
Fachbereich 4: Informatik RMTI

Improvements to the RMTI network routing
daemon implementation and preparation of a

public release

Diplomarbeit

zur Erlangung des Grades eines
Diplom-Informatikers

im Studiengang Informatik

vorgelegt von

Michael Monreal

203110029

Betreuer
Prof. Dr. Christoph Steigner (Institut für Informatik)
Dipl. Inf. Frank Bohdanowicz (Institut für Informatik)

Koblenz, im November 2010

Formales

Erklärung nach §10 Abs. 6
Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.
Die Arbeit wurde noch keiner Prüfungsbehörde in gleicher oder ähnlicher
Form vorgelegt.

Veröffentlichung
Ich erkläre mich damit einverstanden, dass diese Arbeit in digitaler und
ausgedruckter Form von der Universität Koblenz-Landau öffentlich zu-
gänglich gemacht wird.

Koblenz, 26. November 2010

1

Abstract

Routing with Metric based Topology Investigation (RMTI) is an al-
gorithm meant to extend distance-vector routing protocols. It is under
research and development at the University of Koblenz-Landau since 1999
and currently implemented on top of the well-known Routing Information
Protocol (RIP).

RMTI aims to improve both convergency and scalability by making the
underlying system insusceptible to counting-to-infinity, a problem which
plagues all distance-vector routing protocols to this date. RMTI manages
to achieve this goal without changing the base protocol, so compatibility
is not sacrificed.

Around midyear 2009, the latest implementation of RMTI included
a lot of deprecated functionality. Because of this, the first goal of this
thesis was the reduction of the codebase to a minimum. Beside a lot of
reorganization and a general cleanup, this mainly involved the removal of
some no longer needed modes as well as the separation of the formerly
mandatory XTPeer test environment.

During the second part, many test series were carried out in order to
ensure the correctness of the latest RMTI implementation. A replacement
for XTPeer was needed and several new ways of testing were explored.

In conjunction with this thesis, the RMTI source code was finally
released to the public under a free software license.

2

http://www.uni-koblenz-landau.de/

Contents

Abstract 2

1 Introduction and terminology 5
1.1 Conventions . 6
1.2 Structure of this thesis . 7

2 Routing Information Protocol 8
2.1 Fundametals . 8
2.2 Problems with loops . 10

3 Routing with Metric-based Topology
Investigation 11
3.1 History . 11
3.2 Fundamentals . 12
3.3 Detecting simple loops . 13
3.4 Decision modes . 13

4 Quagga software routing suite 15
4.1 Overview . 15
4.2 Basic usage . 17

4.2.1 Configuration files . 17
4.2.2 Telnet . 17
4.2.3 VTY shell . 17

4.3 Structure of the Quagga codebase 18

5 Implementation of RMTI 19
5.1 Added files . 19
5.2 Modified files . 19
5.3 New data structures . 20
5.4 Application flow . 20

6 Modifications as part of this thesis 22
6.1 Version control . 22
6.2 Rebase RMTI on the latest Quagga release 23
6.3 Monotonic clock support . 23
6.4 Removal of the XTPeer integration 24

6.4.1 XT-server . 25
6.4.2 SL-client . 25

6.5 Table output . 25
6.6 Removal of deprected modes . 26
6.7 Mode selection . 27
6.8 Infinity metric . 27
6.9 Adapting timers to loop size . 27
6.10 Refactoring to meet Quagga coding guidelines 28
6.11 Reduction of code and patch size 28

3

7 Test environment 30
7.1 Hybrid testing procedure . 31
7.2 Zimulator . 31
7.3 Testomato . 31

7.3.1 Configuration of Testomato 32
7.3.2 Running Testomato . 32

7.4 Generator for counting-to-infinity situations 34

8 Test results and evaluation 37
8.1 Topology 1: upsilon . 38

8.1.1 Running the upsilon topology with host integration . . . 40
8.2 Topology 2: circle . 41
8.3 Topology 3: extended upsilon . 42
8.4 Final results and log files . 42

9 Public release 44
9.1 License . 44
9.2 Website and discussion board . 44
9.3 Source code . 45
9.4 Binary packages . 45
9.5 File system image . 46
9.6 Live CD . 46

10 Conclusion 47
10.1 Ongoing work . 47
10.2 Future of RMTI . 48

A User mode linux performance regression 49

B Gitorious 51

C Basic Git usage 53

D Rebasing with Git 55

E Quagga coding style 57

F Quagga coding introduction and examples 59

G Creating packages for Linux systems 61

H Patch: RMTI support for Zimulator 64

I Patch: Counting-to-infinity generator 65

J Testomato bash script and scenario run files 68

Listing 74

List of Figures 74

References 75

4

1 Introduction and terminology

A network is a collection of nodes which can communicate with each other. It
may consist of a number of subnets which have their own addressing scheme or
even use totally different technology and communication media.

Subnets need to be interconnected by special nodes called routers. A router can
have a large number of interfaces (normally at least two), each connected to a
different subnet. Being part of all the subnets, the router needs to support all
addressing schemes and technology used by the individual subnets.

Routers basicly need to handle two jobs: forwarding and routing.

Forwarding
The process of taking a packet from one subnet and sending it to another.
For this, a special forwading table is consulted. The table contains the
next hop router for every known subnet as well as a default gateway.

Routing
The process of building the forwarding tables. There are two basic kinds of
routing: exterior gateway routing is used in between the large autonomous
systems that represent the internet and interior gateway routing is used
on the inside. As long as not mentioned otherwise, this thesis will always
refer to the latter kind.

While routers may also work with manually set static routes, the case of dy-
namic routing using a routing protocol is more important. The implementation
of such a protocl is not trivial, as the routing algorithms need to work in a fully
distributed environment and cannot rely on any global knowledge.

This implies that routing is a highly self-organizing mechanism. Routers need
to be able to react to changes in the network topology without any human in-
tervention. The goal is to get into a convergent state as quickly as possible.
This state is reached when newly arriving routing packets no longer result in
changes to the routing- and forwarding tables on any router. In turn, it is then
possible to reach all destinations from every point in the network.

One of the most interesting challenges a routing protocol has to deal with is
the handling of loops. When talking about loops, three classes need to be
distinguished [3]:

Topology loop
A physical loop in the network topology.

Routing loop
A loop in the routing process (routing packets move in circle).

Forwarding loop
A loop in the forwarding process (data packets move in circle).

The easiest way to prevent loop-related problems is a loop-free network design.
This, however, has a big downside: if one link fails, parts of the network are cut

5

off and no longer reachable. Redundancy improves the reliability of the network
as traffic can move around broken links and use alternative paths if necessary.
Because of this, topology loops are a deliberate part of most network designs
and avoiding them would just create problems and risks of its own.

Routing loops occur when outdated knowledge is passed between routers over
a loop in the topology. This kind of loop needs to be prevented because it
delays the process of getting into a convergent state and can leave destinations
unreachable for a long time. A routing loop can also lead to a forwarding loop.
Data traffic circles around the loop, never able to get to the destination. In the
worst case, the data packets fill up the whole link, bringing all communication
to a halt.

Different routing protocols have their own ways to handle loops. The possible
approaches are often determined by the family (distance-vector, link-state or
path-vector) of the protocol. Every family has their own strengths and weak-
nesses [19].

There are some more terms describing connections inside a network which will
also be used in the following sections:

Hop
Travel of one section when moving from source to destination.

Path
Connection between interfaces of a router over a sequence of hops.

Route
Path that ends in the subnet beyond a destination router.

Route-combination
A combination of two routes.

1.1 Conventions

The following highlighting conventions are used throughout this thesis:

� Commands: foo bar

� Files, functions, variables: foo

� Directories: foo/

While most of the console commands shown in the following sections can be
executed with normal user rights, superuser rights are required in some cases.
To differentiate, the following syntax is used:

� $cmd: The command cmd can be executed with normal user rights.

� #cmd: The command cmd needs to be executed with superuser rights.

Note: While sudo is the default for superuser execution on some systems, it
does not always work as expected. Better use the traditional su command to
minimize problems.

6

1.2 Structure of this thesis

The thesis is organized as follows:

Section 2
introduces the reader to the classic routing protocol RIP. After giving an
overview about the basic concept, the section details its shortcomings,
focussing on the couting-to-infinity problem.

Section 3
presents the RMTI algorithm as a solution to the problems mentioned in
the previous section.

Section 4
is about the Quagga routing suite.

Section 5
describes the current implementation of RMTI based on the RIP daemon
from Quagga.

Section 6
goes into detail about the modifcations done as part of this thesis.

Section 7
discusses possible replacements for the XTPeer test environment and de-
scribes the idea behind the new Testomato framework.

Section 8
presents the test results of the latest RMTI release using a number of
sample topologies.

Section 9
discusses the measures taken to realize the public release of the RMTI
implementation and its source code, going into detail on license and distri-
bution-specific issues.

Section 10
sums up the thesis and presents some conclusions.

The main part is followed by appendices which cover some practical topics like
the Git version control system and Linux package management. Each appendix
is referenced in the main part but can be read individually.

Attached to the printed version the reader will find two optical discs. One
contains most of the data and code referred to in the text, the other offers a
preconfigured live environment.

7

2 Routing Information Protocol

The Routing Information Protocol, better known as RIP, is a well-known in-
terior gateway routing protocol. The initial version was developed during the
1960s, based on the Bellman-Ford algorithm. It soon became the first protocol
to take care of the routing in the ARPANET, the network that would later
become the Internet [19].

RIP was standardized by the IETF1 in 1988 (RFC 10582). Since then, the
standard has been superseeded by RIP version 2 in 1998 (RFC 24533). There is
also a variant called RIPng, which is based on IPv6 instead of IPv4 (RFC 20804).

Nowadays, the Internet is taken care of by the BGP protocol because it has
grown far too big for RIP to handle. Even in the interior gateway sector, some
newer protocols like Cisco IGRP and OSPF have taken over and are more widely
used.

However, RIP is still an interesting protocol: it is very easy to understand and
implementations can be really small. Also, it is very easy to set up as almost
no configuration is required.

2.1 Fundametals

The RIP protocol belongs to the family of distance-vector routing protocols.
The basic idea is that every router shares all of its knowledge with all directly
connected neighbors. After some time, every node has constructed a list con-
taining all reachable networks. This list does only contain information about
the next hop for every possible destination network, the complete path is not
known on a single router.

The packets exchanged between the RIP daemons contain information in the
form of the triple (destination, next hop, metric):

Destination
Address of the destination network.

Next hop
Address of the next router on the path to the destination.

Metric
Number of hops to the destination, ranging from 1 to 16.

The number of hops is actually limited to 15. The metric of 16 is often referred
to as infintiy and reserved for a special purpose: it declares the network as
unreachable. Furthermore, the protocol differentiate between triggered updates
and timed updates:

1IETF = Internet Engineering Task Force - http://www.ietf.org/
2RFC 1058: http://www.ietf.org/rfc/rfc1058.txt
3RFC 2453: http://www.ietf.org/rfc/rfc2453.txt
4RFC 2080: http://www.ietf.org/rfc/rfc2080.txt

8

http://www.ietf.org/
http://www.ietf.org/rfc/rfc1058.txt
http://www.ietf.org/rfc/rfc2453.txt
http://www.ietf.org/rfc/rfc2080.txt

Triggered updates
Sent after a change of the own routing table to quickly propagate the new
information.

Timed updates
Sent periodically based on a fixed timer.

Update packets can contain a maximum of 25 route information triples. The
handling of all routing information is controlled by three internal timers:

Update timer
Triggers sending of timed updates (defaults to 30 seconds).

Timeout timer
Marks routes which have not been confiremd during the update interval
as unreachable (defaults to 180 seconds).

Garbage collection timer
Purges unreachable routes from the routing table (defaults to 120 seconds).

After starting up, RIP routers first advertiese themselves to their neighbors. As
soon as a router receives a RIP update packet, it checks the information stored
in the contained route triples.

Descision process — What happens with the received information depends
on a few factors. The basic decision process is visualized in the following Nassi-
Schneiderman diagram:

Z
Z
ZZY

route already known?
�
�
��

N
Z
Z
ZZY

better metric?
�
�
��

N

replace current
entry in routing
table

Z
Z
ZZY

learned from same
node?

�
�
��

N

reset update timer
on existing route

discard packet

add entry to
routing table

Before adding a new or better route to the routing table, the metric received as
part of the update packet is first incremented by one.

Every route needs to be reconfirmed periodically to assure that it is still valid.
Because of this, every entry in the routing table is connected to its own timeout
timer. As the route gets reconfirmed, this timer is reset to the initial value. If it
ever reaches zero, the router assumes that the route is no longer valid. It sets the
metric to infinity, sends out triggered updates and starts the garbage collection
timer for the route. The route is not deleted completely until this timer runs
out. If some update reconfirms the route during this time, the garbage collection
timer is stopped and reset. The route is marked valid and the timeout timer is
started again.

9

2.2 Problems with loops

As mentioned in the introduction, the handling of loops is a major concern of
a routing protocol. For a small example, imagine a RIP network containing a
simple two-hop loop as shown in figure 1.

 R2 R1

Net

 A

Figure 1: Topology with two-hop loop

Router R1 is connected to a network A and has passed on this knowledge to R2.
Now R1 loses the connection to network A, sets the metric to infinity and in-
forms R2. However, this update does not reach R2 in time before R2 sends out a
periodic update containing the now invalid route. R1 accepts the route because
it looks valid. It sends out the route again. As R2 had originally learned the
route from R1, it will accept the new metric now even if it is higher. The same
happpens on R1 after the next update from R2 arrives, as the route stored
there seemingly originates from R2. The two routers now exchange updates
about this invalid route, slowly increasing the metric each time until it finally
reaches the infinity value. This problem is known as counting-to-infinity or CTI.

Apparently, the counting-to-infinity disrupts routing and delays convergency. It
also affects the forwarding process: during the duration of the CTI, network
nodes continue to send data packets to the seemingly reachable network. Those
packets are passed through the loop, slowing down the network and finally tak-
ing up all the bandwidth and bring everything to a halt.

To work around the problem, the split horizon rule was introduced in a later
revision of RIP. The idea is that a router should never send back information
about a route to the node it originally learned the route from. Abiding to this
rule prevents CTI situations between exactly two neighbors, such as the example
described above. However, real loops normally contain more than two routers.
In such a case, the split horizern rule does not help to prevent the CTI at all.

Even today, the RIP standard does not offer a better mechanism for handling
loops. Counting up to the infinity value is still the only way to regain a consistant
state in many cases.

10

3 Routing with Metric-based Topology
Investigation

Routing with Metric-based Topology Investigation (just called RMTI below) is a
project being worked on by the University of Koblenz-Landau. It aims to solve
the aforementioned problems of classic distance-vector protocols in general and
the RIP protocol in particular. At the same time, RMTI is meant to be fully
backward compatible by not changing or extending the already existing protocol
messages in any way.

3.1 History

Being in development since 1999, the RMTI project has evolved from a basic
theory to a matured implementation over the years. During this time, it has
been worked by many individuals:

1999
Andreas Schmid [27] introduced the basic concept behind RMTI, called
RIP-MTI (Routing Information Protocol with Minimal Topology Informa-
tion) at that time.

2001
Thomas Kleeman [15] evaluated and improved the RIP-MTI concept.

2005
Tobias Koch [16] implemented an experimental RIP-MTI daemon on top
of the RIP daemon shipping with the Quagga routing suite.

2006
Daniel Phäler [26] and Stefan Lange [17] created a test environment called
XTPeer. For this, implementations of the XT-server and SL-client were
added to the experimental daemon.

2007
Tim Keupen [13] further improved XTPeer with different ways to gener-
ate counting-to-infinity situations. Using this environment, the RIP-MTI
implementation was tested in many exemplary topologies.

2008
Frank Bohdanowicz [1] evaluated different modes of RIP-MTI and doc-
umented various shortcomings. Some of the modes were declared depre-
cated and noted for possible removal in the future.

2009
The RIP-MTI project was renamed to RMTI and paper [3] was released
and presented at the IARIA conference. A decision for a public release of
the RMTI source code was made.

2010
Another paper [4] based on previous work of Marcel Jakobs [12] was pub-
lished, showing some of the strong points of the RMTI algorithm compared
to plain RIP. Finally, the RMTI code was released to the public as part
of this thesis (see section 9).

11

3.2 Fundamentals

Reduced to the very basics, the idea behind RMTI is to make better use of the
information already exchanged by the underlying distance-vector protocol. By
not just rejecting or overwriting certain data, RMTI manages to build a broad
knowledge base. Being able to access this extra information allows the algorithm
to draw conclusions about routing loops in the proximity of the node. In turn,
this knowledge allows RMTI to rule out certain incoming routing information
and prevent the counting-to-infinity problem this way.

For that matter, RMTI distinguishes between two types of routing loops: simple
loops and source loops (both illustrated in figure 2).

Simple loop
A path leaving a router on one interface and reentering it on another
interface without passing through this same router in between.

Source loop
A path leaving a router on one interface and reentering it on another
interface after passing through this same router in between.

The difference between a simple loop and source loop has one important im-
plication. Assume a destination network located somewhere on a simple loop.
The path that leads through this simple loop can be devided into two routes,
both connecting the origin router to the destination. If there is a failure on
one of these routes, the other route can still be used to reach the destination.
Hence, an alternative route to the destination exists. While this is always true
for paths forming a simple loop, it is not true for paths forming a source loop.

