (OOP). However, not only the process of programming is in the

focus, but prior to this also the analysis of the relevant structures, which are

described by the term OOA.

The beginning of OOP can be allocated to the programming language “Smalltalk-

80”, which was developed in the period from 1970 until 1980 by Xerox in the
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USA. To date, different programming languages concerning OOP have been de-

veloped. In 1995, a generalised description language named Unified Modeling

Language (UML) was published by Booch, Rumbaugh and Jacobson in [BRJ95]

and in 1997, the Object Management Group accepted this as a standard notation.

For a more detailed description of the historical coherence refer to [Bal99], p.3-4.

Based on [Boo06], p.15, UML can be described as a graphical language for visu-

alising, specifying and documenting of a software system. Using this language, it

is possible to describe the structure, the data flow and the existing elements in a

standardised way. The notation in this thesis follows the specifications of UML as

they can be found for example in [Bal01].

A good software tool for working with OO is ArgoUML, which is available at [arg].

Because this is OpenSource software, it can be freely be used and the application

of OO principles is simplified, particularly concerning the aim of a consequent use

of OpenSource within the whole project.

The advantage of ArgoUML consists in the possibility of working whilst using

the specifications of UML in a clear and structured way. The atomic elements

are represented here. Furthermore, the user has the possibility of analysing and

structuring a certain project using the main types of UML diagrams as they are

described in [Bal01], p.19 et seqq. Additionally, even so-called checklists are im-

plemented in here to provide a tool to using UML in an optimal and economic

manner. The possibility of creating source code for the developed elements di-

rectly in diverse formats (SQL, C++, PHP4, PHP5, JAVA, CSHARP) is of great

benefit.

The following atomic elements of UML are described more detailed at this point:

• Object

• Class
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• Attribute

• Operation

• Associations

• Interface

• Package

Generally spoken, a class is an abstract concept of an object. In this coherence,

an object is associated with a certain class. Every object can be characterised by

its name, its attributes and their values, and it reacts with certain operations on

the sourrounding. In addition to that, an object can be linked to other objects,

one refers to the “knowledge” of them. These links are realised as so-called asso-

ciations. An object is a dynamic instance of a class. The according class defines

the attributes, the operations and the associations for a collection of objects.

The kind of data, that can be used by the objects of a certain class are defined

using attributes. Every attribute is characterised by its name, its data type, its

initial value and its features. According to [Bal01], p.7, the data type can be one

of the types usually used in a programming language (boolean, string, integer),

a kind of enumeration or even classes itself. A possible feature is for example

specified by mentioning the term frozen, which inhibits the modification of the

according value.

To define activities for the objects of a certain class, so-called operations are used.

These operations can be applied to every attribute within the regarded class and

the according name should represent the performed activity. Associations identify

linkages between classes and as a consequence between derived objects. They can

be named and labeled with a cardinality of association.

To fascilitate classes the application of another classes methods to this class, so-

called interfaces can be used. From a class, more specialised classes with additional
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features can be derived. In this coherence, one refers to transmission and the

original class is then called the basis class.

For grouping and summarizing elements of UML, for example classes, so-called

packages are defined. In doing this, a higher level of abstraction can be used for

the description of the regarded system.

The way of describing a system using UML is dependent on the aim and the per-

spective of this description. So in a project group, some people are only interested

in the abilities of certain components, while others are interested in the detailed

processing of the same components. Even though they pursue the same main

aim, there may be the necessity of regarding certain steps within this progress of

development from different perspectives.
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6 Proposal of a “Spatial Toolbox”

6.1 Localisation of the SPATTB

The concept of the SPATTB is incorporated into the concept of the EWARS, where

the two main tasks are identified in the process of conception in this thesis. The

first one acts like an appropriate “tool” for other components of the EWARS by

providing calculation and processing methods. For doing this, compatible interfaces

have to be defined. The second use case consists of directly dealing with queries of

the system. The type of usage is dependent on the actual query and the intention

of the decision maker or respectively the expert. In figure 6.1, this use cases are

illustrated in a structured way.

As already mentioned above, the term interface is central to the conceptualisation

and building up of the EWARS. For implementing the “Spatial-Toolbox” as part

of the whole system, it has to be guaranteed that the system and respectively the

using person can apply it. Thus special attention has to be paid to the manner

though which input is gauned and output is provided.

The proposed “Spatial-Toolbox” requires the two abilities of flexibility and usabil-

ity. This means that it should be possible to extend the provided methods in an

appropriate way and as already described, define the interfaces accurately.
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EWARS
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Input Output

Component I

Component ...
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Figure 6.1: Use cases related to the SPATTB

6.2 Application and customisation of OpenSource

components

As conceptualised for the whole EWARS, the “Spatial-Toolbox” itself is defined

and described only using OpenSource components. The advantages of doing this

are the availability of free components, the alignment and conformation with ex-

isting licenses and the benefits bained through the knowledge of the OpenSource

community. The challenge that has to be mastered within this concept is the de-

scription of a certain “use case”, which means a special application in the context

of the SPATTB, by interfacing the used components in an appropriate way. In

the following section the conditions that are required in the authors opinion for

choosing such a component are described.
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6.3 Workflow for building up SPATTB components

To support the claim of flexibility in the meaning of extending and improving the

SPATTB, an appropriate workflow is proposed in this section.

WF I Definition of the according “use case(s)”

There is much importance to know, what is the aim of constructing that

component and what benefits can be achieved using it. It has to be defined,

if there should be one or more applications and what they are about. This

knowledge features the basis for the following steps. In terms of modeling, it

has to be taken into account, which way of describing a certain situation and

application makes sense and which restrictions and features can be accepted.

WF II Description of the according input and output information

The awareness of these facts is the prerequisite for providing accurate in-

terfaces. There has to be particular information about the specifications of

the input and the output. Based on this, it can be decided, which methods

can be taken into account or what modifications are eventually necessary for

using them.

WF III Accurate identification of sub-processes within the regarded com-

ponent

The single steps of each use case have to be defined in oder to construct

these as optimal as possible.

WF IV Mathematical analysis of the different sub-processes

A significant benefit of mathematics is the ability of abstraction and get-

ting an arbitrary point of view. Mathematics is necessary to guarantee the

usability of the considered methods for a certain application.

WF V Finding of appropriate software for implementation
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One important condition of choosing a certain software is that it is Open-

Source software. In regard to implementation in an appropriate way with

the ability of creating usable webinterfaces, command line use is necessary.

Furthermore, the definition and implementation of interfaces for describing

the whole process of the regarded use case as a sequence of sub-processes has

to be taken into account.

WF VI Usability orientated implementation

Implementing the regarded component, the certain user and its role has to

be taken into account. Balzert also describes this in terms of describing

software using the UML (refer to [Bal01], p.39 et seqq.). It is essential

to regard the particular kind of expert knowledge in view of creating an

appropriate structure for the according Graphical User Interface (GUI).

WF VII Evaluation

One important kind of evaluation is testing the usability of the created com-

ponent. It has to be regarded, if the whole process is described. Thereby, not

only “test” data has to be used, but also “real”, “authentic” data, because

with that kind of data the system should work in everyday use. If there are

more than one components, that are usable for a certain use case, it is an

asset to provide information about differences of the provided output for the

decision maker. In this coherence, it has to be taken into account, if that

feature makes sense for the particular persons in terms of the ability of using

that kind of information. So, there are two kinds of evaluation. The first one

is important for the developer(s) of that component in regard of optimisation

it. The second one is important for the users with respect to the described

restrictions. Both kinds are important elements of this workflow. A fact that

is also very important is the possibility for the users of giving feedback to

the developers with regard to the optimisation.

94



6 Proposal of a “Spatial Toolbox”

This workflow is illustrated in figure 6.2.

Workflow

Description of
input and output

information
Use case definition

Identification of
sub-processes

Decision maker(s)/Expert(s)

Developer(s)

Mathematical analysis

Finding of appropriate
software for

implementation

Usability orientated
implementation

Evaluation

Figure 6.2: Workflow for develop an additional component for the SPATTB

In the context of evaluation, the term quality is used sometimes in writing and/

or in speaking. To obviate misunderstandings, the authors insight for this term

will be stated at this point. In this coherence, it is important to separate the term

quality from the term difference, because they usually cannot be used as synonyms.
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7 Measure theory on topological

and function spaces

7.1 Basic definitions and prerequisites

7.1.1 Topological space

Since in chapter 9, there are developed methods for implementing ANNs in the

context of dealing with spatial data within the SPATTB, different definitions and

prerequisites concerning the term space and especially topological space in mathe-

matics are required. These different ideas and concepts are pointed out describing

also the coherences and the basing hierarchical structure.

A very general concept of a mathematical space is the topological space based on

the general idea of a so-called neighbourhood. This concept was mainly developed

at the beginning of the 20th century by Felix Hausdorff in [Hau14], based on the

concept of a set developed by Georg Cantor in [Can97].

I will refer to a special type of topological spaces in definition 7.1.16. This is the

concept of a so-called metric space, which was described by Maurice Frechét in

[Fre06]. Here, the term distance plays an important role. For a more detailed
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description of the historical development refer to [Jän97], pp. 3-6 and [Que01], pp.

327-334.

The basic idea of mathematical topology is the mentioned topological space, which

can be defined in the following way according to [Jän97], p.5:

Definition 7.1.1 (Topological Space)

A topological space is a pair (X,O) consisting of a set X 6= ∅ and a set O of

subsets of X with the following properties, while the elements U of O are called

open sets:

• Axiom 1: Any union of open sets is open again.

Υ ⊆ O ⇒
⋃
U∈Υ

U ∈ O

• Axiom 2: The intersection of two open sets is open.

U, V ∈ O ⇒ U ∩ V ∈ O

• Axiom 3: The empty set ∅ and the set X are open.

∅ ∈ O, X ∈ O

This set O of subsets of X is then called a topology on the set X.

By this definition, the set X is divided into two types of subsets, the open ones

and the closed ones. The open subsets are U ∈ O, the closed subsets are the

corresponding complements V := X \ U .

An important idea in topology is the concept of neighbourhood. This concept is

essential for the definition and usage of the terms convergence and continuity in a

topological space.

According to [Que01], p. 25, this can be defined in the following way:

Definition 7.1.2 (Neighbourhood)

Let (X,O) be an arbitrary topological space and x0 an arbitrary Element of X. A
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subset U ⊂ X is then named neighbourhood of the Element x0 when there exists

an open set O ∈ O with x0 ∈ O ⊂ U .

The set U (x0) which contains all existing neighbourhoods of an element x0 is named

neighbourhood system of x0 or neighbourhood filter (the term filter is defined

in the following section 7.2).

In this context, the term neighbourhood basis as a subset of the neighbourhood

system is an important concept. In some cases it is possible, to assign statements

or theorems according to neighbourhood filters on neighbourhood basises and re-

duce the number of regarded sets. One of this cases is lemma 7.2.1 in section 7.2.

Definition 7.1.3 (Neighbourhood basis)

Let (X,O) be an arbitrary topological space, x0 an arbitrary Element of X and

U (x0) the according neighbourhood system. A subset B (x0) ⊂ U (x0) is then

named neighbourhood basis of the Element x0 when the following is true:

∀
U ∈ U(x0)

∃
B ∈ B(x0)

: B ⊂ U

In topology, a certain set A ⊂ X, while (X,O) is an arbitrary topological space,

can be characterised using the terms border, interior and closure. The definitions

and interpretative descriptions of these terms are given in the following, basing on

[Que01], p.28:

Definition 7.1.4 (Topological characteristics of a set)

Let (X,O) be an arbitrary topological space, x0 an arbitrary Element of X and

A ⊂ X an arbitrary subset of X. The following terms define characteristics of

this set and its elements:

(1) An element x0 ∈ A is named interior point of A, when A is a neighbour-

hood of this element.
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(2) The set Å with Å := {x0 ∈ A | x0 is an interior point} is named the in-

terior of the set A.

(3) The interior Å is the biggest open set within the set A and can be constructed

in the following way: Å =
⋃

U ⊂A, open

U

(4) An element x0 ∈ A is named border point of A, when each neighbourhood

of x0 does intersect both, A and its complement set Ac. This means the

following: ∀
U ∈ U(x0)

: U ∩ A 6= ∅ 6= U ∩ Ac

(5) The set ∂A with ∂A := {x0 ∈ A | x0 is an border point} is named the

border of the set A.

(6) The set Ā :=

{
x ∈ X | ∀

U ∈ U(x0)
: U ∩ A 6= ∅

}
is named the closure of

the set A.

(7) The closure Ā is the smallest closed set which contains the set A and can be

constructed in the following way: Ā =
⋂

U ⊃A, closed

U

(8) The set A is named dense in X, when Ā = X.

(9) The border of the set A is the following: ∂A = Ā \ Å

The topology O of a topological space X can be characterised regarding a special

system of sets in X named basis of the topological space. This system can be de-

fined in the following way as it is done in [Que01], p.23:

Definition 7.1.5 (Basis and subbasis of a topological space)

Let (X,O) be an arbitrary topological space.

(1) A system B ⊂ O is then named basis of the topological space, if each

arbitrary open set in X can be denoted as a union of sets out of B.

(2) A system S ⊂ O is named subbasis of the topological space, if the set

of all finite intersections of sets out of S is a basis of the topology.
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Hence, a topological space can be described using its basis and additionally a pair

of topological spaces is equal, if their basis is equal ([Que01], p.23).

Using the terms neighbourhood basis and basis of a topological space, a classifica-

tion of topological spaces is possible in the following way ([Que01], p.27):

Definition 7.1.6 (First and second axiom of countability)

Let (X,O) be an arbitrary topological space.

(1) The first axiom of countability is fulfilled, if each element of X features a

countable neighbourhood basis.

(2) The second axiom of countability is fulfilled, if the set O of open sets features

a countable basis of the topological space.

In the following a tolopogy according to an arbitrary subset of a given topological

space (X,O) is regarded according to [Bar07], pp.108-109.

Definition 7.1.7 (Relative topology, subspace)

Let (X,O) be an arbitrary topological space. Further, let A X be an arbitrary

subspace. Then, the relative topology of O in A is defined by the following set:

O|A := {O ∩ A | O ∈ ß : O}

The according topological space
(
A,O|A

)
is then called subspace of (X,O). In-

stead of the term relative topology, the terms subspace topology, induced

topology and trace topology can synonymous be used.

7.1.2 Continuity

To describe relationships between topological spaces, the term continuity can be

used. Regarding the set C, continuity of a mapping f : C −→ C can be

described in the following way: Evanescent changings in the argument of that
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function leads to evanescent changings in the value of the mapping. In metric

spaces (see 7.1.16), this changings can be described with the term distance, but

in arbitrary topological spaces, the definition of continuity has to be done more

abstract, because distance is not defined there in general.

According to [Que01], p.30, the concept of continuity in topological spaces can be

defined in the following way:

Definition 7.1.8 (Continuity)

Let (X,O1) and (Y,O2) be arbitrary topological spaces. A mapping f : X −→ Y

is named continuous, if the inverse images of open sets in (Y,O2) are open in

(X,O1), that means:

f : X −→ Y continuous ⇔ ∀
O ∈ O2

: f−1 (O) ∈ O1

This definition is in an equivalent way possible using closed sets.

This definition of continuity describes this term according to the mapping as a

whole. Continuity at the element x0 ∈ X can be defined in the following way:

Definition 7.1.9 (Pointwise continuity)

A mapping f : X −→ Y between two arbitrary topological spaces (X,O1)

and (Y,O2) is named pointwise continuous, if for all neighbourhoods V ∈

U2 (f (x0)) of f (x0) exits a neighbourhood U ∈ U1 (x0) of x0 and f (U) ⊂ V , that

means:

f : X −→ Y pointwise continuous at x0 ∈ X ⇔ ∀
V ∈ U2(f(x0))

: f−1 (V ) ∈

U1 (x0).

The following theorem provides a facilitation for proving the continuity of a certain

mapping (see [Que01], p.30).

In the proof, the following coherence is used:
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∀
Ai Y
i ∈ I

f−
( ⋃
i ∈ I

Ai

)
=
⋃
i ∈ I

f−1 (Ai)

and

∀
Ai Y
i ∈ I

f−
( ⋂
i ∈ I

Ai

)
=
⋂
i ∈ I

f−1 (Ai)

Theorem 7.1.1 (Subbase criterion of continuity)

Let (X,O1) and (Y,O2) be arbitrary topological spaces and let S (O1) and S (O2)

be arbitrary particular subbases.

A mapping f : X −→ Y is continuous, if and only if for any set S ∈ S

f−1 (S) is open in (X,O1).

Proof. Let OY ∈ O2 be an arbitrary open set in Y and let OY =
⋃
j ∈ J

n⋂
i=1

with

appropriate sets Si ∈ S, n ∈ N :. This can be done for every open set in O2

according to definition 7.1.5. Then, the following is valid:

f−1 (Oy) = −1

(⋃
j ∈ J

n⋂
i=1

)

=
⋃
j ∈ J

f−1

(
n⋂
i=1

Si

)

=
⋃
j ∈ J

n⋂
i=1

f−1 (Si) (7.1)

Any open set in O2 can be expressed in the way done above using a finite subset

of the regarded subbase.

Hence, it is adequate to proof, that for any set S ∈ S S ∈ f−1 (S) is open

in (X,O1), because the last expression in 7.1 is an element out of O1 regarding

definition 7.1.1.

�
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So, the term continuity draws conclusions about the preimages of open sets, but

none about the images of open sets. But if there exists a relation between open

sets in the domain and open sets in the codomain in the following way, the map-

ping is called open ([Que01], p.32):

Definition 7.1.10 (Open mapping)

Let (X,O1) and (Y,O2) be arbitrary topological spaces. A mapping f : X −→ Y

is named open, if the images of open sets in (X,O1) are open in (Y,O2), that

means:

f : X −→ Y open ⇔ ∀
O ∈ O1

: {f (O) | O ∈ O1 ⊂ O2}.

Mappings between topological spaces, which are continuous, bijective and open are

named topological homeomorphisms and can be defined as described in [Que01],

p.32 as follows:

Definition 7.1.11 (Topological homeomorphism)

A bijective mapping f : (X,O1) −→ (Y,O2) is named topological mapping

or topological homeomorphism, if f and f−1 are both continuous mappings.

Then, the topological spaces (X,O1) and (Y,O2) are called homeomorph.

According to [Jän97], p.17 and definition 7.1.8, the following equivalence can be

formulated:

f : X −→ Y is an homeomorphism ⇔
(
∀

O ∈ O1

: O open ⇔ f (O) open

)
In this thesis, homeomorph spaces are written as:

(X,O1) ∼= (Y,O2).
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7.1.3 Product topology

While regarding families of topological spaces (Xi,Oi), it is interesting to have a

look at the product of the particular topologies. In the following definition, this

fact is described more precisely basing on [Que01], p.40:

Definition 7.1.12 (Product space, product topology)

Let I be an indexing set and (Xi,Oi), i ∈ I be a family of topological spaces.

Furthermore, X := Π
i ∈ I

Xi describes the cartesian product of these spaces and

pi : X −→ Xi the particular projection. Then, the product topology (X,O)

is defined using the following basis:

B :=

{ ⋂
k ∈K

p−1
k (Ok) | ∀

k ∈K
Ok is open, Kis a finite subset of I

}

(X,O) is then named product space or topological product of the spaces

(Xi,Oi), i ∈ I.

Regarding this product topology, the set S :=

{
p−1
i (Oi) | ∀

i ∈ I
: Oi ∈ ¸Oi

}
de-

fines a subbasis.

In the following, an important theorem concerning continuity of mappings between

product spaces is given according to [Que01], p.41.

Theorem 7.1.2 (Product spaces and continuity)

Let (Y,O) be an arbitrary topological space. Additionally, let I be an indexing set

and (Xi,Oi), i ∈ I be a family of topological spaces. Further, X := Π
i ∈ I

Xi defines

the according product space as defined in 7.1.12.
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A mapping g : Y −→ X is continuous, if and only if for each i ∈ I the

mapping gi := pi ◦ g is continuous.

Proof. ⇒: It has to be proven: g is continuous ⇒ ∀
j ∈ I

: gj = pj ◦ g is continuous

It is valid, that a composition of mappings is continuous, if every participating

mapping is continuous. As a prerequisite, g is continuous. Hence, it has to be

shown, that ∀
j ∈ I

: pj is continuous. Since every pj is defined as pj : X −→ Xj ,

this means, that the preimage p−1
j (O) of an arbitrary open set O ⊆ Xj has to be

open in X. Regarding the basis B of the product topology defined in definition

7.1.12, every preimage of that type is an element of B and consequently an open

set in X, what had to be shown.

⇐: It has to be proven: ∀
j ∈ I

: gj = pj ◦ g is continuous ⇒ g is continuous

It is sufficient to show, that every preimage according to g of an element out of

the subbasis S defined in definition 7.1.12 is an open set in the space Y . The

elements out of S are of the type p−1
i (O), O is open in Xi, i ∈ I. As prerequisite,

the mappings gi, i ∈ I are continuous. So let O ∈ Xi be an arbitrary open set out

of the space Xi, i ∈ I. The according element out of the subbasis S is p−1
i (O).

The preimage of that element according to the mapping g is then g−1
(
p−1
i (O)

)
.

Regarding the definition of the mappings gi, i ∈ I, the following equation is valid:

g−1
(
p−1
i (O)

)
= g−1

i (O)

Because of the continuity of every gi, i ∈ I, this is an open set in the space Y .

Due to the arbitrary choice of O, the mapping g itself is continuous, what had to

be shown.

�
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7.1.4 Classification of topological spaces

In the historical development of topology, there has been established a number

of various topological spaces with certain features and restrictions. During this

section, some of these spaces are regarded in a closer way. A system that bases on

the topological discrimination of elements and sets in topological spaces is named

separation axioms or Tychonoff separation axioms after the russian mathematician

Andrei Nikolajewitsch Tychonoff living in the 20th century. These axioms are

normally denoted with the letter “T”, which is derived from the german word

“Trennungsaxiom”. The notation of these separation axioms used in this thesis is

the following (basing on [Que01], p.84):

Definition 7.1.13 (Tychonoff separation axioms)

Let (X,O) be an arbitrary topological space. This space can be restricted by the

following separation axioms:

T0 (Kolmogoroff): For each pair of different elements x1 and x2 in X one of

them has a neighbourhood, which does not contain the other one.

T1 (Frechét): For each pair of different elements x1 and x2 in X both of them

have neighbourhoods, which does not contain the other one.

T2 (Hausdorff): Each pair of different elements x1 and x2 in X have disjunct

neighbourhoods.

T3 (Vietoris): Each closed set A ⊂ X and each element x ∈ X \ A have

disjunct neighbourhoods.

T3a For each closed set A ⊂ X and each element x ∈ X \ A there exists a

continuous mapping f : X −→ [0, 1] , with f (x) = 1 and f (A) ⊂ {0}.

T4 (Tietze): For each disjunct pair of closed subsets A1 and A2 of X there does

exist disjunct neighbourhoods.

The topological space (X,O) is named Ti -space for i ∈ {1, . . . , 4} or rather i = 3a,
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if it fullfills the according axiom.

These axioms are illustrated in figure 7.1.

Figure 7.1: Illustration of the defined separation axioms ([Que01], p.84)

Thus, the T1-spaces can be characterised with the fact, that each set consisting of

only one element out of X is closed. This is stated by the following theorem of

equivalence (see [Que01], p.84-85):

Theorem 7.1.3 (Characteristics of a T1-space)

Let (X,O) be an arbitrary topological space. Then, the following equivalence is

true:

(1) X is a T1-space.

(2) Each set consisting of only one element out of X is closed.

(3) Each subset A ⊂ X is the intersection of all its neighbourhoods.

Proof. (a) ⇒ (b) : Let x ∈ X arbitrarily but consistently. Then for all

y 6= x exists an open neighbourhood Uy, witch does not contain x. Thus,

{x} = X \
⋃
{Uy | y ∈ X \ {x}} is closed.
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Figure 7.2: Overview of the relations between the ”T”-spaces ([Que01], p.87)

(b) ⇒ (c) : For each x /∈ A, X \ {x} is an open neighbourhood of A and

A =
⋂
{X \ {x} | x /∈ A}.

(c) ⇒ (a) : Hence {x} is the intersection of all its neighbourhoods and for each

y 6= x exists a neighbourhood of x, which does not contain y.

�

Such topological spaces which can be classified as T1-space are named in a certain

way, if other characteristics out of definition 7.1.13 are fulfilled as well:

Definition 7.1.14 (Extended nomenclature of T1-spaces)

Let (X,O) be an arbitrary topological space. It is named as

(1) regular, if it is a T1- and T3-space.

(2) completely regular, if it is a T1- and T3a-space.

(3) normal, if it is a T1- and T4-space.

An overview about the relations of the different defined spaces is given in figure

7.2.
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7.1.5 Compactness

An important role is played by so-called compact spaces.

Compact spaces provide the ability of gathering global features from local features

of the regarded space. Jänich illustrates this in [Jän97], p.24, by the following

description, which is analogously noted: If there is a certain feature for an open

subset of a compact space, that is handed to unions of open subsets and each

element has a neighbourhood providing this feature, then the space has that feature

itself.

According to [Que01], p.105, compactness can be defined in the following way:

Definition 7.1.15 (Compactness)

Let (X,O) be an arbitrary topological space. This space is named compact, if

each open covering of X contains a finite subcovering.

Theorem 7.1.4 (Tychonoff’s theorem)

Let (Xi, )i ∈ I be an arbitrary indexed set of compact topological spaces. Then, the

product space X :=
∏
i ∈ I

Xi = ×
i ∈ I

Xi is compact as well.

The according proof can be found in [Que01], p.109.

7.1.6 Metric spaces

To have the ability of calculating differences between two elements of a certain set,

it is necessary to define the term distance in a mathematical way. This is done

by a so-called metric and the used concept is based on the everyday experience

with the term distance. Hence, this mathematical distance is not negative, it is

independent from the order of the regarded elements and using detours leads to

a increased distance. But now, there is given an exact mathematical definition of

this concept.
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Figure 7.3: Hierarchical coherence of the regarded mathematical spaces

In [Jän97], p. 10-11, a metric space is defined in the following way:

Definition 7.1.16 (Metric space)

A metric space is a pair (X, d) consisting of a set X 6= ∅ and a real-valued

function d : X −→ R called metric with the following properties:

(1) ∀
x,y ∈X

: d(x, y) ≥ 0 and ∀
x,y ∈X

: d(x, y) = 0 ⇔ x = y.

