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Abstract

This paper documents the development of an abstract physics layer
(APL) for Simspark. After short introductions to physics engines and
Simspark, reasons why an APL was developed are explained. The biggest
part of this paper describes the new design and why certain design choices
were made based on requirements that arose during developement. It
concludes by explaining how the new design was eventually implemented
and what future possibilities the new design holds.



Introduction

Simspark is a generic physical multiagent simulator. One of its flaws
was its dependency on one specific physics engine, the Open Dy-
namics Engine (ODE). Relying on a single and arguably outdated
physics engine held back Simspark’s potential compared to what it
could do with support for more and better physics engines. How-
ever, switching ODE with another physics engine would only post-
pone the problem, allowing it to resurface if another, even better
physics engine is released. Furthermore, relying on a single physics
engine hampers Simspark’s flexibility. Thus, development of an ab-
stract physics layer (APL) was started. The relevant library within
Simspark underwent a redesign, which was eventually implemented.

The APL serves as a mediator between Simspark and the actual
implementation of the physics simulation. Simspark does not know
which physics engine is used by the implementation. As a result, it
is possible to change the implementation without having to change
anything within Simspark. The implementation was designed as a
plugin. Once more implementations using different physics engines
are available, using a different physics engine will be as simple as
using a different plugin.

This paper starts out with basic introductions to both physics
engines and Simspark. After that, it discusses Simspark’s original
design, how the relevant library was changed and why these changes
were made. The last part covers a selection of problems that occured
during development, as well as their solutions, in greater detail and
explains the benefits of the new design.
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1 An Introduction to Physics Engines

1.1 The Major Physics Engines

Physics engines are available as both OpenSource and commercial
tools. According to a survey by the Game Developer’s Magazine,
Bullet[6] and the Open Dynamics engine (ODE)[5] are two of
the most frequently used open-source physics engines[6]. However,
ODE reached its zenith several years ago. After that point, support
for ODE receded and today, development for ODE has nearly come
to a halt: The most recent version as of writing this, ODE 0.11.1,
was released in October 2009[5]. After ODE lost momentum, Erwin
Coumans started Bullet to offer an alternative open source physics
engine. Since ODE was also open source, Coumans used its source
code as a guideline and as a result, Bullet is strikingly similar to
ODE in both structure and function. The most important differ-
ence, however, is that Bullet is a lot more efficient than ODE, and
the name Bullet was chosen to reflect that: Several users have re-
ported that Bullet does, in fact, perform a lot better than ODE
in certain situations, e.g. when there is a large stack of boxes[6].
Support for Bullet is still very strong and new versions are released
in regular intervals. Because of that, Bullet also offers a lot more
functionality than ODE. Bullet’s downside, however, is that it is
hardly documented. Because of this issue many users actually refer
to ODE’s documentation to learn things about Bullet.

Commercial physics engines include PhysX by Nvidia! and Ha-
vok?. Their main advantage is the availability of development tools
that allow users to create simulations as easily as possible. Despite
being available for free, ODE and especially Bullet can compare
against their competitors in terms of correctness and efficiency. To
cut costs, some developers choose Bullet over commercial physics en-
gines. Bullet has been used in some well- known projects, including
the video game Trials HD[6] and the movie 2012[6].

1.2 The Hello World example in ODE

The most basic example for all physics engines is a sphere that is
located in the air at the beginning of the simulation and, affected
by gravity, falls down to the floor. It is a great way to explain the
basic concepts behind a physics engine. Because ODE is the main
focus of this paper, this section will explain how to implement this
brief scenario in ODE.

Lhttp://www.nvidia.de/object /nvidia_physx_de.html
2http://www.havok.com/



First of all, we must create a world. A world is simply a virtual
universe that the simulation will take place in. A world has some
basic parameters, e.g. the direction and strength of gravity. In
this example, we want gravity to run along the Z axis (i.e. the
Z axis points up) and be as strong as it is on earth, so we set
9.81 as the parameter. To create a world, ODE offers the method
dWorldCreate that returns the world’s ID as a parameter. A second
method, dWorldSetGravity, takes the world ID as a parameter and
also the strength of gravity along each axis.

Next, we need the floor, which is easy to take for granted. The
most basic floor is simply a flat surface that is perpendicular to
the gravity vector. Unsurprisingly, the function to create a Plane is
called dCreatePlane. The first parameter is a dSpacelD; however,
we will not create a space in this example, so we will pass zero to
indicate that the plane will not be part of any space. We also need
to pass four parameters a, b, ¢ and d to dCreatePlane. These are
the parameters of the plane equation a*r + b*y + ¢*2 = d. The
floor’s plane equation would be z = 0, so we set ¢ = 1 and a = b =

= 0.

