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KurzfassungIn dieser Diplomarbeit wird ein skelettbasiertes Mat
hing-Verfahren für 2D - Ob-jekte vorgestellt. Zunä
hst werden aktuelle Ansätze zum Mat
hen von Objektenvorgestellt, ans
hlieÿend werden die Grundlagen von skelettbasiertem Mat
hingerklärt.Ein skelettbasiertes Verfahren wurde im Rahmen dieser Arbeit gemäÿ des vor-liegenden Original-Paper neu implementiert. Diese Implementierung wird anhandeiner Ähnli
hkeitssu
he in drei Bild-Datenbanken evaluiert. Stärken und S
hwä-
hen des Verfahrens werden herausgearbeitet.Des weiteren wird der vorgestellte Algorithmus auf Erweiterungen untersu
ht,die das Mat
hen von 3D-Objekten ermögli
hen sollen. Im speziellen wird das Ver-fahren auf medizinis
he Daten angewendet: Pre- und postoperative CT-Aufnahmender abdominalen Aorta eines Patienten vor und na
h einer Operation werden mit-einander vergli
hen. Problemfälle und Erweiterungsansätze für das Mat
hen von3D-Objekten im Allgemeinen und von Blutgefäÿen im Speziellen werden vorge-stellt.Abstra
tIn this diploma thesis a skeleton-based mat
hing te
hnique for 2D shapes is in-trodu
ed. First, 
urrent approa
hes for the mat
hing of shapes will be presented.The basi
s of skeleton-based mat
hings will be introdu
ed.In the 
ontext of this diploma thesis, a skeleton-based mat
hing approa
h wasimplemented as presented in the original paper. This implementation is evalu-ated by performing a similarity sear
h in three shape databases. Strengths andlimitations of the approa
h are pointed out.In addition, the introdu
ed algorithm will be examined with respe
t to extend-ing it towards mat
hing of 3D obje
ts. In parti
ular, the approa
h is applied tomedi
al data sets: Pre- and postoperative CT images of the abdominal aorta of onepatient will be 
ompared. Problems and approa
hes for mat
hing of 3D obje
ts ingeneral and blood vessels in parti
ular will be presented.
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Chapter 1Introdu
tion
1.1 MotivationThe amount of image data is growing rapidly, supported by the in
reasing possibil-ities to save huge amount of data. So does the number of 3D models, as advan
eds
anning methods and higher pro
essing power get less expensive and hen
e morewidespread.The problems stemming from this development are similar for both 2D and3D data: The re
ording and 
onsumption of su
h data gets more easy, but the
omplexity of sear
hing through the data and establishing relations between theseitems 
ompli
ates the a

ess to the data. In 
omparison to well-tried data types likeplain text do
uments, images and 3D-models are di�
ult to manage by software.For example, an image retrieval system enables the user to browse through adatabase of images. Sear
hing in semi-stru
tured data like text do
uments is less
omplex as sear
h 
onditions 
an be 
ontrolled by synta
ti
 means like keywords
ontained in the do
uments. Image sear
hes have to happen by semanti
 aspe
tswhi
h are not expli
itly known in an image [S
h06℄.Similarity measures for 2D or 3D images are therefore an ongoing resear
htopi
. They are an important 
ontribution to various appli
ations, like multimediaretrieval, obje
t 
lassi�
ation or obje
t re
ognition. Multimedia retrieval dealswith the problem of similarity sear
h in databases where no expli
it similarity forthe 
ontained obje
ts is known. Classi�
ation and re
ognition usually rely on a
omparison of a query shape to a set of known prototype shapes.Thus, 
omparing two shapes is a key 
omponent in the appli
ations mentionedbefore. In order to 
ompare two shapes, salient features of the two shapes aresele
ted. The query shape's features are 
ompared to the target shape's featuresbased on a prede�ned similarity measure. That way, the features of one obje
t 
anbe mapped to the features of another obje
t so that they are as similar as possible:13



14 CHAPTER 1. INTRODUCTIONCorresponden
es are established between the obje
ts' features. This pro
ess is also
alled mat
hing. The mat
hing of two 2D or 3D images is hen
e a key 
omponentin all of the appli
ations mentioned before. The 
hallenge is to �nd a meaningfulsimilarity measure that 
aptures most of the original shape's properties.1.2 Do
ument stru
tureThis diploma thesis 
an be divided into two parts: First, the promising skeleton-based te
hnique for mat
hing two-dimensional obje
ts presented in [BL08℄ willbe introdu
ed. The te
hnique was reimplemented, evaluated and tested for lim-itations. Se
ond, the possibilites to extend this te
hnique for mat
hing three-dimensional obje
ts are examined. The approa
h is tested by mat
hing bloodvessel data.This do
ument is stru
tured as follows: Chapter 2 gives an overview of existingwork for mat
hing te
hniques of 2D and 3D images. In parti
ular, previous work forskeleton-based mat
hing is examined. In 
hapter 3, the fundamentals of skeleton-based mat
hing approa
hes are explained, in
luding basi
 notations, skeletons andfundamentals of graph mat
hing. Basi
 terms and notations will be introdu
ed.An outline of the mat
hing algorithm presented in [BL08℄ is des
ribed in 
hapter 4.In addition, the implementation of this algorithm is evaluated in several mat
hingand retrieval experiments on three shape databases. Advantages and limitations ofthe algorithm are pointed out. In 
hapter 5 the problems for applying the algorithmfor the mat
hing of 3D data are highlighted. Some ideas on the extension of thisapproa
h to three-dimensional obje
ts are introdu
ed. Con
lusions and futurework are summarized in 
hapter 6.



Chapter 2Overview of mat
hing te
hniquesWhen 
omparing two shapes, a representation for the shapes is needed. Usually,the shape representation is a redu
tion of the 
omplex information 
ontained ina shape. The representation has to preserve most important geometri
al andtoplogi
al features of a shape while making it easy to apply mat
hing algorithmsto them. The e�e
tiveness of an algorithm for mat
hing two- or three-dimensionalobje
ts highly depends on the 
hoi
e of representation for the obje
t. Apart from
olor- and texture based te
hniques, an important group of algorithms analyzeobje
ts based on their shape. User surveys show that users, for example in the
ontext of an image retrieval system, are generally more interested in mat
hing byshape than by 
olor or texture [SLV99℄.Typi
al approa
hes for shape-based obje
t mat
hing te
hniques will be intro-du
ed in this 
hapter.Point set representation One approa
h is the mat
hing based on unorganizedpoint sets. [CR03℄ state that points are the �most fundamental of all features�.Two sets of points are mapped by �nding a useful lo
al des
riptor, like 
olor orlo
ation, then establishing a one-to-one 
orresponden
e between the two point setsbased on the des
riptors.[BMP02℄ introdu
e as a shape des
riptor the shape 
ontext. Within this ap-proa
h the shape is represented by a �nite set of boundary points, whi
h are notrequired to be landmarks or salient points. For ea
h of these boundary points,a 
oarse histogram 
ontaining the relative 
oordinates to the other points of theshape is 
omputed. The goal is to �nd 
orresponding pairs of points in both shapeswith shape 
ontexts that have the highest similarity.Typi
ally, in approa
hes based on point sets, landmark points are extra
tedfrom the shape, and these feature points are mat
hed [SP08℄. One possibility fora lo
al point des
riptor is SIFT (s
ale-invariant feature transform) as proposed in15



16 CHAPTER 2. OVERVIEW OF MATCHING TECHNIQUES[Low04℄. SIFT features are invariant to s
ale and rotation, and robust to globalillumination 
hanges.The strength of landmark representations is that, depending on the 
hoi
e oflandmark, strong and non-ambiguous 
orresponden
es between the single elements
an be established [SP08℄. When used alone however, point based mat
hing ap-proa
hes tend to su�er from supoptimal 
onditions like noise or outlier elements[KG10, SK05℄ as they usually in
orporate only lo
al properties.Boundary representation Another obje
t mat
hing approa
h is based on bound-ary representations. A 
lassi
 way to mat
hing 
urves is based upon the modelsof snakes as originally proposed in [KWT88℄: In this model, a snake is a spline,
on
eivable as an elasti
 band, in�uen
ed by both internal image for
es and exter-nal 
onstraint for
es, both trying to push the snake to model itself after the shapeof an obje
t. These for
es 
ould be 
aused by a user interfa
e or 
an be dete
tedautomati
ally. The external for
e pushes the snake towards the 
orre
t lo
ationon the shape, usually salient features like edges or lines, while the internal for
e isused to align the shape with the 
ontour.[You98℄ use this idea and apply it dire
tly to 
ontour mat
hing by estimatingthe 
osts to stret
h or bend the query obje
t's 
ontour so that it best mat
hes thetarget obje
t's 
ontour. The less energy needed to mat
h the two 
ontours to ea
hother, the higher the two shapes' similarity is.However, boundary representations 
annot a

ess shapes' interior. [SK05℄states that most 
urve based te
hniques are not invariant to s
ale or rotation.Another problem is that deformable obje
ts 
ould lead to unsatisfying resultswhen using 
urve based te
hniques, for example in 
ase of arti
ulated joints. Forsome appli
ations, 
urve based representations lead to good results, mainly in lim-ited domains like re
ognition of hand writing, but as the experiments in [SK05℄demonstrate, most 
urve-based approa
hes show their limitations when dealingwith overlapping obje
t parts.Skeleton representation Another approa
h for obje
t representation, the skele-ton or medial axis, gives a

ess to both shape interiors and boundary properties.The skeleton is the set of points within a shape that are the 
enter of a maximalins
ribed dis
 within the shape, that tou
hes the obje
ts boundary in at least twopoints. Thus, a skeleton is the redu
tion of a shape to a thin line 
entered withinthe shape. A skeleton 
aptures essential topology and shape information of theobje
t in a simple form [LP09℄. Skeletons hold information about the interior ofan obje
t as well as information about the obje
t's outline. When obje
ts are rep-resented by skeletons, these skeletons are mostly redu
ed to a graph, and usuallygraph mat
hing te
hniques 
an be applied. These are generally more 
omputation-



17ally expensive than the mat
hing of 
urves. Compared to 
urve based approa
hes,skeleton-based methods show their advantages in the mat
hing of deformable ob-je
ts as they are more robust to overlaps, deformations or mispla
ed obje
t parts[SK05℄.In general, skeletons o�er di�erent possiblities for mat
hing approa
hes. Com-plete skeleton bran
hes 
an be mat
hed to the skeleton bran
hes in the other skele-ton. Another general approa
h is to mat
h single salient skeleton points, usuallyjun
tion nodes or end nodes, or both.Several approa
hes [SKK04, SK96, KSSK00, KSK01℄ use a derived form of theskeleton, 
alled the sho
k graph or sho
k tree. Sho
k graphs were �rst introdu
edin [SK96℄. This derived representation di�ers from skeletons in that the 
ontourinformation of a shape is in
orporated.[KSSK00, KSK01℄ mat
h sho
k trees based on an edit-distan
e algorithm. Theedit distan
e is 
omputed by traversing the rooted sho
k tree, and edit operationslike stret
hing or bending are applied to the traversed edges. The idea is to deformone skeleton bran
h in one skeleton to another bran
h, that is more similar to aspe
i�
 bran
h in the other skeleton. Possible edit operations in
lude operationsthat might 
hange the graph topology, as for instan
e inserting, merging or delet-ing bran
hes, and topology-preserving operations like stret
hing or 
ompressing abran
h. Ea
h edit operation 
omes with a prede�ned edit 
ost. The 
orrespon-den
e between skeleton bran
hes 
an then be found by �nding the �
heapest� editoperation to transform one sho
k graph into another. The similarity of two shapesis de�ned as the sum of all edits 
osts. The skeleton needs to be 
onverted to arooted tree before mat
hing whi
h might lead to a loss of topologi
al information.The main idea of the sho
k graph based approa
h introdu
ed in [SKK04℄ is to�treat ea
h shape as a point in a shape spa
e and de�ne the distan
e between twoshapes in terms of the minimum-
ost deformation path 
onne
ting them� [SKK04℄.In order to redu
e the dimensionality of all possible deformations, the shape spa
eis partitioned into shape 
ells, where ea
h shape 
ell 
ontains shapes having identi-
al sho
k graph topology. In order to 
ompute the similarity between two shapes,an edit-distan
e algorithm similar to [KSK01℄ is applied. Editing a query shapewill lead to one or more transitions between the shape 
ells. Corresponden
esbetween two shapes 
an be established by observing these transitions.[HHW04℄ mat
h skeletons mainly based on their topologi
al information. Twoskeletons' bran
hes are mat
hed a

ording to their 
onne
tivity within the skeleton,observing bifur
ations at jun
tion nodes in referen
e to the bifur
ation angles be-tween skeleton bran
hes emanating from jun
tion nodes. Furthermore, for obje
tre
ognition, the obje
t shape variations are in
orporated by 
omputing a Gaussiandistribution on the distan
e values within the shape. This approa
h la
ks �exibil-ity for mat
hing non-rigid obje
ts: As the angle of bran
hes at jun
tion nodes



18 CHAPTER 2. OVERVIEW OF MATCHING TECHNIQUESdi�er if parts of the obje
ts are moved, this is no reliable mat
hing indi
ator forarti
ulated joints. Moreover, jun
tion nodes tend to get disarranged in movingobje
ts [XWB09℄ and are thus not a reliable mat
hing feature when used withoutother support mat
hing indi
ators.[DSK+06, DSD09℄ deal with the problem that in noisy image data, due toerrors for example in image aquisition or segmentation, one-to-one mat
hings arenot always possible. This approa
h thus signi�
antly di�ers from other approa
hesin the pro
ess of the �nal mat
hing. In most mat
hing approa
hes, a one-to-one 
orresponden
e is enfor
ed. That is, ea
h element in one skeleton has tobe mat
hed to exa
tly one element in the other skeleton. [DSK+06℄ embed twoskeleton graphs into the same spa
e and map ea
h node's attributes to a ve
tor ofmasses. In this s
enario, the mat
hing of skeletons is not the mat
hing of a graphanymore but the 
omputation of the minimal �ow from one weighted point setto another whi
h 
an be 
omputed by Earth Mover's Distan
e (EMD) [RTG98℄.The advantage of EMD over other approa
hes is that it permits partial mat
hingsinstead of enfor
ing one-to-one-mat
hings.Most of the existing approa
hes based on skeletons 
annot deal with holes inthe shapes whi
h would lead to loops in the skeleton [BL08℄. One advantage of thealgorithm proposed in [BL08℄ (whi
h will be des
ribed in detail later) over otherapproa
hes is hen
e that loops are no problem for this algorithm.Furthermore, several approa
hes for the mat
hing of 3D models based on skele-tons have been proposed. In [CDS+05℄ the distan
e transform value is assignedto ea
h skeleton point whi
h is used in the �nal mat
hing pro
ess. Again, twoskeletons are mat
hed using the Earth Movers Distan
e whi
h also permits partialmat
hings.[BI04℄ propose a ba
ktra
king-based approa
h. The main idea is to �nd thelargest 
ommon subgraph of two skeletons and 
ompute the similarity betweenthem. In order to �nd 
orresponding verti
es and edges, the length and anglesof bran
hes at jun
tion nodes are in
orporated when 
omputing the similarity be-tween two subgraphs. This approa
h has exponential 
omputation 
omplexity. Asthe angles of bran
hes in this approa
h are a signi�
ant measurement for similaritynon-rigid obje
ts are hard to mat
h with this approa
h.[SSGD03℄ mat
h the verti
es of two skeleton graphs. A so-
alled signatureis assigned to ea
h graph vertex. These signatures are ve
tors representing thestru
ture of the underlying subgraph at this node, based on the eigenvalues of thesubgraph's adja
en
y matrix. The similarity between two nodes is then de�ned bythe distan
e between these signatures. Thus, this approa
h only takes lo
al shapeinformation into a

ount.



Chapter 3Foundation of skeleton-basedmat
hingIn the following 
hapter the fundamental 
on
epts that form the foundation forthis thesis will be des
ribed.As mentioned in 
hapter 1, in this diploma thesis a mat
hing te
hnique willbe presented and evaluated. In parti
ular, the presented mat
hing algorithm usesskeletons as a shape des
riptor. Therefore, se
tion 3.1 will summarize the fun-damental 
on
epts of skeletons in 2D and 3D images. The 
omputation of thesimilarity between salient skeleton points will later be redu
ed to the problem ofmat
hing time series, that is, sequen
es of real numbers. Se
tion 3.2 thereforeintrodu
es the main ideas of the mat
hing of time series. As the �nal mat
hing ofsalient skeleton points will be based on graph theory problems, the fundamentalsof graph mat
hing will be introdu
ed in se
tion 3.3. Finally, the basi
 
on
ept ofretrieval systems will be introdu
ed in se
tion 3.4, as the mat
hing algorithm willbe evaluated by a simple retrieval software.3.1 SkeletonsInitially, the term skeleton, also 
alledmedial axis, has to be 
lari�ed. Skeletons area shape des
riptor for obje
ts. Shape des
riptors generally represent shapes in anabstra
ted way, redu
ing the 
ontent of the shape to fa
ilitate further pro
essingand analysis. Skeletons in parti
ular are an �abstra
tion of obje
ts, whi
h 
ontainboth shape features and topologi
al stru
tures of original obje
ts' [BLL07℄. First,skeletons will be introdu
ed for 2D obje
ts. Then, an introdu
tion to 3D skeletonswill be given. 19



20 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING3.1.1 Skeletons in 2DFor the �rst time, skeletons as a shape des
riptor were mentioned 1967 in the workof Harry Blum [Blu67℄ about visual per
eption of shapes. A

ording to Blum's idea,from ea
h edge and ea
h 
orner of an obje
t, waves are spreading uniformally in alldire
tions. These waves don't interfere with ea
h other, and all waves propagate inthe same speed. Two waves are 
an
elled as soon as they 
ollide with ea
h other.One 
an imagine that the foreground pixels in a binary image are made ofprairie grass. All shape boundary points are then set on �re simultaneously, andthe �re fronts propagate inside the obje
t at the same speed. After some time, twoor more of these �re fronts will 
onverge in a point whi
h is then said to belong tothe skeleton S of the shape. After a 
lash, the involved �re fronts are extinguished[Ogn92℄.Another geometri
al model of skeletons is to 
onsider skeletons as the set ofall interior points of an obje
t, where ea
h point is the 
enter of the largest dis
that exa
tly �ts within the obje
t boundary, 
alled the largest ins
ribed dis
. Inparti
ular, a dis
∆ is said to be a maximal ins
ribed dis
 if the following 
onditionshold [Mai99℄:1. ∆ is totally 
ontained in the shape2. There is no other disk totally 
ontained in the shape whi
h 
ontains ∆A maximal ins
ribed disk ∆ 
entered at a skeleton point p tou
hes the obje
tboundary in at least two points.