The realization that only simple loops supply an alternative route to a given
destination can be used by a router to decide whether some offered route can
safely be accepted or not. In doing so, the router is able to handle situations
which would normally lead to counting-to-infinity.

d

d

Figure 2: A simple loop and a source loop [3]

12

3.3 Detecting simple loops

Given a bird’s eye view on the network topology, it is not hard to find loops and
classify them into simple loops and source loops. However, the routers need to
make the same decisions without any kind of global knowledge. Because of this,
RMTI collects and maintains a larger amount of information compared to plain
RIP. This knowledge can later be used to form a decision.

Formally, a simple loop can be defined as a path originating from router i,
traversing a subnet d and coming back to router i without crossing it in be-
tween. The metric m of a simple loop is referred to as silm. Besides this, two
more definitions are needed [3].

The minimal simple loop metric between two interfaces A and B of router i is

msilmi
A,B = min{silmi,d,i

A,B of all subnets d}

and the minimal return path metric on an interface A of router i is

mrpmi
A = min{msilmi

A,B of all interfaces A 6= B of router i}

Based on this groundwork, consider two different paths P i,d
A and P i,d

B leading to
a subnet d, respectively with metrics mi,d

A and mi,d
A . The following simple loop

test (short SLT) can be used to detect a simple loop:

mi,d
A < mrpmA +mi,d

B

If this inequation does not hold, the path is too short to be a source loop
and hence must be a simple loop. Furthermore it has been shown [2] that a
combination of this test and the well-known split horizon rule manage to prevent
the acceptance of bad routing updates and thus prevent the counting-to-infinity.

3.4 Decision modes

How the result of the simple loop test is used to form a routing decision de-
pends on what implementation of RMTI is used. In order to solve problems
with previous versions, the experimental RMTI daemon had grown a number of
modes to choose from. While section 6.6 will present some significant simplifi-
cations in the latest RMTI, it is still important to describe the background and
development. In the experimental RMTI daemon, the most important modes
are known as NORMAL, STRICT and CAREFUL.

NORMAL
Rejects all routes which do not pass the SLT.

The NORMAL mode represents the initial implementation. It assuems that
every route which passes the test is automatically valid. This, however, is not
the case: there are routes which pass the test but are invalid nevertheless. The
NORMAL mode accepts these routes and is not able to prevent the counting-
to-infinity in such a case.

13

STRICT
Accepts only routes which pass the SLT.

The STRICT mode inverts the condition in order to ensure the prevention of
the counting-to-infinity problem. It disregards the fact that there are also valid
routes which do no pass the test. The STRICT mode just rejects these routes
as well.

It was later shown that this property makes the STRICT mode unsuitable for
serious usage: while the counting-to-infinity is averted successfully, the rejection
of valid routes can delay general convergency noticeably [1].

CAREFUL
Directly accepts only routes which pass the SLT but rejects the rest only
temporarily.

The CAREFUL mode extends the STRICT mode with a compromise. For
routes which cannot be accepted right away, the rejection is no longer final.
It only holds for the critical period in which a counting-to-infinity is likely to
happen. In such a case, the CAREFUL mode sends a routing update carrying
the infinity metric through the possible loop, starts a timer and then listens for
incoming updates of the same route on the same interface. If during this time,
the route is only received with a metric of infinity, it can safely be rejected. If,
however, the route is received with a valid metric again, the route is actually
valid and needs to be accepted.

14

4 Quagga software routing suite

The current implementation of the RMTI daemon is not built from scratch. It
is a modification of the RIP daemon shipping with the popular routing suite
Quagga5. The Quagga project itself is the continuation of the GNU Zebra6

project, which is inactive since 2005. Like Zebra before it, Quagga aims to pro-
duce free software implementations of some well-known network routing pro-
tocols. To date, Quagga includes implementations of RIP and OSPF (both in
IPv4 and IPv6 variants) as well as BGPv4 and ISIS [24].

As all Quagga daemons make use of a common framework, this section first de-
scribes the underling concept before the RMTI implementation itself is discussed
in the next section.

4.1 Overview

All Quagga daemons require an additional daemon to run. For historical rea-
sons, this daemon is still called the Zebra core daemon. The binary is also still
called zebra. It acts as a hub between the individual routing daemons and the
host system. More precisely, its main function is to keep the routing tables of
all running protocol-specific Quagga daemons in sync with the single forwarding
table of the host system kernel.

All Quagga daemons are divided into various modes, which themselves are an-
chored to a number of predefined nodes:

VIEW NODE
This is the initial mode which can be used to query only basic information.

ENABLE NODE
This is the privileged command mode which can be used to send control
commands to the daemons.

CONFIG NODE
This mode allows the user to change settings which are common to all
Quagga daemons.

RIP NODE
This mode is only available in the RIP daemon and allows you to change
settings specific to RIP. Other protocols offer a similar node.

All possible transitions are illustrated in figure 3 on the next page. Starting from
the VIEW NODE, the enable command changes into ENABLE NODE. From
there, configure terminal changes to CONFIG NODE where router rip
changes to RIP NODE. The exit command can normally be used to go back
one level. However, in ENABLE NODE the disable command needs to be
used to get back to VIEW NODE, as exit drops out of the system here.

5Quagga project - http://quagga.net/
6GNU Zebra project - http://www.zebra.org/

15

http://quagga.net/
http://www.zebra.org/

VIEW_NODE

ENABLE_NODE

CONFIG_NODE

RIP_NODE

enable disable

configure

terminal
exit

exit

exit

telnet localhost 2602

exit
router

rip

Figure 3: Transitions between modes in Quagga daemons

16

4.2 Basic usage

There are tree ways to interact with the Quagga daemons: configuration files,
Telnet and the VTY shell. For detailed information about the syntax and all
possible commands, please refer to the Quagga manual [22] which can be found
on the web.

4.2.1 Configuration files

The easiest way to control a Quagga daemon is to provide a small configuration
file. This file is parsed during startup and provides the initial settings. Zebra
uses the file zebra.conf (sample shown in listing 2) and the RIP daemon uses
ripd.conf (sample shown in listing 1).

1 hostname zebra
2 password xxxx

Listing 1: Sample of a zebra.conf file

1 hostname r ipd
2 password xxxx
3

4 route r r i p
5 network 10 . 0 . 0 . 0 / 8
6

7 t imers ba s i c 10 30 20

Listing 2: Sample of a ripd.conf file

Other filenames can also be used. For this, the daemons need to be started with
the -f filename flag.

4.2.2 Telnet

The Quagga daemon can be accessed by Telnet, which is useful if a running
daemon needs to be reconfigured or queried for various information.

The Zebra daemon is running on port 2601 by default:

$ telnet localhost 2601

The RIP daemon is running on port 2602 by default:

$ telnet localhost 2602

4.2.3 VTY shell

A third way to control the Quagga daemons is the VTY (virtual teletype ter-
minal) shell tool, vtysh. It can be used to send a single command to a daemon:

$ vtysh -c "show ip rip"

17

In a similar way, a single line can be used to send a sequence of commands. For
this, individual commands are separated using a semicolon:

$ vtysh -c "configure terminal; router rip; something"

The commands used here are the same as used with Telnet. The enable com-
mand is not needed as the VTY shell already starts in the privileged command
mode (ENABLE NODE) by default.

4.3 Structure of the Quagga codebase

At the top level, the Quagga codebase is organized into different directories as
shown in listing 3.

drwxr−xr−x . 4 monreal monreal 4096 2010−06−19 21 :13 bgpd
drwxr−xr−x . 4 monreal monreal 4096 2010−07−10 13 :25 doc
drwxr−xr−x . 6 monreal monreal 4096 2010−06−19 21 :13 i s i s d
drwxr−xr−x . 4 monreal monreal 4096 2010−07−11 16 :39 l i b
drwxr−xr−x . 3 monreal monreal 4096 2010−06−19 21 :13 m4
drwxr−xr−x . 4 monreal monreal 4096 2010−06−19 21 :14 ospf6d
drwxr−xr−x . 4 monreal monreal 4096 2010−06−19 21 :13 o s p f c l i e n t
drwxr−xr−x . 4 monreal monreal 4096 2010−06−19 21 :14 ospfd
drwxr−xr−x . 3 monreal monreal 4096 2010−06−19 21 :13 pkgsrc
drwxr−xr−x . 3 monreal monreal 4096 2010−07−13 13 :08 redhat
drwxr−xr−x . 4 monreal monreal 4096 2010−09−28 15 :48 r ipd
drwxr−xr−x . 4 monreal monreal 4096 2010−06−19 21 :13 r ipngd
drwxr−xr−x . 3 monreal monreal 4096 2010−06−19 21 :13 s o l a r i s
drwxr−xr−x . 4 monreal monreal 4096 2010−06−19 21 :13 t e s t s
drwxr−xr−x . 3 monreal monreal 4096 2010−06−19 21 :13 t o o l s
drwxr−xr−x . 4 monreal monreal 4096 2010−06−19 21 :13 vtysh
drwxr−xr−x . 4 monreal monreal 4096 2010−06−19 21 :14 watchquagga
drwxr−xr−x . 4 monreal monreal 4096 2010−06−19 21 :14 zebra

Listing 3: Structure of the Quagga source code

These directories contain the implementations of routing protocols (bgpd, isisd,
ospf6d, ospfd, ripd, ripngd), shared code (lib), documentation (doc), the build-
and test systems (m4, pkgsrc, redhat, solaris, tests) and related tools (ospfclient,
tools, vtysh, watchquagga). Finally, the zebra directory includes the sources of
the Zebra core daemon.

For the work on RMTI, the subdirectories lib/, ripd/ and zebra/ are the most
important:

lib/
Contains the shared library code that forms libzebra.so.

ripd/
Contains the code of the RIP daemon that forms the executable ripd.

zebra/
Contains the code of the zebra daemon that forms the executable zebra.

18

5 Implementation of RMTI

This section aims to describe the current implementation of RMTI. As already
mentioned, the current code is heavily based on the existing Quagga RIP dae-
mon, so most of the modifications and additions can be found in the files inside
the ripd/ directory of the Quagga source tree, shown in listing 4.

−rw−rw−r−−. 1 monreal monreal 40843 2010−09−17 13 :07 ChangeLog
−rw−rw−r−−. 1 monreal monreal 653 2010−09−17 13 :07 Makef i l e .am
−rw−rw−r−−. 1 monreal monreal 124572 2010−10−12 12 :36 r ipd . c
−rw−rw−r−−. 1 monreal monreal 406 2010−09−17 13 :07 r ipd . conf . sample
−rw−rw−r−−. 1 monreal monreal 7362 2010−09−17 13 :07 r ip debug . c
−rw−rw−r−−. 1 monreal monreal 1817 2010−09−17 13 :07 r ip debug . h
−rw−rw−r−−. 1 monreal monreal 12603 2010−09−28 12 :59 r ipd . h
−rw−rw−r−−. 1 monreal monreal 51893 2010−09−17 13 :07 r i p i n t e r f a c e . c
−rw−rw−r−−. 1 monreal monreal 1316 2010−09−17 13 :07 r i p i n t e r f a c e . h
−rw−rw−r−−. 1 monreal monreal 6987 2010−09−30 12 :57 r ip main . c
−rw−rw−r−−. 1 monreal monreal 28797 2010−10−02 09 :53 r i p mt i . c
−rw−rw−r−−. 1 monreal monreal 3651 2010−10−02 09 :53 r i p mt i . h
−rw−rw−r−−. 1 monreal monreal 11015 2010−09−17 13 :07 r i p o f f s e t . c
−rw−rw−r−−. 1 monreal monreal 4724 2010−09−17 13 :07 r i p p e e r . c
−rw−rw−r−−. 1 monreal monreal 28502 2010−09−17 13 :07 r ip routemap . c
−rw−rw−r−−. 1 monreal monreal 18782 2010−09−17 13 :46 rip snmp . c
−rw−rw−r−−. 1 monreal monreal 17526 2010−09−17 13 :07 RIPv2−MIB. txt
−rw−rw−r−−. 1 monreal monreal 17578 2010−09−17 13 :07 r i p z eb r a . c

Listing 4: Files inside the ripd directory

5.1 Added files

Compared to a plain Quagga source tree, there are only two additional files
inside the ripd/ directory:

rip mti.c
Contains the implementation of the RMTI algorithm.

rip mti.h
Contains the declaration of data structures and internal and external func-
tion prototypes used for RMTI.

5.2 Modified files

While the majority of the RMTI implementation can be found in rip mti.c,
some files containing Quagga RIP code are also modified:

rip main.c
Contains the main() function of ripd and related startup logic. Initializa-
tion code for RMTI was added here.

ripd.c
The Quagga implementation of the RIP algorithm, containing declarations
of important structures like rip info as well as the DEFUNs which define
the commands used to control the daemon. The code was modified to call
RMTI during the route decision process and new RMTI-specific DEFUNs
were added.

19

ripd.h
Contains the declaration of data structures as well as internal and external
function prototypes used for RIP. New RMTI-specific functions, structures
and variables were added here.

5.3 New data structures

Compared to a plain RIP implementation, the RMTI concept relies on addi-
tional data mainly in two new structures: the MSILM-table and the MRPM-
table, respectively storing the minimal simple loop and minimal return path
metrics, introduced in section 3.3. Both are defined in rip mti.h.

MSILM-table (vector msilm table)
Lists pairs of interfaces which correspond to the smalles simple loop be-
tween those interfaces.
Answer to: ”Are there any loops between a given pair of interfaces?”
The table is quadratic and symmetric and consists of vectors of struct
mti msilm entry.

MRPM-table (vector msilm table)
Lists the minimal return path of separate interfaces.
Answer to: ”What is the shortest loop on a specific interface?”
The table is linear and consists of vectors of struct mti mrpm entry, ref-
erencing the values in the MSILM-table.

At startup, both tables are initialized with msilm null entry, which contains the
RMTI infinity value reduced by one. This special infinity value is based on RIP
infinity. It is calculated by adding the infinity of a route and a potential alter-
native route leading to the same subnet, which in turn equals 2*(RIP infinity).

The actual look of both tables is covered later in section 6.5.

5.4 Application flow

The RMTI algorithm is inserted into the RIP routing process in ripd.c. The RIP
code analyzes every incoming packet and checks if the contained destination is
already known. If this is not the case, the route to the new subnet is added
to the routing table. If, however, the destination is already known, plain RIP
would only check if the new route has a better metric and accept or reject it
based on the result of this simple test. With RMTI, a new code path is taken
at this point.

The code that is now executed can be devided into two separate parts [3]: the
data collection process, followed by the decision process [3]. Both parts are
mainly implemented in rip mti.c.

Data collection
The data collection phase is about building and maintaining the knowledge
that RMTI needs in order to make its decisions. If the incoming infor-
mation is valid, the simple loop test, realized by the simple loop test()
function, is run. If the test is passed, the metric of the underlying simple

20

loop is calculated. If the new value is smaller than what is already known,
the MSILM-table (and in turn the MRPM-table) is updated with the new
metric.

Decision
The decision phase makes use of all the extra knowledge stored by the
data collection process to identify routing loops. A cascade of tests is run
on the route, eventually leading to another simple loop test. There are
two different points of exit depening on the outcome of the tests.

After running through the data collection and decision phases, RMTI is able
to hand over the route back to the RIP algorithm. If RMTI has identified the
route to be invalid, it is directly rejected by RIP. A route that passes all RMTI
tests is considered to be valid and thus reinserted into the RIP decision process.
Here, the route is rejected if it is worse (higher metric) than the already stored
one. If the new route is better (smaller metric), it can replace the stored route.

21

6 Modifications as part of this thesis

The basic concept behind RMTI and the algorithm itself had proven themselves
both in the laboratory as well as in front of the international science community
on various conferences on networking by 2009.

As the next big step, it was decided to release the code to the public in or-
der to gather more feedback and encourage real-world deployment. However,
the current implementation at that point was not very clean and still carried a
few known bugs. Consequently, some cleanups and simplifications needed to be
done.

This section describes the modifications done in order to get the implementation
into a distributable state.

6.1 Version control

Even in medium-sized software project it is essential to keep track of all changes
made to the code. Traditianally, this is done using centralized configuration con-
trol systems like the Concurrent Version System (CVS) or Subversion (SVN).
The Quagga project is using a distributed system called Git, which is also used
to manage development of the Linux kernel since its creation as a BitKeeper
replacement in 2005.

When forking code, using the same configuration control system as the parent
project generally makes a lot of sense. In the case at hand, using Git allows to
automatically port RMTI to a newer Quagga release in a matter of seconds in-
stead of having to port forth everything manually. Patches developed for RMTI
can easily be carried over to Quagga and vice versa.

To make working with a shared Git repositories more comfortable, a Gitorious7

instance was set up for projects of the University of Koblenz-Landau. Gitori-
ous is a web application which allows to create and administer Git repositories
organized in project groups using a simple user interface.

The RMTI project8 contains a repository called rmti, which in turn contains
various branches. The master branch is just a mirror of the upstream Quagga
sources including the release tags (quagga x y z release). This allows to easily
check out new Quagga versions and rebase the RMTI code on top of them. All
RMTI branches are named after their Quagga base version (r x y z).