Last but not least, we must create the sphere itself. We use
dCreateSphere. Again, we pass zero as the spacelD. The second
parameter is the radius of our sphere. A shape like the one defined
with dCreateSphere is called a geom and is used almost exclusively
for collision detection and visualization.

Now, we have a spherical shape with a radius of 1, but it is
not part of our simulation yet. We also need to create a body
with dBodyCreate. dBodyCreate requires the ID of the world that
the body should exist in. Naturally, we pass the ID of the world
that we created in the beginning to this function. Next, we set
the body’s position with dBodySetPosition by providing the x, y
and z coordinates. The sphere is supposed to be 50 meters above
the ground in the beginning, so we set + = y = 0 and z = 50.
Finally, we must tie the body and the spherical shape together with
dGeomSetBody. After that, the two of them form an entity that
constitutes an object in our simulation. The geom defines the shape
and size of that object; the body defines the location, rotation,
velocity and mass of an object. Together, the body and geom model
a sphere as one would perceive it in the real world. Note that we do
not need to pay attention to the mass of the object in this simulation
because all objects, regardless of their weight, fall at the same speed.
In C, the source code for setting up this brief example would look
like this:



dWorldID world = dWorldCreate();
dWorldSetGravity(world, 0, 0, -9,81);
dGeomID floor = dCreatePlane(0, 0, O, 1, 0);
dGeomID sphereGeom = dCreateSphere(0, 1);
dBodyID sphereBody = dBodyCreate(world);
dBodySetPosition (sphereBody, 0, 0, 50);
dGeomSetBody (sphereGeom, sphereBody) ;

All that’s left is actually running the simulation. There are sev-
eral ways to do this. We must tell ODE to step the simulation by
providing a time interval in seconds. Visualisation has to be han-
dled externally. In this case, however, simple text output should be
enough. A simple loop could look this this:

dReal *spherePosition = dBodyGetPosition(sphereBody) ;
while (spherePosition[2] > 1)
{
printf (Current height: %d\n, spherePosition[2]);
dWorldStep(world, 0.1);
}

This would output the height of the sphere at the beginning of
the simulation, after 0.1 seconds, after 0.2 seconds and so on. Once
the sphere hits the floor, the simulation ends. It should be noted
that, because this loop has no collision handling whatsoever, the
sphere would just fall through the floor an keep falling indefinitely.

1.3 Other Objects in Physics Simulations

Of course, there is more to physics simulations than just spheres and
a flat plane. However, detailed understanding of all these things is
not necessary in order to read this paper. This section will name
and briefly explain the objects that appear in this paper.

There are more geoms than just spheres. Other shapes are boxes,
cylinders, cones and capsules (cylinders with a half-sphere placed on
each end). All of these shapes are created almost exactly like the
sphere in the above example - the only difference is the number of
parameters needed to define a geom’s size. More complex shapes,
called compound colliders, can be built using several other shapes as
building blocks. There are also rays that, like planes, do not have a
body and thus cannot be moved. The same thing is true for bodies:
While ODE uses only one body type, other engines support several
body types. A rigid body in Bullet would behave like the body used
in the previous section; another type of body is a soft body, which



allows the geom that is associated with it to be deformed and also
allows the engine to factor in the object’s elasticity during collisions.

The third major component, besides geoms and bodies, are joints.
Joints are often also called constraints because they constrain the
movement of two objects that are attached to that joint. In the real
world, the most common type of joint is a hinge joint that attaches
a door to a wall. The hinge joint dictates that the door and the
wall cannot be moved away from each other, and that the door can
only be rotated around one axis. There are several other kinds of
joints that all differ in the amount and degree of movements they
allow. The human arm is attached to the shoulder via a ball joint,
allowing the arm two rotate around the shoulder around two axes; a
cone twist joint would restrict the arm’s movement to a cone-shaped
area. The most generic joint is a joint with six degrees of freedom
that allows two bodies to move around each other freely.

