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1 Preface

1.1 Aim and methods used

This dissertation provides an interdisciplinary contribution to the project
Health & Logistics. [ReGLaN}Health & Logistics, as described in chapter [ is an
international cooperation deriving benefits from the capabilities of scientists work-
ing on different fields. The aim of the project is the development of a so-called
Spatial Decision Support System that supports decision makers working within
health systems with a special focus on rural areas. In this dissertation, one impor-
tant component for the development of the Decision Support Systems named
Early Warning And Response System is proposed and described in detail. This
component called “Spatial-Toolbox” is developed with the intention of dealing
with spatial data, i.e. data with additional geocoded information with regard to

the special requirements of the Early Warning And Response System (EWARS]).

An important component in the process of developing the EWARS is the concept
of Geographical Information Systems. Classically, geocoded information with a
vectorial character numerically describing spatial phenomena is managed and pro-
cessed in a [GIS| For the system GRASS that will be used within this project,
these capabilities and possibilities are described in detail in [Net08] and for in
general, the book [Lan(07] can be recommended. But for the development of the

EWARS| the manageability of the type of data exemplarily given by (z,y, 0) with
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coordinates (x,y) and Os-concentration o is not sufficient. As described in section
of chapter [3|and later on in chapter [0} the manageable data has to be extended
to data of type (z,y, f), where (z,y) are the geocoded information, but where f is
not only a numerical value but a functional description of a certain phenomenom.
An example for the existence and appearance of that type of data is the geocoded
information about the variation of the Os-concentration in time or depending on
temperature. In section [3.1]of chapter[3] a knowledge-base as important subsystem
of [DSS| containing expert knowledge is mentioned. This expert-knowledge can be
made manageable when using methods from the field of fuzzy logic (more detailed
information about them can be found in section . Thereby mappings, so-called
fuzzy-sets, are generated. Within the EWARS] these mappings will be used with
respect to additional geocoded data. The knowledge about the geocoded mapping
information only at a finite set of locations (x;,y;) associated with mapping in-
formation f;,i € {1,...,n} is not sufficient in applications that need continuous
statements in a certain geographical area. To provide a contribution towards solv-
ing this problem, in section [9.3) of chapter [0 methods from the field of computer
geometry and Computer Aided Design, so-called Béziermethods, are used for inter-
polating this geocoded mapping information. Classically, these methods operates
on vectors in the space R% d € N, but in terms of dealing with mapping infor-
mation, there has to be an extension on topological vector spaces since mapping
spaces can be defined as such spaces. This builds a new perspective and possibility
in the application of these methods. Therefore, the according algorithms have to
be extended; this work is presented in chapter [§|

The field of Artificial Neural Networks plays an important role for the process-
ing and management of the data within the EWARS] where features of biological
processes and structures are modeled and implemented as algorithms. Gener-

ally, the developed methods can be divided as usable in terms of interpolation
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or approximation functional coherences and in such being applicable to classifi-
cation problems. In this dissertation one method from each type is regarded in
more detailed. Thereby, the classical algorithms of the so-called Backpropaga-
tion Networks for approximation and the Kohonen Networks for classification are
described in chapter [l In chapter [9] an extension of these algorithms is then
proposed using coherences from mathematical measure-theory and approximation
theory described in chapters [7] and [§ Thereby, the training data is of the type
{(fi,c1) ..., (fn,cn)} with mapping data f,: X — C and associated vec-
torial data ¢;,i € {1,...,n}. Measure theory operating on mappings plays an
important role if the data is of the following type: {(Ki,¢1),..., (K, ¢,)}, where
the K; are compact subsets of the domain X, which is a topological vector space.
The mentioned extension of these algorithms is based on a preprocessing of the

mapping data using integration methods from measure theory.

1.2 Structure of the dissertation

In this section, the structure of this thesis is described to provide an overview for

the reader.

Chapter [2] Contribution to the project ReGLaN-Health & Logistics: Here the
aim and the objectives of the project are described in more detail and the
contribution of this dissertation is specified. It describes which methods will
be used, where the proposed is located in the [EWARS| and which

applications are possible in this context.

Chapter [3] Embedding in the context of current research: In the process of de-
veloping methods for handling spatial respectiveley geocoded data, the knowl-
edge about the understanding of these terms in publications within the ac-

cording scientific field is essential. Hence in this chapter, possibilities and
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applications in the context of managing spatial data, especially referring to
current publications, are described. Additionally, basic coherences about
[DSS| are described with appropriate references to relevant parts of this the-
sis. Finally, the specific contribution of this dissertation to the scientific

community is described highlighting its pertinence.

Chapter [4] Artificial Neural Networks: The field of Artificial Neural Networks is
huge and growing rapidly. Within this chapter basic historical facts from
the beginning through to actual applications and methods are described.
In addition the biological background and a common model of an artificial
neuron are depicted, followed by a possibility of classification. Subsequent
to this, the relevant Artificial Neural Network —models for this thesis,
the Backpropagation Networks and the Kohonen Networks are characterised
in more detail, describing mathematically the relevant algorithms on which

the developments and extensions in chapter [9 are based.

Chapter 5] Principles of object-oriented analysis: Handling semi-structured or
unstructured problems or dealing with complicated situations is a challenge
in every scientific field. A way of dealing with this problem is the application
of the so-called Object Oriented Analysis. This method provides a possibility
of structuring complicated systems in a standardised way, that provides the
possibility of simplifying the working relationships within a project. This
method will also be used for the development of the EWARS] Important
elements of Object Oriented Analysis are depicted in this chapter.
One of that is a so-called object, which exemplarily can be a representa-
tion of a concrete element within the regarded health system, for example
a doctor treating a patient. For the process or even the viability of that
treatment, several circumstances can play a role. E.g., the kind of disease

can be mentioned , the distance between the two people, the available infras-
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tructure or the actual weather situation. If the doctor for example has the
possibility of using telemedicine and the regarded disease allows this treat-
ment, the availability of electric current and the risk of having heavy rainfall
become essential information. So regarding them in terms of [OOA] these
circumstances have an important influence on the behaviour of the repre-
senting objects. If geocoded mapping information is the basis information
for a relevant influence statement that has to be given in a continuous way,
the methods for dealing with the kind of data proposed in chapter 9 play an
important role for providing appropriate information to particular objects

and influencing their behaviour.

In the process of describing the[EWARS| with methods from Object Oriented
Analysis, the should also be regarded in this way. The
itself represents an object-class with the ability of deriving several meth-
ods as sub-classes. The methods important to this thesis are the extensions
of the Backpropagation Network — and the Kohonen Network —
algorithms for processing geocoded mapping information. These can there-
fore be regarded as subclasses of the[SPATTB], which a user can call providing

geocoded mapping information.

Chapter [6] Proposal of a “Spatial Toolbox”: Here the general structure of the
is proposed and a localisation within the whole concept of the
[EWARS|is provided. Additionally, the importance of OpenSource software
components within the whole system and particularly for the [SPATTD] is
described. Finally, a workflow for the development of additional components

for the toolbox is proposed and illustrated.

Chapter [7| Measure theory on topological and function spaces: Geocoded map-
ping information is considered as elements of a topological vector space of

functions. When regarding data of the type {(fi,c1),...,(fn,cn)} already
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mentioned above, the described preprocessing in terms of extending the algo-
rithms from the field of and the extended Bézier-interpolation require
the theoretical background of measure theory. Characterizing differences
in a mathematical way requires adequate methods of measuring. As men-
tioned above, there are components developed for managing geocoded map-
ping information, so if the differences should be described in this context,
appropriate methodologies have to be used. In this chapter the basic facts
about topological spaces and generalised concepts of convergence in terms
of so-called nets and filters are given. Furthermore, the concept of topolog-
ical vector spaces is characterised and finally the important methods from
mathematical measure theory are described. Thereby, the approach inter
alia mainly proposed by Bourbaki in [Bou04] based on linear functionals is
used, but also shown is the coherence to the measuring approach based on
systems of sets like o-algebras. This coherence is described by the theorems

of Riesz, whereof one formulation is described in this chapter.

Chapter [8 Coherences of approximation theory: As mentioned above, there is
a proposed method for interpolating geocoded mapping information by ap-
proaches from the field of computer geometry and Computer Aided Design
. In this chapter these approaches are described, but the according co-
herences are not depicted in the classical way as given in common literature,
but in an extended way. Conventually, these methods are based on vectorial
described elements out of a space R, d € N. This concept is extended
to gain the ability of elements out of an arbitrary topological vector space.
This description is in chapter [9] for application of this on a special topological
vector space, whose elements are of the type (x,y, f) with (geo-)coordinates
(z,y) and a mapping of the type f: X — C . The above mentioned

fuzzy sets are of this type and the interpolation of them can then be realised
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through this method.

Chapter [9] Results of measure theory applied to the “Spatial-Toolbox”: At this
point, the described and partly extended methods from the fields of [ANN]
parameter-based Bézier-interpolation and measure theory are combined with
respect to the operation of geocoded mapping information. Within this chap-
ter, the already described approach of interpolating geocoded mapping infor-
mation using Béziermethods is proposed. Furthermore, an algorithm is devel-
oped, which extends the classical BPN}Falgorithm described in chapter [ for
gaining the ability of training them but using mapping information. Finally,
a similar extension is described for the [KNfalgorithm, where a programmed
application as a component of the [SPATTB]| based on the [KN}algorithm and
a proposed gearing of several OpenSource components (GRASS, maxima,
R) is described. This application provides a possibility of gaining continuous

statements about the density of the given discrete geocoded data.



2 Contribution to the project
ReGLaN-Health & Logistics

The methods which are developed and described in this thesis should offer a con-
tribution to the project ReGLaN-Health & Logistics. The description of the co-

herences in this context will be the topic of the current chapter.

The project ReGLaN-Health & Logistics (ReGLaN = Research Group Learning
and Neurosciences) deals with the development and description of adaptive meth-

ods and algorithms in the context of health services and decision support.

The project was founded by the South African Gerhard Ackermann. The main
aim is the development and provision of methods and applications for improving

the health system especially of rural areas.

In this project there is an international collaboration of different institutions and
people. The main persons leading this project are Dipl.-Ing Gerhard Ackermann,
Prof. Dr. Engelbert Nichaus, Prof. Dr. Dr. Marlien Herselman, Dr. med. Ruth
Niehaus and Dipl.-Ing David Niehaus.

The advantage drown from the heterogeneity of those participating is the access

to the expert knowledge and points of view in the particular scientific field.

One important part of our contribution to the optimisation of the described health

systems is the development of a so-called digital decision support system (DDSS).
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This should be used to provide decision support to the different decision makers
within the regarded health system. In rural areas, particularly in non-industrial
nations, the circumstances within which first-aid is applied are often not optimal.
Therefore it is important to get the best results by using the resources available.
The system will help to make a decision on the treatement of a patient by pro-

cessing the existing resources and analysing the possible treatments.

The system that will be developed within this project is called [ EWARS] The
focus here lies on the ability to early warn, especially in terms of epidemiology
and in providing a logistically optimised response that optimises the usage of
medical resources in rural areas. In [Nie09], Niehaus, Herselman and Babu write,
“the objective of a spatial decision support provided by [EWARS] is to optimize
the deployment of the existing limited resources in rural areas to improve health

service and delivery according to risk”.

In this context, the EWARS] is additionally under the umbrella of Action Team
6 of the United Nations, and has been presented to the Scientific and Technical

Subcommittee of the Committee on the Peaceful Uses of Outer Space in Vienna

(IN7e08)).

In this thesis, a so-called is proposed with the aim of providing a contri-
bution to the development of the[EWARS] In figure 2.1 the processing within the
[EWARS]is illustrated, where a so-called expert knowledge layer is visible. This ex-
pert knowledge has to be expressed in a mathematical way for further processing.
One possibility to do this consists in using methods from fuzzy logic as described
in section 0.2 With these mappings, so-called membership mappings, the grade
validity of linguistic values as “warm” or “fast” can be described in a fuzzy way.
Regarding geocoded data, such statements and mappings are located on certain
geographical coordinates. This information should not only be used within the

system on the given coordinates but also on the area “in between”. This thesis
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proposes a method for approximating the geocoded mapping information in sec-
tion for a whole area based on “discrete” mapping information only at a finite
number of locations. This method is proposed as part of the as described
in chapter [6]

Coherences drawn from the expert knowledge in coherence with measured data
are also of high importance for the processing within the system. An example
is the relationship between expert knowledge about the amount of oxygen and
temperature concerning a certain body of water and an associated number of
insects acting as disease vectors, that develop in this body of water within a period
of time. In section [9.2] a method of approximately describing such coherences
as mappings that provide the ability to calculate the associated information for

variations of the mappings is proposed.

