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Abstract

Specifying behaviors of multi-agent systems (MASs) is a demanding task,
especially when applied in safety-critical systems. In thelatter systems, the
specification of behaviors has to be carried out carefully inorder to avoid
side effects that might cause unwanted or even disastrous behaviors. Thus,
formal methods based on mathematical models of the system under design
are helpful. They not only allow us to formally specify the system at different
levels of abstraction, but also to verify the consistency ofthe specified sys-
tems before implementing them. The formal specification aims a precise and
unambiguous description of the behavior of MASs, whereas the verification
aims at proving the satisfaction of specified requirements.

A behavior of an agent can be described as discrete changes ofits states
with respect to external or internal actions. Whenever an action occurs, the
agent moves from one state to another one. Therefore, an efficient way to
model this type of discrete behaviors is to use a kind of statetransition dia-
grams such as finite automata. One remarkable advantage of such transition
diagrams is that they lend themselves formal analysis techniques usingmodel
checking. The latter is an automatic verification technique which determines
whether given properties are satisfied within a model underlying a particular
system.

In realistic physical environments, however, it is necessary to consider
continuous behaviors in addition to discrete behaviors of MASs. Examples of
those type of behaviors include the movement of a soccer agent to kick off
or to go to the ball, the process of putting out the fire by a fire brigade agent
in a rescue scenario, or any other behaviors that depend on any timed physi-
cal law. The traditional state transition diagrams are not sufficient to combine
these types of behaviors.Hybrid automataoffer an elegant method to capture
such types of behaviors. Hybrid automata extend regular state transition di-
agrams with methods that deal with those continuous actionssuch that the
state transition diagrams are used to model the discrete changes of behaviors,
while differential equations are used to model the continuous changes. The
semantics of hybrid automata make them accessible to formalverification by
means of model checking.
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The main goal of this thesis is to approach hybrid automata for specifying
and verifying behaviors of MASs. However, specifying and and verifying
behaviors of MASs by means of hybrid automata raises severalissues that
should be considered. These issues include the complexity,modularity, and
the expressiveness of MASs’ models. This thesis addresses these issues and
provides possible solutions to tackle them.



Zusammenfassung

Die Beschreibung des Verhaltens eines Multi-Agenten-Systems (MAS) ist
eine fordernde Aufgabe, besonders dann, wenn es in sicherheitskritischen
Umgebungen eingesetzt werden soll. Denn in solchen Umgebungen muss die
Beschreibung besonders sorgfältig ausgeführt werden umSeiteneffekte zu
vermeiden, die ungewünschte oder sogar zerstörische Folgen haben könnten.
Deshalb sind formale Methoden nützlich, die auf mathematischen Modellen
des zu entwerfenden Systems basieren. Sie erlauben es nichtnur das System
formal auf verschiedenen Abstraktionsebenen zu spezifizieren, sondern auch
seine Konsistenz noch vor der Implementation zu verifizieren. Das Ziel der
formalen Spezifikation ist eine präzise und eindeutige Beschreibung des Ver-
haltens des Multi-Agenten-Systems, während die Verifikation darauf abzielt,
geforderte Eigenschaften dieses Systems zu beweisen.

Üblicherweise wird das Verhalten eines Agenten als diskrete Änderung
seines Zustands im Bezug auf externe oder interne Aktionen aufgefasst. Jedes
mal, wenn eine Aktion auftritt, ändert sich der Zustand desAgenten. Deshalb
sind Zustandsübergangsdiagramme bzw. endliche Automaten ein naheliegen-
der Ansatz das Verhalten zu modellieren. Ein weiterer Vorteil einer solchen
Beschreibung ist, dass sie sich für das sogenannteModel Checkingeignet.
Dabei handelt es sich um eine automatische Analysetechnik,die bestimmt,
ob das Modell des Systems spezifizierten Eigenschaften gen¨ugt.

Allerdings muss in realistischen, physikalischen Umgebungen neben dem
diskreten auch das kontinuierliche Verhalten des Multi-Agenten-Systems be-
trachtet werden. Dabei könnte es sich beispielsweise um die Schussbewe-
gung eines Fussballspieler-Agenten, den Prozess des Löschen durch einen
Feuerwehr-Agenten oder jedes andere Verhalten handeln, das auf zeitlichen
physikalischen Gesetzen basiert. Die üblichen Zustands¨ubergangsdiagramme
sind nicht ausreichend, um diese beiden Verhaltensarten zukombinieren.Hy-
bride Automatenstellen jedoch eine elegante Lösung dar. Im Wesentlichen
erweitern sie die übliche Zustandsübergangsdiagramme durch Methoden, die
sich mit kontinuierlichen Aktionen befassen. Die Zustandsübergänge mod-
ellieren weiterhin die diskreten Verhaltenswechsel, während Differentialgle-
ichungen verwendet werden um das kontiniuierliche Verhalten zu beschreiben.
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Besonders geeignet erscheinen Hybride Automaten, weil ihre formale Se-
mantik die Verfikation durch Model Checking erlaubt.

Deshalb ist das Hauptziel dieser Arbeit, Hybride Automatenfür die Mod-
ellierung und die Verifikation des Verhaltens von Multi-Agenten-Systemen
einzusetzen. Jedoch bringt ihr Einsatz mehrere Probleme mit sich, die betra-
chtet werden sollten. Zu diesen Problemfeldern zählen Komplexität, Mod-
ularität und die Aussagestärke der Modelle. Diese Arbeitbefasst sich mit
diesen Problemen und liefert mögliche Lösungen.
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1

Introduction

In this Chapter, we motivate our work, outline the thesis andsummarize its
contributions.

1.1 Overview and Motivation

Multi-Agent Systems (MASs) is the subfield of Artificial Intelligence that
aims at providing principles for building complex systems involving several
interacting agents. An agent is an autonomous decision maker on behalf of
some real world entity. It is generally agreed that there is no universally ac-
cepted definition of the term agent, but the one presented in this thesis is taken
from [Wooldridge and Jennings, 1995]:

An agent is as an encapsulated computer system that is situated in
some environment, and that is capable of flexible, autonomous action
in that environment in order to meet its design objectives.

Generally, the agent acts in its environment according to a reasoning
process that relies on its internal behaviors/states and the stimulus received
thereof. An abstract relation between the agent and its environments is de-
scribed in [Russell et al., 2003]. In this abstract, the agent is seen as a reactive
component which monitors its environment through sensors and acts upon it
through effectors.

When several agents operate and interact in an environment,they form
what is called a Multi-Agent System (MAS). According to [Wooldridge.,
2002], an MAS is defined as a distributed system containing a collection
of agents that work together in order to solve problems. Agents in an MAS
should be able to interact through communication and cooperate in order to
fulfill certain tasks.



2 1 Introduction

defend

simple player

line up

attack

line up
kick off

team lost ball

team got ball

End game overgame over

line up

Fig. 1.1.A description of a simple agent as a transition diagram.

The development of MAS applications to be applied in safety-critical
systems—a critical system is a system that must satisfy critical properties,
such as safety, real-time and security properties—asks forspecifying their
behaviors cautiously in order to avoid side effects that might bring about un-
wanted or even disastrous behaviors. To tackle this challenge, the use of rig-
orous techniques in specification and analysis of the MASs isrequired. For
this purpose, formal techniques based on mathematical models of the system
under design are helpful. They allow not only us to formally specify the sys-
tem at different levels of abstraction, but also to analyze the consistency of the
specified systems before implementing them. The formal specification aims
at presenting a precise and unambiguous behavior description of an MAS,
whereas the formal verification looks at proving the compliance with speci-
fied requirements.

An agent behaves with respect to the occurrence of external or internal
actions. Whenever an action occurs, the agent moves from onestate to an-
other. Therefore, an efficient way to model agents’ behaviors is to use state
transition diagrams. Fig. 1.1 shows the behavior of a simpleabstract agent
playing soccer modeled as a state transition diagram. Formally, a state tran-
sition diagram is defined by a set of states and a set of possible transitions.
Each transition is labeled by the name of an action or event whose occurrence
triggers the change of state.

One remarkable advantage of state transition diagrams is that they allow
for formal analysis usingmodel checkingtechniques [Clarke et al., 1999].
Model checking is an automatic verification technique, which determines
whether given properties of a system are satisfied by a model described as
a transition system. A model checker takes both a model and a property spec-
ified by using temporal logics and automatically checks either whether the
property is correct or a counter-example falsifying that property.



1.1 Overview and Motivation 3

Although state transition diagrams can describe the discrete behaviors of
agents in terms of how the agents act in certain scenarios, itis necessary to
consider continuous behaviors too. Examples of such types of behaviors in-
clude the movement of a robot to kick off or to go to the ball, the process of
putting out the fire by a fire brigade agent in a rescue scenario, the approach-
ing of a train to a gate controlling a road intersection, or any other behaviors
that depend on any continuous physical law. This asks for a method that can
capture both types of behaviors.Hybrid automata[Henzinger, 1996] offer an
elegant method to model such types of behaviors. They integrate differential
equations within regular state transition diagrams. The state transition dia-
grams are used to model the discrete changes of the agents’ behaviors, while
differential equations are used to model the continuous changes. The seman-
tics of hybrid automata make them accessible to formal verification by means
of model checking. Thus, it is possible to prove desirable features and the
absence of unwanted properties for those systems, which aremodeled using
hybrid automata. Hybrid automata cannot only be used to specify behaviors
of MASs, but also to prove their properties.

Specifying and verifying behaviors of MASs by means of hybrid au-
tomata, however, reveal several issues that should be takeninto consideration.
The first issue deals with the main challenge of applying model checking to
MASs. Within hybrid automata, the team of agents is described as concurrent
automata. It is known that the major problem in applying model checking is
the potential combinatorial explosion of the state space arising from analyz-
ing concurrent systems. The problem becomes more complex when permit-
ting continuous dynamics within systems. This is why a modelchecker keep
tracks not only of the part of the explored state space, but also of the timing
and continuous evolution associated with each state, whichis time and spac-
consuming. This requires techniques that help to cope with this problem.

Another important issue deals with the modularity of hybridautomata
models. Hybrid automata lack support for modularity being an important as-
pect when we model complex MASs containing similar sub-systems. There-
fore, the description of the internal behavior of each agentas well as the
external interactions among agents are equally visible andare considered to
be at the same level of abstraction. Models of MASs can be cluttered and il-
legible as a result. This asks for structured and systematicmethods to support
modularity and to analyze the behaviors of complex systems.

A further issue deals with the expressiveness of hybrid automata to spec-
ify behavior of MASs. When the behaviors of agents are definedusing hybrid
automata, their decision making relies on the evolution of the continuous dy-
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namics. However, there are still favorable situations for agents to make deci-
sions depending on some utility/payoff functions, e.g. shortest distance, max.
or min. values that might appear during the continuous evolution of agents.
Neither hybrid automata nor their support tools can model such type of be-
haviors.

An additional issue deals with the expressiveness of the standard tools
of hybrid automata to specify and verify those properties ofMASs that de-
pend on the occurrences of events. The importance of events stems from their
ability to not only construct the overall model of an MAS through the com-
position of agents, but also to reason about behaviors of theMAS through
communication among agents. The standard tools of hybrid automata, e.g.
Hytech [Henzinger et al., 1997] and PHAVer [Frehse, 2005], provide little
support to verify properties of events directly. In order todo so, these tools
have to indirectly re-specify those properties into an acceptable form to the
verification engine in a way that may add further complexity to the original
model. Let us assume that one wants to specify and prove that whenever an
agent sends a request, it will be acknowledged withint time units in a model
M of an MAS. A typical solution to verify this with standard hybrid automata
tools is to translate the previous specification into a modelA. Then, the orig-
inal goal to verify the specification is to check whether the parallel model of
A andM can reach a designated state ofA. It is an advantage if one can verify
such types of properties directly from the original model without the process
of composition.

1.2 Contributions

The expected main contribution of this thesis is to approachhybrid automata
for specifying and verifying behaviors of MASs and to provide ways for ad-
dressing the challenging issues, which have been previously mentioned. More
precisely, this thesis provides a novel framework to specify and to verify
MASs based on hybrid automata. The framework presents an approach that
addresses the complexity raised by the composition of agents by construct-
ing the composition of agents’ behaviors dynamically during the verification
process such that the only necessary parts of state space areconsidered.

Additionally, the framework presents a novel variant of temporal logics,
called RCTL (Region Computation Tree Logic) which extends CTL in or-
der to specify both qualitative and quantitative properties of systems under
consideration.
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The thesis provides various aspects to extend hybrid automata. Firstly, the
thesis presents a slight extension to hybrid automata allowing agents to have
control over their behaviors in a way that they can react to the change of the
environment based on their preferences. Secondly, in orderto cope with com-
plex multi-agent structures, the thesis shows how to integrate the hierarchical
notations of UML statecharts together with the formal semantics of hybrid
automata. This integration is advantageous. On the one hand, hierarchical no-
tations allow specifying MASs with different levels of abstraction. On the
other hand the formal semantics of hybrid automata allow foranalyzing the
behaviors of those MASs.

Graphical modeling languages are used extensively to specify behaviors
of systems, particularly MASs. Although they do not requireexperts and are
favored by a lot of users, they provide little support for formal analysis of
those systems. For bridging this gap, the thesis proposes touse graphical
notations for specifying behaviors of MASs and formal verification to support
analysis of those MASs.

1.3 Publications

Almost results presented in this thesis have already been published in the
proceedings of various international conferences, workshops and in a book.
The following is a full list of these publications.

• Mohammed, A. and Furbach, U. (2010a). Extending CTL to Specify
Quantitative Temporal Requirements. In Sopena, J. G. and l.Capel-
Tunon, M., editors, In Proceedings of the 8th InternationalWorkshop on
Modeling, Simulation, Verication and Validation of Enterprise Informa-
tion Systems, MSVVEIS 2010, pages 70–79, Funchal, Madeira,Portugal.
INSTICC PRESS. Held in conjunction with 11th InternationalConfer-
ence on Enterprise Information Systems (ICEIS 2010).

• Mohammed, A. and Furbach, U. (2010b). Multi-agent systems:model-
ing and verification using hybrid automata. In Lars Braubach, J.-P. B. and
Thangarajah, J., editors, Post-Proceedings of 7th International Workshop
on Programming Multi-Agent Systems at 8th International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems, LNAI5919,
pages 49–66. Springer, Berlin, Heidelberg.

• Mohammed, A., Furbach, U., and Stolzenburg, F. (2010). Multi-robot sys-
tems: Modeling, specification, and model checking. In Papic, V., editor,
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Robot Soccer, chapter 11, pages 241–265. IN-TECH.

• Schwarz, C., Mohammed, A., and Stolzenburg, F. (2010). A tool environ-
ment for specifying and verifying multi-agent systems. In Filipe, J., Fred,
A., and Sharp, B., editors, Proceedings of the 2nd International Confer-
ence on Agents and Articial Intelligence, volume 2, pages 323–326. IN-
STICC Press.

• Mohammed, A. and Schwarz, C. (2009). Hieromate: A graphicaltool
for specification and verification of hierarchical hybrid automata. In B.
Mertsching, M. H. and Aziz, Z., editors, KI 2009: Advances inArticial
Intelligence, Proceedings of the 32nd German Conference onArticial In-
telligence, LNAI 5803, pages 695–702.Springer.

• Mohammed, A. and Furbach, U. (2009). From reactive to deliberative
multi-agent planning. In Ultes-Nitsche, U., Moldt, D., andAugusto, J. C.,
editors, In Proceedings of the 7th International Workshop on Modelling,
Simulation, Verication and Validation of Enterprise Information Systems,
MSVVEIS 2009, pages 67–75, Milan, Italy. INSTICC PRESS. Held in
conjunction with 11th International Conference on Enterprise Informa-
tion Systems (ICEIS 2009).

• Mohammed, A. and Stolzenburg, F. (2008). Implementing hierarchical
hybrid automata using constraint logic programming. In Schwarz, S., ed-
itor, Proceedings of 22nd Workshop on (Constraint) Logic Programming,
pages 60–71, Dresden. University Halle Wittenberg, Institute of Computer
Science. Technical Report 2008/08.

• Mohammed, A. and Furbach, U. (2008a). Modeling multi-agentlogistic
process system using hybrid automata. In Ultes-Nitsche, U., Moldt, D.,
and Augusto, J. C., editors, In Proceedings of the 7th International Work-
shop on Modelling, Simulation, Verication and Validation of Enterprise
Information Systems, MSVVEIS 2008, pages 141–149, Barcelona, Spain.
INSTICC PRESS. Held in conjunction with 10th InternationalConfer-
ence on Enterprise Information Systems (ICEIS 2008).

• Mohammed, A. and Furbach, U. (2008b). Using CLP to model hybrid sys-
tems. In Proceedings of Annual ERCIM Workshop on ConstraintSolving
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Programming (CSCLP2008), Rome, Italy. Published online http://pst.istc.cnr.it/CSCLP08/program/index.ht

1.4 Structure of the Thesis

The rest of the thesis is organized as follows:

Part I

Chapter 2 provides introductory material on hybrid automata.
Chapter 3 shows how to use hybrid automata to model behaviorsof

MASs. It demonstrates that by modeling an MAS scenario that follows a
standard interaction protocol. With one of the standard model checkers of hy-
brid automata, the Chapter shows how several properties about this scenario
can be investigated. The contribution of this Chapter has been published in
[Mohammed and Furbach, 2008a].

Part II

Chapter 4 discusses the syntax and semantics of the new proposed approach,
which aims at constructing behaviors of MASs on-the-fly during the verifica-
tion phase. The Chapter also shows how to implement the proposed approach
using constraint logic programming. The main core of this Chapter has been
published in [Mohammed and Furbach, 2010b; Mohammed et al.,2010]. An
early implementation of the model has been published in [Mohammed and Furbach,
2008b; Mohammed and Stolzenburg, 2008].

Chapter 5 introduces the syntax and semantics of the quantitative temporal
logic RCTL. It demonstrates how several RCTL requirements can be verified
using the model presented in Chapter 4. In addition, the Chapter surveys the
other quantitative temporal logics related to RCTL. The contribution of this
Chapter has been published in [Mohammed and Furbach, 2010a].

Chapter 6 evaluates the proposed approach with several standard exam-
ples taken from the context of hybrid automata. The Chapter refers to those
works that are related to our proposed approach as well. The main results of
this Chapter are presented in [Mohammed and Furbach, 2009a].

Part III

Chapter 7 shows that hybrid automata can be used as a conceptual model
for planning the behavior of MASs. The Chapter focuses on thekey rela-
tion between planning problems and model checking. Furthermore, it looks
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at extending the decision making of the hybrid automata models to contain
preferences of agents. The main contribution of this Chapter has been pub-
lished in [Mohammed and Furbach, 2009a].

Chapter 8 presents an approach to extend hybrid automata with hierar-
chical notations. It discusses the formal syntax and semantics of this exten-
sion. It also implements a prototype of this approach using constraint logic
programming. Furthermore, the Chapter supports the evaluation of this ap-
proach with several examples and discusses other related work. The contri-
bution of this Chapter is presented in [Mohammed and Stolzenburg, 2008;
Mohammed et al., 2010].

Chapter 9 presents a tool environment that integrates the implementations
of those models which are presented in Chapter 4 and 8. This tool aims at sim-
plifying the specification process by incorporating graphical notations within
the models. The Chapter demonstrates the tool on an MAS scenario taken
from the Robocup Rescue. Additionally, the Chapter shows other work re-
lated to this tool. The contribution of this Chapter has beenpublished in
[Mohammed and Schwarz, 2009; Schwarz et al., 2010].

Part IV

Chapter 10 summarizes the thesis and shows some futures work.



Part I

Background
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Background literature

This chapter displays background material on hybrid automata.

2.1 Introduction

Reactive systemsare coined in [Harel and Pnueli, 1985] to describe those sys-
tems that react to inputs from an environment by generating corresponding
responses. Typical examples of such systems include on-line interactive sys-
tems, such as automatic teller machines (ATMs) and flight reservation sys-
tems; computer-embedded systems, such as automotive and telecommunica-
tion systems; and control systems, such as chemical and manufacturing sys-
tems.

A special class of systems which belongs to reactive systemsis the class
of real-time systems. In such systems, the reaction to a certain stimulus should
be done within given time bounds. For example, a gate controlling a rod cross-
ing tracks of trains should be forced to close the rod within reasonable time
during the approaching of any train.

Another important class of systems which belongs to reactive systems is
the class of those systems which react to their environment according to the
evolution of their own physical rules. Such types of systemsare known as
Hybrid systems. A hybrid system is defined as a reactive system consisting of
continuous and discrete components [Olderog and Dierks, 2008]. The contin-
uous components are time-dependent physical variables ranging over a con-
tinuous value set, like speed, temperature, pressure or position. The discrete
components are controllers that alter the physical variables in a desired way.
An example for such type of hybrid systems is a heating systemwhose objec-
tive is to keep the room temperature within certain limits. Real-time systems
can be considered as hybrid systems with at least one continuous variable
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Real−time Systems

Reactive Systems

Hybrid Systems

Fig. 2.1.Classes of systems

representing time. Real-time systems are often obtained asabstractions of the
more detailed hybrid systems. The main relation between reactive systems
and their special classes are summarized in Fig. 2.1 [Olderog and Dierks,
2008].

Reactive systems often appear in safety-critical applications where fail-
ure is unacceptable. Therefore, they must be carefully designed with a high
degree of precision. For this purpose, the use of rigorous formal methods in
specification and verification of such systems are helpful.

When formal methods are taken in consideration to specify and verify
reactive systems, the classes of Fig. 2.1 are reversed, as shown in Fig. 2.2. One
can conclude that formal methods of hybrid systems can be used as general
methods to analyze real-time systems as well as reactive systems. We will
concentrate on the formal methods of hybrid systems.

Formal methods provide ways to formally specify and verify systems.
Specification is the process of describing a particular system and its desired
requirements/properties. Formal specification is a technique using a language
with a mathematically defined syntax and semantics. A formalspecification
of a system can help to obtain a better description and understanding of sys-
tems’ abstraction. Formal verification provides an analysis method to verify
the behavior of systems regarding their compliance with requirements.

Hybrid automataare mathematical formalisms that can formally capture
the behavior of hybrid systems. Their formal semantics allows us to prove
desirable features and the absence of unwanted properties in the specified
systems. In the following, we will concentrate on hybrid automata as a formal
model of specifying systems.
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methods for

methods for

reactive systems

hybrid systems

methods for real−time systems

Fig. 2.2.Formal methods for systems

The rest of this chapter is organized as follows: Sec.2.2 provides a back-
ground on hybrid automata and their classes. Sec.2.3 brieflyintroduces reach-
ability analysis as an automatic approach for verificationsof hybrid automata.

2.2 Hybrid Automata

It is generally agreed that finite automata are a natural medium to describe
dynamic behaviors of reactive systems. They are not sufficient to model real-
time or continuous dynamical systems. Therefore, finite automata have been
extended in ways to integrate the real-time or continuous dynamics. The most
successful model of real-time systems is the timed automata[Alur and Dill,
1994]. Timed automata are finite automata equipped with a finite number of
variables/clock representing time. The most successful model or hybrid sys-
tems are hybrid automata—they are also a natural generalization of timed
automata—in which the finite automata are equipped with variables that rep-
resent the dynamical parts of systems.

x= M x= m

x= M

i:x≤ Mi:x≥ m

f: ẋ=−Kx

q1 q2turn on

turn off
f: ẋ= K(h−x)

Fig. 2.3.A simple hybrid automaton.
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2.2.1 What is Hybrid Automaton ?

A hybrid automaton [Henzinger, 1996] is a formal model to describe reac-
tive systems with discrete and continuous components. A hybrid automaton
H = (X,Q,Flow, Inv, Init ,E,Jump,∑,sync) consists of the following compo-
nents:

• A finite setX = {x1,x2, ...,xn} of real-valued variables that represent the
continuous dynamics.

• A finite set Q of control locations or modes. It should be noted that in
the classical automaton, these control locations are called states; however,
that term is defined differently for hybrid automata.

• Flow (continuous activity) is a labeling function that assigns to each con-
trol location q ∈ Q a flow conditionsFlow(q) whose free variables are
fromX∪ Ẋ, where the dotted variableṡX= {ẋ1, ẋ2, ..., ẋn} denote the first
derivative of the variablesX. When the control of hybrid automaton is
in a locationq, the variables evolve according to differentiable functions
which satisfy the flow conditionFlow(q).

• An invariantInv is a labeling function that assigns to each control location
q∈ Q an invariant conditionInv(q) whose free variables are inX.

• A labeling functionInit that assigns to each control locationq ∈ Q an
initial condition Init (q) whose free variables are fromX.

• E ⊆ Q× Q is a finite set of discrete transitions– also called control
switches– among control locations. Each transition(q1,q2) ∈ E has a
source locationq1 and target locationq2.

• An edge labeling functionJumpthat assigns a jump condition– also called
guard action– jump(e) to each transitione ∈ E. The jump condition
jump(e) is a predicate whose free variables are fromX∪X′, where the
primed variablesX′ = {x′1,x

′
2, ....,x

′
n} are used to represent values at the

conclusion of discrete change.Consequently, any jump condition relates
the values of the variables before a discrete transition to the possible val-
ues after the discrete transition.

• A finite set ∑ of events which are used to synchronize concurrent au-
tomata.

• A labeling functionsync:E → ∑ that assigns to each transitione∈ E an
event.

A hybrid automaton can be represented graphically, as a state diagrams of
a finite state automaton augmented with flows, invariants, and jumps. Each lo-
cationq is drawn as a circle or rectangle shape labeled with a name. Through-
out this thesis, locations are drawn conventionally as rectangles with rounded
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corners. Furthermore, inside each locationq, both the invariantInv(q) and
the flow Flow(q) are labeled with the symbolsi: and f: respectively. Set-
ting an invariant in a locationq to be true—i.e. i: true in the graphical
representation—means that the invariant is always achievable at that loca-
tion. On the other hand, setting flow to betrue—i.e. f: true means that noth-
ing changes continuously. An edgee= (q1,q2)∈E is represented graphically
as an arrow from locationq1 to locationq2 labeled with the jump condition
and the action event. We use guarded assignments to represent jump condi-
tions; for example, assuming we have only a variablex. If the jump condi-
tion x = 10,x := 0 is declared on a transition, it stands for the jump con-
dition x = 10∧ x′ = 0. On the other hand, the jump condition of the form
x= 10,x := x stands for the jump conditionx= 10∧x′ = x, which means that
the value ofx does not change before and after the discrete transition. Hence,
we omit this type of assignments in the graphical representation.

Let us give an example of a hybrid automaton. Consider the hybrid au-
tomaton of Fig. 2.3, which models a thermostate. This hybridautomaton con-
sists of two locationsq1 andq2, and the variablex, which evolves under the
differential equations ˙x = −K · x in locationq1, whereas evolves under dif-
ferential equations ˙x = K(h− x) in locationq1 for some constantsK andh.
The invariant associated with the locationsq1 andq2 arex ≥ m andx ≤ M
respectively for some predefined constantmandM. The initial location of the
automaton starts inq1 with x=M. There are two edges fromq1 to q2 and vice
versa with guardsx= m andx= M respectively. In addition, the two edges
are annotated with the eventsturn on andturn off.

The behavior of the thermostate automaton starts in location q1, at which
the heater is off. The temperaturex decreases linearly proportionally toK.
The heater stays off as long as the temperature exceeds the minimumm. When
the temperature drops tom, the invariant for staying in off (x≥m) is violated,
and the conditionx=mon the state transition labeled withturn on is met and
the control of the automaton jumps to the locationq2. In the later location,
the heater stays on as long as the temperature does not exceedthe maximum
M. As soon as the invariant condition is violated, the thermostat switches the
heater off again and returns to locationq1.

A run of a hybrid automaton starts from an initial state, and consists of
infinite sequences of states, where the transition from one state to another
state follows one of the following transitions:

- Discrete transitions corresponding to instantaneous transitions between
control locations.
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- Flow transitions corresponding to the continuous evolution of the system at
a particular control locationq according to the dynamics specified by the
Flow(q).

2.2.2 Automata Composition

Hybrid systems typically consist of several components that operate concur-
rently and communicate with each other. Each component can be described
as a hybrid automaton. The component automata coordinate their behav-
iors through shared variables and synchronization labels.The automaton that
models the entire system is obtained from the component automata using a
product construction.

Formally, let H1 = (X1,Q1,Flow1, Inv1, Init1,E1,Jump1,∑1,sync1) and
H2 = ( X2, Q2, Flow2, Inv2, Init2, E2, Jump2, ∑2, sync2 ) be two hybrid
automata. The product automatonH1×H2 is a hybrid automatonH = ( X1

∪ X2, Q1 × Q2, Flow, Inv, Init , E, Jump, ∑1 ∪ ∑2, sync) with the following
restrictions:

• The flow Flow(q) of each product locationq = (q1,q2) ∈ Q1 ×Q2 is
Flow1(q1)∧Flow2(q2).

• The invariantInv(q) of each product locationq = (q1,q2) is Inv1(q1)∧
Inv2(q2).

• Initial condition Init (q) is Init1(q1)∪ Init2(q2).
• Each transitione= ((q1,q2),(q′1,q

′
2)) ∈ E if

1. e1 = (q1,q′1) ∈ E1, q2 = q′2, andsync1(e1) /∈ ∑2; or
2. e2 = (q2,q′2) ∈ E2, q2 = q′2, andsync2(e2) /∈ ∑1; or
3. e1 = (q1,q′1) ∈ E1,e2 = (q2,q′2) ∈ E2, andsync1(e1) = sync2(e2).

2.2.3 Classes of Hybrid Automata

In the literature of hybrid systems there are different classes of hybrid au-
tomata, depending on the type of continuous dynamics of the systems. For
each class of dynamical laws, we obtain a class of hybrid automata. In the
following we some of these important classes.

Linear Vs. Non-linear Hybrid Automaton

A linear expressionover a setX of real valued variables is a linear combina-
tion of variables fromX with rational coefficients. Alinear inequalityoverX
is an inequality between a rational constant and a linear expression. Aconvex
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linear predicateoverX is a finite conjunction of linear inequalities overX. A
linear predicateis a finite disjunction of convex linear predicates.

A hybrid automatonH is called linear hybrid automaton [Alur et al.,
1994] if it satisfies the following two requirements:

1. For each control location and each discrete transition, the flow, the invari-
ant, the initial, and jump conditions are convex linear predicates.

2. For each control locationq∈Q, the flow conditionFlow(q) is a predicate
over the variables iṅX only—i.e. does not contain any variables fromX.