(2) symmetry:

∀
x,y ∈X

: d(x, y) = d(y, x).

(3) triangle inequation:

∀
x,y,z ∈X

: d(x, z) ≤ d(x, y) + d(y, z).

The metric spaces are topological spaces with additional characteristics as already

defined. But how can the topology of a metric space be described? To handle this,

the concept of a so-called epsilon ball or open ball is used. According to [Jän97],

p.11, the topology of such a space can be defined in the following way:
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Definition 7.1.17 (Topology of a metric space)

Let (X, d) be an arbitrary metric space. A subset Y ⊂ X is then named open, if

the following is true:

∀
x0 ∈ Y

∃
ε > 0

: Bε (x0) ⊂ Y , with Bε (x0) := {x ∈ X | d (x0, x) ≤ ε}.

The set O (d) containing all open subsets of X is then named the topology of a

metric space.

7.1.7 Normed space and semi-normed space

The term norm can be defined as following (compare [Fis93], p. 189) regarding an

arbitrary vectorspace V with null vector 0V . If the regarded vector space is clear,

the null vector is denoted as 0.

Definition 7.1.18 (Norm)

Let V be an arbitrary vectorspace above the field K. A mapping

‖ ·‖ : V −→ R0
+

v 7→ ‖v‖

is called norm over V , if ∀ v, w ∈ V and ∀ λ ∈ K the following is valid:

N1 homogeneity:

‖λv‖ = |λ| · ‖v‖.

N2 triangle inequality:

‖v + w‖ ≤ ‖v‖ + ‖w‖.

N3 ‖v‖ = 0 ⇒ v = 0.

The real number ‖v‖ is called norm of the vector v.

The pair (V, ‖ ·‖) is then called normed vectorspace.
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From N1 can be concluded, that ‖0‖ = 0, because of:

‖0‖ = ‖0 · 0‖ = 0 · ‖0‖ = 0

By a norm, a topology is induced on the basing space. An example for the space

Rn is given in definition 9.2.3 in chapter 9.

The hierarchical structure of the spaces discussed until now is illustrated in figure

7.3.

In the case, that the property N3 cannot be fulfilled, this definition can be reduced

to that of a so-called semi-norm following [Els05], p.133.

Definition 7.1.19 (Semi-norm)

Let V be a vectorspace above the field K. A mapping

S : V −→ R0
+

v 7→ S (v)

is called semi-norm over V , if ∀ v, w ∈ V and ∀ λ ∈ K the following is valid:

1. homogeneity:

S (λv) = |λ| · S (v).

2. triangle inequality:

S (v + w) ≤ S (v) + S (w).

The real number S (v) is called semi-norm of the vector v.

The pair (V,S) is then called semi-normed vectorspace.

Remark 7.1.1 (Semi-norm)

From the first attribute using the characteristics of the basing vector space, there

can be derived the following:

v = 0 ⇒ S (v) = 0.
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Let 0V be the zero vector of the regarded vector space V , then the following is valid:

0 · 0V = (1 − 1) · 0V = 1 · 0V − 1 · 0V = 0V − 0V = 0V

And so using attribute 1:

S (0V ) = S (0 · 0V ) = |0| · S (0V ) = 0.

The concept of “length” described by the term norm can be regarded more gen-

eralised by using the term Minkowski functional defined in [Wer05], p.101:

Definition 7.1.20 (Minkowski functional, gauge)

Let V be an arbitrary vectorspace above the field K. A mapping

pA : V −→ R0
+

v 7→ pA (v) := inf {λ ∈ K | λ > 0 ∧ v ∈ λ · A}

is called Minkowski functional or gauge in V .

According to [Sch99], p.39, the terms norm and semi-norm can alternatively be

defined using the term gauge. The coherence is disclosed in subsection 7.4.2.
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7.1.8 Locally compact spaces

Definition 7.1.21 (Locally compact space)

Let (X,O) be an arbitrary topological space. This space is called locally com-

pact, if it is an T2-space (Hausdorff) and if any element x ∈ X has a compact

neighbourhood.

Kowalsky shows in [Kow61], that the following conclusions can be drawn:

Corollary 7.1.1 (Characteristics of locally compact spaces)

Let (X,O) be an arbitrary locally compact topological space. Then the following is

valid:

(1) (X,O) is a T3- and a T3a-space.

(2) Let K ⊂ U ⊂ X, K compact and U open. Then, there exists a continuous

mapping f : X −→ [0, 1] where

f (K) =

{
y ∈ [0, 1] | ∃

x ∈K
f (x) = y

}
= {1}, with the compact set

{x ∈ X | f (x) 6= 0} ⊂ U .

Characteristic (2) will be important for radon measures in section 7.5.
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7.2 Convergence

7.2.1 Generalised convergence on topological spaces

In this thesis, convergences is looked at in generally defined metric spaces and

topological vector spaces. Hence, a more general meaning of convergence is neces-

sary, because the description by sequences which can be used in metric spaces like

Rn, is not sufficient enough.

According to [Que01], p.75, the idea of sequences is sufficient in such topological

spaces, which feature a countable neighbourhood base, but not for those, which

does not fullfill the first axiom of countability in 7.1.6. For general topological

spaces, there can be found examples, whish show, that inter alia the concept of

continuity cannot be described by sequences. One example is given in [Que01], p.

74.

In the historical development, there have been worked out two main ideas of gen-

eralizing the idea of sequences, so that there can be given a sufficient description

of topological spaces without a countable neighbourhood base. A short presenta-

tion of this development is shown in [Que01], p. 331. The one main idea is given

by the so-called filters, which have been first described by H. Cartan in 1937.

This concept is used in many literature about set topology like [Que01] or about

measure theory like [Els05]. The second concept is called net or according to the

developers E.H. Moore and H.L. Smith moore-smith sequence. In this section,

there will be shown the coherences of these two concepts.

A complex valued sequence can be defined as a mapping from the set N to the set

C like it is done in [Neu96], p.89.

In general, a sequence is a mapping from the set N to an arbitrary set X. The idea
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of a mapping as a left-total and right-unique relation (for explanation see below)

of the set A and the set B can be interpreted in two central ways. The first is on

the one side the notation as a function:

f : A −→ B

a 7→ f (a)
.

On the other side, the view is more focused on the indexing of the elements of

the set B by the elements of the set A. In this case, the term indexed family of

elements is used. A is then called the index set and the following notation is used:

(bi)i ∈A, ∀
i ∈A

: bi ∈ B.

The elements bi are named as the members of the indexed family of elements with

index i ∈ A. Sequences are mostly noted in this way.

Basing on [Jän97], p.23, a converging sequence in a topological space can be defined

as follows:

Definition 7.2.1 (Converging sequence in a topological space)

Let (X,O) be an arbitrary topological space. (xn)n ∈ N is then a sequence in this

space. An element x ∈ X is named limit of this sequence, if for each neighbourhood

U of x there exists a number n0 ∈ N, that xn ∈ U for all n ≥ n0.

Filters can be defined in the following way as it is found in [Que01], p. 77:

Definition 7.2.2 (Filter)

Let X 6= ∅ be an arbitrary set. A system F of subsets in X is called filter in X,

when the following four characteristics are true:

(1) ∅ /∈ F, X ∈ F

(2) F ∈ F ⇒ F 6= ∅
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(3) F,G ∈ F ⇒ F ∩ G ∈ F

(4) F ∈ F, F ⊂ G⇒ G ∈ F

As mentioned above, the convergence theory basing on filters can for example be

found in [Que01], p.77 et seqq.

According to [Que01], p.78, convergence of filters in a topological space can be

defined in the following way:

Definition 7.2.3 (Convergence of filters in topological spaces)

Let (X,O) be a topological space, F be a filter in this space and U (x0) be the

neighbourhood filter of an element x0 of X. This filter converges to x0 ∈ X, when

the following is true:

F ⊃ U (x0). The element x0 is then called limit point of F.

At this point, exemplarily the so-called Frechét filter is defined according to [Oss09],

p.45.

Definition 7.2.4 (Frechét filter)

Let (X,O) be an arbitrary topological space and (xn)n ∈ N a sequence of elements

in X with ∀
n ∈ N

xn ∈ X. A so-called Frechét filter can be defined by the following

set:

FF =

{
F ⊂ X | ∃

n0 ∈ N
∀

n≥ n0

: xn ∈ F

}
Hence, such a Frechét filter consists of sets with tail ends of the regarded sequence

as elements.

In the following, the generalization of the sequence idea using nets is described.

The index set of a sequence is N. This is a linearly ordered set. In general, the

elements of a set can be compared using the idea of a so-called relation. In math-
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ematics, a relation R according to a certain set M is defined as a subset of the

cartesian product of this set and itself: R ⊆ M ×M . Instead of (a, b) ∈ R, one can

write aRb or use the explicit definition of the regarded relation. To characterize

the set and the used relation, the following notation is used: (M,R).

Example 7.2.1 (Relation)

Let the regarded set be N. A possible relation is <. Hence, the pair (2, 3) is an

element of this relation, because 2 < 3 is true.

Regarding sequences and nets, especially the linearly ordered relation and the par-

tially ordered relation have to be regarded and defined as follows.

Definition 7.2.5 (Linearly ordered relation)

Let M be a set and R be a relation on this set. This relation is called linearly

ordered, when the following is true:

(1) ∀
a∈M

: aRa (reflexivity)

(2) ∀
a,b∈M

: aRb ∧ bRa ⇔ a = b

(3) ∀
a,b,c∈M

: aRb ∧ bRa ⇔ aRc (transitivity)

(4) ∀
a,b∈M

: aRb ∨ bRa

Definition 7.2.6 (Partially ordered relation)

Let M be a set and R be a relation on this set. This relation is called partially

ordered, when the following is true:

(1) ∀
a∈M

: aRa (reflexivity)

(2) ∀
a,b∈M

: aRb ∧ bRa ⇒ a = b (antisymmetry)

(3) ∀
a,b,c∈M

: aRb ∧ bRa ⇔ aRc (transitivity)
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For the definition of a net, it is necessary to define the term directed set using a

partially ordered relation:

Definition 7.2.7 (Directed set)

Let (I, R) be a partially ordered set with the relation R. This set is called a di-

rected set, when the following is true:

∀
a,b∈I

∃
c∈I

: aRc ∧ bRc.

Alternatively, the following notation is used: (I, /)

So, according to [Que01], p.75, a net can be defined in the following way:

Definition 7.2.8 (Net)

Let X 6= ∅ be an arbitrary set and (I, /) a directed set. Then, a net or a moore-

smith sequence is a mapping N : I −→ X .

The following notation is used: (Ni)i∈I

Since I will regard the generalised convergence in arbitrary topological spaces, I

have to define the convergence of a net in relation to such a topological space:

Definition 7.2.9 (Convergence of nets in topological spaces)

Let (X,O) be a topological space and (Ni)i∈I be a net. Let in addition to that

U (x0) be the neighbourhood filter of the element x0 of X. The net (Ni)i∈I is then

converging to x0 in the given topological space, when the following is true:

∀
U ∈ U(x0)

∃
i0 ∈I

∀
i≥ i0

: xi ∈ U ,

when (I, /) is the corresponding directed set of the net.

In this context, the following notation is also used:

xi
i→∞−−−→ x0.

Lemma 7.2.1 (Convergence of nets in topological spaces)

Let (Ni)i∈I be a converging net in an arbitrary topological space (X,O). Let in

addition to that U (x0) be the neighbourhood filter of the element x0 of X and
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B (x0) be the neighbourhood base of x0. Then the following equivalence can be

written down:

xi
i→∞−−−→ x0 ⇔ ∀

U ∈ U(x0)
∃

i0 ∈I
∀

i≥ i0
: xi ∈ U

⇔ ∀
B ∈ B(x0)

∃
i0 ∈I

∀
i≥ i0

: xi ∈ B

Proof. The first equivalence is just the notation defined in definition 7.2.9, so there

is nothing to proof there. So I will focus the proof on the second equivalence:

“⇒”: Since the set B (x0) is defined as a subset of the set U (x0) with certain

characteristics given in 7.1.3 and general propositions are passed on to subsets,

this implication is true.

“⇐”: Let: ∀
B ∈ B(x0)

∃
i0 ∈I

∀
i≥ i0

: xi ∈ B be.

Let at this point B1 ∈ B (x0) be arbitrary. this leads to the following implication:

B1 ∈ B (x0) ⇒ ∃
i1 ∈I

∀
i≥ i1

: xi ∈ B1.

Since by definition ∀
U ∈ U(x0)

∃
B ∈B(x0)

B ⊂ U is true, let U1 ∈ U (x0) with B1 ⊂ U1.

This leads to the validity of the following implication:

U1 ∈ U (x0) ∧ B1 ⊂ U1 ⇒ ∃
i1 ∈I

∀
i≥ i1

: xi ∈ U1.

Since the set U1 was arbitrary, the following is valid:

∀
U ∈ U(x0)

∃
i0 ∈I

∀
i≥ i0

: xi ∈ U .

�

This lemma shows, that convergence can also be proofed using the according neigh-

bourhood base and it is not necessary to take all neighbourhoods into account.
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A very close relationship between topological filters and nets bases on the fact,

that converging filters can be used as the index set of a net. A converging filter F

provided with the relation subset: “⊂” is a directed set. Hence, it can be used as

the index set of a topological net.
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7.3 Completeness

The term completeness in a mathematical space is in strong coherence to the con-

vergence in this space. In real and complex analysis this term can be defined using

so-called Cauchy-sequences. Using the definition and the according theorem (for

the proof refer to the given literature) given in [Kön04], pp.52-53, completeness in

C (and equivalent in R) can be described in the following way:

Definition 7.3.1 (Cauchy-sequence)

Let (xn)n ∈ N be an arbitrary sequence in C. (xn)n ∈ N is called Cauchy-sequence

in C :⇔ ∀
ε > 0

∃
n0 ∈ N

∀
n,m > n0

: |xm − xn| < ε

Theorem 7.3.1 (Cauchy-sequence in C)

Let (xn)n ∈ N be an arbitrary sequence in C. Then, the following equivalence is

valid:

(xn)n ∈ N converges in C ⇔ (xn)n ∈ N is a Cauchy-sequence in C.

Using this, the demand of convergence of every Cauchy-sequence in the

regarded space is postulated as axiom of completeness in R and C and in general

in every archimedian field.

An example for a space that is not complete in this definition can be given regard-

ing Q. There, Cauchy-sequences can be defined, whose limit is
√

2, which is not

an element of Q.

Regarding arbitrary metric spaces, completeness can be described in a generalised

way using the given metric (basing on [Rud05], p.60):
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Definition 7.3.2 (Completeness in metric spaces)

Let (X, d) be an arbitrary metric space. A sequence (xn)n ∈ N in this space is called

Cauchy-sequence :⇔ ∀
ε > 0

∃
n0 ∈ N

∀
n,m > n0

: d (xm, xn) < ε

If every Cauchy-sequence is converging in a metric space, this space is called com-

plete.

Until now, the definition of completeness always makes use of the idea of “dis-

tance” with respect to a metric. But in aribtrary topological spaces, there is no

assurance to have such a metric. Hence, the term completeness has to be regarded

in a way using general characteristics of topological spaces. In topological spaces

that have additionally a compatible vector space structure (see 7.4), is it possible

to use algebraic compositions of elements, so completeness can there be described

as follows (refer to [Jän97], p.35).

Definition 7.3.3 (Completeness of a topological vector space)

Let (X,O) be an arbitrary topological vector space, where (V,+, ·) is the basing

vector space above the field K.

A sequence (xn)n ∈ N in this space is then called Cauchy-sequence

:⇔ ∀
U ∈ U(0)

∃
n0 ∈ N

∀
n,m > n0

: xn + (xm) ∈ U

If every Cauchy-sequence converges in this space, it is called complete.

An even more generalised way is the use of filters for describing completeness in

topological spaces that have a uniform structure.

In such spaces, the definitions given in [Que01], pp.154-155, can be used:
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Definition 7.3.4 (Completeness in an uniform space)

Let (X,U) be an arbitrary uniform space.

A filter F in this space is called Cauchy-filter

:⇔ ∀
V ∈ U

∃
F ∈ F

: F × F ⊂ V .

This uniform space X is called complete, if any Cauchy-filter converges in X.
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7.4 Topological vector spaces

7.4.1 Basic characteristics of topological vector spaces

Basing on the description in [Jän97], p.33 et seqq., the term topological vector

space is defined.

Definition 7.4.1 (Topological vector space)

Let (X,+, ·) be a arbitrary vector space above the field K. If (X,O) also is a

topological space and if the topology O as well as the linear structure are compat-

ible in terms of continuity of the following mappings SM and AD, X is called

topological vector space.

TVS1
SM : K × V −→ V (scalar multiplication)

(λ, v) 7→ λ · v

TVS2
AD : V × V −→ V (addition)

(v, v) 7→ v + v

7.4.2 Locally convex spaces

As defined in [Jän97], p.36, a locally convex space can be described by the following:

Definition 7.4.2 (Locally convex topological vector space)

Let (X,+, ·) be an arbitrary topological vector space above the field K

(X,+, ·) is called locally convex topological vector space, if every neighbour-

hood of zero contains a convex neighbourhood of zero.

Equivalent to this formulation is the demand of a convex basis of neighbourhoods

of zero, what obviously follows using definition 7.1.3.

Meise and Vogt showed in [Mei92], p.231, that this is equivalent to the demand of

a convex basis of neighbourhoods for any element x ∈ X.
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What is interesting now is how to construct such locally convex vector spaces.

Schaefer pointed out in [Sch99], p.48, that there exists two ways of constructing

such spaces. The first one as a geometric one using a filter basis with certain

properties. At this point, it is concentrated on the other way, an analytical one.

This approach is described in [Wer05], pp.389 - 392, using the term seminorm

defined in definition 7.1.19:

It has to be verified, that using semi-norms, a basis of neighbourhoods of zero of an

appropriate topology can be constructed. This is done in the following lemma after

giving some definitions basing on [Wer05], p.101 and p.390 as well as additionally

[Sch99], p.11.

Definition 7.4.3 (Characterization of sets in a vector space)

Let (X,+, ·) be an arbitrary vector space above the field K, A be an arbitrary subset

of X and λ be an arbitrary element of K.

CI Circled: A is called circled, if

∀
λ ∈ K
|λ| ≤ 1

λ · A ⊂ A

CII Convex: A is called convex, if

∀
u,v ∈A
λ ∈ K

0≤ λ≤ 1

λ · u + (1 − λ) · y ∈ A

AI Absolutely convex: A is called absolutely convex, if A is circled and convex.

This is equivalent to: A is absolutely convex

⇔

 ∀
u,v ∈A
λ,µ ∈ K

: (|λ| + |µ| ≤ 1 ⇒ λ · u + µ · v ∈ A)


AII Absorbing: A is called absorbing, if

∀
v ∈ V

pA (v) < ∞, whereby pA is the Minkowski functional defined in definition
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7.1.20.

Lemma 7.4.1 (Topology of a locally convex topological vector space)

Let (X,+, ·) be an arbitrary vector space above the field K and let P be a set of

semi-norms in X.Let the system U0 of sets be defined by the following:

U0 = {UF,ε | F ⊂ P is finite , ε > 0}

UF,ε :=

{
x ∈ X | ∀

p ∈ F
p (x − 0) ≤ ε

}
, ε > 0, F ⊂ P is finite.

.

Then, for the system U0, the following properties are valid:

(1) ∀
U ∈ U0

: 0 ∈ U

(2) ∀
U1,U2 ∈ U0

∃
U ∈ U0

: U ⊂ U1 ∩ U2

(3) ∀
U ∈ U0

∃
V ∈ U0

: V + V := {v + v | v ∈ V } ⊂ U

(4) ∀
U ∈ U0

: U is absorbing

(5) ∀
U ∈ U0
λ ∈ K

∃
V ∈ U0

: λ · V := {λ · v | λ ∈ K, v ∈ V } ⊂ U

(6) ∀
U ∈ U0

: U is circled

(7) ∀
U ∈ U0

: U is absolutely convex

(8) Using (1) − (6), for (X,+, ·) can be constructed a topology by:

O ⊂ X is open ⇔ ∀
x ∈O

∃U ∈ U0 : x + U := {x + u | u ∈ U} ⊂ O,

such that (X,+, ·) is a topological vector space.

The proof can be found in [Wer05], p.389 et seqq.
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7.5 Measurement and integration

7.5.1 Basic principles of measures

The term measuring is in close coherence to our everyday life. We often measure

things characterising them by a length or a volume. The mathematical measure

theory generalizes this measuring for applying it on certain sets and spaces. It

follows the concepts of the everyday use of measuring, and so, the methods are

characterised as follows:

(a) A set, that does not contain any element is measured by 0.

(b) The value, that is produced by using a measurement method is positive (a

positive element of R or C).

(c) The measurement of disjunct subset is done by adding up the particular

measure values.

In the historical development of measure theory, many approaches have been de-

veloped. Two main proceedings of constructing a theory of measurement can be

found. The first one well described in [Els05] and [Bau01] uses systems of set like

so-called σ-algebras, measure spaces and measurable functions as basing concepts

and leads then to measurability in topological spaces. A team of french authors

using the pseudonym Nicolas Bourbaki (see [Bou04]) uses linear functionals de-

scribing measurement on topological spaces as a starting point. In this subsection,

the basic ideas of the measuring in measure spaces are described. After that, the

approach using linear functionals is looked at more detailed, because it is used for

this thesis regarding the space of geocoded mappings as trainings-data for BPNs

in chapter 9 in the context of dealing with spatial data within the EWARS. The

coherence between both approaches finally is shown regarding the so-called Rep-

resentation theorem of Riesz in the last subsection of this section.
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The definition of measurement basing on sets is described briefly at this point, for

further information refer to [Els05] or [Bau01].

This way of measuring uses the mentioned system of sets called σ-algebra ([Els05],

p.14):

Definition 7.5.1 (σ-algebra)

Let X be an arbitrary set and P (X) the corresponding power set. The system

A ⊂ P (X) is called σ-algebra, if the following is valid:

(1) X ∈ A

(2) ∀
A ∈PX

: A ∈ A ⇒ X \ A ∈ A

(3) For any sequence (An)n ∈ N in PX is valid: ∀
n ∈ N

: An ∈ A ⇒
∞⋃

n= 1

An ∈ A

Basing on this, a measure can be defined in the following way:

Definition 7.5.2 (Measure)

Let X be a set, R := R ∪ {−∞,∞} and A ⊂ P (X) a σ-algebra. Then, a

mapping µ : A −→ R is called measure with the following propositions:

(1) µ (∅) = 0

(2) ∀
A ∈ A

µ (A) ≥ 0

(3) For any disjunct sequence (An)n ∈ N in AX is valid: µ

(
∞⋃

n= 1

An

)
=

∞∑
n= 1

µ (An)

A very important σ-algebra is the σ-algebra of Borel sets ([Els05], p.18):

Definition 7.5.3 (σ-algebra of Borel sets)

Let (X,O) be an arbitrary topological space. The σ-algebra σ (O) generated by O

is then called the σ-algebra of the Borel sets in X and denoted by B (X).
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W.H.Young used this definition of measurement to define integration and in this

context,
∫
X

fdµ is called the (µ)-Integral of a measurable mapping f : X −→ R .

It is not necessary to broaden this concept here more deeply. The coherences are

well described in [Els05], p. 119 et seqq. and the historical development on p.136

et seqq.

Regarding the concept of measuring described in the following subsection, the

representation theorem of F. Riesz formulates the coherence of these two concepts.

This theorem is given in a separate subsection (7.5.3) after the following, because

there are needed some definitions out of this. In that way, both concepts are

described before giving the theorem of Riesz. building a bridge between them.

7.5.2 Measurement on topological spaces and elements of

integration theory

Now, the focus lays on the measuring approach using linear functionals.

Definition 7.5.4 (Linear operator and linear functional)

Let MAP (X, Y ) be the set of any mappings F : X −→ Y between the sets

X and Y as in section 7.2. A so-called operator is an element out of this set, thus

it is a synonym for the term mapping. Hence, a linear operator is a linear

mapping.

In this context, a linear functional of a vectorspace (V,+, ·) above the field K is

an operator of the type F : V −→ K with the following properties:

∀
λ,µ ∈ K
x1,x2 ∈ V

: F (λ · x1 + µ · x2) = λ · F (x1) + µ · F (x2)

Definition 7.5.5 (Support)

Let (X,O) be an arbitrary topological space and f ∈ MAP (X,C) a continuous

mapping. Then, the support of f is defined by the following bounded set:
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Supp (f) := {x ∈ X | f (x) 6= 0C}.

Definition 7.5.6 (Continuous mappings with compact support)

Let (X,O) be an arbitrary topological space. The set

CC (X) :=
{
f ∈ MAP (X,C) | f : X −→ C , Supp (f) is compact

}
is

called the space of all continuous mappings with compact support of the

type f : X −→ C .

Definition 7.5.7 (Supremum semi-norm on compact sets in CC (X))

Let f be an arbitrary element of CC (X) and let K ∈ K (X) be an arbitrary compact

subset of X. Furthermore, let IK be the characteristic function of K. Then by

‖ · ‖K : CC (X) −→ R+
0

with

‖f‖K := ‖f ◦ IK‖∞ = sup {| (f ◦ IK) (x) | x ∈ X},

there is a semi-norm defined on CC (X).

To summarize the regarded function spaces, the following remark is given:

Remark 7.5.1 (Nomenclature of function spaces)

In this thesis, the following nomenclature concerning function spaces is used. Let

therefor X be an arbitrary topological space and C provided with the euclidian

topology:

• The set of any mappings F : X −→ Y between the sets X and Y is

denoted as MAP (X, Y )

• The set of any continuous mappings F : X −→ Y between the sets

X and Y is denoted as C (X, Y )

• The set of any continuous mappings with compact support F : X −→ Y

between the sets X and Y is denoted as CC (X, Y )

• The set of any continuous mappings F : X −→ C between the sets

X and C is denoted as C (X)
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• The set of any continuous mappings with compact support F : X −→ C

between the sets X and C is denoted as CC (X)

• A mapping f ∈ C (X) respectively f ∈ CC (X) is called positive, if it is real-

valued ( f : X −→ R ) and if ∀
x ∈X

f (x) ≥ 0 is valid. The subset of

the positive mappings of one of the above sets C (X) and CC (X) is denoted

as C+ (X) respectively C+
C (X).