Figure 3.1: Re
tangle and its skeleton, marked in bla
k lines. A and B are skeletonpoints, as both are the 
enter of a maximal ins
ribed dis
, tou
hing the boundary in atleast two points. Image sour
e: [Pal℄.Figure 3.1 shows a simple example, a re
tangle and its 
orresponding skeleton.Three points within the shape are highlighted: A, B and C. The maximal ins
ribed
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 that 
enter on them but �t within the shape is shown. The surrounding dis
s
entered at A and B tou
h the obje
t boundary in at least two points. Thus, Aand B are skeleton points. C is not a skeleton point, as the maximal ins
ribeddis
 
entered at C tou
hes the boundary at only one point. From the skeleton'sde�nition it 
an be 
on
luded that the skeleton is always 
ompletely 
ontainedwithin the shape.Both theoreti
al models - the propagation model and the model of maximalins
ribed dis
s - are equivalent. The geometri
 
onsideration underlying both isthat ea
h skeleton point is equidistant to at least two boundary points.Formally, and with the idea of maximal dis
s in mind, the skeleton S of a shape
Ω with the boundary ∂Ω is de�ned as the set of all �points p in Ω that have atleast two boundary points a, b at minimum distan
e of p� [Ren09℄:

S = {p ∈ Ω | ∃a, b ∈ ∂Ω, a 6= b, ‖p− a‖ = ‖p− b‖ = D(p)} (3.1)where D : Ω 7→ R+ is the distan
e transform, �assigning to ea
h obje
t point theminimum distan
e to the boundary� [Ren09℄. The boundary points a, b with thedes
ribed properties are 
alled the feature points of the skeleton point p.Figure 3.1 shows that a skeleton is a 
onne
ted set of digital ar
s, in thisexample, straight lines. These 
urves are 
alled skeleton bran
hes. Ea
h skeletonbran
h 
onsists of a �nite number of skeleton points. Skeleton points 
an be
lassi�ed a

ording to the number of their feature points. Skeleton points havingexa
tly two feature points are 
alled 
onne
tion points. Point B in the �gure isa so-
alled jun
tion point, that is, a skeleton point where at least three skeletonbran
hes meet. Jun
tion points have at least three feature points, depending onthe number of bran
hes they are 
onne
ting. The maximal ins
ribed dis
 of anendpoint partly overlaps with the shape 
ontour. Thus, the feature points formone 
ontiguous set [Ren09℄.For the purpose of image analysis, skeletons are often further simpli�ed by
reating the so-
alled skeleton graph. A skeleton graph is a redu
tion of the originalskeleton to only end points and jun
tion points, as these are the kind of points thathold the skeleton's topologi
al information. Thus, the skeleton graph is 
reatedby removing all 
onne
tion points and dire
tly 
onne
ting the remaining points[YBYL07, BL08℄.To use skeletons as a shape des
riptor in digital image pro
essing, the theo-reti
al 
on
epts of the skeleton have to be mapped to the dis
rete pixel spa
e. Ashape's skeleton is usually en
oded in a binary image. Given a binary skeletonimage, the skeleton is de�ned by the set of pixels labeled as foreground pixels.Generally, one foreground pixel represents one skeleton point. Hen
eforth, a pixelin the skeleton binary image labeled as foreground will be referred to as skeletonpixel, and the words skeleton point and skeleton pixel will be used inter
hangeably.



22 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHINGWhen pro
essing a skeleton image, it is desirable to be able to identify thetopologi
al points, that is, end points and jun
tion points, by the examanationof the 8-neighborhood of the skeleton pixel. For example, a skeleton pixel havingexa
tly one adja
ant skeleton pixel is an end point. The distin
tion between thetwo remaining types of skeleton points is a little more 
omplex. Generally, a skele-ton point where at least three skeleton bran
hes meet is 
alled jun
tion point, andskeleton points that are neither end points nor jun
tion points are 
alled 
onne
-tion points. For the dis
rete 
ase, one 
ould 
on
lude that jun
tion points alwayshave at least three adja
ent skeleton pixel in the 8-neighborhood, while 
onne
tionpoints have exa
tly two adja
ent skeleton pixels. However, in pra
ti
e, there arepixel 
onstellations where 
onne
tion points have more than two neighbors. Anexample is shown in �gure 3.2. The left half of the image shows an example skele-

Figure 3.2: Jun
tion points 
an not be identi�ed unambiguously in the 8-neighborhood.As 
an be seen in the skeleton 
ut-outs in the right, in some 
onstellations, the 
hoi
eof jun
tion points depends on the order in whi
h pixels are traversed when 
reating theskeleton graph.ton. The pixel rasters drawn in larger s
ale in the right half of the image show a
ut-out of the skeleton in the left. As shown in the 
ut-outs, the 
hoi
e of jun
-tion point depends on the order in whi
h pixels are traversed when 
reating theskeleton graph. Obviously, in this pixel 
onstellation three di�erent pixels 
ouldbe 
hosen as jun
tion point. Thus, the identi�
ation of jun
tion points requiresmore 
onsideration. One possibility is to 
lassify jun
tion points as they are en-
ountered while traversing the skeleton bran
hes, while all neighboring nodes are
lassi�ed as 
onne
tion points. This would lead to random 
hoi
es, as the 
hoi
e ofjun
tion point highly depends on the starting point for the traversal of the skeletonpoints. This issue is not widely dis
ussed in literature. [RJP00℄ propose to dealwith this issue by assigning priorities to di�erent types of 
onne
tions of skeletonpixels. The idea is to tra
e the skeleton bran
h at potential jun
tion points in a
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onne
ted neighbors are traversed �rst. The skeleton point withthe most edge-
onne
ted neighbors will be 
hosen as the jun
tion point.Skeleton properties An obje
t's skeleton has the following properties, whi
h
an be derived from its formal de�nition [CS07, Ren09, Mai99℄:Centered By de�nition, skeletons are 
entered within the obje
t. Furthermore,a skeleton S of an obje
t F is totally 
ontained in F . One problem withthis 
ondition is the dis
retization in image pro
essing. Due to ina

ura
iesin the dis
rete pixel spa
e, the skeleton might not be exa
tly 
entered. Forexample, in a re
tangle with a height of an even number of pixels, there aretwo pixels that 
ould be seen as 
enter of the obje
t, as shown in Figure 3.3.
Figure 3.3: In the dis
rete pixel spa
e, skeletons are not exa
tly de�ned. In thisexample, ea
h square represents a pixel, grey pixels are boundary pixels. The 
lash ofthe two �re fronts implied by the two arrows would be between the pixels marked withred, whi
h is not possible.Thin The skeleton abstra
ts the original shape to a thin representation, andthus has one dimension less than the original shape. In the dis
rete two-dimensional 
ase, the obje
t is abstra
ted to a thin line. This means thatthe skeleton is exa
tly one pixel thi
k at ea
h position.Homotopi
 A skeleton preserves the topology of the original obje
t, as wasproven in [Lie04℄. Simply said, �two obje
ts have the same topology if theyhave the same number of 
omponents, tunnels and 
avities� [CS07℄. That is,the upper-level stru
tures of an obje
t Ω and its skeleton S 
an be mappedonto another by a 
ontinuous transformation [Mai99℄.Re
onstru
tion The stru
ture of the skeleton alone is not su�
ient for re
on-stru
tion of the original shape. To allow the re
onstru
tion of the originalshape from a skeleton, additional information has to be stored with the skele-ton. If the distan
e of a skeleton point to its feature points is known, the
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an be restored as it is known that the feature ve
tors pa and
pb pointing from a skeleton point p to its feature points a and b are normalto the shape boundary [Ren09℄. This stru
ture is then 
alled a medial axistransform. However, in pra
ti
e, a

urate re
onstru
tion 
an get di�
ultdue to ina

ura
ies in the pixel spa
e, as shown in �gure 3.3.Uniqueness The medial axis transform is unique for di�erent shapes. However,the skeleton is not: Two di�erent obje
ts 
an have the same skeleton. Anexample is shown in �gure 3.4

Figure 3.4: Two di�erent shapes, having the same skeleton. Image sour
e: [Pal℄Conne
ted A skeleton is 
ontiguous. No gaps or holes exist on any skeletonbran
h. In the dis
rete pixel spa
e, this means that every skeleton point hasat least two skeleton points in its 8-neighborhood, besides end points, whi
hhave exa
tly one skeleton neighbor pixel in the 8-neighborhood.Transformation invariant As isometri
 transformations do not 
hange the ge-ometry of a shape, skeletons are invariant to isometri
 transformations likerotation, translation and uniform s
ale 
hange.Unstable The biggest weakness of skeletons is their instability towards noise. Fig-ure 3.5 shows the skeletons of a bird and the in�uen
e of various deformationsby noise.The types of noise are 
lassi�ed as salt-and-pepper noise and boundary noise.Salt-and-pepper, as shown in �gure 3.5b, is the most intrusive noise in the
ontext of obje
t skeletons. Removing one single pixel in the shape 
auses a
hange in topology. Boundary noise 
an 
ause additional bran
hes, as shownin �gure 3.5
 and 3.5d.Typi
ally, these problems are dealt with by prepro
essing the input image,i.e. with gaussian smoothing. Additional bran
hes, o

uring by boundarynoise, 
an be eliminated after skeletonization. This instan
e is 
alled pruning,whi
h will be explained later.
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(a) (b) (
) (d)Figure 3.5: 3.5a: regular skeleton. 3.5b: skeleton distorted by noise within the shape.3.5
 and 3.5d: skeleton distorted by boundary noise.3.1.2 Skeletons in 3DUp to now, skeletons for two-dimensional obje
ts were dis
ussed. Skeletons inthe three-dimensional spa
e are quite similar in the main prin
iples, but are moredi�
ult to de�ne.In general, a skeleton is a redu
tion of dimensions of the original shape. Forthe two-dimensional 
ase, this means that two-dimensional planes are mapped toa set of one-dimensional lines, as des
ribed earlier. In the three-dimensional 
ase,a distin
tion between S3,2 surfa
e skeletons and S3,1 
urve skeletons is made.

(a) Surfa
e skeleton (b) Curve skeletonFigure 3.6: Figure 3.6a: Surfa
e skeleton of a hand shape. Figure 3.6b: Curve skeletonof a hand shape. Image sour
e: [Ren09℄The surfa
e skeleton is the dire
t transfer of the Blum skeleton to three dimen-sional data and thus, has similar properties. The de�nition of a skeleton point is
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an apply to 3D: A skeleton point is not the 
enter of a maximal in-s
ribed dis
, but the 
enter of a maximal ins
ribed sphere. One 
an imagine thatthis dire
t transfer of the blum skeleton to 3D does not dire
tly lead to 
urves,like in 2D, but to surfa
es within the 3D shape. Thus, the surfa
e skeleton isa set of manifolds, 
alled sheets [Ren09℄. These sheets 
an be 2D surfa
es and
urves. Curves o

ur mainly in obje
t parts with tubular form, while surfa
es 
anbe expe
ted in more �attened obje
t parts. An example for a surfa
e skeleton isshown in �gure 3.6a. The �gure shows that the surfa
e skeleton has a 2D surfa
estru
ture inside the palm of the hand, while the �ngers 
ontain 
urves, similar tothe two-dimensional skeletons. .In most appli
ations, however, a further redu
tion of the obje
t is desired.Curve skeletons are a redu
tion of three-dimensional shapes to only one dimen-sional 
urves. The problem with 
urve skeletons is that they are not well de�ned,and no mathemati
al de�nition has been formulated yet [DS06℄. The problemlies hereby in the fa
t that the most desirable property of the 
urve skeleton -
enteredness - is di�
ult to de�ne mathemati
ally for 3D 
urve skeletons. Whilefor tubular shapes, like the �ngers in the hand shape shown in �gure 3.6a, the
entered skeleton is 
omparatively easy to de�ne and 
ompute, for more 
omplexshapes, it be
omes less 
lear whi
h points are �
entered� within the shape.Curve skeletons are 
on
eptually related to the Blum skeletons, Thus, theyshare many properties. As 
urve skeletons la
k of a formal de�nition, however,most properties are more expli
it requirements rather than implied by their de�-nition [Ren09℄.Centered As mentioned before, this most prominent desired property of 
urveskeletons is hard to 
ompute, and various approa
hes have been proposedto de�ne the 
enteredness of the one-dimensional 
urve within the three-dimensional obje
t. For example, one possibility is to restri
t the 
urveskeleton to a subset of the surfa
e skeleton [DS06℄.Thin Like the two-dimensional Blum skeleton, the 
urve skeleton should be thin.For the dis
rete three-dimensional spa
e this means the skeleton should beexa
tly one voxel thi
k.Homotopi
 The 
urve skeleton should preserve the original shape's topology. Inthe three-dimensional spa
e this means that ea
h tunnel in the shape resultsin a loop in the 
urve skeleton.Re
onstru
tion As the 
urve skeleton preserves the geometry of the originalshape to a lesser extent, the re
onstru
tion of the shape based on the 
urveskeleton is generally not possible. Usually, the 
urve skeleton preserves only
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 information about salient features in the shape, as they are sup-posed to rea
h into all salient parts of the original shape and terminate atprominent points on the shape 
ontour.Conne
ted Like the two-dimensional Blum skeleton, the 
urve skeleton is sup-posed to be 
onne
ted. That is, there should be no missing voxels (�holes�)in the skeleton bran
hes.3.1.3 Skeletonization in 2DThe pro
ess of extra
ting a skeleton from an obje
t is 
alled skeletonization. Inthe following, skeletonization algorithms are introdu
ed, �rst for 2D and then alsofor 3D shapes.There are in prin
iple four main 
lasses for skeletonization te
hniques: Grass-�re simulations, thinning algorithms, algorithms based on Voronoi diagrams, anddistan
e map based algorithms [BLL07, PSS+03, Ren09℄.Grass�re simulations Grass�re simulations a
tually try to implement the ideaof skeletons as proposed by Blum, simulating �re fronts spreading from a shape's
ontour. Algorithms of this 
lass are rather rare [OK95℄. An early work is intro-du
ed in [Mon69℄, where ea
h �re front is represented by a sequen
e of straight-linesegments and ar
s. In [LL92℄, a
tive 
ontours are used to model the �re fronts.The snakes in this approa
h are 
ontrolled by a 3D surfa
e H , spe
i�ed by a previ-ously 
omputed distan
e transform. A weight is assigned to the snake that makesit fall down on the slopes of the surfa
e.Thinning algorithms The general idea of thinning algorithms is to iterativilyerase pixels from the shape boundary, until only a skeleton remains. A boundarypixel p is deleted depending on the 
on�guration of the neighbor pixels of p. Inea
h iteration, 
ontour pixels of the shape are inspe
ted for their topologi
al rele-van
e. The idea is to identify those pixels that are essential for representing theshape. Like in other morphologi
al operators, the 
onditions that di
tate whethera pixel 
an be deleted without 
hanging the obje
t's toplogy are usually en
odedby stru
turing elements, also 
alled kernel or template. A mat
h of the templatewithin the shape 
auses the 
enter pixel to be deleted.One of the di�
ulties in thinning algorithms is that they have to 
onsiderglobal properties of the shape, like 
onne
tedness, though they operate only in a
3 × 3 window. Another problem is to lo
ate skeleton end points as these mustnot get deleted [DP81℄. Thus, a pixel is deletable, if it is no end point, and if no
onne
tivities in the original image are destroyed [LLS92℄. That is, if two pixel pand q were 
onne
ted in the original shape, and both pixels are not deleted during
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ess, they need to stay 
onne
ted after the deletion. For example, theerosion shown in �gure 3.7 is no valid thinning operation, as parts of the originalshape get dis
onne
ted during the pro
ess.

