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Abstract

Diffusion weighted imaging is an important modality in clinical imaging
and the only possibility to gain insight into the human brain noninvasively
and in-vivo. The applications of this imaging technique are diversified. It
is used to study the brain, its structure, development and the functionality
of the different areas. Further, important fields of application are neurosur-
gical planning, examinations of pathologies, investigation of Alzheimer’s,
strokes, and multiple sclerosis.

This thesis gives a brief introduction to MRI and diffusion MRI. Based
on this, the mostly used data representation in diffusion MRI in clinical
imaging, the diffusion tensor, is introduced. As the diffusion tensor suffers
from severe limitations new techniques subsumed under the term HARDI
(high angular resolution diffusion imaging) are introduced and discussed
in detail. Further, an extensive introduction to tractography, approaches
that aim at reconstructing neuronal fibers, is given.

Based on the knowledge from the theoretical part established tractogra-
phy algorithms are redesigned to handle HARDI data and, thus, improve
the reconstruction of neuronal fibers. Among these algorithms, a novel ap-
proach is presented that successfully reconstructs fibers on phantom data
as well as on human brain data. Further, a novel global classification ap-
proach is presented to cluster voxels according to their diffusion properties.
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Kurzfassung

Diffusionsgewichtete Bildgebung ist eine wichtige Modalität in der klini-
schen Praxis. Sie stellt gegenwärtig die einzige Möglichkeit dar, nicht inva-
siv und in vivo Einblicke in das menschliche Gehirn zu erhalten. Die Ein-
satzgebiete dieser Technik sind sehr vielseitig. Sie wird zur Untersuchung
des Gehirns, seiner Struktur, seiner Entwicklung und der Funktionswei-
sen seiner verschiedenen Areale einsetzt. Weiterhin spielt diese Modalität
eine wichtige Rolle bei der Operationsplanung am Gehirn und der Unter-
suchung von Schlaganfall, Alzheimer und Multipler Sklerose.

Diese Arbeit gibt eine kurze Einführung in die Bildgebungmittels MRT
und geht auf die Entstehung diffusionsgewichtete Bilder ein. Darauf auf-
bauend wird der Diffusionstensor, die am meisten verbreitete Datenreprä-
sentation in der Diffusionsbildgebung, vorgestellt. Da die Repräsentation
der Diffusion als Diffusionstensor erhebliche Einschränkungen darstellt,
werden neue Methoden zur Datenrepräsentation vorgestellt und disku-
tiert. Diese neuen Methoden werden unter dem Begriff HARDI (Diffusi-
onsbildgebung mit hoher Winkelauflösung, von engl. high angular reso-
lution diffusion imaging) zusammengefasst. Weiterhin wird eine ausführ-
liche Einführung in das Thema der Traktografie, der Rekonstruktion von
Nervenbahnen im Gehirn, gegeben.

Basierend auf diesem theoretischen Wissen werden etablierte Algorith-
men der Traktografie von Diffusionstensor- auf HARDI-Daten überführt.
Dadurch wird die RekonstruktionderNervenbahnen entscheidend verbes-
sert. Es wird eine vollständig neue Methode vorgestellt, die in der Lage ist,
Nervenbahnen sowohl auf einem Phantomdatensatz, als auch auf einem
vom Menschen stammenden Gehirndatensatz zu rekonstruieren. Weiter-
hin wird ein neuartiger globaler Ansatz vorgestellt, um Voxel anhand ihrer
Diffusionseigenschaften zu klassifizieren.
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Chapter 1

Introduction

This chapter provides an introduction to this thesis. The motivation and
objectives of this thesis are presented in the first two sections. The third
section gives an overview of the organization of the thesis.

1.1 Motivation

Based on magnetic resonance imaging (MRI) a new modality, diffusion
weighted imaging (DWI), was developed in the last decades. This modal-
ity measures noninvasively the diffusion of water molecules in the human
body. Most commonly it is used to analyze the brain. Anisotropic diffusion
can be found in the nerve fibers (the white matter) of the brain. The nerve
fibers of the brain restrict diffusion and, thus, allow to infer directional in-
formation of these structures. By means of DWI this structural information
can be displayed in vivo.

The reconstruction of these fibers provides insight into brain structure
and allows to analyze its development. Furthermore, it allows to identify
pathological changes by their altered diffusion behavior. Application areas
of DWI are for example planning of surgical interventions for brain tumors
and examinations of Alzheimer’s, strokes, and multiple sclerosis.

The diffusion rate is often described by a second order tensor, a 3×3ma-
trix (Diffusion-Tensor-Imaging - DTI). By extracting the eigenvectors and
eigenvalues of the tensor the direction and degree of diffusion can be es-
timated in each voxel. Several approaches have been developed to recon-
struct white matter pathways based on this directional information. These
reconstruction approaches are called fiber tracing or tractography.
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1.2. OBJECTIVE

1.2 Objective

One major disadvantage of DTI is its inability to delineate more than one
diffusion direction per voxel. Complicated structures like fiber crossings or
branchings can not be represented in this manner as no reliable directional
information can be extracted from DTI in such regions. These limitations
encouraged the development of high angular resolution diffusion imaging
(HARDI). HARDI allows to calculate an orientation distribution function
(ODF) of possible diffusion directions for each voxel. Thus, several direc-
tion per voxel can be identified.

With the development of this new technique the established fiber trac-
ing approaches need to be adjusted to the new data. More than one di-
rection per voxel has to be considered. Further, other stopping criteria or
connectivity properties between voxels might be beneficial. The purpose of
this thesis is to evaluate state-of-the-art tractography algorithms. Possible
extensions regarding HARDI data will be identified and fiber tracing algo-
rithms adapted to these data. The development environment of Fraunhofer
MeVis (MeVisLab) shall be used as a framework for implementation.

The individual tasks of this thesis are:

1. Familiarization with the MeVisLab framework and the current trac-
tography approaches

2. Evaluation of current fiber tracing approaches and identification of
possible extensions regarding HARDI data

3. Implementation of selected tractography algorithms based on the Q-
ball reconstruction technique

4. Outlook to fiber tracing in challenging regions, possibilities for clus-
tering and visualization

5. Documentation and evaluation of the results

1.3 Organization of this Thesis

This thesis is organized as follows: Part II provides theoretical knowledge
that is important for the understanding of this thesis. Chapter 2 gives an
overview on MRI and diffusion MRI. Further, the term diffusion is intro-
duced and explained. Chapter 3 explains the DTI and HARDI techniques.
Several reconstructionmethods for HARDI data are introduced. The Q-ball
technique is treated in more detail as it forms the basis of the implementa-
tion for this thesis. In the last section of chapter 3 visualization methods are
presented. Chapter 4 focuses on tractography. State-of-the-art tractography
algorithms are introduces for DTI and HARDI data. An overview is given

4



1.3. ORGANIZATION OF THIS THESIS

on deterministic, probabilistic and global methods. Various examples are
presented and discussed for each category of approaches.

The knowledge gained in the theoretical part is applied in part III in
practice. Chapter 5 explains the modules that were implemented for the
MeVisLab framework. The designed algorithms are presented in detail and
their individual extensions to HARDI data are discussed. Chapter 6 evalu-
ates the implementation. The evaluation is performed on phantom data as
well as on a human brain dataset.

Part IV concludes this thesis. A summary is given in chapter 7 and the
results are discussed. Finally, chapter 8 gives an outlook to fiber tracing in
challenging regions and possibilities for fiber clustering and visualization.
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Theoretical Foundations
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Chapter 2

Background

This chapter provides a brief introduction to methods and processes that
form the basis of this thesis. Fundamental terms such as magnetic reso-
nance imaging (section 2.1), diffusion, and diffusion weighted imaging (section
2.2) will be introduced and will be referred to throughout further chapters.
A basic understanding of the signal formation in the used modalities and
properties of the imaged tissue will be provided. An extensive treatment
of these terms would go beyond the scope of this thesis. However, this
background knowledge is sufficient to understand the drawbacks and ben-
efits of the different methods described in chapters 3 and 4. References to
further reading will be given in each section.

2.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a widely used modality for mapping
human tissue in vivo. There are several kinds of MRI-techniques, each
serving a different purpose. The medical application of MRI started in the
1980s. Descoteaux provides a brief history of the development of MRI in
the introduction of his PhD thesis [Des07]. Good introductions to MRI can
be found in [Rob00], [Fin07], and [JBB09]. A detailed technical and mathe-
matical description of MRI signal acquisition is given in [MA95].

In contrast to other imaging techniques (e.g. computed tomography
(CT)), MRI is noninvasive and does not use ionizing radiation. It is based
on strong magnetic fields, usually in the range of 1.5 to 3.0 T, and radio
waves. Where CT images provide highest contrasts in rather hard tissue
(e.g. bones), MR images give better insight into soft tissue, like brain or
muscle. The contrast between anatomic structures in MR images can be
influenced in a number of ways by varying the intensity of the magnetic
fields or the radio waves.
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2.1. MAGNETIC RESONANCE IMAGING

Figure 2.1: A proton and its spin axis (thick arrow). The spin axis rotates about the
direction of the magnetic field, B0. Image adopted from [Fin07, p. 62].

2.1.1 Signal Acquisition

Atomic nuclei possess a characteristic property called spin. The spin can be
compared to angular momentum to facilitate its understanding. To con-
tinue this comparison, a “rotational” axis can be assigned to the spins.
Charged particles spinning about an axis produce a magnetic momentum.
The spinning axis is thus more precisely termed axis of magnetic momentum,
but often the simpler term spin direction is used instead.

Hydrogen nuclei (protons) have a very strong magnetic momentum.
Thus, soft tissue (i.e. tissue with high water portions) provides highest
signal strength for MR imaging. Normally, the spins of the protons are ori-
ented randomly. In this case the magnetic momenta cancel each other out,
resulting in no net magnetic momentum. However, when brought into a
strong magnetic field, the spins’ axes align to the direction of this field and
start precessing about its axis (i.e. the spins’ directions rotate periodically
about the direction of the magnetic field, Figure 2.1). The direction of the
magnetic field is commonly called the z-direction. The precessional fre-
quency, also called Larmor frequency, fl, is given by the Larmor equation

fl = γB0 (2.1)

Here,B0 is the appliedmagnetic field and γ, the gyromagnetic ratio, a char-
acteristic property of subatomic particles. Compared to other nuclei, pro-
tons have a very high γ of 42.57 MHz/T, resulting in a Larmor frequency
of 127.7MHz at typicalB0-fields of 3 T in clinical MRI. This is also the reso-
nance frequency that can be applied to alter the directions of the spins (see
below).

After all spins are aligned and precessing about the z-axis, no further in-
teractions take place. However, without rotatingmagnetic fields (i.e. with a
fixed spin axis) no electric current in measuring coils is induced and hence
no signal from the MR scanner can be measured.

10
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: The spin’s axis is precessing about the orientation ofB0, the main mag-
netic field (a). The excitation pulse rotates the spinning axis by 90◦ into
the xy-plane (b). The spin’s axis still precesses about the orientation of
B0 but in the xy-plane (c). The precessional component in this plane
decays exponentially with a time constant T2 (d). The parallel com-
ponent exponentially recovers with a slower time constant T1 (e, f).
Images adopted from [JBB09, p. 13].

To produce a measurable signal, a radio frequency-pulse (rf-pulse) is
applied perpendicular to the z-axis. Although not as intense as the B0-
field, the pulse is strong enough to rotate the spins (to be more precise,
the net magnetic momentum), when applied at the Larmor frequency. The
duration of the pulse determines the rotating angle, here it is 90◦. This
pulse is also called excitation pulse. After the excitation pulse is turned off,
three things happen (Figure 2.2):

1. The net magnetic momentum is precessing in the xy-plane about the
z-axis, thus inducing current in measuring coils placed in that plane.
This signal is measured and used to reconstruct the MR image.

2. The component of the magnetic momentum that lies in the xy-plane
decays exponentially (and so does the measured current) with a char-
acteristic time constant T2. This is the T2-relaxation or spin-spin-
relaxation and is typically on the order of 100 milliseconds.

3. The component of themagnetic momentumparallel to themain mag-
netic field exponentially recovers to its former direction (z-axis) with
a time constant T1. This process is called T1-relaxation or spin-lattice-
relaxation and induces current that is measured by coils along the
z-axis. T1 is typically on the order of 1 second.
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2.1. MAGNETIC RESONANCE IMAGING

ts TE
Time

Net magnetization
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 rf pulse
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Pixel brightness

Figure 2.3: After the excitation pulse spins lose phase coherence leading to loss of
net magnetization. A refocusing pulse is applied at time ts, the spins
start to regain their phase coherence. At time 2ts (echo time, TE) all
spins are phase coherent again. This effect is called spin echo. Image
adopted from [JBB09, p. 13].

While the spins precess in the xy-plane they lose phase coherence. This
is due to small inhomogeneities in theB0-field and different kinds of tissue,
both leading to slightly different Larmor frequencies. The signal loss due
to T2-relaxation and dephasing together is called T ∗

2 -relaxation. It leads to a
much faster signal decay than the T2-relaxation alone. To reverse the signal
loss from dephasing most imaging sequences use a second rf-pulse (the so
called refocusing pulse), rotating the net magnetic momentum by 180◦. After
the second rf-pulse the spins regain phase coherence after a time period ts
(Figure 2.3). This time period is exactly the same, as the time that separates
the two rf-pulses. The regained phase coherence leads to a signalmaximum
and the signal is measured for image reconstruction (note that due to the
T2-relaxation this signal is slightly weaker than the signal directly after the
excitation-pulse). This effect is called spin-echo and was first described by
Hahn [Hah50]. The time 2ts is called the echo time, TE.

It may not be straightforward that the spins regain phase coherence.
A demonstrative comparison to illustrate the spin echo effect is given in
[Fin07]: Imagine a sprint, where every runner starts at the same position
(phase coherence after the excitation-pulse) and runs with a constant but
different speed than the others (different Larmor frequencies). After a cer-
tain time ts they all are at different positions (loss of phase coherence). At
this point they reverse their directions (refocusing pulse), maintaining their
respective speeds. After another time period ts all runners arrive at the
same position (spin echo).

Refocusing pulses are applied several times at intervals of TE and the
characteristic time constant T2 is measured at several spatial positions in
the tissue. As the signal strength decays an excitation pulse needs to be
applied after a certain time. This time is called the repetition time, TR. TE
and TR are two of many parameters that can be chosen when designing
imaging sequences. They are altered to achieve different contrasts in the
resulting images.

Three types of images are often referred to in the literature: proton den-
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TE
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T1
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-

Figure 2.4: Different MR image contrasts that result from varying TE and TR:
T1-weighted image (bottom left), T2-weighted image (top right), and
proton density image (bottom right). The diagram in the top left corner
illustrates the lengths of TE and TR needed to achieve the respective
contrasts (e.g. short TE and short TR for a T1-weighted image). Image
adapted from [Fin07, p. 66]

sity, T1-weighted, and T2-weighted images (Figure 2.4). Proton density im-
ages result from very short TE and long TR, minimizing the effects of both
types of relaxation. T1-weighted images result from short TE and TR in the
range of T1, while T2-weighted images need TE in the range of T2 and long
TR. The signal in a pixel at position x, y can be calculated as

Sx,y = M0 · (1− exp−TR/T1) · exp−TE/T2 (2.2)

whereM0 is the spin or proton density. More detailed descriptions of imag-
ing characteristics are given in [Rob00] and [MA95].

2.1.2 Image Reconstruction

Once the MRI signal is measured an image needs to be reconstructed from
this signal. Medical images are often acquired in slices. A slice is a two-
dimensional image depicting a cross section through the sample tissue. Ad-
jacent slices show adjacent regions in the tissue. All slices taken together
accumulate the three-dimensional information of the sample. AwholeMRI
scan produces tens or hundreds of slices depending on the size of the re-
gion in question and the thickness of each slice.
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Figure 2.5: The slice selection gradient is applied along the z-axis resulting in dif-
ferent Larmor frequencies along this axis. The excitation pulse affects
only spins with the same frequency as the pulse (red spins in (a)). Fig-
ures (b) and (c) show the excited slice. After the application of the
phase encoding gradient along the y-axis all spins precess at the same
frequency, ω, but with different phases φ (b). The effect of the fre-
quency encoding gradient applied along the x-axis is shown in (c) (the
different phases from the previous step are not shown).

To encode an image out of the MRI signal three linear magnetic field
gradients are used. Typically, these are applied along the three main axes.
The first gradient is used for slice selection. In this example, the direction
of the slice selecting gradient is the same as that of the B0-field (z-axis). The
main magnetic field, B0, is overlayed with a non-homogeneous field, the
slice selecting gradient. Thus, the Larmor frequency of the spins along that
gradient changes with the gradient, since it depends on the magnetic field.
However, inside an arbitrary xy-plane along this gradient the frequency
is the same. A simultaneously applied 90◦ excitation rf-pulse only effects
one single slice, namely the slice with the same Larmor frequency as the
rf-pulse. Slice selection is accomplished by varying the frequency of the
rf-pulse. The thickness of a slice depends on the strength of the gradient
and the frequency bandwidth of the rf-pulse. The thickness lies usually in
the range of 1 to 5mm. The application of the first gradient is illustrated in
Figure 2.5a.

Within a slice the spatial position of the sampled MRI signal needs to
be encoded. Therefore, a second gradient is applied along an axis perpen-
dicular to the first one (the x-axis in this example). This is the so called
frequency encoding gradient. It changes the precessional frequency, ω, of the
spins along the x-axis within the excited plane. Thus, different frequen-
cies along the x-axis of the resulting image are sampled (Figure 2.5c). The
resolution within the slice lies in the range of 0.5 to 1mm.

A third gradient, the phase encoding gradient (also line selection gradi-
ent), is applied in between the two aforementioned gradients along the re-
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Figure 2.6: A simplified diagram of the EPI sequence (a). Data for several lines is
collected after each refocusing pulse. The trajectory of the data acqui-
sition in Fourier space is shown as a white line in (b). Image modified
and adopted from [JBB09, p. 17].

maining axis (y in this example). This gradient is turned on for a short
time only. While the gradient is switched on the spins precess at different
frequencies along the y-axis. However, when it is turned off all spins pre-
cess with the same frequency but retain the respective phase, φ, that they
acquired during the gradient application (Figure 2.5b). The resulting MRI
signal is a sum of superimposed phases. The phase encoding gradient (and
thus the subsequent frequency encoding gradient) needs to be applied sev-
eral times, each time with a different strength, leading to a change in the
phase difference. The change in the phase difference over all measurements
taken together corresponds to a frequency change along the y-axis.

The resulting image contains the frequency information of the mea-
sured signals along the x- and y-axis (Figure 2.6b). Applying an inverse
2D Fourier transform decodes the desired spatial information on the tissue
within the analyzed region. Numerous different imaging sequences have
been designed to minimize the acquisition time and maximize the signal
quality. The described imaging sequence is a simplified example of the
echo planar imaging (EPI) sequence (Figure 2.6a). To obtain better results it
is necessary to filter the image for noise and imaging artifacts (e.g. caused
by movements and cardiac pulsation), before applying the inverse Fourier
transform. Please refer to [MA95] and [Fin07] for details on removal of
imaging artifacts. The acquisition time for all slices depends on the size of
the sample and the desired resolution. It is typically in the range of 10 to 30
minutes.

2.2 Diffusion Weighted Imaging

So far imaging techniques that depict relaxation times in different kinds
of tissue were treated. This “standard“ MRI method results in relaxation
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2.2. DIFFUSIONWEIGHTED IMAGING

(a) (b)

Figure 2.7: In isotropic diffusion particles move randomly in all directions (a). The
movements of the particles in anisotropic diffusion are still random (b).
However, barriers enforce a predominant orientation to their displace-
ment. The ADC along the tubes is higher than across to them. Image
modified and adopted from [Bea02, p. 2].

weighted images. In the last decade of the 20th century a new modality,
diffusion weighted imaging (DWI), was developed allowing new contrasts
in MR imaging. Before covering this imaging method the term diffusion
needs to be introduced. A more extensive treatment of this term as well as
of DWI can be found in [JBB09]. For a detailed mathematical derivation of
the below mentioned equations please refer to [Cam04].

2.2.1 Diffusion

Diffusion, or Brownian motion, was first described by Robert Brown in
1828 when he studied pollen grains suspended in water. In 1905 Einstein
explained diffusion as the random motion of molecules due to thermal en-
ergy [Ein05]. Thus, this random motion can be observed in any substance
with a temperature above zero Kelvin. Diffusion is characterized by a dif-
fusion rate, expressed as the diffusion coefficient, D, and a diffusion direc-
tion. According to Einstein the mean displacement, ∆X, along one axis of
a particle follows the Gaussian distribution and is given by the equation

∆X =
√
2Dt (2.3)

for one dimension. Here, D is the diffusion coefficient1, and t is the diffu-
sion time.

This equation applies to free diffusion (i.e. the particles move freely
without being restricted by barriers). If free diffusion is possible in every
direction, the diffusion is called isotropic (Figure 2.7a) and the equation can
be extended to two or three dimensions. The opposite of isotropic diffusion
is anisotropic diffusion. This term is used when diffusion is restricted in
one or more directions (Figure 2.7b).

1The diffusion coefficientD for water at body temperature (37◦C) is 3 · 10−3mm2/s.
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2.2. DIFFUSIONWEIGHTED IMAGING

Since in the case of anisotropic diffusion D appears smaller than in
isotropic diffusion, a new term, the apparent diffusion coefficient (ADC), was
introduced to describe the measured rate of anisotropic diffusion.

In the human body measurements of anisotropic diffusion can be used
to infer structural information of tissue. Anisotropic diffusion is present in
muscles or in white matter of the brain. White matter consists of densely
packed nerve fibers (axons) that connect different functional areas. The typ-
ical width of an axon is in the range of 0.1 to 10 µm whereas its length can
reach several tens of centimeters. Thus, in measuring theADC parallel and
perpendicular to axons one can infer their orientation and position in the
brain. The parallel ADC appears free, whereas the perpendicular ADC is
restricted to a very short distance (Figure 2.7b). Another important compo-
nent of the brain is gray matter. The diffusion in gray matter is isotropic,
hence, this type of tissue can be distinguished from white matter.

Further, there are measurable differences inADC of healthy and patho-
logical brain tissue (e.g. brain tumors). Also examinations of the effects
of Alzheimer’s, strokes and multiple sclerosis in DW images can provide
new insights and understandings of these diseases. Relation of diffusion
to pathologies and brain structure is extensively treated in [JBB09] and
[Bea02].

2.2.2 Image Acquisition

Diffusion weighted MRI is the only possibility to measure diffusion of wa-
ter molecules noninvasively in vivo. Hahn was the first recognizing the
effect of molecular diffusion to the spin echo signal [Hah50]. Carr and Pur-
cell proposed a method to measure diffusion [CP54]. Stejskal and Tanner
introduced many improvements and laid the foundation for modern diffu-
sion measurements [ST65].

Stejskal and Tanner proposed the pulsed gradient spin echo method to
add diffusion weighting to a MRI sequence. The basic idea is to apply a
magnetic field gradient after the 90◦ excitation rf-pulse. This gradient adds
a certain phase to each spin depending on the position along the direction
of the gradient. Then a second gradient with same strength but reversed
polarity is applied in the same direction. This time the added phase is neg-
ative due to the reversed polarity of the gradient. The net added phase on
stationary spins is zero (Figure 2.8). However, if a particle and, thus, its spin
moves between the two gradients the absolute values of the added phases
will differ. Thus, the spins are not re-phased after the second gradient lead-
ing to signal attenuation (Figure 2.9). The greater the spatial displacement
of a spin during the diffusion time, the greater the resulting signal attenu-
ation. Nowadays, most imaging sequences use a 180◦ refocusing rf-pulse.
Since this pulse flips the phases of the spins the diffusion weighting gradi-
ents are applied on either side of the refocusing pulse with same polarity
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2.2. DIFFUSIONWEIGHTED IMAGING

Figure 2.8: The effect of diffusion weighting gradients on stationary spins. During
the application of the first diffusionweighting gradient spins precess at
different frequencies (lower on the left side, shown in magenta, higher
on the right side, shown in green). The second gradient has reversed
polarity, thus, resulting in an equal but reversed phase change. Since
the spins do not move between the two gradients, there is no net effect
on the net magnetization and, thus, pixel brightness. Image adopted
from [JBB09, p. 19].

Figure 2.9: The effect of diffusion weighting gradients on moving spins. Due to
the first diffusion weighting gradient spins lose their phase coherence.
The second gradient recovers the magnetization incompletely because
of the spin displacement between the two gradients. Regions with high
diffusion have greater signal loss and appear darker (blue box) than
regions with low diffusion (yellow box, area of stroke). Image adopted
from [JBB09, p. 20].
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Figure 2.10: A simplified diagram of a diffusion weighted imaging sequence. Dif-
fusion gradients are applied on either side of the refocusing pulse
(shown in green) along one axis. The dotted boxes indicate that dif-
fusion weighting can be applied along an arbitrary axis. Image mod-
ified and adopted from [JBB09, p. 24].

(Figure 2.10). The signal from each pixel in the slice can now be calculated
as

Sx,y = M0(1− exp−TR/T1) exp−TE/T2 exp−b ADC (2.4)

Note that this is equation 2.2 with the added factor exp−bADC , accounting
for the additional signal attenuation caused by diffusion. It consists of the
b-value and the (apparent) diffusion coefficient ADC along the direction of
the applied gradients.

Due to the fact that the diffusion time, t, and T2 lie on a similar time
scale diffusion weighting disturbs the T2 weighted image. Therefore, an
additional T2 image without diffusion weighting is always acquired and
is referred to as the B0-image. The diffusion coefficient in equation 2.4 is
estimated by

log

(

S(b)

S(b = 0)

)

= −bADC (2.5)

for every applied gradient direction. Here, S(b = 0) is the signal without
diffusion weighting and S(b) the diffusion weighted signal. It is obvious
that the resulting ADC depends on the chosen direction (e.g. parallel or
perpendicular to nerve fibers). Therefore, usually several gradients are ap-
plied to probe the diffusion along different directions, typically the three
main axes (Figure 2.11). Only if the ADC is the same in all directions, the
diffusion is considered to be isotropic.

The b-value is widely used to characterize the level of induced sensitiv-
ity to diffusion. For gradients with a constant strength b is given by

b = (γGδ)2(∆− δ/3) (2.6)

Here,G denotes the gradient strength,∆ the time between the starts of the
two gradients and δ the duration of each gradient. The time ∆ − δ/3 is
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2.2. DIFFUSIONWEIGHTED IMAGING

Figure 2.11: Effect of applying the diffusion weighting gradients along different
axes (indicated by white arrows above the images). Dark areas have
high ADCs, whereas light areas have low ADCs. The unfilled arrows
point at the splenium of the corpus callosum. In the leftmost image
this area appears dark, indicating the dominant left-right orientation
of nerve fibers in this region. Image adopted from [JBB09, p. 41].

referred to as the diffusion time. ∆ is typically in the range of some tens
of milliseconds, whereas δ is chosen to be small (few milliseconds) in order
not to affect spins while they diffuse over a larger length scale. Higher
b-values lead to a higher sensitivity to diffusion but also to a lower signal-
to-noise ratio (SNR). Analyses show that the optimal b-value for diffusion
weighted imaging is in the range of 900 to 1200 s/mm2 [AB05].
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Chapter 3

Diffusion MRI

Based on diffusion weighted imaging that was introduces in the last chap-
ter more sophisticatedmethods tomeasure and characterize diffusion were
developed in the past years. The first of this developed methods was dif-
fusion tensor imaging (DTI) treated in section 3.1. Although it has severe
limitations it is still the most commonly used diffusion MRI technique in
medicine. To address the limitations of DTI acquisition schemes and signal
reconstruction algorithms were extended and improved. These new meth-
ods are subsumed under the term high angular resolution diffusion imaging
(HARDI) and are discussed in section 3.2. A summary of these methods is
given in section 3.3, while section 3.4 presents commonly used visualiza-
tion methods in DTI and HARDI.

The purpose of this chapter is to introduce DTI and the most common
HARDI reconstruction methods. Their respective advantages and disad-
vantages will be pointed out and discussed. Further, popular means to
visualize the reconstructed data from these approaches will be introduced
at the end of this chapter. References to relevant literature will be given in
each section.

3.1 Diffusion Tensor Imaging

As was mentioned in the last chapter the ADC is highly dependent on
the direction of the gradient and is therefore rotationally variant. Thus,
the ADC alone can not adequately delineate the diffusion properties in
anisotropic structures. With this in mind Basser et al. developed a rota-
tionally invariant model, the diffusion tensor [BML94b], [BML94a]. This
model will be treated in this section. For more information on the diffusion
tensor model please refer to [JBB09], [Des07] and [Cam04].
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3.1. DIFFUSION TENSOR IMAGING

(a) Diffusion tensor ellipsoid (b) Diffusion tensor examples

Figure 3.1: Examples of diffusion tensor visualization as an ellipsoid. Images
adopted from [JBB09, p. 43].

3.1.1 The Diffusion Tensor

Instead of using a single scalar, Basser et al. introduced a second order
tensor, a 3× 3matrix, to describe diffusion in 3D:

D =





Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz



 (3.1)

The diagonal elements of this matrix correspond to the diffusivity along
the three main axes (i.e. the ADC along these axes). The other elements
describe the correlation between displacements along two particular axes
(e.g. Dxy along the x- and y-axes) and should not be confused with diffu-
sion along hypothetical new axes. Taken all elements together the diffusion
tensor can be seen as a 3D covariance matrix of spin displacements. Note
that the off-diagonal elements can become zero or negative, whereas the
ADC along all axes is always positive and greater than zero. This model is
based on the assumption that diffusion follows a Gaussian distribution.

If all off-diagonal elements become zero, there is no correlation of dis-
placement among the axes. In such a case the principal diffusion direction
(PDD) aligns with one of the main axes of reference. Further, in this spe-
cial case the diagonal elements correspond to the eigenvalues of the ma-
trix (λ1, λ2, and λ3). The eigenvector that belongs to the biggest eigen-
value indicates the orientation of the principal diffusion direction and thus
the assumed underlying fiber orientation. In the case that at least one off-
diagonal element is not zero the eigenvalues have to be computed instead
of taking the diagonal elements of the tensor.

The eigenvalues can be thought of as the ADC along the directions of
the eigenvectors. The diffusion tensor can be illustrated as an ellipsoid.
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3.1. DIFFUSION TENSOR IMAGING

The axes of the ellipsoid are given by the eigenvectors of the tensor (Figure
3.1a). Since we assume Gaussian diffusion the ellipsoid’s axes have to be
scaled according to equation 2.3 with the square root of the corresponding
eigenvalue. The resulting ellipsoidal shape wraps the volume that a parti-
cle can diffuse to with equal probability when starting at its center. Exam-
ples of different tensor ellipsoids and the corresponding diffusion tensors
are given in Figure 3.1b.

3.1.2 Estimation of the Diffusion Tensor

To estimate the diffusion tensor six values have to be found. In analogy
to equation 2.5 where the scalar b-value was used to determine the scalar
ADC , the b-value is replaced by a b-matrix, b, of the form

b =





bxx bxy bxz
bxy byy byz
bxz byz bzz



 (3.2)

reformulating equation 2.5 to

log

(

S(b)

S(b = 0)

)

= −
3

∑

i=1

3
∑

j=1

bijDij (3.3)

Here, bij is an element of the b-matrix and Dij an element of the diffusion
tensor. The computation of the b-matrix is beyond the scope of this chapter,
please refer to [MBLB97] for details.

Since equation 3.3 contains six unknown elements at least six diffusion
weighted images acquired with different diffusion weighting directions are
needed to solve it (plus one image without diffusion weighting). A con-
ventional way of solving equation 3.3 is constructing a matrix, B, with
the number of rows, N , equal to the number of diffusion weighted images
and six columns. The columns contain the elements of the b-matrices, bj

(j ∈ [1 . . . N ]), that were used for the acquisition of each diffusion weighted
image:

B =











b1xx 2b1xy 2b1xz b1yy 2b1yz b1zz
b2xx 2b2xy 2b2xz b2yy 2b2yz b2zz
...

...
...

...
...

...
bNxx 2bNxy 2bNxz bNyy 2bNyz bNzz











(3.4)

With S, a vector of log-transformed measured signals from theN diffusion
weighted images,

S =
[

log
(

S(b1)
S(b=0)

)

log
(

S(b2)
S(b=0)

)

. . . log
(

S(bN )
S(b=0)

) ]T
(3.5)
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3.1. DIFFUSION TENSOR IMAGING

and Dv a vector containing the elements of the diffusion tensorD,

Dv =
[

Dxx Dxy Dxz Dyy Dyz Dzz

]T (3.6)

equation 3.3 is rewritten as
S = BDv (3.7)

In the simple case where exactly six diffusion weighted images are ac-
quired, B is square and equation 3.7 is solved by taking the inverse of B:

Dv = B−1S (3.8)

However, acquiring more than six images helps reducing noise signifi-
cantly. Studies have shown that optimal imaging sequences for DTI involve
at least 30 gradient directions [Jon04], [BAH+03]. As a result, B no longer is
square and its pseudo-inverse needs to be taken in order to solve equation
3.7:

Dv = (BTB)−1BTS (3.9)

This ordinary least squaresmethod includes the assumption that the variance
of noise is equal for each diffusion weighted image. However, this is not
generally true. In their original publications on the diffusion tensor model
Basser et al. use a more complicated method, theweighted linear least squares
approach, that fits the data more exactly [BML94b], [BML94a].

