
Fachbereich 4:
Institut für Wirtschafts- und Verwaltungsinformatik

Micro-agents revisited:

A Modern Reimplementation of

the Micro-agent Layer of the

Otago Agent Platform (OPAL)

Masterarbeit

zur Erlangung des Grades eines
Master of Science

im Studiengang Wirtschaftsinformatik

vorgelegt von

Christopher Frantz

Betreuer: Prof. Dr. Martin K. Purvis, University of Otago

Prof. Dr. Klaus G. Troitzsch, Institut für Wirtschafts- und
Verwaltungsinformatik, Fachbereich Informatik

Dr. Mariusz Nowostawski, University of Otago

Erstgutachter: Prof. Dr. Martin K. Purvis, University of Otago

Zweitgutachter: Prof. Dr. Klaus G. Troitzsch, Institut für Wirtschafts- und
Verwaltungsinformatik, Fachbereich Informatik

Koblenz, im November 2010

ERKLÄRUNG

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einverstanden.
Der Veröffentlichung dieser Arbeit im Internet stimme ich zu.

Ort, Datum Unterschrift

II

Abstract

Multi-agent systems are a mature approach to model complex software systems

by means of Agent-Oriented Software Engineering (AOSE). However, their appli-

cation is not widely accepted in mainstream software engineering.

Parallel to this the interdisciplinary field of Agent-based Social Simulation (ABSS)

finds increasing recognition beyond the purely academic realm which starts to draw

attention from the mainstream of agent researchers.

This work analyzes factors to improve the uptake of AOSE as well as character-

istics which separate the two fields AOSE and ABSS to understand their gap.

Based on the efficiency-oriented micro-agent concept of the Otago Agent Platform

(OPAL) we have constructed a new modern and self-contained micro-agent plat-

form called µ2. The design takes technological trends into account and integrates

representative technologies, such as the functionally-inspired JVM language Clo-

jure (with its Transactional Memory), asynchronous message passing frameworks

and the mobile application platform Android.

The mobile version of the platform shows an innovative approach to allow direct in-

teraction between Android application components and micro-agents by mapping

their related internal communication mechanisms. This empowers micro-agents to

exploit virtually any capability of mobile devices for intelligent agent-based appli-

cations, robotics or simply act as a distributed middleware.

Additionally, relevant platform components for the support of social simulations

are identified and partially implemented. To show the usability of the platform

for simulation purposes an interaction-centric scenario representing group shaping

processes in a multi-cultural context is provided. The scenario is based on Hofste-

de’s concept of ’Cultural Dimensions’. It does not only confirm the applicability

of the platform for simulations but also reveals interesting patterns for culturally

augmented in- and out-group agents.

This explorative research advocates the potential of micro-agents as a powerful

general system modelling mechanism while bridging the convergence between mo-

bile and desktop systems. The results stimulate future work on the micro-agent

concept itself, the suggested platform and the deeper exploration of mechanisms

for seemless interaction of micro-agents with mobile environments. Last but not

least the further elaboration of the simulation model as well as its use to augment

intelligent agents with cultural aspects offer promising perspectives for future re-

search.

III

Zusammenfassung

Die Verwendung von Multi-Agenten-Systemen in Verbindung mit Agenten-orien-

tiertem Software Engineering stellt mittlerweile einen ausgereiften Ansatz zur

Modellierung komplexer Systeme dar. Allerdings finden Multi-Agenten-Systeme

im weiteren Feld der Softwareentwicklung bisher nur schwachen Anklang.

Im Kontrast dazu erregt die Anerkennung des interdisziplinären Feldes der sozial-

wissenschaftlichen Simulation über akademische Grenzen hinaus zunehmend die

Aufmerksamkeit des ’Mainstream’ der Agentenforscher. Dies nimmt sich diese Ar-

beit zum Anlass, die Verwendung von Multi-Agenten-Systemen im weiteren Feld

der Software-Entwicklung voranzutreiben und gleichzeitig die unterschiedlichen

Schwerpunkte von sozialwissenschaftlicher Simulation und Multi-Agenten-Syste-

men zu analysieren. Im Zuge dessen bietet sich die Reimplementierung des effizienz-

orientierten Micro-Agenten-Konzepts, welches den Kern der Otago Agent Platform

(OPAL) bildet, an. Ergebnis ist eine eigenständige Micro-Agenten-Plattform, µ2,

die zahlreiche konzeptionelle wie technische Innovationen bietet. Dazu gehören

die Integration der funktional orientierten Programmiersprache Clojure sowie die

Implementation asynchroner Nachrichtenübermittlung. Als weiterer Aspekt wird

die zunehmend populäre mobile Anwendungsplattform Android berücksichtigt.

Über die reine Portierung der Agentenplattform hinaus weist Android Merkmale

von Multi-Agenten-Systemen auf. Die Verbindung der Kommunikationsmecha-

nismen von Android und Micro-Agenten-Plattform erweitert das Funktionsspek-

trum auf beiden Seiten: Micro-Agenten können unmittelbar auf beliebige Android-

Funktionalität zugreifen, während Android die Micro-Agenten-Plattform als netz-

werkweite Kommunikationsmiddleware verwenden kann. Potentiale dieser symbi-

otischen Beziehung erstrecken sich darüber hinaus in die Bereiche der Entwicklung

’intelligenter’ mobiler Anwendungen sowie Robotik.

Weiteres Ziel der Arbeit ist die Bereitstellung von Erweiterungen der Plattform,

die eine Verwendung im Kontext sozialwissenschaftlicher Simulation ermöglichen.

Das aus Softwareentwicklungssicht schwache, jedoch aus Simulationssicht relativ

mächtige Micro-Agenten-Konzept zeigt seine Qualitäten im Kontext kommunika-

tionsintensiver Szenarien. Um dies zu realisieren, wird ein Simulationszenario

basierend auf Hofstede’s Cultural Dimensions konstruiert, welches die Gruppen-

bildung interkultureller Individuen simuliert. Neben dem Nachweis der Anwend-

barkeit der Plattform für Simulationsszenarien zeigen sich interessante Muster in

und außerhalb der gebildeten Gruppen.

IV

Insgesamt zeigt diese explorative Arbeit ein breites Potential zur Verwendung

von Agenten- respektive Micro-Agenten-Prinzipien auf. Dies reicht von Agenten-

orientierter Modellierung bis zum Potential, die Konvergenz mobiler und sta-

tionärer Anwendungen voranzutreiben. Darüber hinaus bieten sich weitere Verbes-

serungspotentiale am Micro-Agenten-Konzept sowie der Plattform selbst, ebenso

wie eine intensivere Untersuchung der direkten Interaktion von Micro-Agenten

mit mobilen Umgebungen an. Unabhängig davon bietet das entwickelte Simu-

lationsmodell einen Ansatz für die Verwendung kultureller Aspekte im Kontext

intelligenter Agenten.

V

Acknowledgements

I want to express my deepest gratitude to my supervisors Professor Dr. Martin

K. Purvis and Professor Dr. Klaus G. Troitzsch whose joint supervision effort and

tireless support made this thesis ’at the antipodes’ possible.

I also want to express my deepest gratitude to my supervisor Dr. Mariusz Nowos-

tawski whose feedback was crucial for the outcome of the work.

VI

Table of Contents

Abstract III

Zusammenfassung IV

Acknowledgements VI

Table of Contents X

List of Figures X

List of Tables XII

List of Listings XIV

Abbreviations XIV

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Outline of the thesis . 4

2 Terminological and Conceptual Foundations 6

2.1 The Agent concept . 6

2.1.1 Definitions and Notions . 6

2.1.2 Agent Architectures . 13

2.1.3 The Need for Dynamic Notions 17

2.2 Multi-Agent Systems . 22

2.2.1 System-theoretical Foundations 22

2.2.2 Multi-Agent Systems . 26

2.2.3 Standard Specifications for MAS 32

3 Research fields in Agent-based Computing 37

3.1 Agent-Oriented Software Engineering 37

3.1.1 History and Principles of AOSE 37

3.1.2 Comparing Agents and Objects 41

3.1.3 Criticism . 45

VII

3.2 Agent-based Social Simulation . 47

3.2.1 Heritage of Social Simulation 47

3.2.2 Methodological Aspects . 49

3.2.3 On the Gap between MAS for AOSE and ABSS 52

3.2.4 Problems in Social Simulation 61

4 Concurrency models of relevant Technologies 63

4.1 Concurrency . 63

4.1.1 On Concurrent Computing and its Relevance 63

4.1.2 Concurrency Handling Mechanisms 65

4.2 Technologies in the Intersection of AOSE and Concurrent Computing 70

4.2.1 Clojure . 70

4.2.2 Android . 72

4.3 Java-based Asynchronous Message Passing Frameworks 75

5 Reimplementation of the Micro-agent concept 79

5.1 Existing Micro-agent Framework and Requirements for a Successor 79

5.1.1 The existing concept and implementation 79

5.1.2 Limitations and Requirements for the Successor 86

5.2 Design and Implementation of the Micro-agent Platform µ2 91

5.2.1 Design . 91

5.2.2 Implementation . 97

5.3 Additional Platform Extensions . 108

5.3.1 Clojure as Agent/Environment Implementation Language . . 108

5.3.2 Fair Scheduler . 110

5.4 Micro-agents on Android (MOA) 111

5.4.1 Porting µ2 to Android . 112

5.4.2 Interfacing Micro-agents with Android 114

5.5 Summary . 119

6 Simulation Scenario 121

6.1 Scenario Background . 122

6.2 High-level Model Description . 124

6.3 Operationalization of Cultural Dimensions 126

6.4 Implementation . 131

6.4.1 General Aspects & Verification 131

6.4.2 Validation & Sensitivity Analysis 133

6.5 Results and Evaluation . 136

6.5.1 Emergent Structures in Uni-Cultural Setup 136

6.5.2 Multi-Cultural Experiment 139

6.6 Summary . 144

7 Conclusion 146

7.1 Summary of Achieved Objectives 146

7.2 Limitations and Future Work . 150

VIII

A Listings and Class Diagrams of µ2 154

A.1 Pseudo-code for Dynamic Binding Mechanism 154

A.2 Examples for Micro-agent usage in µ2 156

A.2.1 Micro-agent Interaction Example in µ2 156

A.2.2 Usage of MessageFilter in µ2 157

A.3 Class Diagrams of Platform . 159

B Fairness Benchmark ’TalkingAnts’ 165

B.1 Design . 165

B.2 Results . 167

C Multi-agent Platform Performance Benchmark 169

C.1 Design . 169

C.2 Results . 170

D MOA Application Scenario and Performance Benchmark 173

D.1 MOA Application Scenario . 173

D.2 MOA Performance Benchmark . 176

D.2.1 Design . 176

D.2.2 Results . 176

E Data for ’Cultural Dimensions’ Simulation Scenario 179

E.1 KNIME Analysis stream . 179

E.2 Results for Sensitivity Analysis . 180

E.2.1 Results for UAI Weight Factor 1.5 181

E.2.2 Results for UAI Weight Factor 1.8 184

E.3 Results for Multi-Cultural Setup . 187

F Development Environment & Source Code Information 190

F.1 Development Environment Specifications 190

F.2 Information on Platform and Simulation Code 191

Bibliography 192

IX

List of Figures

1.1 Influence factors for the micro-agent framework reimplementation . 4

2.1 Dimensions of Agent Notions . 20

2.2 FIPA Agent Management Reference Model 36

3.1 The logic of simulation as a scientific method 50

4.1 Concurrency handling mechanisms 69

4.2 Performance results for Asynchronous Message Passing frameworks 77

5.1 Original Micro-agent Concept . 81

5.2 Representation of AOSE properties in µ2 87

5.3 Platform layers for micro-agent platform µ2 93

5.4 Class diagram of Agent Logic Layer of µ2 100

5.5 Lazy initialization of platform depending on role type 105

5.6 Implementation-oriented schema of platform layers in µ2 107

5.7 Reference design for social simulations in µ2 109

6.1 In- and out-group fractions in the multi-cultural simulation setup . 140

6.2 Groups by member culture and leader culture 141

6.3 Leader/member ratio of in-group agents by culture 142

6.4 Leader/member ratio by culture coordinate component 142

A.1 MicroMessage, SystemAgentLoader and Message Transport Con-
nector . 159

A.2 Sub-namespaces of org.nzdis.micro 160

A.3 ClojureConnector and further classes 161

A.4 AbstractAgent class . 162

A.5 Event and Intent interfaces/classes 163

A.6 Top part of Role hierarchy . 163

A.7 Bottom part of Role hierarchy . 164

B.1 Screenshot of ’TalkingAnts’ simulation 167

C.1 Message flow in performance benchmark scenario 170

C.2 Performance behaviour with increasing number of benchmark rounds172

C.3 Performance behaviour with increasing number of benchmark rounds
(beyond 10000 rounds) . 172

X

D.1 Potential MOA application scenario 175

D.2 MOA benchmark scenario . 177

D.3 Performance benchmark results . 178

E.1 KNIME Stream for analysis of simulation output 179

XI

List of Tables

2.1 Overview of combinations of Notion Dimensions for Platforms . . . 21

2.2 Characteristics of organisation levels 31

3.1 Criteria for selection of Agent-oriented approaches vs. Object-oriented
approaches for System development 44

3.2 Comparison table for field-dependent perspectives on MAS 53

3.3 Feature support in Multi-agent Simulation Platforms in contrast to
general purpose Multi-agent Platforms 60

4.1 Fairness of Message Passing Frameworks (as standard deviation of
rounds) for selected number of agents 76

5.1 Addressing patterns for agent communication in µ2 94

5.2 Benchmark results for Agent Platforms relative to µ2 for 10000 rounds106

5.3 Related concepts of µ2 and Android 116

6.1 Properties of clusters of individuals in uni-cultural setup 138

6.2 Combinations of Synthetic Culture Coordinates 139

B.1 Performance and Fairness comparison of evaluated schedulers in
’Talking Ants’ application . 168

C.1 Benchmark results for Agent Platforms per scenario rounds (in sec-
onds) . 171

D.1 Performance benchmark results relative performance factors of An-
droid intents to micro-agents (in ms) 178

E.1 Global parameter settings and abbreviations 180

E.2 Sensitivity Analysis with UAI weight factor 1.5 (1/2) 182

E.3 Sensitivity Analysis with UAI weight factor 1.5 (2/2) 183

E.4 Sensitivity Analysis with UAI weight factor 1.8 (1/2) 185

E.5 Sensitivity Analysis with UAI weight factor 1.8 (2/2) 186

E.6 Group member and leader distribution for all interacting cultures . 188

E.7 Aggregated group member and leader properties by cultural coor-
dinate . 189

XII

List of Listings

2.1 Execution loop for a basic BDI Reasoner 15

4.1 Examples for Android intents . 74

5.1 Implementation of ServiceProvider 83

5.2 Implementation of ServiceCustomer 83

5.3 Main method to start interaction 84

5.4 Example for sub-agent initialization 86

A.1 Pseudo-code for Dynamic Binding Algorithm 154

A.2 Implementation of ServiceProvider in µ2 156

A.3 Implementation of ServiceCustomer in µ2 156

A.4 Main method to start interaction in µ2 157

A.5 Initialization of MessageFilter in µ2 157

XIII

Abbreviations

ABSS Agent-Based Social Simulation

ACID Atomicity, Isolation, Consistency, Durability

ACL Agent Communication Languages

ACO Ant Colony Optimization

AGR Agent-Group-Role (model)

AI Artificial Intelligence

AID Agent Identifier

ALL Agent Logic Layer

AMS Agent Management System

AO Agent-Orientation

AOP Agent-Oriented Programming

AOSE Agent-Oriented Software Engineering

BDI Belief-Desire-Intention (model)

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CSV Comma-separated values

DAI Distributed Artificial Intelligence

DBMS Database Management System

DF Directory Facilitator

DIS Distributed Information Systems

DPS Distributed Problem Solving

FIPA Foundation for Intelligent Physical Agents

GST General Systems Theory

HTTP Hypertext Transfer Protocol

XIV

IDV Individualism Index (Cultural dimension)

IIOP Internet Inter-ORB Protocol

J2ME Java 2 MicroEdition

JAS Java Agent Services

JCP Java Community Process

JIT Just-in-Time

JSR Java Specification Request

JVM Java Virtual Machine

KIF Knowledge Interchange Format

KQML Knowledge and Query Manipulation Language

LCG Linear Congruential Generator

LISP List Processing

MABS Multi-Agent-Based Simulation

MAD Modelling, Analysis and Design (methodology)

MAS Multi-Agent Systems

MASIF Mobile Agent System Interoperability Facility

MOA Micro-agents on Android

MRL Message Routing (& Platform Management) Layer

MTL Message Transport (& Platform Runtime) Layer

MTS Message Transport System

M&S Modelling and Simulation

NZDIS New Zealand Distributed Information Systems

OCC Ortony Clore Collins (theory)

OMG Object Management Group

OO Object-Orientation

OOAD Object-oriented Analysis and Design

OPAL Otago Agent Platform

ORB Object Request Broker

OS Operating System

PDI Power Distance Index (Cultural dimension)

PDU Protocol Data Unit

XV

PRS Procedural Reasoning System

REPL Read-Eval-Print-Loop

RPC Remote Procedure Call

SMS Short Message Service

STM Software Transactional Memory

UAI Uncertainty Avoidance Index (Cultural dimension)

URI Uniform Resource Identifier

XVI

Chapter 1

Introduction

1.1 Background and Motivation

The application of agent-based software concepts receives a practical interest which

is going beyond the numerous provisions of agent development frameworks. Appli-

cation areas for agent-based technology in the industrial context include Intelligent

Manufacturing, Enterprise Integration (see [MM05] and [SHYN06]) and Logistics1

along with numerous specialized applications (e.g. intelligent power management,

operation management (see [PTB+06] for an overview)).

But yet agent-based software is not part of the general software engineering toolbox

(as acknowledged by Georgeff [Geo09] and Winikoff [Win09]). This thesis suggests

that the concentration of academic research on rather heavy-weight ’intelligent’

agent technology in the context of Agent-Oriented Software Engineering (AOSE)

is a partial reason for this as relevant areas such as performance are neglected.

One application field whose approach implicitly supports this view is the area

of simulation, in particular Agent-Based Social Simulation (ABSS). An indicator

for the increasing importance of this field is an analysis undertaken by Michel et

al. [MFD09] showing that a fraction of 35% of all papers of the 2007 Conference

on Autonomous Agents and Multiagent Systems (AAMAS), the key conference

1An example for this field and significant productivity advantages achieved by using agent-
based software is provided by Benfield et al. [BHG06].

1

Introduction

in the field, was concerned with simulation aspects2. The establishment of agent-

based simulation as a permanent topic of interest in this conference series supports

this position. Additionally, agent-based simulation of social aspects, and in par-

ticular economic problems (such as source and impact of the recent economic

crisis) receives increasing attention from policy makers and general public (see

’Economist’ [Eco] and Ball [Bal10]) – reason to suggest that agent-based simula-

tion is successful with regards to a general acceptance.

Independent from the areas mentioned above – which are interlinked by their focus

on agents – information and communication technology continuously evolves with

new or rediscovered trends (e.g. processor architectures, programming languages).

One of those is the increasing number of processing cores even on low end desk-

top machines, making the consideration of parallelization in software mandatory

to lever the hidden performance potential (as stated by Sutter in 2005 [Sut05]).

In strong relation to this, historically older programming paradigms such as func-

tional programming are revived, mainly because they address key drawbacks of the

yet dominant object-oriented programming paradigm3, in particular their stronger

focus on immutibility which eases the handling of concurrency.

Another ongoing trend is the continuous convergence of mobile devices (and their

markets) with desktop systems, now in the shape of smart phones and the revived

notion of electronic ’pads’4. In fact their boom could potentially outperform the

desktop market by 2013 (see announcement of Google CEO Eric Schmidt [Ber]).

Particular candidates of concern in this context are devices running the Android

operation system5. Apart from the market perspective, Android itself implic-

itly shows relations to multi-agent systems suggesting the uptake of agent-based

technologies on mobile systems ’through the backdoor’ without explicit acknowl-

edgement.

2Here it should be mentioned that those figures refer to agent-based simulation in general,
not only social simulation.

3An indicator for this is the TIOBE Programming Community Index [B.V] indicating a
dominating fraction of more than 50% for object-oriented languages.

4Those electronic pads in fact revive a successless promotion of ’tablet PCs’ in the early
2000’s, mainly caused by limited performance at that time.

5Although the number of sold units increased for nearly all smart phone vendors, Android-
based systems (across various vendors) gained an increase of 886% in Q2 2010 as compared to
the same time period in 2009 (see Canalys [Can]).

2

Introduction

As all these aspects (multi-core processing, programming languages, mobile ap-

plication platforms) impinge on software engineering in general, their combined

consideration is of interest to promote the uptake of agent-based principles. A

candidate to realize this is the micro-agent layer of the Otago Agent Platform

(OPAL) [NBPC01], a multi-level agent platform developed at the University of

Otago, which supports coarse-grained (i.e. considerably powerful and standard-

oriented but inefficient) agents as well as efficiency6-motivated micro-agents. Par-

ticularly the concept of micro-agents takes a pragmatic approach towards Agent-

Oriented Software Engineering, which makes it suitable for a consistent ’mod-

elling in agents’ without significant performance penalties in comparison to other

programming paradigms which use simpler modelling entities (such as Object-

Orientation). Beyond its strengths the micro-agent layer implementation has vari-

ous limitations such as the delegation of concurrency handling to the user and lack

of network support. As an approach to provide modern Agent-Oriented Software

Engineering a new micro-agent platform is suggested to realize the synergy effects

of ’updating’ the micro-agent concept and its implementation with a feature ex-

tension using recently emerged technologies.

The overall result shall not only show that the discussed aspects can be combined

but also realize reciprocal advantages of using micro-agents to facilitate software

engineering from a consequently agent-oriented perspective. The application de-

veloper (= platform user) shall be freed from any low level concern such as thread

handling or networking as well as the interoperation with mobile devices.

Along with this the potential application field of micro-agents (which are rooted in

the area of agent-oriented software engineering) should be extended to the more

interdisciplinary field of social simulations. In consequence a scenario to pro-

vide insight into group shaping behaviour among culturally augmented agents is

suggested. In turnaround this serves as ’proof of concept’ for the platform’s relia-

bility – with regards to simulation requirements such as replicability – as well as

robustness – with regards to handling of massively concurrent asynchronous agent

interactions.

6Efficiency in the context of micro-agents consistently refers to ’performance efficiency’.

3

Introduction

Figure 1.1 summarizes the influence factors for a reimplementation of the micro-

agent framework.

Figure 1.1: Influence factors for the micro-agent framework reimplementation

1.2 Outline of the thesis

The thesis describing this approach is structured as follows:

The next chapter provides an overview on terminological and conceptual founda-

tions, such as the wide range of agent understandings and a short overview on

related agent architectures. Rooted in the imprecise agent concept, a schema for

an extended understanding of agency notions is suggested (section 2.1.3) and used

as a communication vehicle for the remaining chapters.

A further part of the second chapter is concerned with the concept of multi-agent

system and argues why those are more than ’just a bunch of agents’. To do this,

first an introduction on relevant concepts of the systems theory is provided. Those

are related to the principles of multi-agent systems, seeking to clarify the poten-

tial of multi-agent systems as an appropriate paradigm to model complex systems.

Finally selected specifications with relevance to multi-agent systems in general are

briefly introduced. Although they are not of key concern for this work, they sup-

port the argument for micro-agents.

The third chapter introduces two research fields of concern for multi-agent systems,

namely Agent-Oriented Software Engineering and Agent-based Social Simulation.

Motivations and history of both are briefly introduced and key aspects discussed.

Problems of each area are highlighted to give a better understanding of existing

problems and future directions. The analysis of the differing understanding and

view on multi-agent systems (and platforms in particular) in both disciplines clar-

ifies relevant aspects when designing multi-agent systems for either one or both

4

Introduction

disciplines (section 3.2.3).

The fourth chapter introduces the problem of concurrency handling, its impor-

tance in the context of modern software engineering, and structures possible ap-

proaches to tackle it. Concurrency models of the LISP dialect Clojure and the

mobile application platform Android are discussed with regards to their relevance

for the micro-agent platform reimplementation. Additionally a comparison of sev-

eral Java-based Message Passing frameworks is presented in order to clarify the

trade-offs lying in the use of this concurrency handling mechanism.

The fifth, and considerably extensive, chapter finally introduces the micro-agent

concept along with the existing implementation. The limitations of the current im-

plementation are discussed and requirements for a reimplementation are outlined.

The design for a successor is suggested and selected implementation decisions are

described. This section (section 5.2.2) also discusses the performance7 of the reim-

plemented platform. Additionally the extensions to the core implementation, such

as Clojure as alternative agent implementation language and a fair scheduler for

the use with simulations, are briefly discussed. A last important aspect of this

chapter is the introduction of the mobile version of the reimplemented platform,

targeting the Android platform. Apart from a simple port to the mobile operating

system, the work with the reimplemented micro-agents and Android provides an

interesting outcome with regards to the direct interoperation of both – in the spirit

of open systems and mobile Agent-Oriented Software Engineering.

The sixth chapter is dedicated to a simulation case showing the applicability of the

(desktop version of the) platform in the context of simulations. The simulation case

models a group-shaping process using Hofstede’s ’Cultural Dimensions’ [Hof01] in

order to understand human grouping behaviour by means of culturally augmented

agent societies. The modelling process is described and the outcome as well as the

general value of both model and platform are discussed.

Finally, the conclusion recalls the achievements of this work, lists the limitations

of all covered aspects and suggests areas for future work.

7Performance in this context refers to message throughput.

5

Chapter 2

Terminological and Conceptual

Foundations

2.1 The Agent concept

Before introducing the specific research fields of Agent-Oriented Software Engi-

neering (AOSE) and Agent-Based Social Simulation (ABSS), the elementary con-

cepts for this work are discussed.

The (software) agent concept is defined in manifold attempts which managed the

trade-off of abstraction and tractability differently. This section does not yield to

provide a final solution to this problem but rather point out the potential dimen-

sions of definition approaches.

2.1.1 Definitions and Notions

The direct translation from the Latin verb agere – to act, lead, do – does not pro-

vide a distinct understanding of what (software) agents actually are. Earlier cir-

cumlocutions, such as “digital sister-in-law” by Negroponte [Neg97], indicate that

agents find their use in socio-technical systems - in whatever actual distance from

the user. Ascriptive approaches which compare agents to objects include their

understanding as Objects on Steriods (see van Dyke Parunak [vDP00]). Apart

from the sense of humour this does not add any tractable precision.

Before looking at descriptive approaches to cover the agent concept the fields from

which (Multi-)Agent systems originate, should be clarified: Originally shaped in

6

Terminological and Conceptual Foundations

the hope to develop entities with abilities similar to human beings, they derive

from the Artificial Intelligence (AI) community which puts a focus on the inter-

nals of a typically single agent. From starvation of further progress (during what

was later named ’AI Winter’ [Cre93]) and the successive relevance of Distributed

Information Systems (DIS) the field of Multi-Agent Systems (MAS) emerged as a

specialization of Distributed Artificial Intelligence (DAI) (as illustrated by Bond

and Gasser [BG88]). It rediscovers elements from AI and combines those with di-

rect communication mechanisms to switch to an interaction-centric decentralized

approach in system construction. This opposes the focus on central coordination

and problem decomposition as the case with Distributed Problem Solving (DPS)

and DAI in general1. However, the notions and heritage of different research groups

cannot be ignored – a basic reason for the widely differing interpretation of the

agent concept.

A minimal consensus is the acceptance of viewing Multi-Agent systems as inten-

tional systems as suggested by Dennett [Den87] who introduces several predictive

stances of human beings towards systems. He describes the physical, design and

intentional stance, starting from the view of a system as explainable by physical

characteristics and constraints – as is the case with an object falling towards the

ground – which he calls physical stance. The design stance suggests an under-

standing of a system based on what it is designed for respectively its functions.

The design stance describes a higher level of abstraction than the physical stance –

its functions are intuitively linked to the conceptual understanding (e.g. function-

s/mechanisms of an automobile). The intentional stance suggests that humans

attribute systems whose functions they do not understand – or systems which are

characterized by non-determinism – mental capabilities with a concept of rational

action.

The intentional stance is the philosophical basis which has driven key steps in the

development towards Agent-Oriented Software Engineering (AOSE)2 which will be

shown in the following discussion of descriptive approaches to define the concept

1A summarizing overview on key metaphors of different specializations is provided by
Huhns [Huh09].

2AOSE itself will be discussed in section 3.

7

Terminological and Conceptual Foundations

’agent’. To avoid misunderstanding in the upcoming paragraph and throughout

this text it should be emphasized that all discussed definitions and uses of the

word agent in fact refer to the concept of software agents.

A useful bottom-line in the understanding is a definition which Shoham considers

common sense in the Artificial Intelligence (AI) community (in 1997):

”[An agent is] an entity that functions continuously and autonomously in an en-

vironment in which other processes take place and other agents exist.” [Sho97] As

such continuous runtime and autonomy are key features along with the concept of

an environment.

Another definition which has found popularity in the context of the arising Agent-

Oriented Software Engineering (AOSE) and introduces more agent properties is

shaped by Jennings and Wooldridge:

”[An] agent is an encapsulated computer system that is situated in some environ-

ment, and that is capable of flexible, autonomous action in that environment in

order to meet its design objectives.” [JW00]

Although this definition limits what could be understood as an agent it still is

at the bottom line; Singh and Huhns – certainly partially related to their inter-

est in agent communication – consider the ”capability of interacting with other

agents at the social or communicative level” (see Singh [SH99] in combination with

Huhns [HS97], [HS98]) as a must.

A definition of a conceptually more powerful agent is finally taken from Shoham3:

”An agent is an entity whose state is viewed as consisting of mental components

such as beliefs, capabilities, choices and commitments.” [Sho97]

Although it does not explicitly mention the aforementioned properties of an agent,

its context implicitly does. This definition needs to be seen in the context of

Shoham’s concept of Agent-Oriented Programming (AOP) which suggests the

’programming of mental states’, and as such is a clear support for the intentional

stance.4

With the addition of the last definition the possible degrees of agent notions

3Shoham’s earlier definition is his interpretation of the predominant understanding within
the community – which he obviously only partially shares.

4The idea of AOP will be reflected at a later stage.

8

Terminological and Conceptual Foundations

are covered. Researchers typically group those into weak and strong notions

of agency whose discriminating criterion can be more or less explicit. Explicit

approaches suggest the existence of mentalistic or even emotional qualities (see

Shoham [Sho97] as well as Wooldridge and Jennings [WJ95]). Moulin and Chaib-

draa [MCd96] further require explicit reasoning capabilities to qualify as what they

define as an Intentional Agent. Other approaches for the distinction of notions are

guided by the external perception of agents (such as Wooldridge, Jennings and

Kinny [WJK00]). Agents of weak notion are perceived as black box, defined by a

strictly behaviouristic perspective only concentrating on stimuli and response of

an agent entity5. Strong notions are characterized by a white box understanding

which gives more insight respectively understanding of internal processes. The

latter can be considered more granular as it allows the idea to see agents as grey

boxes, allowing to describe at least some of the internals.

In essence, as with actual definitions, classifications offer a similarly large space

hampering a common ground. Franklin and Graesser [FG96] as well as Etzioni

and Weld [EW95] provide notable discussions of numerous agent definitions and

classifications which serve as a useful source of candidate agent properties.

The following listing structures the numerous partially considerably overlapping

agent properties and differing terms into core properties. The properties men-

tioned in the listing are briefly ordered by relevance, starting with properties of

compulsory character towards advanced features pointing towards the strong no-

tion of agency:

• Reactivity – Reactive behaviour is the absolute minimum to expect from

agents. However, the term itself suggests a broad interpretation which in-

cludes all communicating computational entities – and likely to be the reason

why it is hardly explicitly mentioned in agent defintions. In the context of

agency it should be understood as a (selective) activation of agent behaviour

by the environment it is situated in. This can be by sensing of the environ-

ment or receiving messages from other agents.

5In the context of systems theory Bunge differentiates types of black boxes by degree of
participation with their environment (see Bunge [Bun79], p.253ff.).

9

Terminological and Conceptual Foundations

• Autonomy – Autonomy is a controversial concept (not only) among agent

researchers which has shaped two major views. Castelfranchi [Cas95], in

seeking human-like equivalents of autonomy, argues that agents in fact do

not necessarily incorporate autonomy and rather introduces the distinguish-

able types of executional autonomy and motivational autonomy in cognitive

agent architectures. As such his views largely focus on what is generally

understood as internal autonomy. Weigand and Dignum [WD04] accept

Castelfranchi’s consideration but focus on the external perspective in con-

sideration of agent societies. They suggest to not only assume autonomy of

agent entities but rather make it a requirement to assume so (which seems

consequent when considering agent societies as open systems) which again

implicitly emphasizes the intentional stance. From a practical point of view

the degree to which an agent needs to be autonomous can vary strongly,

especially when considering the granularity of the functional unit ’agent’6.

Putting aside the external view the major differentiation of executional and

motivational autonomy should be discussed as it helps to structure other

related agent properties.

Wooldridge’s interpretation of autonomy (see Wooldridge [Woo97]) – to let

agents make decisions about what to do with the state they encapsulate

(and isolate) without direct intervention by third parties – satisfies the idea

of execution autonomy. Wooldridge additionally ascribes agents own (log-

ical) threads of control7 over their actions and as such over their life-cycle

(see Wooldridge [Woo09], p.30). In turnaround the property of temporal

continuity – as raised by individual researchers – can be subordinated to the

agent’s control over its life-cycle, including a runtime of arbitrary duration.

Motivational autonomy focuses on a causal relation making an agent execute

an activity. Goal-directedness can be understood as a related term falling in

this category.

6A current example where the assumption of autonomy does not hold – and which this work
partially relates to – is the concept of agents in Clojure which only fulfill the criterion of reactivity,
not autonomy (see [Hic10b]).

7Here thread is interpreted in a conceptual sense, abstaining from a 1:1 assignment of oper-
ating system threads to agents.

10

Terminological and Conceptual Foundations

Although Wooldridge’s actual interpretation of autonomy is pointed out

above, he uses the term proactiveness which suggests that agents ”exhibit

goal-directed behaviour by taking the initiative in order to satisfy their de-

sign objectives.”(see Wooldridge [Woo09], p.27) Taking this interpretation,

proactiveness relates to both execution and motivational autonomy, in par-

ticular the latter and thus shall be captured with the concept of autonomy

in this context.

Further differentiations on autonomy have been undertaken by Carabelea et

al. [CBF04] who introduced several forms of autonomy (e.g. relating to the

user or the environment), and Nowostawski and Purvis [NP07] who discuss

the notions of relative and absolute autonomy in the context of computa-

tional systems.

• Social ability – The term social ability as listed by Franklin and Graesser

implies that agents should be able to communicate using a higher-level

knowledge-based (agent) communication language8. This way agents can

interact resembling social behaviours of cooperation, coordination and nego-

tiation. Agent researchers who suggest the necessity of advanced ’mental’ ca-

pabilities like reasoning or learning – as Wooldridge (see Wooldridge [Woo97],

p.3) – will accept this requirement suggested by Genesereth and Ketch-

pel [GK94].

Considering a wider field of agent-based systems – more likely putting em-

phasis on the DIS view on agents – especially in the context of MAS (e.g. in

the field of social simulation), additionally indirect communication needs to

be considered legitimate in order to constitute social ability. Indirect commu-

nication involves communication via the environment using central commu-

nication mechanisms (e.g. blackboards (see Englemore and Morgan [EM88]))

8Agent Communication Languages will be discussed at a later point.

11

Terminological and Conceptual Foundations

or situated artifacts (e.g. representing stygmergy). Although not acknowl-

edged within the whole community9, those mechanisms support social be-

haviour at least in terms of coordination and cooperation10 – although the

complexity certainly differs compared to direct ’knowledge-level’ agent com-

munication.

Some researchers go as far as to attribute social ability only to agents holding

an explicit model of their communication partners (for example Moulin and

Chaib-draa [MCd96]) which is additionally encouraged by high-level com-

munication languages, such as specified by the Foundation for Intelligent

Physical Agents (FIPA).

• Inferential capability – A property focusing on the internals of an agent

– often directly associated with agent architectures – is inferential ability.

Agents make use of information provided at initialization time or acquired

during runtime in order to support decision processes11. It is a key feature to

provide agents with the ability not only to react to predefined system states

but also show seemingly intelligent behaviour and adapt their capabilities12.

The features of inferential capability and social ability are interlinked when

considering the level of communication involved (i.e. the selected language

specification, the demand to represent mental components). In this con-

text a representation ’of the self’ or other agents (see property ’Character’)

demands for consideration.

• Character – Character (as listed by Etzioni and Weld [EW95]) or ’Person-

ality’ is suggested to be inhibited by agents. This would demand to ex-

plicitly represent a character as a believable personality including an emo-

tional state. Although considered as a potentially relevant property, the

inclusion of general-purpose concepts of emotions into agent architectures is

9When writing about agent communication Wooldridge does not even mention indirect com-
munication mechanisms (see Wooldridge [Woo09], p.131ff.). Ferber serves as an example for the
opposite – acknowledging the use in what he calls ”purely situated MAS” [Fer99].

10The probably most famous examples are Ant Colony Optimization (ACO) algorithms.
11Typical examples include abstract task descriptions as rulesets or (meta-)information gained

via interactions with the environment (including other agents).
12Some researchers, especially when considering user-interface agents, suggest adaptivity as a

distinct agent property (see Etzioni and Weld [EW95]). In this context inferential capability, as
a considerably strong agent feature, shall capture the ability of agents to adapt their behaviour
and internalize new facts and apply those (learning).

12

Terminological and Conceptual Foundations

comparatively young. A candidate theory to achieve similar recognition as

the BDI architecture for reasoning agents is the Ortony, Clore and Collins

theory (OCC theory) [OCC88] as a basis to formalize emotions as shown

by Adam [Ada07]. A current example for a general-purpose approach is

provided with Dastani et al. [SDM10] who include emotions into the agent

deliberation cycle of the 2APL platform [Das08]13.

• Mobility – Mobility describes the ability of agents to be mobile entities chang-

ing their location during their lifetime. Especially the field of telecommuni-

cations is interesting in using mobile code which reduces the load on networks

by moving the code to the data and not vice versa as in classical Remote Pro-

cedure Call (RPC) style communication (see for example White [Whi97]).

Agent mobility itself is considered in a strong and weak notion: The so-called

cold/weak mobility refers to the ability of connected platforms to pass agent

code around without keeping its state; the hot/strong mobility also transfers

the state and as such keeps the agent active during the transition phase (see

Fuggetta et al. [FPV98]).

This section provides an introduction to the range of available definitions and rel-

evant agent properties. Along with this the idea of notions of agency is introduced

which themselves can be interpreted from a different standpoints (i.e. distinct def-

inition of what makes up a strong notion (e.g. reasoning capabilities) vs. view as

black box (weak notion) in contrast to white box (strong notion)). Nevertheless,

the range of what could be part of an agent is clarified at the current stage.

2.1.2 Agent Architectures

As the definitions of agents show significant variation, the concept of notions seems

more supportive in order to classify agent implementations. In this context how-

ever, the qualification of ’intelligent’ was mentioned without further reflection.

To clarify this boundary of agency and indicate predominant conceptual models,

selected agent architectures are presented in this subsection to shed light on the

range of possible implementation approaches.

13’A Practical Agent Programming Language’ (2APL) is the simplified version of the more
complex ’An Abstract Agent Programming Language’ (3APL) [3APa], both developed at the
University of Utrecht.

13

Terminological and Conceptual Foundations

The field of agent architectures is broadly constrained by the extremes of deliber-

ative and reactive architectures.

Deliberative agent architectures

Deliberative agent architectures put the focus on the capabilities of the individual

agent and are the result of attempts to resemble practical reasoning of human

beings in agents. The most-adopted concept to achieve this is the Belief-Desire-

Intention (BDI) model which has been introduced into the field of philosophy by

Michael Bratman [Bra87] and was adopted by the AI field respectively agent-based

computing (see Rao and Georgeff [RG95]). Core elements include:

• Beliefs – Beliefs are the information an agent keeps about its environment

as well as lasting conclusions it has drawn over time, commonly referred to

as informational stance.

• Desires –Desires represent the overall motivation of an agent and eventu-

ally lead to goals which an agent tries to achieve. As such this element is

subsumed as motivational stance.

• Intentions – Intentions are created, modified or dropped during the actual

deliberation of agents and thus have a stronger practical relevance in the

concept. They eventually help to identify and solve conflicts in desires and

lead to goals which in turnaround can constrain future decisions.

For further reference to the core concept of the BDI model the reader is referred

to Bratman [Bra87].

As of its high-level conceptual description the use of the BDI model is the blueprint

for numerous implementations among which the most accepted is the Procedural

Reasoning System (PRS) by Georgeff and Lansky [GL87]. The PRS system trans-

lates the abstract elements of the BDI model into five central components.

Beliefs, resulting from perceiving the environment and the actual reasoning, are

stored in a belief component/knowledge base. A set of goals is held to represent

the desires of an agent. Execution plans to achieve activated goals (be it by a

matching set of beliefs or events) are held in a Knowledge Area (or plan library).

An intention structure represents a runtime component running and maintaining

plans (all of which might be changed, dropped or composed). The execution of

14

Terminological and Conceptual Foundations

plans eventually results in a manipulation of the environment via actuators. The

Reasoner as central component coordinates the execution of the former compo-

nents; the components do not interact directly but are mediated by the reasoner.

The Reasoner repeatedly runs and controls an execution which is informally de-

scribed in Listing 2.114.

WHILE there are unachieved goals DO

Observe the environment;

Update beliefs;

Choose plan for execution;

Execute and monitor plan;

END WHILE

Listing 2.1: Execution loop for a basic BDI Reasoner

Implementations typically consist of the aforementioned core elements and an ac-

cording reasoning cycle. Actual programming languages are mostly of declarative

type and inspired by Prolog. Examples include AGENT0 [Sho93] and AgentS-

peak [Rao96]. Those are very appealing in this context as of their slim nature,

sole concentration on facts and rules and the backtracking mechanisms for query-

ing beliefs and matching goal/events to initiate the execution of plans consisting

of several actions.

Given this description the rather individual-centric notion of such BDI-type ar-

chitectures is clear. Examples of available implementations are the comparatively

young Jason platform [Jasa] (using an extended version of AgentSpeak), devel-

oped by Hübner and Bordini, and the older but conceptually more sophisticated15

3APL platform [3APa] (with its equally named programming language), developed

at the University of Utrecht.

Reactive agent architectures

In reactive architectures internal capabilities are secondary and merely reflect re-

actions on stimuli or perceptions of the environment. An extreme position is taken

by Brooks who rejects the symbolic representation of the world as ” ... the world

is its own best model ... ” [Bro90] and in consequence does not consider explicit

14This BDI reasoning loop, taken from Sterling and Taveter [ST09] represents an abstraction
from the reasoning loop orginally described by Rao and Georgeff [RG95].

15The deliberation cycle of 3APL includes a second iteration for plan revision during execution
of plans while Jason executes plans without further revision. For an overview on the individual
deliberation cycles refer to [3APb] (3APL) and [BH] (Jason).

15

Terminological and Conceptual Foundations

reasoning capabilities. Any ’intelligence aspect’ thus emerges from an agent’s re-

action to its environment. An archetype for this category is the Subsumption

Architecture, developed by Brooks [Bro86]. It consists of several layers which pro-

vide direct wiring between sensors and actuators. Each layer typically executes

simple behaviours or actions (e.g. follow an object). Stacking those and associ-

ating priorities results in more complex behaviours. Brooks names those layers

’levels of competence’ which is eventually reflected in the prioritization; the lower

levels inhibit higher priorities (e.g. follow an object but never touch it) but the

behaviour of lower levels is subsumed by higher levels (e.g. trace object = follow

an object but never touch it). In consequence the number, behaviour definition

and ordering of layers is fully application-dependent as of the lacking intermediate

processing (as found in the BDI architecture).

Hybrid agent architectures

Hybrid approaches can be seen as a consequence of the extremes pointed out above.

Those approaches neither neglect the representation of individual state in favour of

a fully physical grounding nor an individual-centric approach, thus basically take

elements from both extreme types. General decision to be taken for this is the

definition of layers (with either reactive or deliberative function) as well as their ar-

chitecture types in terms of horizontal or vertical layering. In horizontally layered

architectures each layer can directly perceive the environment; vertically-layered

architectures restrict this to one layer. More details on the layered architectures

(one- and two-pass approaches describing the upward and downward message flow,

and architectural complexity) can be found with Müller et al. [MPT95].

The often-cited example for this category, InteRRaP by Müller [Mue96], makes use

of both reactive elements as well as advanced reasoning capabilities by choosing a

vertically-layered two-pass architecture. InteRRaP’s layers represent environment

(world) interface, behaviour, plan and cooperation which can be structured into

two lower layers and two higher ones. The lower (reactive) layers show imme-

diate reaction on environmental perception, the two higher (deliberative) layers

allow local and cooperative planning. Information flow between each layer is bi-

directional (via bottom-up activation and top-down execution), thus all layers have

16

Terminological and Conceptual Foundations

at least indirect influence on other layers while providing a reactive, individual and

cooperative perspective towards goal achievement.

Most agent architectures do in fact loosely follow one or the other approach but

the high-level conceptual nature – often only documented as example implementa-

tions – leave a strong engineering freedom resulting in a wide range of approaches.

Nevertheless, the description of different architecture types is useful as reasoning

capabilities (with deliberative architectures) represent one potential criterion to

discriminate weak and strong notions of agency.

2.1.3 The Need for Dynamic Notions

Given the wide range of agent characteristics, and the strongly researcher-dependent

understanding which of those actually constitute an agent, the only generally use-

ful classification for agents are the generally accepted strong and weak notions of

agency. The use of those reduces any explanation as to where the border between

weak and strong is drawn. From a pragmatic point of view, and reviewing the

current field of available agent platforms – the actual basis for the implementa-

tion of (multi-)agent applications16 – this traditional split into ’weak’ and ’strong’

(which can be seen in the analogy to the different agent architecture types) does

not suffice to capture all available solutions.

The classical bipolar association of agent platforms with regards to the supported

notion of agency is only partially useful. If assuming that agent interaction by

means of ’knowledge-level’ agent communication distinguishes weak from strong

notion, the field of existing agent platforms cannot be covered comprehensively.

Popular platforms17 accounting for the strong notion include JADE [BCG07],

3APL [3APa] and Jason [BWH07]. Opposing examples for platforms rather sup-

porting the weak notion of agency, not assuming high-level communication include

MadKit [GFM00] and Cougaar [HTW04]. However, considering platforms such as

the Otago Agent Platform (OPAL) [NBPC01] which has an integrated multi-level

model of agency or Jadex [Jadb] which has a non-integrated dual approach to

16At this point this should satisfy the necessary understanding of an agent platform.
17Overviews on most of the mentioned platforms are provided in [FNP10] and [Fra09].

17

Terminological and Conceptual Foundations

model agents18 in fact satisfy both categories. In order not only to allocate plat-

forms such as OPAL and Jadex more specifically but also the provide a communi-

cation vehicle in different contexts, a further dimension is suggested at this point,

in order to augment the yet rather static concept of weak and strong notions.