Figure 3.7: Parts of the obje
t get disonne
ted in the redu
tion pro
ess. Thus, theerosion shown is no valid thinning operation.The pro
ess of deleting pixels is repeated until no pixels 
an be deleted anymore without violating the operator's 
onditions. Obviously, the result of thethinning pro
ess in sequential algorithms heavily relies on the order how pixels areremoved. Thus, the result of an iteration depends not only on the result of theprevious iteration, but also on the removed pixels in the 
urrent iteration. Parallelalgorithms deal with this issue by inspe
ting multiple points for deletion. Thatway, in parallel algorithms the removal of pixels depend only on the result of theprevious iteration. Figure 3.8 shows an example of the thinning pro
ess on a simplebinary image.Thinning algorithms usually guarantee 
onne
ted skeletons. But mostly, theresult is not perfe
tly thinned as not all unne
essary pixels 
an be deleted in thethinning pro
ess, and unimportant skeleton bran
hes may remain. Thus, addi-tional postpro
essing methods are needed.Voronoi diagrams Another 
lass of skeletonization algorithms are te
hniquesbased on Voronoi diagrams. A Voronoi diagram paritions the given spa
e in so
alled Voronoi 
ells. Usually, the input is a set of points in a plane, 
alled gen-erating points or sites. A Voronoi 
ell of a site is then the set of all points onthe plane, that are 
loser to this site than to any other site on the plane. In the
ontext of skeletonization, boundary points are used as sites. The Voronoi edgeslo
ated 
ompletely outside the shape are dis
arded, as are edges that interse
twith the shape boundary. All remaining Voronoi edges form the skeleton. De-pending on the number of generating points, the skeleton resulting from Voronoibased approa
hes 
onsist of more or less long straight lines. Figure 3.9 shows an
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(a) (b) (
)Figure 3.8: Figure 3.8a: Stru
turing elements. The image is thinned sequentially bythe stru
turing element shown, and then with the remaining six 90 ◦rotations of the twoelements in ea
h iteration. This pro
ess is repeated until no pixels are removed any more.Figure 3.8b: Original shape. Figure 3.8
: Skeleton, after the thinning pro
ess. Imagesour
e: [FPWW04℄.example of a skeleton, extra
ted from a Voronoi diagram. The most severe prob-lem in Voronoi diagram based methods is the 
hoi
e of generating points. Themore sampling points were used, the more spurious bran
hes are 
ontained in theresulting skeleton. Besides, the approa
h is very sensitive to boundary noise. Ifthe number of sample boundary points is to high, the generation of the Voronoidiagram be
omes intensive in 
omputational time as well as in memory usage. Iftoo few sampling points are used, it be
omes more likely that important boundarypoints are not taken into a

ount for skeleton generation.Distan
e maps The idea in distan
e map based approa
hes is to �rst 
omputethe distan
e map for the input shape. Di�erent distan
e fun
tions have been usedfor that purpose. The eu
lidean distan
e map is neither trivial nor e�
ient to 
om-pute, but the eu
lidean distan
e 
an be substituted by simpler distan
e fun
tionslike 
hessboard or Manhattan distan
e. This usually leads to less 
omplex 
om-putations, but redu
es the distan
e pre
ision. The skeleton 
an then be extra
tedfrom the 
omputed distan
e map. The general idea is as follows: The distan
e map
an be seen as a height map, and skeleton points 
an be found at lo
al maxima.This might lead to single points on the distan
e map's peaks, whi
h requires addi-tional post pro
essing methods to guarantee 
onne
ted results. [Cha07℄ introdu
ean algorithm for �nding the ridges in the distan
e map by 
reating a sign map foran obje
t's distan
e map: The rows of the distan
e map are s
anned from left toright. If a pixel has a higher value than its left neighbor, this pixel in the sign mapis marked by a �+�. If both pixels have the same value in the distan
e map, the
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Figure 3.9: Example for a Voronoi diagram based skeleton. The original shape (are
tangle) is shown in grey. The bla
k dots are sampled on the shape boundary asgenerating points. The 
orresponding Voronoi 
ells are indi
ated by bla
k lines. Voronoiedges outside the shape, as well as Voronoi edges interse
ting with the shape boundaryare dis
ared. The remaining edges form the skeleton, marked in red. Image sour
e: [Pal℄.
urrent pixel is marked with a �0�, and it is marked with a �-� if the left neighborhas a higher value than the 
urrent pixel. The pro
ess is repeated for the 
olumnsof the distan
e map. The resulting sign maps are visualized in �gure 3.10.These sign maps are then analysed to �nd ridges. The most obvious indi
atorfor a ridge is a �+-�-pattern in the sign map. To handle two neighboring pointshaving the same distan
e to the obje
t boundary, the �+0-� pattern is also in
ludedas an indi
ator for a ridge. With this te
hnique, the result is still not 
onne
ted,so the gaps have to be �lled by tra
ing the maximum gradient paths around thefound ridges.Ea
h of the skeletonization algorithms have their advantages and disadvantages.Neither of them 
an preserve all desired skeleton properties as dis
ussed before.[CSM07℄ examine the 
lasses of skeletonization algorithms with respe
t to theirpreservation of some of the desired properties. Table 3.1 shows an overview oftheir 
on
lusions.The examination is based on the general idea of the skeletonization algorithm
lasses. However, variations of these 
lasses 
an have subtle di�eren
es in someof these properties. For example, the 
enteredness of the skeleton produ
ed by askeletonization algorithm based on Voronoi diagrams depends on the density ofthe sampling points.
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Figure 3.10: Both sign maps based on the eu
lidean distan
e map. The left �gureshows the sign map for the image's rows, the right image shows the sign map for theimage's 
olumns. Image sour
e: [LKMT℄3.1.4 Skeletonization in 3DFor 3D, skeletonization algorithms are based on similar 
on
epts as the 2D algo-rithms. The skeletonization approa
hes in 3D 
an be 
lassi�ed into the same 
lassesas the 2D algorithms: Grass�re simulations, thinning algorithms, algorithms basedon Voronoi diagrams, and distan
e map based algorithms.Grass�re simulations [QSO04℄ model the skeletonization pro
ess after the orig-inal idea of Blum and simulate the wave propagation within the shape. Where twowave fronts meet, the point is marked as a skeleton point. This simple approa
hleads to surfa
e skeletons, as in 
omplex obje
ts, the waves are rarely expe
ted to
lash in one 
enterline. [SLSK07℄ generate 
urve skeletons by using a grass�re sim-ulation: They use model deformations to observe 
ompeting �re fronts to extra
tmultiple 
entered lines, approximations for the a
tual skeleton. By keeping tra
kof the re
onstru
tion of the original shape, the �best� 
entered axis is 
hosen fromthe set of generated lines.Thinning algorithms The idea of thinning algorithms in 3D is similar to thethinning algorithms in 2D, namely to iteratively delete those voxels from the shapeborder that satisfy spe
i�
 geometri
 and topologi
al 
ontraints. The thinningalgorithms in 3D however 
an also be 
lassi�ed by the type of skeleton they produ
e.
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e MapCentered - - XThin - X XHomotopi
 X X -Re
onstru
tion - - -Conne
ted X X -Robust - - -Invarian
e - X XTable 3.1: An overview of the skeletonization algorithms and the properties they guar-antee in the resulting skeletons.Some algorithms extra
t the surfa
e skeleton [Ber95, Pal08℄ while others dire
tly
ompute the 
urve skeleton [PK98, XTP03, LG07℄. Like in 2D, the di�
ulty isto preserve the global 
onne
tivity by only inspe
ting the 3× 3× 3 neighborhoodof a voxel. Usually, a voxel is tested against a set of template voxels to test if it
an be removed without 
hanging the topology. A s
hemati
 visualization of thethinning pro
ess is shown in �gure 3.11.

Figure 3.11: Thinning of a 3D shape. In ea
h phase, voxels are erased from the shapeborder, until only a 
enter line - indi
ated in this �gure by the dark voxels - remains.Image sour
e: [Pal℄.



3.1. SKELETONS 33Voronoi diagrams A skeletonization approa
h for 3D meshes based on Voronoidiagrams is introdu
ed in [HBK01℄. From the 
omputed Voronoi 
ells, the Voronoipoles are extra
ted, resulting in a point 
loud within the volume. Two Voronoipoles are then 
onne
ted by an edge if the 
orresponding mesh verti
es also were
onne
ted by an edge. Thus, ea
h mesh triangle is mapped to a triangle of Voronoipoles, forming a surfa
e skeleton within the shape.Distan
e maps Another way to skeletonize 3D volumes uses the volume's dis-tan
e transform as basis. [TW02℄ 
ompute the skeleton by 
omputing the 2D-distan
e transform for ea
h axis-parallel 2D sli
e in the 3D volume. In the nextstep, the resulting three volumes are interse
ted voxel by voxel, and that way, the3D 
enterline is obtained. [DWT06℄ present a distan
e map based skeletonizationalgorithm using the GPU. The volume's distan
e transform is 
omputed and sam-pled in a 3D texture. The distan
e value is assigned to the depth 
hannel of thevoxel, and the skeleton 
an then be extra
ted using the Z-bu�er depth test.3.1.5 Skeleton pruningUsually, the skeletons generated by the proposed skeletonization approa
hes 
on-tain spurious bran
hes, mostly 
aused by boundary noise. Thus, the used skele-tonization algorithm has to ensure stability of the skeleton. There are generallytwo main approa
hes to handle this problem: The �rst one is to prepro
ess theinput shape, typi
ally by smoothing. The idea is to eliminate noise before theskeleton is 
omputed. The other possibility is to edit the skeleton during or afterthe skeletonization pro
ess and to erase unimportant skeleton bran
hes based ona prede�ned importan
e measure. The pro
ess of �nding and deleting spuriousskeleton parts is 
alled pruning. Generally, the pruning pro
ess 
an be integratedin the skeletonization pro
ess or it 
an be applied after the skeletonization pro
ess.Figure 3.12 shows an example for a skeleton before and after pruning.The problem is to �nd a meaningful signi�
an
e measure for skeleton points andskeleton bran
hes, respe
tively. Spurious bran
hes should get deleted 
ompletely,while bran
hes holding important information about the obje
t's geometry haveto be preserved. An introdu
tion to pruning te
hniques is presented in [SB98℄.In [TH02℄ an area-based pruning method is proposed. The idea is to analyse iffeatures on the obje
t boundary that lead to additional skeleton bran
hes are to be
onsidered noise or signi�
ant features. For this purpose, the features are de�nedas the set of triangles asso
iated with any subtree of the skeleton. An exampleis shown in �gure 3.13. Features that 
over an area smaller than a user-de�nedthreshold are 
onsidered as noise, and thus, the skeleton bran
hes 
aused by thesefeatures 
an be deleted.
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Figure 3.12: Left: skeleton 
ontaining spurious bran
hes. Right: Skeleton after pruning.Image sour
e: [BLL07℄[OI92℄ propose several relevan
e measures for skeleton points based on theboundary 
urve 
onne
ting a skeleton point's feature points. This approa
h isbased on the fundamental observation that skeleton bran
hes that lie deep withinthe obje
t are less sensitive to boundary noise than the outer parts. The lengthof the shortest path from one feature point to the other along the boundary is
onsidered to be an indi
ator for the importan
e of a skeleton point. If this distan
eis long, the 
on
erned skeleton point is likely to lie deep inside the obje
t and thusmay not be removed. If the distan
e is below a threshold, this indi
ates thatthe skeleton point was 
aused by noise and 
an be removed. Conne
tivities arepreserved in this approa
h, but pruning based on the residual fun
tion might leadto the loss of end nodes.[SBH+11℄ introdu
e a sigini�
an
e measure based on the bending potentialratio. The bending potential ratio is de�ned for a skeleton point p and its featurepoints q1 and q2. An isos
eles triangle with the base q1q2 is de�ned with theadditional vertex g su
h that
d(g, q1) = d(g, q2) =

1

2
l(q1, q2) (3.2)where l(q1, q2) is the ar
 length between q1 and q2, measured on the boundary. g isthen 
alled the ghost point of the 
ontour segment between q1 and q2. The bendingpotential ratio is de�ned

ǫ(p, q1, q2) =
hg

hp

(3.3)where hg is the height of triangle q1gq2, and hp ist the height of triangle q1pq2.
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Figure 3.13: Area-based pruning. The left image shows the original, unpruned skeleton.The shaded regions in the right image are smaller in area than the given user-de�nedthreshold. Image sour
e: [TH02℄As hg is in�uen
ed by the length of the 
ontour segment, it holds informationabout the bending of the 
ontour segment. The assumption is, the higher hg isthe more signi�
ant is the 
orresponding skeleton point p.The bending potential ratio 
ontains not only lo
al information of the 
ontoursegment between q1 and q2, en
oded by hg, but also the 
ontext where it is lo
ated.If a skeleton point is lo
ated on a broad part of the obje
t, it is more likely to beinterpreted as a feature if only the ar
 length of the 
ontour segment is taken intoa

ount. Therefore, hp is in
luded to avoid hastily 
onsidering skeleton points asfeatures. Figure 3.14 shows a visualization of the bending potential ratio.Sin
e the skeleton to work on is the fundament for further analysis, the usedskeletonization and pruning algorithm have to be 
hosen 
arefully. For the exper-iments in this diploma thesis, the pruning algorithm introdu
ed in [BLL07℄ hasbeen used, as it promises to preserve the shape topology, while removing mostspurious bran
hes. Besides, the appli
ability of this approa
h has been proven in[BL08℄. The proposed te
hnique is based on the observation that shapes usually
an be segmented into a few regions or visual parts, and for ea
h of these regions,only one skeleton bran
h is needed to represent it. The main idea of this prun-ing approa
h is therefore to remove all skeleton points whose feature points arelo
ated on the same 
ontour segment. The di�
ulty is to partition the 
ontourin a meaningful way. An algorithm for simplifying shapes 
alled Dis
rete CurveEvolution (DCE) proposed in [LL99b℄ and [LL99a℄ is used for this purpose.The fundamental observation of DCE is that, due to �nite image resolution, ashape boundary in an image 
an be represented as a �nite polygon. During thepro
ess of DCE, the polygon verti
es with the smallest shape 
ontributions areremoved re
ursively from the shape boundary. Thus, in every evolution step, a
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Figure 3.14: De�nition of the bending potential ratio. p is the skeleton point to beexamined for relevan
e, q1 and q2 are the feature points of p. Image sour
e: [SBH+11℄polygon is obtained in whi
h the less important verti
es of the previous polygonare removed, until only a subset of boundary verti
es remains that best representsthe original shape.The unanswered question remaining is what �important� means in this 
ontext.In [LL99b℄ a relevan
e measure for a vertex v, depending on v and its two neighborverti
es u, w in the polygon P i of the 
urrent evolution pro
ess i, is introdu
ed.Intuitively, the relevan
e measure takes into a

ount the shape 
ontribution ofvertex v to the 
urrent polygon. Formally, it is given by
K(v, u, w) = K(β, l1, l2) =

βl1l2

l1 + l2
(3.4)where β is the turn angle at v in P i, l1 is the length of the polygon edge vu and

l2 is the length of the polygon edge vw. The assumption is, the higher the valueof K(u, v, w) is, the larger is the shape 
ontribution of ar
 uv ∪ vw to the polygonin the 
urrent evolution step. The verti
es with the lowest relevan
e value 
an bedeleted.The pruned skeleton is then 
omputed with respe
t to the obtained DCE seg-ments, while 
on
ave verti
es are ignored. The deletion of a vertex v results in the
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omplete skeleton bran
h, namely of the bran
h ending at v. As theremaining boundary points remain at their position, the skeleton is not displa
edby this pro
ess. Figure 3.15 shows an example for the simpli�
ation of the originalshape. By deleting boundary points, also skeleton bran
hes are deleted.

Figure 3.15: Skeleton pruning by 
ontour partitioning. The original 
ontour of theshape gets simpli�ed in ea
h evolution step. The simpli�ed polygon is marked in red.The deletion of a vertex results in the deletion of the skeleton bran
h ending at thisvertex. Image sour
e: [BLL07℄
3.2 Mat
hing of time seriesThe 
on
ept of time series 
an be used in various appli
ations, su
h as word re
og-nition and tra
king of moving obje
ts in video sequen
es. As will be shown later,also a skeleton's end nodes 
an be treated as time series. Therefore, in this se
tionthe mat
hing of time series is introdu
ed.A time series is a sequen
e of data points, that is, real numbers. One of the mainproblems when dealing with time series is that the time axis might be partiallystre
hed or 
ompressed. For example in spee
h re
ognition, speakers might varyin their pronoun
ation of words espe
ially in the extent of vo
als.
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hes have been proposed to deal with the mat
hing of timeseries. The general idea is usually to arrange both time series a and b in a matrix
R, where ea
h matrix 
ell Rij holds the information about the 
ost to align thetwo elements ai and bj . The best alignment for a and b is then found by mappingelements of a to elements of b whi
h is then the problem of �nding the 
heapestpath through the matrix.One problem when using dynami
 time warping (DTW) [BC94℄ is that theexa
t beginning and ending of the time series have to be known for both sequen
eswhi
h is not always the 
ase. Minimal Varian
e Mat
hing (MVM) [LMW+05℄deals with this problem by treating the 
ost matrix R as a dire
ted graph.However, the problem remaining in both approa
hes is the dealing with outlierelements in one the two time series. An outlier element is an element in one ofthe two series that 
annot be mat
hed to any element in the other series. Out-lier elements 
an have a signi�
ant e�e
t on the overall alignment result. Everyelement of series a must 
orrespond to some element of the series b, and vi
eversa. The Longest Common Subsequen
e (LCSS) [DGM97℄ approa
h deals withthese outlier elements by aligning subsequen
es, found by moving a window overthe two sequen
es. The performan
e of this approa
h depends largely upon the
on�guration of a manually set threshold.An extension of DTW and MVM, respe
tively, that deals with the problem ofoutlier elements, is the Optimal Subsequen
e Bije
tion proposed in [LWKTM07℄.As OSB also is used in the mat
hing algorithm proposed in 4, this approa
h willnow be explained in detail.Given are two time series a = (a1, . . . , am) and b = (b1, . . . , bn). �The goalof OSB is to �nd subsequen
es a′ of a and b′ of b su
h that a′ best mat
hes b′�[LWKTM07℄. First, the two time series are arranged in a 
ost matrix R. Theelements of a are 
harted in the matrix rows, the elements of b are 
harted in thematrix 
olumns. The matrix 
ell Rij 
ontains the similarity value for ai and bj .There are no restri
tions on the distan
e fun
tion used. One possibility is to usethe di�eren
e between ai and bj :

rij = (bj − ai) (3.5)The idea is to �nd the least-value path through the matrix without going ba
k-wards, neither in the rows nor in the 
olumns. As in MVM, the idea is to treatthe 
ost matrix as a dire
ted a
y
li
 graph. The verti
es of the graph are all in-dex pairs (i, j) ∈ {1, . . . , m} × {1, . . . , n}. Thus, one graph vertex represents onematrix 
ell. Two verti
es (i, j) and (k, l) are 
onne
ted by an edge if the following
onditions hold:1. i + 1 ≤ k, that is, rows in the matrix 
an be skipped, but it is not allowedto go ba
kwards
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olumns in the matrix 
an be skipped, but it is not allowedto go ba
kwards.The edge weight w((i, j), (k, l)) depends upon whether the two verti
es (i, j) and
(k, l) are dire
tly adja
ent in the matrix. In parti
ular, the edge weight w isdetermined by

w((i, j), (k, l)) =

{

d(ai, bj), if i+ 1 = k and j + 1 ≤ l

k − i− 1 · jumpcost, if i+ 1 < k and j + 1 ≤ l
(3.6)The �rst de�nition 
overs the 
ase that the two verti
es represent two 
onse
utiverows in the 
ost matrix. The distan
e between two elements d(ai, bj) is de�nedby the entry in the 
ost matrix at index (i, j). There is no expli
it penalty forskipping 
olumns. The se
ond 
ondition holds if rows are skipped in the 
ostmatrix. The value jumpcost in this de�nition is a 
onstant used as a penalty forskipping rows in the matrix. This 
onstant has to be 
hosen 
arefully, as too manyelements might be skipped if the penalty is too low, but if jump
ost is too high,elements might be for
ed to align even if they do not 
orrespond. [BL08℄ proposeto 
ompute jump
ost as

jumpcost = meani(minj(d(ai, bj))) + stdi(minj(d(ai, bj))) (3.7)For every element ai the 
losest element bj is found. For all of these minimum dis-tan
e values, the mean is 
omputed, and the standard deviation for these minimumdistan
e values is added.On
e the weighted graph is built, the problem of mat
hing the two input timeseries 
an be solved by �nding the shortest path through the graph, using theshortest path algorithm on a dire
ted a
y
li
 graph. Ea
h path 
an start at r1j ,for j = 1, . . . , n − m, that is, in the �rst row in the �rst n − m 
olumns. Theend vertex for ea
h path is restri
ted to rmj with j = n − m, . . . , n. For any
orresponden
e f , the total distan
e between two time series is then de�ned by
d(a, b, f) =

1

m

m
∑

i=1

(d(ai, bf(i)))
2 (3.8)The following example, extended from [LWKTM07℄, will show the basi
 prin-
iples of the OSB fun
tion. Given are the two time series a = (1, 2, 8, 6, 8) and

b = (1, 2, 9, 3, 3, 5, 9). First, the two time series are used to 
reate the di�eren
ematrix R with Rij = bj − ai:
R =













0 1 8 2 2 4 8
−1 0 7 1 1 3 7
−7 −6 1 −5 −5 −3 1
−5 −4 3 −3 −3 −1 3
−7 −6 1 −5 −5 −3 1













(3.9)
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ted weighted graph 
an be 
onstru
ted asdesribed above: The elements in the matrix are represented by graph nodes. Nodesare 
onne
ted by an edge if this edge would not mean that one 
an traverse thematrix in a wrong order, that is, going upwards in the rows or ba
kwards in the
olumn. To ea
h edge a weight is assigned: if the edge 
onne
ts two nodes (i, j)and (k, l) that represent two 
onse
utive rows in the matrix, the edge weight isgiven by the value of matrix entry (k, l). If the edge 
onne
ts two nodes that areat least two rows in the matrix apart from ea
h other, the edge weight is givenby jump
ost, multiplied by the number of skipped rows. To make it possible toskip also the border elements (that is, the �rst and last row and the �rst andlast 
olumn), dummy rows and 
olumn are added to the beginning and end of thematrix. Figure 3.16 shows the edge 
reation for entry (0,0) in the matrix to the�rst few graph nodes, the remaining nodes are skipped in this �gure to preserve abetter overview.

