UNIVERSITAT
KOBLENZ - LANDAU

Institut WeST Informatik

Model-driven Generation of APIs
for OWL-based Ontologies

Stefan Scheglmann
Ansgar Scherp
Steffen Staab

Nr. 7/2010

Arbeitsberichte aus dem
Fachbereich Informatik

Universitat Koblenz-Landau = Campus Koblenz = Universitatsstrale 1 = 56070 Koblenz
Telefon +49 261 287-0 + http://www.uni-koblenz.de

Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung
vorlaufiger Ergebnisse, die in der Regel noch fur spatere Verdoffentlichungen
Uberarbeitet werden. Die Autoren sind deshalb fir kritische Hinweise dankbar. Alle
Rechte vorbehalten, insbesondere die der Ubersetzung, des Nachdruckes, des
Vortrags, der Entnahme von Abbildungen und Tabellen — auch bei nur
auszugsweiser Verwertung.

The “Arbeitsberichte aus dem Fachbereich Informatik* comprise preliminary results
which will usually be revised for subsequent publication. Critical comments are
appreciated by the authors. All rights reserved. No part of this report may be
reproduced by any means or translated.

Arbeitsberichte des Fachbereichs Informatik

ISSN (Print): 1864-0346
ISSN (Online): 1864-0850

Herausgeber / Edited by:

Der Dekan:
Prof. Dr. Z6bel

Die Professoren des Fachbereichs:

Prof. Dr. Batori, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr. Ebert, Prof. Dr.
Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,

Prof. Dr. Sure, Prof. Dr. Lammel, Prof. Dr. Lautenbach, Prof. Dr. Mller, Prof. Dr.
Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese, Prof. Dr. Rosendahl, Prof. Dr.
Schubert, Prof. Dr. Staab, Prof. Dr. Steigner, Prof. Dr. Troitzsch, Prof. Dr. von
Kortzfleisch, Prof. Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Zobel

Kontaktdaten der Verfasser

Stefan Scheglmann, Steffen Staab, Ansgar Scherp

Institut WeST

Fachbereich Informatik

Universitat Koblenz-Landau

Universitatsstralie 1

D-56070 Koblenz

EMail: schegi@uni-koblenz.de, Scherp@uni-koblenz.de, staab@uni-koblenz.de

mailto:schegi@uni-koblenz.de
mailto:Scherp@uni-koblenz.de
mailto:staab@uni-koblenz.de

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

Model-driven Generation of APIs for
OWL-based Ontologies

Stefan Scheglmann and Ansgar Scherp and Steffen Staab
{schegi, scherp, staab}@uni-koblenz.de

WeST, Institute for Web Science and Technologies, Universitdt Koblenz-Landau,
Universitatstr. 1, 56070 Koblenz, Germany

Abstract. Existing tools for generating application programming inter-
faces (APIs) for ontologies lack sophisticated support for mapping the
logics-based concepts of the ontology to an appropriate object-oriented
implementation of the API. Such a mapping has to overcome the funda-
mental differences between the semantics described in the ontology and
the pragmatics, i.e., structure, functionalities, and behavior implemented
in the API. Typically, concepts from the ontology are mapped one-to-
one to classes in the targeted programming language. Such a mapping
only produces concept representations but not an API at the desired
level of granularity expected by an application developer. We present a
Model-Driven Engineering (MDE) process to generate customized APIs
for ontologies. This API generation is based on the semantics defined
in the ontology but also leverages additional information the ontology
provides. This can be the inheritance structure of the ontology concepts,
the scope of relevance of an ontology concept, or design patterns defined
in the ontology.

1 Introduction

Ontologies are a powerful means to model and represent semantic, structured
data on the web. In order to use this knowledge in concrete applications, ap-
propriate application programming interfaces (APIs) are required. Recently,
tools to generate APIs for ontologies such as OWL2Java [5], AliBaba!, and
ActiveRDF [8] have gained widespread popularity. However, the existing tools
generate ontology APIs in a naive way.

The main challenge when generating APIs for ontologies is to bridge the gap
between the semantic description in the logics-based ontology and the pragmatic
handles needed by an object-oriented API. To this end, we have to abstract from
the “what” that is defined in the ontology and the “how” to use this ontology
through an API. In the naive approach, each ontology concept is mapped to
one API class. This only produces concept representations but does not provide
information about how to use these representations, i.e., which classes have to be
instantiated. Thus, an additional layer is required to sufficiently abstract from
the knowledge structure defined by the ontology. This layer defines which objects

! http://www.openrdf.org/doc/alibaba/2.0-alpha4/ last visit June 10, 2010

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

and properties have to be used together to provide appropriate and easy to use
APT functionalities. This kind of usable abstraction is not provided by existing
tool support for generating ontology APIs. Our experience in developing such
usable APIs for our ontologies like the Event-Model-F [12] and X-COSIMO [2]
has shown that it is a cumbersome and error-prone process.

To alleviate this situation, we present a multi-stage Model-Driven Engineer-
ing (MDE) process to generate customized APIs for ontologies. In order to han-
dle the API generation process, we introduce two models as intermediate steps:
The Model for Ontologies (MoOn) bases on the Ontology Definition Metamodel
(ODM) [7] and uses its OWL profile to represent ontologies in UML without
loosing the semantics. The ODM provides various models for representing dif-
ferent Description Logic (DL) operators. The models for some of these operators
like IntersectionOf and Union do not follow the UML specification. Thus, we have
developed modified models in order to use them directly in the API generation
process. The representation of the ontology in MoOn is mapped to the Ontology
API model (OAM). The OAM is an abstract syntax to model the final, object-
oriented representation of the API. It can be mapped directly to a concrete
programming language such as Java.

Using the two models MoOn and OAM, application developers can customize
the API they like to generate. While there exists a default mapping from an OWL
based ontology to an object-oriented API via MoOn and ODM, the application
developer may want to add information about the API structure and about the
way how the ontology should be used. In addition, he can add additional infor-
mation about how existing target APIs should be aligned with the ontology. This
is useful, e.g., to integrate an existing storage infrastructure API for binary large
objects with the ontology API. Thus, the application developer can customize
the mapping from the ontology to the API according to his needs.

To illustrate the challenge of generating usable APIs from ontology defini-
tions, we first introduce an example ontology for representing multimedia meta-
data and its corresponding API and refer to it throughout the paper. Subse-
quently, we discuss in Section 3 what kind of information is in principle required
for generating such ontology APIs and conduct a thorough analysis of the prob-
lem. In Section 4, we present possible sources for obtaining this information and
how it is used to model the API. We present our model-driven process for on-
tology APIs in Section 5 and its implementation in Section 6. The current state
of the art is reviewed in Section 7, before we conclude the paper.