The proposed described in chapter [0]is thereby considered for interacting
in different situations within the[EWARS] Another field of application is described
in section[9.4] The ability of providing suitable statements in the context of health
and epidemics is obviously related to the available information; so regard to the
original data and its relation is thus essential before drawing a conclusion on a
certain application. In the mentioned section, a method based on an algorithm
from the field of neuroempiricism and an according software implementation is

proposed for describing the density of given measurement data.

10
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Figure 2.1: EWARS, [Nie08], p.14
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3 Embedding in the context of

current research

3.1 Description and limitation of the context of

current research

3.1.1 General concepts of spatial analysis

As mentioned in chapter [2] the inter alia deals with spatial data. At this
point, some general information about the processing of spatial data in the context
of spatial analysis is given. Furthermore important characteristics related in terms
of research and application in this field are pointed out and some explicit studies

of current interest are mentioned.

In the introduction of [San07] it described that the terms spatial analysis and
spatial modeling cannot be defined in a universal way. It is stated that within
the modeling of spatial phenomena and processes, there is a need for scientific
knowledge and skills from various fields. The special part of each discipline stands
in close relation to the regarded application and/or modeling process. So on the
one hand, different disciplines can provide methodologies and frameworks in the

content of spatial analysis and spatial modeling. On the other hand, methods as

12
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well as models developed within different fields such as mathematics can be tested,

applied and evaluated using spatial data.

In this context, the term modeling is important and thus its meaning and definition
has to be outlined and defined. This term can be interpreted in different ways. At
this point, the following general definition based on the one given in [Hag65] should
be mentioned: “(...) a model is a schematic representation of reality, developed with
the goal of understanding and explaining it.” ([San07], p.1). In sectiond.2]the term
modeling and in particular the term mathematical modeling is looked at in more

detail.

In the context of dealing with spatial data and developing models, the relevant aim
is of crucial importance, because the usage of methods and concepts is dependent
on this. One example is the spatial dynamics of population growth, where the aim
can only be the description and a clear presentation of the given data or it can be
an attempted explanation or even a forecast. In addition to this, the type of data
given is also important because for example methods for computing discrete data

in general cannot deal with non discrete data directly.

In chapter [J] extensions of algorithms that provide the ability of not only dealing

with vectorial data but also with geocoded mapping information are proposed.
Throughout modeling in terms of spatial analysis, the following steps are important
(basing on [San07], p.2):
e Regard to the real situation, detection of the existing logical structure and
making a choice about the relevant components.
e Formalizing the given facts and chosen components.

e Undertaking a calculation and/ or processing in oder to gain concrete results

from the model/ the models.

e A comparison of these results with empirical observations and evaluation of

13
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the developed model/ models.

e Highlighting the “gaps” between modeling and observations and trying to

improve the model/ models.

The study of these gaps, which in some literature are called residuals, can suggest
the usage of new models or lead to a modification of the developed model/ models

e.g. by taking into account additional important parameters and factors.

These steps are very similar to the ones in the so-called modeling cycle for math-

ematical modeling mentioned in section [4.2]

Spatial models can be represented and illustrated by so-called flow-diagrams or
sagittal-diagrams.
According to [San07], p.16 et seqq., the following criteria or characteristics for the

classification of spatial models can be stated:

e The model is aggregated, i.e. a group of factors and parts are regarded as
whole system, or the model is disaggregated, i.e. they are regarded individu-
ally.

e The model is either a static or a dynamic one.

e The model is deterministic and/ or probabilistic.

No model in spatial analysis can create a perfect representation of reality. Hence it
makes sense in many applications to not only use one kind of modeling, but to take
different models into account. This way a multi-perspective view on the regarded
situation can be achieved. In doing this, the advantages and disadvantages of each

used model and methodology must not be disregarded to get appropriate results.

Dealing with spatial data, there is often a need to regard the factor of time as
well ([San07], p. 97) highlighting the process which evolve the regarded spatial

structure. In the consideration of time, two main approaches can be mentioned.

14
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On the one hand, the evolution of the spatial structure is in the foreground and
time is regarded for measuring the differences of certain periods. As examples
models of urban growth or diffusion models in epidemics can be given. On the
other hand, the time of the individuals is regarded, while space is regarded as a
variable in their life path. This approach is applied in demographic models using

biographic data.

In the following, some methodologies of spatial modeling are described. According
to [San07], p. 160 et seqq., one possibility of gaining an understanding of a complex
system consists of regarding the basic entities of this system. This idea of so-
called spatial microsimulation models goes back to Orcutt, who attempted an
employment forecast in the 1960s not by regarding a high macroeconomic model
but looking at the household level. With the increasing development of computers,
this kind of modeling became more and more relevant for multiple disciplines like
population dynamics, epidemics and even for computer graphic technology (refer
e.g. on [Nvi]).

The basic idea of microsimulation is the formalising of change at an individual
level and in this way describing the whole system. This formalising can be realised
in two different ways. The first approach uses statistical procedures. The models
developed therewith are based on probabilistic rules for the impact of certain
events on certain types of individuals in certain situations. An example from the
field of population dynamics is the case of a women giving birth to a baby in a
certain period of time. This depends inter alia on her age, her income and her
education. Population models using this type of approach are the CORSIM (USA),
the DYNACAN (Canada) and the SVERIGE (Sweden).

The other approach mentioned above is the agent based or multi-agent systems.
Here, there are defined rules for the behaviour of the regarded individuals, but

them is given a certain degree of autonomity. In this way, the used agents can

15
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interact with each other following the given rules. At this point, two definitions of

multi-agents are given. Durfee defines the following in [Dur89]:

A Multi-agent system is a network loosely coupled with entities acting to-

gether to resolve problems that were beyond their individual capabilities.
Another definition is given by Wooldridge in [Woo02]:

An agent is a computer system that is situated in some environment, and that
1s capable of autonomous action in this environment in order to meet its design

objectives.

An example for the usage of is located in the field of epidemiology. The
spreading of a disease distributed by a certain virus can be described using the
so-called SIR approach based on the work of Kermack and McKendrick (refer
to [Kra03] and [Prii08]). In this approach the three stadiums susceptible (S),
infectious (I) and resistant (R) are regarded. The passage from one stadium to
another can be described using rules and therewith, the spreading of the disease
can be described by multi-agents. There are several simulations in existence but

exemplary is [Xjt] and should be mentioned at this point.

Furthermore, the field of fractals is regarded as a supply of methodologies, which
is useful for certain problems in spatial analysis. According to [San07], p.281 et
seqq., this geometric approach is used in certain applications dealing inter alia with
contour problems. Mandelbrot gave the following definition in 1982 (see [Man82]):
“(A fractal is) a rough or fragmented geometric shape that can be split into parts,
each of which is (at least approximately) a reduced-size copy of the whole.” For
more information about this field refer to [Man82] or [Pei04] for example. In figure

3.1, an application of fractals in terms of spatial data is illustrated.

16
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Figure 3.1: Fractal analysis of the urban perimeter of Cardiff ([San07], p.296

17
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3.1.2 Usability of [ANNSs and [GIS| in the context of spatial

analysis

In actual research are used in many contexts. In section 7?7, there is given
an overview of important applications and according references is given. In this
section actual applications in the context of spatial data and [GIS] are discussed.
In these studies, some special types of are used in the according situation
with different results. The reason for mentioning these studies at this point is
on the one hand to clarify the actuality of and the resulting necessity of
conducting research in this field in a theoretical and practical way. On the other

hand, I would like to point out that there are real situations for the application of

the [SPATTD] as a generalised concept.

In 1996 Zhou and Civco published an article ([Zho96]) in which they described one
of their studies. In this study they used sample data of their IDRIST ([idx])
and an exercise out of the instruction manual concerning the optimal location of
a light manufacturing plant. As the name of the article suggests, they used an
[ANN] with a genetic learning algorithm and compared the results with those from
conventional methods such as multi-criteria evaluation produced in this case. A
detailed description of this method is not given at this point, but for further details
the reader can refer to [Van77]. They pointed out, that there are certain problems
using the conventionell methods. There is the heterougenity of spatial data, the
required knowledge for the usage of these methods and the mostly complex user

interfaces.

In this study, they used different network configurations for the calculation of a
grade of suitability based on multi-dimensional information like slope or forest cov-

erage. Comparing the results with those from the conventional methods produced,
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they drew the conclusion that the are in this case more appropriate in deal-
ing with the inaccuracy of the data. In addition they mentioned that in their
opinion the user interface concerning the is less complex and less difficult
to use, because the main interaction of the user is the input of training data. As a
main result they pointed out that for them, the used are a real alternative

to the conventional methods.

Lee, Ryu, Won and Lee studied landslides in a corean area called Boun. In this
context they undertook a study where they used a special type of called
Backpropagation Networks . Their goal was to detect susceptible areas
in which landslides can occur, using several information sources such as aerial
photographs, data on the soil type, timber cover and land use. The results they
obtained where published in 2003 in [Lec03]. With the available data, they trained
the [BPN] and made a susceptibility map of the regarded area using the network
data in combination with a[GIS| To verify their results, they compared this map
with actual landslide occurrences. They used three different networks, each basing
on a different number of input factors such as slope, aspect and soil material,
and drew the conclusion that the network using eight factors is more suitable to
this case than the ones with fourteen or four factors. To determine which of the
fourteen factors were available to use, they used a certain algorithm described in
the article. As a main result they pointed out that the they used can be
applied for effectively producing a susceptibility map in the regarded area and for
gaining qualitative results.

For the usage of wireless communication especially in Wireless Local Area Net-
works (WLAN), the electromagnetic coverage is essential. In this context, Sen,
Giimiisay, Kavas and Bulucu completed a study in 2008 on indoor radio wave
propagation using a [GIS] database and a for interpolation. Therefore, they

used the electromagnetic field values of 1085 observation points and stored the data
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in the [GIS database. The applied [BPN] uses the three dimensional coordinates of
the observation points and calculates a number that represents the intensity of
the electromagnetic field. To verify the results they divided the data into 672
observation points for the training and 413 points for testing. In addition, they
undertook a comparison of the results produced by the BPN] and the results ob-
tained through a statistical interpolation method named kriging (for more details
refer e.g. to [Fah09], p. 331) and came to the conclusion, that both methods
produced suitable predictions, but the results of the kriging were more accurate.
However they drew the conclusion that the use of such a [BPN]is viable in this
context because of the underlaying learning algorithm, which allows an update of

the existing interpolation using new data easily.

This study is a good example to show the importance of a generalised description
of and has the ability to compare different models in a better way. A
generalisation of the [BPNlalgorithm is proposed in chapter [9 for extending its

capabilities.

3.1.3 General concepts of decision support systems

According to the introduction of [Tur(0], is nowadays becoming more and
more important, especially due to the possibility of providing access to databases
and web-based applications. In this subsection, basic information about [DSS)] is

provided based on [Tur00].

People have to make decisions every day. Thereby, in most cases there has to
be a choice among several alternatives with the aim of achieving possibly the best
results for the regarded problem. The term “best” in this context depends strongly
on the problem, the available alternatives and the aims and abilities of the decision

maker respective to the decision maker. Turban et alt. mention ([Tur00], p.41):
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Figure 3.2: Phases of decision making ([Tur00], p.50)

“each discipline has its own set of assumptions about reality and methods. Each
also contributes a unique, valid view of how people make decisions. Finally, there

is a lot of variation in what constitutes a successful decision in practice.”

The process of decision making can be classified according to Simon ([Sim77]) in
four phases: intelligence, design, choice and implementation. In figure [3.2] the deci-
sion making process is illustrated. The intelligent phase includes the identification
of the problem and the formulation of the aim or aims that should be achieved.
Furthermore, the availability and quality of data is analysed. In [Tur(Q0], p.54, it is

mentioned that the collection of data is one of the most difficult steps in analysis.