For more information about the topic, consult appendix B, which explains how
to access the RMTI code repository on Gitorious and how to work with it. In
addition, appendix C provides a reference sheet containing the most commonly
needed Git commands.

7Gitorious - http://gitorious.org/
8RMTI project - http://git.uni-koblenz.de/rmti/pages/Home

22

http://gitorious.org/
http://git.uni-koblenz.de/rmti/pages/Home

6.2 Rebase RMTI on the latest Quagga release

The initial RMTI implementation was based on Quagga 0.99.4. At some point,
it was manually ported to the 0.99.6 release. At the time of this writing, Quagga
is already up to 0.99.17.

Fortunately, using the Git version control system for RMTI makes porting to a
newer base version a very easy task. Git offeres a tool called rebase. The general
idea behind the rebase process is shown in figure 4.

master
quag

ga_0_
99_9_

releas
e

quag
ga_0_

99_15
_relea

se

quag
ga_0_

99_16
_relea

se

rebase

rebase

r_0_99_9

r_0_99_15

r_0_99_16

Figure 4: Branch history of the RMTI repository

For more information regarding the rebase operation and a detailed example,
please consult appendix D.

6.3 Monotonic clock support

After rebasing the code to Quagga 0.99.16, the RIP daemons did no longer ex-
changed any information. The problem could not be related to the RMTI patch,
as it also affected ordinary Quagga 0.99.16 builds.

After narrowing down the regression range to a single commit it turned out
that the problem was caused by the monotonic clock support. This optional
code path was already introduced in 2006, however a broken makefile caused
it to always be disabled until the 0.99.16 release finally fixed the makefile (see
git show 9964fcf for details).

In any case, the monotonic clock support is only useful for the BGP and OSPF
daemons, which both track system time in some way. The RIP daemon does
not profit from this as all as RIP timers simply count seconds and work inde-
pendantly of the system clock.

After filing a bug9 report in the Quagga bug tracker, some additional testing
showed that the problem only occurs inside our virtualized testing environment.
This indicates that monotonic clock support is broken in either the User Mode

9Quagga bug #592: https://bugzilla.quagga.net/show_bug.cgi?id=592

23

https://bugzilla.quagga.net/show_bug.cgi?id=592

Linux kernel or in combination with µClibc10, which is used inside the virtual
machine file system. Unfortunately, the Quagga developers already stated that
supporting either is not a high priority.

As a workaround, it is possible to just revert commit 9964fcf :

$ git revert+ \verb+9964fcf

Alternatively, monotonic clock support can be disabled in the build system by
running the following command after ./configure:

$ sed -i "/HAVE_CLOCK_MONOTONIC/d" config.h

This will delete the line containing HAVE CLOCK MONOTONIC from config.h
and result in a working build, matching the behavior of previous releases.

6.4 Removal of the XTPeer integration

Work on the XTPeer framework started in 2006. The goal was to create a
test environment able to visualize the current state of the network in realtime
and offer the means to remote-control various aspects and settings of the rout-
ing daemons. More precisely, XTPeer allows to trigger the counting-to-infinity
problem with just a few mouse clicks and the result is shown in a well-arranged
metric graph at once.

On the technical side, the system makes use of the client/server approach to
allow communication between the routing daemon and a graphical desktop ap-
plication written in Java.

XTPeer ripd

XT
SL
XT
SL

XT
SL
XT
SL

client

client

server

server

Figure 5: XTPeer client/server architecture

While being very helpful for both testing and presentations, the XTPeer in-
tegration repesented a big part of the delta between Quagga RIP and RMTI.
There was no way to disable it at build-time and a connection to the XTPeer
desktop application was always required at run-time. Removing the code spe-
cific to XTPeer allowed to simplify the code and makes it more applicative for
productive use.

10µClibc = C library for embedded systems - http://www.uclibc.org/

24

http://www.uclibc.org/

6.4.1 XT-server

The XT11-server is built into ripd. It communicates with the XT-client, which
is a part of the XTPeer desktop application. The server listens for control com-
mands and executes them. This basicly substitutes the need to log in using
Telnet.

The server had mainly been implemented inside rip xt.c, so removing the inte-
gration mainly consisted of taking this file as well as the header file rip xt.h out
of the build system. After that, all calls to the XT* functions scattered around
the rest of the RMTI code needed to be removed or replaced.

In a few instances, XTPeer used to initialize some variables and counters with
values different to the Quagga defaults. These values are now all correctly
initialized inside the daemon itself.

6.4.2 SL-client

The SL12-client is also built into ripd. It was implemented by Stefan Lange as
documented in [17].

The client communicates with the SL-server, which is a part of the XTPeer
desktop application. The duty of the client is to send status information to the
server for further analysis.

Removal of the SL-client was done in a similar way to the XT-server removal.
This time, the files sl client.c and the accompanying header sl client.h needed
to be removed and all calls to the SL* functions needed to be replaced.

6.5 Table output

With the XTPeer integration removed, there was no longer a way to check the
MRPM and MSILM tables within RMTI. The daemon commands show ip rip
mrpm and show ip rip msilm were implemented to resurrect this functionality.
They are both available for use in Telnet an VTYSH.

The MRPM table (see listing 5) is diplayed as a simple linear table. Each line
starts with an index number and contains the IP-address and name of the inter-
face, as well as the metric for the given prefix and the time since the last update.

MTPM−TABLE:

Index IP−Address I n t e r f a c e MRPMetric MRPMPrefix Last Update
1 1 0 . 0 . 1 . 1 eth1 3 10 . 0 . 3 . 0 / 24 00 :07
2 1 0 . 0 . 2 . 1 eth2 3 10 . 0 . 6 . 0 / 24 00 :04
3 0 . 0 . 0 . 0 eth1 3 10 . 0 . 2 . 0 / 24 00 :04
4 1 0 . 0 . 7 . 2 eth3 3 10 . 0 . 6 . 0 / 24 00 :04

Listing 5: MRPM Table

11XT = eXternally Triggered extension
12SL = Status Logging extension by Stefan Lange

25

In reality, the MSILM table is implemented as a quadratic table. To make sure
the output fits into a normal terminal window, it is drawn as a flat table (see
listing 6). Each line represents one cell of the table. The position of the cell in
the original table is give by the index numbers, matching interface names and
IP-addresses. Additionally, each line provides information about the metric,
prefix and time since the last update.

MSILM−TABLE:

IndexA | IndexB IP−AddressA | IP−AddressB M−M MSILIMPrefix L−Upd
1(eth1) | 2(eth2) 1 0 . 0 . 1 . 1 | 1 0 . 0 . 2 . 1 3 10 . 0 0 . 3 . 0 /24 00 :03
2(eth2) | 3(eth1) 1 0 . 0 . 2 . 1 | 0 . 0 . 0 . 0 3 10 . 0 0 . 7 . 0 /24 00 :08
1(eth1) | 4(eth3) 1 0 . 0 . 1 . 1 | 1 0 . 0 . 7 . 2 5 10 . 0 0 . 4 . 0 /24 00 :08
2(eth2) | 4(eth3) 1 0 . 0 . 2 . 1 | 1 0 . 0 . 7 . 2 3 10 . 0 0 . 6 . 0 /24 00 :08
3(eth1) | 4(eth3) 0 . 0 . 0 . 0 | 1 0 . 0 . 7 . 2 3 10 . 0 0 . 2 . 0 /24 00 :08

Listing 6: MSILM Table

Appendix F.3 describes what needs to be done in order to add commands like
these to a Quagga daemon and shows a small example.

6.6 Removal of deprected modes

During development of RMTI, various experimental modes were added in order
to fix problems of the initial implementation. In 2009, the number of modes
had already grown to six, some of which had already been proven either faulty
or inefficient:

LISTEN
This mode was only used for internal testing. The daemon builds and
maintains the MSILM and MRPM tables but does not actually use the
collected informations for its routing decisions.

STRICT
This mode does only accept routes that have been verified as valid. Be-
cause of this, a lot of valid but not yet veriefied routes are rejected. While
the counting-to-infinity can be avoided successfully this way, general con-
vergence time was negatively affected.

CAREFUL DT
This mode was one experimental implementation to fix the problems of
STRICT, based on timer to delay the acceptance of new routes.

CAREFUL ESH
This mode was another experimental implementation to fix the problems
of STRICT, making use of the external split horizen.

The inital plan was to keep both of the remaining modes, NORMAL and
CAREFUL RT (both described in section 3.4). Depending on its place in a
given topology, each router was meant to choose the best mode automatically
at runtime. Unfortunately, finding a universal criterion for this decision proved
to be harder than anticipated. After consideration, it was decided that the
NORMAL mode could be removed as well, as the CAREFUL RT mode can
also handle those situations.

26

6.7 Mode selection

It is now possible to choose the RMTI mode using the configuration file. Because
the CAREFUL RT mode is the only remaining mode in the latest release, the
newly added keyword mti only takes two values:

� mti 0 : use plain RIP (default)

� mti 1 : use RMTI support

To find out which mode is active on a running node, the show ip rip mti
command can be used.

6.8 Infinity metric

In the original Quagga code, the infinity metric is hardcoded to a constant with
the default value of 16. There is a preprocessor #define directive which can be
used to change the default at compile time. Unfortunately, this does not take
care of every single use of the infinity metric: the number 16 is used literally in
some places instead of the constant. The first challenge was to identify all of
these places. In a second step, the code was refactored to make use of a variable
instead of the constant.

The new RMTI now allows changing the infinity metric using a configuration
option infinity n, which can be set as part of the router rip section in
ripd.conf. While n can be a huge integer number, it does not make sense to set
this to a much larger value than what the network actually needs. For networks
that are not likely to grow in size, setting the metric to the longest possible path
plus one should be sufficient.

Theoretically this value can be changed at runtime. In practice it is highly rec-
ommended to only use it within ripd.conf to prevent inconsistencies. Note that
all RIP nodes inside a topology need to use the same infinity value at all times.

To find out which infinity metric is set on a running node, the show ip rip
infinity command can be used.

6.9 Adapting timers to loop size

Some tests done before this thesis already showed a problem concerning the
garbage collection time in networks with large loops, such as the Bigloop topol-
ogy from [13].

In such a case, it is possible that essential data is garbage collected even before
an update has passed through the loop once. The result is that the loop detec-
tion mechanism does no longer work and a counting-to-infinity can occur.

To circumvent this problem, the following change was done to the RMTI algo-
rithm: instead of blindly using the garbage collection time set by the user in
the configuration file, a new value based on the actual loop size is calculated. If
the provided value is smaller, the calculated value is used instead (listing 7).

27

1 unsigned int maxsilm = get_max_loop_metric (rinfo ->mti_newindex) * 5;
2

3 if (maxsilm > rip ->garbage_time)
4 rip ->garbage_time = maxsilm;

Listing 7: Adaption of the garbage collection timer

Additional tests runs revealed that a larger garbage collection time is only one
part of the fix. The period of time where routes are not accepted (careful value)
needed to be adapted in a similar way (listing 8).

1 if (maxsilm > mti_state ->careful_value)
2 mti_state ->careful_value = maxsilm;

Listing 8: Adaption of the execution time

With these modifications in place, the RMTI algorithm manages to reliably
precent the occurance of CTIs in topologies that contain larger loops. However,
it also means that valid routes can be hold back for an extended period of time,
potentially leading to a longer convergency phase.

This new problem is not solved yet. It mostly manifests itself in huge networks
with loop sizes way beyond the normal RIP infinity value of 16. The ill effect
on the initial convergence time in large topologies has already been mentioned
in the thesis [10] of Andreas Garbe.

As a possible solution, a non-linear increase of the careful value could be consid-
ered. However, assuring the counting-to-infinity is still prevented reliably could
become hard in that case.

6.10 Refactoring to meet Quagga coding guidelines

The Quagga project has agreed on a number of guidelines regarding their cod-
ing style. Basicly, these guidelines request code to be written in GNU style
with tabs set to two spaces. As part of the ongoing process to make the RMTI
implemtation available to the public, following these guidelines seemed to be a
consequential step.

All code introduced by the University of Koblenz-Landau (rip mti.c) has been
re-arranged this way. Modifications of existing code (mostly in ripd.c) have
been done in a way to minimize deltas, meaning the new coding style is used
when the enclosing block already uses it.

More information about the coding style can be found in appendix E.

6.11 Reduction of code and patch size

As mentioned before, RMTI was developed using a Subversion repository during
the last few years. The initial patch13 file I created was huge: 16.2 megabytes.

13created using the command: diff -urN quagga-0.99.9 ripmtixtsl

28

The size can be explained by the fact that a lot of files generated by the build
system had been committed to the repository. Also, the code included a lot of
useless whitespace changes.

I managed to get the patch down to 146.5 kilobytes before doing much work on
the code itself. After all the work done during this thesis, the latest patch14 is
just 73.9 kilobytes.

Only looking at delta sizes does not tell a lot about the evolution of the project
itself. To get a better feel, the source code analyzer cloc15 version 1.5 was run
to count the lines of C code inside the ripd/ directory:

Version file size (KB) LoC
RMTI (old version) 449.4 KB 10622
Quagga 0.99.9 262.9 KB 7596
Quagga 0.99.16 263.2 KB 7606
RMTI (current version) 312.9 KB 8649

The table shows that only 10 additional lines were indroduced between Quagga
0.99.9 and 0.99.16 release. It is fair to assume that most changes specific to RIP
just represented bug fixes and did not add new features.

The actual lines of code for RMTI can easily be calculated as the difference of
the respective values of the RMTI version and its Quagga base version: the old
RMTI code consisted of 3026 lines, the final code is down to 1043 lines (see
figure 6). This equals a reduction by the factor of 2.9.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

old version current version

Li
ne

s
of

 C
od

e

Figure 6: Reduction of RMTI code size

Counting the code in all directories, the difference is 1046. This also shows that
RMTI does not touch much code outside the ripd/ directory.

The removal of deprecated modes and unused codepaths in addition to many
simplifications considerably reduced the overall size of the project, making it
easier to understand and maintain in the future.

14created using the command: git diff q 0 99 16 r 0 99 16
15CLOC = count lines of code - http://cloc.sourceforge.net/

29

http://cloc.sourceforge.net/

7 Test environment

In order to validate a routing algorithm, a special test environment is needed.
Compared to local code, a distributed algorithm poses a bigger challenge:

� there is no global knowlege and no central place to store a result

� computation and communication needs to be flawless on all nodes to achive
the correct result

� testcases only work as long as the environment does not change, however,
this is nearly impossible to ensure in a distributed environment

� the number of participating nodes can vary over time: new nodes connect,
old nodes disconnect from the network

In the case of a routing algorithm, the network may often fall into some in-
consistent state. Still, the algorithm needs to react to the situation and induce
convergence as fast as possible. The absence of a central element is a strong
point in this case because it can neither hurt scalability nor reliability. However,
how can testing be done in such a scenario?

The XTPeer system works around this problem by building up global knowledge
itself. It constantly collects information from all participating nodes via dedi-
cated channels and analyses it in a central place. In addition, it needs to know
the whole network topology itself. As the XTPeer integration was removed as
part of this thesis, an different approach was needed.

The key element of the old test environment was Virtual Network User Mode
Linux (VNUML), a system that allows to build complex networks using User
Mode Linux (UML) based virtual machines and software bridges. Detailed in-
formation can be found in [25] and [7]. It is important to note that VNUML
does not rely on XTPeer, so it can still be used as part of the new test environ-
ment.

Before thinking about how to build replacemnts for the other parts, it makes
sense to formulate a list of requirements which the test environment needs to
satisfy:

� ability to provoke the counting-to-infinity reliably

� ability to copy files to the virtual machines

� ability to copy log files back to the host system

� ability to repeat a given test case for a specified number of times

� be as quick as possible

It is also important to declare what the tests are supposed to proof. Differ-
ent testing goals could be the correctness of the CTI prevention or changes of
properties like convergence time and traffic volume. Apparently, assuring the
new implementation still reliably prevents the counting-to-infinity needs to be
the focus here. Tests regarding other properties would be nice as well, however
those would require comparable test results from the XTPeer-based version to
have any meaning.

30

7.1 Hybrid testing procedure

I first considered a hybrid testing procedure to be feasible. The plan was to
replace the new software on one or more selected routers in a topology with the
old XTPeer-enabled version.

This approach is problematic because testing the new version together with
an older release would not deliver any conclusive results. On the one hand,
occurring problems could just be side-effects of minor changes between the two
versions and may not happen when using only one version. On the other hand,
there is no way to assure that everything would still work the same if only the
new version was used.

7.2 Zimulator

The Zimulator environment was written by Marcel Jakobs and is described in
detail in the related thesis paper [12]. Zimulator runs in two phases, one online
and one offline phase. During the online phase, the test topology is set up using
VNUML and the scenario is being run. Network traffic is being recorded by
tcpdump for later use in the offline phase.

As RMTI uses the same packet format as RIP, Zimulator also works for RMTI.
However, RIP is limited to the default infinity value of 16, so Zimulator had
this value hardcoded as well. To support RMTI, I added support for changing
the infinity value at run time using the -I flag (full patch in appendix H).

While offering very powerful tools for statistical analysis, the system does not
meet the given requirements. It is very useful in cases where properties of a sta-
ble codebase are being analyzed but only of limited use for testing experimental
code. It is not possible to judge the state of the running simulation before the
offline phase is finished. This requires the scenario to aquire a consistent state
during the online phase first, which may take a long time. The offline phase on
the other hand is known to require a lot of CPU power and may take a long time
itself. It is also not possible to cancel a run or copy log files from the virtual
machines.