A more abstract component that is featured in ODE is a space.
The most prominent use for spaces is making collision detection
more efficient. Imagine, for example, a simulation with two robots
running around on a plane. Each robot is modeled using ten boxes
that are attached together via joints, allowing the robots to execute
basic movements such as walking. This means there are twenty
boxes in the simulation. To detect collisions, the engine would have
to check for each box if it collides with any other box. In other
words, there are more than 2*10'8 possible collisions that the physics
engine has to check for. This can be made much easier by creating
two spaces, putting all the boxes that the first robot consists of
in the first space and all the other boxes in the second space. A
space is not tied to a body, and as a result, its shape and position is
determined by the geoms that it contains. For easier understanding,
the two spaces could be imagined as bubbles that surround the two
robots. Now, as long as the robots do not come near each other, we
do not need to check for collisions. Only if the two spaces collide
(i.e. the two bubbles intersect) is more detailed collision detection
even necessary. This makes collision detection a lot easier, especially
when several robots instead of just two exist within the simulation.

Of course, even in ODE, there are algorithms in place that make
collision detection more efficient even when the user doesn’t define
spaces. It is also worth noting that spaces offer several other func-
tions - for example, users can declare that the objects in two given
spaces cannot collide at all, which is useful for games like tennis
where it is save to assume that the two players will never collide.
Bullet handles most of this automatically. As a result, there are no
user-defined spaces in Bullet.



2 An Introduction to Simspark

2.1 What is Simspark?

Simspark is a generic physical multiagent simulator written in
C++[7]. It gives users the ability to write their own simulations
by defining all the objects that are part of the desired simulation in
a special script language called RSG (Ruby SceneGraph Language).

Simspark is composed of four libraries, called zeitgeist, oxygen,
kerosin and salt. There are also several plugins. One of those plugins
is the RSG parser, which reads RSG files and calls zeitgeist to create
all the objects defined in an RSG file.

Zeitgeist itself can be seen as a huge object factory. It can create
objects of all classes that it knows of and arrange these objects in a
scene graph. In order to run the Hello World example from section
1.2, we would have to register the classes World, Plane and Sphere
with zeitgeist and tell it to create one object of each class. Several
parameters, like the sphere’s size, the floor’s plane equation and also
their color in the visual representation are all parameters that can
be defined in the RSG file.

Oxygen is responsible for running the physics simulation. When
zeitgeist wants to cereate a sphere, it calls the respective method in
oxygen, and oxygen delegates that call to the physics engine. It is
also responsible for collision handling and running the simulation.

Kerosin and salt are not relevant to this paper. Kerosin handles
the visualisation of the simulation run by oxygen, and salt provides
some helper methods for mathematical operations.

On top of defining objects, users can also define perceptors and
effectors. Perceptors are devices that can collect data from the sim-
ulation. In the Hello World example, the sphere could be outfitted
with a perceptor that sends a signal when the sphere touches the
ground. This would allow the sphere to perceive when it has fallen
down. Likewise, an effector can be used to manipulate the simula-
tion. A simple effector for our sphere could be a motor that allows
it to roll on the ground once it has fallen down. Finally, users can
define agents that make use of several perceptors and effectors to
execute a certain behaviour within the simulation. Outfitted with
these two devices, the sphere would already be a very simple agent.

A much more elaborate example, and the most significant use
of Simspark as of today, is the RoboCup 3D Soccer Simulation
League[8]. In this league, teams of several robots compete in the
game of soccer. Perceptors allow the robots to determine their posi-
tion on the field, the position of other players and the location of the



Figure 1: A 3 vs. 3 game in the RoboCup 3D Soccer Simulation League prior
to kickoff. Field size is adjusted to accomodate the smaller number of players.

ball. Each of the robot’s joints is outfitted with an effector that al-
lows it to move around the field or kick the ball. Computer scientist
from all over the world write programs to compute the perceptor’s
outputs into inputs for the effectors to create the most competent
virtual soccer player possible. Their teams then compete against
other teams in official competitions.

2.2 What is an Abstract Physics Layer (APL)?

Generally speaking, an APL is a proxy. It declares functions and
procedures that are needed to run a physics simulation; however, it
doesn’t implement them. Instead, it delegates calls to an imple-
mentation that uses a certain physics engine. The software that
wants to run the simulation will only communicate with the APL.
More importantly, it does not know which engine is used by the
implementation.

This becomes advantageous as soon as support for another physics
engine, or even multiple physics engines, is added. If the soft-
ware communicates directly with the physics engine, changing the
physics engine means that the software itself has to be changed, as
well. However, if the software uses an APL as a proxy, changing
the physics engine means that only the implementation needs to
be changed. This is assuming that the implementation’s interface
remains the same over the course of these changes.