In the design phase, models are generated with look at possible alternatives. Ad-
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ditionally here, the principle of choice has to be selected to define criterions for the
evaluation of the model outcomes. At this point it should be decided what a model
has to accomplish and what restrictions can be accepted in the regarded context.
In the choice phase one or more of the found solutions are chosen. Thereby, a sen-
sitivity analysis to determine the robustness of the choices has to be performed.
Furthermore, a plan for implementation is made and realised in the next imple-
mentation phase. As illustrated in figure the outcomes of implementation are
used as logical reasons to adapt the decision and possibly reiterate some of the

described phases to improve the results.

Turban et alt. describe in [Tur00], p. 27 et seqq., that computerisation of the deci-
sion process can improve it. On p. 23 et seqq. and additionally on p. 72 et seqq.,
how the single phases can be supported by different technologies and computerized
algorithms is described and methods from the field of Artificial Intelligence (Al
are especially mentioned. This field is illustrated in figure [3.3] where three as-
pects are highlighted: experts systems, fuzzy logic and Artificial Neural Networks
among others relevant for the[EWARS] In the course of this thesis, the terms fuzzy
logic (section and Artificial Neural Networks (chapter 4] will be regarded in
more detail in the coherence of dealing with spatial data and particularly geocoded

mapping data. As mentioned in chapter [2] expert systems play an important role

in the [EWARS|

Figure |3.4] illustrates important key characteristics and capabilities of Decision
Support Systems. Dealing with semistructured and unstructured problems men-
tioned in this figure will be realised within the description of the EWARS] using
the advantages of Object Oriented Analysis described in chapter 5

Basing on [Tur(0], p.109 et seqq., the following subsystems of a are important:

(IDSSFS1) Data-management subsystem for storing and managing the relevant data.
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(IDSSFS2) Model management subsystem managing necessary models from relevant sci-
entific fields.

(IDSSFS3) User interface subsystem for managing the interaction with possible users.

(IDSSFS4) Knowledge-based management subsystem supporting other subsystems as a

repository of expert knowledge or acting as an independent component.

Coherences between these subsystems are illustrated in figure [3.5

Regarding the conception of the[EWARS| an important component of the (DSS-S1)
is the Geographical Information System GRASS and the basing database, where

geocoded information is stored and administrated. Thereby, the database-type is
not restricted to the specific GRASS-database, but there is the possibility of using
other interfaces e.g. to a MySQL- or PostgreSQL-database. The elements within
the (DSS}S2) inter alia will be integrated as scripts (e.g. written in PHP or Perl)
accessable by appropriate web-interfaces which belong to the 83). In section
of chapter |§|, a component of the S2) as a collection of Perl-scripts is
developed, which make use of the OpenSource softwares mazima and R interacting
with GRASS using the according web-interface. The expert knowledge within
the S4) will be implemented using methods from fuzzy theory. Thereby,
geocoded mapping information, which can be handled with the methods developed

in chapter [J] of this thesis is generated.

3.1.4 Decision support in current research

Decision support and the developement of decision support systems plays an im-
portant role in current research concerning industry regarding the field of data

warehousing and also the field of epidemics and medical informatics.

In this subsection, there are mentioned representative examples from both fields.
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As it is described in [Nem02], plays an important role in the context of data
warehousing within firms. The authors mention, that information is conventually
stored and provided by data warehouses, but that there also is a huge amount of
implicit knowledge that is not taken into account. So, they propose a so-called
knowledge warehouse, that “enhances retrieval and sharing knowledge across the

organisation.”

They deal with so-called knowledge management for retrieving explicit data basing
on impicit one. In this article, the regarded data is text data and the process of
knowledge management concerning this is described and proposed to be supported
by methods from the fields of IT and Al (a good overview of that field is illustrated
in figure .

The authors are regarding the following different phases of knowledge management:
Sharing tacit (implicit) knowledge, converting tacit knowledge to explicit knowl-
edge, converting explicit knowledge to new knowledge and learning new knowledge.
Thereby, methods from Al, especially ANNs (also see chapter [4f), are proposed to
be used more or less within a certain phase. Exemplarily, in the phase of con-
verting explicit knowledge into new knowledge, methods for data clustering are

mentioned whereby the Kohonen algorithm (also see chapter |4)) is one possibility.

As written down in the article, the main goal is to provide and/or propose an
“intelligent analysis platform” enhancing all phases of knowledge management.
In this proposition the inclusion of AI mathods should “amplify the cognitive
capabilities of the decision maker”. This knowledge warehouse is proposed there

as an extension of existing data warehouse systems like Warehouse 5.0 from SAP.

Yang et alt. published an interesting approach in [Yan(7]. There, they propose a
[DSS|concept basing on the GIS ArcGIS using the technologies COM or additionally
DCOM, ASP and ActiveX for the prevention of epidemic deseases. It is especially
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highlighted the fact of inadequate integration of epidemic models in Geographical
Information System on which is mainly focussed in that article. In figure [3.6] there
proposed system configuration is illsutrated. There, the approach of implementing
epidemic models as SIS/SIR models using the Component Object Model (COM)
technology developed by Microsoft, is visible.

In a study for improving vector control programmes in Madagascar, Rakotomanana
et alt. draw the conclusion, that “a geographical information system is a poten-

tially valuable tool for decision-making and optimising interventions” (see [Rak07]).

3.2 Integration of this thesis

In this thesis, a [SPATTB]is proposed and described. This will be a part of the
Spatial Decision Support System that is developed within the project
Research Group Learning and Neurosciences -Health & Logistics (see
chapter . An important tool in this context is the GRASS, that will be used
for the storage and the visual representation of the data. In common [GIS|software
like GRASS (J[GRAI0]), raster- and vector-data are managed and stored. With
vector-data, elements like boundaries, streets or cities can be represented, whereas
raster-data is used for describing continuous data such as the amount of pollutants
(x,y,p), the altitude (x,y,a) or the pH-value at any location (x,y) in the regarded
area (see [Lan07], p.45 et seqq.). But as described in chapter , the handling
of (x,y,f) as geocoded mapping information f: X — C at location (x,y) is
essential within the concept of the[EWARS]| In chapter[9]solutions for this problem
are developed and described. Therefore the approaches proposed and described
are innovative in this field and extend the ability of dealing with geocoded data
especially in the context of [GIStuseage. In section 0.2 an algorithm from the

field of Artificial Neural Networks, that is classically used for the approximation
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of functional relationships basing on discrete vector data, is extended to gain
the ability of handling mapping information. A possibility of gaining continuous
statements about geocoded mapping information within a certain geographical
area is described in section [9.3] Thereby, geometrical methods from the field of

Computer Aided Design described in section [8.3] of chapter [§] are used.

To gain the ability of classify mapping information in clusters, the classical Kohonen-
algorithm (see section 4.3)) is extended based on the propositions made in section
9.2l

There, methods from measure theory operating on mappings are used in a similar

way as when extending the approximation-algorithm as mentioned above.
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4 Artificial Neural Networks

4.1 Historical development

In this section a description of the historical development of the field of Artificial
Neural Networks is given. According to [Zel96], p.23, artificial neural networks
can be described as systems for processing information, which consist of a more

or less huge number of atomic units called neurons.

In general, there are two main motivations to examinate this field. Many models
are based on biological models of the information processing of a mammal’s brain.
So some scientists tried to gain new knowledge on biological neural networks by
regarding connected artificial neurons.

Another motivation is based on the fact that artificial neural networks can be re-
garded and treated as massively parallel systems which can be used as a special
kind of algorithms in different fields of science such as physics, informatics, bioin-

formatics and mathematics. This connection of different scientific fields with the

field of artificial neural networks is described in [Zel96], pp.23-24.

Zell mentions the ability of “learning” as a main feature of an which is
the main reason for the huge amount of possible applications. Some learning

algorithms will be part of the next section.

The following summary of the historical development of ANNs is based on the
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description in [Zel96], pp.28-33.

Neural networks are not only used from the perspective of mathematicians, many
scientific areas can use them for research in their respective fields. Thus the models
partially orientate themselves to the biological model, which is why biologists,
psychologists and doctors can use particulary similar models to better understand

biological neural networks.

Besides information scientists use neural networks as massively parallel algorithms
for carrying out many arithmetic steps at the same time. Physicists use them to
gain the ability to better describe complicated functional coherences of physical
models. In this possibility where neural networks are considered as functions,
mathematics is also interested. It is for this reason that it is even more exactly
entered in this thesis on neural networks. In addition, certain neural networks
are able to learn using training patterns and thus a special meaning comes into

consideration of suitable learning algorithms (compare [Zel96], p. 23-24).

The development of neural networks since 1943 will now be described. In this
year, the article “A Logical Calculus of the Ideas Immanent in Nervous Activity”
was published by McCulloch and Pitts in the journal Bulletin of Mathematical
Biology ([McC43]), which describes a model that is able to represent every limited
boolean function ([Pat00], p. 22). Some years later (1949) Hebb published a theory
where the connection of two nerve cells becomes stronger, if the synaptic activity

becomes bigger. This is called ”*Hebb’s learning rule”’.

To simulate the processing of sensory inputs, Rosenblatt developed a special form
of neural networks, so-called Perceptrons. He published his knowledge in 1958
([Rosh8]). The basic construction exists of a layer which takes up photo-sensory
inputs and passes them to a processing layer. Aside from this, different connections

of the nerve cells of the input layer exist with those of the processing layer. Over
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these connections, signals are passed on and compared by the respective nerve cells
of the processing layer to a threshold value. If the signal is big enough, 1 is passed
on to the so-called output layer, otherwise 0. Then, the nerve cells of the output

layer calculate the output of the whole neural network ([Pat00], S.23).

Moreover, Rosenblatt developed a learning algorithm for the Perceptron, which
allows the learning of certain outputs. The discoveries of this time enabled many
scientists to suppose that thereby the bases of self-learning systems were already

known.

Nevertheless, this acceptance was disproved in the book Perceptrons by Minsky
and Papert ([Min69]). They carried out an exact mathematical analysis of this
kind of neural networks and showed that they cannot solve many problems at all,
especially the so-called “XOR-problem”. The interest in the field of research of

the neural networks thereby decreased and many scientists turned to other areas.

However, some did not cease their research and thus compiled the base for many
models that were developed later. At this point, only some of them should be
named. The delta rule developed by Widrow and Hoff is a specialised case of
the Backpropagation Network-algorithm, which will be looked at in more detail

further below.

The mathematician Teuvo Kohonen published works about the so-called self-
organising maps which can adapt themselves by unsupervised learning indepen-
dently to different input patterns (compares [Zel96], p. 31). The different pos-
sibilities of the learning with neural networks are explained in [Zel96], p.93 et
seqq.

Rumelhart and Hinton made an important contribution to today’s interest in neu-
ral networks with the publication of the Backpropagation rule in 1986 ([RHWS&6]).

This was already discovered some years before (1974) by Werbos in his thesis

33



4 Artificial Neural Networks

([Wer'4]), but was not perceived until later by a broader public. By this algo-
rithm it was possible to also solve some of the problems which could not be solved

by the Perceptrons ([Pat00], p. 25).

Newer research deals with the recognition of patterns, for example Fukushima
and his colleagues developed the so-called Neokognitron which is able to process
handwritten texts. Another example is the ability of robots to orientate themselves

in the available space (compare [N.91], p. 6).

4.2 Fundamental mathematical modeling of
Artificial Neural Networks based on Biological

Neural Networks

In this section, the fundamental ideas and approaches of assigning the concepts

of Biological Neural Networks (BNNg) to [ANNg are presented. In this regard,

the term modeling plays a decisive role. Hence, in the first part of this section,

information about modeling in science is pointed out whereupon the application
to is regarded.

According to [Imb03], p.4-9, the term model is in close connection to the term
system. In ancient Greek, the word systema stands for integrated whole, which
means a combination of different elements and processes, that are naturally given
or human made. In this context, the system boundary is important but also are
the inner relations of the regarded system. The following quote illustrates this in

a significant way: “A system is more than its elements sum” ([Imb03], p.4).

