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Abstract

This bachelor thesis deals with the comparison related to the similarity
of recorded WiF1i patterns during the tracing of a path through the streets
of a large city. Both MAC address only comparison has been investigated
as well as the incorporation of RSSI values, whereby the localization accu-
racy has been evaluated. Methods for the detection of different types and
combinations of loops in the path are demonstrated likewise the attempt
to estimate the degree of urban development in the environment of the
user by assessing the received signal strength and signal-to-noise ratio of
GPS satellites and GSM cell towers. In order to observe a user’s proximity
to a certain spot on a large public square the absorption of WiF1i signals
by the human body has been taken into account. Finally, the results
of a comparison of the computing performance of a modern smartphone
versus the alternative of remote calculation on a server including data
transmission via cellular data network are presented.
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1 Introduction

Mobile phones have revolutionized the way people communicate with each other.
Before the era of cellphones you were calling a landline which meant you were
calling a specific place. With the invention of the mobile phone the aspect of
locality became irrelevant. A person with a cellphone is virtually reachable at
all times no matter where he is. The mobile phone became enormously popular
and today in the 21st century it is basically self-evident for a citizen of the
western civilization to own a cellphone.

Since their widespread introduction in the 1980s cellphones have developed
dramatically. Originally intended simply for placing phone calls today’s mobile
phones have evolved into high-performance hand-held computers for the pocket.
The first devices offering relatively high computing power, called PDA, were in-
troduced in the 1990s. These personal digital assistants served businessmen as
a mobile office. For private consumers those products became interesting ever
since the device generation that was able to playback rich multimedia content.
The disadvantage of the PDA was that people had two devices to take with
them, the PDA and a separate cellphone. It was only a question of time until
these two device classes merged into one versatile all-in-one gadget around the
turn of the century. The resultant device class is called smartphone, as these
gadgets are smart enough to combine the functionality of a full-featured cell-
phone and the office and multimedia capabilities of a PDA. Today’s smartphones
offer virtually the same range of functions as full-sized desktop computers, just
with the limitation of a relatively small display. Modern smartphones feature
processor clock speeds not available on desktop computers just ten years ago,
feature dedicated graphic chips that are capable of processing millions of trian-
gles per second and offer a wide range of connectivity options for wireless data
transmission, such as WiFi, Bluetooth and UMTS/HSPA. Additionally, today’s
smartphones feature built-in sensors, such as GPS, compass, accelerometer, gy-
roscope and ambient light sensor, enabling them to react to their surrounding
environment.

This context-awareness allows for interesting novel applications like real-life
games, in which the player assumes the role of an agent who chases other agents
through a big city supported by the useful information that his smartphone
calculates. The investigation of the technical fundamentals of such a game is
the major subject of this bachelor thesis. In fact, this bachelor thesis emerges
in conjunction with two other bachelor theses authored by CHRISTIAN STEHR
and PHILIP BOEDTS also from the University of Koblenz. The reading of these
two other bachelor theses is highly recommended in order to understand the full
extent of this collaborative project.

2 Location determination on modern smartphones

Modern Smartphones determine their current geographic position not only by
utilizing signals from GPS satellites but also by analyzing the pattern of WiF1i ac-



cess points and GSM cell towers present in their current environment [Laitinen01].
The crucial disadvantage of GPS localization is its insufficient precision in urban
places with a high density of development. Inside buildings or in the middle
of a narrow alleyway the GPS technology can only deliver position information
with an accuracy of several 100 meters or is not able to gain a satellite fix at
all.

This is where wireless standards, such as WiFi and GSM excel, since they
do not require unobstructed view at the sky [BillCapKofahlMundt04]. In a
real world situation WiFi and GSM signals can travel through walls while GPS
signals normally cannot. The reason for this phenomenon is the much greater
signal strength of WiFi and GSM radiation compared to GPS signals. GPS
satellites orbit the earth at an altitude of over 20,000 kilometers. This is the
distance the GPS signal has to travel before reaching the user’s smartphone.
The typically received signal strength of GPS is around -130 dBm, whereas
WiFi and GSM transmitters are positioned at ground level (compared to outer
space), resulting in a small fraction of the transmission distance of GPS signals.
The typically received signal strength of WiF1i in an outdoor environment ranges
from -70 to -100 dBm, while the official Android API indicates GSM signal
strength in the range from -51 to -113 dBm. If we want to compare signal
strength values it is recommended to convert the values from the logarithmic
scale of decibel to the linear scale of watt. In order to do this we can use the
following formula where P is the power in watt and x is the power ratio in dBm:

x—30

P=10"D (1)

If we compare the typical received signal strength of WiFi at -80 dBm with
the one of GPS at -130 dBm, we compare 10~ W to 107151/, which means
the receiving power of WiF1i is 100,000 times greater than the receiving power of
GPS. With this comparison in mind it is easier to understand why GPS signals
are blocked out by the stone walls of buildings. On the other hand WiFi and
GSM signals are strong enough to travel through urban development to a limited
extent. This is why we can place mobile phone calls inside large buildings and
connect to the Internet via a WiFi access point located a few rooms further away.
In conclusion, one can say that GPS delivers indeed high precision localization
in the countryside or suburban areas, however within dense urban areas only
wireless technologies like WiFi and GSM remain usable for position fixing.

In addition to that, it should be mentioned that position fixing via WiFi
is much more precise than via GSM, due to the much greater cell radius of a
GSM tower compared to the range of a WiFi access point. GSM cell towers
have a coverage of several kilometers while WiF1i access points have a reach of
around 100 meters. Furthermore, the amount of WiFi access points is much
higher than the amount of GSM cell towers heard simultaneously, in a typical
urban environment you hear 30 access points versus 7 cell towers. In general,
the following rule of thumb holds true for localization accuracy: Better many
distinguishable transmitting stations each with a short range (WiFi) than few
distinguishable transmitting stations each with a long range (GSM). In order to



deliver the best possible location determination modern smartphones combine
the measurement results of both GSM and WiFi, as well as GPS. Especially
this makes a step by step refinement of the positioning accuracy possible. The
result from GSM localization is the first to be available, since a mobile phone
is informed of the present GSM cells at all times. Next the result from WiFi
localization becomes available, since it takes a few seconds to scan for present
access points. Finally, the result from GPS localization becomes available, since
it takes up to several minutes for the GPS chip to get a fix on at least three
satellites. However, on a smartphone the satellite fix is accomplished much faster
than on an ordinary GPS navigation device. Since the approximate location is
already known, as it is retrieved by GSM and WiF1i positioning, the evaluation of
the GPS signals can proceed at a much higher speed. This enhancement to the
conventional proceeding of GPS positioning is called Assisted GPS (A-GPS). It
allows for a much shorter Time To First Fiz (TTFF) [WeynSchrooyen08].

3 Functional principle of WiFi fingerprinting

Before WiFi positioning can be used on mobile devices, preparatory work has
to be done. During the so-called training phase, a reference carpet of WiFi
patterns linked to their corresponding geographic coordinates is being created
[Xiang04]. In the area in which WiFi positioning is intended to be available
every street needs to be traversed systematically. During this phase the MAC
address and received signal strength of all present WiFi access points is being
recorded continuously as well as the current GPS position consisting of latitude
and longitude. Notabene, the data being collected does not contain any privacy-
related information.! The execution of the training phase is done by commercial
companies like Skyhook Wireless and Google Inc., which have deployed drivers
to survey virtually every single street worldwide.

Finally, the gathered data is processed and entered into an online database
with an interface for smartphones to use as a free service. If a smartphone
wants to perform a localization via WiFi it scans for present access point in its
environment and uploads this WiFi pattern consisting of MAC addresses and
RSSI values to the web service of a company offering WPS. The web service
compares the user’s WiFi pattern to the database to find the best matching
WiFi pattern recorded during the training phase, whose GPS coordinates are
finally returned to the user’s smartphone. Probably the final coordinates are
being interpolated if there are multiple WiFi patterns in the database that have
an equally high matching rate to the user’s WiFi pattern. The accuracy of WPS
within dense urban areas is about 20 to 30 meters [QuaderLiPengDempster07].

In May 2010 Google Inc. got into criticism of the media when the company admitted to
have accidentally recorded private data from WiF1i transmissions while generating a reference
carpet for WiFi positioning with one of their Street View cars.



3.1 WiFi fingerprinting through crowdsourcing

Apple Inc. has originally used the Skyhook database for WiFi positioning on
its first generation iPhone and iPod touch since these devices did not feature
a built-in GPS chip. With the launch of the iPhone 3G incorporating a GPS
receiver Apple started to build its own WiFi fingerprinting database by using its
sold iPhone 3G devices in the hands of the customers as data collection facili-
ties. Each iPhone constantly collects WiFi pattern/GPS coordinates pairs and
uploads these fingerprinting packages to the Apple server every 12 hours on the
availability of a WiFi Internet connection?. Taking into account the tremen-
dous amount of :Phone users spread all over the globe, Apple was able to build
up their own world-spanning reference carpet within a relative short amount of
time on a nearly zero cost basis, since this method does not require the deploy-
ment of drivers. Additionally, the fingerprinting database is being updated on a
permanent basis from virtually all places of the world simultaneously. This ap-
proach is called crowdsourcing. Skyhook, in addition to their employed drivers,
also uses crowdsourcing to refresh their fingerprinting database - they call this
technique Automated Self-Healing Network.

4 Theory of radio signal propagation

When a signal is sent over a physical medium, like copper or fibre-optic cable,
it travels along a predefined path. As opposed to this, air provides no fixed
path for signals to follow, signals travel without guidance. Ideally, a wireless
signal would travel directly in a straight line from its transmitter to its intended
receiver. This type of propagation, known as LOS (line-of-sight), uses the least
amount of energy and results in the reception of the clearest possible signal.
However, because the atmosphere is an unguided medium and the path between
a transmitter and a receiver is not always clear, wireless signals do not usually
follow a straight line. When an obstacle stands in a signal’s way, the signal
may pass though the object or be absorbed by the object or it may be subject
to any of the following phenomena: Reflection, diffraction or scattering. The
object’s geometry (shape and size) governs which of these three phenomena
occurs [Dean09, p. 367]. So as to classify the size of WiFi radiation we must
calculate the typical wavelength A of WiF1i signals with the following formula:

A=7 (2)

where ¢ is the velocity and f is the frequency of the wave. Since WiFi

normally travels through air at the speed of light with about 3 x 108% and

typically operates at a frequency of 2.4 GHz, WiFi signals have a wavelength of
roughly 12.5 centimeters.

2In July 2010 this fact has been made public via Apple’s response to a letter by two U.S.
Representatives requesting for information regarding Apple’s privacy policy and location-
based services. The fact that Apple makes use of such methods has been unknown up to that
point in time.



e In the case of a reflection the wave bounces off a surface according to the
rule angle of incidence equals angle of reflection. Reflection appears if the
surface has a much larger dimension than the WiFi signal’s wavelength.
This applies to large table tops, walls and ceilings.

e Diffraction describes the phenomenon where waves can bend around cor-
ners. Typically this happens at sharp edges like the edge of a table or the
corner of a wall.

e Scattering means that the wave is reflected in multiple different direc-
tions resulting in a diffusion of the signal. It typically happens if the
obstacle encountered by the wave has a much smaller dimension than the
signal’s wavelength. In outdoor environments scattering appears at the
presence of raindrops, snowflakes, mist droplets and hailstones.

These three phenomena have one great advantage and one great disadvan-
tage. On the one hand, thanks to these phenomena direct unobstructed line-of-
sight between the sender and the receiver in a WiFi network is not necessary,
since the signal can bounce off walls in order to reach areas behind a large ob-
stacle. On the other hand, these phenomena lead to the fact that one and the
same signal reaches its destination multiple times over different paths through
the air. All these instances of the same signal reach the intended receiver with
a slight time shift, causing interference that can be either constructive or de-
structive. If two waves featuring identical frequency and amplitude interfere
phase-shifted by half the wavelength the resulting signal cancels out. In this
case finally no signal at all arrives at the receiver. The phenomenon of a signal
reaching a destination over several ways is called multipath propagation.

With the previously explained behavior of radio signal propagation in mind
we can take a look at another phenomenon, called slow and fast fading, that
helps understand the behavior of WiFi signal strength in a real-world envi-
ronment. The measurement data of WiFi received signal strength is normally
bound to permanent noise. Sudden boosts and drops in received signal strength
are caused by interference (see multipath propagation) dependent on only small
changes in the relative distance between the sender and the receiver. A move-
ment of the receiving device in the scale of a few centimeters, due to % ~ 6 cm,
decides on constructive or destructive interference. This phenomenon is called
fast fading. If the receiving device is moved around a corner behind a wall fur-
ther away from the transmitting station, the averaged received signal strength
gradually decreases due to the shadowing effect of the wall. This phenomenon
is called slow fading and is evoked by a relative movement of several meters.
Typically, slow fading is superimposed by fast fading [Chandral.ide06, p. 205].

5 Components of a WiFi pattern

The device used for recording WiFi data throughout the work on this bachelor
thesis was a smartphone called Hero, manufactured by HTC Corporation and



released to the European market in July 2009. The Hero runs the Android
operating system version 2.1 developed by Google Inc.. At the Fraunhofer I1S
an application called BozRecorder is commonly used to measure WiFi patterns
on Android devices and to save them to a text file on the device’s flash memory
for later processing. BoxRecorder records all hearable WiFi access points at a
fixed interval of one second. The data collected from one access point includes
its MAC address and RSSI value.

MAC stands for Media Access Control and is a unique identifier assigned
to network interfaces like WiFi access points. Therefore every access point has
its own MAC address and thus can be clearly distinguished from other access
points. A typical MAC address consists of six groups of two hexadecimal digits.