A linear hybrid automata is calledsimpleif the invariants and jump conditions
are of the formx≤ k or x≥ k, and all assignments are of the formx := k or
x := x, for a variablex∈ X and an integer constantk.

When the flow conditionFlow(q) includes a predicate over both vari-
ables inẊ andX, a hybrid automaton is callednon-linear hybrid automata
[Henzinger et al., 1998b]. For example, the automaton of Fig. 2.3 is a non-
linear hybrid automaton as it contains a flow of the form ˙x=−K ·x.

Discrete automaton

A variablex∈X is called adiscrete variable, if its flow is of the formẋ= 0 in
each control locationq∈ Q. Thus, a discrete variable changes only when the
control location changes. ADiscrete automatonis a linear hybrid automaton
of whose variables are discrete.

Timed and Multirate Automaton

For a linear hybrid automatonH, A variablex∈X is called askewed clockif
at every control location, the flow ofx is determined by differential equation
of the formẋ= k for a nonzero integerk, and on each transitione∈E implies
x′ = 0 orx′ = x; that is, the value of the variablex always increases uniformly
with time at some fixed rate, and each transition either resets x to 0, or leaves
it unchanged. A variablex∈X is called aclock if it is skewed clock with flow
of the form ẋ = 1. A linear hybrid automatonH is calledtimed automaton
[Alur and Dill, 1994] when the following hold:

1. Each variablex∈X is a clock.
2. All invariants and jump conditions are combinations of simple inequali-

tiesx1 ⋊⋉ c or x1−x2 ⋊⋉ c, wherex1,x2 ∈X, c is a nonnegative integer and
the operator⋊⋉∈ {<,≤,=,≥,>}.

A linear hybrid automatonH is calledmultirate automaton[Alur et al.,
1994] if each variablex∈X is a skewed clock.
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Rectangular Hybrid Automaton

A rectangular inequality over real valued variablesX is a formulax⋊⋉ c, where
c is an integer constant, and⋊⋉ is one of{<,≤,≥,>}. A rectangular predi-
cateoverX is a conjunction of rectangular inequalities.

A Rectangular Automatonis a hybrid automaton, in which all the initial
conditions, invariants, flows, and jump conditions are rectangular predicates
whose flow conditions refer only to variables iṅX. Thus, each continuous
variablex ∈ X satisfies nondeterministic differential equationa ≤ ẋ ≤ b—
also written as ˙x= [a,b]—wherea andb are integer constants.

It is worth mentioning that adding several restrictions to arectangle au-
tomaton can lead to further subclasses. A simple form of a rectangular au-
tomaton can be obtained from adding rectangular flow to a simple linear
hybrid automaton. Aninitialized rectangular automaton[Henzinger et al.,
1998a] can be obtained from rectangular automaton providedthe following
constraints are met: if each edgee= (q1,q2) and for allx∈X flowing in both
q1 andq2, then the value ofx is nondeterministically reinitialized.

2.3 Reachability of Hybrid Automata

Automatic verification through model checking [Clarke et al., 1999] has been
proven as a powerful technique for verifying finite-state systems.Reachabil-
ity analysisis a variant of model checking, which amounts to compute itera-
tively all the reachable states of the systems from an initial state until reaching
a fixed point. This can be done either enumeratively or symbolically. Reach-
ability analysis has been motived to prove safety property;that is verifying
that somethingbadnever happens in a model underlying some systems. This
property is encoded as: can a bad state be reached from an initial state by ex-
ecuting a model ? Technically, reachability analysis of a certain model can be
performed by either forward or backward reachability. Forward reachability
starts with an initial stateI and checks if a run exists which can reach a target
T. Backward reachability starts in a targetT, and checks if a run exists which
can reach to the the initial stateI .

Recently reachability analysis of model checking has been extended to
deal with hybrid systems. Thedecidability problemof such systems is one of
the central issues. Given a class of hybrid systems, the decidability problem
is to determine whether a certain property can be verified by an algorithm
that terminates in a finite number of steps. Decidability is not an issue in the
verification of purely finite state systems, since in the worst case the veri-
fication can be performed by exhaustively searching the whole state space.
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In the case of hybrid systems, the decidability is a criticalissue in algorith-
mic analysis because of the unaccountability of the state space. Although
the reachability problem of hybrid automata is undecidable, there are several
classes for which the reachability is decidable. In [Alur and Dill, 1994], the
first decidability result for hybrid automata has been obtained for timed au-
tomata. In [Alur et al., 1994], it has been proven that the reachability problem
overmultirate automatais not decidable in general. By imposing a restriction
on dynamics by what so calledsimplicity condition— i.e. the invariants and
jump conditions are of the formx ≤ k or x ≥ k, and all assignments are of
the formx := k or x := x, for a variablex ∈ X and an integer constantk—
decidability for reachability problem can be achievable. In [Kopke, 1996], it
has been also proven that the reachability of rectangular hybrid automata is in
general undecidable, but it has been shown that the reachability of initialized
rectangular automata is decidable.

Although the reachability problem for linear hybrid automata is undecid-
able, there are some algorithms for the analysis of time automata that have
been extended to obtain semi-decision procedures for solving the verifica-
tion problem of linear hybrid automata [Alur et al., 1994]. In order to analyze
the behavior of nonlinear hybrid automata, there are techniques that approxi-
mate the non-linear linear hybrid automata with linear ones[Henzinger et al.,
1998b]. Hytech [Henzinger et al., 1997] and PHAVer[Frehse,2005] are ex-
amples of model checking tools supporting the previous procedures.





3

Multi-agent Scenario as Hybrid Automata

This chapter illustrates the use of hybrid automata to specify behaviors of
Multi-agent systems (MASs). It describes a simple MAS scenario taken from
the transportation logistic domain. The communication among the agents
follows a well-known standard agent interaction protocol.With the help of
Hytech, a standard model checker for hybrid automata, several properties of
the MAS can be investigated. The contribution of this chapter has been pre-
sented in [Mohammed and Furbach, 2008a].

3.1 Introduction

The increasing interest in Multi-Agent Systems (MASs) has led to the devel-
opment of new modeling languages and methodologies—a survey of those
efforts are presented in [Wood and DeLoach, 2001]. The main purpose of
these modeling languages is to offer notations to developers that are used to
analyze, design, and implement MASs. In fact, most of thesesmethodologies
have emerged from Unified Modeling Language [UML, 2009]. Among those
methodologies, Agent UML [Bauer et al., 2001] has gained wide acceptance
to model MASs. Agent UML basically extends UML with specific features
including the sequence diagram, which has been chosen by theFoundation
for Intelligent Physical Agents association (FIPA) [FIPA,2002] as an accept-
able standard language to model interactions among agents or what is the
so-called Agent Interaction Protocol (AIP). Currently, one of the key features
of any agent-based product has to be FIPA-compliant. For this aim, people
working on agent development tools and libraries increasingly interested in
offering the possibility to realize FIPA-compliant agent-based products.

Although methodologies of MASs are clear to understand and easy to de-
velop, they are unable to verify the properties of MASs because of their lack
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of formal semantics or their ambiguous and vague semantics.To cope with
this limitation, formal modeling approaches are helpful. Ideally, formal mod-
eling approaches based on state transition diagrams can specify behaviors of
MASs. This is because behaviors of an agent can be described as the discrete
changes of its internal states with respect to an internal orexternal stimu-
lus. In realistic physical environments, it is necessary tonot only consider
the discrete changes of the behaviors of the agent, but also their continuous
changes. Therefore, hybrid automata are a suitable framework to capture both
types of changes in a way that the discrete changes are modeled using a di-
alect of state transition diagrams, e.g. finite state machine, or finite automata,
while the continuous changes are modeled using differential equations. Hy-
brid automata are equipped with formal semantics that make them accessible
to formal validation of modeled behaviors. Thus, it is possibly to prove desir-
able features as well as the absence of unwanted properties for the modeled
behavior automatically with the help of model checking methods.

To this end, this chapter aims at showing that an MAS, compliant to a
standard agent interaction protocol, can be modeled using hybrid automata.
In particular, the Chapter shows a model of an MAS scenario ina logistic
process. Each agent involved in the scenario is described asa hybrid automa-
ton and the communication between agents is represented using shared vari-
ables and synchronization labels. By using the formal verification of hybrid
automata, several properties can be proven within the model. To do so, we
use Hytech [Henzinger et al., 1997], a standard model checker of hybrid au-
tomata.

The rest of this chapter is organized as follows: Sec.3.2 describes the lo-
gistic scenario. Sec.3.3 describes the model of MAS in termsof hybrid au-
tomata. Finally, Sec.3.4 shows the formal verification of the model by means
of model checking. Sec.3.5 shows related works.

3.2 Autonomous Logistic Processes

Getting the right products to the right place in time are the requirements in
logistics. Nevertheless, with highly dynamic markets and increasingly com-
plex logistic networks, it is becoming more and more difficult to meet these
standards with conventional methods of planning and control. In future, as-
pects such as flexibility, adaptability and reactivity willbe of primary impor-
tance. The paradigm of autonomous logistic processes [Scholz-Reiter et al.,
2004] addresses these aspects by decentralizing logistic control to single lo-
gistic entities, e.g. freight items, transport containers, means of transport, or
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storage facilities. Therefore, autonomous logistic processes aim at managing
logistics in a highly distributed way by transferring decision-making compe-
tencies to the logistic entities. MASs-engineering is an adequate and promis-
ing technique to implement the autonomous logistic process[Gehrke et al.,
2006]. Logistic entities as well as secondary logistic services, e.g. traffic in-
formation, route planning and service brokerage, are represented by software
agents interacting with each other to coordinate the logistic process. Agent
communication and coordination follows standards defined by FIPA using
Agent Communication Language (ACL) and interaction protocols for spe-
cific agent conversations. In what follows, we will describean MAS in a
logistic scenario and show how this can be modeled with hybrid automata.

3.2.1 Scenario Description

The MAS scenario constitutes four agents, namelycargo, environment, and
two trucks. Thecargohas the objective to be transported to a certain destina-
tion. Thetrucksmay offer transportation service. Additionally, the environ-
ment agent represents an external disturbance to the transportation process.
In the following, we will discuss the scenario in more details.

Initially, the cargo tries to contact the two trucks requesting for the trans-
portation service. The two trucks are located in two different cities. When the
cargo calls for a proposal, it supplies the trucks with information including
destination point of the shipment and its due time. Onces each truck receives
the call for proposal, it evaluates and estimates this request according to de-
cision criteria—e.g. its speed limit, distance to destination and the deadline
of delivery. The reason behind the estimation process is to know, whether the
truckcan provide the transportation under certain restrictions. If any truck can
offer transportation, it accepts the proposal and initiates its intended price. In
case thecargo received multiple proposals from trucks, it makes a contract
with the truck, which provides the lowest price.

Once a contract is made, thetruck begins the process of transportation.
In the later case, thetruck may be exposed to some environment condi-
tions; that is, un-anticipated environmental interactions such as traffic or bad
weather occurs. For simplicity, we will use two different environment condi-
tions namely bad and good conditions. These conditions simply simulate the
change of the environment in a way that influences the speed ofthe truck.
Thetruck slows down to its minimum limit, whenever it is subjected to abad
condition environment, whereas it accelerates to its maximum limit, when-
ever environment conditions are good. The effect of the environment is seri-
ously limited in this way. In reality, these conditions are more complex than
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Fig. 3.1.FIPA contract net protocol.

our scenario. In a more realistic model of the environment, astochastic char-
acterization of disturbances would be used. Stochastic models, however, go
beyond the expressiveness of current framework of hybrid automata.

At the end of the transportation process, thetruck reports its delivery time
with comparison to the due time. Therefore, if thetruck delivered the ship-
ment after the deadline, it informs thecargowith failure in the transportation;
otherwise, it informs thecargo that the transportation was successful.

The previous scenario can be modeled using FIPA contract netprotocol
[FIPA, 2002], as it is shown in Fig. 3.1. In this protocol, theinitiator and
participant represent thecargoandtruck respectively. The vertical lines rep-
resents the time threads from up to down. The arrows reflect the communi-
cation between the initiator and the participant. Each arrow is annotated with
a communication message. Additionally, the number attached to any arrow
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indicates the number of participants in the message. As we previously men-
tioned that FIPA specification gains widely acceptance in modeling MASs es-
pecially for representing the interactions among the agents. It lacks, however,
from proving certain properties of its model. In addition, FIPA specifications
are unable to specify the internal behavior of the agent, andconsequently suf-
fer from the absence of decision making, which is crucial in MASs. There-
fore, we intend in the next section to model the previous scenario using hybrid
automata, and with the help of model checking we check certain features.

3.3 Model Specification

In this section, we show how to model the MAS scenario as concurrent hybrid
automata. Each automaton represents an agent in the scenario. truck, cargo,
and environment disturbance automata will be described in the following sub-
sections in more details.
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Fig. 3.2.Truck automaton.

Truck Automata

Fig. 3.2 depicts the model a truck as a hybrid automaton. In the scenario,
there are two trucks having the same behaviors, but with different capabilities
including the speed, total distance to travel, and the priceneeded to perform
the transportation. These capabilities are marked in the model of Fig. 3.2 as,

˙Tdist, di andpricei , for i = 1,2. Initially, the behavior of thetruck starts with
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locationIdle, at which it waits for receiving any incoming proposal from the
cargo. The initiation of the proposal is represented by the synchronization
labelCFP. Once thetruck receives theCFP message, its control goes to the
locationestimate. In this location, thetruck estimates and evaluates that pro-
posal, in order to take the right decision; that is, whether it accepts or rejects
the proposal. There are constraints that are involved in theestimation process
including the speed limit of thetruck and the expected delivery time. Once
the estimation process has been done, the control goes to thelocationdeci-
sion, from which the control goes to either the locationterminateor Wait.
The former location will be chosen, whenever the expected estimation time
exceeds the deadline of delivering the shipment. However, if it goes to the
Wait, the truck proposes to perform the transportation, and in this case bids
its intended price. In the locationwait, thetruck waits for the type of incom-
ing messages received from thecargo. If the cargo replies with rejection of
the proposal, which is represented by synchronization label Rejectproposal,
then the control goes to the locationterminate. On the other hand, upon re-
ceiving a confirmation from thecargo with the acceptance of the proposal,
the truck starts the transportation and goes to the locationgoodEnv. During
performing the transportation, thetruck mutually alters its behavior between
the locationsgoodEnvandbadEnvlocation according to the disturbanceTo-
goodandTobadreceived from the environment. In both locations, thetruck
either accelerates to its maximum or slows down to its minimum speed. After
certain time passes, the control goes to the locationcheck, at which thetruck
checks its destination point against the deadline; that is whether after of be-
fore the deadline. In both cases, thetruck has to inform thecargowith either
failure or done.

Environment Automaton

Fig. 3.3 models an environment that generates disturbance during transporta-
tion process. This disturbance might occur as a reason of traffics, or a change
in weather. TheEnvironmentautomaton is augmented with the variableen-
vtime, which calculates the elapsed time at both locationgconditonandbcon-
dition. The behavior of the environment automaton mutually oscillates be-
tween these two locations. The control waits forgtimeunits at the location
gcondition, while it waits forbtimetime units atbconditionlocation, for given
constantsgtimeandbtime. The effect of the disturbance is terminated upon
receiving the messageDone.
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Fig. 3.3.Environment Automaton.

Cargo Automaton

The automatoncargo is shown in Fig. 3.4. The control of thecargobegins at
the locationStart. In this location, it initiates a call-for-proposal to all the pos-
sible trucks in the scenario by sending the messageCFP. Then, it goes to the
locationwait-proposal, in which it reports the incoming messages received
from the trucks. The messages are represented either byRefusei or Proposei
synchronization labels fori = {1,2}. Such messages indicate that a truck re-
fuses or accepts the call-for-proposal. As soon as all trucks have sent their
intended messages, the control goes to the locationevaluate. From this loca-
tion, the control may go to one of the locationsterminate, select, or bid. The
choice among these locations depends on the number of received proposals,
such that if no truck offered a proposal, the control goes to the locationTer-
minate, which means there is notruck agreed to perform the transportation.
If there is only onetruck offered a proposal, the control goes to locationBid.
However, if more than a truck offered proposals, the controlgoes to the loca-
tion select. At this latter location, thecargoselects thetruck which provides
the minimum price, and then the control goes to the locationBid. At this lo-
cation, thecargo informs the selectedtruck with acceptance of the proposal.
In addition, thecargo will exclude the remaining truck by sendingReject-
proposal. After that, the control goes to the locationWait-arriveat which the
cargowaits for an incoming report from the selectedtruck, which is respon-
sible for the transportation process. If the incoming message wasDone, the
mission of thecargois terminated, but if the message wasFailure, the control
goes to the locationUnsafe, before its terminated in the locationTerminate.

Overall Model

The previous MAS scenario consists of several agents that operate concur-
rently and communicate with each other. A model of hybrid automaton is
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Fig. 3.4.Cargo Automaton.

given to each agent in the MAS, and the communication betweenthose agents
occurs by means of shared variables and synchronization labels. Generally,
analyzing the behavior of each agent individually, is not sufficient to analyze
the entire behavior of the MAS. This is because, in the usual case, each agent
coordinates its behavior based on what it receives from other agents. There-
fore, we need a way to show how well the entire MAS behaves while per-
forming some tasks. One way to do so is to construct a model which captures
all the possible interleaving behaviors of all agents in theMAS. However,
constructing that model manually is not an easy work, and it will be difficult
to understand the entire behavior of the MAS, especially when the number
of agents increases. Fortunately, model-checking tools are helpful in this sit-
uation. This is because such tools can automatically construct a model of the
entire behavior by means of the parallel composition. In turn, the constructed
model can be automatically analyze by asking whether a certain behavior can
be reached in it.

3.4 Model Checking Using Hytech

Formal verification provides an effective way to check the correctness of
models of systems against certain behaviors. It can determine a design prob-
lem of a system, or improve existing one. Currently, one of the most success-
ful techniques used in formal verification is model checking[Clarke et al.,
1999]. Generally, model checking allows to verify automatically whether
properties can be satisfied in the all possible evolutions ofa certain model.
In the framework of model checking, both a model together with its specifi-
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cations should be represented in a suitable textual format to a model checker
that checks automatically the satisfiability of requirements within the model.

To verify properties of those systems which can be modeled using hy-
brid automata, several model checkers are existing. Among of them, we use
Hytech [Henzinger et al., 1997] to verify our MAS model. Within Hytech,
model checking starts with computing the reachability of the entire state
space by getting the set all possible states, which can be reached from an
initial state. The resulting set of reachable states will form a base of the
model checking; that is, to verify certain property, a traditional way is to
check whether the intersection of that property with the reachable states is
empty. If so, the property can be reached within the model; otherwise it can
not.

Hytech provides a way that aids in design and debugging a system. For ex-
ample, if a system description contains design parameters,whose values are
not specified, then Hytech computes the necessary and sufficient constraints
on the parameter values that guarantee correctness of the system. In addition,
if a system fails to satisfy a correctness requirement, thenHytech generates
an error trajectory, which contains a time stamped sequenceof events that
leads to a violation of the requirement.

Hytech Code description

To start Hytech the input file representing a model and its properties have
be given. Typically, the input file is partitioned into two parts. The first part
describes the model, whereas the second part contains a listof iterative analy-
sis commands— For more details about Hytech syntax, see [Henzinger et al.,
1995]. The model description is a straightforward textual representation of
hybrid automata. Fig. 3.5 shows the Hytech description of the environment
automaton of Fig. 3.3. The description of the automaton component starts
with the declaration of the automaton name, as it is shown in line 1 of Fig. 3.5.
Line 2 declares the synchronization labels which will be used to communi-
cate with other automata. Line 3 provides the initial location and the initial
conditions on the variables of the automaton. After this, the array of the lo-
cations of the automaton has to be defined. Lines 4-7 show the definition of
the locationbegin. The definition of location starts with naming the location
as it is shown in line 4. The rate conditions, as well as the invariant may also
be provided as it is shown in line 5. Each location is associated with a list
of transitions originating from it— e.g., line 6,7. Each transition lists a guard
condition, synchronization label and a successor locationto jump upon the



30 3 Multi-agent Scenario as Hybrid Automata

1.automaton Environment
2.synclabs: accept_propos1,accept_propos2,
tobad1,togood1,tobad2,togood2,done;
3.initially begin & envTime=0;
4.loc begin:
5.while True wait {}
6.when True sync accept_propos1 do envTime’=0 goto gcondition;
7.when True sync accept_propos2 do envTime’=0 goto gcondition;

8.loc gcondition:
9.while envTime<=2 wait {}
10.when envTime>=2 sync tobad1 do envTime’=0 goto bcondition;
11.when envTime>=2 sync tobad2 do envTime’=0 goto bcondition;
12.when True sync done goto finish;

13.loc bcondition:
14.while envTime<=5 wait {}
15.when envTime>=5 sync togood1 do envTime’=0 goto gcondition;
16.when envTime>=5 sync togood2 do envTime’=0 goto gcondition;
17.when True sync done goto finish;

18.loc finish:
19.while True wait {}
20.when True goto finish;
21.end

Fig. 3.5. Hytech input code of the environment automaton

satisfaction of the guard condition. Additionally, the transition might update
some variables. Line 21, shows the end of the automaton declaration.

Having defined the description of the model of the first part ofthe input
file, the analysis commands of the second part must be given toanalyze the
behavior of the model. Fig. 3.6 shows the analysis commands of the model.
The first line declares three regions variables, namelyireg, freg,andreached.
In line 2, the regionireg represents the initial state of the whole model; that
is the conjunction of initial locations and initial values of the variables of
each participating automaton. In line 3, the regionfregcharacterizes the states
of interest to be (un)reached. In our example, it specifies that either one of
the trucks will reach before the deadline. Line 4 assigns toreachedthe set
of states reachable from the initial state. The model satisfies the property
specified byfreg, if the intersection between the set of reachable states and
the regionfreg is not empty. Lines 5-8 depict this process.
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1. var ireg,freg,reached:region;

2. ireg:=loc[Cargo]=start & loc[Truck1]=idle &loc[Truck2]=idle
& d=1000 & deadline=17 & sagent=0 & npro=0 & envTime=0 &
price1=0 & d1=0 & stime1=0 & tdist1=0 & agent1=0 &
price2=0 & d2=0 & stime2=0 & tdist2=0 & agent2=0;

3. freg:= loc[Truck2]=adeadline | loc[Truck1]=adeadline;
4. reached:=reach forward from ireg endreach;
5. if empty(reached & freg)
6. then prints"the truck meets the deadline";
7. else prints"deadline violation"
8. endif;

Fig. 3.6.Analysis commands in Hytech

Checking Properties

Now after describing the model and the analysis commands, Hytech can be
invoked to check the properties of interest within that model. In the follow-
ing, we present some model checking experiments on our scenario. We have
proved various properties, depending on different values of the involved vari-
ables in our model. Here, we will focus on some of them.

Reachability of states: One of the properties, which is the general inter-
est of the presented model, is to check the reachability of a certain state.
For example, one can check the reachability of the final locations of the au-
tomata in the model; that is, reaching the locationsTerminatein both cargo
and trucks. Using Hytech, we can show this by asking if the following region
can be reached:location[truck1]= terminate& location[truck2]= terminate
& location[cargo]= terminate.

Is possible for any truck to perform the transportation ? In our scenario,
two trucks are involved in transportation process. We can check that only
one truck will be responsible for performing the transportation. Moreover,
this truck always provides the minimum price. This can be accomplished by
checking if the following can be reached:location[cargo] = select

What about Deadlines: One of the most important concernes in the logis-
tics domain is the question whether a deadline can be met or not. Clearly, the
question if a truck will arrive before or after a given deadline depends on a
number of factors like the condition of the environment during the transporta-
tion, the distance to travel, and of course the deadline itself. Using Hytech we
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did some experiments to answer this question for various values of the dead-
line as well as the timesgtimeandbtimeof the environment. The speed of the
trucks in our experiments lays between 60 and 90, and the total distance that
the trucks had to travel, was 1100 and 1150. Givenbtime=0 andgtime=5,
several values for the deadline have been investigated. It turned out that the
truck could always reach its destination on time if the deadline was 17 time
units, while a deadline of 12 time units was impossible to meet. In order to
determine the closest deadline for which the truck was guaranteed to be on the
due time, we have used the parametric analysis provided by Hytech, which
has yielded 15.55 time units as the closest deadline that could always be met.

Similarly, some experiments have been done to investigate the influence of
the environment during the transport. For a givendeadline=17andbtime=5.
The analysis of Hytech has shown thatgtime≥0.888 time units is enough
to ensure that the truck will always arrive on time. On the other hand, If
gtime=2, then deadline=17can only be met ifbtime≤14.33. It is easy to see
that the knowledge of boundaries and dependencies between certain values
as we presented above will help both the transport agent and the customer to
negotiate a contract that suits both parties.

3.5 Related work

As we said earlier that AUML, as a modeling language, lacks precise seman-
tics. Consequently it does not allow to verify required properties of MASs
based on interaction protocols. To overcome this limitation, several works
have been proposed. In principle, these works have been devoted to trans-
late AUML models into formal models that can be verified usingexisting
verification tools. For example, Wen and Mizoguchi [1999] have translated a
model of protocol based MASs into concurrent finite state machines, which
in turn can be verified using SMV model checker [McMillan, 1993]. Sim-
ilar approach have been presented by Mokhati et al. [2007], who translate
AUML models to models that can be verified using Maud model checkers
[Eker et al., 2002]. Another approach of translations has been presented in
[Jemni Ben Ayed and Siala, 2008]. In this approach, an MAS interaction pro-
tocol is initially modeled using the AUML protocol diagram.Then, the model
is translated into a model of Event-B formal specification language [Abrial,
2009]. The resulting model is enriched with required properties to be verified
using a B-tool B4free [Cansell et al., 2004].

In contrast to hybrid automata, AUML abstract the behavior of agents in
a very restrictive way, such that it can not specify the internal behavior of the
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agents. Additionally, AUML is far away from modeling, and verifying real
time properties of MASs as it focuses only to describe the discrete behavior
of the interaction among agents.

Petri nets [James, 1977] are well known forms of states basedtransition
systems which have been originally devoted to model and analyze discrete
concurrent systems. In addition to their formal and precisesemantics to han-
dle concurrency and synchronization, petri nets provide, like variants of finite
state machines, a graphical representation of the underlying physical systems.
To support modeling and formal analysis of systems using petri nets, a variety
of tools are existing. Accordingly, several works, for example [Celaya et al.,
2009; Chainbi, 2004], have approached petri nets to formal model MASs.
Among of these works, there are proposed works, which give AUML formal
semantics by translating the AUML models into petri nets—see for example
[Cabac and Moldt, 2004]. However, the traditional petri nets can not spec-
ify the continuous behaviors of their underlying systems. To overcome this
limitation, various extensions have been proposed to integrate the continuous
behaviors of systems within petri nets. For example, David [1997] presents a
framework, called hybrid petri nets, which are used to formal specify the be-
haviors of hybrid systems. Timed petri nets [Wang, 1998] is another example
of these extensions in which the formal semantics of the classical petri nets
are augmented with real time constraints. Broadly speaking, these continu-
ous or real time extensions are useful and powerful formalisms to model and
verify concurrent continuous systems, and hence can be usedto model MASs
like our adopted approach. However, hybrid/timed petri nets lack of support
rigorous analysis for real time requirements1 of their underlying systems.
Therefore, several works have proposed to translate hybrid/timed petri nets
into hybrid or timed automata [Cassez and Roux, 2006; Ghomriand Alla,
2007]. Hence, one can use the powerful of the existing tools of hybrid/timed
automata to analyze the behavior of the underlying systems.Obviously, this
shows that the direct use of hybrid automata to model MASs hasadvantages
over the use of hybrid/petri nets.

1 more details about real time requirements will be discussedin Chapter 5
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The Model

We have shown that hybrid automata offer a method to model andto verify
the behavior of Multi-agent Systems (MASs). The main challenge to specify
and verify MASs with hybrid automata is the state space problem, which
occurs due to the construction of parallel composition as well as the infinite
state space representation of the behaviors of agents. Thisasks for a method
that can simplify this type of problems. This Chapter provides a convenient
way to cope with the state space problem by constructing the composition
dynamically, i.e. during the verification phase, and by representing the infinite
states space symbolically. The main core of this Chapter hasbeen published
in [Mohammed and Furbach, 2010b; Mohammed et al., 2010].

4.1 Introduction

In Chapter 3, we have demonstrated how to use hybrid automataas a frame-
work to formally specify and automatically verify the behavior of MASs by
means of model checking. A team of agents is described as concurrent au-
tomata combined via parallel composition into a global automaton responsi-
ble for coordinating the behaviors of the team to reach a common goal. The
automatic verification of MASs’ behaviors, however, suffers from the poten-
tial combinatorial explosion of the state space caused by parallel composition.
This state space problem is one of the primary challenges in applying model
checking to analyze concurrent systems. The state space of the parallel com-
position of an agent withK1 states and an agent withK2 states leads to a state
space ofK1×K2 states. Accordingly, the parallel composition ofN agents,
each with a state space ofK states, leads to a state space withKN states. This
asks for a method that deals with the parallel composition conveniently. In the
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framework of hybrid automata, the continuous dynamics add another dimen-
sion to the state space problem. In particular, model checkers not only keep
track of the part of the state space, but also of the timing andcontinuous evo-
lution associated with each state. This continuous evolution leads to infinitely
reached states that should be managed by model checkers. It turns out that a
symbolic technique is needed to finitely handle these infinitely states space.
In such symbolic techniques, the states are properly encoded using clever data
structures that provide compact representation of large state spaces and allow
their efficient manipulation.

When constructing the parallel composition of automata, the possible in-
terleaved locations and transitions are enumerated first, and then the com-
posed automata are given to a model checker which checks the properties
of interest by exploring the state space of the composed automaton. Dur-
ing this verification process, the model checker symbolically enumerates
the possibly reached state spaces and leaves out the unreached states that
have been formed as a result of the composition process. In the latter case,
the model checker checks for any incoherent constraints appearing during
the exploration of the composed automata. Once we have better knowledge
which allows us not to represent those unreachable constraints in advance,
then the representation can be reduced significantly. This is the key idea of
what is the so-calledon-the-flyconstruction of the state space representa-
tion [Bouajjani et al., 1997]. This helps relieve the state space in a sense that
the only possibly reached states will be activated during the run of systems,
instead of checking whether the states are reached or not. Inthis way, the un-
reached parts of the state space are removed before the a system under consid-
eration is subjected to the verification process. Applying the on-the-fly con-
struction and symbolic methods of state space in model checking have been
proven useful in practice to tackle the state explosion problem [McMillan,
1993].