2 Running Example: Ontology-based Modeling of
Multimedia Metadata

We first present an example of an ontology-based modeling of the annotation
and decomposition of a multimedia presentation. Secondly, we introduce the
structure and functionality of an ideal API for this ontology.

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

2.1 Decomposition and Annotation of a Multimedia Presentation

The concrete example in Figure 1 shows an excerpt of an ontology modeling mul-
timedia metadata. The multimedia presentation Presentation-1 is decomposed
into two images, Image-1 and Image-2. Image-1 is annotated with an EXIF geo-
coordinate Geo-Point-1 by the user Paul-1. Figure 1 shows also further individu-
als such as CompositeConcept-1 classifying the Presentation-1 as composite in the
decomposition and ComponentConcept-1 and ComponentConcept-2 that denote
Image-1 and Image-2 are components. In addition, there are also some additional
ontology classes shown such as Image and Region and their inheritance structure.

The example is based on our Multimedia Metadata Ontology (M30O) [11] for
representing annotation, decomposition and provenance information of multime-
dia data. Although the example seems to be quite small, the ontology presented
allows for sophisticated features in terms of annotating and decomposing mul-
timedia content. Not only the Presentation-1 can be decomposed into images,
but also the images such as Image-2 can be decomposed into segments. In addi-
tion, besides the annotation of a single Image-1, also the image segments as well
as the Presentation-1 itself can be annotated. Finally, by attaching information
about the creator of an annotation such as Paul-1 for Image-1, the ontology also
provides for modeling provenance information.

Information =
Presentation '—D Entity P Entity [<—— Region
instanceOf
"40, 76"~ "
xsd:decimal

geo:long

Presentation-1

Image ooy i of i
classifies H "-73, 99"~ " e > GeoPoint
instanceor; | xsd:decimal

Composite
Concept-1 hasSetting

geolat

hasQuality i\
H Image-1 — { GeolocQuality-1

hasRegion
Component)

I~ Concept.:l. classifies X .
defines GeoPoint-1
! Component
™| Concept-2 [] classifies EXIFGeo
c i Parameter-1

defines

= o hasSetting
ecomposition _
Descriﬁtiun-l Image-2 |— ! Annotated
classifies Concept-1
Decomposition Paul-1 _ Creator
— | situation-1 |~ - classifies Concept-1

Annotation satisfies Annotation
Situation-1 Description-1

Fig. 1. Instance of an Ontology-based Annotation and Decomposition of a
Multimedia Presentation and some Additional Ontology Classes

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

2.2 Ideal API for the Running Example

An ideal ontology API defines class handles for the central concepts of the ontol-
ogy and provides functionality for using these classes. For the ontology example
above, Figure 2 shows an excerpt of the ideal ontology API. It provides a dis-
tinct class for each central concept of the ontology such as Presentation and
Image for multimedia objects and GeoPoint for metadata objects. As function-
alities, we provide decomposition and annotation of multimedia objects. They
are represented by the classes Decomposition and AnnotationSet in the API. The
interface InformationEntity is implemented by Presentation and Image. This is re-
quired to provide annotation and decomposition of arbitrary multimedia objects
as the methods addAnnotation(. ..) and addDecomposition(. ..) in the classes An-
notationSet and Decomposition show. The class AnnotationSet allows to attach
multiple AnnotationEntities to an InformationEntity. The API interface Annota-
tionEntity refers to the ontological concept Entity from the example above. The
AnnotationEntity interface is implemented in classes such as GeoPoint. As the
term entity is not very intuitive for application developers using the API, the
more conclusive term annotation entity is used instead. Finally, when creating
an object of the AnnotationSet class, besides the InformationEntity to be anno-
tated also a User parameter is provided. This allows to represent annotations
coming from different users, i.e., distinguishing the provenance of annotation
information.

[Decomposition [_! AnnotationSet

| #composite : InformationEntity il #ie : InformationEntity
| #compoenent[] : InformationEntity 4tannotation[] : AnnotationEntity
= #user : User

& Decomposition{ composite, component(])
& addComponent(component)

@ removeComponent(component)

&} InformationEntity[] getComponents(}

& Annotation(ie, annotation[], user)
4 addAnnotation(annotation)

4 AnnotalionEntity[] : getAnnotations{)
@ removeAnnotation(annotation)

4§ User : getUser()

Fig. 2. Model of an Ideal API for the Running Example

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

3 Information Required for Generating Ontology APIs

The API generation process starts from the ontology definition and ends up in
the generation of the API code. To this end, the process has to bridge the fun-
damental difference between the semantics defined in the ontology (the “what”)
and the pragmatic handles provided by the API (the “how to use”). The ontol-
ogy provides a structured representation of the knowledge the application has to
deal with. For example, the ontology presented in Section 2.1 can be used by a
multimedia management system to represent the annotation and decomposition
of multimedia presentations. However, the ontology per se does not provide all
information needed to generate an ideal API as depicted in Figure 2. With other
words, not all design decisions of the API can be directly motivated from the
ontology. In this section, we analyze what kind of information is required and
missing in order to generate the ideal API.

(A) Concept Representations An important questions is how to represent
the concepts of the ontology in the API. The ideal API in Section 2.2 pro-
poses class representations only for selected concepts from the ontology. This is
motivated from the application developer’s point of view, who needs classes
for the concepts Presentation, Image and EXIFGeoPoint. These concepts and
their respective API classes consitute the “content” the multimedia manage-
ment applications deals with. However, in order to support the full ontological
knowledge representation also the other concepts need to be supported in the
API. For example, for the decomposition of a Presentation-1 in a concrete ap-
plication context also the concepts CompositeConcept-1, ComponentConcept-1,
ComponentConcept-2, DecompositionDescription-1, and DecompositionSituation-1
are needed. This divides the concepts in an ontology into two disjoint sets of
concepts. We call the set of concepts providing content to the API content con-
cepts and the set that only serves structural purposes structure concepts. The
information required to split the concepts into these two sets is not available
in ontology definitions. For reason of completeness, the individuals of content
concepts and structure concepts are called content individuals and structure in-
dividuals. Table 1 defines the existential conditions for both content individuals
and structure individuals. It shows the scope of the individuals and provides
examples.

(B) Pragmatic Units An API provides functionalities to the application devel-
oper in order to access and use the structured knowledge defined in the ontology.
Each functionality involves different concepts of the ontology and the relation-
ships between them. These concepts are either classified as content concepts or
structure concepts. Based on this, we can now precisely define a pragmatic unit
as triple PU = (CO, SO, R) consisting of a set of content concepts CO, a set
of structure concepts SO, and a set of relations R between the content concepts
and structure concepts. For our running example, we find two pragmatic units
for decomposition and annotation as depicted in Figure 3. From the ontology

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

definition, we need information how many pragmatic units it contains and how
they are defined.