3.1.3 Limitations of the Tensor Model

The diffusion tensor is calculated based on diffusion weighted measure-
ments along different directions. The assumption this model is based on
is that diffusion follows a Gaussian distribution. As the 3D Gaussian dis-
tribution function forms an ellipsoid the tensor is visualized in different
variations of this shape. Depending on the underlying diffusion it takes
a cigar-shaped, pancake-shaped, spherical or any intermediate form (Fig-
ure 3.1). However, the assumption of Gaussian diffusion is only true for
isotropic diffusion. In a highly organized area like white matter in the brain
diffusion is hindered in many directions. Hence, the Gaussian model can
only be an approximation that does not work well in some cases.

As imaging voxels not only cover nerve fibers but brain tissue in gen-
eral each diffusion tensor also contains isotropic diffusion information from
gray matter and diffusion between nerve fibers. This is called partial volume
effect which is a common problem in diffusion MRI. Further, the typical
voxel sizes in DTI range from 1 to 5 mm. In contrast to this diameters of
axonal fibers vary from 0.1 to 10 µm. Thus, a single tensor contains dif-
fusional information of hundreds of fibers. Since the diffusion is assumed
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Figure 3.2: Different fiber configurations, their diffusion distributions, p, and the
corresponding shapes of the diffusion ellipsoids are shown. The fourth
column shows the directional information that can be extracted from
the diffusion tensor. With HARDI a more detailed delineation of diffu-
sion, the fODF, can be obtained. The fODF is shown in the rightmost
column. Image adopted from [JBB09, p. 57].

to be Gaussian only one fiber orientation per voxel can be resolved. As a
result the tensor’s orientation is an average of all fiber directions belonging
to the corresponding voxel. If all fibers in that voxel are aligned parallel to
one another, as is the case in large fiber structures like the corpus callosum,
the tensor depicts their orientation very well. However, many complex
structures with heterogeneous fiber orientations exist in the white matter
of the brain [Bea02]. The diffusion tensor is insufficient when fibers bend,
fan, kiss or cross. As can be seen in Figure 3.2, bending and fanning fibers
result in the same tensor ellipsoid. Although these two fiber structures are
not distinguishable from the tensor, the main eigenvector provides a rea-
sonable approximation of the underlying fiber orientations. In the case of
crossing fibers, however, no information about the fiber orientation can be
inferred from the tensor. The tensor’s shape results in a pancake-shape or
even a sphere like in the case of isotropic diffusion.

To be able to resolve multiple fiber orientation per voxel new models
and acquisition schemes were developed. These are discussed in the next
section.
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3.2 High Angular Resolution Diffusion Imaging

In high angular resolution diffusion imaging (HARDI) usually 60 andmore
different diffusion weighted images are acquired. Additionally, higher b-
values allow for resolving diffusion with a higher angular accuracy than in
DTI. First attempts to characterize diffusion and determine the ADC profile
with HARDI data have shown improvements in regions where DTI data
did not provide sufficient information [ABA02], [Fra02].

Therefore, more techniques were developed to estimate the orientation
of diffusion from HARDI data. This techniques can be divided into two
groups: model-based and model free approaches. The most important
methods of these two groups are briefly introduced in this section. One
of these methods, Q-ball imaging (QBI), is described in more detail as it
forms the basis for the implementation for this thesis and is used in later
chapters for fiber tracing. Further information on HARDI can be found in
[JBB09] and [Des07].

3.2.1 Model-based approaches

This section introduces state-of-the-art methods that resolve multiple fiber
orientation per voxel by a priori assuming a certain structure of the mea-
sured signal. The corresponding model representing this structure is then
fitted to the data and the diffusion profile is reconstructed.

Multi-tensor Model

A logical extension of the diffusion tensor model is modeling more than
one tensor for each voxel. The multi-tensor model was introduced by Tuch
et al. [TRW+02]. The Gaussian diffusion distribution is replaced by a mix-
ture of Gaussians. This model assumes that each voxel contains n distinct

Figure 3.3: Two tensors approach modeling crossing fibers. Image adopted from
[JBB09, p. 59].

26



3.2. HIGH ANGULAR RESOLUTION DIFFUSION IMAGING

Figure 3.4: Diffusion signal modeled with two tensors per voxel (insets (a) and
(c)). The same regions are shown with the modeling of only one tensor
(insets (b) and (d)). Image adopted from [JBB09, p. 60].

fiber populations. A second assumption is that water molecules diffuse
only within one of the fiber populations. Each of the fiber populations is
described by a separate diffusion tensor. An example showing the model-
ing of a fiber crossing with two tensors is given in Figure 3.3. The overall
diffusion probability distribution, p, is a sum of all Gaussians, weighted
according to their respective volume fraction in the voxel:

p(x) =

n
∑

i=1

aiG(x;Di, t) (3.10)

Here, G(·;D, t) is a Gaussian distribution with zero mean and covariance
2Dt (similar to equation 2.3), x is the displacement and t the diffusion time.
The weighting ai ∈ [0, 1] is the volume fraction of the ith fiber population
(all ai sum to 1).

This approach relies on the fact that the number of fiber populations, n,
is known a priori. A tensor is then fitted using non-linear optimization into
each of the fiber populations. In practice often a maximum n of 2 is used
due to the limited number of measurements and imaging noise. With n = 1
this model is the same as DTI.

The multi-tensor model is able to resolve fiber crossings of two fiber
populations in known anatomical structures. However, with a n = 2 two
tensors are fitted in every voxel of the measured data. This leads to errors
and instabilities in regions where only one fiber population is present (in-
set (c) in Figure 3.4). One cause of the instabilities is the large number of
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parameters that have to be estimated for every voxel. For example, 13 pa-
rameters need to be determined for n = 2 (6 for each voxel plus one for
the volume fraction). Apart from the method proposed by Tuch et al., other
methods to stabilize the multi-tensor fitting [CGZ+04b] and improve the
a priori estimation of n [BJBJ+07a] have been proposed. Nevertheless, the
correct selection of the model parameter n remains a problem that should
not be underestimated in its meaning for the correctness of the multi-fiber
reconstruction.

Variations

A simple variation of the multi-tensor approach is the explicit modeling of
different diffusion compartments within one voxel [BWJ+03].This model is
also called ball and stick model. It assumes that the diffusing particles be-
long either to a restricted (stick) or to a free (ball) fiber population. The
diffusion tensor to model the stick includes only one non-zero eigenvalue
to clearly identify the fiber direction. By modeling various sticks multi-
ple fiber populations can be resolved. Other variations replace the stick by
a stick distribution to resolve more complex structures.The slightly more
complex composite and hindered restricted model of diffusion (CHARMED) pro-
posed in [AFRB04] uses a mixture of restricted fiber populations and is thus
able to recover multiple fiber orientations per voxel.

3.2.2 Model free approaches

This section introduces model free state-of-the-art approaches to recon-
struct the diffusion profile. The model free approaches attempt to recon-
struct the fiber distribution within a voxel based only on the measured dif-
fusion signal rather than modeling a discrete number of fiber populations.
For each voxel a probability density function (PDF) is generated. This func-
tion is commonly called orientation distribution function (ODF) as it estimates
the orientation of the fibers within a voxel. The ODF is a radial projection of
the diffusion signal on a sphere, often approximated with the Funk-Radon
transform explained below in this section.

Typically, two types of ODFs are distinguished in literature. Since the
measurements provide the diffusion distribution, the reconstructed ODF is
actually a diffusion ODF (dODF) and not the fiber ODF (fODF) of the true
underlying fibers. It is important to understand the difference between
these two functions. As diffusion not only takes place parallel to nerve
fibers but also perpendicular to them and between them the dODF can be
blurred and ambiguous. Increasing the b-value leads to sharper dODFs,
thus, better approximating the fODF. However, this can only be done at the
cost of lower SNR. The dODF is used in most cases as there is no way to
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find the true fODF. Techniques to better approximate the fODF are a current
field of research.

Diffusion Spectrum Imaging

Diffusion spectrum imaging (DSI) (also called q-space imaging, QSI) aims
at measuring the diffusion distribution, p, directly without making any
assumptions on the shape of p or the underlying fiber structure. This is
accomplished by making use of the q-space. Q-space theory and its math-
ematical properties are treated in great detail in [Cal94]. For better under-
standing of the methods described below q-space can be thought of as the
Fourier space.

The measured signal, S, is sampled on a grid in q-space. The grid is
defined by the 3D wavevector q = γδG where γ is the gyromagnetic ratio,
δ the gradient duration and G the diffusion gradient vector. The vector q
is related to the b-value as b = |q|2t where t is the diffusion time (please
compare to equation 2.6). By adjusting the gradient direction and the b-
value different positions on the grid are selected.

The q-space is related to the Fourier transform of p. Thus, by taking the
inverse 3D Fourier transform of S, samples of p on a grid of spatial dis-
placements are obtained (Figure 3.5a). Further, p is projected onto a sphere
to get the dODF. The resulting value for every orientation is the sum of all
samples of p that lie on a line through the origin with this orientation.

The reconstructed dODF is very accurate, however, several limitations
exist. DSI relies on infinitesimally short gradient pulses. In practice, these
pulses are on a length scale close to the diffusion time. As a result, the
reconstructed dODF is blurred. A second limitation is the necessity to ac-
quire a big number of measurements on a wide range of b-values to cover
the whole 3D grid. Typically, between 500 and 1000 measurements are ac-
quired leading to a significant increase in acquisition time (up to 60 min-
utes). In the original publication measurements with 500 different values of
q were taken [WRT+00]. The b-value varied from 500 to 20000. However,
with high b-values the SNR reduces as the measured parameter is signal
attenuation.

Q-ball Imaging

The idea behind Q-ball imaging (QBI) [Tuc04] is to approximate the dODF
that would result from DSI by means of a spherical acquisition scheme
(Figure 3.5b). Rather than sampling the whole 3D grid only points on a
fixed radius (with a fixed b-value) are sampled. This approximation allows
for a significantly lower acquisition time. However, the resulting dODF is
blurred and has a lower angular resolution that can also lead to imprecise

29



3.2. HIGH ANGULAR RESOLUTIONDIFFUSION IMAGING

(a) (b)

Figure 3.5: Image (a) shows the signal reconstruction of DSI. The signal, S, is sam-
pled on a grid in Fourier space and transformed to Cartesian space.
The diffusion distribution, p, is projected onto a sphere and the dODF
is reconstructed. In QBI a spherical sampling scheme is used to sample
the Fourier space (image (b)). Images adopted from [JBB09, p. 62].

peaks. With higher b-values the angular resolution is improved at the cost
of reducing the SNR. Here, an appropriate balance needs to be found.

The subsequent steps of QBI are illustrated in Figure 3.6. After sam-
pling the diffusion attenuation signal the discrete samples are interpolated
on the sphere. To obtain the dODF, Ψ, the Funk-Radon transform (FRT) is
calculated for the interpolated signal. The FRTmaps one spherical function
to another by taking the integral over the great circle, C(x), for every desired
direction, x. The great circle is the plane perpendicular to x through the ori-
gin. This can be expressed as

Ψ(x) =

∫

C(x)
S(q)dq̂ (3.11)

where q̂ = q/|q|. The resulting dODF is a discrete set of points. The steps
illustrated in Figure 3.6 can be combined to a single matrix multiplication.
Thus, the Q-ball algorithm is computationally light.

Figure 3.7a shows the reconstructed dODFs. In regions with only one
fiber population the principal direction can be seen clearly (inset (a)). In the
region of fiber crossings multiple directions can be distinguished but the
dODF is too smooth to form separate peaks (inset (b)). This is due to the
low b-value of 1200 used in the acquisition for this example. QBI demands
for b-values of 3000 and higher for better angular resolution. Tournier et
al. used 80 gradient directions and a b-value of 4000. They were able to
resolve 45 degree crossings with the Q-ball algorithm [TYC+08].

Later studies used spherical harmonics to represent the dODF, rather than
radial basis functions [DAFD07]. The analytical reconstruction presented
by Descoteaux et al. will be used in this thesis to reconstruct the dODF. It is
described in more detail in section 3.2.3.

A related method, the diffusion orientation transform (DOT), was pro-
posed by Özarslan et al. [OSV+06]. DOT calculates a single contour of the
diffusion distribution, p, on a fixed radius, R0. This is different from the
dODF which has contributions from all contours. Depending on the choice
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Figure 3.6: Steps of the Q-ball reconstruction. Image adopted from [JBB09, p. 63].

of R0 and the q-vector both functions can appear similar. With the use of
spherical harmonic functions DOT can be evaluated analytically and thus
in a computationally efficient way.

A recent study has shown that DOT is more robust to noise than QBI
[PRP+08]. Higher b-values and an increasing number of gradient direc-
tions significantly improve the Q-ball reconstruction, whereas the results
from DOT remain unaffected. In general, DOT was able to better resolve
fiber crossing at lower b-values than QBI. Further, since DOT is more ro-
bust to noise higher order SH terms than in QBI can be used to resolve
fiber crossings. However, the authors of the study also pointed out than
finding the optimal R0 parameter for DOT in in-vivo data sets is challeng-
ing. Further, the calculation speed of the Q-ball approach is a significant
advantage of this method compared to DOT.

Persistent Angular Structure MRI

Like Q-ball imaging persistent angular structure (PAS) MRI samples the
signal in q-space at one fixed radius, r, only. The idea is to determine a
function that expresses the persistent angular structure of the measured
signal. In otherwords, the angular structure of all radii is projected onto the
sphere of radius r and represents the mobility of particles in each direction.
Thus, the PAS is a property of the diffusion distribution, p, rather than the
underlying fODF. The resulting function has a Fourier transform that is the
best approximation of the measured signal.

In the original work of Jansons and Alexander [JA03] this approxima-
tion is obtained by using a maximum entropy cost function and fitting the
data with a non-linear iterative algorithm. An important property of the
maximum entropy method is its capability of finding a representation (i.e.
function) that contains the most information and, thus, best describes the
measured signal. Since a non-linear fitting is computationally very expen-
sive spherical harmonics can be used as a linear representation. This mod-
ification reduces the computation time significantly at the price of lower
angular resolution.

PAS produces sharp ODFs (Figure 3.7b) and recovers fiber crossings at
60 degrees with 54 gradient directions, SNR of 16 and b-values in the range
of 1500 to 2000 smm−2 [Ale05]. Further, simulations on phantomdata show
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(a) Q-ball (b) PAS-MRI

Figure 3.7: Image (a) shows the dODF resulting fromQ-ball reconstruction. fODFs
approximated from PAS-MRI reconstruction are shown in (b). Images
adopted from [JBB09, pp. 63, 66].

that with a moderate increase in data quality the linear representation re-
covers fibers with a comparable accuracy to PAS MRI.

Spherical Deconvolution

Spherical deconvolution (SD) aims at recovering the fODF directly instead
of using an estimate based on the dODF [TCGC04]. The basic idea is to con-
sider the measured signal, S, as a sum of different fiber orientations within
the voxel each convolved with a response function. Figure 3.8 illustrates
an example of a crossing of two fibers. Each orientation of the true under-
lying fODF is convolved with the response function R. This results in two
elements as only two non-zero orientations in the fODF exist. Their sum is
the measured signal, S. For the reconstruction of the fiber orientations, S
is deconvolved with the response function R. Tournier et al. estimate the

Figure 3.8: Principle of spherical deconvolution. The fODF convolved with the
response function, R, is the measured signal, S. Image adopted from
[JBB09, p. 64].
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Figure 3.9: Output fODF of different SD algorithms. From left to right: unfiltered,
low-pass filtered and super resolved cSD. Image adopted from [JBB09,
p. 65].

response function by taking the average of the most anisotropic voxels in
the brain data.

Figure 3.8 shows an ideal example. In practice, however, the resulting
signal always contains contributions from all possible fiber directions. This
is due to the movement of particles taking place in all directions even per-
pendicular to the main fiber orientations. Noise in the imaging process is
another major source that contributes to false peaks in the reconstructed
fODF. Tournier et al. use low-pass filtering to remove these peaks at the
price of a reduced angular resolution (Figure 3.9). In a later work they
introduced a regularization method (constrained SD, cSD) that allows for
removing false peaks while retaining the high angular resolution [TCC07].
Further, assuming the same R for all fiber populations is another source of
errors since fibers have different cell sizes, densities, and packing configu-
rations.

With 80 gradient directions, a b-value of 1000 smm−2, and SNR of 95,
Tournier et al. were able to consistently resolve 45 degree fiber crossings on
phantom data [TYC+08].

3.2.3 Analytical Q-ball Imaging

Of all methods introduced above only Q-ball imaging offers fast compu-
tation while not making any a-priori assumptions on the true underlying
fiber structure. This is achieved by using linear basis functions for the dif-
fusion ODF estimation, rather than spherical radial basis function as in the
original publication [Tuc04]. Recently, three groups developed separately
analytical reconstruction methods that use spherical harmonics (SH) as lin-
ear basis functions for QBI [And05], [HMH+06], and [DAFD07]. In this
thesis the approach of Descoteaux et al. is used. As is shown in [DAFD07],
this method provides some improvements over the previous approaches:

1. Computation speed: Descoteaux et al.’s method is up to 15 times
faster than the original numerical QBI solution proposed by Tuch.

2. Regularization: In the regularization method used in [HMH+06] (the
so called Tikhonov regularization) all coefficients are weighted equally.
Further, the data is assumed to live on a flat manifold. Descoteaux
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et al. use the Laplace–Beltrami regularization where the data lives on a
sphere. The weighting of higher-order coefficients is reduced in order
to reduce perturbations due to noise.

3. Fiber detection: The angular error in the detection of the diffusion
ODF maxima is reduced at the cost of slightly reducing angular reso-
lution.

This section introduces shortly the SH basis functions and Descoteaux
et al.’s method of dODF reconstruction and regularization. For full details
please refer to the original publication in [DAFD07]. A more extensive
treatment of SH and their mathematical background is given in [Des07].

The Spherical Harmonics Basis

With the Fourier Transform every function can be expressed as a sum of
different sines and cosines determined by their respective frequency, phase
and amplitude. In analogy to the Fourier Transform one can rewrite ev-
ery complex function on the sphere with a sum of spherical harmonics
weighted by their respective coefficients. Spherical harmonics functions
are characterized by an order l and a degree m (l ≥ 0, |m| ≤ l) and can be
computed as

Y m
l (θ, φ) =

√

2l + 1

4π
· (l −m)!

(l +m)!
Pm
l (cosθ)eimφ (3.12)

with θ ∈ [0, π] the polar angle and φ ∈ [0, 2π[ the azimuthal angle indicating
a point on the sphere in polar coordinates. Pm

l is the associated Legendre
polynomial of order l and degreem.

One important property of SH is the antipodal1 symmetry for even or-
ders l and the antipodal anti-symmetry for odd orders l. Mathematically
expressed, this is

Y m
l (π − θ, φ+ π) =

{

Y m
l (θ, φ), if l even

−Y m
l (θ, φ), if l odd

(3.13)

The real part squared, Re[Y m
l (θ, φ)]2, of spherical harmonics up to order

l = 3 is shown in Figure 3.10 to illustrate these functions.
The HARDI signal measures the signal attenuation that is caused by

diffusion. This signal is real and symmetric since diffusion is not charac-
terized by a direction but rather an orientation. To describe this signal in
a physically meaningful way the spherical functions also have to feature
these properties. Symmetry is achieved by only considering SH functions

1Two points are antipodal when they are located on exactly opposite sides of the sphere.
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Figure 3.10: SH basis functions for orders l = 0 to 3 and the corresponding de-
grees. The colors illustrate the radius from low (blue) to high (red).
Image adopted from [Des07, p. 65].

of even order l. The function becomes real-valued if the real and imaginary
part of the SH is chosen appropriately according to the degreem.

With these constraints, Descoteaux et al. define a single index j for l =
0, 2, 4, . . . , L andm = −l, . . . , 0, . . . , l as j(l,m) = (l2+ l+2)/2+m. Further,
with this index they introduce a modified, real, and symmetric, SH basis as

Yj =











√
2 · Re(Y |m|

l ), if m < 0

Y m
l , if m = 0√
2 · (−1)m+1Im(Y m

l ), if m > 0

(3.14)

where Re(Y m
l ) and Im(Y m

l ) represent the real and imaginary parts of Y m
l

respectively. The normalization factor
√
2 imposes a third constraint, the

orthonormality, on this modified basis. The modified SH basis is illustrated
in Figure 3.11.

For a given orderL of a SH series there areR = 0.5∗(L+1)(L+2) terms.
With j = 1, . . . ,∞ every real and symmetric function on a sphere can be
expressed. However, only the terms with j = 1, . . . , R are considered here
since higher order terms are very susceptible to noise. In image processing
low-pass filtering a Fourier Transform is the analog to truncating the SH
series at R terms.
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Figure 3.11: Modified SH basis functions up to order 4. Image adopted from
[Des07, p. 67].

Diffusion ODF Estimation

The truncated smooth estimation of the HARDI signal for every gradient
encoding direction i is formulated as

S(θi, φi) =

R
∑

j=1

cjYj(θi, φi) (3.15)

where R represents the number of terms for a given SH order L, cj are
the weighting coefficients for the SH basis functions Yj and θi, φi the ith
gradient direction expressed in spherical coordinates.

As the signal Si is measured it does not have to be estimated for the
applied diffusion directions. Rather, the coefficients cj that best match the
measured signal have to be found. For this purpose the input signal is
represented as a N × 1 vector, S, where N denotes the total number of
gradient encoding directions. The R × 1 vector, C, holds the weighting
coefficients. Further, a N × R matrix, B, with the discrete modified SH
basis is constructed:

B =







Y1(θ1, φ1) Y2(θ1, φ1) . . . YR(θ1, φ1)
...

...
. . .

...
Y1(θN , φN ) Y2(θN , φN ) . . . YR(θN , φN )






(3.16)

With these definitions equation 3.15 is rewritten as a linear system

S = BC (3.17)

Since N ≫ R in matrix B, the pseudo-inverse of B needs to be taken in
order to solve this linear system:

C = (BTB)−1BTS (3.18)

36



3.2. HIGH ANGULAR RESOLUTION DIFFUSION IMAGING

The resulting coefficients in C provide the best-fitting truncated series to
the measured signal from all diffusion encoding directions N . Once these
coefficients are obtained the discrete equation 3.15 is rewritten as

S(θ, φ) =

R
∑

j=1

cjYj(θ, φ) (3.19)

With the known coefficients this function provides an estimate of the signal
S outside of the discrete measurements for any (θ, φ).

Regularization and Transformation of the Diffusion Signal

To reduce ODF estimation errors when using higher SH orders Descoteaux
et al. make use of the Laplace-Beltrami regularization. They define a diag-
onal regularization matrix, L, as

L =









. . .
l2j (lj + 1)2

. . .









(3.20)

where lj is the order associated with the jth coefficient2. Further they de-
rive a diagonal matrix, P, as a simplification of the Funk-Radon integral:

P =









. . .
2πPlj(0)

. . .









(3.21)

Here, Pl, is the Legendre polynomial of degree l evaluated at 0:

Pl(0) =







0 , if l odd

(−1)l/2 1 · 3 · 5 . . . (l − 1)

2 · 4 · 6 . . . l , if l even
(3.22)

The coefficients vector, C, is obtained by a single matrix multiplication

C = P(BTB+ λL)−1BTS (3.23)

with the smoothing parameter λ. Descoteaux et al. performed experimental
simulations that showed an optimal value for the smoothing parameter to
be λ = 0.006.

Equation 3.23 is used in this thesis to estimate the coefficients and equa-
tion 3.19 to estimate the diffusion ODF from the measured HARDI signal.

2For j = {1, 2, 3, 4, 5, 6, 7, 8, . . .}, lj = {0, 2, 2, 2, 2, 2, 4, 4, . . .}
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3.3 Summary of Methods

Table 3.1 summarizes the acquisition requirements for the different diffu-
sion imagingmodalities introduced in this chapter. For a complete overview
DWI and ADC were added to the table. The HARDI methods (below the
horizontal line in table 3.1) make higher demands on data acquisition at the
benefit of providing more possibilities to extract useful information from
the obtained data. QBI, DOT, PAS and SD have all been optimized to col-
lect the data in a clinically feasible time. Only DSI with the required high
b-values and long acquisition time lacks of practical use for in-vivo data
acquisition.

Diffusion MRI Gradient strength Number of Acquisition
modality (s/mm2) measurements N time (min)

DWI b ≤ 1000 N = 1 1− 3
ADC b ≤ 1000 2 ≤ N ≤ 4 2− 4
DTI b ≤ 1000 N ≥ 7 3− 6

QBI, DOT, b ≥ 1000 N ≥ 60 10− 20
PAS, SD (b ≥ 3000 desirable)
DSI b > 8000 N ≥ 200 15− 60

Table 3.1: Comparison of acquisition requirements and acquisition time for differ-
ent diffusion MRI modalities. The number of measurements is in most
cases the number of applied diffusion encoding gradients. In DSI N
is the number of different q-values (i.e. number of gradient directions
and different b-values). The indicated times assume an acquisition of 30
axial slices with thickness of approximately 3 mm each. Table adopted
and modified from [Des07, p. 51].

With these new methods there is no need to hold on to the established
but error-prone fiber reconstruction techniques based on DTI. Rather, new
HARDI algorithms need to be developed to fully use the potential of these
acquisition methods.

The performance of the different HARDI methods is compared in table
3.2. The horizontal line separates model-based (above the line) and model
free approaches (below the line). All model-based approaches have low
requirements on acquisition but also tend to be very biased. The reason
for this is obvious: If the model is designed to find two fibers in a voxel, it
will - no matter how many fibers really exist. For this reason model-based
approaches are of low practical relevance for fiber reconstruction.

For this thesis a method with low acquisition requirements and low
computation time was desired. DSI was rejected due to the first criterion
and PAS due to the second one. While SD, and especially cSD, provide
good results, a major disadvantage of these approaches is the required a-
priori assumption on the diffusion kernel for deconvolution. Of the re-
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maining two methods (QBI and DOT) QBI was chosen due to its simplicity
and rich amount of studies which promise good results if the b-value and
number of gradient directions are sufficiently high. However, due to its ro-
bustness to noise and lower acquisition requirements [OSV+06] DOT could
gain more importance in future.

Method Acquisition Computation Accuracy Bias
requirement time

Two tensors low medium medium high
Ball and stick low medium medium high
Compartment low medium medium high
DSI very high medium high medium
QBI medium low/medium medium medium
DOT medium medium medium medium
PAS medium high high low
SD medium low/medium medium medium
cSD medium medium medium low

Table 3.2: Properties of differentHARDI reconstruction techniques. Table adopted
and modified from [JBB09, p. 66].

3.4 Visualization

This section provides an overview of typical visualization techniques for
DT images according to [VZKL06] and [JBB09]. Modifications of these tech-
niques are used for HARDI visualization and will also be mentioned.

The main differences between the distinct visualization means are the
dimensionality to which the voxel information (either the tensor or the
ODF) is reduced. A second characteristic is whether local or global infor-
mation is displayed. Here, global means taking the relationships to neigh-
boring voxels into account. In contrast to that local visualization considers
only the data belonging to one single voxel.

3.4.1 Scalar Indices

Scalar indices reduce the data to one dimension, a scalar. Before the DTI
model was introduced the ADC was used to visualize diffusion weighted
images. The main drawback of the ADC is its directional dependence. As
can be seen in Figure 3.12 the ADC images alters greatly as the axis of
diffusion weighting is changed. In contrast to this scalar indices that are
derived from the diffusion tensor are rotationally invariant. The rightmost
panel in Figure 3.12 shows the mean of the three ADC images, the mean
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Figure 3.12: The effect of varying the diffusion encoding gradient is shown on the
three left images. The arrows indicate the gradient orientation. The
rightmost image illustrates the mean diffusivity. Image adopted from
[JBB09, p. 45].

diffusivity (MD). MD can be derived from the diffusion tensor as

MD =
Dxx +Dyy +Dzz

3
or MD =

λ1 + λ2 + λ3

3
(3.24)

The sum of the three diagonal elements of the diffusion tensor is also called
the trace. MD images serve to distinguish between cerebrospinal fluid (high
values) and brain tissue (lower values). However, different kinds of brain
tissue or structures can not be distinguished that way.

Therefore, Basser and Pierpaoli introduced two indices for that pur-
pose: the fractional anisotropy (FA) and the relative anisotropy (RA) [BP96].
These two are calculated as

FA =

√

3

2

√

(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2
√

λ2
1 + λ2

2 + λ2
3

(3.25)

and

RA =

√

1

3

√

(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

MD
(3.26)

The enumerator of both the indices is the standard deviation of diffusion
from the mean diffusivity. The denominator of the FA index is the mag-
nitude of the tensor (the square root of the sum of squares of its eigenval-
ues). FA normalizes the standard deviation of diffusion by the magnitude
of the tensor. It measures the fraction of the tensor that can be assigned
to anisotropic diffusion. This index is normalized to take values from zero
(isotropic diffusion) to one (diffusion along one axis only). FA is the mostly
used scalar index in diffusion tensor imaging. An example FA image is pre-
sented in Figure 3.13b. In the RA index the standard deviation is divided
by the mean diffusivity. This index is normalized to take values from zero
to one. For more scalar indices please refer to [VZKL06].
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(a) (b) (c)

Figure 3.13: Comparison of MD (a), FA (b) and Westin metrics (c) on an axial slice
of the brain. In (c) green indicates cl and violet indicates cp. Images
adopted from [VZKL06].

So far the presented scalar indices indicated the mean diffusivity (MD)
or the deviation from isotropy (FA, RA). These indices reduce the tensor
to one scalar and, thus, provide no information on the shape of the ten-
sor ellipsoid. The shape can take three different forms that depend on the
eigenvalues. If the eigenvalues are sorted according to λ1 ≥ λ2 ≥ λ3 the
three forms are

• sphere-shaped (λ1 ≈ λ2 ≈ λ3, isotropic diffusion)

• pancake-shaped (λ1 ≈ λ2 > λ3, planar anisotropy)

• cigar-shaped (λ1 > λ2 > λ3, linear anisotropy)

To characterize these shapes Westin et al. proposed three separate indices:
spherical anisotropy (Cs), planar anisotropy (Cp), and linear anisotropy (Cl)
[WPG+97]:

Cs =
λ3

MD
Cp =

2(λ2 − λ3)

3MD
Cl =

(λ1 − λ2)

3MD
(3.27)

These three indices sum to one and therefore parameterize a barycentric
space. A comparison of MD, FA and the Westin metrics is given in Figure
3.13.

An alternative approach is considering the third moment (skewness) of
the three eigenvalues [Bas97]:

S =
(λ1 −MD)3 + (λ2 −MD)3 + (λ3 −MD)3

3
(3.28)

For cigar-shaped ellipsoids S is positive, while it is negative for pancake-
shaped ellipsoids. However, using higher order moments of eigenvalues
augments the sensitivity to noise.
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(a) Boxes (b) Ellipsoids (c) Superquadrics

Figure 3.14: Different glyph shapes for DTI visualization. Images adopted from
[VZKL06].

Since the calculation of all of these indices is based on the diffusion
tensor a separate index to characterize anisotropy in HARDI data, the so
called general fractional anisotropy (GFA), was proposed in [Tuc04]:

GFA =

√

n
∑n

i=1(Ψ(ui)− 〈Ψ〉)2
(n − 1)

∑n
i=1 Ψ(ui)2

(3.29)

Here, Ψ(ui) is the dODF value at the direction vector ui and 〈Ψ〉 is the
mean of all dODF values in the voxel. Like the FA the GFA normalizes the
standard deviation of diffusion by the magnitude of the dODF.

When designing algorithms for HARDI data it is of great importance
to classify the number of fiber populations in a voxel. Scalar indices for
this purpose have been proposed. As their primary application is classifi-
cation rather than visualization theywill be discussed in section 4.1.3 when
dealing with tractography on HARDI data.

3.4.2 Glyphs

To visualize thewhole information contained in a voxel, the so called glyphs
are employed. A glyph is a graphical object that describes diffusion in a
voxel with its parameters (e.g. size, color, shape). The diffusion ellipsoid
treated earlier in section 3.1 is most commonly used to visualize the diffu-
sion tensor. The ellipsoid’s shape varies depending on the size of the three
eigenvalues. The size of the glyph can be used to display the mean diffu-
sivity or be normalized to view the anatomy and pathology of regions with
uniform glyphs.

Apart from ellipsoids other glyph shapes like boxes or superquadrics
were proposed for diffusion tensor visualization [Kin04]. A comparison
between these three shapes is given in Figure 3.14. The glyph’s sizes are
normalized and the colors indicate their principal orientation. While boxes
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Figure 3.15: Color coded orientation of the first eigenvector of diffusion tensors
on a sagittal slice (left) and an axial slice (right). Images adopted from
[VZKL06].

contain only a few polygons and are therefore fast to render their orienta-
tion is poorly defined in regions of isotropic diffusion. The different shapes
of the ellipsoids are well defined but can be difficult to tell apart. The pro-
posed superquadrics try to combine the positive properties of these two
shapes.