Figure 3.16: An example for the 
onstru
tion of a dire
ted a
y
li
 graph, based onthe path distan
e matrix in 3.9. The graph nodes are the elements of the matrix. The�gure shows the edge 
reation from the upper left entry (0,0) in the matrix to the nearestother graph nodes (the other nodes are not shown to ensure a 
lear arrangement). Theabbreviation j
 stand for the 
onstant jump
ost. Observe that skipping 
olumns in thematrix is not expli
itly punished, in 
onstrast to the skipping of rows in the matrix.For all other nodes in the graph the pro
edure is the same as shown in �gure3.16. On
e the graph is built, the shortest path algorithm on a dire
ted a
y
li
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an be applied to �nd the 
heapest path through the matrix. The pathfound by this approa
h is highlighted in the following matrix:
R =













0 1 8 2 2 4 8
−1 0 7 1 1 3 7
−7 −6 1 −5 −5 −3 1
−5 −4 3 −3 −3 −1 3
−7 −6 1 −5 −5 −3 1













(3.10)The highlighted entries are the 
orresponding elements of the time series. Inthis example, no rows are skipped. Finally, the overall distan
e between the twosequen
es is 
omputed as de�ned in equation 3.8.3.3 Graph Mat
hingMany real-world s
enarios su
h as networks, path �nding problems or 
ommuni
a-tion �ows 
an be des
ribed by graphs. As will be shown later, also the mat
hing oftwo shapes 
an be mapped to a graph mat
hing problem. Thus, fundamentals ofgraph mat
hing will be introdu
ed in the following se
tion. An important �eld ofgraph theory resear
h, the assignment problem, will be dis
ussed in se
tion 3.3.2.3.3.1 Terms and de�nitionsFormally, a graph is de�ned as follows [Die05, BM76, Jun07℄: A graph G is anordered pair G = (V,E) of sets, where V is a non-empty, �nite set of verti
es,and a set of edges E where the elements of E are 2-element subsets of V , with
V ∩ E = ∅. Thus, a graph 
onsists of verti
es that are 
onne
ted by edges. Twoverti
es u and v are 
onne
ted if there is an edge e ∈ E with e = (u, v). If twoverti
es are 
onne
ted by an edge, they are said to be adja
ent or neighbors. Avertex in a graph is said to be in
ident with an edge if it is 
onne
ted to anothervertex by this parti
ular edge.The number of verti
es in a graph is 
alled its order, denoted by | G |. If alledges e ∈ E are an unordered pair of verti
es u, v ∈ V the graph is said to beundire
ted. If all edges e ∈ E are an ordered pair of verti
es, the graph is said tobe dire
ted.Edges 
an be de�ned uniquely by the two verti
es they 
onne
t. However,additional information 
an be assigned to the edges, 
alled weights or 
osts. Agraph with weighted edges is 
alled a weighted graph. Weighted graphs are usedin many 
ontexts, su
h as routing or mat
hing problems.A graph path is a non-empty graph su
h that V = {x0, x1, . . . , xk} and E =
{x0x1, x1x2, . . . , xk−1xk}. A path length in unweighted graphs is determined by
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es visited in the path. In weighted graphs the path length isusually determined by the sum of the weights of the traversed edges.Graphs 
an be 
lassi�ed a

ording to their properties. One 
lass of graphs isthe r-partite graphs. A graph G = (V,E) is 
alled r-partite if the verti
es of G 
anbe partitioned into r 
lasses su
h that ea
h edge has its ends in di�erent 
lasses,with r ∈ N+ and r ≥ 2. That is, two verti
es within the same 
lass must not beadja
ent.

Figure 3.17: Example for a bipartite graph. Image sour
e: [Wik11℄.A spe
ial 
ase of the r-partite graph is the bipartite graph with r = 2. Inparti
ular, it has been shown that the obje
t mat
hing in image pro
essing 
an bemapped to the bipartite graph mat
hing problem. Figure 3.17 shows an examplefor a bipartite graph.3.3.2 The assignment problemA mat
hing M in the 
ontext of graphs, also 
alled 
orresponden
e, is a subset ofall edges in a graph G su
h that no edges share the same end nodes. In other words,all edges e ∈ M are disjun
t, meaning none of the edges are in
ident with the sameverti
es. If all verti
es v ∈ V are in
ident with an edge in M the mat
hing is saidto be perfe
t.The term �mat
hing� is now used in two di�erent 
ontexts. Hen
eforth, theterm will be used for both mat
hing of shape features, as mentioned in 
hapter1, as well as for the mat
hing in graph theory. The 
ontext should reveal theparti
ular meaning.



3.3. GRAPH MATCHING 43A widely spreaded appli
ation of graph mat
hing is the mat
hing in a bipartiteweighted graph. A mat
hing M in a bipartite graph maps ea
h vertex in one 
lassto the verti
es in another 
lass. This problem is better known as the assignmentproblem. The mat
hing 
ost w(M) is then determined by the sum of all weights ofthe mat
hing edges. A mat
hing M is 
alled a minimum weighted 
orresponden
ein a bipartite weighted graph G if w(M) ≤ w(M ′) for every possible mat
hing in
G. Kuhn [Kuh55℄ introdu
es the assignment problem with the following s
enario:Given is a set of persons and a set of jobs. Ea
h person 
an be assigned to anyjob by a prede�ned 
ost. The goal is to assign exa
tly one person to exa
tlyone job, su
h that the sum of all assignment 
osts is minimal. In other words,the minimum weighted 
orresponden
e for the bipartite graph 
onsisting of onevertex set V1, 
ontaining all persons, and one vertex set V2, 
onsisting of all jobs,is wanted.Solving this problem by a brute-for
e algorithm would require 
omputing the
osts for ea
h possible assignment. That would be n! possible assignments, de-pending on the number of nodes to be mat
hed, resulting in exponential runtime
omplexity. A solution to this problem with a better performan
e is the HungarianAlgorithm, originally proposed as Hungarian Method in 1955 by Harold W. Kuhn[Kuh55℄ and revised by James Munkres in 1957 [Mun57℄. Sin
e then, it is knownas Hungarian Algorithm or Kuhn-Munkres-Algorithm.Given is a 
ost matrix R with dimensions n × n, with n being the number ofpersons and jobs to be assigned, respe
tively. The entries of R, rij , denote theassignment 
ost of person i for the job j. A set of elements of a matrix is 
alledindependent if neither of them are lo
ated in the same row or 
olumn. The goal isto �nd n independent elements so that the sum of the assignment 
osts is minimal.The main approa
h of the algorithm is to iterativelly in
rease the number ofzero elements in the matrix. In detail, the steps of the Hungarian algorithm areas follows [Cas10℄:Step 1 For ea
h row in the 
ost matrix, �nd the row minimum entry. Substra
tthis minimum from ea
h entry in the row.Step 2 For ea
h 
olumn in the 
ost matrix, �nd the 
olumn minimum entry. Sub-stra
t this minimum from ea
h entry in the 
olumn. The matrix resultingfrom step 1 and step 2 in this algorithm is also 
alled redu
ed matrix.Step 3 Cover all zero elements in the matrix with the minimum number of verti
aland horizontal lines possible.Step 4 If the number of 
overed 
olumns is equal to the number of 
olumns in thematrix, the redu
ed matrix already 
ontains a unique optimal assignment,
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overed 
olumns is less than thenumber of 
olumns in the matrix, go to step 5.Step 5 Find the minimum entry value in the 
ost matrix that has not been 
ov-ered. That minimum is substra
ted from every un
overed number and isadded to every number 
overed with two lines. Go ba
k to step 3 and repeatuntil all 
olumns are 
overed.An example will show the usage of the Hungarian algorithm [Cas10℄. Given isthe 
ost matrix shown in the following table:Job A Job B Job C Row minimumPerson A 4 2 8 2Person B 4 3 7 3Person C 3 1 6 1Ea
h entry in the 
ost matrix des
ribes the 
ost to assign the person denotedin the row to the job denoted in the 
olumn. The goal is to �nd an assignment ofea
h person to a job so that ea
h person is assigned to exa
tly one job, and theassignment 
ost is minimal.The row minima are 
harted in the last 
olumn. First the matrix has to beredu
ed, a

ording to step 1 and 2 in the algorithm. First, for ea
h row, therow minimum is substra
ted from ea
h entry in the row, leading to the followingmatrix: Job A Job B Job CPerson A 2 0 6Person B 1 0 4Person C 2 0 5Column minimum 1 0 4The 
olumn minima are 
harted in the last row. In step 2 of the algorithm, the
olumn minima are substra
ted from ea
h entry in the 
olumn, resulting in thefollowing 
ost matrix: Job A Job B Job CPerson A 1 0 2Person B 0 0 0Person C 1 0 1This matrix is referred to as the redu
ed matrix. Now, the minimum numberof lines is used to 
over all zero elements in the redu
ed matrix. Verti
al and



3.3. GRAPH MATCHING 45horizontal lines are possible. There is no elegant solution for �nding the optimal
overing. In prin
iple, a trial-and-error pro
edure has to be done.Job A Job B Job CPerson A 1 0 2Person B 0 0 0Person C 1 0 1As one 
an see, the minimum number of lines needed to 
over all lines is 2, whi
his smaller than the number of 
olumns whi
h is 3. Thus, no unique assignmenthas been found yet.The minimum un
overed number m in the redu
ed matrix is 1. m is nowsubstra
ted from every un
overed element in the matrix, and is added to everyelement 
overed twi
e, leading to the following matrix:Job A Job B Job CPerson A 0 0 1Person B 0 1 0Person C 0 0 0Step 3 is then applied again to the resulting matrix: All zero elements in thematrix are 
overed with the minimum number of lines possible. In this 
ase, 3lines are needed. Job A Job B Job CPerson A 0 0 1Person B 0 1 0Person C 0 0 0As the number of lines needed to 
over all zero elements is equal to the numberof 
olumns in the matrix, unique assignments 
an be found in the matrix. As thereis no row or 
olumn with just one zero elements in the matrix, one 
an start by
hoosing an abritary zero element. For example, Person A 
an be assigned to JobA, leaving Person B and C and Job B and C unassigned. As the only zero elementfor Person B is Job C, and the only zero elements for Person C is Job B, Job C isassigned to Person B, and Job B is assigned to Person C. The minimum weighted
orresponden
e in this example thus is {(Person A, Job A), (Person B, Job C),(Person C, Job B)}. The total 
osts for this assignment 
an be 
omputed by thesum of all mat
hing 
osts in the original 
ost matrix.In this example, the total mat
hing 
ost is 12.



46 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHINGJob A Job B Job CPerson A 4© 2 8Person B 4 3 7©Person C 3 1© 6A
tually, in most s
enarios, more than one solution is possible. Also in thisexample, three minimum weighted 
orresponden
es 
an be found. If as initialassignment the assignment (Person A, Job B) is 
hosen, both Person B and PersonC 
an be assigned with minimal 
ost to the remaining to jobs, resulting also in amat
hing 
ost of 12.3.4 Rating of retrieval systemsA system that performs a similarity sear
h in a database for a query given bythe user is 
alled an information retrieval system [S
h06℄. In order to evaluatethe mat
hing algorithm introdu
ed in 
hapter 4, a simple retrieval system wasimplemented. The 
hallenge in information retrieval is that the similarity sear
his performed under semanti
 aspe
ts. In 
ontrast to 
onventional data retrievalsystems, for example in relational databases, the sear
h 
onditions are not expli
-itly known. In data retrieval systems, all results are synta
ti
ally fully 
onsistentwith the query. Usually, the amount of result do
uments in a retrieval system islimited by the total amount of returned do
uments or by some threshold for thesimilarity value.A 
ommon way to rate a retrieval system is the 
omputation of pre
ision andre
all values. For this purpose, one distinguishes between relevant and irrelevantdo
uments. Moreover, one does not take into a

ount that the result list of re-turned do
uments is an ordered list [S
h06℄. Ea
h do
ument is then 
lassi�ed inone of the following 
lasses:
• 
orre
t alarms (
a): this 
lass 
ontains all do
uments that are relevant tothe query, and the retrieval system rated them as relevant.
• 
orre
t dismissals (
d): this 
lass 
ontains all do
ument that are not relevantto the query, and the retrieval system rated them as not relevant.
• false alarms (fa): this 
lass 
ontains all do
uments that are not relevant tothe query, but the retrieval system rated them as relevant anyway.
• false dismissals (fd): this 
lass 
ontains all do
uments that are relevant tothe query, but the retrieval system rated them as irrelevant.
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ision Pq des
ribes to what extent the do
uments foundby the retrieval system are relevant. The pre
ision Pq is 
omputed by
Pq =

ca

ca+ fa
(3.11)The qualitiy measure re
all Rq des
ribes to what extent relevant do
uments in thedatabase where found. The re
all Rq is 
omputed by

Rq =
ca

ca+ fd
(3.12)Both quality measures always depend on a query q. The 
omputation of bothmeasures require a manual relevan
e rating for the do
uments by the user. Bothpre
ision and re
all values lie between 0 and 1. The higher the value for pre
isionand re
all is, the �better� is the retrieval system . The �perfe
t� retrieval systemwould have a pre
ision and re
all value of 1 for any query. Usually, pre
ision andre
all are not only 
omputed for one single query but for multiple queries. Inorder to evaluate a retrieval system the mean value for both pre
ision and re
allfor multiple queries is 
omputed.Both pre
ision and re
all not only depend on the query, but also on the numberof result do
uments. If the retrieval system always returns all do
uments storedin the underlying database, the re
all value will always be 100 per
ent, while thepre
ision value in this 
ase would be very low [S
h06℄. If only the do
ument themost similar to the query is returned, the pre
ision value is likely to be 100 per
ent,but the re
all value is very low. A 
ommon way to deal with this behaviour is the
ombined pre
ision-re
all-diagram whi
h treat the pre
ision values as a fun
tion ofthe re
all values, as introdu
ed in [S
h06℄. As more pre
ision values are possiblefor ea
h re
all value, only the best pre
ision value is displayed, all other values areignored.





Chapter 4Path Similarity Skeleton GraphMat
hingIn [BL08℄ an algorithm is presented to mat
h two-dimensional obje
t silhouettesbased on their skeletons. In parti
ular, one skeleton's end nodes are mat
hed to theend nodes of another shape's skeleton. The skeleton end nodes are salient featuresof an obje
t as they are important for holding the shape's geometry information:Skeleton bran
hes are supposed to end in signi�
ant visual parts of the shape.Thus, it is a reasonable assumption that ea
h end node 
an be mapped to its
ounterpart in the other skeleton. Besides, end nodes are interesting features asthey are part of the shape 
ontour as well as part of the skeleton.The mat
hing is done by 
omparing the similarity between the shortest pathsbetween the end nodes. Corresponden
es between the end nodes are established.Furthermore, the total similarity between two shapes is 
al
ulated. A detaileddes
ription of the algorithm follows in the next se
tion. The example of the twobird shapes in �gure 4.1 will guide through the explanations. The implementationof the algorithm is evaluated in se
tion 4.2.