• K (X) := {K ⊂ X | K compact} is the set of any compact subset of X

Using this, the term positive complex-valued linear functional of positive continuous

mappings is defined:

Definition 7.5.8 (Positive linear functional)

Let F : C (X) −→ C respectively F : CC (X) −→ C be a linear func-

tional. This linear functional is called positive, if the following is valid:

f ∈ C+ (X) ⇒ F (f) ≥ 0 real-valued

respectively

f ∈ C+
C (X) ⇒ F (f) ≥ 0 real-valued

Following [Bou04], a complex radon measure is defined in the following way:

Definition 7.5.9 (Complex radon measure)

Let (X,O) be an arbitrary locally compact T2 topological space. Then a complex

radon measure on X is a linear functional µ : CC (X) −→ C with the

following properties:

∀
K ∈ K(X)

∃
C > 0

: f ∈ CC (X) , Supp (f) ⊂ K ⇒ |µ (f) | ≤ C · ‖f‖∞

This idea of measuring is used in this thesis as the main measuring concept.
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The following theorem shows with the help of a lemma, that for any positive

linear form µ : CC (X) −→ C there exits an adequate constant C to fullfill

the postulation of the above definition.

Lemma 7.5.1 (Positive linear functionals)

Let µ : CC (X) −→ C an arbitrary positive linear functional on CC (X).

Then, the following is valid:

∀
f ∈ CC(X)

: |µ (f) | ≤ µ (|f |)

Proof. Let α ∈ C with |α| = 1 and α · µ (f) = |µ (f) |, where f is an arbitrary

element of CC (X).

In CC (X), any real-valued mapping g can be written as g+ − g−, with g+ :=

1
2
· (|g| + g) and g− := 1

2
· (|g| − g) and ∀

x ∈X
: |g| (x) := |g (x) | easily shown

by insertion.

It is valid, that g+ and g− both are elements of C+
C (X), because let g (x0) = −y ∈ R

for an arbitrary x0 ∈ X, then 1
2
· (|g (x0) | + g (x0)) = 1

2
· (y + (−y)) = 0 and

equivalentelly shown for g−.

The mapping α · f can be written as g1 + i · g2, g1, g2 ∈ CC (X) real-valued. So,

the following is valid using the linearity of µ:

(1) ∀
i ∈ {1,2}

: µ (gi) = µ
(
g+
i − g−i

)
= µ

(
g+
i + (−1) · g−i

)
= µ

(
g+
i

)
+ (−1) ·

µ
(
g−i
)
∈ R.

(2) ∀
x ∈X

: g1 (x) ≤ |g1| (x) = |g1 (x) | =
√
g1 (x)2 ≤

√
g1 (x)2 + g2 (x)2 =

|g1 (x) + i · g2 (x) | = | (g1 + i · g2) (x) | = |α · f (x) | = |α · f | (x).

So, using (1) and (2) and in addition the linearity of µ, the following chain of

inequalities can be written down:

|µ (f) | = α · µ (f) = µ (α · f) = µ (g1 + i · g2) = µ (g1) + i · µ (g2)︸ ︷︷ ︸
= 0

=

µ (g1) ≤
(2)

µ (α · f) = µ (|f |)
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�

Theorem 7.5.1 (Positive linear functionals as complex radon measures)

Let µ : CC (X) −→ C an arbitrary positive linear functional on CC (X),

then there exists an adequate constant C to fullfill definition 7.5.9 for this µ. Such

functionals are called then positive radon measures.

Proof. Let µ : CC (X) −→ C an arbitrary positive linear functional on

CC (X) and let K ∈ K (X) be an arbitrary compact subset of X. Furthermore,

let f be an arbitrary element of CC (X) with Supp (f) ⊂ K.

Using corollary 7.1.1, there exists a continuous mapping f : X −→ [0, 1]

where

h (K) =

{
y ∈ [0, 1] | ∃

x ∈K
h (x) = y

}
= {1}.

Obviously, h is an element of C+
C .

So, |f | ≤ ‖f‖∞ · h is valid and using this and the above lemma, also the following

is valid:

|µ (f) | ≤ µ (|f |) ≤ µ (‖f‖∞ · h) ≤ ‖f‖∞ ·µ (h) = ‖f‖K ·µ (h)
C := µ(h)

= ‖f‖K ·C.

�

Remark 7.5.2 (Set of positive linear functionals)

Let (V,+, ·) be an arbitrary vector space above the field K. The set of any positive

linear functional of the type F : V −→ K is then denoted as PLF (V,K)

Until now, measurement is only described and defined for mappings of the type

µ : CC (X) −→ C , but this is not adequate for regarding arbitrary mappings.

Hence, the described method of measurement has to be extended to gain the

ability of handling a huger set of mappings. This process of enlargement is shown

at this point. The main idea is to describe integrability of mappings by using
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approximations of mappings f ∈ CC (X). The starting point is the definition

of a so-called upper integral or upper measure, but before doing this, some more

definitions are necessary. The illustration of the coherences is based on [Edw94],

p.182 et seqq.

Hence, (X,O) denotes an arbitrary locally compact T2 topological space and F

set is a set of mappings with the following definition: F ⊂ MAP (X, [−∞,∞])

In the following, the set R is defined as R := R ∪ {−∞,∞}. For this set, the

following is defined:

∀
x ∈ R

: −∞ < x < ∞

∀
x ∈ R
x 6=−∞

: x + ∞ = ∞ + x = ∞

∀
x ∈ R
x 6=∞

: x + (−∞) = (−∞) + x = −∞

The following definition describes the term directed or filtered set given in definition

7.2.7 in the context of function sets:

Definition 7.5.10 (Filtered set of mappings)

Let (X,O) be an arbitrary locally compact T2 topological space. A set F ⊂

MAP (X, [−∞,∞]) is called:

(a) increasing filtered, if ∀
f,g ∈ F

∃
h ∈ F

: f ≤ h ∧ g ≤ h

(b) decreasing filtered, if ∀
f,g ∈ F

∃
h ∈ F

: h ≤ f ∧ h ≤ g

For describing the upper measure, the definition of semicontinuity is necessary:

Definition 7.5.11 (Semicontinuity of mappings)

Let f ∈ F . This mapping is called

(a) upper semicontinuous, :⇔ ∀
α ∈ R

α > f(x)

∃
U ∈ U(x)

: y ∈ U ⇒ α > f (y)

(b) lower semicontinuous, :⇔ ∀
α ∈ R

α < f(x)

∃
U ∈ U(x)

: y ∈ U ⇒ α < f (y)
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Using this, the sets USC (X) and LSC (X) are characterised in the following way:

USC (X) := {f ∈ F | f is upper semicontinuous}

LSC (X) := {f ∈ F | f is lower semicontinuous}

USC+ (X) and LSC+ (X) describes the particular subsets of positive mappings (see

remark 7.5.1).

Using the set LSC+ (X), there is defined an upper integral on this set:

Definition 7.5.12 (Upper integral on LSC+ (X))

Let µ∗ be an arbitrary positive radon measure and µ be an arbitrary radon

measure. Then the upper integral of a mapping φ ∈ LSC+ (X) is defined in

the following way:

µ∗ (φ) =
∫ ∗
φ dµ =

∫ ∗
φ (x) dµ (x) := Sup

{
µ (h) | h ∈ C+

C (X) , h ≤ φ
}

Hence, the mapping µ∗ : LSC+ (X) −→ [0,∞] is a continuation of the map-

ping µ : C+
C (X) −→ [0,∞ [ for arbitrary positive radon measure µ∗ and radon

measure µ.

Now, arbitrary positive mappings f : X −→ [0,∞] are regarded to extend

the given definition:

Definition 7.5.13 (Upper integral for mappings f : X −→ [0,∞] )

Let f ∈ MAP (X, [0,∞]) an arbitrary mapping on X taking values in [0,∞] ⊂ R.

Then, the upper integral of this mapping is defined by the following:

µ∗ (f) =
∫ ∗
f dµ =

∫ ∗
f (x) dµ (x) := Inf

{
µ∗ (φ) | φ ∈ LSC+ (X) , φ ≤ f

}
With this definition, the following convergence statement can be given:
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Theorem 7.5.2 (Convergence of upper integrals)

Let (fn)n ∈ N be a sequence of mappings with ∀
n ∈ N

: f : X −→ [0,∞] and

fn ↗ f , what means, that ∀
n ∈ N

fn ≤ fn+1, ∀
x ∈X

lim
n→∞

fn (x) = f (x). Then for an

arbitrary upper integral the following is valid:

µ∗ (fn)↗ µ∗ (f)

The according proof can be found in [Edw94], p.190.

Regarding sets and their subsets, there can be defined a so-called characteristic

function χA of the subset A.

Definition 7.5.14 (Characteristic function)

Let Ω 6= ∅ be an arbitrary nonempty set and A ⊆ Ω an arbitrary subset of Ω.

Then, the following mapping χA with:

χA : Ω −→ {0, 1}

x 7→ χA (x) =

 1 for x ∈ A

0 for x ∈ Ω \ A
is called characteristic function of the subset A.

Using this mapping, which obviously is of the type f : X −→ [0,∞] , there

can be defined the exterior (µ)-measure of a subset A ⊂ X.

Definition 7.5.15 (Exterior (µ)-measure of a subset)

Let A be an arbitrary subset of X. Then, the so-called exterior (µ)-measure of

this subset is defined in the following way:

µ∗ (A) := µ∗ (χA).

According to this definition, the term set of µ-measure zero is described by the

validity of µ∗ (A) = 0 for the subset A.

This term is then used to describe the following:
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If ∀
x ∈X

: P (x) is a property, then this property is said to hold µ-almost ev-

erywhere, if the set {x ∈ X | P (x) is false} is a set of µ-measure zero. In the

following, the abbreviation µAE is used instead of µ-almost everywhere.

The next step of extending the idea of measuring consists of introducing a semi-

norm on a subspace of MAP (X,C). Basing on this spaces, the spaces LP (X,µ)

can be constructed. With this , the term integrability can be defined finally.

Theorem 7.5.3

Let f, g : X → [0,∞] be arbitrary mappings. Then, the following is valid:

1. f ≤ g µAE ⇒ µ∗(f) ≤ µ∗(g).

2. f = g µAE ⇒ µ∗(f) = µ∗(g).

3. µ∗(f) = 0⇔ f = 0 µAE.

4. µ∗(f) <∞⇒ f is finite µAE, i.e. 6=∞.

Proof. 1. There exists a set of µ-measure zero A ⊂ X with f ≤ g +∞χA.

Hence,

µ∗(f) ≤ µ∗(g +∞χA)

≤ µ∗(g) + µ∗(∞χA)

= µ∗(g) + lim
n
µ∗(nχA)

= µ∗(g) + lim
n
nµ∗(A)

= µ∗(g)

2. There exists a set of µ-measure zero A ⊂ X with g = f +∞χA. Hence,
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µ∗(g) ≤ µ∗(f +∞χA)

≤ µ∗(f) + µ∗(∞χA)

= µ∗(f) + lim
n
µ∗(nχA)

= µ∗(f) + lim
n
nµ∗(A)

= µ∗(f)

Using 1., the proposition is valid.

3. Let A = {x ∈ X | f(x) > 0}. Then, χA ≤ ∞f , what leads to the fact, that

µ∗(A) ≤ µ∗(∞f)

= µ∗(lim
n
nf)

= lim
n
µ∗(nf)

= 0

4. Let B = {x ∈ X | f(x) = ∞}. Then, ∞χB ≤ f is valid. Hence,

lim
n
nµ∗(B) ≤ µ∗(f) <∞, µ∗(B) = 0.

�

The semi-norm mentioned above is defined in the following way:

Definition 7.5.16 (P semi-norm)

Let P be an arbitrary element of the interval [1,∞] and let f be an arbitrary

mapping out of MAP (X,C). Then the mapping:

‖ · ‖P : MAP (X,C) −→ [0,∞]

f 7→ ‖f‖P :=
(
µ∗|f |P

) 1
P = P

√∫ ∗ |f |P dµ
defines the P semi-norm.
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Using this definitions, the following conclusions can be drawn (the proof can be

found in [Edw94], p.215 et seqq.):

Corollary 7.5.1 (Characteristics of the P semi-norm)

(1) ∀
f ∈MAP(X,C)

(‖f‖P ≥ 0, ‖f‖P = 0 ⇔ f = 0 µAE)

(2) ∀
f,g ∈MAP(X,C)

(f = g µAE ⇒ ‖f‖P = ‖g‖P )

(3) ∀
f ∈MAP(X,C)

α ∈ C

(‖α · f‖P = |α| · ‖f‖P )

(4) ∀
f,g ∈MAP(X,C)

(‖f + g‖P ≤ ‖f‖P + ‖g‖P ) (Minkowski’s inequality)

At this point, there has to be mentioned, in which space the mapping ‖ ·‖P defines

a semi-norm. This is valid for the vectorspace FP (X,µ) above the field C with:

FP (X,µ) := {f ∈ MAP (X,C) | ‖f‖P < ∞}.

This space contains the space CC (X) as a vector subspace. The closure of this sub-

space relative to the defined semi-norm now defines the vector subspace LP (X,µ).

This subspace in turn can be characterised in the following way:

LP (X,µ) =

{
f ∈ MAP (X,C) | ∀

ε > 0
∃

g ∈ CC(X)
: ‖f − g‖P < ε

}
.

Definition 7.5.17 (P th-power integrable)

Let f ∈ LP (X,µ) with:

LP (X,µ) =

{
f ∈ MAP (X,C) | ∀

ε > 0
∃

g ∈ CC(X)
: ‖f − g‖P < ε

}
.

Then, f is called P th-power integrable. For P = 1, the term integrable is

used.

Remark 7.5.3

(R I) The term integrability should also be used for mappings

f : X → [−∞,∞] , if the following proposition is valid

∀ ε > 0∃g ∈ CC(X) : ‖f − g‖1 < ε.
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(R II) Let f, g be two mappings with f, g : X −→ C respectively

f, g : X −→ [−∞,∞] matching µAE, so g ∈ LP (X,µ) is valid, if

f ∈ LP (X,µ).

That means, that, if f is integrable, this is valid for g.

(R III) An arbitrary mapping f : X → C is an element out of LP (X,µ), if and only

if Rea(f) and Ima(f) are elements out of LP (X,µ).

(R IV) Due to the validity of ∀
g∈CC(X)

: ‖|f | − |g|‖p ≤ ‖f − g‖p, the following

characteristics are valid:

• f ∈ LP (X,µ)⇒ |f | ∈ LP (X,µ)

• f integrable⇒ |f | integrable,

(R V) Let K ⊆ X be a compact subset. Then, for any real-valued mapping f : K →

the following is valid:

f ∈ LP (X,µ)⇔ f+, f− ∈ LP (X,µ).

(R VI) With f, g ∈ LP real-valued, also max(f, g) und min(f, g) are elements out of

LP (X,µ), because they can be characterised in the following way:

max(f, g) = (f − g)+ + g,

min(f, g) = −(f − g)− + g.

(R VII) Due to the fact, that an integrable mapping f : X → [−∞,∞]. is finite µAE

(see 7.5.3), this is also valid for them.

Lemma 7.5.2

A mapping f : X → [0,∞] is integrable, if and only if

∀
ε>0

∃
g,h ∈ LSC+(X)

: −g ≤ f ≤ h ∧ µ∗(h) <∞ ∧ µ∗(h+ g) < ε.
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Proof. ⇒: Let g ∈ C+
C (X) with µ∗(|f − g|) < ε.

Take h ∈ LSC+(X) with |f − g| ≤ h, µ∗(h) < ε. then, h + g ∈ LSC+ (X) and

h−g ∈ LSC+ (X). Hence, −(h−g) ≤ f ≤ h+g and µ∗(h+g) = µ∗(h)+µ∗(g) <∞,

µ∗(h+ g + h− g) = 2µ∗(h) < 2ε. is valid

⇐: Let ε > 0. Take g, h ∈ LSC+ (X) with −g ≤ f ≤ h, µ∗(h) < ∞ and

µ∗(g + h) < ε.

Take then k ∈ C+
C (X) with k ≤ h, µ(k) ≥ µ∗(h)− ε.

Then, f − k ≤ h− k,

k − f ≤ k + g ≤ h+ g, is valid, i.e. |f − k| ≤ (h− k) + (h+ g),

µ∗(|f − k|) ≤ µ∗(h− k) + µ∗(h+ g) < 2ε using µ∗(h− k) + µ∗(k) = µ∗(h).

�

Corollary 7.5.2

Let f ∈ LSC+(X). Then, f is integrable⇔ µ∗(f) <∞ is valid.

The according proof can be found in [Edw94], p.189.

Remark 7.5.4

Let f be an integrable mapping on X. Regard a sequence (gn) in CC(X) with

lim ‖f − gn‖1 = 0.

Then, (gn) is a cauchy sequence in L1(X) according to the halfnorm ‖ · ‖1, i.e.

∀
ε>0

∃
n0 ∈N

∀
n,m≥n0

: ‖gn − gm‖1 < ε.

With ∀
g∈CC(X)

|µ(g)| ≤ µ(|g|) = µ∗(|g|) = ‖g‖1 also (µ(gn)) is a cauchy sequence in

C. I.e., limµ(gn) exists.

Replacement of (gn) by (hn) in CC(X) with the same characteristics provides,

that these characteristics are also valid for the sequence g1, h1, g2, h2, .... Hence,

limµ(gn) and limµ(hn) are both equal to the limit of the sequence

µ(g1), µ(h1), µ(g2), ....
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Definition 7.5.18 (Integral of integrable mappings)

Let f ∈ L1 (X,µ) be an arbitrary integrable mapping. Further, let gn be a sequence

in CC(X) with lim ‖f − gn‖1 = 0.

Then, the limit limµ(gn) without reference to the choice of (gn) is called the inte-

gral of the mapping f with the following nomenclature:

µ(f) =
∫
fdµ =

∫
X

f(x)dµ(x).

Remark 7.5.5

It is easily seen, that

µ : L1(X,µ) −→ C

f 7→
∫
fdµ

defines a linear mapping, which extends the linear mapping µ : CC(X)→ C.

The following is valid:

• ∀
f ∈ L1(X,µ)

|µ(f)| ≤ µ(|f |).

Regarding lim ‖f − gn‖1 = 0 the validity of lim ‖|f | − |gn|‖1 = 0 is given

for any sequence (gn) in CC(X), i.e. |µ(f)| = | lim
n
µ(gn)| = lim

n
|µ(gn)| ≤

limµ(|gn|) = µ(|f |).

• If f ∈ L1 (X,µ) and f ≥ 0, so µ(f) = µ∗(f).

This is valid, because if gn ∈ C+
C (X) with ‖gn − f‖1 = µ∗(|gn − f |) → 0, so

|µ∗(gn)− µ∗(f)| → 0. Hence µ(f) = lim
n
µ(gn) = lim

n
µ∗(gn) = µ∗(f)

Theorem 7.5.4 (Theorem of the monotonous convergence (B. Levi))

Let fn : X → [−∞,∞] ∈ L1 (X,µ) and n ∈, fn ↗ f µAE with a suitable

f : X → [−∞,∞]. The following is proposed:
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f ∈ L1 (X,µ) ⇔ supµ(fn) <∞,

If that is valid, the following is also valid:

µ(f) = lim
n
µ(fn) = supµ(fn)

Proof. Modification of the mapping onto a set of µ-measure zero leads to the fact,

that fn ↗ f everywhere and that every fn is finite.

Then, fn + f−1 ≥ f1 + f−1 = f+
1 ≥ 0 and fn + f−1 ↗ f + f−1 , are valid.

⇒: and the equality µ(f) = lim
n
µ(fn) can be derived from 7.5.2 by:

µ(f) + µ(f−1 ) = µ(f + f−1 ) = µ∗(f + f−1 ) = limµ∗(fn + f−1 ) = lim
n
µ(fn) + µ(f−1 ).

⇐: For ε > 0 choose n with m ≥ n⇒ µ(fm)− µ(fn) < ε, i.e. µ∗(fm − fn) < ε.

With fm − fn ↗ f − fn (m→∞), µ∗(f − fn) ≤ ε, ‖f − fn‖1 ≤ ε is valid.

Hence, ‖f − g‖1 ≤ ‖f − fn‖1 + ‖fn − g‖1 < 2ε with appropriate g ∈ CC(X).

�

Corollary 7.5.3

Let fn : X → [−∞,∞] be integrable, n ∈. If a mapping g : X → [0,∞] with

µ∗(g) <∞ and fn ≤ g µAE exists for any n ∈, then sup
n
fn is integrable.

Proof. The mappings gn := max(f1, ..., fn) are integrable, gn ↗ sup fn, and

µ(gn) ≤ µ∗(g) <∞. is valid.

�

Lemma 7.5.3 (Fatou)

Let fn, g as described in 7.5.3. If c := lim sup
n→∞

µ(fn) > −∞,, then f := lim sup
n→∞

fn

is integrable and c ≤ µ(f). is valid.

Proof. Using 7.5.3, gn := sup
k≥n

fk is integrable and
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µ(gn) ≥ sup
k≥n

µ(fk)

≥ inf
n

sup
k≥n

µ(fk)

= lim sup
n→∞

µ(fn)

= c

This is valid using gn ↘ f .

I.e. −gn ↗ −f is derived from 7.5.4. Hence, −f is integrable. This leads to the

fact, that f is integrable as well and µ(f) = − lim
n
µ(−gn)

= lim
n
µ(gn)

≥ c.

�

Theorem 7.5.5 (Lebesgue)

Let (fn) be a sequence of integrable mappings on X (with values in C or in

[−∞,∞]), converging to f µAE.

Let g : X → [0,∞] be a mapping with µ∗(g) < ∞ and |fn| ≤ g µAE and for any

n ∈. Then, f is integrable and µ(f) = lim
n
µ(fn) and ‖f − fn‖1 → 0. are valid.

Proof. For proving the integrability of f and the validity of µ(f) = lim
n
µ(fn), any

fn can be regarded as real valued.

Then, −g ≤ fn ≤ g, and so lim supµ(fn) ≥ −µ∗(g) > −∞ are valid. sing 7.5.3, f

is integrable with f = lim sup fn µAE and µ(f) ≥ lim supµ(fn) is valid.

Changing all the signs, also µ(f) ≤ lim inf µ(fn), is valid.

Hence, µ(f) = limµ(fn) is valid.

Further |f − fn| µAE converges to 0 and ≤ |f |+ |fn| ≤ 2g

It follows ‖f − fn‖1 = µ(|f − fn|)→ µ(0) = 0
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�

Theorem 7.5.6

Let λ, µ two positive measures on X, f : X → [0,∞] an arbitrary mapping and

further A ⊂ X.

Then, the following is valid:

1. λx(f) + µ∗(f) = (λ+ µ)x(f).

2. A set of λ+µ-measure zero⇔ A set of λ-measure zero and A set of µ-measure

zero.

3. L1(X,λ+ µ) = L1(X,λ) ∩ L1(X,µ).

Proof. 1. For f ∈ C+
C (X), the statement obviously is valid.

For f ∈ LSC+(X) and any g ∈ C+
C with g ≤ f the following is valid:

(λ+ µ)(g) = λ(g) + µ(g)

≤ λx(f) + µ∗(f),, hence (λ+ µ)x(f) ≤ λx(f) + µ∗(f)

For g, h ∈ C+
C with g ≤ f, h ≤ f , the following is valid: λ(g) + µ(h) ≤

λmax(g, h) + µ(max(g, h)) ≤ (λ + µ)x(f),. Due to the variability of g and

h, λ(g) + µ∗(f) ≤ (λ+ µ)x(f),

λx(f) + µ∗(f) ≤ (λ+ µ)x(f) follows.

In the same way, the step from f ∈ LSC+(X) to an arbitrary f follows.

2. A set of λ+ µ-measure zero ⇔ (λ+ µ)∗(A) = 0 = 0 + 0 = λ∗(A) + µ∗(A)⇔

A set of λ-measure zero and A set of µ-measure zero.

3. Using λ ≤ λ+ µ, µ ≤ λ+ µ, “⊂” is valid with the already proven facts.

“⊃”: Let f ∈ L1(X,λ) ∩ L1(X,µ). f ≥ 0 can be assumed. With 7.5.2 for

any ε > 0 lower semicontinuous mappings gi, hi : X → (−∞,∞] exist with

−gi ≤ f ≤ hi, i = 1, 2, so that λx(h1) <∞,
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µ∗(h2) <∞, λx(g1 + h1) < ε and µ∗(g2 + h2) < ε.

Setting g = min(g1, g2), h = min(h1, h2), then −g ≤ f ≤ h, (λ+ µ)∗ (h) =

λ∗(h) + µ∗(h) ≤ λ∗(h1) + µ∗(h2) < ∞ and (λ + µ)∗(g + h) = λ∗(g + h) +

µ∗(g + h) ≤ λ∗(g1 + h1) + µ∗(g2 + h2) < 2ε

Using 7.5.2 f ∈ L1(X,λ+ µ) is valid.

�

Remark 7.5.6

It can be proven, that 7.5.6 (3.) is valid for any P ∈ [1,∞):

LP (X,λ+ µ) = LP (X,λ) ∩ LP (X,µ).

Using the already proven facts, A ⊂ X is (λ + µ)-integrable, if and only if A is

λ-integrable and µ-integrable. The same is valid for the term measurable instead

of integrable.

Is f ∈ LP (λ) ∩ LP (µ), so f is (λ+ µ)-measurable

(λ+ µ)x(|f |p) = λx(|f |p) + µ∗(|f |p) <∞ leads then to f ∈ LP (λ+ µ).

At this point, the restriction of a positive measure is suspended.

Definition 7.5.19 (µ-integrability)

Let µ ∈M(X) be an arbitrary measure. Then, the following is defined:

LP (X,µ) := LP (X, |µ|), p ∈ [1,∞),

A mapping f on X is named µ-integrable, if it is |µ|-integrable, the sets of µ-

measure zero are the sets of |µ|-measure zero.