Example: In C++, to create a sphere in ODE, one has to call
a method called dCreateSphere that will return a dGeomID. Other
parts of the software will use this dGeomlID to work with this sphere.
However, in Bullet, one has to create an object called a btSphere
and Bullet will return a pointer to that object. Of we change a part
of a software that created a sphere in ODE so that it now creates
a sphere in Bullet, this creates a snowball effect because now, every
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other part of the software that used a dGeomlID has to use a pointer
to an object.

An APL will define a method called CreateSphere and declare
that it returns an integer that is used to identify that object. Thus,
the software will always receive an integer, no matter which physics
engine is used by the implementation. If the implementation uses a
different physics engine at one point, it has no effects on the software
itself.

2.3 Why an Abstract Physics Layer?

When Simspark was first being developed in 2003, the choice was
made to rely on the Open Dynamics Engine (ODE) for the physics
simulation. Writing a new physics engine would have been too much
work and would have meant reinventing the wheel. ODE was chosen
because it was open source, but still on par with professional physics
engines in terms of correctness and functionality[1]. However, during
the past seven years, the situation has changed.

Development on ODE has been pretty much discontinued, and
it has been upstaged by another open-source engine called Bullet.
Furthermore, since Simspark is used in official competitions of the
Robocup Simulation League, one might consider using a professional
physics engine to enhance the simulator’s credibility. The main force
behind changing the physics engine, however, was a desire for being
able to expand Simspark’s functionality. Other physics engines that
are still in development to this day offer all the functionality that
ODE has, and a lot more that ODE does not support. As long as
Simspark relies solely on ODE, it can not use the new features that
other physics engines have to offer. Furthermore, since most physics
engines now are more efficient than ODE, switching the engine would
allow users to run more complex simulations without the need for
better hardware.

However, simply abandoning ODE and relying on a single other
physics engine (e.g. Bullet) was not an attractive option, since it
would cause Simspark to cease working on systems on which only
ODE is installed. It would also be only a temporary solution, as the
engine that replaces ODE could, in the future, be surpassed by yet
another physics engine. An APL, however, enables users to choose
which engine they want to use and makes it easier to support future
physics engines.
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2.4 Related Work

An Abstract Physics Layer that offers the possibilities described
above already exists. It was created by Adrian Boeing and is called
Physical Abstraction Layer (PAL)[3]. PAL currently supports twelve
physics engines. Due to the similiraty to what we wanted with an
APL for Simspark, PAL has caught much interest in the Simspark
community, but was unanimously dismissed for one reason: In sup-
porting so many physics engines, it has had to rely on a common
ground between too many components, which means that its func-
tionality is severely limited. Since expanding the functionality of
Simspark was the major goal, PAL stands directly against the goals
of the APL that we wanted to develop. The decision to not use PAL
had already been made by the time I started working on the APL.

The source code of PAL is visible to everyone, so I looked at its
documentation[3] to see if I could implement the APL for Simspark
in a similar way. However, PAL uses diamond inheritances, and
avoiding diamond inheritances was one of the requirements for the
APL (see section 3.2 for details), so the same design could not be
used for Simspark.

3 Designing the APL

3.1 Simspark’s Original Design

The physics simulation in Simspark is handled by a library called
oxygen. Oxygen contains an abstract class called PhysicsObject
that is derived from BaseNode. All other classes in oxygen are
derived from PhysicsObject so that every object created by oxygen
can be added to Simspark’s scene graph.

Oxygen is designed so that one object created in oxygen encom-
passes one object in the physics engine. The class Sphere in oxygen
can create and destroy a sphere in the physics engine, manipulate its
attributes and read their values. Zeitgeist ensures that the sphere
is properly inserted into the scene graph.

World represents the world in a physics simulation. The world’s
ID is stored here, and there are methods to manipulate and read
the world’s parameters, like the strength of gravity.

Space represents the space in a physics simulation using ODE.
Since spaces are mostly used for collision detection, collision han-
dling is also done here. Oxygen is able to collide all geoms inside the
Space it encompasses and check if it intersects with another space.
Collision perceptors are also notified here.
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Figure 2: A class diagram showcasing oxygen’s original design.

Collider encompasses a geom in the physics simulation. It stores
its ID and can work with it via the physics engine’s interface. Oxy-
gen originally had only five colliders (capped cylinders, boxes, spheres,
rays and planes). Common methods were defined in a superclass
called Collider, with CCylinderCollider, BoxCollider, SphereCol-
lider, RayCollider and PlaneCollider being derived from this su-
perclass.