Figure 4.1: Example for two skeletons to be mat
hed.49



50 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING4.1 Algorithm outlineThe input of the algorithm is four binary images: Two binary images 
ontainingthe obje
ts' silhouettes, and two binary images 
ontaining the obje
ts' skeletons.The goal is to �nd 
orresponden
es between distin
tive points of the two obje
ts- the skeleton's end nodes -, as well as �nding the total 
osts to mat
h these twoobje
ts.As a preparation, the skeletons are ordered by the number of their end nodes:the skeleton with fewer end nodes is referred to as the query skeleton, the skeletonwith more end nodes is referred to as the target skeleton. In the example shownin 4.1, both skeletons S and S ′ have the same number of end nodes, so they don'thave to be reordered. S is thus referred to as the query skeleton, while S ′ is referredto as the target skeleton.The algorithm 
an be split into three steps, whi
h are des
ribed in detail inthe following se
tions.4.1.1 Skeleton representationThe algorithm uses a spe
ial representation for skeletons that not only in
orporatesthe skeleton 
hara
teristi
s, but also the shape's 
ontour information.A key 
on
ept in the algorithm is the usage of information about skeleton paths.A skeleton path p(vm, vn) in a skeleton is the shortest path between a pair of endnodes vm and vn, with the limitation that all points on the shortest path haveto be skeleton points. Figure 4.2 shows a series of images, displaying all skeletonpaths emanating from one example end node.The skeleton paths 
an be found by 
onstru
ting a weighted skeleton graph forthe skeleton. The edge weight for an egde 
onne
ting two verti
es in the graphis de�ned by the length of the skeleton bran
h 
onne
ting the two 
orrespondingskeleton points in the original skeleton. It is then possible to apply a shortestpath algorithm, like Dijkstra's algorithm, on the resulting graph. [BL08℄ 
hoose aspe
ial representation for the skeleton paths that does not only in
lude informationabout the skeleton itself, but also information about the obje
t 
ontour. For thispurpose, a skeleton path p(vm, vn) is sampled with M equidistant points. Sin
eall points on a skeleton path are skeleton points, they are the 
enter of a maximalins
ribed dis
 within the obje
t 
ontour. The radius of the maximal dis
 Rm,n(t)at this point is obtained, for ea
h point t of the sampled skeleton points. Thus,for ea
h sample point, the distan
e to its feature point is known.The distan
e of a point t to its feature points is not exa
tly 
al
ulated, butapproximated by the distan
e transform DT (t). Afterwards, the distan
e is nor-
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Figure 4.2: The whole skeleton ( top left) and all skeleton paths emanating from endnode 0, the end node in the birds's headmalized to make the method invariant to the s
ale. Finally, the distan
e is approx-imated and normalized as follows:
Rm,n =

DT (t)
1
N0

∑N0

i=1DT (s)
(4.1)The quotient involves the distan
e transform values of all points within the obje
t:

N0 is the number of pixels in the original shape, and si varies over all N0 pixelsin the shape. Thus, the average distan
e transform value of all obje
t pixels isinvolved in the 
al
ulations. This step makes the method invariant to s
ale.That way, an ordered list of M distan
e values is obtained for ea
h skeletonpath. All distan
e values are noted in a ve
tor, 
alled the path ve
tor.
Rm,n = (Rm,n(t))t=1,2,...,M = (r1, r2, . . . , rm) (4.2)
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Figure 4.3: Sampling of a skeleton path. The sampling points are indi
ated in red. Thedistan
e to their feature points is indi
ated by the grey 
ir
les. For the skeleton pathrepresentation, the distan
e of the skeleton points to their feature points is measured andnoted in the skeleton path ve
tor. The sampling points are equidistant.Figure 4.3 s
hemati
ally shows the sampling of the skeleton path from end node0 to end node 7 in skeleton S in �gure 4.1. The resulting skeleton path ve
tor isused to des
ribe the skeleton path.4.1.2 Dissimilarity between end nodesIn the previous step, a 
ompa
t representation for skeleton paths was obtained,in
luding additional 
ontour information. This information about the skeletonpaths will be used to express the similarity between two end nodes. In parti
ular,the dissimilarity between the skeleton paths emanating from a pair of end nodesis used to 
ompute the similarity between these two end nodes.Skeleton Path Dissimilarity The remaining question to be dealt with is stillwhat �dissimilarity� means here. The dissimilarity between two skeleton paths,
alled the path distan
e, is based on the obtained path ve
tors. Let r and r′ bethe path ve
tors for two skeleton paths p(u, v) and p(u′, v′). l and l′ are the lengthof p(u, v) and p(u′, v′), respe
tively. In order to make the approa
h invariant tos
ale, the lengths are normalized. Finally, the path distan
e between the twoskeleton paths is de�ned by
pd(p(u, v), p(u′, v′) =

M
∑

i=1

(ri − r′i)
2

ri + r′i
+ α

(li − l′i)
2

li + l′i
(4.3)The motivation is that similar skeleton paths are expe
ted to have 
onse
utiveskeleton points with similar radii in their maximal ins
ribed dis
s. The s
aling fa
-



4.1. ALGORITHM OUTLINE 53tor in the denominator in this equation �weights the radii di�eren
e with respe
tto the radii values, that is, if both radii are large, their di�eren
e must be signi�-
ant� [YBYL07℄. This fa
tor is motivated by the observation of human per
eption:Di�eren
es in thi
ker parts of an obje
t must be more signi�
ant to be noti
ed byhumans than di�eren
es in thin parts [XWB09℄.It is ne
essary to involve the path lengths l and l′ in the 
al
ulations, as the
hosen path ve
tor representation does not in
lude the path length - ea
h pathve
tor has the same length, namely M , the �xed number of sample points. Theimportan
e of the skeleton path length 
an be weighted by an arbitrary weightfa
tor α ∈ R
+. The higher α is, the more relevant the similarity of the path lengthbe
omes.In the examples shown, it be
omes 
lear that all skeleton paths emanating fromthe same end node are very similar in the beginning, as they share the �rst skeletonbran
h, but begin to vary as soon as the �rst jun
tion node is passed. Furthermore,it might be
ome obvious that similar end nodes in the two skeletons have similarpaths emanating from them, while dissimilar end nodes have bigger di�eren
es intheir emanating skeleton paths. This observation will be shown by referring to thetwo example birds in �gure 4.1. Clearly, the end nodes in the beaks, marked with

7, would be a 
orre
t mat
h. There is a pair of skeleton paths from end node 7 inboth skeletons to one of the other end nodes in the skeletons that are similar toea
h other, a

ording to the path distan
e de�nition in equation 4.3. For example,the skeleton path p(7, 1) in skeleton S and skeleton path p(7′, 1′) in skeleton S ′ areexpe
ted to have similar skeleton path ve
tor entries.Still the question is how the information in the skeleton path distan
es ema-nating from a pair of end nodes 
an be used for des
ribing the similarity betweentwo end nodes. The idea is to en
ode the information of all path distan
es for apair of end nodes in one matrix, referred to as the path distan
e matrix. Su
ha path distan
e matrix 
an be de�ned for ea
h 
ombination of end nodes in thetwo skeletons. These path distan
e matri
es des
ribe the dissimilarity betweentwo end nodes. They 
ontain information about the path distan
es between allskeleton paths emanating from the two spe
i�
 end nodes.Let skeleton S with K + 1 end nodes and S ′ with N + 1 end nodes be thetwo skeletons to be mat
hed, with K ≤ N . For example, the mat
hing 
osts forthe end nodes vi0 from skeleton S and v′j0 from skeleton S ′ are wanted. First,the end nodes of both skeletons are ordered by traversing the obje
t 
ontour in
lo
kwise dire
tion, starting at vi0 in skeleton S and at v′j0 in S ′, respe
tively,resulting in a sorted list of end nodes for ea
h skeleton: {vi0, vi1, . . . , viK} for Sand {v′j0, v′j1, . . . , v′jN} for S ′.
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e matrix between two end nodes vi0 from skeleton S and v′j0from skeleton S ′ is de�ned as
(vi0, v

′

j0
) =







pd(p(vi0, vi1), p(v
′

j0, v
′

j1)) · · · pd(p(vi0, vi1), p(v
′

j0, v
′

jN))... ... ...
pd(p(vi0, viK), p(v

′

j0, v
′

j1)) · · · pd(p(vi0, viK), p(v
′

j0, v
′

jN))






(4.4)The path distan
e matrix thus en
odes information about the similarity of allskeleton paths emanating from the two skeleton end nodes to be mat
hed. Theassumption for the following 
omputations is that similar end nodes are similar inthe skeleton paths emanating from them.For further 
omputations, it is ne
essary to extra
t a s
alar value from the pathdistan
e matrix to express the similarity between end nodes. Based on the pathdistan
e matrix, it is now possible to 
ompute the total 
osts to mat
h a pair ofend nodes in the two skeletons. The problem of 
omputing the similarity of twoend nodes is in this approa
h 
onsidered as the problem of elasti
 mat
hing of timeseries, that is, the skeleton's end nodes are treated as a time series. It is handledby Optimal Subsequen
e Bije
tion (OSB), whi
h was proposed in [LWKTM07℄ andalready introdu
ed in 
hapter 3.As des
ribed earlier, the basi
 idea is to �nd the 
heapest path through a givendistan
e matrix. In the 
ase of skeleton mat
hing, the path distan
e matrix is usedas the input 
ost matrix for OSB. The idea behind this is, that the more similarany of the emanating paths from two end nodes are, the more similar those endnodes are. OSB is order-preserving, going ba
kwards is not allowed in the matrix,neither in the rows nor in the 
olumns. Thus, the order of the end nodes still holdsan important information about the 
ontour as they previously were ordered bytraversing the shape 
ontour.For example, the following matrix shows the path distan
e matrix between endnode 0 in graph S and end node 0' in graph S ′ in �gure 4.1.

pdm(0, 0′) =

























0.41 31.75 31.82 45.38 47.36 48.0 48.34 2.75
26.03 0.17 2.01 8.28 6.59 6.61 6.31 18.4
26.05 1.03 0.26 13.09 6.74 7.07 7.84 17.57
38.32 8.56 13.49 0.12 8.35 6.94 4.33 31.72
40.74 6.59 6.85 8.04 0.19 0.18 1.21 31.36
41.09 6.71 7.67 6.19 0.94 0.35 0.28 32.01
40.87 6.29 7.97 4.7 1.57 0.81 0.12 32.04
1.64 18.47 19.91 27.88 30.93 31.04 30.74 1.14























(4.5)Applying OSB to this path distan
e matrix leads to an alignment of the ema-nating skeleton paths from the two skeleton nodes with the possibility of skippingpaths, if no 
orresponding path is found. This would mean that the end node
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ontained in the other sequen
e of end nodes. The 
heapestpath through the example matrix, found by this approa
h, is highlighted in thefollowing matrix:
pdm(0, 0′) =

























0.41 31.75 31.82 45.38 47.36 48.0 48.34 2.75
26.03 0.17 2.01 8.28 6.59 6.61 6.31 18.4
26.05 1.03 0.26 13.09 6.74 7.07 7.84 17.57
38.32 8.56 13.49 0.12 8.35 6.94 4.33 31.72
40.74 6.59 6.85 8.04 0.19 0.18 1.21 31.36
41.09 6.71 7.67 6.19 0.94 0.35 0.28 32.01
40.87 6.29 7.97 4.7 1.57 0.81 0.12 32.04
1.64 18.47 19.91 27.88 30.93 31.04 30.74 1.14























(4.6)In this example, the 
heapest path is almost 
ompletely the diagonal from theleft upper entry to the bottom right entry, but the last entry is skipped. The valuein this entry is more expensive than skipping it: As there is a low-
ost alignmentin ea
h row of the matrix, the 
onstant value to punish skipping of rows is verylow. If the two skeletons have end nodes that would not mat
h any end node in theother skeleton, it is likely that more rows and 
olumns in the matrix are skipped.The total similarity, that is, the 
ost for mat
hing the two nodes 0 in S and 0 in
S ′ is 
omputed based on all entries in the matrix visited by the shortest path: Ea
hentry is squared, then added to the sum. Then, the squared root is 
omputed forthe 
omplete sum and divided by the number of aligned elements. In this example,this would be√

0.412 + 0.172 + 0.262 + 0.122 + 0.192 + 0.352 + 0.122

7
≈ 0.096 (4.7)4.1.3 Mat
hing the end nodesThe steps as des
ribed in the previous paragraph are done for every 
ombinationof end nodes in the two skeletons. This way, for ea
h 
ombination of end nodes as
alar is obtained, expressing the similarity between the two end nodes.The problem is to assign ea
h end node in S to an end node in S ′ based on themat
hing 
osts found in the previous steps. For this purpose, all found 
ost valuesare stored in a 
ost matrix, 
ontaining all 
ost values for the two skeletons. The
ost matrix C(S, S′) for two skeletons is de�ned as

C(S, S′) =











c(v0, v
′

0) c(v0, v
′

1) . . . c(v0, v
′

N)
c(v1, v

′

0) c(v1, v
′

1) . . . c(v1, v
′

N)... ... ...
c(vK , v

′

0) c(vK , v
′

1) . . . c(vK , v
′

N)











(4.8)
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h row j in the 
ost matrix 
ontains the 
osts for mat
hing the endnode mj in the target skeleton S ′ to ea
h end node in the query skeleton S, whileea
h 
olumn i in the matrix 
ontains the 
osts for mat
hing end node ni in thetarget skeleton S ′ to ea
h end node in the query skeleton S.An example is given in the following matrix. This matrix shows the 
ost matrixfor mat
hing the two birds in �gure 4.1.
C(S, S′) =





























0.1 9.72 3.21 2.45 4.98 4.34 5.46 7.53 0.31
10.04 0.28 0.42 6.19 4.77 4.79 4.87 2.25 2.89
3.1 0.48 0.1 0.17 4.7 5.05 4.82 2.25 2.18
2.25 7.48 0.39 0.16 5.55 4.82 5.18 6.46 2.4
4.9 4.75 4.4 4.8 0.11 0.48 4.62 3.31 4.15
4.43 5.71 4.88 4.17 0.77 0.13 6.26 4.88 3.86
4.62 4.85 5.3 4.77 4.93 6.23 0.11 5.26 5.15
7.8 3.29 2.64 6.26 2.96 4.48 6.08 0.13 0.55
1.69 3.35 2.95 2.68 3.97 3.2 5.79 2.02 0.27





























(4.9)
In this example, the value at index (0, 0) in the matrix is the 
osts to mat
h theskeleton end node 0 in skeleton S and end node 0′ in skeleton S ′. This matrix, inturn, 
an be seen as input weight matrix for the Hungarian algorithm, as des
ribedin se
tion 3.3.2. The problem of mat
hing two obje
ts is thus redu
ed to the
lassi
 assignment problem in a bipartite graph: The end nodes of skeleton S isone set of verti
es V , and the end nodes of skeleton S ′ is another set of verti
es
V ′. Both vertex sets 
an be seen as a partition in a bipartite graph. The 
ost ofmat
hing one vertex in V to a vertex in V ′ is given by the 
orresponding entry inthe 
ost matrix. If the Hungarian algorithm is applied as shown in se
tion 3.3.2,the minimum weight 
orresponden
e 
an be found. Figure 4.4 shows the foundassignments, indi
ated by lines 
onne
ting two mat
hed end nodes.In a �nal step, the total 
ost to mat
h the two skeletons 
an be 
omputed bythe sum of all edge weights.4.1.4 SummaryIn summary, the proposed algorithm 
an be split into the three following basi
parts:1. Getting a 
ompa
t skeleton representation, based on the distan
e of theskeleton points to their feature point on the 
ontour. These distan
es arestored in a ve
tor.2. Computing the 
osts to mat
h one end node to another. This is done asfollows:



4.2. EXPERIMENTS 57

Figure 4.4: The mat
hing result. Mat
hed end nodes are 
onne
ted by lines.(a) A path distan
e matrix is 
reated for two end nodes, en
oding informa-tion about the dissimilarity between the skeleton paths emanating fromthose end nodes.(b) OSB is applied to �nd the shortest path through the matrix to obtainthe total 
osts to mat
h these two nodesThis is done for all 
ombinations of end nodes. The obtained values arestored in a matrix.3. Mat
hing the skeleton end nodes by applying the Hungarian algorithm tothe 
ost matrix obtained in the previous step.4.2 ExperimentsIn the 
ontext of this diploma thesis, the algorithm introdu
ed in [BL08℄ was re-implemented. The experiments are split into two parts: First, some examples forend node mat
hings are shown. In the se
ond part, the re
ognition performan
eof the method is shown by using images from three shape databases.4.2.1 End node mat
hingFirst, the mat
hing method was tested on several example images of non-rigidobje
ts, in parti
ular elephants, a subset of the animal dataset used in [BLT09℄.Although the algorithm works well for various examples, it also has some limita-tions whi
h will be summarized in se
tion 4.2.1.Figure 4.5 shows a very simple example. Corre
t mat
hings are indi
ated bygreen lines. Wrong mat
hings are indi
ated in red lines. In this example, all end
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Figure 4.5: Example of a good mat
hing result. Corre
t mat
hings are indi
ated bygreen lines. Wrong mat
hings are indi
ated by red lines. In this example, all end nodeshave been mat
hed 
orre
tly.nodes have been mat
hed 
orre
tly, that is, the end nodes are mat
hed like ahuman would ex
ept it. In this 
ase, both shapes are very similar to ea
h other,varying only in few details, and one of the shapes is slightly smaller than the other.Figure 4.6 shows a slightly more 
omplex example. Again, the two shapes arequite similar, but overlaps o

ur due to the bending of the front legs. It 
an beobserved that even though the two front legs are overlapping in the left image, thealgorithm �nds the 
orre
t 
orresponden
es between the front legs.Figure 4.7 shows an example where the two shapes are �ipped horizontally. Aswill be shown later, a simple alteration had to be made for the algorithm to makeit invariant to rotation. The bending of the trunk does not have any e�e
t onthe mat
hing result, as deformations in obje
t parts that don't have any e�e
t onthe radii of the maximal ins
ribed dis
s are not punished in this approa
h. Onemismat
h has been found in this example, indi
ated by the red line. Neverthelessit 
an be observed that both end nodes in the two skeletons do not have anymat
hing partner in the other respe
tive skeleton. This kind of mismat
h will beexamined in se
tion 4.2.1.In the example shown in �gure 4.8, one of the shapes is rotated, but most ofthe end nodes have still been mat
hed 
orre
tly. However, the two end nodes inthe trunk are swapped in the mat
hing result. This is due to the fa
t that whentraversing the 
ontour they are en
ountered in reverse order. As the skeleton pathsemanating from these two end nodes are very similar, they are swapped in the �nalmat
hing result.
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Figure 4.6: Example of a good mat
hing result. All end nodes have been mat
hed
orre
tly, in spite of overlaps in the front legs.

Figure 4.7: Example of a mat
hing between shapes with bent obje
t parts.
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Figure 4.8: Example of a mat
hing of rotated shapes. The two end nodes in theelephants' trunk are swapped in the mat
hing, that is, if a human should establish the
orresponden
es between the skeleton end nodes manually, he would mat
h the two endnodes in the trunk the other way around. This is due to the fa
t that the skeleton pathsemanating from these two end nodes in both skeletons are quite similar, and as in bothskeletons the order for the two end nodes in the trunk is swit
hed when traversing the
ontour, they get falsely mat
hed.
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Figure 4.9: Mat
hing between a dog and a 
at.Further mat
hing experiments were performed with the Kimia99 database[SKK04℄, a subset of the MPEG-7 database [LLE00℄. This database 
ontainsmostly non-rigid obje
ts and several shapes with o

lusions.Figure 4.9 shows that establishing 
orresponden
es between two di�erent an-imals, in this 
ase a dog and a 
at is possible as long as the two animals havesimilar 
hara
teristi
s.Several experiments were performed to test the algorithm's performan
e in thepresen
e of o

lusion. Figure 4.10 shows the mat
hing of two hand shapes. Oneof the hand shapes is partly o

luded, so that the �ngertips seem to be missing.All the same, the 
orresponden
es are established 
orre
tly as the 
hara
teristi
sof the two shapes remain similar.

Figure 4.10: Mat
hing in the presen
e of o

lusionsAnother type of o

lusion is when not only obje
t parts seem to be missing likein the previous example, but the o

luding obje
t is also in
luded in the shape.



62 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHINGFigure 4.11 shows two examples of this s
enario. Again, the two hand shapes aremat
hed 
orre
tly.