The main difference between tensor ellipsoids and glyphs for HARDI
visualization is that HARDI glyphs are not restricted to a geometric shape
like an ellipsoid. The individual shape of the HARDI glyphs stems from
the ODF values for each sampled direction that is rendered as a radius in
the corresponding direction. HARDI glyphs have already been depicted
on several images in section 3.2 (e.g. rightmost column in Figure 3.2).

3.4.3 Orientation

The diffusion tensor can be reduced to the direction of themain eigenvector
(i.e. the eigenvector corresponding to the biggest eigenvalue). This method
is based on the assumption that the main eigenvector, e1, defines the ori-
entation of the underlying brain structure. As was proposed in [PP99] the
orientation of this vector can be mapped to a primary color. Further, each
of the colors is assigned to one of the principal axes. The components of
the RGB channel can, thus, be calculated as

R = |e1 · x| G = |e1 · y| B = |e1 · z| (3.30)

where x, y, and z are the normalized direction vectors of themain axes. Fig-
ure 3.15 illustrates an example on a sagittal and axial slice of the brain. The
color coded images result in smooth color transitions along axonal fibers in
the brain providing information on coherence between neighboring voxels.

To visualize the orientation of HARDI glyphs the main eigenvector is
replaced by each sampling direction. The glyphs’ surface in this direction
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Figure 3.16: HARDI glyphs with orientation color coding (axial view).

Figure 3.17: Volume-rendered isosurfaces of FA values showing 3D white matter
structure. Image adopted from [VZKL06].

is rendered in the color arising from the above equation. Figure 3.16 shows
some HARDI glyphs with orientation color coding.

Fiber tracing or tractography is a technique to determine the main ori-
entation of fibers in a voxel and to reconstruct whole trajectories of fiber
bundles. The reconstructed fibers are often rendered as three dimensional
tubes for visualization. Since fiber tracing is the main topic of this thesis, it
will be treated separately in chapter 4.

3.4.4 Volume Rendering

Volume rendering is widely used in medical visualization to illustrate data
in 3D. A so-called transfer function assigns color and opacity to voxels de-
pending on the properties of the particular data to display. In DTI and
HARDI scalar indices, especially the FA or the GFA, are important proper-
ties of the acquired data that are visualized.

Figure 3.17 is rendered with isosurfaces of FA. The opacity of a voxel is
set to 0 if the FA is below the given threshold and 1 otherwise. Color can
be assigned to volume-rendered voxels to depict the shape or orientation of
underlying brain structures (left image of Figure 3.18). Another application
is to indicate the type of diffusion. The right image in Figure 3.18 is colored
according to Figure 3.13c showing computed scalar indices cp and cl. In this
manner insight in structure dependent diffusion properties can be gained.
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Figure 3.18: Color can be used in volume rendering to visualize the orientation of
the principal diffusion direction (left). Also scalar indices can be used
to depict the type of diffusion. The right image shows Westin metrics
cp (magenta) and cl (green). Image adopted from [VZKL06].

Volume rendering provides lots of possibilities for visualization. It can
be overlayed with tensor glyphs or other data to emphasize important
structures. In tractography (chapter 4) axonal fiber bundles are rendered
in different colors to visualize their trajectory in the brain and to separate
them from adjacent structures or other fiber bundles.
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Chapter 4

Tractography

Tractography (also called fiber tracing or fiber tracking) is a general term for
methods to reconstruct fiber pathways in the white matter based on diffu-
sion imaging. It offers a unique possibility to gain insight into the structure
of the human brain noninvasively and in vivo. The information won in
this manner is not only of high value for visualization of the brain struc-
ture and segmentation of the brain into different functional areas, it also
provides essential information for neurosurgical planning and investiga-
tions of multiple sclerosis and Alzheimer’s disease.

Promising as it is tractography is based on diffusion imaging data that
itself is difficult to interpret and error prone. The reconstruction of fibers in
fiber tracing is based on the assumption that the diffusion ofwatermolecules
is greater along white matter pathways than across them. Moreover, even
with the most accurate MRI scanners individual fibers can not be recon-
structed due to their low diameter that lies on a microscopic scale. The
structures of interest are therefore fiber bundles often consisting of thou-
sands of individual fibers. However, when using fiber tracing methods one
should always keep in mind that the reconstructed entity are not fiber bun-
dles, but rather pathways of least hindrance to diffusion. Recent studies
show great correlations between the measured diffusion and actual fiber
bundles [Bea02], [JBB09], thus, further encouraging the development of
tractography methods.

Validation of tractography is an important issue. Anatomical knowl-
edge can be obtained by post-mortem dissection. Reconstructed fiber path-
ways can then be compared with the found structures. However, fiber tra-
jectories can vary in different subjects. In vivo validation is performed by
injecting contrast media into a subject and register its dispersion. Further
validation methods are the so called phantoms. Phantoms are artificially
constructed fiber configuration (e.g. from rat spinal cord or acrylic fibers)
with known ground truth. A phantom with challenging fiber configura-
tion was used at the Fiber Cup to evaluate state-of-the-art tractography
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algorithms. The Fiber Cup is a tractography contest held at the MICCAI
20091 conference in London, UK. This phantom data is available online at
the Fiber Cup website2 and will be used for evaluation of the implemented
algorithms in chapter 6. Some of the algorithms evaluated at the Fiber Cup
will be presented in this chapter.

There are several ways to characterize tractography methods. Firstly,
fibers might be reconstructed in a deterministic or a probabilistic way. De-
terministic methods do not take into account the uncertainty of the fiber
direction. The resulting pathway might or might not be a true pathway in
the brain. In contrast to this, probabilistic methods often generate several
pathway and assign probabilities to them.

Secondly, fiber tracing can be local or global. Local methods only con-
sider the information of one voxel (and sometimes its neighbors’ informa-
tion) at each step. Global methods, however, require a property that rep-
resents global information along the whole fiber tract. The front evolution
approach presented later in this chapter is an example for global tractogra-
phy.

Lastly, the reconstruction methods can be model based or model free.
This characterization is the most vague in the literature. As mentioned in
chapter 3 several ways exist to represent the diffusion signal in each voxel.
These were also classified as model based (e.g. DTI, multi tensor) and
model free (e.g. Q-ball). However, in literature in some cases even the ODF
resulting from the Q-ball reconstruction is considered as a model. There-
fore, this characterization will not be applied to themethods presented later
in this chapter. Instead, it will be mentioned each time whether the algo-
rithms works on DTI data or on an ODF from HARDI data.

This chapter presents global and local, deterministic and probabilistic
state-of-the-art fiber tracing algorithms. The first section introduces the
concept of the streamline and presents early fiber tracing algorithms based
on DTI data. Subsequently, examples for recently proposed algorithms on
HARDI data will be given. Section 4.2 introduces the theory of uncertainty
representation and provides examples for probabilistic algorithms, both on
DTI and HARDI data. Approaches to globally reconstruct fiber pathways
will be presented in section 4.3. The last section provides a summary of the
presented methods and the theoretical part of this thesis. References to the
original research papers will be given at each example. A general overview
of these methods can be found in [JBB09].

1http://www.miccai2009.org/
2http://www.lnao.fr/spip.php?rubrique79
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4.1. LOCAL DETERMINISTIC TRACTOGRAPHY

4.1 Local Deterministic Tractography

The first fiber tracing approaches were based on DTI. Although they recon-
structed fiber pathways in different ways they all were based on stream-
line tracing. The first section on deterministic tractography introduces the
concept of the streamline and some early algorithms. The tensorline trac-
ing developed later will be introduced in the second section. A review of
the different DTI based fiber tracing approaches can be found in [MZ02].
The last section on deterministic tractography presents some approaches
to reconstruct fibers from HARDI data. In contrast to DTI methods no
well-established algorithms exist for fiber tracing on HARDI data. Fur-
ther, there are no comprehensive reviews on current methods applied at
that field. Therefore, no reference to literature providing on overview on
different HARDI algorithms can be given.

4.1.1 Streamline Tracing

A streamline is a line whose tangent is always parallel to a vector field. In
DTI, a vector field is defined by the first eigenvector of each voxel. Vox-
elwise integrating the fiber orientations into a path, i.e. starting at a voxel
and following the first eigenvectors, is an intuitive way to reconstruct fiber
tracts.

Basser et al. represent a streamline mathematically as a 3D space-curve
[BPP+00]:

dr(s)

ds
= e1(r(s)) (4.1)

The location of the streamline, r, is a function of the distance, s, along the
streamline from the starting voxel (seed voxel or seed point). The first eigen-
vector, e1, of the diffusion tensor at r is the local estimate of the fiber orien-
tation. This vector is the tangent, t(s), of the streamline in s (Figure 4.1a).
For other vector field representations than DTI the first eigenvector, e1, can
be substituted by the corresponding fiber orientation estimate, e.

Since equation 4.1 is a differential equation it is not possible to calcu-
late the location of the streamline at any distance s directly. This equation
only allows to determine how the location of the streamline should change
depending on s. Consequently, errors made in the calculation of each indi-
vidual step will sum up and propagate to further steps, potentially leading
to wrong results.

Apart from errors made during integration further errors stem from
noise in the imaging process, potentially leading to a wrong estimation of
the principal diffusion direction (PDD). Also, the choice of the model to
represent the data can bear severe limitations (e.g. DTI can only represent
one fiber direction per voxel). Since these errors do not arise from fiber trac-
ing they will not be discussed here. For more details on error minimization
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(a) (b)

Figure 4.1: Image (a) shows a mathematical representation of a streamline.
Streamlines can be propagated through a voxel with (image (b) left) or
without interpolation (image (b) right). Image adopted from [JBB09, p.
335].

in the imaging process please refer to the references given in chapter 2. The
selection of a data representation and the resulting errors were discussed
extensively in chapter 3.

To minimize errors from integration the vector field needs to be inter-
polated. The right-hand side of equation 4.1 is defined in continuous space.
To progress the streamline correctly the exact fiber orientation is needed at
each position s. The diffusion data, however, is only available on a discrete
voxel grid providing only one fiber orientation per imaging voxel. Assum-
ing that fiber orientations contain contributions from all neighboring voxels
the data can be interpolated to gain continuous fiber orientations within a
voxel (Figure 4.1b).

The left-hand side of equation 4.1 demands for infinitesimally small
steps along the streamline. Obviously, in practice the step size has to be
bigger. The question raised here is how to discretize the continuous vector
field. It can be answered by the proper choice of an integration method.
The most commonly used integration methods are the Euler method and
the fourth order Runge-Kutta method (RK4). In the Euler method the fiber
orientation is assumed to be constant along the chosen step size h. The
succeeding position is calculated as

r(s + h) = r(s) + h · e(r(s)) (4.2)

The Runge-Kutta method also considers variations of the diffusion orien-
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tation along the step size:

r(s+ h) = r(s) +
1

6
(k1 + 2k2 + 2k3 + k4) · h

where k1 = e(r(s))
k2 = e(r(s) + 0.5h · k1)
k3 = e(r(s) + 0.5h · k2)
k4 = e(r(s) + h · k3)

(4.3)

In both cases, smaller step sizes lead to less errors in the reconstructed fiber
bundle trajectory.

A streamline is stopped as soon as it arrives at a point where its tra-
jectory can no longer be trusted. As no probabilities for fiber tracts are
calculated in deterministic tractography other methods are applied. Usu-
ally, streamlines terminate when entering a voxel with a low FA value. In
regions with low FA values the uncertainty of the fiber orientation is high.
Terminating the streamline at such a point prevents the trajectory from ac-
quiring high directional errors. Further, low FA values indicate that the
trajectory has left white matter and entered gray matter where no fibers
exist. A second heuristic to stop a streamline is a high angle between two
successive steps. White matter fibers usually have high curvature radii and
do not bend through high angles on the scale of a voxel. However, if such
a high angle is encountered, it is most probably due to errors made in pre-
vious steps than to a real fiber bundle bending that way.

Streamline Algorithms

This section presents some algorithms based on the here described tech-
niques. The focus lies on classic approaches to reconstruct fiber bundles
from DTI data.

FACT One of the first fiber tracing approaches was presented byMori
et al. on a rat brain [MCCZ99]. They state that the most intuitive way to
trace fibers is by connecting each voxel to the adjacent one toward which
the PDD is pointing (Figure 4.2a). Since this is highly erroneous Mori et
al. propose a method which they call fiber assignment by continuous tracking
(FACT). According to FACT, a fiber trajectory is traced continuously to the
next voxel border entering the new voxel at the same position where the
old one was left (Figure 4.2b). FACT is basically continuous tracing on
a discrete vector field, since no interpolation is applied. The streamline
continues as long as the sum of inner products of the adjacent vectors is
above a threshold, i.e. high confidence in the fiber orientation exists (Figure
4.2c). However, when the orientation of adjacent direction vectors becomes
random the streamline is terminated (Figure 4.2d). The step size along the
streamline varies depending on the distance to the next voxel border.
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(a) (b) (c) (d)

Figure 4.2: Principle of FACT. Long arrows in (a) and (b) indicate the underlying
fiber trajectory, short arrows the PDD in each voxel. Tracing starts in
the voxel marked with ∗ and continues along gray marked voxels. As
long as the PDDs of neighboring voxels show in a similar direction
tracing continues (c). Otherwise, the streamline is stopped (d). Image
adopted from [MCCZ99].

DTI Interpolated Conturo et al. performed fiber tracing on human
brain data [CLC+99]. They interpolated the acquired MRI data with uni-
form 2.5 mm voxels to obtain smaller voxels of 1.25 mm size. Tracing was
performed on the interpolated data with a constant step size of 0.5 mm. A
FA threshold was used as a stopping criterion.

Streamlines With B-splines The mathematical concept of the stream-
line as presented here was introduced by Basser et al. [BPP+00]. They gen-
erated a continuous tensor field by tensor interpolation. The streamline
was integrated with the RK4 method using a dynamic step size that de-
pended on the local curvature of the streamline. Further, to diminish the
influence of imaging noise the trajectory was locally approximated with
B-spline functions.

Streamlines Least Squares Filter Zhukov et al. presented another ap-
proach to deal with noise [ZB02]. They used a local regularization based on
a least squares filter. By finding a low degree polynomial that best matched
the data around the tracing position they approximated the data to filter
out noise induced perturbations. Tracing was performed on a component-
wise interpolated tensor field with Euler integration.

Multi ROI FACT A different method to find fiber bundles was pre-
sented by Stieltjes et al. [SKZ+01]. Fiber tracing was performed using FACT
without interpolation. Streamlines were started from every white matter
voxel in the dataset. Additionally, anatomical knowledgewas used to place
two regions of interest (ROI) to define known pathways. Only streamlines
passing through both ROIs were retained for the final result (Figure 4.3).
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Figure 4.3: Multi ROI fiber tracing. Only streamlines passing through both ROIs
are retained. Image adopted from [SKZ+01].

Figure 4.4: Fiber tracing through regions with fiber branchings can lead to dif-
ferent reconstructed trajectories without detecting the fiber branching
(upper part of the image). Initiating tracing in all voxels, however, de-
tects branchings by merging fibers (lower part of the image). Image
adopted from [SKZ+01].

Summary

All of these methods were able to reconstruct major pathways that were
consistent with prior anatomical knowledge. The reconstruction worked
best in large fibers with only one dominant fiber direction. In areas with
fiber crossings or kissings no reliable directional information could be de-
termined and tracing had to be terminated. Fiber branchings, however,
were detected in some cases. A method starting fiber tracing at all voxels
in the brain, as it was done in [SKZ+01], is able to reveal fiber branchings.
This is due to the fact that merging two fiber can be handled much easier
than branching fibers (Figure 4.4). Of course this approach demands for a
significantly higher computation time.
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4.1.2 Tensorline Tracing

All methods introduced so far had one common property: They used only
the first eigenvector of the diffusion tensor. As long as the tensor was cigar-
shaped, i.e. the first eigenvector was well defined, tracing continued along
the indicated path. However, in pancake-shaped or sphere-shaped tensors
tracing had to be terminated in order not to make major integration errors
due to a poorly defined principle diffusion direction.

TEND Other methods were proposed that use the entire diffusion
tensor. These are called tensorline tracing, tensor deflection or short TEND
[WKL99], [LWT+03]. The fiber trajectory was named tensorline. In this ap-
proaches the fiber path does not automatically follow the first eigenvector
of a voxel. Rather, it is deflected into the direction of the first eigenvec-
tor to a degree depending on the anisotropy of the tensor,D, (Figure 4.5a).
In voxels with high anisotropy the deflection is strong, whereas sphere-
shaped tensors are passed without changing the direction of the fiber path-
way. The outgoing direction of a voxel, vout, is calculated as

vout = fe1 + (1− f)((1− g)vin + gDvin) (4.4)

where vin is the incoming direction and f and g are user defined parame-
ters between 0 and 1 to weight the influence of the first eigenvector, e1, and
the prior tracing direction respectively.

Figure 4.5b illustrates on simulated data that tensorlines are able to
propagate through isotropic voxels, thus, stabilizing the fiber pathway. On

(a) (b)

Figure 4.5: The outgoing vector (dark red) is deflected in the direction of the PDD
(dotted red arrow) depending on the shape of the tensor (a). Tensor-
lines (violet) can propagate through isotropic voxels while a classic
streamlines is diverted (dotted red line) (b). Image (a) adopted from
[LWT+03], image (b) from [WKL99].
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the other hand, by simply continuing pathways through isotropic voxels
tensorlines can reconstruct fiber trajectories that do not really exist. Fur-
ther, tensorline propagation performs well on straight pathways but tends
to underestimate the curvature of bending fibers [LWT+03].

Lazar and Alexander compared the performance of streamlines and
tensorlines [LA03]. In their analysis each of the two methods was tested
with Euler and RK4 integration on interpolated tensor fields. Additionally,
fiber reconstruction using FACT without interpolation was tested. Stream-
lines and tensorlines performed equally on a straight tensor field. How-
ever, both methods led to better results with the Euler and RK4 integra-
tion method than with FACT that does not use interpolation. On a circu-
lar tensor field streamline tracing provided in general better results than
tensorline tracing. For both methods best results were achieved with RK4
and FACT while Euler underestimated the curvature. In summary, best
tracing results can be expected from streamlines integrated with the RK4
method on an interpolated tensor field. However, tensorlines better prop-
agate through crossing fibers where anisotropy is low.

4.1.3 Deterministic HARDI Tractography

There are two major differences to DTI data which need to be considered
when designing fiber tracing algorithms on HARDI data. First, unlike the
first eigenvector in DTI, there is no evident principal diffusion direction in
HARDI. Instead, the diffusion information is sampled in several hundreds
of directions uniformly distributed on the sphere. This raises the question
of which direction to choose. Often, the direction indicating the highest
ADC is chosen resembling the first eigenvector of the DT. Of course, many
other possibilities exist which should not be ignored as doing so would
waste the advantages over DTI tracing.

The second difference is the ability of HARDI data to resolve multi-
ple fiber populations per voxel. Currently, most approaches resolve up
to two fiber populations. With improved imaging techniques (i.e. higher
b-values and better SNR) and therefore higher possible SH orders in the Q-
ball reconstruction the ability to find three or even more fiber populations
per voxel in anatomically complex regions of the brain could become com-
mon. The former question in DTI of whether a voxel features isotropic or
anisotropic diffusion is extended to the question of how many fiber pop-
ulations are present in a voxel. In DTI zero (isotropic voxel) or two fiber
populations often result in the same diffusion tensor. In HARDI, however,
these two cases have to be clearly separated.

The next section introducesmethods to classify the number of fiber pop-
ulations in a voxel. The subsequent section presents example algorithms to
reconstruct fibers from HARDI data.
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Voxel Classification

In DTI the FA value as presented in section 3.4.1 was used to separate white
and gray matter. Its analogon, the GFA value, is widely used to separate
isotropic from anisotropic voxels in HARDI. However, the GFA can be mis-
leading in areas with multiple fiber populations especially in datasets with
low b-values. Such voxels result in similar GFA values as gray matter and
can not be told apart easily. To address the problem of fiber classification
more methods were developed in the recent years. The fractional multi-
fiber index (FMI) as proposed in [Fra02] determines the significance of a
given order of SH functions by the fraction of the squared coefficients of
different orders:

FMI =

∑

{j:l≥2} |cj |2
∑

{j:l=0} |cj |2
(4.5)

where cj is the j-th coefficient in the modified SH basis as introduced in
section 3.2.3 and l is the order of items in the SH series. It can indicate
whether a voxel is isotropic or not. Determining a different fraction (e.g.
order 4 coefficients and higher in the numerator and order 2 coefficients in
the denominator) yields the significance of the 2nd order SH coefficients
and, thus, whether the voxel contains one or more fiber populations. How-
ever, this measure can lead to incorrect results and the selection of proper
thresholds is an open issue. Apart from being an anisotropy measure the
FMI can also be used to estimate the proper order of SH functions to use in
the applied reconstruction method.

Another classifier to determine the fiber population was introduced by
Chen et al. [CGZ+04a] which incorporates the variance of the measure-
ments.

R0 =
|c0|

∑

j |cj |
R2 =

∑

{j:l=2} |cj |
∑

j |cj |
Rmulti =

∑

{j:l≥4} |cj |
∑

j |cj |
(4.6)

An algorithm to infer the correct number of fiber populations based on this
classifier was presented in [DAFD06]: If R0 is large or the variance is small
the diffusion is considered to be isotropic. If R2 is large a one-fiber popu-
lation is present in the voxel. A large Rmulti-value indicates two or more
fibers’ diffusion. Though, the great amount of words “large“ and “small“
in the formulation of the algorithm demand for more thresholds than FMI.
However, finding appropriate thresholds is a nontrivial challenge.

Recently, Zhang et al. proposed a new algorithm to classify fiber popu-
lations in a voxel [HZZJ10]. This algorithm is based on the minimum de-
scription length (MDL) criterion and the Q-ball reconstruction as presented
in [DAFD07]. Zhang et al. compute the minimum information entropy,
minEj , of each subset of coefficients, ĉj , according to

minEj = min{(N − j) ln
(cT c− ĉTj ĉj)

2(N − j)
+ j ln

ĉTj ĉj

j
− ln

j

N − j
} (4.7)
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with c the R × 1 coefficients vector, N the number of gradient directions
and j ∈ {1, . . . , R − 1}. Each subset ĉj of coefficients contains the j first
coefficients of the coefficients vector c. From the minimum Ej the j-th coef-
ficient is obtained. The corresponding SH order, l, of this coefficient is used
to derive the number of fiber populations in a voxel as l/2. Although, the
results on simulated data are promising this criterion needs to be evaluated
on real data.

Another recent approach to classify the fiber populations per voxel was
proposed by Prčkovska et al. [PVP+09]. The dODF in each voxel is normal-
ized and the number of dODF directions above a certain threshold (here:
0.6) is counted. Additionally to this proposed method the number of the
directions above the threshold can be normalized within the whole ROI to
lie between 0 and 1. Based on the resulting numbers for each voxel two
thresholds can be applied to separate voxels with 0, 1 or 2 fiber popula-
tions.

All these scalar values are especially useful in cases of non optimal
datasets acquired with low b-values and resulting in blurred dODFs. How-
ever, even in such cases they are surprisingly rarely used. Instead, current
approaches try to sharpen the dODFs [DDKA09] or use cSD [JLTS09] re-
construction methods to obtain sharp dODFs in the first place.

Example Algorithms

As stated before no well-established algorithms to infer fibers fromHARDI
data exist. Further, the various reconstruction techniques introduced in
section 3.2 provide an even greater variety of HARDI algorithms. Some
examples for state-of-the-art algorithms based on different reconstruction
methods will be given here. Since Q-ball reconstruction forms the basis of
the implementation for this thesis several Q-ball based algorithms will be
presented.

DSI Local Maxima Weeden et al. presented an algorithm based on
DSI [WWS+08]. Data were acquired post-mortem from a macaque brain
with bmax = 40000 and in-vivo on humans with bmax = 8000 and bmax =
12000. In each voxel a dODF,Ψ, was reconstructedwith 362 sampling direc-
tions uniformly distributed on a sphere. From these directions only those
were retained that pointed to local maxima. A local maximum direction is
defined as a vector, Uj , such that Ψ(ui) < Ψ(Uj) for every vector ui adja-
cent to Uj . After reconstruction, fiber tracing was started from every voxel
inside white matter bi-directionally following each local maximum vector
Uj . When reaching a new voxel the local maximum vector forming the
least curvature with the previous one was selected as the new direction.
The Euler method with a step size smaller than 0.5 voxel was used for inte-
gration. The tracing was aborted when white matter was left or when the
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Figure 4.6: Comparison of DSI (left) and DTI (right) tracing results. DSI success-
fully reconstructed fiber crossings (panel (c)) where DTI only identified
one fiber population (panel (d)). Image adopted from [WWS+08].

curvature inside a voxel was above a threshold. The results of this tracing
algorithmwere compared to the DTI algorithm presented in [CLC+99]. DSI
was able to reconstruct many complex regions of the brain were DTI failed
(Figure 4.6). The reconstructed pathways by DSI also matched anatomical
knowledge confirming the validity of the applied approach.

PAS Local Maxima A similar local maxima approach based on the
PAS reconstruction method was evaluated at the Fiber Cup and won the
5th place [Sak09]. Each voxel was sampled at 181 directions. Local max-
ima were determined by comparing each direction vector with its 8 nearest
neighbors. In contrast to the approach of Weeden et al. only the two highest
maxima from every voxel were retained as local fiber orientations. Stream-
lines were traced from every voxel inside the white matter. The longest
fiber trajectories intersecting seed voxels were selected as representative
fiber bundles.

Two Tensors Kalman Filter A two-tensor approach using a Kalman
filter was employed for fiber tracing in [MSR09]. Every tensor was as-
sumed to have a dominant principal diffusion direction, m, with a cor-
responding eigenvalue λ1. The remaining eigenvalues were assumed to
be equal (λ2 = λ3). Further, the two tensors in each voxel were equally
weighted representing two compartments that equally contribute to diffu-
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sion. A Kalman filter was used to estimate the system state (i.e. the model
parametersm, λ1, λ2 of each tensor) at every step using the signal at a par-
ticular voxel. With a state transition function and an observation function
the parameters for the next step were predicted. The Kalman filter fused
the measured signal and the prediction to update the model at the cur-
rent position. After moving a step in the resulting direction the procedure
was repeated at the new position. In this approach, tracing was started
from each voxel. Representative fibers were selected for each seed voxel
after finishing the tracing procedure. This approach won the 3rd place at
the Fiber Cup 2009. However, as the provided phantom data had only 3
slices the diffusion in this approach was constrained to two dimensions.
Therefore, the proposed approach lacks a general usability and should be
evaluated on human brain data without the 2D-constraint.

cSD Local Maxima Fiber tracing based on cSD placed 2nd at the Fiber
Cup 2009 [JLTS09]. Streamlines followed a local maximum forming the
least curvature with the incoming vector into the voxel. The signal was
triliniarly interpolated at each position. Although this method is not very
different from the local maxima approached presented above the sharp
ODFs led to great success in reconstructing fiber pathways. However, a
voxel for the deconvolution kernel representing the diffusion of a single
fiber population had to be selected by hand. Again, the diffusion was con-
strained to only two dimensions and this approach can not be considered
to work on real human brain data without further adjustments.

QBI Split Descoteaux et al. proposed an efficient Q-ball reconstruc-
tion method in [DAFD07]. Further, an additional sharpening of the re-
constructed dODF was proposed in [DDKA09] to estimate a much sharper
fODF. This sharpening transformation is based on spherical deconvolution.
In contrast to other SDmethods the deconvolution is not applied to the raw
measured signal but rather to the reconstructed dODF. SD is, thus, applied
merely as a sharpening method and not as a HARDI data reconstruction
method. Based on this data a fiber tracing algorithm was proposed.

The fODF was sampled at 2562 directions uniformly distributed on the
sphere. Further, the fODF was interpolated at each step of the Euler in-
tegration and normalized to the range [0, 1]. Diffusion tensors were also
calculated at subvoxel precision to obtain a FA value. Tracing was stopped
when the FA indicated that white matter has been left or when the cur-
vature in a voxel exceeded 75 degrees. From the normalized fODF local
maxima above 0.5 were selected. This thresholding was applied to avoid
selecting small maxima that might be corrupted by noise. If more than one
maximum existed tracing was split and continued along all present max-
ima.
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Figure 4.7: QBI with (left) and without (right) consideration of the quadric growth
of the volume element of eachODF sampling direction. Image adopted
from [ALS09].

QBI Solid Angle A variation of the last algorithm won the 4th place
at the Fiber Cup 2009 [Goh09]. Instead of sharpening the reconstructed
ODFs with SD, the reconstruction was performed with consideration of the
solid angle as proposed in [ALS09] to obtain sharper dODFs. The solid an-
gle takes into account the quadric growth of the volume element of each
ODF sampling direction with its distance to the origin (Figure 4.7). The
maxima selection in the tracing algorithm was modified as follows. After
finding local maxima those were eliminated that were within 45 degrees of
a greater maximum. Tracing followedmaxima directions within 20 degrees
of the incoming vector or within 60 degrees of the incoming vector if they
had at least a magnitude of 85% of the maximum ODF value. If this fil-
tering eliminated all possible outgoing directions tracing continued along
the incoming direction vector if the corresponding ODF value was at least
70% of the maximum ODF value. Since several fiber trajectories per voxel
are generated this way representative fiber pathways were selected along
voxels that were intersected by the most fibers.

MFACT The FACT algorithm presented above has been adopted to
HARDI data [CCC+08]. The extended algorithm is called multiple FACT
(MFACT) as it is capable of following multiple directions per voxel. Like
in FACT a streamline is continued to the edge of an adjacent voxel. Unlike
FACT,MFACT follows every direction indicated by a local maximum direc-
tion that is above a user defined threshold and below a curvature thresh-
old (Figure 4.8). The propagation of fiber tracts with MFACT can be com-
pared to a region-growing method. The colored dots (red, orange, yellow,
and green) in Figure 4.8 indicate hierarchically reached points that serve as
starting points for further fiber tracing. The magnitude of the local maxima
directions was used as a separating criterion for white and gray matter in
this approach. Lowmaximum values indicated loss of directionality in dif-
fusion and, thus, the end of white matter. As MFACT can generate lots of
implausible directions multiple ROIs should be used to retain only fibers
passing through all ROIs.
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Figure 4.8: Panel (a) shows the local maxima of each voxel. Tracing is started in the
central voxel along every local maxima direction (b). Panel (c) shows
the streamlines after three iterations. Image adopted from [CCC+08].

4.1.4 Summary

In the recent years HARDI data has become the number one choice when
designing new deterministic algorithm. There are only a few new deter-
ministic algorithms that rely on the classic DTI model. The DTI algorithms
presented here were proposedwhenHARDI techniques were still new and
acquisition of large HARDI datasets was not possible in an acceptable time.
However, most of the HARDI algorithms appear similar as they all use
some or all local maxima for fiber propagation. The main differences are
the choice of reconstruction methods and of appropriate thresholds. Al-
though it might seem as there is no further need to develop new deter-
ministic algorithms there is still no well established and well accepted de-
terministic HARDI algorithm. Further, as the Fiber Cup 2009 has shown,
complex brain regions are still very challenging to reconstruct. The deter-
ministic HARDI algorithms that placed 2nd and 3rd both used the a priori
assumption that the phantom data was two-dimensional. This raises the
question of whether or not they could reconstruct fiber pathways in real
human brain datasets.

4.2 Local Probabilistic Tractography

Probabilistic tractography methods have been developed to overcome the
limitations of deterministic algorithms. Resulting fiber trajectories from de-
terministic tractography have to be accepted as they are. There is no possi-
bility to derive reliability information on these tracts. Fibers reconstructed
from data with high SNR are presentedwith the same absolute certainty as
fibers from noisy data. Although, the latter fibers are more likely to result in
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implausible or even nonexistent trajectories. The goal of probabilistic trac-
tography is, therefore, to provide uncertainty information for reconstructed
fiber trajectories. Further, tracing shall not be stopped in uncertain regions
but continue in the most plausible directions albeit with low certainty. As
a result, probabilities can be assigned to every found fiber trajectories and
it can be determined which trajectories are more probable than others. The
price to pay for this additional information is a higher computation time
that results from uncertainty calculation and propagation and the recon-
struction of multiple streamlines.

The first step in probabilistic tractography is to represent uncertainty.
This will be the topic of the first section. The second section deals with the
propagation of uncertainty along the fiber trajectories. The last section pro-
vides examples for state-of-the-art algorithms. A more detailed overview
of probabilistic tractography methods is given in [JBB09].

4.2.1 Representing Uncertainty

When designing probabilistic tractography algorithms the first step is to
find a function to represent the uncertainty of the fiber orientations based
on the available data. In [JBB09] this uncertainty function is called uncer-
tainty ODF (uODF). In contrast to the dODF and the fODF, the uODF is not
a physical property. It is merely a function representing the belief about
the structure of the underlying tissue. For example, this function can state
that the true fiber orientation lies within a certain area on the surface of the
sphere with a given probability (Figure 4.9). In most cases not the whole
uODF is needed but only samples of it. This section presents several meth-
ods to calculate and represent uncertainty that are used in state-of-the-art
algorithms.