This chapter provides an approach based on hybrid automata which con-
veniently allows us to specify and verify MASs. The construction of the par-
allel composition in this approach is builton-the-fly. We use Constraint Logic
programming (CLP) to implement this approach. The key advantage to use
constraints is that they are effective data structures thatcan implicitly repre-
sent the infinite sets as mathematical relations. In this sense, our approach is
a symbolic representation, which helps to relieve the statespace problem.

The rest of this chapter is organized as follows: Sec.4.2 shows the influ-
ence of on-the-fly composition regarding the state space by demonstrating a
simple example,. Sec.4.3 shows the basic syntax and the semantics of hybrid
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21 3

Automaton A

OffOn

i : true i : Y ≤ 20
Y := 0

X := 0

Automaton B

Y= 20

X := 0

gX= 10

X := 0

a

b

aX= 5
X := 0

Y := 0

Y := 0

b

i : X ≤ 10 i : X ≤ 5 i : true

f : Ẏ = 1 f : Ẏ = 1

f : Ẋ = 1 f : Ẋ = 1 f : Ẋ = 1

Fig. 4.1.Example of concurrent automata.

state machines that constitute our proposed approach. Sec.4.4 shows how to
build an executable model of the presented approach by meansof CLP.

4.2 Illustrative Example

Fig. 4.1 shows an example that demonstrates the benefit of theon-the-flyap-
proach. Assume thatA andB are two simple hybrid automata interacting my
means of shared events, namely{a,b}. The automatonA contains an extra
eventg which might communicate with any other automaton or indicate that
the transition between location1 and location2 is fired. The behavior ofA
starts at location1. After 10 seconds, the control has to jump to location2,
and then the eventg must be fired. At location2, A has to wait up to 5 sec-
onds, then a transition to location3 must be fired, causing the eventa. At
location 3, the automaton has to wait until the concurrence of eventb has
occurred. In this case, the control jumps back to location1. For automatonB,
the following behavior is specified. Initially,B has to wait at locationOnuntil
the eventa occurs. If it occurs, the control ofB goes to locationOff. At the
latter location,B has to wait up to 20 seconds before the control goes back to
locationOnwith firing the eventb.

In the parallel composition ofA and B, the two automata are synchro-
nized by shared events, that is any shared event can only be executed if the
two automata can execute it simultaneously. Private/unshared events of each
automaton, e.g. the eventg in the automatonA, are not subject to such previ-
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ous constraint, but those events can be executed whenever possible. The con-
structed parallel composition is shown in Fig. 4.2 where theinvariance and
time constraints in each composed location are defined by theconjunction
of the invariance and time constraints of each simple location. Global state-
space representations are constructed without regard to whether the states are
reachable or not. A model checker usually performs the reachability based on
the constraints which it faces during the states’ exploration.

The composed automaton of Fig. 4.2 has 3× 2 = 6 locations, but this
leaves the location(3,On)isolated. If one takes into consideration those con-
straints which occur inside the locations and transitions,e.g. constraints on
events, then one can show that further reduction can be achieved. SinceA
andB must be synchronized with their joint eventa, then no legal transition
between the starting location(1,On)and the location(1,Off) can occur. The
location (1,Off) will not be explored during the reachability analysis. Con-
sequently, the location(2,Off), reached from(1,Off), will not be reached. In
this way, one can show that the exact reached locations are(1,On),(2,On)and
(3,Off), as shown in Fig. 4.3.

One can see in the previous example that the global state-space repre-
sentations are constructed without regard to whether the states are reachable
or not. In the following, we present an approach aiming at constructing the
state space during the execution of a concurrent MAS. In thisapproach we
precisely explore the possibly reached states and avoid anyunreached states
which may appear due to the traditional composition process. We use mathe-
matical intervals to represent the infinite states raised bythe continuous evo-
lution of the real variables.

4.3 Hybrid State Machines

In this section, we show the basic syntax and the semantics ofhybrid state
machines1 that constitute our approach. But first we will introduce an illus-
trative running example throughout this chapter.

4.3.1 Running Example

A train gate controller [Henzinger et al., 2000] is a reactive multi-agent sys-
tem consisting of three agent components: thetrain, the gate, and thecon-
troller. A road crosses tracks of trains and is guarded by a gate that must be
closed or opened upon approaching or leaving of a train respectively. The

1 In this chapter, the term hybrid state machines and hybrid automata are used synonymously
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(1,Off) (2,Off) (3,Off)

(1,On) (3,On)(2,On)

b

b

ag

a
a

b
a

b

g

Fig. 4.2.The parallel composition of Fig. 4.1 as a black-box.

(3,Off)

(1,On) (2,On)

i : Y ≤ 20
f : Ẋ = 1

Ẏ = 1

i : X ≤ 10

f : Ẋ = 1
Ẏ = 1

i : X ≤ 5
f : Ẋ = 1

Ẏ = 1

X := 0

Y := 0

g

X := 0

X= 10

X := 0
Y := 0 X= 5

a
b

X := 0
Y := 0

Y= 20

Fig. 4.3.Exact composed automaton of Fig. 4.1

gate is supervised by a controller that has the task to receive signals from the
train and to issue lower or raise signals to the gate. A train is initially at a dis-
tance of 1000 meters away from the gate and moves at a speed 50 meter per
second. A sensor located at 500 meters on the tracks detects the train sending
a signalappto the controller. The train slows down, following the differential
equation ˙x=− x

25−30. After a delay of five seconds modeled by the variable
t, the controller sends the signallower to the gate, which in turn begins to de-
scend from 90 degrees to 0 degrees at a rate of -20 degrees per second. After
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System

far near past

t := 0

x≤ 100

t ≤ 5 t ≤ 5

g= 0

t := 0
t := 0t := 0

g= 0g≥ 0

g≤ 90 g= 90

x≥ 500 x≥ 0

g= 90

Train

Controller

Gate

down

up

closed

idle to raiseto lower

open

x= 1000 in
x =0

ẋ=−50

raise

lower

raise

to close

app

lower

appapp

ẋ= x
5 +30

x =500

exit
x =100

ġ= 20 ġ= 0to open

ṫ = 1 ṫ = 1ṫ = 0

ġ= 0

x: =1000

app

lower

exit

ẋ=− x
25 −30

ġ=−20

g= 90

t = 0
exit

exit

raise

Fig. 4.4.Specification of the train example as hybrid state machines.

crossing the gate, the train accelerates according to the differential equation
ẋ= x

5 +30. A second sensor placed 100 meters past the crossing detects the
leaving train, sending a signalexit to the controller. After five seconds, the
controller raises the gate.

The specification of the previous multi-agent system is graphically illus-
trated as concurrent hybrid automata in Fig. 4.4. The variable x represents the
distance of the train from the gate. The variablet represents the delay time of
the controller, while the position of the gate in radius degrees is represented
by the variableg.

4.3.2 Syntax

Before we proceed in defining the syntax and semantics of our hybrid au-
tomata, we first need to define those constraints which may appear as guards
on transitions and invariants inside locations of hybrid automata. We addi-
tionally need to define the constraints which define the possible dynamics in
our model.

Definition 4.3.1 (Linear Constraints) Let X be set of n real variables and
ω = ∑n

i=1ai · xi , with xi ∈ X, be a linear combination of variables fromX. A
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setΦ(X) of linear constraints overX, with a typical elementsϕ , is defined
by the following syntax:

ϕ ::= ω ∼ b | ϕ1∧ϕ2 | true

where1≤ i ≤ n,ai ,and b∈ R, ∼∈ {<,≤,=,>,≥}, andϕ1, ϕ2 ∈ Φ(X).

The continuous behaviors of hybrid automata show how physical quan-
tities, e.g. position, temperature and humidity, evolve with respect to time.
Those behaviors are usually described by differential equations whose solu-
tions can be described as continuous functions in time. In the following, we
define the basic constraints that constitute the continuousdynamics of the
variables.

Definition 4.3.2 (Dynamical Constraints) LetX be a set of n real variables,
with a typical element x∈X, andẊ be set of first derivatives of the variables
of X with a typical elemenṫx∈ Ẋ. A setD(X∪ Ẋ) of dynamical constraints
over X∪ Ẋ with typical element d, is defined inductively by the following
syntax:

d ::= ẋ∼ c | ẋ+a·x= c | d1∧d2 | true

where a6= 0,c∈ R, ∼∈ {=,≤,≥}, d1, d2 ∈ D(X∪ Ẋ).

Having defined the linear and dynamical constraints, we are ready to in-
troduce the syntax of a hybrid state machine, i.e. their structural components.

Definition 4.3.3 (basic components)A hybrid state machine is a tuple
H = (Q,X, Inv,Flow,E,Jump,Reset,Event,EventH ,q0,v0) where:

• Q is a finite set of control locations, which defines the possible locations
of the state machine.

• X is an ordered set of n real variables.

• Inv : Q → Φ(X) is a function that assigns a linear constraint Inv(q) to
each location q∈ Q.

• Flow : Q→ D(X∪ Ẋ) is a function that assigns a dynamical constraints
Flow(q) to each control location q∈ Q.

• E ⊆ Q×Q is a finite set of transitions among the control locations.
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• Jump: E → Φ(X) is a function that assigns to each transition e∈ E a
constraints jump(e), which must hold to fire e.

• Reset: E × X→R is a mapping, which assigns a real value to each vari-
able on each transition e∈ E. A reset of a variable x∈ X on a transition
e∈ E is denoted as x:= Reset(e,x). Conveniently, we write= Reset(e,X)
to denote the reset all variables.

• EventH is a finite set of events.

• Event: E → EventH is a function that assigns an event to each transition
e∈ E from a set of events EventH .

• q0 ∈ Q defines the initial location of the automaton.

• v0 defines the initial values of the variablesX.

The previous structure permits the existence of events on each transition
e∈ E. An event is meant to serve as communication between different au-
tomata or to denote a change in the internal behavior of an automaton. Thus,
we can consider that this set of events is classified into two disjoint sets. The
first set contains the events that are used as communication messages among
automata, whereas the other set contains the set of events that are used to
describe the internal observation of the automaton. The latter set of events
can be used to reason about the observational behavior of automata, which is
required in the case of MASs.

As shown in Chapter 2, a hybrid automaton with linear constraints on
guards and invariants is classified according to the continuous flow into timed,
linear hybrid, rectangular hybrid or non-linear hybrid automata. In our ap-
proach, this type of classification depends on the choice of the dynamical
constraints.

4.3.3 Semantics

Having described the internal structure of a hybrid automaton, we will discuss
the semantics of its intended behaviors. A hybrid automatoncan exactly be
in one of its control locations at each stage of its computation. But knowing
the present control location is not enough to determine which of the outgoing
transitions can be taken next, at all. A snapshot of the current state of the
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computation should also keep in mind the present valuation of the continuous
variables. To begin formalizing the semantics of a hybrid automaton, we need
to define the concept of astateand to show how control evolves from one state
to another. But first we need to define how continuous variables evolve.

Definition 4.3.4 (Evaluation of Linear Constraints) Letϕ ∈ φ(X) be a con-
straints and v∈ Rn be the valuation of the variablesX, then we write

v |= ϕ ,

if v satisfies the constraintϕ , which is defined inductively as

ϕ = true.
ϕ = ∑n

i=1 ai ·xi ∼ c iff ∑n
i=1 ai ·vi ∼ c holds.

ϕ1∧ϕ2 iff v |= ϕ1 and v|= ϕ2.

where vi is the valuation of the ith components of v

Definition 4.3.5 (Evaluation of Dynamical Constraints) Let d∈D(X∪ Ẋ)
be a dynamical constriants and f: R≥0 → Rn be a differentiable function,
then we write

f �∗ d

if f satisfies the dynamical constraint d, which is defined inductively as

d = true.
d = ẋ∼ c iff f ′(t)∼ c holds.
d = ẋ+a·x= c iff f ′(t)+a· f (t)∼ c holds.
d = d1∧d2 iff f �∗ d1 and f �∗ d2.

where f′(t) is the differentiation of the function f for t∈ R≥0.

Definition 4.3.6 (State)At any instant of time t∈ R≥0, a state of a hybrid
automaton is given byσi = 〈qi ,v, t〉, where qi ∈ Q is a control location, v
is the valuation of the real variables. A stateσi = 〈qi ,v, t〉 is admissible iff
v |= Inv(qi).

The state transition system of a hybrid automatonH starts with theinitial
stateσ0 = 〈q0,v0,0〉, where theq0 andv0 are the initial location and valua-
tions of the variables respectively. For example, the initial state of theTrain
automaton of Fig. 4.4 can be specified as〈 f ar,x= 1000,0〉.

The semantics of a hybrid automaton is defined in terms of a labeled tran-
sition system between states. Transitions between states are generally cate-
gorized into two kinds of transitions: continuous transitions, capturing the
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continuous evolution of states, and discrete transitions,capturing the changes
of location. We will define the semantics of hybrid automatonmore formally.

Definition 4.3.7 (Operational Semantics)A transition rule between two ad-
missible statesσ1 = 〈q1,v1, t1〉 andσ2 = 〈q2,v2, t2〉 is

Discrete transition iff e= (q1,q2) ∈ E, t1 = t2 and v1 |= Jump(e), and v2 |=
Inv(q2), such that v2 is the valuations coming from Reset(e,X). In this
case an event a∈ EventH occurs. Conventionally, we write this asσ1

a
−→
t1

σ2.
Continuous(Delay) transition iff q1 = q2, (t2−t1)> 0 is the duration of time

passed at location q1, there exists a differentiable function f with f�∗

Flow(q1) and f(t1) = v1 and f(t2) = v2, and for all t ∈ [t1, t2], f(t) |=
Inv(q1).

In the previous definition,v2 results from resetting variables on a transi-
tion in case of the discrete transition rule, while it results from the continuous
evolution of the variables in case of the continuous transition rule. An exe-
cution of a hybrid automaton corresponds to a sequence of transitions from
onestate to another. For this purpose, we define the valid runas follows:

Definition 4.3.8 (Run: micro level) A pathρ = σ1σ2σ3, . . . , of a hybrid au-
tomaton H is a finite or infinite sequence of admissible states, where the tran-
sition from a stateσi to a stateσi+1, for all i ≥ 1, is related either by a discrete
or continuous transition. A set of all possible paths of A is denoted asΠ(H).
A run of H is a pathρ starting with the initial stateσ0.

It should be noted that the continuous change of states in a path ρ gener-
ates an infinite number of reachable states. Therefore, state-space exploration
techniques require a symbolic representation way for representing these infi-
nite states appropriately. One way to do so is to use mathematical intervals.
We call this symbolic mathematical intervalregion, which is defined as fol-
lows:

Definition 4.3.9 (Region)Given a pathρ ∈Π(H), a sub-sequence of admis-
sible statesΓ = (σi+1 · · ·σi+m) ⊆ ρ is called a region, if for all statesσi+ j

with 1 ≤ j ≤ m, it holds qi+ j = q and for the statesσi and σi+m+1 with re-
spective locations qi and qi+m+1, then it must hold qi 6= q and qi+m+1 6= q.
Conventionally, a regionΓ is written asΓ = 〈q,V,T〉, where ti+1 ≤ T ≤ ti+m

is the interval of continuous time, and V is the tuple of intervals valuations of
the variables during the time interval T .
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In the previous definition it should be noted that a regionΓ is always
admissible since it is a sub-sequence of a runρ . Γ captures the possible states
that can be reached using continuous transitions in each location q ∈ Q. T
represents the continuously reached time. A region captures the continuous
values for each variablexi ∈ X. These continuous values can be represented
as an intervalV of real values. Let us consider the automatontrain of Fig. 4.4.
The region obtained from the locationfar can be described asΓ = 〈 f ar,X,T〉,
where 500≤ X ≤ 1000, and 0≤ T ≤ 10.

A run of a hybrid automaton can be re-phrased in terms of reached regions,
where the change from one region to another is fired by using a discrete step.

Definition 4.3.10 (Run: macro level)A run of hybrid automaton H isρH =
Γ0,a1,Γ1,a2, ..., a sequence of (possibly infinite) regions, where a transition
from a regionΓi to a regionΓi+1—written asΓi

ai+1
−−→
ti+1

Γi+1—is enabled, if there

is σi
ai+1
−−→
ti+1

σi+1, whereσi ∈ Γi, σi+1 ∈ Γi+1 and ai+1 ∈ Event is the gener-

ated event before the control goes to the regionΓi+1. Γ0 is the initial region
obtained from a start stateσ0 by means of continuous transitions.

The operational semantics are the basis for verification of ahybrid au-
tomaton. In particular, model checking of a hybrid automaton is defined as
the reachability analysis of its underlying transition system. The most useful
question to ask about hybrid automata is the reachability ofa given state. We
define the reachability of a region and state as follows.

Definition 4.3.11 (Reachability) A regionΓi is called reachable in a runρH ,
if Γi ∈ ρH . Consequently, a stateσ j is called reachable, if there is a reached
regionΓi such thatσ j ∈ Γi

Reachability analysis computes all the states that are connected to the
initial states by a run. The classical method to compute the reachable states
consists of performing a state-space exploration of a system, starting from the
initial region and spreading the reachability informationalong control loca-
tions and transitions until fixed regions can be reached. Fig. 4.5 is a simple
semi-decision algorithm, which computes the reached regions of a given hy-
brid automaton. In this algorithm, letpost(R)be the set of all reached regions
connected to the regionRwith a discrete step, given an initial regionΓ0.

4.3.4 Hybrid State Machines Composition

For the specification of complex systems, we extend hybrid automata by par-
allel composition. The parallel composition of hybrid automata can be used
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Wait :=post(Γ0)
Reached := Γ0
while Wait 6= /0 do
take R from Wait
if R /∈Reached then Reached := Reached ∪ R
end if
Wait := Wait ∪ (post(R)\ Wait)
end while

Fig. 4.5.A simple procedure for reachability computation.

to specify larger systems (multi-agent systems), where a hybrid automaton
is given for each part of the system and communication between the differ-
ent parts may occur via shared variables and synchronization labels. It has
been previously said that the parallel composition of hybrid automata is tech-
nically obtained from the different parts using a product construction of the
participating automata. The transitions from the different automata are inter-
leaved, unless they share the same synchronization label. In this case, they
are synchronized on transitions. As a result of the parallelcomposition, a
new automaton called composed automaton is created which captures the be-
havior of the entire system. The composed automaton is, in turn, given to a
model checker that checks the reachability of a certain state. The composi-
tion of hybrid automataH1 andH2 can be defined in terms of synchronized
or interleaved regions of the regions produced from run of both H1 andH2.
As a result of the composition procedure, compound regions are constructed,
which consist of a conjunction of a regionΓ1 = 〈q1,V1,T〉 from H1 and an-
other regionΓ2 = 〈q2,V2,T〉 from H2. Therefore, each compound region takes
the formΛ = 〈(q1,V1),(q2,V2),T〉 (shortly written asΛ = 〈Γ1,Γ2,T〉), which
represents the reached region at both control locationsq1 andq2 the during a
time intervalT.

Definition 4.3.12 (Run Composition)A run of composed automata is the
sequence∑H1◦H2

= Λ0,a1,Λ1,a2, ... of compound regions, where a transition
between compound regionsΛ1 = 〈Γ1,γ1,T1〉 andΛ2 = 〈Γ2,γ2,T2〉 (written as
Λ1

a
−→
t

Λ2) is enabled, if one of the following holds:

• a∈ EventH1 ∩EventH2 is a joint event,Γ1
a
−→
t

Γ2, andγ1
a
−→
t

γ2. In this case

, we say that the regionΓ1 is synchronized with the regionγ1.
• a∈ EventH1 \EventH2 (respectively a∈ EventH2 \EventH1 ), Γ1

a
−→
t

Γ2 and

γ1 → γ2, such that bothγ1 andγ2 have the same control location—i.e. they
relate to each other using a continuous transition.
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To illustrate the previous procedure, consider the train gate controller ex-
ample. There is a synchronized region between the region obtained from
location far and from locationidle in the automatatrain andcontroller re-
spectively. Both regions are synchronized using the joint event app. There-
fore, the synchronized region can be described as〈( f ar,X),(idle,T1),T〉

app
−−→

t
〈(near,X),(to lower,T1),TT〉, where X and T1 are the continuous valua-
tions of the variable of the automatatrain and controller respectively. On
the other hand, the region obtained from locationfar and from location
open, in the automatatrain and gate respectively, relates to each other us-
ing disjoint eventapp. Therefore the obtained region can be described as
〈( f ar,X),(open,G),T〉

app
−−→

t
〈(near,X),(open,G),T T〉.

The previous procedures give the possibility to construct the composition
dynamically during the run/verification phase. As it has been said, computing
the composition in such a way is obviously advantageous. This is why only
the active parts of the state space will be taken into consideration during the
run instead of producing the composition procedure prior tothe verification
phase. This can relieve the state space problem raised by modeling MASs.

4.4 Constraint-Based Modeling

In [Mohammed and Furbach, 2009b] we showed how to encode the syn-
tax and semantics of hybrid automata, previously describedas a constraint
logic program (CLP) [Jaffar and Lassez, 1987]. A primary version of this
model has been presented in [Mohammed and Furbach, 2008b], as well as
in [Mohammed and Stolzenburg, 2008]. There are diverse motives beyond
choosingCLP as a modeling prototype to implement the framework. Firstly,
hybrid automata can be described as a constraint system where the constraints
represent the possible flows, invariants, and transitions.Secondly, constraints
can be used to characterize certain parts of the state space,e.g. the initial
state or a set of unsafe state. Further, there are close similarities in opera-
tional semantics betweenCLP and hybrid automata. State transition systems
can be ideally represented as a logic program in which the setof reachable
states can be computed. Moreover, constraints enable us to represent infinite
states symbolically as a finite interval. The infinite states, for instance, can
be handled efficiently as an interval constraint that boundsthe set of infinite
reachable state as a finite interval (i.e., 0≤ X ≤ 250). A constraint solver can
be used to reason about the reachability of a particular state inside this inter-
val. A further motivation to chooseCLP is its enrichment with many efficient
constraint solvers of various domains.CLP contains a constraint solver over
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real interval constraints, which can be used to represent the continuous flows
as constraint relations to the time, as well as to reason about a particular val-
uation.CLP also contains a constraint solver over symbolic domains, which
are appropriate to represent the synchronization events (communication mes-
sages) among agents. Last but not least, by employingCLP the composition
of automata can be constructed on the fly (during models checking). This can
be done by investigating the constraints appeared during running models. The
previous can relieve the state space problem raised from specifying MAS.

Let us first look at a preliminary introduction to CLP, beforewe show how
to encode the syntax and semantics of our hybrid state machines in terms of
CLP

4.4.1 Overview of Constraint Logic Programming

Constraint Logic Programming (CLP) [Jaffar and Lassez, 1987] has been in-
troduced as an extension to logic programming where unification, the basic
operation of logic programming, is replaced by constraint handling in a con-
straint system. The resulting languages combine the advantages of logic pro-
gramming with the efficiency of constraint solving algorithms.

Constraints are relations which should hold among variables of a problem
and thei domains of values. A general purpose constraint solver is used here-
after to solve such constraints. A constraint solver implements an algorithm
for solving allowed constraints in accordance with the constraint theory. The
solver collects the constraints that arrive incrementallyfrom a running model.
It puts them into a data structure for the constraints which is called constraint
store. During the previous process, the solver tests the satisfiability of the
constraints, or simplifies them.

A program in CLP typically consists of three sections. Firstly, the decla-
ration of the domains of program variables. Secondly, constraints are stated
that are used to build a constraint network at run time. Theseconstraints pos-
sibly involv multiple constraint solvers. The last programsection defines in
which order program variables are assigned values that are consistent with
constraints, and in which order those values are tried

Currently there are many CLP languages. The domain of constraints is
one of the key point of creating such languages. Prolog II [Colmeraue, 1984],
is generally considered as the first CLP language. The constraints of Pro-
log II are equations and dis-equalities over terms. The nextgeneration of
CLP languages, Prolog III [Colmerauer, 1990], CHIP [Dincbas et al., 1988]
and CLP(R)[Jaffar et al., 1992], went a step further by introducing constraints
over new computation domains including rational and real numbers, integers,
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Boolean and lists. A good survey about the development of CLPlanguages
can be found in [Rossi, 2000].

ECLiPSe Prolog [Apt and Wallace, 2007] and SWI Prolog [Wielemaker,
2008] are among the successful platforms which support the integration of
various constraint solvers, including constraints over finite domains and con-
straints over continuous intervals.

4.4.2 Hybrid Automata in CLP

We useECLiPSe Prolog [Apt and Wallace, 2007] to implement our proto-
type.ECLiPSe includes theic library for interval constraints, as well as finite
domain constraint solving. The prototype follows the definitions of both the
formal syntax and semantics of hybrid automata, which are defined in the
previous section. To start implementing a hybrid state machine, we primarily
begin by modeling the locations and their constraints (e.g.flows, invariants),
which are modeled as the predicateautomatonas follows:

%%% automaton(+Location,?Vars,+Vars0,+T0,?Time)
%%% models invariant and flow inside location
automaton(Location,Vars,Vars0,T0,Time):-

Flow(Vars),
Inv(Vars),Time $>=T0.

automatonin the previous predicate indicates the name of the automaton, and
Locationrepresents the actual name of the current locations of the automaton.
Vars is a list of real variables belonging to in the automaton, whereasVars0
is a list of the corresponding initial values.Inv(Vars) is the list of invariant
constraint onVars inside the location. The constraint predicateFlow(vars)
models the continuous flows of the variablesVars with respect to timeT0
andTime, given initial valuesVars0 of the variablesVars at the start of the
flow. T0 is the initial time at the start of the continuous flow. As presented in
Sec.4.3.2, a hybrid automaton is classified according to theconstraints on the
continuous flow.Flow(Vars) is represented in terms of constraints asVars=
Var0+ c · (Time− T0) in case of a linear hybrid automaton, asVar0+ c ·
(Time−T0)≤Vars≤Var0+c· (Time−T0) in case of a rectangular hybrid
automaton, and asVars=−c2/c1+(Var0+c2/c1) ·exp(c1·(Time−T0)) in
case of a non-linear hybrid automaton.(Time−T0) models the delay inside
the location. It should be noted that after executing the predicateautomaton,
VarsandTimeholds the reached valuations of the variables together withthe
reached time respectively. The following is an example showing the concrete
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implementation of the locationfar in the automatontrain Fig. 4.4 2. The
$ symbol in front of the (in)equalities is the constraint relation for interval
arithmetic constraints (libraryic in ECLiPSe Prolog).

train(far,[X],[X0],T0,Time):-
X $= X0-50*(Time-T0),
X $>=500, Time $>=T0.

According to operational semantics defined in Def. 4.3.7, a hybrid au-
tomaton has two kinds of transitions:continuoustransitions capturing the
continuous evolution of variables, anddiscretetransitions capturing the changes
of location. We encode transition systems into the predicate evolve, which al-
ternates the automaton between a discrete and a continuous transition. The
automaton evolves with either discrete or continuous transitions according to
the constraints appearing during the run.

%%% evolve(+Automaton,+State,-Nextstate,+T0,-Time,?Event)
evolve(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event) :-

continuous(Automaton,(L1,Var1),(L1,Var2),T0,Time,Event);
discrete(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event).

When adiscretetransition occurs, it gives rise to updating the initial vari-
ables fromVar1 intoVar2, whereVar1 andVar2 are the initial variables of
locationsL1 andL2 respectively. Otherwise, a delay transition is taken using
the predicatecontinuous. It is worth noting that there are infinite states due to
the continuous progress. However, this can be handled efficiently as an inter-
val constraint that bounds the set of infinite reachable state as a finite interval
(i.e., 0≤ X ≤ 250).

In addition to the variables, each automaton is supplied with a set of events
calledEventAutomaton. An example of this set of events of the automatontrain
is denoted as{app, in,exist}. Each transition is augmented with the variable
Event, which is used to define the parallel composition from the automata
individuals sharing the same event. The variableEventranges over symbolic
domains and guarantees that whenever an automaton generates an event, the
corresponding synchronized automata have to be taken into consideration si-
multaneously. It should be mentioned that the declaration of automata events
must be provided in the modeling example. The declaration ofthe possible
events domain of Fig. 4.4. is coded as follows :

2 The full implementation is in the appendix A
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:- local domain(events(app,in,exit,raise,lower, to_open)).

This means that the domains of events are declared symbolically to capture
the set of all possible events applicable to the underlying modeled system.

Once the domain of events has been defined, an appropriate solver of a
symbolic domain deals with any defined constraints in terms of the declared
domains. After defining the domains of events, a variable of typeeventscan
be declared as follow:

Event &:: events, Event &= domain_value.

The variableEventis declared with domain values defined byevents, and is
initialized with a specific value from its domain. The & symbol is a constraint
relation for symbolic domains (librarysd in ECLiPSe Prolog).

In the following we present the general implementation of the predicate
discrete, which defines transitions between locations.

%%% discrete(+Automaton,+State1,-State2,+IntTime,-Time,-Event)
discrete(Automaton,(Loc1,Var1),(Loc2,Var2),T0,Time,Event):-

automaton,(Loc1,Var1,Var,T0,Time),
jump(Var), reset(Var2),
Event &::events,Event &=domain_value.

In the previous predicate,domainvaluemust be a member inEventAutomaton.
When thediscretepredicate is fired, the automaton generates an event by
constraining the variableEventto the suitable value from its domain.

In the following we show an instance of the concrete implementation of
thediscretepredicate betweenfar andnear in the train automaton.

discrete(train,(far,[X0]),(near,[XX0]),T0,Time,Event):-
train(far,[X0],[X],T0,Time),
X $=500, XX0 $=X,
Event &::events, Event &=app.

Once the locations and transition rules have been modeled, astate machine
needs to be implemented in order to execute the model. Thereof, a driver
program is implemented as shown in Fig. 4.6.

The driver is a state machine that is responsible to generate and control
the behaviors of the concurrent hybrid automata as well as toprovide the
reachable regions symbolically. Thedriver takes the starting state for each
participating automaton, i.e. a control location as input argument as well as
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%%% driver(+State1,+State2,...,+Staten,+T0,-Regions,
+PastRegion).