RSSI stands for Received Signal Strength Indication and describes the power
level of the WiFi signal reaching the recording device. Signal strength is speci-
fied in decibels, which is a logarithmic unit that indicates the ratio of a power
value relative to a reference level. In the case of WiFi measurements the signal
strength is indicated in decibel milliwatt (dBm), which describes the measured
power referenced to one milliwatt (mW). The following formula shows the def-
inition of power level Lp, which describes the power P in proportion to the
reference power of one milliwatt [Papamanthou08]:

Lp(dBm) = 101og,, <1£W) 3)

The following table gives a short overview of transmission and reception
power levels typical in the domain of WiFi signals:

13 to 20 dBm 20 to 100 mW | typical transmission power WiFi router

-10 to -30 dBm 100 to 1 uW max reception power WiFi

-60 to -80 dBm | 1,000 to 10 pW typical reception power WiFi indoor

-80 to -100 dBm 10 to 0.1 pW typical reception power WiFi outdoor

Regarding the typical reception power of WiFi in outdoor environments it
should be mentioned that Android-powered devices do not record access points
with received signal strengths below -100 dBm. At least the official Android
SDK (software development kit) does not pass MAC addresses below this level
through its API (application programming interface). On a low level in the
system there clearly takes place a distinct amount of preprocessing to the WiFi
data before it is passed on to the third-party software developer for use in
applications like the BoxRecorder. Probably, it would be possible to gain access
to less processed and more original measured data by investigating the less
popular Android NDK (native development kit). Written in C/C++ it allows
for deeper insight into the system on a low-level basis.

The following listing shows an extract from a text file created by BoxRecorder
showing MAC addresses and RSSI values from 26 different access points detected
within one second. This is an example of a typical WiFi pattern:

00.1C.28.2B.F3.57,-78.0 00.26.4D.93.FB.E8,-80.0



00.04.0E.D8.35.CF,-81.
00.26.4D.66.C3.12,-81.
00.1C.4A.06.C6.AD,-85.
00.1F.3F.D7.BD.09,-86.
00.1C.4A.48.01.9E,-88.
00.04.0E.D1.EA.09,-90.
00.1D.19.06.04.34,-91.
00.1F.3F.0F.40.DB,-93.
00.24.FE.FE.74.01,-95.
00.18.F3.85.69.04,-96.
00.1C.4A.01.FA.FB,-96.
00.1C.4A.07.52.4A,-97.

00.1C.4A.45.C7.08,-81.
00.1C.28.AA.4E.3F,-83.
1C.AF.F7.83.06.B6,-86.
00.26.4D.25.6D.85,-88.
00.1B.2F.A6.9D.70,-90.
00.1A.2A.C2.11.C9,-91.
00.13.49.B0.F5.EB,-92.
00.04.0E.9C.48.F0,-94.
00.1F.3F.45.7F.59,-95.
00.26.4D.09.73.72,-96.
00.1A.4F.9B.14.26,-97.
00.16.38.B4.1C.91,-98.

O OO O OO OO OO oo
O O O O O OO OO O oo

5.1 Functional principle of WiFi pattern recording

A distinction is made between two different types of WiFi scanning modes:
active scanning and passive scanning, where the former is the more commonly
used scanning method. When scanning passively the recording device does not
transmit any WiF1i signals, it only receives them. In this mode the recording
device is a quiet listener to the WiF1i signals, which are already present in the air
due to the communication between other WiFi-enabled devices. This procedure
is colloquially called sniffing, since the recording device stays invisible to other
gadgets. A data packet sent over WiFi does always contain the MAC address of
the sender and normally the MAC address of the recipient. These data packets
are then intercepted by the recording device, although it is not the intended
receiver, the sending MAC address is read from the packet header and the
received signal strength is measured.

During active scanning the recording device becomes visible or rather hear-
able to the WiFi-enabled devices in its environment. The recording device
broadcasts a so-called probe request, which contains its return address but no
address of an intended receiver, since the recording device still does not know
about its surrounding gadgets and their MAC addresses. Next all the devices
that have received this probe request will reply to it by sending back a so-called
probe response containing their MAC address, network name (SSID), encryp-
tion type used (i.e. WEP, WPA, WPA2) and other information. While the
recording device receives all those probe responses it can measure each signal
strength and has consequently learned about the WiFi pattern at its current
location.

6 Filters for preprocessing

Since the BozRecorder is a digital product, it produces time-discrete measure-
ment data, i.e. WiFi patterns are being recorded once per second. If you
plot the amount of different MAC addresses heard in one second or the sum
of received signal strengths from a real-life measurement, i.e. you draw a line



through all the measuring points, the resulting curve shape will have a very
noisy appearance. WiF1i patterns are subject to strong fluctuations, due to envi-
ronmental influences manipulating signal dispersion, resulting in random signal
noise. From one second to another, MAC addresses appear and disappear on the
list of heard access points and the received signal strength of one access point
can vary significantly, even if you are standing still at a fixed position without
any movement. In order to make the plotted measurement data more readable
and to make it easier to visually detect major trends in the signal curve, it is
essential to apply certain preprocessing steps to the original measurement data.

6.1 Exponential smoothing

A common method to smooth out a noisy signal curve is to apply a low-pass
filter on it. A low-pass filter blocks out high frequencies, that means sud-
den changes, and only allows low frequencies, that means gradual but constant
changes, to pass through. A simple low-pass filter for discrete-time application
is the exponentially-weighted moving average, originating in resistor/capacitor
circuits from the field of electrical engineering. Its formula [Hyndman08, p. 13,
(2.2)] looks like this:

yi=oax; + (1 —a)yi—1 where 0 <a<1. (4)

« represents the smoothing factor whereas a low value towards zero means a
greater smoothing impact. In order to understand this, the operating principle
of the filter has to be comprehended. The filter weights the current value x; with
« and the predecessor result from the second before y;_1 with 1-a. A value of
0.1 for « has delivered satisfying results throughout different applications during
work on this bachelor thesis. In this case the new value only has a 10% impact
on the result while the history value, compound of past iteration steps, has 90%
weight. The compound nature of the history value explains the exponential
feature of this filter:

yi = ax;+(1—a)yi—1
= az;+ (1 -a)(azi—1 + (1 — @)yi—2)
alz; + (1 —a)zi1]+ (1 — a)?yio
alz; + (1 —a)zi_1 + (1 — o)z o] + (1 — a)y;_3

Here the equation has been recursively inserted into itself with adjusted
indices to represent the values of one more step back in the past. As you continue
the substitution, you see that the result value of this formula y; consists of the
weighted average of all the past observation values z;, z;_1, x;_2, ... . The
weight assigned to these past observation values 1, 1 —a, (1 —a)?, ... is getting
exponentially smaller the more those observation values lie back in the past.



Unfortunately, this filter causes a time delay as it reacts late to significant
changes in the signal curve. A solution to overcome this issue is to apply the filter
twice: forwards in the first step and backwards in the second step. Consequently,
the filtered curve shape is neatly aligned to the course of the original curve.

6.2 Access point history filter

There is a constant coming and going of MAC addresses in the list of heard
access points. Frequently, a MAC address drops out of the list and emerges
shortly afterwards, i.e. a few seconds later. Normally, access points with low
received signal strength are more prone to this behavior than access points with
a strong reception. However, this phenomenon does also happen to the last-
named access points evoked by signal cancellation caused by interference during
wireless transmission. To overcome this issue the access point history filter fills
these temporal gaps of short-term absent access points. The filter keeps MAC
addresses in memory, i.e. adds them to subsequent WiF'i patterns, even though
originally they have not been recorded any more. The timeframe of how long
MAC addresses are still considered in subsequent calculations can be adjusted.
Practical experiences have shown that a duration of five seconds delivers good
results, as it meets the requirements of real world conditions.

7 Principle of the gameplay

In the course of this collaborative project consisting of three bachelor theses,
many algorithms have been developed that operate on the output data from
sensors measuring acceleration, magnetic field, WiFi, GPS and GSM. The de-
velopment of these algorithms took place with the idea of a real-life game in
mind. The principle of the gameplay is inspired by a mixture of a paperchase,
geocaching and the board game Scotland Yard: The Hunt for Mister X, by the
German game company Ravensburger Spieleverlag GmbH. One player represents
Mister X and several other players assume the role of agents who spy on Mister
X and try to catch him as they trace his escape route.

Our team has developed two different approaches to the gameplay: one sim-
plified and one advanced. The simplified approach is called the static gameplay
where the agents trace a path, which Mister X has walked a long time ago,
i.e. between path creation and path tracing lies an extended period of time.
As the creation of Mister X’s path is finalized before the agents begin to trace
it, the entire path is predetermined and completely known to the system. The
situation is different with the advanced approach, which is called the dynamic
gameplay. Here Mister X is chased in real-time, which means that the path to
be traced is constantly evolving over the course of the game. Mister X and the
agents start at the same location, whereas Mister X is granted a short tempo-
rary head start. The game is considered finished if Mister X and at least one
agent are located at the actual same position, or if Mister X succeeds in staying
uncaught for a certain period of time. In the static gameplay there is no time



pressure and the agents can take as long as they need to reach the end of the
path.

7.1 Technical principle of path tracing

The assessment if an agent is located on Mister X'’s path, called reference path
from now on, and the assessment of where an agent is located on the reference
path is done by comparing WiFi patterns. Nevertheless, there is one fundamen-
tal principle that is absolutely essential for the understanding of this approach
to path tracing: We do not know anything about geographical coherences. To
understand this, we need to take a look once more at the way modern smart-
phones do WiFi positioning:

Location = typical measurement data = coordinates = semantic meaning
of the location

At a certain location the smartphone records WiFi measurement data that
is typical for this specific location. This WiFi pattern corresponds to specific
geographical coordinates (latitude, longitude) looked up from a database (see
Section 3). These geographical coordinates can have different semantic meanings
depending on the context, e.g. at the coordinates 49.45, 11.083333 is situated
the city center of Nuremberg. As opposed to this, the way WiFi positioning
works within the framework of our game looks like this:

Location = typical measurement data = semantic meaning of the location

The coordinates as geographical reference have dropped out. Here the
recorded WiFi patterns are directly correlated to the semantic meaning of the
location, e.g. at the location where this specific WiFi data has been measured
Mister X has been there at second 500 out of his 2000-second-long trail. No-
tice that the semantic meaning has a temporal reference not a geographical one.
The system only knows which WiFi pattern has been heard in which second and
finally has to assess the path tracing process based on this information alone.
This is what makes our game concept such a novel approach compared to con-
ventional GPS-based real-life games®. Please make sure you have understood
the last paragraph thoroughly before you continue reading.

The application scenario from a technical point of view looks like this: While
Mister X flees through the streets the current WiFi pattern is recorded every
second. The agents’ devices are supplied with this reference path of WiFi pat-
terns, either as a whole in the static gameplay or continuously in the dynamic
gameplay. Each of the agents’ devices is also recording own WiFi patterns by
itself whereby it gathers information about its current whereabouts. Eventu-
ally, the most recent WiFi pattern recorded by an agent is compared to all the
WiF1i patterns recorded by Mister X available up to that point once a second.
The second of the best matching WiFi pattern, which is the pattern with the

3In 2009 students at the University of Bonn released the game Mister X Mobile for Android
and iPhone. However, the technology used here for location determination is GPS delivering
absolute coordinates presentable on a geographical map.

10



highest similarity, represents the current position of the agent on the reference
path. The degree of resemblance of this best matching pattern is a measure of
the probability that the agent is actually situated on the reference path.

8 Estimating the probability of the agent to be
situated on the reference path

The procedure of WiFi pattern comparison should be explained with an example
from real-life shown in Figure 1.

WLAN,1277847482108,26 WLAN, 1277847481095,22
00.1C.28.2B.F3.57,-78.0 .. 00.26.4D.93.FB.E8,-75.
00.1C.4A.18.95.D3,-80.0 00.26.4D.66.C3.12,-80.
00.04.0E.D8.35.CF,-81.0 : 00.04.0E.D8.35.CF,-80.
00.1C.4A.45.C7.08, =810 e 00.1C.4A.06.C6.AD,-82.
00.26.4D.66.C3.12,-81.0 ..~ .00.1C.4A.45.C7.08,-83.
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00.1F.3F.D7.BD.09,-86.0 00.1F.3F.D7.BD.09,-86.
00.26.4D.25.6D.85,-88.0 00.26.4D.25.6D.85,-86.
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00.1B.2F.A6.9D.70,-90.
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..00.1C.4A.48.01.9E,-92.
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00.1F.3F.0F.40.DB,-93.
00.04.0E.9C.48.F0,-94.
'00.1C.4A.01.FA.FB,-96.
.00.26.4D.09.73.72,-97.
00.1C.4A.07.52.4A,-97.
"00.03.C9.F9.C8.7D,-98.
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00.1D.19.06.04.34,-91.0
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00.18.F3.85.69.04,-96.0
00.26.4D.09.73.72,-96.0
00.1C.4A.01.FA.FB,-96.0
00.1A.4F.9B.14.26,-97.0 —
00.1C.4A.07.52.4A,-97.0 .o
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Figure 1: Comparison of two different WiFi patterns. Lines indicate corre-
sponding MAC addresses. MAC addresses in red color do not have a matching
partner.

The example presents a reference pattern with 26 heard access points and an
agent’s pattern with 22 heard access points. Altogether there are 19 correspond-
ing MAC addresses in both WiFi patterns. However, on one hand the reference
pattern features 7 access points that have not been heard by the agent’s device
and on the other hand there are 3 MAC addresses in the agent’s pattern that
do not appear in the reference list. Now the question is how well do these two
WiF1i patterns coincide? The first attempt to find a measure for the conformity
is to simply ignore signal strength values and to base the comparison on the
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amount of corresponding MAC addresses only:

19
P= %~ 0.73 = 73% conformity (5)

This trivial attempt has two disadvantages: First, the amount of access points
recorded by the agent’s device that do not match to the reference pattern is
not considered at all. Whether the agent’s WiFi pattern contains 3 or 10 non-
matching MAC addresses is not reflected in the final conformity value. However,
a pattern with only 3 non-matching MAC addresses should be rated as more
compliant than a pattern with 10 non-matching MAC addresses, regardless
of the amount of corresponding access points. Second, the reception quality
of heard access points remains disregarded. Nevertheless, the received signal
strength is an important criterion as the following comparison shows:

00.26.4D.93.FB.E8,-75.0 00.03.C9.F9.C8.7D,-98.0

If you take a look at these two access point data, you will notice that the
former access point delivers a much higher signal strength than the latter. This
means the former access point has a great dominance in the WiFi landscape,
whereas the latter access point is listed next to not heard at all (remember
that the Android API only lists access points above the -100 dBm limit). It is
likely that one second later in the next recorded WiFi pattern the latter access
point will not be listed anymore while the probability is high for the former
access point to still make an appearance in the next pattern. In fact, there is
a lot of fluctuation going on towards the lower end of the listed WiFi pattern,
assuming it is sorted by received signal strength in descending order while the
top of the list stays rather stable. Eventually this means that it is much more
severe for the assessment of conformity if a WiFi pattern does not contain the
former MAC address than it is if it would not have heard the latter access point.
Therefore, we need a solution to take into account the received signal strength
of each access point.