Bootstrapping

Theoretically, multiple repetitions of the original data could be acquired
and the fiber orientation reconstructed in all datasets. These fiber orien-
tations can then be considered as samples of the uncertainty. However, to
build a representative uODFmany samples are needed (about 50-1000). On
the contrary, acquiring multiple repetitions of the same data is not feasible
in practice as these acquisitions schemes would be very time consuming.
Instead, the uODF can be calculated with bootstrapping. Bootstrapping is
a method to take several samples from only a few available datasets. Since
every dataset provides information on diffusion from different gradient di-
rections these measurements can be randomly interchanged between the
datasets to create samples [PB03], [Jon03]. For example, the first gradient
encoding image is taken from dataset one, the second from dataset two, etc.
(the selection is carried out randomly). This procedure is illustrated in Fig-
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Figure 4.9: Illustration of 95% confidence intervals of the PDD. The radius of the
cones represents the uncertainty. The radius is small in regions with
one fiber populations and big in regions with complex fiber configura-
tions. Image adopted from [Jon03].

ure 4.10a for three datasets. Figure 4.9 shows the 95% confidence intervals
for the PDD generated with bootstrapping from two DTI datasets. Boot-
strapping has two essential drawbacks. Although not many repetitions of
the same data are needed, the procedure still demands for more than one
data acquisition. The second drawback is that all uncertainty samples are
derived from the same few datasets. As these datasets are not indepen-
dent samples the uncertainty of the fiber orientation in the derived uODF
is underestimated.

To overcome these limitations the use of the residual bootstrap (also called
wild bootstrap) was proposed [Jon08], [BCM+08]. For this method only one
dataset is required. From the measured signal data representing the diffu-
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sion is reconstructed (e.g. with DTI or QBI). The reconstructed data (e.g. a
diffusion ODF) does not fit the measured signal exactly due to noise and
modeling errors. The residual is the (arithmetical) difference between the
measured data and the reconstructed data. Samples are created by inter-
changing the residual between measurements. In [Jon08] the residuals are
additionally multiplied randomly by 1 or −1with equal probabilities.

Bayesian Methods

Bayesian methods are widely used techniques to calculate and represent
probabilities in a broad variety of models. Probabilities are represented in
form of a posterior probability density function (posterior pdf). This function
can bemade equivalent to the uODF by defining its parameters in spherical
coordinates. Since mostly only samples of the uODF and not the whole
function are needed most approaches use the Markov Chain Monte Carlo
(MCMC) estimation methods. These methods allow to draw samples from
a posterior distribution without the necessity to know all previous states
of the system (e.g. the current state is sufficient to derive the posterior
distribution).

The posterior pdf to encounter specific parameters Θ given some data
D and a modelM can be calculated as

P (Θ|D,M) =
P (D|Θ,M)P (Θ|M)

P (D|M)
(4.8)

Here, P (Θ|M) and P (D|M) are the a priori probabilities (i.e. the prior be-
liefs) to encounter the parameters Θ and the data D given the model M
respectively. P (D|Θ,M) is the likelihood of seeing the data D given the pa-
rameter values Θ.

To calculate the uODF in this manner all assumptionsmade in themod-
eling process need to be represented explicitly in the likelihood and the
prior probabilities. The prior distributions represent known information
about the parameters before any data is examined. A simple example for
a prior probability is a fair dice roll. Before performing any experiments
(i.e. rolling the dice) the probability of each possible outcome is known to
be 1/6. The likelihood has to include an assumption about the relationship
between the estimated quantity (e.g. the fiber orientation) and the mea-
sured signal. Also, if noise is modeled in any way the likelihood has to
include the corresponding assumptions as well. Again an example is taken
from the dice roll. Given the data ”even number“ the probability for the
outcome 2 is 1/3 (in contrast to the prior probability of 1/6). This approach
is illustrated in Figure 4.10b.

The Bayesian approach results in a similar uODF for problems that can
also be solved with a bootstrapping method. In general, however, the
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(a) Bootstrapping

(b) Bayesian method

(c) Calibration approach

Figure 4.10: Illustration of methods for uncertainty estimation. Image adopted
from [JBB09, p. 340].
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Bayesian approach offers a wide variety of techniques making it practical
for a wider class of problems than bootstrapping.

Functional Approximation and Calibration Approach

The last two approaches on inferring the uODF are applicable in cases
where diffusion is represented by some kind of data structure (e.g. DT
or dODF). In PAS MRI the dominant diffusion directions are reconstructed
without a representation by a specific data structure. Here, an approximate
relationship between the shape of the uODF and the sharpness of diffusion
directions at different noise levels can be used. Like in DTI, the peaks of
the PAS are blurred and not well defined in regions of isotropic diffusion.
Therefore, with known curvature of the PAS peak (computed as the trace
of the Hessian matrix of the PAS function) and the corresponding image
noise the uncertainty in the PAS peaks and, thus, the uODF can be pre-
dicted [PA05]. First, the SNR of the available data needs to be determined.
After that this data is simulated by a model with known parameters (e.g. a
mixture of tensors) with added noise at the measured SNR. For each sim-
ulation the PAS is reconstructed and the orientation and curvature of the
peaks is calculated. The simulation is then repeated many times with a dif-
ferent set of parameters (e.g. a different angle between fiber orientations).
From these simulations an empirical relationship between the curvature of
the PAS peaks and the standard deviation of its orientation can be recov-
ered for different noise levels (Figure 4.10c).

4.2.2 Propagation of Uncertainty

In deterministic tractography a streamline would simply follow a maxi-
mum diffusion direction to integrate the fiber trajectory. Unfortunately,
this is not possible in probabilistic fiber tracing. Here, not only one (or a
few) possible directions exist but an infinite amount each with a different
probability of being the true fiber orientation. To calculate the probability
that two regions of the brain are connected all paths and their probabilities
need to be considered. Mathematically, this is an integration problem that
can not be solved analytically. However, instead of solving this integral it
is possible to draw samples from the computed uODF to generate possible
fiber pathways (see examples in the next section). Starting at a seedpoint
a sample orientation is drawn from the uODF. The fiber trajectory is then
advanced a certain distance along this orientation (Figure 4.11). This proce-
dure is repeated until a stopping criterion is met. The output is one sample
streamline. By creating many such streamline from a seed point, P , the
entire probability density function from P can be generated.

This sampling procedure yields the same result as the computation of
the above mentioned integral provided that enough samples are generated.
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Figure 4.11: Propagation of streamlines with low (red voxel) and high uncertainty
(blue voxel). Sample streamlines are started from the bottom of each
voxel. Samples are drawn from the uODF and the streamline is ad-
vanced one step. The illustrated step size is one tenth of a voxel. Im-
age adopted from [JBB09, p. 342].

In the integration procedure a pathway that is twice as probable as another
one would contribute twice as much to the resulting probability. In the
sampling approach every pathway is sampled with the likelihood of its
probability. Hence, this pathway is twice as likely to be sampled. A dif-
ferent method of uncertainty propagation will be presented in section 4.3.1
when discussing global tractography approaches.

The generated streamlines must not be thought of as multiple connec-
tions starting at a single voxel. They are rather possible pathways with
different possibilities of a single connection. Therefore, after completing
the sampling procedure the number of streamlines passing through each
voxel is counted and divided by the total number of streamlines. This way,
the continuous probability distribution is turned into discrete probabilities
for pathways through different voxels. When using this approach it must
be understood that the division into voxels is arbitrary. Making the vox-
els twice as big also doubles the probability for a pathway to pass through
this voxel. Therefore, it is useful to define anatomically meaningful regions
and compute the probabilities of pathways passing through them instead.
In practice, these two approaches can be combined. By considering proba-
bilities for voxels the pathways can be validated to be anatomically reason-
able. By defining probabilities between brain regions quantitative anatom-
ical comparisons can be made.

In probabilistic fiber tracing the stopping criteria can be redefined. As a
streamline shall not be stopped when arriving at a region with high uncer-
tainty most of the time lower FA thresholding can be used than is common
in deterministic fiber tracing. Curvature constraints are usually applied
only to prevent fibers from falling back on themselves. Usually, implausi-
ble pathways are filtered out due to their low probabilities and scattered
spatial distributions. Therefore, probabilistic streamlines can simply be
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stopped when reaching the end of the brain.
The ability to assign probabilities to pathways and filter out unlikely

connections makes probabilistic fiber tracing more meaningful and more
robust to noise. On the other hand, these tracing approaches demand for a
significantly higher computation time as not only one but several hundreds
or even thousands of streamlines need to be generated.

4.2.3 Example Algorithms

This section presents example algorithms for the different uncertainty esti-
mation approaches discussed above.

DTI Bootstrap Lazar and Alexander investigated the error propaga-
tion along fiber pathways on bootstrapped DTI data [LA05]. Bootstrap-
ping datasets were generated based on 8 independent data volumes each
acquired with 12 diffusion directions. For each voxel in the bootstrapped
dataset N samples of the corresponding voxel were drawn with replace-
ment from the 8 datasets. These samples were averaged to form one voxel
in the resulting data volume. N was constant for one bootstrapping ex-
periment but varied among experiments between 1 and 8. In total, 1000
datasets with different values forN were generated. The deterministic ten-
sorline (tensor deflection) algorithm was used for fiber tracing with second
order Runge-Kutta integration. Fiber tracts were stopped based on FA and
curvature thresholds. Fiber tracing was performed on all 1000 volumes re-
sulting in 1000 individual streamlines per seedpoint. The probability for
the connectivity of two voxels was computed based on the number of fiber
trajectories connecting these voxels. Fibers were reconstructed in the cor-
pus callosum matching prior anatomical knowledge. Further, these exper-
iments have shown that fiber tract dispersion depended on the distance to
the seedvoxel. The dispersion decreasedwith higher values forN resulting
in more likely pathways. This experiments confirmed that bootstrapping
from several independent datasets provides valuable data for fiber tract
reconstruction.

DTI Residual Bootstrap The performance of bootstrapping and resid-
ual bootstrapping on DTI data was compared and evaluated in [Jon08].
1000 bootstrapped datasets were generated from 9 original datasets with
30 unique gradient directions. For each diffusion weighted image of the
resulting datasets one corresponding image was drawn from the original
dataset. Further, 1000 residual boostrapped datasets were generated from
one of the original datasets. Deterministic streamline tracing was performed
with RK4 integration on each of the generated datasets. Resulting stream-
lines for both approaches are presented in Figure 4.12 for a seedpoint in the
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internal capsule of the corticospinal tract (indicated by the arrow). In both
images a small amount of streamlines (shown in green) erroneously reaches
the other brain side. These anatomically implausible ways are mostly rep-
resented by low visitation counts (blue streamlines). When displaying only
voxels reached by at least 50% of all streamlines (red), both methods yield
similar anatomically plausible results. These results suggest that one data
acquisition is sufficient to reliably reconstruct fiber pathways when using
the residual bootstrapping approach. This simplification allows to acquire
the needed data in a clinically appropriate time.

Figure 4.12: Comparison of tracing results of the bootstrap (upper panel) and
residual bootstrap (lower panel) methods. Image adopted from
[Jon08].
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HARDI Residual Bootstrap The residual bootstrap was recently ap-
plied to HARDI data with 55 diffusion directions [BCM+08]. Q-ball recon-
struction was performed as proposed by Hess et al. [HMH+06]. Parame-
ters used for reconstruction were 642 sampling directions at a SH order of
4. Fiber tracing was started from 64 densely seeded points in each voxel of
the user defined ROI. On reaching a new voxel a dODF was reconstructed
with the residual bootstrapping approach for each individual streamline.
Therefore, different streamlines were propagated by different ODFs when
passing through the same voxel. In each voxel the global maximum was
identified. Subsequently, all local maxima were found that were not within
45 degrees of the global maximum an had at least the magnitude of 33%
of the global maximum. The fiber tract was continued along the direction
most similar to the incoming trajectory. FA (0.05) and curvature (75 de-
grees) thresholds for used for stopping. The number of streamlines passing
through each voxel served a as confidence metric in the fiber path. These
results were compared with the results from the DTI FACT algorithm in
anatomically well known regions of the brain. The Q-ball approach con-
sistently provided better results as it was able to identify multiply fiber
populations per voxel and, thus, follow even nondominant fibers.

DTI Independent Scoring Common to all probabilistic algorithms so
far is the fact that the process of finding plausible pathways is not separated
from the assessment of their validity. In otherwords: The validity of a path-
way is determined by the number of sample streamlines passing through
the corresponding voxels. A recent approach, termed ConTrack, aims at
separating these two steps [SDBS+08]. DTI data with 8 repetitions and 12
diffusion encoding directions was used in this approach. Sample pathways
were generated by bootstrapping and the application of two ROIs. Sub-
sequently, a score, Q(s), was calculated for each potential pathway, s, as
Q(s) = p(D|s)p(s). The first part, p(D|s), is the data dependent score of
finding the pathway, s, given the diffusion tensor D. The data dependent
score incorporates two dispersion parameters. One accounts for the uncer-
tainty of the data and is derived from bootstrapping. The other parameter
handles the uncertainty introduced by the shape of the diffusion ellipsoid.

The second part of the scoring equation, p(s), is the data independent
term. It incorporated prior knowledge about the general structure of white
matter pathways such as curvature and typical length. This scoring pro-
cedure realizes two principles: symmetry and independence (Figure 4.13).
With the principle of symmetry the probability for a pathway between two
regions, R1 and R2, is the same in both directions along this pathway. The
principle of independence scores a pathway from a certain region indepen-
dently of other potentially existing pathways starting at the same region.
This approach was able to find known pathways that were missed by other
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Figure 4.13: Principles of symmetry and independence for path scoring. Image
adopted from [SDBS+08].

DTI based methods.

HARDI Bayesian Approach A method on reconstructing fiber path-
ways with the Bayesian approach and the compartment model is presented
in [BJBJ+07b]. HARDI data with 60 diffusion encoding gradients and 3
repetitions were acquired. The so called automatic relevance determination
(ARD) method was used to infer on the number of fiber populations in
each voxel. In simple terms, ARD is a method that assigns zero probabil-
ity in the posterior distribution to parameters that are not supported by
the given data. In each voxel an isotropic compartment and a number of
anisotropic compartments were modeled (corresponding to the number of
fiber populations in that voxel). 5000 sample streamlineswere generated by
drawing samples from the posterior distribution and advancing the tracing
position along the drawn direction. In voxels with multiple fiber popula-
tions samples were drawn only from the posterior distribution of the fiber
population that corresponded to the least curvature of the incoming fiber.
By doing so, nondominant pathways were able to propagate through re-
gions of fiber crossings. Fiber bundles were identified that were previously
difficult to trace.

DTI Particle Filter Particle filtering on DTI data has been applied for
fiber tracing in [ZHGG09]3. An important difference to simple particle
seeding approaches is to takes advantage of the weighting and resampling
mechanism of particle filtering. This weighting and resampling is an exten-
sion to the Bayesian approach introduced in this chapter. Initially, particles

3Although the authors of this approach call it global, fiber trajectories are propagated
along local diffusion tensor information.
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are placed in the seed voxel. A Bayesian posterior distribution functions
is calculated, samples are drawn, and each particle is advanced a constant
step size along the corresponding sample direction. This first step is called
prediction. In the second step, weighting, a weight is assigned to each parti-
cles representing its importance. Theseweights incorporate the uncertainty
from the posterior distribution. It can include the plausibility of the path-
way (e.g. curvature, tensor shape), data noise, and other prior assump-
tions. In the third step, selection, the particles with highest weights are re-
tained whereas particles with low weights are removed. As the number of
particles would decrease in each step the posterior distributions of the high
weighted particles are sampled more often to generate more particles at the
most probable locations. This procedure leads to the advancement of par-
ticles only along trajectories with the highest probabilities of representing
white matter fiber bundles. However, due to the diffusion tensor model
high uncertainties for particle propagation arise at fiber crossings.

HARDI Monte-Carlo Particles Fiber tracing on an interpolated Q-
ball field with a Monte-Carlo estimation was proposed in [PPC+05]. Hu-
man brain data was acquired with 41 diffusion gradient directions. At the
beginning, 20 particles are placed in every voxel of a defined ROI. An initial
speed along the maximum direction of the voxel is assigned to each parti-
cle and it is advanced a certain distances along this direction. At each step
the new speed’s direction, vn+1, results from a trade-off between inertia, or
last speed’s direction, vn, and the force from the current dODF, vq:

vn+1 = αvq + (1− α)vn (4.9)

The parameter α is the standard deviation of the dODF normalized by its
maximum. In isotropic voxels α takes small values favoring the current
direction. Whereas in anisotropic voxels high values for α emphasize the
dODF’s direction. This particular part of the algorithm is similar to the ten-
sorline approach. The direction of the dODF force, vq, is selected randomly
within a half-cone of the current direction, vn. The sampling takes place in
a way that the most probable diffusion direction (i.e. the dODF maximum)
inside the half-cone is most likely to be assigned to vq. This is done by
assigning sampling probabilities proportional to the dODF values inside
the half-cone. The angle of the half-cone can be varied to regularize the
curvature of the fiber trajectories. Tracing is stopped only when the white
matter mask is left. Voxels containing trajectories of only a small number
of streamlines are considered as erroneous paths.

HARDIRandomWalk Particles Alongwith a deterministic algorithm
described above a probabilistic fiber tracing algorithm was presented in
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[DDKA09]. The dODF was sampled from 2562 directions uniformly dis-
tributed on the sphere and sharpenedwith an additional SD transform. The
resulting sharp dODF field was normalized and interpolated to gain sub-
voxel precision. The proposed algorithm is a random walk approach that
uses 100, 000 particles per seedvoxel. For each transition from a voxel, x,
to a different voxel, y, the transitional probability along a specific direction,
dxy, was computed as the product of the dODF values of these directions.
Mathematically expressed this probability is

P (x, y) = Ψx(dxy) ·Ψy(dxy) (4.10)

where Ψx(d) is the dODF value of voxel x in direction d. In each voxel
transitional probabilities for 120 directions were calculated. Tracing was
stopped when a trajectory left white matter (low FA value). As a final step
voxels that were reached by less than 100 particles were considered as im-
plausible fiber trajectories.

4.2.4 Summary

As can be seen on the examples presented here probabilistic tracing algo-
rithms offer a wider variety of possibilities to design tracing algorithms
than deterministic approaches do. This is due to the many different ways
to represent uncertainty and also due to many possibilities the theory of
probabilities offers to combine, select, and score the generated sample path-
ways. However, all these methods come with a significantly higher com-
putation time as often 1000 or more sample streamlines are generated.

Also noticeable is the fact that even several years after HARDI acquisi-
tion schemes have become possible in a clinically feasible time new proba-
bilistic algorithms based on the classic DTImodel are proposed. This can be
attributed to the possibility of probabilistic approaches to reconstruct com-
plicated brain structures by simply sampling a large amount of streamlines.
Clearly, HARDI techniques offer more reliability and flexibility in fiber tra-
jectory reconstruction especially in challenging brain regions. Neverthe-
less, more time is needed until HARDI methods become as common in
probabilistic fiber tracing as they already are in deterministic fiber tracing.

4.3 Global Tractography

So far the main assumption of fiber tracing algorithms was that fiber trajec-
tories are represented by paths of highest diffusion. The local algorithms
introduced in the previous sections use this assumption by locally follow-
ing the PDD or a path with high diffusion probability. As typically only the
paths of highest diffusivity are chosen for tract propagation nondominant
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connections can not be reconstructed. This is a well-known problem in ar-
eas of multiple fiber populations. Probabilistic methods partially account
for this fact by randomly choosing different probable diffusion directions.
Though even with this approaches some fiber tracts are hard or impossible
to find.

Global tractography approaches try to solve the fiber reconstruction
problem differently. Given two points A and B in the brain the task is
to find a path of maximum diffusivity that connects these points. When
following the path of highest diffusion locally there might be no path con-
necting A and B. Or expressed in other words, the path of maximum dif-
fusivity connecting A and B might not be aligned locally with the path
of least hindrance to diffusion in each point. However, out of all possible
paths leading from A to B the found path is the path of highest diffusiv-
ity. One major advantage of global approaches is that local errors do not
accumulate along pathways as an entire pathway is considered simultane-
ously. Thus, it is unlikely that a single erroneous measurement leads to a
reconstruction of implausible paths.

The feature of interest in these new approaches must be global, i.e. in-
tegrated along the whole fiber tract. Mathematically, this is a global opti-
mization problem that can be expressed as a minimization of a path inte-
gral. Two different approaches to solve the fiber tracing problem globally
will be introduced in the following sections. Subsequently, example algo-
rithms for both approaches will be presented.

4.3.1 Front Evolution Approaches

In front evolution approaches local diffusivity can be interpreted as local
speed. Paths with higher diffusivity are traversed with higher speeds than
paths of low diffusivity. Thus, the globally optimal connection between
two regions can be thought of as the path with the minimal arrival time.
Front evolution approaches are used to build spatially encoded arrival time
maps starting at a seed point and leading to any possible position in the
dataset. The arrival time map contains the minimal arrival time integrated
along the fastest possible path to each point.

The front is the border of the region within which the arrival time is
known for each voxel. Initially, the front consists of only one voxel, the
seedpoint, with an arrival time of zero. Then, an arrival time is assigned to
all adjacent voxels to the front. This newly assigned arrival time depends
on the diffusivity properties of each voxel and its respective distance to the
closest point in the front. Subsequently, the points with smallest arrival
times adjacent to the front are chosen and added to the front. With the
modified front all adjacent voxels are updated again. The front evolution
proceeds until no further voxels can be included. Globally optimal paths on
the arrival time map can be found by following the gradient of the arrival
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Figure 4.14: Illustration of the front evolution approach. The front evolves from
the dotted to the solid line. The propagations is determined by a
speed function. In this example, propagation is fastest along the nor-
mal vector connecting r′ and r. Image adopted from [PWKB02].

times from any point to any other point.

4.3.2 Energy Minimization

Energy minimization approaches typically sample the white matter with a
large number of particles. These particles are defined by a position and an
orientation. One or more different types of energies is assigned to each of
the particle. The energy types describe each particle’s possibility to move,
rotate, generate new particles, or connect with other particles to form larger
segments. The energy of two connected particles is lower than of the same
two particles if they are separated. Further, particles that are aligned to a
direction of high diffusivity also have less energy than particles aligning to
other directions.

Fiber tracing is performed by finding a global configuration of particles
with minimal energy, i.e. a configuration where the sum of all energies cal-
culated for all particles is minimal. Usually, the results of these tractogra-
phy approaches are of high quality and anatomically plausible. However,
the process of finding the minimal energy configuration is very time con-
suming making energy minimization approaches clinically unfeasible.

4.3.3 Example Algorithms

This section provides several state-of-the-art examples for global tractogra-
phy. Again an approach will be mentioned that participated in the evalua-
tion of different fiber tracing algorithms at the Fiber Cup 2009.

DTI Front Evolution One of the first global tractography approaches
was introduced in [PWKB02]. Two different speed propagation functions
were proposed and evaluated. The first speed function is called the voxel
similarity measure. According to this function the fastest front propagation
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(a) (b)

Figure 4.15: Connectivity maps resulting from the front evolution approach. Im-
age adopted from [PWKB02].

occurs in the direction in which the first eigenvectors of the closest adjacent
voxels inside and outside the front are most collinear to the normal vector
of the front between these two voxels (Figure 4.14). The second speed func-
tions favors the voxel connectivity (voxel connectivity measure). Here, only
the first eigenvector of the closest voxel inside the front and the normal vec-
tor of the front are required to be most similar. Thus, the previous diffusion
direction is preferred for front propagation. In both cases the normal vector
to the front is determined from the 26 neighboring voxels. The front is only
propagated to voxels above a certain FA threshold.

Paths of connection were determined on a trilinearly interpolated time
of arrival map by using Euler integration with a constant time step size.
Two connectivity metrics were used to identify fiber pathways. First, for
each of the two speed functions connectivity maps following the time of ar-
rival gradient were generated. The second metric aimed at assessing how
faithful a potential fiber path is given the underlying orientations of the
first eigenvectors. For this purpose the angle between the tangent to the
pathway and the first eigenvector at each point was determined. Smaller
angles were considered as higher plausibilities. Experiments showed that
the voxel connectivity measure combined with the pathway plausibility
metric provides best results (Figure 4.15b). Pathways generated by sim-
ply following the gradients resulted in high lateral spreading of fibers and
implausible anatomical connections (Figure 4.15a).

Hybrid Front Evolution A global tractography approach combining
DTI and HARDI data was proposed in [CSR+05]. The method is based
on [PWKB02]. In this new approach the whole diffusion tensor is used
for front evolution. In cases where DTI does not provide reliable direc-
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(a) Front evolution DTI (b) Front evolution hybrid (c) FACT DTI

Figure 4.16: Comparison of the tracing results fromDTI based front evolution, hy-
brid front evolution and FACT fiber tracing. Images adopted from
[CSR+05].

tional information HARDI data can be used instead. The dODF value in
the direction of the normal vector of the front is used as a speed function
for propagation. In regions with high curvature the dODF values below the
mean of the dODF are ignored to avoid wrong paths resulting from stream-
lines cutting a corner. This thresholding is not necessary in other regions
as the laterally spreading trajectories get low connectivity indices. FA and
curvature thresholds were used to stop the front evolution in gray matter
voxels. 27 sub-voxel seedpoints were generated in every seedvoxel. Fiber
trajectories were reconstructed from the time of arrival maps using FACT
integration.

Experiments were performed both, on phantom and on human brain
data. Front evolution was tested on DTI data, on Q-ball HARDI data, and
as a hybrid approach using HARDI data only in regions where DTI direc-
tional information was insufficient. Additionally, the streamlines from a
classical deterministic PDD algorithms with FACT integration were com-
puted for comparison. The pure Q-ball approach performed less well than
the DTI method. The authors of [CSR+05] attribute this to the high sensitiv-
ity to noise that lies in the Q-ball reconstruction. The hybrid approach per-
formed best as the mixture of the datasets was an ideal trade-off between
noise and directional information in challenging regions. The tracing re-
sults are presented in Figure 4.16.

Spin Energy Minimization Recently, an energy minimization tech-
nique was proposed that can be applied to DTI and HARDI data [FPM09].
In this approach the entire white matter is parameterized by a large num-
ber of unit length particles, called spins. Each of the spins has three differ-
ent types of energy: a diffusion, an interaction, and a generative potential.
The diffusion potential of a spin is minimized if this spin is rotated parallel
to the orientation of maximum diffusivity (either indicated by a diffusion
tensor or a dODF). This energy tends towards infinity in gray matter vox-
els. By minimizing this type of energy fiber segments align to the diffusion
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Figure 4.17: The initial tensor field is shown in (a). Spins are placed randomly and
alignwith the PDDs of the voxels (b). Panel (c) represents theminimal
energetic configuration of the spins in (b). Panel (d) represents the
spin configuration after gap closing. Image adopted from [FPM09].

direction. The interaction potential allows spins to connect to longer seg-
ments. It is minimized if both ends of a spin connect to other particles with
the lowest possible curvature. The third energy, the generative potential,
ensures that fibers do not end inside white matter. If both ends of a spin
are connected this energy is zero. However, if at least one end can not be
connected to another spin this energy tends towards infinity. Further, it is
maximized if a connection is possible but only with a curvature above the
specified threshold. In the case of an infinite generative potential new spins
are created to close the gaps in white matter. An example illustration on a
phantom crossing is presented in Figure 4.17.

The optimal configuration is found when the sum over all spins of the
three energies is minimal. The first two energies make conflicting demands
on the spins. Hence, a trade-off between curvature and the optimal diffu-
sion alignment needs to be found. These two energies are the first that are
minimized. In the last step gaps in the fibers are closed by minimizing the
third potential.

This approach was tested on a phantom representing a 45 degree fiber
crossing. The results were compared to a DTI streamline algorithm and to
the Q-ball approach described earlier in this chapter ([DDKA09]). The re-
sults are shown in Figure 4.18. DTI was not able to resolve the fiber cross-
ing due to missing directional information. Some of the streamlines from
Q-ball fiber tracing were able to propagate through the crossing although
in some cases only one of two expected maxima was identified (green cir-
cles in Figure 4.18). The spin model achieved best results on the phantom
data.

Further, full brain tractography on human brain data was performed to
compare these three fiber tracing algorithms (Figure 4.19). Again, the spin
model achieved the best results. However, 2 million spins and 3 days of
computation time were needed to fully reconstruct the fiber trajectories.
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Figure 4.18: Comparison of tracing results of DTI streamlines, Q-ball and the spin
method (from left to right). Image adopted from [FPM09].

Figure 4.19: Full brain tractography results. From left to right: DTI, Q-ball, and
the spin method. Image adopted from [FPM09].

Local Energy Minimization The 1st place at the Fiber Cup 2009 was
won with the approach presented in [RMK09]. The key idea of this ap-
proach is to use local methods to achieve a globally optimal result. The
Bayesian theorem is used to find the most likely model given the observed
data. Themodel is represented by particles with a position, orientation, and
an internal energy. The internal energy represents the interaction potential
of fiber segments. It keeps connected particles together and minimizes the
curvature of the fibers. Thus, only connected segments possess internal
energy. Further, an external energy is calculated as the squared difference
between the measured signal and the signal predicted by the model.

The so called Metropolis-Hastings sampler is used to sample the poste-
rior distribution of the fiber configuration. This configuration is used as
a proposed modification of the current model and is accepted with a cer-
tain probability. The proposal can be of several types: It can generate new
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Figure 4.20: Process of segment selection to modify a connection. Image adopted
from [RMK09].

particles or remove already existing ones. Further, proposals can randomly
move particles, or move particles in a way to minimize their internal en-
ergy. The last type of proposal is used for fiber tracing. It connects fiber
segments or modifies already existing connections. An example for the lat-
ter is given in Figure 4.20. A segment, X0, is selected for modification by
the algorithm: The red fiber (fold) is replaced by the blue one (fprop). During
fiber tracing the new segment searches for successors in a small radius in-
dicated by the circle. Free endpoints in a small radius, l, (marked in green)
form the set of possible successors S.

This approach was tested on human brain data and successfully recon-
structed known anatomical fibers. The computation time for a whole brain
tractography was below one day. As this global approach does not work
with seedpoints it had to be adjusted for the Fiber Cup. Most probable
fiber trajectories passing through seedpoints were selected and averaged
to obtain a representative fiber tract for each seedpoint.

4.4 Summary

This chapter concludes the theoretical part of this thesis. In the preced-
ing chapters background knowledge on MRI and diffusion MRI was pro-
vided. Further, different reconstruction methods for HARDI data were in-
troduced. This chapter extensively treated current fiber tracing approaches.
Thesewere arranged in three groups: deterministic, probabilistic, and global
methods.

Deterministic approaches have the least demands on computation time.
DTI based methods of this group follow the principal diffusion direction in
each voxel (streamline tracing) or use the whole diffusion tensor (tensor-
line tracing) to reconstruct neuronal fibers. HARDI based algorithms of-
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ten select one or several local diffusion maxima to continue the streamline.
Variations of the current approaches are limited to the maxima selection
and different weightings of possible directions. Deterministic approaches
suffer from the fact that integration errors accumulate along the fiber tract
and can lead to great deviations from the true underlying fiber trajectory.
Further, no reliability information on the reconstructed pathways can be
inferred from this kind of approaches.

Probabilistic methods, however, indicate whether a fiber trajectory is
probable or not. The idea of these approaches is to represent the uncer-
tainty of the diffusion direction in a probability distribution. A stream-
line is continued by drawing samples from this distribution. Often, sev-
eral hundreds of streamlines are generated and the most likely fiber path-
ways are extracted from the results. In contrast to deterministic algorithms
new DTI based probabilistic methods are still developed. This is due to the
fact that probabilistic approaches can better handle uncertainty and insuf-
ficient directional information. Nevertheless, this approaches can benefit
from HARDI data.

Global approaches have the highest demands on computation time.
Most of these algorithms are not suitable for clinical purposes. The idea be-
hind global fiber tracing is to find a globally optimal path of least hindrance
to diffusion instead of following locally the principal diffusion direction.
This results often in a complicated global optimization problem. The re-
sults obtained with global approaches are better than with any other type
of algorithm. However, the long computation times are a serious drawback
making these algorithms not applicable in practice.

Based on the ideas arising from the various fiber tracing approaches
presented in this chapter new algorithms will be developed and evaluated
in part III of this thesis.
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Practical Applications
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Chapter 5

Implementation

The implementation for this thesis is described in this chapter. Section 5.1
gives a very brief introduction to MeVisLab that is used as a framework
for implementation. Subsequently, section 5.2 provides an overview of the
classes the implemented modules are derived from. Important properties,
functions, and data types are introduced and explained. Further, the im-
plemented image processing pipeline is explained. Finally, a detailed de-
scription of all implemented modules and algorithms is given in section
5.3.

5.1 Development Environment

The software for this thesis was developed on Ubuntu 10.041, a Linux dis-
tribution. The code was written in C++ using the Qt Creator2 integrated
development environment (IDE). The developed software is not a stand-
alone application and, thus, can not be executedper se. Rather, the software
consists of several modules that can be loaded and executed in MeVisLab3,
a powerful development environment for medical image processing, pro-
vided by MeVis Medical Solutions AG, Bremen, Germany. A very short
introduction to MeVisLab is given in the following section to provide a ba-
sic understanding of this framework. For further information please refer
to theMeVisLab documentationweb pages4. Further, the Boost5 library was
used for computation of SH basis functions and theNewmat6 matrix library
for general matrix and vector calculations.