7.3 Testomato

As the Zimulator tool does not allow running a large number of CTI tests in a
passable time, some alternative was needed. This let to the development of a
simple script for test automation and monitoring called Testomato. The code
is listed in appendix J.

The script itself is written in Bash and mainly collects information using com-
mand line tools like vtysh and route. The UML hostfs is used to exchange files.
Early versions used SSH to execute these commands on the virtual machines,
sometimes causing large delays and rendering the results unusable. Later,
uml mconsole proved to be a much faster and more reliable solution. While
it only works unidirectional, all output can be written to a file in the hostfs
direcory and later be read by the main script from there.

31

7.3.1 Configuration of Testomato

Before the tool can be used to start a test run, the VNUML framework needs
to be installed. The procedure is descibed in [18]. Additionally, a number of
files need to be created:

topology.xml - A normal VNUML topology description file. Visit the VNUML
website for detailed information about the XML format [23] or see [18] for a sum-
mary of the most important elemets.

scenario.run - A small file which specifies what happens once VNUML has
started all virtual machines and set up the networking. Standard bash syntax
and console commands can be used here. Additionaly, the following commands
are predefined:

� waitFor delay : Initial delay to allow the network to achieve a convergent
state.

� close router interface delay : Cut connection of given interface on selected
router.

� getRoute router network : Show route information for given network on
selected router.

� open router delay : Reopen all connections on selected router.

� copyLogs : Copy all RIP daemon log files to a local directoy.

The second part of appendix J shows a few selected example scenario files.

etc/zebra.conf and etc/ripd.conf - Zebra and RIP daemon configuration
files used for all virtual machines. All files inside the etc/ folder are copied to
the /mnt/hostfs/ folder on the virtual machines.

7.3.2 Running Testomato

After everything is set up correctly, the tool can be used like this:

testomato -x xmlfile [-r runfile] [-n number of runs]

-x name.xml (mandatory): Name of the VNUML topology file.

-r name.run (optional): Name of the file containing the operational sequence.
If not given, try the same name as used in -x parameter.

-n integer (optional): Number of runs. If not given, run only once.

Testomato writes a log to the terminal as well as a test.log file in a directory
named tests/xml (run) date-time/. This directory also includes subdirectories
for each run, which in turn contain a copy of the ripd.log file of every virtual
machine.

32

The approximate duration of a simulation can be estimated based on the fol-
lowing factors:

1. VNUML startup : about 2 minutes

2. time for convergency : about 15 seconds per run

3. time for timeout of route : about 25 seconds per run

4. time to wait for CTI : about 40 seconds per run

Based on these numbers, running a test series with 100 iterations takes about 2
hours and 15 minutes while 1000 iterations take about 22 hours and 30 minutes.

Note that item 1 depends heavily on the hardware and current load of the host
machine. It may take a bit longer but only happens once per simulation. Items
2 to 4 happen per iteration and require more time if the topology contains larger
loops or longer RIP timer values are used.

The following listings include sample output from the tool. The first row shows
some of the settings being used, including the infinity value and RIP timers. In
listing 9, the RMTI support is disabled. The counting-to-infinity occurs, which
can be seen by the steadily increasing metric.

Infinity: 24 MTI: 0 Timers: 10 / 40 / 30

=== 1 / 100 =====================

wait for 15 seconds

close interface eth1 on r5 and wait for 25 seconds

r1: R(n) 10.0.6.0/24 10.0.4.2 3 10.0.4.2 0 00:38
r2: R(n) 10.0.6.0/24 10.0.3.1 4 10.0.3.1 0 00:35
r3: R(n) 10.0.6.0/24 10.0.1.1 4 10.0.1.1 0 00:34

r1: R(n) 10.0.6.0/24 10.0.4.2 24 10.0.4.2 0 00:27
r2: R(n) 10.0.6.0/24 10.0.3.1 24 10.0.3.1 0 00:27
r3: R(n) 10.0.6.0/24 10.0.1.1 4 10.0.1.1 0 00:33

r1: R(n) 10.0.6.0/24 10.0.3.2 9 10.0.3.2 0 00:37
r2: R(n) 10.0.6.0/24 10.0.2.2 11 10.0.2.2 0 00:40
r3: R(n) 10.0.6.0/24 10.0.1.1 10 10.0.1.1 0 00:36

r1: R(n) 10.0.6.0/24 10.0.3.2 18 10.0.3.2 0 00:40
r2: R(n) 10.0.6.0/24 10.0.2.2 20 10.0.2.2 0 00:40
r3: R(n) 10.0.6.0/24 10.0.1.1 19 10.0.1.1 0 00:39

r1: R(n) 10.0.6.0/24 10.0.3.2 21 10.0.3.2 0 00:37
r2: R(n) 10.0.6.0/24 10.0.2.2 23 10.0.2.2 0 00:39
r3: R(n) 10.0.6.0/24 10.0.1.1 22 10.0.1.1 0 00:36

r1: R(n) 10.0.6.0/24 10.0.3.2 24 10.0.3.2 0 00:25
r2: R(n) 10.0.6.0/24 10.0.2.2 24 10.0.2.2 0 00:26
r3: R(n) 10.0.6.0/24 10.0.1.1 24 10.0.1.1 0 00:24

opening all interfaces on r5 and wait for 0 seconds

Resetting scenario (restarting daemons)...

Listing 9: Testomato output showing a CTI

33

In contrast, listing 10 shows a similar scene with RMTI support enabled. In
this case, the counting-to-infinity is prevented and the metric stays constant.

Infinity: 24 MTI: 1 Timers: 10 / 40 / 30

=== 1 / 100 =====================

wait for 15 seconds

close interface eth1 on r5 and wait for 25 seconds

r1: R(n) 10.0.6.0/24 10.0.4.2 3 10.0.4.2 0 00:39
r2: R(n) 10.0.6.0/24 10.0.3.1 4 10.0.3.1 0 00:38
r3: R(n) 10.0.6.0/24 10.0.1.1 4 10.0.1.1 0 00:37

r1: R(n) 10.0.6.0/24 10.0.4.2 24 10.0.4.2 0 00:29
r2: R(n) 10.0.6.0/24 10.0.3.1 24 10.0.3.1 0 00:29
r3: R(n) 10.0.6.0/24 10.0.1.1 4 10.0.1.1 0 00:32

r1: R(n) 10.0.6.0/24 10.0.4.2 24 10.0.4.2 0 00:24
r2: R(n) 10.0.6.0/24 10.0.2.2 24 10.0.2.2 0 00:27
r3: R(n) 10.0.6.0/24 10.0.1.1 24 10.0.1.1 0 00:27

...

r1: R(n) 10.0.6.0/24 10.0.4.2 24 10.0.4.2 0 00:08
r2: R(n) 10.0.6.0/24 10.0.2.2 24 10.0.2.2 0 00:11
r3: R(n) 10.0.6.0/24 10.0.1.1 24 10.0.1.1 0 00:11

opening all interfaces on r5 and wait for 0 seconds

Resetting scenario (restarting daemons)...

Listing 10: Testomato output showing no CTI (shortened)

7.4 Generator for counting-to-infinity situations

As described, both Zimulator and Testomato allow provoking counting-to-infinity
situations using scenario description files. In both cases, the user has to specify
a sequence of commands which close and reopen connections with the right tim-
ing to initiate the CTI. In practice, however, it turns out that such a procedure
is not very reliable:

� The simulation environment is subject to influences from the outside, such
as host system CPU usage.

� RIP updates are sent with a random delay of zero to five seconds, meaning
iterations can differ a lot.

� The timings heavily depend on the configured RIP timers (mostly the
periodic update timer). After changing the timers, the scenario file needs
to be adjusted as well.

Is becomes obvious that the chance of generating a counting-to-infinity situation
decreases with growing loop sizes.

To avoid these factors, the idea was to build support for generating a counting-
to-infinity situation directly into the RIP daemon. The theory is simple: one of
the routers is selected to initiate the CTI. On this router, a special command
cti X Y has to be executed. The X denotes the interface which receives the

34

information about a no longer reachable network. The Y denotes the interface
over which updates don’t reach the neighbor.

The generator is very useful for testing purposes and can greatly simplify the
creation of scenario description files. Their duty is reduced to just a few things:
cutting off one of the networks using the close command, showing periodic out-
put about the state of the network using the getRoute command and copying
the log files at the end of each iteration using the copyLogs command.

The current code is based on some unfinished work by Frank Bohdanowicz and
exists as a patch against the latest RMTI code. It can be found online16 and is
also listed in appendix I. The following is a short discussion of the essential parts.

The generator introduces a few new variables: The cti route manipulation vari-
able is set when the generator is activated. The variables cti incoming eth and
cti blocking eth variables hold the names of the incoming and blocked interface,
cti incoming idx and cti blocking idx hold the corresponding indices.

1 if (cti_route_manipulation)
2 {
3 unsigned int cti_ifindex = ifname2ifindex (cti_incoming_eth);
4

5 if (!rinfo ->cti_flag
6 && ifp ->ifindex == cti_ifindex && ifp ->ifindex == rinfo ->ifindex
7 && rte ->metric >= rip ->infinity_metric)
8 {
9 rinfo ->cti_flag = 1;

10 }
11

12 ...

Listing 11: CTI patch, part 1

Placed inside the function that analyzes incoming routes (rip rte process), this
code checks if the route is suitable to cause the counting-to-infinity. For this,
the route needs to satisfy two requirements:

� the route was received over the specified incoming interface

� the route carries information about some unreachable network, meaning
the metric equals RIP infinity

1 if (cti_route_manipulation
2 && rinfo ->cti_flag
3 && ifc ->ifp ->ifindex == cti_ifindex
4 && rinfo ->metric >= rip ->infinity_metric)
5 {
6 continue;
7 }

Listing 12: CTI patch, part 2

During the output process (rip output process), updates of the flagged routes
are omitted on the blocked interface.

16CTI generator patch: http://git.uni-koblenz.de/share/agrn-share/trees/master

35

http://git.uni-koblenz.de/share/agrn-share/trees/master

1 ...
2

3 if (rinfo ->cti_flag
4 && !IPV4_ADDR_SAME (&rinfo ->from , &from ->sin_addr)
5 && ifp ->ifindex != cti_ifindex)
6 {
7 rinfo ->cti_flag = 0;
8 cti_route_manipulation = 0;
9 }

10 }

Listing 13: CTI patch, part 3

Placed directly below the first snippet (in rip rte process), this code is meant to
turn off the generator as soon as the counting-to-infinity is initiated. To meet
this condition, same route needs to be received with a new learned-from address
via another interface.

While the generator patch has provn itself in simple topologies, it is likely to
cause problems in the more compex ones. For example, the current version only
works correctly if exactly one network is advertised as not reachable. If there
are multiple networks, the code will try to generate the counting-to-infinity for
each of the networks but stop after initiating the first.

36

8 Test results and evaluation

The tests presented on the following pages have all been carried out using the
Testomato script combined with the CTI generator, both described in the pre-
vious section.

The chosen test topologies include the simple (see 8.1) and the extended (see
8.3) upsilon topology as well as the circle topology (see 8.2). Each one has its
own relevance:

Simple upsilon topology
The simple upsilon topology is often used as an introduction into the
counting-to-infinity problem. It represents the smallest constellation of
routers that is affected by the problem even when the split horizon rule
(see section 2.2) is respected.

Extended upsilon topology
The extended upsilon topology is based on the simple upsilon topology but
contains a nested loop. As shown in [31], this class of topology is known
to cause problems with the original implementation (NORMAL mode) of
RMTI.

Circle topology
Compared to the simple upsilon topology, the circle topology has a larger
loop. It is an example for a topology that relies on the dynamic timer
value adaption described in section 6.9.

In order to pass the test, the new RMTI implementation was required to com-
plete at least one thousand iterations of each tested topology with the expected
result. To be more precice, the expected results are:

� All iterations executed in a test series with the RMTI algorithm disabled
(mti=0) should result in a CTI. In the log file, this can be verified by
looking for a gradually increasing RIP metric.

� All iterations executed in a test series with the RMTI algorithm enabled
(mti=1) should not result in a CTI. In the log file, this can be verified by
looking for a constant metric equal to RIP infinity.

In many cases, even a simple code change can have undesirable side effects. In
order to become aware of such regressions as fast as possible, many tests series
have already been carried out during the whole development cycle. Every time
a series did not meet the expectations described above, the following steps had
to be taken:

1. analysis of the RIP log files of the failed iteration(s)

2. attept to find and fix the problem in the code

3. recompilation and update of file system image

4. restart of the test series and back to step one

37

All tests have been carried out on a laptop with the following specification:

CPU Intel(R) Core(TM)2 Duo CPU T7250 @ 2.00 GHz
RAM 2 GB of DDR2
OS Fedora 13 + latest updates
VNUML 1.8.9
Host kernel kernel-2.6.31.12-174.2.22.fc12.i686
UML kernel linux-2.6.18.1-bb2-xt-4m

The kernel has been downgraded to the latest package for Fedora 12 because
newer kernels show a bad performance regression. Details about this issue can
be found in appendix A.

Each of the sample topologies is visualized using the common elements pictured
in figure 7.

10.0.x.1

10.0.x.2

 RX
router X

network

10.0.x.0

detatched

network

place where

updates get lost

direction of

a possible CTI

Figure 7: Elements of a topology visualization

The scenario description files mentioned on the following pages can be found on
the DVD and Live CD accompanying the printed version and are also listed in
the second part of appendix J.

8.1 Topology 1: upsilon

The simple upsilon topology shown in figure 8 consists of five routers. The
routers R1, R2 and R3 are connected in a loop. R1 is also connected to R4,
which itself is connected to R5.

Using Testomato, the scenario can be started with the following command:

$./testomato -x y -n 1000

The VNUML suite take care of building and setting up the topology. After the
routing software is started on all virtual machines, the script waits for a short
period of time in order to allow the scenario to obtain a convergent state. The
time for this depends on the chosen RIP update timer but usually only takes a
few seconds.

38

eth2: 10.0.2.2

eth1: 10.0.2.1

eth2: 10.0.3.2

eth2: 10.0.3.1eth1: 10.0.1.1

eth3: 10.0.4.1

eth1: 10.0.4.2

eth1: 10.0.5.2

eth2: 10.0.5.1

eth2: 10.0.6.1

eth1: 10.0.1.2

r1

 R1

 R4

 R5

 R2 R3

Figure 8: The upsilon topology

As soon as a convergent state can be assumed, Testomato interrupts the con-
nection between routers R4 and R5, effectivly cutting off R5 and the network
10.0.6.0. At this point, packets can no longer reach the 10.0.6.0 network. The
first router to notice the problem is R4, as it will no longer receive update packets
for this network from R5. After some time, the timeout timer for the route will
reach zero and the network is regarded as unreachable on R4 from this point on.

The disturbed reachability of the network 10.0.6.0 is propagated to router R1
through an update containing the infinity metric. In turn, an update is trig-
gered on router R1, passing the infinity metric to its neighbors R2 and R3.

At this point, the CTI generator kicks in: the RIP daemon on R1 is config-
ured to silently drop update packages containing the infinity metric when send
to R3. The update packet only reaches R2, which tries to pass it along to
R3. Having learned the route to 10.0.6.0 from R1 originally, R3 will assume
that its current information is still valid and better than what R2 has to offer.
R3 sends an update to R2, overwriting the infinity metric with the outdated
but seemingly better value. R2 assumes the offered route is valid and accepts it.

39

Without RMTI: Router R2 passes on the incorrect metric to R1. Having no
means to know that it is not valid, R1 also accepts the route as it has a lower
metric and in turn passes it on to R3. The CTI generator does not drop the
packet this time because it does not contain the infinity metric. R3 will accept
the new information because it originally learned the route from R1. At this
point, the counting-to-infinity can not be avoided anymore. The routers will
continue to pass on the newly received metrics in the loop between R3, R2 and
R1 until the metric reaches the infinity value and finally times out.

With RMTI: Router R2 passes on the incorrect metric to R1. Making use
of the extra information that RMTI provides, R1 is aware of the existance of
a loop between its interfaces eth1 and eth2. The update is rejected and the
correct metric, infinity, is sent back to R2 again.

8.1.1 Running the upsilon topology with host integration

As a variant of the simple upsilon topology, one of the virtual machines can be
replaced by the host system. The host system should be placed inside the fork,
connecting the 10.0.1.0, 10.0.3.0 and 10.0.4.0 networks because this is the only
spot where RMTI can prevent the counting-to-infinity in this topology.

This is especailly useful while working on the code as the daemon can be run
from the main working environment. A new version can be tested after a quick
recompile without the need to modify the file system images of the virtual ma-
chines.

The sample scenario yh.xml requires an additional ripd.conf file, placed in /tmp
as /tmp/host-ripd.conf. Once the host system is set up, the scenario can be run
by executing the following cammands:

vnumlparser.pl -t yh.xml -u root -vB
vnumlparser.pl -x start@yh.xml -u root -vB
vnumlparser.pl -x zebra@yh.xml -u root -vB
vnumlparser.pl -x rip@yh.xml -u root -vB

If the RIP daemon running on the host has been patched to support the cti com-
mand, all that need to be done now is to manually disconnect network 10.0.5.0
somehow.