Table 1.: Ontology Individuals Classification

|CONTENT INDIVIDUALS |STRUCTURE INDIVIDUALS
Existence Stand-alone Only in the context of a prag-
matic unit
Scope Used in multiple pragmatic Unique to one pragmatic unit
unit instances instance
Example Presentation-1, Image-1, Image- |DecompositionSituation-
2, and the GeoPoint-1 in the 1, GeolLocQuality-1,
running example ComponentConcept-2 and the
other concepts in the running
example

Entity K— Region

[=] "30, 76"~ ~
xsd:decimal

instanceOf =]
GeoPoint

geo:lat

hasQual

quoLocQu:lity-:l

hasRegion

= GeoPoint-1

" EXIFGeo
Parameter-1

defines

“ Annotated
classifies Concept-1
classifies Concept-1

[=] i HOOA tation

Situation-1 Description-1

hasSetting

Annotation Pragmatic Unit

Fig. 3. Pragmatic Units in the Running Example

(C) Method Contracts In our example, the API provides the functional-
ities for annotating and decomposing multimedia presentations. In a specific
programming environment, the application developer may want to ensure that
each decomposition has at least two known components. Thus, when calling the
methods addComponent(...) and removeComponent(...) of the Decomposition
class it needs to ensure that there are at least two components. In our example
ontology in Figure 2, there have to be at least two components like Image-1 and

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

Image-2 of the presentation decomposition. If this constraint is not fulfilled, an
ideal API should raise an exception and notify the application about the incon-
sistency. This behavior of the API is specified in the so-called method contracts.
However, the logic world of ontologies with its open world assumption does not
require the existence of at least one component individual. A reasoner would not
fail because of a missing individual and just assumes that it does not know it.

Thus, in this case the behavior of the API is more restrictive in terms of
ensuring consistency of the represented information than the ontology. It is not
possible to create a decomposition with less than the minimum number of com-
ponents using the API whereas this does not cause any inconsistencies for the
ontological knowledge representation.

However, it is also possible that the ontology is more restrictive than its
API. This is the case when the API cannot ensure consistency and needs to
fall back to a reasoner running in the background to decide whether a specific
operation is allowed or not. For example, there might be an API for modeling
the configuration of a car’s equipment. Depending on the different extras such as
air conditioning and radio, the car has to be equipped with a different generator.
Here, it must be possible to create different configurations using the API, i.e., a
specific selection of extras and generator. Only then, the reasoner is applied to
determine whether the given configuration is a valid one. Thus, in this case it is
possible to create invalid car configurations using the API and determining this
invalidity only by using the reasoner.

In a third case, the API might call a reasoner in the background for each
operation it performs. Thus, whenever the application using the API calls one
of its functionality, the reasoner is used to check the validity of the operation.
Based on the result the reasoner computes, the API adapts its behavior and
either raises an exception or not. This behavior should also be configurable by
the application developer.

These differences in the behavior of the ontology and the ideal API need
to be considered and information is required from the ontology to specify the
API method contracts. In the remainder of this paper, we consider the first case
where the API is more restrictive than the ontology.

(D) Inheritance Structure The concepts defined in an ontology have different
relationships. Of particular interest is the inheritance relationship that classifies
ontology concepts into sub-concepts and super-concepts. The challenge when
generating an API from the ontology definition is that not all of these inheritance
relationships and the corresponding concepts need to be mapped to the API.

Looking at the running example of our multimedia metadata ontology in
Figure 1, we see that both concepts Image and Presentation inherit from the
super-concept InformationEntity. In the ideal API depicted in Figure 2, this is
reflected by the classes Image and Presentation implementing the interface In-
formationEntity. This interface is needed in order to apply the API’s annotation
functionality and decomposition functionality on any multimedia content that
is of type InformationEntity.

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

However, the running example depicted in Figure 1 also shows the concept
Region for which we do not find a counterpart in the API. Thus, for generating
an ontology-based API we need information how to abstract a lean and useful
inheritance structure from the often complicated inheritance structure of an
ontology. We need to know which classes in the inheritance structure are to be
represented by the API and which not.

4 Modeling Ontology-based APIs

The information needed to map the ontology definition to the target API must
be in principle provided by the API developer. For example, the API developer
identifies the pragmatic units of the ontology and defines API functionality in
terms of classes and methods for it. He also decides which concepts in the on-
tology inheritance structure are mapped to abstract classes or interfaces in the
API. Our past experience in developing such ideal APIs for ontologies such as the
Event-Model-F [12] and X-COSIMO [2] has shown that such a manual creation
is very cumbersome and errorprone. Thus, one should obtain as much as possi-
ble information automatically from the ontology definition. In this section, we
describe the modeling of ideal ontology-based APIs and present possible sources
how the required information can be obtained from ontology definition.

4.1 Modeling the Class Representations for the API

According to our problem analysis in Sections 3 (A) and 3 (B), we need to
model representations for the ontology concepts and pragmatic units in our
API. In contrast to the simple concept-to-class mapping of existing approaches,
we model only selected concepts through dedicated API classes as described in
Section 3 (A). In addition to this, we model and implement class representations
for the pragmatic units provided by the API.

In the past, we have developed ontologies such as the Event-Model-F [12] and
X-COSIMO [2]. For these ontologies, we have followed a pattern-based ontology
design approach [1]. Ontology design patterns are generic solutions to recur-
ring modeling problems. From the experiences developing such pattern-based
ontologies, we have realized that the patterns in the ontologies correlate to the
pragmatic units discussed in Section 3 (B). Also our ontology exampled based on
the M3O in Section 2.1 follows this pattern-based approach. It provides among
others the annotation pattern and the decomposition pattern. Thus, patterns
help us in identifying the pragmatic units, i.e., to raise the level of abstraction
at which the ontology is formulated [4]. In addition, the patterns help in classi-
fying the ontology concepts as introduced in Section 3 (A) into content concepts
and structure concepts. When a concept is referenced in multiple patterns, it is a
strong sign that this concept has a content nature, i.e., is central to the domain
under consideration.

Corresponding to the decomposition pattern, the ideal API as depicted in
Figure 2 provides the class Decomposition. It is associated through the Information-
Entity interface to the specializations Presentation and Image. These subclasses

10

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

are the content concepts of the pragmatic unit of the decomposition. For the
annotation pattern, the ideal API provides the class AnnotationSet, associated
through the interface InformationEntity and AnnotationEntity to the specializa-
tions Presentation, Image, and GeoPoint. These specializations are the content
concepts of the pragmatic units of the annotation. All structure concepts of the
pragmatic units for decomposition and annotation are implemented as pairs of
attributes in the API classes Decomposition and AnnotationSet (not shown in
Figure 2). The pair of class attributes for each structure concepts consists of one
URI for the individual and one for the concept.