Along with the static notion indicating a discrete agent classification (i.e. strong

or weak), platforms can be characterized by their dynamic notion, describing the

flexibility the platform inhibits with regards to the supported agent notion. Nar-

row notions describe rather strict limitations and narrow interpretation of what

agents are. Jason, for example, is strictly confined to the use of coarse-grained ’in-

telligent’ agents which communicate via KQML and are consistently implemented

in AgentSpeak; it shows a strong narrow notion. MadKit in contrast supports a

considerably weak notion of agency, hardly assuming anything about agents but

also providing an intentionally small-scale infrastructure which does not support

coarse-grained agent concepts out of the box; its notion is weak narrow. Platforms

with a wide understanding include OPAL which is built on the notion of so-called

micro-agents which weaken some of the core properties (e.g. standard-orientation,

means of communication) in favour of flexibility and (performance) efficiency.19

Those are complemented by OPAL agents which are standard-compliant (with

FIPA standards) and cater for the strong notion of agency. More precisely, OPAL

can account for a weak wide notion of agency as OPAL agents eventually are an

extension of micro-agents (i.e. the core of each OPAL agent is at least one micro-

agent). Contrasting this a platform supporting a strong wide notion is Jadex.

The Jadex core is centered around intelligent agents (as of its origin as a BDI

implementation extending the JADE platform). However, it alternatively offers a

weak notion of agency, also called micro-agents20, and as such equally covers the

full field of agent notions.

The additional dynamic dimension of agency not only covers the classification

of existing agent platforms but is also applicable in alternative contexts. On a

18Here it should be mentioned that the two levels of agents have only been introduced in the
recent release of the platform. Before that Jadex had been solely committed to BDI agents (see
[PBL03]).

19Further explanation will be given at a later stage.
20The motivation for their use is similar as in OPAL, however, the Jadex understanding and

level of elaboration of micro-agents differs.

18

Terminological and Conceptual Foundations

higher level this is the description of trends (of changing agent perception) in re-

search fields. The increasing distance from standard-orientation (such as FIPA

(see subsection 2.2.3)) can be seen as such a trend; research fields with differ-

ing understanding of agency include the AOSE community – with a historically

stronger concentration on heavy agent notions – in contrast to the ABSS com-

munity which emphasized a significantly weaker but increasingly heavier notion

of agency (originated from (pre-agent era) Microsimulation moving towards the

introduction of ’intelligence’ characteristics21). On a lower level – and covering

future research aspects of both agents in general and platforms in particular – it

might not suffice to strictly confine agent implementations to either one category.

The dynamic notion concept allows a continuous understanding of agency purely

grounded on the intentional stance as a minimum – enforcing agents to be seen as

rational entities and further assuming that they incorporate the necessary auton-

omy (as suggested by Weigand and Dignum [WD04]). How and if this is achieved

should not be of concern. Although the adaptivity of agents has been suggested

(see subsection 2.1.1), no agent platform implementation has yet realized this in

an actually dynamic manner. New, however, is the suggestion that agents should

be able to rightsize their capabilities as runtime, i.e. scale up/down functionality

(i.e. actually give up capabilities) in a demand-oriented manner to achieve system

optimizations at runtime (e.g. to be cooperative towards other agents by giving

up (limited) system resources or yield towards an optimized system performance).

Agents of wide notion should thus be capable of having a small initial feature set

– perhaps purely reactive behaviour – but eventually start to act proactively and

initiate conversations up to a social level in which they keep a mental model of

their interaction partner. Agents with an initially ’heavy’ feature set, eventually

give up reasoning capabilities in case of role changes (as they might not need it

anymore) and act simply responsive, e.g. driven by the goal to minimize use of

system resources on mobile devices. As such the term ’dynamic’ in this context

does not relate to either one extreme but describes the adaptivity of an agent’s

feature set.

21This will be introduced in subsection 3.2.1.

19

Terminological and Conceptual Foundations

A narrow notion in contrast describes agents which are strictly confined to either

one static notion – which captures the traditional understanding of agent notions.

The actual dimension aspect is realized by the combination of dynamic notions

with static ones. The implication for narrow notions is clear – it emphasizes the

strictness of its static characteristic; an agent of narrow strong notion will not

weaken its internal capabilities at runtime, an agent following a narrow weak no-

tion will equally remain an agent of weak notion at runtime. The opposing wide

notion suggests an agent which initially incorporates reasoning capabilities and

potentially gives those up at runtime as part of the system’s or its own objective.

Clarifying the dynamic notions on the lowest level, respectively in the agent imple-

Figure 2.1: Dimensions of Agent Notions

mentation context, it needs to be said that dynamic notions describe potentials.

The non-deterministic nature of the agent-based systems (in the DIS understand-

ing) does not allow a reliable prediction if a capability change will actually take

place. As such the dynamic notions encapsulate the static notions (which describe

the initial agent notion) at runtime. In consequence the actually dynamism of

a system can only be determined by a runtime analysis of an agent application

20

Terminological and Conceptual Foundations

implementation.

Figure 2.1 shows how the introduction of the additional dimension extends the

range of potential agent characterisations. Those are augmented with an accord-

ing context. The interpretation is done in either one of those contexts. This could

be the description of the agent concept in a specific application, a means to char-

acterize platforms or to describe trends in entire research fields. Additional to this

Table 2.1 interpretes the dynamic notion concept for the context of Multi-agent

platforms.

Tying together the three mentioned contexts, application, platform and research

Supported
Agent notion

Description of Agent Modelling Potential in Platform

weak narrow support for weak agency; only very simplistic agents can be
implemented (e.g. ants)

weak semi-wide support for several agent notions ranging from a weak un-
derstanding towards stronger notions (e.g. advanced social
behaviour/communication abilities) but not to the extent
of a strong agent notion (e.g. BDI-level reasoning engines,
standard-compliance)

weak wide support for weak agent notion up to the extent of a strong
agent notion; weak agent notion as dominant/default ap-
proach

strong narrow support for strong notions of agency; light-weight agents can-
not be implemented

strong semi-wide support for strong agent understanding per default but al-
lows modelling of weaker notions (e.g. no BDI-level reason-
ing), however, not to the extent of a purely weak agent notion

strong wide support for strong notions of agency per default but allows the
modelling of weaker agent notions up to a level of simplistic
(e.g. ant-like) agents

wide support for the full range of agent notions with equal prefer-
ence

Table 2.1: Overview of combinations of Notion Dimensions for Platforms

field, it should be beared in mind that those do not coexist in an isolated manner.

As agent platforms constitute the basis for any agent implementation, i.e. define

a potential agent feature set, they constrain the achievable dynamics of an agent

application; research fields constrain what is considered an agent platform. How-

ever, particularly for the context of agent applications – the lowest level context

– it should be mentioned that the dynamics on this level are yet to be realized;

21

Terminological and Conceptual Foundations

current agent platforms do not generally cover the flexibility aspect suggested here

yet.

In the context of this work the dynamic notions of agency shall be used to char-

acterise the agent understanding of specific platforms and within research fields –

rather than prescribing a distinct agent understanding for the entire thesis.

2.2 Multi-Agent Systems

The introduction of the broad agent concept provides the core ingredient of a

Multi-Agent System (MAS). However, even popular multi-agent researchers in

fact concentrate on the single agent definition and fall short on explicitly dealing

with the MAS concept but rather simply suggest the multiplicity of interacting

agents22. As the super-fields of information systems and information science in

general are born as an interdisciplinary application of systems modelling it seems

indicated to not only provide a sound understanding of what constitutes a Multi-

Agent System but also to retrace ideas from the Systems Theory in general.

2.2.1 System-theoretical Foundations

Although the term system provides proof for its antique descent by its root in the

Greek systēma (”... whole compounded of several parts or members ...” [Sys]), the

foundation for a cross-disciplinary generalized system understanding was laid in

the 20th Century by, among others, von Bertalanffy in his General Systems Theory

(GST) [vB68]. Main achievement of this work was the introduction of a general

system theory yielding at bridging the ”... largely artificial barriers between disci-

plines.” [Bun79], and as such to overcome the predominant reductionist paradigm

advocating the isolated examination within scientific disciplines. Von Bertalanffy

specifically aimed at ”... developing unifying principles running vertically through

the universe of the individual sciences ...” [vB68], explicitly including the consid-

eration of the non-physical sciences.

One approach to sharpen this theory respectively conceptually unify it23 is done

by Bunge [Bun79].

22Wooldridge: ”Multiagent systems are systems composed of multiple interacting computing
elements, known as agents.” [Woo09]

23Bunge explicitly critizes that the GST in fact consists of numerous theories merely unified
by a philosophical framework (see Bunge [Bun77]).

22

Terminological and Conceptual Foundations

Bunge uses the term of systemics and differentiates between a cognitive or the-

oretical motivation – identifying the commonalities between systems of different

disciplines – and a practical one, the latter bearing the ability to describe the vari-

ety of different real (and artificial) systems such as nations, software and factories

with all their peculiarities (see Bunge [Bun79]). In the following this framework

will be retraced which, apart from illustrating examples, is based on Bunge [Bun79]

which should be consulted for a comprehensive insight.

Although offering a theory (and a methodology as to be shown later) to describe

wholes, systemics reject both the extremes of holism and atomism. While holism

emphasizes the integrity of a system in favour of its components and their inter-

actions, atomism basically describes the opposing bottom-up approach, assuming

that the study of the individual components suffices to understand a system’s

whole. Although certain characteristics (like considering the whole ’... more than

the sum of its parts ..’) are related, Bunge remarks that consequent holism hin-

ders research by its lack of interest in (potentially confusing but relevant) details.

While atomism stimulates the investigation of the components (and as such re-

search) its (typically reductionistic) approach is not capable to sufficiently capture

higher-level system characteristics such as emergence (see Bunge [Bun79], p.41).

Bunge’s system concept consists of a terminological framework (along with its for-

mal equivalents) which not only describes the static structure but puts emphasis

on dynamic characteristics of systems, which constrasts them from the ontological

view advocated by holism.

The general concept of a system σ consists of its composition C, its environment

E and its structure S, thus is expressed as σ = <C, E, S>.

The composition and the environment are mutually disjoint subsets of a given set

of conceptual items I, i.e. C(σ) = (x ∈ I | x /∈ E(σ)). Its structure is the non-empty

set of relations R on the union of both C and E. The latter characteristic (R) is key

to satisfy the requirements constituting a system. The relations between system

components – of whatever specific quality – differentiate it from the concept of

an aggregate which is merely a collection of items (or ’set’ as Bunge names it).

Although this minimal definition provides a basic coverage of the system idea, a

23

Terminological and Conceptual Foundations

term to be considered in the context of any kind of system is whether it is an open

system, or a closed one. Bunge suggests the universe as the only natural system

known to be closed at all times. A system is considered closed with respect to

one of its properties if the latter has no relation to a property of the system’s

environment. In consequence a system is closed if its environment equals nil.

A concrete system extends the general concept by refining the conceptual items

into things, or concrete entities, and introduces the notion of levels and subsys-

tems. In consequence a composition in this context refers to the set of system

atoms at a given level rather than its set of heterogeneous parts. An illustrating

example from the field of tournaments in team sports such as in soccer is the

concept of teams as such. Team systems are made up by team members (which

represent the atomic elements of teams). Those are in relation to each other – be

it closer (as of similar position and frequent interaction (e.g. striker and mid-field

player)) or less close (e.g. striker and goal keeper). Although the dynamics of the

game are enabled by the players’ ’running capabilities’, the players’ legs do not

generally directly interact with other players’ legs24 or the team as a whole but

belong to the atomic concept player. The level of the system ’team’ is a compo-

sition of the socially connectable seemingly atomic element player. The concept

player in itself might be decomposable into another system of different natural

kinds (e.g. organs) but those do not directly interact in the context of the system

team (which has players as its natural kinds). Important for the term ’level’ is the

fact that all elements x of a succeeding level25 Lb are composed from things y of

the preceding level La, i.e. La < Lb = (∀x)[x ∈ Lb ⇒ (∃y)(y ∈ La & y ∈ C(x))].

Relations in concrete systems can eventually result in an effect on either one

or both of the related parties. The latter specialization is coined connection or

bondage and changes the history of either one (by acting) or both (interacting).26

The set of relations in concrete systems is thus understood as the union of the

bonding and non-bonding relations. Those different qualities of relations allow the

24Cases of direct ’leg contact’ shall be ignored at this point.
25Bunge avoids the term ’hierarchy’ as it etymologically describes ”a set of sacred components

ordered by a power or domination relation” (Bunge [Bun79], p.12) which is inadequate to describe
any system relation.

26For the full terminological differentiation and further discussion of details refer to
Bunge [Bun79].

24

Terminological and Conceptual Foundations

use of the term organisation for the system structure.

The environment in a concrete system is defined by all things of the system (i.e. its

natural kinds of its level) which are not part of the composition of the system and

are in an active or passive connection to each other.

The introduction of a temporal dimension does not only enable the representation

of temporal states in a system but also improves the understanding of what makes

systems different from aggregates. A temporal perspective provides means to rep-

resent the impacts of (inter)acting things affecting the history of either one and in

consequence the system as a whole. This provides a more subtle explanation of the

added value of the system concept than the ”fuzzy slogan of holistic metaphysics

... [’]The whole is greater than the sum of its parts.[’]” [Bun79].

The preceding introduction of a system’s constituents allows the formulation of

the minimal definition27 of a concrete system σ on the level P at the time t as

sP (σ, t) = <CP (σ, t), EP (σ, t), SP (σ, t)>.

Along with the definition of the necessary elements of a system the order of def-

inition components indicates methodological steps in systems analysis, giving a

concrete suggestion of how to explain systems in general: As such first the compo-

nents need to be defined. Following this the environment is to be identified. Links

between components as well as components and the environment then describe

the structure respectively organisation of the system of concern, completing its

specification.

Yet the definition of a system leaves out general system characteristics which are

briefly retraced to provide a sufficiently complete picture – and to bring us closer

to the concepts which are all but foreign in the field agent-based systems. Basic

behavioural processes of systems concern the assembly and emergence. Assembly

is the process of creating bondages within an unchanged composition and is fur-

ther specialized in self-assembly if an aggregate pursues this transformation to a

system on its own, thus in a natural manner. The strongest case of assembly is

self-organisation which describes the process in which a system creates subsystems

on its own behalf. While assembly refers to the structural aspects of a system, a

27For the full definition of a concrete system, Bunge insists to have full knowledge about the
history of each component as well as the ”laws of the system” [Bun79].

25

Terminological and Conceptual Foundations

process concerning the properties of the composed (system) elements is emergence.

As such emergent properties are the difference of an element’s properties occurring

within a time interval, characterized as either a gain or a loss – focused on the

individual element in a system’s composition.28

Measures concerning systems are relevant as a system’s elements, although estab-

lishing a whole, do not give up their individual existence. Measures such as the

level of integration or cohesion (which can potentially be measured continuously)

determine the strengths of the existing links between the elements. Measures of

the latter enable to describe the critical size of a system – the maximum degree

of integration of a system. Observation of systems when considering their com-

position of subsystems motivate Bunge to postulate that ”.. [the] more cohesive

each subsystem the less cohesive the total system.” [Bun79] As such not only the

composition of a system concerns multiple levels, the integration and stability of

the total system does as well. Processes of disintegration of a system are char-

acterized as structural breakdown, while failure of coordination would result in a

functional breakdown which does not necessary result in a structural breakdown.

The fact that a system ’does not work’ at a given time, is not equivalent to the

disintegration of its structure. An example is a human being’s death which repre-

sents a functional breakdown – not its immediate structural breakdown.

Summing up, this subsection has introduced the term ’system’ including the two

general kinds of systems (conceptual and concrete systems), discussed the struc-

tural elements (composition, environment and structure), several degrees of be-

haviours or processes (assembly and emergence) and general often measurable

system characteristics (integration, cohesion and coordination). This framework

taken from Bunge also supplies a basic but valuable prescription on steps to pursue

in order to evaluate or model systems in general.

2.2.2 Multi-Agent Systems

As both the ’agent’ and ’system’ concept are sufficiently discussed, we have the

foundation to construct the full ’Multi-Agent System’ (MAS) concept – and know

28Processes like selection and evolution are not further described in this context but receive
attention by Bunge [Bun79].

26

Terminological and Conceptual Foundations

that the stakes for this are higher than just being an aggregate of agents as sug-

gested in the beginning of this section.

Ferber [Fer99] distinguishes several elements which qualify a multi-agent system.

As such a MAS consists of an environment with a volume. This environment is

populated with objects29 which at any given point in time have an unambigious

association with a distinct position in that system.

A MAS also comprises of relations (R) between objects; agents (A) are interpreted

as active specializations of objects and are as such included in this context.

Ferber additionally suggests the assembly of operations (Op) by which agents can

act upon the environment, namely ”.. perceive, produce, consume, transform and

manipulate objects” [Fer99]. At this point it can be suggested that the depen-

dence of the operations (Op) on agents (i.e. operations are executed by agents

but not every agent needs to be able to execute all of them) makes an association

of operations to agent entities useful (OpA) and avoids the risk to perceive those

operations as ’free’ (in terms of ’unassociatedness’).

Additional to this operators (in order to clearly distinguish this from the aforemen-

tioned, feedback might be an alternative term), here abbreviated as Fb, represent

the application or executions of the aforementioned operations in the world and

the according reactions of the world. In Ferber’s concept those are described as

”laws of the universe” [Fer99]. Applying Ferber’s operators to Bunge’s system

understanding, the presence of those operators (and the obviously existing direct

or indirect relations between environment and agents in the system) discriminate

whether a system is open or closed.

For these operators (Fb) a clarification is suggested at this point. As multi-agent

systems are artificial systems (whether or not they try resemble natural ones),

they allow the definition of a comparatively controlled environment30 respectively

can represent a closed system31. However, applications built in top of multi-agent

29Objects allow at least some (if not all) of the following core functions: to be created, per-
ceived, modified or destroyed. (The analogy from persistent storage systems are the CRUD
operations (Create, Read, Update, Delete).)

30Concerns of determinism are raised at a later point.
31Again, this needs to be seen with some conceptual abstraction. MAS infrastructure is

certainly all but independent from external events (such as operating system failure, power
loss), thus can never be a closed system in the strict sense.

27

Terminological and Conceptual Foundations

systems are always open systems with regards to the underlying MAS as their

infrastructure, ’their’ universe. The ’laws of the universe’ (Fb) are thus consis-

tently affecting the application, even when modelling MAS applications as closed

systems, such as typically the case for experimental settings. Therefore describing

the openness of a MAS is a concern of the environment understanding involved.

MAS implicitly involve at least two types of environments, an application en-

vironment, which is modelled (or eventually not modelled!) by the application

developer, and an infrastructural environment (agent communication, scheduling)

which is inevitably provided with the runtime platform – be it integrated with the

application or separated from it (see subsection 3.2.3 for a further discussion on

MAS for simulations). An empty (application) environment alone does not result

in the absence of those general laws; the general laws of the infrastructural environ-

ment continue to apply to agents across multiple levels of a system. An example

is the consideration of an application with agents acting in an empty environment

– coined as purely communicating MAS [Fer99]. In this case the infrastructural

environment is in fact identical with the application environment.

The opposing extreme in which agents solely interact via the (then typically mod-

elled application) environment by signalling is what Ferber [Fer99] understands as

purely situated MAS.32

Given the core components of MAS, the analogy to an abstract system (see sub-

section 2.2.1) can be drawn. An abstract MAS could thus be expressed as σ =

(<C(O), E, R> & ∀x (x ∈ A | x ∈ O) & (∃y (y ∈ A) & ∃z (z ∈ A) & y 6= z)):

A MAS consists of a composition of objects O representing the components of

an abstract system, an environment E and the structure defined by the relations

between objects. Agents A represent a specialization of objects, i.e. all agents are

objects. At least two different agents are necessary to consider it a multi-agent

system – as opposed to a multi-object system.

Introducing the notion of levels – as considered in the context of systems anyway –

the overall structure of MAS as multi-level systems is only consequent – especially

when using MAS to model complex software systems which is the key purpose of

32In this context the notions of communicating vs. signalling are equal to the concepts of direct
vs. indirect communication.

28

Terminological and Conceptual Foundations

AOSE (see section 3.1). Again, in analogy, Bunge’s definition of system levels, as

provided in subsection 2.2.1, can be directly applied in the context of MAS and is

repeated here for the sake of convenience: (La < Lb = (∀x)[x ∈ Lb ⇒ (∃y)(y ∈ La

& y ∈ C(x))])

Considering Lb to represent a higher level – or macro-level from a sociological

point of view – its entities (agents respectively objects) y are decomposed into

their counterparts x on the lower level. Important aspect is here that entities from

the higher level do not directly interact with entities on the lower level but in a

mediated manner (e.g. via infrastructure or representative unit).

In the consequence modelling of MAS as multiple levels of organisations (thus con-

sisting of agents which are themselves decomposed into MAS organisations) is only

but natural. The ultimately emerging recursive structure will eventually bottom

out on an atomic agent level33. First concepts in the area of organisation-centric

MAS – introduced about a decade ago – are the Agent-Group-Role model [FG98]

which is the meta-model of agent organisations in MadKit [GFM00], and the KEA

micro-agent architecture [NPC01], building the core of OPAL. A full introduction

of both platforms and meta-models will be avoided at this point; instead their

consistency with regards to Bunge’s understanding of system levels is compared.

MadKit provides a considerable – though as far as literature is concerned uninten-

tionally34 – pure implementation of Bunge’s system level understanding, especially

considering the communication across system level boundaries. MadKit uses ded-

icated roles taking over the communication with external agents. A drawback of

this conceptually clean approach is the performance penalty involved. OPAL’s

micro-agents in contrast, take a lenient approach with regards to communication.

Any micro-agent can potentially address any other micro-agent.

Another aspect concerns the organisation: Micro-agents have an implicit han-

dling of groups while MadKit demands for explicit specification by the developer.

Micro-agents are thus consistently organised in groups; in MadKit this cannot be

33Retracing this image it should be emphasized that it does not necessarily imply a top-down
approach on modelling MAS.

34No indication for this is given in the literature surrounding MadKit (such as [GFM00] or
Ferber himself [Fer99]). In fact Ferber, similar to Bunge’s criticism of the GST, considered
systemics unsuitable as a MAS blueprint (see [Fer99], p.53f.) but did not take Bunge’s system
understanding in account.

29

Terminological and Conceptual Foundations

ensured respectively needs to be handled explicitly. Apart from this micro-agent

groups are inherently organised in levels, allowing agents to maintain subsystems

respectively sub-agents. Levels are handled in a hierarchical manner (respectively

as levels of systems) with a platform-controlled agent at the top which allows a

consistent view on the overall agent organisation across the entire platform.

The brief comparison shows both specific modelling advantages for either model.

MadKit provides a compliant communication mechanism while micro-agents en-

sure the semi-automatic consistent embedding in an overall organisational struc-

ture. Further information on MadKit is provided in its documentation [GFM00],

the micro-agent concept will be target of discussion in chapter 5.

Levels in MAS are not only interesting from a system-theoretic perspective but

have a strong sociological link. The concept of organisational levels in the field

of sociology (documented by Gurvitch [Gur63]) identifies three levels which also

find acceptance among MAS researchers (such as Ferber [Fer99]). At the lowest

micro-social level the interactions between few agents, often of equal capabilities,

are studied. On the next higher level, the group level, the development of group

structures of agents, is studied, predominantly focusing on the development of

organisations. The level of populations is concerned with a more general view on

a system’s emergence and its structural development. While the micro-social level

reflects the domain of micro-sociology, the latter two belong to macro-sociology35

which focuses on the clusters arising from the micro-social level. The macro-social

level concentrates on the observation of emerging structures and levels of equilib-

ria. Although the different sociological levels are not of particular concern for the

applied part of this work, they are essential in the context of social simulation and

the explanation of emergence.36

The properties motivate to relate particular organisation levels on equivalent ap-

plication fields in the context of MAS. Table 2.2 structures the organisational levels

and augments those with characteristics for according MAS applications (and is

an extension to the set of characteristics provided by Ferber (see Ferber [Fer99],

35The differentiation of micro- and macro-sociology is described by Gurvitch in [Gur64].
36Here to mention is the downward and upward causation effects of the Coleman boat (see

Coleman [Col90] or, on a higher level, Troitzsch [Tro09b]).

30

Terminological and Conceptual Foundations

p.13f.)).

The suggested application patterns can certainly not always be generalized as the

Organisation level Micro-social Group Population
Process Objectives Coordination Organisation Evolution
Importance of agent lifecycle low low - middle high
Number of agents few many massive
Agent notion (platform context) wide wide weak narrow weak
(Originating) Research field DAI MAS Massive MAS

Table 2.2: Characteristics of organisation levels

actual characteristic of an application is task-dependent but allow the identifica-

tion of characteristics relevant for the related MAS research fields.

The micro-social level deals with a limited number of agents whose coordination

is the core objectives of the surrounding system. The relevance of full lifecycles is

often limited. As coordination between individual and mostly ’intelligent’ agents

(e.g. playing a game) is of relevance, the lifetime of agents is often equal to system

runtime. Originating research field is the area of Distributed Artificial Intelligence

(DAI). In the context of multi-level MAS, i.e. MAS consisting of subsystems which

are MAS themselves, the micro-social level is relevant on various levels and does

not necessarily emphasize individual ’intelligent’ activities. Nevertheless coordi-

nation remains a core objective. Application areas include auctions respectively

game-theoretic investigations.

The group level deals with a larger number of agents eventually engaging in a

process of organisation and allows the observation of (emerging) group behaviour.

The lifecycle importance is rather low, the agent notion is typically weaker, au-

tonomy of agents more limited and the use of sophisticated internal representation

hardly found. As such the system is interaction-centric rather than agent-centric,

emphasizing interaction in contrast to intelligence. Simulation scenarios such as

the one presented in the context of this work (see chapter 6) often fall in this

category.

The organisational level of populations refers to a category of systems represent-

ing strong dynamics within agent populations, modelling full lifecycles, i.e. birth

and death representation of organisms (e.g. micro-biology), as found in the areas

31

Terminological and Conceptual Foundations

of artificial life and evolutionary computing which changes the perspective from

individuals or groups to generations. The number of agents found in systems of

this kind can be considered massive (from several hundreds upwards); the agent

concept is typical very weak respectively loses most of core agent qualities even-

tually being nothing more than a method call - which is rather an optimization

result enforced by constrained computing power than the need for simplified in-

dividuals. As such the use of the latter organisation type is (and was) mostly

constrained by computational resources; it will gain stronger relevance with the

ongoing increase of computing power as all levels will presumably ’scale up’, be it

the more complex internal representations on group levels or increasing numbers

of agents on the micro-social level. Along with this, or alternatively, the choice of

development languages can switch from an efficiency/system orientation (e.g. C,

C++) to a convenience/application orientation (e.g. Java, JVM-based languages,

interpreted languages).

2.2.3 Standard Specifications for MAS

Although not of core relevance for this work but often mentioned without further

introduction, the standards for MAS should not be ignored. They are historically

important, still in use (e.g. by OPAL and JADE) and represent one extreme in

the trade-off between openness and performance.

The end of the 1980’s until the beginning of the first decade of this century mark a

period of active research with regards to the issue of interoperability respectively

openness in agent-based systems. A standard focusing on the issue of agent mo-

bility is the Mobile Agent System Interoperability Facility (MASIF) [MBB+98],

published by the Object Management Group (OMG). Idea is the agent platform-

independent provision of mobility by integrating the concept of agency, place and

region (group of agencies that belong to a single authority) along with platform

lookup functionality and a defined transition process. The actual means of commu-

nication are not concerned; the standard is seen as complementary to the CORBA

standards which are supposed to specify communication as well as security. The

32

Terminological and Conceptual Foundations

mobility aspect is primarily driven by the telecommunications industry; the stan-

dard did not find general acceptance in mainstream platforms37. A platform known

as a reference for its use is Grasshopper [BBCM99]38.

Other (more popular) standards are communication-centric, such as the Knowl-

edge Query and Manipulation Language (KQML) [FFMM94] and several specifi-

cations provided by the Foundation for Intelligent Physical Agents (FIPA) [FIPf].

Especially the latter represents the most comprehensive specification for the con-

cept of Agent Communication Languages (ACL).

Both standards base on the speech act theory introduced by Austin [Aus62]

and popularized by Searle [Sea69], which essentially switches the perspective on

communication analysis from earlier approaches of conceptual mapping of words

(e.g. the ’early’ Wittgenstein [Wit21]) to a high-level semantic one, interpreting

communication as action. Given this, certain mental states (i.e. beliefs, expec-

tations) of sender and recipient can be assumed. Searle [Sea76] later classified

five possible types of speech acts. Those are listed below, along with selected

performatives39 reflecting those types in ACLs (where applicable):

• Representatives bind the speaker to the truth of a proposition and reflect

the idea to inform a recipient about a certain (believed) fact or condition.

• Directives are attempts to make the recipient perform an action; a request

is a commonly used example for this.

• Commissives classify acts which bind the speaker to a certain action, such

as a promise.

• Expressives verbalize attitudes and emotions of the speaker, such as grati-

tude (e.g. to thank) or personal judgement of some kind.

• Declarations are the final group and include actions which have the power

to affect ” ... the institutional state of affairs.”([Woo09], p.134) An example

is to declare a couple as husband and wife.

KQML is the first attempt to use performative-based communication for inter-

action between different knowledge-based systems. It makes use of a high-level

37Saber and Ferber discuss the practical limitations for the use of the MASIF standard [SF].
38The platform itself, however, is not provided anymore.
39The performatives are emphasized for each according speech act (e.g. inform).

33

Terminological and Conceptual Foundations

communication and is independent from a knowledge domain which makes its

use appealing in the context of agent-based systems. Its syntax is LISP-like –

using balanced-parentheses lists. The standard considers primitives for network

management and administration (i.e. network level functionality). The embedded

content language for actual expressions can be chosen by the developer. Examples

are Prolog and the Knowledge Interchange format (KIF) [Gen].

The disadvantage of KQML is its loose semantics. Its use in applications thus led

to numerous incompatible dialects.

The FIPA ACL [FIPb], as part of a considerably more comprehensive set of spec-

ifications, evolved from the Arcol standard developed by France Telecom, and

targets towards solving the deficiencies of KQML. As a reaction the specification

of the FIPA ACL concentrates on semantics, strongly reflecting the implications

of speech acts40 on both recipient and sender side (such as the binding effects

as mentioned above), and in conjunction a content language (FIPA SL [FIPe])

which allows the expression of beliefs, uncertain beliefs, desires and action along

with a mapping to the semantics of the ACL. The ACL syntax itself is equivalent

to the one of KQML. As a result, the FIPA specifications constitute a domain-

independent and less ambigious ’knowledge-based communication’ by introducing

strong semantic constraints.

The downside of the FIPA ACL in turnaround is two-fold. Firstly, the correct

implementation across different platforms can hardly be tested as only basic inter-

operability tests had been conducted at given times41 – rather to ensure the un-

ambiguity of FIPA standards than ensuring implementation conformance. FIPA

itself has left this issue largely to the ”market-place” [IEE], thus conformance can

hardly be assumed. AgentCities, a community-driven project targeting interoper-

ability testing as well as service provision on a global scale ceased to exist as well.

Today platforms implementing the FIPA standards are very limited, have often

limited support for the full FIPA specification set and are typically not tested

40Its specification for according Communicative acts can be found under [FIP02].
41The first interoperability test was held in Seoul in January 1999, the second one in London

in April 2001. Apart from the JADE platform [JAD09] none of the other platforms (FIPA-
OS [FIPd], ZEUS [ZEU], April Agent Toolkit (which had been integrated into another frame-
work) [Apr]) is actively maintained.

34

Terminological and Conceptual Foundations

on this42. As such the only reference implementation available can be considered

JADE [JADa].43

The second problem apart from conformance testing is the underlying intelligent

agent assumption: FIPA agents, although not strictly specified, need to be able

to represent the concepts of beliefs, desires, intentions and goals. This implicitly

enforces a rather heavy-weight agent architecture, confining not only developers

to this model but also limiting the social sphere of FIPA-agents to agents of ’their

kind’. As FIPA communication still allows ambigious interpretation and relies on

interaction protocols44 as support construct it is target to criticism. Singh [Sin98]

argues that the assumption of agent internals (i.e. BDI-like capabilities) shows

the insufficiency of ACLs to really represent open communication on a knowledge

level.

Concluding this short presentation of relevant standards for the MAS develop-

ment the FIPA Agent Management Specification is mentioned as it provides a

conceptual blueprint for agent platforms in general, although actual implementa-

tions often do not follow the specifications.45 According to this specification an ”

.. agent platform (AP) provides the physical infrastructure in which agents can

be deployed. The AP consists of the machine(s), operating system, agent support

software, .. agent management components ... and agents.” [FIP04] In this model

agents are autonomous communicating entities which have both an owner as well

as an Agent Identifier (AID) which is globally unique. The Agent Management

System (AMS) is concerned with the maintenance of an agent directory on the

according platform (and, among further functions, assigns the AID). Another com-

ponent is the Directory Facilitator (DF) which provides a yellow-page service to

look up agents based on their capabilities. Multiple DFs can coexist on a platform

and potentially undergo federation relationships. AMS and DF are, along with

42In fact nearly all platforms known to implement FIPA specifications have ceased to exist
(see FIPA website [FIP03] and Wikipedia list [FIPa]).

43The Otago Agent Platform (OPAL) mentioned here had been tested on compliance with the
Agentcities project but was not involved in the original interoperability tests as of its relatively
younger age.

44For an elaboration on Interaction Protocols respectively Conversation Policies see Greaves
et al. [GHB00].

45Here the analogy to the often-referred but never widely adopted Open Systems Interconnec-
tions (OSI) Model, specified by the International Organization for Standardisation (ISO), could
be drawn.

35

Terminological and Conceptual Foundations

the ’application agents’ (i.e. all agents developed by the application developer),

backed by a common Message Transport System (MTS), which serves as default

communication mechanism as specified in [FIPc].46

Figure 2.2 depicts the aforementioned components and their relations as provided

with the original specification [FIP04].

Figure 2.2: FIPA Agent Management Reference Model

46Its implementation-independence is expressed by the specifications for transport protocols
which include IIOP, HTTP and SMTP.

36

Chapter 3

Research fields in Agent-based

Computing

Given the background on core concepts in the context of agent-based systems, the

context of their application will be discussed. Although implicitly shown before for

different levels of observations in MAS a better insight into two disciplines which

see and apply MAS from a different perspective should be given. One of those is

the field of Agent-Oriented Software Engineering which uses MAS as modelling

paradigm for the development of information systems, the other Agent-Based So-

cial Simulation which is driven by an interdisciplinary community and sees MAS

as a particularly suitable (as of its sociological relation (see subsection 2.2.2))

blueprint in order to effectively model and understand real-life problems. In the

following each of those is introduced in a dedicated section. Their differences and

the implications for according multi-agent platforms are discussed in subsection

3.2.3.

3.1 Agent-Oriented Software Engineering

3.1.1 History and Principles of AOSE

The advent of the idea of Agent-Oriented Programming (AOP) introduced by

Shoham [Sho93] is based on understanding multi-agent systems as intentional

systems incorporating notions of belief, desires, intentions and goals and yields

towards programming in terms of mental states. Shoham himself sees AOP as a

37

Research fields in Agent-based Computing

specialization of Object-oriented Programming (OOP) and interpretes the state

of those specialized objects (agents) as ’mental state’ whose use is constrained

by defined components such as beliefs, capabilities and further elements. In-

teraction between agents is restricted to specified message types (identified by

performatives), based on ideas from the speech act theory including the repre-

sentation of presuppositions and effects for the related communicative acts (see

Shoham [Sho97]). In analogy to the mental level of communication Wooldridge

sees AOP as ”post-declarative programming” ([Woo97], p.5), following the idea to

declare some goal to be achieved by the system while abstracting from the actual

control mechanisms implemented in the language (as done in Prolog). The tran-

sition he considers is the replacement of the language-internal control mechanism

with an implementation of a rational agency model such as the BDI model (as

introduced into the field by Rao and Georgeff [RG95]) which would then act based

on the mental components.

The first language following the AOP paradigm is AGENT0 [Sho93], developed

by Shoham himself. Along with the BDI model as a popular model for rational

agents, AgentSpeak [Rao96]1 has gained wide recognition, lately especially for its

use in the Jason platform [BHW07]. A view on agents as intentional entities and

the development of an according programming paradigm allowed the embedding

of those elements into a methodological context which Wooldridge and Jennings

named Agent-Oriented Software Engineering (AOSE). Objective of AOSE is to

narrow the gap between the (among itself all but unified) research community and

software engineers in order to enrich the toolbox of everyday software development

with agent-based concepts.

The development of complex systems is a key area in which agent-oriented soft-

ware engineering promises to show significant advantages against other approaches

such as the classical OO approach – especially considering a continuous system

extension. As the complexity is not unintended, but more or less explicitly and

successfully engineered, certain rules can be derived for those artificial systems, as

done by Simon [Sim96]: Complex systems often involve hierarchies whose strength

1Its original name was AgentSpeak(L) but is widely referred as AgentSpeak today, including
its various dialects.

38

Research fields in Agent-based Computing

and structures vary depending on the subsystems involved. This concerns the tem-

poral dimension (change over time) as well as the concrete relation (e.g. structural

dependency) between entities/nodes. Further the evolution of systems with hi-

erarchical structure takes place more quickly than with non-hierarchical ones of

similar size. Given the composition of complex systems as sub-systems, the in-

teraction within sub-systems is considered more frequent (and often more stable)

than among sub-systems. Interactions among sub-systems are fewer, characterized

by strongly varying dependency over time as well as typically higher complexity.2

Techniques from the area of Object-oriented Analysis and Design (OOAD) widely

accepted within the software engineering community are introduced by Booch [Boo94]

using the terms Decomposition, Abstraction and Hierarchy. In the context of

AOSE Hierarchy is substituted by Organisation to reduce the emphasis on hier-

archical dependencies (as suggested by Wooldridge and Jennings [JW00] – and

certainly supported by Bunge’s understanding). The core characteristics are re-

called at this point:

• Decomposition – Large problems are divided into sub-problems of manage-

able size with a highest possible degree of isolation from other (sub-)problems

to limit the designer’s scope.

• Abstraction – Hiding unnecessary details from the designer is beneficial to

limit scope at a given time in order to focus on core problems. Constraining

the level of detail not only removes disturbing or confusing elements but also

enforces a decision on relevance of every element, resulting in a improved

understanding of the problem.

• Organisation – Identification and maintaining the relationships between dif-

ferent components helps to decide whether they should be perceived as a

single unit (i.e. hiding the internal dynamics in the spirit of abstraction) or

clearly identifying their relationships and interactions but leave them sep-

arated – depending on level of granularity as well as reusability by other

2Here it should be mentioned that Simon’s understanding is fairly consistent with Bunge
(apart from his use of the term hierarchy). However, the latter provides a more in-depth insight
into system properties such as coherence.

39

Research fields in Agent-based Computing

components not directly related to the sub-system (e.g. loose coupling in the

context of open systems).

The agent concept is suitable as a unit of analysis/design to apply effectively the

same techniques. However, agent properties can provide added value.

Agents qualify to support the decomposition of problems similar to objects. How-

ever, in complex systems the anticipation of all possible solutions is impossible.

As sub-problems are decomposed into agents which are themselves not fully able

to provide all necessary functionality to ultimately solve their problem, firstly a

certain autonomy in order to find a provider for this functionality is necessary.

Secondly, the expressiveness involved in interactions – provided by knowledge-

level agent communication languages – levers the issue of modelling interaction

(and debugging/maintaining it) on a semantic rather than syntactic level. As the

flexibility at runtime is promoted, the coordination of the system is necessarily

handed over to its agents, rather than maintaining centralized control structures.

As a consequence complex agent-based systems – perhaps a characteristic most

similar to human societies – lack a deterministic system state. Even if agents

provide state information on a regular basis, this information will only represent

their individual state at a discrete point in time and most likely only represents

an application-related subset of the complete state information3.

Abstractions in concepts hide a concept’s constituents and suppress it from the

modeller’s view in order to reduce the perceived complexity. Interaction between

the abstracting concept and its constituents in the context of agent-based systems

can be of considerably high level. The interactions in fact often show character-

istic patterns such as coordination, cooperation or negotiation in order to achieve

this value-adding functionality. Agent-related technology provides the means for

the representation, such as agent communication languages which – superficially

introduced earlier (in subsection 2.2.3) – act on the knowledge level. Given a

standardization on the syntactic level along with generalized semantic interaction

patterns, this reduces the need to deal with lower-level technical issues. Instead

3This argument is driven from the conceptual side: The state representation is given by the
agent, rather than read by some coordinating entity. Agent-based systems – if designed as such
– could very well undermine the agent concept and directly access its state – which depending
on application field is useful or even necessary (e.g. reporting in simulations).

40

Research fields in Agent-based Computing

developers can concentrate, in a more productive manner, on problem-related

semantic issues. Although the expressiveness of ACLs – as well as internal rep-

resentation of higher-level agents – inherently increases complexity and enforces

steep learning curves, well-specified or already provided interaction patterns al-

low a quick and reliable representation of auctions or other forms of negotiations.

Those patterns can be expressed using the aforementioned interaction protocols

to model courses of interaction (conversations).

Probably the biggest benefit in using agent-based concepts is gained when con-

sidering their ability to act in organizations and support organisational change

(with regards to members as well as structure) at runtime as organisations are

”first-class entities in agent-based systems” [JW00]. This again is related to the

self-organisation nature of agent-based systems and the decentralization implied

(recalling Bunge’s understanding). A potential deriving from this is the demand-

related growth of functionality at runtime (as suggested in subsection 2.1.3).

3.1.2 Comparing Agents and Objects

Although agents and objects use a similar approach to systems modelling pro-

viding powerful means of decomposition, abstraction and organisation a more

in-depth view on their differences cannot be neglected in order to advocate the

uptake of agents. Numerous discussions are documented (for example Jennings

and Wooldridge [JW00], Wooldridge [Woo09], van Dyke Parunak [Par99] and

Odell [Ode02]). The development of programming paradigms shows an increas-

ing drive towards abstraction from the machine level; principles like encapsulation

and modularisation of code are increasingly used and successively extended. This

does not only concern class-level properties and methods but even goes further

towards diversity on instance-level and the encapsulation of complex behaviour

which can eventually be expressed as rules, or – applying a mental understanding

– by concepts such as beliefs and goals. Interesting core differences between agents

and objects are briefly described as following, mostly relying on Odell’s compari-

son [Ode02] with focus on features related to agent autonomy and interaction:

• Agents, in contrast to objects, typically involve in (but are not confined to)

asynchronous communication.

41

Research fields in Agent-based Computing

• Messages between objects can only carry call or response for a single method

(and parameters) as opposed to agents which allow more flexible message

and/or language models of higher expressiveness.

• Agents can involve in (potentially multiple and parallel) conversations.

• Agent organisations are flexible. This can range from a centralized and as

such comparatively controlled organization - as with objects - towards more

decentralized organisational structures4. This feature is central to its popu-

larity for group representations in MAS applications such as simulations.

• Agents allow dynamic and/or multiple classification and are not confined

to their according ’classes’5 for a life-time (such as objects). This allows

agents to ’play’ multiple roles which themselves can change over the agents’

lifetime; new roles can be added or existing can be disposed. As such the

agent concept is significantly more expressive than ’out of the box’ objects

to describe relations in arbitrary kinds of systems.

• Agents may develop instance-level features at runtime. This reflects the po-

tential of agents to learn and potentially change their behaviour. In contrast,

objects of the same class will not change their feature set (i.e. properties or

methods) at runtime.

• Agents are small in impact, time and scope. The impact of a failing agent

within a MAS has typically limited impact as interactions are characterized

by loose coupling and the need for fault-tolerating mechanisms. In OO

systems usually an exception would be raised if an object (or a reference to

it) is lost which is likely to stop the operation of the whole system. Impacts

are comparatively unproblematic as full agent life-cycles (including death)

need to be considered at runtime (small in time). Dereferencing an object

and releasing its memory (or waiting for it to be garbage collected) at runtime

will eventually have the same effect. But it needs to be carefully coordinated

and designed in conjunction with the overall system behaviour and is not as

’natural’ as for agents.

4At this place the extreme case of strongly autonomous agents not adhering to any organisa-
tion (in the structural sense) is not elaborated.

5The terminology used is taken from OO.

42

Research fields in Agent-based Computing

The limited scope of agents is fairly comparable with the object principle

in which objects hold local knowledge and immediate references to other

objects but have no representation for the whole system state.

• Agents can show emergent behaviour. This is driven by the idea to have an

own thread of control respectively autonomy in order to engage with other

agents and/or the environment. The ’out of the box’ object concept lacks

the thread of control, thus the ability to show problem-related meaningful

emergence is limited.6

Given this comparison and the motivation of AOSE to model systems in gen-

eral the perception of agent-orientation as succeeding paradigm – in contrast to

object-orientation – might arise. Suggestions of this kind should treated with care;

the intention is rather to indicate fields in which agents seem more suitable than

object-oriented modelling. As such factors like system size, determinism, degree

of concurrency, openness and autonomy of its components need to be considered

before blindly adopting one or the other approach.

The following Table 3.1 lists several categories of criteria indicating the suitabil-

ity of agent-oriented modelling approaches for information systems from a rather

practical standpoint. Categories predominantly or intuitively applicable for either

one development principle (such as reasoning capabilities) are not reflected in this

comparison. The characteristics are structured by categories of aspects all of which

are briefly introduced in the following.

Behavioural Aspects capture both executional and motivational autonomy. Both

Object-orientation as well as Agent-orientation support a basic executional auton-

omy, in the case of objects (depending on implementation language) in the notion

of threads. Goal directedness in contrast, subsumed under motivational autonomy

is not available to objects. Equally, pure object systems do not show (meaningful)

emergence. Agent-based systems are (if not explicitly modelled in a synchronous

manner) non-deterministic (which makes them appealing to generate emergence7).

6In their nature as multiple objects (and their likeliness for interaction/referencing) they will
ultimately show some sort of emergence (e.g. mean memory use of object, ...). Questionable,
however, is the usefulness.

7In fact determinism and emergence show an inverse relation. As they are not opposite
concepts their separate listing is still useful.

43

Research fields in Agent-based Computing

Criterion Object-orientation (OO) Agent-orientation (AO)
Behavioural Aspects
Executional Autonomy O +
Motivational Autonomy – +
Emergence – +
Determinism + –
Structural Aspects
Large System Size O +
Small Memory Footprint + O
Concurrency – +
Interoperation Aspects
Distributedness O +
Syntactic Openness + +
Semantic Openness – +
Maintenance Aspects
Hot Swap of Elements – +
Debugging + –

– represents relatively weak support by according paradigm
O represents a medium level of support
+ represents relatively strong support
Example: AO is not specifically focused on development of applications prioritizing small
memory footprint.

Table 3.1: Criteria for selection of Agent-oriented approaches vs. Object-oriented
approaches for System development

If this property should be controllable (such as in production environments) or do

not allow multi-threading, an object-oriented approach can be the ’safer’ choice.

For Structural Aspects the paradigms show a similar trade-off. Agent-based sys-

tems generally have decentralized control which suggests their use for large-scale

systems with the consideration of scalability. As the overhead for taking up agent-

based technology (learning curve, additional tools but also memory overhead) can

be significant, this may limit its suitability for small systems. Concurrent execu-

tion, in contrast, is one of the builtin strengths of agents.