‖f‖p,µ := (|µ|x|f |p)1/p,

Now, the spaces LP (X,µ) are defined, but first, some definitions are required.
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Definition 7.5.20 (Banachspace)

A space E is called Banachspace, if E is complete and normed by a norm ‖ · ‖.

Definition 7.5.21 (Positiv semidefinite Hermitian form, inner product)

A positiv semidefinite Hermitian form or an inner product on a complex

vector space E is a mapping

(·|·) : E × E −→ C

(u, v) 7→ (u|v)

Thereby, the mapping (·|·) has the following characteristics (u, v, w ∈ E,α ∈ C):

(IP1) (u+ v|w) = (u|w) + (v|w),

(IP2) (αu|v) = α(u|v),

(IP3) (u|v) = (v|u), · means complex conjugation

(IP4) (u|u) ≥ 0,

With 1. 2. and 3. follows:

(IP5) (u|v + w) = (u|v) + (u|w),

(IP6) (u|αv) = ᾱ(u|v)

(IP7) If (u|u) = 0⇒ u = 0 is valid, (·|·) is named positive definite.

Remark 7.5.7

Set ‖u‖ :=
√

(u|u) for any u ∈ E.

Then, |(u|v)| ≤ ‖u‖‖v‖, u, v ∈ E is valid. This can be derived from (u + αv|u +

αv) ≥ 0 for every real valued multiple of (v|u).

Thus estimate leads to the fact, that ‖ · ‖ is a semi-norm on E.
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Is (·|·) even positive definite, then ‖ · ‖ is a norm.

From the semi-norm ‖ · ‖, the inner product can be reversely derived using the

so-called polarization identity with u, v ∈ E:

4(u|v) =
3∑

ν=0

iν‖u+ iνv‖2

Definition 7.5.22 (Hilbert space)

A complex vector space E, which is a Banach space using the inner product (·|·)

and the according derived semi-norm ‖ · ‖, is named complex Hilbert space.

Remark 7.5.8

If ‖ · ‖ is a semi-norm on the vectorspace E, then N := {u ∈ E | ‖u‖ = 0} defines

a vector subspace of E, on whose coset classes u + N, u ∈ E this semi-norm is

constant.

This can be seen by v ∈ N ⇒ ‖u+ v‖ ≤ ‖u‖+ ‖v‖ = ‖u‖ ≤ ‖u+ v‖.

On the vector space E/N , a semi-norm can be defined representively by:

‖u/N‖ = ‖u+N‖ := ‖u‖, u ∈ E

Thereby, u/N describes the class generated by u. Using this, E/N even is a normed

space. Also E/N is complete.

Similar coherences can be derived for an inner product (·|·) on E:

Using the semi-norm generated by (·|·), N is defined as done above.

Adding an arbitrary w ∈ N to arbitrary u, v ∈ E, (u|v) remains constant (Regard

|(u+ v|v)− (u|v)| = |(w|v)| ≤ ‖w‖‖v‖ = 0).

In this way, an inner product can be defined representively on E/N by:

(u/N |v/N) := (u|v), u, v ∈ E,
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Figure 7.4: Extended hierarchical structure of mathematical spaces

At this point, the hierarchical structure of spaces, that has been described until

know, is illustrated in figure 7.4.

These considerations are now applied on the spaces LP (X,µ), 1 ≤ p <∞.

Definition 7.5.23 (LP (X,µ) space)

Let P be an arbitrary element of the interval (0,∞) and ‖ ·‖P the mapping defined

above. Then, the quotient space LP (X,µ) is characterised by the following:

LP (X,µ) := LP (X,µ) /N P ,

with N P :=
{
f ∈ LP (X,µ) | f = 0 µAE

}
.

Theorem 7.5.7 (Fischer-Riesz)

For any p ∈ [1,∞), LP (X,µ) is complete. Hence, LP (X,µ) is a Banach space.

Proof. Let (fn) be a Cauchy-sequence in LP . It is appropriate to prove, that a

partial sequence (fn) converges with reference to the semi-norm ‖ · ‖p. Hence,

‖fn+1 − fn‖p < 2−n for any n ∈ can be assumed.

Set g :=
∑
n=1

|fn+1 − fn|
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Regarding the partial sums of this sum to the power of P , they monotonously

converge to gp, the following is valid:

µ∗(gp) = lim
n→∞

µ∗(
n∑
k=1

|fk+1 − fk|)p

= lim
n→∞

‖
n∑
k=1

|fk+1 − fk|‖pp

≤ lim
n→∞

(
n∑
k=1

‖fk+1 − fk‖p)p

≤ 1.

Hence, g is finite µAE , the sequence (fn) converges to a mapping f : X → C µAE .

For any m ∈, |fn − fm|p → |f − fm|p converges for n→∞ µAE .

For n > m, the following is valid:

|fn − fm|p = |
n−1∑
k=m

(fk+1 − fk)|p

≤ (
n−1∑
k=m

|fk+1 − fk|)p

≤ gp

Using the theorem of Lebesgue (7.5.5), the following is valid for n→∞: µ(|fn −

fm|p)→ µ(|f − fm|p)

This leads to the following:
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‖f − fm‖pp = lim
n→∞

‖fn − fm‖pp

= lim
n→∞

‖
n−1∑
k=m

(fk+1 − fk)‖pp

≤ lim
n→∞

(
n−1∑
k=m

‖fk+1 − fk‖p)p

≤ 2−pm+p

Hence, ‖f − fm‖ ≤ 2−m+1 is valid and so f ∈ LP (X,µ) and fm → f using the

‖ · ‖p-Norm.

�

7.5.3 Representation theorem of F. Riesz

The representation theorem of Riesz describes the coherence between measurement

using systems of sets and measurement using linear forms. In literature there is

not only one formulation of this theorem, but different ones concerning different

types of mathematical spaces. This is well described in [Els05], p.328 et seqq. In

this context, a formulation concerning an arbitrary locally compact T2 topolog-

ical space (X,O) is given, which describes the coherence to the complex radon

measure in definition 7.5.9. In this definition, the term radon measure is used in

the meaning of measuring using sets. This term is defined in [Els05], p. 313 as a

special type of a so-called borel measure and has to be distinguished from the one

defined in the last subsection.

Theorem 7.5.8 (Representation theorem of F. Riesz)

Let (X,O) be an arbitrary locally compact T2 topological space. Furthermore, let

I be a positive linear functional I : CC (X) −→ C . Then, there exists one
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and only one radon measure (concerning measuring using sets) µ : B (X) −→ [0,∞] ,

with:

I (f) =
∫
X

f dµ, f ∈ CC (X).
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8 Coherences of approximation

theory

8.1 The theorems of Weierstraß and Stone

In this section, the term approximation is broadly considered, whereas in the

beginning it is restricted looking on the usage within this thesis.

Regarding [Col73], p.9, the term approximation can be used to describe a wide

field of methods of numerical mathematics. Hence, it is defined, that this term

here is understood in the meaning of describing mappings using other mappings

taking into account the generated error.

Collatz and Krabs describe in [Col73], p.165 et seqq. a main problem of approxi-

mation theory:

In which way is it possible to approximate elements out of the vector space C (X,R)

using a subspace of C (X,R), when X is a compact metric space?

This question is answered in the theorems of Weierstraß and Stone, which is

focused in this section.

Definition 8.1.1 (Maximum norm)

Let (X, d) be a compact metric space and C (X,R) the vector space of the continuous

real-valued mappings on X. Then, the mapping:
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‖ ·‖∞ : C (X,R) −→ R0
+

f 7→ ‖f‖∞ := max
x ∈X

|f (x) |

defines a norm, the so-called maximum norm or Tschebychow norm.

In general, a polynomial is a formal expression p (t) =
n∑

i= 1

ai · ti, where ai ∈ K

for i ∈ {1, . . . , n} are elements of an arbitrary field K and t is an arbitrary

variable . The set K [t] then contains any of this polynomials. If t only takes

values out of K, then such a polynomial can be identified as a mapping of the type

p : K −→ K according to [Fis93], p.61.

For an exact argument with methods of elementary algebra, one can refer to

[Kar08], p.145 et seqq.

Definition 8.1.2 (Algebraic group)

A pair (G, ∗) of an arbitrary set G and an arbitrary binary operator

∗ : G×G −→ G is called (algebraic) group, if the following properties are

valid:

(A) ∀
a,b,c ∈G

: (a ∗ b) ∗ c = a ∗ (b) ∗ c (associativity)

(N) ∃
e ∈G

∀
a ∈G

: a ∗ e = e ∗ a = a (identity element)

(I) ∀
a ∈G

∃
a−1 ∈G

: a ∗ a−1 = a−1 ∗ a = e (inverse element)

If additionally the following property

(C) ∀
a,b ∈G

: a ∗ b = b ∗ a (commutativity)

is valid, the group is called commutative group or abelian group.

Definition 8.1.3 (Algebraic ring)

A triple (R, ∗, ◦) of an arbitrary set R and two arbitrary binary operators

∗ : R×R −→ R , ◦ : R×R −→ R is called (algebraic) ring, if the

following properties are valid:

(AG) (R, ∗) is an abelian group
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(HG) (R, ◦) is a half group, that means ◦ is an associative binary operator in R.

(DI) ∀
a,b,c ∈R

: a ◦ (b ∗ c) = (a ◦ b) ∗ (b ◦ c) (distributivity I)

(DII) ∀
a,b,c ∈R

: (a ∗ b) ◦ c = (a ◦ c) ∗ (b ◦ c) (distributivity II)

According to [Kar08], (K [t] ,+, ·) is an algebraic ring. These coherences are used

to define polynomials above the field R.

Definition 8.1.4 (Polynomial ring above R)

The set R [x] of polynomials with real coefficients can be denoted in the

following way:

R [x] :=

{
p ∈MAP (R,R) | ∀

x ∈ R
: p (x) =

∞∑
k = 1

pkx
k ∧ ∀

k∈N0

pk ∈ R ∧ ∃
n∈N0

∀
k≥n

pk = 0

}

Addition and scalar multiplication of this polynomials are defined by the fol-

lowing mappings:

+ : R [x]× R [x] −→ R [x] , (p, q) 7→ p+ q with (p+ q)(x) :=
∞∑
k=0

(pk + qk) ·xk

· : R [x]× R [x] −→ R [x] , (λ, p) 7→ λ · p with (λ · p)(x) :=
∞∑
k=0

(λ · pk) · xk.

Equality of polynomials means:

∀
p,p ∈ R[x]

(
p = q :⇐⇒ ∀

k∈0

pk = qk

)

Hence, according to the note given above, (R [t] ,+, ·) is an algebraic ring.

For the proof of the theorem of Weierstraß, the definition of so-called Bernstein

polynomials is necessary(see [Sch97], p.162):
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Definition 8.1.5 (Bernstein polynomial)

Regarding the interval [0, 1], the i-th Bernstein polynomial of grade n is

defined by the following mapping:

BSni : [0, 1] −→ [0, 1]

λ 7→ BSni (λ) :=
(
n
i

)
λi · (1 − λ)n−i

for i ∈ {0, 1, . . . , n}.

Theorem 8.1.1 (Approximation theorem of Weierstraß)

Let I be the closed interval I := [a, b] ⊂ R and f ∈ C (I,R). Then, f can be

approximated uniformely [a, b] by using polynomials out of R [x], that means:

∀
ε > 0

∃
p ∈ R[x]

: ‖f − p‖∞ < ε

The proof given at this point was developed by Sergei Natanowitsch Bernstein in

[Ber12] and bases on the description in [Naa97], p.51 et seqq.

Proof. In the following, the interval [0, 1] is regarded. This is no restriction, be-

cause any x ∈ [a, b] of an arbitrary closed interval in R can be mapped onto an

element λ ∈ [0, 1] by using the following affine mapping:

λ : [a, b] −→ [0, 1]

x 7→ λ (x) := x− a
b− a

Using the binomial theorem, the following can be concluded:

1 = (λ + (1 − λ)) =
n∑

i= 0

(
n
i

)
λi · (1 − λ)n−i =

n∑
i= 1

Bn
i (λ)

So, 1 is separated by (n + 1) Bernstein polynomials.

Due to the compactness of [0, 1], the mapping f is uniformely continuous there.

Hence, for any ε > 0 there exists a δ > 0, such that for any x ∈ [0, 1] with

|x − i
n
| < δ always |f (x) − f

(
i
n

)
| < ε

2
is valid.

For the approximation of f , the following polynomials are defined:
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BSn,f : [0, 1] −→ R

λ 7→ BSn,f (λ) :=
n∑

i= 0

(
n
i

)
λi · (1 − λ)n−i · f

(
i
n

)
for n ∈ N

Using this polynomials, ∀
ε > 0

∃
p ∈ R[x]

: ‖f − p‖∞ < ε is equivalent to

∀
ε > 0

∃
n0(ε) ∈ N

∀
n≥ n0

: ‖BSn,f − f‖∞ < ε

So, regarding f , the following equation is valid:

BSn,f (λ) − f (λ) =

(
n∑

i= 0

(
n

i

)
λi · (1 − λ)n−i · f

(
i

n

))
− f (λ)

=

(
n∑

i= 0

(
n

i

)
λi · (1 − λ)n−i · f

(
i

n

))

−

(
n∑

i= 0

(
n

i

)
λi · (1 − λ)n−i · f (λ)

)

=
n∑

i= 0

(
n

i

)
λi · (1 − λ)n−i ·

(
f

(
i

n

)
− f (λ)

)
.

This last sum is now separated into two parts:

{0, . . . , n} ⊇ K :=
{
i ∈ {0, . . . , n} | | i

n
− λ| < δ

}
{0, . . . , n} ⊇ L :=

{
i ∈ {0, . . . , n} | | i

n
− λ| ≥ δ

}
n∑

i= 0

(
n
i

)
λi·(1 − λ)n−i·

(
f
(
i
n

)
− f (λ)

)
=
∑
i ∈K

(
n
i

)
λi·(1 − λ)n−i·

(
f
(
i
n

)
− f (λ)

)
+∑

i ∈ L

(
n
i

)
λi · (1 − λ)n−i ·

(
f
(
i
n

)
− f (λ)

)
Now, an estimation for each of these two parts is regarded:
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|SK| = |
∑
i ∈K

(
n

i

)
λi · (1 − λ)n−i ·

(
f

(
i

n

)
− f (λ)

)
|

≤
∑
i ∈K

(
n

i

)
λi · (1 − λ)n−i · |

(
f

(
i

n

)
− f (λ)

)
|

≤
∑
i ∈K

(
n

i

)
λi · (1 − λ)n−i · ε

2

=
ε

2
·
∑
i ∈K

(
n

i

)
λi · (1 − λ)n−i

=
ε

2

Here it can be seen, that this estimation is valid for any n ∈ N.

For |SL|, the validity of the following is used:

(i) |f
(
i
n

)
− f (λ) | ≤ |f

(
i
n

)
| + |f (λ) | ≤ 2 · max

λ ∈ [0,1]
|f (λ) | := 2M

(ii) | i
n
− λ| ≥ δ ⇔

(
i
n
− λ

)2 ≥ δ2 ⇔ 1

( in − λ)
2 ≤ 1

δ2

(iii) λ(1− λ)
n

=
n∑

i= 0

(
i
n
− λ

)2 (n
i

)
λi · (1 − λ)n−i ·

(
f
(
i
n

)
− f (λ)

)
(iv) ∀

λ ∈ [0,1]
:
(
−4λ2 + 4λ − 1 = − (2λ − 1)2 ≤ 0 ⇒ λ (1 − λ) ≤ 1

4

)

159



8 Coherences of approximation theory

|SL| = |
∑
i ∈ L

(
n

i

)
λi · (1 − λ)n−i ·

(
f

(
i

n

)
− f (λ)

)
|

≤
∑
i ∈K

(
n

i

)
λi · (1 − λ)n−i · |

(
f

(
i

n

)
− f (λ)

)
|

(i)

≤ 2M ·
∑
i ∈K

(
n

i

)
λi · (1 − λ)n−i · ε

2

= 2M ·
∑
i ∈K

(
i
n
− λ

)2(
i
n
− λ

)2

(
n

i

)
λi · (1 − λ)n−i · ε

2

(ii)

≤ 2M

δ2
·
∑
i ∈K

(
i

n
− λ

)2 (
n

i

)
λi · (1 − λ)n−i · ε

2

(iii)

≤ 2M

δ2
· λ (1 − λ)

n
(iv)

≤ 2M

δ2
· 1

4n

=
M

δ2 · 2n

Now, let n0 (ε) := M
εδ2

for a given ε > 0. Then, the following inequality is valid:

|BSn,f (λ) − f (λ) | ≤ |SK| + |SL|

≤ ε

2
+

M

δ2 · 2 · M
εδ2

=
ε

2
+

Mεδ2

δ2 · M · 2

=
ε

2
+

ε

2

= ε

This estimation is valid for any λ ∈ [0, 1] and so is is shown the following:

‖BSn,f − f‖∞ < ε,
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and due to the generality of ε, the statement of this theorem is proven.

�

In literature, other proofs of this theorem can be found, one example is the use of

convolutions of Landau levels in [Kön04], p.313-314.

The statement given in the theorem of Weierstraß is formulated in a more gen-

eralised way in the theorem of Stone-Weierstraß, which is formulated in [Naa97],

p.57.:

Theorem 8.1.2 (Approximation theorem of Stone-Weierstraß)

Let (X,O) be an arbitrary compact topological space. In addition to that, let R be

a subring of C (X) with the following properties:

(i) Any constant mapping in X is an element of R.

(ii) ∀
x,y ∈X

∃
p ∈R

: p (x) 6= p (y)

Then, the following is valid:

R = C (X)

That means, that R is a dense subset of C (X), thus

∀
f ∈ C(X)
ε > 0

∃
p ∈R

: ‖f − p‖∞ < ε

The proof given in [Naa97], p.56-61 uses the construction of a finite number of

mappings pyi ∈ R, i ∈ {1, . . . , n} for each y ∈ X in the context of a given

mapping f ∈ C (X). For a given ε > 0, the maximum g out of these mappings

can be characterised by:

‖f − g‖∞ ≤
ε
2
.

Furthermore it is shown, that there can be found an appropriate mapping h ∈ R

with:
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‖g − h‖∞ < ε
2
,

so the following is valid

‖f − h‖∞ ≤ ‖f − g‖∞ + ‖g − h‖∞ < ε
2

+ ε
2

= ε

Due to the arbitrary of ε, the statement R = C (X) is valid.

In [Naa97], p.61-63 and in [Kön97], p.320, the generalised statement of this theorem

is applied on a subset of polynomials in C (Rn).
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8.2 The Bézier interpolation approach describing

curves

In this section, a so-called Bézier-splines interpolation approach is described.

Regarding his description is done in a more generalised way as it can normally be

found in literature. There, this approach only describes interpolation in the space

Rd, d ∈ N, what is satisfying there, because as described in the next passage, this

method is usually used in the field of computer graphics.

The coherences of the Bézier-approach are mainly based on the explanations in

[Sch97], pp.161-182 and [Deu93], pp.203-219, but extended to a generalised descrip-

tion with exact mathematical formalization. Compared to other spline approaches,

this one does not make use of complicated equation systems but it uses geometric

characteristics in combination with parametrisations. This fact is one reason to

take this method into account in this thesis, because computing cost can be re-

duced using is. As found in [Brü01], p.201, the Bézier interpolation bases on a set

of controlling points, which define the according so-called characteristic polygon.

This technique has been developed in the context of describing curves in CAD

software in car industry and the mainly involved persons were the two applied

mathematicians Pierre Etienne Bézier (Renault) and Paul de Faget de Casteljau

(Citröen). For more detailed historical notes refer to [Sal06], p.175 et seqq.

For the description and definition of the Bézier-interpolation, some characteristics

of the Bernstein polynomials defined in section 8.1 are necessary.

Theorem 8.2.1 (Characteristics of Bernstein polynomials)

Let BSni : [0, 1] −→ [0, 1] be the i-th Bernstein polynomial of grade n. Then,

the following characteristics can be formulated:

(i) ∀
λ ∈ [0,1]

i ∈ {0,...,n}

: BSni (λ) = BSnn− i (1 − λ)
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(ii) ∀
λ ∈ [0,1]

i ∈ {0,...,n}

: (1 − λ) · BSn0 (λ) = BSn+ 1
0 (λ)

(iii) ∀
λ ∈ [0,1]

i ∈ {0,...,n}

: λ · BSnn (λ) = BSn+ 1
n+ 1 (λ)

(iv) ∀
λ ∈ [0,1]

i ∈ {0,...,n}

: BSni (λ) = λ · BSn− 1
i− 1 (λ) + (1 − λ) · BSn− 1

i (λ)

Proof. Let λ ∈ [0, 1] and i ∈ {0, . . . , n} be arbitrary.

At (i): BSni (λ) =
(
n
i

)
λi · (1 − λ)n−i =

(
n

n− i

)
(1 − λ)n− i · λn−(n−i) =

BSnn− i (1 − λ).

At (ii): (1 − λ) · BSn0 (λ) = (1 − λ) ·
(
n
0

)
λ0 · (1 − λ)n =

(
n+ 1

0

)
(1 − λ)n+ i =

BSn+ 1
0 (λ).

At (iii): λ · BSnn (λ) = λ ·
(
n
n

)
λn =

(
n+ 1
n+ i

)
· λn+ 1 = BSn+ 1

n+ 1 (λ)

At (iv): The following chain of equalities for the binomial coefficient is valid:(
n− 1
i− 1

)
+
(
n− 1
i

)
= (n− 1)!

(i− 1)! · (i− 1)!
+ (n− 1)!

i! · (n− 1− i)! = n!
i! · (n− i)! =

(
n
i

)
And so, the following is valid:

λ ·BSn− 1
i− 1 (λ)+(1 − λ) ·BSn− 1

i (λ) = λ ·
(
n− 1
i− 1

)
·λi−1 ·(1 − λ)n−i+(1 − λ) ·(

n− 1
i

)
·λi · (1 − λ)n−1−i =

(
n− 1
i− 1

)
·λi · (1 − λ)n−i +

(
n− 1
i

)
·λi · (1 − λ)n−i =

BSni (λ)

�

In literature of numerical mathematics, it is shown, that these Bernstein polyno-

mials define a basis of real valued polynomial vector spaces. Regarding the set

R [x] defined in 8.1.4 by

R [x] :=

{
p ∈MAP (R,R) | ∀

x ∈ R
: p (x) =

∞∑
k = 1

pkx
k ∧ ∀

k∈N0

pk ∈ R ∧ ∃
n∈N0

∀
k≥n

pk = 0

}
,

this is a vector space (R [x] ,+, ·) above the field K using the following mappings

+ and ·:
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+ : R [x]× R [x] −→ R [x] , (p, q) 7→ p+ q with (p+ q)(x) :=
∞∑
k=0

(pk + qk) ·xk

· : K× R [x] −→ R [x] , (λ, p) 7→ λ · p with (λ · p)(x) :=
∞∑
k=0

(λ · pk) · xk.

Equality of polynomials means:

∀
p,p ∈ R[x]

(
p = q :⇐⇒ ∀

k∈0

pk = qk

)

Hence, the space (Rn [x] ,+, ·) together with this two mappings is a vector space

as well as the set (Rn [x] ,+, ·) of real valued polynomials with maximum grade

n ∈ N with:

Rn [x] :=

{
p ∈MAP (R,R) | ∀

x ∈ R
: p (x) =

n∑
k = 1

pkx
k ∧ ∀

k∈N0

pk ∈ R
}

Regarding this vector spaces, the set BS := {BSn0 ,BSn1 , . . . ,BSnn} defines a basis.

For the according theorem and the proof refer to [Sch97], pp.164-165.

Conventually, Bézier-curves are used in computer graphics as mappings of the type

f : R −→ Rd , d ∈ N basing on given points out of the space Rd.

According to [Sch97], every polynomial out of Rn [x] but also polynomials basing

on elements out of the space Rd, d ∈ N, can be piecewise realised by so-called

Bézier curves. Therefor, the space Rd
n [x] is defined in the following way:

Rd
n [x] :=

{
p ∈MAP

(
R,Rd

)
| ∀
x ∈ R

: p (x) =
n∑

k = 1

pkx
k ∧ ∀

k∈N0

pk ∈ Rd

}
The so-called Bézier-realization of a polynomial is then defined in the following

way.
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Definition 8.2.1 (Bézier curves according to a given interval of parameters)

Let CM := {b0, . . . , bn} ⊆ Rd be a discrete subset. Then, the Bézier-realization

C of CM using an arbitrary interval [a, b] ⊂ R of parameters is the following:

C =
n∑

i= 0

bi · BSni (·; a, b), with ∀
i ∈ {0,...,n}

bi ∈ Rd and

∀
t ∈ [a,b]

C (t) =
n∑

i= 0

bi · BSni (t; a, b)

If the standard interval [0, 1] of parameters is used, the according Bézier-realization

Cs is denoted in the following way:

Cs =
n∑

i= 0

bi · BSni , with ∀
i ∈ {0,...,n}

bi ∈ Rd and

∀
t ∈ [0,1]

Cs (t) =
n∑

i= 0

bi · BSni (t)

The bi ∈ Rd, i ∈ {0, . . . , n}

This Bézier-realization is a polynomial P ∈ R [x] with maximum grade n.

are called controlling- or Bézier-points. The according polygonal chain that

connects these points is called Bézier polygon or characteristic polygon.

The terms graph and image of a mapping can be described in the following way:

Definition 8.2.2 (Graph and image of a mapping)

Let F be an arbitrary mapping out of MAP (D,W), where D and W are arbitrary

sets. Then, the graph of this mapping is defined as the following subset of the

cartesian product of D and W:

Graph (F ) := {(d, w) ∈ D × W | F (d) = w} .
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The according image of this mapping can then be described by:

Imag (F ) := F (D) =

{
w ∈ W | ∃

d ∈ D
: F (d) = w

}
.

So, the following relationship between the polynomial P ∈ Rd
n [x] and the Bézier-

realization C respectively Cs can be noted:

Imag (C) ⊂ Graph (P ) respectively Imag (Cs) ⊂ Graph (P ).