Body encompasses a body, respectively. Since ODE has only
one type of body, oxygen originally only had one class called Body.

Joint was a superclass to all joint types, similar to Collider being
a superclass for all collider types, and works in the same way. Oxy-
gen originally supported six kinds of joints, including hinge joints
and ball joints.

3.2 Expanding the Inheritance Tree

In order to expand the functionality, the inheritance tree described
in the previous section has been expanded and has also been slightly
changed. What oxygen called a Body was actually only one type
of several possible physics bodies. In order to cope with this, Body
has been renamed to RigidBody and a new class called Body is
now an abstract superclass for all types of physics bodies. Three
other body types soft bodies, which have elastic properties and can
be deformed; static bodies, bodies with no weight that cannot be
moved; and dynamic bodies, which are defined but not documented
within Bullet have been added to the design.

For colliders, the three shapes that already existed (box, sphere
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and capsule) are now derived from a new abstract superclass called
ConvexCollider. PlaneCollider and RayCollider are still derived di-
rectly from Collider. Two other convex shapes (cones and cylinders)
have been added to the design as new child classes of ConvexCol-
lider. Three other collider types (concave, compound, empty) have
been added in addition to the new ConvexColliders.

Finally, an abstract superclass called Generic6DOFJoint® has
been put in front of all other joint classes. Only cone twist joints
have been added to the tree, boosting the number of supportable
joint types from six to eight.

Space and World remained unaltered.

3.3 Requirements

One of the first requirements was that out of the existing libraries,
only oxygen should be changed unless changing code outside of oxy-
gen was absolutely unavoidable. Eventually, four more detailed
requirements were raised to ensure that after oxygen’s redesign,
Simspark would still work with it. Early attempts at development
showed that violating these requirements would cause errors within
other components of Simspark.

1) An engine-independent class must exist for every kind
of physics object.

This requirement emerges naturally due to the nature of an APL.
The example in section 2.2 showed that different engines use dif-
ferent methods and different parameters to create the same kind of
physics object. Since the libraries outside of the APL do not know
which engine is used, the APL must offer an engine-independent
class for spheres that can act as a correspondent for the other com-
ponents. Naturally, an engine-independent class like this must exist
for every other physics objects.

2) Engine-independent classes must be derived from BaseN-
ode.

Simspark arranges all objects, including physics objects, in a scene
graph. The functionality for this is provided by BaseNode, the class
that PhysicsObject is derived from. All classes that inherit from
BaseNode can be added to the scene graph. However, if a class is
not derived from BaseNode, it is impossible to add objects created
by that class to the scene graph.

36DOF = six degrees of freedom
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Figure 3: The Bridge Pattern: A small example

3) No diamond inheritances.

A diamond inheritance can form if multiple inheritances are used.
If a class D is derived from two superclasses B and C, and both B
and C are derived from a class A, then A is an ambigious superclass
of D. Diamond inheritances within oxygen mean that BaseNode be-
comes an ambigious superclass of at least one class in oxygen. Tests
showed that this causes Simspark to crash when zeitgeist tries to
cast a physics object up to BaseNode. The immediate cause for this
error was not found because in the previous example, casting D up
to A is possible without any problems using C++4. It might have
been possible to fix this error by changing the respective code in
zeitgeist, but changing code outside of oxygen was to be avoided.
Thus, the requirement was raised to avoid diamond inheritances and
little time was spent searching for the cause of this crash.

4) All engine-specific classes must implement a common
interface.

This requirement was raised to assure the quality of the design.
If classes using different physics engines offered different interfaces,
the APL could be designed to cope with this, but it would be far
from the best solution. If a common interface is enforced, the APL’s
code can be structured a lot better. It also helps people who want to
add support for different physics engines because a well documented
interface will tell them what they have to implement.

3.4 The Bridge Pattern

The Bridge Pattern is a design pattern specified by Erich Gamma
and the Gang of Four in [4]. Since it had a big influence on this
redesign, it shall be explained in this section with a brief example.

Example: There are two operating systems HugoOS and Bern-
dOS. Both operating systems offer a function that returns the cur-
rent system time in milliseconds. However, the function is called

15



getSystemTime in HugoOS and retrieveTime in BerndOS. We want
our software to work on both operating systems without creating
different versions for each system. Using the Bridge Pattern is a
possible solution for this problem.