%%% perform composition and reachability
driver((L1,Var01),(L2,Var02),...,(Ln,Var0n),T0,[Reg|NxtReg],

PastReg) :-

automaton1(L1,Var1,Var01,T0,Time),
automaton2(L2,Var2,Var02,T0,Time),
... ,
automatonn(Ln,Varn,Var0n,T0,Time),

evolve(automaton1,(L1,Var01),(NxtL1,Nvar01),T0,Time,T,Event),
evolve(automaton2,(L2,Var02),(NxtL2,Nvar02),T0,Time,T,Event),
... ,
evolve(automatonn,(Ln,Var0n),(NxtLn,Nvar0n),T0,Time,T,Event),

\+ member((L1,L2,..,Ln,Var1,Var2,..,Varn,_,Event), PastReg),
Reg = (L1,L2,..,Ln,Var1,Var2,..,Varn,Time,Event),
NpastReg =[Reg|PastReg],

driver((NxtL1,Nvar01),(NxtL2,Nvar02),...,(NxtLn,Nvar0n),T,
NxtReg,NpastReg).

Fig. 4.6.A state machine to drive the run of automata.

the list of initial valuations of the variables. In addition, it takes the starting
timeT0 followed by a list of reached regions, which is needed for the purpose
of the verification. It should be noted that during the courseof the dirver’s ex-
ecution, there is a symbolic domain variableEventshared among automata.
That variable is used by the appropriate solver to ensure that only one event is
generated at a time. In another words, when an automaton generates an event
due to a discrete transition of one of the predicatesevolveof the concurrent
automata, the symbolic domain solver will exclude all the domains of values
of the other automata that are not coincident with the generated event. This
means that only one event is generated at a time. If more than one automa-
ton generate different events at a time, then the symbolic domain solver will
handle only one of them at a time, but the other events will be handled using
backtracking.

Since each automaton generates an event by a discrete step atthe end of
its continuous evolution, then the precedence of events that appear during
the run is important to both composition and the verificationprocess. An
obvious way to deal with this precedence is to use constraints on the time
of the generated events. To accomplish this, we constraint the execution of
each automaton with a shared variableTime. The constraint solver, in turn,
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binds this variable with the minimum execution time among the automata. It
follows that this variableTimeeventually holds the minimum time needed
to generated an event. The previous computation partitionsthe state space
into regions, where the transition from one region to another depends on the
minimum time needed to generate an event. This shows how the automata
composition can be implicitly constructed efficiently on the fly, i.e. during
the computation.

It has been said that we are not only concerned with running and com-
posing the automata, but also with the their verification. For this purpose,
the driver is supplemented with the list of reached compound regions. At
each step of the execution of thedriver, a compound region, in the form
〈locations,Variables,Time,Event〉 is added to the list of reached regions.
This region symbolically represents the set of reached states and times to
each control location as mathematical constrains. Additionally, each region
contains the generated event before the control goes to another region using
a discrete step. Thedriver technically computes the set of reached regions
until fixed regions are obtained. This is computed by investigating— in each
iteration ofdriver—if the reached region is not contained in the list of the
previously reached regions. For this purpose, the last argument of thedriver
holds for the list of these regions.

Reachable regions should contain only those variables which are impor-
tant for the verification of a given property. Therefore, thelast argument list
of the predicatedriver can be expanded or shrunk as needed to contain the
significant variables.

As soon as thedriver has been built, the complete model should be in-
voked for the purpose of execution and verification. the following predicate
reachableis implemented to invoke thedriver.

reachable(Ψ0,Reached) :-
driver(Ψ0,0,Reached,[]).

The first argument of predicatereachableis the states predicateΨ0 that
represents the initial states of the hybrid automata. An example showing how
to run the model on the running example Fig. 4.4, takes the form:

reachable((far,[1000]),(open,[90]),(idle,[0]),Reached).



56 4 The Model

4.4.3 Model Analysis

Now we have an executable constraint based specification, which can be used
to test properties of systems modeled as hybrid automata. Several proper-
ties can now be investigated. In particular, one can check properties on states
using reachability analysis. The reachability analysis consists of two basic
steps. Firstly, computing the state space of the automaton under considera-
tion. In our case, this is done using the predicatedriver. Secondly, search-
ing for states that satisfy or contradict given properties.During the searching
stage, constraint solvers can be ideally can be used to reason about the reach-
ability of those states within regions.

As far asCLP is concerned, a state is reached iff the constraint solver
succeeds in finding a satisfiable solution for the constraints representing the
intended state. For example, an interesting property is to find the shortest
distance of the train to the gate before the gate is entirely closed. This can be
checked by posing the following query:

?- reachable((far,[1000]),(open,[90]),(idle,[0]),Reached),
member((near,_,_,Time,to_close,_),Reached),
get_max(Time,Tm),
member((near,_,_,Tm,_,X),Reached),
get_min(X,Min).

The previous query returnsMin = 104.8 meters, which is the minimum
distance of the train that the model guarantees before the gate is completely
closed.

Since the events and time are recorded particularly at reached regions,
verifying timing properties or computing the delay betweenevents are further
tasks that can be done within the reachability framework. For instance, we
can find the maximal time delay betweenin andexit events, by stating the
following query:

?- reachable((far,[1000]),(open,[90]),(idle,[0]),Reached),
append(A,[(past,_,_,Time1,exit,_)|_],Reached),
append(B,[(near,_,_,Time2,in,_)|_],A),
get_max(Time1,Tmax1),get_max(Time2,Tmax2),
Delay $= Tmax1-Tmax2.



4.4 Constraint-Based Modeling 57

The constraint solver answersyesand yieldsDelay= 2.554. This value
means that the train needs at most 2.554 seconds to be in the critical crossing
section before leaving it. Similarly, other timing properties can be verified.

Last but not least, the expressiveness of CLP makes it possible to reason
about the reachability of interesting properties not only within some region,
but also on the boundary of the region during firing a transition. This type
of properties is important in the sense that the values of continuous variables
at the cutoff point can tell how well systems perform relative to the given
timing constraints, and shows how critical variables should behave. To do so,
we get first the occurrence of the event of interest. Then we constrain time
of that event by projecting it on the intended critical continuous variables.
For instance, suppose we want to find the shortest distance ofthe train to the
gate before the gate is entirely closed. This can be checked by getting the
occurrence time of the eventto close, then the constraint solver will bind the
train distanceX to the value of this time.





5

Region Computation Tree Logic:Specification

In Chapter 4, we provided the syntax and semantics of our proposed approach
to hybrid automata. We implemented this approach by means ofconstraint
logic programming. We showed how to analyze simple queries by means
of reachability analysis. This chapter shows the general structure to spec-
ify those properties, which can be verified within our presented approach. In
order to specify properties one needs a suitable specification language. Tem-
poral logics are prominent examples of such specification languages. They
have been devoted to specify those properties which depend on the order
at which states appeared in a particular model, or what is called qualitative
properties of the model. When the time constraints are explicitly required in
the specification, the ordinary temporal logics have to be refined. Properties
that depend on these time constraints are known as quantitative properties.
This chapter presents a variance of temporal logics, RCTL (Region Compu-
tation Tree Logic) that extends the computation tree logic by incorporating
time on states, events, and constraints of formulas. The RCTL formulas are
interpreted over the set of possible regions resulted from the run of hybrid
automata. The specification language of RCTL allows us to express many
properties in a concise and intuitive manner. To bring modelchecking into
the scope of RCTL, we concentrate on the specification of those properties
that can be verified using reachability analysis. The main contribution of this
chapter has been published in [Mohammed and Furbach, 2010a].

5.1 Introduction

Model checking asks if possible runs of a model satisfy a given property
specified in a formal specification language. In fact, the choice of this lan-
guage is known to be one of the keys issues in the design of model check-
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ers as this language is one of the primary interfaces to access them. One
of the most widely used specification languages for many important sys-
tems istemporal logic, which was introduced in [Pnueli, 1977] as a subclass
of model logic [Van Benthem and ter Meulen, 1997] with possible world se-
mantics and model operators:� (for all possible worlds) and♦ ( there exists
a possible world). In temporal logic,� is interpreted as from now on, at all
states (or henceforth, always), while♦ is interpreted as from now on, there
exists a state (or eventually). Basically, temporal logic comes in two differ-
ent views: linear temporal logic LTL [Manna and Pnueli, 1992; Pnueli, 1977]
and computation tree Logic CTL [Ben-Ari et al., 1983]. Theselogics allow
us to express real-time requirements of reactive systems. The view of a com-
putation is the key difference between LTL and CTL. The computation can
be viewed either as a linear sequence with only one future or as a tree with
many possible futures. The former belongs to LTL, while the latter belongs
to CTL. Thus, CTL provides the branching operators∃ and∀ to specify the
relation among futures. Temporal logics basically allow toexpress the quali-
tative properties of reactive systems, that is the properties which focus on the
temporal order of the occurrence of events. An example of these properties is
to specify that a certain property of interest may eventually occur, or in other
words the formula is reached in the model. Another example ofproperties is
to specify that a critical property is never reached in the model or what is so-
called safety property. These types of properties have beenconsidered in dif-
ferent model checkers SPIN [Holzmann, 1997] and NuSMV [Cimatti et al.,
2002].

The classical temporal logics, however, are insufficient tospecify quanti-
tative temporal requirements or what is so-called hard realtime constraints,
which put timing deadlines on the behavior of reactive systems. Let for ex-
ample a propositionp correspond to the occurrence of the eventevent1, andq
correspond to the occurrence of the eventevent2, then in linear temporal logic,
the formula�(p→♦q) states thatevent1 is always followed byevent2, but it
does not state anything about the time period between the occurrencesevent1
andevent2. Temporal logics should be refined in order to permit such types
of quantitative specifications. The quantitative requirements are favored or
are mandatory safety in various scenarios. In the logistic transport example,
it is not desirable to specify that the goods will eventuallyreach their final
destination, but reaching within reasonable period of timeis favorable. In the
train gate example, it is mandatory safety to to guarantee that the gate will be
closed in certain time limit while appearing of a train.
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For their inexpressiveness to specify quantitative properties, the classi-
cal temporal logics have to incorporate the notation of time. For this aim,
there have been proposed several extension to temporal logics binding the
notation of time to formulas (see [Alur and Henzinger, 1992;Bellini et al.,
2000] for a survey). The underlying models of these logics are represented
as state transition graphs annotated with time constraints, using eitherevent
or statebased approach. In the former approach, events record the changes
of states at particular points of time. In the latter approach, the changes of
states are recorded at each point of time. Therefore, both approaches use a
different time domain. In particular, choosing the domain of time to be the set
of natural numbers leads to the so-calledDiscrete timemodel. In this model
a transition between states, represented by events, which happen only at the
integer time values. The behavior of a discrete time model isdescribed by the
timed trace over a set of events that occur during the evolution of the model.
[Koymans, 1990] showed a classification of temporal constraints with respect
to event occurrences. The main advantage of event based logics together with
their underlying discrete time model are their simplicity to express the quan-
titative properties. The quantitative requirements of systems often occurs at
the discrete change of behaviors. Hence, the use of events isa quite natural to
ideally specify such requirements. In the train gate example, in order to spec-
ify that whenever a train approaches the intersection, the gate must be closed
within a particular time period, it suffices to specify that every occurrence of
eventapproachis followed by the eventsclosedwithin such a time period.

Besides their ability to specify quantitative requirements, events provide
general observation view of systems’ behaviors by abstracting lots of details
of those systems. Indeed, the behavior of systems can be characterized by the
set of all possible sequences of event instances that happenover time. This
type of view of the behaviors can be used to specify the properties of complex
timed systems, or particularly multi-agent systems. For example, the behavior
of a transport agent in a logistic scenario is described by the sequence of
events that the agent should take in order to accomplish a certain task, like
receiving order, transport, change route plan, andreach to destination.

Specifying quantitative requirements, however, with timeat which events
occur, i.e. event based approach, is not the general choice to specify such
types of requirements. There are quantitative requirements that might not be
expressive by means of events. For example, it might be desirable to state
that within some interval of time, say 10≤ t ≤ 20, a certain property holds.
This can not be expressed with events unless the boundaries of the interval
coincides with occurrence of those events.
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Choosing the time domain to be the set of non-negative real numbers, i.e.
R≥0, leads to what is so calledcontinuous/densemodel, in which states have
to be recorded at each point in time. Therefore, change of states is represented
by letting the time to pass between one state to another. The quantitative tem-
poral logics, based on this approach, are powerful and expressive to specify
quantitative properties, as they record the state of the model at each point
of time. They can cope with the limitations of event based logics mentioned
previously. They, however, lack to express properties of events in models di-
rectly. They convert the event based into state based representation. Addition-
ally, underlying model checkers—for example UPPAAL [Bengtsson et al.,
1996] and Hytech [Henzinger et al., 1997]—convert the formulas depending
on the occurrence of events, into formulas with state based representation.
For example, to specify and verify that it is always the case thatevent1 is fol-
lowed byevent2 within t time unit, a traditional solution to verify this within
a modelM, is to translate this specification to a testing transition model A,
and then check whether the parallel model ofA andM can reach a designated
state ofA.

This chapter shows Region Computation Tree Logic (RCTL) that encom-
pass, in the same framework, the expressive power of event and state based
approaches. This is done by incorporating time notation on states and events.
We use hybrid automata as an interpretation model of RCTL. Inparticular,
the formulas of RCTL are interpreted on the set of all possible runs generated
from the transition system of hybrid automata. Time, events, and constraints
are the primary components constituting RCTL formulas. To plug the spec-
ification of properties, which can be verified within our presented approach
in the previous Chapter, we use a fragment of this logic that specifies the
properties which can be verified using reachability analysis.

The rest of this chapter is organized as follows: Sec.5.2 shows the syntax
and semantic of RCTL. Sec.5.3 shows the specification of those important
properties that can be verified by means of reachability analysis. Sec. 5.4,
discusses related quantitative temporal logics.

5.2 Region Computation Tree Logic (RCTL)

This section primarily focuses on the definition of the region computation
tree logic (RCTL), which extends the qualitative temporal logic of CTL with
time on states, events, and constraints of variables. RCTL combines, in the
same level of specifications, qualitative together with quantitative require-
ments. The formulas of RCTL are interpreted over the possible regions ob-
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tained from the run of hybrid automata. As described in Chapter 4, a region
can be seen as a sequence of states separated by transition points. Each tran-
sition point marks the instantaneous exit from regionΓi−1 and the entrance
into regionΓi, and corresponds to the occurrence of a particular event. There-
fore, we see regions constituting the essence of RCTL, such that RCTL can
be viewed as a state based quantitative temporal logics in a sense that regions
capture the changes of states, and as event based quantitative temporal logics
in a sense that events mark the instantaneous exist from region to another.
Thus, RCTL brings together, in the same framework, the advantages of both
approaches. In the following we show the syntax and semantics of RCTL.

Definition 5.2.1 (Timed-variables) LetT be a set of non-negative real vari-
ables calledtimed-variables, andΦ(T) 1 be a set of linear constraints over
T. The valuationξ of the timed-variablesT is a functionξ : T→R≥0. Given
π ∈ Φ(T), we writeξ |= π, if ξ satisfies the constraintπ.

5.2.1 Syntax of RCTL

Let X be a set of real variables,T be a set of non-negative real variables
disjoint fromX, Φ(X) andΦ(T) be two sets of linear constraints with free
variables fromX andT respectively,L be a set of atomic propositions denot-
ing the locations, andEventbe a set of atomic propositions denoting events
disjoint fromL.

Definition 5.2.2 (Formulas of RCTL) The formulaΨ 2 of RCTL are induc-
tively defined as

Ψ ::= p | a | φ | y.Ψ | π | ¬Ψ |Ψ1∧Ψ2 | ∃(Ψ1UΨ2)| ∀(Ψ1UΨ2)

for y ∈ T, p ∈ L, a ∈ Event,φ ∈ Φ(X), π ∈ Φ(T), andΨ1, Ψ2 are RCTL
formulas.

In addition to the definition of formulas, the following are standard abbre-
viations in RCTL similar to CTL:

∃♦Ψ ≡ ∃(true UΨ ) ∀♦Ψ ≡ ∀(true UΨ)

∃�Ψ ≡ ¬∀♦¬Ψ ∀�Ψ ≡ ¬∃♦¬Ψ
1 see Chapter 4 of syntax and semantics
2 true is defined implicitly inΦ(X), see Chapter4
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Given the previous abbreviations, the formula∃♦Ψ indicates that there
exists a path whereΨ is eventually true, whereas∃�Ψ indicates that there
exists a path whereΨ is always true. The quantifiers∀ and∃ in front of the
model operators♦ and� indicate a universal and existential quantifier on
paths respectively. It should be notated that the abbreviation of the logical
operators∨ and→ are defined as usual.

5.2.2 Semantics of RCTL

We will interpret the formulas of RCTL over the set of all possible regions
generated from possible runs of hybrid automata. Recall again, let a regionΓ
take the formΓ = (q,V,T), with δ (Γ ) = q is its location, andV andT are the
interval of valuations and time respectively, in which the region is admissible.
If there is a transition from a regionΓ1 to a regionΓ2, then an eventa occurs
at some timing pointt, written asΓa

a
−→
t

Γ2. A sub-regionβ ⊆ Γ , with β 6= /0

means thatβ = (q,V
′
,T

′
) with T

′
⊆ T andV

′
⊆ V. A stateσ ∈ Γ means

that σ = (q,v, t), with v ∈ V and t ∈ T. σ satisfies a constraintφ ∈ Φ(X),
written asσ |= ϕ , iff v |= ϕ . In the following, we show the semantics of
RCTL formulas on the set of all possible runsΠH .

Definition 5.2.3 (Semantics)Let Ψ is a RCTL formula, H be a hybrid au-
tomaton,ΠH be the possible runs of H with a regionΓ = (q,V,T) ∈ ΠH ,
and ξ is a valuation function of timed-variables. The satisfaction relation

〈ΠH ,Γ 〉
T
�
ξ

Ψ , which means thatΨ is satisfied in the regionΓ within the time

interval (duration) T for some valuation functionξ , is defined inductively as
follows:

• 〈ΠH ,Γ 〉
T
�
ξ

p iff p= δ (Γ ).

• 〈ΠH ,Γ 〉
T
�
ξ

a iff there is t′ ∈ T with Γ a
−→
t ′

Γ ′.

• 〈ΠH ,Γ 〉
T
�
ξ

φ iff there isβ ⊆ Γ , f or eachσk ∈ β ,σk � φ .

• 〈ΠH ,Γ 〉
T
�
ξ

y.Ψ iff there ist ∈ T such thatξ (y) = t and〈ΠH ,Γ 〉
T:=t
�
ξ

Ψ .

• 〈ΠH ,Γ 〉
T
�
ξ

π iff ξ � π.
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• 〈ΠH ,Γ 〉
T
�
ξ
¬Ψ iff 〈ΠH ,Γ 〉

T
2
ξ

Ψ .

• 〈ΠH ,Γ 〉
T
�
ξ

Ψ1∧Ψ2 iff 〈ΠH ,Γ 〉
T
�
ξ

Ψ1 and(ΠH ,Γ )
T
�
ξ

Ψ2.

• 〈ΠH ,Γ 〉
T
�
ξ
∃(Ψ1UΨ2) iff there is a runΠ ∈ ΠH ,Π = Γ0,Γ1, · · · , with Γ =Γ0,

for some j ≥ 0, 〈ΠH ,Γj〉
Tj

�
ξ

Ψ2, and〈ΠH ,Γk〉
Tk

�
ξ

Ψ1 for 0≤ k< j.

• 〈ΠH ,Γ 〉
T
�
ξ
∀(Ψ1UΨ2) iff for every runΠ ∈ ΠH ,Π = Γ0,Γ1, · · · , with Γ =Γ0,

for some j ≥ 0, 〈ΠH ,Γj〉
Tj

�
ξ

Ψ2, and〈ΠH ,Γk〉
Tk

�
ξ

Ψ1

for 0≤ k< j.

The quantifiers∀, and∃, in the previous semantics, are called paths quanti-
fiers. The variabley in the formulay.Ψ holds the time at whichΨ is satisfied.

y := t means the variabley is set to the valuet. 〈ΠH ,Γ 〉
T:=t
�
ξ

Ψ means that the

formulaΨ is satisfied in the regionΓ when the timeT is restricted to the time
point t. In caseΨ represents an atomic proposition from the setEvents, then
y.Ψ binds the time at which the event has occurred. This can be used to spec-
ify various quantitative properties, such as time bound response properties as
we will see in what follows. However, ifΨ represents a constraint formula,
then y.Ψ evaluates the time interval at which the constraintΨ is satisfied.
This allows to specify quantitative properties, which could not be specified
using events.

Definition 5.2.4 (Satisfiability) Let H be hybrid automaton withΠH as its
possible runs. We say that H satisfies the RCTL formulaΨ , written as H�Ψ ,
iff (ΠH ,Γ0) �Ψ , whereΓ0 is the initial region ofΠH .

5.3 Model Checking as Reachability

For the purpose of verification by means of model checking, weneed to de-
scribe the properties. As it has been said in the previous section, the qualita-
tive properties are often classified into reachability, safety and liveness prop-
erties. However, when the time becomes a critical factor to react in the envi-
ronment, then the concept of safety and liveness propertiesshould be refined.
We are going to review these types of properties [Olderog andDierks, 2008]
and show how to specify these properties by RCTL, and hence encode them
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into the CLP queries for the purpose of model checking. In order to put model
checking within our framework, we will concentrate only on the reachability
requirements. Indeed, many properties of interest can be specified as a form
of reachability, as we will see in the sequel. We will start specifying reacha-
bility of properties.

5.3.1 Reachability Properties

The reachability of a propertyΨ means that there is a possibility to reach a
state whereΨ holds. In other words, the reachability of the propertyΨ asserts
that starting from an initial state, is there a region along arun in whichΨ is
satisfiable. This can be specified in RCTL as follows:

init →∃♦Ψ

whereinit is the predicate characterizing the set of initial states and is defined
as conjunctions of atomic propositions fromL and constraints fromΦ(X).
This predicate expresses that the run to be considered are those that start
from the initial state.

In terms of the CLP, the reachability of a certain region thatsatisfies the
formulaΨ is done by performing forward reachability analysis from the sys-
tem’s initial state, and then checking whether the conjunction of Ψ with the
possible reached regions is satisfied. Assuming for exampleinit has been as-
signed to the set of initial states, the following is the CLP query to check the
safety requirements.

?- reachable(init,Reached),
member(Ψ1,Reached),φ.

In the previous query, the formulaΨ is rewritten as a conjunction of two
formulasΨ1 and φ , whereφ ∈ (Φ(X)∪Φ(T)) is an atomic the constraint
appearing in the formulaΨ . Indeed, any RCTL formula can be rewritten as
Ψ =Ψ1∧φ , this is for the reason that at the mostφ can be set to be true.

To demonstrate the reachability of a formula in a concrete example, let us
return to the train gate controller example described in Chapter 4. Supposing
one wants to check the possibility of reaching a region whosestate satisfies
that thetrain is at near within distance less than 10metersand thegate is
closed. First the initial state of the systems is given by:

init : train. f ar ∧ gate.open∧ controller.idel ∧ x= 1000∧ g= 0 ∧ z= 0.
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The intended formula is specified as

init →¬∃♦(x≤ 10∧ train.near∧gate.closed)

As shown, the set of atomic propositionsL describes the possible locations
of hybrid automata. Since locations of different automata may have the same
names, we should identify them somehow. To do this, we will refer to each
atomic proposition with the formA.q meaning that the automatonA is at
locationq, as it has been shown in the previous specification.

CLP of the previous formula can be verified by asking the following
query:

?-reachable((far,[1000]),(open,[0]),(idle,[0]),Reached),
member((near,close,_,Time,_,X,),Reached), X $=< 10.

The successful answer to this query indicates reachabilityof the specified
formula.

It is often that in certain cases we may be interested in the reachability
of a certain property either before or after a time deadline has expired called
Time bounded reachability. For example, the possibility of a formulaΨ to be
reached within the bounded timeα is specified in RCTL as

init →∃♦ (t.Ψ ∧ t ≤ α)

Demonstrating this by the previous example withα = 19, We are going to
check the reachability of the previous example within 19 unite of time.

?-reachable((far,[1000]),(open,[0]),(idle,[0]),Reached),
member((near,close,_,Time,_,X,),Reached),
X $=< 10, Time $=<19.

5.3.2 Safety as Reachability

A safety property states thatsomething bad must never happen. The bad thing
represents a critical property that should never occur. LetΨ represent this
critical property, then the safety property is specified using RCTL as

init :→∀�¬Ψ .

Starting from the initial states, the previous formula states that the critical for-
mulaΨ is never reached. Generally, a safety property can be violated within
bounded time, which means that the exhibition of the previous formula by a
single state within a region suffices to show that the safety property does not
hold. Thus, safety property can be reduced to reachability property. In other
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words, since∀� and¬∃♦ are dual, we can specify the same property as the
following:

init :→¬∃♦Ψ .

The previous specification asserts that after executing theinitial stateinit , the
requirement characterized byΨ will not be reached. To illustrate the safety
property with an example, assuming one wants to check that the state, where
the train is at the intersection—the train is atnear location—with a distance
X=0 and the gate isopenis a disallowed state. Even a stronger condition can
be investigated, namely that the state, where the train is atthe intersection and
the gate isdown, is forbidden. This safety requirement can be specified as

init →¬∃♦(x= 0∧ train.near∧gate.down)

This formula asserts that during the run of the system, starting from the initial
state, there is no reached state where the train is near at distancex = 0 and
the gate is at down state. Checking the safety property meansthat one checks
the un-reachability of the following query:

?-reachable((far,[1000]),(open,[0]),(idle,[0]),Reached),
member((near,down,_,Time,_,X,),Reached), X $= 0.

The constrain solver answersNo for the previous query.

5.3.3 Additional Requirements

We showed that safety properties can be reduced to the reachability problem.
As it is known, a safety property asserts what may or may not occur, but do not
require that anything ever does happen. In the train gate example, closing the
gate permanently can maintain the safety of the system, but it is unacceptable
for the waiting cars or pedestrians in front of the gate. For this reason, the
liveness property is needed to specify such requirements, which asserts that
some property of interest will always occur. It should be noted that these type
of properties can not be falsified in bounded time. Since the occurrence of
some state does not say how long it will take for this state to occur, we can
not sure that the liveness property is violated. For this reason, these types of
properties are not strong enough in the context quantitative properties. Here
one would like to see a time bound when the good state occurs. This leads to
the next kind of properties.
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Bounded Response Properties

A bounded response property is one of the most important classes of quantita-
tive requirements used to specify many important applications. It asserts that
something will happen within a certain limit of time. A typical application
of bounded response property is the specification of worst case performance;
that is the specification of an upper boundα on the termination of a system
S: if started at timet, thenS is guaranteed to reach a final state no later than
α + t unit time. In the logistic scenario, for example, specifying that any re-
ceived order is guaranteed to be delivered within 5 days is a bounded response
property. In communication protocols, specifying that every request will be
acknowledged within 3 seconds is a bounded response property. In the train
gate example, a desired property is to specify that once the approach of a
train is detected, the gate needs to be closed within a certain time bound in
order to halt cars and pedestrian traffic before the train reaches the crossing
intersection.

The following is the RCTL specification of a bounded responseproperty
between two eventsevent1 andevent2:

init →∀�(t1.event1 →∀♦(t2.event2∧ t2 ≤ α + t1)).

The previous formula states that whenever there is a requestevent1 occurs at
time t1, then it is followed by a responseevent2, at timet2, such thatt2 is at
mostα + t1.

It should be mentioned that this property can be falsified within time
bound. Therefore this property can be specified as a kind of safety require-
ment represented as reachability. For this reason, provingthe previous prop-
erty means proving that it is not possible to reach a state where event2 is not
reached fromevent1 within t2 ≤ α + t1. In other words, starting fromevent1,
finding a reachable state satisfiesevent2, within α time bound, is sufficient
to check the reachability of the property. In terms of the CLP, the previous
property can be encoded into the following steps. Firstly, we get all possi-
ble reachable states fromevent1 within t1+α asL. Secondly, we check that
reachability ofevent2 has not occurred. A positive answer of the reachabil-
ity indicates a negative answer to the original problem, andvice versa. The
following is a CLP query encoding the previous specification

?- reachable(Ψ0,Reached),
reached_from(L,event1,Reached),
reached_within(Target, α,L),
\+ member((_,..,_,event2),Target)
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We should say that the traditional way to verify this kind of properties in
real-time system tools— like UPPAAL [Bengtsson et al., 1996] and Hytech
[Henzinger et al., 1997]–is to translate that property to what is called a testing
automataA, and then check whether the parallel composition of the underly-
ing model together withA can reach a designated violation state. As we said
earlier, the reason behind this translation is that there isno direct use of events
in the model. The use of events is limited to construct only the parallel com-
position of automata. In contrast to our adopted approach, the direct use of
events with the model allows us to avoid this translation process. This shows
that RCTL is more expressiveness, particularly in our setting, than many oth-
ers quantitative temporal logics.

In real-time systems, specifying the behavior on the discrete case, in some
cases, is not satisfactory. Suppose for example that one needs to specify that
a part of a certain region can be reached in some time bound interval. To do
so, we present the bounded invariance properties.

Bounded invariance Properties

Like the bounded response property, bounded invariance property is one of
the most important classes of quantitative timing requirements. It asserts that
once an event has been triggered, a certain condition will continuously hold
for a certain amount of time. It is often used to specify that something will
not happen for a certain period of time. Formally, specifying that a certain
property hold continuously for a certain amount of time in RCTL is like the
following

init →∀�(t1.event→∀�(t2.Ψ ∧ t2 ≤ α + t1)).

whereα is the duration at which the formulaΨ must be continuously held.
For instance, whenever the train approaches the gate, the distance of the train
is always larger than 100 meters for the duration of 20 time units. The prop-
ertyΨ = X > 100 in this case represents the distance of the train, andapp is
the triggered event.

The bounded invariance property can be checked as a safety property.
Starting from timet1, finding a non-reachable violating state for the formula
Ψ , within α time bound, is sufficient to check the reachability of the property.
This can be encoded into CLP as the following

?- reachable(Ψ0,Reached),
reached_from(L,event1,Reached),
reached_within(Target, α,L),
member((_,..,X,_,Target), X$≤100.
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A satisfactory solution to the previous query violates the original property.
The way used to specify the bounded invariance properties can be used

to specify what is the so-calledminimal event separation[Henzinger et al.,
1995] too, i.e noevent2 can occur earlier thanα time units after an occurrence
of event1. This property can be specified as

init →∀�(t1.event1 →∀�(t2 < t1+α →¬t2.event2)).