Aspects of interoperation include distributedness which is feature of most agent-

based system, and levels of ’openness’. If syntactic openness, e.g. on network

transport level is of relevance, both technologies are equally useful. When com-

municating on knowledge-level, agent-based systems show clear advantages against

classical OO solutions.

44

Research fields in Agent-based Computing

The aspect of hot swapping refers to Maintenance Aspects. The exchange of en-

tities at runtime is unproblematic for agent-based systems as of their explicit

consideration of lifecycles. Objects typically have greater impact on the system as

a whole (see the listing of differences above), their exchange at runtime is not part

of their conceptual nature. Last aspect mentioned is debugging which is of prac-

tical nature but inherent part of software development. Object-oriented systems

and their deterministic nature ease debugging, while the decentralized nature of

agent-based systems can make this a rather challenging task.

The provided comparison supports the decision for a potential use of agent-orientation

for a particular problem. However, none of the listed criteria should be seen as KO

criterion for either paradigm but rather a matter of priorities set by the application

developer for the resulting system.8

3.1.3 Criticism

AOSE is surrounded by a considerably active community for more than a decade

now. However, the achievement of the major goal – broad adoption of MAS in

everyday software engineering – remains arguable. Although several successful

implementations are documented, those are often driven by developers dedicated

to the agent-oriented development principles with focus on rather specialized in-

dustrial solutions9; considering agent-oriented modelling in the standard toolbox

of software engineering is yet farfetched. Realizing this, some problems related to

this should be outlined.10

Yet agents or MAS suffer from their origin in the field of AI and the intimately

linked problem of their non-deterministic nature, issues which are not only paradigm-

related but partially self-induced.

First, the field itself is divided about its understanding of agents, to a degree in

which it eventually becomes common sense to be asked what ’your’ agent under-

standing actually is. It can be argued that researchers favouring the strong notion

8In fact both approaches can be generally used to model all mentioned aspects, especially
when considering agents as a specialization of objects (see subsection 2.2.2) – however, with
different advantages.

9Examples for those companies are Whitestein Technologies and Agentis Software.
10This part represents a blended approach of literature-backed argumentation along with per-

sonal impression.

45

Research fields in Agent-based Computing

often confine themselves to a comparatively strict agent understanding and in fact

sacrifice significant potential of agents (multi-level approaches, limited heterogene-

ity, focus on direct communication) – understood here as a fairly ’narrow’ notion.

Others adhering to a ’wide’ notion leave themselves a by far more extensive mod-

eling realm, albeit trading the homogeneity of agents. Additionally to this, the

AOSE community has largely been blurred by the attractive concept of cognitive

agents interacting in high-level conversations. Albeit providing different means

of reasoning the question remains if those agents are of practical use, especially

with respect to performance11. The integration of both low-level agents, systems

building on emergence and high-level agents has not been fully exploited as a

relevant topic; high-level systems typically remain agent-programming-language-

centric (e.g. 3APL [3APa], Jason [BWH07]) while lower-level approaches hardly

integrate an interoperation concept for cognitive agents. In fact only micro-agents

strongly argue this weak wide position (i.e. seeking the integration with stronger

agent notions) in the context of AOSE – and are the key concern in this work.

As a consequence of the split field, Georgeff eventually argues to not even men-

tion the terms ’MAS’ or ’agent’ while integrating them with architectures which

have a fair degree of similarity but are eventually lacking functionality which MAS

can contribute [Geo09]. Here to mention would be the field of service-orientation

which offers several service levels (e.g. data level services vs. coordinating ser-

vices). Agents would just fit in the coordinating role, given the natural suitability

to handle errors, common for loosely coupled systems, and to find alternatives in

a flexible goal-driven manner.

Another aspect of practical relevance is testing and debugging. The lack of broadly

accepted methodologies or mechanisms for debugging and testing, certainly com-

plicated by the non-determinism of agent systems, hampers a broad uptake. Even-

tually developments in this area can take considerable time and are even compli-

cated as the standardization efforts (which could and should have considered those

aspects) are slowing down and seem to develop away from the need to implement

11At this point it should be referred to an experiment documented in [FNP10], resulting
runtimes for simple agent interactions varying by orders.

46

Research fields in Agent-based Computing

existing standards12 – resulting in diverse and hardly unifiable approaches. A

focus which is endangered to be lost along with the starving progress of FIPA

specifications is the concept of openness.

Another potential not yet fully exploited is the use of goals for manifold purposes,

be it modeling (goal decomposition), testing or debugging [Win09]. Eventually,

generic goal-oriented testing methodologies mark an important trend in AOSE

(see [NPT10]) and are one key to better adoption of MAS in practice [Win09].

3.2 Agent-based Social Simulation

The application fields for agent-based systems vary widely. Many of them how-

ever, rather implicitly qualify for the use of agent-based technology, such as robust

(e.g. self-repairing systems) and highly concurrent distributed systems (e.g. logis-

tics); agents are one option to implement those. Especially in production systems

agent-oriented software comes along blended with other complementary technol-

ogy such as the better-received and well-standardized service-oriented comput-

ing13, e.g. in shape of agent-based web services.

One explicit stronghold for agent-based systems today is social simulation which

considers itself a ”killer application” [EEHT07] for MAS.

3.2.1 Heritage of Social Simulation

While the general area of software engineering recognizes MAS as ’yet another

paradigm’ to model complex systems, the social sciences and economics have come

a long way borrowing approaches from disciplines such as physics, known as socio-

physics respectively econophysics, to model their problems (see Troitzsch [Tro09b],

p.56). Selected approaches14 include System Dynamics which essentially use dif-

ferential and difference equations to build complete (and closed) models. Historic

examples for models of this kind include several ’world models’ (Forrester [For71],

Meadows et al. [MMR92]). However, modelling with system dynamics – as the

12While in the beginning of the 2000’s the implementation of FIPA appeared as a must
(e.g. JADE, JACK [Win05], 3APL, OPAL – with minor exceptions such as MadKit), the con-
sideration of strong standards has moved to the background (e.g. in Cougaar, Jason).

13A good comparison between both paradigms and the related standards is provided by Chao
and Griffiths [GC10].

14The following overview on historic simulation approaches is based on Gilbert and
Troitzsch [GT05] as well as Troitzsch [Tro09b].

47

Research fields in Agent-based Computing

case for all equation-based approaches [Fer99] – is only concerned with the macro-

level, thus does not allow the consideration of complex behaviour of individuals

and hardly integrates qualitative aspects. The lack of modelling on the micro-level

along with the lack of knowledge about actual dependencies on the macro-level it-

self makes such global approaches prone to produce unrealistic results and opens a

range for speculation, known as ’trap of tractability’ (Doran and Gilbert [DG94]).

This is especially of concern when considering non-linear dependencies of model

internals (see Gilbert and Troitzsch [GT05] for an extended discussion).

In contrast to this, Microsimulation models (or micro-analytical models) put individual-

based modeling into focus. Although this high-level description would also capture

agent-based modeling, the actual approach differs and still lacks the interaction

between individuals: In microsimulations a database of individuals (e.g. based

on existing data) is created and predefined stochastic rules representing certain

processes (such as aging, marrying) are applied to the participating individuals

respectively the data sets. The aggregate of these individuals constitutes the

macro-level. Limitations of this approach is the typically lacking interaction be-

tween individuals and the only unidirectional influence of micro- to macro-level.

Especially in the context of sociology (an area from which agent-orientation heav-

ily borrows (see description of levels in subsection 2.2.2)), the ability to model

individuals bears significant advantages – not to the extent to model individual

behaviour but a better traceability and realistic grounding.

Subsequent approaches, which extend the principle of microsimulation, are con-

cerned with multi-level modelling (such as individuals, households and popula-

tions) and allow simple interactions between individuals and introduce mutual

influence of different levels. A simulation environment of this kind is MIMOSE

(Möhring [M9̈0]) which makes use of the functional programming paradigm and

targets towards a more general use than other systems of its time.

The historical trend of social simulation15 shows the increasing demand to model

both individual actors (micro-level) and observe macro-effects (first-order emer-

gence) along with the potential perception and manipulation of those macro-effects

15For more details refer to Gilbert and Troitzsch [GT05].

48

Research fields in Agent-based Computing

by cognitive entities on the micro-level (second-order emergence)16 (see Gilbert

and Troitzsch [GT05]; Squazzoni [Squ08]). The use of multi-agent systems for this

purpose is thus only but consequent in order not to give up realism when working

with formalised models in the context of sociology (see Troitzsch [Tro97]). The

assumed autonomy of individual agents (in the understanding of the intentional

stance), their sociability, their potential situatedness and the non-deterministic

nature of MAS (a feature ironically seeked to be controlled by AOSE for the use

in production systems) is intentionally exploited and has given MAS a paradig-

matic status for modeling and simulation in the social sciences – as Agent-Based

Social Simulation (ABSS), and in a wider simulation scope as Multi-Agent-Based

Simulation (MABS).

3.2.2 Methodological Aspects

In contrast to other fields, including software engineering, in the area of simu-

lation, especially in the context of the social sciences, general methodologies for

the construction of simulation models are hardly found; modellers in this area

still exercise a significant amount of freedom but borrow guidelines (such as the

validation problems) from other research methods such as experiments. An ex-

treme capturing the essence of the experimental nature of social simulation can be

gained when retracing the idea of artificial societies, which Epstein and Axtell see

as laboratories to ”... ’grow’ certain social structures in the computer ...”[EA96].

The goal is to create abstract models, in this extreme case purely theoretical mod-

els of social structures and dynamics to refine those iteratively until they exhibit

characteristics of interest (be it driven by the intention to ’rebuild’ societies (and

as such not purely artificial) or the observation of unexpected behaviour).

A first and general approach adopted from the field of computer science is Zei-

gler’s Framework for Modeling and Simulation [Zei76], defining the fundamental

relationships in simulation systems, the relationship between source system (or

real system), experimental frame (the observed objectives of a source system; ex-

perimental perspective), the actual derived model and the simulator. Michel et

al. outline its suitability for the general case of agent-based simulation [MFD09].

16Gilbert [Gil95] suggests that this property discriminates human societies from animal soci-
eties.

49

Research fields in Agent-based Computing

Another more generally applicable methodology for modelling experiments in AI

systems is MAD (Modelling, Analysis and Design), suggested by Cohen [Coh91]

as a result of surveying contemporary AI systems. Its level of detail is lower (as

compared to the Zeigler framework) and keeps the focus on the implementation

perspective.

Fishwick [Fis96] identifies three (triangular) interlinked stages of simulation (in

general): Model design, Model execution and finally Model analysis. Downside

of this approach is the obviously fluid translation of design model to execution

model; the methodology does not sufficiently respect this concern.

A methodological framework born in the context of social simulation which puts a

stronger emphasis on the modelling target than the implementation system [ACBR06]

is described by Gilbert and Troitzsch [GT05] and includes the following steps:

In first instance, a model of a target (the phenomenon of interest) is built. The

model is sufficiently simplified, still representing the structure and behaviour of

the target but avoiding an unnecessary level of detail. The model – which is in-

herently dynamic in the context of the social sciences – is executed and produces

simulated data which should be tested against gathered data showing the ’real’

dynamics of the target.17 Figure 3.1 outlines the framework described.

Source: Gilbert and Troitzsch [GT05], p.17.

Figure 3.1: The logic of simulation as a scientific method

The framework further consists of several steps when building simulation models:

17This is certainly only possible if the target is in fact a real system allowing the gathering of
such data.

50

Research fields in Agent-based Computing

• (1) Definition of the modeling target

• (2) Observations on the target

• (3) Definition of underlying assumptions

• (4) Verification of the model implementation

• (5) Validation of the implemented behaviour

• (6) Sensitivity analysis

The definition of the target (1) describes what behaviour and structure of a real

world entity (if the concept is of ’real’ nature) is observed (e.g. the intensity of

interaction within an artificial society). This is sharpened with the identifica-

tion of observed/dependent variables (2) which allow measurements of the model

behaviour (e.g. kinds of interactions, duration of average interaction, number of

interactions, ...). Further, underlying assumptions (3) need to be clear (e.g. ob-

servation of a societies without access to means of distance communication).

Assuming a significantly clear model specification, the verification (4) is concerned

with the implementation of the specification in a simulation and includes debug-

ging activities. This is particularly problematic as a bug-free implementation

can hardly be garanteed (especially when considering the heterogeneity of im-

plementations/simulation environments (see following subsection)). The use of

(pseudo-)random number generators demands for special attention when attempt-

ing verification (see Gilbert [Gil96]). In the validation step (5) the sufficiently

adequate representation of target behaviour is evaluated; the model specification

is reviewed. The last step, the sensitivity analysis (6), checks the sensitivity of the

simulated data towards changes of the parameter set to establish a good under-

standing of the model and identify parameters of core relevance.

The actual modelling activity, especially in the context of social sciences, has the

character of a wicked problem18 as its quality is hardly verifiable and largely de-

pends on the experience and abilities of the modeller. The later steps support

the often necessary iterative refinement of the model. A guideline for a modelling

strategy lies in the purpose of the model (see Axelrod [Axe97]): Descriptive models

18Some characteristics of wicked problems include the lack of a stopping rule, the problem is
often not understood before elaborating a solution, the uniqueness of each problem instance and
the lack of a distinct right or wrong solution (see Rittel and Webber [RW73]; Conklin [Con05]).

51

Research fields in Agent-based Computing

which support the understanding of a phenomenon of interest focus on simplicity

while predictive models put an emphasis on accuracy – implying a higher level of

detail.

For an in-depth description and discussion of the caveats for given modelling steps

the reader should refer to Gilbert and Troitzsch [GT05].

3.2.3 On the Gap between MAS for AOSE and ABSS

Having stated that social simulation focuses on core agent properties like auton-

omy (and as such is largely (and often purely) based on the intentional stance), its

perspective deviates from the one taken by most agent researchers. In fact agents

in the context of social simulation rather underly a simplistic agent model often

assuming some sort of autonomy (in contrast to the more complex understanding

of this concept in the agent community (see subsection 2.1.1)). Additionally they

often focus only on indirect communication (e.g. Schelling model [Sch71]) – again

a feature argued not to be sufficient to constitute social ability of agents (see dis-

cussion in subsection 2.1.1).

Given this the application field for social simulation represents a meeting of the

spirits from different streams: AI and DIS originate from the idea to shape poten-

tially intelligent software entities, but have increasingly loosened this perspective19,

resulting in higher flexibility. ABSS in contrast is prone to see virtually any ob-

ject as an agent but increasingly adopts stronger agent notions – in the context of

the need for more adequate representation of deliberative capabilities20, available

computing capabilities (capacity for ’more agents’21) and modelling mechanisms

(exploitation of concurrency in multi-core processors with truely asynchronous

agents). Table 3.2 compares characteristics of the different streams.

The differing perspective – from a technical vs. a rather pragmatic view – on

agents supports this observation: Researchers from the area of (general purpose)

19The increasing consideration of weaker agent notions (such as in MadKit, Jadex and
Cougaar) back this observation (see subsection 2.1.3). Additional to this the coupling between
(optional) reasoning engine (as in Cougaar) and platform becomes less intimate.

20An example includes the demand for stronger cognitive abilities on the micro-level in order
to model second-order emergence as well as more ’knowledge-based’ direct communication.

21The comparison for approaches of social simulation provided by Gilbert and Troitzsch (see
[GT05], p.13) indicates a typically limited number of agents (”few”) in contrast to other ap-
proaches considering a larger amount of entities (such as microsimulation).

52

Research fields in Agent-based Computing

Field Objective Key driver
Agent
notion

Modelling

Artificial
Intelligence

Modeling cognitive
processes in a
connectionist

approach; agents
as part of a

collective cognitive
unit (in the

psychological
sense)

Reasoning strong
narrow

agent-centric

Distributed
Information
Systems /
Software

Engineering

Helper paradigm
to model

distributed systems
with autonomous
and heterogeneous

elements

Interaction
and (de)com-

position

strong
wide

information
system-
centric

Social
simulation

Understanding the
structures and
dynamics of

individuals, groups
and societies in a
given application

context
(e.g. economics,

psychology,
artificial life) by
experimentation,

generally accepting
multiple levels of

causation and
effect

Emergence weak
wide

target
phenomenon-

centric

Table 3.2: Comparison table for field-dependent perspectives on MAS

MAS see the execution of an agent-centric model of core relevance. They focus on

the runtime environment (i.e. simulator). Michel et al. (which belong those the

former field) argue that ”... few [simulation] MAS works do consider the simulator

as a first order entity of the experiment.” [MFD09] and criticize the lacking con-

sideration of the MAS paradigm itself by applying researchers (or ’thematicians’

as Drogoul et al. [DVM02] name those) at the modeling stage.

53

Research fields in Agent-based Computing

The thematicians in turnaround perceive the MAS paradigm as a vehicle to ”... en-

gineer models from concepts to something that can be executed on the com-

puter” [Fis95], thus see the model implementation as a mere engineering task.

This difference (system-centric vs. target-centric modelling) is already apparent

when recalling the short listing of modelling methodologies above22.

As far as this is concerned, influx from both groups is necessary in modelling activ-

ities for each given case: firstly, to get a specific understanding of the agent notion

applied, secondly, to keep the gap between target-centric conceptual model and

agent-centric design model narrow – in the best case so narrow that the simulation

programme itself is a full model of the theory of interest (see Troitzsch [Tro04]).

This certainly describes the extreme case where sufficient knowledge about both

fields is available or cases where modelling the target phenomenon itself maps well

to the paradigm. Still, the wicked problem of modelling is not eased by the fuzzy

understanding and use of the term ’model’. Wartofsky [War79] identifies several

confusing understandings of models. As such a model can be the actual concep-

tual model of a target or the largely implicit mental model the modeller develops.

Over time modellers develop an increasingly blended understanding and usage of

those. Last model type is the data model (i.e. the output of the (implemented and

executed) conceptual model) which represents an abstraction from the originating

conceptual model by introducing further prerequisites and assumptions. The lat-

ter model might in fact not sufficiently capture and represent the content of the

original conceptual model.23

To complement the view on the tensions between Modelling and Simulation (M&S)

and the technical perspective on MAS, another approach on structuring implemen-

tations is considered. Michel et al. [MFD09] view developments in the intersection

of MAS with M&S as belonging to either one of two groups:

• M&S for MAS

• MAS for M&S

22Cohen’s approach is rather system-centric, Gilbert and Troitzsch focus on the ’modelling
target’.

23Further elaboration on those different models is provided by Wartofsky [War79] as well as
Edmonds et al. [EEHT07].

54

Research fields in Agent-based Computing

The first one includes approaches which deal with modelling of internals of MAS

systems, most prominently complex issues such as modelling open interaction with

the help constructs of interaction protocols, such as the Contract Net Protocol

(Smith [Smi80])24. Concepts of this area target towards the improvement of MAS

in general; as such works relating to this group tend to be rather self-reflective

(with regards to MAS).

On the other hand, MAS for the purpose of Modelling and Simulation, reflect a

wide field of different approaches, respectively simulators. Michel et al. identify

three categories of simulators, namely the overwhelmingly dominant group of ’one

shot’ simulators which are individually developed for a specific simulation case,

domain-dependent simulators (e.g. Conflict Research: GROWLab [WG06]; Ecol-

ogy: Echo [HJF97]) and finally generic simulators, applicable in various constella-

tions. Examples for the latter ones include Swarm [MRBCL96], Mason [LCRP+05],

RePast Simphony [NCV06], NetLogo [Wil99] and SeSam [KP98].25

Applying this understanding it becomes clear that nearly all simulation applica-

tions belong to the field of MAS for M&S; this differentiation is hardly helpful to

describe applications of MABS as of its MAS-centricism. Nevertheless, the classi-

fication of simulators helps to structure simulation applications by their degree of

specialization. A survey on MAS simulation toolkits which takes a different per-

spective and structures simulation toolkits by their (increasingly complex) execu-

tion models and distributedness is undertaken by Theodoropoulos et al. [TMEL09].

Although not further discussed at this point it supports the trend of increasingly

heavier agent notions in agent-based simulations.

To allow a more beneficial differentiation of distinct features multi-agent simula-

tion platforms26 have in contrast to multi-agent platforms the review of literature

from the simulation community seems useful. A comprehensive requirements anal-

ysis framework for MABS platforms, suggested by Marietto et al. [MDSC02], is

24Michel et al. [MFD09] provide further examples of this kind.
25At this point it can be anticipated that the development undertaken in this thesis yields

towards this group.
26The terms toolkit and platform are interchangeable for the understanding of simulation

platforms taken here.

55

Research fields in Agent-based Computing

particularly helpful in this context. Their framework, especially the subset of func-

tional requirements [MDSC02], identifies four core facilities:

• Technological Facilities describe the supported scheduling techniques, such

as equidistant time-stepping and discrete or continuous event scheduling.

• Domain Facilities discuss the mechanisms by which agents can be launched

(e.g. object, threads) as well as the handling of intentional failures and inte-

grating (controlled and non-controlled) environments.

• Development Facilities include means to develop agents (i.e. the supported

agent architecture), message handling, organisational structures (including

groups and societies) and the support of ontologies.

• Analysis Facilities summarize all mechanisms for the observation of (be-

havioural and cognitive) events and data analysis.

Applying those facilities to general purpose MAS especially two areas are hardly

explicitly concerned: Technological facilities such as scheduling, necessary to as-

sure a strong degree of fairness and replicability of results to accept MABS as a

credible research tool, are of secondary role in the case of MAS used for AOSE;

here operating system level threading fairness seems to be sufficient, given that

individual agents eventually get processor time and the required system function-

ality is delivered27. Taking into account reviews of MABS platforms, respectively

their rating schemes, helps to indicate particular differences between AOSE and

MABS platforms. Railsback et al. [RLJ06] provide an overview on popular plat-

forms but show a less elaborated criteria set in comparison to Tobias and Hof-

mann [TH04] who provide a very detailed systematic rating system but evaluate

(in the meantime) less popular platforms. Groups of criteria include ’Documenta-

tion and Support’, ’Modelling and Experimentation’ as well as ’Modelling options’.

Criteria from the category ’Modelling and Experimentation’ which are of interest

in this context include ’Support for modelling’ indicating the degree to which

modelling can be automated (ranging from the need to fully implement agents in

Java towards the potential to do advanced content-theoretical modelling without

27In fact most agent platforms do not consider an explicit fair scheduling at all, merely provide
building blocks for the implementer or use it to share operating system threads amongst agents
(such as in MadKit).

56

Research fields in Agent-based Computing

programming knowledge). Additionally ’Support for simulation control’ describes

scheduler capabilities (from simple ’running’ to advanced features such as manip-

ulation of parameters during runtime or the integration of differential equations

for simulation control).

Interesting criteria from the ’Modelling Options’ include the number of supported

agents as well as their complexity (which is not further explained by Tobias and

Hofmann [TH04]), their communication (ranging between no support to efficient

processing of complex data exchange processes) as well as the ability to nest agents

in the understanding of levels (ranging from the absense of nesting to an unlimited

number of levels).

When reviewing the rating for scheduling options it becomes apparent that the

application-level28 scheduling component in fact represents the bottom-line of the

feature set of those platforms. Even examples for less comprehensive frameworks,

such as Mason which merely provides a simplistic agent understanding with hardly

any communication means for agents, the powerful control and visualization ca-

pabilities are apparent. The strong emphasis on the control (of experiments) is

hardly of relevance in MAS for AOSE.

A concern not captured by the requirements framework or evaluation schemes, but

certainly of concern in contrast to general purpose MAS, is the consideration of

(pseudo-)random number generators – to firstly have a (nearly) equal distribution

of numbers, secondly, to be able to replicate number sequences in different rounds

to ease testing/debugging or, again, reproduce results.

The other area of concern are analysis facilities. Observation of distinct events

can often be monitored in general purpose MAS but rather fall in the category of

debugging mechanisms, often in the shape of agents29 or hooks for external moni-

toring (such as in MadKit). As of the high performance penalty involved, the use

of those facilities at runtime is hardly desirable which sharply contrasts to sim-

ulation systems where those are constantly available. Data analysis mechanisms

(apart from simple logging), especially considering ex-post analysis and reporting,

28Scheduling on application level is particularly relevant to capture the application/platform
semantics.

29Examples include the SnifferAgent in JADE and the MindInspector in Jason.

57

Research fields in Agent-based Computing

are not of concern in general purpose MAS.

An aspect drilling into the core of platforms is the strength of the supported

agent concepts and communication abilities. Mapping the scales of the compari-

son framework provided by Tobias and Hofmann [TH04] to MAS for AOSE makes

apparent that the ’Modelling options’ for AOSE-related multi-agent platforms

range on the strong end. AOSE-related agent platforms typically allow a strong

complexity of agent internals and provide support for meaningful direct interac-

tion. A particular advantage for organisational MAS in contrast to coarse-grained

agent platforms for AOSE – as far as introduced at an earlier stage – is their

builtin support for nested agents (as of their multiple levels). This, along with

powerful agent modelling capabilities and strong communication means, makes

the use of the meta-model implementations appealing for simulation purposes as

of the strong relation to society modelling demands in simulation packages. Re-

tracing the results for two still actively used platforms in Tobias and Hofmann’s

comparison (i.e. RePast and Swarm) it can be seen that the strength of inter-

action mechanisms significantly falls back in contrast to general purpose MAS30

despite their else strong means of agent modelling. This observation, along with

the generally weaker notion of agents, indicates that agents in simulations put a

stronger emphasis on indirect communication. Malsch [MSK+07] suggests that

direct communication is hardly of concern in social simulations. Instead commu-

nication even goes to the extent of communicating in a telepathic manner (see

Hutchins and Hazelhurst [HH95]) – directly reading (accessing) the other agent’s

mind. A consequent parallel trend is the use of general purpose platforms from

the AOSE field for simulation, particular when modelling is limited by lacking

support for particular features of interest, such as reasoning mechanisms or, as

indicated before, knowledge-level communication. Apart from this the increasing

available computing power now allows the use of larger numbers of conceptually

more powerful agents. Jason is a candidate to provide features ’compatible’ with

30In fact they only allows rudimentary interaction patterns with additional implementation
demand (see Tobias and Hofmann [TH04]).

58

Research fields in Agent-based Computing

social simulation, such as a synchronous scheduling31 along with its powerful rea-

soning mechanism and the provision of KQML as communication language (see

Bordini and Hübner [BH09]).32 An example for a simulation using BDI-level fea-

tures is given by Hofstede et al. [HJV09]. This general trend will presumably

continue when considering the increasing interest for the issue of (emergence of)

communication in the social simulation community (see Troitzsch [Tro09b]).

Not explicitly emphasized by Marietto et al. but a logical consequence of the mostly

indirect communication in social simulations is the role of the environment33. Its

often increased relevance in the context of simulation can be seen for three reasons.

Firstly, the often limited degree of agency (see Table 3.2 in its context) enforces a

stronger use of indirect communication34. Secondly, the environment represents a

field of constraints/conditions under which agents exist and act35. ’Conventional’

MAS platforms often imply (but do not enforce) the embeddedness in their ’nat-

ural’ environment (information systems or networks such as the internet) as their

paradigm is driven by the aspired openness; simulation platforms used as ’labora-

tories’ (as envisioned by the founders of the social simulation discipline) typically

need to constrain the openness of their environment (in short: model them as

closed systems) in order to ensure replication of a simulation, and as such put

more emphasis on a clearly defined environment concept. The last reason for the

explicit consideration of environments is the degree of realism in simulated systems

(in general), ranging from purely artificial environments (for the development of

a controlled initial behaviour) with the potential for transitions to increasingly

realistic environments (to test the realism of modelled agent behaviour (e.g. traffic

31Braubach et al. [BPL+06] suggest this as the key mechanism to use conventional agent
platforms in the context of simulations.

32By running Jason in conjunction with JADE, agents implemented in Jason are able to
interact with other ’FIPA-speaking’ agents.

33Tobias and Hofmann mention the modelling potential for the environment (e.g. modelling
of spatial aspects) in the category of ’Modelling options’.

34This shall be seen independent from technical implications by which communication can
always be seen as indirect (when considering the infrastructural environment as introduced in
subsection 2.2.2).

35For a more detailed discussion on the role of the environment refer to Troitzsch [Tro09a].

59

Research fields in Agent-based Computing

simulations, agent behaviour in virtual reality))36. The latter point, the applica-

tion of different environments for simulated models, suggests a development into

an interesting direction. The continuously increasing processing capabilities on

mobile devices – available to model implementations – allows to ’take them along’

and realizes an ubiquitous embedding in real environments on an individual level.

Summing up, the key differences between general purpose MAS for AOSE and

MABS (and particular social simulation) outlined in this context are scheduling

to ensure fair and replicable simulation results, explicit analysis and reporting fea-

tures as well as a (mostly) stronger emphasis on a controlled environment. Agents

in simulation packages rather rely on indirect communication mechanisms while

AOSE-oriented MAS put a stronger emphasis on direct communication. Beyond

that the general agent concept in platforms dedicated to the use with simulations

is of weaker nature. Exceptions of the latter make use of AOSE platforms for mod-

elling of simulations. Table 3.3 sums up the core differences between multi-agent

platforms for MABS and AOSE.

Platform Aspect
MABS-centric

Platforms
AOSE-centric

Platforms
Fair Scheduling + –
Random Number Generation + –
Analysis and Reporting Mecha-
nisms/Visualization

+ – / O

Direct communication – / O +
Indirect communication + O
Complexity of agent model – / O +
Importance of support for large
numbers of agents

+ O

Importance of the Environment + O
Open systems – +

– represents relatively weak importance for the according platform type
O represents a medium level of importance
+ represents relatively strong importance
multiple symbols indicate a ’fuzziness’ with regards to the relevance in platforms

Table 3.3: Feature support in Multi-agent Simulation Platforms in contrast to gen-
eral purpose Multi-agent Platforms

36Michel et al. structure the possible combinations of realism in both simulation model and
its environment (see Michel et al. [MFD09], p.33ff.).

60

Research fields in Agent-based Computing

3.2.4 Problems in Social Simulation

At this point the concept of social simulation has been briefly introduced and

differences of (the wider field of) MABS in contrast to classical MAS discussed.

Still, despite the increasing application of MAS in social simulation37 certain issues

persist – and partially lie in the nature of the interdisciplinary field.

As stated by Michel et al. [MFD09] the variety of available tools harms reproduc-

tion of simulation results and in consequence harms social simulations as a credible

discipline as such. Although the difference of the approaches is partially rooted

in the different sciences involved, key reason remains the gap between the MAS

paradigm and the modelling tools.

However, the issue of replication is a known problem in the social simulation

community. Practical measures taken against this is the electronic submission of

models along with publications38. This establishes a (though tool-dependent) re-

producibility of results, allowing third party reviews without being limited by often

incomplete specifications in the actual paper (as stated by Heath et al. [HHC09]).

This however, does not solve the issue of verification of the toolkit used (which

would eventually require a guarantee by its developer in turnaround).

Given that a unified view is not even reached within the – in contrast to the social

simulation experimenters – comparatively homogeneous MAS research field (with

its members typically deriving from computer science-related disciplines) this ex-

pectance should not be raised towards the dispersed disciplines of experimenters

using agent-based simulation tools. Again to be reinforced, when arguing for a

unification of the understanding of MAS in different fields, this is often done from

a MAS-centric standpoint against a model-centric user community – which again

applies a different understanding of the MAS paradigm. In consequence, this gap

is unlikely to be fully overcome, neither from MAS nor simulation side.

Another issue harming the replicability of simulations – given that documentation

is sufficiently precise – is the engineering divergence phenomenon [MGF04] which

describes the potential or even likeliness that implementations, based on a unique

37The survey provided by Heath et al. [HHC09] shows a clearly increasing trend in published
simulation results.

38An example taking this approach is the electronically published Journal for Artificial Soci-
eties and Social Simulation (JASSS) [JASc].

61

Research fields in Agent-based Computing

model, divert based on implementation language (e.g. expressiveness) and imple-

menter (e.g. thematician vs. computer scientist).39

Implicitly supporting this, Heath et al. criticize that simulation models are of-

ten based on numerous assumptions and raise the demand that published models

need to be sufficiently validated and fully documented40. In this context the lack-

ing methodological consense represents a drawback.

Whatever view taken on MAS it must be emphasized that in the area of simula-

tion in general and social simulation in specific self-criticism certainly should not

include lack of adoption41 (as in the case of AOSE). Rather issues such as repro-

duction of results or development of modelling patterns (or ’best practices’) are of

concern. Especially in social simulation the field of users is diverse – making com-

monly accepted methodologies tackling those purposes only harder to establish.

The suggestion that mentioned drawbacks of social simulation will limit its up-

take and existence as an own scientific discipline can be rejected when retracing

the increasing interest, particularly but not only in the field of economics. Gen-

eral stimulus for agent-based simulation in the latter field is driven by the recent

economic crisis (see ’The Economist’ [Eco]) but also the realization that the com-

plexity and fuzziness of dependencies clearly spans across the wider field of (not

only) social sciences (as indicated by Ball [Bal10]). This leaves agent-based social

simulation as the only applicable option42 to provide increasingly comprehensive

models43 to capture a wide range of real-life phenomena.

39Michel et al. [MFD09] specifically elaborate on the violation of the important hypothesis
(in Zeigler’s Framework for M&S) that the results of an model must not depend on the specific
implementation (i.e. not exactly one implementation but any reimplementation (on another
platform or in another language)).

40Assuming that the implementation represents the model (and thus successfully passed the
verification step as per Gilbert/Troitzsch methodology), this demand can be achieved in most
simulation toolkits (using code annotations and comments).

41Heath et al. [HHC09] document a significant increment of simulation-related journal publi-
cations.

42Drawbacks of purely mathematical approaches to ’total models’ (e.g. System Dynamics)
have been mentioned in subsection 3.2.1.

43The yet most comprehensive model of an economy has been realized in the context of the
Eurace project [DVD08] which considers numerous markets (e.g. labour, goods, finance) and
includes several million agents.

62

Chapter 4

Concurrency models of relevant

Technologies

The previous sections of this work have been fully dedicated to agent-related foun-

dations. This – considerably shorter – section provides an introduction into several

technologies potentially interesting for the integration into the micro-agent frame-

work. Key focus is on the concurrency models/handling mechanisms provided

with those which make their consideration for multi-agent systems attractive.

4.1 Concurrency

Before introducing the relevant technology, a short overview on concurrency shall

be provided. Upfront however is the question why we have to deal with concurrency

as such. The identifiable drivers are in fact twofold, one being the hardware

architecture market, the second our area of concern, agent-based systems.

4.1.1 On Concurrent Computing and its Relevance

In 2005 Sutter stated ”The free lunch is over” [Sut05] and critically analyzed the

changing market for CPUs whose trend of every-rising clock speeds he considered

the ”free performance lunch” [Sut05] for any available application. The devel-

opment of this trend has eventually reached its peak as of physical constraints

63

Concurrency Models of relevant Technologies

(power consumption, heat dissemination and current leakage) and made manu-

facturers switch to alternative approaches whose currently prevailing one1 is the

notion of multiple processing units on a die – multi-core CPUs. As a consequence

a concurrent layout of applications is imperative to exploit the full performance

potential but also to write well-performing applications in general (as performance

gains will be realized by further increasing numbers of cores rather than the quite

stagnant current clock speeds).

The concept of autonomy in agent-based systems implicitly incorporates the idea

of concurrency; considering their loose coupling an explicit ’programming’ of con-

currency in MAS applications should in fact not be necessary at all. However,

in practice – and depending on the kind of MAS application – handling of con-

currency still is an implementation-level concern harming a consistent ’thinking

in agents’ – especially when accessing common resources such as an environment.

To avoid the complexity associated with this, platforms either escape to the very

safe ground of sequential execution (as most simulation platforms and (option-

ally) Jason), introduce strong abstractions for communication (including a high

performance penalty (e.g. JADE and OPAL)) or delegate it to the user (e.g. legacy

OPAL micro-agents).

Given the understanding for the need to consider concurrency in the context of

contemporary software engineering, the usage of this concept in prior sections of

this work needs to be backed with an unambigious understanding: In this context

Concurrency is understood as a property which describes the ability to process

multiple tasks/programmes in a seemingly or factually parallel manner. Here the

important but unsharp distinction from parallel computing should be drawn. Par-

allel computing refers to tasks which are actually executed at the same time – be it

multi-core, multi-processor or (coordinated) distributed systems.2 Although this

may actually be the case, most often – and most intuitive in the case of single-

processor machines – the execution of tasks is interleaved in a sequential manner,

giving the perception of parallel processing. In consequence the scheduling of the

1Hyperthreading – an earlier trend in processor architectures – extends regular CPUs by
additional registers to store virtually parallel executed instructions but does not allow actual
parallel computation.

2A valuable source on concurrent and distributed computing is Ben-Ari [BA06].

64

Concurrency Models of relevant Technologies

execution is delegated to the system scheduler. Parallel computing has a stronger

link to processor architectures while concurrent computing refers to concerns of

handling multiple (often interdependent) tasks in programs, thus has stronger soft-

ware engineering links. Although parallel computing defines numerous subtypes

of parallelism3, in this context the major difference shall be ’seemingly parallel’

(= concurrent) and ’factually parallel’ processing.

Programmes, typically developed as independent (however, not isolated, i.e. they

may communicate with other programmes) units, run as individual processes which

hold their own resources. Within a process multiple threads of execution (threads)

have access to the (then) shared resources and produce the concurrent behaviour

of this programme. Some (predominantly high-level) languages4 introduce the

notion of threads to model this in-programme concurrency; they represent the

bottom-line of concurrency discussed in this work.5 Key difference is thus the

necessity to model access to shared memory on thread level which represents the

core problem to be tackled in this work when talking about concurrency.

4.1.2 Concurrency Handling Mechanisms

A problem of stronger relevance than the concept of concurrency itself is the trade-

off between exploitation of scalability effects by a concurrent layout of applications

(seeking for fully concurrent and thus independent software units) versus coordi-

nation of the access to state (which is necessary to provide the coordinated overall

system functionality). Coordination mechanisms from both opposing fields are

described in the following.

In order to achieve shared memory communication – the yet typical approach in

conventional object-oriented systems – access to shared memory needs to be syn-

chronized using locking mechanisms such as mutexes (marking ’critical sections’),

(counting) semaphores (see Dijkstra [Dij65]) or monitors. Facilities of this kind are

found in languages such as Java (or can be modelled from existing mechanisms).

3See [Wik] for a broad overview.
4Examples include Java [AG99], .NET [NET] as well as the next release of the C++ standard

[Nex10].
5For further discussion of formal aspects and state models the reader is referred to Magee

and Kramer [MK06].

65

Concurrency Models of relevant Technologies

They can allow efficient handling of concurrency as the developer has the full con-

trol within his code. The downside of this approach is similarly the fact that the

appropriate use is left to the developer, and as such essentially depends on the skills

of the developer (Example for simple problem: Wrong choice of locking granularity

can easily lead to deadlock.). Especially in the context of object-oriented languages

this is considered harmful as object-oriented modelling per se does not respect the

multiple threads of execution (as stated by Ousterhout [Ous96]). Threads break

the rule of abstraction between different modules, interdependencies in combina-

tion with non-deterministic scheduling of threads can lead to hardly identifiable

deadlocks or unsynchronized access. This harms reusability and portability of

code across different platforms6, the lack of predictability demands for careful in-

spection during testing.7

More recently discussed approaches8 to handle shared memory in the context of

concurrent computing is Software Transactional Memory which effectively seeks to

extend the concept of transactions known from the area of Database Management

Systems (DBMS) to programming languages.9 Similar to the relief of the applica-

tion developer from memory management by the delegation of memory manage-

ment to the programming languages (such as in Java [AG99] or Haskell [Has]),

transactional memory relieves the application developer from concurrency man-

agement, thus making the handling of concurrency a system-level concern.10

Key concerns in STMs are the problems of versioning, conflict detection and nested

transactions (see Adl-Tabatabai et al. [ATKS07]). In case of the first, the concern

is how to manage rollback of state changes. Decisions in the context of versioning

6Although this is not generally the case for Java applications, application behaviour can
significantly change depending on the degree of implementation. An example for such issues is
Thread.yield() – usable to induce a more cooperative behaviour of threads – as of its varying
implementation on operating system scheduler level (see [Thr]).

7Here the developer should be similarly sceptic as with the use of pseudo-random number
generators in simulation applications (see subsection 3.2.2).

8Although the origin roots back to 1986 (see Knight [Kni86]), the concept of purely software-
based transactional memory has been elaborated in 1997 (see Shavit and Touitou [ST97]).

9Here to mention is the fact, that the durability property of the ACID (Atomicity, Isolation,
Consistency and Durability) properties is left to the actual implementation/language as the
shared memory is typically maintained in the heap, not on the disk (or at most virtually in
shape of swap memory).

10Typical approach is to annotate according code sections and read and write to those without
further (or minor) restrictions.

66

Concurrency Models of relevant Technologies

include the consideration of the size of possible transactions (i.e. the size of the

necessary buffers maintained as additional memory overhead) as well as the degree

of optimism of the writing strategy.

Versioning is realized as eager versioning where changes are written immediately

(thus achieving performance advantage when successfully committing but perfor-

mance penalty on roll-back) or as lazy versioning in which case all changes are

kept in a buffer until the final commit. In the latter case committing the changes

is slower; the roll-back is fast.

Conflict detection has to deal with the issue of granularity and includes risk of

false detections if conflict detection works too coarse-grained (e.g. concurrent ma-

nipulation of object fields while level of versioning granularity can only capture

object as a whole, thus cannot resolve conflicts inside an object) vs. the perfor-

mance penalty when considering a fine-grained detection (e.g. on bit-level).

The handling of nested transactions is imperative when considering to completely

relieve the application developer from concurrency concerns (which is intuitive

when thinking about the composition principles in the context of object-oriented

programming – and in consequence agent-oriented programming). Especially when

accessing third party libraries the internals of those (and their use of STMs) should

not be of concern to the developer; different data structures might themselves be

backed by STMs11.

The consequently opposing approach to communication via shared memory is the

idea not to share anything at all (’share nothing’) but to rely on Message Passing

between software components. In fact message passing always plays a signifi-

cant role in object-orientation when accessing functionality of different objects as

object-oriented programming languages such as Java or Smalltalk [Sma98] rely

on synchronous message passing. This pure approach remains only suitable for

single-threaded applications as the method call to other objects is firstly block-

ing and secondly assumes the synchronous representation of data in each object

11A data structure showing STM-like patterns is the ConcurrentHashMap implementation
in Java which garantees consistency at any time and is segmented to allow concurrent write
access [IBMb].

67

Concurrency Models of relevant Technologies

at any time. When dealing with concurrency those two issues are hardly suit-

able nor can be fulfilled. Scalability effects (as of Amdahl’s law12) can hardly be

achieved when considering the blocking call of methods on other objects. Excep-

tion is the consideration of inherently simple objects which do not hold state but

expose short-running methods for external use. Especially when holding state a

synchronicity of state representation in different objects can hardly be assumed if

using multiple threads of execution.

The use of asynchronous message passing to allow non-blocking communication be-

tween different software entities – and essentially rooted in the area of distributed

systems – both eliminates the necessity to consistently represent state and to allow

scalability effects as of its non-blocking nature. A pattern typically associated with

asynchronous message passing in the context of software engineering is the actor

pattern (as introduced by Hewitt et al. [HBS73] and extended by Agha [Agh86]).

Its use has recently been popularized by the increasingly recognized functional

inspired but multi-paradigmatic Erlang [AVWW96] programming language, orig-

inally developed by the Eriksson telecommunication company to develop robust

decentralized systems. However, in the meantime concepts and implementations of

Asynchronous Message Passing are available for various programming languages

traditionally focusing on lock-based concurrency handling mechanisms such as

Java. Criteria to qualify implementations as consistent with the actor pattern

include [Agh86]:

• Encapsulation of both internal state (of actors) from direct external access

(state encapsulation) as well as ensuring that messages can only be read by

one actor at a time (safe messaging). The latter typically results in message

copying instead of passing an in-memory reference.

• Fair Scheduling includes the idea that actors should be scheduled in a fair

manner, i.e. provide fair access to processor resources13.

12Amdahl’s law effectively states that a potential speedup achieved by parallelizing a pro-
gramme is limited by the fraction of the remaining sequentially executed code.

13This does not imply that actors need to get an equal amount of processor time – this
is entirely dependent on the scheduling means (e.g. preemptive scheduling versus cooperative
scheduling) – but equal opportunity to execute their logic.

68

Concurrency Models of relevant Technologies

• Location Transparency refers to the principle that an actor’s name/address

should be immutable and independent from its actual location, freeing its

user from any location-related concerns. This is especially helpful in con-

junction with the final property, mobility.

• Mobility describes the ability of actors to change their location of execution

at runtime which comes in flavours of weak mobility – only comprising of the

actual code which is reinstantiated on the target node – and strong mobility

which also considers the transmission of state allowing processing without

discontinuation during the movement between nodes14.

The obvious downside of the fully concurrent application modelling approach is the

fact that the determination of an overall system state becomes a non-trivial task

as of its inherent decentralization (in contrast to the shared memory coordination

mentioned above). The semantic criteria of the actor pattern give a spectrum of

properties to consider when applying asynchronous message passing, independent

from the degree to which those properties should be fulfilled.

The mentioned concurrency handling mechanisms show the range of possible ap-

proaches to tackle coordination in concurrent systems and the consequences –

using indirect communication via shared memory and as such effectively centrally

coordinated system state versus the use of messages as a medium to coordinate

fully decentralized state.

Figure 4.1 provides a schematic overview of the coordination means in concurrent

systems discussed in this subsection.

Figure 4.1: Concurrency handling mechanisms

14This concept has already been discussed in the context of agent properties (see subsection
2.1.1).

69

Concurrency Models of relevant Technologies

4.2 Technologies in the Intersection of AOSE and

Concurrent Computing

This section presents contemporary technologies which are appealing from both

the perspective of agent-based systems – and in specific the direction taken in

this work – as well as of their representative roles with regards to the mentioned

concurrency handling approaches.

4.2.1 Clojure

In the stream of porting various languages to the Java Virtual Machine (JVM) –

as a de facto standard for platform-independent code execution – a recent move

is the introduction of languages of different programming paradigms. Those ex-

ploit the potential of the virtual machine while avoiding to be confined to Java

as a programming language (and along with this the object-oriented program-

ming paradigm). An example for this trend is the (factually multiparadigmatic)

language Clojure [Hic10a], a LISP dialect allowing the developer to interactively

develop applications with the LISP-typical Read-Eval(uate)-Print-Loop (REPL)

which is fully interoperable with the Java programming language (and as such

allows runtime access to Java functionality). Along with this come the principles

of the functional programming paradigm. Those include the use of higher-order

functions (i.e. functions which take functions as input and/or output), the avoid-

ance of side-effects by emphasizing recursion instead of iteration and the avoidance

of mutable state as far as useful. The stronger emphasis on functions in favour

of state and promotion of immutable state makes functional languages specifically

suitable for concurrent processing. In this area Clojure can provide significant

handling improvements over Java’s conventional lock-based strategies. To limit

the effects of the memory overhead used for the predominant use of immutable

data structures, lazy initialization delays the evaluation of functions to the time

of the explicit request for a result.

As of its nature as LISP dialect the Clojure syntax is based on symbolic expres-

sions (S-Expressions) allowing strong parentheses-based nesting capabilities which

can lead to a significantly reduced amount of code compared to languages such as

70

Concurrency Models of relevant Technologies

Java. The development of prototypes – but not necessarily the maintenance – is

eased by its dynamic type system.