The approach discussed next can be summarized by the term summed up
differences in signal strength levels. The signal strength values of compatible
MAC addresses from the two WiF1i patterns are subtracted from each other and
the absolute values of all these differences are added up. If one pattern features
a MAC address that the other pattern does not, this access point is assumed to
be present at a signal strength of -100 dBm in the pattern where it was originally
not listed. The smaller the summed up differences the higher the accordance
between the two patterns. A sum of zero would imply 100% conformity. In the
worst case scenario not one MAC address matches at all, which results in a sum
of 284 in the previously mentioned example. The sum of 284 is calculated by
subtracting all signal strength values of the example reference pattern from -100
dBm and adding up the differences. Actually, this sum will even be greater the
more non-matching MAC addresses the agent’s pattern features. Nevertheless,
a sum of 284 or higher leads to a 0% conformity. To come back to the example,
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the degree of conformity calculated with the new approach results in this:

P= ;(;Ti ~ 0.36 non-conformity = 64% conformity (6)
This result is slightly different from the initial calculation and now it is not
certain to tell which result is the more accurate one. However, practical ex-
perience has shown that the advanced method of calculation copes reasonably
with real-life WiFi signal behavior and delivers believable valuations that seem
to reflect real-life incidents quite well. This means the conformity value drops
the moment the agent departs from the reference path and rises again when the
agent returns to the reference path. The usability of this algorithm has been
evaluated by a test run in the historical downtown of Nuremberg. In the course
of the path tracing the agent has deliberately deviated from the reference path
every now and then and returned back to the track shortly afterwards. In the
aerial view of Figure 2 you see indicated two distinct path progressions: The
trail in blue color represents the reference path while the red track signifies the
agent’s trail.

Figure 2: Example trail in the historical downtown of Nuremberg walked twice
partially with deviations

As you can see, the first part of the reference path, originating in the lower
left corner, has been followed accurately. Hereafter a subway ride ensued, which
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is why no GPS data could be recorded. Subsequently, the agent followed the
reference path for another short segment but finally deviates significantly: The
agent passed the central marketplace from below, while Mister X passed it
from above. Thereupon the two paths reunite and so forth. The plot in Figure
3 shows how the algorithm evaluated the process of this exemplary path tracing:

level of compliance between WiFi patterns
(probability of being located on the path)

W‘\
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Figure 3: Probability of the agent to be situated on the reference path shown
in Figure 2

The abscissa represents the chronological process of the path tracing in sec-
onds (which is identical to the index of the measured WiF1i pattern), while the
ordinate indicates the probability of the agent to be situated on the reference
path which means technically the degree of compliance of the agent’s current
WiF1i pattern with the best matching WiFi pattern in the reference path. During
the subway ride, which took place between second 250 and 650, no valid WiFi
pattern could be obtained due to the absence of WiFi signals on the subway
track?. While the degree of conformity generally stayed above 50% in the first
part of the path tracing process, it suddenly drops to 10% compliance around
second 900, which reflects the agent’s deviation from the reference path around
the central marketplace. Soon after, the compliance meter surges back to 70
to 100% as the agent heads back to the reference path. The question, starting
from which compliance level the system should assume that the agent has actu-
ally left the reference path, is not easily answered. As practical experience has
shown, even if the agent is situated directly on the reference path the degree of
conformity varies between 50 and 100% due to interference phenomena between

4In 2008 the Nuremberg Transport Corporation (VAG) introduced autonomically operating
subway trains outside the downtown area. These coaches stream live CCTV footage via WiFi
to the supervisory center for security purposes. Maybe WiFi positioning would be possible
on these subway lines. See [Kawaguchi09] for a test run of WiFi positioning in the subway.
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WiF1i signals (see Section 4). If the determination of a threshold is necessary
for the gameplay a value of 30% should be reasonable. If the compliance level
stays below this threshold for longer than a few seconds the probability is high
that the agent has indeed left the reference path.

9 Estimating the position of the agent on the
reference path

An agent who is chasing after Mister X does not only want to know if he is
still walking along his escape route but would also like to have a measure of his
progress at his disposal. The agent would like to know how close he is on Mister
X’s heels (in the dynamic gameplay) or how far away the end of the reference
path still is (in the static gameplay). Possibly the agent walks indeed along
the reference path, however in the wrong direction. What the agent needs are
means to orientate himself. However, as we have discussed in Section 7.1, the
agent cannot be provided with a geographical orientation. The agent’s current
position on the reference path can only be stated in a temporal manner like, You
are standing at second 500 of the 2000-second-long reference trail, which equals
25% progress. This means the agent is standing at the geographical position that
Mister X has reached after 500 seconds of walking since he started recording
his escape route. Be aware that the question of where on the reference path is
misleading and is used here with a different meaning.

Actually, the position information has incidentally already been calculated in
the previous Section 8. The algorithm introduced there picks out the WiFi pat-
tern from the reference path, which matches best with the agent’s latest recorded
WiFi pattern. The information how well this WiFi pattern matches indicates
the probability of the agent to be situated on the reference path whereas the
index of this WiFi pattern (the second when it has been recorded by Mister X)
indicates the agent’s position on the reference path. As described in the previ-
ous section, the algorithm can operate with two different approaches in order
to find the best matching WiFi pattern: Either the amount the matching MAC
addresses has to be maximal, or the summed up differences of signal strength
values have to be minimal. To better understand this selection process of the
best matching WiFi pattern, it should be visualized with the aid of real-life mea-
surement data. Imagine the agent has accurately followed the reference path
with a length of 360 seconds for 185 seconds. The plot in Figure 4 visualizes
the result of the algorithm operating with the simple method of MAC address
comparison at second 185:
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Figure 4: WiFi pattern recorded by agent at second 185 compared to every
WiF1i pattern from the reference trail with simple MAC-address-only approach
(data has been low-pass filtered)

Here the WiFi pattern recorded by the agent at second 185 is compared
against each WiFi pattern of the reference path. Assuming the agent’s walking
speed has been constant over time, the index of the WiFi pattern with the
highest amount of matching MAC addresses is approximately 190, which is
fairly close to the input index of 185. However, it has to be taken into account
that under certain circumstances this result can be a fallacy. If for example,
the agent had to wait at a red traffic light from second 70 to second 90, which
did not happen when Mister X walked this path, the agent will from second
90 on arrive 20 seconds later at the geographical positions where Mister X
used to be (assuming constant walking speed). In this case after 185 seconds
of walking, the system would tell the agent that his position on the reference
path was second 165. This example illustrates why the result of this position
determination cannot be used as a reference for localization accuracy which is
discussed in the subsequent Section 9.1. The plot in Figure 5 visualizes the result
of the algorithm operating with the advanced comparison method incorporating
signal strength values at second 222:
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Figure 5: WiFi pattern recorded by agent at second 222 compared to every
WiFi pattern from the reference trail with advanced approach incorporating
RSSI values (data has been low-pass filtered)

Here the smallest sum of added up differences of signal strength values has
the WiFi pattern with the index 220, which again is fairly close to the input
index of 222. Assuming the agent has followed the reference path precisely
until the end, which took him roughly the same amount of time as Mister X,
and we plot the positioning results of every second from the agent’s path trac-
ing, we will get a diagonal line like in Figure 6, which represents calculation
results from both algorithmic operation modes respectively. As you can see,
the diagonal line from the advanced operation mode features more unwanted
scattering than the diagonal line from the simple operation mode. The incor-
poration of signal strength values into the calculation process may decrease the
quality of the result. This is because signal strength values are unpredictable,
due to interference between WiFi signals (see Section 4). The criterion of heard
MAC addresses offers much more stable behavior and features an unbeatable
performance to implementation effort ratio.
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Figure 6: Positioning results of each second from the agent’s path tracing. For
an enlargement see Figure 20 in the appendix.

9.1 Localization accuracy

Although it has been mentioned several times that we do not know anything
about geographical coherences (see Section 7.1) nevertheless it would be inter-
esting to evaluate the localization accuracy of the algorithm, which has been
applied in the previous Section 9. For this purpose we need a method to convert
the temporal position information measured in seconds to geographical metrics
in the unit meter. A practical approach was the placement of checkpoints along
a predetermined path about every 100 meters at distinctive positions like cross-
roads. The exact distances between successive checkpoints has been measured
by the help of Google Earth. After this preparation phase the predetermined
path has been followed twice. On reaching each checkpoint a marker has been
set in the BoxzRecorder software, which saves the time information in seconds.
As we know the metric distance between checkpoints and the time it took to
get from one checkpoint to the next we have established a connection between
position information in seconds and in meters. Positions between two check-
points are linearly interpolated. Now we can calculate the distance in meters
between a position information given in seconds from the first time walking the
path and a position information given in seconds from the second time walking
the path.

For example, imagine the algorithm from Section 9 has determined that the
WiFi pattern recorded at second 185 during the second time walking matches
best with the WiFi pattern recorded at second 178 during the first time walking.
Assuming second 185 of the second time walking corresponds to meter 278 on
the predetermined path and second 178 of the first time walking corresponds to
meter 267, the position estimation of the algorithm yields an error of 11 meters
in this specific example. If you calculate the positioning errors for the whole path
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you get the total mean error, which is a measure for the localization accuracy
of this algorithm. Two test runs in different types of environment have been
conducted: The first test run took place in the residential area of Ziegelstein,
which is a district of Nuremberg where the environment is characterized by
single family detached houses. Here the algorithm delivered a mean localization
accuracy of about 10 meters, the 90% quantile was 21 meters while the 95%
quantile was 28 meters °.

The second test run took place in the historic city center of Nuremberg
around the central marketplace. Here the algorithm delivered a mean local-
ization accuracy of about 8 meters, the 90% quantile was 19 meters while the
95% quantile was 24 meters. The reason why the algorithm delivered an even
higher localization accuracy in the second test run is the amount of available
access points, which was about 30 on the average in the downtown area while
it was only 10 in Ziegelstein. The more different MAC addresses present in
a WiFi landscape the better the possibilities for high localization accuracy.
Please keep in mind that these localization accuracy values are the result of
one-dimensional determinations of the position along the reference path, this
is not a two-dimensional location determination on a map. This is why the
mean localization error seems to be so remarkably low here when compared to
conventional WiF1i positioning systems (WPS) [Cheng05] like the one developed
by Fraunhofer IIS, which features an accuracy of 20 to 30 meters according to
their own statementsS.

9.2 Aging of WiFi patterns

Normally in the static gameplay the agents will start tracing the reference path
shortly after it has been created by Mister X. An interesting question is, how
well will the path tracing work if there lies a long lapse of time, maybe a year,
between the creation and the tracing of the reference path? How reliable will
be the information which the algorithm calculates to support the agents during
the path tracing process (if on path and where on path)? In the course of time
WiFi landscapes change: Old MAC addresses disappear and new ones emerge
as people replace their obsolete access points with more modern models. This
entails disadvantages for the quality of WiFi positioning since newly recorded
WiFi patterns cannot reach the same high level of compliance as it used to
be possible at the time of creation of the reference path. To investigate this
effect more precisely it has been attempted to simulate the aging process of
WiFi patterns. This has been achieved by replacing MAC addresses from the
original WiFi pattern with fictional MAC addresses, which should be an artificial
modification close enough to real-life proceedings. The amount of altered MAC

5If the 95% quantile is 28 meters this means that 95% of the positioning results feature an
accuracy of 28 meters or better. The 95% quantile is determined by sorting the positioning
results by accuracy in descending order and cutting off the lower 5% of the list. The now last
value of the list is the 95% quantile.

6 According to a paper titled Structure of the Fraunhofer IIS WLAN algorithm which is
for internal use only and not publicly accessible.
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addresses in one WiFi pattern defines the degree of aging. The following table
shows the results of an aging experiment relating to the localization accuracy
using the data recorded during the second test run mentioned in the previous

Section 9.1:

Degree of aging

Mean accuracy

90% quantile

95% quantile

0% 8 meters 19 meters 24 meters
25% 9 meters 20 meters 25 meters
50% 10 meters 22 meters 28 meters
5% 23 meters 47 meters 99 meters
95% 82 meters 189 meters 225 meters

An aging degree of 95% means that only one access point per WiFi pattern
is left featuring its original MAC address. If you take a look at the table you
will notice a surprising fact: The localization accuracy does not get any worse
than 82 meters in the average. The moment that each and every MAC address
would be replaced by a fictional one a location determination would of course
not be possible at all. However, as long as at least one original MAC address
per WiFi pattern remains a reasonable localization result is still available. This
phenomenon will be explained with the aid of the diagram in Figure 7 illustrating
a simplified real-life scenario:

Figure 7: Simplified real-life scenario for an explanation on WiFi access point
range

Here we see a street with buildings on each side. The reference path repre-
sented by the dashed line runs through this street. In one of the buildings is
situated an access point whose WiF1i coverage is indicated by the gray translu-
cent ellipse. The part of the reference path where the dashed line is red lies
outside the coverage area of the access point while in the part of the reference
path where the dashed line is green the access point can be heard. If this ac-
cess point’s MAC address appears in the latest recorded WiF'i pattern and it is
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therefore known that this access point could be heard then we know that the
agent must be located somewhere on the path segment indicated by the dashed
line in green color. If we assume that the access point radiates WiFi signals
40 meters up the street and 40 meters down the street then the segment of the
reference path where this access point could be heard has a length of 80 meters.
Consequently, the one-dimensional localization accuracy cannot become worse
than 80 meters. This worst case scenario would occur if the agent stood in fact
at the right end of the green dashed line; however, the positioning algorithm
assumed he would be standing at the left end of the green dashed line. In order
to improve the precision of localization in this case the incorporation of signal
strength values would be helpful.