Based on this, we are able to define pragmatic mapping units for ontology
APIs. A pragmatic mapping unit is a quadruple PMU = (MC, PU,CC, MT).
It consists of a single mapping class MC that is created for each pragmatic
unit PU, a set of content classes C'C representing the content concepts of
the pragmatic unit, and a set of mapping tuples MT = { < IDy,Type; >
sy < IDy,Type, > } for the structure concepts of the pragmatic unit where
n > 0. A tuple < ID;,Type; > € MT,0 <1i < nrepresents the individual URI
and the concept URI of the structure concept. Instances of content classes are
called content objects. As structure concepts are mapped as pairs of attributes
in the mapping class M C, there is not structure concept or structure object on
the API side. Table 2 shows the different concepts we have introduced for the
ontology side and their counterparts in the API.

Table 2.: Overview of Mappings between Ontology and API

Ontology ‘API

Content concepts Content classes

Content individuals Content objects

Structure concepts Class attributes

Structure individual Individual URI and concept URI
Pragmatic unit Pragmatic mapping unit

4.2 Modeling the Inheritance Structure of the API

Modeling the concrete class inheritance structure of the API as discussed in
Section 3 (D) is dependent on the requirements of the concrete application. In
our running example, the classes Image and Presentation implement the interface
InformationEntity and the class GeoPoint implements the interface AnnotationEn-
tity. These interfaces refer to the concepts InformationEntity and Entity of the
ontology example depicted in Figure 2.1. Please note that the concept Entity has
been renamed and implemented in the API by the interface AnnotationEntity to
provide the application developer a more intuitive use of the API.

As we can see from the example, the inheritance structure of the ontology
is more complex. The M30O bases on DOLCE+DunS Ultralight [6] with several
layers of inheritance and further inter-concept relationships. For example, there
is an inheritance relation from Entity to InformationEntity. There is also another

11

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

concept Region in the inheritance chain from Entity to GeoPoint. However, there
are no API representations for these additional inheritance relations and the
Region concepts.

Deciding which concepts in the inheritance hierarchy are mapped to inter-
faces or abstract classes in the API is not trivial. One condition for deciding
which concepts in the ontology inheritance hierarchy are mapped to the API is
looking at common super-classes of content concepts and the axiomatizations of
the ontology to these super-classes. For example, the concept InformationEntity
is a common super-concept of the two concepts Image and Presentation. In ad-
dition, the M30O provides an axiom saying that the AnnotatedConcept classifies
only individuals of concept InformationEntity (not shown in Figure 1). This, to-
gether with the fact that the AnnotatedConcept is part of the pragmatic unit for
annotations resulted in introducing the interface InformationEntity in the APIL.
Whether to use interfaces or abstract classes is a design decision of the applica-
tion developer and depends on the concrete usage context of the APIL.

4.3 Modeling the Class-Methods of the API

The methods provided by an API to work on the ontological knowledge rep-
resentation can be distinguished into create, read, update, and delete (CRUD)
methods . In the following, we investigate how the definition of the different
CRUD methods interrelate with the representation structures of the API, i.e.,
the content classes, structure concept URIs, and pragmatic mapping units.

4.3.1 Create The initial method is the creation of content objects, structure
concept representations, and pragmatic mapping units. We consider the following
three cases:

C1: Create Content Objects From an application point of view it makes sense to
create content objects such as Presentation-1 and Images-1. Create methods for
content objects are unproblematic, as they have no side effects on the pragmatic
mapping units the content object may be involved in.

C2: Create Structure Concept URIs Taking the distinction of Section 3 (A) into
account, only the create method for content objects and pragmatic mapping
units make sense. Structure concept URIs are only of relevance in the context
of a specific pragmatic mapping unit. Thus they should be created with the
corresponding pragmatic mapping unit itself.

C3: Create Pragmatic Mapping Units When creating a pragmatic mapping unit,
all mandatory relationships defined between the concepts of the associated prag-
matic unit have to be fulfilled. For example, a create method for the decomposi-
tion should instantiate all content classes C'C representing the content concepts
of the pragmatic unit and all mapping tuples MT representing the structure
concepts. Thus, the mapping class M C of the pragmatic mapping unit has to
instantiate all individual URIs and concept URIs for the structure concepts and

12

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

refer to at least three content objects, namely one composite and at least two
components. In the case of references to dependent content object, we have to
check whether they already exist in the knowledge base, i.e., have been created
previously. In general, the create method for pragmatic mapping units has to
fulfill all dependencies declared mandatory in the method contract as discussed
in Section 3 (C).

4.3.2 Read With read methods, single content objects or pragmatic mapping
units are read from the knowledge base. Thus, read methods are quite similar to
create methods. The only difference is that the knowledge is obtained from the
knowledge base. Like with all API methods, it is necessary to maintain a valid
object structure. Especially in the Semantic Web environment, where we often
have to deal with incomplete data in the knowledge base, a read method does
not necessarily result in a valid API representation. Thus, we have to provide
functionalities for recognizing incomplete data when conducting read methods.

R1: Read Content Objects In order to read complete content objects from the
knowledge base, the information obtained from a read method has to cover
all inner-concept dependencies of this particular content concept. For example,
when reading GeoPoint-1 in our running example it has to have a property geo:lat
as well as the property geo:long in order to create a complete content object.

R2: Read Structure Concept URIs As with the create method, a particular read
method for structure objects is not meaningful. Structure concepts are unique
to pragmatic units. Thus, the corresponding individual URI and concept URI
are only of relevance in the context of a specific pragmatic mapping unit.

R3: Read Pragmatic Mapping Units For reading pragmatic mapping units, we
have to ensure the existence of all mandatory content objects and structure
concept URIs. To this end, the knowledge base must contain all information
mandatory for instantiation of the pragmatic mapping unit. For example, to
be able to create an Annotation object a read method has to provide informa-
tion about all involved content objects and URIs for representing the structure
concepts. Thus, the individual URI and concept URI for the structure indi-
viduals AnnotationDescription-1, AnnotationSituation-1, AnnotatedConcept-1, and
AnnotationConcept-1 need to be present. For the content objects, we have to
check if there already exist objects on API side, otherwise we have to perform a
read method for Image-1 and GeoPoint-1 as well.