The approach that is proposed in connection with these geometric coherences

consists in a kind of generalization. Instead of only regarding spaces of the type

Rd, d ∈ N, arbitrary topological vector spaces are used. One example, that is

looked at more detailed further below, is the space of continuous mappings of the

type f : X −→ R , where X is a topological vector space itself.

So the following concepts and terms, that are clasiccaly used with the space Rd

in the context of Bézier-Interpolation are described in the mentioned generalised

way in this thesis. As a matter of principle, these coherences are basing on the

characteristics of the Bernstein polynomials, especially on the ability of building

a partition of 1. For that reason, the set X is regarded as an arbitrary topological

vector space in the following statements and definitions.

In the context of generalization, the term topological Bézier-realization of elements

out of X is defined.

Definition 8.2.3 (Topological Bézier curves)

Let BM := {b0, . . . , bn} ⊂ X be a discrete subset of X with n + 1 elements.

Then, the topological Bézier-realization C of BM using an arbitrary interval
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[a, b] ⊂ R of parameters is the following:

C =
n∑

i= 0

bi · BSni (·; a, b), with ∀
i ∈ {0,...,n}

bi ∈ BM and

∀
t ∈ [a,b]

C (t) =
n∑

i= 0

bi · BSni (t; a, b)

If the standard interval [0, 1] of parameters is used, the according Bézier-realization

Cs is denoted in the following way:

Cs =
n∑

i= 0

bi · BSni , with ∀
i ∈ {0,...,n}

bi ∈ BM and

∀
t ∈ [0,1]

Cs (t) =
n∑

i= 0

bi · BSni (t)

The bi ∈ BM, i ∈ {0, . . . , n}

are called controlling- or Bézier-points. The according polygonal chain that

connects these points is called Bézier polygon or characteristic polygon.

This kind of topological Bézier-realization. should be synonymousely used

with the term Topological Bézier curve.

For the characterization of the Bézier-points, the terms convex set and convex hull

are necessary.

Definition 8.2.4 (Convex set, convex combination and and convex hull)

Let A ⊂ X be an arbitrary subset. This set A is called convex, if for every pair

x, y ∈ A the line segment xy also contains to A, that means, that the following

proposition is true:

∀
x,y ∈A

: xy := {λ · x + (1 − λ) · y | λ ∈ [0, 1]} ⊂ A

A linear combination of the type:
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x =
k∑

i= 1

λi · xi, ∀
i ∈ {1,...,k}

: xi ∈ X, ∀
i ∈ {1,...,k}

: λi ≥ 0 and
k∑

i= 1

λi = 1

is called convex combination of elements out of X.

The convex hull conv (A) of A is the smallest convex subset in X, which contains

A. This is the intersection of all convex supsets of A or the set of all finite convex

combinations with elements out of A:

conv (A) :=
⋂

A⊂B ⊂X
B convex

=

{
x =

k∑
i= 1

λi · xi | k ∈ N ∧ m < ∞,

∀
i ∈ {1,...,k}

: xi ∈ A, ∀
i ∈ {1,...,k}

: λi ≥ 0,
k∑

i= 1

λi = 1

}

Theorem 8.2.2 (Convex hull of Bézier curves)

The set M containing any point of a topological Bézier-realization according to the

standard interval with

M :=

{
n∑

i= 0

bi · BSni (λ) | λ ∈ [0, 1]

}
is a subset of the convex hull of the (n + 1) Bézier-points b0, b1, . . . , bn.

Proof. As shown above, the Bernstein polynomials can represent a non-negative

finite representation of 1 by ∀
n ∈ N
λ ∈ [0,1]

:
n∑

i= 1

BSni (λ) = 1. This leads to the fact, that

∀
n ∈ N
λ ∈ [0,1]

:
n∑

i= 0

bi · BSni (λ) is a finite convex combination of b0, b1, . . . , bn.

So, any of these sums is an element of the convex hull of these the (n + 1) Bézier-

points and the theorem is valid.

�
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For calculating the coordinates of a topological Bézier-realization regarding a given

element out of the domain [0, 1], there exists a stabile algorithm called algorithm

of de Casteljau. This algorithm bases on the partition of the Bézier curve using

so-called partial curves for approximation. The proposed generalised description

is demonstrated in the following.

Definition 8.2.5 (Partial curves of a Bézier curve)

Let BM := {b0, . . . , bn} ⊂ X be a discrete subset of X with n+ 1 elements and

Bézier-realization Cs using the interval [0, 1] of parameters. Then, the partial

curves bki ∈ MAP (R, X) of Cs with i ∈ {0, . . . , n − k} and k ∈ {0, . . . , n}

are defined by the following:

bki :=
k∑

j = 0

bi+ j · Bk
j =

i+ k∑
j = i

bj · Bk
j − i

Hence, these partial curves bki are Bézier curves of grade k using the Bézier-points

bi, . . . , bi+k.

It is easily seen, that ∀
λ ∈ [0,1]

bn0 (λ) =
n∑

j = 0

bj · BSnj (λ) = Cs (λ) and b0
i (λ) =

0∑
j = 0

bi+ j · BS0
j (λ) = bi · BS0

0 (λ) = bi · λ0 · (1 − λ)0 = bi.

Then, the following recursion can be done:

Lemma 8.2.1 (Recursion of partial Bézier curves)

Let BM := {b0, . . . , bn} ⊂ X be a discrete subset of X with n+ 1 elements and

Bézier-realization Cs using the interval [0, 1] of parameters. Then, for the partial

curves bki ∈ MAP (R, X) of Cs with i ∈ {0, . . . , n − k} and k ∈ {0, . . . , n},

the following recursion is valid:

∀
λ ∈ [0,1]

i ∈ {0,...,n− k}
k ∈ {0,...,n}

bki (λ) = (1 − λ) · bk−1
i + λ · bk−1

i+1

Proof. Let BM := {b0, . . . , bn} ⊂ X be a discrete subset of X with n+1 elements

with Bézier-realization Cs using the interval [0, 1] of parameters. Furthermore, let
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i ∈ {0, . . . , n − k}, k ∈ {0, . . . , n} and λ ∈ [0, 1] be arbitrary. Then, the

following chain of equations can be build:

bki (λ) = biBSk0 (λ) +
k − 1∑
j = 1

bi+jBSkj (λ) + bi+kBSkk (λ)

= bi · (1 − λ) · BSk−1
0 (λ) +

k − 1∑
j = 1

bi+j ·
(
(1 − λ)BSk−1

j (λ) + λ · BSk−1
j−1

)
+ bi+kBSkk (λ)

=
k − 1∑
j = 0

bi+j · (1 − λ)BSk−1
j (λ) +

k∑
j = 1

bi+jλ · BSk−1
j−1

= (1 − λ) · bk−1
i (λ) + λ · bk−1

i+1 (λ)

Due to the arbitrary choice of i, k and λ, the above lemma is valid.

�

Using the characteristic ∀
i ∈ {0,...,n}
λ ∈ [0,1]

: b0
i (λ) = bi and lemma 8.2.1, a value Cs (λ) = bn0

for an arbitrary parameter λ ∈ [0, 1] can be calculated by an iterative convex

combination following the so-called scheme of Casteljau describing the process

while using the algorithm of de Casteljau.

bn = b0
n

↘

bn−1 = b0
n−1 → b1

n−1

...
. . .

b1 = b0
1 → . . . → bn−1

1

↘ ↘

b0 = b0
0 → . . . → bn−1

0 → bn0
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Algorithm 8.2.1 (Algorithm of de Casteljau)

Let BM := {b0, . . . , bn} ⊂ X be a discrete subset of X with n + 1 elements

and Bézier-realization Cs using the interval [0, 1] of parameters. Then, a value

Cs (λ) = bn0 for an arbitrary parameter λ ∈ [0, 1] can be calculated by the following

algorithm:

For i = 0, . . . , n:

b0
i := bi;

For k = 1, . . . , n

For i = 0, . . . , n − k

bki (λ) := (1 − λ) · bk−1
i (λ) + λ · bk−1

i+1 (λ)

Example 8.2.1 (Bézier curve on functional spaces)

Let X be the space C (R,R) of continuous mappings with the set R as domain and

codomain. Furthermore, let the following two elements f0 and f1 out of C (R,R)

be given with:

∀
x ∈ R

: f0 (x) := sin (x)

∀
x ∈ R

: f1 (x) := cos (x)

The according Bézier curve Cf of grade 2 is the following:

Cf =
1∑
i=0

fi · BS1
i = sin (x) · BS1

0 + cos (x) · BS1
1

with

∀
t ∈ [0,1]

Cf (t) = sin · BS1
0 (t) + cos · BS1

1 (t) = sin · t0 · (1 − t)1 + cos · t1 · (1 − t)0

In figure 8.1, there are shown four cuttings of Graph (Cs) using different parame-

ters t ∈ [0, 1].

In the following, the term Ck-continuous, k ∈ N0 as a characteristic of a mapping

means continuity of this mapping right up to the k-th derivation.

As seen in definition 8.2.3, using n + 1 Bézier-points, a Bézier curves of grade n
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t=0

t=0.3

t=0.7

t=1

Figure 8.1: Four cuttings of the graph of the curve Cf

is generated. So, the more the number of Bézier-points increases, the more the

grade of the resulting curve increases. But this growth of the according grade

leads to an increasing effort of iteration. Hence, using arbitrary finite numbers of

Bézier-points, a composition of different Bézier curves is more practical. To avoid

a mixing-up of the terms, the “main” Bézier curve is called Bézier-spline curve,

the participating ones are called Bézier segments. This composition is often

done (see [Bun02], p.98) using cubic Bézier segments basing on four Bézier-points.

One possibility of getting such a Bézier-spline curve is to regard the Bézier seg-

ments of every four neighboring Bézier-points. But in general, the resulting curve

is only C0-continuous. To get an allover smooth curve, some relationships and

characteristics between the single Bézier segments are regarded in the following.

To have the ability to guarantee the uniqueness of the first derivation or even

of the curvilinearity of the Bézier-spline curve, the first and/ or respectively the

second derivation of neighboring Bézier segments has to be equal at the linking

Bézier-points.

The proofs of the following theorems and lemmas can be found in [Sch97], p.165

et seqq.
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Theorem 8.2.3 (Derivation of Bernstein polynomials)

Let
BSni : [0, 1] −→ [0, 1]

λ 7→ BSni (λ) :=
(
n
i

)
λi · (1 − λ)n−i

for i ∈ {0, 1, . . . , n}.

be the i-th Bernstein polynomial of grade n above the interval [0, 1].

Then, the first derivation is given by:

d
dλ
BSni (λ) =


−n · BSn−1

0 (λ) for i = 0

n ·
[
BSn−1

i−1 (λ) − BSn−1
i (λ)

]
for i ∈ {1, . . . , n− 1}

n · BSn−1
n−1 (λ) for i = n

Theorem 8.2.4 (Characteristics of border points)

Let BM := {b0, . . . , bn} ⊂ X be a discrete subset of X with n+ 1 elements and

Bézier-realization Cs using the interval [0, 1] of parameters, while n > 2.

There,for Cs, the following is applying:

Cs =
n∑

i= 0

bi · BSni , with ∀
i ∈ {0,...,n}

bi ∈ X and

∀
t ∈ [0,1]

Cs (t) =
n∑

i= 0

bi · BSni (t)

Furthermore, let i ∈ {0, . . . , n − k}, k ∈ {0, . . . , n} and λ ∈ [0, 1] be arbitrary.

Then, the following is valid:

• Cs (0) = b0

• Cs (1) = bn

• d
dt
Cs (0) = n · (b1 − b0)

• d
dt
Cs (1) = n · (bn − bn−1)

• d
d2t

Cs (0) = n · (n − 1) (b2 − 2 · b1 + b0)

• d
d2t

Cs (1) = n · (n − 1) (bn − 2 · bn−1 + bn−2)

This leads to the fact, that the Bézier-point b0 defines the beginning and bn defines
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the end of the resulting Bézier curve. Furthermore it can be seen, that the first

respectively the last segment of the regarded Bézier polygon is a tangent of this

Bézier curve and that the second derivation on the beginning and the end of this

curve can be described only using the two next neighboring Bézier-points.

At this point, a Bézier-spline curve is built by connecting a number of Bézier seg-

ments in an appropriate way. For the resulting Bézier-spline curve, an arbitrary pa-

rameter interval [a, b] is used and partioned into r intervals [tj−1, tj] , j ∈ {1, . . . , r}

in accordance to a = t0 < t1 < . . . < tr = b.

In this way, r Bézier segments of the type

Cj : [tj−1, tj] −→ R

t 7→ Cj (t) =
n∑

i= 0

bij · BSni (t; tj−1, tj)
, j ∈ {1, . . . , r}

are constructed by the algorithm of de Casteljau.

In the following description, j ∈ {1, . . . , r} is valid until there is written anything

else.

As described above, the j-th and the (j + 1)-th Bézier segments are C0-continuous

at the point tj ∈ [tj−1, tj] respectively tj ∈ [tj, tj+1], if the following condition is

valid:

bn,j = b0,j+1.

According to that, C1-continuity is given at the regarded point tj, if

d
dt
Cj (tj) = d

dt
Cj+1 (tj) for tj ∈ [tj−1, tj] respectively tj ∈ [tj, tj+1].

This coherence is transformed into an expression of Bézier segments according to

the standard interval [0, 1] by using the following mapping λ already mentioned in

the proof of theorem 8.1.1:

λ : [tj−1, tj] −→ [0, 1]

t 7→ λ (t) :=
t− tj−1

tj − tj−1
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In addition to that, the abbreviation ∀
j ∈ {1,...,r}

∆j := tj − tj−1 is used.

d

dt
Cj (tj) =

d

dt
Cj+1 (tj)

⇔ d

dt

n∑
i=0

bij · BSni (tj; tj−1, tj) =
d

dt

n∑
i=0

bij+1 · BSni (tj, tj, tj+1)

⇔ d

dt

n∑
i=0

bij · BSni
(
tj − tj−1

tj − tj−1

)
=

d

dt

n∑
i=0

bij+1 · BSni
(

tj − tj
tj+1 − tj

)
⇔ d

dt

n∑
i=0

bij · BSni (λ (tj)) =
d

dt

n∑
i=0

bij+1 · BSni (λ (tj))

⇔ d

dλ

n∑
i=0

bij · BSni (λ (tj)) ·
d

dt
λ (tj) =

d

dλ

n∑
i=0

bij+1 · BSni (λ (tj)) ·
d

dt
λ (tj)

⇔ d

dλ

n∑
i=0

bij · BSni (λ (tj)) ·
1

tj − tj−1

=
d

dλ

n∑
i=0

bij+1 · BSni (λ (tj)) ·
1

tj+1 − tj

⇔ n · (bn,j − bn−1,j) ·
1

tj − tj−1

= n · (b1,j+1 − b0,j+1) · 1

tj+1 − tj

This leads to the following coherence:

bn,j =
tj+1 − tj

tj − tj−1 + tj+1 − tj
· bn−1,j +

tj − tj−1

tj − tj−1 + tj+1 − tj
· b1,j+1

⇔ bn,j =
∆j+1

∆j + ∆j+1

· bn−1,j +
∆j

∆j + ∆j+1

· b1,j+1 (8.1)

In a geometric interpretation (see [Sch97], p.171), this means, that the Bézier-point

bn,j has to divide the line segment between bn−1,j and b1,j+1 in the ratio ∆j : ∆j+1.

For getting C2-continuity at the regarded point tj, the following coherences and

transformations are necessary. Thereby, the abbreviation ηj :=
∆j+1

∆j
is used.
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Using 8.1, the Bézier-point b1,j+1 is expressed by:

bn,j =
∆j+1

∆j + ∆j+1

· bn−1,j +
∆j

∆j + ∆j+1

· b1,j+1

⇔ b1,j+1 =

(
1 +

∆j+1

∆j

)
· bn,j −

∆j+1

∆j

· bn−1,j

⇔ b1,j+1 = (1 + ηj) · bn,j − ηj · bn−1,j (8.2)

With the prerequisite of the necessary C0-continuity at the regarded point tj, 8.2

and 8.2.4, the following is valid:

d

d2t
Cj (tj) =

d

d2t
Cj+1 (tj)

⇔ n · (n− 1) (bn,j − 2 · bn−1,j + bn−2,j)

∆2
j

=
n · (n− 1) (b2,j+1 − 2 · b1,j+1 + b0,j+1)

∆2
j+1

This leads to the following:

b2,j+1 = 2 · b1,j+1 − bn,j + η2
j (bn,j − 2bn−1,j + bn−2,j)

=
(
1 + 2ηj + η2

j

)
bn,j − 2ηj (1 + ηj) bn−1,j + η2

j bn−2,j

= (1 + ηj) [(1 + ηj) bn,j − ηjbn−1,j]− ηj [(1 + ηj) bn−1,j − ηjbn−2,j]

8.2
= (1 + ηj) b1,j+1 − ηjHj

There, the aiding point Hj was defined as Hj := [(1 + ηj) bn−1,j − ηjbn−2,j].

This means, that the Bézier-point b2,j+1 can be expressed by a so-called barycentric

combination (see section 8.3) of the two points b1,j+1 and Hj.

This way of utilize geometric coherences leads to the ability of theoretically getting

Ck-continuous, k ∈ N0 in a regarded Bézier-point.
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8 Coherences of approximation theory

In the following section, this geometric approach of interpolation is extended re-

garding the parametric description of surfaces basing on rectangular and triangular

sets of parameters. On the last case there will be special attention.
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8 Coherences of approximation theory

8.3 The Bézier interpolation approach describing

surfaces

8.3.1 The bilinear tensor product approach

In the last section, the interpolation of discrete data by parameter Bézier-curves

was looked at. Doing this, one gets a possibility of giving statements along the

resulting curve. Hence, if the intention of dealing with the given data is not of that

kind but of getting “areal statements”, the method of interpolation and processing

the data has to be modified.

So in this section, two methods of areal interpolation are discussed. These are both

basing on the geometric idea of Bézier-interpolation. For interpolating curves, a

onedimensional interval of parameters is satisfying, but the interpolation of sur-

faces does require a parameter space of higher dimension.

The first approach shortly described in this subsection bases on a two-dimensional

space of parameters. There will be more attention to the second approach using a

three-dimensional space of parameters in the next subsection.

In the twodimensional case, the construction of so-called tensorproduct surfaces

is used. So in the beginning, this term and before, the term tensorproduct on

functional vector spaces are defined basing on [Aum93], p.477-479.

Definition 8.3.1 (Tensorproduct on functional vector spaces)

Let V and W be two vectorspaces, which elements are functions of type

f : R −→ R . Additionally, let the particular basis be BV := {f0, . . . , fm}

and BW := {f0, . . . , fn}. The vectorspace V ⊗ W of dimension (n+ 1) · (m+ 1)

with the following basis:

BV ⊗W := {t00, . . . , tnm},

179
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tij : R2 −→ R

(u, v) 7→ fi (u) gj (v)

is called tensorproduct of V and W .

Definition 8.3.2 (Tensorproduct surface)

Let V and W be two vectorspaces, which elements are functions of type

f : R −→ R . Additionally, let the particular basis be BV := {f0, . . . , fm} and

BW := {g0, . . . , gn} and the vectorspace V ⊗ W of dimension (n+ 1) · (m+ 1)

be the tensorproduct of V and W .

Furthermore, let ∀
i ∈ {0,...,n}
j ∈ {0,...,m}

: bij ∈ Rd, d ∈ N

Then, the following mapping Φ with

Φ : R2 −→ Rd

(u, v) 7→ Φ ((u, v)) :=
n∑
i=0

m∑
j=0

bijfi (u) gj (v)

is called tensorproduct surface of V , W and bij ∈ Rd, d ∈ N, i ∈ {0, . . . , n} , j ∈

{0, . . . ,m}.

Regarding the vectorspace of polynomials with grade n0 ≤ n respectively m0 ≤ m,

the Bernstein-polynomials BSni , i ∈ {0, . . . , n} respectively BSmj , j ∈ {0, . . . ,m}

define a basis.

Using this, the interpolation basing on (n+ 1) · (m+ 1) points bij ∈ Rd, d ∈

N, i ∈ {0, . . . , n} , j ∈ {0, . . . ,m} by the mapping

ΦBS : [0, 1]× [0, 1] −→ Rd

(u, v) 7→ ΦBS ((u, v)) :=
n∑
i=0

m∑
j=0

bijBSni (u)BSmj (v)

defines a so-called tensorproduct Bézier surface. According to [Hos89], p.220 et

seqq., this can be interpreted as a transformation of a Bézier-curve P =
n∑
i=0

ci ·BSni
described by another Bézier-curve

Q =
m∑
j=0

bij · BSmj
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8 Coherences of approximation theory

Figure 8.2: Two tensorproduct Bézier surfaces with according Bézier-grid

([Ben03], p.172)

.

The regarded coefficients bij ∈ Rd, d ∈ N, i ∈ {0, . . . , n} , j ∈ {0, . . . ,m} then

define a so-called Bézier-polyeder or Bézier-grid. Two examples of such tensor-

product Bézier surfaces are illustrated in figure 8.2.

Any sequence (bij)i ∈ {0,...,n} or (bij)j ∈ {0,...,m} with either i = const. or j = const.

is called Bézier-filament.

Focussing the aim of proposing generalised statements for the interpolation within

arbitrary topological vector spaces, the term topological tensorproduct Bézier sur-

face is defined. This generalization makes sense, because as described after that

definition, the according calculation algorithm bases on the coherences made in

section 8.2.

Definition 8.3.3 (Topological tensorproduct Bézier surface)

Let X be an arbitrary topological vector space and T S := {b0,0, . . . , bn,m} ⊂ X

be a discrete subset of X with (n+ 1) · (m+ 1) elements. Then, the topological
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tensorproduct Bézier surface TBS of T S using the parameter space [0, 1] ×

[0, 1] is the following. Thereby, the Bernstein-polynomials BSni , i ∈ {0, . . . , n}

respectively BSmj , j ∈ {0, . . . ,m} are used:

TBS : [0, 1]× [0, 1] −→ Rd

(u, v) 7→ ΦBS ((u, v)) :=
n∑
i=0

m∑
j=0

bijBSni (u)BSmj (v)

A value TBS ((u0, v0)) can be calculated using the algorithm of Casteljau in two

ways. On the one hand side, the (n+ 1) Bézier-points bi =
m∑
j=0

bij · BSmj (v0) and

then the point TBS ((u0, v0)) on the surface is calculated by:

TBS ((u0, v0)) =
n∑
i=0

bi · BSni . On the other hand side, one can get the (m+ 1)

Bézier-points bj =
n∑
i=0

bij · BSni (u0) and then the point TBS ((u0, v0)) by:

TBS ((u0, v0)) =
m∑
j=0

bj · BSmj .

Similar to Bézier-curves, there can be calculated compositions of tensorproduct

Bézier surfaces as well. There, it is also possible to have Ck-continuity for k ∈ N0

in a regarded Bézier-point at the connection of two surfaces.

This coherences can be found in [Aum93], pp.481-490 or in [Hos89], pp.231-235.

for coefficients bij ∈ Rd, d ∈ N, i ∈ {0, . . . , n} , j ∈ {0, . . . ,m}.

8.3.2 The approach based on triangular surfaces

In graphic software, in engineering regarding the finite-element-method (e.g. re-

fer to [Kle07]), but especially also in Geographical Information System, complex

structures are often described by subdividing them using triangles.

Regarding the characteristics of the used triangles and their influences on the whole

system, it is useful to define a locale coordinate system. The following description

of this coherence is based on [Far03], p.137 et seqq.
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At this point, the geometric concept of a triangle is regarded in a more generalised

way using the term n-dimensional simplex. The definition is based on [Dir96],

p.157.

Definition 8.3.4 (n-dimensional simplex)

Let A be an affine space of dimension m and {P0, . . . , Pn} be a set of n+1 elements

out of A with n ≤ m. Then, a n dimensional simplex � according to this points is

defined as the convex hull conv ({P0, . . . , Pn}), if the n vectors
−−→
P0Pi, i ∈ {1, . . . , n}

are linearly independent.

According to this definition, a triangle is a 2 dimensional Simplex.

Definition 8.3.5 (Barycentric coordinates)

Let A be an affine space of dimension m and {P0, . . . , Pn} be a set of n+1 elements

out of A with n ≤ m, which define a n-dimensional simplex. Then, a tuple

(a0, . . . , an) ∈ Rn is called barycentric coordinate realization of a P ∈ A,

if and only if the following equation is valid:

(a0, . . . , an) · P = a0 · P0 + . . . + an · Pn

This realization is not unique. To get uniqueness, these coordinates has to be

normed. So, a tuple (λ0, . . . , λn) ∈ [0, 1]n+1 is called normed barycentric

coordinate realization of a P ∈ A, if and only if the following equation:

(λ0, . . . , λn) · P = λ0 · P0 + . . . + λn · Pn

and the proposition
n∑

i= 0

λi = 1

are valid. The process of norming is given by the following:

∀
i ∈ {0,...,n}

λi = ai
nP

i = 0
ai

Due to this definition, in definition 8.2.3, (BSn0 (t) , . . . ,BSnn (t)) is a normed barycen-

tric coordinate realization of the according Bézier-curve.
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P

P3

P2

P1

Figure 8.3: Barycentric coordinates of a point P

This idea of barycentric coordinates goes back to August F. Möbius, who published

this 1827 in [Möb27]. Möbius used the term barycentric because of the following

fact: If there is a weight of mass λi put on each vertex Pi of the regarded simplex,

then the according point P is the barycentre (i.e. the centre of gravity) of this

simplex.