The following thought experiment illustrates the relationship between the
range of access points and the accuracy of WiFi positioning: If the access point
in the preceding example would have featured a smaller coverage area the green
dashed line would be shorter and therefore the localization accuracy would be
higher since the largest possible error would be smaller. This leads to the rule
of thumb already mentioned in Section 2: Better many distinguishable access
points each with a short range than few distinguishable access points each with
a long range.

9.3 Device calibration

As mentioned in Section 5 the device used for all measuring sessions involved
during this bachelor thesis was the HT'C Hero. However, what happens to the
quality of the results delivered by the algorithm (if on the path and where on
the path) if the agents use a different device model than the one used by Mister
X7 Different types of devices have different characteristics of receiving WiFi
signals since the built-in WiFi chips feature different sensitivities. For example,
a recording device with an external antenna attached will deliver overall higher
received signal strength values. To what extent do more (or less) sensitive WiFi
chips influence the algorithmic results?

For this thought experiment we assume the device of an agent to record
WiFi patterns with 10 dBm higher signal strength values. The assessment of
where on the reference path the agent is located remains unaffected since the
best matching WiFi pattern is chosen based on a relative comparison against
all other WiFi patterns. If the sum (of added up differences of signal strength
values) of each WiFi pattern is increased by the same amount the proportion
between the sums stay identical. Therefore, even after a great increase in signal
strength values the selection of the best matching WiFi pattern will be the same.
However, what will change is the probability of the agent to be situated on the
reference path since the degree of compliance (calculated using absolute values)
will decline as the sum of added up differences of signal strength values rises.
Due to this discrepancy some kind of device calibration seems to be appropriate.
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10 Urban environment assumptions

This section introduces attempts to extract additional information about the en-
vironment Mister X wanders through. The initially discussed algorithm tries to
detect crossroads along the reference path by analyzing successive WiFi patterns
while the second presented algorithm estimates the degree of urban development
in proximity to Mister X. The latter investigation is based on signal strength
values from GPS satellites and GSM cell towers. Both algorithms generate
helpful hints, which support the agents even further during path tracing.

10.1 Crossroad detection

The theoretical fundamental idea of crossroad detection is simple: Imagine you
are walking along a straight street flanked by high buildings without any gaps
between them and your device receives on average 20 different access points.
After a while you reach a crossroad and while you traverse it straight ahead
your device suddenly hears 30 different access points. After you have left the
intersecting street behind you the amount of access points drops back down to
20. Due to the high gapless buildings on each side of the street this type of
development evokes the formation of a tunneling effect, which means that WiFi
signals propagate alongside the street canyon. If you are standing in the middle
of a crossroad, you are situated on the intersection of two street canyons, each
one of them featuring their own access points. This way the recording device
logically captures a higher than average amount of access points the moment
you step onto a crossroad. This rise and fall of heard access points is exploited
by the crossroad detection algorithm.

Now, the challenge is to distinguish real crossroads from seeming crossroads,
since not every growth in the amount of heard access point must be an indication
of a crossroad. The occurrence of these so-called false-positives (the algorithm
assumes the existence of a crossroad although no crossroad is present in real-
life) must be prevented as far as possible. Three different approaches have
been developed to detect significant increases and decreases in the signal curve
of either the amount of heard MAC addresses or the sum of received signal
strength values. Each approach makes use of one of the following mathematical
tools:

1. Dynamic mean as low-pass filter
2. Sum of mean and variance within a sliding window

3. High and low points of the signal curve

Strictly speaking, the totaling of received signal strength values does not
make sense from the viewpoint of physics since the question What meaning does
the sum of signal strength values from individual access points have? remains
unresolved. However, since this technique has proved advantageous and delivers
reasonable results it is an accepted tool for WiFi signal processing.

22



The first approach uses the dynamic mean as a low-pass filter which is in
fact the exponentially-weighted moving average filter mentioned in Section 6.1.
The algorithm is looking for large coherent segments of the measurement curve
that are situated above the mean curve. The area between the measurement
curve and the mean curve must be greater than a specific threshold to be con-
cidered a crossroad. The plot in Figure 8 shows measurement data from a single
crossroad traversal.
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Figure 8: WiFi measurement data from a single crossroad traversal

The green line represents the measurement data as summed up signal strength
values from all heard access points. The blue line indicates the dynamic mean
of the summed up signal strength values while the red line simply marks the
beginning and the end of the crossroad as seen during recording. As you can see
there are a few small areas above the mean curve, which should be ignored by
the algorithm. However, the real crossroad flanked by the two vertical red lines
makes the measurement curve dominate the mean curve for about 20 seconds.
The resulting area is large enough to be assessed by the algorithm as a potential
crossroad. With the previously shown plot being an isolated example of only
one crossroad Figure 9 presents a test run along several blocks of houses in the
southern part of Nuremberg.
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Figure 9: Overlaid WiFi measurement data from a test run along several blocks
of houses

The aerial view is overlaid with the precisely fitting curve of summed up
signal strength values. The red crosses indicate the course of the path. As you
can see, the places where crossroads are present feature large portions of the
measurement curve above the mean curve. However, difficulties are caused by
the following situations:

e Entries to backyards are like one-sided crossroads. The accumulated WiFi
signals from all the apartments in the backyard emerge from the gateway
and deceive the algorithm (refer to the beginning of the example measure-
ment curve).

e Low rooftops between high rooftops evoke the same effect as entries to
backyards. Accumulated WiF1i signals from the backyard radiate over the
lower rooftop causing an increase in summed up signal strength values and
the amount of heard access points respectively (take a look at the middle
of the example measurement curve).

e Large public squares and parks hamper the detection of crossroads. If a
crossroad lies directly at the side of a square or park, the block of houses
at the fourth corner is missing resulting in an overall lower amount of
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WiFi signals (see the end of the example measurement curve). There are
indeed access points emitting WiF1i signals over the square or park from
the other side, however their received signal strength is relatively low due
to the distance.

e Passing a student hostel almost certainly fools the algorithm in assuming
the existence of a crossroad. Nowhere else is the density of access points
per square meter that high, since nearly every student appartment features
its own access point.

The second approach to detect crossroads uses the technique of a sliding
window. This window has a specific width and traverses from left to right over
the measurement curve. Within this window, the sum of mean and variance is
calculated and used as a threshold value above which measurement data has to
lie to be considered part of a potential crossroad. The added up combination
of mean and variance delivers a threshold value, which cuts off common noise
reasonably. Measurement data that is even higher than this threshold value
normally belongs indeed to an existing crossroad. The plot in Figure 10 repre-
sents the measurement data recorded during a 35 minute walk (2107 seconds as
seen on the abscissa) through the southern neighborhood of Nuremberg. The
ordinate indicates the quantity of heard access points.
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Figure 10: Crossroad detection on a 35-minute-long trail via the sum of mean
and variance
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Dark blue lines indicate the mean, magenta lines show the variance while
cyan lines stand for the sum of mean and variance. The yellow vertical bars
represent the nearly 40 crossroads encountered during path recording. The
window size used here is a width of 200 seconds. Actually, it is recommended to
traverse the measurement curve multiple times applying different window sizes.
This way the algorithm is able to capture both small and large crossroads. A
small crossroad is characterized by a short traversal duration and a not so high
dominance of WiFi signals while a large crossroad is characterized respectively.
If you use a large window size the algorithm will miss small between large
crossroads as the calculated threshold value, appropriate for the detection of
larger crossroads, may be too high for smaller crossroads and thus they will
be overlooked. On the other hand, if you choose too small a window size the
algorithm will have difficulties to detect large crossroads properly, as they are
too big to fit into the narrow window size and thus will be cut off on one or
both sides.

The third and last approach to detect crossroads is oriented towards the
high and low points of the measurement curve. The idea behind this technique
is that steep surges and drops respectively between a high and a low point are
indicative of a crossroad. The moment you step onto a crossroad, the amount
of heard access points increases drastically all of a sudden in the course of a
few successive WiFi patterns. The same holds true for the moment you leave
the crossroad, however with the measurement data developing in the opposite
direction. Both the increase and the decrease happen in a fairly short span
of time, which is characteristic for a typical crossroad. On the other hand, if
you experience a slow increase or decrease you are likely just moving on to an
area featuring a generally dense and light WiFi landscape respectively. The
plot in Figure 11 presents a low-pass filtered measurement curve of the above-
mentioned 35-minute-long trail, including detected high (small blue marks) and
low points (small magenta marks). This time the ordinate indicates summed
up signal strength values.
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Figure 11: Crossroad detection on a 35-minute-long trail via high and low points

Finally, the aerial views in Figure 21 (refer to the appendix) give an overview
of the pathway of the 35-minute-long trail, featuring markings for the results of
the crossroad detection algorithm working in the operation mode described by
the first approach. In the green segments of the path the algorithm could not
find any crossroads. Red marks indicate that the algorithm is quite sure about
the existence of a crossroad at this place while yellow spots mark positions where
the algorithm is undecided and cannot deliver a definite statement. Usually this
maybe-marking appears around small crossroads that do not feature pronounced
WiFi patterns.

In fact, the results presented in this figure are commonly non-reproducible.
The second time walking the exact same path about 24 hours later partially
produced considerably different assumptions about the existence of crossroads
(for a comparison see Figure 21 in the appendix). Places where the algorithm
did not realize any crossroads on the first run, although existent in real-life,
have been clearly detected on the second attempt. Unfortunately, the reverse
case holds true as well, as previously detected crossroads were not recognized
anymore. On average the recognition rate lies around 70%, while the proportion
of false-positives is roughly 30%.

An interesting phenomenon, which has been observed during the recording
of measurement data intended for investigations described later in Section 10.2,
was the fact that the signal-to-noise ratio of available GPS satellites increased
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to a higher-than-average level for the duration of stay on a crossroad. This
can be explained by the improved reception quality of GPS satellites due to a
more open urban development situation on the middle of a crossroad. In this
way the WiFi-only crossroad detection can be assisted by signal strength values
retrieved from GPS satellites, exposing student hostels to not being a crossroad,
since the reception quality of GPS satellites will normally not improve when
walking alongside large buildings. Another application example of sensor fusion
will be discussed in Section 10.2 where GPS is supported by GSM to improve
the estimation of site density.

10.1.1 Distinguishing between traversing and turning off on a cross-
road

Next up is the presentation of a small experiment undertaken out of curiosity,
which has unfortunately never been finished for lack of time. However, as the
underlying idea sounds promising in theory, the concept will be introduced here.
The vision was to develop an algorithm that is able to differentiate if the agent
or Mister X has walked over a crossroad straightforward or if he has turned off
on this crossroad. The challenge was not to use the compass nowadays built
into every smartphone but to base this distinction solely on WiFi signals. This
might be useful within indoor environments, since the proper functioning of
electric compasses is severely hampered inside buildings as thick concrete walls
attenuate and large metal parts modify the terrestrial magnetic field, causing
the compass to produce unreliable results.

The functional principle of the algorithm is described as follows: The collec-
tion of access points hearable ahead of the crossroad is compared to the collection
of access points hearable behind the crossroad. If the agent had walked straight
over the crossroad, the signal strength of beforehand heard access points re-
ceived in retrospect should be higher than if he had turned off on the crossroad.
This assumption is based on the tunneling effect of street canyons described in
Section 10.1. If WiFi signals simply have to go straight ahead over the cross-
road they experience only the attenuation of air. However, if the WiFi signals
have to go around the corner, they will lose a great portion of their energy due
to absorption the moment they are reflected by the exterior wall of a building
(for an in-depth discussion on radio signal propagation see Section 4). Initial
practical experiences with a prototype algorithm have resulted in an unsatis-
fying hit ratio of 50%. Presumably the hit ratio can be improved by further
investigations incorporating more advanced analysis techniques.

10.2 Estimating the degree of development

Usually pursuits pass through various cityscapes like spacious squares, broad
streets, narrow alleyways and public buildings like shopping centers or the cen-
tral station. For the agents it would be a tremendous assistance if they could
keep track of the different cityscapes Mister X has walked through on his escape
route. For example, if Mister X were walking along a wide shopping promenade
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and suddenly turns off into a small alleyway a hint like At this point Mister X
has entered an alleyway would certainly be advantageous for the agents, as oth-
erwise they would presumably overlook the alleyway and let it pass by. The
obvious difference between a broad street and a narrow alleyway is the site
density, as walls of facing houses are closer together.

This observation has led to the following intuitive assumption: The denser
the urban development the lower the received signal strength of GPS satellites
and GSM cell towers. The deeper the street canyon the more energy-reducing
reflections of signal waves are involved before they reach the recording device,
whereas on a large public square the view of the sky is unobstructed and wide
open enabling strong signal reception of GPS satellites and GSM transmitting
stations. The evaluation of WiFi signals does not seem to be appropriate in
this application, as WiFi landscapes are not directly related to the density of
development. An alleyway can feature higher-than-average quantities of access
points if apartment windows face the alleyway or can feature no access points at
all if it is uninhabited. GSM and especially GPS signals originate from a remote
location, which makes them dependent on the density of development, which
defines how well they reach receiving devices, whereas WiF1i is a more local radio
technology operating in closer proximity to the receiving device whereby it is
not that much influenced by site density.

Consequently, the algorithm bases its assumptions on the degree of devel-
opment on the signal-to-noise ratio of available GPS satellites in the first place
and consults GSM signal strength in inconclusive situations as described later
on. The categories used by the algorithm for classification of urban environment
types are as follows sorted by descending expectable received signal strength:

Place = Street = Alleyway = Building (indoor)

In fact, the algorithm works with additional inter-categories between these
four main categories as an unambiguous classification is not always possible. For
the purpose of this experiment a handy Android application has been developed
as a convenient recording facility. This Android application features two distinct
modes, one for recording measurement data and one to see the algorithm in
action as illustrated by the screenshots in Figure 12.
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Figure 12: Screenshots of Android recording application for estimating the de-
gree of development

The recording mode offers a radio button for each category mentioned pre-
viously. While walking through the various cityscapes, the user subjectively
assesses the degree of development and selects the appropriate category in the
list of radio buttons. In the meantime, the application continuously (see the
seconds counter on the upper right) recordes GPS and GSM data displayed
in the lower portion of the screenshot on the left. These signal-to-noise ratio
values are added up separately and the two sums are finally saved in the cate-
gory that was selected in the list of radio buttons at that moment. When the
recording is finished, the value range of the sums collected within each cate-
gory is determined. Eventually, these value ranges are characteristical for their
corresponding category of site density.