1http://www.ubuntu.com
2http://qt.nokia.com
3http://www.mevislab.de
4http://www.mevislab.de/fileadmin/docs/current/MeVisLab/

Resources/Documentation/Publish/SDK/GettingStarted
5http://www.boost.org
6http://www.robertnz.net
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(a) (b) (c)

Figure 5.1: The different module types of MeVisLab. (a) shows an ML module
for image processing, (b) an Open Inventor visualization module. The
macro module shown in (c) subsumes a whole MeVisLab network.

5.1.1 MeVisLab

MeVisLab is a modular development platform for medical image process-
ing and visualization. It allows for rapid prototyping and offers easy ways
of combining modules to algorithm pipelines. In MeVisLab a combination
of modules is called network. This combination of modules to new algo-
rithms and networks can be achieved conveniently in a graphical editor
simply by connecting (i.e. drawing lines) inputs and outputs of the desired
modules. Currently, MeVisLab includes far more than 1000 image process-
ing and visualization modules. The visualization modules are based on the
Open Inventor toolkit and the graphics standard Open GL. By default, all vi-
sualization modules have the name prefix So. Further, an additional project
specific prefix can be assigned to modules. For all modules implemented
in this thesis the prefix is UKO for University of Koblenz. However, this ad-
ditional prefix is seen only in the source code of the modules and not in
MeVisLab.

There are three different types of modules used in MeVisLab:

1. ML modules for image processing (blue, Figure 5.1a)

2. Open Inventor modules for visualization (green, Figure 5.1b)

3. Macro modules containing other modules or networks (brown, Fig-
ure 5.1c)

Each module’s interface is represented by its connectors. The connec-
tors on the bottom side are used for input data while the connectors on
the upper side represent the module’s outputs. For example, the module
in Figure 5.1b has three input connectors and one output connector. The
shape of the connectors indicate the required data type. Triangles repre-
sentMeVisLab image processing Library (ML) images. ML images are six-
dimensional data arrays providing enough flexibility even for large medi-
cal datasets. The half-circles stand for Open Inventor scenes. A third type,
the square, stands for pointers to data structures. The last connection type
was not used in this implementation.
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Figure 5.2: A simple example network. The dataflow is represented by the
smoothly curved lines and starts in the ImageLoad. The loaded image
is passed to the Convolution module where it is processed and subse-
quently passed to the SoView2Dmodule for visualization.

A simple example network is presented in Figure 5.2. The data flow
is symbolized by the smoothly curved lines connecting the modules’ in-
terfaces. In the module ImageLoad an input image is loaded. This image
serves as input to the Convolution module where it is processed. The out-
put is passed to the SoView2D module for visualization.

5.2 Implementation Overview

This section has the purpose to introduce ml::Module and SoShape as the
base classes for the implemented modules. An overview is given on their
structure and common features used in the implementation of all derived
modules. At the end of this section the implemented MeVisLab network
and its dataflow is explained.

5.2.1 MLModules

The ML modules implemented for this thesis are derived from the base
class ml::Module which is provided by the MeVisLab library. The class
ml::Module is shown in Figure 5.3. There are three methods that are of par-
ticular interest in the design of new modules that need to be overloaded:

• handleNotification: This method is called whenever data of a field
in the module is modified. Input images are also considered as fields.
A pointer to the modified field is passed to the function so that the
modified data can be handled here.

• calculateOutputImageProperties: In this method, the properties (e.g.
the image size, data type) of the output image at the index that is
passed to this function can be calculated and set. By default, the prop-
erties of the input image are copied to the output image.

• calculateOutputSubImage: The data for the output image is calcu-
lated and copied to the output in this function. Usually, this is the
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place where the image processing functions are called from. This
function is automatically called several times as by default only a
subimage is calculated each time. If all data is calculated at once this
function is still called several times to copy all subimage data to the
output.

Further, important functions are getNumInputImages and getInputImage to
get the number of input images and the input image at the specified index
respectively. Analog functions are provided for the output images. The
images are returned as pointers to PagedImage allowing only page specific
access to the image data.

When not stated differently in section 5.3 the three above emphasized
functions are used in the following way throughout the implementation for
this thesis: The function handleNotification handles all module field changes7.
If the changed module field is an input image its content is copied and
stored in a member variable of type pointer to VirtualVolume. This type al-
lows for a random access to image data in contrast to the PagedImage data
type. After handling a module field change the function touchOutputImage-
Fields is called to recalculate the output images (by first calling calculateOut-
putImageProperties and then calculateOutputSubImage).

In the function calculateOutputImageProperties a pointer to VirtualVolume
for each output image is created. The data type of the individual image
elements is set to the same type as in the input image (usually float). The
size of the output image’s first three dimensions (x, y, z) corresponds to the
number of voxels in the input images. The size of the dimensions is copied
to the output image. The size of dimension t is adjusted to the number of
values that need to be stored for each voxel. This number depends on the
individual task of each module.

Finally, the function calculateOutputSubImage is used to calculate the
data for the output image. Unlike the function’s name suggests this is done
for the whole output image at once (by conveniently accessing the data in
the VirtualVolume* member variables). Therefore, the SubImage* parame-
ters for the input image and output image that are passed to the function
are ignored. To ensure that the image calculation is not performed various
times a flag is set after successfully calculating the output image. This flag
is unset on module field changes. For a better overview in the control flow
diagrams of each ML module these subsequent calls to this function will
not be indicated. Instead, they will be marked by a gray diamond node.
After calculating the image data the data is copied to the module’s output
image.

7Note that there is a difference between conventional field variables in C++ classes and
variables of type Field* used inMLmodules to pass data to the module (e.g. via a GUI panel
or input connectors). For a clear differentiation the former will be referred to as member
variable whereas the latter will be referred to as module field.
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Figure 5.3: The ml::Module class with its most important functions. All ML mod-
ules implemented for this thesis are derived from this class.

5.2.2 Open Inventor Modules

Open Inventor provides a programmingmodel for visualization which con-
sists of various nodes. Each node holds different objects (e.g. shapes and
transformations) that can be combined to represent a scene graph. InMeVis-
Lab, the Open Inventor nodes are represented by SoNode modules. Scenes
for visualization can be constructed by combining modules and adjusting
their respective module fields.

Since the main focus of this thesis lies on image processing no sophis-
ticated scene graphs where built for visualization purposes. Rather, the
visualization modules for this thesis concentrate on displaying the recon-
structed data in a user-friendly and well-arranged way. As their purpose
is to render rather simple geometry from the reconstructed data the imple-
mented Open Inventor modules are derived from the base class SoShape
that represents geometrical objects. The class SoShape is a direct subclass of
SoNode. The class SoShape is shown in Figure 5.4.

Two of these functions were reimplemented in the visualization mod-
ules for this thesis:

• GLRender: This function is called to render the scene using OpenGL.
The whole geometry of the scene is rendered here or in other func-
tions that are called here.

• ComputeBBox: In this function the dimensions of the bounding box
for the rendered scene are set and its center position specified. The
bounding box is calculated to be big enough so that the whole scene
can be rotated about any axis without clipping.

Open Inventor modules do not provide a handleNotification function as
do ML modules. Instead, callback functions for every module field need to
be specified. On a module field change the corresponding callback function
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Figure 5.4: The SoShape class with its most important functions. All Open Inven-
tor modules implemented for this thesis are derived from this class.

is executed and a function to handle the module field change can be called
from within the callback function.

5.2.3 Implemented Network

Six modules have been implemented in the course of this thesis. Their indi-
vidual purposes are briefly described here. A detailed description is given
in the following section. Appendix A provides a user-level documentation
of these modules.

Implemented ML modules:

1. HARDI_dODF_Reconstruction: Reconstructs the diffusionODF from
given SH coefficients.

2. HARDI_AnisotropyCriteria: Applies different anisotropy criteria to
classify the number of fiber populations in a voxel.

3. HARDI_deterministic_Tractography: Provides different determinis-
tic fiber tracing algorithms to reconstruct white matter fibers.

Implemented Open Inventor modules:

4. So_dODF_Visualization: Visualizes diffusion ODFs in different ways.
Optionally, the fiber classification image and theB0-image can be dis-
played in the background.

5. So_Fiber_Visualization: Visualizes reconstructed fibers in the dataset.
Optionally, the fiber classification image and theB0-image can be dis-
played in the background.

Implemented macro module:

6. MFC_Macro: Based on the HARDI_AnisotropyCriteria module this
module provides a novel global fiber classification approach to deter-
mine the number of fiber populations per voxel. This novel approach
is based on morphological operations and thus called morphological
fiber classification (MFC).
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Figure 5.5: Image processing network for white matter fiber reconstruction that
has been developed. The input image is loaded by themodule itkImage-
FileReader and subsequently processed by all modules in the pipeline.
The results are displayed by the two Open Inventor modules on top of
the network.

A network, HARDI_Tractography.mlab, containing these modules has
been created to be used as an image processing pipeline. It is shown in
Figure 5.58. The highlighted region contains the implemented modules.
Modules outside of this region belong to the MeVisLab library or were

8The smoothly curved lines that normally connect the moduleswere replaced by orthog-
onal lines to improve the overview.
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Figure 5.6: The dataflow of the main network for HARDI tractography. Each ac-
tivity provides a modification of its input image as output image. The
dimensions of each image are represented by the x, y, and z dimension.
Specific image data is stored in the t dimension for each voxel. Excep-
tions are the initially loaded image (c dimension) and the fiber image
(different image structure).

provided by the Computer Graphics working group of the University of
Koblenz. The module HARDI_AnisotropyCriteria is not shown in the main
network as it forms a part of the inner network of theMFC_Macromodule.
This inner network will be described in detail later in this chapter.

The network shown in Figure 5.5 can be considered as an “applica-
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tion” developed during this thesis. Since the modules interact with each
other by passing images an UML class diagram of the whole systemwould
not properly depict the relationships of the modules. Instead, an activity
diagram with data flow visualization will be used to describe the result-
ing network (Figure 5.6). Please compare Figures 5.5 and 5.6 while read-
ing this paragraph. The control flow in Figure 5.6 starts in the itkImage-
FileReader module. An input image containing two HARDI acquisitions
(NEX = 2) of phantom data is loaded (for more details on the dataset see
chapter 6). Each acquisition contains an image without diffusion weight-
ing and 64 diffusion weighted images resulting in total in 130 images in
the whole loaded dataset. Initially, the diffusion information of the input
image is stored in dimension c. Since lots of MeVisLab visualization mod-
ules consider the data of the c dimension as color information the data is
moved to dimension t in the SwapFlipDimensions module. Further, the two
acquisitions are averaged in the HARDIAveraging module resulting in to-
tal in 65 images stored in dimension t. This resulting image is passed to
two visualization modules (see below for details) and to the HARDISpher-
icalReconstruction module. Using the reconstruction method described in
3.2.3 this module reconstructs the SH coefficients. The t dimension of its
output contains the SH coefficients for each voxel (e.g. 15 for the recon-
struction with the SH order 4). The HARDI_dODF_Reconstruction mod-
ule uses this image to obtain the diffusion ODF for each voxel. The data
is stored again in dimension t (e.g. 162 values for each voxel with tes-
selation order 3). Out of the coefficients image and the dODF image the
MFC_Macromodule reconstructs the fiber classification image. The dimen-
sion t of this image contains only one value for each voxel containing the
estimated number of white matter fiber populations. Currently, 0, 1, or
2 fiber populations per voxel are indicated. The unused output pins of
the MFC_Macro module in Figure 5.5 provide an alternative fiber classifi-
cation image only indicating whether isotropic or anisotropic diffusion is
present in a voxel (one of the inputs provides a median filtered version
of this image). The HARDI_deterministic_Tractography module reconstructs
fibers from the ODF image and the fiber classification image. Here, the
whole fiber image data is stored in the t dimension in contrast to other
modules where certain values for each voxel were stored in the t dimen-
sion. After all required input images for the So_dODF_Visualization and the
So_Fiber_Visualization module are calculated the ODF scene and the fiber
scene is rendered and passed to the connected SoExaminerViewer module
for visualization.
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5.3 Detailed Module Description

This section provides a detailed description of the functionality of the im-
plemented modules. A class diagram and a control flow diagram will be
presented for each module. In special cases algorithm listings will summa-
rize specific functionalities. Further, the input and output images as well as
the parameters accessible via the GUI-panel will be described in full detail.
Example images will be provided to illustrate important details.

5.3.1 HARDI_dODF_Reconstruction

The structure of the HARDI_dODF_Reconstruction module is illustrated in
Figure 5.7. This module is a subclass of the class ml::Module and uses the
class SpherePoints. The purpose of the HARDI_dODF_Reconstruction mod-
ule is to reconstruct the diffusion ODF from SH coefficients for every voxel
in the input image. The reconstruction is performed in the function re-
constructODF. The alternative reconstruction function reconstructODF2 has
higher resemblance to the original reconstruction equation 3.15 and is, thus,
more comprehensive. The mathematical details of this reconstruction pro-
cess are described in section 3.2.3 and in [DAFD07]. SH basis functions for
reconstruction can be obtained from the getSphericalHarmonic function or
from the corresponding function of the Boost library.

The number of voxels in the input image has to be indicated by the
extents of the x, y, and z dimension while dimension t has to carry the SH
coefficients for every voxel. The extent of the dimensions c and u has to

Figure 5.7: Class diagram of the HARDI_dODF_Reconstructionmodule
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Figure 5.8: GUI-panel of the HARDI_dODF_Reconstructionmodule

Tesselation order Sampling directions

1 12
2 42
3 162
4 642
5 2562

Table 5.1: The number of sampling directions belonging to each tesselation order
of an icosahedron.

be 1. The output image contains the reconstructed dODF values in the t
dimension for every voxel. The extent of the other dimensions is the same
as in the input image.

Apart from SH coefficients uniformly distributed points on the surface
of a sphere are needed to serve as sampling directions for the reconstruc-
tion of the dODF. These points were generated with Blender9 and stored
in Cartesian coordinates in the class SpherePoints. They are derived from
different tesselation orders of an icosahedron and form points on the sur-
face of a sphere with radius 1. The center of this sphere lies in the origin.
Thus, the coordinates of every point also form a vector from the origin to
the surface of the sphere at this point and can be considered as direction
vectors. For sampling the Cartesian coordinates are converted to spherical
coordinates θ and φ, with θ as the polar angle and φ as the azimuthal angle.

The tesselation order that is applied in the dODF reconstruction process
can be chosen via a parameter in the GUI-panel (Figure 5.8). The supported
tesselation orders together with the corresponding number of sampling di-
rections are shown in table 5.1. Choosing higher orders increases the time
needed for reconstruction but also increases the directional precision of the
reconstructed dODF as is shown in Figure 5.9. The principal diffusion di-
rection (PDD) is poorly defined when using only 12 sampling directions of
the tesselation order 1 (Figure 5.9a). In fiber tracing algorithms this leads to
reconstruction of erroneous fiber pathways. The orders 3 through 5 show
only little differences in the PDD. The proper balance between computation
time and precision, therefore, can be found in the orders 3 or 4.

The second module field that can be accessed via the GUI-panel is the

9http://www.blender.org/
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(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

Figure 5.9: The top row shows icosahedra tesselated with different orders. The
bottom row shows a corresponding glyph. Each column represents one
tesselation order. The effect of choosing higher tesselation orders on
the precision of the dODF and, thus, the principal diffusion direction
can be seen here. Notice the difference of the principal dODF direction
between the order 1 shown in Figure (a) and order 5 shown in Figure
(e). Images were created with the So_dODF_Visualizationmodule.

(a) 0.0 (b) 0.25 (c) 0.5 (d) 0.75 (e) 1.0

Figure 5.10: The effect of differentweights on the isotropic SH coefficient is shown.
While the directional information is almost completely lost when us-
ing theweighting factor 1 as is shown in Figure (e), it is clearly defined
when the isotropic SH coefficient is ignored (Figure (a)). Images were
created with the So_dODF_Visualizationmodule.

isotropy weight. This number represents an additional factor for the SH coef-
ficient of order 0 (isotropic diffusion). Since isotropic diffusion is predomi-
nant (especially in datasets acquired with a low b-value) a lot of the direc-
tional information can be lost in dODF reconstruction if the SH coefficient
is not adjusted. Using a weight of 0 preserves the directional information
of the higher order SH coefficients and allows for more precision in the
reconstruction of fiber pathways (Figure 5.10).

The control flow of the dODF reconstruction is illustrated in Figure 5.11.
On startup the coordinates for the sampling directions are obtained and the
module waits for a module field change. Usually the first field change is
the provided input image. Subsequently, the flags drawComplete and draw-
Failure are unset as a new output image has to be generated. The input
image is copied to the corresponding VirtualVolume* member variable and
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Figure 5.11: Illustration of the control flow in the HARDI_dODF_Reconstruction
module.
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a VirtualVolume* for the output image is created. The following gray dia-
mond node indicates the various calls of the calculateOutputSubImage func-
tion. The drawComplete flag prevents various computation of the output
image data. At the first call of this function the dODF reconstruction for
each voxel is performed with the corresponding SH coefficients. As the
dODF is symmetric the reconstruction is performed with the sampling di-
rections of only one half sphere. However, the coordinates of the sampling
directions are not sorted. Therefore each individual sampling direction has
to be checked to lie on half-sphere that is reconstructed. If the azimuthal
angle, φ, of a sampling direction is above π (i.e. on the half-sphere that is
not reconstructed) the sampling direction is reversed to lie on the oppo-
site side of the sphere. If this direction has already been handled a locally
stored dODF value exists. This value is copied and stored in the dODF
vector. Otherwise, the value has to be computed and is stored locally and
in the dODF vector. After processing all sampling directions for a voxel
(i.e. reconstructing the whole dODF) the dODF vector is stored in the cor-
responding voxel of the member output image. The reconstruction contin-
ues with the next voxel. As soon as the dODF for all voxels is calculated
the drawComplete flag is set. The calculated data is copied from the mem-
ber output image to the module’s output image and can be processed by
subsequent modules in the network. If an error occurs during reconstruc-
tion the calculation is aborted and the drawFailure flag is set. In this case
“dummy data“ is copied to the output image in order not to provide an
invalid image at the modules output. The “dummy data“ is in this case the
highest value of the input image. Consequently, this kind of output results
in bright or even completely white images.

5.3.2 HARDI_AnisotropyCriteria

The structure of the HARDI_AnisotropyCriteria module is illustrated in Fig-
ure 5.12. This module is a subclass of the class ml::Module. It allows to cal-
culate anisotropy criteria introduced in section 4.1.3 on input images with
HARDI data. Additionally, the GFA (see section 3.4.1) and the standard
deviation of the dODF are provided as criteria. The goal of these six cri-
teria is to classify the number of fiber populations per voxel (i.e. 0, 1 or
2 populations) or to separate voxels with isotropic diffusion from voxels
with anisotropic diffusion (i.e. 0, or 1 fiber populations). As can be seen
in Figure 5.12 the computation and output of the criteria is separated (note
the functions starting with calculate and output respectively). To allow fast
switching between the different criteria all needed data for dODF based
criteria is precomputed and stored in member variables. Criteria based on
the coefficients are calculated on demand. The criterion selection via the
GUI-tab (see below) only triggers the corresponding output function.

TheHARDI_AnisotropyCriteriamodule has two input image connectors.
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Figure 5.12: Class diagram of the HARDI_AnisotropyCriteriamodule

The number of voxels in both input images has to be indicated by the ex-
tents of the x, y, and z dimension. The extent of the dimensions c and u
has to be 1. The left input connector is reserved for the SH coefficients im-
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Figure 5.13: GUI-panel of the HARDI_AnisotropyCriteriamodule

age. These coefficients have to be placed in dimension t. An image with
reconstructed dODF values in dimension t has to be connected to the right
input connector. Both input images have to be provided in order for this
module to work properly. The SH coefficients image and the dODF image
are both needed to support anisotropy criteria that are calculated on the
coefficients (FMI, Chen, andMDL) as well as such that are calculated on the
dODF (GFA, stdDev, Vesna, and again Chen).

The output image contains the estimated number of fiber populations
at each voxel. Typically, the maximum number of fiber populations classi-
fied by this module is 2. However, with higher SH orders than 4 the MDL
criterion can theoretically identify more fiber populations per voxel. The
extent of dimension t is set to 1. The extent of the other dimensions is the
same as in the input images.

The different anisotropy criteria can be chosen via the Criterion tab in
the GUI-panel (Figure 5.13). For each of the offered criteria apart fromMDL
a separate GUI tab is provided to define thresholds (MDL is a threshold free
criterion). For more details on the calculation of the individual values for
each criterion see section 4.1.3.

The thresholds for GFA and standard deviation (in the GUI tab StdDev)
separate voxels with isotropic diffusion (values below the thresholds) from
voxels with anisotropic diffusion (values equal to or above the thresholds).
The GFA values are normalized to be in [0, 1], however, the standard devi-
ation can take arbitrary values.

The method proposed by Prčkovska et al. that was described in section
4.1.3 together with the mentioned extension can be found in the GUI tab
Vesna. This method counts dODF values above the thresholdMax Radius in
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the min-max normalized dODF. The resulting value is further transformed
to the range [0, 1] and two thresholds are applied to it. Voxels with a value
below One Fiber Threshold are classified as containing one fiber population.
Voxels with a value above Two Fiber Threshold are classified as isotropic.
Finally, voxels with a value between these two thresholds are classified as
containing two fiber populations.

For the FMI method two values are calculated: FMIa indicating the
significance of higher order SH coefficients over the 0th order coefficients
and FMIb indicating the significance of higher order SH coefficients over
the 2nd order coefficients. The classification is carried out according to
algorithm 1.

Algorithm 1 FMI criterion classification

1: if FMIa < FMI 0 then

2: 0 fiber populations
3: else

4: if FMIb < FMI 1 then
5: 1 fiber population
6: else

7: 2 fiber populations
8: end if

9: end if

The criterion in the tab Chen demands for the most thresholds. Values
R0, R2, and Rmulti are calculated as described in section 4.1.3. Addition-
ally, the variance of the dODF is needed for this criterion. The voxels are
classified according to algorithm 2. Classification examples are presented
in chapter 6.

Algorithm 2 Chen’s criterion classification

1: if R0 > R0 or variance < Low Variance then
2: 0 fiber populations
3: else

4: if R2 > R2 or variance ≥ High Variance then
5: if Rmulti > R4 then
6: 2 fiber populations
7: else

8: 1 fiber population
9: end if

10: else
11: 2 fiber populations
12: end if

13: end if
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Figure 5.14: Illustration of the control flow in the HARDI_AnisotropyCriteriamod-
ule.

The control flow of this module is illustrated in Figure 5.14. In order to
be able to switch between the different criteria without long computation
times amajority of data needed for classification is precomputed and stored
in member variables. Consequently, on input image changes these data has
to be deleted. The Radius threshold of the criterion Vesna is involved in the
data computation for this criterion prior to further thresholding. There-
fore, a change of this criterion has to be handled separately. All other field
changes (i.e. the various thresholds) can be applied to the calculated data
without the need of long computation times. Afterwards, the flags of the
module are unset. The input images are copied to member variables and
the output image member variable is initialized. The following gray dia-
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Figure 5.15: Inner network of the MFC_Macromodule.

mond node indicates again the various calls to the calculateOutputSubImage
function. Various computation of the output image data are prevented by
the drawComplete flag. If no precomputed data is available the computation
is done in the next step. Otherwise, only the thresholding of the selected
criterion is applied to the data. The result is copied to the output image.

5.3.3 MFC_Macro

As the classification results of the HARDI_AnisotropyCriteria module for
voxels with two fiber populationswere insufficient theMFC_Macromodule
was developed to overcome these limitations. This module incorporates an
inner network (Figure 5.15) that was built around the HARDI_Anisotropy-
Criteria module. Several other modules of the MeVisLab library, especially
morphological operations, were added to achieve the desired functional-
ity. The module’s name MFC (morphological fiber classification) attributes
to these morphological modules. The GUI-panel of this module has exactly
the same structure and functionality as the GUI-panel of theHARDI_Aniso-
tropyCriteria module (Figure 5.13).
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Figure 5.16: Dataflow in the inner network of the MFC_Macro module.

The input images of this module have the same properties as the in-
put images of the HARDI_AnisotropyCriteria module as they are directly
passed to this module. However, the MFC_Macro module offers three out-
put images. The image at the rightmost output pin is the output of the
HARDI_AnisotropyCriteria module. The middle output pin provides a me-
dian filtered version of the latter image. A kernel size of 3 × 3 × 3 is used
for filtering. The leftmost output pin offers the actual classification result
of the MFC.
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The dataflow of the MFC_Macro module is illustrated in Figure 5.16.
Both input images are passed to the HARDI_AnisotropyCriteria module. Its
output is an image classifying voxels as containing 0, 1 or 2 fiber popula-
tions according to the selected criterion. This image is forwarded to the
right output connector (OriginalMask in Figure 5.16). The same image is
median filtered and passed to the middle output connector. The values
of the original output of the HARDI_AnisotropyCriteria module as well as
the median filtered version of the output are cropped at 1 (i.e. all voxels
containing values greater 1 are set to 1). This is necessary as the last step
of the MFC_Macro module is an addition. By cropping the values at 1 it
is ensured that the maximum output value of the MFC result is 2. The
White matter mask image undergoes several morphological operations. First,
small gaps are closed by dilation with kernel size 2 × 2 × 2. Afterwards,
white matter tracts are thinned out by applying an erosion with kernel size
4×4×4. The next operation is morphological opening (erosion followed by
dilation) with a kernel size of 3×3×3. The resulting image contains values
1 only at voxels with two fiber populations. The subsequently applied log-
ical AND operation with the median filtered white matter mask eliminates
erroneously classified voxels in gray matter as well as noisy voxels. In the
final step the median filtered mask image (containing values 1 at voxels
with one fiber population) is added to the morphological image. Thus, the
resulting image, ResultMFC, contains information on voxels with one and
two fiber populations respectively. This image is passed to the left output
connector.

As theMFC approach provided good results on the Fiber Cup phantom
(section 6.3) an article describing this method was written in the course of
this thesis. This article was accepted for publication at the Bildverarbeitung
für die Medizin workshop10, held in march 2011 in Lübeck, Germany.

5.3.4 HARDI_deterministic_Tractography

The HARDI_deterministic_Tractography module is the most complex mod-
ule that was implemented in the course of this thesis and can therefore be
considered as the ”heart” of this implementation.

The decision to implement deterministic tracing algorithms instead of
probabilistic or global algorithms was made for several reasons. Firstly, the
algorithms should be evaluated on the Fiber Cup data and compared to the
algorithms that were evaluated at this competition. Since all approaches
except one that were presented at the Fiber Cup were deterministic this
type of algorithm was chosen for better comparison with the evaluated
state-of-the-art algorithms. Secondly, probabilistic algorithms allow to as-
sign probabilities to reconstructed fiber pathways, thus, giving a statement

10http://www.charite.de/medinfo/BVM2011/BVM2011.html
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on their plausibility. However, a ground truth is provided for the Fiber
Cup dataset. It allows to decide even for deterministically reconstructed
pathways whether they are correctly reconstructed or not. Therefore, de-
terministic algorithms were chosen due to their significantly lower compu-
tation times. Lastly, one of the tasks of this thesis is to implement current
fiber tracing algorithms and extend them to work on HARDI data. In prac-
tice, this means to design these algorithms from scratch as no fiber tracing
MeVisLab modules, neither for DTI nor for HARDI data, were previously
implemented in the Computer Graphics working group. As was described
in chapter 4 probabilistic (and even some global) approaches are based on
deterministic streamline propagation. Therefore, it is inevitable to imple-
ment deterministic algorithms before proceeding to other methods.

Module Description

The structure of theHARDI_deterministic_Tractographymodule is illustrated
in Figure 5.17. For better overview the type name ColumnVector was re-
placed by CV in the class diagram. This module is a subclass of the class
ml::Module. It uses the coordinates of the class SpherePoints as possible di-
rections for fiber tracing. The task of this module is to reconstruct white
matter fibers from an input image containing a dODF for each voxel. Five
different deterministic fiber tracing algorithms are provided for this pur-
pose and will be described below in detail. The reconstruction of fibers for
all algorithms is performed bidirectionally starting at seedpoints that can
be defined via the GUI-tab.

This module has two input image connectors. The number of voxels
in both input images has to be indicated by the extents of the x, y, and z
dimension. The extent of the dimensions c and u has to be 1. The left in-
put connector is reserved for an image holding the dODF values in the t
dimension. An image indicating the number of fiber populations in each
voxel has to be connected to the right input connector. The extent of dimen-
sion t of this image has to be 1. The value stored in each voxel is directly
interpreted as the number of fiber populations. Isotropic voxels have to
be marked with 0. Theoretically, any number of populations can be pro-
vided. In practice, however, the maximum number used by this module is
2. Both input images have to be provided in order for this module to work
properly.

The output image contains the reconstructed fiber trajectories from all
seedpoints. Its structure differs significantly from the other output images
generated by the modules described here. The output image is basically
a one-dimensional array holding all fiber information in dimension t. The
extents of all other dimensions (including x, y and z) is 1. The data is an
array of floating point numbers and is organized as shown in Figure 5.18.
The first number indicates the quantity of three-dimensional coordinates
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Figure 5.17: Class diagram of the HARDI_deterministic_Tractographymodule
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Figure 5.18: Structure of the output image. The array is divided into lines for il-
lustration purposes. Each line represents one fiber.

Figure 5.19: GUI-panel of the HARDI_deterministic_Tractographymodule

representing the first fiber. These coordinates are stored in the array di-
rectly after the first number. First the x coordinate followed by the y and
z coordinates (in this order) of the first vector is placed in the array. Then,
the x, y and z coordinates of the second vector and all subsequent vectors
follow. If more than one fiber was reconstructed the number of vectors be-
longing to the next fiber is stored in the array at the position behind the z
coordinate of the last vector belonging to the first fiber. Its coordinates fol-
low as described above. The total amount of floating point numbers stored
in the fiber image and, thus, the extent of dimension t is s + v ∗ 3, where s
is the number of seedpoints and v the sum of vertices in all fibers.

The GUI-panel of this module has two tabs (Figure 5.19). The Seed-
Points tab allows to specify seedpoints that will be used for fiber tracing.
The seedpoints have to be integer voxel coordinates indicating the voxel
at the center of which the tracing will be started. Each seedpoint has to
be entered in a separate line. Its coordinates have to be separated by an
arbitrary number of spaces. By clicking on the Apply button an event is
triggered and fiber tracing is performed starting at the new seedpoints. If
the Apply button is not clicked the seedpoints will be copied on the next
module field change of the Parameters tab. Any coordinates outside of the
image dimensions will be ignored.

The Parameters tab allows to set different parameters for fiber tracing.
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Figure 5.20: Illustration of the control flow in the
HARDI_deterministic_Tractographymodule.

The parameter Algorithm defines the algorithm that is used. Possible val-
ues are Dummy (no fiber tracing), Euler PDD, RK4 PDD, Weighted Dirs An-
gle, Weighted Dirs MFC and Distance Based. The different algorithms are
described in detail in the next section. The parameter Step size indicates
the integration step size used for fiber tracing. The step size is specified in
voxels. Using One Fiber Max Angle and Two Fiber Max Angle the maximum
angle a fiber can bend in every step can be specified for voxels with one
and voxels with two fiber populations respectively. The parameter Min
Diffusion Directions Magnitude is a lower bound for dODF directions that
are used for fiber tracing. The given value specifies the percentage of the
magnitude of the PDD. The last two parameters only apply to the Distance
Based algorithm. Via DistanceVectors the number of distance vectors that is
used to estimate the best tracing direction can be selected. Possible values
are 4, 8, and 16. The parameter CurrentDirWeight is the weighting factor for
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Algorithm 3 Trace Fiber Algorithm

Input: seed point: sp, tracing direction: initDir
Output: list of fiber coordinates: fiberTrace
1: tracePos← center or voxel sp
2: traceDir ← initDir
3: continueTracing ← true

4: while continueTracing = true do

5: create empty vectors newTracePos and newTraceDir for output
6: state← nextStep(tracePos, traceDir, newTracePos, newTraceDir)
7: if state = VALID_POSITION then

8: add newPos to fiberTrace
9: end if

10: if state = VALID_POSITION and new voxel entered then

11: save PDD of new voxel as curvature hint
12: end if
13: if state = INVALID_POSITION then

14: continueTracing ← false

15: end if

16: if fiber trajectory of last 4 voxels lies in gray matter then
17: continueTracing ← false

18: end if

19: tracePos← newTracePos
20: traceDir ← newTraceDir
21: end while

the current tracing direction of this algorithm. This value has to be between
0 and 1.

Figure 5.20 illustrates the control flow in this module. One important
difference to other MLmodules presented here is that the calculation of the
output data is performed in the calculateOutputImageProperties function in-
stead of the calculateOutputSubImage function. This is done because MeVis-
Lab needs the extension of the output image before the function calcula-
teOutputSubImage is called. However, the extent of the output image is
known only after performing fiber tracing. After a module field change
flags are unset and the input and output images initialized. In the next
step seedpoints are copied from the GUI-tab and fiber tracing starts with
the selected algorithm. Every algorithm follows a different strategy to re-
construct fibers. More details on the process of fiber tracing are given in
the next section. Each fiber is traced in two opposite directions starting at
the corresponding seedpoint. After tracing, both trajectories are combined
to form a consecutive fiber. The resulting fiber is stored in a member vari-
able. As soon as all seed points are processed the fiber trace output image
is generated as described above.
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Algorithm Description

Selecting seedpoints and determining whether or not fiber tracing has to be
stopped is handled equally for all implemented algorithms. These proce-
dure is shown in Algorithm 3. This algorithm is called twice (with opposite
tracing directions initDir) for every seedpoint sp. The output of the algo-
rithm is a list of coordinates representing the fiber trace.