Note that the normal CTI generator described before does not work in this case
because the interfaces have different names. For testing purposes, the interface
names can just be changed from eth to net.

After initiating the CTI, check the local RIP routing table on the local host
periodically. This can be achieved by executing the following command:

$ vtysh -c "show ip rip"

If running in RMTI mode, the metric for network 10.0.5.0 will change to infinity
shortly after the timeout timer reaches zero on R4 and no counting-to-infinity
will occour.

40

8.2 Topology 2: circle

The circle topology shown in figure 9 consists of eight routers. The topology
itself is very similar to the upsilon topology but the loop is bigger as it is made
out of six routers (R1 to R6) instead of three. The loop can be expanded at
will. R1 is connected to a router R7 which is connected to R8.

eth2: 10.0.6.1

eth1: 10.0.1.1

eth3: 10.0.7.1

eth1: 10.0.7.2

eth1: 10.0.8.2

eth2: 10.0.8.1

eth2: 10.0.9.1

eth1: 10.0.1.2

eth2: 10.0.2.1 eth1: 10.0.5.2

eth1: 10.0.2.2 eth2: 10.0.5.1

eth1: 10.0.4.2eth2: 10.0.3.1

eth2: 10.0.6.2

eth1: 10.0.3.2 eth2: 10.0.4.1

 R1

 R8

 R6 R2

 R5 R3

 R4

 R7

Figure 9: The circle topology

Using Testomato, the scenario can be started with the following command:

$./testomato -x c6 -n 1000

The initiation and development (without RMTI) or the reliable prevention (with
RMTI) of the counting-to-infinity problem happens just as described for the the
simple upsilon topology. However, the bigger size of the loop can cause problems
in cases where the garbage collection time is set to a small value. The bigger
the loop, the more likely this problem becomes even with a reasonable timer
value.

41

The problem and its solution have already been described in section 6.9.

Without the fix it is possible that the original route is already garbage-
collected on R1 before the incorrect metric arrives through the loop. In this
case, RMTI is not able to prevent the CTI: there is no way to tell that the route
was originally passed from R7 to R1 anymore. R1 accepts what it thinks is a
completely new and valid route. It passes the invalid route to R2, continuing
the active couting-to-infinity.

With the fix the configured value of the garbage collection timer is multiplied
by the size of the loop (six in this case). Now it is very unlikely that the timer
will run out prematurely, so RMTI can still detect the loop and prevent the
CTI just as it does in the simple upsilon topology.

8.3 Topology 3: extended upsilon

The extended upsilon topology shown in figure 10 is another variant of the the
simple upsilon topology. It contains one extra router R6, which is connected to
both the R2 and R3.

This constellation is called a nested loop because it contains two interconnected
loops. There are three possible ways a CTI can be initiated here:

1. R1-R3-R2-R1 (bottom loop, same as simple upsilon)

2. R1-R3-R6-R2-R1 (big loop)

3. R3-R6-R2-R3 (top loop)

Using Testomato, the scenario can be started with the following command:

$./testomato -x y+ -n 1000

8.4 Final results and log files

As mentioned, all topologies have been tested during development in order to
prevent regressions. After development was done, another series of tests with
1000 iterations was carried out for each topology, once with plain RIP and once
with RMTI enabled.

In all cases, the counting-to-infinity was successfully prevented when running
in RMTI mode. Still, the counting-to-infinity was successfully initiated in all
cases when running in plain RIP mode.

The log files of these final test runs can be found in the directory testoma-
to/tests/ on the DVD accompanying the printed version of this thesis.

42

eth2: 10.0.2.2

eth1: 10.0.2.1

eth2: 10.0.3.2

eth1: 10.0.1.1

eth3: 10.0.4.1

eth1: 10.0.4.2

eth1: 10.0.5.2

eth2: 10.0.5.1

eth2: 10.0.6.1

eth1: 10.0.1.2

eth3: 10.0.8.1 eth3: 10.0.7.2

eth2: 10.0.8.2 eth1: 10.0.7.1

eth2: 10.0.3.1

 R1

 R4

 R5

 R2 R3

 R6

Figure 10: The extended upsilon topology

43

9 Public release

The current implementation of RMTI is considered to be stable and usable.
However, the user base is still very small and real world deployment is scarce.
In order to change this, it was decided to release the whole project to the public
under a permissive free software license. This section details the process of
preparing and assisting the release process.

9.1 License

The Quagga project makes use of of the GNU GPL (GNU General Public Li-
cense) license, version 2 or later. As RMTI is heavily based on the Quagga RIP
implementation, using the same license is the only viable option. In turn, the
RMTI code is now licensed GPL2+ as well.

The license results in a number of legal implications which can be studied in
detail in [9]. While the original license text is not easy to understand for a
layperson, everyone working on the code should be familiar with the basics:

� The RMTI code can be freely distributed and used in any way with or
without the rest of the Quagga code. This includes both source and binary
forms.

� Everyone is allowed to create and distribute software based on or derived
from RMTI code, as long as they also comply with the GPL2+. More
precisely, this requires the release of their modified source code under the
same license.

� It is possible to relicense the code to GPL3+. Compatibility of GPL
versions is explained in [8].

� Either the whole RMTI codebase or parts of it could be merged into
upstream Quagga easily.

9.2 Website and discussion board

For some time, the RMTI website17 (figure 11) provided a small amount of in-
formation related to the development of the algorithm. The page has now been
reworked to reflect the latest happenings and offers new content in the News
and Downloads sections.

For public discussion, a bulletin board18 has been set up (figure 11). The board
is based on the popular phpBB software and contains sections for news, general
discussion as well as bug reports and feature requests.

A hyperlink pointing to the RMTI website has been added to the Wikipedia
entry19 about the routing information protocol.

17RMTI website - http://userp.uni-koblenz.de/~vnuml/rmti/
18RMTI discussion board - http://agrn.uni-koblenz.de/forum/
19RIP @ Wikipedia: http://en.wikipedia.org/wiki/Routing_Information_Protocol

44

http://userp.uni-koblenz.de/~vnuml/rmti/
http://agrn.uni-koblenz.de/forum/
http://en.wikipedia.org/wiki/Routing_Information_Protocol

Figure 11: RMTI website Figure 11: Discussion board

9.3 Source code

The Downloads section of the website offers the latest RMTI release packed in
a tarball. For people already working on Quagga, it is also available as a patch
against the upstream code.

The very latest code can be found in our Gitorious repository20. It can be ac-
cessed using the standard Git tools. An account is not required for read-only
access. However, registered users can create public forks of the code and gain
write-access to the main repository after applying for membership in the RMTI
group.

Appendix B provides detailed information about getting the code and working
with the repository. This information can also be found online on the RMTI
project wiki21.

9.4 Binary packages

The RMTI web page also offers ready-to-use binary packages for various Linux-
based systems in the Downloads section. Right now Debian/Ubuntu (.deb), Red
Hat/Fedora (.rpm) and OpenWRT (.ipk) packages are available.

The packages are based on each distribution’s official Quagga package, so they
behave exactly like the original and just ship the RMTI-based RIP instead of
the unmodified RIP implementation. They are meant to be used inside a virtual
machine file system or run a RIP router instance on the host machine.

Detailed notes on how the packages were built can be found in appendix G.
Note that all packages currently available are compiled for x86 (32-bit) only.
If package for a x86-64 (64-bit) system are needed instead, please refer to the
compilation guide.

Installing the binary packages is easy. While not strictly required, it is recom-
mended to install the official Quagga package using the package manager first.

20RMTI project - http://git.uni-koblenz.de/rmti
21RMTI wiki - http://git.uni-koblenz.de/rmti/pages/Home

45

http://git.uni-koblenz.de/rmti
http://git.uni-koblenz.de/rmti/pages/Home

This ensures that all dependencies are satisfied. In a second step, the official
package is replaced by the custom RMTI-enabled package:

Installing the Debian/Ubuntu package

apt-get install quagga && apt-get remove quagga
dpkg -i quagga_0.99.16-1rmti_i386.deb

Installing the Red Hat/Fedora package

yum install quagga && yum remove quagga
rpm -ihv quagga-0.99.16-0rmti.fc13.i686.rpm

The OpenWRT packages are meant to be installed on modified routers using
the free OpenWRT operating system. They are built specifically for the Linksys
WRT54GL22 but may also work on similar hardware.

9.5 File system image

For those interested in running RMTI in a virtualized environment, the website
offers a minimal file system image. It is created to be used with the VNUML
virtualization suite but may also work with other solutions.

9.6 Live CD

Finally, we provide a Live CD image (ISO 9660 format). It is based on the 6.2.1
release of Knoppix23 and includes a fully working VNUML setup featuring the
RMTI file system mentioned above.

To use the image, just write it to a physical disc (700 MB) and reboot. Make
sure booting from the optical disc drive is enabled in BIOS. It will then boot
the system automatically and does not require installation or any changes to
the hard drive.

Alternatively, the image can be run in a virtual machine. One option is to use
KVM, a hypervisor integrated in newer Linux kernels:

$ qemu-kvm -m 1024 -cdrom knoppix-6_2_1-rmti_0_99_16.iso

Other popular virtualization tools like VirtualBox24 can also be used.

The Live CD contains a copy of the Testomato framework and a few sample
scenarios in /home/knoppix/testomato/.

22Linksys WRT54GL - http://en.wikipedia.org/wiki/Linksys_WRT54G_series#WRT54GL
23Knoppix - http://www.knoppix.net/
24VirtualBox - http://www.virtualbox.org/

46

http://en.wikipedia.org/wiki/Linksys_WRT54G_series#WRT54GL
http://www.knoppix.net/
http://www.virtualbox.org/

10 Conclusion

As demonstrated in various papers like [3] and [4], the RMTI algorithm can be
used to improve the aging RIP protocol. By offering a solution to the counting-
to-infinity problem, the average convergence time in critical situations can be
reduced significantly.

Compared to normal RIP technology, RMTI routers can be deployed in larger
networks because they are no longer subject to the artificial limitation of 15
routers per path. As described, the current implementation now supports
changing the infinity value using a simple addition to the configuration file.
The improved scalability of RMTI helps to narrow the gap betweenn classic
distance-vector protocols and current link-state protocols like OSPF.

Being competitive with regard to converge time and scalability is important,
but RIP and therewith RMTI still have some more advantages over link-state
based protocols. On the one hand, their implementations are comparatively
simple and easy to understand. Deployment is easy too, because it requires
only a minimal amount of configuration. On the other hand, distance-vector
based protocols have a potential to support routing policies, similar to the BGP
protocol.

Today, RMTI is finally available to the public as a minimal patch against the
current version of the Quagga routing suite. This should make it attractive for
third parties to give it a try and hopefully return feedback.

The reorganization of the code and the switch from Subversion to Git has already
payed off. It offers a great way to collaborate and makes it very easy to track
changes from upstream Quagga.

10.1 Ongoing work

The reduced RMTI codebase has proven to be reliable in simple virtualized net-
works as demonstrated before. Additional tests are still needed, both in more
complex topologies as well as non-virtualized environments. The latter is taken
care of by Ansgar Taflinkski, who is currently deploying and testing the new
code on OpenWRT-based hardware as part of his bachelor thesis [28].

Unfortunately, the reduced codebase makes testing a lot harder compared to
the previous XTPeer-based approach. While simple tests have been carried out
successfully using the methods described in section 7, there is currently no easy
way to test arbitrarily complex topologies. This is mainly due to the fact that
creating a counting-to-infinity situation without any global knowledge is a tricky
challenge and should be the focus of subsequent research.

Another regression from the previous testing environment is the absence of a
graphical user interface. Maybe parts of the XTPeer desktop application can
be used as a base for a possible future replacement which would not rely on the
client/server architecture anymore.

47

Finally, there are various problems with the UML system used by VNUML and
thus being part of our test environment. The current performace regression
and uncertain future of UML are explained in appendix A. Because of this,
Christopher Israel has started to explore [11] alternatives to UML. His work
could lead to a replacement of VNUML based on on Qemu25.

10.2 Future of RMTI

As the basic concept behind RMTI is not bound to the RIP protocol, it should
be easy to adapt to other disctance-vector protocols. Quagga already ships a
working IPv6 implementation of RIP called RIPng, so adding RMTI support
to this could be a future project for example.

In the past, one of the design goals was keeping RMTI compatible to ordinary
RIP implementations. The advantage is that modified routers can be deployed
together with unmodified RIP routers in the same network in this approach.
However, it also limits the amount of possible improvements which could be
implemented otherwise. To be fair, compatibility with RIP is already lost as
soon as a higher infinity metric is being used, so the theoretic compatibility may
not be such a big factor in reality.

At this point, RMTI in its legacy-compatible form is considered to be feature
complete. Future research is open to more drastic changes to the protocol.

One of the current experiments is to replace the use of timed updates with
neighbor-keepalife messages similar to the HELLO messages in OSPF, as de-
scribed in the paper [14] by Milad Khojasteh. This approach has the potential
to greatly decrease update traffic while solving many of the timing-related RIP
problems at the same time.

Another project aims to add support for filtering policies to RMTI. Andreas
Brandt is currently laying the groundwork for such an extension.

25QEMU project - http://www.qemu.org/

48

http://www.qemu.org/

A User mode linux performance regression

At some point during the testing phase, the performance of the test environ-
ment regressed noticeably. The VNUML script did no longer manage to bring
up the virtual machines within the given default timeout period of one minute.
Shortly after that, other students reported the same problem, independent of
the Linux distribution being used. After testing various system components I
was able to identify the host kernel as the cause of the problem.

To narrow down the regression range and to find the newest working kernel,
I ran the following simple test (measuring the time to boot and directly shut
down one virtual machine) in about 20 host kernel versions:

time ./linux-2.6.18.1-bb2-xt-4m ubda=root_fs_tutorial-0.5.2 mem=64M

The test was run at least tree times on each host kernel in order to get a
representative average value. Figure 12 shows only a selection of the most
interesting kernels.

 20

 40

 60

 80

 100

 120

 140

 160

2.6.31.12 2.6.32.3 2.6.32.6 2.6.32.12 2.6.33.1 2.6.33.3 2.6.33.5

T
im

e
R

eq
ui

re
d

T
o

B
oo

t O
ne

 V
M

Linux Kernel Version

Figure 12: Performance of different host kernel versions

The graph shows that booting a single virtual machine normally only takes
about 23 seconds on the given hardware as demonstrated by the 2.6.31.12 kernel.
With kernel 2.6.32.x, it suddenly takes about 70 seconds. The spike shown for
2.6.33.1 can be explained by the fact that the kernel in question used a debug
configuration, which seems to be a hard hit to performance itself. As debugging
has been turned off after that, the 2.6.33.3 kernel performs similar to 2.6.32.x
again. The latest kernels in Fedora 13 (2.6.33.5 as of now) takes 51 seconds to
complete the test. While this is a slight improvement, it still requires more than
twice the time compared to the 2.6.31.x kernels. This means the regression is
not fully fixed.

A.1 Workarounds

For now, the only real workaround seems to be keeping an older kernel. This
basicly means sticking with an older distribution release or manually down-
grading the kernel package on a newer distribution. The exact steps vary from

49

distribution to distribution. For the Fedora distribution, the following options
exist:

Fedora 11
is the last release that works correctly even after installing all updates.
Note that this release has already reached its end of life, meaning it is no
longer supported and may not even be available for download anymore.

Fedora 12
installs a fast 2.6.31.x kernel initially but delivers a slow 2.6.32.x kernel via
updates. On a new installation, you can prevent this from happening by
adding the line exclude=kernel* to the [main] section in /etc/yum.conf.
Similar to the previous release, Fedora 12 is reaching end of life at the
end of 2010 already.

Fedora 13
does no longer provide a fast 2.6.31.x kernel itself but you can use pack-
ages like 2.6.31.12-174.2.3.fc1226 from Fedora 12. After downloading and
installing this kernel using the command listed below, do the same modi-
fication to /etc/yum.conf as described for Fedora 12.

rpm -ihv --oldpackage kernel-2.6.31.12-174.2.22.fc12.*

Fedora 14
was released on november 2, 2010 and has not yet been tested. The
workaround listed for Fedora 13 is likely to work for this release, too.

A.2 Future

I reported27 the problem on Red Hat Bugzilla but there has not been any re-
sponse yet.

Trying to get in touch with the UML maintainer Jeff Dike, I found one of his
mailing list posts [6] from early 2010:

”TBH, I haven’t done any real work in UML in the last year or so.
The world has pretty much passed UML by, and it’s beyond my
capabilities and time to catch up and keep up.”

Since then, nobody has stepped up to take over maintainership. Generally, the
interest in UML seems to be very low right now because everyone is focussing on
newer virtualization solutions like KVM28. Unfortunately, this puts the future
of UML into question and could necessitate large changes to the current test
environment sooner or later.

26latest 2.6.31 kernel: http://koji.fedoraproject.org/koji/buildinfo?buildID=151789
27Red Hat bug #585913: https://bugzilla.redhat.com/show_bug.cgi?id=585913
28KVM = Linux Kernel-based Virtual Machine - http://www.linux-kvm.org/

50

http://koji.fedoraproject.org/koji/buildinfo?buildID=151789
https://bugzilla.redhat.com/show_bug.cgi?id=585913
http://www.linux-kvm.org/

B Gitorious

The following section aims to describe the special layout of the RMTI Git repos-
itory and helps setting up local clones to work with. Further notes on this topic
can be found on the RMTI project wiki29.