Systems can be very simple but also very complex. An example in the context of

this thesis is the health system in rural areas, which contains complicated inner
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relations. Important in this section are Biological Neural Networks as part of the

human brain and the dealing with information within them.

To analyse systems, models can be used. In [TurQ0], p.47, it is said that: “Models
can represent systems or problems with various degrees of abstraction”. Imboden
and Koch ([Imb03], p.8) illustrate the relationship between a system and a model
with the association of glasses. A model is the glasses we use for regarding a
system. Obviously, there is not only one possible model for a certain system.
The construction of the model eachtime is related to the point of view or the
perspective of the creators and their meanings. So when modeling a health system,
a very rough point of view can consist in only considering the number of treated
persons. An even finer model would take the different layers of this system and

their relationship into account.

With regard to a Biological Neural Network (BNNJ), it is similar. A “simple”
model would for example only regard the input of information and the reaction
of the whole network. But if the inner computation of this network is taken into

account, the model would be more complex.

If mathematics are used to develop a model, one could name it a mathematical

model.

The stages of mathematical modeling are clearly arranged as illustrated by figure
E1l

For more information about mathematical modeling regarding applications in eco-

logics and economics, refer to [Son01] and [Kra97].

At this point, basic information about the biological information processing in
neurons and are described following a possibility of modeling some of these

coherences in terms of Artificial Neural Networks.

Biological neurons are used for gathering information, processing and trans-
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Figure 4.1: Modeling cycle ([Blu05])

porting it. An important part of each neuron is the so-called soma (cell body),
which contains the nucleus and is responsible for the cellular metabolism. From
the soma, the neurits starts. These are thin appendages and they are divided into
the two main categories of dendrites and axons. Dendrites are branched out.
Their task is it to get signals from other neurons and lead them to the soma. Af-

ter processing, signals are transported from the soma by the axons. The bundled
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Figure 4.2: Different occurrences of nerve cells ([G.99], S. 48)
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up axons which leave the central nervous system and move through the body are
called nerves (see [R.00], p. 133). Different types of neurons are shown in figure

and the most important parts of a single neuron can be found in figure 1.3

The equilibrium rest potential of the membrane denotes a voltage (70-90
mV) between the inner and the surface of the cell. This is a reason for an asym-
metrical ion distribution between both rooms. Ions are electrically loaded particles
which originate from the atoms that take up electrons or deliver them. Moreover,
the permeability of the membrane is differen for different kinds of ions. Aside
from this, the concentration of the K*-ions and the protein-ions is greater in the
inner than in the outer where the concentration of Na™- and Cl™-ions is greater.
This different ion distribution originates from the fact that an equilibrium appears
between the existing concentration slope and the counter-acting electric potential.
The rest potential is formed by the equilibria of the involved ions and the respec-

tive concentration gradients are maintained by the ion pumps. Nerve cells and
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other cells have the ability to bring on a so-called action potential ([R.00], p. 152).
This consists of a short depolarisation up to possibly 30 mV and the following re-
polarisation. Thereby, a posthyperpolarisation appears, before the rest potential
appears again. In addition, the passed on information is encoded by the frequency

and the unloading pattern.

For a nerve cell to pass on a stimulus, the nerve cell must be depolarised strongly
enough so that a threshold value is crossed and an action potential can be gener-
ated. With weak stimuli no action potential is brought on because the threshold
value is not crossed. Numerous Na™' canals on the body and the axon hill are
opened by the incoming action potential by which the conductivity of the mem-
brane is increased to Na™. Through this Na*t follows the concentration gradient
by which another depolarisation takes place and therefore increasingly Na™ canals
are opened. This is called the Hodgkin cycle. The whole process forms the be-
haviourdepolarisation phase of the action potential (see [H.96], p.132-160).

After the aperture of the Na™ canals, the K* canals are activated with a short
delay and at the same, time the Na™ canals are closed. This leads to the fact, that
KT flows out outwardly. Through this, the membrane potential becomes negative
again. One calls this process the repolarisation-phase of the action potential. The
activation of the K *-and the deactivation of the Na' canals continues for some
milli-seconds, then the Na™ canals return in an activatable and closed state, the
K™ canals shut but nevertheless do not become inactive. The control of the K-

and the Na™ canals is dependent on the actual voltage.

Often it still comes to a posthyperpolarisation by which for a short time no other
action potential can be brought on, because the Na™ canals are still inactive. This

is called an absolute refractory period.

An action potential is passed on within an axon as follows (see figure 4.4). Within
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the axon it comes to local currents beginning at the location where only just an
action potential appears. These are then passed outwardly and are led back by
the K+ canals. Through this a depolarisation appears in the neighbouring areas
of the membrane by which an action potential is also brought on. By the period
of absolute refractory it is prevented that an action potential can be passed on in

the opposite direction (compare [R.00], pp.134-170).

In the course of the evolution, the original axons without a mark which own no
boundary have developed themselves into myelinated fibres. These are surrounded
by the so-called myelin sheath which are separated by the nodes of Ranvier. This
development is important for the quick excitation forwarding in the vertebrates

brain.

Within the group of vertebrates a quick further pipe of the action potential is
possible with the myelinated axons. The myelin sheaths have a big ohmic resistor
by which the electrotonic propagation within an axon is improved. Therefore,
a depolarisation can only appear on the nodes of the Ranvier lying in between.

Through this, the so-called saltatoric conduction of impulses occurs.

Now after considering of the forwarding of information by a nerve cell, it should
be explained how this information is transferred between the nerve cells. It was
identified, that no direct connection exists between the axon of a nerve cell and
the dendrite or the cell membrane of another nerve cell, but that at this point
a small space exists. This crossing of two nerve cells is called chemical synapse
and consists of the membrane of the first nerve cell (presynaptic membrane), the
space itself (synaptic gap) and the membrane of the second nerve cell (postsynaptic
membrane). At this point, the electric signal passed on in the axon is converted
into a chemical one. This separation causes the transport of information to always
be directed. Based on [G.99], p.91 these synapses are additionally perceived to

undertake the task of learning and minding, because it has been identified that
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through frequent use a lighter forwarding of information takes place.

At the end of the axons there exists a so-called synaptic end, which covers numerous
vesicles with chemical carrier substances. If an action potential comes to this
point, then the amount of Ca?" increases in this area. This leads to the fact,
that the vesicles do melt with the presynaptic membrane and deliver the carrier
substances in the synaptic gap. These the reach the postsynaptic membrane, where
receptors are present. These are connection places to which fitting molecules can
attach themselves. If the carrier substances reach the receptors, this leads to a
change of the second nerve cell’s potential, and exciting and restraining synapses
are distinguished. A depolarisation (excitatory postsynaptic potential, EPSP)
occurs through exciting synapses by which an action potential can be released
in the second neuron. By restraining synapses, a hyperpolarisation (inhibitory
postsynaptic potential, IPSP) occurs, which complicates the release of an action
potential (compare [G.99], p.94-95). The charging of the different synapses is
shown in figure [4.5]

At the dendrites or the cell membrane of a nerve cell generally more than one
synapse exists. By the cooperation of exciting and restraining synapses, it is
decided whether an action potential is brought on, or not. Moreover, the size of
the action potential is dependent on this process. Through these mechanisms it
is possible that a complicated forwarding and processing of information can occur
through the boarding of many nerve cells. An example of this is the retina of the
eye which is shown in figure[d.6] At this point, information is taken up perpetually

over sensors and is processed over a nerve cell network.
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Figure 4.6: Nerve cell network of the human eye retina ([Sil09], p. 351)
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A possibility of modeling with respect to the biological coherences as used

by many authors is now described based on [Zel96].

As with the biological model, the atomic units of should also be called nerve

cells or neurons. Some authors use the terms cells or processing element.

These nerve cells have to take up information, process it and then pass it on.
Because of this fact, a necessarity for input elements which have the same function
as the dendrites exists. These elements connect the nerve cell with other cells and
take up information. It is important that these connections are directed and that
the nerve cell can only take up information from the entrances . These entrances

should be illustrated by lines.

The nerve cell calculates from the entrances value which is passed on by a di-
rected connection to other nerve cells, it can be connected with a finite number
of other nerve cells. The biological nerve cells are connected with each other by
the synapses. With the forwarding of information single nerve cells can work
by restraining or exciting others. This process which is steered in the biological
model through the amount of chemical transmitters and the size of the respective
synapse is realised in the mathematical model with weights assigned to the suitable

connections.

Figure|4.7|illustrates the coherence of input, processing and output. This processing
is looked at in more detail in the following. According to [Zel96], p.72 et seqq.,
three different mappings classically used, a propagation-mapping, an activation-
mapping and an output-mapping. Often one of the last two mappings is the identic
mapping, but for some applications the flexibility of having two different mappings
is necessary. Regarding an nerve cell N; with I inputs, I € N, the following

definitions can be given.
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Input

Processing

Output

Figure 4.7: Input, processing and output in general

net: RIxRI — R
(0;,W;) = net (0, W)

with
net (05, W;) (s) = D _o0;(s) - wy (s) (4.1)

Thereby O; represents a vector of input information with / components also-called
the input-vector. W; contains the particular weights of the connections and is called
the weight-vector. The s € Ny represents the actual step of iteration, which is
necessary to enable the distinguishment of the different steps. In the following this
should be omitted to gain a clear arrangement. For a shorter notation of the value

of the propagation-mapping, the following is used in the context of neuron V;:

net;(s) = 3 o;(s) - wy (s) (4.2)
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The following definition of the activation-mapping is given:

fact: R — R
T = fact(x)

with

Jact (net; (s)) = a; (s) (4.3)

Thereby, the codomain can often be restricted to a finite interval. The output-

mapping is defined in a similar way:

fowr: R — R
x = fout(x)

with

Jout (a; (s)) = 0;(s) (4.4)
According to [Kra91], pp.24 - 25, the generated state of activation can be classified
in the following way:
1. Discrete state of activation
e binary: {0,1}, {—1,1}
e non-binary: {—1,0,1}, {—100,...,100}
2. Continuous state of activation
e infinite: R

e finite intervals: [0, 1], [-1, 1]
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The following four mappings in oarticular should be mentioned at this point:

factl: ]R E— R
0 forxz < 0;

1 forxz > 0;

r = fact1 (IL‘) =

fact, 0 R — R
-1 for z < —0,5 -7
T o fauy () =4 sin(z) for —0,5-7 <z <05 -7

1 for x > 0,5 -«

facts: R — R

T fau, (T) = tanh (x) = gflg;

x

fact4: R E— R

T o fau, (T) = H%
The coherences of the different mappings within an artificial nerve cell are illus-
trated in figure [4.8]
Alltogether, the processing of information of a nerve cell consists of the network
input, the state of activation and the output. Such a nerve cell is only one small
elementary component of a neural network. By the description of [ANNg different
topologies can be used according to the use. Here the term topology means the

connectivity structure of the nerve cells.

can be described with respect to the connectivity structure and the relation-

ships between the single neurons using terms and coherences from graph theory.

At this point, some basic coherences of graph theory are described and then these

methods are applied to the Artificial Neural Networks.
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Figure 4.8: Coherence of the propagation-, activation- and output-mapping
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Based on [Bal00], pp. 2-3, a graph can be defined and characterised in the follow-

ing way:

Definition 4.2.1 (Graph)

A graph is an ordered triple G = (V(G),E(G),Ig), where V (G) is a no-
nempty set, E(G) is a set disjoint from V (G), and Ig is an incidence map
that associates with each element of E (G), an unordered pair of elements (same
or distinct) of V (G). Elements of V (G) are called the vertices (or nodes or
points) of G, and elements of E (G) are called the edges (or lines) of G. If, for
the edge e of G, I (e) = {u,v} is valid, the notation I (e) = uv is used.

Definition 4.2.2 (Characterisation of a graph)

In this definition, some characteristic terms describing a graph are listed.

(1) End or End vertex: If I5(e) = wv, then the vertices u and v are called

end vertices of the edge e.

(2) Incidence: If u and v are the end vertices of the edge e, they are denoted

as tncident with e.

(3) Parallelism: If a set of two or more edges have the same ends, these edges

are called multiple or parallel edges.
(4) Adjacency:

o A pair of vertices u and v is called adjacent in G, if, and only if, there

1s an edge in G with u and v as its ends.

o A pair of distinct edges e and f is called adjacent in G, if, and only

if, there exists a common end vertex.
(5) Loop: An edge e is called loop, if I (e) = wu.