The recording of GSM data has a mannerism that needs special treatment
in order to retrieve workable measurement data. Firstly, the received signal
strength of the serving cell, which is the cell the mobile phone is currently
connected to, delivers unusable results, since this value hardly changes over time,
at least within the scope of the official Android SDK. More promising results
are produced by the neighboring cells which are cells that are indeed available,
however the mobile phone is not connected to them, since they do not offer the
same high reception quality as the serving cell. Fortunately, the neighboring
cells deliver finely differentiated signal strength values. Furthermore, there is a
problem with serving cell switches: The moment the mobile phone decides to
change its serving cell in favor of another cell offering higher reception quality,
all neighboring cells seem to be gone for a differing period of time. When
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this happens, which is about every few 100 meters outdoors and nearly every 50
meters inside buildings within city centers, the list of neighboring cells, provided
by the Android SDK, is empty. The driver of the GSM chip discards everything
it knows about the GSM landscape and begins to retrieve this information from
the ground up every time the serving cell is switched. Step-by-step the list of
neighboring cells fills up with cells that initially have the invalid signal strength
value 99 before the real value is determined. Until the whole list is re-established
normally 5 to 20 seconds pass by.

However, a lot can happen within this timeframe, as Mister X may have
left a broad street, walked through a narrow alleyway and stepped on a spa-
ciously square. During this timeframe an algorithm based exclusively on the
evaluation of GSM data is rendered incapacitated, which calls the usefulness of
GSM technology for the estimation of site density into question. Admittedly,
this issue can be fixed superficially in post-production by assuming the list of
neighboring cells from before the serving cell switch to still be valid as long as
it takes to build up the new list from scratch. However, the problem persists
that no statements about changes in the degree of development can be made.
Due to this unreliability of GSM technology on the Android platform, it has
been decided to make GPS the technology on which the algorithm first bases its
assumptions, as GPS convinces with permanent availability. Nevertheless, this
does not mean that GSM is completely useless for assessing the urban environ-
ment, as GSM technology has proven advantageous in inconclusive situations
described later on. It should be pointed out once again that we indeed record
GPS data, however do not extract geographical coordinates but only use the
signal-to-noise ratio of available satellites.

The screenshot on the right side of Figure 12 shows the try-out mode in
action, which in fact works opposite to the recording mode. Here all typical
value ranges for the different categories of site density are already predefined
and the current sum of added up signal-to-noise ratio values from GPS satellites
(see the number in the middle of the bar) is displayed on a B A § P scale
(Building Alleyway Street Place). Imagine the green bar filling up to the right
as reception quality increases. This prototype try-out mode works on GPS data
only and does not incorporate GSM data.

Typical value ranges for the different categories of site density using both
GPS and GSM have been determined in major cities like Hamburg, Munich and
Nuremberg. Surprisingly the value ranges from the three cities have been fairly
consistent among themselves which is good news since it would be impractical
if you had to determine value ranges for every city you would like to assess site
density in. Obviously, the cityscape of these three major cities behaves equally
in relation to received signal strength values of GPS and GSM. The following
table reflects the measurement results of the three test runs:
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Category GPS GSM
Place > 210 > 130
Street 170 - 210 | 100 - 130

Alleyway | 50 - 170 | 60 - 100

Building < 50 < 60

In fact, the unit of these values is decibel milliwatt (dBm), however, as they
are linearly summed up logarithmic values, it is safer to consider these values
dimensionless. An interesting observation, which has been made in the historic
downtown of Nuremberg at 1 a.m. in the night was the fact that the GPS values
throughout the categories experienced a boost of about 20 dBm compared to
previous recording sessions. Responsible for this phenomenon were the atmo-
spheric conditions, as the sky was cloudless and starry that night, resulting in
improved reception quality of GPS signals, whereas during the previous record-
ing sessions the sky looked overcast and hazy. Possibly some kind of device
calibration should be contemplated to counteract this issue. To get a feel for
GPS and GSM signal strength values in various types of development, take a
look at Figure 13, which illustrates the same 20-minute-long trail through the
pedestrian areas of Nuremberg, once based on GPS and once based on GSM.

summed up GPS signal-to-noise ratio values
. B u y B

summed up GSM received signal strength values
5 § §

elapsed time elapsed time

(a) GPS (b) GSM

Figure 13: Signal strength values in various types of development. For an
enlargement see Figure 22 in the appendix.

The yellow bars represent special occurrences of development types, as pointed
out by the following list in chronological order: shopping center, shopping cen-
ter, alleyway, alleyway, passage, alleyway, alleyway, shopping center, colonnade,
colonnade. White areas signify normal shopping streets. As you can see, the
GPS signal strength completely breaks down inside shopping centers as ex-
pected, whereas GSM signal strength indeed decreases significantly, however
does not lean towards zero. Additionally, it can be observed how alleyways
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evoke reductions in received signal strength for both GPS and GSM, setting
them clearly apart from ordinary streets. Colonnades are open on one side but
roofed over making them behave like alleyways on average. An interesting ob-
servation can be made at passages that are transitions through buildings open
on both ends. From the viewpoint of GPS these passages seem like buildings,
however from the perspective of GSM they behave more like alleyways. Based
on GPS data alone the algorithm would assume the whereabouts to be inside
a building, which would not describe the situation adequately. Here the algo-
rithm definitely benefits from the combination of measurement data provided by
different sensors, called sensor fusion, enabling the algorithm to provide more
sophisticated results. Nevertheless, the algorithm may still be tricked by sev-
eral different constellations of development. For example, standing underneath
a glass dome on the highest floor of a shopping center makes the algorithm
think of an alleyway rather than a building, because glass lets much of the sig-
nal waves originating from GPS satellites and GSM cell towers pass through it,
or at least it does not attenuate the signal energy as much as concrete walls do.

In fact, there is an approach to differentiate between indoor and outdoor
environments based exclusively on WiFi signals. This approach compares the
variance of received signal strength values recorded indoors on the one part
and outdoors on the other part. Indoor environments typically feature many
walls, corners, probably pillars, furnishings and other items made of different
materials in a relatively small amount of space all causing the effects of signal
propagation discussed in Section 4, like reflection, diffraction and scattering.
All these phenomena contribute to the occurrence of interference, resulting in
noise identifiable by the variance of received signal strength. In contrast to
the indoor situation, the environment outdoors is spacious with much open
space and objects set wide apart from each other. Here radio signal waves can
propagate moderately without too much interference going on. Consequently,
the variance of received signal strength from WiFi access points is considerably
lower outdoors than it is within indoor environments.

11 Loop detection

When Mister X is on the run from the agents he will try to get away as far as
he can. However, in the heat of the moment, he may sometimes accidentally
return to a spot where he had already been before. In this case Mister X’s
escape route contains a loop. If an agent is still situated ahead of this loop, he
can save time and take a shortcut by heading for where the reference path has
been recorded more recently. In this section an algorithm will be introduced
that is able to detect different types of loops and is capable of handling complex
combinations of loops. Additionally, a routing algorithm will be presented that
can guide the agent out of a confusing network of multiple encapsulated loops.
The operating principle of this two-step algorithm will be described with the
aid of an example trail from real-life shown in Figure 14.
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Figure 14: Example path in the southern part of Nuremberg containing different
types of loops

11.1 Distinction between spot loops and range loops

As you can see in Figure 14 the algorithm needs to differentiate between spot
loops and loops over a longer range. In the case of a spot loop, Mister X has
crossed his own escape route at a single position forming the shape of a cross-
road. By contrast, the range loop features a longer segment of the path that has
been walked along twice. Now, how does the algorithm detect loops in general?

One after another, each WiFi pattern of the reference path is compared to
all other WiFi patterns of the reference path. If later on in the reference path
there is another sequence of WiFi patterns that is highly similar to the cur-
rently regarded WiFi pattern, this indicates a loop. So the phenomenon that
the algorithm is looking for has the appearance illustrated in Figure 15. Here
we can see the percentage of accordance (indicated on the ordinate) of all WiFi
patterns of the reference path to the WiFi pattern recorded at second 120. As
expected, the WiFi patterns in immediate proximity to the WiFi pattern ob-
served at second 120 feature high conformity, since they have been recorded at
the relatively same geographical position. As Mister X walked on, the distance
to the position at second 120 became greater and therefore the degree of com-
pliance gradually decreases towards zero percent as seen in Figure 15. However,
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200 seconds later the percentage of accordance starts rising again as Mister X
approaches the geographical location that he has been to at second 120. At sec-
ond 360 Mister X visited the exact same position a second time as the degree
of compliance reaches another maximum. As you can see, this high point does
not reach the level of second 120 as a full 100% match is next to impossible in a
real-life application due to permanent variance in the WiFi landscape. Finally,
Mister X moves on and the accordance percentage starts falling again.

To sum up, the algorithm is looking for the existence of a second hill in the
compliance curve of the WiFi pattern. Since the algorithm is doing this check
on each and every WiF1i pattern of the reference path, coherences between WiFi
patterns become visible step-by-step. For example, it may become obvious that
the WiFi patterns recorded from second 100 to 200 correspond to the WiFi
patterns recorded from second 700 to 800. In this case we would have a range
loop, since there are apparently multiple successive WiFi patterns featuring a
high degree of compliance to another group of successive WiFi patterns. If for
example, we would find that seconds 100 to 105 were in accord with seconds
700 to 805, we would have a spot loop, as the number of coherent WiFi patterns
is relatively small. Admittedly, it is not always unambiguous to tell if a loop is
a spot loop or a range loop, as you have to determine a threshold value for the
number of coherent WiFi patterns.

Figure 14 features four range loops and one spot loop, whereby one of the
range loops is an inverse range loop. This means that the beginning of the loop
from the first visit (second 100) corresponds to the end of the loop from the
second visit (second 800) and the end of the loop from the first visit (second
200) corresponds to the beginning of the loop from the second visit (second
700)7. The seconds in-between match accordingly inverse as well. If you plot
the compliance results of all WiFi patterns into one diagram you get something
like Figure 16. The abscissa indicates the index (second) of the regarded WiFi
pattern with the index of the best matched WiFi pattern from the second hill,
if existent, marked on the ordinate. Please notice that only WiFi patterns with
a compliance level of over 70% to another WiFi pattern of the second hill make
an appearance in this diagram.

"The words first visit and second visit may be swapped to illustrate the other variant of
an inverse range loop.
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Figure 15: The WiFi pattern recorded at second 120 compared to every WiFi
pattern in the trail. The hill on the right is the phenomenon the algorithm is
looking for during loop detection.
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Figure 16: Compliance results of all WiFi patterns in the trail

The most conspicuous feature is that this diagram is axisymmetrical, indi-
cated by the orange dashed diagonal line, because if second 600 corresponds
to second 800, then as well will second 800 correspond to second 600. This
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example has been marked on the plot. As you can see, the point clouds are
easily identifiable, as they are set widely apart from each other both vertically
and horizontally. This correlates to the course of the path, how distant corre-
sponding loops are in a temporal sense, and to the selected threshold value for
the minimum compliance level (here set to 70%). A lower minimum compliance
level will result in extended point clouds, since WiFi patterns featuring a lesser
degree of accordance will likewise make an appearance in the diagram. If you
choose a threshold value too low, the point clouds will start to overlap, if you
choose it too high, less pronounced loops will begin to disappear from the plot.

Since Figure 16 is a representation of what the algorithm works with in a
situation depicted in Figure 14, the same five loops show up again in the plot.
Here you can see why the distinction between spot loops and range loops is not
a simple decision since both loop types are represented by point clouds to a
certain extent. Of course, range loops generally feature more widespread point
clouds, however there is another criterion that facilitates the decision-making
process, and that is the slope of the line of best fit through a point cloud (see the
short red lines). If the slope m is positive the point cloud represents a normal
range loop and if the slope is negative the point cloud represents an inverse
range loop, while a slope of zero is an indication of a spot loop. The reason for
this is that a spot loop has the shape of a crossroad. There is this one specific
position (second) in the middle of the crossing from the first visit to this location
that matches best with all the positions (seconds) shortly before and after the
crossing from the second visit. The same holds true vice versa when you swap
the words first visit and second visit. Time moves on on the abscissa of Figure
16, as Mister X crosses his own path, however as opposed to range loops, time
on the ordinate stands still around this one best-matching index (second).

In the case of a range loop we can now read out the beginning and the end
of this loop (point cloud) and its corresponding loop. As experience has shown,
the length in seconds of two related range loops typically does not coincide
perfectly. Normally, a range loop is either longer or shorter by several seconds
than its matching partner. This happens when Mister X has taken a different
amount of time to walk along the same path segment for the second time, as he
has traveled at a presumably higher or lower speed.

11.2 Routing algorithm for complex loop constructions

At this stage the algorithm has overviews of which successive seconds correlate
to the same geographical locations of other successive seconds. Based on this
knowledge the algorithm has the ability to inform the agents if they are ap-
proaching a loop and if they have proceeded into the right direction, provided
that the agents have chosen to take the shortcut. Make no mistake, the algo-
rithm cannot tell the agents if they have to turn left or right or if they have to
walk straight ahead when approaching a loop and they want to save some time.
Again, the algorithm does not have any knowledge about geographical positions
of loops, it only knows temporal coherences. Therefore the algorithm cannot
give directions in a geographical sense of where to walk in order to reach a path
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segment that is situated in closer proximity to the finish of the path, which
means it features higher index numbers (seconds), than the path segment the
agents are currently situated on. In a real-life situation the procedure of a suc-
cessful loop avoidance could look like this: An agent approaches a spot loop and
is informed about this incident. The agent decides to turn right and is notified
by the algorithm that he is about to walk the loop in reverse direction, which
would mean a waste of time. Then the agent decides to walk straight ahead and
is notified that this time he is about to walk the loop in forward direction, which
again would be a waste of time. As only one option remains, the agent finally
turns left while the algorithm confirms that he has just omitted x seconds of
Mister X'’s escape route. Before the algorithm has the ability to comment on
the meaningfulness of a direction decision, the agent has to walk several steps
into this direction, so that the algorithm can compare the freshly recorded WiFi
patterns against its knowledge base about the coherencies of loops.