R4: Searching for Content Objects and Pragmatic Mapping Units Reading from
a knowledge base always means querying for a specific content object, set of
content objects, or pragmatic mapping units. Thus, an ontology API should
provide functionalities for targeted search. For specific content objects, we use
the individual URI. To retrieve a set of content objects we can use the class
type URI of the objects. Due to the fact that a individual URI of a structure
concept is unique to a pragmatic unit, using this URI allows us to query a single

13

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

pragmatic mapping unit instance. Another search feature provided might be
retrieving all pragmatic mapping units that refer to a specific content object by
using the content object’s individual URI. Further, possibly application-specific
search functionality can be provided by an ontology API.

4.3.3 Delete The delete method can be a major source of problems regarding
the consistency of pragmatic mapping units. This is due to the fact that a delete
method performed on a single content object can affect multiple other content
objects as well as mapping units. As with the create method, we distinguish
between delete methods performed on content objects, structure concepts URIs,
and pragmatic mapping units.

D1: Delete Content Objects Deleting a content object can affect different prag-
matic mapping units and also single concept objects. For example, if the GeoPoint-
1 object from the running example was deleted, the pragmatic mapping unit of
its annotation would become meaningless. Or if we deleted one of the image
objects from our example, the pragmatic mapping unit of the presentation de-
composition become invalid as it requires two components.

As mentioned above these delete methods does not violate the consistency
of the ontological knowledge due to the open world assumption. However, the
API shall provide only meaningful pragmatic mapping units. A delete method
on content objects has to recognize the use of the object in pragmatic mapping
units and behave accordingly. One option would be to subsequently delete all
pragmatic mapping units affected by the deletion of the particular content object,
i.e., removing all corresponding pragmatic units from the triple-store. However
in other cases, we might want to work with incomplete pragmatic mapping units
when deleting a content objects. This is the case, when subsequently further
methods on the incomplete pragmatic mapping unit are applied such as creation
of two other content objects.

D2: Delete Structure Concept URIs Like the create method, also the delete
method makes only sense for content objects and pragmatic mapping units.

Thus they should be deleted when the corresponding pragmatic mapping unit is
deleted.

D3: Delete Pragmatic Mapping Units When deleting whole pragmatic mapping
units, we have to decide how to handle the content objects referred to by this
unit. If a concrete content object is still referenced by another pragmatic map-
ping unit, we leave the content object untouched. But if the deleted pragmatic
mapping unit is the last one referencing the content object, we have to decide how
to handle the content object. To be able to detect such a case, it is important to
count the references from pragmatic mapping units to the content objects. Based
on this counter, we can decide whether a content object is deleted along with the
pragmatic mapping unit or not. For example, one could decide to never delete
a content object, even if the last referring pragmatic mapping unit is deleted.
This decision is strongly influenced by the needs of the concrete application and
should be configurable by the application developer.

14

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

4.3.4 Update Update methods are combined delete methods and create meth-
ods. Thus, we delete the old individuals in the knowledge base and replace them
by adding new individuals with the current values. We need to provide support
for updating content objects and pragmatic mapping units.

5 Model-Driven Generation Process of Ontology APIs

In this section, we describe the concrete Model Driven Engineering (MDE) pro-
cess of generating APIs from the ontology definition. Figure 4 depicts the multi-
stage API generation process and the two intermediate representation models
involved. We assume that the input to the process is an ontology defined in OWL.
The ontology might be axiomatized using Description Logics (DL). The OWL-
based definition of the ontology is represented using the Model for Ontologies
(MoOn) as a metamodel. MoOn bases on the Ontology Definition Metamodel
(ODM) [7] and extends it by models for some DL constructors. In this model,
the ontology concepts are classified into content objects and structure objects
as introduced in Section 3 (A). In addition, one can define which parts of the
ontology inheritance structure are mapped. In the following transformation this
ontology representation is transformed into the Ontology API Model (OAM).
The OAM is an object-oriented representation of the resulting API. All special
characteristics and properties of the intended API are defined in this model. The
OAM comprises all necessary information to generate API code. We are able to
use various tools to generate code from the OAM to an arbitrary programming
language.

Generate the MoOn
from the OWL

Customizing API, on
ontology Level

Customizing API, on
APl model Level.

(0)'\7/ Il Ontology Description M|V, [o1@]aJill Transform MoOn to OAM Transform OAM to Java

OAM. API code.

Fig. 4. The API Generation Process

5.1 Model for Ontologies

We use the stereotypes defined in the OWL profile of the ODM to represent
OWL constructs in the MoOn. The ODM is a set of lightweight extensions to
the UML2 Class Diagram, defined by the Object Management Group (OMG).
To separate the pragmatic units from each other, a MoOn is structured as follows

— An UML:Model stereotyped with <ontology>> for each ontology.
— An UML:Package stereotyped with <pragmaticUnit>> for each pragmatic
unit in the ontology.

Some of the models defined in the ODM to represent DL constructors are not
UML-conform such as IntersectionOf and Union. Thus, we have modified these
models in order to follow the UML-standard and to be able to process them with
the tools available today. We will make these models available together with the
documentation of our software, when the paper is published.

15

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

We have introduced an additional profile with stereotypes to assign the on-
tology concepts to the sets of content concepts or structure concepts. Only the
concepts that have been assigned to one of these sets are mapped to the OAM,
i.e., content classes for content concepts and individual URI and concept URI for
structure concepts. This gives the application developer a mechanism at hand
to control which concepts of the ontology are represented in the API.

5.2 Ontology API Model

The Ontology API Model (OAM) describes the object-oriented structure of the
APT to generate. With OAM, it is possible to integrate classes from arbitrary
existing frameworks or APIs into the ontology API and to add semantic infor-
mation to these classes. For example, to use the java.awt.Image class of the Java
AWT-Framework?, we integrate our API Image class from our running example
by inheriting from java.awt.Image and modifying the classes’ constructors.

6 Implementation

We have presented the different stages and models of our model driven engineer-
ing process for pattern-based ontology APIs. To demonstrate the feasibility of
our process, we have implemented it for generating Java-based APIs. The imple-
mentation of our model-driven API generation process uses a set of plug-ins for
the Eclipse software development toolkit®. For the generation of the API, the first
plug-in loads the OWL-based ontology and represents it using MoOn. The load-
ing of the ontology is conducted using the OWL API*. The MoOn representation
leverages the Model Development Tools (MDT) for UML2°. The MDT-UML2
package provides a graphical model representation and manipulation framework
for EMF UML2 based models.

Based on the MoOn representation, a second plug-in is applied to transform
this representation to OAM. For the OAM, another MDT-UML2-based object
structure is created. Subsequently, SPARQL query snippets are attached in the
OAM for all concepts in the MoOn that are classified as content objects.