(6) Simple graph: A graph is called simple, if there are no loops and multiple
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edges.

According to [Bal00], p. 3, a graph can be represented by a digram, where, the
vertices are drawn as points and the edges as connections joining the vertices. This

representation allows a visualised overview of the described issue using a graph.

Definition 4.2.3 (Finiteness, order and size of a graph)
If both, V (G) and E (G) are finite, a graph is called finite graph. A graph, that

1s not finite is called an infinite graph.

The number o(G) of vertices of a graph is called the order of this graph, the
number s (G) of edges is called the size of this graph.

A special form of graphs are the so-called digraphs (see [NieQ5], p.24). where for
every edge a direction is set. In addition, the possibility to assign a number, the
so-called weight to every edge exists. Such graphs are then called directed weighted
graphs. This kind of graphs play an important role for describing [BPNg|

To maintain the overview about the connecting structure with regard to even more
complicated graphs, the existing connections can be represented in a scheme called
adjacency matrix (compare [NieO5], p.7). If no weights exist, a 1 is put down for
every available connection, otherwise a 0. Here, every column represents a vertex
and the connection to other vertices is represented by the particular rows. If the
edges are weighted, the suitable weights are put down, instead. With directed
graphs the connection is put down only for the vertex from which the edge starts.

A graph and the suitable adjacency matrix are shown in figure [4.9]

As already described neural networks consisting of single neurons are characterised
by a network input, an activation function and an output function. The whole
data processing of a neural network can be adapted by different arrangements and

different kinds of connections. Further, the nerve cells are summarised within most
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Figure 4.9: Directed weigthened graph and according adjacency matrix

models to so-called layers. The first of the layers is often called the input layer
and the last one the output layer. All other layers which are localised between

them are the so-called hidden layers. Common topologies are illustrated in figure

4. 101

Adaptivity of an Artificial Neural Network to a given situation can be realised
by learning procedures to a certain grade. In this respect, three main models
have been developed, the supervised learning, the encouraging learning and the
unsupervised learning (compare [Pat00], p.42). Besides, the nerve cells of the input
layer receive an input. The totality of these inputs which appear together is called

the input pattern.

Supervised learning: With this form of learning a suitable expected output pat-
tern exists for each of the used input patterns. One would like to reach the
point where the neural network adapts itself during the learning process in
such a way that one possibly receives the suitable output pattern or approx-
imately this pattern. Here, a teacher who gives the input patterns and the

expected output patterns to the neural network is necessary. Then from
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L

d) indirect

f) completely connected
(without direct feedback) (without direct feedback)

e) lateral feedback

Figure 4.10: Network topologies ([Zel96], p. 79, modified)
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the input patterns the generated outputs are compared to the expected out-
puts. This comparison can be realised by an error-function which calculates
the difference between the expected ones and the preserved outputs. Such

functions will be looked at further.

If the difference has been calculated, this is the used with the regarded

learning procedure to adapt the components of the neural network.

A realisation of this learning-type is the so-called Backpropagation rule which

is explained in more detail in the following section.

Encouraging learning: The encouraging learning is characterised by the fact that
the neural network does not know the expected issue pattern. The teacher
gives only instructions, while the weights of the components which have

calculated a good issue become bigger, the others smaller.

Unsupervised learning: With this form of learning, the neural network does not
know the expected issue pattern and there is also no teacher. The learning
process now consists because of the fact that the neural network adapts its
components to the input patterns and their structure. A learning proce-
dure from this group is the so-called Kohonen algorithm (see further below).
Further, with every step of the iteration the weights of the nerve cell which
has the biggest state of activation in terms of the actual input pattern are

adapted following a certain rule.

4.3 Description of the relevant models for this thesis

In literature, a huge amount of [ANN}models are described and there are many
possibilities for classification. At this point, a possible hierarchical structure con-

cerning the basing topology and processing algorithm is discussed. A concise
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overview at this structure is provided in figure This structure is only a pro-
posal and theoretically, the layers shown in figure can be arranged in another

way.

ToproLoGy

ACTIVATION

LEARNING
STRATEGY

Figure 4.11: Hierarchical structures of[ANNg Abbreviations: syn: synchronous
activation, asyn: asynchronous activation, sl: supervised learning,

ul: unsupervised learning, rl: reinforced learning

Based on [Zel96], pp.71-96, there are pointed out three main hierarchical layers
concerning[ANNg|are pointed out, the network topology, the way of activation

and the used learning strategy.

The network topology can be classified into feed-forward-networks and feedback-
networks.

There are two main application fields of approximation and classifica-
tion. In this section the ANN}lmodels that are directly associated with this thesis
are looked at. The so-called Backpropagation Networks are representatives of ap-
proximating networks. These networks are regarded and extended in the context

of mathematical measure-theory in chapter [J] to describe their characteristics in
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the face of usage and applicability in the SPATTB|

The second model are the so-called Kohonen Networks , which can be used
for classification. For this model an explicit application that has been programmed
as a prototype by the author in the context of the EWARS]is described and further
addressed in chapter [9]

The classification of these two network types with respect to the hierarchical struc-

ture described in section [4.2]is shown in figure [£.12]

ToroLoGy FEEDBACK

ACTIVATION Syn AsYN

LEARNING
STRATEGY

E.G.

UL RL| |SL [UL |[RL SL UL [RL

Figure 4.12: Classification of the and the in the regarded hierarchical

structure

4.3.1 Backpropagation Networks

Backpropagation Network are multi-layer feed-forward-networks connected by layer
and trained with the Backpropagation-algorithm. This algorithm should be de-
scribed in the following. The aim of the training is to get a network representing

pairs of input-vectors and desired output-vectors using the according de facto
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output-vectors. Thereby, a decreasing of the generated error is aspired.

The idea of the Backpropagation Network-algorithm has been published in the
dissertation of Paul Werbos in 1974 ([Wer74]) the first time, but it only attracted
interest with the publication of Rumelhart et alt. in the journal Nature ([RHWS&6].
For describing the processing within this kind of networks, the number of so-called
trainable layers is called n € N. Thereby, the regarded network has n + 1 layers,
whose connections can be represented by n adjacency matrices, if the network is
regarded as directed weigthened graph. Such a network is illustrated in figure [£.13]
The usage of adjacency matrices leads to a more clearer representation. Addi-
tionally, the calculation of the output of the whole network can be managed more
easier. In figure [4.14] the first adjacency matrix of a Multi-layer feed-forward-
network is illustrated. There, the number of the layer is realised by su-
perscription. The according adjacency matrices should then be denoted as weight

matrices.

In general, weight matrices should be denoted in this thesis in the following way:

Wi (s)

Thereby, 7 is the position of the first layer, 141 th one of the second layer counting
in terms of figure [£.13]

In the example shown in figure 4.14] r represents the number of neurons in the

first layer, s the one in the second layer. The following s x r -matrix is generated

WNINE WNPNZ e WNLN?

WniN2 WNENz --- WNENZ
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Input layer Output layer

Hidden layers

Figure 4.13: Multi-layer feed-forward-network

o7



N?

3

Figure 4.14: Adjacency scheme for generating the first weight matrix
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Regarding the input-vector o, the following value of propagation can be calcu-

lated:

WNpNp WnpNp oo wnpn: | O
WLQOLI =
WniNg WNj Nz WNENZ ON}
ONllell’N% + ON21wN21,N12 + ...+ ON,}wN?},N%
ONjWNI N2 + ONJWNL N2 + -+ ONIWNL N2
.
2 ONJWNLN?
=1
'
Z ONileilng
=1
netle
net yz

For calculating the output of the n + 1 different layers, the following mapping
Fpitie{l,... n} is defined:

F;ngLl R™i+1 — R™i+1

T T fact (xl)

] : —
Fact . -

xm;Jrl xm;+1 fact (xm;ﬂrl)

and
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Fonﬁ*l : R™i41 — R™im
T x1 Jout (CL‘ 1 )
. - Fgut = .
Ly Lms g fout (xmﬂ—l)

Here, m;_ , represents the number of neurons in layer i + 1.

Finally,

Miyr . ™Mt miiq
Fges T Fout © Fact
is defined with:
i1 ms ms
Foes™ R™i+1 — R™it
T T xy
. : . i it
Fges . - Fout Fact
:Um§+1 xm§+1 xm%ﬂ

After describing the calculation of the output of a[MLEFFN| there should be given

a description of calculating output errors with regard to the [BPNFalgorithm.

Because these networks should be used for the approximation of more or less
complicated unknown functions, the coherence between actual output and desired
output has to be regarded. Besides, the input lies in the domain of the unknown
mapping and the output in the codomain. Such a network exactly then has an
optimum compound of the weights, when it calculates the desired output fitting
to the according input. Nevertheless, this will not be generally the case. Even
more it is necessary to use procedures which approximate this state as good as

possible. Thereby, the network is enabled to approximately learn the function.
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The possibilities which components can be changed with such a learning process
were already described. Besides, with the learning procedure basing on the [BPN}
algorithm, the topology of the network will maintain. The learning consists in the
fact that the weights of the connections change with every learning step and the

neural network adapts in this way.

So that one can apply such a procedure, it is necessary to know whether and
how the preserved outputs deviate from the expected ones. Then this difference
between preserved and expected output is the mistake which the neural network
makes with the image of the suitable input. How this mistake can be calculated,

is further described in this segment.

If one liked to represent a functional coherence with a neural network, one knows
only an finite amount of inputs and their images, the expected outputs. One
can summarise this into a set of tuples with two components in each case. The
first component is the input and the second one the suitable output. This set is
often divided into a so-called training set and a testing-set. Then, the training is
done with the training-set and after that, the adapted network is tested with the

testing-set.

The following assumptions are made:

P is the number of trainings-patterns.

t? is the desired output-vector of pattern P.

of’ is the actual output-vector according to the input-vector o', P € {1, e ,p}.

The training-set 7' is then the following:

T o= {(oht"),.... (o 1") }

With this, the following error-mapping F is defined:
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E: R™ x R™Mn+1 — R

Abbreviative, Ep is used instead of F (tP ,of )

If one liked to receive, nevertheless, an information about the whole amount in
training patterns, it is necessary to summarise the respective errors with another
mapping. An easy possibility consists in forming the sum from the calculated

values.

(1 - o§?>2 (4.6)

The Backpropagation Network-algorithm is used to minimise the error in the con-
text of feed forward networks with an set of training patterns. Besides, a gradient-

descent procedure is applied.

Thereby, the function E is regarded as a function of the weights of the respective
neural network. At last, these weights are the parameters in a neural network

which form the basis for the calculation of the respective outputs.

To minimise the originating error between expected output and preserved output,
the weights must be changed accordingly. Besides, one receives from the number

of these weights the dimension of the domain. The dimension of the codomain is

62



4 Artificial Neural Networks

one. The whole number of the weights should be denoted as n,p0.. With this, the

mapping E can be described in the following way:

E : Rnwhole - R
wy w1
H E
wnwhole wnwhole

Besides, the weight w; describes the first weight of the neural network. The vector
which summarizes all weights is called weight vector. The remaining components
of the weight vector consists of the remaining weights which are arranged in order

by the input layer up to the output layer.

With the calculation of Ep, the respective weights play a big role, because with

other weights one becomes generally also another error for the tuple (tP ,o” )

Regarding MLFFN] differentiability of the mapping E is necessary because of the
applied gradient-descent processing. This differentiability is given using differen-
tiable component mappings. According to [Zel96]), therefore often the activating
mapping is the identity and the output-mapping is a sigmoid mapping, exemplarily
the logistic mapping defined in [4.2]

The error should be minimised by the fact that the gradient from the partial
derivatives is calculated with respect to the weights of the neural network. With
two-layer networks there is only one layer of trainable weights which are used for
processing the network output directly. If more than one layer of weights exists,
one receives for every hidden layer an output. Then from the output of the last of
these layers and the last weight matrix, the output of the whole neural network is
calculated. Hence, the partial derivatives can be calculated only for the weights in

the last weight matrix directely. The other partial derivatives have to be calculated
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Figure 4.15: Situation within a [BPN]

using the already calculated partial derivatives of the following layer.