Apart from the lack of functional features in Java itself, the further motivation

for the consideration of Clojure is its more powerful (and more automated) means

of concurrency handling. In order to achieve this the manipulation of mutable

state can be backed by the inbuilt STM. Clojure hides those mechanisms nearly

completely (apart from explicitly annotating the code sequences which should be

processed as a transaction) from the developer but offers different mechanisms of

varying strength to achieve this:

• Vars encapsulate state which is changed in a thread-local manner, i.e. changes

are only valid for the manipulating thread. As the manipulation only affects

isolated threads, a backing by the STM is needless.

• Transactional References (Refs) allow the ”coordinated, synchronous change

of multiple locations” [Hic10b]. Changes to all references in the transaction

appear to happen at the same time for all potentially accessing threads.

• Atoms describe synchronous change of state but do not ensure that it is

coordinated. As such it can not be ensured that all readers of the state read

the same value at the same time. However, the change is atomic; either old

value or updated value are returned15. Atoms are computationally cheaper

than Refs and are of use if coordination is of minor concern.

• Agents are similar to atoms as they do not consider the coordinated change.

In difference to the former, however, change is processed asynchronously in

shape of a function sent as a message which is eventually executed using the

encapsulated agent state as parameter. The result is the new agent state.

Apart from the potential productivity advantage of the additional language paradigm

its concurrency features introduce an alternative to the conventional locking mech-

anisms of Java. Considering the strength of the available agent concept, it merely

classifies as asynchronous with regards to its execution; autonomy is of no concern

(see documentation [Hic10b]).

15This satisfies the characteristic of consistency in transactions.

71

Concurrency Models of relevant Technologies

4.2.2 Android

The convergence of mobile and traditional desktop computing, indicated by the

range of device types mediating this transition (e.g. net books, smart phones), is

continuously taking place. Along with the increasing computing power available

on mobile devices, operating systems and programming languages are beginning

to converge similarly. One recent example of this development is the Android ap-

plication platform which originally targeted the smart phone market but has yet

grown beyond this scope and is increasingly considered as operating system for

netbooks or the currently hyped ’pads’ respectively tablet PCs.

Essentially Android is a software stack centered around a custom Linux kernel

which integrates the actual hardware components (e.g. camera, wireless LAN,

...) and makes them accessible via an extensive libary set which includes net-

work support, graphical user interfaces, security and various further functionality.

Along with this Android comes with an own optimized virtual machine – similar

to Java’s one – which allows to develop applications using Java syntax. Atop of

that Android provides a so-called application framework which is used to man-

age the different functional elements available in the system, such as Telephone

Manager, Location Manager or Notification Manager. The use of the libraries

along with those management elements are building blocks for own applications.

The development principle is consistent – all provided applications (including the

ones provided from phone vendors) are developed using the same mechanisms,

thus allow the comprehensive change of all provided applications (e.g. the dialer

application to make phone calls).

Although Android allows development using the Java syntax and provides a wide

range of Java libraries, it falls short in providing the full set of functionality out

of the box (e.g. Just-in-Time compilation, numerous libraries (e.g. Swing)). How-

ever its support goes further than the feature set of Java 2 MicroEdition (J2ME)

(which does not provide reflection and serialization). A schematic overview of the

full Android stack is provided on its website [Andd].

72

Concurrency Models of relevant Technologies

Apart from its architecture Android provides an innovative application develop-

ment principle composing full applications from loosely coupled so-called applica-

tion components which will be briefly introduced at this place – more information

can be found on the according website [Andb].

Activities describe application components which run in the foreground, thus (typ-

ically) provide a GUI to the user and are usually rather short-running. Their ex-

ecution (especially of inactive activities) is of lower priority; they will eventually

automatically be removed from memory in case of lacking resources.

Services are the background complement of activities but are rather long-running.

They are less likely to be subject of removal from memory.

Broadcast Receivers are a mechanism to capture raised events, be it system events

(e.g. system started, SMS received) or user-defined events. They have a short life

span and are just started in case of an event and stop execution once their code

body is executed.

Content Providers encapsulate persistent unique storage locations such as the con-

tacts list or the media library of the system and make those accessible to any other

component.

The composition of those application component types into actual applications is

realized by means of intents16. In the Android context, an intent ”is a passive data

structure holding an abstract description of an operation to be performed - or, of-

ten in the case of broadcasts, a description of something that has happened and is

being announced.” [Andc] Apart from this characteristic as an abstract message

container – it holds both requests as well as general information – intents are pro-

cessed asynchronously. Core properties of intents include actions to be performed

(e.g. PICK, VIEW), context-related data in the shape of an Uniform Resource

Identifier (URI) (e.g. tel://23729797) and categories, describing the desired ca-

pability of a target component (e.g. BROWSABLE (indicating that the intent

(content) can be processed by/passed to an internet browser)). Additionally arbi-

trary custom information can be passed along in a HashMap-like data structure.

Although the structure of intents is of generic type the dispatch mechanisms are

16In fact intents are only used to connect activities, services and broadcast receivers; the use
of content providers is left out of focus at this point.

73

Concurrency Models of relevant Technologies

not; developers need to specify the target application component type for specific

intents (e.g. Activity, Service) respectively sending mechanism (startActivity(),

startService() or sendBroadcast()). The actual flexibility and expressiveness

of intents becomes more apparent when introducing the notion of intent filters.

Intent filters are attached to target components and describe their capabilities

(i.e. actions, processable data and category). Based on those intent filters appli-

cation developers can address application components either via explicit intents

(which specify the target component’s class name) or implicit intents in which

case the target component is described using intent filters which are resolved to

an actual target at runtime. Considering those features, intents allow a very loose

coupling which eventually allows the exchange of components at runtime without

necessarily breaking application functionality. Again to be mentioned, limitation

to this loose coupling is that the application developer needs to know in advance

which component type (i.e. activity or service, ...) to resolve. With these built-

in asynchronous message passing and execution mechanisms, Android handles all

concurrency aspects and keeps the application developer from dealing with those

aspects – unless explicitly desired. This approach in fact allows a strong and flex-

ible integration with components outside the actual application – especially when

external functionality such as internet browser or phone application are used as

those might differ in different environments, i.e. different phones. Eventually ap-

plications are only tied together by the application manifest, a XML file, which

explicitly describes all application components as well as intent filters along with

necessary permissions17.

For clarification simple examples for explicit and implicit intents are given in List-

ing 4.1.

1 /* Creation of an explicit intent (for target ExampleActivity.class).

2 * The context from which intents should be sent is given

3 * (here: ’this ’ - the activity running this code) */

4 Intent intent = new Intent(this , ExampleActivity.class);

5 startActivity(intent);

6

7 /* Creation of an implicit intent.

17Android applications need to have explicit permissions to perform tasks such as accessing
contacts or internet resources.

74

Concurrency Models of relevant Technologies

8 * It asks the user (via GUI) to pick a person from the

9 * contacts list (activity to do this is not given)

10 * and returns the result (via another intent) */

11 Intent intent = new Intent ();

12 intent.setAction (" ACTION_PICK ");

13 intent.setData (" content :// contacts/people /");

14 /* Limitation: The component target type needs to be known (here: activity). */

15 startActivity(intent);

Listing 4.1: Examples for Android intents

Summing up, Android provides a mechanism combining both asynchronous mes-

sage passing (in contrast to Clojure’s STM) and loose coupling for the construction

of applications in a flexible manner. Its infrastructure in fact bears similarities with

the one of multi-agent systems. This aspect motivates its consideration for this

work and is explored at a later point.

4.3 Java-based Asynchronous Message Passing

Frameworks

The concurrency properties of the technologies discussed above take a clear (and

certainly opposing) position on how to model communication in concurrent sys-

tems. Still, those technologies target specific areas – Clojure as a LISP dialect

for interactive programming and Android’s mechanism runs only on the operat-

ing system itself. In order to show the landscape of Java-based asynchronous

message passing frameworks and to select candidates for direct integration into

a multi-agent platform a performance benchmark has been undertaken to show

specific strengths and weaknesses. The results of this investigation will be briefly

replicated at this place. For a more intensive discussion and introduction of the

frameworks refer to [FNP10].

Although earlier benchmarks with regards to the performance of message passing

frameworks have been undertaken (e.g. by Karmani et al. [KSA09]), they particu-

larly focus on an actor-centric view – and thus design according scenarios. While

one objective of interest, performance, is similar in this context, the scenario is

done in a more agent-like fashion and considers a differing set of message passing

frameworks:

75

Concurrency Models of relevant Technologies

This scenario involves a parameterized number of agents allocated on a two-

dimensional grid. Every agent initially holds its coordinate as a state, ensuring

a unique state for all agents. A subset of all agents is then activated. Those

request ’state’ from other randomly chosen agents. If not in a transaction with

other agents, agents will accept those requests and subsequently exchange the

state, i.e. the coordinate. Along with the state exchange the activity is passed

along; agents which have successfully requested a state exchange become inactive

and their counterparts actively request the next exchange with a new randomly

selected partner. This procedure is repeated until the first agent succeeded in ex-

changing state for a parameterized number of times, in this case 1000 times. The

benchmark stops timing and collects the number of all transactions to calculate

the message throughput of the framework. Along with this the standard deviation

of achieved transactions of all agents is calculated to determine the fairness with

which agents have been activated to exchange their values. In order to make the

frameworks comparable, a unified HashMap-based message structure has been in-

troduced where feasible.

The results of the benchmark, reproduced in Figure 4.2 (performance) and Table

4.1 (fairness), reveal various performance and fairness clusters which are related

to messaging principles and internal architecture.

Number of agents Kilim Jetlang
Actor

Foundry
Actors
Guild

Korus

100 25.1 465 431 425 25.5
225 25.4 446 432 433 24.3
10000 24.7 431 432 – 26.4
40000 25.7 232 232 – 27
160000 25.7 115.8 115.8 – 27
250000 25.7 92.67 96 – 27

Table 4.1: Fairness of Message Passing Frameworks (as standard deviation of
rounds) for selected number of agents

Those results will be summarized and briefly interpreted at this point. Context-

relevant information about the frameworks is provided.

The most significant difference in performance results can be perceived for the

messaging frameworks which provide safe messaging by serialization – and as

76

Concurrency Models of relevant Technologies

Messaging performance per Number of AgentsMessaging performance per Number of Agents
700

Messaging performance per Number of Agents
700

d

Messaging performance per Number of Agents

600

700

on
d

Messaging performance per Number of Agents

600

700

co
nd

Messaging performance per Number of Agents

500

600

700

se
co

nd

Messaging performance per Number of Agents

400

500

600

700

es
 /

se
co

nd

Messaging performance per Number of Agents

400

500

600

700

ag
es

 /
se

co
nd

Messaging performance per Number of Agents

300

400

500

600

700

sa
ge

s /
 se

co
nd

Messaging performance per Number of Agents

300

400

500

600

700

es
sa

ge
s /

 se
co

nd

Messaging performance per Number of Agents

200

300

400

500

600

700

0
m

es
sa

ge
s /

 se
co

nd

Messaging performance per Number of Agents

100

200

300

400

500

600

700

00
 m

es
sa

ge
s /

 se
co

nd

Messaging performance per Number of Agents

100

200

300

400

500

600

700

10
00

 m
es

sa
ge

s /
 se

co
nd

Messaging performance per Number of Agents

100

200

300

400

500

600

700

10
00

 m
es

sa
ge

s /
 se

co
nd

Messaging performance per Number of Agents

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Messaging performance per Number of Agents

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Messaging performance per Number of Agents

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Number of agents

Messaging performance per Number of Agents

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Number of agents

Messaging performance per Number of Agents

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Number of agents

Messaging performance per Number of Agents

Jetlang Korus Kilim

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Number of agents

Messaging performance per Number of Agents

Jetlang Korus Kilim

A t G ild (i li ti) A t G ild (i) A t F d (i li ti)

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Number of agents

Messaging performance per Number of Agents

Jetlang Korus Kilim

ActorsGuild (serialization) ActorsGuild (in-memory) ActorFoundry (serialization)

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Number of agents

Messaging performance per Number of Agents

Jetlang Korus Kilim

ActorsGuild (serialization) ActorsGuild (in-memory) ActorFoundry (serialization)

ActorFoundry (in-memory)

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Number of agents

Messaging performance per Number of Agents

Jetlang Korus Kilim

ActorsGuild (serialization) ActorsGuild (in-memory) ActorFoundry (serialization)

ActorFoundry (in-memory)

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Number of agents

Messaging performance per Number of Agents

Jetlang Korus Kilim

ActorsGuild (serialization) ActorsGuild (in-memory) ActorFoundry (serialization)

ActorFoundry (in-memory)

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Number of agents

Messaging performance per Number of Agents

Jetlang Korus Kilim

ActorsGuild (serialization) ActorsGuild (in-memory) ActorFoundry (serialization)

ActorFoundry (in-memory)

0

100

200

300

400

500

600

700

25 250 2500 25000 250000

10
00

 m
es

sa
ge

s /
 se

co
nd

Number of agents

Messaging performance per Number of Agents

Jetlang Korus Kilim

ActorsGuild (serialization) ActorsGuild (in-memory) ActorFoundry (serialization)

ActorFoundry (in-memory)

Figure 4.2: Performance results for Asynchronous Message Passing frame-
works

such satisfy one key criterion of the requirements for actor frameworks as defined

by Agha [Agh86] and discussed in subsection 4.1.2. Only two of the surveyed

frameworks provide support for serialization during transmission, namely Actors-

Guild [Actb] and ActorFoundry [Acta]. Eventually their throughput is equally

low as the Java serialization is the bottleneck during processing (see the lowest

(overlapping) curves in Figure 4.2). The serialization approach is prohibitive for

high-performance message passing (especially when considering the micro-agent

concept). In contrast, the use of in-memory message passing, i.e. the sending of

pointers to messages is significantly faster but bears the risk of manipulation of

actual message objects after sending. However, for the context of this work this

risk is acceptable.

For the in-memory versions of the frameworks (both frameworks mentioned above

provide a serialization mechanism as well as passing of memory references) two

fast ones, namely ActorFoundry and Jetlang, can be identified. However, Ac-

torFoundry’s performance continuously declines throughout the test, indicating a

limited scalability. Jetlang remains the overall fastest framework. The alternative

Kilim [SM08] has a balanced performance eventually achieving similar through-

put as Jetlang for higher number of agents. A framework constantly ranging at

77

Concurrency Models of relevant Technologies

around half the throughput of Kilim is Korus [Kor]. ActorsGuild shows the weak-

est performance for in-memory message passing – and eventually quits execution

for larger number of agents.

Considering the fairness results, clusters are clear-cut. Kilim and Korus show sim-

ilar fairness values ranging within the unfairness caused by Java’s pseudo-random

number generator. All other frameworks tend to have a considerably unfair al-

location of resources, all of them showing standard deviations of more than 400

transactions. Given this background, the framework which is most successful in

managing the trade-off of being both fast and fair is in fact Kilim. However, the

reason for its performance is hidden in its architecture. It provides a centralized

scheduler with according worker threads backing the individual communicating

entities. In order to achieve a fast dispatch of messages it introduces the post-

compilation step of ’weaving’ – a reference to the framework’s name – which op-

erates directly on Java bytecode and eventually resolves the ’method yielding’ in

Java class files with explicit references (see Srinivasan and Mycroft [SM08] for

details). A framework showing similar architectural principles but avoiding this

proprietary change of class files is Korus. An example for a framework not pro-

viding a central scheduler but delivering messages in a best-effort manner between

different thread-backed fibers is Jetlang. Although the performance is high as of

the lacking central scheduler, the fairness is limited as no central instance controls

a fair dispatch of messages.

Summing up, asynchronous message passing frameworks for Java are consider-

ably widely available but – although calling themselves actor frameworks – give

up safe messaging characteristics in favour of fast passing of memory references.

This bears the risk of manipulation by the sender after sending but is yet the sole

approach to allow high-performance asynchronous message passing in Java.

Given the introduction to concurrency handling mechanisms in different technolo-

gies (Clojure and Android) as well as native Java, we now have a basis for design

considerations for the reimplementation of the micro-agent framework.

78

Chapter 5

Reimplementation of the

Micro-agent concept

After covering the base concepts relevant for this work and the research fields sur-

rounding it, now the actual agent framework of concern, OPAL – and specifically

its micro-agent layer –, is introduced. After introducing its concept the limita-

tions of the current implementation are highlighted. As a result amendments to

the actual concept as well as concrete requirements for its redesign are identified.

Following this the actual design with consideration of the introduced technologies

is described.

5.1 Existing Micro-agent Framework and Require-

ments for a Successor

5.1.1 The existing concept and implementation

The Java-based Otago Agent Platform (OPAL) [NBPC01] is a general-purpose

agent platform. Its development started nearly one decade ago in the context of

the New Zealand Distributed Information Systems (NZDIS) project at the Univer-

sity of Otago. OPAL itself is an implementation of the FIPA Abstract Architecture

(see subsection 2.2.3) and as such satisfies all necessary requirements by provid-

ing components such as Agent Management System (AMS), Directory Facilitator

(DF) and Message Transport System (MTS) – AMS and DF are implemented as

agents themselves. Agents developed with OPAL are FIPA-compliant with respect

79

Reimplementation of the Micro-agent concept

to architecture and agent communication language. As OPAL is completely writ-

ten in Java and – on this high level – driven by standard-compliance, the MTS

is an implementation of an extended version of the Java Agent Services (JAS).

JAS is effectively a set of Java interfaces and is specified via the Java Community

Process1 to allow a standardized mapping of (technology-independent) agent com-

munication onto specific network level transport services – supporting the idea of

’pluggable’ services.

Internally OPAL presents itself in a less standardized manner: The rather coarse-

grained OPAL agents are extensions of so-called micro-agents which represent ”

... the lowest and most primitive level of agent instantiation.” [NBPC01] Micro-

agents trade commitment to FIPA standards against flexibility and performance

and are the key to OPAL’s flexible multi-level approach to AOSE.

The micro-agent concept, originally introduced as KEA2 [NPC01], describes an or-

ganisational MAS model – putting emphasis on the agent organisation and the de-

composition aspects rather than collections of individual agents. As such the agent

understanding is essentially of weak nature and is defined as a persistent entity in

a MAS playing ” ... one or more particular roles in a society of agents” [NPC01].

Roles in turnaround are specificiations of ”cohesive sets of behaviours, functions

or services in a multi-agent society” [NPC01]. Role specifications are independent

from the implementation, i.e. each agents can use varying implementations to sat-

isfy the role specification. Micro-agents themselves can be responsive, i.e. do not

control an own thread of execution but are reactive towards external stimuli. Once

activated they can initiate social interactions themselves, including the ability to

react towards (execution) goal requests (e.g. by means of commitment, refusal or

fulfillment). Autonomous micro-agents control their own thread of execution and

can manage a group. A Group is modelled as a role specialization. The agent

playing this role manages the according group; groups only have one leader, the

group owner. Agents can be functionally decomposed into sub-agents (which are

micro-agents themselves). The management features (in-group communication,

1It is specified in Java Specification Request 87 [JSR] but has never found introduction into
any Java specification. Its sources can today be found under [JASb].

2KEA is a recursive acronym for ’KEA Enterprise Agents’.

80

Reimplementation of the Micro-agent concept

life-cycle management) of the group mechanism allow this to take place in a struc-

tured manner. If agents are composed from sub-agents (and in fact show direct or

indirect cooperation behaviour) the composed higher-level agent can be considered

an agent system.

The concept recognizes agents and roles as first-order concepts but from a software

engineering point of view more emphasis is put on the role – in contrast to the

agent which is seen from an infrastructural point of view: Application developers

extend (specialized) roles whose instances are attached to an agent which merely

serves as runtime container. In turnaround agents in the micro-agent package do

not exist without at least one instantiated role; agents die when giving up roles,

yet only can add roles, not remove those (in case of multiple roles). This differs

from the actual OPAL agents which extend the default agent implementation but

provide more explicit role handling capabilities to allow the developer to han-

dle the registration of roles (not all roles played by an agent should necessarily

be announced in the context of open systems) with the FIPA-specified discovery

mechanisms. Role information of micro-agents is generally accessible for discov-

ery by other (and only) micro-agents. Figure 5.1 provides a brief overview of the

high-level concepts in the original concept3.

Considering the (performance-) efficiency-driven simplistic notion of this concept

Visualized following: Nowostawski et al. [NBPC01]

Figure 5.1: Original Micro-agent Concept

(from hereon summarized as efficiency principle) and low level of abstraction from

3A similar overview is documented in the original publication [NBPC01]; the figure provided
here considers terminological changes in the reimplementation (which do not have semantic
implications).

81

Reimplementation of the Micro-agent concept

implementation, its attractiveness becomes clearer when looking at some of its

fundamental mechanisms. Those are the agent organisation, communication and

means of agent discovery.

All agents on the system are implicitly forced into a hierarchical4 relationship via

the aforementioned group concept and belong to at least one group whose owner

can in fact control its group members. At the highest level a special agent im-

plementation, the so-called SystemOwner, is introduced to satisfy this condition

for every level – it is the only agent being in a recursive relationship as being its

owning group’s owner and does not provide any further capabilities. This principle

enables a consistent agent/role discovery mechanism throughout all levels of agent

systems.

Communication takes place by means of method calls. Roles need to imple-

ment the Provider and/or Customer interface which enforce the implementa-

tion of performative-named methods (such as achieved(Provider sender, Goal

goal)) which in turnaround include the role-specific implementation for goal han-

dling. The necessity to provide the calling role as a parameter is based on the Java

limitation that the origin of a method call can not be identified by the callee. The

requirement to implement the according interfaces (i.e. SocialRole) provides the

key for role-based discovery of agents in the platform. As such the micro-agent

platform strongly relies on Java’s dynamic proxy mechanism which is part of the

Java’s reflective meta-programming capabilities. This is similarly the case for goals

which implement a Goal interface which is the basis for arbitrary (user-defined)

specializations of goals. Goal objects encapsulate all necessary information for

their execution without a unified structure, reducing the necessity to provide fur-

ther meta-data. Both sender and goal executer need to interpret specific goal

specializations which can be distinguished via the Java class hierarchy. A collec-

tion of pseudo-code examples shall be given to clarify the explanation given to this

point.

4Being aware of the etymological inadequacy the use of levels of agent systems represents an
alternative.

82

Reimplementation of the Micro-agent concept

Listing 5.1 shows an example implementation for a service provider which imple-

ments the according Provider interface and its request() method5.

1 public class ServiceProvider implements Provider {

2

3 public void request(Customer sender , Goal goal){

4 if(goal.getClass (). equals(ServiceGoal.class)){

5 sender.commit(this , goal);

6

7 /* process goal and respond with sender.achieved () or

8 sender.failed(), */

9

10 } else {

11 //Goal received is unknown

12 sender.unknown(this , goal);

13 }

14 }

15 // further method implementations (e.g. subscribe ()) are omitted

16 }

Listing 5.1: Implementation of ServiceProvider

Listing 5.2 shows the according customer counterpart implementing the performa-

tive methods for potential replies of the provider as well as a custom start-

Interaction() method which initiates the interaction between customer and

provider.

1 public class ServiceCustomer implements Customer {

2

3 public init (){}

4

5 // implementation of interface method

6 public void commit(Provider sender , Goal goal){

7 // process commit of provider

8 }

9 // implementation of interface method

10 public void achieved(Provider sender , Goal goal){

11 if(goal.getClass (). equals(ServiceGoal.class){

12 System.out.println ("Goal result: " + goal.toString ());

13 }

14 }

15

16 // further implementations of interface methods are omitted

17

18

5The remaining methods of the interface are omitted as of lacking relevance for this example.

83

Reimplementation of the Micro-agent concept

19 // helper method defined to initiate interaction

20 public void startInteraction (){

21 //the goal to be processed

22 ServiceGoal goal = new ServiceGoal ();

23 // finding and binding of available roles to proc

24 ((ServiceProvider)SystemAgentLoader

25 .findRoles(ServiceProvider.class)[0]). request(this , goal);

26 }

27 }

Listing 5.2: Implementation of ServiceCustomer

The main method shown in Listing 5.3 ties the example together by instantiat-

ing the according role implementations and loading them via the so-called Sys-

temAgentLoader which instantiates according agents for the respective roles.

1 public static void main(String [] args){

2 // initialize agent with according role

3 SystemAgentLoader.newAgent(new ServiceProvider ());

4 ServiceCustomer customer = new ServiceCustomer ();

5 SystemAgentLoader.newAgent(customer);

6 customer.startInteraction ();

7 }

Listing 5.3: Main method to start interaction

Upon initialization the startInteraction() method on the ServiceCustomer is

called6. The startInteraction() method makes use of the discovery mechanism

respectively the dynamic linking functionality (see lines 24/25 in Listing 5.2).

SystemAgentLoader.findRoles() is one of various available methods to retrieve

all roles of a given class instantiated in the agent framework and returns those in

shape of an array. The user is free to evaluate the result and choose any returned

role (in our case the first value of the array (as there will be only one)) but needs

to cast it to the according social role specialization (as values are returned as a

Role array as the user may want to lookup roles other than social roles) in order to

invoke the according method (here request()). The request() method will be

invoked on the according agent (see line 3 in Listing 5.1). The goal passed via the

6Here the explicit reference to the role instance and call of the startInteraction() method
on the role instance (see line 4 and 6 in Listing 5.3) indicates the role-centrism of the agent
framework.

84

Reimplementation of the Micro-agent concept

method call is checked for its type before proceeding with processing. To do this a

call to the reflective getClass() method ensures the proper goal specialization (see

line 4 in Listing 5.1). In the positive case the ServiceProvider calls the commit()

method on the Customer interface; in the negative case he calls the unknown()

method which represents the equivalent to FIPA’s NOT-UNDERSTOOD perfor-

mative. Upon successful processing the customer’s achieved() method (see line

10 in Listing 5.2) is invoked using its reference (sender parameter) passed along

with the initiating request.

This short description of the interaction7 shows the low level of implementation of

micro-agents. Their implementation hardly abstracts from its underlying imple-

mentation language; the KEA micro-agent framework uses pure language capabil-

ities which – depending on the reader’s standpoint – let agents appear as simple as

objects. However, the dynamic linking mechanism enforces a very loose coupling

and robust execution; agents do not ’know’ the service-providing agents which will

eventually ’fulfill’ their goals.

In consequence a simple interaction makes at least two method calls necessary to

complete a transaction. In order to further reduce potential performance penalties

the most simplistic role type can be of arbitrary type (as long as it implements

the Role interface). Roles of this kind can implement arbitrary individual meth-

ods (e.g. talk()) (as long as they allow external invocation (using the public

modifier)) which potentially return values. They can be discovered using the same

mechanism as for social roles. But given this specific implementation the coupling

can be considered less loose as the caller needs to have specific knowledge about

the callee (i.e. its method signature).

From a software engineering point of view it is clear that, albeit being hardly

distinguishable from objects, the micro-agents enable the application developer to

consistently maintain an agent-oriented modelling perspective up to the atomic

level without sacrificing performance by additional abstraction.

Regarding the essential AOSE characteristics (Decomposition, Abstraction and

7Here a sequence diagram showing the interaction might have been useful. However, in this
context focus was put on implementation stubs to clarify the tight linking of the existing micro-
agent platform to the Java programming language – using features hardly to be found in other
(non-Java or non-JVM-based) languages.

85

Reimplementation of the Micro-agent concept

Organisation), the implicit group management and enforcement of an organisa-

tional relation ensure the consistent structure of developed applications. Decom-

position of functionality into different agents is often a simple concern, particularly

for developers from the OO field. Implementing abstraction by means of agents,

however, can remain hard, especially when considering strong narrow platforms;

their support for organisations is rather flat. Micro-agents however, offer the al-

ternative approach to model abstraction by means of sub-agents which does not

only allow intuitive modelling but also to retrace it in developed applications as

of the explicit representation in the code. This eases the understanding of com-

plex applications and allows to retrace earlier application design decisions. A very

simplistic example (with the artificial CustomerSubAgentRole() which can be any

user-defined role implementation) for the initialization of sub-agents is shown in

Listing 5.4.

1 public static void main(String [] args){

2 // instantiation of role

3 ServiceCustomer customer = new ServiceCustomer ();

4 /* initialization of agent to play the role. Agents without explicit group

5 * association (loaded by SystemAgentLoader) are sub -agents of top -level

6 * agent (SystemOwner). */

7 AgentController control = SystemAgentLoader.newAgent(customer);

8 // instantiation of sub -agent role

9 CustomerSubAgentRole subagent = new CustomerSubAgentRole ();

10 /* first the group of the started agent is called ,

11 * then a new agent (for the sub -agent role) is initialized within that group */

12 control.getGroup (). getAgentLoader (). newAgent(subagent);

13 }

Listing 5.4: Example for sub-agent initialization

Figure 5.2 visualizes this pragmatic approach of micro-agents (or µ-agents) to-

wards AOSE and makes the application of the core AOSE modelling objectives

’Decomposition’, ’Abstraction’ as well as the inherent ’Organisation’ in the shape

of ’levels of agent systems’ explicit.

5.1.2 Limitations and Requirements for the Successor

The very simplistic and efficiency-motivated (which is yet to be shown) design of

the current concept allows a consequently agent-oriented modelling but has some

practical limitations:

86

Reimplementation of the Micro-agent concept

Figure 5.2: Representation of AOSE properties in µ2

In the default implementation threads are hardly considered – the method-based

interaction is effectively purely sequential which can be well-performing for sim-

ple tasks which merely exploit the loose coupling. Depending on the view the

micro-agent implementation does not actually allow the modelling of agent-based

applications as it does not support asynchronous concurrent conversations between

agents.

The dynamic binding is a considerably explicit task for the developer (who ac-

tually models the binding himself) and involves significant understanding of the

framework internals. Along with this the mechanism simply involves a consider-

able amount of code (see line 24/25 in Listing 5.2).

Additionally the framework has mechanisms to control agents (such as the Agent-

Controller) but does not involve systematic platform management (e.g. on ap-

plication shutdown). This can be potentially harmful when considering the use

of agents for I/O activities in which case according resources should be handled

properly before shutting down the application.

Another issue lies in the role-centricism of the concept. Interaction is modelled

between roles, not necessary agents. In consequence the lifetime of an agent is

ultimately tied to the roles it plays. If roles are disposed, the agent dies. Al-

though this is acceptable in the original concept as the creation of new agents is

considered cheap, it is ineffective when considering changing role compositions of

agents over time (as roles cannot be disposed but only added) and in the context of

87

Reimplementation of the Micro-agent concept

longer agent runtimes in general. Effective productivity advantage (and eventually

performance advantage) could be gained by taking a more agent-centric approach

while changing roles on a more frequent basis.

Further the strict enforcement of the explicitly hierarchical regime (every agent

is forced into this organisation pattern) which – depending on the application

context – might not be adequate. An example for the latter is the use of social

simulations where agents controlling a scenario (or representing the environment)

should not ultimately be included in direct agent interaction (respectively not be

directly visible/discoverable as an actual agent). This would harm the provision

for a controlled environment (in MABS) in contrast to open systems (in general

purpose MAS).

Along with the enforcement of hierarchical relations8 it needs to be mentioned

that the understanding of sub-agents as subsystems (which should eventually be

the case) is not consistent with Bunge’s system understanding: Even when be-

ing sub-agents micro-agents can still directly interact with agents outside their

group – breaking with the idea to delegate this functionality to the higher system

level, as in MadKit. This direct interaction is considered relevant to satisfy the

necessary performance criterion by weakening those rules. In addition to this an

alternative approach should be provided which allows communication consistent

with the system-theoretical foundations introduced earlier (see subsection 2.2.1).

Many of the deficiencies mentioned before are of minor concern when using the

micro-agent framework in conjunction with OPAL which adds the necessary plat-

form features. But in order to make the system fully self-sustained and envision

it as a high-performance alternative agent life-cycle aspects need to be modelled

comprehensively and global management features integrated, making a transition

from an agent framework to a fully self-contained agent platform9. Finally a fea-

ture relevant for agent-based system is the potential distributedness. In order to

externalize the advantage of the high performance of micro-agents it is useful to

8To recall: Micro-agents can be part of multiple groups but will always have a primary group
relation.

9However, in the rest of this text ’framework’ and ’platform’ describe the same concept. The
concept of ’framework’ puts a stronger emphasis on the extensibility and agent implementation
functionality while ’platform’ indicates a wider scope, especially respecting the management
aspects of the system.

88

Reimplementation of the Micro-agent concept

provide access to network resources respectively allow multiple nodes’ micro-agents

to interact. This should especially be seen from the context that micro-agents are

interaction-centric units – in contrast to high-level (and more ego-centric) OPAL

agents. As such efficient communication in general (and as such including the

network) should be of stronger concern – even if it does not comply with the FIPA

specifications10.

Given the limitations of the current platform as guideline along with the con-

sideration of additional functionality and integration of new technologies a set of

requirements can be specified for a succeeding micro-agent package. The listing

of requirements will not be structured by non-/functional requirements but rather

apply the notions of behavioural requirements and developmental quality attributes

(as suggested by Clements (and documented by Faulk [Fau97])) as of the more

intuitive fitting of requirements.

Behavioural requirements are thus:

• Handling of threads – Application developers (= framework users) should

not need to deal with threading concerns – unless they intend to do so – and

assume that the framework is inherently concurrent.

• Handling of dynamic binding by the framework – All dynamic binding aspects

should be fully handled by the framework to allow a consequently loose

coupling of agents. Yet the user has to realize this explicitly.

• Satisfaction of the efficiency principle of micro-agents in relation to the orig-

inal framework and other existing platforms is of importance. A certain per-

formance loss – especially for sequential operations – needs to be anticipated

when introducing an abstraction layer for asynchronous message passing.

However, performance should remain one key advantage in comparison to

other frameworks.11

• Communication

10FIPA only standardizes external communication of agents; the choice internal communication
mechanisms is left to the platform implementations.

11This requirement is particularly interesting in the context of the ’behavioural requirements’
as it is a typical example for an item of the category of non-functional requirements.

89

Reimplementation of the Micro-agent concept

– Extended support for communication patterns – communication is the

strength of micro-agents (not necessarily knowledge-level communica-

tion using ACLs); the framework should provide powerful support to

developers.

– Communication should be done using a unified (but extensible) mes-

sage container. This allows better transparency (e.g. debugging, log-

ging) and stronger abstraction of message content from communication

vehicle.

– Provision of network communication – Micro-agents shall be able to

communicate efficiently between different network nodes.

– Communication options consistent with systems theory – Modelling

mechanisms which are consistent with system-theoretical level under-

standing shall be suggested.

• Consistent handling of the Agent organisation – Agents should be consis-

tently managed upon eventual shutdown (e.g. coordinated shutdown of all

agents upon system event) but also consider options to exclude agents from

the enforced organisational integration.

• Loose coupling between agent and role – Roles and agents shall be less cou-

pled to provide more flexibility for the application developer with regards to

flexible role assignments (e.g. life-cycle independence of agent from role).

• Integration of Clojure – Clojure shall be provided as an alternative functionally-

inspired agent implementation language (along with Java).

• Agent-based Simulation

– Fair scheduling – Fair scheduling of agent behaviour is crucial for the

construction of replicable, and overall valid simulations.

– Data collection and reporting mechanisms shall be considered as of their

relevance in the context of social simulation.

• A port for the Android OS shall be provided with the target to achieve

application code compatibility and network interoperability.

• The reimplementation should maintain compatibility with OPAL platform as

a whole respectively allow the reintegration.

90

Reimplementation of the Micro-agent concept

Developmental quality attributes include:

• The resulting system should have a minimal memory footprint.

• The extensibility of the resulting software needs to be ensured.

• The software needs to be testable for future extensions.

• Compatibility to the lowest possible Java specification (e.g. 1.5 or lower)

should be maintained.

• Third party software integrated should be available under open source li-

censes to allow the platform itself to be distributed as open source.

The listing of the requirements includes a prioritization of the items mentioned on

top of the list.

Given the original concept and its limitations along with newly derived require-

ments a design is suggested in the upcoming section.

5.2 Design and Implementation of the Micro-

agent Platform µ2

As a first step the requirements are separated by work packages which are loosely

structured by the areas micro-agent management (agent-centric reimplementation,

platform management features), communication (local message passing, network

communication), simulation-related extensions (Clojure, simulation-related exten-

sions (scheduler, reporting)) and development of the mobile version (portation to

Android). The areas of micro-agent management and communication are ulti-

mately linked and define the core of the revised micro-agent framework. This

decision is taken from an infrastructural point of view, focusing on the efficiency

principle of interaction and the provision of a concise core framework. Further

functionality should be – where applicable – added in a modular fashion.

5.2.1 Design

The actual design process enforces frequent review and thus takes place in an it-

erative manner rather than a linear development approach (with strict separation

of design and implementation stage as in the traditional waterfall model). Key

reasons for this are the performance constraints set up in the requirements which

demands for a careful balance to manage the trade-off of providing convenient

91

Reimplementation of the Micro-agent concept

abstractions from the actual communication mechanisms and performance.12 The

resulting design for the core of the framework comprises of three layers and is

described in the following and schematically visualized in Figure 5.3.13 The top

layer, the Agent Logic Layer (ALL), represents the elements from the original ar-

chitectural metamodel such as agent, role and groups. This design suggests some

changes to this model. The original model is considerably role-centric (see subsec-

tion 5.1.2). To provide the developer with more flexibility agents shall optionally

be initialized without role but may add roles and remove roles at runtime (the

latter is not possible in the original concept without destroying the agent). Never-

theless the default principle will remain to start an agent with some role behaviour.

Minor side aspect is the mere change of the ’goal’ term to ’intent’ as this repre-

sents the abstract nature of agent requests without confusing those with the goal

term and the conceptual implications surrounding it. Goals are hardly explicitly

communicated14 (but are represented internally) and the extended understanding

developed in the context of further research, such as various goal specializations

(e.g. maintenance goals) which do not conceptually match the understanding in

the micro-agent platform; Intent(ion)s are thus used to represent abstract requests

externally.

Along with those conceptual changes the platform now strictly manages agents

upon shutdown of the platform to allow the implementation of long-running agents

with changing capabilities as well as to avoid memory leaks (by unclean termina-

tion of agents (and release of resources) in case of repeated platform start and

shutdown (without unloading the JVM) such as during tests). In consequence

the static structure of the original micro-agent concept remains fairly similar –

changes include the coupling of concepts and their runtime behaviour.

The switch from a role-centric to a more agent-centric approach is also necessary

to allow a clear addressing scheme for individual agents. Agents are now con-

sequently named (be it user-defined or automatically). This in turnaround puts

12In order to allow the measurement of the performance a simple benchmark whose scenario
had been initially suggested in [NPC01] is used. It is described when discussing the implemen-
tation outcome.

13The message flow for agent activity within the platform is indicated by numbers.
14In fact micro-agents do not have the capability to ’share their goals’ as no common knowledge

representations such as ontologies are available on this level.

92

Reimplementation of the Micro-agent concept

Figure 5.3: Platform layers for micro-agent platform µ2

93

Reimplementation of the Micro-agent concept

Addressing pattern Description
Unicast sends message to one specified recipient
Broadcast sends message to all registered agents (differentiation

between local and global (network-wide) broadcast)
Multicast sends message to event subscribers, thus modelled via

event subscription mechanism
Groupcast sends message to all agents which are members of a cer-

tain (agent) group
Rolecast sends message to all agents playing a given role
Randomcast sends message to a specified (or random) number of ran-

domly chosen agents
Customcast sends message to agents specified by the combination of

various aforementioned patterns

Table 5.1: Addressing patterns for agent communication in µ2

higher demands on the agents themselves as they now need to incorporate simple

reflective mechanisms with regards to their roles’ capabilities (i.e. ’know’ their ap-

plicable intents). This is necessary to identify the appropriate role for the delivery

of requests received by an agent. In the original framework this is not of concern

as roles directly invoke each other. Naming schemes are further introduced for

roles as well as groups to ease differentiation in a mnemonic fashion.

In addition to this the new concept will include an extension of addressing pat-

terns. Yet agents interact in a unicast fashion which limits modelling of complex

interactions. The addressing patterns listed in Table 5.1 are introduced in the new

platform.

All of the addressing mechanisms work in a distributed fashion, thus show effect

across different (connected) platform nodes. Only the Groupcast receives special

consideration as group members residing on different nodes can be addressed using

the group owner’s name. Groups themselves however, cannot be spread among

different nodes as groups play a central role in platform management. Eventual

network connection loss could thus leave to ’loose’ agents which is avoided by

unambigious assignment of agents to one local group, defining the primary group

relation (in the default case the SystemOwner’s group) via which agents receive

management commands. Apart from this agents can join arbitrary further groups

if useful for a particular application.

The use of those predefined addressing pattern provides the application developer

94

Reimplementation of the Micro-agent concept

with a powerful tool anticipating various interaction patterns.15 The combination

of those built-in operations additionally allows the modelling of more complex

communication patterns (especially via Customcast (Example: send message to

fixed set of agents along with two randomly chosen ones and one group while ex-

cluding specified agents)). The patterns described here are of particular relevance

for the application developer – and thus the agent logic layer.

In order to provide a mechanism to ease the decomposition in the platform and

allow modelling in consistence with the systems theory, the concept of message

filters is suggested as a specialization of communicating roles. Although of strong

design implication, the understanding will be more intuitive in conjunction with

related implementation considerations (as of the interdependency). In consequence

message filters are described in subsection 5.2.2.

The lower layers which build the infrastructural backbone are newly introduced

as part of the redesign. As the earlier framework is fairly self-contained based on

its method-based interaction, the successor is backed with explicit message pass-

ing mechanisms, which makes the introduction of interfaces to a transport level

necessary. In consequence the Agent Logic Layer merely maintains basic message

delivery semantics for individual agents (e.g. dispatching received message to ac-

cording role on agent).

The Message Routing & Platform Management Layer (shorter: Message Rout-

ing Layer (MRL)) serves as an intermediate layer holding information on agents’

roles, their applicable intents, manages event subscriptions and preprocesses mes-

sages sent by agents to decompose the different addressing patterns. The registry

management on this level (see Figure 5.3) is concerned with capabilities of indi-

vidual agents16. The register is used to route messages according to the requested

addressing patterns (see Table 5.1) respectively to establish the actual intent- or

event-based discovery of recipients (dynamic binding). This layer decides on the

actual routing of outbound messages and decomposes addressing patterns (into

15Especially the Randomcast is of relevance when considering social simulation applications
with randomly selected recipients. It could also be used to model the notion of an Anycast (as
specified in the IPv6 specification).

16With regards to the separation of registered capabilities from actual agent register this
loosely reflects the functionality of a yellow-page registry (as the Directory Facilitator in the
case of FIPA-compliant platforms).

95

Reimplementation of the Micro-agent concept

either Unicast or Broadcast delivery and dispatch to local or remote agents)17.

To do this it accesses the actual agent directory (comprising of both local and

remote agents) held on the lower Message Transport & Platform Runtime Layer

and combines it with its role and intent meta-information. This latter clarifies

the intermediacy of the Message Routing Layer and additionally leads to the de-

cision to delegate the control mechanisms for the entire platform to this level as it

can both access the agent organisation on ALL level as well as the lower Message

Transport Layer.

The Message Transport & Platform Runtime Layer (shorter: Message Transport

Layer (MTL)) ultimately holds the agent directory (which associates agent name

with address) and is based on agent registrations passed through by the upper

layer (which filters role and intent registrations). The agent directory is held on

this level in order to map agent identifiers onto the according transport mecha-

nisms in a transparent manner and to avoid a performance penalty by accessing

higher layers. As this performance-sensitive area is likely to receive frequent im-

provements the coupling to an underlying message transport framework shall be

kept as limited as acceptable in the context of the efficiency principle.

This layer also incorporates network-related functionality. Apart from managing

the network communication a network propagation mechanism is suggested to

maintain a network-wide synchronized agent directory to reduce lookup times for

remote agents. As this directory is ultimately linked to network connectivity the

information is maintained on this layer. Last (and probably least relevant but very

convenient) network feature is an automatic discovery of other platforms instances

running on the same network. With this functionality application developers (and

ultimately application users) can build distributed systems without the need to

care for the network-level (i.e. ip addresses, hostnames). In consequence the plat-

form provides event-based notification on network-level state changes (e.g. connec-

tion of new platform) and is integrated with the platform-wide event subscription

mechanism (which allows agents to subscribe to those system-level events).

17Motivation for this decomposition is to limit the requirements for message passing frame-
works on the transport level (as those do not generally support the partially sophisticated ad-
dressing patterns out of the box).

96

Reimplementation of the Micro-agent concept

Concurrency handling mechanisms respectively threads are concentrated on this

lowest level of the platform, the system kernel, in order to offer the highest possible

abstraction from those mechanisms to the agent layer (ALL). However, actual plat-

form management (e.g. shutdown) is realized via the management layer (MRL).

Apart from configuration aspects platform developers are thus only concerned

with the higher layers, the Agent Logic Layer and Message Routing & Platform

Management Layer.

5.2.2 Implementation

With the high-level concept of the new micro-agent platform in mind, the follow-

ing discussion of selected implementation aspects clarifies the realization of those

design decisions.18

The designed platform layers are separated into two (Java) namespaces. The two

upper layers (Agent Logic Layer and Message Routing & Platform Management

Layer) – which are complementary with regards to the representation of the full

agent semantics and concepts (i.e. roles, intents, events) – are combined into one

namespace (org.nzdis.micro). The lower – and presumably more prone to future

technological changes – message transport-intensive layer is separated into the

namespace org.nzdis.micro.messaging.

Implementation of the Agent Logic Layer

On the highest layer various interfaces from the original KEA framework have

been reused and extended to maintain a reasonable degree of compatibility to the

OPAL platform. Types of micro-agents are differentiated by their role implemen-

tation. SocialRoles make use of the integrated message passing capabilities while

PassiveRoles19 only allow simple invocation using the pattern described for the

KEA framework without assuming a fixed role signature (i.e. no fixed method

interface (e.g. request(), subscribe(), ...) is assumed). The newly introduced

functionality as described in the concept will mostly only apply for SocialRoles as

it relies on the message passing facilities which passive roles cannot utilize. This

18This section covers the implementation from a rather high-level perspective and focuses on
relevant aspects rather than detailed implementation decisions.

19The meta-model Figure 5.1 provided before already respected those terminological adjust-
ments.

97

Reimplementation of the Micro-agent concept

allows – as motivated in the original framework – the consistent use of agent no-

tions, replacing objects even on the atomic implementation level. In consequence

the two notions of micro-agents are now clearly split into one (higher-level) no-

tion which communicates via asynchronous message passing, and a lower level one

which still uses the method-based invocation which had been used for both levels

in the original concept.

To utilize the feature set of the agent concept (and thus stronger agent-centrism

instead of role-centrism) roles access agent capabilities using a reference to their

agent (getAgent()) which is (mostly) hidden by the abstract role implementa-

tion (e.g. the default social role implementation DefaultSocialRole (refer to

Figure 5.4 for an overview of the Role/Agent hierarchy)). Sending of messages

(send()/sendRandomcast()/ ...) along with event subscription (subscribe())

and lifecycle management (die()) but also simple console output (augmented

with a reference to the producing agent) (print()/printError()) from a role

wrap this agent reference and ensure that according functionality can only be

used if the role is actually played (i.e. initialized) by some agent.