Finally, the last plug-in is responsible to generate Java code out of the OAM
representation of the API. For the code generation, we use Java Emitter Tem-
plates (JET)C. JET is a generic template engine to generate various different tex-
tual output such as Java code. The implementation has been applied to generate
an API for our running example introduced in Section 2. The API is currently
integrated and tested within our SemanticMM4U framework for the generation
of multimedia presentations.

2 http://java.sun.com/javase/6/docs/technotes/guides/awt/reference.html
last visit June 26, 2010

3 http://www.eclipse.org/ last visit June 18, 2010

4 http://owlapi.sourceforge.net/ last visit June 10, 2010

5 http://www.eclipse.org/modeling/mdt/?project=uml2 last visit June 18, 2010

5 http://www.eclipse.org/modeling/m2t/?project=jet last visit June 10, 2010

16

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

7 Related Work

The idea of generating code from an ontology definition is not new. Multiple
frameworks like ActiveRDF [8], AliBaba’, OWL2Java [5], Jena/Jastor®, Onto-
Java®, and others were developed in the past. An overview can be found at
Tripresso'?, a project web site on mapping RDF to the object-oriented world.

Most of these frameworks have in common that they use a simple approach
transforming each concept of the ontology into a class in a specific programming
language, like Java or Ruby. Properties of the ontology concepts are transformed
into fields of the declared class. But even the translation of concepts of the
ontology into object-oriented software representations is not trivial, as you can
see in the discussion made in [5, 3]. None of these frameworks generate ontology
APIs on the level of granularity desired by an application developer.

Only Agogo [9] goes a different way. Agogo is a programming language inde-
pendent model driven approach for automatically generating ontology APIs. It
introduces an intermediate step based on a Domain Specific Language (DSL).
This DSL captures domain concepts necessary to map ontologies to an object-
oriented representations. To achieve full support for all these features the single
intermediate step of Agogo for ontology API generation using a DSL is not
sufficient.

The approach by Puleston et al. [10] combines so-called direct mappings and
indirect mappings of concepts to APIs. In the direct mapping, the ontologi-
cal entities are statically mapped to a corresponding Java API. In the indirect
mapping, Java classes access dynamically the external knowledge representation
encoded in OWL. Thus, one part of the knowledge exists statically in the API
structure whereas the other part of the model exists and is developed directly in
OWL. The latter allows to use background reasoning to make specific concepts
of the ontology visible to the API depending on the context of use. This work
provides a flexible access to the ontological knowledge representation. However,
it does not provide any criteria or support to decide which concepts of the on-
tology are how to be mapped to the API. Thus, unlike our approach it does not
provide criteria based on the structure and semantics of the ontology definition
how the API structure should look like and how it should behave.

Our approach bases on the experiences of the API generation frameworks
mentioned above. We use many of the mappings proposed in the literature such
as [7, 5] and apply a model-driven approach like Agogo. But to be able to gen-
erate specific APIs for multiple application scenarios, the application developer
must have full control and customization facilities on all levels of the generation
process. To achieve this, our approach suggest to introduce two different inter-
mediate step one for control and customization on ontology level and one for the
same tasks on API level.

" http://www.openrdf .org/doc/alibaba/2.0-alpha4/ last visit June 10, 2010

8 http://jastor.sourceforge.net/ last visit June 10, 2010

9 http://www.aifb.uni-karlsruhe.de/WBS/aeb/ontojava/ last visit June 10, 2010
10 http://semanticweb.org/wiki/Tripresso last visit June 12, 2010

17

Model-driven Generation of APIs for OWL-based Ontologies, Fachbereich Informatik, Nr. 7/2010

8 Conclusion

We have presented a multi-stage model-driven approach to generate application
programming interfaces (APIs) out of logics-based ontologies. In contrast to
existing tool support for generating ontology APIs, we leverage the semantics
specified in the input ontology such as cardinality, provide explicit support for
ontology design patterns, and allow for integrate existing APIs. Our generation
process makes use of the structural information in pattern-based ontologies.
It generates APIs allowing the application developers to easily integrate such
ontologies in the systems and alleviates them from the time-consuming API
development task. In our future work, we plan to provide support for integrating
and manipulating T-Box knowledge via the generated API.

Acknowledgements This research has been co-funded by the EU in FP7 in the
WeKnowlt project (215453).

References

1. Valentina Presutti Aldo Gangemi. Ontology Design Patterns. Springer, 2009.

2. Thomas Franz, Steffen Staab, and Richard Arndt. The X-COSIM integration
framework for a seamless semantic desktop. In Knowledge capture. ACM, 2007.

3. L. Hart and P. Emery. OWL Full and UML 2.0 Compared. http://uk.builder.
com/whitepapers/0and39026692and60093347p-39001028qand00.htm, 2004.

4. Luigi Tannone, Alan L. Rector, and Robert Stevens. Embedding knowledge pat-
terns into OWL. In ESWC, 2009.

5. Aditya Kalyanpur, Daniel Jiménez Pastor, Steve Battle, and Julian A. Padget.
Automatic Mapping of OWL Ontologies into Java. In SEKE, 2004.

6. C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, and L. Schneider.
WonderWeb deliverable D17. the WonderWeb library of foundational ontologies
and the DOLCE ontology. Technical report, ISTC-CNR, 2002.

7. OMG. Ontology Definition Metamodel. Object Modeling Group, May 2009. http:
//www.omg.org/spec/0DM/1.0/PDF.

8. Eyal Oren, Renaud Delbru, Sebastian Gerke, Armin Haller, and Stefan Decker.
Activerdf: object-oriented semantic web programming. In WWW. ACM, 2007.

9. Fernando Silva Parreiras, Carsten Saathoff, Tobias Walter, Thomas Franz, and
Steffen Staab. ‘a gogo: Automatic Generation of Ontology APIs. In [EEE Int.
Conference on Semantic Computing. IEEE Press, 2009.

10. Colin Puleston, Bijan Parsia, James Cunningham, and Alan L. Rector. Integrating
object-oriented and ontological representations: A case study in Java and OWL.
In International Semantic Web Conference, 2008.

11. Carsten Saathoff and Ansgar Scherp. Unlocking the Semantics of Multimedia
Presentations in the Web with the Multimedia Metadata Ontology. In WWW.
ACM, 2010.

12. Ansgar Scherp, Thomas Franz, Carsten Saathoff, and Steffen Staab. F—a model
of events based on the foundational ontology DOLCE+DnS Ultralight. In K-CAP
09, New York, NY, USA, 2009. ACM.