5.4 Related Quantitative Languages

As mentioned in the introduction, several quantitative specification languages
have been proposed based on temporal logics. The distinction among those
languages depend on various parameters. First of all, the types of the models
of computational; that is whether it is linear or branching model. Additionally,
the accessibility of time; that is whether the time is implicit or explicit in the
temporal logics. Another discrimination concerns the types of time domain.
Choosing time to be a set of natural numbers gives us what is the so-called
the discrete time model. In this model, the change of states can only happen
at the integer time values. Choosing time to be a set of real numbers, gives
what is the so-called the continuous/dense time model. In this model, the
change of states is assumed to happen at an arbitrary point intime over the
real line. Another important distinction among real-time models is whether
one assumes that the system under consideration is observedat every instant
in time leading to an interval based semantics [Alur et al., 1996a], or whether
one only records a countable sequence of snapshots of the system leading to
point-based semantics[Alur and Henzinger, 1993, 1994].

In this section, we focus on the other quantitative temporallogics that are
used to extend the classical temporal logic with notation oftime. Like the
conventional view of temporal logics, we devide the extension of temporal
logic into linear time and branching time logic.

5.4.1 Linear Time Logics

Linear time logics extends the traditional linear temporallogic by admitting
time constraints on definitions of the formulas. In the following, we give
overview about these linear quantitative languages—they are also called real
time temporal logics.
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Metric Temporal Logic

One of the earliest and most popular suggestions for extending temporal log-
ics with quantitative setting is to extend the temporal operators by subscript-
ing the modal operator with time interval. The idea of this extension is traced
back to metric tense logic [Burgess, 1984] of superscripting or subscripting
temporal logic. A successful and prominent example of this type of logic is
Metric Temporal Logic(MTL)[Koymans, 1990; Alur and Henzinger, 1993],
which extends linear temporal logic by constraining the temporal operators
�, and♦ with time intervals. For example, the formula♦[2,6]Ψ means that
Ψ is eventually true within 2 to 6 time units from the current time. The timed
bounded response property— that is to specify that every p-state is followed
by a q-state within 3 time units—can be specified using MTL by the formula
�(p→♦[0,3]q).

The formulas of MTL are built from propositions using Boolean connec-
tives and a time constrained version of until operatorUI . The formulas of
MTL are interpreted over time state sequences of integer domain, which pro-
vide an interpretation for the propositions at every time instant. For example,
the formulaΨ1UIΨ2 holds at timet of a timed state sequences iff there is a
later t ′ ∈ (t + I) such thatΨ2 holds at timet ′ andΨ1 holds throughout the
interval(t, t ′).

Metric Interval Temporal Logic(MITL)[Alur et al., 1996a] is a variant of
MTL employing dense time domain, instead of integer domain.Moreover, the
bounded operator syntax is used with restriction such that temporal operators
must not be bounded by singular interval—i.e. interval of the form [a,a].

Explicit Clock Logic

Another type class of quantitative logics, is to extend the temporal logic with
explicit notation of time. In this approach, time is defined with both a se-
quence of states and a sequences of temporal instants. The key idea behind
this approach refers to use a dynamic state variableT and global variables
over the time domain. The variableT represents the time of each state, i.e. it
is considered as a global clock of a system. Due to the direct use of the global
variables, the temporal logic is calledExplicit Clock Temporal Logic. Exam-
ples of this approach can be found in [Harel et al., 1990; Pnueli and Harel,
1988; Ostroff and Wonham, 1990].

The time bounded response property can be specified by the Explicit clock
approach as the formula∀x.�((p∧T = x)→♦(q∧T ≤ x+3)). The global
variablex is bound to the time of every state in whichp is observed.
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Freezing Quantifier

Timed Propositional Temporal Logic(TPTL) [Alur and Henzinger, 1994] is
a real time logic, which extends the propositional temporallogic with time
notations in order to specify the quantitative properties of real time sys-
tems. The key idea of TPTL is to use what is called thefreeze quantifier
”x.”, which binds the associated variablex to the time of the current tem-
poral context. Therefore, the formulas of TPTL are defined similarly to the
formulas of propositional temporal logic, but with the additional formula
x.Ψ , which freezes the time at which the formulaΨ holds. The TPTL for-
mula is interpreted over timed observational sequences. The formalx.Ψ (x)
holds at timet if Ψ (t) does. Therefore the formula♦x.Ψ means that the
time variablex is bound to the time of the state at whichΨ is eventually
true. In this way, and by admitting atomic formula that relate times of dif-
ferent states, one can write the time bounded response property with TPTL
as�x.(p→♦y.(q∧y≤ x+3)). The previous formula means that whenever
there is a requestp, and the variablex is frozen to the current time, the request
is followed by a responseq at timey, such thaty is at mostx+3.

5.4.2 Branching Time logics

In this section we show some of the formal specification languages that are
used to extend the computational tree logic CTL with time constraints. Gen-
erally, the branching time logics adopt the same ideas of extending linear time
logics.

Real Time Computation Tree Logic

Real-time Computation tree logic(RTCTL) is a propositional branching
timed logic, which has been proposed by Emerson et al. [1992]to extend
the temporal logic CTL with real time constraints. The extension allows to
the model operators to be bounded with time interval rangingover integer
domains. The use of integer domain simplify assumption of modeling real
time systems, whose events occur with the ticks of a global clock. The for-
mulas in RTCTL are generated from CTL formulas together witha rule that
adds a natural number that abound on the modalities on the formula, such as
∀(p U≤k q).

Timed Computation Tree Logic

Timed Computation Tree Logic(TCTL) [Alur et al., 1993] is another propo-
sitional branching timed logic that extends the qualitative logic CTL to the
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quantitative logic Real-time. The syntax of TCTL is very similar to that of
RTCTL, but with less restrictive semantics. Precisely, TCTL is a bounded
operator extension of CTL with point based real time semantics. Thus, TCTL
uses timed automata [Alur and Dill, 1994] as timed state transition graph
model in order to define the semantics.

Duration Temporal Logic

There are specification languages that specify quantitative properties based
on the concept of duration [Chaochen et al., 1991].Duration Temporal Logic
(DTL)[Bouajjani et al., 1993] is one among of these languages permiting to
reason about the duration of state properties (formulas). That is, given a finite
interval on a run of a system, the duration of some state property in this inter-
val is the time during which the property is true. Namely, theglobal time spent
by the system in a run interval is simply the duration of the formula is true.
DTL is a branching time logic with duration variables that can be associated
with state formulas, and then used to express constraints ontheir duration.
Thus, the formulas of DTL are built from the formulas of CTL together with
a duration formula of the form[x : φ1].φ2, which associates the duration vari-
ablex with the formulaφ1 and bindsx in φ2. DTL considers simple timed
graphs defined in [Nicollin et al., 1992] as a model for real time systems.

Integrator Computation Tree Logic

Integrator Computation Tree Logic(ICTL) [Alur et al., 1996b], similar to the
approach presented in this chapter, is a quantitative temporal logic for speci-
fying properties based on hybrid automata. The notation of time, however, is
not explicitly defined within the model of computation. Instead, the model of
computation is augmented with special clocks called integrators whose func-
tion is to measure the accumulated time delay inside controllocations. These
variables are used later to specify quantitative properties. Thus, ICTL extends
CTL by admitting these integrators on CTL formulas. The key idea of inte-
grators is inspired by duration temporal logic DTL [Bouajjani et al., 1993].
Each integrator has a type of sub-locationsI from the setQ of locations of
hybrid automaton. The integrator evolves continuously only insideI , and its
value increases with a rate at which time advances whenever the control lo-
cation inI and its value stays unchanged elsewhere. Therefore, the formulas
of ICTL are constructed from CTL formula together with the reset quantifier
formula (z : I).φ . The previous formula binds the formulaφ to the integerz,
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declares its type to beI , and sets its value to 0. Generally, ICTL can success-
fully specify duration properties, which can be verified afterward by means of
Hytech [Henzinger et al., 1997]. ICTL, however, has some points that should
be taken into consideration. Firstly, for the purpose of verification, a model
should be extended to contain integrators, which in our caseare not necessary.
Secondly, ICTL can not specify properties that depend on events. Instead it
has to follow an indirect way. For example, to specify thatevent2 is a response
to event1 within α time units, one has to augment the model under consider-
ation by an automatonA, whoseidle, wait, andviolate are considered as its
control locations andt as its integrator. Initially, the control location ofA is
in the idle. When a triggerevent1 occurs, control pass towait location and
the integratort is reset. The responseevent2 causes the control to return to
the idle location. The locationviolate is only enabled whent ≥ α . With the
parallel composition of the original model with the automaton A, the specifi-
cation of bounded response property can be specified as the un-reachability
of the locationviolate.





6

Experimental Results and Related Work

The aim of this chapter is to evaluate the approach presentedin the previous
Chapters. The Chapter is doing so by obtaining several examples taken from
the context of hybrid automata. It begins with describing these examples and
their hybrid automata models. It conducts experiments to check such models
against safety requirements. The evaluation of these examples are compared
with Hytech. Furthermore, the Chapter discusses works thatare related to
the presented approach. The main results of this Chapter have already been
presented in [Mohammed and Furbach, 2009a].

6.1 Benchmarks

In order to use the approach presented in the previous chapters to model and
verify systems—particularly multi-agent systems—by means of hybrid au-
tomata, we have to demonstrate its feasibility by running experiments on ex-
amples taken from the hybrid automata context. We will referto standard ex-
amples of verification of hybrid automata, which will be usedto evaluate our
presented approach. We use these examples to verify their safety properties.
Firstly, the safety property ofschedulerexample [Halbwachs et al., 1994]
is to check whether a certain task (with number 2) never waits. Secondly,
in the temperature controlexample [Alur et al., 1994], the safety property
must guarantee that the temperature always lies in a given range. Thirdly, in
the train gate controller1example [Henzinger et al., 1995], the safety prop-
erty has to be ensured that the gate is closed whenever the train is within
a distance less than 10 meter toward the gate. In thewater levelexample
[Halbwachs et al., 1994; Alur et al., 1994], the safety property is to make
sure that the water level is always between given thresholds(1 and 12).
A non-linear version of both train gate controller—this non-linear version
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has been described throughout chapter 4—and the thermostatare taken from
[Henzinger et al., 2000]. The safety property of the former one is to prove the
similar safety property of the linear version. In the later one, the safety prop-
erty is to prove that the temperature always lies between 0.28 and 3.76. The
safety property ofFisher’s mutual exclusion protocol[Henzinger et al., 1995]
has to guarantee that two processes are never in the criticalsection at the same
time. Last but not least, in the nuclearReactor1example [Alur et al., 1996b],
the safety property is to ensure that only one of the rods of the reactor can be
put in. Reactor2is an approximated version ofReactor1which is found in
the verification examples of Hytech [Henzinger et al., 1997].

In the following, we present the details of these examples and show their
prospective hybrid automata models. Additionally, we showthe specification
of the safety requirements in terms of RTCL presented in the previous Chap-
ter.

Scheduler Example

In the scheduler example, Fig. 6.1, there are two classes of tasks, activated
by two different interruptsI1 andI2. InterruptI1 occurs at most once each 10
time units, whereas interruptI2 occurs at most once each 20 time units. The
interrupt I1 is responsible to activates the first class of tasks, which takes 4
time units. On the other hand, The interruptI1 is responsible to activate the
second class of tasks, which takes 8 time units. Tasks of the second class have
priority, and can preempt other tasks. The goal is to show that a task of the
second class never waits.

For the purpose of specifying the model, there are two timers, namelyci ,
for i = 1,2, to count the delay elapsed since the last interruptIi . There are
two timers, namelyxi , to count the execution time of tasks, and two counters
ki , to count the number of pending tasks in each class. These counters are
discrete variables, which means that their derivative is supposed to be 0 in
any location.

The initial conditioninit of the scheduler is given as:

init : interrupt.start ∧ task.idle ∧ x1 = 0

∧ x2 = 0 ∧k1 = 0 ∧k2 = 0 ∧c1 = 0 ∧ c2 = 0

The safety requirement, which isthe second tasks never wait, is specified by
RCTL as

init →¬∃♦(k2 ≥ 1∧ task.task1)
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The previous formula states that starting from the initial state of the model, it
is not possible to reach a state, where the first task is being processed and the
pending of the second type of tasks is greater than 1.

idle

k2 := k2−1 x2 := 0

x2 = 8∧k2 ≥ 2

ċ2 = 1

I1

I2

k2 := k2+1

I1

interrupt

k1 := k1+1

x1 = 4∧k1 ≥ 2

k1 := k1−1 x1 := 0
k1 := k1+1

I2 k2 := 1

task2task1

i: true
f: ẋ1 = 0

i: true
f: ẋ1 = 1

i: true
f: ẋ1 = 0

ẋ2 = 1ẋ2 = 0

ẋ2 = 0

k1 := 1

x1 = 4∧k1 ≤ 1
x1 = 8∧k2 ≤ 1∧k1 = 0

k1 := k1−1 x1 := 0

k2 := k2−1 x2 := 0
x1 = 8∧k2 ≤ 1∧k1 ≥ 1

k2 := k2−1 x2 := 0

k2 := 1I1

I2

start

I2

c1 := 0

c2 := 0

i: true
f: ċ1 = 1

I1

c1 ≥= 20

c1 ≥= 10

c2 := 0

c1 := 0

k2 := 0 k1 := 0

Fig. 6.1.Scheduler automata.

Temperature Control Example

In the temperature control example, a system controls the coolant temperature
in a reactor tank by means of moving two independent control rods. The main
goal of the system is to maintain the coolant between two temperatures 250
and 1100, so that when the temperature reaches its maximum value of 1100,
the tank must be refrigerated with one of the rods. The temperaturex rises at
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a rate of 34, and decreases at rates 25 or 10 depending on whichrod is being
used. A rod can be moved again only if 80 time units have elapsed since
the end of its previous movement. If the temperature of the coolant cannot
decrease because there is no available rod, a complete shutdown has to be
performed. Figure 6.2 shows the specified model of this example: variable
θ measures the temperature and the values of clocksx1 represents the time
elapsed since the last use of first rod, whereasx2 represents the time elapsed
since the last use of the second rod.

rod2

rod1norod

shutdown

i:θ ≥ 250

i:θ ≥ 250

f: θ̇ =−25

f: θ̇ =−10

ẋ1 = 1
ẋ2 = 1

ẋ1 = 1

x1 = 80

x2 = 80

i:θ ≤ 1100
f: θ̇ = 34

ẋ1 = 1
ẋ2 = 1

ẋ2 = 1

θ = 1100∧x1 < 80∧x2 < 80x2 := 0

θ
=

11
00

θ = 250
x1 := 0

θ = 1100
x1 ≥ 80

θ = 250

x 2
≥

80

Fig. 6.2.Temperature control automaton.

The initial conditioninit of the system is given as

init : temp.norod ∧ x1 = 80 ∧x2 = 80

The safety property, which is to check that the shutdown is never reached , is
specified by RCTL as

init →¬∃♦ temp.shutdown

Train Gate Example

The train gate controller example has been demonstrated as arunning exam-
ple throughout Chapter 4. There are two versions of this example. The key
distinction between the two versions is the type of dynamicsof the continu-
ous function. In particular, the version presented in [Henzinger et al., 1995]
is a rectangular version – see Fig. 6.3–, whereas the versionpresented in
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[Henzinger et al., 2000] is a non-linear version. In both versions, the safety
property is to guarantee that the gate must be closed whenever the train is
within a distance of less than 10 meter toward the gate.

Recall again, the initial conditioninit of the system is given as:

init : train. f ar ∧ gate.open∧ controller.idel ∧ x= 1000∧ g= 0 ∧ z= 0

the safety requirement can be rewritten as:

init →¬∃♦(x≤ 10∧ train.near∧gate.closed)

far near past

t := 0

x≤ 100

t ≤ 5 t ≤ 5

g= 0

t := 0
t := 0t := 0

g= 0g≥ 0

g≤ 90 g= 90

x≥ 500 x≥ 0

g= 90

Train

Controller

Gate

down

up

closed

idle to raiseto lower

open

x= 1000 in
x =0

raise

lower

raise

to close

app

lower

appapp

x =500

exit
x =100

ġ= 20 ġ= 0to open

ṫ = 1 ṫ = 1ṫ = 0

ġ= 0

x: =1000

app

lower

exit

ġ=−20

g= 90

t = 0
exit

exit

raise

ẋ∈ [−50,−40] ẋ∈ [−50,−30] ẋ∈ [30,50]

Fig. 6.3.Train gate example.

Water Level Monitor Example

The water level in a tank is controlled through a monitor, which continuously
senses the water level and turns a pump on or off. The water level changes
as a linear function over time, so that when the pump is off, the water level,
denoted by the variabley falls by 2 inches per second and when the pump is
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on, the water level rises by 1 inch per second. As an initial state, the water
level is 1 inch and the pump is turned on. The goal of the water tank is to
keep the water between 1 and 12 inches. From the time the monitor signals to
change the status of the pump to the time that the changes becomes effective,
there is a delay of 2 seconds. The monitor must signal to turn the pump on
before the water level falls to 1 inch and it must signal to turn the pump off
before the water level reaches 12 inches. The hybrid automaton of Fig. 6.4
describes a water level monitor that signals whenever the water level passes
5 to 10 inches, respectively.

The initial conditioninit of the system is given as:

init : water.on1 ∧ y= 1

In terms of RCTL, the safety property is specified as:

init →∀�(1≤ y≤ 12)

off2

on2on1

off1
i:y≥ 5i:x≤ 2

i:x≤ 2i:y≤ 10
f: ẋ= 1 f: ẋ= 1

f: ẋ= 1f: ẋ= 1

x= 2 x= 2

x := 0

x := 0

y= 10

y= 5

ẏ=−2 ẏ=−2

ẏ= 1 ẏ= 1

y= 1

Fig. 6.4.Water level automaton.

Thermostat Example

A thermostat, Fig. 6.5, is a controller with delay: after thethermometer de-
tects that the temperature is too low or too high, there may bea delay of up
to one time unit before the appropriate control action is taken, i.e. turn the
heater on or off, respectively. The variablex measures the temperature. Ini-
tially, x= 2 and the heater is on. The temperature rises according to thedif-
ferential equation ˙x= −x+4. The temperature eventually reaches 3; after a
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delay of one time unit, the thermostat sends aturnoff signal to the heater. The
delay is measured using a variablez. Then the temperature falls according the
equation ˙x = −x until x= 1. One time unit after the temperature reaches 1,
the thermostat sends aturnonsignal to the heater. The goal of the thermostat
is to prove that the temperature always lies between 0.28 and 3.76.

The initial conditioninit of the thermostat is specified as

init : thermostat.on ∧ x= 2

The safety property is specified as

init →∀�(0.28≤ x≤ 3.76)

delay1on

turnoff

offdelay2

x= 2
x= 3

i:z≤ 1
f: ẋ=−x
ż= 1

x= 1

z := 0

z := 0

turnon

f: ẋ=−x+4

i:x≤ 3

ż= 1
f: ẋ=−x+4
i:z≤ 1

f: ẋ=−x

i:x≥ 1

Fig. 6.5.The thermostat automaton.

Fisher’s Mutual Exclusion Example

A mutual exclusion protocol is a system consisting of two processP1 andP2

each performing atomic read and write operations on a critical section of a
shared memory variable k. Each process has a critical section. At any time
instant one of the two processes is allowed to be in its critical section at most.
Fisher’s protocol ensures the mutual exclusion by modelingthe execution of
each processPi, i = 1,2 as the following pseudo-code:
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Pi : repeat
repeat

await k = 0
k :=i delay b

until k =i
Critical Section

k :=0
forever

The two processesP1 and P2 share a variablek and each processPi is
allowed to enter its critical section iffk= i. Each process has a private clock.
The statementdelay bputs off a process for at leastb time units as measures
by the process’s local clock. Each process takesa time unit at most measured
by the process’s clock, in order to make a single write accessto the shared
memory variablek, i.e. the assignmentk := i occurs . The values ofa andb
are the only information we have about the timing behavior ofprocesses.

Fig. 6.6 shows the hybrid automata that model the mutual exclusion proto-
col of the two processPi, i = 1,2. Given particular values toa andb, the safety
property is to ensure that the two process are never in the critical section at
the same time.

The specification of the initial condition of the systeminit is given as:

init : P1.init ∧ P2.init ∧k= 0

The mutual exclusion requirement is specified by the RCTL formula:

init →¬∃♦(P1.cs ∧P2.cs)

Reactor Example

In the reactor example Fig. 6.7, the temperature is represented by a non-linear
variablex. The temperature of the reactor is initially 510 degrees andboth the
control rods are outside the reactor. In this case, the temperature rises accord-
ing to the differential equation ˙x= x

10+50. In order to prevent the reactor to
shutdown, one of the two control rods can be put into the reactor core. Control
rod 1 decreases the reactor temperature according to the differential equation
ẋ = x

10 − 56, whereas control rod 2 has a stronger effect and decreasesthe
temperature according to the differential equation ˙x= x

10 −60. When a con-
trol rod is removed from the reactor, it cannot be put back into the reactor
core for 15 seconds. This requirement is enforced by the clock variablexi

(i = 1,2), which measures the elapsed time since the control rodi has been
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P1

k= 0
Init

i: true

i: true

idle

delay

k= 2∧y= b

i: y≤ b
f:1≤ ẏ≤ 1.1

k := 0
k 6= 1∧y= b

f:1≤ ẏ≤ 1.1

k= 0
Init

CS

i: true

i: true

idle

delay

k= 1∧x= b

i: x≤ a

i: x≤ b
f:0.8≤ ẋ≤ 1

k 6= 1∧x= b

i: y≤ a

f:0.8≤ ẋ≤ 1

P2

CS

k= 0∧x := 0

k := 0

k= 0∧y := 0

k := 2∧y := 0
y= a

x= a
k := 1∧x := 0

Fig. 6.6.Fischer mutual exclusion.

removed from the reactor core. The safety requirement asserts that one of the
rods must be put in the reactor, if the reactor temperature reaches 550 degree.

The specification of the initial condition of the systeminit is given as:

init : reactor.norod ∧ rod1.out1 ∧ rod2.out2 ∧x= 510∧x1= 15 ∧x2= 15

The safety property is specified as:

init →¬∃♦(x= 550 ∧ rod1.out1 ∧ rod2.out2)

6.2 Evaluation and Discussion

This section compares the evaluation of the benchmarks demonstrated in the
previous section using our proposed approach and Hytech [Henzinger et al.,
1997]. We have chosen Hytech as a reference tool as it provides the most gen-
eral input language by supporting the full scope of linear hybrid automata. It
tackles also the verification procedure based on reachability analysis similar
to our adopted approach. In contrast to our approach, Hytechtreats the contin-
uous dynamics by using a polyhedral manipulation library [Halbwachs et al.,
1994].
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rod1 rod2

rod1

rod2

x2=15

i: true
f: ẋ2= 1

x2≥= 15

add2

remove2
x2:=0

x1:=0

i:x≤ 550
norod

x1=15

i: true
f: ẋ1= 1

x1≥= 15

add1

add2

remove1

remove2

x=550 x=550

x=510 x=510

out2 in2

in1out1

reactor

i: true

i: true

x=510

remove1

add1
f: ẋ= x

10 +50
i:x≥ 510

f: ẋ= x
10 −60

i:x≥ 510

f: ẋ= x
10 −56

Fig. 6.7.Scheduler automata.

Example HyTech CLP
Scheduler 0.12 0.07
Temperature Controller 0.04 0.02
Train Gate Controller1 0.05 0.02
Water Level 0.03 0.01
Train Gate Controller2 - 0.02
Thermostat - 0.01
Fisher protocol 0.11 0.34
Reactor1 0.01 0.01
Reactor2 - 0.01

Fig. 6.8.Experimental results.

Fig. 6.8 illustrates the performance of our CLP and Hytech onrunning the
benchmarks. The performance is given in seconds. The symbol“−“ within
Hytech column indicates that its underlying example can notbe expressed
in its direct form within Hytech; we will come to this point inmore details.
The results revealed that our approach has a slight advantage with respect
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to the performance regarding the run-time of checking the properties of the
benchmarks.

Despite the fact that Hytech has an advantage over others hybrid automata
model checking tools concerning checking parametric analysis, i.e. giving the
conditions on some parameters, which violate safety requirements. There are
shortcoming issues in Hytech, which we take into the consideration in our
presented approach. The first issue concerns the expressiveness of the dy-
namical model. In Hytech, there are no direct means of automatically verify-
ing nonlinear hybrid automata. This is for that reason that HyTech restricts
the dynamical model to linear hybrid automata in which the continuous dy-
namics are governed by differential equations ˙x= a or differential inclusion
a≤ ẋ≤ b for some integersa andb. This illustrates putting the symbol ”−”
in the column of hytech to some example. To overcome this point, the non-
linear dynamics, e.g. of the form ˙x⋊⋉ c1·x+c2, for some integersc1,c2 and
c1 6= 0,⋊⋉∈ {<,≤,>,≥,=}, are firstly approximated either by a linear phase
portrait or clock translation method [Henzinger et al., 1998b]. In the former
method, the approximation method is obtained manually by partitioning the
state space of each control location into a set of control locations. Within
each partitioned location, the continuous flow is approximated using linear
flow, such that the nonlinear variablex in a locationL is approximated by a
differential inclusiona ≤ ẋ ≤ b, where the integer constanta andb specify
the minimal and maximal rate of change of the variablex in the locationL
and are obtained from the differential equation, the location invariant and lo-
cation initial state. In the locationnorod in Fig. 6.7 for example, if we take the
invariant and initial value into consideration, we find thatthe derivative of ˙x
is bounded below by 1 and above by 5. Thus, the continuous dynamics of the
locationnorod is approximated to 101≤ ẋ ≤ 105. Henzinger et al. [1998b]
showed that this method may cause a substantial blow-up ofverification pro-
cedure the state space. On the other hand, the idea behind theclock translation
method is to replace a nonlinear variablex by a clocktx, if the value ofx can
be determined uniquely from the value oftx at all the time. This happens iftx
measures the time that has elapsed since the value ofx was last changed by a
discrete transition, if the value ofx after that change is recorded, and ifx has
followed a unique flow since that change.

In both methods of approximation, the verification phase is carried out
on the approximated model, so that every run of the approximated nonlinear
system is a run of the approximating linear hybrid automata.On the other end
of the spectrum, our implementedCLPapproach is more expressive, as it al-
lows the direct use of more general dynamics. In particular,CLPcan directly
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handle dynamics expressible as a combination of polynomials, exponentials,
and logarithmic functions explicitly without approximating the model.

An additional shortcoming issue of Hytech deals with the type of proper-
ties which can be checked withing a hybrid automata model. HyTech cannot
verify simple qualitative properties that depend on the occurrence of events,
despite of the fact that events are used to construct the composition of differ-
ent parts of hybrid automata. On the other hand, simple duration properties
between events can be verified using HyTech. To do so, the model must be
specified by introducing auxiliary variables to measure delays between events
or the delay needed for a particular conditions to be hold.

Other simple quantitative properties like time bounded response and min-
imal separation time between events are further propertiesthat can be ver-
ified using HyTech. These properties, however, can only be checked after
augmenting the model under consideration with what is called amonitor or
observerautomaton (cf. [Henzinger et al., 1995]) whose functionality is to
observe the model without changing its behavior. It recordsthe time as soon
as an event occurs. Before the model is verified, the monitor automaton has
to be composed with the original model, which may add furthercomplexity
to the model. For example, in order to check that the eventevent1 is allways
followed by the eventevent2 within α time unit in hybrid automataH, the
monitor automata of Fig. 6.9 should be composed first withH. Checking the
time bounded response property is translated into checkingthe reachability
of the control locationviol. As it has been demonstrated in our approach,
however, there is no need to augment the model with an extra automaton.
This is for the reason that during the run, not only the statesof variables are
recorded, but also the events and the durations of time. Consequently, con-
straints solvers can be used to reason about the respective property

i: true i: truei: t ≤ α
idle event1 viol

event2

wait

event1

f : ṫ = 0

t := 0
t ≤ α f : ṫ = 1 f : ṫ = 0

t ≥ α

Fig. 6.9.A monitor automaton for the time bounded response property.
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6.3 Related Works

In this section, we will review related work that model, specify and check
systems by means of hybrid automata and their restricted classes. Basically,
we classify this works into two categories. In the first categories, we discuss
the algorithmic approaches in which several tools exist forthe purpose of
modeling, specifying and analysing of systems. In the second category we
relate our work to those works which adopt CLP as a framework for hybrid
automata. In the following we will discuss these two categories.

6.3.1 Algorithmic Approaches

There are several formalisms and tools for hybrid automata and their re-
stricted cases, e.g. timed automata. In this section, we briefly introduce those
lines of works that are more or less closely related to our presented approach.

As already shown,Hytechis a tool for modeling and automatic verifica-
tion of linear hybrid automata. A system is modeled as concurrent hybrid
automata that must be parallel composed prior to the verification phase. Sim-
ilar to Hytech, PHAVer [Frehse, 2005] is a tool supporting to analyze linear
hybrid automata. Basically,PHAVer is emerged to overcome the arithmetic
overflow errors ofHytechresulting from the limited digits of the exact arith-
metic operations. To cope with this,PHAVerenhances fix-point computation
algorithm for reachability with operators for partitioning locations and sim-
plification of sets of states. The partitioning process of the reachable locations
is done during the analysis. This process is performed by splitting locations
recursively until a minimum partition size is reached. The purpose of par-
titioning locations is to improve the accuracy on the dynamics. Despite its
enhancement,PHAVeris a quite similar toHytechfrom various prospectives.
First,PHAVerdoes not specify properties using a kind of formal specification
languages. Instead, it handles an algorithmic language built up from com-
mands that manipulate set of states. Additionally,PHAVercomputes all the
states that are connected to the initial states by a run. Furthermore, the com-
position of hybrid automata has to be done prior to the verification phase.
However, the process of splitting locations inPHAVeris restricted to specify
larger systems as it adds extra complexity to the state space.

Fränzle and Herde [2007] present an approach for verification of hy-
brid systems. This approach applies what is called bounded model check-
ing (BMC) [Biere et al., 1999] to linear hybrid automata encoded into pred-
icative formulas suitable for BMC. For this reason, a tool has been devel-
oped calledHySATthat combines a SAT solver with linear programming. In
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HySATboolean variables are used for encoding the discrete components, and
real variables represent the continuous component. The linear programming
routine is used to solve a large conjunctive system of linearinequalities over
reals, whereas the SAT solver is used to handle disjunctions. However, mod-
eling systems as concurrent hybrid automata is not taken into consideration
in this approach.