The RMTI project is special because it basicly exists as a long-term fork of
the Quagga project. The goal was to develop RMTI independantly but still
being able to track changes to the Quagga repository in order to benefit from
their improvements and fixes. Ultimately, these requirements led to the setup
shown in figure 13, which illustrates the interactions between the three separate
repositories.

Upstream
Quagga Local

UniKo
Gitorious

master branch
including the
release tags

 q_0_99_9 > r_0_99_9

 q_0_99_16 > r_0_99_16

 q_1_0_0 > r_1_0_0

quagga_0_99_9_release
...

master

master = latest
 quagga release

r_0_99_9

r_0_99_16

r_1_0_0

remote
"upstream"

remote
"uni"

remote
"uni"

Figure 13: Interaction between the Git repositories

Upstream
The official Quagga Git repository always provides the latest Quagga
source code. Releases are tagged with a special string. For example,
the 0.99.6 release can be accessed using the quagga 0 99 9 release tag.

Local
A local Git repository including a mirror of the Quagga master branch as
well as one or more RMTI branches. Each RMTI developer has his own
local repository. Direct collaboration between local repositories is possible
but not required.

29RMTI project - http://git.uni-koblenz.de/rmti/pages/Home

51

http://git.uni-koblenz.de/rmti/pages/Home

Uni
A central Git repository (similar to a Subversion server) which includes a
mirror of the Quagga master branch as well as all (current, previous and
experimental) RMTI branches. It is hosted on Gitorious30, our web portal
for managing Git projects.

For work on RMTI, only interaction with the Local and Uni repositories is
mandatory.

B.1 Read access (pull)

Getting a copy of the latest RMTI sources just requires a few steps:

$ git clone git://git.uni-koblenz.de/rmti/rmti.git && cd rmti
$ git remote rename origin uni

Initially, this will clone the master branch only. As described above, this branch
is just a mirror of the Quagga master branch. To get the actual RMTI code,
first run git branch -r to get a list of all remote branches. Assuming the
latest branch is r 0 99 16, run the following command to check it out:

$ git checkout -tb r_0_99_16 uni/r_0_99_16

B.2 Write access (push)

After the initial checkout, all you can do is pull new changes from the server. To
be able to push your own changes, you first need to register31 a new account on
the Gitorious portal and also upload your SSH key (Your dashboard ⇒ Manage
SSH keys). Then you can apply for membership in the RMTI group. Once
these steps are taken, edit the repository URL as follows:

$ git remote set-url uni git@git.uni-koblenz.de:rmti/rmti.git

You can now push you own branches using the git push uni command.

B.3 Upstream integration

If you need to update the master branch to a newer Quagga release, integration
of the upstream repository is required. Execute the following sequence:

$ git remote add upstream git://code.quagga.net/quagga.git
$ sed -i ’s/remote = uni/remote = upstream/’ .git/config
$ git pull

This will fetch the newest changes of the remote branch and merge them locally.
It will also update the list of release tags. To bring the master branch on
Gitorious up-to-date, use the git push uni master command.

30Gitorious - http://gitorious.org/gitorious/
31Register a new account on Gitorious on https://git.uni-koblenz.de/users/new

52

http://gitorious.org/gitorious/
https://git.uni-koblenz.de/users/new

C Basic Git usage

This appendix is meant to be a short reference for the Git version control system.

For anyone who has never worked with a distributed version control system
before, it is highly adviced to read at least the first three chapters of the official
documentation, the Git Community Book [5].

Getting information

git status show status of the current tree
git log show the commit log
git log –oneline show a summary of the commit log

Committing changes

git add file add given file to the commit list
git add . add all files to the commit list
git commit commit staged changes
git commit -m message commit stages changes with given commit message

Undoing changes

git reset --hard HEAD reset current branch to the last commit
git reset --hard HEADˆ reset current branch to last commit next to last
git reset --hard HEAD˜n reset current branch to state before n commits
git reset --hard commit reset current branch to given commit

Working with branches

git branch show list of local branches
git branch -r show list of remote branches
git branch -a show list of local and remote branches
git checkout branch change to given branch
git checkout -b branch fork current branch to the given name
git merge branch merge given branch into current
git rebase -i branch rebase interactively on given branch

Working with remotes

git pull merge changes from configured remote
git push merge changes into configured remote

Rebasing (see appendix D for more information)

git rebase -i branch rebase current tree on given branch
git rebase --continue continue rebase after conflict resolution
git rebase --abort abort current rebase and revert tree to previous state

53

C.1 Graphical Git tools

Some users will be pleased to know that beside the command line tool, various
graphical alternatives exist. Tools with a graphical user interface are especially
useful to visualize a Git repository, showing individual commits and elements
like branches. This can be very helpful when learning Git.

The first of these tools was gitk. Being written in tcl/tk, it looks a bit dated on
a modern desktop. However, it still offers the largest amount of features.

Figure 14: Screenshot of gitk

In the meantime a few more userfriendly tools such as gitg32 and Giggle33 have
been released.

Figure 15: Screenshot of gitg Figure 15: Screenshot of giggle

Many IDEs like Eclipse also provide direct access to Git repositories using a
plugin34.

32gitg - http://trac.novowork.com/gitg/
33Giggle - http://live.gnome.org/giggle/
34Eclipse Team provider for Git - http://www.eclipse.org/egit/

54

http://trac.novowork.com/gitg/
http://live.gnome.org/giggle/
http://www.eclipse.org/egit/

D Rebasing with Git

This appendix consists of a short guide which describes the process of rebasing
the RMTI source code on a newer Quagga release. Notes on this topic can also
be found on the RMTI project wiki35.

Rebasing can be seen as the process of applying local changes of a forked project
to a newer version of the original code. To clarify, imagine the following example:

Some upstream project containing the following series of commits:

7b7bd - a9e97 - 3e476

After forking the project, we add three new commits:

7b7bd - a9e97 - 3e476 - 904cd - b6a8f - 0603e

In the meantime, the upstream project itself has added three new commits to
their repository as well:

7b7bd - a9e97 - 3e476 - a2ba3 - 46e84 - e6e98

A rebase now does the following:

1. save the local changes since the fork

2. revert history to the last common commit

3. pull in all the new upstream commits to a specified point

4. re-apply the saved local changes

Eventually, the result should be:

7b7bd - a9e97 - 3e476 - a2ba3 - 46e84 - e6e98 - dc409 - f8a6b - e3060

Note that the commit IDs of the re-applied commits have changed from 904cd-
b6a8f-0603e to dc409-f8a6b-e3060. In other words: the rebase operation has
changed history of the forked project. This is an important detail because it
has the potential to cause some bad headaches. Basicly, everything is fine if the
rebase is only used on a private working branch. As soon as the branch is public,
a rebase should not be done anymore. Doing it anyway will cause problems for
those who have branched from the repository because the common history (as
expressed by the commit IDs) will be gone.

This is part of the reason for our special repository layout, described in appendix
B. To prevent inconsistencies in the commit history, we create a branch for every
base release and only rebase into these new branches.

35RMTI project - http://git.uni-koblenz.de/rmti/pages/Home

55

http://git.uni-koblenz.de/rmti/pages/Home

D.1 Rebase to a newer Quagga release

First, make sure that you have set up your Git repository as described in ap-
pendix B as we will need the integration of the upstream repository. The ex-
ample shows a rebase from any previous version to the 0.99.16 release.

At first, look for the name (called tag) of the version you want to rebase to:

$ git tag

You will find the tag quagga 0 99 16 release. Check it out as a branch, then
create and switch to a fresh RMTI branch which reflects the version of the target
release:

$ git checkout -b r_0_99_16
$ git checkout quagga_0_99_16_release -b q_0_99_16
$ git checkout r_0_99_16

Finally, start the rebase operation:

$ git rebase -i q_0_99_16

In many cases, the rebase will finish successfully without any additional user
input. In other cases, manual conflict resolution may be needed.

D.2 Conflict resolution

If Git is unable to resolve conflicts itself, it will stop the rebase process and ask
for your help. In practice, this will only be the case if both branches include
changes to the same line somewhere.

To find the files which need fixing, run git status and look for Changed but
not updated. Open the files listed here one after another and look for the conflict
marker ”<<<<<”. Below the marker, you will see the upstream version of the
code followed by your own version of the code. Either decide to go with one of
those versions or add an entirely new piece of code. Look for additional conflicts
inside the file and fix them using the same method. Save the file and git add
it to the index.

After all conflict markers have been removed, continue the rebase process:

$ git rebase --continue

Alternatively, you can also abort the process at any point. The local repository
will be reverted to the state before the rebase was started:

$ git rebase --abort

Finally, there are two useful aliases from [20] which can be used to automate the
conflict resolution process a bit. Just put the following lines into˜/.gitconfig :

[alias]
fix-unmerged = "!f() { git ls-files --unmerged | cut -f2 | sort -u ; }; vim ‘f‘"
add-unmerged = "!f() { git ls-files --unmerged | cut -f2 | sort -u ; }; git add ‘f‘"

56

E Quagga coding style

The Quagga project asks to use a special coding style for all new contributions.
They describe it as ”GNU style with tabs set to two spaces”. What does this
mean exactly and how should it be used it in practice?

E.1 Tabs versus spaces

Most importantly, everyone working on Quagga (including RMTI) should con-
figure their editor to insert two space characters instead of a tab character. This
simple convention ensures that the code will have the same basic look at differ-
ent places, thus improving readability. In case of the Vim36 editor, this can be
achived by setting the options in configuration file ˜/.vimrc as shown in listing
14.

s e t tabstop=2
s e t sh i f tw id th=2
s e t expandtab

Listing 14: vimrc

Graphical editors often expose these settings in a preferences window. Devel-
opment environments like Eclipse37 or Emacs38 have similar options. The man
pages usually offer all the information needed.

E.2 GNU coding style

The GNU coding style is described in detail by [21]. A slightly digested guide
can also be found in [30]. Please refer to these sources for in-depth information,
the following is just a practical example showing the basics.

1 static int
2 do_it (int pa, int ra, int me , int ter)
3 {
4 int num = num + 1;
5

6 /* a comment */
7 if (! exp)
8 {
9 ...

10 }
11 else
12 {
13 ...
14 }
15

16 return 0;
17 }

Listing 15: Example of the GNU coding style

36Vim editor - http://www.vim.org/
37Eclipse IDE - http://www.eclipse.org/
38GNU Emacs - http://www.gnu.org/software/emacs/

57

http://www.vim.org/
http://www.eclipse.org/
http://www.gnu.org/software/emacs/

To sum up the most important parts shown in listing 15:

� function type and return value go to a separate line (see lines 1 and 2)

� one blank between operators (see line 4)

� comments go to a separate line, not the line ending (see line 6)

� opening brackets go to a separate line (see line 8)

� all blocks except the top level blocks get indented by two spaces for
opening and closing brackets (compare line 3 to line 8)

E.3 Automatic code formatting

To automatically apply the correct coding style to an existing C source file, use
the GNU tool indent like this:

$ indent -nut <file>

This command has been used on the file rip mti.c as well as all the RMTI-
specific code in other files. Note that none of the Quagga code was reformatted
in order to minimize the differences and not jeopardize future rebase operations.

58

F Quagga coding introduction and examples

This appendix features a series of small examples showing the basic implemen-
tation of various functionality within Quagga. It is targeting people not yet
familiar with the codebase. All given line numbers are subject to change be-
tween releases but should still give a basic idea.

F.1 Debug output

At times it can be very helpful to have some additional debug output in the
logfile. Thankfully, the Quagga framework has a very easy way to do this:

zlog_debug ("My debug message");

Calls of the zlog debug function will result in a new line being added to the
respective log file. In the case of ripd, the file is called ripd.log by default.

It has proven useful to prefix the actual debug message with a short but easy to
recognize pattern like XXX. This allows using the grep command to minimize
the log file by filtering out other messages:

$ cat ripd.log | grep ’XXX’

F.2 Implementing new command line options

All Quagga daemons support parsing information given by command line op-
tions during startup. New options for ripd can be added in rip main.c. The
following example adds the flag -t, which just prints a line of text. Other func-
tions can be invoked just as easily.

Around line 52, add a line describing the new flag to the longopts array:

{ "test", no_argument, NULL, ’t’ },

The first attribute is the name of the option, wrapped in double quotes. The
second attribute determines if the specified command line option requires an
argument (required argument) or not (no argument). The final attribute is a
short notation. Further down in the file, around line 49, static void usage
contains the description of the command line options:

-t, --test Test option\n\

To actually parse the new flag, it needs to be added to getopt long, which can
be found around line 210. For options that require arguments, a colon needs to
be added behind the short name:

opt = getopt_long (argc, argv, "df:i:hA:P:u:g:rvC:t", longopts, 0);

Finally, the actual functionality is called inside a switch statement. Add the
new code in a new case around line 250:

59

1 case ’t’:
2 printf ("Test\n");
3 exit (0);
4 break;

Listing 16: New command line option, case statement

It is important to note that the RIP data structures cannot be accessed here
because they do not exist at this point. In order to use a command line option
to set RIP values, a temporary global variable has to be created and used
during initialization. Alternatively, consider using configuration file commands
as shown below in such a case.

F.3 Implementing new commands

All Quagga daemons support a number of commands which can either be used
as part of the configuration file or using Telnet/VTYSH. New commands to
control ripd can be added in ripd.c. The following example adds the command
test which just prints a line of text. Other functions can be invoked just as easily.

All commands need to be implemented as DEFUN (define function) macros.
For the example command, just add:

1 DEFUN (test ,
2 test_cmd ,
3 "test",
4 "Description of test command\n")
5 {
6 vty_out (vty , "Test", VTY_NEWLINE);
7 return CMD_SUCCESS;
8 }

Listing 17: New command, DEFUN

The DEFUN macro includes the name and a command alias, followed by help
text and the actual implementation of the command.

To make the command available in Quagga, look for the comment /* Install
rip commands */ in rip init (void) and add the command to the VIEW and
ENABLE nodes:

install_element (VIEW_NODE, &test_cmd);
install_element (ENABLE_NODE, &test_cmd);

The nodes concept of Quagga is described in section 4.1.

F.4 Further information

For in-depth information about the internals of Quagga, the Zebra Hacking
How-To [29] from 2001 is still a very good resource. While being based on
Zebra release 0.91, most parts are still valid for Quagga. The howt-to covers
topics like the Zebra thread model, hashing and modifying the routing table.

60

G Creating packages for Linux systems

In order to make RMTI available to a broad audience, binary packages for some
popular Linux distributions like Ubuntu39 and Fedora40 are offered for down-
load on the RMTI webpage.

The Quagga packages already shipping with most distributions serve as a good
starting point for creating RMTI packages. This appendix briefly describes how
these packages can be adapted for RMTI.

Regardless of the target distribution, the first step is creating a clean tape
archive containing the modified Quagga codebase. From the RMTI source di-
rectory, run:

$ autoreconf -i
$./configure --prefix=/usr
$ make dist

A distributable source archive called quagga-x.y.z.tar.gz can now be found in
the root of the source tree.

Note that the following sections require you to have access to a system running
Ubuntu or Fedora, respectively. If no such system is available, a Live CD will
work just as well. It is even possible to boot the Live CD images using a virtual
machine hypervisor like KVM41:

$ qemu-img create swap.img 2G
$ mkswap swap.img
$ qemu-kvm -m 1024 -usbdevice tablet --cdrom live.iso -hda swap.img

G.1 Package for Ubuntu and Debian systems

The Debian package has been built on a virtual machine running a Ubuntu
10.04 LTS system and should also work on newer releases as well as the latest
Debian testing distribution.

$ sudo apt-get build-dep quagga
$ apt-get source --download-only quagga

You should now find a tarball containing the original source code (*.orig.tar.gz),
a description file (*.dsc) as well as a patch file (*.diff.gz) containing the Debian
build system and Debian-specific patches in the current directory. To proceed,
you only need the last-mentioned item in addition to a tarball containing the
RMTI sources.

In this example, apt-get deliverd the sources for Quagga 0.99.15 while the
RMTI version is based on Quagga 0.99.16. In such a case, the debian build
directory needs to be moved to the correct destination first:

39Ubuntu - http://www.ubuntu.com/
40Fedora - http://www.fedoraproject.org/
41KVM = Linux Kernel-based Virtual Machine - http://www.linux-kvm.org/

61

http://www.ubuntu.com/
http://www.fedoraproject.org/
http://www.linux-kvm.org/

$ tar -xvzf rmti-0.99.16.tar.gz
$ zcat *diff.gz | patch -p0
$ mv quagga-0.99.15/debian quagga-0.99.16/
$ rm *dsc *gz quagga-0.99.15
$ cd quagga-0.99.16

Note that apt-get will most likely download outdated or unwanted patches.
Those can now be removed from debian/patches/ and debian/patches/00list,
respectively.