Agents in turnaround hold references to all (played) roles including their applicable

intents in order to allow dispatch of incoming messages20 depending on the roles.

Although holding this meta-information might appear redundant with regards to

the lower Routing and Management Layer (MRL), maintaining this information

as an inverted index provides the fastest possible lookup for this purpose.

Along with this special roles (building on the SocialRole) have been introduced to

provide advanced patterns for message handling. One example is the Message-

FilterRole which allows the definition of patterns for received messages upon

which it executes defined actions. Message filters both support actions on positive

matching (messages matching the pattern) as well as negative matching (message

which do not match the pattern). The default implementation (DefaultMessage-

FilterRole) only provides simple but efficient value comparisons of message fields

for a matching. Advanced pattern matching can be realized by extending the ab-

stract MessageFilter class with own pattern matching implementations (e.g. using

20Here it should be recalled that messages are received by agents (see Figure 5.3), not roles
directly (as with the legacy framework).

98

Reimplementation of the Micro-agent concept

regular expressions). Upon initialization (via addMessageFilter()) a new sepa-

rate agent is started and allocated as a sub-agent to the agent adding the message

filter. By attaching multiple message filters agent functionality can be effectively

(partially or fully) decomposed into sub-agents.21 This way the realization of de-

composition (in the understanding of AOSE) only requires minor implementation

effort. This decomposition principle allows the cascading of functionality into

sub-agents to an arbitrary depth. As a result decomposition with micro-agents is

similarly simple as the semi-automated handling of groups (and thus the organi-

sation aspect of AOSE) as well as abstraction (which is achieved by suppressing

sub-agents from a developers view). Apart from this powerful feature message fil-

ters are the mean to achieve the compliance with the system-theoretical principle

not to directly interact with other agents beyond the same subsystem. Their com-

munication is always mediated by their ’owning agent’. Given this context, the use

of message filters significantly enhances the potential to exploit the organisational

aspects of the micro-agent model, easing its use while providing a decomposition

mechanism which is consistent with system-theoretical principles.

Important to mention in the context of the message filters is the general message

data structure, the MicroMessage. The MicroMessage class essentially wraps a

HashMap with predefined accessors (e.g. setRecipient(), setPerformative(),

...) to allow a uniform data structure – only enforcing its keys to be of type String

– which is firstly extensible with arbitrary fields and thus flexible for any kind

of application but also allows to carry any kind of Java object as value. This is

especially of relevance when sending intent and event objects but also allows to

wrap binary data and encapsulation of messages themselves (as internally done in

message filters). For the purposes of serialization (especially in the context of net-

work communication) MicroMessages can be reliably casted to the HashMap core

data structure without losing information (and technically even without necessity

that the MicroMessage type is known by the deserializing party!).

Figure 5.4 shows a diagram of the core classes of the Agent Logic Layer of the

µ2 platform. A more extensive selection of class diagrams including elements of

21Example code for the use of Message filters in µ2 is shown in Appendix A.2.2.

99

Reimplementation of the Micro-agent concept

Figure 5.4: Class diagram of Agent Logic Layer of µ2

both the ALL and MRL, the two top layers, can be found in Appendix A.3.22

Implementation of the Message Routing & Platform Management Layer

Implementation decisions done on the intermediate MRL involve the handling of

intent and role directory for dynamic binding of targets. Similar to the handling

of played roles on agent level, information is held in various index data structures

using hash functions to allow constant lookup time23. The pseudo-code of the

algorithm for message routing by intents and events (Dynamic Binding) is shown

in Appendix A.1.

The detailed decomposition of the different addressing patterns (into either uni-

casts or broadcasts) is not discussed at this point but can be retraced from the

framework code24.

Additionally to the actual routing (and briefly shown in the mentioned algorithm)

22The extremely extensive MTL class structure is hardly of any added value without additional
context (as of the integration of external libaries). The interested reader is referred to the actual
source code respectively the platform website (see information in Appendix F.2).

23Here the problems of (time-consuming) rehashing and potential hash collisions are ignored.
24Information on the retrieval of the developed code is provided in Appendix F.2. Particularly

the AbstractAgent and MTConnector class are concerned with the pattern decomposition aspect.

100

Reimplementation of the Micro-agent concept

this layer allows the integration of a user-defined (or the provided default) mes-

sage validator25 which can perform message validation prior to the actual sending.

Especially for less performance-sensitive applications, production environments as

well as debugging during application development this can serve as a powerful

feature as it potentially allows the integration of message logging.

A final relevant consideration at this stage is the implementation of the Random-

cast which relies on a pseudo-random number generator to select agents for (po-

tentially distributed) message dispatch. The default Java pseudo-random number

generator is a Linear Congruential Generator (LCG) [LCG] and thus considerably

simple and fast but has an unequal number distribution26. To ensure a better

randomness which is a prerequisite for simulations an implementation (written by

S. Luke [Luk]) of the Mersenne Twister [MN98] is integrated in the middle layer

of the platform. Developers/users can supply the number generator with defined

seeds to ease the replication of number sequences for debugging and verification

purposes. The pseudo-random number generator can be used for arbitrary imple-

mentation purposes (e.g. role implementation, platform extension).

Implementation of the Message Transport & Platform Runtime Layer

The lowest layer demands for numerous implementation decisions rooted in the

performance-sensitivity of this core layer of the micro-agent framework. Primary

decision taken on this layer is the implementation of the message passing frame-

works backing the internal agent communication. Basis for this decision is the

review of selected frameworks as documented in section 4.3. Key criteria for the

selection of message passing frameworks are firstly usability/compatibility from

a software engineering perspective, secondly performance. A third aspect is the

fairness. However, given the use of a dedicated (fair) scheduler (which is yet to

be introduced) to execute the agent behaviour the latter is considered of limited

concern.

25The default message validator simply checks for the existence of sender field (which is auto-
matically set by the agent implementation) as well as the definition of either recipient, intent or
event.

26The equality of distribution (randomness) depends on a bit’s position. Especially lower bits
have a poorer randomness (as nicely visualized by Neill Coffey [Cof]).

101

Reimplementation of the Micro-agent concept

Based on those three objectives Jetlang was chosen as the message passing frame-

work of choice as it does not enforce post-compilation code manipulation steps

(such as Kilim which apart from this was nearly equally fast and achieved by far

better fairness results). Introducing this ’weaving step’ would not only put addi-

tional workload upon the developer (in the shape of an additional debugging step)

but also prohibit real-time class compilation as necessary in the context of Clojure

which relies on Just-in-Time compilation for the interpretation of its scripts re-

spectively command line input. The downside of Jetlang, apart from the fairness

aspect, is its approach of allocating one Java thread per agent which puts an addi-

tional memory burden on the system in the case of a large number of agents (such

as in Massive MAS running several hundred agents). In order to avoid this an-

other framework, MicroFiber, is developed which reuses elements from the Korus

framework (and as such has a comparable performance). It provides a centralized

scheduler which ensures by far better fairness27 and delegates message processing

to a specified number of worker threads28. The use of this framework is indicated

if the platform exceeds a large number of agents and should be decided based on

memory consumption of the JVM which is a matter of the analysis of a particular

implementation (e.g. by profiling). As the MicroFiber framework delivers about

half the performance of Jetlang, the latter should still be considered for the default

use.

The consideration of the efficiency principle enforces a rather tight integration of

the selected message passing frameworks without employing conventional abstrac-

tion approaches (e.g. Java interfaces) to ease exchange of the framework. As such

both frameworks are tightly knit into this platform layer (as indicated in Figure

5.6) which is a compromise in favour of platform performance.

In the context of the network transport in-platform performance is of lower con-

cern. The transport via the network itself enforces considerably more processing

including (de)serialization. In this context core concern is rather compatibility

than performance. As such the integration is mediated by an interface abstraction

27For details please refer to the benchmark results described in subsection 4.3.
28Tests with the framework parameters show best performance when the number of worker

threads equals the number of CPU cores. As such the framework initializes this number if no
other value is specified by the developer/administrator.

102

Reimplementation of the Micro-agent concept

which allows easy introduction of alternative network transport mechanisms.

Similar to the internal communication network transport takes place in an asyn-

chronous manner, making the use of Java NIO frameworks considerable29. In this

context the framework of choice is the open-source solution Netty [Leea]30, par-

tially based on the high performance promises indicated by various benchmarks

(see [Leeb]31 and [Hea]) and its reliability as infrastructure of the well-known JBoss

application server respectively middleware [JBo]. Specifically its rich collection of

codecs for various purposes (e.g. SSL encryption, compression) and the support for

Java serialization to ensure fully location-transparent use of the dynamic binding

mechanism (via intents or events) are of interest in this context.

Beyond interoperability via the binary Java serialization – provided by the frame-

work – additionally an XML-based serialization (backed by the XStream library [XSt])

has been developed to optionally provide human-readable protocols. This is con-

sidered for dedicated use when compatibility is of greater concern than perfor-

mance (e.g. different Java versions, mobile devices, debugging).

Along with the actual communication functionality the platform runtime layer

also manages network discovery which allows automatic discovery and connection

establishment with remote platforms. This functionality is available in a dualistic

fashion – similar to internal message passing and network serialization: Discovery

is done using UDP Multicast functionality. UDP packets are sent to the according

Multicast groups and contain necessary node information to allow connection ini-

tialization. The alternative approach is the use of Broadcast packets. Advantage

of those is the stronger support by hardware. In fact the implementation of Multi-

cast mechanisms is often both blocked on the according network or not supported

by the according networking hardware. In contrast to Multicast the support for

Broadcast is more mature.32 The downside is the rather aggressive approach as

29Java NIO (or: New I/O) supports asynchronous I/O (not only for networking purposes but
any kind of I/O (e.g. writing files)) and introduces the notion of channels in favour of socket-
bound connections as part of Java specification 1.4. It is documented in JSR 51 [Rei].

30Its website provides rich documentation and receives active maintenance from the lead de-
veloper.

31This collection of benchmarks for different frameworks is developed by the Netty main-
tainer himself. However, all programme sources are provided to allow manipulation as well as
replication.

32One example is the software Oracle VirtualBox [Vir] used for network tests. In fact only the
Broadcast implementation worked sucessfully.

103

Reimplementation of the Micro-agent concept

packets are eventually delivered to all network hosts33 – whether or not nodes are

interested in the according packets. A second issue is the binding to a local port

which does not allow the use of Broadcast-based discovery for two platforms on

the same host – a feature which works successfully using the Multicast implemen-

tation. Those considerations show, similarly to the trade-offs for internal message

passing and network serialization, that a dualist approach is reasonable to provide

a flexible platform which can be configured according to environment (other nodes,

network configuration) and runtime application (number of agents).

The same approach has been taken for the aspect of configuration. Configuration

of the platform can both be done via a XML-based configuration file as well as

in-code if necessary. The latter allows a quick adjustment of parameters when

useful. The XML-based variant is suggested for general use as of the separation

of platform parameterization and implementation. Additionally the XML schema

is compatible with the XML-based configuration files of the higher-level OPAL

which allows a unified configuration mechanism. In-code specification overrides

the values specified in the configuration file. A key risk in providing in-code con-

figuration is the change of configuration at arbitrary places. This is prevented

with µ2; configuration changes are not applied once the platform is started. The

configuration options are extensive (and among further options include internal

message passing framework, network serialization, network discovery mode) and

are driven by the motivation to increase application-specific performance by con-

figuration rather than modification of application code (tuning-by-configuration).

Last but certainly not least aspect of the framework is its pervasive use of lazy

initialization to allow the demand-oriented provision of capabilities as suggested

for a weak wide agent notion (in the platform context (see subsection 2.1.3)). In

order to keep the memory footprint of the platform (and as such agents) as small

as possible, necessary infrastructure is only started once requested. In the sim-

plest case neither internal message passing, network (transport and discovery) or

Clojure are started. This would reflect the case of use if the platform does not

make use of its communication capabilities (which is the case when using only

33Technically this is the same with Multicast. However, Multicast packets are filtered on lower
level while Broadcast packets are passed upwards on the receiving host’s network stack.

104

Reimplementation of the Micro-agent concept

PassiveRole instances). The sequence diagram in Figure 5.5 visualizes this role-

type-dependent lazy initialization.

Figure 5.5: Lazy initialization of platform depending on role type

Performance Aspects and Summary

To test the satisfaction of the efficiency principle of micro-agents a simplistic agent

benchmark is used to provide a comparison measure for the interaction perfor-

mance of micro-agents in contrast to other multi-agent platforms. The scenario

has been used in earlier works (see [NPC01]) and although the scenario is simple

it still serves as a performance indicator and clarifies the strength of micro-agents.

Its details are described in Appendix C along with the results. Some key figures

are presented in Table 5.2 to allow better discussion with regards to requirements

fulfillment.

The current performance of the reimplemented micro-agent platform is signifi-

cantly lower than the original one (in fact takes about 2.5 times longer). Paying

this penalty developers can communicate asynchronously and are freed from any

thread handling. Considering that MadKit, a framework considered of the same

performance cluster as µ2 (see Appendix C.2), still has a penalty factor of another

105

Reimplementation of the Micro-agent concept

Platform Runtime (in ms)
Relative

difference to
µ2

Runtime over
network (in ms)

KEA micro-agents 170 0.41 –
µ2 410 (Jetlang),

800 (MicroFiber)
1 (Jetlang) 12000

MadKit 1025 2.5 (not tested)
JADE 8303 20.25 (not tested)
OPAL 10400 25.36 130770

Table 5.2: Benchmark results for Agent Platforms relative to µ2 for 10000
rounds

2.5 this performance is considered reasonable to still fulfill the efficiency principle

of micro-agents. The linear performance with increasing benchmark rounds (see

Figure C.3 in Appendix C.2) rectifies this view.

On the network side the use of the well-performing underlying message transport

pays off in shape of a significant performance advantage in contrast to OPAL.

OPAL provides stronger levels of message transport abstractions and accepts the

performance penalty involved when complying with the FIPA communication stan-

dards. The micro-agent network capabilities are thus useful if performance is

of primary concern – networking in OPAL takes nearly 11 times as long (for

the benchmark case). The fact that network communication via the micro-agent

framework is nearly equally fast as internal communication in OPAL makes a clear

case to suggest a careful selection of an appropriate framework for the according

application context.

Some of the implementation decisions described above are summarized in Fig-

ure 5.6 which provides a implementation-oriented view on the design described in

subsection 5.2.1. Examples showing the implementation of agents with the reim-

plemented agent platform (i.e. the equivalent to the simple interaction example

shown in subsection 5.1.1 and the use of message filters) are provided in Appendix

A.2.

Summing up, the reimplementation of the micro-agent framework elaborates it

towards a fully-fledged platform, which leaves the actual agent meta-model on the

highest level and breaks the functionality down towards the lowest level (decompo-

sition of communication patterns into unicast/broadcast respectively local/remote

106

Reimplementation of the Micro-agent concept

Figure 5.6: Implementation-oriented schema of platform layers in µ2

on intermediate layer) into a pure performance-orientation on the lowest level (ac-

tual communication, network integration). In contrast to the legacy framework it

also integrates pervasive network support which makes it irrelevant for the devel-

oper whether his applications are distributed or not. Additionally the platform

learns a lesson from the area of simulation, and takes randomization mechanisms

into account at various places. The reimplemented platform supports the appli-

cation developer with powerful configuration mechanisms which leaves room for

the mere focus on modelling in an agent-oriented manner without infrastructural

concerns and a fully automated dynamic binding of agents. Apart from this the

107

Reimplementation of the Micro-agent concept

platform has an impressive performance in the field of MAS for AOSE and yet

seeks for an equivalent in this respect.

The various new properties of the platform inhibit one of its characteristics, the

inherent duality of its components for the sake of flexible use: It provides two alter-

native message passing frameworks, two general types of network serialization, two

discovery mechanisms and last but not least two options for configuration. This

along with the fact that it is the successor of the legacy micro-agent framework

constitutes its name µ2.

5.3 Additional Platform Extensions

5.3.1 Clojure as Agent/Environment Implementation Lan-

guage

For the integration of Clojure as role implementation language34 several aspects

are considered. As the encapsulation of the agent internals is a primary principle

(and can be well represented using objects in the case of Java), Clojure enforces

the use of different mechanisms. In fact using Clojure the developer (and even

the actual application user) can access all object instances loaded into the same

JVM at runtime (in the general case all properties and methods with public ac-

cess modifier, in the extreme case all internals via the powerful Java reflection).

Even when instantiating/accessing Clojure from different objects they share the

JVM memory; Clojure role implementations could directly access internal state

of other agents. To avoid this (and assuming that all agents are benevolent by

not mutually accessing their internals) Clojure namespaces are used to represent

separate agent respectively role instances (i.e. agents operate in their individual

namespaces).

Considering the intimate relation between agent instance and Clojure namespace,

the integration of Clojure as implementation languages is done on Agent Logic

Level, allowing the use of all agent capabilities (certainly including sending mes-

sages) by role implementations written in Clojure. As of the unified message

container this does not restrict Clojure roles from interacting with roles written in

34Please recall that the application developer implements roles rather than agents (although
the system should now equally allow the latter (see subsection 5.2.1)).

108

Reimplementation of the Micro-agent concept

Java which makes it a valuable alternative for role implementations, even on the

same micro-agent. To be able to receive messages sent to its agent, roles imple-

mented in Clojure merely need to provide a receive-msg35 function.

More implementation-related details in Clojure can be found in the context of

the platform itself (particularly the CulturalIndividual.clj script as indicated in

Appendix F.2). Information on more general aspects like the practical use of Java

interoperation can be found under [Clo].

Conceptually Clojure does not only show potential in the context of agent or role

implementations but also as environment implementation. Its particular strength

in the context of concurrency is its STM which allows concurrent manipulation of

shared memory and provides a consistent view on it at any time. This is the case

for environments in general anyway but seems particularly interesting in the case

of social simulations with a generally stronger emphasis of an environment (see

subsection 3.2.3). Figure 5.7 visualizes this design which can serve as a pattern for

the implementation of environment-centric MAS. It suggests the use of message

passing frameworks for direct communication and a STM-backed environment (in

this case with Clojure) for indirect communication.

In a practical application this would include the allocation of a namespace for

the environment and adding a reference to the environment namespace to every

Figure 5.7: Reference design for social simulations in µ2

individual agent/role namespace – thus satisfying the separation of concerns while

35The function in fact needs to have one parameter which will eventually be the received
MicroMessage.

109

Reimplementation of the Micro-agent concept

accessing a common environment. An example/test application built on this de-

sign is the ’TalkingAnts’ simulation which described in Appendix B and had been

iteratively extended to serve as a benchmark in the context of the scheduling com-

ponent.

In conclusion, Clojure in µ2 can be used for any component of a MAS or simula-

tion application and also allows the complementary use along with Java as ’native’

implementation language.

5.3.2 Fair Scheduler

A necessary element to control the limited fairness provided by message pass-

ing frameworks is the scheduler which is provided for optional use in the case of

autonomous agents. Its primary role is to provide round-level fairness in a co-

operative manner36 between all scheduled tasks. For the design originally two

approaches had been considered. A consideration to use the in-built Java func-

tionality in the shape of thread pools was abandoned as those merely serve as a

wrapper to control regular and preemptively scheduled Java threads – which is

unfair on a round-level basis (considering the potentially unequal execution time

of agents). Another concern is the limited scalability. Java thread pools allow

the submission of so-called ’Runnables’ which (for the given context) can be seen

as tasks. However, for each submitted Runnable a new thread is started37 which

leads to higher memory consumption and a poor scalability behaviour for a large

number of tasks (one thread per task) as of the significant overhead involved in

context switching between all threads by the JVM scheduler.

The first alternative to default Java scheduling behaviour involves the introduction

of the notion of cooperative threads on JVM level to allow a general fair schedul-

ing. For this purpose the use of the FairThreads framework [Bou], born as part of

the research effort around Reactive Programming by the French Institut National

de Recherche en Informatique et en Automatique (INRIA), had been considered.

However, pretests with this framework showed an effectively sequential execution

36Each agent can occupy a thread as long as necessary to complete its round of activity but
eventually needs to give up control of the thread (cooperate) in order to allow the system to
schedule the next round.

37Runnables submitted to a thread pool which is initialized with a fixed size (and whose
threads are busy) are simply not executed at all.

110

Reimplementation of the Micro-agent concept

of threads – even showing performance penalties in contrast to single-threaded

round robin scheduling as of the context-switching between the threads.

As a consequence an own application-level task scheduler is suggested (FairTask-

Scheduler) which can be optionally used (it might not be of use in purely reactive

MAS applications or conventional MAS applications in general) and is less intru-

sive in contrast to threads as it introduces a light-weight notion of tasks (rather

than threads). It ensures round-level fairness and in order to achieve this has

multi-threaded round robin semantics. A user-defined number of worker threads38

process task queues in a concurrent fashion until all tasks have completed the

current round.

In order to evaluate performance and fairness the ’TalkingAnts’ application – in-

troduced in the context of the Clojure integration – has been backed with the

different schedulers. The benchmark is described in Appendix B.2 along with the

benchmark results. The results clearly indicate the lack of performance of the

FairThreads framework, achieving about half number of rounds as compared to

the FairTaskScheduler. The FairTaskScheduler achieves about two thirds of the

performance provided by a pure Java Thread Pool implementation. However, the

thread pool shows a steadily increasing deviation from an equally distributed exe-

cution on round level, showing the limited fairness provided by Java. This clarifies

why the use of a dedicated scheduler is unavoidable when considering the execu-

tion of both valid and replicable results.

Further features of the FairTaskScheduler – apart from the scheduling itself – in-

clude both a continuous mode which schedules rounds continuously and a stepping

mode which allows the execution of a user-defined number of rounds, along with

its specialization to run for a specified time period (e.g. 30 minutes). This latter

mode is particularly targeted towards experiments.

5.4 Micro-agents on Android (MOA)

An area which has only been implicitly touched is the provision of an Android-

based version of the micro-agent platform.

The approach taken here is divided in two steps, firstly the actual ’translation’ of

38The default number is the number of CPU cores of the according machine.

111

Reimplementation of the Micro-agent concept

the Java version of the platform to Android, and secondly, the integration with

Android’s concurrency model to not only allow user control of the micro-agent

framework but also the transparent interactive access of Android functionality by

micro-agents – in fact similar to the interactive access of Java functionality from

Clojure. As the latter part is the conceptually more valuable one the focus is

consequently put on this.

5.4.1 Porting µ2 to Android

The actual ’translation’ of the Java version to the Android platform is done it-

eratively. This decision is taken after initial pretests revealed that many critical

Java core libraries (especially concurrent collections, necessary for the support of

thread-safe asynchronous message passing) were available. In consequence the de-

velopment primarily concentrated on the desktop version until a stable feature set

had emerged. From this point onwards the desktop version has been ported to

the Android environment, adjusting all differing libraries39 either by removal of

functionality or replacement with available equivalents provided by Android. In

consequence each further development iteration of the desktop version included

a refinement of the ported version where necessary. This way the code base is

identical where possible.

Major areas relevant for µ2 where library support by Android differs or is lacking

are discussed below:

• Lack of Just-in-Time (JIT) compilation

• Incompatibility of native Java serialization

• Differences in network libraries

The lacking JIT compilation proves to be the most significant drawback of An-

droid for the micro-agent framework. As a consequence the integration of Clojure

support for Android had to be delayed as it heavily relies on JIT compilation to

allow its interactive programming and REPL-based evaluation. An alternative is

the compilation of Clojure code ahead of time (which would render it in regular

Java byte-code) and running it on Android, as already realized by an open source

39Please recall that although Android uses Java as its application implementation language and
provides a wide range of well-established Java libraries not all libraries/interfaces are supported
or compatible.

112

Reimplementation of the Micro-agent concept

project (see [vtV]). However, taking this approach Clojure would merely be a de-

velopment vehicle but not allow the processing of Clojure statements at runtime

(e.g. passed in messages) which is the striking feature for its use in the context

of open systems and interactive development. Although developmental steps to

provide a JIT compiler are taken (see [Wim], [Goo10]), those are yet in an imma-

ture state harming the robustness of the overall system. As such the integration

of Clojure is delayed until an equally robust mechanism is available for Android.

The serialization between Java and Android proves not to be fully compatible and

harms the aspect of interoperability between desktop version and mobile version of

the platform. As the network communication framework Netty allows the integra-

tion of a custom Java serialization (which only partially relies on the underlying

Java mechanisms), it is introduced both in the mobile version and – as part of the

developmental feedback cycle – into the desktop version. Additional to this an

alternative XML serialization is provided (as stated in subsection 5.2.2) to allow

the provision of open systems as well as a fall-back in case of incompatibilities in

the binary serialization format (for the sake of debugging). Using the mechanisms

described here, the communication between desktop and mobile version can be

seemlessly established and Java objects exchanged.

The third consideration is the difference in the network socket libaries between Java

and Android. While persistent connections for means of transport are largely dele-

gated to the Netty framework, the network discovery in µ2 is purely developed via

socket programming. As Android’s semantics to gain access to sockets partially

differ40, this part of the application has been entirely rewritten. In consequence the

network discovery in MOA is functionally compatible (but not code-compatible)

with the desktop version of the platform and thus allows mutual platform discov-

ery, a feature particularly appealing on mobile devices where any need to enter ip

addresses or the like should be avoided.

Summing up, the development of the Android port of the actual platform is pre-

dominantly focused on the adaption of the implementation, relying on the design

produced in the context of the desktop version. This way nearly full portability

40An example is the WifiManager to gain direct access to the (wireless) network.

113

Reimplementation of the Micro-agent concept

of micro-agent code on Android and Java – apart from the Clojure support – is

provided, including the network interaction between both platforms.

5.4.2 Interfacing Micro-agents with Android

The more appealing part of the development involves the integration of the micro-

agent platform with the Android communication mechanisms which is introduced

from a considerably high-level perspective.

Bearing in mind the loose coupling of application components (such as Services,

Activities, BroadcastReceiver and ContentProvider as introduced in subsection

4.2.2) by means of intents which allow the operation in open application envi-

ronments (i.e. unknown environment with regards to installed applications on the

device instance), the interaction between both micro-agent platform and Android

itself provides interesting opportunities. Micro-agents could thus directly inter-

act with Android components such as activities or services in an asynchronous

manner. Examples for the capabilities could be the use of phone book data or

available location information (i.e. GPS data) and associate those with received

SMS to provide context-related automatic replies or to combine those in order to

develop decentralized agent-based location-based services or simply enable agents

with the ability to send and receive SMS (e.g. as fall-back mechanism if alter-

native network connections are lost). The realm of applications opened by this

perspective is wide. The openness of the Android environment makes the embed-

ding of agents in general and micro-agents in specific attractive as their particular

strength is the handling of the inherent non-determinism within environments.

This effectively realizes the open system principle on mobile platforms.

Similarities between µ2 and Android

As an initial approach related concepts of both systems are identified to design a

potential mapping of components.

A core similarity is the use of intents for communication. In both cases intents

describe an abstract task request but differ in various implementation aspects.

While intents in µ2 are statically typed at development time (e.g. PrintIntent as

intent specialization), Android’s intents are dynamically typed, and thus defined

114

Reimplementation of the Micro-agent concept

at runtime. In contrast to the micro-agent platform intents in Android addition-

ally serve as message containers. In µ2 intents are wrapped into MicroMessages

which represent the actual message containers. Along with this Android’s notion

of intent filters (which allow the resolution of implicit intents) maps considerably

well on the notion of applicable intents associated to micro-agent roles which are

used to resolve requests to according agents respectively roles.

Apart from this the concept of micro-agents is loosely related to Services41 as

– equally to micro-agents – Android services are running in the background and

often have long-running tasks (potentially throughout the system uptime) and typ-

ically operate asynchronously. However, they only fulfill those runtime qualities.

Micro-agents inhibit goal-directedness and management of ongoing conversations

which is beyond the scope of Android services.

Components with higher visibility to potential users are the actual Activities which

are often augmented with a graphical user interface and are rather short-running.

From this point of view they loosely relate to agent operations which eventually

have impact on the application user. This tie is considerably loose as operations

as such are a largely implicit concept in µ2.

Last similarity is the event subscription mechanism in µ2 with Android’s Broadcast-

Receiver mechanism. Similarly to the (micro-agent) intent, events are statically

typed and passed via MicroMessages while Android simply broadcasts its intents.

Considering those similarities Android in itself provides infrastructure which is

the basis for a multi-agent system as such and certainly an appealing basis for

integration and interoperation (as described earlier). But still Android in itself

does not qualify as a multi-agent system.

Table 5.3 sums up the observations described in the previous paragraphs.

Design of an interface mechanism

In order to interface between those related technologies the according internal

mechanisms need to be mapped.

In the micro-agent package intents are encapsulated within a unified message struc-

ture – and are not message structure themselves. Further contrast is the static

41At this point it should be reemphasized that the term refers to the Android concept, not to
service-oriented technologies or common understanding.

115

Reimplementation of the Micro-agent concept

µ2 Android
Intent – request specification
mechanism (but not message

container)

Intent – request specification
mechanism and message container

Applicable Intent – Specification of
applicable intents executable by

micro-agent role

Intent filter – Functionality
specification of application component

for request resolution

Micro-agent – composable persistent
runtime entity

Service – Wrapper for long-running
(asynchronously executed) background

task
Operation – short-running (often

visible) agent actions
Activity – short-running task (often

with direct user interaction)

Event – message structure used by
event subscription mechanism

Broadcast – System- or user-defined
intents sent as broadcast for reception

by registered broadcast receivers

Table 5.3: Related concepts of µ2 and Android

typing in the case of the micro-agent platform. In consequence a special (micro-

agent) intent resembling the method signature of Android’s intent has been de-

signed (and named AndroidIntent). This way micro-agents can directly specify

the contents of an intent for the Android environment but are independent from

the Android platform themselves (i.e. can reside on a different host). Only the

specialized data structure needs to be accessible by micro-agents and is thus pack-

aged with any version of µ2. As the conversion between the interface-compatible

(but not semantically compatible) intents cannot be performed on non-Android

operating systems, this task is ultimately linked to the Android version of µ2,

Micro-agents on Android (MOA)42. Along with the conversion of the ’intents’ the

transition between both runtime environments needs to be established.

To realize this the micro-agent framework running on Android is managed by

an Android service. As services are long-running and reside in the background

(in contrast to activities) the use seems most appropriate to manage MOA. The

Android service itself is intimately linked to a micro-agent (or more precise, an ini-

tialized role instance by means of static references) in the micro-agent framework

which offers the conversion mechanism and uses the linked service to dispatch the

42The name is not only an acronym but refers to the now extinct giant flightless native New
Zealand bird – in fact less mobile than Android nowadays. The largest bone collection is held
in the Otago Museum in Dunedin, making the reference to this species only but consequent.

116

Reimplementation of the Micro-agent concept

converted intent into the ’Android world’. To manage the ’conversation’ between

the two realms Android intents are supplied with sufficient metadata to associate a

potential response (from Android) with the original sender (micro-agent). During

conversions several metadata fields are thus appended to the extensible Android

intents. As the micro-agent role linked to the Android service registers Android-

Intents (i.e. micro-agent data structure resembling actual Android intent) as its

applicable intents (i.e. as requests which can be fulfilled by this role), the dynamic

binding mechanism on the micro-agent platform automatically ensures that all

messages containing an AndroidIntent will be sent to this according role.

In consequence micro-agents are able to directly interact with Android compo-

nents and applications via intents. Downside of this approach is the need to have

knowledge about the basic communication mechanisms respectively the Android

concept of intents in order to formulate those. An alternative would be to essen-

tially wrap desired Android functionality as artifacts (such as SMS message or

phone book) and invoke those using the generic communication mechanisms of

the micro-agent framework, such as done in JaCa-Android [JaC], or fully build

an agent framework using the Android application components as infrastructure,

such as done by Agüero et al. [ARCJ09]. However, for the first case the developer

has less flexibility as any potentially interesting resource would need to be encap-

sulated ex ante which would rule out the perception of Android as an open system

(from the perspective of the agent platform). Along with this it shall be recalled

that micro-agents in fact focus on efficiency and establish connections to low level

resources. The direct conversion into intents represents the most efficient – and

from the point of micro-agents – the conceptually suitable way to interact with

Android. Building an multi-agent system natively on Android infrastructure, as

suggested in the second alternative, would additionally harm the seemless inter-

operation between desktop and mobile version of the platform and would harm

performance – as to be shown later.

Not yet described is the opposing perspective – the interaction of Android compo-

nents with micro-agents. One simple aspect is the subscription to Android system

events. Events sent by the Android system can thus be processed by micro-agents

117

Reimplementation of the Micro-agent concept

for arbitrary purposes43. In order to achieve this the Android service wrapping

the micro-agent platform needs to subscribe according events (using a Broadcast-

Receiver component) and delegate those to the micro-agent platform which are

converted and raised as events micro-agents can subscribe to.

Another approach to allow active invocation of micro-agent facilities from An-

droid is the use of intent filters. To enable this (similar to the registration of

applicable intents on MOA) the service wrapping the micro-agent platform needs

to register according intent filters and as such could replace core system services

or applications of Android itself (such as the phone application) and model it with

micro-agents.

An example scenario for the use of MOA, describing its potential and visualizing

the internal architecture, is provided in Appendix D.1.

Potential application areas

Considering the areas of applicability, the connection between those two technolo-

gies (along with the principle of efficient and ’cheap’44 micro-agents) mutually

opens up several application areas respectively provides advantages:

• Robotics – Android as such is attractive for the area of robotics as of its

communication capabilities, open source availability and considerably mod-

erate hardware demands. Combining it with micro-agents allows the devel-

opment of robot application based on micro-agents (including higher-level

planning/reasoning abilities) with built-in communication and sensing capa-

bilities (e.g. robot communication via SMS, use of the provided camera(s),

GPS-based location information). Alternative approaches would include the

possibility to externalize the agent logic into Android devices connected to

the mechanical robot (respectively its actuators and sensors) via Bluetooth

(i.e. ’externalize the brain’ of the robot). The logic could then be physi-

cally decoupled from the robot hardware, allowing the use of inexpensive

43A simple scenario highlights the potential: Received events such as an incoming call could
result in automatic redirection of the call to the mailbox if (the phone) moving beyond a certain
speed (assumed to be driving in car) and agents could automatically respond per SMS (”Dear
XY (resolved via contacts on phone), cannot answer your call as I am driving.”) without any
user interaction.

44Micro-agents are cheap from a resource point of view (i.e. low memory consumption).

118

Reimplementation of the Micro-agent concept

robot technology rather than specialized microprocessors to run necessary

programming environments (e.g. JVM).

• Intelligent Agent Applications – Applications involving intelligent agents

could be built based on the micro-agent platform and directly access An-

droid capabilities. This does not only allow more complex agents to run

on mobile devices (as provided with other platforms) but also use available

resources of semantic value (e.g. reasoning could consider phone book en-

tries or available media data). For other solutions this kind of functionality

would need to be specifically developed; the suggested design delivers these

capabilities out of the box.

• Agent-Based Middleware – Android can make use of MOA in an inverted

relation and use its strong network capabilities (including communication

with desktop machines) as a middleware for general development of software

for both desktop and mobile devices. This goes beyond the vision of AOSE

but shows an effective (and probably efficient) use of agent-based technology

to stimulate the convergence between desktop and mobile world.

• Performance – A less spectacular but surprising consideration is perfor-

mance. Although both the micro-agent platform and Android are built on

similar principles, MOA achieved a significantly higher performance as doc-

umented in Appendix D.2. Partial reason for this is the more light-weight

agent entities and strongly efficiency-oriented messaging framework. As such

application logic could be delegated to micro-agents as far as useful or pos-

sible and rely on Android intents only to actually access Android resources

or to offer GUI interaction.

5.5 Summary

This entire chapter presents a comprehensive overview over the design and reimple-

mentation of the actual micro-agent framework by first pointing out the limitations

of the original implementation and defining requirements for a reimplementation.

As of the number of requirements and the significant changes to the technolog-

ical foundations and feature set a reimplementation is inevitable. Consequently

the design for the successor, µ2, is described. It pragmatically loosens the core

119

Reimplementation of the Micro-agent concept

relations of the original model and introduces a layer model below the actual

agent layer which results in a transition from a framework to a platform. Charac-

teristics of it include the comprehensive management facilities for both platform

and agent lifecycles along with an integrated and comprehensive network support.

On the other hand µ2 strengthens the compliance of the multi-level nature with

system-theoretical aspects in contrast to its predecessor and eases the modelling

of decomposition in agent-based applications. Apart from the powerful decom-

position (and abstraction) mechanisms, the platform enhances the emphasis for

flexible communication. Agents, respectively roles, can interact either by dynamic

linking via intents or numerous addressing patterns to facilitate specific modelling

needs.

Along with this Clojure has been integrated and does not only provide a further in-

teroperable implementation language but also an alternative concurrency handling

mechanism which provides a basis for the implementation of agent environments.

Furthermore a fair multi-threaded round-robin scheduler has been added to sup-

port necessary fairness. Various aspects such as the Randomcast addressing, the

explicit consideration of an environment as well as the fair scheduler, target the

use of µ2 in social simulations.

As a further outcome the port of µ2 to the Android platform shows its usability

on mobile devices but even goes further as it enables the developer to directly

access any phone capability and vice versa allow the use of MOA as a middleware

for Android applications itself, offering both a performance advantage as well as

network interaction with the Java version of µ2. It offers further potential for the

area of robotics and the use of ’intelligent’ agent technology on mobile devices.

Although this aspect will not be further explored at this point, it indicates a signif-

icant conceptual step towards the realization of open systems on mobile devices.

Combined, those results serve as an argument for a better acknowledgement of

agent-based technologies for general software engineering purposes.

120

Chapter 6

Simulation Scenario

In order to show the usability of the developed platform along with its particular

strength in the area of interaction a social simulation scenario is modelled and im-

plemented. The scenario of choice involves a strong degree of interaction between

numerous agents and exploits some key features of the new platform (e.g. Clojure,

asynchronous message passing, fair scheduling).

The idea to supply agents with more human-like attitude makes the incorporation

of cultural aspects into group forming mechanisms attractive. This model is rooted

in the understanding that many phenomena of interest in the social sciences can

be reduced to a group shaping mechanism – independent from kind of groups or

their persistence (e.g. finding trade partners, developing organisations). A popu-

lar example clarifying this principle is the Schelling model of segregation [Sch71]

which describes the movement of agents around a grid until they reach a maximum

degree of ’happiness’ which ultimately ends up in clearly segregated clusters. In

this context ’happiness’ is correlated to the degree of homogeneity of an agent’s

immediate surrounding with respect to skin colour. Apart from the group form-

ing principle the model described here has considerable differences as agents do

not actively move in an environment but actively engage in negotiations – thus

show advanced social behaviour in the sense of both MABS and AOSE (see dis-

cussion in subsection 2.1.1) – instead of communicating by direct introspection of

neighbouring agents’ minds.

121

Simulation Scenario

6.1 Scenario Background

As a theoretical framework this scenario uses concept of Cultural Dimensions,

elaborated by Geert Hofstede [Hof01]. Although approaches to categorize culture

are documented (e.g. Todd [Tod83]), those either do not sufficiently abstract from

ethnocentrism1, are merely typologies (such as Todd) or lack empirical backing

which limits their applicability. Typologies, in contrast to dimensions, try to align

empirical observation to distinct idealized types which may often hardly match

and do not catch cases of hybrids; dimensions have those idealized types in their

extremes but allow a combinations to match observations in a more flexible man-

ner (see Hofstede [Hof01], p.28f.)2.

A key advantage of Hofstede’s dimensions is the empirical backing for a consid-

erably extensive set of countries. All observations were done in IBM subsidiaries

throughout the world in two rounds between 1967-1969 and 1971-1973 as part of

an attitude survey, a characteristic feature of the company culture.

The survey initiated in 1967 was the first internationally standardized question-

naire of the company (covering 180 items); both surveys covered IBM subsidiaries

in 72 countries and 20 languages. As part of the results Hofstede elaborated four

cultural dimensions, scored by means of index values:

Power Distance3 indicates the degree to which subordinates accept the unequal

distribution of power respectively fear of disagreement with their superiors. High

values indicate high acceptance of the inequality.

Uncertainty Avoidance describes the degree to which cultures (in Hofstede’s con-

text factually countries) prepare against the unexpected – be it by means of tech-

nology (controlling unforseen natural impacts), law (controlling behaviour) or re-

ligion (controlling the uncontrollable) – or simply accept uncertainty. Indicators

for high degrees of uncertainty avoidance can thus be strong rule-orientation in

behavioural patterns.

Individualism opposes collectivism and indicates in how far a culture’s thinking

1Hofstede describes this problem with regards to researchers lacking cultural awareness (such
as the unreflected cross-cultural use of Maslow’s hierarchy of needs [Mas43]) in [Hof01], p.17ff.

2Typologies have discrete character while dimensions emphasize a continuous understanding.
3This term is in fact suggested by Dutch sociologist Mauk Mulder but has been empirically

backed by Hofstede (see Hofstede[Hof01], p.83).

122

Simulation Scenario

reflects a collective thinking or an individual-centered self-understanding. Groups

in collective societies are typically of larger size, while their counterpart is driven

by the notion of volatile groupings and the nuclear family notion.

Masculinity describes the degree to which the attitude of members of both gen-

ders in a society are leaning towards principles either ascribed to masculinity or

femininity.4 Societies with stronger focus on masculinity are rather driven by com-

petition and a work-centered lifestyle in contrast to an orientation towards quality

of life and stronger focus on relationships (with a tendency to smaller companies).

Long-term Orientation is a dimension introduced at a later point in time and was

adopted by Hofstede from a Chinese value study conducted by Bond [HB88]. The

latter study seeked to complement the other dimensions – driven by a ’Western’

understanding – by introducing the notion of ’confucian dynamism’ respectively

long-term vs. short-term orientation. Cultures with high long-term orientation

favour perseverance over fast results, put less emphasis on the past but future life.

With regards to Asian countries it is largely seen as a complement to uncertainty

avoidance (see Hofstede [Hof01]).

Characteristics of the dimensions exceed the simple explanations given here by far.

Details on data collection and validation as well as correlations between dimen-

sions (e.g. power distance values and uncertainty avoidance correlate for Western

countries) are described in detail by Hofstede [Hof01].

The cultural dimensions and their data base (employers of one multi-national

company) have been target to criticism, along with Hofstede’s considerably static

understanding of culture as ’software of the mind’ with a considerable change

resistence over time (see McSweeney [McS02]). Apart from those aspects, the

striking reason to apply its understanding are the extensive empirical observa-

tions which allow to model actual cultural stereotypes.

The focus of the model described here is not to achieve this in an accurate manner

but rather to show one approach to operationalize the cultural dimensions and to

show how culture affects group shaping mechanisms. In contrast to an earlier (but

4Here it should be mentioned that Hofstede himself implicitly applies gender roles or stereo-
types to classify cultures.

123

Simulation Scenario

considerably recent) application of agent-based modelling to cultural dimensions5,

the approach taken here targets a large number of agents and can be general basis

for further models with more orientation towards specific problems (e.g. strategy

selection based on cultural background).

6.2 High-level Model Description

In the following the conceptual model of the simulation scenario is described in

more detail and key aspects of the framework by Gilbert and Troitzsch [GT05] (as

introduced in subsection 3.2.2) are applied.

The real-life phenomenon to be modelled are the groups which emerge based

on the autonomous interactions between individuals of arbitrary cultural back-

ground. Relevant aspects for observation include potential patterns of emerging

groups with regards to their cultural composition which are explored for other

(unexpected) emerging characteristics. Characteristics of both in- vs. out-group

individuals shall be observed to gain better insight into individual agent decisions.

Underlying core assumptions for the modelling process are:

• Every individual has a motivation to join groups (at least at some point in

time).

• Individuals cannot directly perceive any cultural dimension characteristics

(or cultural background) of other agents but seem to ’know’ if somebody is

of their culture.

• Group memberships are explicitly negotiated.

• Individuals of a given culture show deviations from their ’mean’ cultural

characteristics.

• Individuals only belong to one group at the same time.

• Groups do not merge.

Although the assumptions might be target to discussion they shall hold for the

model described here. Additional assumptions (such as the understanding of the

cultural dimensions themselves) will be introduced in subsection 6.3.

The model thus consists of so-called cultural individuals which hold characteristics

5Hofstede, Jonker and Verwaart [HJV09] suggest a model for intercultural trade relationships
focusing on few BDI-like agents to perform trade transaction steps.

124

Simulation Scenario

representing the three cultural dimensions Individualism (IDV), Power Distance

(PDI) as well as Uncertainty Avoidance (UAI). As the cultural dimensions can

be applied in isolation of each other (i.e. can be interpreted independently), a

selective use is possible and also eases the interpretation (as of the fewer inde-

pendent variables). Apart from this the operationalization of Masculinity (MAS)

and Long-Term Orientation (LTO) is possible but less intuitive with regards to

the problem observed in this model and would raise the complexity of the model

significantly (both in terms of ’understanding’ and processing).

One core aspect of this modelling approach is that the modelled cultural charac-

teristics cannot be explicitly perceived by other agents.

Apart from those cultural characteristics individuals also inhibit four personal

characteristics which describe externally perceivable characteristics. Those could

(and are named as this for the sake of intuitive use) represent ethnicity, gender or

language6 but are in fact do not carry any semantic association and are merely

used for determination of perceivable differences between individuals, and as such

helpful for their discrimination. Additional to this a further externally perceivable

individual characteristic with a semantic association is introduced, namely (social)

status.

The individual behaviour is modelled as following and executed in the shape of

rounds – ensuring an equal chance of each individual. Ungrouped individuals ini-

tially determine whether they are interested to join a group. If this is the case they

request group information (group average values for status and personal character-

istics as well as group size) from randomly selected agents. Upon provision of this

information, agents deliberate which group is most appealing for them and request

the membership. Depending on the desperation of agents they will consider more

or less groups before applying. Groups equally deliberate whether or not to ac-

cept the applicant by evaluating the benefit based on the individual’s perceivable

characteristics and potential earlier applications or group leaves. Ungrouped indi-

viduals which receive a group information request can respond as a group of size

6Those examples in fact carry some ’cultural baggage’ but are hardly sole criterion for a
culture. Their use in this model is inconsistent (i.e. no dependencies between the randomly
chosen personal characteristics are respected).

125

Simulation Scenario

1. Ungrouped individuals which receive a request for group membership can then

start an actual group (as group leader) if they accept the membership request.

Individuals which have been rejected remember this rejection and need to await

the next round to apply to a new set of groups. Individuals who have not been

interested in joining a group (based on their attitude) become more ’desperate’

to do so which – at a given point – will overrule their lack of interest and makes

them participate in membership requests.

Individuals which are grouped behave differently depending on their role as mem-

bers or group leaders.

Members are free to decide whether they want to leave the group (e.g. because of

new members) or to remain. Group leaders have the option to decide whether they

want to expel a certain member which does not fit into the group (e.g. because

of individuals whose properties are outlier properties). In both cases individual

and group remember their counterpart (i.e. group remembers leaving individual,

expellee remembers group it was forced to leave) for future deliberations.

6.3 Operationalization of Cultural Dimensions

Up to this stage the simulation case has been presented on a high level; the ac-

cording operationalization of the mentioned characteristics is not specified yet.

The original cultural dimensions are measured on a positive scale in integer steps

originally ranging from 0 upwards7. As high respectively low values for all con-

cerned cultural dimensions potentially show opposing behaviour in the given con-

text, their value distribution is normalized around the value of 0 which indicates

a neutral attitude with regards to a given dimension. The values assigned to in-

dividuals range from -5 to 5.