Let us suppose an agent is situated in the middle of a complex maze con-
sisting of multiple encapsulated loops as already known from Figure 14. In this
moment the gameplay grants the agent a one-time guidance out of this loop
maze to the finish of the reference path. For this task to be accomplished the
algorithm needs to be extended by some kind of routing facility. Figure 17 is a
graphical representation of the knowledge base about the temporal coherencies
of loops built from the conditions depicted in Figure 16. In fact, this graphical
representation is an undirected weighted graph. All numbers in the boxes depict
either a point of time in seconds or a period of time in seconds. The green box
at the top showing second zero represents the beginning of Mister X’s escape
route while the green box at the bottom represents the finish after 1963 seconds
of walking. Boxes in turquoise color stand for loops; they are the nodes of the
graph. Range loops have three numbers in their boxes, the beginning time, end
time and duration, while spot loops have only one number in their boxes, which
stands for the point in time of their occurrence. White boxes are the weights
of the graph, representing the costs to move between the two adjacent nodes,
meaning how long it took Mister X to walk from one loop to the next. Bold
lines depict the course of the path while thin lines connect corresponding loop
nodes, optionally with an inverse label where applicable.
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Figure 17: Graph structure used for routing purposes within the loop maze
illustrated in Figure 14

11.2.1 Comparison to Dijkstra’s algorithm

Dijkstra’s algorithm is the de-facto standard for determining shortest paths
within graphs. Routing algorithms used in car navigation systems typically are
advancements of Dijkstra’s algorithm. This algorithm determines in an iterative
process for every node the fastest way to reach from this node all the other nodes
of the graph. This way, car navigation systems know the shortest path to get
from node Nuremberg to node Koblenz. In the example of the complex loop maze
the algorithm has to find out the shortest path from the agent’s current position,
which in this case becomes a temporary node itself, to the green-boxed finish
node. The most substantial difference between car navigation systems and our
routing algorithm for loop mazes is that the former system bases its calculations
on geographical distances while the latter bases on temporal distances.
Additionally, there is one feature that makes the development of a routing
algorithm for loop mazes so special and that is not possible in car navigation
systems: teleportation. As one would expect, this teleportation has its meaning
in a temporal sense, not a geographical one. Take a look at Figure 17: For
example, if an agent is situated at second 400 he is located at second 1205 at
the same time since second 400 has been recorded at the same geographical
location as second 1205. If an agent is situated at second 192 he is located
at second 1740 as well due to the inverse relationship between these two range
loops. Consequently, temporal transitions are possible between corresponding
nodes, indicated by the thin lines, which of course do not carry white boxes since
there are no costs for the algorithm to transition into a corresponding node.
Next up is an introduction to the operating principle of the routing algorithm
inspired by Dijkstra. The procedure begins at the loop node that contains the
second the agent is currently standing at or, if there is no loop node at this
second, an additional node is inserted into the graph at the chronologically
appropriate position. In the former case, if the agent is standing at a spot loop,
or in the latter case, this node is assigned the distance zero. In the former case,
if the agent is standing on a range loop, the distance to both the beginning and
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the end of this loop is calculated and saved into that node. In general, nodes
representing spot loops only save one distance value while nodes standing for
range loops need to store two distance values, one for the beginning and one for
the end, as the beginning and the end of a range loop normally have distinct
distances®. Now the distances to both the preceding and the subsequent nodes
are calculated and saved into them as well as a reference to the node of origin.
In addition to each distance value the node stores namely the list of nodes that
consecutively lead to this node from the node the agent is currently standing at.
If a corresponding loop node is existent its distance and reachability information
is updated accordingly.

Following this, each node that has been processed in the previous step is
recursively checking its two neighboring nodes, which are the corresponding
node and the loop node that is not the node of origin. On each check the just
calculated distance is compared to the distance value already stored in this node
and replaces it if the new distance is smaller. In the case of a replacement, the
path of nodes leading to this node is updated as well. If the newly calculated
distance is not smaller than the current one this branch of recursion ends at
this point, which ensures the existence of a termination condition. This way
the level of recursion does not get infinitely deep. When the algorithm has
finished every node has been visited and contains the information of the shortest
distance and path of reachability from the node the agent is currently situated
at. Consequently, the quickest way out of the loop maze to the green finish node
from Figure 17 is finally known, which is what we were interested in in the first
place.

8The following example clearly shows the importance to dissociate the beginning from the
end of a range loop node in relation to the distance value and the reachability path. Let us
assume that the agent is located at second 900. From there he can reach the beginning of
range loop 1023-1150 within 123 seconds by moving on in chronological order. To reach the
end of this range loop he could simply walk to its beginning and on until the end which would
take him 250 seconds (123 seconds to the beginning plus the 127-second-length of this range
loop). However, a much faster way would be to teleport from second 904 to 1280, move on to
range loop 1205-1237 and finally reach the end of range loop 1023-1150 within 134 instead of
250 seconds.
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Figure 18: Escape route out of the loop maze proposed by the routing algorithm

Figure 18 illustrates the resulting escape route out of the loop maze (indi-
cated by the red line) as proposed by the routing algorithm for the case that the
agent is currently located at second 900. Please notice the proposed escape route
from checkpoint C1 to C2 and from C2 to C3 running in the reverse direction
to the original movement direction of Mister X. In order to reach checkpoint
C4 from C2 the escape route makes a detour along C3 instead of proceeding
straight ahead on a direct line from C2 to C4. The reason for this is that the
algorithm is not aware of the existence of this connecting road, since Mister
X did not walk along this street and therefore no WiFi patterns have been
recorded there. So the algorithm has decided to let the escape route run over
C3. Another possibility would have been to proceed over C5, but as you can
see, the detour over C5 is longer in a metrical sense than the detour over C3.
However, make no mistake, this is only the indirect reason why the algorithm
has chosen to go for checkpoint C3. The direct reason is that it took Mister X
less time to walk the path along C3 ? than it took him to walk the path along
C5. If for some reason it would have taken Mister X less time to move along

91In fact, Mister X had never walked the path from C2 via C3 to C4 as a whole. This part
of the escape route consists of the part from C2 to C3, which Mister X had actually walked
in the opposite direction and the part from C3 to C4, which Mister X had originally walked
himself.
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C5, despite the metrically longer path, as he may have been running instead
of just walking, than it took him to move along C3, then the algorithm would
assume the path via C5 to be shorter and therefore would have proposed an
escape route running via C5 instead of C3.

Of course the loop maze illustrated in Figure 14 is not at the maximum in
terms of complexity; you can make these loop mazes arbitrarily complicated as
you choose. For example, the algorithm could be extended so that it can handle
a spot loop running through a range loop. However, at this stage the abilities of
the algorithm cover the most common cases of loop constellations.

12 Observing the agent’s proximity to a certain
spot on a large public square

To make the gameplay in the beginning more interesting, the exact starting
point (or spawn point as it is called in computer games) of Mister X is obscure
to the agents. The only information they have is that Mister X’s spawn point
is somewhere on this specific public square that is known to the agents. Hence,
a tool had to be developed that supports the agents in finding Mister X's
spawn point. Once again, the approach of choice for this purpose was WiFi
pattern comparison. However, a simple MAC-address-only comparing like the
one described in Section 8 will not help us in this situation, since basically
every access point can be heard at every spot on a large public square. Here
the signal waves of each access point around the square can propagate in an
unimpeded way and reach every corner as long as the transmit power is high
enough to travel these straight distances. However, the value that will change
while wandering around the square is the received signal strength of each heard
access point, since signal strength is directly correlated to distance. Therefore,
the advanced technique, descriped in Section 8, incorporating signal strength
values came into use here.

What the tool does in the end is observe the agent’s proximity to this spot
on the square where Mister X began recording his escape route. This proximity
is determined by the evaluation of the compliance level between the agent’s
current WiFi pattern and Mister X’s first WiFi pattern. The compliance level
should rise as the agent approaches the starting point and should fall again as his
movement direction diverges from the starting point’s location. This procedure
reminds of the German childrens’ game Topfschlagen, which literally translates
to beat the pot'®. The compliance level indicates how hot or cold the agent’s
proximity to Mister X’s spawn point is. Initial function tests of this tool on the
central marketplace of Nuremberg (which has a size of about 90 times 90 meters)
were disillusioning as the test subject stood directly on the starting point while
the compliance level was still fairly low. As it turned out later, one important

10A blindfolded child taps on the ground with a wooden cooking spoon on the search for
a metal cooking pot under which a bounty is typically hidden. As the blindfolded child is
wandering about on the ground the other children provide guidance by shouting either the
word hot or cold depending on the current proximity to the metal cooking pot.
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phenomenon in radio signal propagation had not been taken into account and
that was the absorption of WiFi signals by the human body.

12.1 Absorption of WiFi signals by the human body

Two-thirds of the human body is water. Since water absorbs the energy of radio
signal waves the received signal strength of a WiFi access point is significantly
higher in front of a human body than it is behind in the shadow of the body.
Therefore, it makes a difference for the measurement of the received signal
strength if the carrier of the recording device is facing or if he is averted from the
access point [KaemarungsiKrishnamurthy04]. To substantiate this allegation,
Figure 19 presents two diagrams depicting the received signal strength of two
distinct access points measured from every angular direction. The test subject
turned around his own axis slowly (one full rotation took about two to three
minutes to complete) two times while holding the recording device (HTC Hero
smartphone) tight in front of his body.

For presentation purposes the polar coordinate system has been chosen since
it illustrates the angular property of this measurement appropriately. Since
the polar coordinate system is oriented counterclockwise and begins on the
right side of the x-axis north is on the right, east is at the top, south is on
the left and west is at the bottom of this diagram. In order to match the
measurements to the cardinal directions, the built-in compass of the recording
device has been used. The center of the polar coordinate system in this example
marks a received signal strength of -50 dBm while the outer edge marks -100
dBm. As a consequence, the more a measurement reading (indicated by the
small red dots) is located towards the center the higher the received signal
strength it represents. The major difference between the two diagrams in Figure
19 is that the second one presents the measurement data of an access point that
has delivered overall higher signal strength values than the first access point did.
If you take a closer look at the distribution of the measurement readings you
will see that the received signal strength is indeed dependent on the orientation
of the test subject, as the rings of measured data in both diagrams clearly show
a pronounced indentation towards the center in one specific range of directions.
The moment the test subject faced toward this range of directions, this specific
access point could be heard louder than when facing toward any other direction.

By the way, from this observation we can estimate the position of this access
point as we now know the direction from which the WiF1i signals originate. In
the case of the first diagram of Figure 19, this access point is located presum-
ably north-east while the access point delivering the higher signal strength is
probably situated south-west of the test subject’s position. Whereas the loca-
tion determination of access points was not the intended object of study'' this
experiment has made obvious the need to consider the absorbing effect of the
human body on WiFi signals'?. As a consequence, the direction from which

11 At about the same time of evolution of this bachelor thesis another student at the Fraun-
hofer IIS has indeed investigated this research theme.
12The Fraunhofer IIS has investigated possibilities to take advantage of the absorbing effect

43



WiFi received signal strength in dBm

-100

-100

the agent approaches Mister X’s spawn point has to be taken into account (see
[LiQuaderDempster08] for an inclusion of directional information into WiFi po-
sitioning).

WiFi received signal strength in dBm

-100

v
=3

L L L it i L L L L 100 L L L L i L L L

-100

90 -80 -70 60 -50 60 -10 -80 90 -100 -100 90 -80 -70 60 -50 60 -70 -80

WiFi received signal strength in dBm

(a) first observed access point (b) second observed access point

Figure 19: Received signal strength values from two distinct access points
recorded during two full rotations around the test subject’s axis. For an en-
largement see Figure 23 in the appendix.

12.2 Enhancing proximity sensing by incorporating com-
pass heading

The most obvious sensor to use for direction determination is the compass,
which is nowadays built into most modern smartphones. However, not only
during locating Mister X’s spawn point can the compass be used, but also when
Mister X is about to start recording his escape route he has to run through a
compass-involving process necessary to gather information about this position.
When Mister X has chosen his preferred spawn point on a large public square
he is asked to slowly rotate around his own axis two times. For the duration
of this process WiFi patterns including assigned direction information (degree
values) are stored in a reference database for later access. When an agent
tries to locate Mister X’s spawn point, the direction information of his latest

of the human body on WiFi signals. The idea was to estimate on a rough scale (in steps of
100) the quantity of people standing within a large crowd by analyzing signal strength values
as more human bodies absorb more WiFi signals resulting in lower signal strength values.
However, this experiment named Body Mass Detection ended up being less promising.
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WiF1i pattern is extracted and looked up in Mister X'’s reference database. The
WiF1i pattern recorded by Mister X in the same direction as the agent’s current
viewing direction is finally compared to the agent’s WiFi pattern. This approach
enabled a much more workable tool for the locating of certain spots on a large
public square. For an example where digital compasses enhance a WiFi-based
indoor positioning system see [King06].

However, there was yet another problem with the compliance level when
going across the reference point. The WiFi data provided by the Android SDK
has a time lag of a few seconds. This fact exacerbates the assessment of the
agent’s proximity to the reference point in the case of fast movement. The
following scenario illustrates this problem: An agent approaches the reference
point while the conformity level gradually rises. When the agent hovers directly
over the reference point the latest WiFi pattern, which is available at that
moment, represents in fact the WiFi landscape of a few seconds before.

However, it is not only the time lag that causes difficulties, but also the
movement of the agent plays a part in contributing to the problems. What we do
here is compare WiFi patterns recorded during movement, meaning continuous
changes in position, (in the case of the agent) to WiFi patterns which have
been recorded at the exact same position (in the case of Mister X). We try
to capture the WiFi landscape at a specific position when passing by it, with
the quality requirement of a stationary recorded WiFi pattern. To get a solid
comprehension of the full extent of the WiFi landscape at a particular location
the recording device needs to be held in a steady position and orientation for at
least several seconds. Subsequently, the measurement data should be averaged
to filter out the noise originating from interference (see Section 4). Actually,
this indeed happens in the prototype application during the recording of Mister
X'’s spawn point. Therefore, you cannot expect the proximity sensing to work
very well when just passing by. However, neither can you expect from the agent
to stand still for a short period of time every few meters to check for proximity,
which would considerably constrain the fun in playing the game. Hence, the use
of thresholds for the compliance level has been implemented.