The tracing position and direction are initialized in lines 1 and 2. Fiber
tracing is continued until one of two stopping conditions is met (see be-
low). The streamline is advanced one step according to the selected fiber
tracing algorithm in line 6. These algorithms are explained below. If the
new position is valid it is added to the output list fiberTrace. Further, if a
new voxel is entered the PDD of the voxel is saved to be used as curvature
hint in some of the tracing algorithms. Tracing is stopped if the new po-
sition is invalid (i.e. outside of the dataset) or the fiber trajectory has only
been in gray matter in the last four voxels.

Euler PDD and RK4 PDD These two algorithms are shown in Algo-
rithm 4. These algorithms are extension of the classic DTI principal diffu-
sion direction (PDD) tracing approaches to HARDI data. The first line of
the algorithm decides which of the two integration methods is used (re-
place XXX by Euler or RK4). The new position, newPos, is obtained by
integrating one step in the current direction. If this new position is out-
side the image the status constant INVALID_POSITION is returned. In the
other case the number of fiber populations is determined at the current
position. This is done in two steps. First, the classification result of the
MFC_Macro module is read at the voxel in question. Second, if this result
is 1 the 26 neighboring voxels are examined. In the case that at least one
of these voxels has 2 fiber populations the number of fiber populations at
the current position is also considered as 2. This virtual extension of the 2
fiber population areas is necessary as the MFC_Macro module sometimes
underestimates the extent of areas with multiple fiber populations.

The algorithm continues in line 4 or line 12 depending on the number of
found fiber populations. The procedure in both cases is equal except that in
the case of less than 2 fiber populations the interpolated PDD is examined
as the possible new direction. In the other case the PDD without interpola-
tion is regarded. This new direction is accepted and assigned to the output
variable newDir only if it is below the curvature threshold specified via the
GUI-tab. In the other case tracing continues in the current direction.

The PDDwithout interpolation is used in the case of multiple fiber pop-
ulations as the interpolated PDD always smoothly turns the fiber trajectory
towards the dominant fiber. Thus, tracing along a nondominant fiber bun-
dle is impossible. The PDD, however, is ignored if its curvature is to high
(i.e. in regions of crossings) but can nevertheless influence the fiber trajec-
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Algorithm 4 Euler/RK4 PDD Fiber Tracing

Input: current position: curPos, current direction: curDir
Output: new position: newPos, new direction: newDir,

integration state: state
1: newPos ← next position with XXX integration using curPos and

curDir
2: if newPos is inside input image then
3: fp← number of fiber populations at newPos
4: if fp < 2 then
5: interpPdd← interpolated PDD at newPos
6: angle← angle between interpPdd and curDir
7: if angle > ONE_FIBER_MAX_ANGLE then

8: newDir ← curDir
9: else

10: newDir ← interpPdd
11: end if

12: else if fp = 2 then
13: pdd← PDD at newPos
14: angle← angle between pdd and curDir
15: if angle > TWO_FIBER_MAX_ANGLE then

16: newDir ← curDir
17: else

18: newDir ← pdd
19: end if

20: end if

21: state← VALID_POSITION
22: else

23: state← INVALID_POSITION
24: end if

tory in regions of fiber kissings or branchings. Further, following a PDD
whenever possible (i.e. where it is below the threshold) in uncertain re-
gions is better than following the current direction as the current direction
might not be representing a true diffusion direction in the next voxel.

Weighted Dirs Angle The previous algorithms only used the PDD in
each voxel. Their extension to HARDI data was limited to the knowledge
of whether or not the current position is inside a multiple fiber area. How-
ever, much more information can be extracted from HARDI data and used
for fiber tracing. The basic idea of the Weighted Dirs Angle algorithm is to
consider several possible directions in each voxel (instead of only using
the PDD) that might be used to continue the streamline. Different weights

112



5.3. DETAILEDMODULE DESCRIPTION

are assigned to these directions and the resulting direction is calculated.
The weighting procedure depends on the scattering angle of the highest
diffusion directions in each voxel. The scattering angle is determined in
two steps. First, all direction vectors with dODF values of at least 70% the
dODF value of the PDD are selected. Then, the maximum angle between
two vectors in this list is determined as the scattering angle. High scatter-
ing angles might indicate a multiple fiber population. TheMFC is not used
in this approach. TheWeighted Dirs Angle algorithm is shown in Algorithm
5.

In this algorithm the direction vectors indicating the highest diffusion
(at least 70% of the dODF value of the PDD) in the current voxel are ob-
tained and stored in the list of vectors highestDirs. Since diffusion is
symmetric direction vectors with an angle greater 90 degrees to curDir
are reversed to form an angle of less than 90 degrees. In these directions
the closest (i.e. with the smallest separating angle) to the current direc-
tion is found. Subsequently, the scattering angle of the highest directions
is determined. The higher this angle the higher the uncertainty associated
with the diffusion direction in this voxel. This scattering angle is stored in
scatteringAngle. In line 4 the curvature threshold is set.

The calculation of the new direction is performed in lines 5 to 31. Trac-
ing is continued in the current direction if the angle between the current
direction and the closest one is above the threshold. In the other case
weighting factors are calculated (lines 8 and 9) and the current and clos-
est directions are combined with their corresponding weights and stored
in newDir (line 10). This line also initializes newDir in the case that none
of the following conditions apply.

The following steps depend on scatteringAngle. If it is below 20 de-
grees tracing is continued along the PDD. In the case that the scattering is
above 20 and below 90 degrees a more complicated heuristic is used. The
average curvature angle of the last 15 voxels is determined in line 15. The
curvature hint is based on the PDDs of the voxels and not the actual fiber
course as the average PDDmore reliably indicates whether or not a curved
fiber is present. The decision of whether or not the PDD itself should be
used in the calculation of the new direction is made in lines 16 to 21. The
PDD is used in the case that one step along the PDD would result in a
curvature more similar to the curvature hint than a step along the closest
direction. In this cases the resulting newDir is calculated based on the cur-
rent direction and the PDD. The PDDweighting factor is determined based
on the angle between the PDD and the current direction. The resulting di-
rection is normalized in line 32. Finally, the streamline is propagated one
step size along the new found direction (line 33) and the corresponding
state is returned.
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Algorithm 5Weighted Dirs Angle Fiber Tracing

Input: current position: curPos, current direction: curDir
Output: new position: newPos, new direction: newDir,

integration state: state
1: highestDirs← highest diffusion directions at curPos using curDir
2: closestDir←most similar direction vector to curDir in highestDirs
3: scatteringAngle← scattering angle of highestDirs
4: threshold← ONE_FIBER_MAX_ANGLE
5: if angle between closestDir and curDir > threshold then

6: newDir ← curDir
7: else

8: curDirWeight← scatteringAngle
2 · threshold

9: closestDirWeight← |curDir · closestDir|
10: newDir ← curDir · curDirWeight+ closestDir · closestDirWeight
11: pdd← PDD at curPos
12: if scatteringAngle < 20 then

13: newDir ← pdd
14: else if scatteringAngle < 90 then
15: curv ← curvature hint at curPos
16: tempAnglePDD ← angle between curDir and pdd
17: tempAngleClosest← angle between curDir and closestDir
18: usePDD ← false

19: if |curv − tempAnglePDD| < |curv − tempAngleClosest| then
20: usePDD ← true

21: end if

22: pddWeight← |curDir · pdd|
23: if usePDD = true or tempAnglePDD < 25 then

24: pddWeight← pddWeight2

25: newDir ← curDir · curDirWeight+ pdd · pddWeight
26: else if usePDD = true and tempAnglePDD < 35 then

27: pddWeight← pddWeight3

28: newDir ← curDir · curDirWeight+ pdd · pddWeight
29: end if

30: end if

31: end if

32: newDir ← newDir
‖newDir‖

33: newPos← curPos+ newDir· STEP_SIZE
34: if newPos is inside input image then
35: state← VALID_POSITION
36: else

37: state← INVALID_POSITION
38: end if
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Weighted Dirs MFC Lots of heuristic assumptions on weighting fac-
tors and degree limits had to be taken in the design of the last algorithm
to allow for reliable streamline propagation through complex regions and
regions with high curvature. The algorithm presented in this section tries
to avoid some of these assumptions by making use of the classification ex-
amples of theMFC_Macromodule.

TheWeighted Dirs MFC algorithm is shown in Algorithm 6. Like the last
algorithm this approach considers several possible directions for tracing
continuation. Different weights are assigned to these directions and the
resulting direction is calculated. The weighting depends on the number of
fiber populations at the current position (i.e. on the MFC result).

In this algorithm the direction vectors indicating the highest diffusion
in the current voxel (line 1), the closest diffusion to the current direction
(line 2), and the scattering angle of the highest directions (line 3) is found
as described in the last algorithm. In lines 5 to 8 the curvature threshold
is set and the weighting factor for the current direction is determined in
lines 9 to 13. In the case of two fiber populations the weight of the current
direction is doubled to allow streamlines representing nondominant diffu-
sion directions to propagate through complex regions. Subsequently, the
weighting factor for the closest direction is determined as the scalar prod-
uct between the current and the closest direction.

The calculation of the new direction is performed in lines 15 to 27. Trac-
ing is continued in the current direction if the angle between the current
direction and the closest one is above the threshold. In the other case these
two directions are combined with their corresponding weights and stored
in newDir. As this result is in most cases only a slightly modified current
direction the PDD and its weight are obtained and incorporated into the
new direction if the PDD is not above the specified curvature threshold.
The streamline is propagated one step size along the resulting direction
(line 28) and the corresponding state is returned.

Distance Based Fiber Tracing The idea behind the Distance Based al-
gorithm is to combine the methods that were used so far. This includes tak-
ing into account several directions at each step, applying weighting factors
to the new and the current direction, and using the MFC for fiber classifi-
cation. Additionally, distances to white matter borders will be computed
at each step and included in the decision process of which direction to take
next. Further, this is the only approach that not necessarily takes the PDD
of the seed point as the initial tracing direction.

Algorithm 7 illustrates the main steps of this approach. When the al-
gorithm is called the first time (i.e. to make the first step at the seed point)
initial distances are calculated (lines 1 to 3). In the first distance calcula-
tion an initial tracing direction needs to be found. For this purpose the
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Algorithm 6Weighted Dirs MFC Fiber Tracing

Input: current position: curPos, current direction: curDir
Output: new position: newPos, new direction: newDir,

integration state: state
1: highestDirs← highest diffusion directions at curPos using curDir
2: closestDir←most similar direction vector to curDir in highestDirs
3: scatteringAngle← scattering angle of highestDirs
4: fp← number of fiber populations at curPos
5: maxAngle← ONE_FIBER_MAX_ANGLE
6: if fp = 2 then
7: maxAngle← TWO_FIBER_MAX_ANGLE
8: end if

9: if fp ≤ 2 then

10: curDirWeight← scatteringAngle
2 ·maxAngle

11: else

12: curDirWeight← scatteringAngle
maxAngle

13: end if

14: closestDirWeight← |curDir · closestDir|
15: if angle between closestDir and curDir > maxAngle then
16: newDir ← curDir
17: else

18: newDir ← curDir · curDirWeight+ closestDir · closestDirWeight

19: newDir ← newDir
‖newDir‖

20: pdd← PDD at curPos
21: pddWeight← |newDir · pdd|
22: if angle between pdd and newDir > maxAngle then
23: pddWeight← 0
24: end if

25: newDir ← pdd · pddWeight+ newDir · curDirWeight

26: newDir ← newDir
‖newDir‖

27: end if

28: newPos← curPos+ newDir· STEP_SIZE
29: if newPos is inside input image then
30: state← VALID_POSITION
31: else

32: state← INVALID_POSITION
33: end if
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Algorithm 7 Distance Based Fiber Tracing

Input: current position: curPos, current direction: curDir
Output: new position: newPos, new direction: newDir,

integration state: state
1: if initDistances is empty then

2: initDistances← initial orthogonal distances to white matter borders
3: end if

4: possibleDirs← findPossibleDirections (Algorithm 8)
5: if possibleDirs is empty then

6: state← INVALID_POSITION
7: else

8: bestIndex← findOptimalWhiteMatterDistance (Algorithm 9)
9: if number of fiber populations at curPos = 2 then

10: bestIndex← findLongDistances (Algorithm 10)
11: end if
12: bestDir← element at position bestIndex in possibleDirs
13: newDir ← bestDir · (1−CURRENT_DIR_WEIGHT) +

curDir·CURRENT_DIR_WEIGHT
14: newDir ← newDir

‖newDir‖
15: newPos← curPos+ newDir· STEP_SIZE
16: state← VALID_POSITION
17: end if

highest directions (i.e. having at least an dODF value of 70% the dODF of
the PDD) of the current voxel are selected. These directions are averaged
and the result is added to the list of highest directions. For each of these
possible tracing directions 16 (this number can be varied via the parameter
DistanceVectors in the GUI-tab) orthogonal vectors are generated. Assum-
ing that the tracing direction is parallel to the fiber borders the orthogonal
vectors indicate the shortest paths to the edges of the current fiber. The
distance to the fiber border for each of the 16 vectors is calculated. The
fiber border is reached when a gray matter voxel is entered or the angle
between the current direction and the PDD of a voxel crossed by one of the
16 distance vectors is more than ONE_FIBER_MAX_ANGLE. This second
condition allows for almost constant fiber widths even in regions with mul-
tiple fiber populations. Of all possible tracing directions the one is selected
as initial tracing direction that has the smallest maximum distance value.
This complicated procedure is necessary as the PDD in the seedpointmight
not at all be parallel to the fiber borders and would, thus, lead to an erro-
neous assumption of the fiber thickness. By selecting the direction with the
smallest maximum value it is ensured that themost parallel direction to the
fiber borders is selected.
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In the next step (line 4) possible directions are selected to continue the
fiber trajectory. The individual steps of this procedure are illustrated in
Algorithm 8 and will be explained below in detail. If no possible directions
could be found the state INVALID_POSITION is returned and the fiber
tracing is stopped. In the other case Algorithm 9 is used to find the index
of the optimal direction. A direction is optimal if it leads to a position at
which the distances to white matter borders are most similar to the initial
distances. In this manner a streamline stays at its relative position to the
borders of the fiber. More details on this algorithm are given below. If
two fiber populations are present in the current voxel the optimal index
calculated in Algorithm 9 might be misleading. For example a streamline
that was started close to a fiber border will necessarily follow its closest
edge at fiber crossings. To avoid these cases Algorithm 10 is used to select
a different direction index.

In line 12 the direction vector at the found bestIndex in the list of all
possible directions is selected. The resulting tracing direction is determined
by combining the new direction vector at bestIndex and the current direc-
tion with the weighting factor CurrentDirWeight that can be specified via
the GUI-tab. The streamline is advanced one step and the new position is
determined.

Algorithm 8 has the purpose to find possible directions to continue the
fiber trajectory. First, the directions representing the highest diffusion val-
ues are selected. Then, the number of fiber populations of the current voxel
is determined. Again, the regions with two fiber populations as found by
the MFC_Macro module are virtually extended. If the current voxel is in
gray matter the task is to return the trajectory to white matter voxels. For
this purpose 16 direction vectors forming an angle of 45 degrees with the
current direction are generated. Subsequently, it is tested whether one step
in the current direction or in the direction of one of the 45 degree vectors
leads to white matter. Every direction vector reaching white matter after
one step size is added to the list of possible directions. The test is performed
againwith the double and quadruple step size if no possible direction could
be found.

In the case of one or two fiber populations in the current voxel the corre-
sponding curvature threshold is set. After this several directions are tested
and added to the list possibleDirs if two conditions are met. First, one step
in this direction leads to a position that is still inside the dataset. Second,
the angle between the current direction and the tested direction is below
the threshold. Besides the current direction and the interpolated PDD all
directions in highestDirs are tested.

The list highestDirs with all possible direction vectors is passed to Al-
gorithm 9. This algorithm finds the direction vector that leads to a position
at which the distances to white matter borders are most similar to the ini-
tial distances. To accomplish this the list of initial distances is grouped in
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Algorithm 8 findPossibleDirections

Input: current position: curPos, current direction: curDir
Output: list of possible direction vectors: possibleDirs
1: highestDirs← highest diffusion directions at curPos using curDir
2: fp← number of fiber populations at curPos
3: if fp = 0 then
4: tempStepSize← STEP_SIZE
5: vectors45Deg ← 45 degree vectors around curDir
6: repeat

7: tempPos← curPos+ curDir · tempStepSize
8: if number of fiber populations at tempPos > 0 then
9: add curDir to possibleDirs

10: end if

11: for all tempDir in vectors45Deg do

12: tempPos← curPos+ tempDir · tempStepSize
13: if number of fiber populations at tempPos > 0 then
14: add tempDir to possibleDirs
15: end if

16: end for

17: tempStepSize← 2 · tempStepSize
18: until possibleDirs is not empty or tempStepSize > 4· STEP_SIZE
19: else
20: maxAngle← ONE_FIBER_MAX_ANGLE
21: if fp = 2 then
22: maxAngle← TWO_FIBER_MAX_ANGLE
23: end if

24: tempPos← curPos+ curDir· STEP_SIZE
25: if tempPos is inside input image then
26: add curDir to possibleDirs
27: end if

28: interpPdd← interpolated PDD at curPos
29: tempPos← curPos+ interpPdd· STEP_SIZE
30: if tempPos is inside input image and angle between curDir and

interpPdd < maxAngle then
31: add interpPdd to possibleDirs
32: end if

33: for all tempDir in highestDirs do
34: tempPos← curPos+ tempDir· STEP_SIZE
35: if tempPos is inside input image and angle between curDir and

tempDir < maxAngle then
36: add tempDir to possibleDirs
37: end if

38: end for

39: end if
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Algorithm 9 findOptimalDistance

Input: list of possible direction vectors: possibleDirs
list of initial distances: initDistances

Output: index of direction vector with optimal distance: bestIndex
1: bestDeviance←∞
2: initialDistPairsList← pairs of opposite distances from initDistances
3: sort pairs in initialDistPairsList according to their sum
4: for all tempDir in possibleDirs do
5: tempPos← curPos+ tempDir· STEP_SIZE
6: distanceList← orthogonal distances from tempPos
7: currentDistPairsList ← pairs of opposite distances from

distanceList
8: sort pairs in currentDistPairsList according to their sum
9: deviance← 0
10: for i = 0 to size of currentDistPairsList− 1 do
11: curPair ← element at position i in currentDistPairsList
12: initPair ← element at position i in initialDistPairsList

13: curFraction← minimum of pair curPair
sum of pair curPair

14: initFraction← minimum of pair initPair
sum of pair initPair

15: deviance← deviance + |curFraction− initFraction|2
16: end for

17: deviance←
√
deviance

18: if deviance < bestDeviance then
19: bestDeviance← deviance
20: bestIndex← index of tempDir
21: end if
22: end for

pairs. Each pair holds the distances of two opposite distance vectors. In
the loop starting at line 4 one step is taken along each of the possible di-
rections. At the resulting position distances to white matter borders are
calculated. In contrast to the initial distance calculation no tracing direc-
tion needs to be found for distance calculation. However, in cases where
the average of the highest diffusion directions in the current voxel is closer
than 45 degrees to the current direction the mean of the current direction
and the average direction is used for distance computations. This allows
for better approximation of the diffusion direction in the processed voxel.
The found distances are grouped to pairs of opposite distances and sorted
according to their sums. In order to compare the distances at the new posi-
tion to the initial distances one needs to know which two distance vectors
correspond to each other. Unfortunately there is noway to do so as it would
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Algorithm 10 findLongDistances

Input: current position: curPos, current direction: curDir,
list of possible direction vectors: possibleDirs
index of optimal white matter distance: bestIndex

Output: index of best direction vector for streamline propagation:
bestIndex

1: create list to hold indices of vectors with longest frontal white matter
distances: longestDistIndices

2: add bestIndex to longestDistIndices
3: for all tempDir in possibleDirs do
4: tempDist← frontal distance from curPos along tempDir
5: if tempDist > 2· STEP_SIZE then

6: add index of tempDist to longestDistIndices
7: end if

8: end for
9: curvHint← curvature hint at curPos

10: bestAngle← TWO_FIBER_MAX_ANGLE
11: for all index in longestDistIndices do
12: tempDir← element at position index in possibleDirs
13: tempAngle← angle between curDir and tempDir
14: if |curvHint− tempAngle| < bestAngle then
15: bestAngle← |curvHint− tempAngle|
16: bestIndex← index
17: end if

18: end for

imply to assign descriptors like up, down, left, and right to arbitrary vectors
in three-dimensional space. However, assuming that the fiber width does
not change much along the fiber the pairs of the initial distances and the
current distances are sorted. It is assumed that the distance pairs at the
same position in both lists correspond to each other. In lines 10 to 17 the
deviance from the initial distances for each possible fiber direction is cal-
culated. A distance fraction is determined for two corresponding distance
pairs of both lists. The squared difference is added to the deviation. After
summing up all squared deviances the square root is taken and the result-
ing deviance for a possible direction is obtained. The index of the smallest
deviance is assigned to bestIndex.

Finally, Algorithm 10 decided whether the direction at the computed
bestIndex or at a different position should be taken to propagate the fiber
trajectory. For each of the possible directions in possibleDirs the distance
from the current position along this direction to the next gray matter voxel
is calculated. If this distance is longer than twice the STEP_SIZE the direc-
tion’s index is added to the list longestDistIndices. The index bestIndex
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from Algorithm 9 is always added to this list. In lines 11 to 18 the angle
between the current direction and each direction indicated by the indices
in longestDistIndices is compared to the curvature hint angle. The index
of the direction that best matches the curvature hint angle is assigned to
bestIndex and will be used to propagate the streamline one step further.

5.3.5 So_dODF_Visualization

The structure of the So_dODF_Visualization module is illustrated in Figure
5.21. This module is a subclass of the class SoShape and uses the class Sphere-
Points. The purpose of the So_dODF_Visualizationmodule is to visualize the
diffusion ODFs and, optionally, to visualize voxel groups if some kind of
classification (e.g. anisotropy measure) is applied to the data. This mod-
ule is useful to examine the data and identify problematic regions. Thus,
it is helpful in deriving proper thresholds and heuristics for fiber tracing
algorithms. Further, it helps to evaluate classification algorithms (e.g. from
the MFC_Macro module) as it offers a method to visualize different voxel
groups.

The colors of the dODFs are calculated according to equations 3.30.
Thus, directions primary oriented along the x-axis are rendered in red, di-
rections oriented along the y-axis are displayed in green, and directions
oriented along the z-axis are shown in blue.

This module offers three input connectors. All input images have to
store the extent of the data in voxels in the dimensions x, y and z. The main

Figure 5.21: Class diagram of the So_dODF_Visualizationmodule
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Scalar value Color name Sample

0 not handled -
1 dark green
2 dark blue
3 dark red
4 dark cyan
5 dark magenta
> 5 dark yellow

Table 5.2: The background colors for voxel classification that can be assigned to
the voxels by a scalar value in the input image at the right input connec-
tor.

purpose of the module is the visualization of dODFs. An image containing
the dODFs in dimension t can be connected to the middle input connector.
The size of the dimensions c and u has to be 1.

The left and right connectors are optional and do not have to be con-
nected to other modules in order for the So_dODF_Visualization module to
work properly. At the right connector a voxel classification image can be
supplied. The extension of the dimensions c, t and u of this image has to be
1. The value stored in each voxel is considered as an index value represent-
ing the class the voxel belongs to. Six different voxel classes can be defined.
The corresponding colors are shown in table 5.2. This colors are drawn in
the background of the dODFs. The value 0 is not handled and can be used
as a rejection class. A practical example of the usage of voxel classes is
shown in Figure 5.24a. The displayed classification was calculated by the
MFC_Macro module. Dark green voxels represent voxels containing one
fiber population while dark blue voxels contain two fiber populations. All
other voxels were rejected, thus, containing no fiber populations (isotropic
diffusion).

A B0-image can be connected to the left input connector. The extent
of the dimensions c and u has to be 1. The extend of dimension t does
not matter as only the value at t = 0 is used in this module. The value
of every voxel at the coordinate t = 0 is interpreted as a grayscale value
and is displayed in the background of the other two input images. This
is a convenient way of displaying the B0-image in the background of the
rendered scene. An example for the B0 image in the background is shown
in Figure 5.24b.

The output of this module is a rendered OpenGL scene that can be dis-
played with the SoExaminerViewer module.

The different visualization means offered by this module can be ac-
cessed via the GUI-panel (Figure 5.22). The Icosahedron tesselation tab is only
for testing purposes. It allows to display the coordinates of the class Sphere-
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(a) dODF tab (b) Icosahedron tesselation tab

Figure 5.22: GUI-panel of the So_dODF_Visualizationmodule

(a) (b) (c)

Figure 5.23: Diffusion ODF directions of the 3rd tesselation order having at least
70% of the PDD are shown for 3 different dODFs in the top row. The
bottom row shows the same dODFs as glyphs.

Points as a tesselated icosahedron. The box Show dODF has to be unchecked
in order to view the icosahedron. The tesselation order can also be chosen
in this tab. It only applies to the displayed icosahedron and does not affect
the visualized dODFs.

The dODF tab allows for multiple ways of dODF visualization. The
box Show dODF has to be checked in order to view the dODFs from the
input image. To examine the data either one whole slice or a single voxel
can be shown by checking and unchecking the box Only show voxel. The
parameters X and Y hold the coordinates of the voxel to display. The slice
can be chosen via the field Show slice (Z).

The dODFs can be displayed in several ways selected via the Visualiza-
tion parameter in the GUI-panel. Possible visualization types are points,
lines, meshes, or glyphs. Further, the visualization option Best Dirs allows
to display only the highest values of the dODF as lines. The threshold for
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(a) Fiber crossing shown as glyphswith voxel classification. The positive radii
are normalized by the maximum value of each dODF.

(b) Fiber crossing shown as glyphs with B0-image. The positive radii are nor-
malized by the maximum value in the ROI.

(c)Min-Max (d) Pos-Max (e)Min-Max (f) Pos-Max

Figure 5.24: Visualization examples from the So_dODF_Visualizationmodule
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these values is determined by the Best Dirs % parameter. This parame-
ter takes a value in the range [0, 100]. All dODF directions having at least
this percentage of the maximum diffusion direction value in the dODF are
shown. The bottom row of Figure 5.23 shows three different dODFs as
glyphs (tesselation order 5). The 3rd tesselation order sampling directions
with magnitude of at least 70% the PDD are shown in the top row for the
same dODFs.

The last parameter that can be set via the GUI-panel is the Radius. This
parameter represents the kind of normalization that is applied to the indi-
vidual dODF values (these values are referred to as radii as they describe
the local radius of the glyph in one direction). A common way to normal-
ize the dODF values is the Min-max normalization. The normalized dODF
radius, rn, for a voxel u and each direction i is calculated as

rn =
Ψ(u)i −Ψ(u)min

Ψ(u)max −Ψ(u)min
(5.1)

whereΨ(u)i is the i-th direction vector of the dODF of the voxel u. Ψ(u)max

and Ψ(u)min are the maximum and minimum values of the dODF of voxel
u respectively. The resulting value, rn, is in the range [0, 1]. This kind of
normalization is straightforward but has a significant disadvantage. Neg-
ative dODF values (representing improbable diffusion directions) are also
included in the normalization, thus, inflating the glyphs. An alternative
method is to replace all negative values by a small value ǫ > 0 before nor-
malization (replacing by 0 would lead to undefined values in color calcu-
lation as each vector is scaled by the respective radius before its color is
calculated). This method can be chosen via the option Normalized By ROI
Max in the Radius parameter. A comparison of these two normalization
methods is presented in Figures 5.24c through 5.24f for two different glyph
shapes. A third option, Normalized By ROI Max, is also provided. Here,
negative values are also replaced by a small value ǫ > 0, but instead of us-
ing Ψ(u)max the maximum dODF value of all voxels in the dataset is used.
The resulting glyphs are small in regions with low diffusivity and large
in regions with high diffusivity. The fiber crossing area of the Fiber Cup
dataset is presented in Figure 5.24a with positive normalized radii and in
Figure 5.24b with ROI normalized radii for comparison. Further, Zero can
be chosen for Radius in order to omit the dODF information. This is useful
if only the information of the images at the left and right input connectors
is desired.

The control flow of the So_dODF_Visualization module is illustrated in
Figure 5.25. Initially, the sampling directions and the face indices for glyph
rendering are copied from the class SpherePoints and the module waits for
a module field change. As soon as valid input images are present at the
modules input the data for each voxel is processed. Subsequently, a voxel
grid is drawn, a voxel classification color is set (if the corresponding input
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Figure 5.25: Illustration of the control flow in the So_dODF_Visualizationmodule.

image is provided), and the background B0-image is drawn (again only if
a B0-image is provided at the corresponding input connector). Then, the
color and radius for visualization is determined and the dODF is rendered.
After processing all voxels the module waits again for a field change.

5.3.6 So_Fiber_Visualization

The structure of the So_Fiber_Visualization module is illustrated in Figure
5.26. This module is a subclass of the class SoShape. The purpose of the
So_Fiber_Visualization module is to visualize the fiber tracts that were re-
constructed by the HARDI_deterministic_Tractography module.

This module offers three input connectors. The left and the right input
connectors have exactly the same properties as in the So_dODF_Visualization
module. The middle input pin is reserved for a fiber trace image. The ex-
tent of all dimensions of this image has to be 1. The only exception is the
t dimension. It holds the complete information on the reconstructed fiber
tracts. In a way, this input image is a one-dimensional array. The first value
in dimension t indicates the number of vertices of the first fiber tract. The
vertex coordinates are the subsequent values of dimension t. Then again a
value indicating the number of vertices in the next fiber tract follows. For
more details on the structure of the fiber trace image please refer to the
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Figure 5.26: Class diagram of the So_Fiber_Visualization module

Figure 5.27: GUI-panel of the So_Fiber_Visualization module

description of the HARDI_deterministic_Tractography module.
The output of this module is a rendered OpenGL scene that can be dis-

played with the SoExaminerViewer module.
The GUI-panel of this module offers access to two parameters (Figure

5.27). The first parameter, Show slice (Z), allows to switch the displayed
slice of the input images. Note that this parameter only influences the input
images at the left and at the right input pin. The fiber tracts from the image
at the middle input connector are rendered entirely no matter which slice
is selected. This is done to be able to view the fibers as a whole and to
better assess each individual fiber course. However, by unchecking the
parameter Show whole fibers only the parts of the fiber trajectories that are in
the selected slice are rendered in a bright color. The other parts of the fibers
are displayed in a dark color. Example images visualizing the reconstructed
fiber pathways are presented in Figure 5.28.

Figure 5.29 illustrates the control flow in the So_Fiber_Visualizationmod-
ule. On startup, the module waits for a module field change. When a valid
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(a) Parameter Show whole fibers is checked,
fibers are rendered completely in a
bright color.

(b)With unchecked parameter Show whole
fibers only the parts of the fibers in the
selected slice are displayed in a bright
color.

Figure 5.28: Visualization of reconstructed fibers.

Figure 5.29: Illustration of the control flow in the So_Fiber_Visualization module.

input images are provided a color for the first fiber is selected. If Show whole
fibers is unchecked the same color with half the brightness is used to ren-
der parts of the fiber running through other slices. As soon as all fibers
are displayed a grid separating the voxels is drawn. Subsequently, if the
corresponding input images are provided a classification color is set for all
voxels and the background B0-image is drawn.
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Chapter 6

Evaluation

The objective of this chapter is to evaluate the ML modules described in
the previous chapter. As these modules differ strongly in their function-
ality and purpose different aspects will be evaluated. The evaluation is
performed on a Linux notebook with an Intel Core 2 Duo P84001 CPU @
2.26 GHz. This notebook is equipped with 2 GiB of RAM.

The evaluation is performed both, on a phantom and on a human brain
dataset. The phantom was originally provided by the Laboratoire de Neu-
roimagerie Assistée par Ordinateur (LNAO, France) for the Fiber Cup, a
tractography contest at the MICCAI conference in 20092. The phantom
data was acquired with two repetitions and 64 image encoding gradients
uniformly distributed over the sphere. The data volume consists of 3 slices
each with a resolution of 64×64 voxels with an uniform voxel size of 3mm.
Of the different diffusion sensitizations provided the dataset with b-value
b = 2000 s/mm2 is used here. No ROI selection is applied to the data, i.e.
the whole data volume will be used for evaluation. All measurements of
calculation times were performed on the Fiber Cup dataset.

The human brain dataset is taken from [PPAM06]. It consists of 60
slices each with a resolution of 128 × 128 voxels. The in-slice voxel size
is 1.875 × 1.875 mm, the slice thickness is 2 mm. The acquisition was per-
formed with 41 image encoding gradients at a b-value of b = 700 s/mm2.
For the evaluation in this chapter a ROI with the size of 43 × 7 × 40 vox-
els was selected in the region of the corpus callosum (CC) including the
corticospinal tract (CST).