In any case, add a new entry matching the version of the RMTI tarball to
debian/changelog. The version string is followed by a dash and an epoch after
which ’rmti’ can be added to mark the build as RMTI-enabled. The entry
should look similar to this:

quagga (0.99.16−1 rmti) s t a b l e ; urgency=high

* New upstream r e l e a s e
* RMTI

−− Michael Monreal <monreal@uni−koblenz . de> Wed, 28 Jul 2010 ←↩
10 : 45 : 25 +0200

Listing 18: ChangeLog entry for the Debian package

Now the package build process can be started:

$ CFLAGS="-g -O2 -std=c99" dpkg-buildpackage -rfakeroot -b

The package can be found in the parent directory as soon as the build process
has completed successfully.

If the build fails on quagga.pdf, take out the references to that file from de-
bian/rules and debian/quagga-doc.docs and retry.

G.2 Package for Fedora and Red Hat systems

The RPM package has been built on a virtual machine running a Fedora 13
system. It should run on newer releases and may also run on certain versions
of Red Hat Enterprise Linux or CentOS.

First make sure that all dependancy packages are installed and set up the envi-
ronment for RPM development. This can be achieved by running the following
sequence of commands:

$ su
yum groupinstall development-tools
yum install rpmdevtools yum-utils
yum-builddep quagga
$ rpmdev-setuptree

This will create the directory rpmbuild/ containing the RPM setup tree inside
your home directory.

62

Now you need to get some files from the Fedora package Git repository42. You
have the choice to take these files from the latest release (currently this is the
f13/master branch) or a newer version from the testing distribution (currently
this is the f14/master branch).

First get the quagga-filter-perl-requires.sh script as well as any patches you want
to include and put them into rpmbuild/SOURCES/. Put the RMTI source tar-
ball here as well.

The package specification file quagga.spec is needed in rpmbuild/SPECS/. Make
sure the version tag matches the version of your tarball. Append ’rmti’ to the
release tag in front of %{?dist}, then comment out any patches you do not want
to include and add -std=c99 to the line containing the CFLAGS. Finally, add
a ChangeLog entry at the bottom similar to this:

* Wed Jul 28 2010 Michael Monreal <monreal@uni−koblenz . de> − ←↩
0.99.16−0 rmti

− New upstream r e l e a s e
− RMTI

Listing 19: ChangeLog entry for the RPM package

Now the package build process can be started:

$ cd ~/rpmbuild/SPECS/
$ rpmbuild --bb --clean quagga.spec

The package can be found in rpmbuild/RPMS/ as soon as the build process has
completed successfully.

42http://pkgs.fedoraproject.org/gitweb/?p=quagga.git;a=summary

63

http://pkgs.fedoraproject.org/gitweb/?p=quagga.git;a=summary

H Patch: RMTI support for Zimulator

Marcel Jacob originally designed his Zimulator tool for RIP only. Because of
this, the class handling RIP packets had the infinity value hardcoded to 16.
While RMTI uses the same packet format, it commonly uses a higher infinity
metric like 64. In order to allow Zimulator to work with RMTI regardless, I
added a way to set the correct metric using the command line switch -I.

Index: zimulator.pl
===
--- zimulator.pl (revision 72)
+++ zimulator.pl (working copy)
@@ -126,6 +126,7 @@
$verboseUsageString .= " -T : Only take Packets [...]
$verboseUsageString .= " -F : Only take Packets [...]
$verboseUsageString .= " -i : Generates image of graph and ←↩

writes it to png file.\n\n";
+$verboseUsageString .= " -I inf_metric : Assume the provided value as ←↩

infinity (for RMTI).\n\n";

$verboseUsageString .= "Topology Types:\n---------------\n";
$verboseUsageString .= "When generating topologys there are the following ←↩

types available :\n\n";
@@ -215,7 +216,7 @@

get options with Getopt module
#getopts(’s:Sr:aPzxg:CHVhAvc:o:fTF ’, \%opts);

-getopts(’s:Sr:azxg:CHVhAvc:o:fTFi ’, \%opts);
+getopts(’s:Sr:azxg:CHVhAvc:o:fTFiI:’, \%opts);

prepare all given files that are not catched by getopts
TODO: rueckgabewert fuer jede datei pruefen. wenn 0 => nicht hinzufuegen

@@ -247,6 +248 ,11 @@
my $configuration = Configuration :: instance ();
$configuration ->setOption (" VERBOSE",$opts{"v"});
$configuration ->setOption (" OUTPUT_FILENAME",$opts{"o"});

+if($opts{"I"}){
+ $configuration ->setOption (" INFINITY_METRIC",$opts{"I"});
+} else {
+ $configuration ->setOption (" INFINITY_METRIC ",16);
+}
my $verbose = $opts{"v"};
if($opts{"i"} and ($opts{"g"} or $opts{"z"})){

$configuration ->setOption (" CREATEGRAPHIMAGE ",1);
Index: modules/RIPParser.pm
===
--- modules/RIPParser.pm (revision 72)
+++ modules/RIPParser.pm (working copy)
@@ -317,6 +317,7 @@

my $timeoutTime = $config ->getOption (" TIMEOUT_TIMER ") *1000000;
my $garbageTime = $config ->getOption (" GARBAGE_TIMER ") *1000000;

print "timeout: $timeoutTime , garbage: $garbageTime\n";
+ my $infMetric = $config ->getOption (" INFINITY_METRIC ");

foreach my $packet (@packets) {
my $router = $packet ->getRouter ();

@@ -331,7 +332,7 @@
my ($routerNumber) = $r =~ m/^r([0 -9]+)/;
next if $router =~ /10\.0\.[0 -9]+\. $routerNumber /;

- my ($oldMetric ,$oldRouter ,$oldTime) = (16,"" ,0);
+ my ($oldMetric ,$oldRouter ,$oldTime) = ($infMetric ,"" ,0);

($oldMetric , $oldRouter , $oldTime) = @{$routerTables[←↩
$routerNumber]->{$netIP }} if ref $routerTables[←↩
$routerNumber]->{$netIP };

die "not defined oldmetric" unless defined $oldMetric;
die "not defined oldrouter" unless defined $oldRouter;

Listing 20: RIP infinity patch for RMTI in Zimulator

64

I Patch: Counting-to-infinity generator

diff --git a/ripd/ripd.c b/ripd/ripd.c
index cdbf892 .. fd30b5f 100644
--- a/ripd/ripd.c
+++ b/ripd/ripd.c
@@ -60,6 +60,16 @@ struct route_table *rip_neighbor_table;
/* RIP route changes. */
long rip_global_route_changes = 0;

+#ifdef ROUTE_MANIPULATION
+int cti_route_manipulation = 0;
+
+char cti_incoming_eth [6] = "eth1";
+char cti_blocking_eth [6] = "eth2";
+
+int cti_incoming_idx = 0;
+int cti_blocking_idx = 0;
+#endif /* ROUTE_MANIPULATION */
+
/* RIP queries. */
long rip_global_queries = 0;

@@ -208,6 +218 ,20 @@ rip_timeout (struct thread *t)
rinfo ->metric = rip ->infinity_metric;
rinfo ->flags &= ~RIP_RTF_FIB;

+#ifdef ROUTE_MANIPULATION
+ if (cti_route_manipulation)
+ {
+ unsigned int cti_ifindex = ifname2ifindex (cti_incoming_eth);
+
+ if (!rinfo ->cti_flag
+ && rinfo ->ifindex == cti_ifindex)
+ {
+ rinfo ->cti_flag = 1;
+ zlog_debug ("CTI (timeout): set cti_flag =%d", rinfo ->cti_flag);
+ }
+ }
+#endif /* ROUTE_MANIPULATION */
+

/* - The route change flag is to indicate that this entry has been
changed. */

rinfo ->flags |= RIP_RTF_CHANGED;
@@ -535,6 +559 ,41 @@ rip_rte_process (struct rte *rte , struct sockaddr_in *←↩

from ,

if (rinfo)
{

+#ifdef ROUTE_MANIPULATION
+ if (cti_route_manipulation)
+ {
+ unsigned int cti_ifindex = ifname2ifindex (cti_incoming_eth);
+
+ zlog_debug ("CTI (rte): if=%d/%d/%d m=%d c_f=%d",
+ ifp ->ifindex , cti_ifindex , rinfo ->ifindex ,
+ rte ->metric , rinfo ->cti_flag);
+
+ /* Set flag if all interfaces match and metric is infinity. */
+ if (!rinfo ->cti_flag
+ && ifp ->ifindex == cti_ifindex && ifp ->ifindex == rinfo ->←↩

ifindex
+ && rte ->metric >= rip ->infinity_metric)
+ {
+ rinfo ->cti_flag = 1;
+ zlog_debug ("CTI (rte): set cti_flag =%d", rinfo ->cti_flag);
+ }
+
+ /* Clear flag if route information did not arrive over the CTI ’s
+ incoming interface and it has a new learned -from address. */
+ if (rinfo ->cti_flag
+ && !IPV4_ADDR_SAME (&rinfo ->from , &from ->sin_addr)

65

+ && ifp ->ifindex != cti_ifindex)
+ {
+ rinfo ->cti_flag = 0;
+ zlog_debug ("CTI (rte): set cti_flag =%d", rinfo ->cti_flag);
+
+ /* Turn off CTI generator. */
+ cti_route_manipulation = 0;
+ zlog_debug ("CTI (rte): set cti_route_manipulation =%d",
+ cti_route_manipulation);
+ }
+ }
+#endif /* ROUTE_MANIPULATION */
+

/* Local static route. */
if (rinfo ->type == ZEBRA_ROUTE_RIP

&& ((rinfo ->sub_type == RIP_ROUTE_STATIC) ||
@@ -2401,6 +2460 ,13 @@ rip_output_process (struct connected *ifc , struct ←↩

sockaddr_in *to,
subnetted = 1;

}

+#ifdef ROUTE_MANIPULATION
+ unsigned int cti_ifindex;
+
+ if (cti_route_manipulation)
+ cti_ifindex = ifname2ifindex (cti_blocking_eth);
+#endif /* ROUTE_MANIPULATION */
+

for (rp = route_top (rip ->table); rp; rp = route_next (rp))
if ((rinfo = rp->info) != NULL)

{
@@ -2408,6 +2474 ,17 @@ rip_output_process (struct connected *ifc , struct ←↩

sockaddr_in *to,
/* that have the same mask as the output "interface ". For other ←↩

*/
/* networks , only the classfull version is output. ←↩

*/

+#ifdef ROUTE_MANIPULATION
+ if (cti_route_manipulation
+ && rinfo ->cti_flag
+ && ifc ->ifp ->ifindex == cti_ifindex
+ && rinfo ->metric >= rip ->infinity_metric)
+ {
+ zlog_debug ("CTI (output): inhibiting update ");
+ continue;
+ }
+#endif /* ROUTE_MANIPULATION */
+

if (version == RIPv1)
{

p = (struct prefix_ipv4 *) &rp->p;
@@ -3588,6 +3665 ,42 @@ DEFUN (no_rip_distance_source_access_list ,

rip_distance_unset (vty , argv[0], argv[1], argv [2]);
return CMD_SUCCESS;

}
+
+#ifdef ROUTE_MANIPULATION
+DEFUN (rip_cti ,
+ rip_cti_cmd ,
+ "cti <0-255> <0-255>",
+ NO_STR
+ "Interface over which the CTI route comes in\n"
+ "Number of the eth interface\n"
+ "Interface over which the CTI route should be blocked\n"
+ "Number of the eth interface\n")
+{
+ cti_incoming_idx = atoi (argv [0]);
+ cti_blocking_idx = atoi (argv [1]);
+
+ memset(cti_incoming_eth , 0, strlen (cti_incoming_eth));
+ memset(cti_blocking_eth , 0, strlen (cti_blocking_eth));
+
+ sprintf (cti_incoming_eth , "eth%d", atoi (argv [0]));

66

+ sprintf (cti_blocking_eth , "eth%d", atoi (argv [1]));
+
+ cti_route_manipulation = 1;
+
+ return CMD_SUCCESS;
+}
+
+DEFUN (rip_no_cti ,
+ rip_no_cti_cmd ,
+ "no cti",
+ NO_STR
+ "no cti will be generated\n")
+{
+ cti_route_manipulation = 0;
+
+ return CMD_SUCCESS;
+}
+#endif /* ROUTE_MANIPULATION */

/* Print out routes update time. */
static void

@@ -3861,6 +3974 ,14 @@ config_write_rip (struct vty *vty)
VTY_NEWLINE);

}

+#ifdef ROUTE_MANIPULATION
+ if (cti_route_manipulation)
+ {
+ vty_out (vty , " cti %d %d%s",
+ cti_incoming_idx , cti_blocking_idx , VTY_NEWLINE);
+ }
+#endif /* ROUTE_MANIPULATION */
+

/* Redistribute configuration. */
config_write_rip_redistribute (vty , 1);

@@ -4412,6 +4533 ,10 @@ rip_init (void)
install_element (RIP_NODE , &no_rip_distance_source_access_list_cmd);
install_element (RIP_NODE , &rip_mti_cmd);
install_element (RIP_NODE , &rip_infinity_cmd);

+#ifdef ROUTE_MANIPULATION
+ install_element (RIP_NODE , &rip_cti_cmd);
+ install_element (RIP_NODE , &rip_no_cti_cmd);
+#endif /* ROUTE_MANIPULATION */

/* Debug related init. */
rip_debug_init ();

diff --git a/ripd/ripd.h b/ripd/ripd.h
index 74a443a ..1 ede950 100644
--- a/ripd/ripd.h
+++ b/ripd/ripd.h
@@ -22,6 +22,9 @@
#ifndef _ZEBRA_RIP_H
#define _ZEBRA_RIP_H

+/* CTI generator. */
+# define ROUTE_MANIPULATION 1
+
/* RIP version number. */
#define RIPv1 1
#define RIPv2 2

@@ -205,6 +208 ,11 @@ struct rip_info
u_int32_t metric;

+#ifdef ROUTE_MANIPULATION
+ /* Flag to control the occurrence of CTIs. */
+ int cti_flag;
+#endif /* ROUTE_MANIPULATION */
+

Listing 21: CTI generator patch

67

J Testomato bash script and scenario run files

1 #!/bin/bash
2 #
3 # Test -O-Mato: execute a series of automated test runs
4 #
5 # Usage examples:
6 # testomato -x y.xml
7 # testomato -x y.xml -n 10
8 # testomato -x y.xml -r y_104030.run -n 10
9 #

10

11 # settings
12 USER="monreal" # user owning the log files
13

14 # defaults
15 REPEAT="1" # default repeat count
16 HOSTFS="/mnt/hostfs" # hostfs directory on VMs
17 SMLTNS="/root/. vnuml/simulations"
18

19 # files needed on the VMs
20 BIN="bin/*"
21 CFG="etc/*"
22 HLP="helpers /*"
23

24 # commands
25 VNUML="vnumlparser.pl -v -u root"
26

27 # check for root user
28 if [‘whoami ‘ != "root"]; then
29 echo "Error: Please su to root first!"
30 exit 1
31 fi
32

33 # check for VNUML (and assume it is working)
34 if [-z ‘which vnumlparser.pl‘]; then
35 echo "Please install VNUML first!";
36 exit 1
37 fi
38

39 # command line options
40 while getopts ":x:r:n:" opt
41 do
42 case "$opt" in
43 "x")
44 XML=‘basename $OPTARG .xml ‘
45 ;;
46 "r")
47 RUN=‘basename $OPTARG .run ‘
48 ;;
49 "n")
50 REPEAT="$OPTARG"
51 ;;
52 "?")
53 echo "Error: unknown option $OPTARG"
54 ;;
55 ":")
56 echo "Error: no value given for option $OPTARG"
57 ;;
58 *)
59 echo "Error: unknown"
60 ;;
61 esac
62 done
63

64 if [-z "$RUN"]; then RUN="$XML"; fi
65 if [-z "$XML"]; then
66 echo "Usage: ${0##*/} -x xmlfile [-r runfile] [-n repeat count]"; exit 1;
67 fi
68

69 if [! -f "$XML".xml]; then echo "Error: $XML.xml not found!"; exit 1; fi
70 if [! -f "$RUN".run]; then echo "Error: $RUN.run not found!"; exit 1; fi

68

71

72 # check for old scenario files
73 if [-d $SMLTNS/$XML/]; then
74 if [-n "‘ls $SMLTNS/$XML/‘"]; then
75 echo "Error: Scenario $XML already created , please purge it first!"
76 echo -n "Press any key to purge or <ctrl >+<c> to quit: "; read c; echo
77 $VNUML -P $XML.xml
78 exit 0
79 fi
80 fi
81

82 # uml_mconsole requires .uml directory
83 if [! -d /root/.uml]; then
84 mkdir /root/.uml
85 fi
86

87 ###### VNUML ##
88

89 echo "[1] Starting scenario ..."
90 $VNUML -w 100 -t $XML.xml -Z >& /dev/null
91

92 echo "[2] Copying configs and scripts to the VMs ..."
93 for vm in $SMLTNS/$XML/vms /*;
94 do
95 # copy stuff
96 for f in $BIN $CFG $HLP; do
97 cp $f $vm/hostfs/
98 touch $vm/hostfs/ripd.log # initialize log file
99 done

100 # load firewall module
101 uml_mconsole ../.. $SMLTNS/$XML/vms/‘basename $vm ‘/run \
102 exec "modprobe iptable_filter" >& /dev/null
103 done
104

105 echo "[3] Starting daemons ..."
106 $VNUML -x start@$XML.xml >& /dev/null
107 $VNUML -x zebra@$XML.xml >& /dev/null
108 $VNUML -x rip@$XML.xml >& /dev/null
109