Real-life experiments have shown that, when hovering over the reference
point in constant motion, the compliance level typically rises to over 60% but
stays beneath 70%, which makes 60% compliance a suitable threshold value for
a position to potentially be Mister X’s spawn point. This means, if the agent’s
latest recorded WiFi pattern has a compliance level of over 60%, the agent is
requested to stop walking. If now the compliance level increases further to over
80%, as now the recording device has the time to capture every detail of the
WiFi landscape, this position indeed seems to be the searched-for starting point.
If the compliance level does not rise significantly within a few seconds, the initial
assumption turns out to be a false alarm and the agent needs to look further
around.
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13 Performance of the mobile platform vs. cal-
culation on a remote server

Nowadays smartphones already offer an impressive level of computing power
despite their small form factor. However, when it comes to heavy calculation
tasks these handheld devices are reaching their limits rather quickly. Annotating
algorithms like crossroad and loop detection are executed on a powerful desk-
top computer or server anyway. Nevertheless, there is one ongoing calculation
taking place on each agent’s device every second and that is the comparison of
WiFi patterns for the determination of the own position (see Section 9) and for
the assessment if one is still situated on the reference path (see Section 8). The
complexity of one iteration of the comparison process depends on the length of
the reference path on the one hand and on the amount of access points heard
by the agent’s device in this second on the other hand. Here we assume that
the algorithm compares the agent’s current WiFi pattern to each WiFi pattern
of the whole reference path from start to finish every second. As a consequence,
the longer the reference path the higher the amount of WiFi patterns to com-
pare to. Assuming the dynamic gameplay (see Section 7), the complexity of the
comparison process increases as the game continues. Furthermore, the more ac-
cess points the agent’s current WiFi pattern contains the longer the comparison
with each WiFi pattern of the reference path takes to complete. Therefore the
comparison takes longer if the agent is situated in the downtown area featuring
40 access points than it would take if he was standing on the outskirts featuring
10 access points.

The desired refresh rate for the position and probability information is once
per second. However, if the comparison process takes longer than one second
the agent cannot be provided with an update every second. In this case the
local computing power of the smartphone is insufficient. Either we accept the
slow refresh rate which affects the gaming pleasure negatively or we outsource
the expensive comparison process into the cloud (see cloud computing in Section
14.1). However, the delegation of tasks into the cloud is not always profitable
since the data transmission to and from the remote server takes a certain amount
of time. If the computation expenditure is low a local calculation will be faster
than a remote one. From which point on the utilization of the cloud is useful de-
pends on the performance of the smartphone. A more modern device featuring a
faster processor will reach this point at a later date. In order to experimentally
determine this point a benchmark test on two different smartphones has been
conducted. The first device was the HT'C' Hero featuring a 528 MHz processor
while the second device was the Google Nexus One offering 1 GHz of compu-
tational power. For the remote calculation part of the test a standard desktop
computer with an Intel Core 2 Duo processor running Windows XP has been
set up as a server. The smartphones make requests to the server via a web
service called Restlet which is a RESTful web framework for Java. For this
purpose both mobile devices are capable of Internet connections via the HSPA
standard. See the following table for results of the benchmark:
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testing conditions
path length / pattern size HTC Hero ‘ Google Nexus One
100 sec / 5 APs 47 / 2,870 7/ 887
100 sec / 10 APs 124 / 2,577 13 / 516
100 sec / 20 APs 170 / 2,978 23 / 510
100 sec / 40 APs 361 / 3,421 51 / 685
500 sec / 5 APs 272 / 2,474 40 / 517
500 sec / 10 APs 462 / 3,475 83 / 488
500 sec / 20 APs 928 / 3,102 121 / 661
500 sec / 40 APs 1,759 / 2,710 233 / 561
1,000 sec / 5 APs 492 / 3,536 79 / 499
1,000 sec / 10 APs 856 / 2,688 136 / 482
1,000 sec / 20 APs 1,637 / 2,576 234 / 662
1,000 sec / 40 APs 3,134 / 2,482 448 / 512
2,000 sec / 5 APs 961 / 2,640 151 / 584
2,000 sec / 10 APs 1,704 / 3,283 251 / 667
2,000 sec / 20 APs 3,228 / 2,550 473 / 477
2,000 sec / 40 APs 6,240 / 2,434 881 / 526
5,000 sec / 5 APs 2,975 / 2,618 365 / 804
5,000 sec / 10 APs 4,473 / 2,668 637 / 475
5,000 sec / 20 APs 8,521 / 2,775 1,242 / 570
5,000 sec / 40 APs 1,8763 / 2,463 2,225 / 561
10,000 sec / 5 APs 5,543 / 3,074 760 / 463
10,000 sec / 10 APs 9,145 / 2,548 1,282 / 484
10,000 sec / 20 APs 26,193 / 2,842 2,339 / 497
10,000 sec / 40 APs 34,866 / 2,665 4,550 / 634

If you take a look at the column named testing conditions you will see that
the benchmark runs through different combinations of reference path length and
WiFi pattern size which is equal to the number of access points (APs). In the
course of one iteration both position and probability are calculated with the aid
of the simple MAC-address-only algorithm introduced in Section 8. For remote
calculation the smartphone uploads its current WiFi pattern to the server whose
response consists of two integers, the calculated position and probability. The
numbers in the two device columns indicate the duration in milliseconds it
took until the result was available. The first number before the slash specifies
local calculation while the second number after the slash stands for remote
calculation.

As you can see the duration for all remote calculations remains constant on
average for each device independent of the testing condition. The reason for this
is that even the last testing condition in the table makes for a ridiculously low
computation expenditure from the point of view of a modern desktop computer.
Eventually, it makes no difference to a server whether it has to compare a WiFi
pattern consisting of 5 MAC addresses with 100 other WiFi patterns or whether

47



it has to compare a WiFi pattern consisting of 40 MAC addresses with 10,000
other WiFi patterns. In both cases the calculation result is available in under
100 milliseconds. What makes up the greatest share of total duration during
remote calculation is the data transmission via cellular network. For some
reason remote calculation on the Nezus One is consistently much faster than it
is on the Hero. The Nezus One seems to keep the connection to the server alive
between requests while the Hero appears to re-establish the connection on each
request. The more intelligent connection management on the Nezus One may
be related to the newer version of the Android operating system, 2.2 vs. 2.1 in
this case.

The situation is different with local calculation where the testing condition
has a great impact on calculation time which varies between 50 milliseconds and
35 seconds on the Hero in the course of the benchmark. With the aid of these
measurement results we can estimate the point from which on remote calculation
in the cloud makes more sense than local calculation. If you take a look at the
table and do a little linear interpolation - which is valid since the complexity
scales in a linear way - you will come to the conclusion that the searched-for
point is reached after roughly 25 minutes of playing time assuming 30 access
points on average which is characteristic of the downtown area where the pursuit
will mainly take place. In the case of the Nexus One this point is reached after
about 35 minutes. This value seems to be quite low which is down to the fact
that remote calculation on the Nexus One takes considerably less time than it
does on the Hero. If we would assume a duration of 2.5 seconds for a remote
calculation on the Nexus One like it is the case on the Hero the searched-for
point will be reached as late as after two hours of playing time. This result
illustrates the difference in computational power between these two devices.
You will also notice this when you compare the duration of local calculation
with the testing condition depicted in the last iteration of the benchmark. This
calculation lasted 35 seconds on the Hero while less than 5 seconds on the Nezus
One which results in a factor of seven relating to performance.

Admittedly, the operating principle of the algorithm to determine position
and probability is fairly inefficient. Of course, it is not necessary to compare
the agent’s current WiFi pattern to each and every WiFi pattern of the whole
reference path from start to finish every second. Once the position of the agent
on the reference path is known we also know his approximate position in the
following second since he cannot go far within one second. Therefore, the uti-
lization of a window makes sense which is positioned centrally in relation to
the most recently determined position. A window size of 100 seconds should
be sufficient even for fast moving agents. This way the algorithm analyzes 50
seconds of WiFi patterns in both directions which takes into consideration that
the agent might turn around and walk in the opposite direction. If you take a
look at the benchmark results once again you will see that even the HT'C Hero
is capable of finishing the comparison to 100 WiFi patterns within a third of
a second, even with 40 access points in the agent’s WiFi pattern. As a conse-
quence, the computation expenditure remains independent of the length of the
reference path.
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In the event of the agent reaching a loop (see Section 11) the algorithm needs
to apply two distinct windows since the agent has two possibilities to continue,
either he follows along the original progression of the reference path like Mister
X created it or he takes the leap in time and continues the path tracing at
an earlier or later point in the reference path respectively. After the agent has
walked away from the junction the algorithm knows upon which continuation
of the path the agent has decided and can stop the tracking of the irrelevant
window. Fortunately, the Hero’s computing power offers enough reserves to
allow for the sequential processing of two windows resulting in a temporary
total of 200 comparisons of WiF1i patterns per second.

However, there is a situation which breaks the applicability of the window
technique and this occurs the moment the agent leaves the reference path com-
pletely. If the algorithm is not able to determine the agent’s position since
none of his current WiFi pattern’s MAC addresses appear in any of the refer-
ence path’s WiFi patterns then the algorithm has no clue of the agent’s where-
abouts. Due to this fact, the agent could make his reappearance anywhere on
the reference path which is why the algorithm is required to take the whole ref-
erence path from start to finish into consideration. The moment the agent steps
somewhere on the reference path his location can be determined again and the
window technique can finally be reapplied. From this point on the smartphone
can switch back to local calculation. However, at times of uncertainty about the
agent’s whereabouts the cloud has to take over the computation task. Conse-
quently, a dynamic alternating operation between local and remote calculation
is imaginable as the circumstances require it.

Finally, one last remark on remote calculation should be mentioned. Al-
though response from the server is typically available after about three seconds
on the HTC' Hero this does not mean that a refresh on position and proba-
bility information occurs only every three seconds. This information is still
updated every second, however it describes the situation from three seconds
ago. Therefore, the refresh rate remains constantly high as desired but the
content presented lags behind by a short amount of time. This is achieved via
asynchronous requests to the server. In the beginning the smartphone sends its
first three requests without waiting for any reply from the server until it receives
the response to the first request in the fourth second. In the fifth second the
smartphone sends its fifth request while receiving the response to its second
request and so on. As a matter of fact, a delay of several seconds for the infor-
mation refresh hampers the rapid course of the game significantly which is why
utilization of the window technique makes sense in oder to avoid remote calcu-
lation whenever possible. Nevertheless, as we have seen in the benchmark the
Nezus One has demonstrated that remote calculation can indeed be real-time
capable.
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14 Review and outlook

Just five years ago, the realization of this game idea would not have been pos-
sible with that ease, as we experienced it during our work on this collaborative
project. Relating to hardware, today’s smartphones offer a wide array of sensors,
each one of them allowing for the acquisition of the user’s behavior or surround-
ings. On the software side the development of mobile applications has been
greatly simplified with the introduction of the Android and iPhone platform
around 2007. Getting started with mobile software development has never been
this easy thanks to free of charge and well-documented SDKs. Countless Inter-
net forums offering assistance for developers by developers have formed large
communities around these popular platforms. Distribution facilities like the
Android Marketplace and the Apple App Store have enormously simplified the
global distribution of self-developed applications. Now even hobby programers
can develop so-called apps in their spare time and sell them on a worldwide
market without leaving their home. This has led to a flood of low-quality apps,
which made it harder for established software companies to stand out from the
mass to promote their professionally developed products.

The situation is different on the Sony PlayStation 8 platform, which is much
more challenging to program for. According to an interview given by KAzZUO
Hiral, the CEO of Sony Computer Entertainment, Inc., to the Official PlaySta-
tion Magazine in February 2009, the PlayStation 3 platform has been designed
to be intentionally demanding for developers, so that game studios cannot ex-
haust the full power of the hardware all at once but rather need several years
in order to achieve that. This way Sony wants to extend the life cycle of one
PlayStation device generation. What is more, PlayStation is normally not avail-
able to private persons as a development platform, since you need an expensive
developer license from Sony to write your own games for this platform.

The high popularity of smartphones has not only enabled a pleasant devel-
opment process for us, but also allows for a widespread deployment of our game
among potential players. According to a report by Nielsen Company'® in March
2010, smartphones will overtake feature phones'* in terms of market share in
the U.S. around the end of 2011. At the end of 2009 feature phones still had
a share of 83% in the U.S., according to American Internet marketing research
company comScore. The triumph of the smartphone proceeds in favor of the
Android platform, which has taken the lead in smartphone market share by
the 4th quarter of 2010, according to analytics firm Canalys. This fact accom-
modates the marketing opportunities of our game, since the hardware facilities
are already available to many potential players. Interested parties just need
to install the application via the Android Marketplace, which is an uncompli-
cated process, and can start playing right away in whatever city they live. This
instant-game-start feature is made possible by the fact that our game is not de-

13The Nielsen Company is a global marketing and advertising research company headquar-
tered in New York.

14 Feature phone is a term used to describe a low-end mobile phone that offers less computing
power and features than a smartphone.
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pendent on any preparatory operations like the fingerprinting process necessary
for the functionality of WiF1i positioning systems (WPS). The only requirement
is the presence of a potent WiFi landscape, which is why our game has to be
played downtown.

Actually, GPS and WiFi positioning behave opposite to each other in terms
of accuracy. While GPS delivers its highest precision in the countryside with
low density of development, WiFi positioning would presumably fail completely,
due to the absence of any access points. However, the deeper you move into the
city, which accommodates an enormous amount of access points, the higher the
accuracy of WiFi positioning, while GPS falls far behind relating to precision as
site density increases. Therefore, WiFi positioning demonstrates its strengths
primarily in downtown and indoor locations, which made it the first choice as
the positioning technology of our game.

The excitement of playing our game lies in the impreciseness of the hints the
algorithms calculate and pass through to the agents. The players need to be
aware that the provided information is only a computer-produced hint, which
might be highly inaccurate and should not be relied on at all times. Agents
should always call the generated hints into question and make their own logical
reflections about how Mister X might have behaved in a certain location. In
the end it is quite astonishing how much you can get out of WiFi technology,
although its intended purpose is actually just wireless data transmission. As
it turns out, projects that try to use common technology for unconventional
purposes end up being the most interesting ones.