6.1 HARDI_dODF_Reconstruction

This module has the purpose to reconstruct the dODF from SH coefficients.
The quality and accuracy of this reconstruction algorithm as described in

1http://ark.intel.com/Product.aspx?id=35569
2http://www.lnao.fr/spip.php?rubrique79
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Figure 6.1: Number of sampling points and SH coefficients at different orders

Tesselation Reconstruction time [s]
order SH order 4 SH order 6 SH order 8

1 1 2 16
2 4 7 25
3 14 27 57
4 55 103 184
5 219 411 688

Table 6.1: Durations of dODF reconstruction for different parameters

section 3.2.3 was evaluated by its authors in [DAFD07]. Therefore, only
the computation time of the presented implementation will be evaluated in
this section.

Two aspects influence the computation time of this module:

• the tesselation order of the icosahedron

• the order of the provided SH coefficients

These two parameters have different influences on the complexity of dODF
reconstruction. Figure 6.1a shows how the number of sampling directions
increases with higher tesselation orders (this Figure is a plot of table 5.1).
This exponential growth is also expected for the computation time of the
dODFs. Further, Figure 6.1b shows how the number of coefficients in-
creases with higher SH orders. Although the number of SH coefficients
does not increase as rapidly as the number of sampling points it has never-
theless a strong effect on the computation time as each coefficient needs to
be multiplied with a SH basis function for each sampling point (equation
3.15).

The duration of a dODF reconstruction for different parameters are pre-
sented in Figure 6.2 and table 6.1. As expected, the reconstruction time
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Figure 6.2: Illustration of dODF reconstruction durations
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Figure 6.3: Illustration of dODF reconstruction durations in the time span of one
minute
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increases exponentially. Figure 6.3 shows the parameter combinations that
lead to clinically feasible reconstruction times of oneminute and less. While
the reconstruction time for all evaluated SH orders for tesselation order 3
lies in this period of time dODF with tesselation order 4 can only be recon-
structed from SH coefficients of order 4 in the same time span. The recon-
struction time of approximately 3 minutes for SH order 8 and tesselation
order 4 can still be considered as acceptable. The employment of higher
SH orders is currently not practical as noise disturbances become an issue.
Further, Figure 5.9 raised the suspicion that the additional precision arising
from tesselation order 5 compared to orders 3 and 4 is marginal. However,
the impact of the chosen tesselation order on the accuracy of fiber tracing
needs to be evaluated. Even if this precision should be needed dODF with
tesselation order 5 and SH order 4 is sufficient to identify up to 2 fiber pop-
ulations per voxel and can be reconstructed in a time period far below 4
minutes.

For further tests tesselaton orders 1 and 2 will not be used as they are
practically useless.

6.2 HARDI_Anisotropy_Criteria

The HARDI_Anisotropy_Criteria module allows to calculate anisotropy cri-
teria introduced in section 4.1.3. The evaluation is performed in two steps.
In the first section the computation time for different parameters will be
examined. The second section evaluates the quality of the module’s classi-
fication results.

6.2.1 Computation Times

Computation times for several different tasks are relevant in theHARDI_An-
isotropy_Criteria module. These tasks are:

• Precalculation of data needed for dODF based criteria

• Calculation of output data for a dODF based criterion

• Calculation of output data for a SH coefficients based criterion

• Calculation of output data for the MDL criterion

The precalculation of data needed for dODF based criteria is performed
when an input image or the Max Radius parameter in the criterion Vesna
changes. This computation depends only on the tesselation order of the
dODF and not on the SH order. The times needed to precompute the dODF
are illustrated in Figure 6.4 for different tesselation orders. Again, tessela-
tion order 5 demands for very long computation times whereas the other
orders lie in an acceptable time span.
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Figure 6.4: Illustration of anisotropy criteria precalculation durations

SH order Computation time [s]

4 0.5
6 1
8 16

Table 6.2: Durations of MDL criterion calculation for different SH orders

Once the data for dODF based criteria (i.e. GFA, stdDev, Vesna), is pre-
computed, changing thresholds or selecting another criterion hardly needs
any time. For any of these criteria this computation time is in the order of
10ms independent of the tesselation order or the used SH order.

Criteria completely (i.e. FMI, MDL) or partly (i.e. Chen) based on the
SH coefficients are computed on demand and are, except for Chen, inde-
pendent of the tesselation order. Calculating an output image for FMI and
Chen takes less than 30ms for SH order 3, and less than 50ms for SH order
4. However, this time strongly increases for SH order 8 and is on the order
of 14 seconds.

The MDL criterion has the highest calculation times. These times are
presented in table 6.2.

6.2.2 Classification on the Fiber Cup Phantom

The classification results of this module are evaluated on the Fiber Cup
phantom dataset in this section. All thresholds were chosen carefully to
achieve the best possible classification results. The B0-image showing the
middle slice of the Fiber Cup phantom is shown in Figure 6.5. Bright voxels
represent anisotropic diffusion while dark voxels represent isotropic diffu-
sion. An anisotropy criterion is considered as sound if it is able to separate
these two voxel classes properly.

The presented classification results show the middle slice of the dataset.
Green voxels represent anisotropic diffusionwith one fiber population. Blue
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Figure 6.5: B0-image of the Fiber Cup phantom

voxels stand for anisotropic diffusion with two fiber populations per voxel.
Each row of the following Figures shows the results for a distinct SH order
(SH). Each column illustrates results for a tesselation order (T).

GFA

Figure 6.6 shows the classification results of the GFA criterion for all rele-
vant tesselation orders and SH orders. The classification results are over-
layed on the B0-image from Figure 6.5. GFA classifies most of the white
matter voxels as anisotropic. However, evenwith a carefully chosen thresh-
old a lot of gray matter voxels are classified as anisotropic as well. Further,
for higher SH or tesselation orders no improvement in the results can be
found. One possible explanation for this bad results is that the examined
dataset is of low quality. It should be noted again that Q-ball reconstruction
works best on datasets acquired with a b-value of at least 3000. However,
a maximum b-value of only 2000 is available for this dataset. Further, the
data is very noisy and shows only little differences between isotropic and
anisotropic voxels. In conclusion, the GFA criterion is useless on the Fiber
Cup phantom.
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(a) T: 3, SH: 4 (b) T: 4, SH: 4 (c) T: 5, SH: 4

(d) T: 3, SH: 6 (e) T: 4, SH: 6 (f) T: 5, SH: 6

(g) T: 3, SH: 8 (h) T: 4, SH: 8 (i) T: 5, SH: 8

Figure 6.6: Classification results of the GFA criterion (threshold 0.55).

stdDev

Figure 6.7 shows the classification results of the stdDev criterion. This cri-
terion is able to separate gray and white matter voxels very well as can be
seen by comparing the results to the B0-image. The results for different
tesselation orders show almost no differences. Further, a marginal increase
of erroneously classified gray matter voxels as having anisotropic diffusion
can be observed for higher SH orders. This observation is consistent with
the fact that higher SH orders are more susceptible to noise. Overall, these
results are promising and can be used as a mask to separate gray and white
matter voxels. The choice of a proper threshold, however, is more time-
consuming as the standard deviation can take arbitrary values and is not
restricted to a certain range (as e.g. is the GFA).
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(a) T: 3, SH: 4 (b) T: 4, SH: 4 (c) T: 5, SH: 4

(d) T: 3, SH: 6 (e) T: 4, SH: 6 (f) T: 5, SH: 6

(g) T: 3, SH: 8 (h) T: 4, SH: 8 (i) T: 5, SH: 8

Figure 6.7: Classification results of the stdDev criterion (threshold 2.67).

Vesna

Figure 6.8 shows the classification results of the Vesna criterion. The chosen
thresholds were 0.6 (Max Radius), 0.023 (One Fiber Threshold), 0.026 (Two
Fiber Threshold) for Figures 6.8d and 6.8g. Further, 0.6 (Max Radius), 0.1
(One Fiber Threshold), 0.11 (Two Fiber Threshold) for Figures 6.8e and 6.8h.
The thresholds 0.6 (Max Radius), 0.37 (One Fiber Threshold), 0.4 (Two Fiber
Threshold) were applied to the remaining Figures. The classification results
of voxels with two fiber populations (blue) were useless for all configura-
tions. As in the last criterion, no significant differences can be observed
when varying the tesselation order while the number of erroneously clas-
sified voxels increased with the SH order. The results are not as bad as of
the GFA criterion, but still too noisy to be used in practice.
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(a) T: 3, SH: 4 (b) T: 4, SH: 4 (c) T: 5, SH: 4

(d) T: 3, SH: 6 (e) T: 4, SH: 6 (f) T: 5, SH: 6

(g) T: 3, SH: 8 (h) T: 4, SH: 8 (i) T: 5, SH: 8

Figure 6.8: Classification results of the Vesna criterion.

Chen

Figure 6.9 shows the classification results of the Chen criterion. Again, dif-
ferent thresholds had to be chosen here to achieve similar results through-
out all configuration. In general, the chosen thresholds were 0.877 (R0), 0.5
(R2), 0.1 (R4), 3.5 (Low Variance), and 6 (High Variance). For SH orders 6 and
8 R4was modified to 0.857. Similar to theVesna criterion the results for two
fiber populations were useless. As before, no differences in the results for
varying tesselation orders could be observed and noise increased with the
SH order. However, when only considering the green marked voxels the
results can be useful to separate gray and white matter voxels.
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(a) T: 3, SH: 4 (b) T: 4, SH: 4 (c) T: 5, SH: 4

(d) T: 3, SH: 6 (e) T: 4, SH: 6 (f) T: 5, SH: 6

(g) T: 3, SH: 8 (h) T: 4, SH: 8 (i) T: 5, SH: 8

Figure 6.9: Classification results of the Chen criterion.

FMI

The FMI criterion only depends on the choice of the SH order. Figure 6.10
presents its results. The results for two fiber populations were useless as in
all other criteria. On the other hand, voxels with one fiber population were
identified well. The choice of higher SH orders introduced only marginal
increase in noise but did not allow for better classification results.

MDL

The results of the MDL criterion appear like randomly distributed colors
(Figure 6.11). In theory,MDL can detect a maximum number of fiber popu-
lations per voxel corresponding to l/2where l is the chosen SH order. Prac-
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(a) SH: 4 (b) SH: 6 (c) SH: 8

Figure 6.10: Classification results of the FMI criterion (thresholds: 0.0025 (FMI 0),
and 0.25 (FMI 1)). Green voxels represent one fiber population, while
blue voxels represent two fiber populations.

(a) SH: 4 (b) SH: 6 (c) SH: 8

Figure 6.11: Classification results of the MDL criterion. Fiber populations: 1
(green), 2 (blue), 3 (red), 4 (dark cyan).

tically, the results are useless. These bad results are not surprising as this
criterion was, so far, only tested on simulated data where all parameters
(e.g. noise, SNR) were adjustable.

Summary of Results on Phantom Data

Higher tesselation or SH orders did not provide better results on this dataset
for any of the criteria. The results of the criteria GFA, Vesna, andMDLwere
either completely useless or too noisy to be used in practice. None of the
four criteria theoretically capable of classifying voxels with two fiber pop-
ulations was able to provide useful results. However, the criteria stdDev,
Chen, and FMI are able to separate isotropic and anisotropic voxels very
well. Of all these criteria the selection of a proper threshold is easiest for
the stdDev criterion as only one single threshold has to be found.
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6.2.3 Classification on Human Brain Data

The classification results of the HARDI_AnisotropyCriteria module are eval-
uated on the human brain dataset in this section. Only the criteria that pro-
vided best results on the phantom dataset are used for this evaluation. The
b-value of 700 is challenging as it is too low for optimal Q-ball reconstruc-
tion. However, as no HARDI datasets with higher b-values are available
the evaluation is carried out on this dataset.

stdDev

Figure 6.12 shows the classification results of the stdDev criterion for some
combinations of tesselation and SH orders. The applied threshold is 260.
Although many voxels were erroneously classified as anisotropic the sepa-
ration of gray and white matter voxels is acceptable. Selecting higher SH or
tesselation orders leads to marginal changes in the classification, but does
not improve the results.

Chen

The classification results of the Chen criterion are presented in Figure 6.13.
The chosen thresholds were 0.9 (R0), 0.5 (R2), 0.06 (R4), 73000 (Low Vari-
ance), and 80000 (High Variance). The threshold R4 was modified to 0.1 for
Figure 6.13c. White and gray matter voxels were separated with slightly
less false positives than with the stdDev criterion. Again no significant
changes can be observed for different SH or tesselation orders.

FMI

Figure 6.14 illustrates the classification results of the FMI criterion for SH
orders 4 and 6. The applied thresholds were 0.003 (FMI 0) and 0.4 (FMI
1). The classification results for both SH orders are almost identical. White
and gray matter separation works well with this criterion.

Summary of Results on Human Brain Data

The classification results of these three criteria on the human brain dataset
confirm that selecting higher SH and tesselation orders does not improve
the classification results. All criteria were able to separate isotropic and
anisotropic voxels well. The stdDev results were the best on phantom data.
However, on the human brain data all three criteria perform similar. The
classification results of the Chen and FMI criteria for voxels with two fiber
populations were useless as before on phantom data.
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(a) T: 3, SH: 4 (b) T: 4, SH: 4 (c) T: 3, SH: 6

Figure 6.12: Classification results of the stdDev criterion on human brain data
(threshold 260) for some combinations of tesselation (T) and SH or-
ders (SH).

(a) T: 3, SH: 4 (b) T: 4, SH: 4 (c) T: 3, SH: 6

Figure 6.13: Classification results of the Chen criterion on human brain data for
some combinations of tesselation (T) and SH orders (SH).

(a) SH: 4 (b) SH: 6

Figure 6.14: Classification results of the FMI criterion on human brain data for SH
orders 4 and 6. Green voxels represent one fiber populations while
blue voxels stand for two fiber populations.
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6.3 MFC_Macro

This module was developed to improve the classification results of vox-
els with two fiber populations as the established criteria (FMI, Chen) pro-
vided useless results. The MFC computations are based on an mask sepa-
rating gray and white matter voxels obtained from one of the criteria in the
HARDI_Anisotropy_Criteria module. As only the criteria Chen, FMI, and
stdDev perform this separating task well only these three criteria will be
evaluated here. This evaluation is limited to SH order 4 and tesselation
order 3.

MFC on Phantom Data

Figure 6.15 shows the classification results for different input masks on
phantom data. Voxels marked blue were classified by this module as con-
taining two fiber populations. When not stated differently the same thresh-
olds were applied as in the evaluation of the HARDI_Anisotropy_Criteria
module. Figures 6.15a through 6.15c show the results obtained from the
stdDev criterion for different thresholds. In Figure 6.15c all relevant areas
of fiber crossing, fiber kissings, and fiber branchings were identified. For
lower thresholds MFC merges identified regions or even produces false
positives. The results from the FMI and Chen white matter mask are not as
good as of the stdDevmask, but still identify lots of relevant areas correctly.

Although some areas were identified as too small (especially the fiber
crossing region in the lower part of the phantom) these results improve the
classification of multiple fiber populations significantly.

MFC on Human Brain Data

The MFC results on human brain data are presented in Figure 6.16. Same
threshold as in the evaluation of the HARDI_AnisotropyCriteria module on
human brain data were used for the stdDev and Chen criteria. The thresh-
olds of the FMI criterion were modified to 0.0026 (FMI 0) and 0.4 (FMI 1).

Ideally, only the parts where the corpus callosum merges into the corti-
cospinal tract and the left and right branchings of this tract would be clas-
sified as containing two fiber populations. Lots of false positives can be
found in the classification results of all three criteria. The good classifica-
tion results on phantom data were due to similar fiber tract widths in the
whole dataset. However, this is not true for the human brain data. One
possible solution would be to use different mask sizes for the morphologi-
cal operations and combine the results.
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(a) stdDev, threshold 2.60 (b) stdDev, threshold 2.65 (c) stdDev, threshold 2.70

(d) FMI, FMI0 0.0024 (e) FMI, FMI0 0.0025 (f) Chen

Figure 6.15: MFC classification results on phantom data

(a) stdDev (b) Chen (c) FMI

Figure 6.16: MFC classification results on human brain data
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6.4 HARDI_deterministic_Tractography

This section evaluates different tractography algorithms that were imple-
mented in the course of this thesis for theHARDI_deterministic_Tractography
module. In the first section the fiber tracing times of each algorithm will be
examined. The second section evaluates the quality of the obtained results.

6.4.1 Fiber Tracing Durations

The times needed by the different algorithms for fiber reconstruction are
presented in table 6.3. The shown times were averaged for all different
parameter configurations plotted in the next section. These times highly
depend on the lengths of fibers that were recovered (i.e. an algorithm that
aborts tracing after a few steps needs little time even if it is computation-
ally expensive). The Weighted Dirs Angle algorithm stopped many trajec-
tories too early resulting in the lowest computation time. All other trac-
ing times can be considered as representative for the individual algorithm.
The significantly higher computation time of the Distance Based algorithm
indicates its high complexity. However, 16 seconds are still acceptable in
practice.

Algorithm Reconstruction time [s]

Euler PDD 2.1
RK4 PDD 3.4

Weighted Dirs Angle 1.4
Weighted Dirs MFC 2.3

Distance Based 16.4

Table 6.3: Times needed for fiber tract reconstruction by different algorithms.

6.4.2 Tractography Results on Phantom Data

To evaluate the tractography results common seedpoints and ground truth
were provided for the Fiber Cup phantom (Figure 6.17). The phantom it-
self represents the most challenging fiber configurations: Fiber crossings
at different angles, fiber branching, and a fiber kissing, as well as a sharp
turn were designed. The seedpoints were placed in the middle slice of
the dataset. An application was provided at the Fiber Cup website to
evaluate the results. This application requires the coordinates of a fiber
ground truth and the coordinates of the corresponding candidate fiber as
input (in form of a txt-file). The fiber trajectories reconstructed by the
HARDI_deterministic_Tractography module were resampled using interpo-
lating coordinates with the application provided for evaluation. These re-
sampled coordinates were the input data for the evaluation process.
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(a) seedpoints (b) ground truth

Figure 6.17: Seedpoints and ground truth of the Fiber Cup phantom

In the evaluation process each fiberwas resampledwith 1000 points and
these points were approximatedwith splines. The output of the application
is the mean difference between the ground truth fiber and the candidate
fiber computed at each point according to a selected metric. Three metrics
were used for evaluation: l2, tan, and curv.

The l2metric is the squared euclidean distance between two points

l2(g, c) = gx · cx + gy · cy + gz · cz (6.1)

where g is the ground truth point and c the corresponding point of the
candidate fiber.

The tanmetric is the squared angle in degrees between the tangent vec-
tors to the two evaluated points

tan(g, c) = (arccos(go · co))2 (6.2)

where g and c are defined as before and go and co are the vectors from the
origin to these points.

The curv metric measures the curvature of the spline resulting from in-
terpolated fiber coordinates

curv(g, c) =

( ‖vderg × vder2g‖
‖vderg × vder2g‖3

− ‖vderc × vder2c‖
‖vderc × vder2c‖3

)2

(6.3)

where vderx is the vector from the origin to the value of the first derivative
and vder2x is the vector from the origin to the value of the second deriva-
tive of the spline at point x.

The l2 metric reliably indicates whether or not a fiber trajectory is close
to the ground truth. The other two metrics, however, provide bad results
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(a) Euler PDD (b) RK4 PDD

Figure 6.18: Tracing results of the Euler PDD and RK4 PDD algorithm for a curva-
ture threshold of 35 degrees in voxels with two fiber populations.

for fiber trajectories that are not smooth or not perfectly straight lines even
if they are very close to the ground truth. Further, if each fiber trajectory
is approximated by straight lines representing the PDD of the correspond-
ing seedpoint and completely disregarding the underlying fiber data the
results of tan and curv are still very good. Thus, an evaluation based on
these three metrics lays more weight on smoothness than on the spatial
correctness of the fiber trajectories. Nevertheless, all metrics will be used
for evaluation to allow for a better comparison to the Fiber Cup results.

For a better comparison of the different algorithms the y-axes of the
plots are scaled equally for one metric over all algorithms. RMS in the
caption of the y-axes stands for root mean square. SH order 4 and tesselation
order 3was used for all presented approaches.

Euler PDD

Quantitative experiments were performed to find the optimal step size and
curvature threshold for voxels with one fiber population. The experiments
consisted of visually inspecting the tracing results and comparing the fiber
trajectories to the ground truth. The step size and curvature threshold
with themost correctly reconstructed streamlines (i.e. matching the ground
truth in their course) were used for the evaluation. The best results were
achieved with an integration step size of 0.25 voxels (0.75 mm) and a cur-
vature threshold of 60 degrees. Increasing the curvature threshold further
did not lead to any changes in the reconstructed fiber trajectories.

Using the fixed step size and curvature for one fiber populations the
curvature threshold for voxels with two fiber populations was varied. Fig-
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ure 6.18a shows the reconstructed fibers for a two fiber curvature threshold
of 35 degrees. The results of the evaluation metrics for different values of
this threshold are shown in Figure 6.19. The blue line corresponds to Figure
6.18a. Fibers 9 (yellow at the top), and 13 to 16 (blue, yellow, cyan and ma-
genta in the left part) were reconstructed correctly in the presented image.
This is confirmed by the low deviance from the ground truth indicated by
the l2metric. Thus, fibers in regions of high curvature (13, 14) can be recon-
structed and nondominant pathways (15, 16) can be traced through fiber
crossings with this method. Further, the courses of fibers 4, 10, and 11 are
close to the ground truth. The tan and curv indicate best results for fibers 13
to 16 as they are smoothly curved and almost matching the ground truth.

RK4 PDD

Optimal step size and curvature threshold for voxels with one fiber popula-
tion for the RK4 PDD algorithmwere the same as for the Euler PDDmethod
(0.25 voxels and 60 degrees respectively). Again, increasing the curvature
threshold further did not lead to any changes in the reconstructed fiber tra-
jectories.

Using this step size and curvature for one fiber populations the curva-
ture threshold for voxels with two fiber populations was varied. Figure
6.18b shows the reconstructed fibers for a two fiber curvature threshold of
35 degrees. The results of the evaluation metrics for different values of this
threshold are shown in Figure 6.20. The green line corresponds to Figure
6.18b. The RK4 PDD method performed worse than the Euler PDD algo-
rithm according to the metrics. However, the same number of fiber (i.e. 5)
could be reconstructed correctly: fibers 13 and 14 (blue and yellow in the
left part), fibers 2, 3 (khaki and violet), and fiber 10 (black). These fiber
correspond to regions with high curvature, dominant fiber pathways (2, 3),
and a fiber kissing region (10), a very challenging fiber configuration.

Weighted Dirs Angle

This algorithms is the only one of the five implemented that does not use
the MFC results to classify voxels with two fiber populations. Instead, a
median filtered stdDev mask to separate white and gray matter is used.
Quantitative experiments showed 0.25 voxels to be the optimal step size
for this algorithm.

Using this step size the curvature thresholdwas varied (only one curva-
ture threshold was applied as noMFC result was used). Figure 6.22a shows
the reconstructed fibers for a curvature threshold of 30 degrees. The results
of the evaluation metrics for different values of this threshold are shown in
Figure 6.21. The red line corresponds to Figure 6.22a. Four fibers, 4 (khaki),
11, 15, and 16 (red, cyan and magenta on the left side), were reconstructed
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Figure 6.19: Evaluation metrics computed for Euler PDD fiber tracing
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Figure 6.20: Evaluation metrics computed for RK4 PDD fiber tracing
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Figure 6.21: Evaluation metrics computed forWeighted Dirs Angle fiber tracing
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(a) Weighted Dirs Angle (b)Weighted Dirs MFC

Figure 6.22: Tracing results of the Weighted Dirs Angle and Weighted Dirs MFC al-
gorithm for a curvature threshold of 30 degrees in voxels with one
and two fiber populations respectively.

correctly. Further, the fibers 2 (orange), and 9 (yellow at the top) almost
matched the ground truth trajectory. These trajectories belong to both, the
dominant and nondominant tract of the fiber crossing at the lower central
part of the phantom. The curvmetric suggests that this algorithm produces
the smoothest fiber tracts so far. However, this results are misleading. As
can be seen on fiber 3 (violet on the right part) fiber tracing is aborted after
only a few steps. The fiber trajectory does not at all match the correspond-
ing ground truth fiber. Nevertheless, this fiber gets the best result in the
curvmetric.

Weighted Dirs MFC

The optimal step size for this algorithm is 0.1 voxels (0.3mm). The best cur-
vature threshold for voxels with one fiber population is 60 degrees. Using
this step size and curvature for one fiber population the curvature thresh-
old for voxels with two fiber populations was varied. Figure 6.22b shows
the reconstructed fibers for a two fiber curvature threshold of 30 degrees.
The results of the evaluation metrics for different values of this threshold
are shown in Figure 6.23. The red line corresponds to Figure 6.22b. In total,
four fibers were reconstructed correctly: 3 (violet), 11, 13, and 16 (red, blue,
and magenta on the left part). Further, five other fibers almost matched the
course of the ground truth (4 (khaki), 9, 12 (yellow and green horizontal
fibers at the top), and 14 (yellow on the left part)).
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Figure 6.23: Evaluation metrics computed for Weighted Dirs MFC fiber tracing
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(a) Distance Based fiber tracing (b) ground truth

Figure 6.24: Tracing results of the Distance Based algorithm for a curvature thresh-
old of 20 degrees in voxels with two fiber populations. The ground
truth is shown for comparison.

Distance Based Fiber Tracing

Quantitative experiments show that the optimal step size for this algorithm
is 0.5 voxels (1.5mm). The optimal curvature threshold for voxels with one
fiber population is 70 degrees. These are the highest values for these param-
eters of all presented algorithms. Using the fixed step size and curvature
for one fiber populations the curvature threshold for voxels with two fiber
populations was varied. Figure 6.24a shows the reconstructed fibers for a
two fiber curvature threshold of 20 degrees. The results of the evaluation
metrics for different values of this threshold are shown in Figure 6.25. The
red line corresponds to Figure 6.24a.

All fibers except fibers 8 and 10 (blue and black at the top) were recon-
structed correctly. These two fibers represent the fiber kissing configura-
tion. This type of fiber configuration is similar to fiber crossings at a low
angle. However, unlike in a crossing area it is not possible to limit the range
of possible directions to a small angular value and propagate the trajectory
in one of the directions. In fiber kissings the fiber has to bend constantly
inside the multiple fiber area. In fiber crossing areas this would result in
taking the wrong “exit” (i.e. following a wrong fiber bundle). This con-
flict of bending and straight propagation makes fiber kissing regions most
challenging. The course of fiber 8 (blue) can be recovered correctly with a
step size of 0.1 voxels as lower step sizes are more sensitive to curvature.
However, the reconstruction of a majority of other fibers fails with a step
size this low.

As can be seen in Figure 6.25 the results of this algorithm do not vary
much for different curvature thresholds for voxels with two fiber popula-
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Figure 6.25: Evaluation metrics computed for Distance Based fiber tracing
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(a) 1st place: global (b) 2nd place: cSD

(c) 3rd place: multi-tensor (d) 4th place: Q-ball

Figure 6.26: Results of first four places at the Fiber Cup.

tions. Even for a non-optimal curvature threshold for voxels with one fiber
population of 65 and 60 degrees 12 fibers are reconstructed correctly for
most values of the second curvature threshold. This is an indication for the
stability of this approach. The overall results according to the l2 and tan
metrics are better than in the other algorithms. Even the curv metric indi-
cates acceptable results. However, further smoothing can be applied to the
reconstructed trajectories to obtain even better results in this metric.

Comparison to the Fiber Cup Results

Figure 6.26 shows the reconstruction results of the first four places (out of
ten) at the Fiber Cup. The number of incorrectly reconstructed fiber trajec-
tories for these places is 1 (first place), 0 (second place), and 3 (third and
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Fiber 1st place 2nd place 3rd place 4th place Distance Based
number (global) (cSD) (multi-tensor) (Q-ball) (Q-ball)

1 2.24 6.91 3.01 4.39 1.98
2 2.37 7.83 3.22 4.37 2.48
3 4.98 2.01 4.74 2.62 3.50
4 2.18 2.25 4.36 1.25 1.35
5 1.98 3.75 4.77 1.81 3.55
6 4.25 6.61 54.05 7.7 4.26
7 5.62 3.61 67.03 67.82 6.54
8 2.11 4.91 4.63 4.16 21.65
9 2.61 5.73 18.42 4.15 3.67
10 5.78 5.37 6.45 4.38 29.75
11 3.36 3.27 17.25 2.63 5.04
12 17.02 4.22 4.86 8.24 2.75
13 4.66 1.65 3.78 2.15 2.29
14 2.56 2.73 2.34 3.83 1.95
15 2.16 2.73 2.89 5.52 2.32
16 5.81 5.31 6.01 6.04 8.64

Table 6.4: Comparison of the Distance Based l2 metric to the results of the Fiber
Cup.

fourth places). With only 2 incorrectly reconstructed fiber pathways the
Distance Based algorithm achieves similar results as these participants at
the Fiber Cup.

Tables 6.4, 6.5, and 6.6 compare the best four Fiber Cup results to the
result of the Distance Based algorithm in all metrics. Compared to the Fiber
Cup result the Distance Based approach performs well in the l2 metric. The
results of this metric are plotted in Figure 6.27 for better comparison. The
results of the other two metrics, however, have room for improvement.

The scoring procedure at the Fiber Cup was organized as follows: The
three metrics were computed for each of the 16 fibers resulting in total in
48 ratings. For each rating the candidate with the least deviance from the
ground truth won three points. Two points were given to the second best
result and one point to the third place. Assuming an imaginary participa-
tion of theDistance Based algorithm at the Fiber Cup the Fiber Cup score can
be recalculated. These fictitious scores are presented in table 6.7. Accord-
ing to this evaluation the Distance Based algorithm would be placed second
in the l2 metric and third in the total score of the Fiber Cup. Almost all
points for this algorithm result from the l2 metric. Therefore, future work
should not only improve the fiber reconstruction, but also concentrate on
regularizing and smoothing the reconstructed fiber trajectories.

158



6.4. HARDI_DETERMINISTIC_TRACTOGRAPHY

Fiber 1st place 2nd place 3rd place 4th place Distance Based
number (global) (cSD) (multi-tensor) (Q-ball) (Q-ball)

1 9.33 10.83 13.42 31.1 17.74
2 12.38 15.18 16.28 32.98 31.68
3 6.35 9.92 9.11 28.32 25.57
4 5.37 9.65 19.77 19.26 18.58
5 6.2 6.96 22.62 29.71 24.33
6 8.1 11.87 56.62 46.86 19.17
7 11.44 8.32 67.49 65.66 22.72
8 8.26 12.34 18.29 33.27 54.69
9 6.73 11.7 46.99 35.27 17.57
10 12.1 15.21 13.01 34.69 49.52
11 4.85 8.00 45.92 29.69 21.62
12 46.74 12.02 18.91 43.58 18.85
13 12.75 10.94 15.76 24.89 25.58
14 14.74 13.18 16.19 27.67 22.99
15 4.25 7.39 11.97 36.70 19.82
16 7.54 5.44 25.49 27.59 26.39

Table 6.5: Comparison of the Distance Based tan metric to the results of the Fiber
Cup.

Fiber 1st place 2nd place 3rd place 4th place Distance Based
number (global) (cSD) (multi-tensor) (Q-ball) (Q-ball)

1 0.025350 0.030870 0.070594 0.209874 0.361998
2 0.039980 0.054298 0.076433 0.274584 0.475126
3 0.021249 0.437153 0.086352 0.235227 0.474395
4 0.014065 0.044516 0.079855 0.162110 0.282796
5 0.020442 0.060609 0.091297 0.282577 0.372536
6 0.026327 0.043200 0.126881 0.484764 0.480412
7 0.022992 0.048882 0.128838 0.381329 0.35991
8 0.043299 0.049991 0.066174 0.238658 0.474324
9 0.016785 0.041078 0.109614 0.322867 0.336436
10 0.026207 0.054317 0.091980 0.232870 0.375708
11 0.012756 0.021897 0.110738 0.296971 0.447673
12 0.032568 0.038112 0.115901 0.278794 0.314087
13 0.070287 0.061247 0.085933 0.203200 0.43945
14 0.068706 0.256229 0.082921 0.209025 0.388423
15 0.010659 0.021063 0.078300 0.306166 0.444443
16 0.020795 0.023347 0.114350 0.383827 0.444116

Table 6.6: Comparison of the Distance Based curv metric to the results of the Fiber
Cup.
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Figure 6.27: Comparison of the l2 metric results to the Fiber Cup participants.

1st place 2nd place 3rd place 4th place Distance Based
(global) (cSD) (multi-tensor) (Q-ball) (Q-ball)

l2 25 18 7 17 20
tan 41 35 10 0 4
curv 47 28 6 0 0
total 113 81 23 17 24

Table 6.7: Fictitious Fiber Cup results with participation of the Distance Based fiber
tracing approach.

6.4.3 Tractography Results on Human Brain Data

Tractography evaluation was performed on a coronal slice (XZ-plane) in
the region of the CC and the CST. None of the fiber tracing algorithms pro-
vided good results on this data set. The fiber trajectories presented in Fig-
ure 6.28a were reconstructedwith theDistance Based algorithm. The chosen
thresholds were 0.5 (Step size), 65 (One Fiber Max Angle), 8 (DistanceVec-
tors), 0.5 (CurrentDirWeight). The median filtered stdDev mask was used
to separate anisotropic and isotropic diffusion voxels. Anisotropic voxels
are shown in green on the slice containing the seed point in Figure 6.28a.
The MFC was not used due to its bad classification results. Note that the
fiber trajectories in Figure 6.28a are projected on the slice containing the
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(a)

(b)

Figure 6.28: Tracing results on human brain data. In (a): coronal slices in the re-
gion of the corpus callosum (CC) and the corticospinal tract (CST). In
(b): axial slices in the region of the CC and lateral fibers. Seed voxels
are marked white.

seed points. The true trajectories cross several slices and, therefore, do not
resemble the PDDs of the shown slice in all voxels.