To follow the Bridge Pattern, we need to create four classes.
Clock is a platform- independent class that offers a function getTime
which returns the current system time in milliseconds. Other parts
of the software will make calls to this method if they want to retrieve
the system time. The second class, Clocklmp, is an interface that
declares a method called getTimelmp. Finally, HugoOSClock and
BerndOSClock both implement getTimelmp by using the respective
method to retrieve the system time from their operating system and
returning the result.

At runtime, if HugoOS is used, an object of the class HugoOSClock
is created, cast up to ClockImp and a pointer to this object is stored
in Clock. Likewise, if BerndOS is used, an object of the class Bern-
dOSClock is created, cast up to Clocklmp and a pointer to this
object is stored in Clock. Now, other parts of the software can just
call Clock::getTime() to retrieve the system time.

3.5 Oxygen’s Final Redesign

The final design is a variation on the Bridge Pattern. An excerpt
is shown above. Going by this excerpt, it is easy to understand the
complete design; however, showing the entire design in UML would
take a diagram spanning several pages.

It should be noted that I used the suffix ”Int” instead of ”Imp”
because in the bridge pattern, all classes using "Imp” as a suffix
are actually just interfaces. This naming convention is a little more
consistent. The other discrepancy is that the classes that should be
called ODE* are now called *Imp (which is another reason I couldn’t
use this suffix for the interfaces). The reason for this alteration is
explained in section 4.2.

4 Implementing the Abstract Physics Layer

4.1 Renaming Body and CappedCylinder

As mentioned in section 3.2, the Body class was renamed to Rigid-
Body and a new abstract class called Body was inserted to serve as
a superclass for all types of physics bodies. This means that every
file that included body.h now includes rigidbody.h instead, every
command that created a body now creates a rigid body, and instead
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Figure 4: Oxygen’s new design (excerpt)
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of defining body nodes in the RSG files, rigid body nodes are now
defined there.

CappedCylinder is a deprecated name formerly used by ODE
that has been updated to Capsule. Depending on the version of
ODE installed, sticking to the name CappedCylinder causes either
a compiler warning or, in some cases, even an error. To prevent
this from happening, every occurence of the term CappedCylinder
in Simspark has been changed to Capsule. For the sake of consis-
tency, this includes engine-independent classes, RSG files and even
comments.

4.2 Applying the Bridge Pattern

In oxygen’s original design, there was one class called SphereCollider
for spheres. The header file of this class did not include ODE, how-
ever; this meant that SphereCollider’s interface was engine-independent
from the start. It also turned out that no class outside oxygen in-
cluded ODE (with the exception of one plugin). Now, the goal
was to make SphereCollider and all other classes in oxygen engine-
unspecific.

In accordance with the Bridge Pattern, I created two new classes
called SphereColliderInt (where the Bridge Pattern suggests Spherelmp)
and SphereColliderImp (where the Bridge Pattern suggests ODE-
Sphere). There was not enough time to even start adding Bullet
support, so BulletSphere was not added at that point.

Another alteration was made because it allowed engine-switching
at runtime. The bridge pattern, in its original form, has to be
applied at compile time: If the example in section 3.4 was imple-
mented, preprocessor commands would be necessary in two places:
For obvious reasons, HugoOSClock cannot be compiled on BerndOS,
and vice versa. Since only one of these classes can ever be compiled
at the same time, a simple if-statement is not enough for deciding
how the implementation object is instanciated in Clock. We need
preprocessor commands in this place as well to avoid getting com-
piler errors because of an unknown class name.

To support switching the engine at runtime, all engine-specific
code was confined to a plugin. The plugin was called ”odeimps” -
however, all classes within that plugin received neutral names, e.g.
Spherelmp. Back in oxygen, in the Sphere class, an object of the
class Spherelmp is created and a pointer to that object is stored.
This means that oxygen doesn’t know which engine is currently in
use. Now, users can compile all the plugins if the corresponding en-
gines are installed. A ruby script that runs every time Simspark is
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Collider | Colliderint (1) Colliderint (2)

-

SphereCollider | SphereColliderint

-

Figure 5: Visualisation of the problem described in section 4.3

launched decides which plugin is used. Changes to this ruby script
don’t require recompilation of Simspark to be effective. Conclu-
sively, the decision which engine is used is made at runtime.

4.3 Storing IDs

In ODE, every object is given an ID. A function that creates a
physics object always returns the ID of the newly created object.
This ID is necessary to access the object at a later point. During
developement, the question arose where this ID should be stored.