In figure 8.3, an exemplary triangle with vertices P1, P2 and P3 is illustrated. The

according barycentric coordinates of the shown point P can be calculated areal

relations in the following way according to [Far03], p. 139:

λ1 = A(P,P2,P3)
A(P1,P2,P3)

λ2 = A(P,P3,P1)
A(P1,P2,P3)

λ3 = A(P,P1,P2)
A(P1,P2,P3)

The aim of this subsection is to describe surface interpolation using the Bézier-

technique with a triangular space of parameters. So, Bernstein polynomials using

barycentric coordinates have to be used and defined:

Definition 8.3.6 (Barycentric Bernstein polynomials)

Let i, j, k ∈ N≤ n, i + j + k = n with n ∈ N . Furthermore, let Dn+1 be a

(n+ 1)-dimensional set of normed barycentric coordinates with:
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∀
n ∈ N

Dn+1 :=

{
(λ0, . . . , λn) ∈ [0, 1]n+1 |

n∑
k=0

λk = 1

}
Then, the barycentric Bernstein polynomials of grade n with index (i, j, k)

are defined by:

BSn(i,j,k) : D3 −→ [0, 1]

(u, v, w) 7→ BSni,j,k ((u, v, w)) := n!
i!j!k!

ui vj wk

Since (u+ [v + w])n =
n∑
i=0

(
n
i

)
ui (v + w)n−i and (v + w)n−i =

n−i∑
j=0

(
n−i
j

)
vj wn−i−j

is valid, the following chain of equations shows, that those barycentric Bernstein

polynomials define a partition of 1:

1 = (u+ v + w)n =
∑

i,j,k ∈ N≤ n
i+j+k = n

n!
i!‘j!k!

ui vj wk

Remark 8.3.1 (Abbreviative notation)

For better clearness, the following abbreviations are used for the notation of barycen-

tric Bernstein polynomials:

∀
n ∈ N

i,j,k ∈ N≤ n
i+j+k = n

: I := (i, j, k)

∀
(u,v,w) ∈ D3

: U := (u, v, w)

Hence, with this, the value of a barycentric Bernstein polynomial of grade n at the

point (u, v, w) ∈ D3 can be noted in the following way:

BSnI (U) = n!
i!j!k!

ui vj wk

Additionally, |I| := i + j + k and |U | := u + v + w are defined.

Remark 8.3.2 (Coherence to Bernstein polynomials)

Using definition 8.3.6, the occurrence of “normal” Bernstein polynomials used in
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the sections 8.1 and 8.2 at the “margins” of the regarded triangle can be seen. E.g.,

the following is valid:

BSn0,j,k ((0, v, w)) = BSnj (v) = BSnk (w)

In the following, the term triangular Bézier surface is defined and regarded further.

Remark 8.3.3

Let A :=
{
b(i,j,k) ∈ Rd | d ∈ N, i, j, k ∈ N≤ n, i+ j + k = n

}
be an arbitrary

discrete set in the space Rd. According to [Hos89], p.245, |A| =
(
n+2

2

)
=

1
2

(n+ 1) (n+ 2) is valid.

Definition 8.3.7 (Triangular Bézier surface)

Let SM :=
{
b(i,j,k) ∈ Rd | d ∈ N, i, j, k ∈ N≤ n, i+ j + k = n

}
be an arbitrary

discrete set in the space Rd.

Then, the so-called triangular Bézier surface CT according to SM using

normed barycentric coordinates is defined in the following way:

CT =
∑

i,j,k ∈ N≤ n
i+j+k = n

b(i,j,k) · BSn(i,j,k), with ∀
(i,j,k) ∈ N3

≤ n

b(i,j,k) ∈ Rd and

∀
(u,v,w) ∈ D3

CT ((u, v, w)) =
∑

i,j,k ∈ N≤ n
i+j+k = n

b(i,j,k) · BSn(i,j,k) ((u, v, w))

The b(i,j,k) ∈ Rd, (i, j, k) ∈ N3
≤ n are called controlling- or Bézier-points. They

define a so-called triangular Bézier-polyeder or triangular Bézier-grid.

Remark 8.3.4

The above defined triangular Bézier surface CT represents the subset of the graph

of a multidimensional polynomial P n
d−1 of maximum grade n ∈ N in a certain

triangle restricted by the set SM . In figure 8.4, there is exemplarily shown such a

triangular Bézier surface of grade n = 3.

In terms of generalizing this coherences with regard to the application proposed in

section 9.3 of chapter 9, an arbitrary topological vector space (X,O) is regarded
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Figure 8.4: Triangular Bézier surface of grade n = 3 and according triangular

Bézier-grid, ([Hos89], p. 247, modified by the author)

instead of only Rd as done in common literature. So, the term topological triangular

Bézier surface is defined first:

Definition 8.3.8 (Topological triangular Bézier surface)

Let (X,O) an arbitrary topological vector space.

Further, let BTM :=
{
b(i,j,k) ∈ X | i, j, k ∈ N≤ n, i+ j + k = n

}
be an arbi-

trary discrete set in the space X.

Then, the so-called topological triangular Bézier surface ST according to

BTM using normed barycentric coordinates is defined in the following way:

ST =
∑

i,j,k ∈ N≤ n
i+j+k = n

b(i,j,k) · BSn(i,j,k), with ∀
(i,j,k) ∈ N3

≤ n

b(i,j,k) ∈ X and

∀
(u,v,w) ∈ D3

ST ((u, v, w)) =
∑

i,j,k ∈ N≤ n
i+j+k = n

b(i,j,k) · BSn(i,j,k) ((u, v, w))

The b(i,j,k) ∈ X, (i, j, k) ∈ N3
≤ n are called controlling- or Bézier-points. They

define a so-called triangular Bézier-polyeder or triangular Bézier-grid.
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In the further description, this definition is used as main concept.

In figure 8.5, the topological order of Bézier-points is illustrated and in figure 8.6,

the according parameters are shown.

Figure 8.5: Topological order of Bézier-points: a) n ∈ N, b) n = 3, ([Hos89], p.

246)

For the calculation of a certain value ST (U), the following recursion is given

basing on [Hos89], p.249. (there done for the space Rd, d ∈ N).

Remark 8.3.5 (Casteljau recursion concerning triangular Bézier surfaces)

Let i, j, k ∈ N≤ n, i+ j + k = n with n ∈ N and U ∈ D3. Further, let b0
I := bI

and bnI (U) := ST (U), while ST is a topological triangular Bézier surface. Then,

the Casteljau recursion concerning triangular Bézier surfaces is given

by the following:

br+1
I = u · brI+e1 + v · brI+e2 + w · brI+e3,

188



8 Coherences of approximation theory

Figure 8.6: Topological order of parameters: a) n ∈ N, b) n = 3, ([Hos89], p.

247)

with |I| := n− r− 1, r ∈ N≤ n and e1 := (1, 0, 0), e2 := (0, 1, 0), e3 := (0, 0, 1).

Algorithm 8.3.1 (Triangular algorithm of de Casteljau)

Let BTM :=
{
b(i,j,k) ∈ X | i, j, k ∈ N≤ n, i+ j + k = n

}
be an arbitrary dis-

crete set in the space X with
(
n+2

2

)
elements and topological triangular Bézier sur-

face ST using normed barycentric coordinates. Then, a value ST (U) = bnI (U)

for an arbitrary element U ∈ D3 can be calculated by the following algorithm:

For r = 0, . . . , n− 1, |I| := n− r − 1:

br+1
I = u · brI+e1 + v · brI+e2 + w · brI+e3;

ST (U) := bnI (U)

In the following chapter, it is necessary, to compute topological triangular Bézier

surfaces of grade n = 3 starting with three elements out of the regarded topological
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vector space. According to 8.3.3, there are needed ten elements to describe such

a surface. To compute the missing ones using convex combinations of the given

ones, there exists an algorithm of grade elevation as described in [Hos89], p.248.

Algorithm 8.3.2 (Triangular Bézier grade elevation)

Let ST =
∑

i,j,k ∈ N≤ n
i+j+k = n

b(i,j,k) · BSn(i,j,k), with ∀
(i,j,k) ∈ N3

≤ n

b(i,j,k) ∈ X. be a topological

triangular Bézier surface of grade n ∈ N. Then, the Bézier-points b∗(i,j,k) of the

derived topological triangular Bézier surface of grade n + 1 can be calculated in

the following way:

b∗(i,j,k) = i
n+1

b(i−1,j,k) + j
n+1

b(i,j−1,k) + k
n+1

b(i,j,k−1)

Thereby, b(i,j,k) := OX , if i /∈ [0, 1] ∨ j /∈ [0, 1] ∨ k /∈ [0, 1] by this iteration.

In figure 8.7, the processing of that algorithm is illustrated.
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8 Coherences of approximation theory

Figure 8.7: Triangular Casteljau algorithm ([Hos89], p.250
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to the “Spatial-Toolbox”

9.1 Fundamental considerations

When dealing with spatial data, discrete and non-discrete information can be

available and be important. So, it is important to be able to deal with this data

in an adequate way. The SPATTB already mentioned in chapter 2 and in chapter

5, is supposed to make a contribution to that.

In this chapter, the focus is straightened on certain aspects of this SPATTB more

detailed in a generalised way. Thereby, especially mathematization is looked at.

There should be regarded functionally associated geocoded data. The aim is to

describe this data by appropriate mappings. The solution for this situation pro-

posed in this thesis is a surface interpolation of mappings with preprocession of the

given data. Therefor, the algorithm of the Backpropagation Networks described

in chapter 4, the Bézier-methods in section 8.3 from the field of computeroriented

geometry and the concepts of arbitrary mathematical spaces and measurement out

of chapter 7 are used.

Two main steps are suggested in this context:
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1. Processing an approximation of the functional coherences by the

given data at the particular coordinates

2. Interpolation of these mappings by methods from computerori-

ented geometry

In the following, these two steps are discussed in separate sections of this chapter.

In these sections, the particular problem is viewed in detail. In doing so, the

applicability of the methods in the proposed concept and relevant relations to

conventual methods are described.
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9.2 Processing an approximation of the functional

coherences by the given data at the particular

coordinates

As described in chapter 4, the classical Backpropagation-algorithm can be used for

approximating functional relationships of the type F : Rn −→ Rm , n,m ∈ N.

The approximation using this algorithm bases on appropriate training- and test-

data. Hence, to every iteration, there exists one mapping of the mentioned type

representing the actual state of training. The characteristic fitting of test- and

training-data means, that there must be input and nominal output data. Thereby,

the input data has to consists of n-dimensional vectors, the nominal output data

of m-dimensional ones.

Dealing with spatial data, not only this kind of data is given in generally. This

method matches exemplarily for measured temperature at certain coordinates. In

this example, the input data is given by a two- or three-dimensional vector de-

scribing the according coordinates and the nominal output is given by the value of

temperature. In this case, the classical algorithm can be considered for interpolat-

ing these measured data directly, because only discrete information are regarded.

This situation is illustrated in figure 9.1.

Suppositionally, the data is not discrete, but for example, for certain areals of the

regarded geographical area the amount of pollutants is known by measurement.

Basing on this data, statements about other areals not contained in the given data

should be produced. In this case, the classical algorithm cannot be used in a direct

way.

Another possible application that is looked at more detailed in this thesis, is given

by the coherence of mappings as input data itself and according vector data as
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Training information

-sealevel
-rainfall
-temperatur

Element not
in given data

Figure 9.1: Discrete data for processing by BPN
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Training information

Mapping information
associated with

vector information

Element not
in given data

Figure 9.2: Mapping data for processing by BPN

output. For example, k membership functions representing a particular fuzzy set

of ecological factors are associated with a vector of dimension r. Thereby, the

components of that vector represent an estimate number of certain insects using

disease vectors. This coherence is illustrated in figure 9.2.

This examples illustrate, that there is a necessarity of combining the generalised

perspective given by using topological vector spaces and algorithm based methods

like the BPN algorithm, that are not able to handle that kind of spatial problem

in the classical way.

In this thesis, there is proposed a possible dealings with this problem as a solution

that can be implemented as a part of the suggested “Spatial-Toolbox”.

So within this chapter, the mathematical analysis part of the implementation
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process proposed in chapter 6 is regarded.

First of all, the structure of the regarded data is defined more precise. In general,

the input information should be given by subsets or elements of a topological

vector space. Depending on the processing method, a certain level of integrability

is demanded for those elements. This is specified more precisely at a suitable point

of the description.

In the following, the terms set based dataset and function based dataset are defined.

Definition 9.2.1 (Set based and function based dataset)

Let (X,O) be an arbitrary topological space. Furthermore, let Si ⊂ X and Mi ∈ Rd

for i ∈ {1, . . . , k}, k, d ∈ N. Then, the following set is called set based dataset:

DS := {(S1,M1) , . . . , (Sk,Mk)}

Let (F,O) be an arbitrary topological space, whose elements are functions. Fur-

thermore, let Fi ∈ X and Yi ∈ Rd for i ∈ {1, . . . , k}, k, d ∈ N. Then, the

following set is called function based dataset:

DF := {(F1, Y1) , . . . , (Fk, Yk)}

For the description of a coherence between a number of such mappings and a vector,

the term multidimensional function based dataset is used:

Let (F,O) be an arbitrary topological space, whose elements are functions. Fur-

thermore, let Fij ∈ X and Yi ∈ Rd for i ∈ {1, . . . , k}, j ∈ {1, . . . , r}, k, d ∈ N.

Then, the following set is called multidimensional function based dataset:
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DMF :=




F11

...

F1r

 , Y1

 , . . . ,




Fk1

...

Fkr

 , Yk



The proposal stated here can shortly be described in the following way.

There should be done a kind of preprocessing of the given input data for getting

discrete data, which can be used as input information for an appropriate Back-

propagation Network. This is then trained using the classical algorithm as part of

this new one.

In this thesis, the function based dataset is regarded more closely.

The contribution of this thesis at this point is on the one hand side the proposal

of new ways in dealing with spatial data. On the other hand side, a generalised

mathematical description of the relevant parts is developed and described with

regard on the implementation in the SPATTB.

The effort, that should be achieved in this case, is a discretization of non-discrete

input data. Then, it is possible to applicate the BPN-algorithm. The workflow is

given in figure 9.3.

By this process, a mapping should be created, whose domain consists of a topo-

logical vector space and whose codomain consists of the space Rm,.

The preprocessing illustrated in figure 9.3 should be described by a mapping gX

defined by the following:

gX : X −→ Rn

x 7→ gX (x)

The method, that is used for approximation the coherence described above, is
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Figure 9.3: Overview of the proposed processing using a BPN in the context of

discrete and non-discrete spatial data

the application of Backpropagation Networks as already mentioned. In chapter

4 is described, that the processing of such ANNs in the classical usage can be

represented by different mappings. The definition of the particular used mapping

depends on the actual point of view. On the one hand side, the ANN can be

represented by a mapping, whose domain factors in the network mappings involved

in the process of computing outputs basing on the given inputs. On the other hand

side, such a BPN can be represented as a mapping Bt : Rn −→ Rm , where

these participating mappings only are used for defining the mapping process. The

index t is used here to identify the actual state of the represented BPN.

At this point, this regarding is used. Hence, the processing illustrated in figure 9.3

can be described by such a mapping. The coherence of the mentioned spaces and

mappings is shown in figure.

The aim of this raising to a higher level of abstraction is the provision of a more

flexible and universal usability of the methods as it is given by the classical point

of view. For the implementation in the developed concept “Spatial-Toolbox”, it is
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Top.
VS
X gX

B

BPN represented
by

IR
m

IR
n

Figure 9.4: Detailed overview of the processing

not only important to provide consistent ways of processing the available data, but

also to describe possibilities of calculating information about differences between

several methods, if they are applicated to the same request. So, measurability of

the described methods has to be guaranteed and has not to be neclected. Hence,

in this chapter, measurability is regarded using the terms and methods described

in chapter 7.

The mapping describing the whole processing should be denoted with FX
t and is

defined by the following composition:

FX
t := Bt ◦ gX

This leads to the following description:

FX
t : X −→ Rm

x 7→ FX
t (x) = Bt

(
gX (x)

)
This mapping FX

t consists of several component mappings, which can be described

as follows:
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∀
i ∈ {1,...,m}

: FX
i,t : X −→ R with:

FX
t =


FX

1,t

...

FX
m,t


The mapping gX as a part of the definition of the mapping FX

t can be expressed

using according component mappings as well:

∀
i ∈ {1,...,n}

: gXi : X −→ R with:

gX =


gX1
...

gXn


Last, but not least, the mapping Bt can be regarded more detailed on in the fol-

lowing way:

∀
i ∈ {1,...,m}

: Bi,t : Rn −→ R with:

Bt =


B1,t

...

Bm,t


For the postulation of measurability according to the measuring approach using

linear functionals defined in chapter 7, the following definition is required. In this,

the space LP (X,µ,Kn) is defined basing on the definition of a space LP (X,µ).

Definition 9.2.2 (LP (X,µ,Kn))

Let f be a mapping of type f : X −→ Kn , while X is an topological vec-

201



9 Results of measure theory applied on the “Spatial-Toolbox”

torspace and l ∈ N and let K be an arbitrary field.

The mapping f should be describable by component mappings fi, i ∈ {1, . . . , n}and

can be thereby denoted as:

f =


f1

...

fn


This mapping is then called LP (X,µ,Kn) - integrable, n ∈ N, if and only if the

following is valid:

∀
i ∈ {1,...,n}

∃
µi ∈MAP(LP (X,µi),C)

: fi ∈ LP (X,µi)

The mapping definition of this µ is the following, while l, n ∈ N:

µ : LP (X,µ,Kn) −→ Kn

f 7→ µ (f) = µ




f1

...

fn


 :=


µ1 (f1)

...

µn (fn)


Lemma 9.2.1

Let (X,O) be an arbitrary topological space. Furthermore, let gX : X −→ Rn

with gX ∈ C (X,Rn) be a mapping and let K ⊆ X be compact.

Then gX (K) :=

{
x ∈ Rn | ∃

k ∈K
: gX (k) = x

}
is a compact set in the space

Rn.

Proof. Let gX : X −→ Rn with gX ∈ C (X,Rn) be a mapping and let K ⊆ X

be compact.
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We consider an open cover of gX (K) realised by a union of open sets. Let y ∈

gX (K) an arbitrary element out of the image of the compact set K and let Vy :=

Bε (y) ⊆ Rn be the open ball with radius ε ∈ R+ and center y ∈ gX (K). Then,

the set M =
⋃

y ∈ gX(K)

Vy is also an open set. Obviously, K ⊆
(
gX
)−1

(M).

Due to the continuity of the mapping gX , the preimage of any open set is open and

this is valid especially for the open set Uy :=
(
gX
)−1

(Vy), whereby
(
gX
)−1

({y}) ⊆

K. This leads to the fact, that the set C :=
⋃

y ∈ gX(K)

Uy an open cover of K is.

Due to the compactness of the set K, there exists a finite subcover
k⋃
i=1

Ui,k ∈ N,

while ∀
i ∈ {1,...,k}

: Ui ∈
{
Uy | x ∈ gX (K)

}
.

This characteristic of covering is also valid for the image gX (K) ofK, i.e. gX (K) ⊆
k⋃
i=1

Ui.

Regarding the construction of the sets Ui, it is valid, that ∀
i ∈ {1,...,k}

∃
yi ∈ gX(K)

:

gX (Ui) ⊆ Bε (yi) = Vyi .

This leads to the fact, that the set gX (K) can be covered by a finite set of ε-balls,

i.e. gX (K) ⊆
k⋃
i=1

Bε (yi).

From this, it follows, that ∀
y ∈ gX(K)

∃
i ∈ {1,...,k}

: y ∈ Vyi = Bε (yi).

From this reason, the following is valid: ∀
y ∈ gX(K)

∃
i ∈ {1,...,k}

: ‖y‖ ≤ ‖yi‖ + ε.

Hence, it is is valid, that ∀
y ∈ gX(K)

‖y‖ ≤ max
i ∈ {1,...,k}

‖yi‖ + ε.

From this, the set gX (K) is bounded. Using the theorem of Heine-Borel (see

[Rud05], p.42), a closed and bounded subset of the space Rn, n ∈ N, is compact.

This can be applied on the set KgX := gX (K), what consequently is a compact

set.

�

Theorem 9.2.1 (Integrability of FX
t )

Let (X,O) be an arbitrary topological space. Furthermore, let the mapping
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FX
t : X −→ Rm be defined as composition of the mappings gX and Bt with

FX
t := Bt ◦ gX , gX : X −→ Rn , Bt : Rn −→ Rm , n,m ∈ N. Thereby,

gX ∈ C (X,Rn) is postulated. Further, let Bt, t ∈ N be a mapping representing a

Backpropagation Network at iteration step t.

Then, there exist measures µ|K, λ|K and η, so that FX
t |K ∈ LP

(
K,µ|K ,Rm

)
,

gX|K ∈ LP
(
K,λ|K ,Rn

)
and B

t |gX(K)
∈ LP

(
gX (K), η,Rm

)
for an arbitrary

compact subset K ⊆ X.

Proof. In the theorem, the existence of a measure µ|K is postulated, where K is

an arbitrary compact subset of X.

FX
t can be characterised by FX

t : X −→ Rm . The postulated µ|K is not

defined for measuring this mapping FX
t , but for the according mapping FX

t |K ,

which can be characterised by :

FX
t |K : K −→ Rm . In the process of proving, the according function space of

which FX
t |K is an element, will be specified more detailed.

The mapping definition of µ|K is the following:

µ|K : LP
(
K,µ|K ,Rm

)
−→ Rm .

Hence, the existence of such a measure µ|K operating on the space LP
(
K,µ|K ,Rm

)
whose elements have an arbitrary compact subset of X as their domain has to be

shown here. This fact is an essential information for the further proving.

In the following, first the integrability of Bt |gX(K) is regarded, then gX|K and finally

FX
t |K .

As mentioned above, the mapping Bt can be characterised by m component map-

pings Bi,t with ∀
i ∈ {1,...,m}

: Bi,t : Rn −→ R . Each of these component map-

pings is defined as a composition of continuous mappings and so continuous itself.
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The space Rm as codomain of Bt is the cartesian product of m spaces R. Hence,

using definition 7.1.12, it represents a topological product with according prod-

uct topology. The same is valid for the domain Rn. Using this information,

and the continuity of the Bi,t, i ∈ {1, . . . ,m}, theorem 7.1.2 is applicable and

Bt ∈ C (Rn,Rm) results.

Regarding the mapping FX
t |K , the domain is a compact set and application of 9.2.1

provides the compactness of gX (K).

Within the composition defined for FX
t |K , only elements out of gX (K) are mapped

by Bt. Hence, in the following a modified mapping with gX (K) as its domain is

regarded. In this context, the following abbreviation is used:

K̂ := gX (K)

This mapping is then denoted as Bt |K̂ =


B1,t |K̂

...

Bm,t |K̂

, with Bt |K̂ ∈ CC
(
K̂,Rm

)
.

So, for the particular component mapping, the following is valid:

∀
i ∈ {1,...,m}

: Bi,t |K̂ ∈ CC
(
K̂,R

)

From this characteristic follows, that there exist integrals ηi, i ∈ {1, . . . ,m}, so

that Bi,t |K̂ ∈ LP
(
K̂, ηi

)
.

Applying definition 9.2.2, Bt |K̂ ∈ LP
(
K̂, η,Rm

)
is valid. Thereby, η :=


η1

...

ηm

.

In the next step, the mapping gX|K is regarded.

According to the prerequisites, every component mapping of gX is an element out

of the space C (X,R).
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So, for the particular component mappings gXi |K , i ∈ {1, . . . , n} of gX|K , the following

is valid:

∀
i ∈ {1,...,n}

: gXi |K ∈ CC (K,R)

This leads to the fact, that there exist integrals λi |K , i ∈ {1, . . . , n}, so that

gXi |K ∈ LP
(
K,λi |K

)
.

Applying definition 9.2.2, gX|K ∈ LP (K,λ,Rn) is valid. Thereby, λ :=


λ1 |K

...

λn |K

.

Regarding now the mapping FX
t |K , a similar explanatory statement can be given.

Due to the definition FX
t = Bt ◦ gX , the prerequisite gX ∈ C (X,Rn) and the

fact Bt ∈ C (Rn,Rm) shown above, the characteristic FX
t |K ∈ C (K,Rm) and even

FX
t |K ∈ CC (K,Rm) follows.

So, for the particular component mappings FX
i,t |K , i ∈ {1, . . . ,m} of FX

t |K , the

following is valid:

∀
i ∈ {1,...,m}

: FX
i,t |K ∈ CC (K,R)

This leads to the fact, that there exist integrals µi |K , i ∈ {1, . . . ,m}, so that

FX
i,t |K ∈ LP

(
K,µi |K

)
.

Applying definition 9.2.2, FX
t |K ∈ LP (K,µ,Rm) is valid. Thereby, µ :=


µ1 |K

...

µm |K

.
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These mappings η, λ|K and µ|K are the postulated integrals.

�

A this point, there is described a special topological vector space with regard on

a possible application in the context of the SPATTB.

Therefor, the regarded spaces should be topologized in a certain way described in

the following two definitions.

Definition 9.2.3 (Euclidian topology on Rn)

In the space Rn, the so-called euclidian topology is induced by the euclidian

norm ‖ · ‖e with the following basis B (ORn):

B (ORn) := {Bε (x0) ⊂ Rn | ε > 0 ∧ x ∈ Rn

∧Bε (x0) := {x ∈ Rn | ‖x − x0‖e < ε}}

Definition 9.2.4 (Integral induced topology)

Let XF be a topological vector space of mappings f : X̃ −→ R with:

XF := { f : X̃ −→ R | X̃ is a topological vector space }.

Additionally, let J be an appropriate indexing set.

Further, let the sets M and XFM̃ be defined as:

M :=
{
µ̃ | µ̃ ∈ PLF

(
LP
(
X̃, µ̃

)
,C
)
∧ P ∈ [1,∞]

}

∀
M̃ ⊆M

: XM̃ :=

{
f ∈ XF | ∃

P ∈ [1,∞]
∃

µ ∈ M̃
f ∈ LP

(
X̃, µ

)}
=

⋂
P ∈ [1,∞]

LP
(
X̃, µ

)

Then, using the following subbasis S
(
OXM̃,M̃

)
, the open sets in M̃ are defined:

S
(
OXM̃,M̃

)
:=
{
Uµj ,Bε(y) := µ−1

j (Bε (y)) | µj ∈ M̃ ∧ ε > 0 ∧ y ∈ µj (XFI)
}

.
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Theorem 9.2.2

Let XF be a topological vector space of mappings f : X̃ −→ R with:

XF := { f : X̃ −→ R | X̃ is a topological vector space }

Further, let the set M be defined as:

M :=
{
µ̃ | µ̃ ∈ PLF

(
LP
(
X̃, µ̃

)
,C
)
∧ P ∈ [1,∞]

}

Additionally, let µ :=


µ1

...