There are several possible reasons for the bad fiber tracing results on
this data. First, as was pointed out before, a data set with a b-value of
700 is not suitable for Q-ball reconstruction. Further, only 41 diffusion en-
coding directions were used to obtain this dataset. Usually, 60 and more
gradient directions are used for HARDI data. A third problem is more
fundamental. The So_dODF_Visualization and So_Fiber_Visualization mod-
ules support only axial slice (XY -plane) visualization so far. However, for
the selected ROI the data had to be viewed in the XZ-plane. The MeVis-
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Figure 6.29: The fractions of the total computation time contributed by each mod-
ule.

Lab library provides the module SwapFlipDimension to swap the axis of the
dataset. Though, the swapped dataset was corrupted: The diffusion direc-
tion in the CST was perpendicular to the anatomically well-known direc-
tion (in the coronal view the CST diffusion direction was aligned with the
y-axis instead of the anatomically correct z-axis). This orientation had to
be corrected manually in the So_dODF_Visualization module. However, it
remains still unclear why the swapping of the dimension axis introduced
errors and whether all manually added corrections were applied properly.
Seed point placement and fiber reconstruction was made on the manually
corrected data. As the tracing results were not acceptable at all the sus-
picion remains that the dataset got corrupted at some step of the image
processing pipeline.

Therefore, a second ROI was selected to evaluate the tracing results on
human brain data. The second ROI was placed on axial slices in the region
of the CC including the lateral connected fibers. Thus, no potentially er-
roneous axis flipping was necessary for this ROI. The tracing results were
obtained with the same parameters (Figure 6.28b). Since the fiber trajecto-
ries in the second ROI are properly reconstructed it can be stated that the
Distance Based fiber tracing algorithm works on human brain data. How-
ever, further evaluation on other ROIs (and with proper data on the first
ROI) is necessary.

6.5 Total Computation Time

This section illustrates the fraction of the total computation time needed by
the individual modules of the HARDI_Tractography image processing net-
work as presented in 5.2.3. Time measurements were performed with SH
order 4 and tesselation order 3. The Distance Based algorithm is used for
fiber tracing. The results are presented in Figure 6.29. The total computa-
tion time of 52 seconds is clinically acceptable.
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Chapter 7

Summary

This chapter provides a short summary of this thesis. The first section sum-
marizes the theoretical background that forms the basis of this work. In the
second section a short review of the implementation is provided and the
results are discussed.

7.1 Theoretical Part

The theoretical part of this thesis provided an overview on MRI and dif-
fusion MRI. Background knowledge on signal formation and its physical
basis was given. Different types of images, such as relaxation and diffusion
weighted images, were introduced. Their individual purposes and signifi-
cance for specific tissue was explained. Further, background knowledge on
diffusion was provided to allow for an assessment of the measured quanti-
ties and the associated uncertainty.

Based on this knowledge an introduction to diffusion tensor imaging
(DTI), a widely used modality in medical practice, was given. DTI plays
an important role in the reconstruction of white matter fiber bundles that
connect different functional areas of the brain. The reconstruction of these
fibers provides insight into brain structure and allows to analyze the de-
velopment of the brain from childhood to adulthood. Pathological changes
caused by diseases such as multiple sclerosis (MS) and Alzheimer’s disease
can be investigated and improve our understanding of the brain. Further,
white matter fiber reconstruction plays an important role in neurosurgical
planing.

Although being a valuable modality DTI has severe limitations as it
is not able to resolve multiple fiber populations per voxel. Since lots of
brain regions have complicated structures the inability of resolving sev-
eral fiber populations per voxels prevents DTI from correctly reconstruct-
ing the white matter pathways. In regions with fiber crossings, branchings,
or kissings often no directional information on the fiber trajectories can be
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obtained. This limitations stem from the low number (often 6 to 20) of dif-
fusion encoding directions used in DTI.

High angular resolution diffusion imaging (HARDI) techniques have
been developed to overcome these limitations. In HARDI often 60 and
more diffusion encoding gradients are applied. At the cost of a higher im-
age acquisition time higher angular resolution is provided that allows to
identify even complicated structures in the brain. Several methods have
been developed to process the acquired data and reconstruct a diffusion
orientation distribution function (dODF) representing the diffusivity di-
rections in each voxel. Of the methods presented analytical Q-ball recon-
struction was chosen as basis for the implementation. This reconstruction
method is computationally light and has beenwidely studied by several re-
search groups. One of the disadvantages of the Q-ball method, however, is
its demand for a b-value of at least 3000 during the acquisition of the data.
In other words, to reconstruct sharp dODF the Q-ball approach demands
for high sensitivity on diffusion. Lover b-values lead to loss of angular
information and result in blurred dODFs.

Based on diffusion tensors or dODFs fiber trajectories can be recon-
structed. This process is called fiber tracing or tractography. Early DTI
based approaches used Euler or RK4 integration with a constant step size
to propagate a streamline along the direction of highest diffusivity often
called the principal diffusion direction (PDD). The FACT (fiber assignment
by continuous tracking) approach also follows the PDD but uses a vary-
ing step size for integration. Following approaches like TEND (tensor de-
flection) suggested to use the whole diffusion tensor instead of only using
the first eigenvector resembling the PDD. Thus, streamlines were deflected
along the PDD in regions with low directional uncertainty and propagated
in straight lines when uncertainty was high. Many HARDI approaches ex-
amine several directions in each voxel. Often the local maxima above a
certain threshold are selected and the streamline continues along the max-
imum forming the smallest angle with the incoming direction. Some ap-
proaches split the streamline when the angle between local maxima is suf-
ficiently high and follow multiple pathways.

These approaches are called deterministic as they deterministically fol-
low diffusion and always produce same results if applied with same pa-
rameters to the same datasets. Probabilistic approaches were developed
to account for the uncertainty of the measured data and allow to assess
reconstructed pathways. For this approaches first a function representing
the uncertainty needs to be generated. Often bootstrapping and Bayesian
methods are applied for this purpose. Once the uncertainty is represented
a high number of streamlines is propagated by drawing samples from the
uncertainty distribution at each step. Voxels crossed by many streamlines
are considered as being the most probable fiber pathway.

These two groups of tractography algorithms (deterministic and prob-
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abilistic) are local approaches as they estimate the direction of highest dif-
fusion at each step locally. However, two brain regions are not necessarily
connected by a fiber that follows the highest diffusion direction in each
step. Therefore, global tractography approaches try to find a globally opti-
mal diffusion path between two regions. Locally seen this path might not
align with the PDD along the whole trajectory. However, out of all possible
paths the reconstructed fiber trajectory is the path of maximum diffusivity
between the regions in question.

7.2 Implementation and Results

Several modules have been implemented for the MeVisLab medical image
processing framework in the course of this thesis. These modules perform
the tasks of reconstructing the dODF and apply several criteria to sepa-
rate voxels with isotropic diffusion from voxels with anisotropic diffusion.
Based on this separation a module was developed to classify voxels as con-
taining one or two fiber populations. Further, two visualization modules
were developed to examine the data and display the reconstructed fiber
pathways.

The main focus of the implementation lies on the tractography mod-
ule. Five different algorithms were implemented to deterministically re-
construct white matter fibers. The first two algorithms (Euler PDD and
RK4 PDD) were basic extensions of classic PDD based algorithms with Eu-
ler and RK4 integration respectively. The PDD was interpolated among
neighboring voxels and the fiber trajectory followed the resulting PDD di-
rections. No other directions were considered for possible path continua-
tion. The extension to HARDI data was limited to using the classification
results that provided the number of fiber populations in each voxel. Based
on this number and the angle of the incoming direction either the PDD,
the interpolated PDD, or the current direction was used to continue the
streamline. Tracing was stopped in voxels with isotropic diffusion.

The third and forth algorithm (Weighted Dirs Angle and Weighted Dirs
MFC) were inspired by state-of-the-art tractography algorithms that iden-
tify the closest local maximum to the incoming direction. A high threshold
was used to filter the possible directions in each voxels. All remaining di-
rection were considered as representing high diffusivity without determin-
ing local maxima. The Weighted Dirs Angle algorithm reconstructs fibers
on a white matter mask without identifying regions with two fiber popu-
lations. Based on the scattering angle of possible directions (i.e. the uncer-
tainty of the PDD) in the current voxel and the angle between the stream-
line and the PDD a direction to continue the streamline was determined.
This direction is a weighted average of the current direction, the closest di-
rection of the thresholded dODF, and the PDD. However, the PDD can be
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ignored in some cases. TheWeighted Dirs MFC algorithm is similar but does
not use the scattering angle of the dODF to determine the weights for the
individual direction vectors. Instead, the information about the number of
fiber populations per voxel is used.

The last algorithm (Distance Based) is a completely new approach that
has not been used before. In voxels with one fiber population the stream-
line tries to keep a constant distance to the white matter borders. In com-
plex regions (i.e. with two fiber populations) one of the possible directions
is chosen that allows for a long trajectory continuation. The decision which
direction to choose in these cases is based on the resulting streamline angle
and a curvature hint calculated from last voxels.

The tractography results of these algorithms were evaluated on a phan-
tom dataset with the most challenging fiber configurations. This dataset
was originally used for tractography evaluation at the Fiber Cup during
the MICCAI 2009 conference. A ground truth and common seedpoints
were provided for the evaluation. The Euler PDD algorithm was able to
reconstruct 5 out of 16 fibers correctly (several other fibers were close to the
ground truth). The RK4 PDD algorithms performed similar (5 fibers) but
reconstructed different fiber trajectories correctly than the first algorithm.
Since the fiber configurations in the dataset are very challenging these bad
results for PDD based approaches were not surprising.

The approaches based on direction averaging reconstructed 4 fibers cor-
rectly. In general, the Weighted Dirs MFC approach provided better results.
Many trajectories of the Weighted Dirs Angle approach were stopped too
early as they left the dataset. A simple averaging of directions is, therefore,
insufficient since an average direction does not necessary represent a diffu-
sion direction. The additional information provided by the MFC helped to
improve the results.

Best results were achieved by the Distance Based algorithm. 14 out of 16
fibers were reconstructed correctly. The remaining two fibers represented a
kissing fiber configuration. Furtherwork is needed to enable this algorithm
to reconstruct even this configuration. One possible extension would be to
use smaller step sizes in regions with high curvature. In regions with mul-
tiple fiber populations the maximum tracing distances inside white matter
could be determined for each potential tracing direction. By selecting the
local maxima of these distances that best fit the current curvature of the
fiber the selection of the next direction could be improved. Kissing fiber
configuration could be handled this way. The calculation of the lateral dis-
tances could benefit from a continuous white matter mask as the discrete
voxel borders (especially in diagonal fibers) result in erroneous distance
estimations. Further, the calculation of the curvature hint can be improved.

Nevertheless, the results of this algorithm are very similar to the best
algorithms presented at the Fiber Cup. However, the resulting fiber trajec-
tories have to be smoothed and interpolated to achieve better results at all
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metrics used for evaluation at the Fiber Cup.
The Distance Based algorithm was also evaluated on human brain data.

Due to difficulties with data handling the results for one of two regions of
interest (ROIs) can not be trusted and needs further evaluation. The fibers
in the second ROI were reconstructed reliably.

Themorphological fiber classification (MFC)was developed to improve
the tractography results. The development of this global classification ap-
proach for multiple fiber configuration was necessary as the usual methods
(e.g. FMI) did not provide good results. However, so far the MFC works
only on the phantom dataset. The reason is obvious. The MFC uses fixed
mask sizes for its morphological operations. The fiber bundles of the phan-
tom dataset are also of almost constant width. If both, the mask size and
fiber width fit each other well MFC provides good results. For the human
brain dataset MFC proved useless since the fiber width in the brain varies
greatly. Therefore, MFC needs to be extended to use variable mask sizes
for different regions of the brain. Alternatively, the MFC results obtained
with constant but different mask sizes could be combined.

In conclusion, a fiber tracing algorithm was developed that is able to
reconstruct fibers in most of the complicated fiber configurations. This al-
gorithm needs more evaluation on human brain data. Also a dataset with
a sufficiently high b-value is necessary for a proper evaluation. Alterna-
tively, this algorithm could be applied to data from other reconstruction
methods. Especially the constrained spherical deconvolution (cSD) recon-
struction approach provides sharp ODFs and resolves even fiber crossings
at low angles. Sharp ODFs could also make the classification of fiber pop-
ulations per voxel unnecessary as the number of fibers would be equal to
the number of ODF maxima.
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Chapter 8

Outlook

This chapter gives a brief outlook to fiber tracing in challenging regions
(e.g. regions with edema or tumors) in the first section. The second and
third sections briefly discuss possibilities for clustering and visualization.

8.1 Fiber Tracing in Challenging Regions

Regions with edema and tumors are challenging because these regions fea-
ture isotropic diffusion. Axonal fibers can be infiltrated, surrounded, or
pushed aside by these pathologies. In the last case it is likely that the af-
fected fiber bundles are deformed but still visible in diffusion weighted im-
ages due to their anisotropic diffusivity. In the former two cases, however,
the anisotropic diffusion in the fibers is concealed by the isotropic diffusion
of the pathologies. Data reconstruction from the measured signal should
explicitly consider these two types of diffusion.

One possible data reconstruction method might be the multi compart-
ment model. By explicitly modeling isotropic and anisotropic diffusion
these two diffusion types could be distinguished in a voxel. If this sepa-
ration is successful the orientation of the anisotropic compartment can in-
dicate the underlying fiber orientation. A second possibility to reconstruct
the concealed fiber orientationmight be spherical deconvolution. The mea-
sured signal can be deconvolvedwith different kernels varying from highly
anisotropic to completely isotropic diffusion. The results of each deconvo-
lution can be compared and could indicate a hidden fiber structure. As
high b-values are more sensitive to diffusion than low b-values their ap-
plication might reveal even small diffusion inhomogeneities in challenging
region and help identify occluded fibers.

However, it might not be possible at all to reveal the hidden structure.
In any case the applied fiber tracing method should be probabilistic (or
even global) to handle the high uncertainty in such regions. If any direc-
tional data inside the tumor can be gained and fiber tracing appears rea-
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sonable tracing should be started from two ROIs. These ROIs should be
placed on both sides of the region in question where the fiber is known to
enter or exit the tumor.

8.2 Clustering of Fiber Populations

In many cases, especially in probabilistic fiber tracing approaches, several
streamlines are generated. These streamlines need to be clustered in order
to know which of the streamlines represent the same fiber population. In
regions where only one fiber population exists the solution is trivial: All
reconstructed trajectories in this region of question belong to the same fiber
population. Clustering fibers in regions of fiber crossings at high angles
can be accomplished by examining the fiber angles at a selected point or
region. Fiber passing this region and having a low angle to one another
most probably belong to the same fiber population. On the other side, fibers
forming an angle higher than the chosen threshold belong to the crossing
(or crossed) fiber population.

Regions of fiber branchings, kissings, and crossings at low angles are
more challenging. In these cases it might be beneficial to define several
ROIs close to the region in question. Boolean operators can then be applied
to these ROIs to identify fiber populations (e.g. all fiber passing through
ROI 1 and ROI 2 belong to the same fiber population).

8.3 Visualization

Fiber trajectories are usually visualized by streamlines (i.e. rendered lines).
These visualization can be enhanced by rendering three-dimensional tubes
(streamtubes). Further, these tubes can be overlayed with glyphs of the
corresponding dODF in challenging regions. In this way one can assess
whether or not the fiber trajectory has taken the best possible way indicated
by the data.

Uncertainty in the fiber trajectories reconstructed by probabilistic al-
gorithms can be visualized with semi-transparent fibers. The more fibers
choose a particular pathway (and, thus, overlay each other) themore opaque
the trajectories becomes. In cases where the main purpose is to visualize
the probabilities associated with the different reconstructed streamlines the
width of the streamtubes can be varied. More probable connections result
in wider tubes than connections with low probabilities.
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Appendix A

Module Documentation

This appendix provides a user-level documentation for the modules that
were implemented in the course of this thesis.

HARDI_dODF_Reconstruction

Description Given spherical harmonics coefficients this module recon-
structs the diffusion orientation distribution function (dODF) for every voxel
in the input image. The spherical coordinates for the dODF sampling are
derived from a tesselation of an icosahedron. Tesselation orders of 1 through
5 are supported and can be chosen via a parameter in the GUI-panel.

GUI-panel The GUI-panel of themoduleHARDI_dODF_Reconstruction is
shown in Figure A.1. It provides access to the following module fields:

• Tesselation order: Determines the tesselation order of an icosahedron
and thus the number of sampling direction for the dODF reconstruc-
tion. Valid values are integers from 1 to 5. The sampling directions
belonging to each tesselation order are shown in table A.1.

• Isotropy weight: Weighting factor for the SH coefficient representing
isotropic diffusion. By default, this factor is set to zero to deempha-
size isotropic diffusion and, thus, reveal the directional information
of the higher order SH coefficients.

Figure A.1: GUI-panel of the HARDI_dODF_Reconstructionmodule
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Tesselation order Sampling directions

1 12
2 42
3 162
4 642
5 2562

Table A.1: The number of sampling directions belonging to each tesselation order
of an icosahedron.

Input This module has one input image parameter. The input is an im-
age of extension (x, y, z, c, t, u) = (X, Y , Z , 1, R, 1). X, Y , Z is the size
of the image in voxels. The t dimension holds R = 0.5(L + 1)(L + 2) co-
efficients that are determined from the measured MRI signal and spherical
harmonics order L. The size of dimensions c and u must be 1.

Output This module has one output image parameter. The output is an
image of extension (x, y, z, c, t, u) = (X, Y , Z , 1, N , 1) holding the dODF
values in the t dimension. X, Y , Z are the same as in the input image. N is
the number of used sampling directions for dODF reconstruction.

HARDI_AnisotropyCriteria

Description This module allows to calculate six different anisotropy cri-
teria on input images with HARDI data. The goal of these criteria is to clas-
sify the number of fiber populations per voxel (i.e. 0, 1, or 2 populations)
or to separate voxels with isotropic diffusion from voxels with anisotropic
diffusion.

Algorithm 11 FMI criterion classification

1: if FMIa < FMI 0 then
2: 0 fiber populations
3: else

4: if FMIb < FMI 1 then

5: 1 fiber population
6: else

7: 2 fiber populations
8: end if

9: end if

GUI-panel The tabs of the GUI-panel of the HARDI_AnisotropyCriteria
module are shown in Figure A.2. The tab Criterion allows to choose the cri-
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Figure A.2: GUI-panel of the HARDI_AnisotropyCriteriamodule

terion that is applied to the input image. Every criterion has a separate tab
where the corresponding thresholds can be set. An exception is the MDL
criterion as no thresholds need to be applied to this classification criterion.
The thresholds for each tab are explained in the following list.

• GFA: The general fractional anisotropy (GFA) separates voxels with
isotropic diffusion (values below the threshold) from voxels with an-
isotropic diffusion (values equal to or above the threshold). The GFA
values are normalized to be in the range [0, 1].

• StdDev: The standard deviation of the dODF separates voxels with
isotropic diffusion (values below the threshold) from voxels with an-
isotropic diffusion (values equal to or above the threshold). The stan-
dard deviation can take arbitrary values and highly depends on the
dataset.

• Vesna: This method counts dODF values above the threshold Max
Radius in the min-max normalized dODF for each voxel. This value is
further transformed to the range [0, 1] and two thresholds are applied
to it. Voxels with a value below One Fiber Threshold are classified as
containing one fiber population. Voxels with a value above Two Fiber
Threshold are classified as isotropic (zero fiber populations). Finally,
voxels with a value between these two thresholds are classified as
containing two fiber populations.

• FMI: For this method two values are calculated: FMIa indicating the
significance of higher order SH coefficients over the 0th order coeffi-
cients and FMIb indicating the significance of higher order SH co-
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Algorithm 12 Chen’s criterion classification

1: if R0 > R0 or variance < Low Variance then
2: 0 fiber populations
3: else

4: if R2 > R2 or variance ≥ High Variance then
5: if Rmulti > R4 then
6: 2 fiber populations
7: else

8: 1 fiber population
9: end if
10: else

11: 2 fiber populations
12: end if

13: end if

efficients over the 2nd order coefficients. The classification is carried
out according to algorithm 11.

• Chen: This criterion demands for the most thresholds. ValuesR0, R2,
and Rmulti are calculated from SH coefficients. Additionally, the vari-
ance of the dODF is needed for this criterion. The voxels are classified
according to algorithm 12.

Input This module has two input image parameters. Both input images
are needed for correct functionality of this module.

• Left input connector: An image of extension (x, y, z, c, t, u) = (X, Y ,
Z , 1, R, 1). X, Y , Z is the size of the image in voxels. The t dimension
holds R = 0.5(L+1)(L+2) coefficients that are determined from the
measured MRI signal and spherical harmonics order L. The size of
dimensions c and umust be 1.

• Right input connector: An image of extension (x, y, z, c, t, u) = (X,
Y , Z , 1, N , 1) holding the dODF values in the t dimension. X, Y , Z is
the image size in voxels. N is the number of used sampling directions
for dODF reconstruction.

Output The output is an image of extension (x, y, z, c, t, u) = (X, Y , Z ,
1, 1, 1). X, Y , Z are the same as in the input images. The scalar value at
each voxel indicates the number of fiber populations that were identified by
the selected anisotropy criteria. The number of identified fiber populations
can be 0, 1, or 2. In theory, however, more than 2 fiber populations can be
identified by theMDL criterion offered by this module.
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MFC_Macro

Description This macro module incorporates an inner network that was
built around theHARDI_AnisotropyCriteria module. Several other modules
of the MeVisLab library, especially morphological operations, were added
to the internal network. The module’s name MFC (morphological fiber
classification) attributes to these morphological modules. The purpose of
this module is to improve the classification results of the HARDI_Anisotro-
pyCriteria by applying morphological operations to the anisotropy criteria
offered by this module.

GUI-panel The GUI-panel of this module has exactly the same structure
and functionality as the GUI-panel of the HARDI_AnisotropyCriteria mod-
ule (Figure A.2).

Input The input images of this module have the same properties as the
input images of the HARDI_AnisotropyCriteria module as they are directly
passed to this module internally.

Output TheMFC_Macromodule offers three output imageswith the same
properties and structure. The image at the rightmost output pin is the
output of the HARDI_AnisotropyCriteria module. The middle output pin
provides a median filtered version of the latter image. A kernel size of
3 × 3 × 3 is used for filtering. The leftmost output pin offers the actual
classification result of the MFC. The MFC always classifies voxels as hav-
ing 0, 1, or 2 fiber populations independent of the chosen criterion of the
HARDI_AnisotropyCriteria module.

HARDI_deterministic_Tractography

Description This module reconstructswhite matter fibers on an input im-
age containing the diffusion orientation distribution function (dODF) for
every voxel. Different deterministic algorithms can be chosen for this re-
construction. Fiber tracing is starting at seedpoints defined via the GUI-
panel.

GUI-panel The GUI-panel of this module has two tabs (Figure A.3). The
SeedPoints tab allows to specify seedpoints that will be used for fiber trac-
ing. The seedpoints have to be integer voxel coordinates indicating the
voxel at the center of which the tracing will be started. Each seedpoint has
to be entered in a separate line. Its coordinates have to be separated by
an arbitrary number of spaces. By clicking on the Apply button an event
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Figure A.3: GUI-panel of the HARDI_deterministic_Tractographymodule

is triggered and fiber tracing is performed starting at the new seedpoints.
If the Apply button is not clicked the seedpoints will be copied on the next
module field change of the Parameters tab. Any coordinates outside of the
image dimensions will be ignored. The functionality of the Parameters tab
is explained below.

• Algorithm: Defines the algorithm that is used for fiber tracing. Possi-
ble values areDummy (no fiber tracing), Euler PDD,RK4 PDD,Weighted
Dirs Angle, Weighted Dirs MFC and Distance Based.

• Step size: Indicates the integration step size used for fiber tracing.
The step size is specified in voxels.

• One Fiber Max Angle: The maximum angle a fiber can bend in every
step in regions with one fiber population per voxel.

• Two FiberMax Angle: The maximum angle a fiber can bend in every
step in regions with two fiber populations per voxel.

• Min Diffusion Directions Magnitude: Lower bound for dODF di-
rections that are used for fiber tracing. The given value specifies the
percentage of the magnitude of the PDD.

• DistanceVectors: Number of distance vectors used to estimate the
best tracing direction. Possible values are 4, 8, and 16. This parameter
only affects the Distance Based algorithm.

• CurrentDirWeight: Weighting factor for the current tracing direction.
The specified value has to be between 0 and 1. This parameter only
affects the Distance Based algorithm.

Input This module has two input image connectors. Both input images
are needed for correct module functionality.

• Left input connector: An image of extension (x, y, z, c, t, u) = (X, Y ,
Z , 1,N , 1) holding the dODF values in the t dimension. X, Y , Z is the
image size in voxels. N is the number of used sampling directions for
dODF reconstruction.
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Figure A.4: Structure of the output image. The array is divided into lines for illus-
tration purposes. Each line represents one fiber.

• Right input connector: An image of extension (x, y, z, c, t, u) = (X,
Y , Z , 1, 1, 1). X, Y , Z is the image size in voxels. The scalar value
at each voxel indicates the number of fiber populations in this voxel.
The number of identified fiber populations can be arbitrary. How-
ever, the fiber tracing algorithms use a maximum number of 2 fiber
populations per voxel.

Output The output image contains the reconstructed fiber trajectories and
is basically a one-dimensional array. The extent of every dimension except
t is 1. The dimension t holds the information of the fibers reconstructed
from all seedpoints. Its extent is s + v ∗ 3, where s is the number of seed-
points and v the sum of vertices in all fibers. The fiber data in dimension t
is an array of floating point numbers and is organized as is shown in Figure
A.4. The first number indicates the quantity of three-dimensional coordi-
nates representing the first fiber. These coordinates are stored in the array
directly after the first number. First, the x coordinate, followed by the y and
z coordinates (in this order) of the first vector is placed in the array. Then,
the coordinates of the second vector follow, etc. If more than one fiber was
reconstructed the number of vectors belonging to the next fiber is stored
in the array at the position behind the last coordinate of the first fiber. Its
coordinates follow as described above.

So_dODF_Visualization

Description This module visualizes the diffusion orientation distribution
functions (dODF) of an input image in several ways. Supported visualiza-
tion modes are points, lines, meshes or glyphs. Further, only the highest
values of the dODF can be displayed up to an user defined threshold. The
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(a) dODF tab (b) Icosahedron tesselation tab

Figure A.5: GUI-panel of the So_dODF_Visualizationmodule

displayed dODFs are normalized for better overview. Three different nor-
malization modes are supported (see description of the GUI-panel for de-
tails). Every voxel can be rendered in a special background color to visual-
ize specific properties of voxels. Furthermore, the correspondingB0-image
of the visualized input image can be displayed in the background.

GUI-panel Both tabs of the GUI-panel of the So_dODF_Visualizationmod-
ule are shown in Figure A.5. The tab dODF provides access to the following
module fields:

• Show dODF: If checked, the visualization of the dODF from the in-
put image is enabled. This box should be checked when using the
visualization option in the dODF tab and unchecked when using the
visualization option in the Icosahedron tesselation tab.

• Show slice (Z): The slice of the input images that is displayed.

• Only show voxel: If checked, only one voxel of the selected slice is
displayed. This voxel is determined by the values X and Y.

• X: The x-coordinate of the voxel to display in the case the box Only
show voxel is checked.

• Y: The y-coordinate of the voxel to display in the case the box Only
show voxel is checked.

• Visualization: The type of visualization. The user can choose be-
tween a visualization of the dODF as points, lines, meshes or glyphs.
The last visualization option, Best Dirs, allows to display only the
highest values of the dODF as lines. The threshold for these values is
determined by Best Dirs %.

• Best Dirs %: Threshold for the selection of directions in the range
[0, 100]. All dODF directions having at least this percentage of the
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Scalar value Color name Sample

0 not handled -
1 dark green
2 dark blue
3 dark red
4 dark cyan
5 dark magenta
> 5 dark yellow

Table A.2: The background colors for voxel classification that can be assigned to
the voxels by a scalar value in the input image at the right input con-
nector.

maximum diffusion direction value in the dODF are shown if Visual-
ization is set to Best Dirs.

• Radius: The type of dODF radius normalization. Supported types
are Min Max Normalized, Normalized By ROI Max, and Only Positive
Radii Normalized. Further, Zero can be chosen to omit the dODF visu-
alization.

The tab Icosahedron tesselation shows different tesselations of an icosahedron
for general testing purposes of visualization. This tab provides access to the
following module fields:

• ShowdODF: Same as in the tab dODF. This box should be unchecked
when using the visualization of the tab Icosahedron tesselation.

• Icosahedron tesselation order: If Show dODF is unchecked, this value de-
termines the tesselation order of the icosahedron that is displayed in
place of every voxel. This value is automatically set to the tesselation
order of the dODF in the input image as soon as the box Show dODF
is checked. All selectable option in Visualization in the tab dODF apart
from Best Dirs also apply here.

Input This module has three input connectors. The main purpose of the
module is the visualization of dODFs. An image containing the dODFs
can be connected to the middle input connector. The right input connector
serves as input to a voxel classification image. The left input connector is
reserved for the B0-image that can be displayed in the background. The
following description provides more details on the input images:

• Middle input connector: An image of extension (x, y, z, c, t, u) = (X,
Y , Z , 1, N , 1) holding the dODF values in dimension t. X, Y , Z is
the size of the image in voxels. N is the number of used sampling
directions for dODF reconstruction.
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Figure A.6: GUI-panel of the So_Fiber_Visualizationmodule

• Right input connector: This is an optional input. An image of exten-
sion (x, y, z, c, t, u) = (X, Y , Z , 1, 1, 1). X, Y , Z are the same as in the
input image at the middle input connector. The scalar value at each
coordinate allows to classify the corresponding voxel as belonging to
a certain group (e.g. a fiber or an anisotropy measure). Six different
voxel groups can be indicated by this classification. Table A.2 shows
the resulting color for the different classifications scalars. The classifi-
cation color is drawn in the background of the dODF from the image
at the middle input connector.

• Left input connector: This is an optional input. An image of exten-
sion (x, y, z, c, t, u) = (X, Y , Z , 1, N , 1). X, Y , Z are the same as in
the input image at the middle input connector. The size of dimension
t does not matter as only the value at t = 0 is used in the module.
The value of every voxel at the coordinate t = 0 is interpreted as a
grayscale value and is displayed in the background of the other two
input images. This is a convenient way of displaying the B0-image in
the background of the rendered scene.

Output A rendered OpenGL scene that can be displayed with the SoEx-
aminerViewer module.

So_Fiber_Visualization

Description This module visualizes the white matter fibers reconstructed
by the HARDI_deterministic_Tractography module. Every voxel can be ren-
dered in a special background color to visualize specific properties of vox-
els. Furthermore, the corresponding B0-image of the visualized input im-
age can be displayed in the background.

GUI-panel The GUI-panel of the module So_Fiber_Visualization is shown
in Figure A.6. It provides access to the following module fields:

• Show slice (Z): The slice of the input images that is displayed.

• Show whole fibers: If checked, every fiber trajectory is rendered in a
bright color. If unchecked, only the parts of the fiber trajectories that
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are in the selected slice are rendered in a bright color. The other parts
of the fibers are displayed in a dark color.

Input This module has three input connectors. The main purpose of the
module is the visualization of reconstructed fibers. An image containing
the reconstructed fibers can be connected to the middle input connector.
The right input connector serves as input to a voxel classification image.
The left input connector is reserved for the B0-image that can be displayed
in the background. The following description provides more details on the
input images:

• Middle input connector: An image of extension (x, y, z, c, t, u) = (1,
1, 1, 1, N , 1) holding the reconstructed white matter fibers as an array
of size N .

• Right input connector: This is an optional input. An image of ex-
tension (x, y, z, c, t, u) = (X, Y , Z , 1, 1, 1). X, Y , Z is the number
of voxels in the dimensions x, y, and z. The scalar value at each co-
ordinate allows to classify the corresponding voxel as belonging to a
certain group (e.g. a fiber or an anisotropy measure). Six different
voxel groups can be indicated by this classification. Table A.2 shows
the resulting color for the different classifications scalars. The classifi-
cation color is drawn in the background of the fiber trajectories from
the image at the middle input connector.

• Left input connector: This is an optional input. An image of exten-
sion (x, y, z, c, t, u) = (X, Y , Z , 1, N , 1). X, Y , Z are the same as in
the input image at the right input connector. The size of dimension
t does not matter as only the value at t = 0 is used in the module.
The value of every voxel at the coordinate t = 0 is interpreted as a
grayscale value and is displayed in the background of the other two
input images. This is a convenient way of displaying theB0-image in
the background of the rendered scene.

Output A rendered OpenGL scene that can be displayed with the SoEx-
aminerViewer module.
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