IDs use ODE-specific data types. A geom is identified by a dGe-
omlD, a world is identified by a dWorldID and so on. Due to this
circumstance, one might think that the most plausible solution is to
store the IDs as a member of the implementation object. After all,
each physics object in the scene graph has exactly one implemen-
tation object, and each implementation object stores exactly one
unique ID. Doing this can lead to serious problems.

SphereCollider is derived from Collider. A Collider owns exactly
one ColliderImp, and a SphereCollider owns exactly one Sphere-
ColliderImp. Most methods that are implemented in the Collider
superclass need the dGeomlID, so the original approach was to de-
clare the dGeomlID as a member of ColliderImp. SphereColliderImp
inherits the attribute from its parent.

Now, we create a Sphere. SphereCollider delegates the call to its
implementation object, the implementation creates a sphere within
ODE and stores the ID it receives from ODE. Next time, we want
to know the collider’s xyz coordinates. This method is the same
for every collider type, so it is implemented in Collider. The call is
delegated to ColliderImp; however, the object this call is delegated
to is now a different Colliderlmp than the one that the ID was
formerly stored in. The ID in this object is still zero and the result
is an error.

To solve this, the ID is stored in Collider. After creating a sphere
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within ODE, SphereColliderImp returns the ID of the newly created
sphere to its owner. SphereCollider stores the ID in its parent. Now,
when the next method is called, the ID is present within Collider
and passed to ColliderImp as an argument. The call now works as
intended.

This matter may seem trivial, but it can be very hard to under-
stand. In fact, it was one of biggest obstacles during development. It
is easy to overlook that SphereCollider inherits ColliderImp from its
parent. In other words, every SphereCollider owns both a SphereC-
olliderImp as well as a ColliderImp. These are two different objects,
so there’s no way an ID stored in SphereColliderImp could be present
in ColliderImp unless it is passed around.

4.4 Generic Data Types

The above solution creates another problem: If ODE stores its ID
in specific data types, e.g. dGeomlD, and the abstract layer has to
avoid using these data types, how do you store the ID in the abstract
layer? The solution is quite simple: An isolated test case quickly re-
vealed that ODE’s IDs are, in fact, data of type long and that, more
importantly, casting back and forth between these IDs and long was
perfectly save and had no visible side effects. This means that after
creating a Sphere, SphereColliderImp simply casts the dGeomID to
long and returns it to its owner. Next time, SphereColliderImp re-
ceives the ID from its owner, casts it back to a dGeomID and does
whatever it has to do.

This gets a little more complicated when references to ODE-
specific objects are passed around, e.g. a reference to a dContact,
denoted as dContact& in C+4. However, the solution was quite
similar. An empty class called GenericContact was declared to han-
dle this. Now, just like the dGeomID was cast to a long and cast
back to a dGeomlID, the dContact& can be cast to a GenericCon-
tact& and cast back to a dContact& with no visible side effects.

4.5 Static Methods

Some of the predefined methods in oxygen were static. This was
a problem during most stages of development because the Bridge
Pattern can not be used for static methods. The pointer to the im-
plementation object is a member of the object who owns that imple-
mentation object, but members can not be used in static methods.
Following the Bridge Pattern to the letter, it is also not possible
to declare the implementation’s methods as static because, at least
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in C++, static methods can only be called if you know which class
they are in. Since the Bridge Pattern suggests classes with prefixed
names like ODESphereCollider, BulletSphereCollider etc. and we do
not know which engine is used when we write the code, the only re-
maining option is using preprocessor commands every time we want
to call a static method. First, I used a complicated workaround to
avoid using preprocessor commands in too many places.

This problem fixed itself once we decided to create a plugin. Since
the plugin uses neutral class names, e.g. SphereColliderImp, and
that class name is the same for every physics engine, we can call
methods like SphereColliderImp::StaticMethod() without risk.

4.6 The Joint Class and GetParameter, SetParameter

Joints in ODE have many parameters. To access and manipulate
them, ODE offers two methods dJointSetParameter and dJointGet-
Parameter. These methods take an ID as an argument; using an ID
table, ODE finds out which parameter the user wants to access. The
catch is that there are different types of joints, and these methods
are slightly different for each joint type.