This article was processed using the IATEX macro package with LLNCS style

18

Bisher erschienen

Arbeitsberichte aus dem Fachbereich Informatik
(http://www.uni-koblenz-landau.de/koblenz/fb4/publications/Reports/arbeitsberichte)

Stefan Scheglmann, Ansgar Scherp, Steffen Staab, Model-driven Generation of APIs for
OWL-based Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 7/2010

Daniel Schmeil3, Ansgar Scherp, Steffen Staab, Integrated Mobile Visualization and
Interaction of Events and POls, Arbeitsberichte aus dem Fachbereich Informatik 6/2010

Rudiger Grimm, Daniel Péahler, E-Mail-Forensik — IP-Adressen und ihre Zuordnung zu
Internet-Teilnehmern und ihren Standorten, Arbeitsberichte aus dem Fachbereich Informatik
5/2010

Christoph Ringelstein, Steffen Staab, PAPEL: Syntax and Semantics for Provenance-Aware
Policy Definition, Arbeitsberichte aus dem Fachbereich Informatik 4/2010

Nadine Lindermann, Sylvia Valcarcel, Harald F.O. von Kortzfleisch, Ein Stufenmodell fiir
kollaborative offene Innovationsprozesse in Netzwerken kleiner und mittlerer Unternehmen
mit Web 2.0, Arbeitsberichte aus dem Fachbereich Informatik 3/2010

Maria Wimmer, Dagmar Liick-Schneider, Uwe Brinkhoff, Erich Schweighofer, Siegfried
Kaiser, Andreas Wieber, Fachtagung Verwaltungsinformatik FTVI Fachtagung
Rechtsinformatik FTRI 2010, Arbeitsberichte aus dem Fachbereich Informatik 2/2010

Max Braun, Ansgar Scherp, Steffen Staab, Collaborative Creation of Semantic Points of
Interest as Linked Data on the Mobile Phone, Arbeitsberichte aus dem Fachbereich Informatik
1/2010

Marc Santos, Einsatz von ,Shared In-situ Problem Solving* Annotationen in kollaborativen
Lern- und Arbeitsszenarien, Arbeitsberichte aus dem Fachbereich Informatik 20/2009

Carsten Saathoff, Ansgar Scherp, Unlocking the Semantics of Multimedia Presentations in
the Web with the Multimedia Metadata Ontology, Arbeitsberichte aus dem Fachbereich
Informatik 19/2009

Christoph Kahle, Mario Schaarschmidt, Harald F.O. von Kortzfleisch, Open Innovation:
Kundenintegration am Beispiel von IPTV, Arbeitsberichte aus dem Fachbereich Informatik
18/2009

Dietrich Paulus, Lutz Priese, Peter Decker, Frank Schmitt, Pose-Tracking Forschungsbericht,
Arbeitsberichte aus dem Fachbereich Informatik 17/2009

Andreas Fuhr, Tassilo Horn, Andreas Winter, Model-Driven Software Migration Extending
SOMA, Arbeitsberichte aus dem Fachbereich Informatik 16/2009

Eckhard Gromann, Sascha Strauf3, Tassilo Horn, Volker Riediger, Abbildung von grUML
nach XSD soamig, Arbeitsberichte aus dem Fachbereich Informatik 15/2009

Kerstin Falkowski, Jirgen Ebert, The STOR Component System Interim Report,
Arbeitsberichte aus dem Fachbereicht Informatik 14/2009

Sebastian Magnus, Markus Maron, An Empirical Study to Evaluate the Location of
Advertisement Panels by Using a Mobile Marketing Tool, Arbeitsberichte aus dem
Fachbereich Informatik 13/2009

Sebastian Magnus, Markus Maron, Konzept einer Public Key Infrastruktur in iCity,
Arbeitsberichte aus dem Fachbereich Informatik 12/2009

Sebastian Magnus, Markus Maron, A Public Key Infrastructure in Ambient Information and
Transaction Systems, Arbeitsberichte aus dem Fachbereich Informatik 11/2009

Ammar Mohammed, Ulrich Furbach, Multi-agent systems: Modeling and Virification using
Hybrid Automata, Arbeitsberichte aus dem Fachbereich Informatik 10/2009

Andreas Sprotte, Performance Measurement auf der Basis von Kennzahlen aus betrieblichen
Anwendungssystemen: Entwurf eines kennzahlengestiitzten Informationssystems fir einen
Logistikdienstleister, Arbeitsberichte aus dem Fachbereich Informatik 9/2009

Gwendolin Garbe, Tobias Hausen, Process Commaodities: Entwicklung eines
Reifegradmodells als Basis flr Outsourcingentscheidungen, Arbeitsberichte aus dem
Fachbereich Informatik 8/2009

Petra Schubert et. al., Open-Source-Software fir das Enterprise Resource Planning,
Arbeitsberichte aus dem Fachbereich Informatik 7/2009

Ammar Mohammed, Frieder Stolzenburg, Using Constraint Logic Programming for Modeling
and Verifying Hierarchical Hybrid Automata, Arbeitsberichte aus dem Fachbereich Informatik
6/2009

Tobias Kippert, Anastasia Meletiadou, Rudiger Grimm, Entwurf eines Common Criteria-
Schutzprofils fiir Router zur Abwehr von Online-Uberwachung, Arbeitsberichte aus dem
Fachbereich Informatik 5/2009

Hannes Schwarz, Jurgen Ebert, Andreas Winter, Graph-based Traceability — A
Comprehensive Approach. Arbeitsberichte aus dem Fachbereich Informatik 4/2009

Anastasia Meletiadou, Simone Muiller, Rudiger Grimm, Anforderungsanalyse fur Risk-
Management-Informationssysteme (RMIS), Arbeitsberichte aus dem Fachbereich Informatik
3/2009

Ansgar Scherp, Thomas Franz, Carsten Saathoff, Steffen Staab, A Model of Events based on
a Foundational Ontology, Arbeitsberichte aus dem Fachbereich Informatik 2/2009

Frank Bohdanovicz, Harald Dickel, Christoph Steigner, Avoidance of Routing Loops,
Arbeitsberichte aus dem Fachbereich Informatik 1/2009

Stefan Ameling, Stephan Wirth, Dietrich Paulus, Methods for Polyp Detection in Colonoscopy
Videos: A Review, Arbeitsberichte aus dem Fachbereich Informatik 14/2008

Tassilo Horn, Jirgen Ebert, Ein Referenzschema fiir die Sprachen der IEC 61131-3,
Arbeitsberichte aus dem Fachbereich Informatik 13/2008

Thomas Franz, Ansgar Scherp, Steffen Staab, Does a Semantic Web Facilitate Your Daily
Tasks?, Arbeitsberichte aus dem Fachbereich Informatik 12/2008

Norbert Frick, Kunftige Anfordeungen an ERP-Systeme: Deutsche Anbieter im Fokus,
Arbeitsberichte aus dem Fachbereicht Informatik 11/2008