µn

 ∈ (M̃)n , n ∈ N

Then, there exists a mapping gX ∈ C
(
X̃F ,Rn

)
with n ∈ N and X̃F ⊆ XF .

Proof. Let XF and M be as defined above.

The mentioned subspace should be explicitly chosen as XM̃ XF with:

XM̃ :=

{
f ∈ XF | ∃

P ∈ [1,∞]
∃

µ ∈ M̃
f ∈ LP

(
X̃, µ

)}
=

⋂
P ∈ [1,∞]

LP
(
X̃, µ

)
with M̃ ⊆ M , as done in definition 9.2.4.

Then, with the subbase S
(
OXM̃,M̃

)
defined in 9.2.4,

(
XM̃,S

(
OXM̃,M̃

))
is a

topological space.

The base B (ORn) of the topological vector space (Rn,ORn) certainly as well is a

subbase.

Let now the mapping gX be defined in the following way:
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gX : XFI −→ Rn

f −→ gX (f) := µ (f) =


µ1 (f)

...

µn (f)


This mapping can be described using the component mappings gXi , i ∈ {1, . . . , n}.

gXi : XFI −→ R

f −→ gXi (f) = µi (f)

Using theorem 7.1.1 while regarding the both mentioned subbases,

∀
i ∈ {1,...,n}

: gXi ∈ C (XFI ,R) is valid:

Let therefor x0 ∈ Rn, ε > 0 and Bε (x0) ∈ B (ORn) be arbitrarily chosen. Then,

for the preimage gX −1
i (Bε (x0)) = µ−1

i (Bε (x0)) ∈ S
(
OXM̃,M̃

)
is valid due to

the definition of S (OXFI ,UL).

Using this continuity and applying theorem 7.1.2, gX ∈ C (XFI ,Rn) is valid.

�

Remark 9.2.1

Fuzzy sets According to [Ber99], p.269, in most “real-world scenarios”, precise

measurement is usually not given but a certain degree of uncertainty. One approach

to handle this is the fuzzy logic, which can be traced back to L.A.Zadeh, who

follows up this idea from 1965 on. His results and approaches can inter alia be

found in [Zad65], [Zad73] and [Zad75].

At this point, elementary definitions concerning fuzzy theory are described basing

on [Nau94], p.234 et seqq.

Definition 9.2.5 (Fuzzy set)

Let X be a set and Fµ be a mapping defined in the following way:
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Fµ : X [0, 1]

x 7→ Fµ (x)

Then, Fµ is called a fuzzy set.

The set [0]X should be the set off any fuzzy set according to the basing set X.

Instead of fuzzy set, in literature there is sysonymousely used the term membership

function. Additionally, the use of these terms is nonuniform, some authors define

the term fuzzy set as graph of the according membership function.

Fuzzy sets can be used to describe so-called linguistic variables using linguistic

terms. According to the committee draft [iec], on which bases the international

standard CEI IEC 61131-7 published in 2000, p. 6, Linguistic variables take values

in the range of linguistic terms. Each linguistic term itself is described by an

appropriate fuzzy set. Exemplarily, the linguistic value temperature is regarded.

Possible linguistic terms are cold and warm.

In figure 9.5, fuzzy sets of the linguistic variable angle according to the deflection

of a pendulum are illsutrated.

Figure 9.5: Linguistic variable Angle (according to a pendulums deflection)

For the handling in software systems, a horizontally representation of fuzzy sets

using si called α-sections is more useful ([Nau94], p. 240.
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Definition 9.2.6 (α-intersection)

Let X be a set, Fµ ∈ [0]X arbitrarily chosen and α ∈ [0, 1]. Then, the α-section

of Fµ is defined by the following set :

[Fµα := {x ∈ X | Fµ (x) ≥ α}

For implementation and further use of fuzzy sets, unions and intersections of them

have to be defined. Hence, appropriate operators have to be used. Generally, t-

norms define the characteristics, that are minimally necessary for an intersection

operator and t-conorm describe that in terms of union operators.

Definition 9.2.7

t-norm A mapping T : [0, 1]2 −→ [0, 1] is called t-norm, if the following con-

ditions are fulfilled:

(TN1) ∀
a ∈ [0,1]

: T (a, 1) = a

(TN2) ∀
a,b,c ∈ [0,1]

: a ≤ b ⇒ T (a, c) ≤ T (b, c)

(TN3) ∀
a,b ∈ [0,1]

: T (a, b) = T (b, a)

(TN4) ∀
a,b,c ∈ [0,1]

: T (a, T (b, c)) = T (T (a, b) , c)

Definition 9.2.8

t-conorm A mapping ⊥: [0, 1]2 −→ [0, 1] is called t-norm, if the following

conditions are fulfilled:

(TN1) ∀
a ∈ [0,1]

:⊥ (a, 0) = a

(TN2) ∀
a,b,c ∈ [0,1]

: a ≤ b ⇒⊥ (a, c) ≤⊥ (b, c)

(TN3) ∀
a,b ∈ [0,1]

:⊥ (a, b) =⊥ (b, a)

(TN4) ∀
a,b,c ∈ [0,1]

:⊥ (a,⊥ (b, c)) =⊥ (⊥ (a, b) , c)

At this point, there is mentioned one examples for a t-norm and a t-conorm:
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Figure 9.6: General architecture of a fuzzy-controller ([Nau94], p.246, modified

by the author)

TLuka : [0, 1]2 −→ [0, 1]

(a, b) 7→ TLuka (a, b) := max {0, a+ b− 1}

⊥Luka: [0, 1]2 −→ [0, 1]

(a, b) 7→ TLuka (a, b) := min {a+ b, 1}

In implementations, there is often made use of so-called fuzzy-controller to control

regulating values by processing the actual value of it. Detailed information can

be found in [Nau94], [Ber99] and in [iec]. In figure such a fuzzy-controller is

illustrated in a generalised way.

In the following example, a pointwise evaluation of a mapping is used. First, it has

to be shown, that this method defines an integral, i.e., that this defines a positive

linear functional according to the definitions 7.5.4 and 7.5.8.

Theorem 9.2.3

Let f, g be arbitrary mappings of type F : A −→ B . Further, let x0 ∈ A be

an arbitrary element and µx0 be defined as:
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µx0 : MAP (A,B) −→ R

f 7→ µx0 (f) := f (x0)

Then, µx0 is a positive linear functional.

Proof. The following has to be proven:

1. f ∈ MAP (A,B)+ ⇒ µx0 (f) ≥ 0 real-valued

2. ∀
λ,η ∈ R

f,g ∈MAP(A,B)

: µx0 (λ · f + η · g) = λ · µx0 (f) + η · µx0 (g)

• Let f ∈ MAP (A,B)+ be arbitrarily chosen.

Then: µx0 (f)
Def.µx0 (f)

= f (x0)
f ∈MAP(A,B)+

> 0

• Let f, g ∈ MAP (A,B) and λ, η ∈ R be arbitrarily chosen.

Then: µx0 (λ · f + η · g)
Def.µx0 (f)

= (λ · f + η · g) (x0) = (λ · f) (x0) +

(η · g) (x0) = λ · f (x0) + η · g (x0)
Def.µx0 (f)

= λ · µx0 (f) + η · µx0 (g)

�

Example 9.2.1 (Approximation of mapping information)

The topological vector space, that should be regarded, is the vector space XF of

mappings f : X̃ −→ R :

XF := { f : X̃ −→ R | X̃ is a topological vector space }

regarded in theorem 9.2.2.

The situation in which that space plays an important role in the context of imple-

menting the proposed processing in the SPATTB is described at this point. Suppo-

sitionally, there exists data consisting of geocoded membership functions associated

with certain real numbers described by a vector out of the space Rm. An example is

the retlationship between fuzzy information about the amount of oxygen and tem-

perature concerning a certain water body and an associated number of mosquitos,

that develop there in a period of time. In this case, there is only an assiciation with
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one real number described, but it also is conceivable to regard vectors describing

different insects species.

According to remark 9.2.1, a fuzzy set has not to be continuous. Because of this,

complex radon measures defined in definition 7.5.9 is not sufficient in any cases.

Hence, the extended integration concerning
(
LP
(
X̃, µ

)
is necessary in this con-

text. So, the generalised perspective in theorem 9.2.2 is sensefull.

The basing data is described with the terms defined in 9.2.1 as follows:

Let Fi ∈ XF and Yi ∈ Rm for i ∈ {1, . . . , k}, k,m ∈ N. Then, the following

function based dataset is regarded:

DF := {(F1, Y1) , . . . , (Fk, Yk)}

For applying the BPN-algorithm on the elements out of XF , a mapping gX has to

be specified. It has to be ensured, that the regarded mapping components in DF are

integrable in terms of the definition of gX .

According to the current application, the number n ∈ N as dimension of the

domain has to be set in an appropriate way. The dimension m ∈ N is already set

by the given desired outputs.

An essential information for describing the processing is the definition of gXF .

As proposed in theorem 9.2.2, this mapping consists of n onedimensional integrals

and can be denoted as:
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gX : XFI −→ Rn

f −→ gX (f) := µ (f) =


µ1 (f)

...

µn (f)


The definition is done in this general way to guarantee flexibility in choosing ap-

propriate integrals. Restricted by the given mapping information, any appropriate

integral out of the space M̃ (see definition 9.2.4) can be used within the discretiza-

tion process. It is thinkable, to use the same integral µ̃ for every component of

gX = µ as µ =


µ̃
...

µ̃

 or to use any combination of appropriate integrals.

This would lead to the fact, that for the accociated mapping, the function Bt gets

a vector as input, whose components are all equal. Regarding the application of

the Backpropagation Network-algorithm while the initial weights are generated by a

randomization process, this type of input would lead to a leaping between different

locations of minimal error. To improve these inputs, the following possibilities

should be described.

The chosen integrals can describe a pointwise evaluation or an integration

concerning certain compact subsets of X̃. So, discrete and non-discrete

integration is considerable. Additionally, those two methods can be used separately,

i.e. only pointwise evaluation for elements xi ∈ X̃, i ∈ I, or an integration on

compact subsets Kj ⊂ X̃, j ∈ J can be done or a combination of them.

So, let f ∈ XF be such a mapping, {x0, x1} be a discrete subset of X̃ and

{K0, K1, K2} be a set of compact subsets of this space.

Then, exemplarily, the following mapping µ1 only using the pointwise evaluation

can be defined:

215



9 Results of measure theory applied on the “Spatial-Toolbox”

µ1 =

 µx0 (f)

µx1 (f)

 :=

 f (x0)

f (x1)


At the other hand side, the mapping µ2 only using one compact subset of X̃ can

be defined:

µ2 =


µ21 (f)

µ22 (f)

µ23 (f)

 :=



∫
K0

fdµ21∫
K0

fdµ22∫
K0

fdµ23


The next level of modification is proposed as the regarding of different compact

subsets at the particular components of the following mapping µ3:

µ3 =


µ31 (f)

µ32 (f)

µ33 (f)

 :=



∫
K0

fdµ31∫
K1

fdµ32∫
K2

fdµ32


Finally, a combination of the pointwise evaluation and the integration on compact

subsets is proposed regarding the following mapping µ4:

µ4 =



µx0 (f)

µ42 (f)

µx1 (f)

µ44 (f)

µ45 (f)


:=



f (x0)∫
K0

fdµ42

f (x1)∫
K0

fdµ44∫
K0

fdµ45


This situation is illustrated in figure 9.7.
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K1

x2x1 K3K2K1

Figure 9.7: Exemplarily data for preprocessing

9.3 Interpolation using methods from

computer-oriented geometry

In this section, the approach proposed in the last section is combined with the

methods generalised in section 8.3.

The general situation, that should be regarded, is the following. Within a certain

geographical region, there are given discrete geocoded mapping information. The

aim is now, to interpolate this data to allow statements on geographical points, that
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are not among the given data. In the following, there is proposed an interpolation

using the generalised topological triangular Bézier surface from section 8.3.2 in

chapter 8.

Therefor, the following processing steps are proposed:

(PS1) Structuring the given data within the regarded geographical area using tri-

angulation.

(PS2) Topological triangular Bézier surface interpolation by taking into considera-

tion Ck-continuity at the connections of the single surfaces.

(PS3) Description of the dealings with a certain geocoded request using this pa-

rameter based interpolation.

9.3.1 Structuring the given data within the regarded

geographical area using triangulation

A triangulation is a separation of a given polygon or set of points in the space

Rl, l ∈ N using triangles. For the description of triangulation, the term point

should be used in the meaning of point in the space Rl, l ∈ N. According to [Far03],

p. 143, a triangulation basing on a finite number of points can be characterised

by the following:

(TRI) The vertices of the triangles are in coincidence with the given points.

(TRI) The inner of any pair of triangles is disjunct.

(TRI) Two triangles have points in common if and only if there exist a common

vertex or a common edge.

(TRI) The union of the triangles is the convex hull of the given points.

For the description of a commonly used algorithm, the algorithm of Delaunay tri-

angulation, the term voronoi diagram is necessary and defined basing on [Sch96],
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p. 160 et seqq. and [Aum93], p.132 et seqq. There are only regarded the basing

facts, because otherwise it would go beyond the scope of this thesis. In the follow-

ing, the metric space
(
Rl, d

)
, l ∈ N is used.

Definition 9.3.1 (Voronoi-area)

Let V := {P1, . . . , Pn} ⊂ Rl, n ∈ N. Then, the Voronoi-areas V (Pi) , i ∈

{1, . . . , n} according to V are defined in the following way:

∀
i ∈ {1,...,n}

: V (Pi) :=

Q ∈ Rl | ∀
j ∈ {1,...,n}

j 6= i

d (Q,Pi) ≤ d (Q,Pj)


Remark 9.3.1 (Half-planes and Voronoi-areas)

If for A,B ∈ Rl, A B, the following set HA defines the half-plane delimited by the

perpendicular bisector of the side AB containing A:

HA :=
{
Q ∈ Rl | d (A,Q) ≤ d (B,Q)

}
.

Then, the following is valid ([Aum93], p.132):

∀
i ∈ {1...,n}

: V (Pi) =
⋂
j=1
j 6=i

HPi (Pj)

Definition 9.3.2 (Voronoi-diagram)

Let V := {P1, . . . , Pn} ⊂ Rl, n ∈ N. Then, the set VOR containing any

Voronoi-area of V is named Voronoi-diagram or Voronoi-tessellation:

VOR := {V (Pi) | i ∈ {1, . . . , n ∧} Pi ∈ V}

The following algorithm to calculate the according Voronoi-diagram for a given

set of points is of the type Sdivide et impera deviding the given data and then

doing iterative processings. In substance, the given set of points is divided in

subsets containing three points, the according Voronoi-diagrams are calculated

and stepwise merged. In figure 9.8, there is illustrated, that just merging make

problems, because there can be generated areas containing more than one point
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in the inner. To avoid this, an algorithm of generating a separating edge chain is

used and is found in [Sch96], p.166-167.

Figure 9.8: Necessarity of a separating edge chain: a) without separating edge

chain, b) with separating edge chain ([Aum93], p.142)

Algorithm 9.3.1 (Voronoi-diagram by divide et impera)

(VA1) Start procedure Voronoi({P1, . . . , Pn})

(VA2) Sort the given points to get a sorted list {P ∗1 , . . . , P ∗n}

(VA3) if n ≤ 3

• Calculate Voronoi-diagram

• Calculate convex hull

• End

(VA4) else

• Divide the sorted list by AL :=
{
P ∗1 , . . . , P

∗
bn

2
c

}
and

AR :=
{
P ∗bn

2
c+ 1, . . . , P

∗
n

}
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• Voronoi(AL)

• Voronoi(AR)

• Merge (AL) and (AR) as well as the according convex hulls

• Application of the algorithm of generating a separating edge chain

• End

(VA5) Return the final Voronoi-diagram

(VA6) End

Basing on this, the Delaunay-triangulation can be calculated using the following

algorithm ([Sch96], p.184) regarding a set V := {P1, . . . , Pn} ⊂ Rl, n ∈ N.

Algorithm 9.3.2 (Delaunay-triangulation)

(DA1) Calculate the according Voronoi-diagram

(DA2) Calculate the dualseparation of this Voronoi-diagram

Thereby, the dual separation is done by connecting any pair of points out of V ,

that has an edge of the Voronoi-diagram in common. Delaunay proofed in 1934

([Del34]), that by this method a triangulation fullfilling the conditions mentioned

above is constructed.

Regarding a triangulation of a set V := {P1, . . . , Pn}, the ability of localizing a

point P ∈ conv (V ) within the constructed triangles is important for the follow-

ing. A simple method of doing that localisation consists in a stepwise calculation

of the barycentric coordinates of P for the single triangles. This is done, until

a triangle is found according to what any barycentric coordinate is positive for

P . The worst case would be the necessarity of regarding any triangle. In [Far03],

p.146-147, there is mentioned a more efficient algorithm of localisation.
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Algorithm 9.3.3 (Localization within a given triangulation)

(LT1) Given: Triangulation of a set V := {P1, . . . , Pn}

A point P ∈ conv (V )

(LT2) Initializing a starting triangle using a certain algorithm

(LT3) Calculating the according barycentric coordinates

(LT4) if they all are positive, then the actual triangle is the output

(LT5) else, set the neighboring triangle in whose direction

the biggest negative barycentric coordinate was calculated as actual triangle

and go to LT3

In figure 9.9, there is visualized the convex hull, the Voronoi-diagram and the

Delaunay-triangulation of a set of 30 points. This has been done within the GIS

GRASS using the sample dataset spearfish 60 with mapset PERMANENT and

raster map aspect. This OpenSource software and the sample data can be found

on [GRA10]. The following commands were used:

• Convex hull: v.hull

• Voronoi-diagram: v.voronoi

• Delaunay-triangulation: v.delaunay

Additionally, in figure 9.10, only the triangulation and as well the coherence be-

tween the Voronoi-diagram and the according delaunay-triangulation are illus-

trated. In figure 9.11, a threedimensional view is shown.

9.3.2 Topological triangular Bézier surface interpolation

For the following considerations, some prerequisites are necessary:

In general, the following cartesian product GFP,n := LP
(
X̃, µ

)
×Rn is regarded as

basing space of geocoded mapping information, while X̃ is a topological vector space
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Figure 9.9: Convex hull, Voronoi-diagram and Delaunay-triangulation using

GRASS: a) Points and according convex hull, b) Addition of the

Voronoi-diagram, c) Addition of the Delaunay-triangulation
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Figure 9.10: a) Given data and according Delaunay-triangulation, b) Coherence

between Voronoui-diagram and Delaunay-triangulation

Figure 9.11: Threedimensional view: a) Voronoi-diagram and Delaunay-

triangulation, b) Delaunay-triangulation
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itself. In the following, the case GFP,2 should be regarded. There, the elements

are interpreted as geocoded LP
(
X̃, µ

)
-integrable mappings using twodimensional

geo-coordinates. In terms of geocoded information, the cases n ≥ 2 are sensfull

as well regarding e.g. additional information about altitude or time.

The set MI ⊂ GFP,2 should consist of the following entries:

MI := {(f1, c1) , . . . , (fk, ck)}, k ∈ N.

This data should in the following be used as basis for the proposed interpolation

processing. In section 8.3 of chapter 8, there has been proposed a generalization of

surface interpolation regarding discrete subsets in a topological vector space using

Bézier-methods. At this point, there are given reasons for the applicability of that

method on the set MI.

This method is applicable onMI, because the space GF 1,2 is a topological vector

space. The reason therefore is given by the fact, that the cartesian product of

a family of topological vector spaces is a topological vector space as well, if the

same scalar field K and the according product topology are used ([Sch99], p.19).

Therefor, in the space GF2,1, addition and scalar multiplication have to be defined

in the following way:

+ : GFP,2 × GFP,2 −→ GFP,2
((f1, x1, y1) , (f2, x2, y2)) 7→ + (((f1, x1, y1) , (f2, x2, y2)))

:= (f1 + f2, x1 + x2, y1 + y2)

· : K× GFP,2 −→ GFP,2
(λ, (f2, x2, y2)) 7→ · ((λ, (f2, x2, y2))) := (λ · f1, λ · x1, λ · y1)

The space R is a topological vector space and so, the cartesian product R2 with
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the above postulations in mind is as well a topological vector space.

Before interpolation with the described triangular Bézier-methods is possible, the

data has to be structured by triangulation. Doing this, only the components

describing the geocoding of each datum are regarded. Using the interpolation al-

gorithm, there is generated a set of parameterized surfaces, which can respectively

be functionally described by:

P̃S : D3 −→ GFP,2
(i, j, k) 7→ P̃S ((i, j, k))

Altogether, there should be described mapping from the convex hull of the given

coordinates to the according elements out of LP
(
X̃, µ

)
. As described further,

this mapping cannot be explicitely defined, but there is proposed an algorithm for

calculating the according element out of LP
(
X̃, µ

)
for a given coordinate within

the regarded convex hull.

For describing the mapping definition, th coordinate information has to be ex-

tracted for the particular elements of the set MI. Such an extraction can be

formulated in a generalised way for the space GFP,n by the following localisation

mapping LOK:

LOK : GFP,n −→ Rn

(f, x) 7→ LOK ((f, x)) := x

while x ∈ Rn is assumed.

So let A ⊆ GFP,n. Then the extraction should be described by the following set:

AL := LOK (A) =

{
x ∈ Rn | ∃

g ∈A
: x = LOK (g)

}
Applying this on the general space GFP,n, the following mapping definition results:
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FP,n,A : conv (AL) −→ LP
(
X̃, µ

)
a 7→ FP,n,A (a)

With n := 2 and Ã ⊆ GFP,2, the following description can be given:

FP,2,Ã : conv
(
ÃL

)
−→ LP

(
X̃, µ

)
a 7→ FP,2,A (a)

For the process of interpolating using Bézier-surfaces, the number of triangles

generated by the according triangulation is an essential information. In figure 9.12,

there are illsutrated two triangulations of four points. Obviously, the number of

triangles does not only depend on the number of points used for the triangulation,

but also on the subset of these points that are elements of the according convex

hull’s border.

a) b)

Figure 9.12: Triangulations of four points: a) Three points in the according covex

hull, b) Four points in the according covex hull

At this point, there should be given a possibility of calculating the number of

triangles generated by a triangulation using methods of graph theory. In the fol-

lowing, the term planar graph and euler’s polyeder theorem are described basing

on [Die00], p. 70 et seqq.

Definition 9.3.3 (Planar graph)

Let G = (V (G) , E (G) , IG) be a graph, with |V (G) | < ∞ and |E (G) | < ∞. If

additionally the following prerequisites are valid, G is called planar graph:
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(PG1) V ⊆ R2

(PG2) Every edge is a union of line segments in R2 between two vertices.

(PG3) Every pair of different edges have at most one end in common

(PG4) The interior of every edge contains no vertex and does not cross any other

edge

G is called connected, if every vertex is the end of an edge.

Definition 9.3.4 (Faces of plane graphs)

Let G be a plane graph. Then, the regions of the set R2 \ E (G) separated by the

edges of G are called the faces of that graph.

Theorem 9.3.1 (Euler’s polyeder theorem)

Let G be a connected plane graph with n vertices, m edges and l faces. Then, the

following is valid:

n − m + l = 2 (9.1)

The proof can exemplarily be found in [Die00], p.74-75.

Using this, the number of triangles generated by a triangulation is derived in the

following way:

Remark 9.3.2 (Number of triangles)

Let A ⊂ R2 be a finite subset. Further, let TA be an triangulation basing on the

elements of A. TA is then a plain graph with eA edges, vA vertices and fA faces.

Additionally, let cA ≤ vA be the quantum of vertices, that are element of the border

of conv (A). Then, there are generated 2n − 2 − k.

This can be seen by the following considerations:

Let trA be the number of generated triangles. Then, the number of faces fA is

fA = trA + 1 consisting of the number of triangles and the outer face. Regarding
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the edges, each triangle has three edges and the outer face cA. Further, for every

edge, two neighboring faces can be found. So, the following is valid:

eA = 3trA+cA
2

Now, Euler’s polyeder theorem can be applied in the following way:

2 = vA − eA + fA

= vA − 3trA+cA
2

+ trA + 1

⇔ 4 = 2vA − 3trA − cA + 2trA + 2

⇔ trA = 2vA − 2 − cA

So now, it is focused on the set MI again. In the context of triangulation, the

set MIL has to be regarded. With |MI| = k also |MIL| = k is valid. With

cMIL , the number of elements is described, that are element of conv (MIL). Using

this and remark 9.3.2, the number of triangles trMIL generated by the according

Delaunay-triangulation is the following:

trMIL = 2k − 2 − cMIL

Thereby, trMIL also describes the the number of topological triangular Bézier

surfaces, that have to be generated. These should be denoted as GFBi, i ∈

{1, . . . , trMIL}.

To be able to build a topological triangular Bézier surface consisting of a number

of single topological triangular Bézier surface, the continuous combination of those

surfaces has to be regarded. At this point, the coherences are described basing on

[Hos89], pp.251-252. (done there for triangular Bézier surfaces).

Remark 9.3.3 (Neighboring topological triangular Bézier surfaces)

In the following, for identifying the Bézier-points of the surface with grade n = 1,

the nomenclature outer vertices is used.
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At this point, there should be regarded C0- and C1-continuity for the descent of two

neighboring topological triangular Bézier surface of grade n ∈ N. Neighboring

means coincidence of two outer vertices.

For getting the ability of describing C1-continuity, there has to be regarded a

Bézier-surface of grade 3 and therefor, the missing Bézier-points have to be calcu-

lated using the algorithm of grade elevation 8.3.2.