110

111 ###### FUNCTIONS ##
112 ## Helper scripts (see helpers/ directory) are used here beacause mconsole
113 ## does neither support quoted commands nor complex chains of commands
114 ## containing characters like ">" an "|". Also , there is no way to send
115 ## output back to the host. Originally , SSH had been used but it turned
116 ## out to be too slow.
117

118 runOn () {
119 uml_mconsole ../.. $SMLTNS/$XML/vms/$1/run \
120 exec "$2" >& /dev/null
121 }
122

123 pressKey () {
124 echo; echo -n "Press any key to start test: "; read c; echo
125 }
126

127 waitFor () {
128 echo "wait for $1 seconds"; sleep $1; echo
129 }
130

131 getRoute () {
132 if ["$1" != "host"]; then
133 OUT="$SMLTNS/$XML/vms/$1/hostfs/route.out"
134

135 runOn $1 "$HOSTFS/helper_route.sh $1 $2"
136

137 cat $OUT 2> /dev/null
138 while [$? == 1]; do
139 sleep .1
140 cat $OUT 2> /dev/null
141 done
142

143 rm $OUT
144

69

145 else # special case for ripd running on host system
146 ROUTE=‘vtysh -d ripd -c ’show ip rip ’ | grep $2‘
147 echo "h: $ROUTE"
148 fi
149 }
150

151 getMSILM () {
152 OUT="$SMLTNS/$XML/vms/$1/hostfs/msilm.out"
153

154 echo "$1:"; runOn $1 "$HOSTFS/helper_msilm.sh"
155

156 while [! -f $OUT]; do sleep .1; done
157 sleep 1; cat $OUT; echo; rm $OUT
158 }
159

160 getMRPM () {
161 OUT="$SMLTNS/$XML/vms/$1/hostfs/mrpm.out"
162

163 echo "$1:"; runOn $1 "$HOSTFS/helper_mrpm.sh"
164

165 while [! -f $OUT]; do sleep .1; done
166 sleep 1; cat $OUT; echo; rm $OUT
167 }
168

169 close () {
170 echo -n "close interface $2 on $1 and "
171 runOn $1 "iptables -A OUTPUT -o $2 -j DROP"
172 waitFor $3
173 }
174

175 open () {
176 echo -n "opening all interfaces on $1 and "
177 runOn $1 "iptables -F OUTPUT"
178 waitFor $2
179 }
180

181 nocti () {
182 echo
183 echo "Stopping CTI provokation ..."
184 runOn "$HOSTFS/helper_nocti.sh"
185 echo
186 }
187

188 reset () {
189 echo -n "Resetting scenario (restarting daemons)... "; echo
190

191 for vm in $SMLTNS/$XML/vms/*;
192 do
193 VM=‘basename $vm ‘
194 runOn $VM "ip route flush all"
195 done
196

197 $VNUML -x stop@$XML.xml >& /dev/null
198 $VNUML -x zebra@$XML.xml >& /dev/null
199 $VNUML -x rip@$XML.xml >& /dev/null
200 }
201

202 hold () {
203 echo -n "Finished. Press any key to shut down: "; read c
204 }
205

206 copyLogs () {
207 RIPLOGS="$DIR/$rep"
208

209 for vm in $SMLTNS/$XML/vms/*;
210 do
211 mkdir -p "$RIPLOGS"
212 mv $vm/hostfs/ripd.log "$RIPLOGS"/‘basename $vm ‘-ripd.log
213 touch $vm/hostfs/ripd.log
214 done
215 }
216

217

218 ##### SIMULATION ##

70

219

220 TIME=‘date +%Y%m%d-%H:%M‘
221 DIR="tests/$XML ($RUN) $TIME"
222 LOG="$DIR/test.log"
223 FIFO=".fifo"
224

225 mkdir "$DIR"
226

227 if [-e "$LOG"]; then rm "$LOG"; fi
228 if [! -e $FIFO]; then mkfifo $FIFO; fi
229

230 exec 3>&1 4>&2 # save fds for stdout (1->3) and stderr (2->4)
231 tee "$LOG" < $FIFO >&3 & # write $FIFO to $LOG and redirect stdio to 3
232 TEE_PID=$!
233 exec > $FIFO 2>&1 # redirect stdout to $FIFO and stderr to stdout
234

235 echo
236

237 # extract settings
238 RC=‘cat etc/ripd.conf | grep -v "\!"‘
239

240 I=‘cat etc/ripd.conf | grep -v "\!" | grep "infinity" | awk ’{ print $2 }’‘
241 M=‘cat etc/ripd.conf | grep -v "\!" | grep "mti" | awk ’{ print $2 }’‘
242 T=‘cat etc/ripd.conf | grep -v "\!" | grep "timers basic" | grep -v "\!"‘
243

244 UT=‘echo -e $T | awk ’{ print $3 }’‘
245 TT=‘echo -e $T | awk ’{ print $4 }’‘
246 GT=‘echo -e $T | awk ’{ print $5 }’‘
247

248 S=5
249 W=‘expr $UT + $UT / 2‘ # wait 1.5 times the update timer
250 D=‘expr $TT - $S - $S - $S‘ # timeout timer minus 3 sleep times
251

252 echo "Infinity: $I MTI: $M Timers: $UT / $TT / $GT"
253

254 # run simulation
255 for rep in ‘seq 1 $REPEAT ‘; do
256 echo; echo "=== $rep / $REPEAT ====================="; echo
257

258 source $RUN.run
259

260 if [$rep -lt $REPEAT]; then reset; fi
261 done
262

263 exec 1>&3 3>&- 2>&4 4>&- # restore the original fds for stdout and stderr
264 wait $TEE_PID; rm $FIFO
265

266 chown -R $USER:$USER "$DIR"
267

268

269 ###### QUIT ###
270

271 $VNUML -P $XML.xml >& /dev/null
272

273 # kill local daemons if running
274 if [-n "‘ps -e | grep ripd ‘"]; then killall ripd; fi
275 if [-n "‘ps -e | grep zebra ‘"]; then killall zebra; fi
276

277 # kill leftover UML processes
278 sleep 5
279 if [-n "‘ps -e | grep linux ‘"]; then killall linux; fi
280

281 exit 0

Listing 22: testomato.sh

71

Sample scenario files to be used with the CTI generator:

1 waitFor $W
2

3 close r5 eth1 $D
4

5 for i in ‘seq 7‘; do
6 getRoute r1 10.0.6.0; getRoute r2 10.0.6.0; getRoute r3 10.0.6.0; echo
7 sleep $S
8 done
9

10 open r5 0
11 copyLogs

Listing 23: Upsilon topology (y.run)

1 waitFor $W
2

3 close r5 eth1 $D
4

5 for i in ‘seq 7‘; do
6 getRoute r1 10.0.6.0; getRoute r2 10.0.6.0; getRoute r3 10.0.6.0; ←↩

getRoute r6 10.0.6.0; echo
7 sleep $S
8 done
9

10 open r5 0
11 copyLogs

Listing 24: Extended upsilon topology (y+.run)

1 waitFor $W
2

3 close r8 eth1 $D
4

5 for i in ‘seq 7‘; do
6 getRoute r1 10.0.9.0; getRoute r2 10.0.9.0; getRoute r3 10.0.9.0; ←↩

getRoute r4 10.0.9.0; getRoute r5 10.0.9.0; getRoute r6 10.0.9.0; ←↩
echo

7 sleep $S
8 done
9

10 open r8 0
11 copyLogs

Listing 25: Circle topology (c6.run)

72

Sample scenario files to be used without the CTI generator:

1 waitFor $W
2

3 close r5 eth1 $D
4

5 getRoute r1 10.0.6.0; getRoute r2 10.0.6.0; getRoute r3 10.0.6.0; echo
6

7 sleep $S
8

9 close r1 eth2 5
10

11 for i in ‘seq 2‘; do
12 getRoute r1 10.0.6.0; getRoute r2 10.0.6.0; getRoute r3 10.0.6.0
13 echo
14 sleep 7
15 done
16

17 open r1 5
18

19 for i in ‘seq 5‘; do
20 getRoute r1 10.0.6.0; getRoute r2 10.0.6.0; getRoute r3 10.0.6.0
21 echo
22 sleep 2
23 done
24

25 open r5 0
26 copyLogs

Listing 26: Upsilon topology for timers 10/40/30 (m-y 104030.run)

1 waitFor $W
2

3 getRoute r1 10.0.6.0
4 getRoute r2 10.0.6.0
5 getRoute r3 10.0.6.0
6 getRoute r5 10.0.6.0
7 echo
8

9 close r5 eth1 20 $D
10

11 getRoute r1 10.0.6.0; getRoute r2 10.0.6.0; getRoute r3 10.0.6.0; getRoute ←↩
r6 10.0.6.0; echo;

12

13 sleep $S
14

15 close r6 eth0 0; close r6 eth1 0
16 close r2 eth3 0
17 close r3 eth3 0
18

19 for i in ‘seq 2‘; do
20 getRoute r1 10.0.6.0; getRoute r2 10.0.6.0; getRoute r3 10.0.6.0; ←↩

getRoute r6 10.0.6.0; echo
21 sleep 7
22 done
23

24 open r6 0
25 open r2 0
26 open r3 1
27

28 for i in ‘seq 5‘; do
29 getRoute r1 10.0.6.0; getRoute r2 10.0.6.0; getRoute r3 10.0.6.0; ←↩

getRoute r6 10.0.6.0; echo
30 sleep 2
31 done
32

33 open r5 0
34 copyLogs

Listing 27: Extended upsilon topology for timers 10/40/30 (m-y+ 104030.run)

73

Listing

1 Sample of a zebra.conf file . 17
2 Sample of a ripd.conf file . 17
3 Structure of the Quagga source code 18
4 Files inside the ripd directory . 19
5 MRPM Table . 25
6 MSILM Table . 26
7 Adaption of the garbage collection timer 28
8 Adaption of the execution time 28
9 Testomato output showing a CTI 33
10 Testomato output showing no CTI (shortened) 34
11 CTI patch, part 1 . 35
12 CTI patch, part 2 . 35
13 CTI patch, part 3 . 36
14 vimrc . 57
15 Example of the GNU coding style 57
16 New command line option, case statement 60
17 New command, DEFUN . 60
18 ChangeLog entry for the Debian package 62
19 ChangeLog entry for the RPM package 63
20 RIP infinity patch for RMTI in Zimulator 64
21 CTI generator patch . 65
22 testomato.sh . 68
23 Upsilon topology (y.run) . 72
24 Extended upsilon topology (y+.run) 72
25 Circle topology (c6.run) . 72
26 Upsilon topology for timers 10/40/30 (m-y 104030.run) 73
27 Extended upsilon topology for timers 10/40/30 (m-y+ 104030.run) 73

List of Figures

1 Topology with two-hop loop . 10
2 A simple loop and a source loop [3] 12
3 Transitions between modes in Quagga daemons 16
4 Branch history of the RMTI repository 23
5 XTPeer client/server architecture 24
6 Reduction of RMTI code size . 29
7 Elements of a topology visualization 38
8 The upsilon topology . 39
9 The circle topology . 41
10 The extended upsilon topology 43
11 RMTI website . 45
11 Discussion board . 45
12 Performance of different host kernel versions 49
13 Interaction between the Git repositories 51
14 Screenshot of gitk . 54
15 Screenshot of gitg . 54
15 Screenshot of giggle . 54

74

References

[1] Frank Bohdanowicz. Weiterentwicklung und Implementierung des
RIP-MTI-Routing-Daemons. Diplomarbeit, Universität Koblenz-Landau,
2008.

[2] Frank Bohdanowicz, Harald Dickel, and Christoph Steigner. Adoidance of
Routing Loops. 2009. Arbeitsberichte aus dem Fachbereich Informatik
Nr. 01/2009.

[3] Frank Bohdanowicz, Harald Dickel, and Christoph Steigner. Routing with
Metric-based Topology Investigation. 2009. IARIA Journal.

[4] Frank Bohdanowicz, Marcel Jakobs, and Christoph Steigner. Statistical
Convergence Analysis of Routing Algorithms. 2010. ICN Paper.

[5] Scott Chacon. Git Community Book. http://book.git-scm.com/ - last
visited 2010-11-19.

[6] Jeff Dike. Posting on user-mode-linux-devel. http://www.mail-archive.
com/user-mode-linux-devel@lists.sourceforge.net/msg06682.html
- last visited 2010-11-19.

[7] Jeff Dike. User Mode Linux. Prentice Hall, 2006.

[8] Free Software Foundation. GPLv3 Discussion Draft FAQ.
http://gplv3.fsf.org/dd3-faq - last visited 2010-11-19.

[9] Free Software Foundation. GNU General Public License, Version 2.
http://www.gnu.org/licenses/gpl-2.0.html - last visited 2010-11-17,
1991.

[10] Andreas Garbe. Simulation großer Netzwerke in der VNUML-Umgebung.
Diplomarbeit, Universität Koblenz-Landau, September 2010.

[11] Christopher Israel. Diplomarbeit, Universität Koblenz-Landau, 2011.

[12] Marcel Jakobs. Statistische Konvergenzanalyse des RIP
Routingprotokolls. Diplomarbeit, Universität Koblenz-Landau, 2010.

[13] Tim Keupen. Generierung von Testfällen für den RIP-MTI Algorithmus.
Diplomarbeit, Universität Koblenz-Landau, 2007.

[14] Milad Khojasteh. Erreichbarkeitsbestätigungen in Routing Algorithmen.
Bachelorarbeit, Universität Koblenz-Landau, 2010.

[15] Thomas Kleemann. RIPeval - Evaluierung und Weiterentwicklung des
RIP-MTI-Algorithmus. Diplomarbeit, Universität Koblenz-Landau, 2001.

[16] Tobias Koch. Implementation und Simulation von RIP-MTI.
Diplomarbeit, Universität Koblenz-Landau, 2005.

[17] Stefan Lange. Zentrale Betrachtung von Routing-Informationen zur
Analyse des Konvergenzverhaltens verschiedener RIP-Algorithmen und
Unterstützung des Generierens von Testfällen. Diplomarbeit, Universität
Koblenz-Landau, 2007.

75

http://book.git-scm.com/
http://www.mail-archive.com/user-mode-linux-devel@lists.sourceforge.net/msg06682.html
http://www.mail-archive.com/user-mode-linux-devel@lists.sourceforge.net/msg06682.html
http://gplv3.fsf.org/dd3-faq
http://www.gnu.org/licenses/gpl-2.0.html

[18] Michael Monreal. Simulation mit VNUML. Studienarbeit, Universität
Koblenz-Landau, 2007.

[19] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems
Approach, 4th Edition. Morgan Kaufmann, 2007.

[20] Git project. Aliases.
https://git.wiki.kernel.org/index.php/Aliases - last visited
2010-11-17.

[21] GNU project. GNU Coding Standards.
http://www.gnu.org/prep/standards/standards.html - last visited
2010-11-17.

[22] Quagga project. Quagga manual.
http://quagga.net/docs/quagga.html - last visited 2010-11-19.

[23] Quagga project. VNUML language reference.
http://www.dit.upm.es/vnumlwiki/index.php/Reference - last
visited 2010-11-19.

[24] Quagga project. Website. http://www.quagga.net/ - last visited
2010-11-17.

[25] VNUML project. Website. http://www.dit.upm.es/vnuml/ - last visited
2010-11-17.

[26] Daniel Pähler. Extern steuerbare Routing-Updates im RIP-Daemon der
Quagga-Programmsuite. Diplomarbeit, Universität Koblenz-Landau,
2006.

[27] Andreas Schmid. RIP-MTI: Minimum-effort loop-free distance vector
routing algorithm. Diplomarbeit, Universität Koblenz-Landau, 1999.

[28] Ansgar Taflinski. Bachelorarbeit, Universität Koblenz-Landau, 2010.

[29] Yon Uriarte. Zebra Hacking How-To. 2001.
http://quagga.net/zhh.html - last visited 2010-11-17.

[30] Wikipedia. GNU Coding Standards.
http://en.wikipedia.org/wiki/GNU_Coding_Standards - last visited
2010-11-17.

[31] Bernhard Wolf. Untersuchung und Simulation des RIP-MTI-Algorithmus.
Studienarbeit, Universität Koblenz-Landau, 2006.

76

https://git.wiki.kernel.org/index.php/Aliases
http://www.gnu.org/prep/standards/standards.html
http://quagga.net/docs/quagga.html
http://www.dit.upm.es/vnumlwiki/index.php/Reference
http://www.quagga.net/
http://www.dit.upm.es/vnuml/
http://quagga.net/zhh.html
http://en.wikipedia.org/wiki/GNU_Coding_Standards

	Abstract
	Introduction and terminology
	Routing Information Protocol
	Routing with Metric-based Topology Investigation
	Quagga software routing suite
	Implementation of RMTI
	Modifications as part of this thesis
	Test environment
	Test results and evaluation
	Public release
	Conclusion
	User mode linux performance regression
	Gitorious
	Basic Git usage
	Rebasing with Git
	Quagga coding style
	Quagga coding introduction and examples
	Creating packages for Linux systems
	Patch: RMTI support for Zimulator
	Patch: Counting-to-infinity generator
	Testomato bash script and scenario run files
	Listing
	List of Figures
	References