The understanding of the cultural dimensions in the given context thus needs to

be translated to ’negative’ for low values (in Hofstede’s concept) and ’positive’

for high values. Following this the operationalization of the dimensions will be

explained bearing this understanding in mind.

For the power distance (PDI) a general dependence on the social status of indi-

viduals or groups is considered relevant. A positive PDI thus indicates a strong

7The highest value found describes the Long-Term Orientation in China (value 118).

126

Simulation Scenario

acceptance of the inequal distribution of power which is interpreted as acceptance

of hierarchy and the appreciation of high social status. Individuals with negative

PDI values do not consider status as particularly relevant.

In the model a positive IDV indicates strong individualism, while a negative IDV

represents a collective attitude. Individualists tend to join groups but are more

likely to leave those again while collectivists strive towards a stable group mem-

bership.

Uncertainty avoidance (UAI) is modelled as the degree to which individuals are

accepting changes with uncertain outcome both with regards to leaving groups

’for new challenges’ as well as accepting new members in a group. Uncertainty

avoidance is related to the homogeneity of an individual’s or group’s personal

properties. Individuals with a positive UAI requesting a group membership dis-

like strong differences of a group’s average personal characteristics to its own8.

The UAI value is further coupled with the experience of an individual. Positive

uncertainty avoidance correlates with a conservative attitude in case of bad past

experience (such as being expelled from a group or a decline of group member-

ship). Individuals with a negative UAI are comfortable to surround themselves

with individuals inhibiting widely different characteristics and are rather encour-

aged by rejections and declines (i.e. have a somewhat deviant attitude).

Another crucial deviation from the original concept – motivated by the assump-

tion that even Hofstede’s cultural dimensions cannot be equally applied to each

individual of a culture – is the random distribution of individually assigned cul-

tural dimension values around the cultural dimension specified for the the society

(i.e. centering the random distribution of individual assignments at UAI 0, PDI

0, IDV 0 for a neutral culture). Apart from the cultural dimensions their comple-

ment, the personal characteristics along with the social status, are integrated.

Personal characteristics are modelled as integers but should be interpreted as ar-

bitrary symbols which express different values for the four given characteristics.

The characteristics do not carry any specific semantic association (as mentioned

above) and are of nominal scale. The differences of personal characteristics of an

8The operationalization of personal characteristics will be discussed in the next paragraph.

127

Simulation Scenario

individual are thus defined as the sum of differing characteristics. Difference thus

indicates the heterogeneity between two compared entities (which could be two

individuals or a group (using the modes of all member characteristics9) and an

individual).

Social status is modelled as integer values ranging from one to three indicating

low, middle and high status.

The operationalized characteristics along with the basic agent behaviour allow to

model an individual’s or group’s decisions. Functions are held semi-formal using

PDI, IDV and UAI to represent the according values and mnemonic placehold-

ers (format: <meaning of symbol>) for the other components. Additional inline

descriptions for function components are provided. At this point first decisions

taken by individuals are described.

Individuals decide if they want to engage in any group membership application

process. Previous rejections in combination with the uncertainty avoidance val-

ues have negative impact on the interest of agents to join groups (group interest

function).

/* group interest declines with rejections if individual is uncertainty-

* averse; uncertainty-affine ones are even motivated by rejections

* (which is the interpretation taken in this model) */

-1 * <number of rejections by groups> * UAI

//desperation of individual to belong to group encourages group interest

+ <desperation>

A positive result indicates interest to join groups.

After requesting group information from randomly selected groups, individuals

rank the results in order to decide which group to join (by applying the following

group rank function to all candidate groups).

/* Individualists favour groups of limited size to show more influence,

* collectivists prefer large group sizes */

-1 * IDV * <group size>

/* if acceptance of power inequality is high,

* the group status for the according group is taken into account */

+ (if (PDI > 0) {PDI * <group status>} else {0})

/* higher differences in non-cultural properties discourage risk-averse/

* conservative individuals; risk-affine individuals favour differences */

+ -1 * UAI * <difference of non-cultural group characteristics>

9In case of multiple modes for average personal characteristics in groups one is randomly
taken.

128

Simulation Scenario

Higher values indicate a more interesting group.

Once having joined groups agents can deliberate whether they want to leave those

groups using the following group leave function.

//High individualism motivates to leave group

IDV

/* if acceptance of unequal power distribution is high,

* differences between own social status and group status

* (group status is the mean of its member’s status)

* have according impact */

+ (if (PDI > 0) {PDI * (<own status> - <group status>)} else {0})

//a conservative attitude keeps individuals from changing groups

+ -1 * UAI

Values greater zero make the individual leave the current group.

From a group perspective complementary calculations apply to determine the han-

dling of interactions with individuals. The representative for the group is the group

leader. All requests to the members of the group (e.g. applications by individuals)

are forwarded to the group leader for decisions. This way messages always reach

an appropriate recipient.

The decision to accept an applying individual as group member is done via the

member acceptance function.

/* if the group’s mean individualism is low (i.e. collectivistic)

* new members are desired */

(if (groupIDV < 0) {-1 * groupIDV} else {0})

/* if group is collective and applicant culture matches

* group culture, use IDV in favour of applicant */

+ (if (groupIDV < 0) {if (<applicantCulture> == <groupCulture>)

{-1 * groupIDV} else {0}} else {0})

/* if the group’s mean power distance is high, the status difference

* of applying individuals is taken into account (higher status of

* applicant increases the chance for acceptance) */

+ (if (groupPDI > 0) {groupPDI * (<applicant status> - <group status>)}

else {0})

/* uncertainty-avoiding groups (i.e. groups with high/positive groupUAI)

* dislike agents which have either left or been rejected earlier;

* uncertainty-accepting ones encourage dynamic memberships */

+ -1 * (<number of times the applicant has left this group>

+ <number of times he had been rejected by this group>) * groupUAI

/* uncertainty-avoiding groups avoid individuals with

* strong non-cultural differences */

+ -1 * <difference of non-cultural characteristics (between this group

and individual)> * groupUAI

/* if the group is uncertainty-accepting (negative UAI) and if culture

129

Simulation Scenario

* of applicant matches group culture (= average culture of members),

* UAI is in favour of acceptance */

+ (if (groupUAI < 0) {if (<applicantCulture> == <groupCulture>)

{-1 * groupUAI} else {0}} else {0})

As with most functions above, results greater zero indicate acceptance of the

applicant, while values equalling zero or negative values result in rejection.

Another decision to be taken by groups (respectively their leaders) is the potential

exclusion of members. This is done in two steps. First the most deviating member

with regards to the perceivable non-cultural characteristics is identified. As a

second step an exclusion value is calculated as following:

/* for uncertainty-avoiding groups the probability

* of an exclusion of a member increases with

* its deviance from the group’s ’normal’

* perceivable characteristics and vice versa */

groupUAI * <difference of non-cultural characteristics>

/* groups with high power distance take the status difference

* between the individual and group into account */

+ -1 * groupPDI * (<individual status> - <group status>)

Again, values above zero lead to the exclusion of the member.

As pointed out in the high-level description the assignment of cultural properties

is not done in a homogeneous manner. Societies are rather modelled by pursuing

a random assignment of cultural dimension values with a distribution around the

cultural mean values. This model thus assumes potential deviation from the mean

cultural values – Hofstede’s empirical evaluations themselves represent mean values

of deviating individuals.

The independent variables for the experiments can thus be mainly reduced to

the cultural dimensions, enriched with further tuning parameters (as described in

subsection 6.4.1).

To measure the phenomenon of interest a considerable number of observations

need to be taken (’Observations on the target’ in Gilbert/Troitzsch framework).

In consequence each round characteristics of individuals are recorded.

Those include:

• Individual characteristics (both personal as well as cultural (i.e. IDV, PDI

and UAI)) which do not change once set.

130

Simulation Scenario

• Group-related state – It indicates the state of the individual with regards to

a group membership (not grouped vs. grouped). If the individual is member

in a group, its group leader is of relevance as well.

• Number of group changes – The number of group changes an individual

undergoes over time indicate the flexibility of an individual.

• Number of rounds since last group change – The number of rounds since the

last group change indicates the stability of a group membership. Observed

over the whole population it indicates a potential equilibrium in the demand

to change group memberships (be it actively by leaving groups or passively

by being expelled from groups).

• Number of times the individual has been rejected upon group membership

request or expelled from groups.

• If the individual is a group leader (and thus represents a group), the cumu-

lated number of individuals that have left the group is collected.

6.4 Implementation

6.4.1 General Aspects & Verification

Having discussed the model, aspects of its implementation should be reviewed at

this point. As the model does not consider an explicit environment the implemen-

tation focuses on the ’cultural individuals’. All of those are implemented using

Clojure as implementation language. Clojure scripts used for role implementa-

tions of communicating agents in µ2 require the implementation of a receive-msg

[message] function to which all received messages are passed (from the platform)

in order to allow their processing in Clojure. They further require the implemen-

tation of a behaviour loop (behave function) which is triggered by the provided

scheduler. Apart from this all relevant agent functionality (such as outbound mes-

sages according to the provided interaction patterns (e.g. send-msg)) as well as

platform functionality (access to pseudo random number generator and scheduler)

can be directly accessed from Clojure itself.

As the role implementations are potentially accessed synchronously – the mes-

saging framework as well as the behaviour loop of the role itself – both threads

131

Simulation Scenario

can operate on the same state. While the framework handles this via semaphores

for Java implementations this is not necessary in Clojure as of its STM-backed

transaction handling.

At this point it should be mentioned that only the behaviour loop of agents is

scheduler-controlled, allowing (based on the number of initial requests and negoti-

ations) various parallel and asynchronously executed conversations. As such only

the ’motivation’ of an agent is controlled in a fair manner – not his reactions.

In order to control all agents an additional so-called ’console-agent’ is provided

which allows to control the scheduler via command line. Along with this the

console-agent is responsible for the collection of all statistical data. As agents in

µ2 are autonomous and do not allow direct introspection, at the end of each round

every agent sends information about its current state to the console-agent which

collects it and writes it to a flat file upon user request (via command line). Along

with the real-time control aspect the interactive programming approach (and dy-

namic typing) of Clojure proves very convenient. It allows direct operation on the

runtime state of the agent which is not only helpful to verify function output (and

interactively correct the function) but also to accomplish debugging of appearing

errors at runtime rather than replicating errors in order to trace their source (as

with conventional Java).

Another model-related implementation aspect is the augmentation of all used cul-

tural dimensions (UAI, PDI and IDV) with a weight factor to allow their fine-

tuning respectively balancing at a later point. Experimenters can also define how

many groups are contacted before deciding which group membership to apply for.

Idea for this is to increase the ’rationality’ of the group shaping process and limit

effects of random selection of groups. Potential configurable parameters for the

implemented model are thus:

• Culture definition(s) via UAI, PDI and IDV and number of agents for ac-

cording culture

• Indicator whether society values should be randomized around the defined

culture or strictly use the specified values10

10In fact only the ’randomized’ version was used.

132

Simulation Scenario

• Weights for all dimensions as well as rejections

• Number of rounds

• Number of requests to groups by individual agents before deciding which

group membership to apply for

6.4.2 Validation & Sensitivity Analysis

While the verification aspect largely concentrates on the correction of syntactic

and elementary functional aspects, the validation is crucial with regards to the

expected overall model behaviour. At this point it should be recalled that the

model is artificial and merely relies on the concept of the cultural dimensions for

real-life grounding. No actual data on group formation processes is available to

test it against; its orientation is rather explorative and yields towards an under-

standing of potential processes (in the trade-off of understanding and accuracy

(see Axelrod [Axe97] as discussed in subsection 3.2.2)).

As distinct effects of the particular dimensions have been assumed during the

modelling process (e.g. high status attracts individuals with high PDI values (see

subsection 6.3)) this behaviour can be tested using a very small number of agents

and the stepping functionality of the scheduler. As of the strong asynchronicity

of the conversations, retracing full individual conversations of larger number of

agents becomes practically infeasible.

The sensitivity analysis, and consequently the fine-tuning, have been undertaken

in two steps. Initially all parameters are set to neutral values (all weights for cul-

tural properties to 1, the mean culture to 0 (i.e. one neutral culture)) in order to

gain a statistical baseline for the model’s sensitivity towards parameter changes.

Although simulation output is available for analysis µ2 does not provide tools for

analysis at the current stage. Thus a complementary post-processing workflow is

created using the Konstanz Information Miner (KNIME) [KNI] which is a data

mining tool built upon the Eclipse platform [Ecl] and serves as an open source

alternative to commercial solutions such as the IBM SPSS Modeler [IBMa] or

the SAS Enterprise Miner [SAS]. The workflow effectively filters the last round

of all agents and analyses it both on grouped and ungrouped individuals in first

133

Simulation Scenario

instance, drilling down into potentially interesting patterns.11 Chosen indicators

are number of groups, average group size, quota of ungrouped individuals as well

as average status and standard deviation for in- and out-group agents as well as

their average UAI, PDI and IDV values. In order to test the overall behaviour and

reliability of results the different cultural dimensions are systematically adjusted

ceteris paribus (i.e. 1st run: culture with neutral UAI, neutral PDI, neutral IDV;

2nd run: culture with high UAI, neutral PDI, neutral IDV; 3rd run: culture with

low UAI, neutral PDI, neutral IDV, ...). In this setup all agents belong to the

same culture; effects of group shaping within one, not between different cultures

is tested. The target of the analysis is to balance the effect of all three cultural

dimensions with regards to in-group/out-group fraction of all agents.

In order to determine the number of necessary rounds of execution to achieve

clear and replicable results, pretests with an uni-cultural set of individuals (all

individuals from one culture) were undertaken. Those revealed several clusters

which will be introduced in detail in the result section 6.5. Stable groups, mainly

caused by memorizing (and reacting on) drop-outs – from group side – or groups

which declined earlier membership requests – by individuals –, developed after

25 to 100 rounds (depending on parameter set). Further clusters (e.g. frequently

group-changing agents) within the out-group stabilized after about 125 rounds

with minor exceptions during further runtime. Thus the sensitivity analysis was

done using 200 individuals interacting over (generous) 300 rounds. To measure

the reliability respectively tolerance of the outcome each configuration is executed

five times, and the most centered results measured by in- and out-group fraction

(i.e. number of grouped agents vs. number of non-grouped agents) were taken.

The results are shown in Appendix E.2 and its detailed findings are discussed in

section 6.5 as those equally represent a result for this scenario beyond a pure sen-

sitivity analysis.

It shows a balanced relation between agents which have joined a group and ones

which did not. While PDI and IDV show a rather linear tendency driving agents

to be inside or outside a group, UAI is modelled to be prohibitive for strong

11A screenshot of the iteratively elaborated stream can be found in Appendix E.1. The actual
implementation can be obtained as indicated in Appendix F.2.

134

Simulation Scenario

grouping as individuals tend to take risks in case of low uncertainty avoidance

while high uncertainty avoidance keeps groups from accepting new (and consid-

erably different) agents. In this context the aspect of weights for the different

cultural dimensions is particularly relevant as those control the aforementioned

effect. While an increasing weight for PDI and IDV positively correlates with

the involvement of agents in groups, the UAI weight has a strong impact on out-

and in-group fraction when testing the sensitivity of power distance12. Target is

thus the balancing of in- and out-group fractions between PDI and IDV, as those

fractions hardly changed when only adjusting UAI weights. To show this aspect

results of the sensitivity simulation runs for UAI weight factors 1.5 as well as 1.8

are provided in Appendix E.2. In the following the weights 1.5 for UAI, 1 for both

PDI and IDV and a weight of 0.1 on rejections (in order to limit the exclusion of

agents from groups (see according functions in subsection 6.3)) have been chosen

for all subsequent executions. In this setup agents request information from three

groups prior to their decision which group to join. Desperate agents which have

waited for more than five rounds consider the application to whatever response

they have got without awaiting other outstanding responses.

The operationalization of the cultural dimensions turned out to be rather strict as

the number of out-group agents is balanced around a level of 50 percent. Along

with this the model implementation does not provide ’extreme results’ but rather

indicates trends. Average group sizes hardly reach three members, the maximum

number of members reaches values up to ten. Potential reasons for this are three-

fold. Unless dissolved (by leaving members (group leader without members will

dissolve their group)), groups will not give up their autonomy, thus not merge with

other groups to shape larger groups. Another aspect is the green field approach.

Groups are fully emerging from initial requests of agents. All agents are free to

request immediately and are eventually only held back by high individualism (and

wait for several rounds of ’increasing desperation’ before requesting), leading to

numerous rather small groups as of the equal distribution of initial agent requests.

The third aspect is the agents’ memory. Agents do not forget their interaction

12At this point it should be emphasized that a review of the code base has been made to ensure
that there is no mistaken allocation of PDI values with UAI weight.

135

Simulation Scenario

partners which is born out of the idea to make more ’intelligent’ decisions on

whom to contact and also to allow the emergence of stable relationships (past

rejections make group leave unlikely (if individual seeks security (high UAI)) high

number of rejections (e.g. based on low status of requestee) result in ’frustation’

of individuals). This contributes to the rather limited average group size. Thus

for analysis purposes size cannot be of sole importance.

Reviewing the structure of emerged groups two aspects demanded amendment of

the concept: Groups did not show clear cultural patterns as expected initially. To

reflect the idea that individuals might not be able to perceive the actual culture of

the counterpart but are able to decide whether they share a cultural background

which might attract to join a group, group leaders can distinguish if an applicant

(for group membership) is of their own culture (in a boolean manner) and consider

this accordingly. This mechanism weakens the modelling principle of avoiding the

communication of any cultural properties – but not to the extent of ’knowing’ each

other’s culture.13

Another aspect relates to the calculation of group properties. Initially cultural

properties of a group are determined in a fair manner (i.e. average across all group

members). This is amended by considering the properties of the group leader twice

to amplify its influence within its group.

Given those amendments, experiments with different cultural setups are conducted

to show patterns when combining different cultures in this model.

6.5 Results and Evaluation

6.5.1 Emergent Structures in Uni-Cultural Setup

As a first step – and in strong relation to the sensitivity analysis – experiments

with a uni-cultural setup are conducted.14 In this case all agents belong to a sin-

gle culture; their cultural attributes are randomized around neutral cultural values

(as described before). The configuration of a culture in this model shall be under-

stood as cultural coordinate consisting of the values for UAI, PDI and IDV in the

13The operationalization description above already includes this feedback from the sensitivity
analysis.

14To recall: The experiment was run with 200 individuals over 300 rounds.

136

Simulation Scenario

listed order. The cultural coordinate for a neutral uni-cultural setup is thus [0;0;0].

As mentioned in the validation phase, characteristics of the out-group agents are

analysed and show retraceable clusters which are described in more detail at this

point.

One cluster of those out-group individuals consists of agents which frequently

change their group membership as well as a cluster of agents which never joined

any group as member themselves. Individuals of the latter cluster are of mixed

status, often a higher degree of uncertainty avoidance and low power distance

(i.e. those agents do not care about status). Their membership applications to

groups are rejected throughout the simulation runtime. Those agents represent a

’permanent out-group’.

The cluster of agents which change their group memberships frequently can itself

be subdivided into two subclusters. Agents whose status is above average and have

an according high power distance (i.e. emphasize status) join groups (typically of

lower status) but leave them, often within the next deliberation cycle, and thus –

in the long run – remain as ’isolated elite’15.

The other subcluster represents the largest cluster of out-group agents. Its mem-

bers are characterized by low uncertainty avoidance (i.e. are tendentially more

risk-taking), a slightly stronger focus on power distance but only an average sta-

tus. As such members of this cluster can be described as ’gamblers’.

Grouped agents in turnaround do not show clear subclusters but can be contrasted

against the out-group agents. Grouped agents have a lower status in comparison

to the mean average of the out-group agents but a similar status to the gambling

cluster. Their power distance is rather low, and in tendency they fear uncertainty.

While this fear for uncertainty results in stable groups, the group formation pro-

cess itself is driven by their collectivist orientation (i.e. negative IDV).

Depending on actual parameterization (i.e. culture coordinate) the results can de-

viate from the described patterns (e.g. elite status in collective culture is lower

than others) and ratios between out-group clusters shift. However, for most cases

the observations described are applicable. When reviewing the results in Appendix

15Again, ’elite’ should not necessarily imply superior status but indicate their principal posi-
tion, allowing them to opt out from group membership applications.

137

Simulation Scenario

E.2 and retracing the patterns it should be emphasized that the mean cultural val-

ues can only be compared to other clusters of the same cultural coordinate (e.g. the

PDI value of 1.8 (although seemingly of moderate level) can be considered low in

an extremely status-oriented society). Table 6.1 summarizes the discovered pat-

terns.

Interesting general findings from this uni-cultural experimental setup include that

Cluster Status UAI PDI IDV
Group

changes
Grouped agents

in-group
agents

moderate
moderately
uncertainty

avoiding

moderate to
low

collective low (≈ 1)

Non-grouped agents

Elite
moderate
to high

high high
indivi-

dualistic
few

Gamblers moderatea low
moderate to

high
mixedb many

Permanent
out-group

mixedc high low mixed none

a Status can strongly vary depending on cluster size (for different cultural setups).
b Gamblers show a slight tendency towards individualism.
c Status varies significantly with neutral status-orientation.

Table 6.1: Properties of clusters of individuals in uni-cultural setup

the mean status of in-group agents is nearly consistently lower than the one of

out-group agents. As of the controlled group membership in-group agents have a

more homogeneous status level (max. standard deviation of 0.6) while out-group

agents’ statūs are more widely spread (around 0.8) – independent from fraction

between in- and out-group agents.

In collective, uncertainty-accepting and non-status-oriented societies the fraction

of ’gamblers’ is considerably high. While the first two characteristics encourage

independence and are mainly decided by the individuals, strong status-orientation

has a similar effect but is a consequence of the groups’ decisions to reject individ-

uals.

Summing up the effects of the different dimensions with regards to the group shap-

ing mechanism in this model collectivism as a key driver to shape groups while

138

Simulation Scenario

power distance controls potential new members16. Uncertainty avoidance deter-

mines the group stability in the long run (high uncertainty avoidance of group

members can limit group growth but makes agents remain in groups).

Important to mention again is the fact that although group sizes and statūs only

show limited variation between the different clusters, the results are reproducible;

limited variations do not change the semantic implication.

6.5.2 Multi-Cultural Experiment

For further experiments – and to test the actual culture feature – a multi-cultural

setup is considered using the combination of various synthetic culture definitions.

Apart from a neutral culture (coordinate [0;0;0]) eight further cultures, exploiting

all possible extreme combinations, have been defined as shown in table 6.2. Those

Cultural
coordinate

Description of synthetic culture

[0; 0; 0] neutral baseline culture
[4;-4; 4] uncertainty-avoiding, not status oriented, individualistic
[-4; 4;-4] uncertainty-accepting, status-oriented, collective
[4;-4;-4] uncertainty-avoiding, not status-oriented, collective
[4; 4;-4] uncertainty-avoiding, status-oriented, collective
[-4; 4; 4] uncertainty-accepting, status-oriented, individualistic
[-4;-4; 4] uncertainty-accepting, not status-oriented, individualistic
[-4;-4;-4] uncertainty-accepting, not status-oriented, collective
[4; 4; 4] uncertainty-avoiding, status-oriented, individualistic

Table 6.2: Combinations of Synthetic Culture Coordinates

definitions of the cultural coordinates do not use the full scale of the model speci-

fication (i.e. values of 5 and -5) to improve the randomization around the extreme

values.

For the multi-cultural setup the objectives are changed from the view on emerg-

ing group clusters towards a stronger focus on the performance of the individual

synthetic cultures within emerging mixed groups. Consequently each culture is

equally represented in the setup. As the JVM memory limitation on the test ma-

chine – on 32-bit Windows XP this is about 1.5 GB17 – currently allows to run

16Status-oriented groups do not necessarily yield in higher status but rather limited number
of groups.

17This is the case despite more available RAM. For an explanation on this refer to [Bru].

139

Simulation Scenario

about 650 (cultural) agents18, the number of agents for individual cultures is set

to 72, resulting in 648 agents. Individuals interact over 300 rounds. As before the

differences in results for different runs are neglectable for the perspective taken

here. Representative results are shown in Appendix E.3 and analyzed in the fol-

lowing.

For this analysis the cultural components of the resulting groups are of partic-

ular interest. All cultures are represented in the group shaping process – but

with widely differing outcome. When observing the in- and out-group fractions

(as shown in Figure 6.1) those vary significantly across different culture setups.

No particular trend respectively unidimensional dependency of group size can be

observed. More interesting than group size is in fact the differences between the

representation of cultures as group members vs. group leaders. Thus a closer look

Figure 6.1: In- and out-group fractions in the multi-cultural simulation setup

at group structures with focus on cultural distribution of group leaders is of in-

terest (see charts in Figure 6.2). While the distribution of group memberships

for all synthetic cultures is considerably balanced (apart from outliers such as co-

ordinate [-4;4;4], both being uncertainty-accepting and individualistic), leaders of

those groups mostly belong to cultures with particularly ’inviting’ characteristics.

18This limitation is caused by the larger footprint as a consequence of the Clojure implemen-
tation of the individual agents.

140

Simulation Scenario

Figure 6.2: Groups by member culture and leader culture

In this model leaders derive from mostly uncertainty-accepting groups as those

are more likely to accept unknown new members. This behaviour also clarifies the

different understanding of individualism and uncertainty-acceptance in the model.

Here uncertainty-acceptance has a more passive effect of tolerating others’ wish-

es/requests which eventually encourages the shaping of new groups – in fact an

effect rather similar to collectivistic agents. Individualism, in contrast, describes

the ’motivation’ of an agent to actively pursue its own goals (such as joining or

leaving a group). As such UAI shows a stronger effect in groups while IDV is of

stronger effect for individuals – in this model.

The fractions of group-leading agents in fact need to be evaluated in the context

of the in-group ratio for a specific culture. An example culture is [-4;4;4] which

has a limited involvement in group memberships (≈ 3%) – about 85% of individ-

uals from this culture are not grouped (see Figure 6.1) – and a relatively higher

importance with regards to group leaders (≈ 8%). In fact nearly all agents of this

culture are group leaders (group leaders are group members at the same time), as

indicated by a leader/member ratio of 0.9 for this culture. According ratios for all

cultures are shown in Figure 6.3, giving a clear picture on the relative performance

of different cultures with regards to group leadership – independent from in-group

ratios for specific cultures. Aggregating those results by coordinate components,

as shown in Figure 6.4, clarifies the relative importance of all cultural dimensions

141

Simulation Scenario

Figure 6.3: Leader/member ratio of in-group agents by culture

for the group shaping process and in particular the ratio between group member-

ship and group leadership.

The figure in fact manifests the suggestion that the UAI dimension is of central

Figure 6.4: Leader/member ratio by culture coordinate component

relevance when determining cultures which are more successful in providing group

leaders. This effect is retraceable when considering the openness of uncertainty-

accepting groups to new members while uncertainty-avoiding ones are restrictive

with regards to newcomers. Agents with high uncertainty avoidance ([4;X;X])

(and a higher drive to be in stable group relations) have a reasonable chance to

become group members with a poor chance of being leaders of those groups while

142

Simulation Scenario

individuals with low uncertainty avoidance ([-4;X;X]) do not spend long periods of

time in a pure member group relation (especially in combination with high indi-

vidualism). However, if they are asked for group information they are very likely

to start a group, accept new members and remain as group leaders in the long

run which explains the significant shift between group membership and leadership

fractions for different cultures.

In contrast to the uni-cultural setup which shows large differences for in- and out-

group fractions for extreme UAI values, group membership fractions in the multi-

cultural model are in fact nearly balanced for all dimensions as the multi-cultural

setup allows the differentiation between member and leader cultures, providing a

more fine-grained picture on factors relevant for the group shaping – respectively

an answer to the question ”Who is starting groups?”.

The other dimensions do not show this inverse correlation of probability for group

membership and leadership. In the case of PDI it can be briefly said that low

power distance agents ([X;-4;X]) are likely to end up in groups and are likely to

become leaders themselves (more than 50%). In this model individuals with strong

status-orientation ([X;4;X]) are not only less likely to be in groups but are also

hardly leaders. Here the reason is that status-orientation does not imply that all

individuals necessarily have a high status but rather segregates individuals by sta-

tus. If they have a high status along with status-orientation they are likely to opt

out from groups soon after entering and remain outside (as indicated before for the

’elite’ out-group cluster in the uni-cultural setup) or show strong group changing

behaviour when in conjunction with other dimensions (e.g. individualism) (such

as the cluster of ’gamblers’). Both agents belonging to the ’elite’ as well as the

cluster of ’gamblers’, the major out-group clusters, are likely to show a strong

status-orientation. A consequence from this is that the average status of groups

in status-orientated cultures is rather low; high power distance additionally limits

group size (see according tables in Appendix E.2).

Members of collectivistic cultures ([X;X;-4]) are likely to be part of groups and

have a reasonable high chance (though less then 50% for this model) to be group

leaders. Members of individualistic cultures ([X;X;4]) are consequently less likely

143

Simulation Scenario

to be part of groups in the long run (about 30%). However, their chance of

being leaders of those groups ranges at around about one third. This result is

retraceable when considering that individualists find a stronger representation in

the out-group clusters with higher likeliness to switch groups frequently. Unless

combined with low uncertainty avoidance they are unlikely to form new groups

upon requests by other agents.

In order to allow a third party to retrace the modelling decisions and to reproduce

the results19, the model code itself can be retrieved as described in Appendix F.2.

6.6 Summary

Overall the model of group shaping by means of cultural characteristics described

here shows an intermediate approach to consider ’culture’ in agent behaviour.

Apart from the unexpected result with regards to uncertainty avoidance and po-

tential group leadership (for this model) it allows a loose orientation on cultural

dimensions empirically elaborated by Hofstede. Consequently this allows to define

agent societies using actual cultures as archetypes. However, doing so the experi-

menter should be aware of the shortcomings of this model.

Limitations of the current model include the rather unidimensional interpretation

of cultural dimensions. For example, PDI is more or less simply interpreted as

status-orientation, leaving out reactive aspects of the subaltern upon actions of

the group leader and further characteristics suggested in the literature (see Hof-

stede [Hof01], p.108 for more examples). As such the model takes a rather näıve

approach to model the dimensions.

Another limitation is the yet only static-comparative analysis. Introspection at

runtime is feasible but work-intensive. Primitive mechanisms to visualize historic

developments of groups are available20. However, those merely concentrate on

group sizes but leave out the other, in fact more relevant aspects as revealed using

19Recalling raised demands for this from the literature (see subsection 3.2.4): Heath et
al. [HHC09] demand model code in order to ensure reproducibility of results, Michel [MGF04]
describes the engineering divergence phenomenon for reimplementations based on even complete
specifications. Troitzsch [Tro04] sees the implementation (including simulator) itself as a ’struc-
tural reconstruction’ of the theory. Code provision thus complements the incomplete description
provided to this point.

20For this purpose the Clojure-based statistics/visualization package Incanter [Inc] has been
used.

144

Simulation Scenario

KNIME for data post-processing21.

Along with this, and less related to the simulation application but the platform as

a whole, the limited visualization capabilities need to be mentioned. Future work

on µ2 will particularly target this concern. Although the platform provides pow-

erful runtime facilities, it is hardly usable for non-programmers but allows a quick

start for developers being either familiar with LISP/Clojure or Java. For a deci-

sion which language to use two factors should be taken into account. Code written

in Clojure is likely to be significantly more compact. A parallel implementation in

Java – done for the early iterations of the simulation scenario – revealed the need

for about twice as many lines of code in comparison to Clojure. The advantage of

Java code is the – though not quantified at this point – lower memory footprint of

applications. In order to execute larger numbers of agents (the current simulation

scenario is limited to about 650 agents), Java is yet the language of choice.

Summing up, the current scenario implementation is set up to meet a trade-off

of simplicity (by avoiding strong reasoning elements) and expressiveness/useful-

ness to allow the use with considerably large numbers of agents22. Future model

refinement can include the modelling of merging groups with multiple levels of

organisation or the simulation of impacts on different cultural societies (e.g. exter-

nal: aggressor culture, internal: dictator) on emerged groups. Of particular interest

for this is the application of stability measures for different (e.g. collective or in-

dividualistic) societies taken from systems theory. Additionally the other cultural

dimensions (Masculinity and Long-Term Orientation) could also be integrated.

Beyond that the model can serve as one approach to consider culture character-

istics for agent in non-simulation MAS. For MAS in general the model allows

the representation of culturally augmented behaviour for individual agents, such

as a culture-based strategy selection in the case of agent cooperation (degree of

risks; matters of harmony in collective agent societies (keeping one’s ’face’)) or

coordination (e.g. auction behaviour).

21As the data are provided in a tabular (CSV-like) manner, processing with other tools such
as spreadsheet programmes is equally possible.

22This should be seen in contrast to other rather high-level modelling approaches such as
[HJV09].

145

Chapter 7

Conclusion

In this chapter we will provide a final discussion on the outcomes of this work,

together with the shortcomings and outlook of future research aspects.

7.1 Summary of Achieved Objectives

This thesis describes a wide range of aspects and yields towards comprehensive, ex-

tensible and light-weight solution integrating agent-based modelling with modern

technologies.

To achieve this work retraces the wide range of definitions and imprecise agent

understanding within the MAS community alone – without initial consideration

of the simulation community. One outcome of this is the fact that the attribution

of agency might be possible to virtually any computational unit. Other views

adocate agents as standard-compliant reasoning-centric individualists. To break

up the stereotypes suggested by the different definitions, this work suggests a

dynamic notion of agency. Different notions are applicable to particular levels in to

specify a context-related agent understanding and serve as communication vehicle

throughout various parts of the thesis. Apart from this dynamic notions provide

potential to capture future agent capabilities but demand for a more extensive

elaboration than done in this work.

As a next step this work retraces characteristics of multi-agent systems and re-

lates those to the system theory as a potential blueprint for any kind of (complex)

146

Conclusion

system. The explicit consideration of system-related elements (such as the envi-

ronment) makes multi-agent systems attractive for a considerably close interpreta-

tion of the system theory. However, the work also highlights an efficiency-related

trade-off of a too ’direct’ interpretation with regards to the consequent separation

of different system levels.

Beyond the conceptual foundations this work focuses on two research fields, Agent-

Oriented Software Engineering and Agent-Based Social Simulation, both of which

are related by their use of agents as modelling tool. Similar to the field of MAS

alone, those two fields have a significantly differing agent understanding. AOSE

has the tendency to support comparatively strong notions of agency while social

simulation favours weak notions which strongly rely on the ascription of inten-

tionality rather than its actual incorporation. Analysing the differences en detail,

i.e. the platform level, simulation puts a strong emphasis on fair scheduling, indi-

rect communication – along with a stronger importance of the environment – and

visualization respectively reporting/analysis features while AOSE platforms focus

on the agent concept itself and expressive direct communication mechanisms along

with advanced features such as conversation management. Although the micro-

agent concept advocated by this work originates from the field of AOSE it in fact

resides at the intersection of both approaches, complying to AOSE in its fun-

damentals while meeting the tendency of simulations to integrate more powerful

agent modelling and communication features.

With relation to the relevance for agent-based systems the thesis includes a brief in-

troduction on concurrency respectively concurrency handling mechanisms in order

to structure the approaches of selected candidate technologies for a reimplementa-

tion of the micro-agent layer. Two of the technologies, Clojure and Asynchronous

Message Passing for Java, are ultimately tied to the redesign of the framework

while Android’s capabilities suggest an adaption of the micro-agent framework

with particular features targeting this mobile application platform.

The work brings the widely differing aspects of the earlier parts together and

introduces the micro-agent concept along with its current implementation. The

limitations of the legacy framework build the basis to develop requirements for a

147

Conclusion

reimplemented micro-agent framework. The redesign suggests significant exten-

sions to the original concept, such as full network support (respectively the ab-

straction of applications from it), the fully encapsulated handling of concurrency

as well as the introduction of Clojure as powerful alternative agent implementa-

tion language. For an alternative use with social simulations the use of Clojure’s

STM provides a powerful tool to model and coordinate agent access to shared

environments. Additional to this a fair scheduler, enforcing round-level fairness

is provided for optional use. Beyond those functional aspects the platform now

provides a further modelling mechanism which not only abandons a code-intensive

modelling of sub-agent relations of its agent organisations but also offers compli-

ance with the system understanding suggested in the system theory. This gives

developers a pragmatic level of decisional freedom to favour convenience and a

level of modelling consistent with system theory. Alternatively, developers can

design a purely efficiency-oriented agent interaction without any restriction by

system-theoretical abstractions.

Overall, the reimplemented framework now has powerful management mechanisms

via its multi-level approach of primary group relations and expressive communica-

tion modelling mechanisms. In consequence it takes a generational step from a con-

siderably pure meta-model implementation towards a fully-fledged self-contained

multi-agent, or better, micro-agent platform. As the legacy framework lacked nu-

merous management features along with the concurrency concerns, its primary role

was to provide the core for the more powerful high-level OPAL agents. This new

platform, its improved feature set and usability (concurrency handling, network,

communication patterns, ’tuning-by-configuration’) along with high performance,

inverts this relation. Consequently the use of OPAL with its standard-oriented

communication capabilities is now optional. Application developers need to de-

cide whether they need standard-compliance when choosing OPAL rather than

avoiding the limited feature set on micro-agent level. However, even when OPAL

communication is needed, the communication capabilities of µ2 allow the parallel

use of both platforms, e.g. to communicate with low-level services such as web

services or making Android functionality accessible to OPAL agents (e.g. sending

148

Conclusion

SMS via reasoning agent). As such the reimplemented framework opens a range of

new functionality not only for micro-agents but even for coarse-grained standard-

compliant agents building on top of it, making OPAL a multi-level multi-channel

agent platform.

Another aspect is the provided Android port of the platform. It opens a potential

playground for future research when considering the direct interaction of micro-

agents and application platform (i.e. ’operating system’ from the agent point of

view), providing an open environment to micro-agents. Micro-agents show a par-

ticular suitability for exactly this purpose as they are not confined to communica-

tion ’with their own kind’ but access low level information sources and have a low

memory footprint, allowing them to run on virtually any platform. The concept of

agents naturally incorporates the idea to act in open systems which makes this ap-

proach interesting beyond the pure implementation of mobile applications. From

the latter perspective however, µ2 , respectively MOA, can act as a middleware

bridging desktop and mobile world, not only for agent applications but basically

any application requiring message-based interaction between an arbitrary number

of stationary or mobile platforms.

The last aspect, serving as a proof of concept – apart from simple benchmarks to

test and measure the feasibility of earlier aspects – is the modelling of a simulation

scenario which uses the communication mechanisms of the platform, its scheduling

mechanism and the ability to implement agents in Clojure. The concept itself relies

on the empirically backed Cultural Dimensions by Hofstede to model cultural

individuals and analyze their group shaping behaviour. Its goal is to provide a

potential understanding how those dimensions can be used to augment agents with

cultural aspects, similar to human societies. Particular outcomes are twofold. For

uni-cultural societies, set up in the context of a sensitivity analysis, three out-

group clusters consistently emerge for any configuration, and in fact clarify why

agents eventually do not end up in groups. The multi-cultural setup, combining

all different extremes of cultural dimensions, provides an interesting insight into

grouped agents. Particularly the differing composition of groups with regards to

their predominant member culture in contrast to the dominant leader culture is

149

Conclusion

interesting. It offers suggestions why some cultural characteristics might be more

likely to produce followers while others make individuals more likely to abstain

from explicit group shaping or enter groups only as leader.

With regards to the execution of the simulation the platform shows both a reliable

(with regards to result replication) as well as robust behaviour (with regarding to

the handling of massive numbers of concurrent interactions). Overall, the platform

largely satisfies the expectations and is a profound base for future developments –

be it in the area of AOSE or ABSS; its development has opened various directions

of potential future research.

7.2 Limitations and Future Work

Along with the achievements of this work, various drawbacks are equally notewor-

thy and are discussed in conjunction with an outlook on future work.

The design and implementation of the micro-agent platform µ2 has reached a

complete status but yet seeks for intensified use by further applications. One

available extension for the new micro-agent platform is a Coloured-Petri-Net-based

conversation manager which allows the explicit modelling of complex conversations

with optional externalization of agent functionality.

Current limitations of the platform include generic mechanisms to communicate

with web services which yet demands for a strong intervention by the application

developer. It should be equally simple as the use of the agent decomposition

facilities.

Another aspect is the lack of integrated reasoning mechanisms to get closer to

scale up to any (conceptual) ’weight’ of agency. Candidates for this purpose are

JavaPRS (jPRS) which had been optionally provided with the original micro-agent

framework as well as the rule-driven ROK (both to be found under [Javb]). Apart

from those the integration of recent approaches incorporating the de facto standard

for declarative agent implementation, AgentSpeak, such as the Jason reasoning

engine is considerable. New challenge arising from this is the amendment of rea-

soning engines themselves to access lower level agent functionality (e.g. extension

of language primitives to address non-reasoning micro-agents).

To ease the integration of additional functionality by application developers a

150

Conclusion

dedicated plug-in mechanism is desirable. This feature is planned as future work.

Currently only option (apart from actually modifying the platform code) is to

use the event subscription mechanism to subscribe additional micro-agents (which

encapsulate the required functionality) to according (platform) events.

Further the use of Clojure provides the foundation to provide mobile agents.

Agents developed in Clojure could be easily serialized by explicit analysis of its

namespaces and – at least in the sense of weak mobility (see subsection 2.1.1) – sent

over the network and reinstantiated remotely. As a subset of this, Clojure-based

agent roles can already send code to each other and directly execute it, allowing

to model a notion of learning. Agents can simply forward their capabilities (in

the shape of functions) to other agents which can incorporate it. Thinking this

aspect further, Clojure is utmost suitable to be basis for reasoning engines itself,

particularly as of its concise S-expression-based syntax which is in fact similar to

syntax for FIPA content languages. This allows a homogeneous implementation

of both knowledge representation as well as agent communication language on the

platform.

Limitations for the use of Clojure yet includes the lacking support on Android.

The Android port of the micro-agent platform does not yet allow the execution

of Clojure-based role implementations. Apart from this (yet) Android-related

downside the implementation of MOA should be elaborated further to provide

more Micro-agent/Android interaction patterns and also include considerations to

automatically identify mobile versions of the platform and provide its capabili-

ties to stationary agents in an automated fashion (e.g. communication channels,

internet access, calendar access for synchronization or reasoning to schedule ap-

pointments). The realm of applications for the blended use of micro-agents and

Android is wide. It ranges from simple ’intelligent’ applications with low memory

footprint to robotics or the use of MOA as middleware for meaningful interoper-

ation of Android devices or simply to allow access to Android functionality from

desktop devices, driving the convergence between those further.

In the context of simulations the key drawback of the current implementation is

151

Conclusion

the lack of analysis and reporting features. While the platform provides power-

ful mechanisms for agent modelling as well as in/direct communication and fair

execution, the reimplementation does not satisfy this requirement at the current

stage. Means to analyze execution results are yet limited to the output of flat

files which demand for further introspection using external tools. Future versions

should provide this out of the box as a simulation-related extension to make the

platform a potentially attractive alternative to existing simulation systems. Be-

yond the pure analysis aspects this should also include real-time visualization as

well as real-time control of the scheduler – yet the scheduler can step (i.e. take one

round) or run for a defined number of rounds/time but cannot be interactively

stopped or started.

Visualization is not only a drawback affecting the simulation perspective; for the

purpose of AOSE the platform should additionally be augmented with a graphical

modelling mechanism to allow a more explicit modelling of the agent organisation,

µ2’s striking feature. Structural code could thus be automatically generated; the

developer could concentrate on the pure agent internals. This approach would not

only provide an advantage when modelling applications but also for their analysis

as part of their maintenance. An expressive visualization of the agent organisation

provides a documentation mechanism as part of the platform, similar to an UML

class diagram in the case of object-oriented programming. In conjunction with

the conversation manager mentioned above this would allow a full static analysis

of both agent organisation and conversation protocols out of the box which – as

a further step – is the basis for an automated documentation of dynamic agent

behaviour. When combining those aspects the platform would in fact be self-

documenting and offer a better understanding of the non-deterministic behaviour

(especially with regards to debugging).

Besides those visions for future development, the micro-agent framework is unlikely

to allow a fully graphical modelling, even in the long run. As micro-agents partic-

ularly target heterogeneous low-level functionality and yield for efficient execution,

their implementation will still demand for knowledge of according implementation

languages as well as functional principles of integrated external resources (such

152

Conclusion

as the case for the MOA-mediated interoperation between micro-agents and An-

droid).

Concluding, micro-agents are a pragmatic approach to combine the modelling

principles of AOSE with performance. The reimplemented version of the micro-

agent platform additional adds flexibility as a further ingredient. Micro-agents can

access heterogeneous resources and act as a middleware for distributed applica-

tions. This, combined with high execution performance and an integration-friendly

approach to new technologies makes micro-agents appealing for the use in main-

stream software engineering. Beyond that, their small-scale nature supports the

exploitation of emergence which – paired with expressive direct communication –

makes micro-agents attractive for application fields beyond the realm of AOSE.

153

Appendix A

Listings and Class Diagrams of µ2

A.1 Pseudo-code for Dynamic Binding Mecha-

nism
1 if(validationActive){

2 - validate message

3 if(invalidMessage){

4 - notify sender that message is invalid

5 - stop further processing at this point

6 }

7 }

8 if(recipientIsDefined){

9 - pass message to Message Transport Layer (MTL)

10 } else {

11 if(messageContainsIntent){

12 - look up first recipient who plays role which can satisfy this intent

13 if(recipientFound){

14 - set recipient in message and pass to MTL

15 } else {

16 if(otherPlatformsConnected){

17 - send message to other platform and notify sender about this (either

18 found agent on other platform will reply or remote platform itself

19 will notify on failure to find agent for intent)

20 } else {

21 - notify sender that no agent could be found to satisfy intent

22 }

23 }

24 } else {

25 if(messageContainsEvent){

26 - check on event subscription change (add/remove)

27 if(subscriptionRelated){

28 - handle subscription management

154

Appendix A. Pseudo-code Listing and Class Diagrams for µ2

29 } else {

30 - assume raised event and dispatch to all subscribers (and depending on

31 event parameter also to other nodes) by passing to MTL

32 }

33 } else {

34 - notify sender that message is invalid (neither recipient , intent nor

35 event defined) - will never be called if message validation is activate

36 }

37 }

38 }

Listing A.1: Pseudo-code for Dynamic Binding Algorithm

155

Appendix A. Pseudo-code Listing and Class Diagrams for µ2

A.2 Examples for Micro-agent usage in µ2

A.2.1 Micro-agent Interaction Example in µ2

This interaction example ’translates’ the scenario as outlined in the subsection

5.1.1 (Listings 5.1 to 5.3) to the new micro-agent platform.