So, the calculation can be described in the following way:
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Figure 4.16: Weight within the last but one trainable layer
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Using the variables (5]1.2 ,, the o marks, that the regarded weight w;; belongs to the

last weight matrix. B means that the Backpropagation rule is applied.

If one looks, nevertheless, at a weight w;: with which the nerve cell ¢ and the nerve
cell j are in two hidden layers following on each other, then the partial derivatives

cannot be calculated directly.

If one considers j as a nerve cell of the last hidden layer, this is connected with
all nerve cells of the output layer. By a change of the weight w;; the outputs
of the nerve cells of the output layer change accordingly. The calculation of the

particular partial derivatives can be done in the following way:
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Within the variable 5;»2 ;, h marks, that the weight w;; belongs to a connection of

two neurons lying in two neighbouring hidden layers.

The ¢ - components of the weights between the hidden layers should be defined in

general and not only for the layers n — 1 and n by the following:

5;; = Z (5,wajk) f;ut (netf)

k
Using the Backpropagation Network-rule, the particular partial derivations of the
error-mapping with respect to the single weights can be calculated. With them,
the according gradient-vector can be constructed. In the following, some coher-
ences of minimization methods and especially the algorithm of gradient-descent
are described. The term extremum of a mapping with n-dimensional domain and

one-dimensional codomain can be defined as follows (see [Neu93|, p.163).
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Definition 4.3.1
Let

F U — R
T a1
—) F

Ty T

an arbitrary mapping with U C R™.  Furthermore, let x,xq € U be arbitrarily

chosen.

Then, the mapping has

1. a locale maximum in xq, if the following is valid:

3 Be(zg) C U, with

e>0

4 : F(x) < F(x0)

z € Be(zo)
2. a locale minimum in xq, if the following is valid:

3 : Bc(zo) C U, with

e>0

v . F(xz) > F (x0)

2 € Be(zo)
If thereby < or > are valid, there exists a strict locale mazimum or minimum in

the regarded point.

Clearly regarded, every partial derivation is equal to zero at a maximum or mini-
mum. This coherence is described in the following theorem.

Theorem 4.3.1

Let U C R™ be an open subset and F': U — R partial differentiable. If this

mapping then has a local mazimum or minimum in xo € U the following is valid:

aggo) = 0 forie{l,...,n}, also gradF (xy) = 0.
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Thereby one receives a necessary condition for the existence of a local maximum
or minimum. However, this is insufficient, because the gradient can becomes zero

also at other places on which is entered in the other course.

At this point procedures should be explained by which it is possible to move bit by

bit in the direction of the negative gradient and to reach thus to a local minimum.

The mappings used in this section should be differentiable at least one time at the

regarded element of the domain.

Following [C.99], p. 1 one understands by an unrestringieated minimization prob-

lem the task to get a point x;; € U for which is valid:

VeeU: F(xy) < F(2)

In general one can distinguish in numerical mathematics direct searching proce-
dures or searching procedures which use locale information about the gradient.

Besides, the second group shows a better convergence and reaches in many cases

to a local minimum (compare [P.93], p. 91).

Methods from the group of the direct searching procedures are applied according to
[A.00], p.316 on the not differentiateable functions or on such whose differentiation
is complicated. Moreover, it is possible to receive by this one start value for

applying methods from the second group.

These consists in methods, where starting from a point xy € U a direction of
decreasing values of mapping is followed. Thereby, a sequence (z}), is generated

basing on the following iteration:

Tpr1 = T+ Mdy (4.9)

M, describes the so-called step range, d; the used direction. Thereby, at every step
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the size of the step is set starting in xy.

With the use of this procedure with respect to the described minimization problem
it is desirable, that the result converges to a value x;; € U. Nevertheless, in many

uses it is also enough if a local minimum is reached.
First the step width and the direction should be regarded closer.

So that a suitable direction can be identified, it is necessary to define this in general
([C.99], p. 25):

Definition 4.3.2

Let F: U — R and xp € U. Then the following is a necessary condition for

having an adequate direction dy starting from xy:

E|7];€\V/T]k S (0,77;6] : F($k+77kdk) < F(Z‘k)

The so-called Armijo-rule for calculating the actual step width is defined in the
following (compare [C.99], p.36)

Definition 4.3.3

Let F: U — R be continuously differentiable. Further, let o, € (0,1) be
fized for any step of iteration. Then for xy,dy, € U with gradF (zy)dy < 0 there
has to be found a np = max {ﬁl |1=0,1,2,.. } to guarantee the validity of the
following:

F(xp +medy) < F(xg)+ onggradF (zy) dy (4.10)

The Armijo-rule consists in checking this unequation successively for the ' and in
choosing the value with which it is valid for the first time. This value shows the

mazximum of all possible step widths valid for this unequation, because of 5 € (0.1).
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To be able to apply the Armijo-rule, it is necessary, that it is well-defined.This is
guaranteed by the following coherence:

Theorem 4.3.2

Let F: U — R be continuously differentiable and o, € (0,1) fized. Then, for
T, dp € U with gradF (xy)d, < 0 there exist a finite | € N with

F (:ck + ﬁ,lgdk) < F(xp) + ofLgradF (x) dy

Proof. Suppositionally, for any [ € N the following would be valid:

F (xk + ﬁ,lcdk) > F(xp) + oBLgradF (z) dy

Then, this follows:

F (21 + Bidi) = F (1)
e

> ogradF (xy) dy

With this, the following is valid:

fim el > lliglo ogradF (xy) dy

& gradF (xg)dy > ogradF (xy)dy
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This is true, because 8 € (0,1) and thereby ! is converging to zero.

With ¢ € (0,1), the following can be derived

= gradF (zg)dp > 0

This is a contradiction to the prerequisites and so, the Armijo-rule is well-defined.
O

After the concept of the direction was defined and a procedure was introduced to
the regulation of a suitable step width, it should be looked at this point on the
algorithm by which the respective steps of iteration can be calculated (compare to
[C.99], p.26).
Algorithm 4.3.1 (Directed minimization)

(DM1) A xy € U is chosen and k = 0 is set.

(DM2) If xy suffices to a suitable criteria of stopping, the algorithm stops.
(DM3) A suitable direction dy is chosen.
(DM}) A suitable step width ny, is calculated.

(DMS5) The step of iteration xp11 = xp + Ndy is done, k = k + 1 is set and it is

gone to step 2.

At this point it should be made clear, that the behaviour of this algorithm and the
result generated with its substantially depend on how the direction and the step
width have been chosen. Though by the choice of the direction it is guaranteed,
that one moves to decreasing functional values there, but the whole consideration
rests only on local information. If one looks, for example, at a direction which

lies near with the gradient in the particular point or which is the gradient, then
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it can be that one moves towards a local minimum. However, besides there are
even other areas like saddle surfaces or maxima in which the gradient becomes
smaller. With available saddle surfaces one can imagine that the tangents of
single partial functions become horizontal in a whole area. Then the procedure
will move further in the direction which is given by the course of the other partial
functions. If one is in the area around a maximum, the algorithm “moves” in the
direction of decreasing functional values from there. Nevertheless, an interesting
aspect is if one uses by chance as a start value a point whose gradient is already
equal to zero. Besides, one cannot suppose immediately that it concerns a local
minimum in request. A possibility at this point in which the algorithm is finished
to get on, is to consider itself the functional values in certain environments around

the suitable point.

This can appear not only with the definition of the start value, but also otherwise.
Besides, the choice of the step width plays an important role. With the Armijo-
rule described on top it can appear that one reaches to himself with the calculated
value to a point whose gradient is equal to zero which explains, however, for
example, a local maximum. The step width is so calculated by this procedure
that moves to a smaller functional value in the regarded direction and the biggest
possible step width is chosen in a certain area. However, this does not mean that
closer to the starting point a good minimum exist which is jumped over then. An
other possibility consists in the fact that one reaches though to a local minimum,
however, it would be possible with a bigger step width to find a better one. Some

of the possible problems of this method are illustrate in figure [£.17]

Thereby it should be made clear that the described procedure can only use local

information and, therefore, one can make only statements about a certain area.

This general procedure should be more exactly looked in the next segment by the

definition of a certain direction given by the negative gradient vector in a certain
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locale minimum flat plateau

global minimum global minimum

Wij Wi

i

locale minimum locale minimum

global minimum .
global minimum

Wij Wij

Figure 4.17: Problems of the directed minimization ([Zel96], p. 113, modified)
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point.

Algorithm 4.3.2 (Gradient descent algorithm)
(GD1) A starting point xog € U is chosen, 0,3 € (0,1), € > 0 and k := 0 are set.

(GD2) If ||gradF (zg)|| < €, then the algorithm stops.
(GD3) dy, = —gradF (z) is chosen.
(GD4) The step width ny is calculated using the Armijo-rule.

(GD5) The step of iteration w41 = oy + nrdy is done, k = k+ 1 set and gone to
step 2.

A sequence (xy), originates from the described algorithm. According to [C.99),
p-69, to this procedure a convergence result is described which shows, that if there
exist an accumulation point of this sequence, the gradient is of value zero at this

point.

Applying on the partial derivations calculated by the Backpropagation Network-
algorithm, the iterations for the particular weight matrices can be described in the

following way:

0Ep (W (k))
Owy

gradEp (W (k)) = : (4.11)

OEp(W(k))

8w"whole

Using the gradient descent algorithm, it follows:

W(k+1) = W(k)+n - (—gradEp (W (k))) (4.12)
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With these nets two equations are distinguished, one for a weight in the last
connecting layer and one for a weight in another layer. Besides, the consideration

occurs in this order. One receives

e for a weight from the last connecting layer

wij (s +1) = wi;(s) +m - (= (_6£Bof)>

= wi; (s) + M <_ <_ (t;'g - Of) f;wf (netf) 0’P>)

wi; (s) + Mk - (tf — Of) f(;ut (netf) of
e for a weight in another layer

Wi (S + 1) = Wiy (8) + N (_ (_5P OP))

JB %
= w;; (s)+

<_ ; (5,wajk) Fout ("6t5)>)
i) I,

fout (netf)

wij (s)+me - Y (o

This calculation can be written down more clearly using matrices.

e (Calculation for the last weight matrix
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Wiia(s+1) = Wiy (s)+me - (= (Gi—14(5)))

P P
—61a301 51a30mn
= Wi (s)+me - | —
<P <P
7”llaB01 e mlaBOmn

e Calculation for the last weight matrix

Wi (s+1) = Wiz () +m - (= (Giza (9)))

P P
51301 .« .. 51B0m2
VVLZH (8)+m - | —
P P
5m2+1 Lo1 - 5m2+1 L, Om;

In the historical development of analysing feed-forward-networks and especially
[BPNg| there was developed a statement of existence concerning the representation
of mappings with certain properties by networks with certain characteristics. This
result is related to the 13. problem of Hilbert postulated in [Hil00] and the solution

given by Kolmogorov and Lorentz (see [Kol57] and [Lor86] for more details).

There, it was proofed, that an arbitrary multidimensional mapping F: K — R™
with a compact domain K C R" can exactly be described by a superposition and

composition of onedimensional mappings f: R — R .

Hecht-Nielsen used this in [Hec87] to proof, that there exists a feed-forward-network

with three layers, which describes a continuous mapping F: K — R™ with
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a compact domain K C R™ approximately with a certain error using onedimen-
sional mappings of sigmoidal type. In [Hec92|, he even showed, that this is valid
for any Ly-mapping F: [0,1]" — R™.

4.3.2 Self Organising Maps and Kohonen Networks

The concept of Self Organizing Maps or Kohonen Maps has been developed by
Teuvo Kohonen in 1982 [Koh82]. The basic idea is to get a representation of a
given input domain by using a neuron layer of a certain dimension, the so-called
Kohonen layer. From the used input domain the network gets certain inputs
and by using the Kohonen algorithm, the input domain is clustered into disjunct
areas. Every neuron of the Kohonen layer is then responsible for a certain of this

clustering areas.

The topology of the original Kohonen Network consists of two layers, an input
layer and the mentioned Kohonen layer. In this Kohonen layer, the neurons are
connected in a certain way, but these connections are only topological ones, there

are no signals transported on them.