Several sub-projects, which emerged from work on this bachelor thesis have
the potential to be deployed in other products. For example, the algorithm ca-
pable of detecting crossroads and the one assessing the density of development
around the user could be interesting for autonomous robots doing simultaneous
localization and mapping (SLAM). By the incorporation of these algorithms, the
environment exploration, heretofore based on image processing and laser scan-
ning, could be further improved to capture advanced details about the vehicle’s
surroundings.

14.1 The future of smartphones

Over the course of the next ten years smartphones are expected to gain so much
computing power that they will reach the performance level of notebook com-
puters. They will probably even become a reasonable replacement for desktop
computers. Imagine you have a docking station connected to a mouse, a full-
size keyboard and a large monitor on your desk, both at home and in the office.
The actual computer is the smartphone you carry around in your pocket and
which you plug into the docking station if you need a full PC-like experience.
Since a smartphone will still have to meet the requirements concerning porta-
bility its dimensions will stay the same. Therefore, the built-in display cannot
exceed a diagonal screen size of around five inches, which makes the use of
an external monitor necessary for serious work. Admittedly, smartphones will
probably never come into question as a desktop replacement for power users who
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depend on high-end workstation-class performance. However, the majority of
people using a computer in everyday life is doing computationally less demand-
ing tasks, such as surfing the web, writing emails, browsing photo collections
and streaming online video content. In the end, most people do not need that
much computing power anyway.

So long as smartphones are still in the process of evolution, aspiring to reach
desktop computing performance, the IT industry needs to rely on another trend
emerging these days. Cloud computing means to smartphones that they can
offload computationally intense tasks onto the cloud, which is basically a cluster
of powerful servers on the Internet. The challenge is for the smartphone to de-
cide when a remote calculation will be profitable which means faster availability
of the result on the one hand and less energy consumption on the other hand.
Of course, the actual calculation on a remote server takes a negligible amount of
time however, the transfer of request data to the cloud and the transmission of
result data back to the smartphone are typically responsible for the largest por-
tion in total duration. Therefore the smartphone needs to forecast the amount
of time the data transmission to and from the remote location will take based on
the current quality of its mobile Internet connection. If the connection quality
is fairly low at the moment a local calculation will presumably be completed
in less time making it the more sensible choice. Likewise conceivable would be
to conduct both a local and a remote calculation and take whichever result is
available earlier. However, we also need to take care of energy consumption
since users appreciate smartphones featuring long-lasting battery life. On the
one hand local calculation implies heavy load on the CPU which means high
energy consumption while remote calculation on the other hand entails wireless
data transmission which means high energy consumption as well. Doing both
calculation methods would be an inefficient and irresponsible handling of sys-
tem resources. Therefore the efficiency of cloud computing lies in the intelligent
decision whether to use it or not.

Another idea of cloud computing is that all your multimedia data is not
stored locally on the smartphone but remote in the cloud. Your music library is
streamed wirelessly to your mobile device as well as your family photos and home
movies whenever you like to enjoy them. However, for this to work reasonably
a broadband Internet connection is required which is not always that highly
available as it needs to be in the mobile environment. Additionally, it is not
only your multimedia which is expected to move into the cloud but also your
personal data like your whereabouts, the places you are visiting in everyday
life. This enables for example advertising companies to deliver location-aware
offerings to you and allows your friends and family to know where you are which
could be relevant to social networking communities. The fact that smartphones
know a lot about their users’ behavior is appropriately pointed out by JOHN
BRANDON, a contributor to the high-tech lifestyle website Digital Trends: The
phone - and the cloud-based server side intelligence behind it - will know you,
your location, your social networks, and your preferences in food, media, and
communication. It will predict your next moves. The intention behind this
artificial intelligence is to require less interaction by the user and to let the
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smartphone evaluate the user’s behavior on its own. For example the event
that you have entered a certain coffee shop to stay there for a while can be
detected by looking up heard MAC addresses in an database annotated with
public places. If the access point which is part of the caf’s furnishings can
be clearly heard the user seems to be situated within this caf which can then
be published automatically on social networking sites such as Facebook Places.
As a matter of fact this kind of artificial intelligence would be technically not
difficult to realize however, companies offering location-based services are still
struggling with privacy to keep private data secure (see the chapter on privacy
protection in [Kuepper05]). In addition to that, the question is if people will
want this permanent surveillance or if they are intimidated at the thought of an
impersonal commercial company keeping track of every step they take making
them to become transparent men. See [RekimotoMiyakilshizawa07] for thoughts
on continuous location logging of a whole human lifetime.

14.2 The future of WiFi

According to SANJIT Biswas, CEO and Co-Founder of American wireless net-
working company Meraki, Inc., in general everyday data traffic on WiFi net-
works has doubled from 2010 to 2011 and is expected to continue doubling each
year. On the one hand this is caused by an increasing amount of WiFi-enabled
devices that we use in everyday life. Initially only notebooks were using WiFi
connections to transfer data, nowadays it is also smartphones, tablet PCs, gam-
ing consoles, digital cameras and others that communicate via WiFi networks.
In the future, it wouldnt be inconceivable to imagine electrical household ap-
pliances like microwaves communing with a building automation system over a
wireless connection. On the other hand, also responsible for the rise in wireless
data traffic is the ever-growing size of typical multimedia items especially video
streaming in high-definition resolution. Since people do not want to relinquish
watching video streams while travelling mobile service providers are expanding
their network of public WiFi access points in order to take the load off their
cellular network. So as to sustain a high level of operability while the penetra-
tion of wireless networks increases the perfomance of WiFi connections needs
to be adapted in order to be able to keep up with tomorrow’s requirements.
New WiFi standards need to improve upon range, robustness and throughput.
Eventually, WiFi will reach the level of robustness and speed needed to make it
a reasonable replacement for wired Ethernet connections.

A new field of application in which WiFi technology is about to emerge is
the automotive sector. Vehicles are equipped with WiFi in order to exchange
information between each other which is referred to as Car2Car communication.
This way oncoming vehicles can warn the own car about for example forthcoming
traffic congestions and construction sites to improve safety in road transport.
Car2Car communication is intented to support multi-hop data transmission so
that information can be forwarded from one car to the next achieving greater
range. Here the challenge is to ensure a fast connection establishment between
two cars moving in opposite directions. As these two cars may be fast moving
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on a highway there is not much time for the information exchange before the
distance becomes too large.

Another interesting new extension to the WiFi standard is called Wi-Fi
Direct announced by the Wi-Fi Alliance in October 2010 and promises easier
manageable direct ad-hoc connections between WiFi-enabled devices. This fea-
ture should be useful for our game to detect the event when one of the agents
successfully catches Mister X. Up until now we did not have a workable solution
for the detection of this event. If all agents and Mister X would be constantly
uploading their geographical coordinates which would then be compared server-
sided relating to distances this approach would be too slow in terms of response
time - especially as the pursuit becomes hectic near the end of the game - as
well as too imprecise since the accuracy of GPS is not sufficient within dense
urban environments.

Another possibility would be to detect the proximity to a certain device
by catching the probe requests the other device broadcasts while scanning for
WiFi networks in order to analyze the received signal strength of these probe
requests from which conclusions can be drawn relating to the distance between
the sender and the receiver!®. This technique is known as sniffing and is rather
a hack than a serious solution. However, Wi-Fi Direct seems promising to
facilitate the detection of an encounter between an agent and Mister X since
this extension enables direct device-to-device links without the detour via an
access point. For one thing the fact that an ad-hoc connection can be established
between the two devices means that Mister X cannot be far away anymore, he
must be within sight distance or one block of houses away at the most, and for
another thing the agent’s device can still analyze the received signal strength
while communicating with Mister X’s smartphone. Unfortunately, the official
Android SDK does not provide access to ad-hoc links or Wi-Fi Direct via one
of its APIs at the time of writing although Android smartphones are supporting
this feature on the hardware side (firmware) since its announcement in 2010.

14.3 Updating the WiFi measurements of the reference
path by subsequent followers

In Section 3.1 a technique called Automated Self-Healing Network has been
mentioned which the company Skyhook uses to keep the database on which its
WiF1i positioning system (WPS) is based up to date via user contribution. This
concept might be applicable to the path tracing process of our game as well.
As it has been demonstrated in Section 9.2 we have a decline in localization
accuracy the farther Mister X'’s recording of his escape route lies back in time.
The idea is to counteract this problem by updating the WiFi measurements of
the reference path by subsequent followers.

Imagine a street which is part of Mister X’s escape route. When Mister X
was here his recording device has captured an access point with a very high sig-

151n order to determine the identity of the sender the MAC address contained in the probe
requests needs to be extracted. Therefore Mister X’s MAC address must be known a priori
to all the agents.
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nal strength. A few weeks later a group of agents walks along the same street!S.
Although their recorded WiFi patterns feature a high level of compliance with
those recorded by Mister X none of the agents’ patterns contains the MAC
address of the access point which Mister X’s device was able to recognize so
distinctly. If the devices of several groups of agents are experiencing this same
phenomenon the system can assume that this access point is not existent any
more. This way the subsequent followers’ devices give feedback about the cur-
rent condition of Mister X'’s escape route relating to the WiFi landscape. The
challenge for the system is now to intelligently evaluate the feedback in order to
make reasonable updates to the WiFi patterns constituting Mister X’s reference
path.

However, this technique is dangerous since its operating principle relies on
the assumption that subsequent followers walk the reference path along the
exact same geographical line as Mister X did which is typically not the case.
Walking along the same street but on the other side already produces consider-
ably different WiF1i patterns. What we try to do here is to improve the accuracy
of a localization system which contains out-dated data after having determined
our position with the aid of this already imprecise system. Consequently, our
suggestion for improvement of WiFi patterns is based on an already inaccurate
location determination. What we need is an independent positioning system
whereby we could tune the WiFi positioning system. If we had a system that
would give us absolute coordinates we could tell if the agent making a suggestion
for improvement of WiFi patterns was indeed standing at the same geographical
position as Mister X used to. Unfortunately, the accuracy of GPS is doubtful
within dense urban areas. The fact that the contribution back to the system by
one group of agents is based on the system already updated by the feedback of
the previous group of agents means that erroneous updates are adding up from
game to game. The moment a group of agents contributes an update which
is actually a great improvement for the worse the following update will build
upon this faulty update and chances are that it will make the operating preci-
sion of the system even worse. The system will converge to a very low level of
performance finally rendering the game unplayable.

16We are assuming the static gameplay here, see Section 7.
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Glossary

A-GPS Assisted GPS. Technique to support GPS via other technologies, such
as WiFi and GSM.

AP (Wireless) Access Point. Device that allows wireless devices to connect to
a wired network.

API Application Programming Interface. Collection of commands for use in
self-written software via which functions of the underlying system can be
called.

CCTYV C(Closed-circuit television. The use of surveillance cameras.
CEO Chief Executive Officer. The head of a company.

CPU Central Processing Unit. The portion of a computer system that executes
the instructions of a computer program.
GPS Global Positioning System. Satellite-based system for worldwide location

determination.

GSM Global System for Mobile Communications. Second generation of the
global standard in digital mobile communications.

HSPA High Speed Packet Access. Enhancement for UMTS allowing for faster
data transmission.

IIS (Fraunhofer) Institute for Integrated Circuits. One of 60 institutes of the
German research organization Fraunhofer Society.

IT Information Technology. Generic term for electronic information and data
processing.

LED Light-Emitting Diode. Modern light source featuring low energy con-
sumption, long lifetime, high robustness, small size, fast switching, and
great durability and reliability.

LOS Line Of Sight. Unobstructed direct connection between two points.

MAC Media Access Control address. Unique identification number for network
devices.

NDK Native Development Kit. More advanced development tools enabling
access to low-level system functions.

PC Personal Computer. General-purpose computer for use by private individ-
uals.
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PDA Personal Digital Assistant. Mobile handset device offering advanced of-
fice and multimedia functionalities.

RSSI Received Signal Strength Indication. Power of a radio signal reaching a
receiving device.

SDK Software Development Kit. Collection of development tools for the cre-
ation of software programs.

SLAM Simultaneous Localization And Mapping. Technique used by robots
and autonomous vehicles to build up a map within an unknown environ-
ment while at the same time keeping track of their current location.

SSID Service Set Identifier. Name of a wireless network.

TTFF Time To First Fix. Required time to determine the current location via
GPS.

UMTS Universal Mobile Telecommunications System. Third generation of the
global standard in digital mobile communications.

WEP Wired Equivalent Privacy. Ciphering method for wireless networks, in-
secure from a present-day perspective.

WiFi Wireless Fidelity or Wireless Local Area Network (WLAN). Technology
for wireless data transmission between computers in the broader sense.

WLAN Wireless Local Area Network. See WiFi.

WPA Wi-Fi Protected Access. Ciphering method for wireless networks, more
secure than WEP.

WPA2 Wi-Fi Protected Access II. Ciphering method for wireless networks,
even more secure than WPA.

WPS Wi-Fi Positioning System. System enabling location determination based
on WiFi signal patterns.
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Figure 20: Positioning results of each second from the agent’s path tracing
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Figure 21: Results of the crossroad detection in the southern part of Nuremberg
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Figure 22: Signal strength values in various types of development
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Figure 23: Received signal strength values from two distinct access points
recorded during two full rotations around the test subject’s axis
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B Immaterials: Light painting WiFi

In February 2011 three students from the School of Architecture and Design
(AHO) in Oslo, Norway have published their work on an art project called
Immaterials: Light painting WiFi. The idea was to make WiFi landscapes
visible as they run through the streets of a large city. This was achieved by
walking through the cityscape with a four-meter-long rod featuring 80 LEDs
attached to it while taking a photograph of the scene with a long exposure
time. The greater the WiFi penetration in a certain spot the higher the bar of
lit LEDs. Since all the changes in WiFi signal strength are recorded within one
exposure the resulting image is a signal curve drawn directly into the cityscape.
Therefore this illustration indicates how WiFi penetration is directly correlated
to its environment. This project connects the assessment of WiFi coverage from
a technical point of view with an artistically appealing presentation and fits
perfectly to what has been investigated in the context of this bachelor thesis.
The images below are provided by courtesy of the three artists. For more
information on this project please refer to their blogs!'”.

17yourban.no/2011/02/22/immaterials-light-painting-WiFi or
nearfield.org/2011/02/WiFi-light-painting
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