When [ started working, oxygen used a very tricky design around
this. The class Joint featured two methods GetParameter and Set-
Parameter that took an ID, as well as more than twenty meth-
ods (one for each parameter) that automatically called these two
methods with the right IDs. However, since the implementation
of GetParameter and SetParameter is different for each joint type,
these methods were not implemented, but declared as pure virtual,
in Joint. Usually, this design would lead to pure virtual methods
being called, but since Joint was declared as an abstract class, it
never actually happened. Instead, Joint’s child classes inherited all
these methods, implemented GetParameter and SetParameter and
the design as a whole worked.

The solution for this seemed simple enough. All the methods in
Joint that used GetParameter and SetParameter could remain unal-
tered; GetParameter and SetParameter could remain pure virtual in
Joint. Each subclass of Joint could then use its implementation ob-
ject in GetParamter and SetParameter. However, doing this caused
Simspark to crash at runtime, claiming that a pure virtual method
had been called. I went back to this problem several times over the
course of development, but could never figure out the true reason
for this crash.

The only option that I found was using a workaround and im-
plementing GetParameter and SetParameter in the Joint class. Of
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course, Joint just delegates the call to JointImp. Fortunately, ODE
offers a method that takes a jointID and returns the type of the
specified joint. This method could be used in JointImp’s implemen-
tation of SetParameter and GetParameter, followed by a switch that
triggered the correct behaviour for each Joint type.

4.7 Plugins

There was only one plugin that used ODE directly when I started
working. Applying the Bridge Pattern to this plugin would have
been a waste of time. Instead, the plugin can just be rewritten to
support other physics engines and users can define the version of the
plugin they want to use in the ruby file.

5 Conclusion

5.1 Example Scenario

In this scenario, I explain the steps taken by Simspark if someone
decided to run the “Hello World”-example explained at the begin-
ning of this paper in Simspark. It is assumed that all the necessary
classes are registered with zeitgeist, and that the odeimps plugin is
loaded. The user wrote an RSG file that declares a world with earth
gravity running along the z axis, a plane with the plane equation z
= ( and a sphere of radius 1 at the position (0, 0, 50).

After a startup sequence, the RSG Parser plugin starts parsing
this RSG file. First, it reads the command declaring the world.
Thus, the RSG parser tells zeitgeist to create a world. Zeitgeist is
an object factory and it knows of the class World, which is defined
within oxygen. It creates an object of this class and inserts it into
the scene graph. When the object of the class World is created, its
member m WorldImp is automatically instantiated with a new object
of the class WorldImp. Once zeitgeist calls World::Create World(),
World delegates this call to WorldImp::Create World(). WorldImp
then uses dWorldCreate() to create a new world within ODE and
casts the return parameter, a dWorldID, to an integer. This inte-
ger is returned as a return parameter to oxygen:: World, where it is
stored.

Next are the gravity parameters, which are (0, 0, 9,81). Similar
to what happened above, World::SetGravity() is called with the re-
spective parameters. World calls WorldImp::SetGravity() and needs
to pass the previously stored ID on to this method as a fourth pa-
rameter. Then, WorldImp calls dWorldSetGravity() within ODE as
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one would expect. After that, the creation and setup of the plane
and the sphere follow the exact same pattern.

5.2 Summary

Before the APL was implemented, oxygen included ODE’s header
file and was full of ODE-specific code. To use a different physics
engine, one would have had to completely rewrite oxygen. Even
after that, oxygen had relied specifically on the new physics engine.
Without an abstract physics layer, supporting two different physics
engines at the same time with the same version of the software is
almost impossible.

With the APL being there, oxygen does not use one specific
physics engine anymore. Instead, it delegates calls to the APL,
which itself delegates the calls to the desired physics engine. With a
typical APL using the Bridge Pattern, it is possible to let the same
version of a software use different physics engines, and the decision
which engine is used is made at compile time.

Due to the engine-specific code being implemented as a plugin
that can be chosen at runtime, it is even possible to decide on a
physics engine at runtime. All that is needed to support another
physics engine is a plugin that uses the desired physics engine. Since
the amount of plugins that can be implemented is not limited, it is
possible to support an indefinite number of physics engines.

It should be noted, however, that there is no guarantee that sim-
ulations will behave identically with every physics engine. A sim-
ulation that uses soft bodies will only work with Bullet and other
engines that support them, but not with ODE, because ODE doesn’t
support soft bodies. It should be noted that, in order to prevent a
crash, the ODE plugin should still implement some functionality for
soft bodies. It could, for example, create a rigid body instead and
generate an error message that advises the user to use the Bullet
plugin.
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