Jurgen Ebert, Rudiger Grimm, Alexander Hug, Lehramtsbezogene Bachelor- und
Masterstudiengange im Fach Informatik an der Universitéat Koblenz-Landau, Campus
Koblenz, Arbeitsberichte aus dem Fachbereich Informatik 10/2008

Mario Schaarschmidt, Harald von Kortzfleisch, Social Networking Platforms as Creativity
Fostering Systems: Research Model and Exploratory Study, Arbeitsberichte aus dem
Fachbereich Informatik 9/2008

Bernhard Schueler, Sergej Sizov, Steffen Staab, Querying for Meta Knowledge,
Arbeitsberichte aus dem Fachbereich Informatik 8/2008

Stefan Stein, Entwicklung einer Architektur fir komplexe kontextbezogene Dienste im
mobilen Umfeld, Arbeitsberichte aus dem Fachbereich Informatik 7/2008

Matthias Bohnen, Lina Brihl, Sebastian Bzdak, RoboCup 2008 Mixed Reality League Team
Description, Arbeitsberichte aus dem Fachbereich Informatik 6/2008

Bernhard Beckert, Reiner Hahnle, Tests and Proofs: Papers Presented at the Second
International Conference, TAP 2008, Prato, Italy, April 2008, Arbeitsberichte aus dem
Fachbereich Informatik 5/2008

Klaas Dellschaft, Steffen Staab, Unterstiitzung und Dokumentation kollaborativer Entwurfs-
und Entscheidungsprozesse, Arbeitsberichte aus dem Fachbereich Informatik 4/2008

Rudiger Grimm: IT-Sicherheitsmodelle, Arbeitsberichte aus dem Fachbereich Informatik
3/2008

Rudiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele fiir
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik 2/2008

Markus Maron, Kevin Read, Michael Schulze: CAMPUS NEWS — Artificial Intelligence
Methods Combined for an Intelligent Information Network, Arbeitsberichte aus dem
Fachbereich Informatik 1/2008

Lutz Priese,Frank Schmitt, Patrick Sturm, Haojun Wang: BMBF-Verbundprojekt 3D-RETISEG
Abschlussbericht des Labors Bilderkennen der Universitat Koblenz-Landau, Arbeitsberichte
aus dem Fachbereich Informatik 26/2007

Stephan Philippi, Alexander Pinl: Proceedings 14. Workshop 20.-21. September 2007
Algorithmen und Werkzeuge fiir Petrinetze, Arbeitsberichte aus dem Fachbereich Informatik
25/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS — an Intelligent Bluetooth-
based Mobile Information Network, Arbeitsberichte aus dem Fachbereich Informatik 24/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS - an Information Network for
Pervasive Universities, Arbeitsberichte aus dem Fachbereich Informatik 23/2007

Lutz Priese: Finite Automata on Unranked and Unordered DAGs Extented Version,
Arbeitsberichte aus dem Fachbereich Informatik 22/2007

Mario Schaarschmidt, Harald F.O. von Kortzfleisch: Modularitét als alternative Technologie-
und Innovationsstrategie, Arbeitsberichte aus dem Fachbereich Informatik 21/2007

Kurt Lautenbach, Alexander Pinl: Probability Propagation Nets, Arbeitsberichte aus dem
Fachbereich Informatik 20/2007

Rudiger Grimm, Farid Mehr, Anastasia Meletiadou, Daniel Pahler, llka Uerz: SOA-Security,
Arbeitsberichte aus dem Fachbereich Informatik 19/2007

Christoph Wernhard: Tableaux Between Proving, Projection and Compilation, Arbeitsberichte
aus dem Fachbereich Informatik 18/2007

Ulrich Furbach, Claudia Obermaier: Knowledge Compilation for Description Logics,
Arbeitsberichte aus dem Fachbereich Informatik 17/2007

Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML Models
and OWL Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 16/2007

Rudiger Grimm, Anastasia Meletiadou: Rollenbasierte Zugriffskontrolle (RBAC) im
Gesundheitswesen, Arbeitsberichte aud dem Fachbereich Informatik 15/2007

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus
dem Fachbereich Informatik 14/2007

Bjorn Pelzer, Christoph Wernhard: System Description:“E-KRHyper", Arbeitsberichte aus dem
Fachbereich Informatik, 13/2007

Ulrich Furbach, Peter Baumgartner, Bjorn Pelzer: Hyper Tableaux with Equality,
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems,
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitaten,
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte
aus dem Fachbereich Informatik, 9/2007

Jurgen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung,
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007

Rudiger Grimm, Robert Krimmer, Nils Mei3ner, Kai Reinhard, Melanie Volkamer, Marcel
Weinand, Jorg Helbach: Security Requirements for Non-political Internet Voting,
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauf3, ,grUML — Eine UML-
basierte Modellierungssprache fiir T-Graphen“, Arbeitsberichte aus dem Fachbereich
Informatik, 5/2007

Richard Arndt, Steffen Staab, Raphaél Troncy, Lynda Hardman: Adding Formal Semantics to
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus
dem Fachbereich Informatik, 4/2007

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich
Informatik, 3/2007

Rudiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele fiir
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007

,Gelbe Reihe"
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe)

Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages.
Extended Version, Fachberichte Informatik 3-2006

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets,
Fachberichte Informatik 2-2006

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services,
Fachberichte Informatik 1-2006

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte
Informatik 16-2005

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop "Reengineering Prozesse" —
Software Migration, Fachberichte Informatik 15-2005

Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/

Reinhold Letz: FTP 2005 — Fifth International Workshop on First-Order Theorem Proving,
Fachberichte Informatik 13-2005

Bernhard Beckert: TABLEAUX 2005 — Position Papers and Tutorial Descriptions,
Fachberichte Informatik 12-2005

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and
artificial intelligence, Fachberichte Informatik 11-2005

Jurgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte
Informatik 10-2005

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies,
Fachberichte Informatik 9-2005

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering,
Fachberichte Informatik 8-2005

Benno Stein and Sven Meier zu Eil3en: Proceedings of the Second International Workshop on
Text-Based Information Retrieval, Fachberichte Informatik 7-2005

Andreas Winter and Jurgen Ebert: Metamodel-driven Service Interoperability, Fachberichte
Informatik 6-2005

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra,
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League
can benefit from each other, Fachberichte Informatik 5-2005

Torsten Gipp and Jurgen Ebert: Web Engineering does profit from a Functional Approach,
Fachberichte Informatik 4-2005

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of
Multiagent Team Behavior, Fachberichte Informatik 3-2005

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their
Applications in a Mobile Environment, Fachberichte Informatik 2-2005

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms —
Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005

http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_WeST
	Impressum
	paper (2)
	Bisher erschienen
	Bisher erschienen