Therefor, the participating elements out ofMI have to be identified for the single

triangle respectively the single Bézier-surface. At this point, it is assumed, that

the three points ck1 , ck2 and ck3 defines the triangle associated with the Bézier-

surface GFBt, t ∈ {1, . . . , trMIL}. Additionally, k1 < k2 < k3 is assumed. The

outer vertices are named as:

b
(t)
(1,0,0) := (fk1 , ck1)

b
(t)
(0,1,0) := (fk2 , ck2)

b
(t)
(0,0,1) := (fk3 , ck3)

For describing the according grade elevation, let î, ĵ, k̂ ∈ N≤ 1, i + j + k = 1,

ĩ, j̃, k̃ ∈ N≤ 2, i + j + k = 2 and i, j, k ∈ N≤ 3, i + j + k = 3. Then, using

the mentioned algorithm, the missing Bézier-points are calculated in the following

way:

b
(t)

(ĩ,j̃,k̃)
:= ĩ

2
b

(t)

(ĩ−1,j̃,k̃)
+ j̃

2
b

(t)

(ĩ,j̃−1,k̃)
+ k̃

2
b

(t)

(ĩ,j̃,k̃−1)

b
(t)
(i,j,k) := i

3
b

(t)
(i−1,j,k) + j

3
b

(t)
(i,j−1,k) + k

3
b

(t)
(i,j,k−1)

Thereby, b
(t)

(î,ĵ,k̂)
:= OGFP,2 , if î /∈ [0, 1]∨ ĵ /∈ [0, 1]∨ k̂ /∈ [0, 1] and b

(t)

(ĩ,j̃,k̃)
:= OGFP,2 ,

if ĩ /∈ [0, 1] ∨ j̃ /∈ [0, 1] ∨ k̃ /∈ [0, 1] by this iteration.

Using this, the topological triangular Bézier surface GFBt, t ∈ {1, . . . , trMIL} can

be generated with:
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∀
t ∈ {1,...,trMIL}

: GFBt : D3 −→ GFP,2

(u, v, w) 7→ GFBt ((u, v, w))

:=
∑

i,j,k ∈ N≤ n
i+j+k = n

b
(t)
(i,j,k) · BS

n
(i,j,k) ((u, v, w))

The considerations necessary for getting C0- and C1-continuity are described using

two neighboring topological triangular Bézier surfaces GFBr, r ∈ {1, . . . , trMIL}

and GFBs, s ∈ {1, . . . , trMIL} with i 6= j.

C0-continuity:

In this case, the according marginal curve for u = 0 has to be equal:

GFBr ((0, v, w)) = GFBs ((0, v, w)) (9.2)

Using the coherence described in remark 8.3.2, this leads to the following:

∑
j,k ∈ N≤ n
j+k = n

b
(r)
(0,j,k) · BS

n
(0,j,k) ((0, v, w)) =

∑
j,k ∈ N≤ n
j+k = n

b
(s)
(0,j,k) · BS

n
(0,j,k) ((0, v, w))

⇔
∑

j,k ∈ N≤ n
j+k = n

b
(r)
(0,j,k) ·

n!

j!k!
· vj · (1 − v)k =

∑
j,k ∈ N≤ n
j+k = n

b
(s)
(0,j,k) ·

n!

j!k!
· vj · (1 − v)k

C1-continuity:

For getting C1-continuity:, along the marginal curve for u = 0, the linear depen-

dence of the three vectors dGFBr((0,v,w))
dv

, dGFBr((u,v,w))
du

|u=0 and dGFBs((u,v,w))
du

|u=0.
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dGFBr ((0, v, w))

dv
=

∑
j,k ∈ N≤ n
j+k = n

b
(r)
(0,j,k) ·

n!

j!k!
· v(j−1) · (1 − v)k

− b(r)
(0,j,k) ·

n!

j!k!
· vj · (1 − v)(k−1)

=
∑

j,k ∈ N≤ n
j+k = n

b
(r)
(0,j,k) · BS

n
(0,j,k) ((0, v, w))

(
jv−1 − k (1− v)−1)

= n ·
∑

j,k ∈ N≤ n
j+k = n

(
b

(r)
(0,j+1,k) − b

(r)
(0,j,k+1)

)
· BSn−1

(0,j,k) ((0, v, w))

dGFBr ((u, v, w))

du
|u=0 =

∑
i,j,k ∈ N≤ n
i+j+k = n

b
(r)
(i,j,k) ·

n!

i!j!k!
· iu(i−1)vj · (1 − u − v)k

− b(r)
(i,j,k) ·

n!

i!j!k!
· ui · vj · k (1 − u − v)(k−1) |u=0

=
∑

i,j,k ∈ N≤ n
i+j+k = n

b
(r)
(i,j,k) · BS

n
(i,j,k) ((u, v, w))

(
iu−1 − k (1− v)−1) |u=0

= n ·
∑

i,j,k ∈ N≤ n
i+j+k = n

(
b

(r)
(i+1,j,k) − b

(r)
(i,j,k+1)

)
· BSn−1

(0,j,k) ((u, v, w)) |u=0
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dGFBs ((u, v, w))

du
|u=0 =

∑
i,j,k ∈ N≤ n
i+j+k = n

b
(s)
(i,j,k) ·

n!

i!j!k!
· iu(i−1)vj · (1 − u − v)k

− b(s)
(i,j,k) ·

n!

i!j!k!
· ui · vj · k (1 − u − v)(k−1) |u=0

=
∑

i,j,k ∈ N≤ n
i+j+k = n

b
(s)
(i,j,k) · BS

n
(i,j,k) ((u, v, w))

(
iu−1 − k (1− v)−1) |u=0

= n ·
∑

i,j,k ∈ N≤ n
i+j+k = n

(
b

(s)
(i+1,j,k) − b

(s)
(i,j,k+1)

)
· BSn−1

(0,j,k) ((u, v, w)) |u=0

The prerequisite of linear dependence can be expressed by the following equation:

∀
λ1,λ2 ∈ R
λ1 + λ2>0

:
dGFBr ((0, v, w))

dv
= λ1 ·

dGFBr ((0, v, w))

du
+λ2 ·

dGFBs ((0, v, w))

du
(9.3)

At this point, the considerations made until now are joined to the proposition of

an algorithm. With this algorithm, Bézier-surface interpolation of mapping infor-

mation is possible in consideration of the necessary prerequisites. This algorithm

describes the processing of mapping information of similar type as given by the

set MI in this section. If there is partly training data of similar type as used

in section 9.2, that is additionally geocoded, the processing proposed there can

be applicated to get appropriate geocoded mapping information. The proposed

algorithm is illsutrated in figure 9.13 with respect to the extension for eventually

regarding training data.
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Algorithm 9.3.4 (Bézier-surfaces basing on mapping information)

(BSM1) Input: Geocoded mapping information, that means a number of mappings

out of the space LP
(
X̃, µ

)
with associated coordinate information

(BSM2) Extraction of the particular coordinate information

(BSM3) Application of Delaunay-triangulation on that coordinate information

(BSM4) Application of the algorithm of grade elevation for getting the ability of gen-

erating cubic Bézier-surfaces

(BSM5) Generating Bézier-surfaces for the particular triangles within the convex hull

of the given coordinates

Geocoded
mapping

information
Training data

Delaunay-
triangulation

Bezier-surface
interpolation

Extraction
of

coordinates

Algorithm
of

grade elevation

Workflow for generating mapping Bezier-surfaces

Figure 9.13: Workflow of algorithm for generatinging Bézier-surfaces basing on

mapping information

The workflow for processing a query with a coordinate in the regarded convex hull

is summarized in the following algorithm and illustrated in figure.

Algorithm 9.3.5 (Processing a coordinate query)

(PCQ1) Input: Coordinate information within the regarded convex hull

(PCQ2) Localization using an appropriate algorithm, for example the one described

in algorithm 9.3.3
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(PCQ3) Application of Casteljau algorithm on the barycentric coordinates of the given

point in the localized triangle

(PCQ4) Extraction of the mapping information

Processing of query

Localization
algorithm

for triangualtion

Coordinates
within

regarded
convex hull

Extraction of
mapping 

information

Algorithm of
de Casteljau

with according
barycentric coordinates

Figure 9.14: Workflow for the processing of a coordinate query

In the last part of this section there should given an interpolation example using

geocoded mapping information at four locations. Thereby, three geocoded fuzzy

sets f1, f2, f3 ∈ [0, 1]R are and a request for the resulting mapping at certain

given coordinates are regarded. Because of the fact, that the convex combinations

of mappings is done pointwise, the resulting mapping is an element of the space

[0, 1]R as well. The following data should be given:

MI := {(f1, c1) , (f2, c2) , (f3, c3)}

with:

f1 : R −→ [0, 1]

x 7→ f1 (x) := (sin (x) + 1) · 1
2

f2 : R −→ [0, 1]

x 7→ f1 (x) := 1
1+|x−3|

f3 : R −→ [0, 1]

x 7→ f1 (x) := ex−e−x
ex+e−x
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and

c1 := (3.49, 3.94) , c2 := (6, 3) , c3 := (5.8, 6.31)

To interpolate this data using the Bézier-methods, the following renaming is done:

b
(1)
0,0,1 := (f1, c1) , b

(1)
1,0,0 := (f2, c3) , b

(1)
0,1,0 := (f3, c3)

The resulting triangle using the set MIL = {c1, c2, c3} is illustrated as top view

in figure 9.15 a). There, additionally the according mapping information is shown.

Using this information, the algorithm of grade elevation 8.3.2, what leads to the

following:

∀
x ∈R

: b
(1)
0,0,2 := b

(1)
0,0,1

∀
x ∈R

: b
(1)
0,2,0 := b

(1)
0,1,0

∀
x ∈R

: b
(1)
2,0,0 := b

(1)
1,0,0

∀
x ∈R

: b
(1)
1,1,0 := 1

2
b

(1)
0,1,0 + 1

2
b

(1)
1,0,0

∀
x ∈R

: b
(1)
1,0,1 := 1

2
b

(1)
0,0,1 + 1

2
b

(1)
1,0,0

∀
x ∈R

: b
(1)
0,1,1 := 1

2
b

(1)
0,0,1 + 1

2
b

(1)
0,1,0

∀
x ∈R

: b
(1)
0,0,3 := b

(1)
0,0,2

∀
x ∈R

: b
(1)
0,3,0 := b

(1)
0,2,0

∀
x ∈R

: b
(1)
3,0,0 := b

(1)
2,0,0

∀
x ∈R

: b
(1)
2,1,0 := 2

3
b

(1)
1,1,0 + 1

3
b

(1)
2,0,0

∀
x ∈R

: b
(1)
2,0,1 := 2

3
b

(1)
1,0,1 + 1

3
b

(1)
2,0,0

∀
x ∈R

: b
(1)
1,2,0 := 1

3
b

(1)
0,2,0 + 2

3
b

(1)
1,1,0

∀
x ∈R

: b
(1)
1,0,2 := 1

3
b

(1)
0,0,2 + 2

3
b

(1)
1,0,1

∀
x ∈R

: b
(1)
0,2,1 := 2

3
b

(1)
0,1,1 + 1

3
b

(1)
0,2,0
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∀
x ∈R

: b
(1)
0,1,2 := 1

3
b

(1)
0,0,2 + 2

3
b

(1)
0,1,1

∀
x ∈R

: b
(1)
1,1,1 := 1

3
b

(1)
0,1,1 + 1

3
b

(1)
1,0,1 + 1

3
b

(1)
1,1,0

The resulting Bézier-points of grade 3 are illustrated in figure 9.16 in top view. It

has to be pointed out, that only the components describing the coordinates are

illustrated there.

Now, the point P with coordinates P := (4.36, 4.19) is regarded. It is assumed,

that these coordinates within conv (MIL) are given with the asking for the ac-

cording mapping. This should be done terms of the Bézier-surface interpolation

done with the calculated Bézier-points of grade 3.

The first step consists in calculating the normed barycentric coordinates of P with

respect to c1, c2 and c3. This calculation can be done using areal relations as de-

scribed in section 8.3 of chapter 8 or by solving a system of linear equations. At

this point, the second way is gone. The according linear system of equations is

solved using the CAS Maxima, which results in the following:

wxMaxima 0.8.3a http://wxmaxima.sourceforge.net

Maxima 5.19.2 http://maxima.sourceforge.net

Using Lisp CLISP 2.44.1 (2008-02-23)

Distributed under the GNU Public License. See the file COPYING.

Dedicated to the memory of William Schelter.

The function bug_report() provides bug reporting information.

Activating float mode

(%i1) if numer#false then numer:false else numer:true;
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(%o1) true

Input data

(%i2) B001:[3.49,3.94];

(%o2) [3.49, 3.94]

(%i3) B100:[6,3];

(%o3) [6, 3]

(%i4) B010:[5.8,6.31];

(%o4) [5.8, 6.31]

Query point

(%i5) P:[4.36,4.19];

(%o5) [4.36, 4.19]

Solving the linear system of equations

(%i6) lgs:linsolve([lambda1*B001[1]+lambda2*B100[1]

+lambda3*B010[1]=P[1], lambda1*B001[2]+lambda2*B100[2]

+lambda3*B010[2]=P[2], lambda1+lambda2+lambda3=1],

[lambda1,lambda2,lambda3]);
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(%o6) [lambda1 = .639204, lambda2 = .182806, lambda3 = .177990]

Checking the results

(%i7) rhs(lgs[1])*B001+rhs(lgs[2])*B100+rhs(lgs[3])*B010;

(%o7) [4.36, 4.19]

For further calculating, the values λ1 = 0.64, λ2 = 0.18 and λ3 = 0.18 should be

used.

The requested mapping at the given coordinates is now calculated using these

normed barycentric coordinates in the algorithm of de Casteljau described in 8.3.1.

The results are the following elements out of the space [0, 1]R × R2:

∀
x ∈R

: b
(1) 1
0,0,2 := λ1b

(1)
1,0,2 + λ2b

(1)
0,1,2 + λ3b

(1)
0,0,3

∀
x ∈R

: b
(1) 1
0,2,0 := λ1b

(1)
1,2,0 + λ2b

(1)
0,3,0 + λ3b

(1)
0,2,1

∀
x ∈R

: b
(1) 1
2,0,0 := λ1b

(1)
3,0,0 + λ2b

(1)
2,1,0 + λ3b

(1)
2,0,1

∀
x ∈R

: b
(1) 1
0,1,1 := λ1b

(1)
1,1,1 + λ2b

(1)
0,2,1 + λ3b

(1)
0,1,2

∀
x ∈R

: b
(1) 1
1,1,0 := λ1b

(1)
2,1,0 + λ2b

(1)
1,2,0 + λ3b

(1)
1,1,1

∀
x ∈R

: b
(1) 1
1,0,1 := λ1b

(1)
2,0,1 + λ2b

(1)
1,1,1 + λ3b

(1)
1,0,2

∀
x ∈R

: b
(1) 2
0,0,1 := λ1b

(1) 1
1,0,1 + λ2b

(1) 1
0,1,1 + λ3b

(1) 1
0,0,2

∀
x ∈R

: b
(1) 2
0,1,0 := λ1b

(1) 1
1,1,0 + λ2b

(1) 1
0,2,0 + λ3b

(1) 1
0,1,1

∀
x ∈R

: b
(1) 2
1,0,0 := λ1b

(1) 1
2,0,0 + λ2b

(1) 1
1,1,0 + λ3b

(1) 1
1,0,1

∀
x ∈R

: b
(1) 3
0,0,0 := λ1b

(1) 2
1,0,0 + λ2b

(1) 2
0,1,0 + λ3b

(1) 2
0,0,1
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Figure 9.15: Bézier-points: a) grade 1, b) grade 2

The first component of b
(1) 3
0,0,0 represents the requested functional coherence at an

arbitrary element x out of the domain R of that mapping. An partial view on the

graph of this mapping is illustrated in figure 9.16.

So, this example illustrated how a triangular Bézier-surface is generated using

geocoded mapping informtion and how then a geocoded request is processed and

the according mapping information is calculated in the proposed way.
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Figure 9.16: Bézier-points of grade 3, point P with requested coordinates and

calculated mapping
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Figure 9.17: Different Kohonen topologies: a) one-dimensional Kohonen layer,

triangular input domain, b) two-dimensiona Kohonen layer, two-

dimensional input domain, c) two-dimensional Kohonen layer,

three-dimensional input domain

9.4 Application of Kohonen Networks in the

SPATTB

In this subsection, there should be briefly proposed and described two possibilities

of using Self Organizing Maps in the context of the SPATTB.

Regarding the Kohonen Maps described in section 4.3, a subspace U Rn, n ∈ N

is clustered by a Kohonen layer of a certain dimension and topology. Thereby,

differences between input vectors and the codebook vectors containing the partic-

ular weights of the connections are regarded for modifying the codebook vectors.

By this, a mapping of the space U is realised. In figure 9.17, there are shown

codebook vectors according to a certain topology of a Kohonen layer clustering

the given input domain.

At this point, an extension of the classical algorithm is proposed using the coher-

ences described in section 9.2. There, a topological vector space of mappings is

mapped by a function gX to the space Rn.

The topological vector space, that should be regarded, is the vector space XF of

mappings f : X̃ −→ R :
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XF := { f : X̃ −→ R | X̃ is a topological vector space }

The mapping gX consists of n onedimensional integrals and can be denoted as it

is done in the mentioned section:

gX : XFI −→ Rn

f −→ gX (f) := µ (f) =


µ1 (f)

...

µn (f)


In the context of Kohonen Maps, the combination of this mapping and the clas-

sical algorithm is proposed as an extension. By doing this, one gets the ability of

clustering a subspace of the regarded XF by preprocessing it. So, mappings can

be used as inputs, they first are preprocessed in a certain way to n parameters,

which now are the inputs for the classical algorithm.

In the second part of this subsection, an algorithm and software implementation

for the calculation of so-called information densities are proposed. The context of

this application should be described first, and then the algorithm is introduced.

The ability of giving suitable statements in the context of health, but also in other

contexts, is obviously related to the available information. So, it is necessary to

regard the original data and its relation before drawing a conclusion in a certain

application. The regarded data should be geocoded data. That means data which

is related to unique geographical coordinates. Some example for such data is the

occurrence of malaria cases in certain areas. Regarding this kind of data,it is

possible, to make statements like “in area A, 70 percent of the population was

infected by malaria”, but it may be, that there is only information about a small

number of persons living there. So, this statement is not very suitable. At this

point, it is important to mention, that statements like this are part of a chain of
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decisions, and so they could be a reason for a dissipation of valuable resources. So

it is very important to be able to give a statement about the suitability of such

conclusions using the amount of information in a certain area. This is called density

of data in this thesis and the proposed calculation is described more precisely

in the following. The calculation bases on the generating of so-called influence

factors followed by a kind of interpolation for geting a continuous statement in the

regarded area.

In general, interpolation methods are used to describe unknown functional coher-

ence using given local information. In this field, different algorithms has been

developed. Exemplarely, polynomial interpolation and various spline methods can

be mentioned. For further information, the reader can refer to literature out of

the field of numerical mathematics like [Spä95] or [Sch97].

The algorithm, that we used is based on gauss type mappings. The domain of the

mapping that is interpolated consists of a subset of the space R2 and represents the

geo-coordinates of the given data. The codomain is the space R and the particular

value of that function at a given point (x, y) ∈ R2 represents an influence factor

on the neighbourhood. The compution of this value is described more detailed

further down.

In the following, a set D of m threedimensional discrete datapoints is regarded.

There, the first two components describe the according coordinates and the third

one describes the influence factor.

It is D := {(x1, y1, µ1) , . . . , (xm, ym, µm)}.

Then, the resulting interpolating function I we used is defined as follows:

E : R2 −→ R

(x, y) 7→ E (x, y)

The following vectors should be regarded:
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• Codebook vectors wj, j ∈ {1, . . . ,m}

• Input vectors ei, i ∈ {1, . . . , n}

According to this, the distance between a certain codebook vector and an input

vector can be written in the following way:

d (wj, ei)

From this distances, there is computed a new value. Our general idea of modeling

the mentioned density value is, that every input vector has a certain influence

on the density value of every codebook vector. The farer such an input vector is

located from a certain codebook vector, that means the higher the distance is, the

lower should the according influence be. This models the fact, that the information

density is high in an area where many input vectors are located.

The according value for a certain input vector and a certain codebook vector is

calculated as follows:

The first step is to calculate the value eij:

eij := 1
1 + d(wj ,ei)

Adding up all influence values for one certain input vector, there should be the

sum of 1 and every single influence value represents the partial influence of the

regarded input vector on a certain codebook vector. So, the value eij has to be

divided by the sum of all values eij of the input vector ei:

eis :=
m∑
k=1

eik

The influence value is the following:
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λij :=
eij
eis

Regarding the sum of these, the required value 1 is calculated:

m∑
j=1

λij =
m∑
j=1

eij
eis

= eis
eis

= 1

These λij are the influence values for a certain input vector ei and a certain code-

book vector wj. To describe the influence of all input vectors to a certain codebook

vector, the following value µj of the codebook vector wj is calculated:

µj :=

nP
i=1

λij

nP
i=1

eis

The whole system is built up using only OpenSource Software components. Doing

this, it can be guaranteed, that there will not be any restriction by license for

anyone who wants to use it.

One of the aims of the development of the EWARS is to make this application

be usable for everyone, so a webinterface basing on the script language Perl and

the UNIX bash script language was built up in this context. Because of this, it

necessary, that all of the used applications can be used in a terminal mode.

The innovation consists in the computing of density mappings by the proposed

software configuration. In the following, the role of each component is briefly

described. Furthermore, there are shown our suggested possibilities of computing

the mentioned data density needed for the interpolation.

The applications that are used, are the described in the following:
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• Geographical Information System GRASS

• Statistical software environment and language R

• Computer Algebra System (CAS) Maxima

• Perl based Web interface

GIS GRASS

The database of the GIS GRASS is used to store the given geocoded data and to

represent is by maps. Doing this, we can use the advantage of this system, which is

made for dealing with geographical data. In addition to that, it is possible to built

maps which are based on different data sets and export them in bitmap (PNG,

TIFF) or vector (SVG) graphics format.

Statistical software environment and language R

The software environment R (available on [Ope09]) is made for statistical calcu-

lations. R is the OpenSource pendant to the commercial S or S Plus which was

originally developed in the Bell Labs of ATT. There exists a huge community of

developers similar to other OpenSource projects and a lot of usefull extensions

have been written. We decided to use R because it is a very powerfull statistical

application and there are special extensions concerning the field of artificial neural

networks. So the kohonen extension makes it possible to analyze imported data

using the Kohonen algorithm described in section 4.3.

One other advantage is the fact that using another extension called spgrass6, it is

possible to directly import data stored in the database of the GIS GRASS. Hence,

the combination of GRASS and R is a powerfull tool for organizing geocoded data

and statistically analyzing it in a very professional way.
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Computer Algebra System Maxima

With this CAS, the interpolation is calculated basing on the influence values gen-

erated in R. Furthermore, there are extracted sets of discrete values from this

interpolation, which is exported to GRASS with the help of R for represent it then

as geocoded information again.

The coherences between the different software components are shown in figure .

The according webinterface can be reached at [Wag].

In figure 9.19, the webinterface is illustrated in the actual version (May 2010) and

in figures 9.20, 9.21 and 9.22, geocoded data from the used GRASS-database and

the calculated and by the script produces density mappings in maxima and in

GRASS are illustrated.

248



9 Results of measure theory applied on the “Spatial-Toolbox”

Webinterface
Data

Parameters

R statistic
Kohonen algorithm

Compution of density
parameters

CAS Maxima
Interpolation

Visualization

R statistic
Preprocessing
for visualization
in GRASS GIS

GRASS GIS
Visualization

Storage in database

Webinterface
Vizualization

(further processing with
extended interface)

Figure 9.18: Coherences of used software configuration
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Figure 9.19: Developed webinterface

Figure 9.20: Basing geocoded data
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Figure 9.21: Information density mapping in maxima

Figure 9.22: Information density mapping in GRASS
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10 Conclusion

Within the course of this dissertation several approaches have been proposed and

integrated within the concept of the EWARS as components of the SPATTB. This

toolbox concept was described in chapter 6 as part of the EWARS.

The main contribution of this thesis to the scientific community is provided in

chapters 8 and 9. In chapter 8, the conventual methodologies of paramater-based

interpolating data has been extended from the case Rd, d ∈ N to the characteri-

zation of the coherences with respect to elements out of an arbitrary topological

vector space and especially elements (x, y, f) out of a mapping space. This leads

to the proposition of interpolating the geocoded mapping information made in

chapter 9, what is not an obvious fact. An interesting result can be seen in the

fact, that thereby a continuous interpolation of mappings is possible, that do not

have to be differentiable itself. This generalisation has been done for Bézier-curves

and for Bézier-surfaces especially for the case of triangular sets of parameters with

respect to the possibility of structuring data by triangulation within a GIS.

In this context, in chapter 9, an algorithm of interpolating given geocoded mapping

information is developed regarding the whole progress of structuring the data by

Delaunay-triangulation, generating missing Bézier-points for interpolation using

the algorithm of grade-elevation described in [Hos89] and finally processing queries

basing on given coordinates with ask for the according mapping information using

an generalised formulation of the algorithm of de Casteljau.
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10 Conclusion

An important achievement is the extension of the BPN- and the KN-algorithms,

which can be scientifically located at the interface between mathematics and infor-

matics. This is realised using methods from measure theory oparating on mappings

and the situation is exemplarily illustrated in figure 9.2 within chapter 9.2. The

extension allows then the application of that algorithms on geocoded-mapping

information.

With regard to the SPATTB with methods of Object Oriented Analysis described

in chapter 5, these extended methods from the field of Artificial Neural Network

represent subclasses of the main class SPATTB. Thereby, the mapping data pro-

vided to the system by a user is preprocessed by a mapping gX , which works as a

method in the context of these subclasses.

For future work, the implementation of any of these algorithms by adequate soft-

ware solutions is planned for promoting the development of the EWARS. Thereby,

the workflow proposed in chapter 6 is used. One implementation is proposed in

section 9.4 basing only on OpenSource components. For this application, an im-

provement of the according webinterface and an integration of evaluation-methods

with respect to real-data is intended to be achieved as following step of develop-

ment.

With regard to the extended algorithms from the field of ANNs and the derived

applications, an exact mathematical analysis of convergence regarding differences

with respect to real data is thinkable and planned for further research.

Recapitulating these achievements, an important contribution to the development

process of the EWARS is provided in this thesis, the further development of which

will be worthwile and prolific.
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9.15 Bézier-points: a) grade 1, b) grade 2 . . . . . . . . . . . . . . . . . 240
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Topological Bézier surface . . . . . . . 185

Topological homeomorphism. . . . . 101

Topological Space . . . . . . . . . . . . . . . . 95
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