(a) (b)Figure 4.11: Mat
hing in the presen
e of o

lusionsIn the original paper, two similar shapes were mat
hed, but in their experi-ments, some 
orresponden
es 
ould not be established 
orre
tly. This is assumedto be due to an implementation detail in the 
hoi
e of parameters in the OSBfun
tion. In the implementation of the OSB fun
tion it is possible to determinehow many rows are allowed be skipped in the matrix. It is assumed that a �xedvalue was 
hosen for the original implementation. For the new implementation inthe 
ontext of this diploma thesis, a variable value was 
hosen, depending on thedi�eren
e in the number of skeleton end nodes in the two skeletons, making thedes
ribed approa
h more �exible in situations like the shown o

lusions.

Figure 4.12: Mat
hing in the presen
e of o

lusions and deformations.However, the absen
e of one �nger in one of the shapes, 
aused by the defor-mation of the hand and the proje
tion to the 2D plane, leads to one mismat
h, as



4.2. EXPERIMENTS 63shown in �gure 4.12. The skeleton paths in the �ngers are quite similar. Hen
e,the order of o

uran
e of the �ngertips' end nodes is an important indi
ator fortheir similarity. As the order in this example is misleading, a mismat
h o

urs.LimitationsAs shown before, the algorithm has some limitations that will now be summarizedand explained.Flipped Images In the 
ase of �ipped images, that is the two shapes point indi�erent dire
tions, the 
orre
t mat
hing 
osts for a pair of end nodes 
annot befound. The weak point is the OSB fun
tion.Consider for example the s
enario where one shape should be mat
hed to ex-a
tly the same shape, but �ipped horizontally. The path distan
e matrix for two
orresponding end nodes would in this 
ase in
lude a 
heapest path from the upperright 
orner to the lower left 
orner, as shown in the following example matrix:
(vi0, v

′

j0
) =













. . . 7 5 8 0

. . . 2 3 0 8

. . . 5 0 3 5

. . . 0 5 2 7

. . . . . . . . . . . . . . .













(4.10)The a
tual shortest path is highlighted in grey. As the OSB fun
tion does notallow to go ba
kwards in the matrix, neither in the rows nor in the 
olumns, this
heapest path 
an't be found, and the resulting mat
hing 
osts are no reliableindi
ator for the similarity of two end nodes.As a solution, the algorithm is applied twi
e: on
e for the original images, andon
e with one image �ipped horizontally. From the resulting two mat
h lists, theone with lesser mat
hing 
osts will be 
hosen as the real mat
hing. In most 
asesthis works quite well. There are 
ases, however, in whi
h this method fails todetermine 
orre
tly if shapes are �ipped or not.For example, the shapes in �gure 4.13 are oriented in opposite dire
tions, butthe mat
hing 
osts for the se
ond run with one of the images �ipped leads tolower mat
hing 
osts than the �rst run. Thus, in the algorithm the two shapesare assumed to be oriented in the same dire
tion, whi
h in the end leads to anunsatisfying mat
hing.Enfor
ing of 1-to-1-mat
hing Another problem is 
aused by the fa
t that thealgorithm requires a 1-to-1 mat
hing between the two skeletons whi
h is not alwayspossible. This problem is 
losely related to the problem mentioned previously, thatspurious bran
hes 
an have a negative impa
t on the mat
hing results.
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Figure 4.13: In some 
ases, the method fails to determine if shapes are �ipped or not.

Figure 4.14: 1-to-1 mat
hing is not always possible. In this example, all mat
hingshave been found 
orre
tly, but the two remaining end nodes with no mat
hing partnerin the other skeleton are mat
hed.See for example �gure 4.14, whi
h shows an a

eptable mat
hing result fortwo elephant shapes. All 
orresponden
es have been found 
orre
tly, but bothskeletons have one additional end node that has no mat
hing partner in the otherskeleton. As the Hungarian Algorithm for
es all end nodes to �nd a mat
hingpartner in the other skeleton, the two remaining nodes are mat
hed, even thoughthey do not 
orrespond. In fa
t, this is not only a limitation of this parti
ularalgorithm , but a problem of all mat
hing algorithms that redu
e the mat
hingproblem to a 1-to-1 mat
hing in a bipartite graph. Using a di�erent model thanthe mat
hing of a bipartite graph for the �nal mat
hing 
ould be a solution to thisproblem. For example, the Earth Mover's Distan
e (EMD) [RTG00℄ also allowspartial mat
hings. This 
ould be a solution to better deal with noisy skeleton data.
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hes This problem is related to the limitation des
ribed in theprevious paragraph. The algorithm requires optimal skeletons, where ea
h skeletonbran
h represents a signi�
ant visual part of the shape. If one of the skeletons
ontains spurious bran
hes, this 
an have a negative impa
t on the mat
hing result.

Figure 4.15: Spurious bran
hes 
an have a deep impa
t on the mat
hing result. The�gure shows a mat
hing between two elephant shapes, where no 
orre
t 
orresponden
es
ould be established at all. If one inspe
ts the left elephant in detail, one 
an see thathe has a spurious bran
h in the tail. Figure 4.16 shows a 
ut-out of the a�e
ted area.Figure 4.15 shows the assignments between two elephant shapes. As 
an beseen, none of the found 
orresponden
es is 
orre
t. If the skeleton of the leftelephant is inspe
ted in detail, one 
an see that the left elephant has a spuriousbran
h in the tail that does not represent a signi�
ant visual part of the obje
t.The a�e
ted area is shown in �gure 4.16 in detail.
Figure 4.16: Cut-out of the elephant shape in �gure 4.15. The elephant's tail 
ontainsone spurious bran
h that has a negative impa
t on the mat
hing result.If this bran
h is removed manually, the result is still not perfe
t, but the numberof 
orre
t 
orresponden
es is now six of the eight possible mat
hings, as shown in�gure 4.17.



66 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

Figure 4.17: On
e the spurious bran
h is removed manually, the mat
hing result getsmu
h better, redu
ing the number of wrong mat
hes to two.Thus, one has to make sure that the input skeletons do not 
ontain spuriousbran
hes. Again, a possible solution 
ould be to use an algorithm that also allowspartial mat
hings for the �nal mat
hing, for example the Earth Mover's Distan
e[RTG00℄.4.2.2 Re
ognition performan
eAs the proposed method 
omputes a value for the similarity of two shapes basedon the end node 
orresponden
es, it 
an also be used for obje
t re
ognition in ashape database. A very simple retrieval system was implemented to evaluate themat
hing algorithm. In this retrieval system, it is possible to enter a shape andits skeleton as a query, and the mat
hing algorithm is applied to the query and allother shapes in the database. All shapes in the database are ordered a

ording totheir 
omputed similarity to the query, with the highest similarity �rst.As a �rst database, a subset of the Aslan and Tari shapes [AT05℄ is used. It
ontains eleven 
lasses of shapes, and ea
h 
lass 
ontains four images. One examplefor ea
h of the 
lasses is shown in table 4.1.
Table 4.1: Example shapes from the Aslan and Tari database [AT05℄.
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reteCurve Evolution algorithm [BLL07℄ 1, with the parameters ρ = 4, T1 = 1 and
number_vertice = 15.In this �rst experiment, ea
h of the shapes in the database was used as a query.The parameters used were M = 50 and α = 40. All shapes in the database areordered a

ording to their similarity value, resulting in an ordered result list. Asthere are four images in ea
h 
lass, the query and the �rst three result shapesshould be in the same 
lass.Query 1st 2nd 3rd 4th 5th 6th 7th

Table 4.2: Example queries in the Aslan and Tari database.Table 4.2 shows four example queries in the Aslan and Tari database. In theleft 
olumn, the query image is shown. From left to right, the 
omputed similarityto the query image drops. In the shown examples, the �rst three sear
h results arein the same 
lass as the query image, that is, the result is optimal.A 
ommon way to rate a retrieval system is the 
omputation of pre
ision andre
all values. As the number of relevant do
uments is known for ea
h query, thisvalue 
an be used as the number of returned result do
uments in the similaritysear
h. For this small database, the average pre
ision for the number of threeresult do
uments is an interesting value in order to rate the retrieval system. Theaverage is 
omputed for all queries, that is, all images in the database have beenused as a query. The pre
ision is 
omputed for ea
h query in relation to the numberof returned result do
uments, whi
h in this 
ase is 3. Under these 
onditions, theaverage pre
ision for this retrieval system is 0.93. If one summarizes the numberof 
orre
t shapes for all queries among the �rst three retrieval results, one obtains43, 41, and 41. The perfe
t result for this database subset would be 44, 44, 44.1available at http://sites.google.
om/site/xiangbai/BaiSkeletonPruningDCE.zip
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t the mismat
hes in detail, espe
ially the queries where two or even threemismat
hes o

ured. Table 4.3 summarizes all queries to the shape database withwrong results. While the mismat
hes in the �rst three rows are easily explainedQuery 1st 2nd 3rd 4th 5th 6th 7th 8th

Table 4.3: Mismat
hes in the Aslan and Tari database. Wrong results are highlightedin red.as the wrong results and the query have quite similar shapes, the mismat
hes forthe queries of 
lass �
ro
odile� in the last four rows are somewhat surprising. Thehigh mat
hing 
osts between the four 
ro
odile shapes be
ome more obvious wheninspe
ting the skeletons and their end node mat
hing in detail.
Figure 4.18: Mat
hing with spurious bran
hes, leading to bad similarity values.
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ro
odile with the worstre
ognition result to two other 
ro
odiles. The example shows that the problemis again that the 
ro
odiles' skeletons have spurious bran
hes and therefore endnodes that do not �nd a mat
hing partner in the other skeleton. In the best
ase, all 
orresponden
es are established 
orre
tly, but the end node mat
hing
ontains additional 
orresponden
es that were established due to the fa
t thatthe algorithm requires one-to-one 
orresponden
es, as shown in the left image in�gure 4.18. Assignments like these have generally high mat
hing 
osts, leading todistorted total similarity values. In the worst 
ase however, the whole mat
hingpro
ess gets 
orrupted by these additional bran
hes, as shown in the right imagein �gure 4.18.In order to support this assumption, additional experiments were performed.The most problemati
 skeletons, the 
ro
odile skeletons, were manually pruned,and the whole experiment was repeated. One example for the manual pruning ofthe 
ro
odile skeleton is shown in �gure 4.19. With these alterations one obtains44, 44, 41 for the number of 
orre
t shapes in the �rst, se
ond and third result.The average pre
ision for three returned result do
uments for ea
h query in thisaltered shape database is 0.98.
Figure 4.19: Cro
odile skeleton before and after the manual pruning.Further experiments were performed with a subset of 60 images of the kimia-99 shape database [SKK04℄. This subset 
ontains six 
lasses with 10 images inea
h of them. In
luded are rigid as well as non-rigid obje
ts. The 
hallenge whenusing this database for experiments is that several of the 
ontained shapes in
ludepartial o

lusions. Examples of these o

luded shapes already have been shown inse
tion 4.1.3. Table 4.4 shows further example shapes from the kimia-99 database.Again, ea
h shape has been used as a query. Sin
e ea
h 
lass 
onsists of tenshapes, the �rst nine results in the similarity sear
h should be in the same 
lassas the query. The average pre
ision in relation to 9 returned result do
uments is0.84. Figure 4.20 shows the development of the average pre
ision and re
all valueswith an in
reasing number of result do
uments.
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Table 4.4: Example shapes from the kimia-99 database [SKK04℄One important fa
t about this diagram is that the re
all value does not rea
h1.0, even though in the diagram, the average pre
ision and re
all values for elevenresult do
uments is shown, and thus, takes two additional do
uments within a
-
ount. The �at re
all 
urve in the end indi
ates that in some 
lasses the mostdissimilar shapes are so dissimilar that they do not appear in the result list, evenif the number of returned result do
uments is higher than the number of relevantdo
uments. This 
orelates to the pre
ision graph that drops drasti
ally after the�rst eight result do
uments. This is also re�e
ted if one summarized the numberof 
orre
t result in the �rst nine result do
uments: one obtains 60, 58, 57, 54, 56,51, 49, 45 and 22. Inspe
ting the mismat
hes in detail shows that even though inlarge part 
orre
t 
orresponden
es were found even for o

luded shapes, the totalsimilarity values for these o

luded shapes are too high for the shapes to be re
-ognized to belong to the same 
lass as the query. Another aspe
t is again dealingwith spurious bran
hes in the skeletons.The last experiments to evaluate the re
ognition performan
e were done withthe kimia-216 shape database. This shape database 
onsists of 18 
ategories with12 images in ea
h of them. Example shapes are shown in table 4.5.

Table 4.5: Example shapes from the kimia-216 databaseThe parameters used for these experiments were the same as for the previousexperiments: The skeletons were 
omputed by the Dis
rete Curve Evolution al-gorithm [BLL07℄, with the parameters ρ = 4, T1 = 1 and number_vertice = 15.Again, the parameters used were M = 50 and α = 40.Five example queries and the �rst eight most similar results are shown in table4.6.Ea
h shape from the shape database has been used as a query. There are elevenrelevant do
uments in the database for ea
h query. The average pre
ision value in
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Figure 4.20: Average pre
ision and re
all development in the kimia-99 database within
reasing number of result do
uments.relation to eleven returned result do
uments is an interesting measurement for thequality of the retrieval system, whi
h in this 
ase is 0.81. Figure 4.21 shows thedevelopment of the average pre
ision and re
all values for an in
reasing number ofreturned result do
uments.Table 4.7 summarizes the number of all 
orre
t shapes for the �rst elevenretrieval results in 
omparison to the values listed in the original paper.Obviously, the results are not as good as in the original paper. The assumptionis that the input skeletons play a signi�
ant role here. Several skeletons used in theexperiments in the 
ontext of this thesis 
ontain spurious bran
hes whi
h 
an havea profound impa
t on the quality of the end node mat
hing, leading to distortedoverall similarity values. This e�e
t has been observed in many of the query results.To verify this assumption, further experiments were performed on some of themore problemati
 
lasses. This time, some of the skeletons in the database werepruned manually so that ea
h skeleton bran
h represents a signi�
ant visual partof the original shape. As the signi�
ant parts of shapes of the same 
lass shouldbe quite similar, the skeletons get more 
omparable. Using the manually prunedskeletons leads to better results in the performed queries. For example, the average
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Table 4.6: Example queries on the Kimia-216 database. In the left 
olumn, the queryshape is shown. From left to right, the eight most similar shapes in the database areshown. The similarity to the query drops from left to right.1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11thOriginal paper 216 216 215 216 213 210 210 207 205 191 177Own results 205 208 202 199 200 192 184 167 161 130 96Table 4.7: Summarization of 
orre
t shapes in the 1st, 2nd,.. retrieval result.pre
ision for the queries from the �bird�-
lass went up from 0.69 to 0.81, the averagepre
ision for the queries from the �
amel� 
lass went up from 0.63 to 0.73It 
an also be observed that the average pre
ision value for the kimia-99 andkimia-216 database is worse than for the Aslan and Tari database. The reasonfor this partly lies with the 
omposition of data in both databases. In the Aslanand Tari database, the algorithm's performan
e for non-rigid shapes is mainlyevaluated. Parts of the shapes are bent, but besides that, the shapes within a
lass are quite similar to ea
h other.The main 
hallenge in the Kimia-99 database is that several shapes are o
-
luded.The Kimia-216 database 
ontains non-rigid obje
ts as well as rigid obje
ts. Themain problem with this database is that some of the 
lasses are very similar intheir shapes, while within some 
lasses, there is a huge variety. Table 4.8 showssome examples of shapes that belong to di�erent 
lasses, but are very similar andthus, lead to several mismat
hes in the retrieval result.In summary, the mat
hing algorithm shows a

eptable results in the retrievalexperiments. Mat
hing of non-rigid obje
ts poses no problem as deformations
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Figure 4.21: Average pre
ision and re
all development in the kimia216 database within
reasing number of result do
uments.
Table 4.8: Similar shapes in the Kimia-216 database from di�erent 
lasses.that do not 
hange the shape breadth are not punished. Suboptimal skeletonswith spurious bran
hes however 
an lead to severe mismat
hes. In the 
ontextof extending the algorithm into the third dimension some ideas, amongst others,were developped to deal with this problem. These ideas are introdu
ed in the next
hapter.





Chapter 5Skeleton Graph Mat
hing in 3DIn this 
hapter, the algorithm des
ribed in se
tion 4 will be examined with respe
tto extending it into the third dimension. The algorithm will be applied to three-dimensional medi
al data. The goal is to 
ompare pre- and postoperative bloodvessel volumes.5.1 Data originThe idea is to 
ompare two aorta images of the same patient before and after anEVAR pro
edure was performed. The aorta is�the main trunk of a series of vessels whi
h 
onvey the oxygenatedblood to the tissues of the body for their nutrition. It 
ommen
es atthe upper part of the left ventri
le, where it is about 3 
m in diameter,and after as
ending for a short distan
e, ar
hes ba
kward and to theleft side . . . ; it then des
ends within the thorax . . . , passes into theabdominal 
avity . . . , and ends, 
onsiderably diminished in size (about1.75 
m in diameter) . . . by dividing into the right and left 
ommonilia
 arteries. Hen
e it is des
ribed in several portions, the as
endingaorta, the ar
h of the aorta, and the des
ending aorta, whi
h last isagain divided into the thora
i
 and abdominal aortæ.� [GG73℄Figure 5.1 shows an overview of the arteries in the human body. The imagedregion is lo
ated at the des
ending aorta, in parti
ular, at the lower parts of theabdominal aorta (aorta abdominalis), at the aorti
 bifur
ation ( bifur
atio aortae),where the abdominal aorta divides into the right and left 
ommon ilia
 arteries[FS08℄. The region is highlighted in grey in �gure 5.1.As mentioned before, the idea is to mat
h two aorta volumes of the samepatient, before and after surgery. The patient was su�ering from abdominal aorti
75
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Figure 5.1: S
hemati
 overview of the arteries in the human body. Image sour
e:[SSS+06℄.aneurysm, AAA, before the pro
edure. An aneurysm is a blood-�lled bulge inthe wall of a blood vessel. With an in
reasing size of the aneurysm, the risk ofrupture in
reases. The rupture of an aneurysm 
an lead to death [FS08℄. Onestandard pro
edure to deal with AAA is EVAR (endovas
ular aneurysm repair)whi
h 
arries a �redu
ed early morbidity rate and mortality 
ompared to openoperation for aneurysim repair� [RHL11℄.Both data volumes (before and after EVAR) were gathered by CT s
an. Theinteresting areas are then segmented and skeletonized using the built-in thinning



5.2. CONSIDERATIONS ABOUT MATCHING OF 3D OBJECTS 77�lter from the Insight Toolkit (ITK) 1. An example of the resulting volumes isshown in �gure 5.2.