1 public class ServiceProvider extends DefaultSocialRole {

2

3 public void initialize (){

4 addApplicableIntent(ServiceIntent.class);

5 }

6

7 public void handleMessage(MicroMessage message){

8 if(message.getIntent (). getClass (). equals(ServiceIntent.class)){

9 MicroMessage msg = message.createReply ();

10 msg.setPerformative (" COMMIT ");

11 send(msg);

12 } else {

13 MicroMessage msg = message.createReply ();

14 msg.setPerformative (" NOT_UNDERSTOOD ");

15 send(msg);

16 }

17 }

18

19 public void release (){}

20 }

Listing A.2: Implementation of ServiceProvider in µ2

1 public class ServiceCustomer extends DefaultSocialRole {

2

3 public initialize (){}

4

5 public void handleMessage(MicroMessage message){

6 print("Goal result: " + message.getIntent (). toString ());

7 }

8

9 public void release (){}

10

11 // helper method defined to initiate interaction

12 public void startInteraction (){

13 //send intent

14 send(new ServiceIntent ());

15 }

16 }

Listing A.3: Implementation of ServiceCustomer in µ2

156

Appendix A. Pseudo-code Listing and Class Diagrams for µ2

1 public static void main(String [] args){

2 // initialize agent with according role

3 SystemAgentLoader.newAgent(new ServiceProvider ());

4 ServiceCustomer customer = new ServiceCustomer ();

5 SystemAgentLoader.newAgent(customer);

6 customer.startInteraction ();

7 }

Listing A.4: Main method to start interaction in µ2

A.2.2 Usage of MessageFilter in µ2

1 public class DecompositionExampleRole extends DefaultSocialRole {

2

3 protected void initialize () {

4 // definition of pattern

5 MicroMessage pattern = new MicroMessage ();

6 pattern.setSender (" OtherAgent ");

7 pattern.setPerformative (" REQUEST ");

8

9 // adding of message filter with inline implementation

10 addMessageFilter(new DefaultMessageFilter(pattern) {

11

12 protected void initializeMessageFilter () {

13 /* potential further initialization code

14 * (e.g. another message filter level (cascading))

15 */

16 }

17

18 public void onMatchSuccess(MicroMessage message) {

19 // action upon successful match

20 print(" Received REQUEST message from OtherAgent ");

21 }

22

23 public void onMatchFail(MicroMessage message) {

24 // action upon failed match

25 print(" Received message from different agent: " + message.getSender ());

26 }

27

28 public void release () {

29 // execute any action upon before death of agent (i.e. closing resources)

30 }

31 });

32 }

33

34

35

157

Appendix A. Pseudo-code Listing and Class Diagrams for µ2

36 public void handleMessage(MicroMessage message) {

37 /* Handling messages is unnecessary if all

38 * functionality is delegated to message filters

39 */

40 }

41

42 public void release () {

43 /* eventual user -defined actions when shutting down

44 * super -agent (message filters will be stopped

45 * automatically)

46 */

47 }

48

49 }

Listing A.5: Initialization of MessageFilter in µ2

158

Appendix A. Pseudo-code Listing and Class Diagrams for µ2

A.3 Class Diagrams of Platform

Figure A.1: MicroMessage, SystemAgentLoader and Message Transport Con-
nector

159

Appendix A. Pseudo-code Listing and Class Diagrams for µ2

Figure A.2: Sub-namespaces of org.nzdis.micro

160

Appendix A. Pseudo-code Listing and Class Diagrams for µ2

Figure A.3: ClojureConnector and further classes

161

Appendix A. Pseudo-code Listing and Class Diagrams for µ2

Figure A.4: AbstractAgent class

162

Appendix A. Pseudo-code Listing and Class Diagrams for µ2

Figure A.5: Event and Intent interfaces/classes

Figure A.6: Top part of Role hierarchy

163

Appendix A. Pseudo-code Listing and Class Diagrams for µ2

Figure A.7: Bottom part of Role hierarchy

164

Appendix B

Fairness Benchmark

’TalkingAnts’

B.1 Design

The application ’TalkingAnts’ is based on an ants simulation created by Rich

Hickey (see [Hic] for original implementation), developer of Clojure, to show the

concurrency handling capabilities of Clojure’s STM. Its design includes a two-

dimensional grid as environment, an arbritrary number of ants which have a com-

mon nest, forage for food and return it to the nest – supported by indirect com-

munication via pheromone. The environment keeps track of the food levels and

simulates the evaporation of the pheromone (based on Clojure agents (see subsec-

tion 4.2.1 for brief introduction)).

In order to show the complementary use of Java and Clojure in µ2 the logic of

the ants has been removed and only the environmental elements (such as the

two-dimensional grid, food and evaporation functionality) have been retained in a

modified version.

The ant logic itself has been reimplemented as Java-based agent roles which access

the Clojure environment directly (via the ClojureConnector provided as part of

µ2). In consequence the application builds on the developed platform and can

be controlled via Clojure functions directly accessing the platform management

functionality.

The basic ant logic is as follows: While the ant is in ’foraging mode’ it proceeds

165

Appendix B. Fairness benchmark ’TalkingAnts’

in directions which are weighted with a priority for food and pheromone (in this

order). If neither exists they move in a random direction. If food is found ants

switch into ’homing mode’ and directions are weighted by home and pheromone.

As a further step the notion of direct communication (which constitutes the name

of this application) is introduced to make use of the message passing mechanisms

and to put more strain on scheduling fairness mechanisms. When activated ants

can perceive other ants in a certain range. If two ants are in each other’s range

and the ants are in the ’opposite mode’ (foraging vs. homing) the ants can ex-

change the coordinates of their last mode switch (i.e. where it had picked up food

or dropped food (in the nest)). They follow the shortest path to those coordinates

for a defined number of steps (e.g. 40 steps (to avoid blind commitment)) or until

they have reached the coordinate (respectively satisfaction (e.g. picked up other

food on the way)). It is needless to say that this functionality obviously breaks the

principal ideas of ant simulations. However, apart from the use of both indirect as

well as direct communication (as described in subsection 5.3.1) it serves another

purpose:

Considering the alternative means of routing (shortest path for given destina-

tion vs. weighted/randomized routing) the processing-intensive direction-weighing

procedure results in significantly longer processing times for ants which did not

exchange coordinates. As such the extended version of this application produces

largely differing processing times between different agents which helps to evaluate

the effectiveness of different scheduling mechanisms. A screenshot of the applica-

tion is shown in Figure B.1.

Ants are represented as (directed) lines. Red ants carry food, black ones do not

(indicating their ’mode’). Red squares represent food (colour intensity indicates

amount of food), the quadrat in the top left quadrant represents the (food-laden)

nest. Pheromone is represented in green colour (again, intensity of colour indi-

cates pheromone level), ants which have exchanged coordinates (and are actively

heading towards those) are represented as blue squares.

Please bear in mind that this application is not tuned for efficiency in the shape

of Ant Colony Optimization (ACO) algorithms.

166

Appendix B. Fairness benchmark ’TalkingAnts’

As with all other code developed in the context of this work, instructions on its

retrieval are provided in Appendix F.2.

Figure B.1: Screenshot of ’TalkingAnts’ simulation

B.2 Results

The ’TalkingAnts’ application serves particularly well to compare performance as

well as round-level fairness of schedulers. To measure this ants hold information

on processed rounds and send this information to a central AntController which

keeps track of the application runtime and calculates the fairness between different

ants as standard deviation of rounds across all ants. Performance of the applica-

tion can be measured as average rounds per minute (or other temporal unit). The

AntController can be accessed from the Clojure REPL (i.e. command line).

For reliable measurement of the differences between scheduler implementations the

talking capabilities have been switched off as the processing difference of the rout-

ing procedures (weight-based vs. directed) is amplified by the random situation

167

Appendix B. Fairness benchmark ’TalkingAnts’

of ants meeting each other. The evaluation has been done for Java ThreadPools

(which serve as a performance baseline), a modified version of the FairThreads

framework (see description in subsection 5.3.2) and the multithreaded round robin

scheduler developed in the context of this work. Table B.1 lists benchmark results

for repeated runs (the values represent an average over five runs for each sched-

uler on the development machine as specified in Appendix F.1). Each run was

undertaken in a clean JVM instance (i.e. shutdown of all Java applications).

Scheduling mechanism
Java

ThreadPool
FairThreads

Fair Task
Scheduler (µ2)

Number of ants 50 50 50
Number of threads 50 4 4

Runtime: 10 min.
Average number of rounds 430 148 295
Fairness 6.86 0.0 0.0
Rounds per minute 43 14.8 29.5

Runtime: 15 min.
Average number of rounds 641 220 442
Fairness 7.6 0.0 0.0
Rounds per minute 42.7 14.7 29.5

Runtime: 20 min.
Average number of rounds 850 290 584
Fairness 9.7 0.0 0.0
Rounds per minute 42.5 14.5 29.2

Table B.1: Performance and Fairness comparison of evaluated schedulers in ’Talking
Ants’ application

168

Appendix C

Multi-agent Platform

Performance Benchmark

C.1 Design

The benchmark scenario used to evaluate the performance of selected multi-agent

frameworks includes four agents, one of which (the ’user agent’) requests a service

from a service provider who himself coordinates two primitive agents to compose

his functionality. The scenario in fact seeks to represent a simple printer service.

Upon request data is collected and printed to the console before confirming the

success of the execution. A benchmark round is initiated by the user agent re-

questing the service. Objective of this benchmark is to measure the interaction

performance of the according frameworks. Thus the actual processing within the

agents is very simplistic and involves no deliberation or other advanced features in

order not to confound the results. The scenario is run for a parameterized number

of rounds, its execution time is measured to indicate the framework performance.

Figure C.1 depicts the interactions in the described scenario. Numbers indicate

the execution order of one scenario round.

169

Appendix C. Multi-agent Platform performance benchmark

Figure C.1: Message flow in performance benchmark scenario

C.2 Results

This section lists some results of the benchmark runs. The benchmarks have been

developed a total number of five platforms – including µ2. The four other platforms

are shortly characterized in the following. For a more in-depth discussion of those

frameworks refer to [FNP10].

• 3APL – An Abstract Agent Platform (3APL) [3APa] has been developed

at the University of Utrecht and represents BDI-agents by implementing an

extensive reasoning cycle which does not only allow simple goal activation

upon events but additionally considers goal revision during execution (see

[3APb] for details). It is the ’heaviest’ agent architecture in this test.

• JADE – Java Agent Development Environment (JADE) [JAD09] is the only

remaining popular full implementation of the FIPA specifications and is

maintained by Telecom Italia since 1998. It implements own reasoning ca-

pabilities but also allows the implementation of so-called simple behaviour

- which has been used for this test. It belongs to the group of platforms

catering for the implementation of agents of strong notion.

• OPAL – OPAL represents the standard-compliant extension of µ2. It encap-

sulates the micro-agent framework discussed throughout this work but has

its own Message Transport mechanisms (mediated via JAS) which make it

FIPA-compliant – similar to JADE.

• MadKit – MadKit represents an alternative approach to organizational MAS

such as the micro-agent concept used here and has been developed at the

University of Montpellier. In consequence MadKit is driven by a weak agent

170

Appendix C. Multi-agent Platform performance benchmark

understanding (” ... a class defining [a] basic life-cycle ...” [FG98]) and allows

the resource-friendly use of agents.

The actual runs have been performed in logarithmic steps from 1000 to 1000000

rounds to evaluate the scalability of the different platforms. Interestingly, all plat-

forms but MadKit and µ2 show a significant performance drop with increasing

number of benchmark rounds and either stop working (as the case for 3APL and

JADE) or fall back to a slow processing performance (such as OPAL). MadKit and

µ2 show constant performance, clearly outlining the efficiency principle of small-

scale agents respectively micro-agents. Contrasting the latter ones, µ2 takes half

the time of MadKit to run the benchmark. However, more than the actual per-

formance the scalability behaviour is of concern for micro-agents, thus clustering

those two platform with regards to the efficiency.

Table C.1 gives an outline of the performance results for all platforms mentioned.

Dashes (–) indicate that the platform failed to perform the according number of

rounds. Figure C.2 and C.3 visualize the performance over an increasing number

of rounds. The latter figure is focusing on runs beyond 10000 rounds (and thus

fades out the curve for the 3APL performance).

Each value listed here represents an average over ten runs for each configuration

on the hardware as specified in Appendix F.1.

JADE 3APL MadKit OPAL
Micro-
agents

1000 0.25 1422 0.125 1.1 0.08
10000 8.3 – 1.025 10.4 0.41
100000 888.2 – 9.8 100.5 4.5
1000000 – – 96 1035.7 42.2

Table C.1: Benchmark results for Agent Platforms per scenario rounds (in
seconds)

171

Appendix C. Multi-agent Platform performance benchmark

Figure C.2: Performance behaviour with increasing number of benchmark
rounds

Figure C.3: Performance behaviour with increasing number of benchmark
rounds (beyond 10000 rounds)

172

Appendix D

MOA Application Scenario and

Performance Benchmark

D.1 MOA Application Scenario

To clarify the infrastructural similarities and application potential lying in the

combined use of micro-agents with Android itself, a simple scenario will be de-

scribed which could be supported by the current implementation of MOA.

In this scenario Android will be augmented with micro-agents to provide a simple

response mechanism upon received Short Message Service (SMS) text messages

and is visualized in Figure D.1. The numbers in the figure indicate the order of

processing and are used for the following narrative description. The figure depicts

the different application components on the Android side and the according coun-

terparts in the micro-agent system. Center of MOA is the tight link between a

dedicated micro-agent (role) – the AndroidInterfaceRole – and an according An-

droid service – the MicroAgentInterfaceService. The latter subscribes to various

system events, such as received SMS, while its micro-agent counterpart registers an

applicable intent (AndroidIntent). The AndroidIntent (in the micro-agent pack-

age) resembles the structure of an actual Android intent, allowing the conversion

to the latter by the AndroidInterfaceRole. Messages including this intent will al-

ways be resolved to this interfacing role, ensuring that the intent is eventually

executed on Android. Given this brief understanding for the core architecture the

scenario is to be described in more depth:

173

Appendix D. MOA Application Scenario and Performance Benchmark

An incoming SMS (1) is received by the MicroAgentInterfaceService which has

subscribed to this Android event. It is automatically converted to an Received-

AndroidIntentEvent in the micro-agent platform and all micro-agents which have

subscribed to it are notified (here: AndroidReceiverRole) (2). The Android-

ReceiverRole itself makes use of intents to resolve an agent who is responsible for

sending responses via SMS (3). The SMSResponder contacts a CalendarManager

in order to check if the owner of the mobile phone is currently occupied (e.g. by

appointment) and does so by accessing both the Android calendar (which makes

an interaction with Android itself necessary (messages (5) to (8)) and optionally

agents on a connected platform (e.g. desktop version of µ2) to check for eventual

appointments. Upon return to the SMSResponder (9), this finally replies to the

sender of the original SMS again by making use of Android facilities (messages

(10), (11)).

This simple scenario serves as an example where the micro-agent package can

significantly enhance the functionality provided by Android and also show its

potential to serve as a middleware between desktops and mobile devices. For

micro-agents the interaction is seemless; both realms are hidden by the according

interface roles/service but mutually allow full access to a wide range of function-

ality. Micro-agents are thus one solution to realize the vision of a practical use

of agents on mobile platforms; not restricted to a simple portation of an agent

platform to a mobile application platform but full exploitation of the underlying

capabilities.

Additionally, performance advantages by using MOA are shown in the next sec-

tion.

174

Appendix D. MOA Application Scenario and Performance Benchmark

F
ig
u
r
e
D
.1
:

P
ot

en
ti

al
M

O
A

ap
p

li
ca

ti
on

sc
en

ar
io

175

Appendix D. MOA Application Scenario and Performance Benchmark

D.2 MOA Performance Benchmark

D.2.1 Design

To measure potential performance advantages of using MOA elements, respectively

micro-agents, in contrast to conventional Android services a simple benchmark

scenario has been produced which tries to isolate a pure Android-based approach

from the blended use with MOA.

Similar to the earlier example application scenario this benchmark scenario (see

Figure D.21) emulates a automatic response application which receives a stimulus

(e.g. SMS) which is then passed to a coordinating higher-level agent respectively

service which then resolves the name for the message sender2, e.g. via a list of

contacts. The the priority of the sender is resolved (e.g. ’Is he/she suitable for

automatic responses?’ (e.g. important customer, annoying customer)) and then

finally respond using a dedicated micro-agent (in MOA)/service (in Android) for

this purpose. Looking at the number of messages, the conversion between Android

intents and micro-agent messages enforces the use of two additional messages to

complete one benchmark cycle. Both alternatives have the Benchmark Service as

initializing component in common, all other functionality is delegated to the realm

of the according technology. Similar to the agent platform benchmark (see Ap-

pendix C) the complexity of the agent/service internals is low and standardized to

allow comparability and the isolation of the pure interaction performance of both

technologies.

The performance is determined by measuring the execution time for a parameter-

ized number of executed scenario rounds. Both scenarios are run on an Android

Emulator as specified in Appendix F.1 and after an initial warm-up run of 20

rounds for both (in order to start up all services and agents).

D.2.2 Results

The results of the benchmark run indicate a consistently higher performance of

the MOA version of the benchmark. Native Android takes consistently at least

1The numbers in the figure indicate order of execution for each of the two technologies.
2Practical reason: The Protocol Data Units (PDU) containing the actual SMS do not include

other (useful) information than the sender’s phone number and the actual message.

176

Appendix D. MOA Application Scenario and Performance Benchmark

Figure D.2: MOA benchmark scenario

2.3 times as long as MOA to execute the scenario, as shown in Table D.1 and vi-

sualized in Figure D.3. As seen here, the combined use of MOA and Android does

not only provide functionality advantages but also clear performance advantages.

Apart from the functional extensions the use of MOA can simply be considered for

performance reasons. However, the bottleneck would eventually be a frequent con-

version between Android and micro-agents; applications in which every component

is likely to interact directly with the user, MOA might not be the optimal solution

which would demand for specific comparisons. However, the benchmark indicates

a case in which the use of agent technology can provide tractable advantages.

177

Appendix D. MOA Application Scenario and Performance Benchmark

Rounds µ-agents Android Services Relative difference to MOA

5 257 614 2.39
25 881 2359 2.68
50 1834 4328 2.36

100 3711 8529 2.30
250 9356 21979 2.35
500 17757 42446 2.39

1000 35901 88562 2.47
2500 91792 242253 2.64
5000 156384 465606 2.98

Table D.1: Performance benchmark results relative performance factors of
Android intents to micro-agents (in ms)

0

50

100

150

200

250

300

350

400

450

500

5 50 500 5000

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

Benchmark rounds

Micro-agents (dynamic binding) Android (implicit intents)

Figure D.3: Performance benchmark results

178

Appendix E

Data for ’Cultural Dimensions’

Simulation Scenario

E.1 KNIME Analysis stream

Cell Splitter

Remove unnecessary symbols

Column Filter

Remove unnecessary colu...

Cell Splitter

Remove unnecessary sy...

Rename

Rename colum...

Numeric Row
Splitter

filter first round for agents

GroupBy

derive developed groups

Math Formula

Derive max. rounds

Numeric Row
Splitter

Identify groups...

File Reader

Read stats file for CulturalDimension groups

Math Formula

CulturalHomogenity

Math Formula

PersonalHomogenity

Statistics

Stats on groups

Statistics

Stats on non-grouped agents

Statistics

Overall stats

Numeric Row
Splitter

Group-leaver vs. out-...

Interactive Table

filtered stats for elite and gambler

Interactive Table

filtered stats for permanent out-group

Statistics

Elite and Gambler

Statistics

permanent out-gr...

Column Filter

filter unnecess...

Interactive Table

filtered stats for groups

Column Filter

filter unnecess...

Interactive Table

filtered stats for non-groups

Column Filter

filter unnecess...

Column Filter

filter unnecess...

Column Comparator

mark group leaders

Math Formula

introduce col leaderCultu...

String To Number

parse culture setup to integer

String Replacer

remove - from culture s...

String To Number

convert leader marker to integer

Pie chart
(interactive)

leader culture in groups

Pie chart
(interactive)

culture distribution in non-gr...

Row Filter

remove all rows other than last round

GroupBy

Group leader information

GroupBy

Non-groups by leader ratio

GroupBy

Non-groups by culture (mem...

GroupBy

Group member information

Numeric Row
Splitter

Elite vs. Gambler

Statistics

Gambler

Statistics

Elitarian

Column Filter

filter unnecess...

Interactive Table

filtered stats for gamblers

Interactive Table

filtered stats for elitarian

Column Filter

filter unnecess...

Pie chart
(interactive)

member of groups by culture

Pie chart
(interactive)

distribution check for input data...

Cell Splitter

Remove unnecessary symbols

Column Filter

Remove unnecessary colu...

Cell Splitter

Remove unnecessary sy...

Rename

Rename colum...

Numeric Row
Splitter

filter first round for agents

GroupBy

derive developed groups

Math Formula

Derive max. rounds

Numeric Row
Splitter

Identify groups...

File Reader

Read stats file for CulturalDimension groups

Math Formula

CulturalHomogenity

Math Formula

PersonalHomogenity

Statistics

Stats on groups

Statistics

Stats on non-grouped agents

Statistics

Overall stats

Numeric Row
Splitter

Group-leaver vs. out-...

Interactive Table

filtered stats for elite and gambler

Interactive Table

filtered stats for permanent out-group

Statistics

Elite and Gambler

Statistics

permanent out-gr...

Column Filter

filter unnecess...

Interactive Table

filtered stats for groups

Column Filter

filter unnecess...

Interactive Table

filtered stats for non-groups

Column Filter

filter unnecess...

Column Filter

filter unnecess...

Column Comparator

mark group leaders

Math Formula

introduce col leaderCultu...

String To Number

parse culture setup to integer

String Replacer

remove - from culture s...

String To Number

convert leader marker to integer

Pie chart
(interactive)

leader culture in groups

Pie chart
(interactive)

culture distribution in non-gr...

Row Filter

remove all rows other than last round

GroupBy

Group leader information

GroupBy

Non-groups by leader ratio

GroupBy

Non-groups by culture (mem...

GroupBy

Group member information

Numeric Row
Splitter

Elite vs. Gambler

Statistics

Gambler

Statistics

Elitarian

Column Filter

filter unnecess...

Interactive Table

filtered stats for gamblers

Interactive Table

filtered stats for elitarian

Column Filter

filter unnecess...

Pie chart
(interactive)

member of groups by culture

Pie chart
(interactive)

distribution check for input data...

Figure E.1: KNIME Stream for analysis of simulation output

179

Appendix E. Data for ’Cultural Dimensions’ Simulation Scenario

E.2 Results for Sensitivity Analysis

This section provides some results from the sensitivity analysis1. To show the

differences outlined in the actual text both the results for an UAI weight factor of

1.5 as well 1.8 are provided at this point.

All tables are split into two parts. The basic structure includes the configured

cultures, then overall statistics (e.g. number of out-group (ungrouped) agents,

number of groups and the number of grouped agents). Below this general statistics

on in-group agents are provided, along with the equivalent for ungrouped agents.

The latter are then further divided into ’Elite’ and ’Gambler’ and ’Permanent

out-group’. The former two cluster are both analysis as an aggregate as well as

individually.

Common parameters for all tables in the following sections are listed in Table E.1.

Parameters
Parameter Value

UAI weight 1.5 or 1.8 (see according results)
PDI weight 1
IDV weight 1
Weight of rejections 0.1
Number of agents 200
Number of rounds 300
Number of group requests
prior to application deliber-
ation

3

Abbreviations
Abbreviation Meaning

UAI Uncertainty Avoidance value
PDI Power Distance value
IDV Individualism value
RLC number of rounds since last group

change of agent
stddev standard deviation

X
Placeholder for any cultural value (in

cultural coordinates)

Table E.1: Global parameter settings and abbreviations

1The runs undertaken were significantly more extensive. However, the results presented here
are representative for the model behaviour.

180

Appendix E. Data for ’Cultural Dimensions’ Simulation Scenario

E.2.1 Results for UAI Weight Factor 1.5

Please see the results on the following page (as of lacking space on this one). For

information on global parameters and abbreviations used in the result tables please

refer to the beginning of this section.

181

Appendix E. Data for ’Cultural Dimensions’ Simulation Scenario

C
u
lt

u
re

n
eu

tr
al

u
n
ce

rt
ai

n
ty

-a
cc

ep
ti

n
g

u
n
ce

rt
ai

n
ty

-a
vo

id
in

g
li
b

er
al

st
at

u
s-

or
ie

n
te

d
co

ll
ec

ti
v
is

t
in

d
iv

id
u
al

is
t

m
ea

n
U

A
I

0
-4

4
0

0
0

0
m

ea
n

P
D

I
0

0
0

-4
4

0
0

m
ea

n
ID

V
0

0
0

0
0

-4
4

u
n
gr

ou
p

ed
ag

en
ts

10
7

16
4

83
78

13
4

78
13

3
u
n
gr

ou
p

ed
p

er
ce

n
ta

ge
0
.5

3
5

0
.8

2
0
.4

1
5

0
.3

9
0
.6

7
0
.3

9
0
.6

6
5

m
ea

n
gr

ou
p

si
ze

2.
3

2.
33

3
2.

34
2.

39
2

2.
16

7
2.

52
1

2.
12

9
gr

ou
p

si
ze

st
d
d
ev

0.
64

8
0.

81
6

0.
62

6
0.

69
5

0.
46

1
0.

87
5

0.
42

8
n
o

of
gr

ou
p
s

40
15

50
51

30
48

31
gr

ou
p

ed
ag

en
ts

9
3

3
6

1
1
7

1
2
2

6
6

1
2
2

6
7

m
ea

n
in

-g
ro

u
p

st
at

u
s

1.
99

1
2.

13
1

1.
92

2.
01

3
1.

84
2

1.
95

7
1.

96
8

st
at

u
s

st
d
d
ev

0.
56

9
0.

49
8

0.
52

7
0.

46
1

0.
49

2
0.

56
0.

59
1

m
ea

n
R

L
C

28
7

25
1.

1
29

4.
28

29
0.

15
5

28
6.

4
28

9.
92

1
28

7.
4

m
in

im
al

R
L

C
24

5.
5

2
24

8
26

0.
5

26
0

23
4.

5
25

0
m

ea
n

U
A

I
0.

39
5

-1
.9

98
3.

49
8

0.
26

2
0.

3
0.

01
8

0.
31

5
m

ea
n

P
D

I
-0

.3
35

-0
.9

56
-0

.3
53

-4
.1

38
2.

81
4

-0
.1

19
-0

.8
66

m
ea

n
ID

V
-0

.7
71

-1
.2

62
-0

.4
13

-0
.3

68
-1

.0
14

-4
.4

19
3.

05
6

m
ea

n
ou

t-
gr

ou
p

st
at

u
s

2.
10

3
2.

03
7

2.
25

3
2.

10
3

2.
12

7
2.

15
4

2.
09

st
at

u
s

st
d
d
ev

0.
8

0.
79

8
0.

76
3

0.
8

0.
78

9
0.

75
7

0.
83

m
ea

n
R

L
C

11
7.

2
30

.1
4

26
1.

3
11

4.
98

7
96

.2
76

22
0

11
8.

91
m

in
im

al
R

L
C

0
0

37
0

0
11

3
0

m
ea

n
U

A
I

-0
.7

38
-4

.7
2

4.
08

4
-1

.0
51

-0
.4

7
-0

.6
79

-0
.4

96
m

ea
n

P
D

I
0.

54
2

0.
36

0.
66

3
-3

.5
38

4.
74

6
0.

59
0.

57
9

m
ea

n
ID

V
0.

55
1

0.
26

2
0.

74
7

0.
59

0.
36

6
-3

.3
85

4.
39

1
’E

li
te

’
an

d
’g

am
b
le

rs
’

97
16

4
29

72
12

5
68

11
7

p
er

ce
n
ta

ge
of

al
l

0.
48

5
0.

82
0.

14
5

0.
36

0.
62

5
0.

34
0.

58
5

m
ea

n
st

at
u
s

2.
13

4
2.

03
7

2.
62

1
2.

09
7

2.
14

4
2.

10
3

2.
06

8
st

at
u
s

st
d
d
ev

0.
81

2
0.

79
8

0.
56

1
0.

8
0.

8
0.

77
5

0.
82

8
m

ea
n

R
L

C
98

.4
30

.1
4

18
8.

57
9

99
.5

69
81

.6
20

8.
33

8
94

.1
45

m
in

im
al

R
L

C
0

0
37

0
0

11
3

0

T
a
b
l
e
E
.2
:

S
en

si
ti

v
it

y
A

n
al

y
si

s
w

it
h

U
A

I
w

ei
gh

t
fa

ct
or

1.
5

(1
/2

)

182

Appendix E. Data for ’Cultural Dimensions’ Simulation Scenario

m
ea

n
U

A
I

-1
.1

34
-4

.7
2

2.
82

8
-1

.4
17

-0
.6

64
-1

.1
62

-1
m

ea
n

P
D

I
0.

79
4

0.
36

2.
51

7
-3

.4
44

4.
95

2
0.

88
2

0.
73

5
m

ea
n

ID
V

0.
64

9
0.

26
2

1.
34

5
0.

72
2

0.
32

8
-3

.3
38

4.
36

8
’E

li
te

’
in

d
iv

id
u
al

s
30

10
24

19
32

29
37

p
er

ce
n
ta

ge
of

al
l

0.
15

0.
05

0.
12

0.
09

5
0.

16
0.

14
5

0.
18

5
m

ea
n

st
at

u
s

2.
33

3
2.

6
2.

58
3

2.
21

1
2.

59
4

2.
03

4
2.

18
9

st
at

u
s

st
d
d
ev

0.
71

1
0.

51
6

0.
58

4
0.

78
7

0.
56

0.
77

8
0.

84
5

m
ea

n
R

L
C

23
6.

06
7

22
4.

2
21

2.
41

7
26

5
21

0
23

8.
75

9
21

5.
67

6
m

in
im

al
R

L
C

16
4

20
7

47
16

8
76

16
3

14
5

m
ea

n
U

A
I

2.
73

3
0.

8
3.

37
5

3
3.

4
0.

86
2

2.
62

2
m

ea
n

P
D

I
1.

76
7

1.
2

2.
54

2
-2

.0
53

5.
37

5
1

1.
32

4
m

ea
n

ID
V

2.
13

3
3

1.
58

3
1

1.
46

9
-2

.6
9

5.
29

7
’G

am
b
le

r’
in

d
iv

id
u
al

s
67

15
4

5
53

93
39

80
p

er
ce

n
ta

ge
of

al
l

0.
33

5
0.

77
0.

02
5

0.
26

5
0.

46
5

0.
19

5
0.

4
m

ea
n

st
at

u
s

2.
04

5
2

2.
8

2.
05

7
1.

98
9

2.
15

4
2.

01
2

st
at

u
s

st
d
d
ev

0.
84

3
0.

8
0.

44
7

0.
81

8
0.

81
4

0.
77

9
0.

81
9

m
ea

n
R

L
C

36
.7

91
17

.5
39

75
.2

40
.2

64
37

.4
19

18
5.

7
37

.9
38

m
in

im
al

R
L

C
0

0
37

0
0

11
3

0
m

ea
n

U
A

I
-2

.8
66

-5
.0

78
0.

2
-3

-2
.0

65
-2

.6
67

-2
.6

88
m

ea
n

P
D

I
0.

35
8

0.
30

5
2.

4
-3

.9
43

4.
80

6
0.

79
5

0.
46

2
m

ea
n

ID
V

-0
.0

15
0.

08
4

0.
2

0.
62

3
-0

.0
65

-3
.8

21
3.

93
8

’P
er

m
an

en
t

ou
t-

gr
ou

p
’

in
d
iv

id
u
al

s
10

0
54

6
9

10
16

p
er

ce
n
ta

ge
of

al
l

0.
05

0
0.

27
0.

03
0.

04
5

0.
05

0.
08

m
ea

n
st

at
u
s

1.
8

2.
05

6
2.

16
7

1.
88

9
2.

5
2.

25
st

at
u
s

st
d
d
ev

0.
63

2
0.

78
7

0.
75

3
0.

6
0.

52
7

0.
85

6
m

ea
n

R
L

C
30

0
30

0
30

0
30

0
30

0
30

0
m

in
im

al
R

L
C

30
0

30
0

30
0

30
0

30
0

30
0

m
ea

n
U

A
I

3.
1

4.
75

9
3.

33
3

2.
22

2
2.

6
3.

25
m

ea
n

P
D

I
-1

.9
-0

.3
33

-4
.6

67
1.

88
9

-1
.4

-0
.5

62
m

ea
n

ID
V

-0
.4

0.
42

6
-1

0.
88

9
-3

.7
4.

56
2

T
a
b
l
e
E
.3
:

S
en

si
ti

v
it

y
A

n
al

y
si

s
w

it
h

U
A

I
w

ei
gh

t
fa

ct
or

1.
5

(2
/2

)

183

Appendix E. Data for ’Cultural Dimensions’ Simulation Scenario

E.2.2 Results for UAI Weight Factor 1.8

Please see the results on the following page (as of lacking space on this one). For

information on global parameters and abbreviations used in the result tables please

refer to the beginning of this section.

184

Appendix E. Data for ’Cultural Dimensions’ Simulation Scenario

C
u
lt

u
re

n
eu

tr
al

u
n
ce

rt
ai

n
ty

-a
cc

ep
ti

n
g

u
n
ce

rt
ai

n
ty

-a
vo

id
in

g
li
b

er
al

st
at

u
s-

or
ie

n
te

d
co

ll
ec

ti
v
is

t
in

d
iv

id
u
al

is
t

m
ea

n
U

A
I

0
-4

4
0

0
0

0
m

ea
n

P
D

I
0

0
0

-4
4

0
0

m
ea

n
ID

V
0

0
0

0
0

-4
4

u
n
gr

ou
p

ed
ag

en
ts

10
7

16
3

90
10

1
12

8
80

13
3

u
n
gr

ou
p

ed
p

er
ce

n
ta

ge
0
.5

3
5

0
.8

1
5

0
.4

5
0
.5

0
5

0
.6

4
0
.4

0
.6

6
5

m
ea

n
gr

ou
p

si
ze

2.
35

9
2.

18
8

2.
24

5
2.

25
2.

18
2

2.
79

1
2.

16
7

gr
ou

p
si

ze
st

d
d
ev

0.
77

8
0.

54
4

0.
63

0.
57

6
0.

52
8

1.
22

6
0.

37
9

n
o

of
gr

ou
p
s

39
16

49
44

33
43

30
gr

ou
p

ed
ag

en
ts

9
3

3
7

1
1
0

9
9

7
2

1
2
0

6
7

m
ea

n
in

-g
ro

u
p

st
at

u
s

1.
94

2
2.

15
1

1.
97

4
2.

09
3

1.
91

7
1.

92
9

2.
07

2
st

at
u
s

st
d
d
ev

0.
55

1
0.

59
5

0.
57

8
0.

51
2

0.
57

4
0.

48
9

0.
56

3
m

ea
n

R
L

C
28

8.
49

27
3.

7
29

3.
7

29
0

28
6

29
1.

98
4

27
7.

4
m

in
im

al
R

L
C

26
4.

5
20

0
23

6.
5

26
2

24
4

26
4.

5
19

9
m

ea
n

U
A

I
0.

53
-1

.5
94

3.
73

8
0.

45
6

0.
34

1
-0

.0
56

0.
70

6
m

ea
n

P
D

I
-0

.7
-1

.0
47

-0
.1

76
-4

.0
36

2.
73

5
-0

.4
12

-0
.9

06
m

ea
n

ID
V

-0
.3

49
-1

.4
69

-0
.7

18
-0

.5
27

-1
.1

52
-4

.4
53

3.
25

m
ea

n
ou

t-
gr

ou
p

st
at

u
s

2.
14

2.
02

5
2.

16
7

2
2.

10
9

2.
22

5
2.

03
st

at
u
s

st
d
d
ev

0.
78

2
0.

79
3

0.
76

8
0.

78
7

0.
79

6
0.

72
9

0.
79

7
m

ea
n

R
L

C
10

4
33

.2
7

27
6.

4
23

9
87

.3
75

19
1.

77
5

10
5

m
in

im
al

R
L

C
0

0
10

3
15

1
0

2
0

m
ea

n
U

A
I

-0
.8

32
-4

.7
42

3.
9

-0
.8

51
-0

.5
39

-0
.6

25
-0

.6
39

m
ea

n
P

D
I

0.
76

6
0.

29
4

0.
47

8
-3

.7
92

4.
89

1
0.

96
2

0.
53

4
m

ea
n

ID
V

0.
39

3
0.

28
8

0.
75

6
0.

34
7

0.
57

8
-3

.2
12

4.
30

1
’E

li
te

’
an

d
’g

am
b
le

rs
’

97
16

0
26

68
11

8
70

11
7

p
er

ce
n
ta

ge
of

al
l

0.
48

5
0.

8
0.

13
0.

34
0.

59
0.

35
0.

58
5

m
ea

n
st

at
u
s

2.
15

5
2.

01
9

2.
57

7
1.

95
6

2.
14

4
2.

24
3

2.
04

3
st

at
u
s

st
d
d
ev

0.
78

2
0.

78
9

0.
57

8
0.

78
1

0.
78

7
0.

73
1

0.
80

3
m

ea
n

R
L

C
83

.9
28

.2
6

21
8.

3
20

9.
5

69
.3

56
17

6.
3

78
.4

m
in

im
al

R
L

C
0

0
10

3
15

1
0

2
0

T
a
b
l
e
E
.4
:

S
en

si
ti

v
it

y
A

n
al

y
si

s
w

it
h

U
A

I
w

ei
gh

t
fa

ct
or

1.
8

(1
/2

)

185

Appendix E. Data for ’Cultural Dimensions’ Simulation Scenario

m
ea

n
U

A
I

-1
.2

68
-4

.8
31

2.
23

1
-2

.2
21

-0
.7

88
-1

.2
-1

.0
77

m
ea

n
P

D
I

0.
95

9
0.

30
6

2.
73

1
-3

.6
5.

04
2

1.
31

4
0.

82
1

m
ea

n
ID

V
0.

41
2

0.
22

5
1.

23
1

0.
5

0.
55

1
-3

.3
4.

33
3

’E
li
te

’
in

d
iv

id
u
al

s
30

9
21

14
30

25
35

p
er

ce
n
ta

ge
of

al
l

0.
15

0.
04

5
0.

10
5

0.
07

0.
15

0.
12

5
0.

17
5

m
ea

n
st

at
u
s

2.
3

2.
55

6
2.

66
7

1.
78

6
2.

56
7

2.
2

2.
22

9
st

at
u
s

st
d
d
ev

0.
79

4
0.

52
7

0.
57

7
0.

8
0.

56
8

0.
81

6
0.

8
m

ea
n

R
L

C
24

0.
7

23
9.

66
7

23
6.

4
26

0.
5

19
4

24
4.

48
22

2.
7

m
in

im
al

R
L

C
17

0
22

0
16

5
17

7
11

6
2

13
7

m
ea

n
U

A
I

2.
76

7
0.

88
9

2.
95

2
1.

28
6

3.
26

7
1.

64
2.

71
4

m
ea

n
P

D
I

1.
86

7
0.

77
8

2.
76

2
-2

5.
63

3
1.

2
1.

6
m

ea
n

ID
V

1.
43

3
2.

77
8

1.
09

5
1.

57
1

1.
83

3
-3

.4
8

5.
57

1
’G

am
b
le

r’
in

d
iv

id
u
al

s
67

15
1

5
54

88
45

82
p

er
ce

n
ta

ge
of

al
l

0.
33

5
0.

75
5

0.
02

5
0.

27
0.

44
0.

22
5

0.
41

m
ea

n
st

at
u
s

2.
09

1.
98

7
2.

2
2

2
2.

26
7

1.
96

3
st

at
u
s

st
d
d
ev

0.
77

3
0.

79
2

0.
44

7
0.

77
7

0.
8

0.
68

8
0.

79
3

m
ea

n
R

L
C

13
.7

15
.6

69
14

2.
2

19
6

26
.8

98
13

8
16

.7
93

m
in

im
al

R
L

C
0

0
10

3
15

1
0

3
0

m
ea

n
U

A
I

-3
.0

75
-5

.1
72

-0
.8

-3
.1

3
-2

.1
7

-2
.7

78
-2

.6
95

m
ea

n
P

D
I

0.
55

2
0.

27
8

2.
6

-4
.0

19
4.

84
1

1.
37

8
0.

48
8

m
ea

n
ID

V
-0

.0
45

0.
07

3
1.

8
0.

22
2

0.
11

4
-3

.2
3.

80
5

’P
er

m
an

en
t

ou
t-

gr
ou

p
’

in
d
iv

id
u
al

s
10

3
64

33
10

10
16

p
er

ce
n
ta

ge
of

al
l

0.
05

0.
01

5
0.

32
0.

16
5

0.
05

0.
05

0.
08

m
ea

n
st

at
u
s

2
2.

33
3

2
2.

09
1

1.
7

2.
1

1.
93

8
st

at
u
s

st
d
d
ev

0.
81

6
1.

15
5

0.
77

7
0.

8
0.

82
3

0.
73

8
0.

77
2

m
ea

n
R

L
C

30
0

30
0

30
0

30
0

30
0

30
0

30
0

m
in

im
al

R
L

C
30

0
30

0
30

0
30

0
30

0
30

0
30

0
m

ea
n

U
A

I
3.

4
0

4.
57

8
1.

97
2.

4
3.

4
2.

56
2

m
ea

n
P

D
I

-1
.1

-0
.3

33
-0

.4
38

-4
.1

82
3.

1
-1

.5
-1

.5
62

m
ea

n
ID

V
0.

2
3.

66
7

0.
56

2
0.

03
0.

9
-2

.6
4.

06
2

T
a
b
l
e
E
.5
:

S
en

si
ti

v
it

y
A

n
al

y
si

s
w

it
h

U
A

I
w

ei
gh

t
fa

ct
or

1.
8

(2
/2

)

186

Appendix E. Data for ’Cultural Dimensions’ Simulation Scenario

E.3 Results for Multi-Cultural Setup

Please see the results on the following page (as of lacking space on this one). For

information on global parameters and abbreviations used in the result tables please

refer to Appendix E.2.

187

Appendix E. Data for ’Cultural Dimensions’ Simulation Scenario

C
u
lt

u
re

0;
0;

0
4;

-4
;4

-4
;4

;-
4

4;
-4

;-
4

4;
4;

-4
-4

;4
;4

-4
;-

4;
4

-4
;-

4;
-4

4;
4;

4
ab

so
lu

te
m

em
b

er
fr

ac
ti

on
0.

11
56

25
0.

12
5

0.
08

75
0.

19
68

75
0.

14
37

5
0.

03
43

75
0.

07
5

0.
14

06
25

0.
08

12
5

ab
so

lu
te

le
ad

er
fr

ac
ti

on
0.

15
74

8
0.

07
08

66
0.

14
17

32
0.

13
38

58
0.

02
36

22
0.

07
87

4
0.

17
32

28
0.

18
89

76
0.

02
36

22
le

ad
er

/m
em

b
er

ra
ti

o
0.

54
05

41
0.

22
5

0.
64

28
57

0.
26

98
41

0.
06

52
17

0.
90

90
91

0.
91

66
67

0.
53

33
33

0.
11

53
85

av
er

ag
e

gr
ou

p
si

ze
b
y

le
ad

er
2.

45
2.

33
3

2.
77

8
2.

64
7

2
3

2.
13

6
2.

58
3

2.
33

3
ou

t-
gr

ou
p

in
d
iv

id
u
al

s
35

32
44

9
26

61
48

27
46

gr
ou

p
ed

m
em

b
er

s
37

40
28

63
46

11
24

45
26

in
-g

ro
u
p

fr
ac

ti
on

0.
51

38
89

0.
55

55
56

0.
38

88
89

0.
87

5
0.

63
88

89
0.

15
27

78
0.

33
33

33
0.

62
5

0.
36

11
11

gr
ou

p
si

ze
2.

45
2.

33
3

2.
09

1
2.

64
7

2
3

2.
13

6
2.

58
3

2.
33

3
gr

ou
p

le
ad

er
s

20
9

18
17

3
10

22
24

3
gr

ou
p

le
ad

er
fr

ac
ti

on
0.

27
77

78
0.

12
5

0.
25

0.
23

61
11

0.
04

16
67

0.
13

88
89

0.
30

55
56

0.
33

33
33

0.
04

16
67

T
a
b
l
e
E
.6
:

G
ro

u
p

m
em

b
er

an
d

le
ad

er
d

is
tr

ib
u

ti
on

fo
r

al
l

in
te

ra
ct

in
g

cu
lt

u
re

s

188

Appendix E. Data for ’Cultural Dimensions’ Simulation Scenario

C
u
lt

u
re

co
or

d
in

at
e

-4
;X

;X
4;

X
;X

X
;-

4;
X

X
;4

;X
X

;X
;-

4
X

;X
;4

G
ro

u
p

m
em

b
er

fr
ac

ti
on

(a
b
so

lu
te

)
0.

33
75

0.
54

68
75

0.
53

75
0.

34
68

75
0.

56
87

5
0.

31
56

25
G

ro
u
p

le
ad

er
fr

ac
ti

on
(a

b
so

lu
te

)
0.

58
26

77
0.

25
19

69
0.

56
69

29
0.

26
77

17
0.

48
81

89
0.

34
64

57

G
ro

u
p

m
em

b
er

fr
ac

ti
on

(r
el

at
iv

e)
0.

14
08

46
0.

40
90

8
0.

23
27

76
0.

25
40

11
0.

29
10

93
0.

20
62

75
G

ro
u
p

le
ad

er
fr

ac
ti

on
(r

el
at

iv
e)

0.
19

66
54

0.
13

77
95

0.
30

47
24

0.
09

28
64

0.
27

76
57

0.
10

93
5

ou
t-

gr
ou

p
fr

ac
ti

on
0.

66
25

0.
45

31
25

0.
46

25
0.

65
31

25
0.

43
12

5
0.

68
43

75

in
-g

ro
u
p

fr
ac

ti
on

0.
37

5
0.

60
76

39
0.

59
72

22
0.

38
54

17
0.

63
19

44
0.

35
06

94
ou

t-
gr

ou
p

fr
ac

ti
on

0.
62

5
0.

39
23

61
0.

40
27

78
0.

61
45

83
0.

36
80

56
0.

64
93

06
gr

ou
p

si
ze

2.
45

25
2.

32
82

5
2.

42
47

5
2.

35
6

2.
33

02
5

2.
45

05

T
a
b
l
e
E
.7
:

A
gg

re
ga

te
d

gr
ou

p
m

em
b

er
an

d
le

ad
er

p
ro

p
er

ti
es

b
y

cu
lt

u
ra

l
co

or
d

in
at

e

189

Appendix F

Development Environment &

Source Code Information

F.1 Development Environment Specifications

The hardware and software environment used for the development and all bench-

mark tests is listed as following:

Hardware Intel Core2Duo (4 cores) at 2.66 Ghz, 3.25 GB RAM

Operating System Microsoft Windows XP SP3

Java Development Kit [Java] 1.6.0 build 22

Network tests were undertaken using a virtual machine using Oracle VirtualBox

and running an Ubuntu Linux. When measurements included console output (such

as the multi-agent platform benchmarks (see Appendix C)), output was done on

the host machine as of the high additional performance penalties for such opera-

tions on virtual machines.

The version information for this and further software used is listed at this point:

• Oracle VirtualBox 3.2.6 (with Ubuntu Linux 9.1) [Vir]

• Clojure 1.2 [Hic10a]

• Jetlang 0.2.1 [Jet]

• Netty 3.2.3 [Leea]

190

Appendix F. Development Environment & Source Code Information

• XStream 1.3.1 [XSt]

• Eclipse 3.5.2 [Ecl]

• Android SDK with Emulator for Android 2.2 [Anda]

• KNIME 2.2.2 [KNI]

F.2 Information on Platform and Simulation Code

The sources for the platform code and developed applications are largely provided

for public download.