The dimension of the input layer depends on the dimension of the regarded input
domain. The input neurons are connected to every neoron of the Kohonen layer
with weigthened connections. Let the dimension of the input domain be n, then
there are n input vectors and n weigthened connections lead to every neuron of
the Kohonen layer (They are called Kohonen neurons from now on). These are
summarized to the so-called codebook vector of each Kohonen neuron. In this

case, an element of the input domain with n components can be presented to the

ANN.

In figure [4.18| there is shown a SOM with an two dimensional input domain and

a two dimensional square Kohonen layer of dimension 3 x 3.
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Kohonen Layer

Input Layer

Figure 4.18: Exemplary SOM with two dimensional input ad a square Kohonen

layer

While proceeding the Kohonen algorithm, stochastic input vectors are presented to
the SOM and the codebook vectors are changed using similarities to these input
vectors. Through this progress, the codebook vectors are moving in the input

domain and so cluster it step by step.

The time, the ANN takes to reach an adequate level of representation depends
on different parameters explainend lateron. According to them, there can also be

some problems like a knotting of the codebook vectors.

The single steps of the Kohonen Algorithm developed by Teuvo Kohonen is well
described in [Roj96],pp.391-399, on which the following description is related but

written down in a precise mathematical way.

Definition 4.3.4 (Characteristics of the Kohonen Networks)

The Kohonen algorithm uses the following parameters and functions:
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Neighbourhood function ¢

¢: RfxNy — [0,1]
(n,t)  — ¢(nt)

where n € Ry represents the so-called topological distance and t the actual

iteration step.

Alternatively, ¢ can be described as a function depending on a certain neigh-
bourhood radius r € R instead of t, what according to [Zel90], pp.182, can

be better used for implementations.

Learning function n

n: No — [0,1]
t) — n()

where t represents the actual iteration step.

Furthermore, there are an input layer with a dimension n depending on the regarded

mput domain and a Kohonen layer of a certain topology containing m mneurons

existing.

The neurons of the Kohonen layer are numbered and named as Ny, i € {1,...,m},

so that each one can be identified in a unique way. According to this, the n -

dimensional codebook vector of each neuron is named as w; € R", i € {1,...,m}.

Algorithm 4.3.3 (Kohonen algorithm)

The following steps describe the general algorithm using a given SOM.

The start step would be a stochastical choose of the m weight or codebook vectors

following a certain algorithm.

Then, the following steps are used within each iteration t:
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1. Stochastical choose of an input vector e; following a certain algorithm de-

pending on the iteration step t.

2. Compution of the codebook neuron wy with minimal distance to the given

mput vector.

3. Changing of the weights using the following rule:

w; (t+1) == w; (t) +n(t) - ¢ (nig,t) - (ex — w; (t)),i € {1,...,m} (4.13)

where n; . is the topological distance of the codebook vectors w; and wy.

The minimal distance mentioned in step two can be mathematically described and

computed by the term metric defined as a real-valued function ¢: R — R
in chapter

Using this term, the codebook neuron £ with minimal distance to the given input

vector e; at iteration step t can be identified as:

d(wg, e;) = je?ili{lm} d(w;, e;) (4.14)

When this so-called “winner neuron” is known, the codebook vectors are updated
following equation [4.13] By this, the single codebook vectors are moved a certain
step in the direction of the regarded input vector depending on the topological
relation to the winner neuron. Because of this, the distance to the input neuron
is only important to get the winner neuron, the update of the codebook vectors
depends on the topological structure of the Kohonen layer and so this topology is

preserved while mapping the input domain. .The topological neighbourhood can
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be defined in different way, the so-called “block party distance” is often used and

is calculated as shown in figure (refer to [Hec90], p.140).

Figure 4.19: Kohonen Layer with block party distance

With all these parameters, the update rule[d.13|can be applied. The neighbourhood
function ¢ can also be very different, a popular choice is a so-called gauss function
which can be defined as follows according to [Zel96], p. 182:
Goauss . RE xRY — RY
(nd)  — g (n,d) = e~ (3)
where n is the topological distance and d is the neighbourhood radius. In figure
[4.20] the graph of this function is shown on the top. On the bottom, there is shown
a graph, that illustrates the situation of neighbourhood with the neighbourhood

radius 3 of a neuron at the point (0,0).

As an example, there is a given two dimensional discrete input domain. The used
Kohonen layer is two dimensional with the dimension 10 x 10. The figure

shows the development of the codebook vectors after certain iteration steps using
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08

06

04

02

Figure 4.20: A Graph of the function ¢yqyss, B Illustration of the neighbourhood

situation with radius 3

the java applet DemoGNG on [Loo].
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Figure 4.21: Representation process of a discrete input domain: A input data,
B initial codebook vectors, C 10 iterations, D 30 iterations, E 100

iterations, F 30000 iterations
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5 Principles of object-oriented

analysis

When regarding a complex system like the environment or a certain health sys-
tem in cases of modeling, it is necessary to concentrate on a reasonable collection
of important system components using developed and/or existing methods. One
possible perspective is the concept of Object Orientation , which is appli-
cable in many contexts. The advantage of using this method is a quality that
can be described with the term Construction Kit Principle . Which means
that certain constructs of named classes, can be “plugged” together within a
system under the condition of the availability of adequate “interfaces”. There are

thus many advantages for describing a complex system with methods of [DO]

In this section, the basic elements and background information concerning are

provided.

The term and concept is mainly used in informatics as Object Oriented
Programming (OOP)). However, not only the process of programming is in the

focus, but prior to this also the analysis of the relevant structures, which are

described by the term [OOA]

The beginning of can be allocated to the programming language “Smalltalk-
807, which was developed in the period from 1970 until 1980 by Xerox in the
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USA. To date, different programming languages concerning [OOP| have been de-
veloped. In 1995, a generalised description language named Unified Modeling
Language (UML) was published by Booch, Rumbaugh and Jacobson in [BR.J95]
and in 1997, the Object Management Group accepted this as a standard notation.
For a more detailed description of the historical coherence refer to [Bal99], p.3-4.
Based on [Boo06], p.15, [UML| can be described as a graphical language for visu-
alising, specifying and documenting of a software system. Using this language, it
is possible to describe the structure, the data flow and the existing elements in a
standardised way. The notation in this thesis follows the specifications of [UMI] as
they can be found for example in [Bal01].

A good software tool for working with is ArgoUML, which is available at [arg].
Because this is OpenSource software, it can be freely be used and the application
of principles is simplified, particularly concerning the aim of a consequent use

of OpenSource within the whole project.

The advantage of ArgoUML consists in the possibility of working whilst using
the specifications of in a clear and structured way. The atomic elements
are represented here. Furthermore, the user has the possibility of analysing and
structuring a certain project using the main types of [UMI] diagrams as they are
described in [Bal01], p.19 et seqq. Additionally, even so-called checklists are im-
plemented in here to provide a tool to using [UML] in an optimal and economic
manner. The possibility of creating source code for the developed elements di-
rectly in diverse formats (SQL, C++, PHP4, PHP5, JAVA, CSHARP) is of great
benefit.

The following atomic elements of [UMI] are described more detailed at this point:

e Object

e Class
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Attribute

Operation

Associations

Interface

e Package

Generally spoken, a class is an abstract concept of an object. In this coherence,
an object is associated with a certain class. Every object can be characterised by
its name, its attributes and their values, and it reacts with certain operations on
the sourrounding. In addition to that, an object can be linked to other objects,
one refers to the “knowledge” of them. These links are realised as so-called asso-
ciations. An object is a dynamic instance of a class. The according class defines

the attributes, the operations and the associations for a collection of objects.

The kind of data, that can be used by the objects of a certain class are defined
using attributes. Every attribute is characterised by its name, its data type, its
initial value and its features. According to [Bal01], p.7, the data type can be one
of the types usually used in a programming language (boolean, string, integer),
a kind of enumeration or even classes itself. A possible feature is for example
specified by mentioning the term frozen, which inhibits the modification of the

according value.

To define activities for the objects of a certain class, so-called operations are used.
These operations can be applied to every attribute within the regarded class and
the according name should represent the performed activity. Associations identify
linkages between classes and as a consequence between derived objects. They can

be named and labeled with a cardinality of association.

To fascilitate classes the application of another classes methods to this class, so-

called interfaces can be used. From a class, more specialised classes with additional
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features can be derived. In this coherence, one refers to transmission and the

original class is then called the basis class.

For grouping and summarizing elements of [UML] for example classes, so-called
packages are defined. In doing this, a higher level of abstraction can be used for

the description of the regarded system.

The way of describing a system using [UML] is dependent on the aim and the per-
spective of this description. So in a project group, some people are only interested
in the abilities of certain components, while others are interested in the detailed
processing of the same components. Even though they pursue the same main
aim, there may be the necessity of regarding certain steps within this progress of

development from different perspectives.
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6.1 Localisation of the SPATTB

The concept of the[SPATTB]Jis incorporated into the concept of the[EWARS] where
the two main tasks are identified in the process of conception in this thesis. The
first one acts like an appropriate “tool” for other components of the by
providing calculation and processing methods. For doing this, compatible interfaces
have to be defined. The second use case consists of directly dealing with queries of
the system. The type of usage is dependent on the actual query and the intention
of the decision maker or respectively the expert. In figure [6.1] this use cases are

illustrated in a structured way.

As already mentioned above, the term interface is central to the conceptualisation
and building up of the EWARS| For implementing the “Spatial-Toolbox” as part
of the whole system, it has to be guaranteed that the system and respectively the
using person can apply it. Thus special attention has to be paid to the manner

though which input is gauned and output is provided.

)

The proposed “Spatial-Toolbox” requires the two abilities of flexibility and usabil-
1ty. This means that it should be possible to extend the provided methods in an

appropriate way and as already described, define the interfaces accurately.
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omponent Il

SPATTB

Decision
Maker/
Expert

Decision
Maker/
Expert

Component ...

Figure 6.1: Use cases related to the SPATTB

6.2 Application and customisation of OpenSource

components

As conceptualised for the whole EWARS] the “Spatial-Toolbox” itself is defined
and described only using OpenSource components. The advantages of doing this
are the availability of free components, the alignment and conformation with ex-
isting licenses and the benefits bained through the knowledge of the OpenSource
community. The challenge that has to be mastered within this concept is the de-
scription of a certain “use case”, which means a special application in the context
of the [SPATTB] by interfacing the used components in an appropriate way. In
the following section the conditions that are required in the authors opinion for

choosing such a component are described.
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6.3 Workflow for building up [SPAT TB| components

To support the claim of flexibility in the meaning of extending and improving the

SyPAT'TB| an appropriate workflow is proposed in this section.

Definition of the according “use case(s)”

There is much importance to know, what is the aim of constructing that
component and what benefits can be achieved using it. It has to be defined,
if there should be one or more applications and what they are about. This
knowledge features the basis for the following steps. In terms of modeling, it
has to be taken into account, which way of describing a certain situation and

application makes sense and which restrictions and features can be accepted.

Description of the according input and output information

The awareness of these facts is the prerequisite for providing accurate in-
terfaces. There has to be particular information about the specifications of
the input and the output. Based on this, it can be decided, which methods
can be taken into account or what modifications are eventually necessary for

using them.

Accurate identification of sub-processes within the regarded com-
ponent
The single steps of each use case have to be defined in oder to construct

these as optimal as possible.

Mathematical analysis of the different sub-processes
A significant benefit of mathematics is the ability of abstraction and get-
ting an arbitrary point of view. Mathematics is necessary to guarantee the

usability of the considered methods for a certain application.

Finding of appropriate software for implementation
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One important condition of choosing a certain software is that it is Open-
Source software. In regard to implementation in an appropriate way with
the ability of creating usable webinterfaces, command line use is necessary.
Furthermore, the definition and implementation of interfaces for describing
the whole process of the regarded use case as a sequence of sub-processes has

to be taken into account.

Usability orientated implementation

Implementing the regarded component, the certain user and its role has to
be taken into account. Balzert also describes this in terms of describing
software using the UML (refer to [Bal0l], p.39 et seqq.). It is essential
to regard the particular kind of expert knowledge in view of creating an

appropriate structure for the according Graphical User Interface (GUI).