Figure 5.2: Pre- and postoperative blood vessel volumes. Left: Before surgery. Right:After surgery.Though the main appli
ation of the 3D algorithm will be the mat
hing of partsof aorta volumes it is desirable to develop a general extension of the algorithm in3D that not only applies to this spe
ial kind of 3D data, but also to possible others
enarios.5.2 Considerations about mat
hing of 3D obje
tsBefore introdu
ing the alterations that were made to make the algorithm work in3D, some general observations and expe
ted problems will be listed in the followingse
tion.The key 
on
ept of the algorithm is the skeleton path and the distan
e fromthe sample points to their feature points. In general, the idea 
an also be appliedto 3D data as the 3D 
urve skeleton has (or at least should have) similar propertiesas the 2D Blum skeleton, like 
ontinuity and thi
kness of exa
tly one voxel, whi
hmakes the sampling of the path possible. As mentioned earlier, the 
enteredness1http://www.itk.org/
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urve skeleton is di�
ult to de�ne mathemati
ally, whi
h 
ould havean impa
t on the results. In this parti
ular appli
ation however this is less of aproblem, as the blood vessels have a tubular form where the 
enteredness of the
urve skeleton is easier to de�ne.Some problems in the 2D experiments stem from overlapping obje
t parts
aused by the proje
tion to the 2D plane. For example, some animal shapesin the experiments seem to have only three legs, whi
h makes the mat
hing pro-
ess di�
ult. There is no proje
tion in 3D, and there are are no overlaps to beexpe
ted. This 
an have a positive impa
t on the mat
hing results.Though the general idea of the algorithm 
an be applied to 3D data, some prob-lems are expe
ted to o

ur. The biggest problem expe
ted is that the algorithmrequires the skeleton end nodes to be ordered, whi
h happens when traversing the
ontour of the input shape. In 3D, traversing a 
ontour is not possible. As theOSB fun
tion whi
h extra
ts a s
alar value from the path distan
e matrix is order-preserving, either this step has to be repla
ed by another approa
h that isn't, ora meaningful order for the end nodes in 3D has to be found.Another expe
ted problem results from the spe
ial appli
ation in the mat
hingof blood vessels: The blood vessel volumes do not vary very mu
h in their thi
kness.Thus, the distan
e from any skeleton point to the boundary is homogenous in everypart of the volume.

Figure 5.3: Skeleton with visualization of distan
e transformFigure 5.3 shows a skeleton where the distan
e to the shape boundary is visu-alized. The darker the voxel's 
olor, the broader the shape at this point is. As 
anbe seen, the brightness values do not vary sigini�
antly over the skeleton. Justthe area above the aorti
 bifur
ation is 
onsiderably thi
ker than the rest of theshape.The algorithm requires optimal skeletons, that is, ea
h skeleton bran
h shouldrepresent a visual part of the obje
t. As already shown in 4.2.1, spurious or missingbran
hes 
an lead to unsatisfying mat
hing results. The provided medi
al data
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ura
ies during the image a
quisition, thesegmentation pro
ess and skeletonization. Some bran
hes are shortened or 
ut o�
ompletely in one skeleton, but are still existent in the other skeleton. An example
an be seen in �gure 5.2: the shape is not 
onne
ted, and neither is the skeleton,resulting in shortened bran
hes. In the following dis
ussion, the dis
onne
ted partsare simply ignored. Ignoring the dis
onne
ted parts 
an, however, lead to problemsin the mat
hing results.Applying the 2D algorithm without any alterations and without any expli
itordering of the end nodes may lead to random mat
hing results. In the 
ase ofblood vessel volume data this problem 
an be worked around, as the pi
turesare usually taken from a similar point of view, and the impli
it ordering of theskeleton end nodes in their appearan
e in the 3D spa
e 
an be used as an order:The volume's bounding box is s
anned in the dire
tion of x-, y- and z axis andend nodes are stored to an ordered list when they o

ur in the s
ans. Figure5.4 shows the mat
hing between two blood vessels. Corresponding end nodes are
onne
ted by a line, while the 
olor of the line indi
ates true and wrong mat
hings,respe
tively.

Figure 5.4: Applying the algorithm without any alterations to 3D volumes. The pa-rameters used were α = 70 and M = 50.No alterations have been made to the algorithm in this example, and the im-pli
it order of the end nodes in the bounding box is used. As 
an be seen in thisexample, 8 of 14 
orresponden
es are 
orre
t assignments, but 6 of the found 
or-
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es are mismat
hes. These mismat
hes result from the problems alreadymentioned. Considering that both skeletons 
ontain end nodes that do not havea mat
hing partner in the other this is an a

eptable result, but a more robustapproa
h is desired that also is reliable for general mat
hing of 3D obje
ts, even ifthe point of view di�ers for the two shapes. Furthermore, a solution for �lteringthe wrong mat
hings is desirable.In summary, there are three main problems to deal with when applying theintrodu
ed algorithm to 3D:
• OSB in 3D : The OSB fun
tion requires ordered end nodes, but in 3D, they
annot be ordered by traversing the 
ontour.
• Similar dis
 radii : The volumes do not vary mu
h in their breadth. The dis
radii are similar for ea
h skeleton point.
• Dealing with noise: The skeletons are too noisy. The bran
hes are shortenedat di�erent levels or 
ut o� 
ompletely.Some ideas and alterations have been developed to resolve or mitigate theproblems pointed out above and thus, will lead to more robust mat
hing results.These ideas will be shown in the next se
tions with two example volumes. Moreexperiments with other datasets will follow in se
tion 5.6.5.3 OSB in 3DAs mentioned before, the main weak point in the algorithm for the mat
hing of 3Ddata is the OSB fun
tion whi
h requires ordered end nodes. The solution wouldbe to repla
e OSB by another fun
tion that is not order preserving, or to �nd ameaningful order for the end nodes.5.3.1 Repla
ing the OSB fun
tionThe OSB fun
tion is used to 
ompute the similarity between two end nodes byaligning their emanating skeleton paths. In order to repla
e OSB one needs anotherfun
tion that is 
apable of �nding optimal assignments in a given 
ost matrix, butwithout requiring any order. One possibility that 
omes to mind is the HungarianAlgorithm whi
h also extra
ts mat
hing 
osts for a given 
ost matrix, and thus
an also be used for extra
ting the similarity value from the path distan
e matrix.Figure 5.5 shows a mat
hing between the two example shapes, with the OSBfun
tion repla
ed by the Hungarian algorithm.The number of wrong 
orresponden
es in this example has in
reased to 8 out of14. The result quality does not in
rease in other examples either. Thus, using the
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Figure 5.5: Applying the algorithm to 3D data, with repla
ing the OSB fun
tion byHungarian algorithm. The parameters used were α = 70 and M = 50.Hungarian algorithm instead of the OSB fun
tion does not seem to be a reliablepro
edure. The problems are:
• The Hungarian algorithm is not 
apable of skipping elements. The CT s
anshowever 
ontain several spurious bran
hes whi
h makes skipping elementsne
essary.
• The weakness of the OSB fun
tion for the appli
ation in 3D is also itsstrength: By requiring ordered end nodes, the OSB fun
tion does not onlyin
orporate the similarity of the emanating skeleton paths, but also 
ontourinformation. When using the Hungarian algorithm instead, this informationabout the shape 
annot be used anymore. Furthermore, the dis
 radii arevery similar for ea
h skeleton point, whi
h leads to similar skeleton paths.Without the additional information about the shape 
ontour the path dis-tan
e alone is not a reliable similarity indi
ator.5.3.2 Ordering the end nodesAs was shown in the previous se
tion, repla
ing the OSB fun
tion by the Hungarianalgorithm is not a reliable pro
edure for 
omputing the similarity between end
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e, it is desirable to �nd an ordering of the end nodes in 3D to make itpossible to use OSB also in 3D.Obviously, it is not possible to order the end nodes by traversing the shape's
ontour, as was done in the two-dimensional 
ase. For the aorta volumes theimpli
it order of the end nodes by their o

uran
e in the 3D spa
e 
an be used.As the point of view is very similar for both volumes, the end nodes are expe
tedto o

ur in a similar order.For other 3D images, this might not be a good solution as the 3D models arenot always expe
ted to be aligned. One possibility to order the end nodes is toorder the end nodes by their distan
e to the start node.Assuming that the similarity between two end nodes i and i′ in two skeletons Gand G′ is wanted, the end nodes in skeleton G are then ordered so that the �rst endnode i0 in the list of ordered end nodes is the end node with the shortest distan
eto i. The distan
e is measured by the length of the skeleton path between i and
i0. The se
ond end node is the end node i1 with the se
ond shortest distan
e to i,and so on. This again results in an ordered set of end nodes (i0, i1, . . . , iM). Thesame pro
edure is applied to the end nodes in skeleton G′. Given this ordering forthe end nodes, this set 
an be used for the 
reation of the path distan
e matrix,and, as a meaningful order is now at hand, an order-preserving fun
tion like OSB
an be used for �nding the similarity between a pair of end nodes.Figure 5.6 shows an example for this pro
edure. The number of mismat
hes inthe shown example was redu
ed to �ve mismat
hes out of 14.However, this approa
h is sensitive to noisy input data, where 
orrespondingskeleton bran
hes do not have similar lengths, as was the 
ase in all of the availabledata sets. The order of the end nodes in this 
ase might not be the same for the twoskeletons. Several experiments even showed that for most of the available aortaimages the impli
it order of the end nodes by their o

uran
e in the 3D spa
e is amore reliable ordering.5.4 Similar dis
 radiiThis issue does not stem from applying the algorithm to 3D data, but from thespe
ial appli
ation in mat
hing blood vessel volumes. The problem is that thedis
 radii are quite similar for all skeleton points in this spe
ial kind of data. Thedis
 radii are hen
e a less signi�
ant indi
ator for similar skeleton paths than in
onventional test shapes. Due to the fa
t that the preoperative volume shows ananeurysm, the radii are even expe
ted to vary slightly for 
orresponding paths.Moreover, three of the available nine test volumes are perforated due to segmen-tation errors. In these 
ases, the dis
 radii vary strongly even for 
orrespondingpaths.
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Figure 5.6: In this mat
hing, the skeletons' end nodes are ordered by their distan
e tothe start node, so that the OSB fun
tion 
an be used to extra
t the similarity 
osts fortwo end nodes.Thus, an idea for a more reliable approa
h in this appli
ation would be torepla
e the path distan
e de�nition as de�ned in equation 4.3. In this de�nition,the skeleton path ve
tors of the radii of the maximal ins
ribed dis
s are the mostimportant parameter for determining the similarity between two skeleton paths.The assumption is that for several 
ases, the path length is a more signi�
ant indi-
ator for path similarity. Therefore, equation 4.3 is substituted with the followingde�nition:
pd(p(u, v), p(u′, v′) = (li − l′i)

2 (5.1)The equation has be
ome mu
h simpler: The part with the dis
 radii was removed
ompletely. Instead, only the path lengths are in
orporated. Thus, the weight fa
-tor α is not needed anymore. The denominator, li+ l′i, also has been removed fromthe equation, only the absolute di�eren
e between the path lengths is in
orporated.First experiments showed that in the perforated volumes this new path distan
ede�nition is a reliable alternative to the one introdu
ed in the original paper.However, for most 
ases, the path length alone is not a reliable similarity measureas several bran
hes are shortened at di�erent levels.
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ontain spuriousbran
hes that are not 
ontained in the other skeleton and thus, both skeletons
ontain end nodes that 
annot be mat
hed non-ambitigously to an end node inthe other skeleton. Also, bran
hes may be shortened or 
ut o� in di�erent levels inthe two shapes, so that 
orre
t 
orresponden
es are di�
ult to �nd. This 
an havea negative impa
t on the mat
hing results, as shown in the previous examples. Inthe available data sets, it is di�
ult to �nd a similarity measure for skeleton endnodes that leads to perfe
t mat
hing results.Thus, to improve the quality of the mat
hing results, it is ne
essary to dealwith this noise. In general, there are three possible approa
hes to deal with thisproblem:1. Prepro
ess the skeletons: One possibility is to prepro
ess the skeletons sothat at least some of the spurious bran
hes are removed before the mat
hingpro
ess.2. Skipping elements in the �nal mat
hing: An alteration in the mat
hing pro-
ess 
ould be performed that allows the skipping of end nodes in the �nalmat
hing.3. Apply �lter to 
orresponden
es: The third possibility is to �lter the found
orresponden
es after the mat
hing pro
ess a

ording to a prede�ned signif-i
an
e indi
ator.All of these approa
hes will lead to results where not all end nodes are mat
hed,but the total quality of the mat
hing result will in
rease.5.5.1 Prepro
essing the skeletonsA relevan
e measure for skeleton bran
hes in order to remove the spurious bran
hesis desirable. However, prepro
essing the skeletons before the mat
hing pro
ess isdi�
ult as no semanti
 information about the skeletons is known at this point.Thus, it is di�
ult to determine whi
h bran
hes should be removed before further
omputations.However, it is possible to determine the signi�
an
e of a skeleton bran
h basedon its length. Shorter bran
hes are generally less signi�
ant for the representationof the shape 
ompared to longer bran
hes. It is possible to eliminate these shortbran
hes: For ea
h end node, the length of the emanating skeleton bran
h isdetermined. All bran
hes that have a length smaller than a given threshold aredeleted.
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edure does not guarantee better results. In fa
t, the results 
anget even worse as it 
an lead to bran
hes being removed in one skeleton, butthe 
orresponding bran
hes in the other skeleton are not. Finding the optimalthreshold to get better results is a di�
ult task and not all spurious bran
heswill be found. As 
an be seen in the previous examples, spurious bran
hes arenot always short enough that they would be eliminated in this pro
ess, withoutdeleting other, more signi�
ant bran
hes.5.5.2 Skipping elements in the �nal mat
hingSo far, the �nal mat
hing was always performed by the Hungarian algorithm whi
henfor
es one-to-one 
orresponden
es. However, one-to-one 
orresponden
es are notalways possible. An alteration to the �nal mat
hing pro
ess is desirable that alsoallows the skipping of elements.One possibility is to extend the Hungarian algorithm to also allow the skippingof elements in the 
ost matrix. The easiest way to do so is to add additionaldummy rows and 
olumns to the 
ost matrix, besides the ones that are neededto make the matrix square. These additional rows and 
olumns 
an be seen asadditional dummy nodes in both skeletons. These dummy nodes a
t like a bu�er:If the assignment of two elements is too expensive, they will be mat
hed to one ofthe dummy nodes instead.Figure 5.7 shows a mat
hing of the previous example volumes, with four addi-tional nodes added before applying the Hungarian algorithm. As 
an be seen inthis example, this alteration leads to additional mismat
hes in the lower part ofthe blood vessel, but the wrong mat
hings in the top were eliminated. All in all,the number of mismat
hes is redu
ed to two out of 10, but this also 
omes with theloss of 
orre
t mat
hes that 
ould have been found otherwise. The 
hallenge withthis approa
h is, however, to �nd the best number of additional dummy nodes. Ifthe number is too small, mismat
hes will still o

ur. If the number is too high,possible 
orre
t mat
hings might not be found. The experiments showed that toofew or too many additional nodes in the Hungarian algorithm 
an even lead tomore mismat
hes.Another more robust approa
h would be to substitute the Hungarian algorithmin the �nal mat
hing for another mat
hing algorithm that allows the skipping ofelements. One possibility would be to repla
e the Hungarian algorithm by theOSB fun
tion. The problem again is that OSB requires a meaningful order ofthe end nodes. Otherwise, the 
heapest path in the matrix 
annot be found. Theorder already introdu
ed for applying the OSB in the intermediate step to extra
t asimilarity value from a path distan
e matrix 
an be used at this point: The distan
efrom any end node to the start node 
an be used as order 
riterion. The remainingquestion is how to 
hoose the �start node�. The solution is to apply OSB multiple



86 CHAPTER 5. SKELETON GRAPH MATCHING IN 3D

Figure 5.7: In this mat
hing, four additional nodes were added before applying theHungarian algorithm. The original path distan
e de�nition as des
ribed in [BL08℄ wasused, with the parameters α = 70 and M = 50.times, on
e for ea
h 
ombination of end nodes. For ea
h 
ombination of end nodes
i and i′ in the two skeletons G and G′ the following pro
edure is performed: Theend nodes of skeleton G are ordered a

ording to their distan
e to end node i,measured by the length of the skeleton path between the two skeleton end nodes.The same pro
edure is applied to end node i′ and skeleton G′. This results in twoordered lists of skeleton end nodes {i, i0, i1, . . . , iM} for G and {i′, i′0, i′1, . . . , i′N} for
G′. Based on this order, a new 
ost matrix 
an be built as input matrix for theOSB fun
tion: The end nodes are 
harted in the 
ost matrix's rows and 
olumns,respe
tively, a

ording to their order in the ordered list. The 
ell (im, i′n) in the
ost matrix 
ontains the assignment 
ost between the two end nodes im and i′n.The OSB fun
tion 
an be applied to the resulting 
ost matrix to �nd 
orrespondingend nodes while skipping elements that are too expensive to be aligned.This pro
edure is done for ea
h 
ombination of end nodes in the two skeletons.The �best� mat
hing, that is, the mat
hing with the lowest total mat
hing 
osts,is assumed to be the right mat
hing.Figure 5.8 shows an example for this pro
edure. The number of wrong 
orre-sponden
es has been redu
ed to four mismat
hes out of 13.
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Figure 5.8: The original path distan
e de�nition was used in this example, with α = 70and M = 50. The OSB fun
tion has been used to 
ompute the �nal mat
hing.5.5.3 Apply �lter to 
orresponden
esThe previous examples have shown that it is di�
ult to de�ne a similarity measurebased on the skeleton paths when dealing with noisy data. Espe
ially if bothskeletons 
ontain end nodes with no mat
hing partner in the other skeleton optimalmat
hings (with few or even no mismat
hes) are not possible. The idea is now to�lter the result, so that mismat
hes are deleted.For example, the mat
hing result for the s
enario shown in �gure 5.5 should be�ltered. One solution is to �lter the found mat
hings a

ording to their mat
hing
osts. Figure 5.9 shows a graph with the mat
hing 
osts. The 
urve's upward trendstarting at x = 12 indi
ates that the mismat
hes indeed possess higher mat
hing
osts. Thus, the �ltering of mat
hings with high mat
hing 
osts 
ould be a possiblesolution to eliminate mismat
hes.The remaining question to be dealt with is how to �nd a threshold for the�ltering. The �rst approa
h tested is to 
ompute the mean of all mat
hing 
osts,and then delete all mat
hings with a 
omputed mat
hing 
ost that is higher thenthe mean. Another threshold 
ould be found by 
omputing the median of allassignment 
osts. The �rst experiments have shown that in general, when usingthe median as a threshold, more mat
hings are eliminated than when using themean. Thus, more mismat
hes are eliminated, but this 
omes at the 
ost that also
orre
t mat
hings are deleted.
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Figure 5.9: Graph showing the in
reasing mat
hing 
osts.Filtering by mat
hing 
osts is a general approa
h and 
ould also be applied toother 3D shapes as well. Another �lter approa
h that 
an be used espe
ially inmedi
al data is the �ltering by angle: As the two volumes are aligned to ea
h otherin the 3D spa
e, the lines indi
ating 
orre
t assignments stand in a similar angleto ea
h other. Thus, one 
an 
ompute the average angle in x, y and z dire
tionbetween these mat
hing lines and �lter those mat
hings whose mat
hing lines di�ertoo mu
h from the average angle in any dire
tion. First experiments have shownthat after �ltering the result with this simple approa
h only few mat
hings remain,in several 
ases even all mat
hings are deleted. Future work 
ould thus in
lude abetter formula for �ltering the mat
hing results by angle.5.6 ExperimentsIn the previous se
tion, ideas were introdu
ed to make the algorithm in [BL08℄more robust for the mat
hing of 3D data, espe
ially the mat
hing of aorta volumes.In summary, these ideas are:
• Order the end nodes by distan
e, or repla
ing OSB fun
tion by Hungarianalgorithm
• Use a di�erent de�nition for path distan
es
• Filter the found mat
hings
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• Repla
e the Hungarian algorithm in the �nal mat
hing with OSB.The single approa
hes also 
an be 
ombined with ea
h other to a
hieve betterresults. The question is whi
h 
ombination of these ideas performs best on theavailable data sets. Di�erent 
on�gurations in the algorithm 
an have a signi�
ante�e
t on the mat
hing result.