In addition to the tools of hybrid automata, several restricted dynamics
model checking tools have been developed in the last two decades. For in-
stance,Uppaal [Bengtsson et al., 1996; Behrmann et al., 2004; Larsen et al.,
1997] is one of those tools which is widely used to model and verify timed
systems.Uppaal implements forward search algorithms, in which the state
space is explored in a breadth first manner. It models systemsas a network
of timed automata and supports communication via shared variables. The
network of timed automata is composed using on-the-fly technique and the
model checking procedure is performed using a symbolic representation of
the infinite state space by sets of linear constraints. The computation of clock
constraints is managed with a data structure known asDifference Bound Ma-
trices (DBMs) [Bengtsson and Yi, 2004]. For the specification of theproper-
ties,Uppaal uses a fragment of TCTL [Alur et al., 1993] with restriction to
the properties that can be checked with reachability analysis.

Kronos [Yovine, 1997] is another well known verification tool for timed
automata. It implements a symbolic model checking algorithm for the timed
temporal logic TCTL developed in [Henzinger et al., 1994]. It incorporates
also both forward and backward algorithms for the reachability analysis.Kro-
nosallows us to express and verify not only reachability properties but live-
ness properties as well. It can express full TCTL model checking and the
invocation of the model checker will select whether forwardor backward
analysis will be performed. LikeUppaal, a system is modeled as a set of
concurrently operating time automata.Kronoscan perform model checking
using a symbolic representation of the infinite state space by sets of linear
constraints. To improve the exploration of the state space,Kronosalso imple-
ments on the fly technique. Additionally, the symbolic computations are also
managed with the DBM data structure.

The timeCospan[Alur and Kurshan, 1996] is a very restricted form of
timed automata. It supports verification based on automata language of coor-
dinating processes with timing constraints. A system to be verified is mod-
eled as a collection of coordinating processes described asa finite automata
with timing constraints. These timing constraints are expressed by associat-
ing lower and upper bounds on the time spent by a process in some local
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state.Cospanis considered a single language framework in the sense that
both the model and specification of a system are expressed using automata.
Thus the verification procedure asks for checking whether the language of
the product of the model and the property is empty. Checking the emptiness
is performed by searching through the reachable state of themodel.Cospan
includes two types of search: an on the fly enumerative search, and symbolic
binary decision diagrams [McMillan, 1993].

Similar to timeCospan, there are further tools which lay between timed
automata and automata augmented with timing constraints.Timed HSIS
[Balarin and Sangiovanni-Vincentelli, 1994] andVERITI[Dill and Wong-Toi,
1995] are example of such tools.

6.3.2 Constraints Based Approaches

Constraints based approaches have been used generally as practical im-
plementations platform for automatic verification [Delzanno and Podelski,
2001; Nilsson and Lübcke, 2000; Ramakrishnan et al., 2000]. In addition,
these approaches have been applied to modeling and analysishybrid systems.
Similar to the algorithmic approaches, constraints based approaches ranging
from simple to more general dynamics. In the following we survey these ap-
proaches.

Urbina [1996] presents a pioneer approach CLP(R) [Jaffar etal., 1992] to
model and analyze linear hybrid automata. In his approach, he translates hy-
brid automata into equivalent CLP(R) programs, where discrete transitions,
invariants, flows and initial conditions are encoded as CLP(R) constraints. In
addition, he adopts the quantitative logic ICTL [Alur et al., 1996b] to specify
requirements of hybrid automata. A reachability analysis is the fundamental
verification technique in his approach. In contrast to our presented approach,
his approach does not provide an automatic mean to constructthe composi-
tion of hybrid automata. Instead, the composition has to be explicitly encoded
manually by a user before applying his CLP implementation. This is a tedious
task, especially in the case of MASs where a group of agents exists.

Banda and Gallagher [2008] show how reachability analysis for linear hy-
brid automata can be done by means of CLP too. They present a scheme that
translates linear hybrid automata into CLP clauses. The composition of au-
tomata is constructed using the product construction of clauses with synchro-
nization on shared events which are handled as constraints too. The analysis
of the CLP program is checked against constraints existence. In contrast to
our approach, the way in which they construct the composition of the CLP
program leads to an exponential increase in the number of clauses in general.



92 6 Experimental Results and Related Work

Additionally, they do not provide any validation techniques into the specifica-
tion of intended requirements. The analysis of requirements is also restricted
to finding a constraints that obey or violate a certain state.Therefore, real
time requirements are not expressed in their approach.

Ciarlini and Frühwirth [2000] present another CLP approach for the veri-
fication of hybrid automata. In their approach, a model of hybrid automata is
described as CLP where they derive test data for conditions of interest from
the output of the symbolic execution of CLP. These conditions are specified
declaratively in the form of first order temporal logic. Theydevelop an algo-
rithm that takes the resulting constraints from the valid run of CLP to obtain
test data for the automata by projecting outputs constraints onto the condi-
tions of interest. As a result from the projection process, domains of values
of the constraints of interest are obtained which are considered as the test
data for the automata. In turn, these test data can be used as the validation of
the hybrid automata model. In this approach, however, thereis no means to
prove qualitative or quantitative requirements systematically. In addition, the
approach has not taken the compositions of the concurrent automata in con-
sideration. Instead, the symbolic execution of the approach takes the possible
interleaving run of hybrid automata.

In contrast to our approach, various works approach to modela behavior
of a hybrid system as an automaton using CLP, but they do not handle con-
current hybrid systems. For example, Hickey and Wittenberg[2004a] present
an approach to model hybrid systems using CLP(F) [Hickey andWittenberg,
2004b]. They show that nonlinear dynamics can be model with CLP(F). How-
ever, modeling concurrent systems are not expressed in their approach. Fur-
thermore, they provide no means to handle model checking. Instead, they
show techniques for satisfaction of constraints within some regions of inter-
est.

Another approach on model checking of hybrid systems is presented in
[Gulwani and Tiwari, 2008]. There, an analysis technique isproposed which
is able to derive verification conditions, i.e. finding the constraints that hold in
reachable states. These conditions are universally quantified and transformed
into purely existentially quantified conditions, which is more suitable for con-
straint solver. An implementation in Lisp is available employing a satisfiabil-
ity modulo theories (SMT) solver.

In addition to those CLP approaches that model and analyze ofhybrid
automata, there are works proposing CLP to restricted classes of hybrid au-
tomata. For example, the works of [Gupta and Pontelli, 1997;Jaffar et al.,
2004] describe schemes for modeling timed (safety) automata as CLP pro-
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grams. These works do not construct the overall behavior prior to modeling.
Instead, they model model each automaton separately, but the run of the over-
all model takes all possible paths which result from the product of each com-
ponent into consideration. Likewise, this leads to unnecessary computation.

Another restricted CLP approach of hybrid automata has beendeveloped
by Delzanno and Podelski [1999]. In their approach, they have only modeled
discrete transition systems. Furthermore, they have showed how to encode
CTL temporal operators into CLP, in order to check temporal properties of
systems. Thus, their approach can be considered as a specialcase of our pre-
sented approach.





Part III

Extensions to the Framework





7

Deliberative Multi-agent Planning

Hybrid automata can be used to formally model and coordinateplans of reac-
tive multi-agent systems. In most cases, reactivity in dynamic environments is
not satisfactory. It is favorable for agents to plan their behaviors according to
some preference function. Most current verification tools of hybrid automata
are inadequate to model such agents’ plans. this chapter goes toward extend-
ing the decisions making of hybrid automata by incorporating the preference
on transitions. A scenario taken from supply chain management is demon-
strated to show the Chapter’s approach. Analysis of agents’plans are exam-
ined using CLP. The main contribution of this chapter has been published in
[Mohammed and Furbach, 2009a].

7.1 Introduction

Planning to reach some goal is an essential requirement for multi-agent sys-
tems. A classical planning task is generally defined by an initial stateI , a final
stateG and a set of actionsA. The solution of the planning is to find the ac-
tion sequence leading fromI to G. In the last few decades, several planning
approaches have been developed. Automated planning [Nau etal., 2004] is
one of those approaches that has received attention. In thisapproach, formal
methods are attractive to guarantee the reliability of the solution. In particu-
lar, several works have adopted model checking to solve the planning prob-
lem. This is known asplanning as model checking[Giunchiglia and Traverso,
2000]. The key idea behind this approach is that the planningdomains are for-
malized as semantic models and the planning goals are specified by formulas
of temporal logics. Planning is performed by verifying whether temporal for-
mulas true in a semantic model.
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Multi-agent planning [de Weerdt et al., 2005] has been raised as a mo-
tivation to solve complex planning problems. In this setting, the planning
problem is divided into sub-problems, which are distributed to agents. One
key feature of multi-agent planning is the nature of the environment in which
the agents are involved. In realistic problems, the environment tends to be
dynamic and the behaviors of the agents change continuouslytherein. When
unexpected events, threatening the plan, arise in the environment, then agents
should react to those events in a proper way. Planning in sucha case is called
continual planning [DesJardins et al., 2000]. DesJardins et al. have described
the situations in which agents should engage in continual planning. One of
these situations occurs, if agents’ objectives can evolve over time. In this case
the purpose of the planning is to set a target that can be achieved under several
constraints at a given time.

Reacting to the unexpected events, in real-time, can avoid any risk that
might occur during the planning. Agents should not only react to change
those events that threaten the execution of the plan, but also coordinate op-
portunities to improve the future development of the plan. This can be done
by selecting the most favorable course of actions based on utility functions,
e.g. cost, quality. Hence, it seems to be favorable to provide a formal way that
is capable to model and analysis the multi-agent planning indynamical envi-
ronments which combines in the same framework both aspects of planning.

Hybrid automata can be used to model plans of multi-agent systems that
are defined through their capability to continuously react in dynamic en-
vironments while respecting some time constraints. As presented in Chap-
ter 3, there are works adopting hybrid automata to formally model reactive
mutli-agent systems. Examples of that works include the work presented in
[El Fallah-Seghrouchni et al., 2003] and [Egerstedt, 2000]. There are authors,
such as [Hutzler et al., 2005], who have approached timed automata to model
reactive agents. In reactive agents, decision making depends entirely on the
occurrence of events so that the agents base their next states on their cur-
rent sensory events. In contrast to reactive agents, deliberative/rational agents
try to find the plan which utilizes a certain objective function. Making delib-
erative decisions are inadequately expressive to hybrid automata. In various
situations, one needs such type of decision making. In a logistic scenario, for
example, changing the current route plan of a working truck to perform a new
plan might utilize the profit of the company rather than allocating a new truck
to perform such a new plan. In soccer-agents scenario, running one agent to-
ward the ball—particularly the closest agent to the ball—and spreading other
teammates on the field will increase the utility of the team behaviors, instead
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of running several agents toward the ball at once. To our knowledge, the cur-
rent formal model of hybrid automata and their tools do not provide means
for modeling these types of situations. Therefore, it seemsto be useful to
extend hybrid automata in a way that allows them to combine both reactive
and deliberative decision making. This combination can avoid catastrophic
failures and provide better quality of decisions in time constrained dynamical
environments. Consequently, the formal verification of hybrid automata, by
means of reachability analysis can be used as planning-problem solver where
a plan can be achieved, iff the final plan is reachable. Hence the trajectory
from the initial state to the reachable goal will accommodate the solution of
this plan.

This chapter contributes to use hybrid automata as a conceptual model
for planning and it goes toward enhancing the decision making of the hy-
brid automata in order to improve the future outcomes of models. This can
be accomplished by letting discrete transitions occur on the basis not only
of reactive decisions of the continuous evolution of the variables, but also
of particular preference functions. The expressiveness ofthe CLP prototype
presented in Chapter 4 facilitates to implement this extension. To demonstrate
the idea of this chapter, we present an example taken from supply chain man-
agement in continuous dynamic environment. As far as we know, this is the
first attempt to use hybrid automata for planning multi-agent systems whose
decisions rely on a performance measurement.

The rest of this chapter is organized as follows: In Sec.7.2 we first review
the planning, show its relation to model checking framework, and show the
planning using deliberation. Sec.7.3 Introduces the scenario, which illustrates
the approach of this chapter. Then formal definitions of extended hybrid au-
tomata are discussed in Sec.7.4. Finally, Sec.7.5 shows howto specify and
analyze the planning requirements.

7.2 Planning

Planning in artificial intelligence isdecision makingabout actions to be taken.
Generally, the classical planning problem can be formulated as follows: given

• a description of the known part of the initial state of the world denoted by
I ,

• a description of the goal, denoted byG, and
• a description of the possible actions that can be performed,

then, the solution of the planning determines the sequence of actions in
order to reachG from I under achievement a certain objective.
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In the last decade, the term multi-agent planning [de Weerdtet al., 2005]
has been introduced as an approach to the planning problem with complex
goals that divides the problem into sub-problems and allowseach agent to
deal with each sub-problem. The solutions to the sub-problems have to be
combined and coordinated afterwards to achieve a coherent and feasible solu-
tion to the original problem. According to de Weerdt et al., multi-agent plan-
ning is defined as: given a description of the initial state, aset of global goals,
a set of at least two agents and for each agent a set of its capabilities and its
private goals, find a plan for each agent that achieves its private goals, such
that these plans are jointly coordinated and the global goals are met as well.

7.2.1 Planning as Model Checking

In the last few years, several research has approached planning with formal
methods based on model checking [Giunchiglia and Traverso,2000]. The key
idea behind this approach refers to the strong relation between the framework
of model checking and planning. The framework of model checking consists
of a formal modelM of a system, an initial states0 of the system, and a formal
specification of a propertyψ to be verified in this system. The model check-
ing aims at verifying ifψ is satisfied inM, i.e.M,s0 � ψ . Basically, the model
checker is an algorithm that takes(M,s0,ψ) as input and systematically vis-
its the states of the modelM, in order to verify if the propertyψ holds. The
model checkers returns success ifM satisfies the propertyψ ; otherwise, it
returns a counter-example, that is a state in the modelM where the prop-
erty ψ is violated. In this framework, the planning problem can be formally
described in a way that the modelM describes the planning environment’s
dynamics,s0 describes the initial state of the environment and the property ψ
describes the goal to be achieved. So, ifM,s0 � ψ , the planner returns aplan,
i.e. the behavior which allows the systems to achieve its goal; otherwise, the
planner returns failure. Fig. 7.1 shows the relation between model checking
and planning.

Using the framework of model checking, the solution of the plan is the tra-
jectory holding the sequences of reached states (actions) from a starting state
to a goal state. Another way to find the plan is to use the counter example—
generated from a model checker—as a solution of the planningproblem. The
negation of the goal is stated as safety property and introduced to the model
checker. If the problem is found to be reached, one of the powerful points
of model checkers is to generate a counter-example, which can be used to
provide a solution to the problem. This idea has been adoptedby several re-
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search, such as [Giunchiglia and Traverso, 2000; Pistore and Traverso, 2001;
Pereira and Barros, 2008].

The classical way to solve the planning problem has been focused on find-
ing any solution plan without careful consideration of quality of the plan. For
many practical problems, the problem is not only to find a plan, but also
to achieve a certain objective at the end of the plan. The objective of the
planning, according to [Nau et al., 2004], can be specified inseveral different
ways as follows:

• The simplest specification consists of a goal stateG, and the objective
is achieved by any sequence of state transitions that reaches the goal
states. In a logistic scenario, for example, the objective to have a ship-
ment reached to its final destination.

• The objective is to satisfy some condition over the sequenceof states fol-
lowed by the system. For example, one might want to require states to be
avoided during the planning, e.g. reaching after deadline .

• The specification of objective based on a utility function with penalties
and rewards. The goal is to optimize some function of these utilities, e.g.
sum, maximum, minimum, over the sequence of the states followed during
the planning.

Thus, the assessment of the planning objective is crucial todetermine the
quality of the plan.

Model checker

Plannerinitial states0

initial states0

modelM

propertyψ

modelM

propertyψ

plan or failur

success or counter example

Fig. 7.1.Planning versus Model checking.

7.2.2 Deliberative Actions

During planning, if things do not work as expected, agents must be able to
react and reconsider the plan. For instance, if an agent runsinto unexpect-
edly high traffic on its chosen route through the city, then itmust be able to
consider changing the plan. When there are alternative actions to react to the
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unexpected changes during the plan, the agent should deliberate to select the
best alternative way. The deliberation process generally focuses in the ways
to achieve a goal and the decisions of which goal to be achieve. Deliberation
is particularly useful in hazardous environments where thecorrect action se-
lection is crucial. Decker and Lesser [1998] have stated that an agent should
deliberate, if one of the following conditions is met:

• The agent has a choice of actions and the choice affects performance.
• The order in which activities are carried out affects performance.
• The time at which actions are executed affects performance.

If the agent deliberates rationally, it will try to find the best ways it can per-
form the actions. In other words, when the agent performs a certain actionA,
it will try to do so in a way that maximizes the expected utility of A. So to de-
cide whether to performA, the agent should assume that it will be performed
in the best way, i.e. the value of expected utility ofA should be the maxi-
mum value for all the ways in which the agent can think of for performing
A. The expected value of an action is defined, according to the decision the-
ory [c.f Bermúdez, 2009] to be the expected value of the environment when
the action is performed. In the decision theory, standard models of decision-
making involve calculations of the expected utility of eachavailable action.
Starting with each possible outcome, multiplying the utility of that outcome
by the probability of the condition of the environment in which it will come
about. Summing of the values that obtained for each of the possible outcomes
of a certain action, gives the expected utility of that action. Standard models
of decision-making identify the rational resolutions of decision problems as
those that maximize expected utility.

7.3 Planning Scenario

As logistics competency becomes a more critical factor in creating and main-
taining competitive advantage, logistics measurement becomes increasingly
important because the difference between profitable and unprofitable op-
erations becomes more narrow. In recent years, several research such as
Fox et al. [2000] has viewed the supply chain as composed of a set of in-
telligent (software) agents, each responsible for one or more activities in the
supply chain and each interacting with other agents in planning and executing
their responsibilities.

In many logistic domains, some of the transport orders are only known
in the short time, traffic is often unpredictable and unexpected events might
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Ct ime< ExT

finish

Z≤ 2
Z≥ 2

rescue

tosafeCt ime≥ ExT

rescued

finish

tosafe

error

tosafe
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Fig. 7.2.Specification of a logistic scenario as hybrid automata.

occur. Thus, plans need to be revised all the time. Often a significant cost
reduction can arise when transportation companies coordinate their actions
well. For example, a company (agent) may assign a subtask to some agent
either because it can do it more efficiently—as it might be already in the
neighborhood—or because the the other agent cannot performthe task at all.
Consider this scenario, a customer has a shipment of freightitems which is
subjected to be decayed. This shipment has to be transportedto a certain
destination point. Therefore, she/he contacts a transportation service provider
for this mission. Then, the transportation service provider assigns a trans-
portation truck to convey the shipment. Assuming that the customer signs a
contract with the service provider so that the freight itemshave to delivered
with a certain thresholdθ of items’ quality, e.g. at most 20% putrefaction
of the freight items. Otherwise, the provider has to compensate the customer
with a convenient deal. Therefore, for quality assurance and provider’s prof-
itable service constraints, the quality of freight items has to be monitored in
the truck during the transportation. In case of an exception, e.g. cooling tem-
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perature breaks down, the truck has to find a suitable plan to deal with this
exception taking into account to utilize its transportation provider business.

In Fig. 7.2, the specification of the previous multi-agent scenario is de-
picted as hybrid automata. The multi-agent scenario constitutes four agents,
Monitor, Truck, Provider, andDisturbance. The agentMonitor, plugged into
the truck, observes the occurrence of exceptional errors aswell as the pu-
trefaction of the items. The items are putrefied according tothe exponential
decay function, given aṡD = 1.2∗D. When an exceptional error occurs dur-
ing the transportation, stimulated by theDisturbanceagent after some time
td, the Monitor agent alarms theTruckwith the occurrence of this error. The
Truck in turn has to make an appropriate decision before the decayed items
reach a certain thresholdθ . The decision is estimated using the variableExT ,
according to the remaining distance to the destination point. Here,ExT is de-
termined based on the dynamic of distance of the truck to the target. If the
expected delivery time is beyond a given critical timeCtime, then theTruck
requests help from the transportation service provider, who sends a rescue
truck within two hours. However, if the truck estimation is below the critical
time Ctime, then it should continuously transport the shipment according to
the current conditions. At the end of transportation, both the customer and
the provider check the result of the previous plan.

The objective of the previous scenario is to check that the agents, particu-
larly the truck, will choose the right plan during the courseof execution in a
way that utilizes the profit of its provider company.

7.4 Planning Model

This section shows the basics components of the conceptual planning model
that we use to formulate the planning problem. The model relies on extending
the syntax and semantics of hybrid automata. The definition of the model is
the same as the definition of hybrid automata defined in Chapter 4, except
it contains new decision variables that are used to evaluatethe decisions-
making. The definition also contains a utility function thatassigns cost on
transitions. In the following, we show the basic componentsof the model.

Definition 7.1 (Extended Hybrid Automata). An extended hybrid automa-
ton is a tuple
H = (Q,V, Inv,Flow,E,Jump,Reset,ϒ ,Event,EventH ,q0,v0) where:

• Q is a finite set of control locations.



7.4 Planning Model 105

• V=X∪A is a set of variables, whereX is a finite set of n real-valued vari-
ables that model the continuous dynamics, whereasA is a set of auxiliary
variables that are used as a performance measure to make decisions.For
example, theTruckautomaton hasX ∈ X andExT ∈ A.

• Inv : Q→ Φ(X).
• Flow : Q→ D(X∪ Ẋ).
• E ⊆ Q×Q.
• Jump: E → Φ(X).
• Reset: V→ R is the updating function, which resets the variables before

the control of a hybrid automaton goes from location q1 to location q2.
The updating of the variable x∈ V is denoted as x:= Reset(x).
Graphically, one can distinguish between two types of updating depending
on types of variablesx∈V. Casex∈X, i.e. updating continuous variables
then the update is annotated graphically on the transitionse= (q1,q2). For
example,D := 1.2 is the updating of the continuous variableD between
locationstableanddecayin the automatonMonitor. Updating the vari-
ables on transitions are omitted, if the value of the variables at end of
locationq1 are the same at the beginning of locationq2. Casev∈ A (i.e.
updating auxiliary variables), then the update is annotated inside location
q1. The reason is that these variables will be used afterwards as indicators
for decision-making on transitions. For example, in the location estimate
of theTruckautomaton,EXT := f (dx, ẋ) is updating the auxiliary variable
EXT to the estimated remaining time to deliver the shipment to the target
based on the current remaining distance to the target, wheref (dx, ẋ) ∈ R.
Semantically, both types of updates are the same. This is because both of
them will eventually be executed before the control goes to locationq2

immediately.
• ϒ : E → R is the cost function which captures the preference of an agent

over e.

For example, in the locationestimate, theTruck has preferences to go to
either locationw help or continue, with utilities µ1 and µ2 respectively.
The utility cost is omitted if there is no preference on the edgee.

• EventH is a finite set of events.
• Event: E → EventH .
• q0 ∈ Q the initial location of the automaton.
• v0 the initial values of the variablesX.

As said previously, decision theory is a tool for assessing and comparing
the expected utility of different courses of action in termsof the probabilities
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and utilities assigned to the different possible outcomes.Therefore, we define
the preference of an agent based on utilities. We assume, forsimplicity, the
probabilities of the possible results are equal.

Definition 7.2 (Preference).Let q∈ Q be a control location, and S= {ei =
(q,qi)|1≤ i ≤ n} be the set of possible alternative transitions connected from
q, with respective utilitiesϒ (ei) = µi . We say em is the best preference transi-
tion to q iff µm = Max{µi |1≤ i ≤ n}.

The semantics of the planning model is defined in the same way as the
semantics of hybrid automata presented in Chapter 4, but with a slight mod-
ification on the operational semantics, that is on the definition of the discrete
changes of the behavior which is described as the following.

Definition 7.3 (Discrete Changes).A discrete transition rule between two
admissible statesσ1 = 〈q1,v1, t1〉 and σ2 = 〈q2,v2, t2〉 is enabled iff e=
(q1,q2) ∈E, t1 = t2 and v1 |= Jump(e), and v2 |= Inv(q2), where v2 is the val-
uation of variablesX as a result from the reset function Reset(X) such that.
Additionally, q2 is the best preference of q1 in this case an event a∈ EventH
occurs.

7.5 Planning as Reachability Analysis

Having defined the basic extensions of hybrid automata to deal with the plan-
ning in a proper way, we can use our CLP presented in 4 to investigate the
planning analysis. In particular, we use reachability analysis to analyze the
behaviors of the multi-agent team.

Let Reachedrepresent the set of reached regions. In terms of CLP,
the reachability analysis can be generally specified by checking whether
Reached |= Ψ holds, whereΨ is the constraint predicate that describes a
property of interest. As shown in Chapter 5, the reachability analysis is spec-
ified in RCTL as:

init →∃♦Ψ

init is the predicate characterizing the set of initial states. In the context of
planning, the reachability question is equivalent to a planexistence, where
Ψ represents the goal of the plan to be reached. Concerning theCLP model,
the following encodes the planning query: For example, one can check that
there is no existing bad plan, where the shipment arrived to its destination un-
safely, i.e. the ratio of decayed items is below 20%. This canbe investigated
by showing that the locationunsafein theMonitor agent will not be reached.
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?- reachable(init,Reached),
%%find the plan to reach Goal in Reached
append(Plan,[Goal|_],Reached).

Using the CLP implemenation model and the standard Prolog predicateap-
pend�3, executing the following query reveals the answerno as expected.

?- reachable((init1,[0]),(init2,[0]),(init3,[0]),(init4,[0]),
Reached),

append(Plan,[Goal|_],Reached),
Goal=(Monitor,_truck,_cargo,_disturbance,D,X,Z,Y,Time,Event),
Monitor = unsafe .

We are not only interested to find a plan, but also to find the plan that uti-
lizes certain tasks in case of an exceptional error. In the supply chain example,
one can check that the truck will choose the best plan that utilizes its com-
pany business and at the same time fulfill the customer demands. This can be
accomplished by investigating the reachability of the shipment to its destina-
tion point with a certain percentage of putrefactionD. For this purpose, the
following query should be invoked:

?- reachable((init1,[0]),(init2,[0]),(init3,[0]),(init4,[0]),
Reached),

append(Plan,[Goal|_],Reached),
Goal=(_monitor,Truck,_cargo,_disturbance,D,X,Z,Y,Time,Event),
Truck=arrived.

The success of this query means thatappend�3 returns the intendedPlan to
reachGoal in the set of possible reached statesReached. However, there are
several constraints which influence the outcome of this query, such as the time
of the unexpected error generated by theDisturbanceagent and the remaining
distance to the destination during the transportation. Forexample, setting the
disturbance timetd = 8 in the supply chain model, the previous query gives
the D ≃ 1.626% upon the truck’s arrival to the destination, whereas setting
td = 24, the query givesD≃ 5.542%. In both cases, the customer’s demand is
not violated according to the deal with the provider. The contrast between the
two values ofD results from the truck’s decision based on the constraints ap-
peared in the environment. In the first case oftd, the truck requested a rescue
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from the provider.In the second case, the truck keeps transporting the ship-
ment without requesting help. The previous analysis can be checked using the
following query:

?- reachable((init1,[0]),(init2,[0]),(init3,[0]),(init4,[0]),
Reached),

append(Plan,[Goal|_],Reached),
Goal=(_monitor,Truck,_cargo,_disturbance,D,X,Z,Y,Time,Event),
Truck=arrived,
member(State,Plan),
State=(_monitor,_truck,_cargo,_disturbance,_,_,_,_,_,Event),
Event = rescue.

This query checks whether there is a state at which the eventrescuecan
be reached in plan. In other words, the query meansdoes the truck need a
rescue?In the first case oftd, the query returns with the answerYes, but
with No in the second case. The interesting thing in hybrid automatais that
we can check the timed constraints that occurs during the plan. This type of
constraints can be used as an aspect in the decision making, where the agents
take suitable actions that comply with a deadline.
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Hierarchical Model

Hybrid automata may add complexity by specifying multi-agent systems.
This is because hybrid automata not only describe the internal behaviors
of agents, but also the external interaction among agents. This demands for
structured and systematic methods for the specification of MASs, which are
able to cope with the complexity of structures.Statechartsin this case are
helpful. They have the clear advantage of allowing hierarchical specification
on several levels of abstraction but are limited to describethe behavior of dis-
crete reactive systems. To bring the advantage of statecharts together with hy-
brid automata, this chapter combines both formalisms within the same frame-
work. The Chapter presents the formal semantics for this combination and
shows how to systematically analyze the dynamic behaviors of systems with
this combination. In principle, a straightforward way to analyze a hierarchical
machines is to flatten them and to apply verification techniques to the result-
ing ordinary finite state machines. We show how this flattening can be avoided
by providing an implementation with help of constraint logic programming.
The implementation serves as a model and verification enginefor the pro-
posed combination. The contribution of this chapter has been presented in
[Mohammed and Stolzenburg, 2008; Mohammed et al., 2010], which stems
from original work of [Furbach et al., 2008].

8.1 Introduction

So far, we have used hybrid Finite State Machines (FSMs) to specify and ver-
ify a group of agents. Classical FSMs unfortunately lack of support for mod-
ularity, which is very important when modeling complex systems that con-
tain similar subsystems—for the setting of this chapter, weuse the term finite
state machine and automaton synonymously. All states are equally visible and
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are considered to be at the same level of abstraction, which makes modeling
cluttered and illegible. In practice, to describe complex systems using FSMs,
several extensions can be useful to overcome their structural limitations. The
most important extension is hierarchy, or what is the so-called hierarchical
(nested) FSM. Hierarchical FSMs have descriptive advantages over ordinary
FSMs. Firstly, super-states offer a convenient structuring mechanism that al-
lows us to specify systems in a gradual refinement manner, andto look at
it at different levels of granularity. Such structuring is particularly essential
for specifying large FSMs by means of a graphical interface.Secondly, by
allowing sharing of component FSMs, one needs to specify components only
once and then can re-use them in different contexts leading to modularity and
succinct system representations.

One of the existing specification formalisms, which adopts the notation
of hierarchy, isstatecharts[Harel, 1987]. Statecharts have been originally
proposed to describe complex reactive systems. The behavior of a reactive
system is described as a sequence of discrete events that cause changes in the
state of the system. In order to cope with those reactive systems that exhibit
continuous timed behaviors, it seems to be advantageous to extend statecharts
with continuous actions inside states. This extension allows complex/multi-
agent systems to be modeled with different levels of abstraction and provides
a formal way to analyze the dynamical behavior of the modeledsystems.
There are two possibilities of combinations to do so, namelycombining stat-
echarts with differential equations or extending hybrid automata with hierar-
chy. Therefore, both terms hierarchical hybrid automata (HHA) and hybrid
statecharts can be used interchangeably.