• The platform code for µ2 and MOA is provided (and will be maintained)

under http://www.micro-agents.net.

• The CulturalDimensions simulation code as well as the ’TalkingAnts’ appli-

cation is provided (along with setup description) under http://culture.micro-

agents.net.

• The code for the Asynchronous Message Passing framework benchmark is

maintained at http://www.nzdis.org under the ’Opal’ project, respectively

available upon request to the author.

• The code for the Multi-agent Platform benchmark is available upon request

to the author.

191

Bibliography

[3APa] 3APL Homepage. http://www.cs.uu.nl/3apl/. Accessed on: 15th

September 2010.

[3APb] The cyclic interpreter (deliberation cycle) for 3APL agents. www.cs.

uu.nl/3apl/deliberationcycle.pdf. Accessed on: 15th Septem-

ber 2010.

[ACBR06] L. Autunes, H. Coelho, J. Balsa, and A. Respicio. e*plore v.0: Prin-

cipia for Strategic Exploration of Social Simulation Experiments De-

sign Space. Advancing Social Simulation: The First World Congress,

pages 295–306, 2006.

[Acta] ActorFoundry. http://osl.cs.uiuc.edu/af/. Accessed on: 25th

July 2010.

[Actb] Actors Guild Framework. http://actorsguildframework.org/.

Accessed on: 25th July 2010.

[Ada07] C. Adam. Emotions: From psychological theories to logical formaliza-

tion and implementation in a BDI agent. PhD thesis, INP Toulouse,

France, 2007.

[AG99] Ken Arnold and James Gosling. The Java Programming Language,

Second Edition. Addison-Wesley, 1999.

[Agh86] G.A. Agha. ACTORS: A Model of Concurrent Computation in Dis-

tributed Systems. MIT Press, 1986.

192

http://www.cs.uu.nl/3apl/
www.cs.uu.nl/3apl/deliberationcycle.pdf
www.cs.uu.nl/3apl/deliberationcycle.pdf
http://osl.cs.uiuc.edu/af/
http://actorsguildframework.org/

Bibliography

[Anda] Android Emulator. http://developer.android.com/guide/

developing/tools/emulator.html. Accessed on: 15th September

2010.

[Andb] Application Fundamentals. http://developer.android.com/

guide/topics/fundamentals.html. Accessed on: 15th September

2010.

[Andc] Intents and Intent Filters. http://developer.android.com/guide/

topics/intents/intents-filters.html. Accessed on: 15th

September 2010.

[Andd] What is Android? http://developer.android.com/guide/

basics/what-is-android.html. Accessed on: 15th September

2010.

[Apr] Network Agents. http://sourceforge.net/projects/

networkagent/. Accessed on: 15th September 2010.

[ARCJ09] Jorge Agero, Miguel Rebollo, Carlos Carrascosa, and Vicente Julin.

Does android dream with intelligent agents? In Juan Corchado,

Sara Rodrguez, James Llinas, and Jos Molina, editors, International

Symposium on Distributed Computing and Artificial Intelligence 2008

(DCAI 2008), volume 50 of Advances in Soft Computing, pages 194–

204. Springer Berlin / Heidelberg, 2009.

[ATKS07] A. Adl-Tabatabai, C. Kozyrakis, and B. Saha. Unlocking Concur-

rency. Queue, 4(10):24–33, 2007.

[Aus62] John Langshaw Austin. How to Do Things with Words. Harvard

University Press, 1962.

[AVWW96] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concur-

rent Programming in Erlang. Prentice Hall, Englewood Cliffs, 2nd

edition edition, 1996.

193

http://developer.android.com/guide/developing/tools/emulator.html
http://developer.android.com/guide/developing/tools/emulator.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://sourceforge.net/projects/networkagent/
http://sourceforge.net/projects/networkagent/

Bibliography

[Axe97] R. Axelrod. Simulating Social Phenomena, chapter Advancing the

art of simulation in the social sciences, pages 21–40. Springer, Berlin,

1997.

[BA06] M. Ben-Ari. Principles of Concurrent and Distributed Programming.

Prentice-Hall, 2006.

[Bal10] P. Ball. The Earth Simulator. New Scientist, pages 48–51, 30th

October 2010.

[BBCM99] C. Bäumer, M. Breugst, S. Choy, and T. Magedanz. Grasshopper

— A universal agent platform based on OMG MASIF and FIPA

standards. In Ahmed Karmouch and Roger Impley, editors, First In-

ternational Workshop on Mobile Agents for Telecommunication Ap-

plications (MATA’99), pages 1–18, Ottawa, Canada, October 1999.

World Scientific Publishing Ltd.

[BCG07] F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent

Systems with JADE. John Wiley & Sons, 2007.

[Ber] J. Bertolucci. Google: Desktop PCs will be dead by 2013. http:

//www.pcadvisor.co.uk/news/index.cfm?newsId=3214232. Ac-

cessed on: 15th September 2010.

[BG88] A. Bond and L. Gasser. Readings in Distributed Artificial Intelli-

gence. Morgan Kaufmann, Los Angeles, CA, 1988.

[BH] R.H. Bordini and J.F. Hübner. Jason Manual. http://jason.

sourceforge.net/Jason.pdf. Accessed on: 15th September 2010.

[BH09] R.H. Bordini and J.F. Hübner. Multi-Agent Systems: Simulation and

Applications, chapter Agent-Based Simulation Using BDI Program-

ming in Jason, pages 451–476. CRC Press, 2009.

[BHG06] Steve S. Benfield, Jim Hendrickson, and Daniel Galanti. Making a

strong business case for multiagent technology. In AAMAS, pages

10–15, 2006.

194

http://www.pcadvisor.co.uk/news/index.cfm?newsId=3214232
http://www.pcadvisor.co.uk/news/index.cfm?newsId=3214232
http://jason.sourceforge.net/Jason.pdf
http://jason.sourceforge.net/Jason.pdf

Bibliography

[BHW07] R.H. Bordini, J.F. Hübner, and M. Wooldridge. Programming Multi-

Agent Systems in AgentSpeak using Jason. Wiley, 2007.

[Boo94] G. Booch. Object-oriented Analysis and Design with Applications.

Addison-Wesley, 1994.

[Bou] Frederic Boussinot. Fair Threads. http://www-sop.inria.fr/

meije/rp/FairThreads/. Accessed on: 15th September 2010.

[BPL+06] L. Braubach, A. Pokahr, W. Lamersdorf, K.-H. Krempels, and P.-O.

Woelk. A generic time management service for distributed multi-

agent systems. Applied Artificial Intelligence, 20(2):229–249, 2006.

[Bra87] Michael E. Bratman. Intention, Plans and Practical Reason. CSLI

Publications, Stanford University, 1987.

[Bro86] Rodney A. Brooks. A robust layered control system for a mobile

robot. IEEE Journal of Robotics and Automation, 2:14–23, 1986.

[Bro90] Rodney A. Brooks. Elephants Don’t Play Chess. Robotics and Au-

tonomous Systems, 6:3–15, 1990.

[Bru] Mike Brunt. Sun JVM RAM Utilization Limit On Windows

Explained. http://www.webapper.com/blog/index.php/2005/12/

27/20051227104717/. Accessed on: 15th September 2010.

[Bun77] M. Bunge. The GST challenge to the classical philosophies of science.

International Journal on General Systems, 4:29–37, 1977.

[Bun79] M. Bunge. Treatise on Basic Philosophy - Volume IV - Ontology II:

A World of Systems. D. Reidel Publishing Company, 1979.

[B.V] Tiobe Software B.V. TIOBE Programming Community In-

dex. http://www.tiobe.com/index.php/content/paperinfo/

tpci/index.html. Accessed on: 15th September 2010.

195

http://www-sop.inria.fr/meije/rp/FairThreads/
http://www-sop.inria.fr/meije/rp/FairThreads/
http://www.webapper.com/blog/index.php/2005/12/27/20051227104717/
http://www.webapper.com/blog/index.php/2005/12/27/20051227104717/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Bibliography

[BWH07] Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hübner. Pro-

gramming Multi-Agent Systems in AgentSpeak using Jason (Wiley

Series in Agent Technology). John Wiley & Sons, 2007.

[Can] Canalys. Android smart phone shipments grow 886% year-on-year in

Q2 2010. http://www.canalys.com/pr/2010/r2010081.html. Ac-

cessed on: 15th September 2010.

[Cas95] C. Castelfranchi. Guarantees for autonomy in cognitive agent archi-

tecture. In Proceedings of the Workshop on Agent Theories, Architec-

tures and Languages, ATAL ’94, volume 890 of LNAI, pages 56–70.

Springer, 1995.

[CBF04] C. Carabelea, O. Boissier, and A. Florea. Autonomy in multi-agent

systems: A classfication attempt. In M. Nickles, M. Rovatsos, and

G. Wei, editors, Agents and computational autonomy: Potential,

Risks, and Solutions, volume 2969 of LNCS, pages 103–113. Springer,

2004.

[Clo] Java Interop. http://clojure.org/java_interop. Accessed on:

15th October 2010.

[Cof] N. Coffey. Randomness of bits with LCGs. http://www.javamex.

com/tutorials/random_numbers/lcg_bit_positions.shtml. Ac-

cessed on: 15th September 2010.

[Coh91] P.R. Cohen. A Survey of the Eighth National Conference on Arti-

ficial Intelligence: Pulling together or pulling apart? AI Magazine,

12(1):16–41, 1991.

[Col90] J.S. Coleman. The foundations of Social Theory. Harvard University

Press, Boston, 1990.

[Con05] J. Conklin. Dialogue Mapping: Building Shared Understanding of

Wicked Problems. Wiley, 2005.

196

http://www.canalys.com/pr/2010/r2010081.html
http://clojure.org/java_interop
http://www.javamex.com/tutorials/random_numbers/lcg_bit_positions.shtml
http://www.javamex.com/tutorials/random_numbers/lcg_bit_positions.shtml

Bibliography

[Cre93] D. Crevier. AI. The Tumultuous History of the Search for Artificial

Intelligence. Basic Books, New York, 1993.

[Das08] M. Dastani. 2apl: a practical agent programming language.

Autonomous Agents and Multi-Agent Systems, 16:214–248, 2008.

10.1007/s10458-008-9036-y.

[Den87] D.C. Dennett. The Intentional Stance. MIT Press, Cambridge, Mas-

sachusetts, 1987.

[DG94] J.E. Doran and N. Gilbert. Simulating Societies: The Computer

Simulation of Social Phenomena, chapter Simulating societies: An

introduction, pages 1–18. UCL Press, London, 1994.

[Dij65] E. W. Dijkstra. Solution of a Problem in Concurrent Programming

Control. Communications of the Association of Computing Machin-

ery, 8(9):569, 1965.

[DVD08] C. Deissenberg, S. Vanderhoog, and H. Dawid. EURACE: A mas-

sively parallel agent-based model of the European economy. Applied

Mathematics and Computation, 204(2):541–552, October 2008.

[DVM02] Alexis Drogoul, Diane Vanbergue, and Thomas Meurisse. Multi-

agent based simulation: Where are the agents? In Multi-Agent-Based

Simulation II, Berlin, Heidelberg, New York, 2002. Third Interna-

tional Workshop, MABS 2002 Bologna, Italy, July 2002, Springer.

[EA96] J.M Epstein and R. Axtell. Growing Artificial Societies - Social Sci-

ence from the Bottom Up. MIT Press, 1996.

[Ecl] Eclipse.org. http://www.eclipse.org/. Accessed on: 15th Septem-

ber 2010.

[Eco] The Economist. Agents of Change. http://www.economist.com/

node/16636121. Accessed on: 15th September 2010.

197

http://www.eclipse.org/
http://www.economist.com/node/16636121
http://www.economist.com/node/16636121

Bibliography

[EEHT07] Bruce Edmonds, Bruce Edmonds, Cesareo Hernandez, and Klaus G.

Troitzsch. Social Simulation: Technologies, Advances and New Dis-

coveries. IGI Global, 2007.

[EM88] R.S. Englemore and T. Morgan, editors. Blackboard Systems.

Addison-Wesley, 1988.

[EW95] O. Etzioni and D. Weld. Intelligent agents on the Internet: Fact,

Fiction and Forecast. IEEE Expert, 10:44–49, 1995.

[Fau97] S.R. Faulk. Software requirements: A tutorial. In R. Thayer and

M. Dorfman, editors, Software Requirements Engineering, chapter

Software Requirements: A Tutorial. IEEE Computer Press, 1997.

[Fer99] Jacques Ferber. Multi-Agent Systems - An Introduction to Distributed

Artificial Intelligence. Addison-Wesley, 1999.

[FFMM94] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire.

KQML as an agent communication language. In CIKM ’94: Pro-

ceedings of the third international conference on Information and

knowledge management, pages 456–463, New York, NY, USA, 1994.

ACM.

[FG96] S. Franklin and A. Graesser. Is it an Agent, or just a Program?: A

Taxonomy for Autonomous Agent. Proceedings of the Third Inter-

national Workshop on Agent Theories, Architectures, and Language,

1996.

[FG98] J. Ferber and O. Gutknecht. A meta-model for the analysis and

design of organizations in multi-agent systems. Third International

Conference on Multi-Agent Systems (ICMAS ’98), IEEE Computer

Society, pages 128–135, 1998.

[FIPa] FIPA - Wikipedia. http://en.wikipedia.org/wiki/FIPA. Ac-

cessed on: 15th September 2010.

198

http://en.wikipedia.org/wiki/FIPA

Bibliography

[FIPb] FIPA ACL Message Structure Specification. http://www.fipa.org/

specs/fipa00061/SC00061G.html. Accessed on: 15th September

2010.

[FIPc] FIPA Agent Message Transport Service Specification. http://www.

fipa.org/specs/fipa00067/SC00067F.html. Accessed on: 15th

September 2010.

[FIPd] FIPA-OS Agent Toolkit. http://sourceforge.net/projects/

fipa-os/. Accessed on: 15th September 2010.

[FIPe] FIPA SL Content Language Specification. http://www.fipa.org/

specs/fipa00008/SC00008I.html. Accessed on: 15th September

2010.

[FIPf] Foundation for Physical Intelligent Agents. http://www.fipa.org.

Accessed on: 15th September 2010.

[FIP02] FIPA. FIPA Communicative Act Library Specification. Foundation

for Intelligent Physical Agents (FIPA), 2002.

[FIP03] Publicly Available Implementations of FIPA Specifications. http://

www.fipa.org/resources/livesystems.html, 2003. Accessed on:

15th September 2010.

[FIP04] FIPA. FIPA Agent Management Specification. http://www.fipa.

org/specs/fipa00023/SC00023K.html, 2004. Accessed on: 10th

October 2009.

[Fis95] P. Fishwick. Simulation Model Design and Execution. Prentice Hall,

1995.

[Fis96] P. Fishwick. Computer simulation: Growth through extension. IEEE

Potential, February/March:24–27, 1996.

[FNP10] C. Frantz, M. Nowostawski, and M. Purvis. Multi-agent platforms

and Asynchronous Message Passing. Information Science Discussion

199

http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00067/SC00067F.html
http://www.fipa.org/specs/fipa00067/SC00067F.html
http://sourceforge.net/projects/fipa-os/
http://sourceforge.net/projects/fipa-os/
http://www.fipa.org/specs/fipa00008/SC00008I.html
http://www.fipa.org/specs/fipa00008/SC00008I.html
http://www.fipa.org
http://www.fipa.org/resources/livesystems.html
http://www.fipa.org/resources/livesystems.html
http://www.fipa.org/specs/fipa00023/SC00023K.html
http://www.fipa.org/specs/fipa00023/SC00023K.html

Bibliography

Paper 2010/07, Dept. of Information Science, University of Otago,

New Zealand, Dunedin, November 2010. http://eprints.otago.

ac.nz/1011/.

[For71] J.W. Forrester. World Dynamics. MIT Press, 1971.

[FPV98] A. Fuggetta, G. Picco, and G. Vigna. Understanding Code Mobility.

IEEE Transactions on Software Engineering, 24(5):342–361, 1998.

[Fra09] C. Frantz. Unifying micro-agent communication in the Otago Agent

Platform (OPAL), 2009. http://eprints.otago.ac.nz/874/.

[GC10] N. Griffiths and K. Chao, editors. Agent-Based Service-Oriented

Computing. Springer, 2010.

[Gen] M. Genesereth. Knowledge Interchange Format. http://logic.

stanford.edu/kif/specification.html. Accessed on: 15th

September 2010.

[Geo09] M. Georgeff. The gap between software engineering and multi-agent

systems: Bridging the Divide. International Journal for Agent-

Oriented Software Engineering, 3(4):391–396, 2009.

[GFM00] O. Gutknecht, J. Ferber, and F. Michel. The MadKit Agent Plat-

form Architecture. Technical report, Laboratoire d’Informatique, de

Robotique et de Microelectronique de Montpellier, Universite Mont-

pellier II, 2000.

[GHB00] M. Greaves, H. Holmback, and J. Bradshaw. Issues in Agent Com-

munication, chapter What is a Conversation Policy?, pages 118–131.

Springer, 2000.

[Gil95] N. Gilbert. Artificial Societies: The Computer Simulation of Social

Life, chapter Emergence in social simulation, pages 144–156. UCL

Press, London, 1995.

[Gil96] N. Gilbert. Social Science Microsimulation, chapter Simulation as a

research strategy, pages 448–454. Springer, 1996.

200

http://eprints.otago.ac.nz/1011/
http://eprints.otago.ac.nz/1011/
http://eprints.otago.ac.nz/874/
http://logic.stanford.edu/kif/specification.html
http://logic.stanford.edu/kif/specification.html

Bibliography

[GK94] M.R. Genesereth and S.P. Ketchpel. Software Agents. Communica-

tions of the ACM, 37:48ff., 1994.

[GL87] M.P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In

Proceedings of the Sixth National Conference on Artificial Intelligence

(AAAI-87), pages 677–682, Seattle, WA, USA, 1987.

[Goo10] Google I/O 2010 - A JIT Compiler for Android’s Dalvik VM.

http://www.youtube.com/watch?v=Ls0tM-c4Vfo, 2010. Accessed

on: 08th October 2010.

[GT05] N. Gilbert and K.G. Troitzsch. Simulation for the Social Scientist.

Open University Press, 2005.

[Gur63] G. Gurvitch. La vocation actuelle de la sociologie. PUF, 1963.

[Gur64] G. Gurvitch. Spectrum of social time. Springer, 1964.

[Has] Haskell. http://haskell.org/. Accessed on: 15th September 2010.

[HB88] G. Hofstede and M.H. Bond. The Confucius Connection: From

Cultural Roots to Economics Growth. Organizational Dynamics,

16(4):5–21, 1988.

[HBS73] C.E. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Actor

Formalism for Artificial Intelligence. In IJCAI, pages 235–245, 1973.

[Hea] M. Heath. Performance comparison of Apache MINA and JBoss

Netty. http://blog.toadhead.net/index.php/2009/03/03/

performance-comparison-of-apache-mina-and-jboss-netty/.

Accessed on: 15th September 2010.

[HH95] E. Hutchins and B. Hazlehurst. How to invent a lexicon: The devel-

opment of shared symbols in interaction. In N. Gilbert and R. Conte,

editors, Artificial Societies: The Computer Simulation of Social Life,

pages 157–189. UCL Press: London, 1995.

201

http://www.youtube.com/watch?v=Ls0tM-c4Vfo
http://haskell.org/
http://blog.toadhead.net/index.php/2009/03/03/performance-comparison-of-apache-mina-and-jboss-netty/
http://blog.toadhead.net/index.php/2009/03/03/performance-comparison-of-apache-mina-and-jboss-netty/

Bibliography

[HHC09] Brian Heath, Raymond Hill, and Frank Ciarallo. A Survey of Agent-

Based Modeling Practices (January 1998 to July 2008). Journal of

Artificial Societies and Social Simulation, 12(4):9, 2009.

[Hic] R. Hickey. ants.clj (Clojure ants simulation). http://clojure.

googlegroups.com/web/ants.clj. Accessed on: 15th September

2010.

[Hic10a] Rich Hickey. Clojure. http://clojure.org/, 2010. Accessed on:

06th April 2010.

[Hic10b] Rich Hickey. Clojure - agents. http://clojure.org/agents, 2010.

Accessed on: 06th July 2010.

[HJF97] P.T. Hraber, T. Jones, and S. Forrest. The Ecology of Echo. Artificial

Life, 3(3):165–190, 1997.

[HJV09] Gert Jan Hofstede, Catholijn M. Jonker, and Tim Verwaart. Sim-

ulation of effects of culture on trade partner selection. In Cesreo

Hernndez, Marta Posada, and Adolfo Lpez-Paredes, editors, Arti-

ficial Economics, volume 631 of Lecture Notes in Economics and

Mathematical Systems, pages 257–268. Springer Berlin Heidelberg,

2009.

[Hof01] G. Hofstede. Culture’s Consequences. Sage Publications, 2001.

[HS97] M.N. Huhns and M.P. Singh. The agent test. IEEE Internet Com-

puting, 1(5):78–79, 1997.

[HS98] M.N. Huhns and M.P. Singh. Readings in Agents, chapter Agents and

Multiagent systems: Themes, Approaches and Challenges, pages 1–

23. Morgan Kaufman, 1998.

[HTW04] A. Helsinger, M. Thome, and T. Wright. Cougaar: A Scalable, Dis-

tributed Multi-Agent Architecture. IEEE, 2004.

202

http://clojure.googlegroups.com/web/ants.clj
http://clojure.googlegroups.com/web/ants.clj
http://clojure.org/
http://clojure.org/agents

Bibliography

[Huh09] M. N. Huhns. From DPS to MAS to: continuing the trends. In

C. Sierra, C. Castelfranchi, K.S. Decker, and J.S. Sichman, editors,

AAMAS (1), pages 43–48. IFAAMAS, 2009.

[IBMa] IBM SPSS Modeler Professional. http://www.spss.com/software/

modeling/modeler-pro/. Accessed on: 15th September 2010.

[IBMb] Java theory and practice: Concurrent collections classes. http://

www.ibm.com/developerworks/java/library/j-jtp07233.html.

Accessed on: 15th September 2010.

[IEE] IEEE-FIPA (Pre-)Meeting at AAMAS 2005-07-

27. http://www.fipa.org/subgroups/ROFS-SG-docs/

FIPA-Review-At-AAMAS-2005-07.htm. Accessed on: 15th Septem-

ber 2010.

[Inc] Incanter: Statistical Computing and Graphics Environment for Clo-

jure. http://incanter.org/. Accessed on: 15th September 2010.

[JaC] JaCa-Android. http://jaca-android.sourceforge.net/. Ac-

cessed on: 15th September 2010.

[JADa] Does JADE really comply with FIPA? Accessed on: 15th September

2010.

[Jadb] Jadex BDI Agent System. http://jadex-agents.informatik.

uni-hamburg.de/xwiki/bin/view/About/Overview. Accessed on:

15th September 2010.

[JAD09] JADE - Java Agent DEvelopment Framework. http://jade.tilab.

com, October 2009. Accessed on: 15th September 2010.

[Jasa] Jason: a Java-based interpreter for and extended version of AgentS-

peak. http://jason.sourceforge.net/Jason/Jason.html. Ac-

cessed on: 15th September 2010.

[JASb] Java Agent Services. http://sourceforge.net/projects/jas/.

Accessed on: 15th September 2010.

203

http://www.spss.com/software/modeling/modeler-pro/
http://www.spss.com/software/modeling/modeler-pro/
http://www.ibm.com/developerworks/java/library/j-jtp07233.html
http://www.ibm.com/developerworks/java/library/j-jtp07233.html
http://www.fipa.org/subgroups/ROFS-SG-docs/FIPA-Review-At-AAMAS-2005-07.htm
http://www.fipa.org/subgroups/ROFS-SG-docs/FIPA-Review-At-AAMAS-2005-07.htm
http://incanter.org/
http://jaca-android.sourceforge.net/
http://jadex-agents.informatik.uni-hamburg.de/xwiki/bin/view/About/Overview
http://jadex-agents.informatik.uni-hamburg.de/xwiki/bin/view/About/Overview
http://jade.tilab.com
http://jade.tilab.com
http://jason.sourceforge.net/Jason/Jason.html
http://sourceforge.net/projects/jas/

Bibliography

[JASc] Journal of Artificial Societies and Social Simulation. http://jasss.

soc.surrey.ac.uk. Accessed on: 15th September 2010.

[Java] Java SE Downloads. http://www.oracle.com/technetwork/java/

javase/downloads/index.html. Accessed on: 15th September

2010.

[Javb] Micro-agents and PRS. http://sourceforge.net/projects/

javaprs/. Accessed on: 15th October 2010.

[JBo] JBoss. http://www.jboss.org/. Accessed on: 15th September 2010.

[Jet] Jetlang. http://code.google.com/p/jetlang/. Accessed on: 25th

July 2010.

[JSR] JSR 87: Java Agent Services. http://jcp.org/en/jsr/detail?id=

087. Accessed on: 25th July 2010.

[JW00] N.R. Jennings and M. Wooldridge. Agent-Oriented Software Engi-

neering. Artificial Intelligence, 117:277–296, 2000.

[KNI] KNIME — Konstanz Information Miner. http://www.knime.org/.

Accessed on: 25th October 2010.

[Kni86] Thomas F. Knight. An architecture for mostly functional languages.

In LISP and Functional Programming, pages 105–112, 1986.

[Kor] Korus. http://code.google.com/p/korus/. Accessed on: 25th

July 2010.

[KP98] Franziska Klügl and Frank Puppe. The Multi-Agent Simulation En-

vironment SeSAm, April 1998.

[KSA09] Rajesh K. Karmani, Amin Shali, and Gul Agha. Actor Frameworks

for the JVM Platform: A Comparative Analysis. In 7th International

Conference on the Principles and Practice of Programming in Java,

2009.

204

http://jasss.soc.surrey.ac.uk
http://jasss.soc.surrey.ac.uk
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sourceforge.net/projects/javaprs/
http://sourceforge.net/projects/javaprs/
http://www.jboss.org/
http://code.google.com/p/jetlang/
http://jcp.org/en/jsr/detail?id=087
http://jcp.org/en/jsr/detail?id=087
http://www.knime.org/
http://code.google.com/p/korus/

Bibliography

[LCG] Linear congruential generator. http://en.wikipedia.org/wiki/

Linear_congruential_generator. Accessed on: 15th September

2010.

[LCRP+05] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and

Gabriel Balan. MASON: A Multiagent Simulation Environment.

Simulation, 81(7):517–527, July 2005.

[Leea] T. Lee. Netty - the Java NIO Client Server Socket Framework. http:

//jboss.org/netty. Accessed on: 15th September 2010.

[Leeb] T. Lee. Performance Comparison between NIO Frameworks. http:

//gleamynode.net/articles/2232/. Accessed on: 15th September

2010.

[Luk] S. Luke. Sean Luke: Code. http://cs.gmu.edu/~sean/research/.

Accessed on: 15th September 2010.

[M9̈0] M. Möhring. MIMOSE. Eine funktionale Sprache zur Beschreibung

und Simulation individuellen Verhaltens interagierender Populatio-

nen. PhD thesis, Universität Koblenz, 1990.

[Mas43] A.H. Maslow. A Theory of Human Motivation. Psychological Review,

50(4):370–396, 1943.

[MBB+98] D.S. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Fried-

man, K. Kosaka, D.B. Lange, K. Ono, M. Oshima, C. Tham, S. Vird-

hagriswaran, and J. White. MASIF: The OMG mobile agent system

interoperability facility. Personal and Ubiquitous Computing, 2(2),

1998.

[MCd96] B. Moulin and B. Chaib-draa. Foundations of Distributed Artificial

Intelligence, chapter An Overview of Distributed Artificial Intelli-

gence, pages 3–55. Wiley, 1996.

205

http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://jboss.org/netty
http://jboss.org/netty
http://gleamynode.net/articles/2232/
http://gleamynode.net/articles/2232/
http://cs.gmu.edu/~sean/research/

Bibliography

[McS02] B. McSweeney. Hofstede’s Model Of National Cultural Differences

And Their Consequences: A Triumph Of Faith - A Failure Of Anal-

ysis. Human Relations, 55(1):89118, 2002.

[MDSC02] M.B. Marietto, N. David, J.S. Sichman, and H. Coelho. Require-

ments analysis of agent-based simulation platforms: State of the art

and new prospects. In Multi-Agent-Based Simulation II, Berlin, Hei-

delberg, New York, 2002. Third International Workshop, MABS 2002

Bologna, Italy, July 2002, Springer.

[MFD09] F. Michel, J. Ferber, and A. Drogoul. Multi-Agent Systems: Simula-

tion and Applications, chapter Multi-Agent Systems and Simulation:

A Survey from the Agent Community’s Perspective, pages 3–52. CRC

Press, 2009.

[MGF04] F. Michel, A. Gouäıch, and J. Ferber. Multi-Agent-Based Simula-

tion III, volume LNCS 2927, chapter Weak interaction and strong

interaction in agent-based simulations, pages 43–56. Springer, 2004.

[MK06] J. Magee and J. Kramer. Concurrency: State models and Java pro-

gramming. Wiley, second edition, 2006.

[MM05] Vladimir Marik and Duncan McFarlane. Industrial adoption of agent-

based technologies. IEEE Intelligent Systems, 20:27–35, 2005.

[MMR92] D.H. Meadows, D.L. Meadows, and J. Randers. Beyond the Limits.

Chelsea Green, 1992.

[MN98] M. Matsumoto and T. Nishimura. Mersenne Twister: a 623-

dimensionally equidistributed uniform pseudo-random number gen-

erator. ACM Trans. on Modeling and Computer Simulation, 8(3),

1998.

[MPT95] J.P. Müller, M. Pischel, and M. Thiel. Modelling reactive behaviour

in vertically layered agent architectures. Intelligent Agents: Theories,

Architectures and Languages, LNAI 890, Springer:261–276, 1995.

206

Bibliography

[MRBCL96] Nelson Minar, Y. Roger Burkhart, and Z. Chris Langton. The

Swarm Simulation System: A Toolkit for Building Multi-Agent Sim-

ulations. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.108.1436, 1996.

[MSK+07] T. Malsch, C. Schlieder, P. Kiefer, M. Lbcke, R. Perschke,

M. Schmitt, and K. Stein. Communication between process and

structure: Modelling and simulating message reference networks with

COM/TE. Journal of Artificial Societies and Social Simulation,

10(1), 2007.

[Mue96] J. Mueller. The Design of Intelligent Agents: a layered approach.

Lecture Notes in Computer Science, 1177, 1996.

[NBPC01] M. Nowostawski, G. Bush, M. Purvis, and S. Cranefield. A Multi-

Level Approach and Infrastructure for Agent-Oriented Software De-

velopment. Technical report, Department of Information Science,

University of Otago, 2001.

[NCV06] M. North, N. Collier, and J. Vos. Experiences creating three imple-

mentations of the RePast agent modelling toolkit. ACM Transactions

on Modelling and Computer Simulation, 16(1):1–25, 2006.

[Neg97] N. Negroponte. Software Agents, chapter Agents: From Direct Ma-

nipulation to Delegation, pages 57–66. AAAI Press, 1997.

[NET] .NET Framework Developer Center. http://msdn.microsoft.com/

en-us/netframework/default.aspx. Accessed on: 15th September

2010.

[Nex10] ISO/IEC JTC1 SC22 WG21 N3092: Programming Languages -

C++ (Draft). http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2010/n3092.pdf, March 2010. Accessed on: 15th September

2010.

207

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.108.1436
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.108.1436
http://msdn.microsoft.com/en-us/netframework/default.aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf

Bibliography

[NP07] M. Nowostawski and M. Purvis. The Concept of Autonomy in Dis-

tributed Computation and Multi-Agent Systems. Information Sci-

ence Discussion Paper 2007/06, Dept. of Information Science, Uni-

versity of Otago, Dunedin, New Zealand, 2007.

[NPC01] M. Nowostawski, M. Purvis, and S. Cranefield. KEA - Multi-Level

Agent Architecture. Technical report, Department of Information

Science, University of Otago, 2001.

[NPT10] C. D. Nguyen, A. Perini, and P. Tonella. Goal-oriented testing for

MASs. International Journal for Agent-Oriented Software Engineer-

ing, 4(1):79–109, 2010.

[OCC88] A. Ortony, G. Clore, and A. Collins. The cognitive structure of emo-

tions. Cambridge University Press, 1988.

[Ode02] James Odell. Objects and Agents Compared. Journal of Object

Technology, 1(1):41–53, 2002.

[Ous96] J.K. Ousterhout. Why threads are a bad idea (for most purposes).

In Invited Talk, USENIX 1996, June 1996.

[Par99] H. Van Dyke Parunak. ”go to the ant”: Engineering principles from

natural multi-agent systems, 24th March 1999.

[PBL03] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: Implementing a

BDI-infrastructure for JADE Agents. EXP - In Search of Innovation,

3(3):76–85, 2003. Accessed on: 10th October 2009.

[PTB+06] M. Pechoucek, S.G. Thompson, J.W. Baxter, G.S. Horn, K. Kok,

C. Warmer, R. Kamphuis, V. Maric, P. Vrba, K.H. Hall, F.P. Mat-

urana, K. Dorer, and M. Calisti. Agents in industry: the best from

the aamas 2005 industry track. Intelligent Systems, IEEE, 21(2):86

– 95, 2006.

208

Bibliography

[Rao96] A.S. Rao. Agentspeak(l): Bdi agents speak out in a logical com-

putable language. In Proceedings of the Seventh European Work-

shop on Modelling Autonomous Agents in a Multi-Agent World

(MAAMAW-96), 1996.

[Rei] M. Reinhold. JSR 51: New I/O APIs for the Java Platform. http://

www.jcp.org/en/jsr/detail?id=51. Accessed on: 25th July 2010.

[RG95] Anand A. Rao and Michael P. Georgeff. BDI Agents: From Theory

to Practice. Proceedings of the First International Conference on

Multi-Agent Systems (ICMAS-95), 1995.

[RLJ06] Steven F. Railsback, Steven L. Lytinen, and Stephen K. Jackson.

Agent-based Simulation Platforms: Review and Development Rec-

ommendations. Simulation, 82(9):609–623, 2006.

[RW73] H. Rittel and M. Webber. Dilemmas in a General Theory of Planning.

Policy Sciences, 4:155169, 1973.

[SAS] SAS Enterprise Miner. http://www.sas.com/technologies/

analytics/datamining/miner/. Accessed on: 15th September

2010.

[Sch71] T.C. Schelling. Dynamic Models of Segregation. Journal of Mathe-

matical Sociology, 1:143–186, 1971.

[SDM10] B.R. Steunebrink, M. Dastani, and J.C. Meyer. Emotions to con-

trol agent deliberation. In v.d. Hoek, Kaminka, Lesperance, Luck,

and Sen, editors, Proceedings of the 9th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2010), 2010.

[Sea69] John R. Searle. Speech Acts: An Essay in the Philosophy of Language.

Cambridge University Press, 1969.

[Sea76] John Searle. The Classification of Illocutionary Acts. Language in

Society, 5:1–24, 1976.

209

http://www.jcp.org/en/jsr/detail?id=51
http://www.jcp.org/en/jsr/detail?id=51
http://www.sas.com/technologies/analytics/datamining/miner/
http://www.sas.com/technologies/analytics/datamining/miner/

Bibliography

[SF] M. Saber and J. Ferber. MAGR: Integrating Mobility of Agents with

Organizations. http://www.madkit.net/documents/articles/

MAGR_IADIS07_Mansour_Ferber.pdf. Accessed on: 15th September

2010.

[SH99] M.P. Singh and M.N. Huhns. Intelligent Information Agents, chapter

Social Abstractions for Information Agents, pages 37–52. Springer,

1999.

[Sho93] Y. Shoham. Agent-oriented Programming. Artificial Intelligence,

60(1):51–92, 1993.

[Sho97] Y. Shoham. Software Agents, chapter An Overview of Agent-

Oriented Programming, pages 271–290. AAAI Press, 1997.

[SHYN06] Weiming Shen, Qi Hao, Hyun Joong Yoon, and Douglas H. Norrie.

Applications of agent-based systems in intelligent manufacturing: An

updated review. Advanced Engineering Informatics, 20(4):415 – 431,

2006.

[Sim96] H.A. Simon. The Sciences of the Artificial. MIT Press, 1996.

[Sin98] Munindar P. Singh. Agent Communication Languages: Rethinking

the Principles. Computer, 31(12):40–47, 1998.

[SM08] Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-Typed Actors

for Java. In European Conference on Object Oriented Programming

ECOOP 2008, Cyprus, 2008.

[Sma98] ANSI Smalltalk Standard . http://www.smalltalk.org/versions/

ANSIStandardSmalltalk.html, 1998. Accessed on: 15th September

2010.

[Smi80] R.G. Smith. The Contract Net Protocol. IEEE Transactions on

Computers, C-29(12), 1980.

[Squ08] F. Squazzoni. The Micro-Macro Link in Social Simulation. Sociolog-

ica, (1), 2008.

210

http://www.madkit.net/documents/articles/MAGR_IADIS07_Mansour_Ferber.pdf
http://www.madkit.net/documents/articles/MAGR_IADIS07_Mansour_Ferber.pdf
http://www.smalltalk.org/versions/ANSIStandardSmalltalk.html
http://www.smalltalk.org/versions/ANSIStandardSmalltalk.html

Bibliography

[ST97] N. Shavit and D. Touitou. Software Transactional Memory. Dis-

tributed Computing, 10(2):99–116, 1997.

[ST09] L. Sterling and K. Taveter. The Art of Agent-Oriented Modeling.

MIT Press, Cambridge, MA, 2009.

[Sut05] H. Sutter. The free lunch is over: A fundamental turn toward toward

concurrency. Dr. Dobb’s Journal, March 2005.

[Sys] Henry George Liddell, Robert Scott, A Greek-English Lexicon.

http://www.perseus.tufts.edu/hopper/text?doc=Perseus%

3Atext%3A1999.04.0057%3Aentry%3Dsu%2Fsthma. Accessed on:

15th September 2010.

[TH04] Robert Tobias and Carole Hofmann. Evaluation of free Java-libraries

for social-scientific agent based simulation. J. Artificial Societies and

Social Simulation, 7(1), 2004.

[Thr] The Thread.yield() method. http://www.javamex.com/tutorials/

threads/yield.shtml. Accessed on: 15th September 2010.

[TMEL09] G.K. Theodoropoulos, R. Minson, R. Ewald, and M. Lees. Multi-

Agent Systems: Simulation and Applications, chapter Simulation En-

gines for Multi-Agent Systems, pages 77–105. CRC Press, 2009.

[Tod83] E. Todd. La troisieme planete: Structures familiales et systemes

ideologiques. Seuil, 1983.

[Tro97] K.G. Troitzsch. Simulating Social Phenomena, chapter Social

Sciences Simulation. Origins, Prospects, Purposes, pages 41–54.

Springer, 1997.

[Tro04] K.G. Troitzsch. 18th European Simulation Multiconference. Net-

worked Simulations and Simulation Networks, chapter Validating

simulation models, pages 265–270. The Society for Modeling and

Simulation International, SCS Publishing House, 2004.

211

http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dsu%2Fsthma
http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dsu%2Fsthma
http://www.javamex.com/tutorials/threads/yield.shtml
http://www.javamex.com/tutorials/threads/yield.shtml

Bibliography

[Tro09a] K.G. Troitzsch. Multi-Agent Systems: Simulation and Applications,

chapter Multi-Agent Systems and Simulation: A Survey from an

Application Perspective, pages 53–75. CRC Press, 2009.

[Tro09b] Klaus G. Troitzsch. Perspectives and challenges of agent-based sim-

ulation as a tool for economics and other social sciences. In Carles

Sierra, Cristiano Castelfranchi, Keith S. Decker, and Jaime Simão

Sichman, editors, AAMAS (1), pages 35–42. IFAAMAS, 2009.

[vB68] L. von Bertalanffy. General System Theory: Foundations, Develop-

ment, Applications. George Braziller, 1968.

[vDP00] H. van Dyke Parunak. Agents in Overalls: Experiences and Issues in

the development and deployment of industrial agent-based systems.

International Journal of Cooperative Information Systems, 9(3):209–

227, 2000.

[Vir] VirtualBox. http://www.virtualbox.org/. Accessed on: 15th

September 2010.

[vtV] Remco van ’t Veer. clj-android. http://github.com/remvee/

clj-android. Accessed on: 08th October 2010.

[War79] M.W. Wartofsky. Models. D. Reidel, Dordrecht, 1979.

[WD04] H. Weigand and V. Dignum. I am autonomous, you are autonomous.

In M. Nickles, M. Rovatsos, and G. Wei, editors, Agents and compu-

tational autonomy: Potential, Risks, and Solutions, volume 2969 of

LNCS, pages 227–236. Springer, 2004.

[WG06] N. Weidmann and L. Girardin. GROWLab: A Toolbox for Social

Simulation. First World Congress on Social Simulation, 2006.

[Whi97] J.E. White. Software Agents, chapter Mobile Agents, pages 437–472.

AAAI Press, 1997.

[Wik] Parallel computing. http://en.wikipedia.org/wiki/Parallel_

computing. Accessed on: 15th September 2010.

212

http://www.virtualbox.org/
http://github.com/remvee/clj-android
http://github.com/remvee/clj-android
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Parallel_computing

Bibliography

[Wil99] U. Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/,

1999. Accessed on: 15th September 2010.

[Wim] T. Wimberly. JIT compiler coming to Android sooner than

you think? http://androidandme.com/2010/02/news/

jit-compiler-coming-to-android-sooner-than-you-think/.

Accessed on: 08th October 2010.

[Win05] M. Winikoff. Jack intelligent agents: An industrial strength plat-

form. In Gerhard Weiss, Rafael Bordini, Mehdi Dastani, Jrgen Dix,

and Amal Fallah Seghrouchni, editors, Multi-Agent Programming,

volume 15 of Multiagent Systems, Artificial Societies, And Simulated

Organizations, pages 175–193. Springer US, 2005.

[Win09] M. Winikoff. Future directions for agent-based software engineer-

ing. International Journal for Agent-Oriented Software Engineering,

3(4):402–410, 2009.

[Wit21] L. Wittgenstein. Tractatus Logico-Philosophicus. Annalen der Natur-

philosophie, 1921.

[WJ95] M.J. Wooldridge and N.R. Jennings. Agent Theories, Architectures,

and Languages: A Survey. In Intelligent Agents: ECAI-94 Workshop

on Agent Theories, Architectures, and Languages, 1995.

[WJK00] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The

Gaia Methodology for Agent-Oriented Analysis and Design. Au-

tonomous Agents and Multi-Agent Systems, 3(3):285–312, September

2000.

[Woo97] Michael Wooldridge. Agent-based Software Engineering. IEE Pro-

ceedings in Software Engineering, 144:26–37, 1997.

[Woo09] M. Wooldridge. An Introduction To MultiAgent Systems. Wiley &

Sons, 2009.

213

http://ccl.northwestern.edu/netlogo/
http://androidandme.com/2010/02/news/jit-compiler-coming-to-android-sooner-than-you-think/
http://androidandme.com/2010/02/news/jit-compiler-coming-to-android-sooner-than-you-think/

Bibliography

[XSt] XStream. http://xstream.codehaus.org/. Accessed on: 15th Oc-

tober 2010.

[Zei76] B. Zeigler. Theory of Modeling and Simulation. Wiley Interscience,

1976.

[ZEU] ZEUS Agent Toolkit. http://sourceforge.net/projects/

zeusagent/. Accessed on: 15th September 2010.

214

http://xstream.codehaus.org/
http://sourceforge.net/projects/zeusagent/
http://sourceforge.net/projects/zeusagent/

	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Abbreviations
	1 Introduction
	1.1 Background and Motivation
	1.2 Outline of the thesis

	2 Terminological and Conceptual Foundations
	2.1 The Agent concept
	2.1.1 Definitions and Notions
	2.1.2 Agent Architectures
	2.1.3 The Need for Dynamic Notions

	2.2 Multi-Agent Systems
	2.2.1 System-theoretical Foundations
	2.2.2 Multi-Agent Systems
	2.2.3 Standard Specifications for MAS

	3 Research fields in Agent-based Computing
	3.1 Agent-Oriented Software Engineering
	3.1.1 History and Principles of AOSE
	3.1.2 Comparing Agents and Objects
	3.1.3 Criticism

	3.2 Agent-based Social Simulation
	3.2.1 Heritage of Social Simulation
	3.2.2 Methodological Aspects
	3.2.3 On the Gap between MAS for AOSE and ABSS
	3.2.4 Problems in Social Simulation

	4 Concurrency models of relevant Technologies
	4.1 Concurrency
	4.1.1 On Concurrent Computing and its Relevance
	4.1.2 Concurrency Handling Mechanisms

	4.2 Technologies in the Intersection of AOSE and Concurrent Computing
	4.2.1 Clojure
	4.2.2 Android

	4.3 Java-based Asynchronous Message Passing Frameworks

	5 Reimplementation of the Micro-agent concept
	5.1 Existing Micro-agent Framework and Requirements for a Successor
	5.1.1 The existing concept and implementation
	5.1.2 Limitations and Requirements for the Successor

	5.2 Design and Implementation of the Micro-agent Platform 2
	5.2.1 Design
	5.2.2 Implementation

	5.3 Additional Platform Extensions
	5.3.1 Clojure as Agent/Environment Implementation Language
	5.3.2 Fair Scheduler

	5.4 Micro-agents on Android (MOA)
	5.4.1 Porting 2 to Android
	5.4.2 Interfacing Micro-agents with Android

	5.5 Summary

	6 Simulation Scenario
	6.1 Scenario Background
	6.2 High-level Model Description
	6.3 Operationalization of Cultural Dimensions
	6.4 Implementation
	6.4.1 General Aspects & Verification
	6.4.2 Validation & Sensitivity Analysis

	6.5 Results and Evaluation
	6.5.1 Emergent Structures in Uni-Cultural Setup
	6.5.2 Multi-Cultural Experiment

	6.6 Summary

	7 Conclusion
	7.1 Summary of Achieved Objectives
	7.2 Limitations and Future Work

	A Listings and Class Diagrams of 2
	A.1 Pseudo-code for Dynamic Binding Mechanism
	A.2 Examples for Micro-agent usage in 2
	A.2.1 Micro-agent Interaction Example in 2
	A.2.2 Usage of MessageFilter in 2

	A.3 Class Diagrams of Platform

	B Fairness Benchmark 'TalkingAnts'
	B.1 Design
	B.2 Results

	C Multi-agent Platform Performance Benchmark
	C.1 Design
	C.2 Results

	D MOA Application Scenario and Performance Benchmark
	D.1 MOA Application Scenario
	D.2 MOA Performance Benchmark
	D.2.1 Design
	D.2.2 Results

	E Data for 'Cultural Dimensions' Simulation Scenario
	E.1 KNIME Analysis stream
	E.2 Results for Sensitivity Analysis
	E.2.1 Results for UAI Weight Factor 1.5
	E.2.2 Results for UAI Weight Factor 1.8

	E.3 Results for Multi-Cultural Setup

	F Development Environment & Source Code Information
	F.1 Development Environment Specifications
	F.2 Information on Platform and Simulation Code

	Bibliography