(a) (b) (
)Figure 5.10: Di�erent 
on�gurations in the �nal mat
hing algorithm. Figure 5.10a:Hungarian Algorithm was used for the �nal mat
hing. Figure 5.10b: Hungarian Algo-rithm was used for the �nal mat
hing, and two dummy nodes were added. Figure 5.10b:OSB was used for the �nal mat
hing.For instan
e, �gure 5.10 shows the impa
t of the �nal mat
hing algorithm inone data set. Di�erent 
on�gurations of the �nal mat
hing were applied to onedataset. In this example, the 
on�guration vary only in the �nal mat
hing. In all
on�gurations, no expli
it order was used for the end nodes. The path distan
esare de�ned by the radii, but without denominator. The �gure shows that lessmat
hings are found in total when OSB is used instead of Hungarian algorithmfor the �nal mat
hing, as several assignments with high 
osts are skipped. This
omes with the disadvantage that several 
orre
t mat
hings 
annot be found, butmost of the false mat
hings (in the shown example all of them) are �ltered out.Figure 5.11 shows the mat
hing results in another dataset, with variations inthe de�nition of the path distan
e. All remaining parameters stayed the same inthe three setups: The end nodes were not expli
itly ordered, OSB has been used toextra
t the similarity values of the path distan
e matri
es and the �nal mat
hingwas also performed by applying OSB. By substituting the original path distan
ede�nition from the paper, the number of mismat
hes in this example 
ould beredu
ed from four to two.Of 
ourse, another important parameter in�uen
ing the mat
hing result is thequality of the input skeletons. Figure 5.12 shows the image of the same aorta
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(a) (b) (
)Figure 5.11: Di�erent 
on�gurations of the path distan
e de�nition. Figure 5.11a:Original path distan
e from the paper. Figure 5.11b: Path distan
e by the path length,in
luding the denominator proposed in the original paper. Figure 5.11
: Path distan
eby path length, without denominator.data, segmented and skeletonized with di�erent parameters. In both mat
hingpro
esses, the end nodes were not ordered. The path distan
es were determinedby the path length only - due to the o

uring holes in one of the volumes, the radiiare not meaningful. The OSB fun
tion has been used to 
ompute the mat
hing
osts between two end nodes, and OSB has been used for the �nal mat
hing. Theresults were �ltered by the mean of all mat
hing 
osts. Spurious bran
hes lead tothree mismat
hes in �gure 5.12a, while the same setup with the �
leaner� skeletonslead to no mismat
hes.First experiments showed that the best approa
h is:
• The end nodes should not be ordered. In several 
ases the level of skeletonbran
h shortening is too di�erent for both skeletons. Thus, the proposedorder by length is more an approximation than a real order. The impli
itorder of the end nodes by their o

uren
e in the 3D 
ube has shown to be amore reliable order than the one introdu
ed before.
• OSB should be used to 
ompute the similarity between two end nodes. Thenoisy data leads to several spurious bran
hes in the skeletons and makes skip-ping skeleton elements ne
essary, whi
h is not possible with the Hungarianalgorithm.
• OSB should be used for the �nal mat
hing. Due to spurious bran
hes, it isne
essary to be able to skip elements in the �nal mat
hing pro
ess. Addingdummy nodes to the Hungarian algorithm also deals with this problem, butthe number of nodes to be added varies depending on the data. OSB is more
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(a) (b)Figure 5.12: Impa
t of the skeleton quality on the mat
hing result. The volumes shownare the result of the same image, but segmented with di�erent parameters.reliable for that purpose without manually setting additional parameters.Using OSB instead of the Hungarian algorithm usually leads to the loss ofsome 
orre
t mat
hings as well, but the overall quality of the mat
hing resultin
reases by being able to skip spurious bran
hes.The only parameter where no general solution 
ould be found was the de�nitionof the path distan
e. The 
hoi
e of the path distan
e de�nition highly depends onthe quality of the input skeleton, as shown in �gure 5.13.Unfortunately, the number of available data sets is very small. This makesa proper evaluation impossible. Only nine pairs of pre and post surgery bloodvessel images are available in total, three of them 
ontain distortions the algorithm
an only handle by usage of alternative path distan
e de�nitions, as for exampleshown in �gure 5.13. As this kind of issue is more a problem of the segmentationand skeletonization and the 
orresponding data is not really helpful in evaluatingthe algorithm, these data sets were left out in the experiments. All experimentsperformed in the 
ontext of this thesis are therefore only approximate values. Itis not possible to determine the approa
h's performan
e properly with this littledata.The question is how the mat
hing algorithm 
an be evaluated for the mat
hingof aorta volumes. While the algorithm's performan
e for 2D shapes was testedby performing similarity sear
hes in three shape databases, this pro
edure is notpra
ti
al for the mat
hing of aorta images. Instead, the 
orre
t mat
hings in ea
hdata set have been 
ounted for this purpose. The de�nition of a �
orre
t� mat
hingis di�
ult in the 
ontext of noisy blood vessel data. As most of the skeletons
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(a) (b)Figure 5.13: The impa
t of the path distan
e de�nition on the mat
hing result. Obvi-ously, in the shown example the path radii are no reliable indi
ator for path similarity:Due to the a

rued holes in one of the volumes, the radii at the skeleton paths di�er toomu
h between the two skeletons. Figure 5.13a: The path distan
e is 
omputed as in theoriginal paper. Figure 5.13b: The path distan
e is 
omputed by the di�eren
e in thepath length.
ontain shortened or 
ut o� bran
hes it is often not possible to determine 
orre
tor false mat
hings.Therefore, the experiments are performed as follows: First, a ground truth isestablished by establishing 
orresponden
es between the end nodes in all data pairsmanually. In this ground truth, only unambigitous end node 
orresponden
es wereestablished in order to avoid distorted results. End nodes with no unique mat
hingpartner in the other skeleton are ignored as they would lead to distorted results. Inthe next step, the algorithm is applied to ea
h pair of pre- and postoperative imageswith the parameters des
ribed above. The found end node mat
hings are 
omparedto the ground truth. Mat
hings involving only end nodes that were not mat
hedin the ground truth are ignored as they 
annot be 
lassi�ed unambigitously. Allfound assignments are 
lassi�ed a

ording to the following de�nitions:
• If the assignment involves at least one end node m that is 
ontained in anyground truth assignment, this assignment is further examined:
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tiveother skeleton as in the ground truth, this assignment as 
lassi�ed as
orre
t.� If the assignment does not map m to the same end node n in therespe
tive other skeleton as in the ground truth, this assignment is
lassi�ed as wrong.
• If the end node mat
hing involves no end node that is 
ontained in anyground truth mat
hing, the mat
hing is 
lassi�ed as noise.The results for the six data pairs available are shown in table 5.1. The tableground truth 
orre
t wrong noise1 8 5 2 112 9 5 4 43 9 6 3 44 11 10 1 15 3 1 1 96 7 4 3 6total 47 31 14 35Table 5.1: Summary of 
orre
t and wrong mat
hings in the six pre- and postoperativedata pairs. The single pairs are 
harted in the rows. The 
olumn �ground truth� indi
atesthe total number of manually established 
orresponden
es in the ground truth. The lastthree 
olumns 
hart the number of end node mat
hings found by the algorithm, 
lassi�edby the 
hara
teristi
a des
ribed before.shows that 31 of the 47 mat
hings established manually in the ground truth werefound by the algorithm. In total, 14 mismat
hes were found, and 35 of the foundmat
hings were 
lassi�ed as noise.By additionally �ltering the results the number of mismat
hes and noise 
anbe redu
ed signi�
antly, but this 
omes at the 
ost that also 
orre
t mat
hings areeliminated. In the �ltered results, only 22 of the initial 47 ground truth mat
h-ings were found, but only seven mat
hings were 
lassi�ed as wrong, and only 12mat
hings were 
lassi�ed as noise. This behaviour is shown in table 5.2.If one examines the mismat
hes in detail, one realizes that mismat
hes o

urmainly due to the following reasons:
• The skeleton paths generally are quite similar in the aorta volumes. This wasalready shown in �gure 5.3. It is thus di�
ult to distinguish skeleton pathswithin one volume from ea
h other, only based on the path radii. Hen
e,several end nodes get swit
hed in the mat
hing result be
ause the skeleton
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orre
t wrong noise1 8 5 2 22 9 4 2 33 9 4 2 14 11 4 0 05 3 1 1 36 7 4 0 3total 47 22 7 12Table 5.2: Summary of 
orre
t and wrong mat
hings in the six pre- and postoperativedata pairs. Corresponden
es with a mat
hing 
ost higher than the mean of all 
orrespon-den
es are �ltered out.paths emanating from them are similar. The problem be
omes even 
learerif one inspe
ts the appli
ation of the algorithm: The data to be mat
hedare a blood vessel before a surgery - with an aneurysm - and after surgery- without an aneurysm. As an aneurysm is a bulge in the wall of a bloodvessel, the radii are likely to di�er between the two images.
• The blood vessel volumes 
ontain several jun
tion nodes from whi
h similarshort bran
hes emanate. An example is shown in �gure 5.14. The end nodesat those bran
hes are very similar in their skeleton paths and thus, are likelyto be swit
hed.

Figure 5.14: Example for a mismat
h due to similar radii, highlighted in red. The twoend nodes 
annot be distinguished based on the path radii.
• Several end nodes have no obvious mat
hing partner in the other skeleton.Due to that ambiguity and the fa
t that the path radii are quite similarfor all skeleton points, it is likely that skeleton paths get swit
hed in themat
hing pro
ess.



Chapter 6Con
lusion and future workThis diploma thesis 
onsists of two parts: First, an existing skeleton based 2Dshape mat
hing algorithm was introdu
ed and analyzed for strengths and limita-tions. Then, ideas have been developped to extend the des
ribed algorithm for themat
hing of 3D data.The mat
hing of salient features of a shape is a key 
omponent in severalappli
ations su
h as image retrieval or obje
t re
ognition. The mat
hing algorithmintrodu
ed in this thesis uses the skeleton as a shape des
riptor. Skeletons are aredu
tion of the original shape: 2D obje
ts 
an be abstra
ted to one-dimensional
urves, 3D obje
ts 
an be represented by planes or 
urves. Skeletons �
ontain bothshape features and topologi
al stru
tures of original obje
ts� [BLL07℄. The goal ofthe algorithm is to mat
h the end nodes of a shape's skeleton. The end nodes of askeleton hold important geometri
 information about the shape. In addition, theyare an interesting 
ontour feature as they are part of the skeleton as well as partof the 
ontour. The algorithm is based on a spe
ial skeleton representation thatnot only in
orporates the skeleton stru
ture, but also 
ontour information of theshape, like width. The skeleton's topology is not expli
itly in
orporated. Instead,the similarity between the shortest paths 
onne
ting two end points are used to
ompute the similarity between two end points.In the experiments for 2D, the algorithm showed its advantages when dealingwith non-rigid obje
ts and arti
ulated joints. An average pre
ision of 0.93 (0.98with manually pruned skeletons, respe
tively) for the Aslan and Tari databaseshows that shape deformations that do not a�e
t the skeleton topology or thepath radii have no impa
t on the mat
hing results. The experiments with theKimia-99 and Kimia-216 database also showed a

eptable results with an averagepre
ision of 0.84 and 0.81, respe
tively.However, problems in the re
ognition performan
e o

ured when shapes ofdi�erent 
lasses were similar. In addition, overlaps had a negative impa
t on there
ognition results. A severe limitation of the algorithm is that it requires optimal95



96 CHAPTER 6. CONCLUSION AND FUTURE WORKskeletons. The experiments showed that spurious bran
hes in one of the skeletonslead to distorted mat
hing results in several 
ases, a�e
ting the obje
t re
ognitionperforman
e when using the des
ribed mat
hing algorithm in a retrieval system.This sensitivity to noisy skeletons o

uring in the 2D experiments poses alsoone of the problems in the mat
hing of the 3D data. Another problem for theextension of the algorithm to mat
h 3D data is that in 2D, the order of the endnodes as obtained by traversing the 
ontour is an important mat
hing indi
ator,holding important information about the shape. As it is not possible to traversethe 
ontour in 3D, this important information about the obje
t shape 
annot beused anymore. First experiments showed that as an alternative idea the orderingof the skeleton end nodes by their distan
e to ea
h other was not reliable enoughwhen dealing with noisy data. In the 
ontext of the mat
hing of CT images theimpli
it order of the end nodes by their o

uran
e in the 3D 
ube posed a morereliable order 
riterion a sthe point of view in this type of image is the same, andthe arrangement of the volume in the 3D 
ube 
an assumed to be similar.In general, the mat
hing of blood vessel volumes as done in the experiments, isa 
hallenging problem for any mat
hing algorithm. The skeletons 
ontain severalspurious bran
hes with no obvious mat
hing partner in the other skeleton. Ontop of that, all skeleton bran
hes are quite similar to ea
h other as the radii ofthe maximal ins
ribed dis
s hardly vary for any skeleton points. The sensitivityto spurious bran
hes of the introdu
ed algorithm, the la
k of 
ontour informationand less signi�
ant skeleton path radii information thus are all expe
ted to have anegative impa
t on the mat
hing results.Due to the la
k of testing data no reliable experiments 
ould be performed, butthe �rst analysis showed that the algorithm is able to �nd 
orre
t mat
hings inoptimal skeletons, but is quite prone to noisy data. In the �rst analysis, 31 of 47mat
hings in the manually established ground truth 
ould be found, but also 14mismat
hes o

ured. The mat
hing results are expe
ted to improve if skeletonswith less noise are used.Noisy data poses a problem when 
hoosing an optimal 
on�guration for thealgorithm: While in optimal skeletons, the original path distan
e de�nition usuallyleads to a

eptable results, an alternative has to be used for several 
ases, forexample, if holes o

ured in the volumes due to segmentation errors. Anotherproblem is that due to noisy data, a �ltering of the mat
hing results is ne
essary.In the experiments, mat
hings were deleted from the result if their mat
hing 
ostwas higher than a given threshold, for example the mean of all found mat
hing 
osts.The problem hereby is that due to the fa
t that the skeleton paths all are quitesimilar in this kind of data, the mat
hing 
osts are not the optimal indi
ator fora wrong mat
hing: Several of the wrong end node mat
hings 
ould be eliminatedby the introdu
ed methods, but this 
omes with the 
ost that also several 
orre
t



97mat
hings are eliminated. In the �ltered mat
hing results, the mismat
hes wereredu
ed to seven, but only 22 of the initial 47 ground truth mat
hings 
ould befound.A �rst step to a more reliable mat
hing algorithm for blood vessels was done byrepla
ing the Hungarian algorithm by applying the OSB fun
tion multiple times.That way, no one-to-one 
orresponden
e is enfor
ed anymore whi
h was one of themain problems when dealing with spurious skeleton bran
hes. Using OSB insteadof the Hungarian algorithm led too less mismat
hes, as the skipping of elementsis possible. Thus, skipping elements in the �nal mat
hing is an important stepto improve the mat
hing results. However, the OSB approa
h is limited by thefa
t that it requires a meaningful order of the end nodes. An alternative wouldbe to 
ombine the approa
h with other methods: Using a mat
hing model thatalso allows for partial mat
hing, but does not require an expli
ite order of the endnodes, like the Earth Mover's distan
e [DSK+06℄, 
ould lead to more robustnessin this approa
h.The introdu
ed method is a generi
 approa
h that 
an be applied to any kindof data. For the 
hallenging task of mat
hing blood vessel volumes, further im-provements are ne
essary. Single bran
hes 
annot be mat
hed unambiguously onlybased on the path radii, as they are too similar and likely to be swit
hed in themat
hing pro
ess. One possibility would be to further involve the skeleton's topol-ogy in the mat
hing pro
ess. For example, the skeleton's jun
tion nodes 
ould bein
luded in the mat
hing pro
ess. In the original paper, the jun
tion nodes weredisregarded as the authors argued that jun
tion nodes are not reliable in non-rigidobje
ts. However, in the appli
ation of the mat
hing of blood vessel volumes, thejun
tion nodes also 
arry important information about the aorta. Though aortavolumes are, of 
ourse, non-rigid obje
ts, they are usually hardly deformed in aCT s
an. Xu et. al. [XWB09℄ present an approa
h to involve jun
tion nodes inthe mat
hing pro
ess based on skeleton paths for 2D shapes. Another approa
hto in
orporate the jun
tion nodes in the mat
hing pro
ess would be to involve theangles of the emanating bran
hes at jun
tion nodes, as they are expe
ted to besimilar for aorta images of the same patient.
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