Modeling, and extending statecharts to include differential equation can
be straightforward. However, for the purpose of formal analysis, an impor-
tant thing is that we need executable models of those systemswhich can be
described in terms of hybrid statecharts. Modeling languages are extremely
useful, if they can prove properties of systems being described. The straight-
forward way to analyze hierarchical state machines is to flatten them to obtain
an ordinary FSMs. The flattening process is done by recursively substituting
each super-state with its associated FSM. In turn, model checking tools are
applied on the resulting ordinary FSM. Such a flattening, however, can cause
a blow-up, particularly when there is a lot of sharing. This chapter shows that
this flattening can be avoided.

This chapter contributes in extending the statecharts withcontinuous dy-
namics to model complex multi-agent systems situated in a dynamical envi-
ronment. The Chapter also gives an executable model based constraint logic
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exit

Fig. 8.1.State Hierarchy of train gate controller example.

programming, where the size of the corresponding CLP program is only
straight proportional to the size of the given hierarchicalhybrid automaton
description.

8.2 Statecharts Basics

FSMs have been used extensively in the specification and analysis of reactive
systems. In practice when they are applied to larger problems, the models
lack to support modularity and become cluttered and illegibal. Statecharts
[Harel, 1987] have been introduced to overcome these limitations.Basically,
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statecharts extend FSMs with several capabilities including hierarchy, and
concurrency. Hierarchy is the ability to group states into asuper-state, or
synonymously an OR state. Hierarchy serves several purposes such as state
refinement used mostly for the purposes of top-down design and reduction
of transition clutter and transition state dependence. Graphically, hierarchy is
usually represented using two drawing techniques namelyexplicit nestingand
coarse states. Explicit nesting is used when one draw explicitly a lower level
state inside a higher level state, such as statetrain insideSystemin Fig. 8.1. A
coarse state is a state whose contents are drawn on a separated drawing, such
as the stateGateshown in Fig. 8.1.

The notation of hierarchical was popularized not only with the introduc-
tion of statecharts, but with also other specification formalisms such asmod-
echarts[Jahanian and Mok, 1994]. It has become a central component of var-
ious object-oriented software development methodologiesdeveloped in re-
cent years, such asOMT [Rumbaugh et al., 1991], and it has become a part
of the unified modeling language (UML) [UML, 2009]. It is commonly avail-
able also in commercial software engineering tools, such asStatemateand
Rational rose.

Concurrency in the statecharts denotes orthogonal sub-systems called to-
gether a concurrent state. These sub-systems are independent of each other
and are therefore drawn separately. Each sub-system can be conceptually re-
garded as a statecharts in its own. An concurrent state is visually depicted by
dashed lines splitting a state. When a system is in a concurrent state, it will
be in all if its sub-systems.

Statechart transitions are annotated with events, conditions, and actions.
Thus, a transition in a statechart takes the formevent[condition]/action. Such
a transition is shown as a directed edge from a state s1 to state s2. The (in-
formal) semantics of a transition means that if the system isin state s1 and
an event occurs and some condition holds, then the system executes an action
and changes to state s2 .

8.3 Hybrid Statecharts

In this section we present the definitions and formalism forhybrid statecharts.
Before we begin the description of their formal syntax and semantics, we
should note that we replace the notation ofstatesin statecharts with the no-
tation locations. This is because, a state in a hybrid automaton describes the
evaluation of the continuous variables at a particular timeinstance at a certain
location. Therefore, we will use the termlocation to avoid any confusion that
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may happen. It should be noted that we do not attempt to handlethe maximal
fragment of the statecharts languages. Instead, we focus ona representative
fragment of hierarchy.

The locations in hybrid statechars are generalized into a set Q of locations,
which is divided into three disjoint sets:Qsimple, Qcomp, andQconc calledsim-
ple, compositeandconcurrentlocations. There is one designated start loca-
tion which is the topmost location in the hierarchy. In essence, the locations of
plain hybrid finite state machines correspond to simple locations in the hybrid
statecharts. Based on this, we will now introduce the concepts of hybrid stat-
echarts. In the following, we adopt and slightly change the basic definitions
of [Furbach et al., 2008].

8.3.1 Syntax

Similar to the definition of syntax of hybrid automata, hybrid statecharts con-
tain the basic components of hybrid automata including the set of real vari-
ablesX representing the continuous flows, invariants inside locations, jump
conditions, and the initial state. However, the hierarchy of locations is the
key difference to hybrid automata. Therefore, we will only concentrate on
the locations hierarchy1 which will be defined in the following.

Definition 8.3.1 (Hierarchy components)The basic components of hybrid
statecharts are the following disjoint sets:

Q : a finite set of locations, which is partitioned into three disjoint sets:
Qsimple, Qcomp, and Qconc—called simple, composite and concurrent lo-
cations, containing one designatedstart locationq0 ∈ Qcomp∪Qconc.

In order to introduce a concrete example of the previous definition, let us
look at the hierarchical train gate controller example of Fig. 8.1. The locations
far, idle, anddownare example of simple locations. The locationSystemis
a concurrent location and the start location of the model too. The locations
Train, Controller, Gate, OpeningandClosingare composite locations.

Definition 8.3.2 (Location hierarchy) Each location q is associated with
zero, one or moreinitial locationsα(q): a simple location has zero, a com-
posite location exactly one, and a concurrent location morethan one initial
location. Moreover, each location q∈ Q\ {q0} is associated to exactly one
superior stateβ (q). Therefore, it must holdβ (q) ∈ Qconc∪Qcomp. A concur-
rent state must not directly contain other concurrent ones and all transitions

1 see Chapter 4 for the basic components of a hybrid automaton
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(q1,q2) must keep to the hierarchy, i. e.β (q1) = β (q2). Variables x∈ X may
be declared locally in a certain stateγ(x) ∈ S. A variable x∈X is valid in all
states s∈ S withβ n(s) = γ(x) for some n≥ 0 (i.e. in all states belowγ(x) in
the state hierarchy), unless another variable with the samename overwrites
it locally.

For the example in Fig. 8.1, according to the previous Def., it holds e.g.:

α(Train) = f ar α(Gate) = opening
α(opening) = up α(controller) = idle
α(System) = {Train,Controller,Gate} β (near) = Train
β (Train) = System γ(x) = Train
γ(g) = Gate
γ(t) = controller

The functionβ from the previous definition naturally induces a location
tree withq0 as root. This tree is formed as a result of the semantics between
states which we will define as the following.

8.3.2 Semantics

As known, the semantics of hybrid automaton are described interms of alter-
nating sequences of states. A state is a control location andthe valuation of
the real variables at each time instance. Different to hybrid automata, the
control location of statecharts may be composite or concurrent locations.
Therefore, state machines, which describe the behaviors ofsystems can not
be described by simple sequences of states, but by configurations, which are
trees of locations. While processing the behavior of the state machines, each
composite location only contains one active control location. More specific,
whenever a location is in a configuration and it is composed location, then
each of its direct sub-automata must also contribute to the configuration and
vice versa. In the case of concurrent location, each of the sub-automata con-
tributes to the configuration, if their parent is in that configuration, i.e. one
location of respective automata belong to the current configuration. In our
example Fig. 8.1, this means that whenever the model in a location System,
alsoTrain,Gate,andController are active.

Fig. 8.2 shows the configuration tree of the example of Fig. 8.1. A con-
figuration of the given statecharts is indicated by the thicklines. Let us now
define the notion configuration more formally.
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Definition 8.3.3 (Configuration and Completion) Aconfigurationc is a rooted
tree of locations where the root node is the topmost initial location q0 of the
overall state machine. Whenever a location q is an immediatepredecessor of
q′ in c, it must holdβ (q′) = q. A configuration iscompletedby applying the
following procedure recursively as long as possible to leafnodes: if there is a
leaf node in c labeled with a location q, then introduce allα(q) as immediate
successors of q.

As presented in Chapter 4, a hybrid automaton may change in two ways:
discretely, from locationq1 to another locationq2, when the transitione∈ E
between the two locations is enabled (i.e., the jump condition holds) andcon-
tinuouslywithin a control locationq∈ Q, by means of a finite (positive) time
delayt. The semantics of hybrid statecharts can now be defined by alternating
sequences of discrete and continuous steps between configurations. we as-
sume that discrete state changes happen in zero time, while continuous steps
(within one state) may last some time.

Definition 8.3.4 (Operational Semantic)The state machine starts with the
initial configuration, i.e. the completed topmost initial state s0 of the overall
state machine. In addition, an initial condition must be given as a predicate
with free variables fromX. The currentsituation2 of the whole system can
be characterized by a triple(c,v, t) where c is a configuration, v a valuation
(i. e. a mapping v: X → IRn), and t the current time. Theinitial situation is
a situation(c,v, t) where c is the initial configuration, v satisfies the initial
condition, and t= 0. The following steps are possible in the situation(c,v, t):

discrete step: a discrete/micro-step from one configuration c of a state ma-
chine to a configuration(c′,v′, t) by means of a transition(q,q′) ∈ E with

2 situation are used instead of state to describe the time instance of a configuration
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some jump condition in the current situation (written c→ c′) is possible
iff:
1. c contains a node labeled with q;
2. the jump condition of the given transition holds in the current situa-

tion (c,v, t);
3. c′ is identical with c except that q together with its sub tree inc is

replaced by the completion of q′;
4. the variables in X are set by executing specific assignments.

continuous step: a continuous step/flow within the actual configuration to
the situation(c,v′, t ′) requires the computation of all x∈ X that are valid
in c at the time t′ according to the conjunction of all state conditions (i.e.
flow conditions plus invariants) of the active locations q∈ c, where it
must hold t′ > t.

From the previous semantics, a state machine is initially ina configuration
derived from the initial top most location. This derivationis performed in a
top-down manner; that is the root of the state machine contributes to the initial
configuration by its initial location. If some location in the configuration is
refined to further automata, then these automata must contribute their initial
states to the initial configuration as well.

It should be noted that invariants of the definition of hybridautomata pre-
sented in Chapter 4 are merged here with the flow conditions incontinuous
steps (see Def. 8.3.4). In particular, while jump conditions are checked dur-
ing a discrete transition, flow and invariant conditions areonly tested at the
beginning and at the end of a continuous flow within one configuration, i.e.
only at the boundaries.

8.4 Hierarchy Implementation with CLP

Now we will show how to implement an abstract state machine for the
previous hybrid statecharts. In this implementation, hierarchies and con-
currency are treated more explicitly [Mohammed and Stolzenburg, 2008;
Mohammed et al., 2010]. This leads to a lean implementation of hybrid au-
tomata, where efficient CLP solvers are employed for performing reachability
analysis.

Fig. 8.3 shows parts of the abstract state machine in Prolog,namely the
code for completion and for performing discrete and continuous steps accord-
ing to Def. 8.3.4 and 8.3.3. Discrete steps take zero time. Continuous steps
remain within the same configuration but the variable valuesmay differ. The
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complete(T,Rest,State,[State:Var|Complete]):-
init(T,State,[Var|Rest],Init,_),
maplist(complete(T,[Var|Rest]),Init,Complete).

discrete(T,Rest1,Rest2,[State1:Var1|_],[State2:Var2|Conf]):-
trans(T,State1,[Var1|Rest1],State2,[Var2|Rest2]),
complete(T,Rest2,State2,[State2:Var2|Conf]).

discrete(T,Rest1,Rest2,[Top:Var1|Sub],[Top:Var2|Tree]) :-
Sub \= [],
maplist(discrete(T,[Var1|Rest1],[Var2|Rest2]),Sub,Tree).

continuous(T1,T2,Rest1,Rest2,[State:Var1|Sub],
[State:Var2|Tree]):-

flow(T1,T2,State,[Var1|Rest1],[Var2|Rest2]),
maplist(continuous(T1,T2,[Var1|Rest1],[Var2|Rest2]),Sub,Tree).

Fig. 8.3.CLP code of the abstract state machine.

flow conditions of active locations (in the configuration) must be applied, as
time passes. In this context, configurations are encoded in Prolog lists, where
the head of a list corresponds to the root of the respective configuration tree.
In addition, each location is conjoined by a colon (:) with its list of local
variables. According to Def. 8.3.3, the completed start configuration will be
represented as shown below. The event and the delayα—represented by the
variableAlpha—are treated as global variables of the whole system.

[system:[none,Alpha],
[train:[2000],[far:[]]],
[gate:[90],[open:[]]],
[controller:[0],[idle:[]]]]

The corresponding configuration is also shown as a tree in Fig. 8.4 (left).
Of course, trees could be represented more efficiently, i.e.consuming less
space, rather than by Prolog lists as shown above. But the useof lists is
straightforward and allows us to implement the abstract state machine for
hybrid statecharts (Fig. 8.3) within only a dozen lines of CLP/Prolog code.
By this way, explicit composition of automata is avoided. For each state, its
initial states have to be declared in addition to their continuous flow con-
ditions. For all discrete transitions, the jump conditionshave to be stated.
Local variables are expressed by a nested list of variables valid in the respec-
tive state. Since the abstract state machine is of constant size and the abstract
machine computes complex configurations only on demand, there is a one-to-
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one correspondence between the elements of the hybrid statecharts and their
CLP/Prolog implementation. Thus, the program size is linear in the size of
the model.

gate controllertrain

far opening idle

System

x =2000 g =90

[none,α ]

t =0

up

gate controllertrain

near opening tolower

System [app,α ]

g =90 t =0x =1000

open

Fig. 8.4.Configuration trees of the running example.

In the concrete implementation of the example, the overall start states0 is
indicated by the predicatestart, while init defines the initial states for
each state (α values according to Def. 8.3.2). The flow and the jump con-
ditions have to be expressed by means of the predicatesflow andtrans.
The reader can easily see from Fig. 8.53 that the size of the CLP program is
only straight proportional to the size of the given hybrid statecharts because
there is a one-to-one correspondence between the graphicalspecification and
its encoding in Prolog, whereas computing the composition of concurrent au-
tomata explicitly leads to an exponential increase. Since the overall system
behavior is given by the abstract state machine (Fig. 8.3), this approach is
completely declarative and concise.

The reachability analysis of the abstract state machine uses iterative deep-
ing search strategy. After one continuous and one discrete step according to
Def. 8.3.4, the configuration shown below (see Fig. 8.4, right) will be reached
after 0.0–25.0 s. The eventapp occurs, when the train has traveled 1000 m.
Then, the simple statesnear and to lower in the composite statestrain and
controller are entered respectively.

8.4.1 Testing Hierarchy

As far as we know, there is no standard benchmark to test the hierarchy. In-
stead, a flat version of hybrid automata should be given to model checkers
for the purpose of verification. Thus, to be able to check the feasibility of our
approach, we use flat benchmarks. We experiment the standardbenchmarks
presented in Chapter 6 to test the HHA. Querying these benchmarks check
safety properties (cf. Fig. 8.6). Firstly, in theschedulerexample, the safety

3 See appendix A for the rest of the example
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%%% system
start(system).
init(T,system,[[Event,Alpha]],[train,gate,controller],_) :-

Event = none.
flow(T1,T2,system,[[Event,Alpha]],[[Event,Alpha]]).

%%% train
init(T,train,[[X]|_],[far],system) :-

X $= 2000.
flow(T1,T2,train,_,_).

init(T,far,[[]|_],[],train).
flow(T1,T2,far,[[],[X1]|_],[[],[X2]|_]) :-

X2 $>= 1000,
X2 $>= X1-50*(T2-T1),
X2 $=< X1-40*(T2-T1).

trans(T,far,[[],[X],[Event1,Alpha]],far,[[],[X],
[Event2,Alpha]]):-

Event2 = lower ; Event2 = raise.
trans(T,far,[[],[X],[Event1,Alpha]],near,[[],[X],

[Event2,Alpha]]):-
Event2 = app,
X $= 1000.

Fig. 8.5.A part of the HHA implementation of the train example.

[system:[app,Alpha],
[train:[1000],[near:[]]],
[gate:[90],[open:[]]],
[controller:[0],[to_lower:[]]]

property is to check whether a certain task (with number 2) never waits. Sec-
ondly, in thetemperature controlexample, it has to be guaranteed, that the
temperature always lies in a given range. Thirdly, in thetrain gate controller
example, the safety property has to make sure that the gate isclosed whenever
the train is within a distance less than 10 meter toward the gate. The second
version of the train gate controller example is used to calculate a parameter
analysis, i.e. finding a condition to be hold on a parameter/variable which
guarantees the satisfaction of the safety property. In the train gate controller
example, parameter analysis aims at finding the condition onthe parameter
α . Last but not least, in thewater levelexample, the safety property is to
make sure that the water level is always between given thresholds (1 and 12).
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The benchmarks can be solved by all considered implementations, namely
HyTech, and the HHA implementation with CLP, within milliseconds. Fig. 8.6
shows the concrete run-time results (in milliseconds), by comparing Hytech
with HHA. It reveals that the CLP/HHA implementation allowsthe briefest
problem formulations because of the use of the abstract state machine, but
since the time points of performing discrete steps are not computed explic-
itly, it is susceptible to rounding errors. In order to guarantee termination
of the CLP implementations, the search depth is fixed in advance. For the
CLP/HHA implementation, the number of continuous plus discrete steps is
given. These limits are also listed in the table.

Example
HyTech CLP/HHA
secondssecondssteps

Scheduler 0.12 0.34 12
Temperature Controller 0.04 0.02 12
Train Gate Controller 0.05 0.03 12
Train Gate Controller 2 0.10 0.02 9
Water Level 0.03 0.02 8

Fig. 8.6.Experimental results.

In the run of the abstract state machine, the way of setting the depth might
restrict the reachability analysis such that the reached configurations could
be incomplete to check the reachability of certain queries.Hence, one might
get negative results. A possible solution to this problem isto set the depth to
be big enough. But this raises the problem of the performanceof run-time.
A suitable way to handle the reachability analysis is to find exact reachabil-
ity of configurations—similar to the way of computing the reachability of
regions presented in Chapter 4—by running the abstract state machine until
reaching to fixed configurations, i.e. finding cycles. In [Schwarz et al., 2010;
Mohammed and Schwarz, 2009] the hierarchical implementation has been re-
fined to perform that process.

8.5 Related work

For the advantages to model the dynamical behaviors of MASs in hierarchical
manner, several successful approaches have been proposed to provide hierar-
chy. In the following we show some of those approaches that are relates to
the the work presented in this chapter.
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On of the early approaches discussing model checking of hierarchical
state machines is presented in [Alur and Yannakakis, 1998].In this approach
the verification of hierarchical finite machines are performed without flatting
the hierarchy. Several algorithms are presented for the model checking prob-
lem. In particular, this approach adopts a depth first searchalgorithm that per-
forms the reachability analysis. This approach, however, does not consider the
continuous behaviors within the hierarchical state machines. A similar work
to this approach is presented in [Gnesi et al., 1999]. This work presents a sim-
ple model-checking approach to verify UML statechart diagrams. However,
this approach is very simple and restricted in the sense thatit does not handle
the hierarchical notations of statecharts. Moreover, the continuous dynamics
are not be considered.

Modecharts[Jahanian and Mok, 1994] is one of the early extensions of
the statecharts which extends statecharts with timing notations. The for-
mal semantics ofModechartsare defined in terms of real time logic of
[Jahanian and Mok, 1986] whose time is restricted to discrete domain. A sim-
ilar work is presented in [Kesten and Pnueli, 1991]. This work suggests an
extension of statecharts to accommodate continuous and discrete event be-
haviors. As a result of this extension a language calledtimed statechartsis
presented in which each transition of statecharts is annotated by a time inter-
val [l ,u] denoting the lower and upper time bounds of that transition.Also,
this work proposes what is calledhybrid statechartsas a further extension to
statecharts, which allows to annotate a basic state of statecharts with differ-
ential equations. The semantics of those extensions are discussed, but there is
no automatic mean to execute these hybrid statecharts.

In contrast to this chapter, there are researches that use components to
model hierarchy instead of statecharts. In these researches, atomic compo-
nents are used to build more complex components in hierarchical manners.
Interaction between components takes place by means of shared variables.
Synchronization by means of actions is, however, not supported. One of the
works adopting this approach is presented in [Henzinger, 2000]. In this work,
a language calledMasacciois used as a formal model of hybrid dynamic sys-
tems. InMasaccio, systems are built from two atomic components, namely
discrete and continuous components. A model inMasacciois structured in a
way which permits hierarchical definition of components. Both types of com-
ponents can be arbitrarily nested and composed by means of parallel and se-
rial operators. Data can enter and exit a component through variables. Control
enters and exits through locations.Masacciosupports the assume guarantee
principle, where one can separately verify the correctnessof each component



122 8 Hierarchical Model

by assuming that the rest of the components of the systems behave according
to their specification. By using this technique, a large verification problem can
be decomposed into many smaller verification problems. In this approach,
however, there is no formal verification on the model as a whole. Charon
[Alur et al., 2000, 2001] is quite similar to this work, whichalso addresses
the hierarchical issues within hybrid systems. In the framework of Charon,
the basic building block is represented by an agent that communicates with
its environment by means of shared variables. Agents can model distinct com-
ponents of the system whose executions are all active at the same time. The
agents in this approach are classified into two types: primitive and compos-
ite agents. The primitive agents form the primitive types orbasic building
blocks of the architectural hierarchy. The composite agents are derived by
parallel composition of the primitive agents. The internalbehavior of each
agent is represented by modes, which represent the discreteand continuous
activities of the agent. Each agent consists of one or more distinct modes that
describe the flow of control inside an agent. In addition to variables, contin-
uous dynamics, invariants, and guards, modes contain control points which
provide entry and exit points to the flow of modes. AlthoughCharon can
perform some kind of formal analysis, particularly checking invariants at run
time and reporting an error when an invariant is violated andno transition
is enabled, it only focuses on simulation rather then formalanalysis.SHIFT
[Deshpande et al., 1997] is a similar simulation approach allowing hierarchi-
cal specifications of hybrid systems.

Other works proposes to model hierarchical machines with hybrid au-
tomata or with less expressive subclasses of hybrid automata. However, to
analyze behaviors of hierarchical models, they have to be flattened into or-
dinary state machines and then model checking tools are applied on the flat-
tened parts. An example of these works is presented in [Mlleret al., 2003].
In this work, a hierarchical specification of timed automatais presented.
To verify a hierarchical model, it has to be transformed to flat-timed au-
tomata, which in turn can be used as input for the model checker tool Uppaal
[Behrmann et al., 2004]. Similarly, Ruh in [Ruh, 2007] presents a translator
tool that automatically converts hybrid hierarchical statecharts, defined as an
ASCII-formatted specification, into an input format for themodel checker
Hytech [Henzinger et al., 1997]. In contrast to these works,we have shown
that the hierarchical hybrid automata can be analyzed without getting in-
volved in the flattening process.
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From Graphical Modeling to Formal analysis

So far, we have shown a framework to model and verify multi-agent systems
by means of concurrent and hierarchical hybrid automata. Both the model
and the requirements of the system under consideration haveto be written in
CLP. However, specifying the complete systems using CLP is definitely a te-
dious, error-prone and undesirable task, particularly when specifying safety-
critical or larger systems. To facilitate the process of specification, graphical
notations of software engineering are helpful to model systems, but they pro-
vide little support for systems analysis. Therefore, to bring the advantages
of graphical notations together with automatic verification of formal meth-
ods. For this purpose, this chapter aims at simplifying the specification and
verification process by introducingHieroMatea tool environment with a con-
straint logic programming core that allows us to specify multi-agent systems
graphically and verify them automatically. The Chapter demonstrates this on
a multi-agent system scenario taken from the Robocup rescue. The contribu-
tion of this chapter has been published in [Mohammed and Schwarz, 2009;
Schwarz et al., 2010].

9.1 Introduction

In the previous Chapters 4 and 8, we have shown how to formallyspecify
and automatically verify systems at different levels of abstraction using hy-
brid automata. We have presented two structural views of systems, namely
concurrent/flat and hierarchical views. It is well known that the formal spec-
ification targets a precise and unambiguous description of the behavior of
systems under design, whereas the automatic verification bymodel checking
aims at verifying a desired specification.
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To automatically verify a certain model, one needs to translate such model
into an executable format written in a language executed by model checkers.
Generally, to specify and verify a certain model, two alternatives can be used
to achieve this: either designing the model prior to put it ina textual rep-
resentation format convenient to a model checker, or starting to specify the
scenario directly with the suitable description languages, which is definitely
a tedious and undesirable work, particularly when specifying safety-critical
systems. An example of these textual languages adopted throughout this the-
sis is CLP by which we encode both models and specification of properties
of hybrid automata. However, writing models together with the specification
of properties with a textual language in general or with CLP in more spe-
cific is a difficult, cumbersome and error-prone task for several reasons. To
model and specify a certain problem, one needs to write hundreds of lines
of CLP, which becomes difficult to grasp the meaning of the whole system.
To avoid side effects that may result in unwanted behavior, CLP code has
to be done carefully. Consequently, this may require a longer specification
time and expert personnel. Nevertheless, the possibilities of error occurrence
are highly increased and difficult to discover. Additionally, the direct use of
logic to build a model is often claimed to be an obstacle for systems engi-
neering. To cope with these limitations, the graphical representation taken
from software engineering can be helpful. Intuitively, graphical representa-
tions have advantages over textual representations. They are less syntactical
language from users’ prospectives and easy to develop. Theydo not require
highly experienced users, and hence are favored by lot of users. However, for
their informal specification, they provide little support for analysis systems.
To bridg this gap, this chapter combines the advantages of the graphical no-
tations together with formal verification. In particular, this chapter presents a
tool environmentHieroMatewith a constraint logic programming core that
allows us to specify and hence verify multi-agent systems. With HieroMate
the process of specifying a certain model is done in the form of graphical
state transition diagram annotated with mathematical formalisms, which in
turn can be verified directly. The informal graphical notations are invisible
converted into formal executable specifications. In this way, it is sufficient
for the user to focus only on the specification process ratherthan focusing
on both specification and the CLP implementation. This can reduce mistakes
which may occur due to the CLP implementation. TheHieroMate tool ac-
cepts specifications and properties to be proven by a visual interaction. Then
it generates an intermediate CLP, which can be verified by means of reacha-
bility analysis using appropriate constraints solvers andstate machine, written
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in CLP as well.HieroMatesupports different views of model specification,
namely concurrent/flat and hierarchical view. To our knowledge, there is no
tool that supports the integration of graphical notations and formal verifica-
tion of hybrid automata with these views. To convey how the various parts
of HieroMateare used, the Chapter provides a multi-agent system example
taken from the RoboCup rescue.

The rest of this chapter is organized as follows: Sec.9.2 describes and
specifies a Robocup rescue multi-agent system scenario, which is taken as
an a running example to demonstrate the toolHieroMate. This scenario is a
modified version of that one existing exists in [Furbach et al., 2008]. Sec.9.3
goes through the details of the tool. Finally, Sec.9.4 showsrelated work.

9.2 Robocup Rescue Scenario

In the RoboCup rescue simulation league [Tadokoro et al., 2000], a large
scale disaster is simulated. The simulator models part of a city after an earth-
quake. Buildings may be collapsed or are on fire, and roads arepartially or
completely blocked. A team of heterogeneous agents consisting of police
forces, ambulance teams, a fire brigade, and their respective headquarters is
deployed. The agents have two main tasks, namely finding and rescuing the
civilians and extinguishing fires. An auxiliary task is the clearing of blocked
roads, such that agents can move smoothly. As their abilities enable each type
of agent to solve onlyonekind of task, e.g. fire brigades cannot clear roads or
rescue civilians, the need for coordination and synchronization among agents
is obvious in order to accomplish the rescue tasks.

Consider the following simple scenario. When a fire breaks out some-
where in the city, a fire brigade agent is ordered by its headquarters to extin-
guish the fire. The fire brigade moves to the fire and begins to put it out. If the
agent runs out of water it has to refill its tank at a supply station and returns
to the fire to complete its task. If the fire is not out within a certain period of
time, it will get out of control and cannot be extinguished bythe brigade any-
more. If enough water could be added to the fire, it will be extinguished and
the fire brigade agent is idle again. An additional task the agent has to execute
is to report any discovered injured civilians. The whole scenario is modeled
as hybrid automata in Fig 9.1. It includes models of the fire, civilians, a fire
station and a fire brigade agent.

The fire will initially start in the first 10 minutes of the scenario, the con-
crete time point is not defined. This is modeled by the location nofireand the
clock variableboomwhich is restricted to values less then 600. The transition
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Fig. 9.1.The specification of the rescue scenario.

from of this location may fire at any time and will lead to the locationburning
which models the state of the fire where it could be extinguished. The amount
of water that is needed to put it out is modeled by the variableneededwthat is
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set to some value less then 1200 when entering the location. This means that
in the beginning it needs less than 1200 liters of water to extinguish the fire.
There are two possible follow-up locations forburningnamelyputoutthat is
reached if enough water was added by the fire brigade andoutofcontrolthat
is reached if that is not the case before some timer runs out.

In this simple scenario the civilians are modeled to be sleeping initially.
When the fire breaks out, they will wake up and call for help every 30 seconds.
If the fire is put out they will sleep again, if the fire gets out of control, they
will die.

The task of the fire station is to assign a fire brigade to a fire. As soon as
the fire is discovered, the fire station assigns a fire brigade to extinguish it.
In this simple example there is only one brigade agent, so thetask of the fire
station is rather trivial.

As depicted in Fig. 9.1, The specification of the fire brigade consists of
the main control structureFirebrigadeMainwhich models the behavior of
the agent and aListener that records the number of discovered civilians.
The behavior of the agentFirebrigadeMainconsists of five control locations
corresponding to movements (move2fire, move2supply), extinguishing (extin-
guish), refilling the tank (refill), and an idle location (idle). The behavior of
FirebrigadeMainstarts in theidle location and jumps to themove2fireloca-
tion, when it is assigned to a fire by the fire station. The location move2fire
models the movement of the fire brigade towards the fire. The distance be-
tween fire and the the fire brigade is modeled by the variabledistancewhich
is set to be less then 800 meters in the beginning. The fire brigade moves with
some speed between 15m/s and 18m/s towards the fire. This is modeled by
bounding the derivative of the variabledistancebetween−18 and−15. After
it arriving on the site of the fire, the fire brigade tries to extinguish it. This is
modeled by decreasing the value ofwLevel, which models the water level in
the tank, and the water needed to put out the fire,neededw, by the same rate.
If the water in the tank runs out, the fire brigade has to move tothe next refill
station that is set to be 200 meters away. The movement is modeled analo-
gously to the movement to the fire. After the tank is refilled, the fire brigade
moves towards the fire again. After the fire is put out or is out of control, the
fire brigade becomes idle again and reports any found civilians.