Evaluation

One important kind of evaluation is testing the usability of the created com-
ponent. It has to be regarded, if the whole process is described. Thereby, not
only “test” data has to be used, but also “real”, “authentic” data, because
with that kind of data the system should work in everyday use. If there are
more than one components, that are usable for a certain use case, it is an
asset to provide information about differences of the provided output for the
decision maker. In this coherence, it has to be taken into account, if that
feature makes sense for the particular persons in terms of the ability of using
that kind of information. So, there are two kinds of evaluation. The first one
is important for the developer(s) of that component in regard of optimisation
it. The second one is important for the users with respect to the described
restrictions. Both kinds are important elements of this workflow. A fact that
is also very important is the possibility for the users of giving feedback to

the developers with regard to the optimisation.
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This workflow is illustrated in figure [6.2

Description of Finding of appropriate
Use case definition input and output _ software for
information implementation

Usability orientated : . Identification of
implementation « Mathematical analysis «
' "l‘a

[ |
e ctvain Lo

‘ Decision maker(s)/Expert(s)

Figure 6.2: Workflow for develop an additional component for the SPATTD]|

In the context of evaluation, the term quality is used sometimes in writing and/
or in speaking. To obviate misunderstandings, the authors insight for this term
will be stated at this point. In this coherence, it is important to separate the term

quality from the term difference, because they usually cannot be used as synonyms.
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{ Measure theory on topological

and function spaces

7.1 Basic definitions and prerequisites

7.1.1 Topological space

Since in chapter [9| there are developed methods for implementing in the
context of dealing with spatial data within the [SPATTDB] different definitions and
prerequisites concerning the term space and especially topological space in mathe-
matics are required. These different ideas and concepts are pointed out describing

also the coherences and the basing hierarchical structure.

A very general concept of a mathematical space is the topological space based on
the general idea of a so-called neighbourhood. This concept was mainly developed
at the beginning of the 20th century by Feliz Hausdorff in [Haul4], based on the
concept of a set developed by Georg Cantor in [Can97].

I will refer to a special type of topological spaces in definition [7.1.16] This is the
concept of a so-called metric space, which was described by Maurice Frechét in

[Ere06]. Here, the term distance plays an important role. For a more detailed
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description of the historical development refer to [Jan97], pp. 3-6 and [QueO1], pp.
327-334.

The basic idea of mathematical topology is the mentioned topological space, which

can be defined in the following way according to [Jan97], p.5:

Definition 7.1.1 (Topological Space)
A topological space is a pair (X,0) consisting of a set X # 0 and a set O of
subsets of X with the following properties, while the elements U of O are called

open sets:

o Azxiom 1: Any union of open sets is open again.

rco= yuveo

uer
o Axiom 2: The intersection of two open sets is open.

UVveO=U0UnNnVvVeO

o Aziom 3: The empty set O and the set X are open.
leO, Xe0O

This set O of subsets of X is then called a topology on the set X.

By this definition, the set X is divided into two types of subsets, the open ones
and the closed ones. The open subsets are U € O, the closed subsets are the

corresponding complements V := X \ U.

An important idea in topology is the concept of neighbourhood. This concept is
essential for the definition and usage of the terms convergence and continuity in a

topological space.

According to [Que01], p. 25, this can be defined in the following way:
Definition 7.1.2 (Neighbourhood)

Let (X, O) be an arbitrary topological space and xy an arbitrary Element of X. A
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subset U C X 1is then named neighbourhood of the Element xy when there exists

an open set O € O withxqg € O C U.

The set i (xo) which contains all existing neighbourhoods of an element xq is named

neighbourhood system of xy or neighbourhood filter (the term filter is defined
i the following section .

In this context, the term neighbourhood basis as a subset of the neighbourhood
system is an important concept. In some cases it is possible, to assign statements

or theorems according to neighbourhood filters on neighbourhood basises and re-

duce the number of regarded sets. One of this cases is lemma in section [7.2]

Definition 7.1.3 (Neighbourhood basis)
Let (X,0) be an arbitrary topological space, xo an arbitrary Element of X and
U (zg) the according neighbourhood system. A subset B(xo) C U (xo) is then

named netghbourhood basis of the Element xy when the following is true:

Y 3 - BcU

U € U(zo) B € B(xo)

In topology, a certain set A C X, while (X, Q) is an arbitrary topological space,
can be characterised using the terms border, interior and closure. The definitions
and interpretative descriptions of these terms are given in the following, basing on

[Que01], p.28:

Definition 7.1.4 (Topological characteristics of a set)
Let (X,0) be an arbitrary topological space, xo an arbitrary Element of X and
A C X an arbitrary subset of X. The following terms define characteristics of

this set and its elements:

(1) An element xo € A is named interior point of A, when A is a neighbour-

hood of this element.
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(2) The set A with A = {xg€ A | xyis an interior point} is named the in-
terior of the set A.

(3) The interior A is the biggest open set within the set A and can be constructed
in the following way: A = U U

UC A, open
(4) An element xo € A is named border point of A, when each neighbourhood

of xo does intersect both, A and its complement set A°. This means the

following: v :UNA=#(Q#£UnN A
U € $4(xo)
(5) The set 0A with 0A := {xg € A | zgis an border point} is named the

border of the set A.

(6) The set A = {x eX| Vv UNAH# (D} is named the closure of
U € $4(xo)

the set A.

(7) The closure A is the smallest closed set which contains the set A and can be

constructed in the following way: A = N U
U DA, closed

(8) The set A is named dense in X, when A = X.

(9) The border of the set A is the following: 0A = A \ A

The topology O of a topological space X can be characterised regarding a special
system of sets in X named basis of the topological space. This system can be de-

fined in the following way as it is done in [Que01], p.23:

Definition 7.1.5 (Basis and subbasis of a topological space)

Let (X, O) be an arbitrary topological space.

(1) A system B C O is then named basis of the topological space, if each

arbitrary open set in X can be denoted as a union of sets out of B.

(2) A system S C O is named subbasis of the topological space, if the set
of all finite intersections of sets out of S is a basis of the topology.
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Hence, a topological space can be described using its basis and additionally a pair
of topological spaces is equal, if their basis is equal (|[Que01], p.23).

Using the terms neighbourhood basis and basis of a topological space, a classifica-

tion of topological spaces is possible in the following way ([QueO1], p.27):

Definition 7.1.6 (First and second axiom of countability)
Let (X, O) be an arbitrary topological space.
(1) The first aziom of countability is fulfilled, if each element of X features a
countable neighbourhood basis.

(2) The second axiom of countability is fulfilled, if the set O of open sets features

a countable basis of the topological space.

In the following a tolopogy according to an arbitrary subset of a given topological
space (X, Q) is regarded according to [Bar(7], pp.108-109.

Definition 7.1.7 (Relative topology, subspace)

Let (X,0) be an arbitrary topological space. Further, let A X be an arbitrary
subspace. Then, the relative topology of O in A is defined by the following set:

Oa={ONA|0OeB:0}
The according topological space (A, O‘A) is then called subspace of (X,0). In-

stead of the term relative topology, the terms subspace topology, induced

topology and trace topology can synonymous be used.

7.1.2 Continuity

To describe relationships between topological spaces, the term continuity can be
used. Regarding the set C, continuity of a mapping f: C — C can be

described in the following way: Evanescent changings in the argument of that
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function leads to evanescent changings in the value of the mapping. In metric
spaces (see [7.1.16)), this changings can be described with the term distance, but
in arbitrary topological spaces, the definition of continuity has to be done more

abstract, because distance is not defined there in general.

According to [QueO1], p.30, the concept of continuity in topological spaces can be

defined in the following way:

Definition 7.1.8 (Continuity)
Let (X, 04) and (Y, Os) be arbitrary topological spaces. A mapping f: X — Y
is named continuous, if the inverse images of open sets in (Y, Os) are open in

(X, 0y), that means:

f: X — Y continuwous < Y : fTH(O) € Oy
0O€0O;

This definition is in an equivalent way possible using closed sets.

This definition of continuity describes this term according to the mapping as a

whole. Continuity at the element zy € X can be defined in the following way:

Definition 7.1.9 (Pointwise continuity)
A mapping f: X — Y between two arbitrary topological spaces (X,O,)
and (Y,Os) is named pointwise continuous, if for all neighbourhoods V €

Us (f (o)) of f (o) exits a neighbourhood U € 4 (z0) of xg and f(U) C V, that

means:

f: X — Y pointwise continuous at v9 € X & v L fHV) €
V€ (f(z0))

Lll (l’o)

The following theorem provides a facilitation for proving the continuity of a certain

mapping (see [Que01], p.30).

In the proof, the following coherence is used:
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oo (U a) = U

A Y icl icl
and

v f-(n Ai) -0 A
?GSI’ iel iel

Theorem 7.1.1 (Subbase criterion of continuity)
Let (X,04) and (Y,O3) be arbitrary topological spaces and let S (Oy) and S (Os)

be arbitrary particular subbases.

A mapping f: X — Y s continuous, if and only if for any set S € S

f7H(S) is open in (X, Oy).

Proof. Let Oy € O3 be an arbitrary open set in Y and let Oy = [J [ with
jEJi=1

appropriate sets S; € S,n € N :. This can be done for every open set in O,

according to definition [7.1.5. Then, the following is valid:

o, = *(U ﬂ)

jeJi=1

()

jed
= U m F7H(S) (7.1)
jeJi=1
Any open set in O, can be expressed in the way done above using a finite subset
of the regarded subbase.
Hence, it is adequate to proof, that for any set S € S S € f71(S) is open

in (X, 0), because the last expression in is an element out of O regarding
definition [.1.11
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So, the term continuity draws conclusions about the preimages of open sets, but
none about the images of open sets. But if there exists a relation between open
sets in the domain and open sets in the codomain in the following way, the map-

ping is called open ([Que01], p.32):

Definition 7.1.10 (Open mapping)
Let (X, 04) and (Y, Os) be arbitrary topological spaces. A mapping f: X — Y
is named open, if the images of open sets in (X,O01) are open in (Y,Os), that

means:

f: X — Yopen<:>0‘v’o A{f(O) | O e O C Oy}.
€01

Mappings between topological spaces, which are continuous, bijective and open are
named topological homeomorphisms and can be defined as described in [Que01],

p.32 as follows:

Definition 7.1.11 (Topological homeomorphism)
A bijective mapping f: (X,0,) — (Y,0,) 1isnamed topological mapping
or topological homeomorphism, if f and f=' are both continuous mappings.

Then, the topological spaces (X, 01) and (Y, Os) are called homeomorph.

According to [JAn97], p.17 and definition [7.1.8] the following equivalence can be

formulated:

f: X — Y is an homeomorphism < < Y : Oopen & f(O) open)
0e€0;

In this thesis, homeomorph spaces are written as:

(X,01) = (Y,0,).
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7.1.3 Product topology

While regarding families of topological spaces (X;, O;), it is interesting to have a
look at the product of the particular topologies. In the following definition, this
fact is described more precisely basing on [Que01], p.40:

Definition 7.1.12 (Product space, product topology)

Let I be an indexing set and (X;,0;), © € I be a family of topological spaces.
Furthermore, X = igl X, describes the cartesian product of these spaces and
pi: X — X, theparticular projection. Then, the product topology (X, O)

15 defined using the following basis:

B = { N p. (Or) | ¥V Oy is open, Kis a finite subset of I}
ke K

ke K

(X,0) is then named product space or topological product of the spaces
(X;,0:),1 € 1.

Regarding this product topology, the set S := {pi_l O) | vV : 0; € )OZ} de-

fines a subbasis.

In the following, an important theorem concerning continuity of mappings between

product spaces is given according to [QueO1], p.41.

Theorem 7.1.2 (Product spaces and continuity)

Let (Y,O) be an arbitrary topological space. Additionally, let I be an indezxing set
and (X;,0;), i € I be a family of topological spaces. Further, X := ZE[I X; defines
the according product space as defined in[7.1.13
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A mapping g: Y — X 1is continuous, if and only if for each i € I the
mapping g; = p; © g 1S conlinuous.

Proof. =: It has to be proven: g is continuous = .EI : gj = pj o g is continuous

J

It is valid, that a composition of mappings is continuous, if every participating
mapping is continuous. As a prerequisite, g is continuous. Hence, it has to be
shown, that <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>