It should be obvious that even in this simple case with very few compo-
nents, it is difficult to see if the agent behaves correctly. Important questions
like:

- Does the fire brigade agent try to extinguish without water?
- Will every discovered civilian (and only those) be reported eventually?
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depend on the interaction of all components and cannot be answered with-
out an analysis of the whole system.

Fig. 9.1 shows the RoboCup scenario depicted as a graphical state transi-
tion diagrams. Generally, state transition diagrams have been applied success-
fully for MAS, particularly in the RoboCup, a simulation of (human) rescuer
with real or virtual robots [cf. Arai and Stolzenburg, 2002;da Silva et al.,
2004], in particular for the teamsRoboLog Koblenz(two-dimensional simula-
tion league) andHarzer Rollers(standard four-legged league) [Murray et al.,
2002; Ruh and Stolzenburg, 2008]. In what follows, we will demonstrate the
use of this scenario with the toolHieroMate and present some exemplary
model checking tasks.

9.3 The HieroMate tool

The aim ofHieroMate is to use graphical notations to make the process of
specifying system easier or more approachable to average users. The idea of
HieroMate relies on translating a graphical model into a hidden CLP spec-
ification, which is verified using a proper state machine encoded with CLP
too. A normal session withHieroMate is as follows: After creating a model
with hybrid automata, and specifying the requirements graphically, the de-
signer invokesHieroMate to verify it. The tool automatically converts the
model into constraint logic programming specification. Then the verification
is performed using the reachability analysis.

This section describes the toolHieroMate in more detail by showing the
internal architecture view. The section demonstrates stepby step how to de-
scribe a normal session withHieroMate. Finally, it shows how several prop-
erties of the robocup scenario can be checked.

9.3.1 HieroMate at a Glance

The toolHieroMate is composed of three layers, namely the graphical user
interface , an internal constraint logic program, and statemachine with con-
straints solver back-end. The overall architecture ofHieroMateenvironment
is shown in Fig. 9.2. The different layers are separated withdashed lines. The
first layer contains a graphical user interface ofHieroMate, which serves the
user to do several activities. First, it enables the user to construct or edit a
certain model. Moreover, it helps the user to edit and specify properties of
the model. Furthermore, it informs the user with the answer of checking the
model against properties of interest.
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Fig. 9.2.The Architecture view of HieroMate environment.

The second layer contains an internal constraint logic program. Inside this
layer, the graphical model together with the specification of properties, con-
structed in the graphical user interface layer, are converted into a constraint
logic program. Usually this layer is hidden to the user but the tool facilitates
to give a view for the constructed constraint logic program.

Finally, the lowest layer contains a state machine, writtenin CLP, which
uses the prolog search together with constraints solvers for checking the CLP
program created from the previous layer. Like its predecessor layer, this layer
is hidden to the user. Hiding the layers to the user helps to reduce the errors,
which might occur as the direct access of the CLP program withthe user.

Since the graphical user interface is the only visible layerto theHieroMate
users, in the following we will show a normal session to invoke this interface.
We depict it with the example described in Sec.9.1.

9.3.2 The Graphical Interface

The graphical user interface of theHieroMateenables the user to create and
edit a graphical model of hybrid automata. A model under construction ap-
pears on a workstation display as shown in Fig. 9.3. In this workstation,
the pull-down menus (File, Edit, Automaton) at the top of the display con-
tain commands for storing, retrieving and editing models ofhybrid automata.
With the pull-down menuAutomaton, one can choose the type of the struc-
tural view of the model under construction; that is whether it is flat or hier-
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Fig. 9.3.The graphical interface of HieroMate.

archical. Additional function of the menu is that it contains commandVerify
which invokes the window of specifying the properties for the model check-
ing purposes.

The first step to create a model is to start a new working area, then right
clicking on any empty working area, a pop-up menu appears containing sev-
eral items, which help the user to create and manage his/her model. Among
of these items, as shown in Fig. 9.3, the user has the ability to begin creat-
ing simple, composed or concurrent locations of the model. After creating
the locations of the model, the user can create a transition between any two
locations by drawing a directed edge from one location to another.

Once both locations and transitions have been created, their properties
can be edited. Clicking on a particular location, for example, causes a prop-
erty window to appear, by which the user can edit the name, invariant, and
flow of the location, as illustrated in Fig. 9.4. It should be noted that most of
these actions are context-sensitive so only legal options are shown and exe-
cuted. While editing the flow of a variablex in a non-prime form, i.ex′, the
tool marks this specification with red colored font, which means there is a
violation of the syntax made by the user. In addition to edit the properties of
locations, the user can edit the jump condition and synchronization label of
transitions.
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Fig. 9.4.Editing locations in HieroMate.

Having specified all locations and transitions, the complete model can be
ready for checking against properties of interest. Fig. 9.5shows the specifi-
cation of the robocup rescue scenario withHieroMate. Now this model can
be stored or modified. Its appearance can also be changed by rearranging the
locations and transitions by means of drag-and-drop or collapse operation.

For specifying and checking requirements of interest,HieroMateincludes
an interface that helps in achieving these aims. Fig. 9.6 shows this interface
as a window entitled withVerification. This window is partitioned into three
parts: Visual tree of locations, the generated query, and the result of model
checking. The visual tree contains all the possible locations of the model be-
ing checked. From that tree, the user can mark locations, forthe purpose of
model checking. There are two points should be noted, while selecting loca-
tions. Firstly, marking more than one child of a certain concurrent location
means that during checking the requirement, all these locations have to be
reached in the same time. Secondly, marking more than one child of a com-
posed location means that at least when of these children hasto be reached.

In addition to the visual tree part, the interface contains the generated
query part, which contains the automatically CLP query resulted from mark-
ing the locations of interest in the first part. This part allows the user to textual



132 9 From Graphical Modeling to Formal analysis

Fig. 9.5.The rescue scenario in HieroMate.

edit the current query to specify more complex requirements, such as speci-
fying the reachability of certain values of particular variables.

Having defined the properties, the interface can check the reachability
of theses properties by pressing theCheckbutton afterwards. The answer to
checking the query is returned in the output part. At the moment, the current
output of the tools gives a positive or a negative answer to the query under
investigation, but in future it might be shown additional information such as
a trace which leads to the specific configuration of the model or the value of
certain parameters.

9.3.3 Examples with Model checking

As we already mentioned, the graphical notations are translated into exe-
cutable specifications, which can be checked by model checking. In Hiero-
Mate the term ofmodel checkingrefers toreachability testing, i.e. the ques-
tion whether some (unwanted) state is reachable from the initial configuration
of the specified system. For this purpose, some exemplary model checking
tasks for the rescue scenario can be investigated.

For the behavior specification shown in Fig. 9.1, we conducted several ex-
periments withHieroMate. The tool performs reachability tests on the state
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Fig. 9.6.Specifying and verifying properties in HieroMate.

space of the model. This is done by computing all reachable states from the
initial state/configuration, and then checking the resulting set for the needed
properties. In the following, we present some exemplary model checking
tasks for the rescue scenario.

Is it possible to extinguish the fire?When the state of the automaton mod-
eling the fire changes fromno fire to burning, the variableneededwstores
the amount of water needed for putting out the fire (neededw= 120 in the
beginning). When the fire is put out, i.e.neededw= 0, the automaton enters
the stateput out. Thus the fire can be extinguished, iff there is a reachable
configurationcout where fire is in the stateput out. It is easy to see from the
specification that this is indeed the case, asneededwis only decreased after
the initial setting, and so the transition fromburning to put out is eventually
forced.

Does the agent try to extinguish with an empty water tank?To answer
this question, we should check the reachability of certain intervals in the con-
tinuous valuation of the automaton. The fact that the fire brigade agent tries
to put out the fire without water corresponds to the simple state extinguish
being active whilewLevel< 0. Note that we must not test forwLevel≤ 0, as
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the stateextinguishis only left when the water level is zero, so including a
check for equality leads to false results.

Won’t the fire brigade move to the fire if it is not burning? This is a kind
of question that needs to check the reachability of composedlocations at the
same time. This can be checked by investigating that no location wherefire-
brigade is in locationmove2fireand fire is in locationnofire, or putout is
reachable

Does the agent report all discovered civilians?We can check properties
about the history of a certain state and the reachable statesfrom a given state,
this allows more complex questions like this question. Actually, this question
contains two properties to be checked:

(a) all discovered civilians are reported eventually and
(b) the agent does not report more civilians than found.

The property (a) corresponds to the fact that from every reachable state there
is a state reachable where all discovered civilians have been reported. This
again means that the number of transitions labeled withhelpequals the num-
ber of transitions labeled withreported. Property (b) holds if in the history
of each reachable state the number of transitions labeled with help is always
greater or equal to the number of transitions that are labeled with reported.

All properties described above could be successfully proven using our
framework.

9.4 Related Work

The graphical notation is becoming more and more accepted, as it is expected
that designers will be more familiar with graphical notation. Therefore, sev-
eral researchers approach to specify behaviors of MASs using graphical no-
tations, namely UML statechart. Murray in [Murray, 2004], for instance,
presents an statechart editor calledStatEditthat is used to graphically spec-
ify behaviors MASs with a layered structured.StatEditwas intended to de-
sign behavior of agents in the RoboCup simulation league. With this editor
statecharts can be created and exported to a variety of formats for further
processing. Similar toStatEdit, there are software engineering tools, such as
Statemate[Harel et al., 1988] andRational rose, which can be used to graph-
ically specify graphically behaviors of MAS. Neither continuous activities,
nor model checking are allowed in these tools however .

In order to combine the formal verification with graphical models, there
already exists a number of tools supporting verification of the state machines
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view of an un-timed UML graphs, particularly statecharts. The tools are do-
ing so by translating graphical models into input languagesof existing model
checkers. For example, Lilius and Porres in [Lilius and Porres, 1999] present
the tool vUML for model checking systems, which are modeled by UML
statecharts. They use the model checkerSPIN [Holzmann, 1997] as the un-
derlying verification engine in their tool. Similar to theirwork, Mikk et al.
in [Mikk et al., 1998] present a translator that translates statecharts into, the
modeling language of theSPINmodel checker,Promela. The same approach
is adopted in Mota et al. [2004]. In their approach, they present a tool that
integrates UML models with formal verification. In their tools, a graphical
model is translated into an intermediate representations,before the model is
checked using the model checkerNuSVM[Cimatti et al., 2002]. In contrast to
our work, all the previous approaches are restricted to model discrete reactive
systems.

To graphically specify and hence verify real time systems, several tools are
existing. For instance,Modechart[Jahanian and Mok, 1994] is a tool which
captures graphically time-based requirements. Systems are expressed graph-
ically as concurrent finite state diagrams with delays and deadlines which
are specified in modes of the systems. The tool includes a simulator allow-
ing an interactive execution of modechart for consistency and completeness
checker. Additionally, the tool includes a verifier which determines whether
a timing assertion can be derived from a set of modechart specifications. An-
other successful graphical tool isUppaal [Behrmann et al., 2004], which is
a tool suite for automatic verification of safety and boundedliveness prop-
erties of real time systems modeled as networks of timed automata.Uppaal
consists of a graphical user interface based onautograph[Roy and Simone,
1991], which allows a system description to be defined graphically and then
verified with a model checking procedures. However, hierarchical structures
are not allowed inUppaal. To cope with this, several works propose to specify
real-time systems by incorporating the full advantages of the UML models.
In particular, there are works extending the standard UML models with time
notation [Graf et al., 2006]. For this purpose, several tools have been devel-
oped to verify the timed UML models by mapping them to input languages
of timed automata, which in turn are verified using existing model check-
ers of timed automata. For example, Del Bianco et al. in [Del Bianco et al.,
2002] use the model checkerKronos[Yovine, 1997] to verify their systems,
whereas Knapp et al. in [Knapp et al., 2002] useUppaal [Bengtsson et al.,
1996] for the same purpose. As we have said, before translating the graphical
specifications into suitable representations to model checkers, the previous
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tools, however, have to flatten any hierarchical specifications. This of course
increases the complexity of models. Additionally, those tools together with
their underlying verification tools, do not support more hybrid dynamics—
e.g. linear hybrid automata.

Several works introduce tools that contain graphical user interfaces serv-
ing as graphical input languages to model hybrid systems. However, those
tools provide no means of formal verification; instead, theyare emerged for
simulation purposes of highly complex hybrid systems. Examples of these
tools include,HyVisual[Cataldo et al., 2003],Charon[Alur et al., 2000, 2001],
andStateflow[Sahbani and Pascal, 2000].



Part IV

Conclusion
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Final Remarks

10.1 Summary and Future Work

Multi-agent systems (MASs) are reactive systems consisting of distributed re-
active components/agents located in some environment in which they jointly
work and interact to achieve their goals. Reactive systems react to stim-
uli received from the environment by generating corresponding responses.
They often appear in safety-critical applications where failure is unaccept-
able. Their behaviors must be carefully designed with a highdegree of preci-
sion in order to avoid any undesirable behaviors. The use of rigorous formal
methods not only provide ways to precisely describe behaviors of such sys-
tems through formal specification, but also to analyze them through formal
analysis.

One of the formal approaches that is extensively used to describe behav-
iors of reactive systems, particularly MASs, is to use statetransition systems.
A reactive system usually behaves according to a reasoning process of exter-
nal or internal actions. whenever an action occurs, the behavior of the system
moves from one state to another. Finite automata or finite state machines have
been successfully used as a medium to model such transition systems. One
advantage of state transition systems is that they can be formally analyzed by
means of model checking.

Hybrid systems are special forms of reactive systems that continuously
react to their environment according to time dependent physical rules. The
behavior of such systems involves continuous and discrete actions. The con-
tinuous actions of the behaviors arise as an evolution of thesystems according
to differential equations describing some physical rules,whereas the discrete
actions result from the change from one continuous action toanother. The
classical finite automata are not sufficient to model such types of behaviors,
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as they can only model the discrete behaviors. Finite automata have been ex-
tended to deal with such type of behaviors. This has led to thebirth of hybrid
automata, which are mathematical formalisms that can formally capture the
behavior of hybrid systems. Their formal semantics allow usto prove desir-
able features and the absence of unwanted properties in the specified systems.

This thesis aimed at approaching the framework of hybrid automata to
model and verify behavior of MASs. We have contributed in a number of
ways to achieve this aim. In one way of contribution, we have presented a
convenient approach which allows us to specify and verify behaviors and re-
quirements of MASs. In this approach we have shown how to attack the state
space complexity raised from composition of automata by providing a way
that dynamically constructs the composition during the verification phase.
Additionally, we have presented a specification language based on extending
the well know temporal logic CTL to specify both qualitativeand quanti-
tative properties. We have also implemented this approach with the help of
constraint logic programming. In this implementation, a model of hybrid au-
tomata is converted to an equivalent model of constraint logic program. The
specifications of the requirements are converted to suitable queries, which are
checked within the constraint logic program by means of reachability analy-
sis.

In another way of contributions, we have provided several extensions con-
cerning the expressiveness of specifying behaviors of MASs. We have intro-
duced a simple approach toward extending the decision making of hybrid au-
tomata to deal with deliberative agents’ plans. Moreover, we have presented
a combination of hybrid automata formal semantics with hierarchical nota-
tions. This combination allows us to model and analyze behaviors of MASs
under several levels of abstraction. We have presented a tool that facilitates
the specification process by permitting the graphical notations while specify-
ing behaviors and requirements.

One possible area of future research is to reason about the behavior of
MASs under uncertainty. Decision theories have proposed a number of de-
cision rules for decision-making under uncertainty [Berm´udez, 2009]. One
should integrate such types of rules into our approach.

Reasoning about knowledge [Fagin, 2003] has always been a core con-
cern in AI and MASs. It is well known that knowledge is a key concept to
model intelligent and rational activities. The usual approach to reason about
knowledge assumes time to be discrete. Thus, another topic worth investigat-
ing would be extending model checking to reason not only about temporal
properties but also about epistemic properties of agents.
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Appendix

This Appendix lists the complete CLP for the train gate example demon-
strated in Chapter 4 and 8.

The concurrent CLP

:- lib(ic).
:- lib(ic_symbolic).
:-lib(scattered).
:- local domain(events(app,in,exit,lower,raise,to_close,to_open)).
%%% train
train(far,[Y0],[Y],T0,T):-

Y $>= Y0-50*(T-T0),
Y $>=500, T $>=T0.

train(near,[Y0],[Y],T0,T):-
Y $=(exp(-(T-T0)/25))*(Y0+750)-750,
Y $>=0, T $>= T0.

train(past,[Y0],[Y],T0,T):-
Y $= (exp((T- T0)/5) )*(Y0+150)-150,
Y $=<100, T $>= T0.

gate(open,[G0],[G],T0,T):-
G $=G0+0*(T-T0),
T $>=T0.

%%%gate
gate(close,[G0],[G],T0,T):-

G $=G0+0*(T-T0),
T $>=T0.

gate(up,[G0],[G],T0,T):-
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G $=G0+20*(T-T0),
T $>=T0, G $=<90.

gate(down,[G0],[G],T0,T):-
G $= G0-20*(T-T0),
T $>=T0, G $>=0.

%%controller
controller(idle,[Z0],[Z],T0,T):-

Z $=Z0+0*(T-T0),
T $>=T0.

controller(to_lower,[Z0],[Z],T0,T):-
Z $=Z0+(T-T0),
T $>=T0, Z $=<5.

controller(to_raise,[Z0],[Z],T0,T):-
Z $=Z0+(T-T0),
T $>=T0, Z $=<5.

evolve(Automaton,(State,Value1),(State,Value2),T0,T,Tn,Event):-
continuous(Automaton,(State,Value1),(State,Value2),T0,T,Tn,Event),
Tn $>=0.

evolve(Automaton,(State,Value1),(Nextstate,Value2),T0,T,Tn,Event):-
discrete(Automaton,(State,Value1),(Nextstate,Value2),T0,T,Tn,Event).

discrete(train,(far,[X0]),(near,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=app,
train(far,[X0],[XX0],T0,Tn),
XX0 $=500.

discrete(train,(near,[X0]),(past,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=in,
train(near,[X0],[XX0],T0,Tn),
XX0 $=0.

discrete(train,(past,[X0]),(far,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=exit,
train(past,[X0],[100],T0,Tn),
XX0 $=2000.

discrete(controller,(idle,[X0]),(to_lower,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=app,
XX0 $=0,
controller(idle,[X0],[X],T0,Tn).

discrete(controller,(idle,[X0]),(to_raise,[XX0]),T0,T,Tn,Event):-
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Event &::events,Event &=exit,
XX0 $=0,
controller(idle,[X0],[X],T0,Tn).

discrete(controller,(to_lower,[X0]), (idle,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=lower,
XX0 $=X0,

controller(to_lower,X0,X,T0,Tn).

discrete(controller,(to_lower,[X0]),(to_raise,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=exit,
XX0 $=0,
controller(to_lower,[X0],[X],T0,Tn) .

discrete(controller,(to_raise,[X0]),(idle,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=raise,
XX0 $=X0,
controller(to_raise,[X0],[X],T0,Tn).

discrete(controller,(to_raise,[X0]),(to_lower,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=app,
XX0 $=0,
controller(to_raise,[X0],[X],T0,Tn).

discrete(gate,(open,[X0]),(down,[XX0],T0,T,Tn,Event):-
Event &::events,Event &=lower,
XX0 $=X0,
gate(open,X0,X,T0,Tn).

discrete(gate,(close,[X0]),(up,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=raise,
XX0 $=X0,
gate(close,[X0],[X],T0,Tn).

discrete(gate,(down,[X0]),(close,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=to_close,
XX0 $=0,
gate(down,[X0],[0],T0,Tn),

discrete(gate,(down,[X0]),(up,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=raise,
XX0 $=X0,
gate(down,[X0],[X],T0,Tn).

discrete(gate,(up,[X0]),(open,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=to_open,
XX0 $=90,
gate(up,X0,90,T0,Tn).
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discrete(gate,(up,[X0]),(down,[XX0]),T0,T,Tn,Event):-
Event &::events,Event &=lower,
XX0 $=X0,
gate(up,[X0],[X],T0,Tn) .

continuous(train,(far,[X0]),(far,[X0]),T0,T,Event):-
Event &::events, Event &\=app, Event &\= in,Event &\=exit,
train(far,[X0],[X],T0,T), \+ (X $=500).

continuous(train,(near,[X0]),(near,[X0]),T0,T,Event):-
Event &::events, Event &\=app, Event &\= in,Event &\=exit,
train(near,[X0],[X],T0,T), \+ (X $=0).

continuous(train,(past,[X0]),(past,[X0]),T0,T,Event):-
Event &::events, Event &\=app, Event &\= in,Event &\=exit,
train(past,[X0],[X],T0,T), \+ (X $=100).

continuous(controller,(idle,[X0]),(idle,[X0]),T0,T,Event):-
Event &::events,Event &\=app, Event &\=exit,Event &\=raise,
Event &\=lower, controller(idle,[X0],[X],T0,T).

continuous(controller,(to_lower,[X0]),(to_lower,[X0]),T0,T,Event):-
Event &::events,Event &\=app,Event &\=exit,Event &\=raise,
Event &\=lower, controller(to_lower,[X0],[X],T0,T), \+ (X $=5).

continuous(controller,(to_raise,[X0]),(to_raise,[X0]),T0,T,Event):-
Event &::events,Event &\=app, Event &\=exit,Event &\=raise,
Event &\=lower,
controller(to_raise,[X0],[X],T0,T), \+ (X $=5).

continuous(gate,(open,[X0]),(open,[X0]),T0,T,Event):-
Event &::events,Event &\=lower, Event &\=to_open,
Event &\=to_close,Event &\=raise,
gate(open,[X0],[X],T0,T).

continuous(gate,(down,[X0]),(down,[X0]),T0,T,Event):-
Event &::events,Event &\=lower,
Event &\=to_open,
Event &\=to_close,Event &\=raise,
gate(down,[X0],[X],T0,T),\+ (X $=0).

continuous(gate,(up,[X0]),(up,[X0]),T0,T,Event):-
Event &::events,Event &\=lower,
Event &\=to_open,
Event &\=to_close,Event &\=raise,
gate(up,[X0],[X],T0,T),\+ (X $=90).

continuous(gate,(close,[X0]),(close,[X0]),T0,T,Event):-
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Event &::events,Event &\=lower,
Event &\=to_open,
Event &\=to_close,Event &\=raise,
gate(close,[X0],[X],T0,T).

drive((S1,[X0]),(S2,[G0]),(S3,[Z0]), Starttime,[(S1,S2,S3,Time,Event,X)|L],B):-
train(S1,[X0],[X],Starttime,Tx),
gate(S2,[G0],[G],Starttime,Tg),
controller(S3,[Z0],[Z],Starttime,Tz),
Tx $=Tg, Tx$= Tz , Time $=Tx,

evolve(train,(S1,[X0]),(NextS1,[XX0]),Starttime,Tx,Tx1,Event),
evolve(gate,(S2,[G0]),(NextS2,[GG0]),Starttime,Tx,Tg1,Event),
evolve(controller,(S3,[Z0]),(NextS3,[ZZ0]),Starttime,Tx,Tz1,Event),
Tx1 $=Tg1, Tx1 $=Tz1, Tnew $=Tx1,
\+ member((S1,S2,S3,_,Event,X),B),
A=[(S1,S2,S3,Time,Event,X)|B],
drive((NextS1,[XX0]),(NextS2,[GG0]),(NextS3,[ZZ0]),Tnew,L,A) .
drive(_,_,_,_,[],_):- !.

Reachable((L1,[X0]),(L2,[G0]),(L3,[Z0]),Reached):- drive((L1,[X0]),(L2,[G0]),(L3,[Z0]),0,Reac

Hierarchical CLP

:- lib(ic).
greater(T2,T1) :- T2 $> T1.

%%% system
start(system).

init(T,system,[[Event,Alpha]],[train,gate,controller],_) :-
Event = none.
flow(T1,T2,system,[[Event,Alpha]],[[Event,Alpha]]).

%%% train
init(T,train,[[X]|_],[far],system) :-
X $= 2000.
flow(T1,T2,train,_,_).

init(T,far,[[]|_],[],train).
flow(T1,T2,far,[[],[X1]|_],[[],[X2]|_]) :-
X2 $>= 1000,
X2 $>= X1-50*(T2-T1),
X2 $=< X1-30*(T2-T1).
trans(T,far,[[],[X],[Event1,Alpha]],far,[[],[X],[Event2,Alpha]]) :-
Event2 = lower ; Event2 = raise.
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trans(T,far,[[],[X],[Event1,Alpha]],near,[[],[X],[Event2,Alpha]]) :-
Event2 = app,
X $= 1000.

init(T,near,[[]|_],[],train).
flow(T1,T2,near,[[],[X1]|_],[[],[X2]|_]) :-
X2 $>= 0,
X2 $>= X1-50*(T2-T1),
X2 $=< X1-30*(T2-T1).
trans(T,near,[[],[X],[Event1,Alpha]],near,[[],[X],[Event2,Alpha]]) :-
Event2 = lower ; Event2 = raise.
trans(T,near,[[],[X],[Event1,Alpha]],past,[[],[X],[Event2,Alpha]]) :-
Event2 = in,
X $= 0.

init(T,past,[[]|_],[],train).
flow(T1,T2,past,[[],[X1]|_],[[],[X2]|_]) :-
X2 $=< 100,
X2 $>= X1+30*(T2-T1),
X2 $=< X1+50*(T2-T1).
trans(T,past,[[],[X],[Event1,Alpha]],past,[[],[X],[Event2,Alpha]]) :-
Event2 = lower ; Event2 = raise.
trans(T,past,[[],[X1],[Event1,Alpha]],far,[[],[X2],[Event2,Alpha]]) :-
Event2 = exit,
X1 $= 100,
X2 $= 2000.

%%% gate
init(T,gate,[[G]|_],[open],system) :-
G $= 90.
flow(T1,T2,gate,_,_).

init(T,open,[[]|_],[],gate).
flow(T1,T2,open,[[],[G1]|_],[[],[G2]|_]) :-
G1 $= 90,
G2 $= G1+0*(T2-T1).
trans(T,open,[[],[G],[Event1,Alpha]],open,[[],[G],[Event2,Alpha]]) :-
Event2 = app ; Event2 = in ; Event2 = raise.
trans(T,open,[[],[G],[Event1,Alpha]],down,[[],[G],[Event2,Alpha]]) :-
Event2 = lower.

init(T,down,[[]|_],[],gate).
flow(T1,T2,down,[[],[G1]|_],[[],[G2]|_]) :-
G1 $>= 0,
G2 $= G1-9*(T2-T1).
trans(T,down,[[],[G],[Event1,Alpha]],down,[[],[G],[Event2,Alpha]]) :-
Event2 = app ; Event2 = in ; Event2 = lower.
trans(T,down,[[],[G1],[Event1,Alpha]],closed,[[],[G2],[Event2,Alpha]]) :-
G2 $= 0.
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trans(T,down,[[],[G1],[Event1,Alpha]],up,[[],[G1],[Event2,Alpha]]) :-
Event2 = raise.

init(T,closed,[[]|_],[],gate).
flow(T1,T2,closed,[[],[G1]|_],[[],[G2]|_]) :-
G1 $= 90,
G2 $= G1+0*(T2-T1).
trans(T,closed,[[],[G],[Event1,Alpha]],closed,[[],[G],[Event2,Alpha]]) :-
Event2 = app ; Event2 = in ; Event2 = lower.
trans(T,closed,[[],[G],[Event1,Alpha]],up,[[],[G],[Event2,Alpha]]) :-
Event2 = raise.

init(T,up,[[]|_],[],gate).
flow(T1,T2,up,[[],[G1]|_],[[],[G2]|_]) :-

G1 $=< 90,
G2 $= G1+9*(T2-T1).
trans(T,up,[[],[G],[Event1,Alpha]],up,[[],[G],[Event2,Alpha]]) :-
Event2 = app ; Event2 = in ; Event2 = raise.
trans(T,up,[[],[G1],[Event1,Alpha]],open,[[],[G1],[Event2,Alpha]]) :-
G2 $= 90.
trans(T,up,[[],[G1],[Event1,Alpha]],down,[[],[G1],[Event2,Alpha]]) :-
Event2 = lower.

%%% controller
init(T,controller,[[D]|_],[idle],system) :-
D $= 0.
flow(T1,T2,controller,[[D1]|_],[[D2]|_]) :-
D2 $>= 0.

init(T,idle,[[]|_],[],controller).
flow(T1,T2,idle,[[],[D1]|_],[[],[D2]|_]) :-
D2 $= D1+0*(T2-T1).
trans(T,idle,[[],[D],[Event1,Alpha]],idle,[[],[D],[Event2,Alpha]]) :-
Event2 = in.
trans(T,idle,[[],[D1],[Event1,Alpha]],lower,[[],[D2],[Event2,Alpha]]) :-
Event2 = app,
D2 $= 0.
trans(T,idle,[[],[D1],[Event1,Alpha]],raise,[[],[D2],[Event2,Alpha]]) :-
Event2 = exit,
D2 $= 0.

init(T,lower,[[]|_],[],controller).
flow(T1,T2,lower,[[],[D1],[Event,Alpha]],[[],[D2],[Event,Alpha]]) :-
D2 $=< Alpha,
D2 $= D1+1*(T2-T1).
trans(T,lower,[[],[D],[Event1,Alpha]],lower,[[],[D],[Event2,Alpha]]) :-
Event2 = app ; Event2 = in.
trans(T,lower,[[],[D],[Event1,Alpha]],idle,[[],[D],[Event2,Alpha]]) :-
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Event2 = lower.
trans(T,lower,[[],[D1],[Event1,Alpha]],raise,[[],[D2],[Event2,Alpha]]) :-
Event2 = exit,
D2 $= 0.

init(T,raise,[[]|_],[],controller).
flow(T1,T2,raise,[[],[D1],[Event,Alpha]],[[],[D2],[Event,Alpha]]) :-
D2 $=< Alpha,
D2 $= D1+1*(T2-T1).
trans(T,raise,[[],[D],[Event1,Alpha]],raise,[[],[D],[Event2,Alpha]]) :-
Event2 = exit ; Event2 = in.
trans(T,raise,[[],[D],[Event1,Alpha]],idle,[[],[D],[Event2,Alpha]]) :-
Event2 = raise.
trans(T,raise,[[],[D1],[Event1,Alpha]],lower,[[],[D2],[Event2,Alpha]]) :-
Event2 = app,
D2 $= 0.
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