UNIVERSITAT H[]
KOBLENZ - LANDAU ﬂp \

Fachbereich 4: Informatik

Path Similarity Skeleton Graph
Matching for 3D Objects

Diplomarbeit

zur Erlangung des Grades
DIPLOM-INFORMATIKERIN

im Studiengang Computervisualistik

vorgelegt von

Simone Schéafer

Betreuer: Dipl.-Inform. J. Hedrich, Institut fiir Computervisualistik,
Fachbereich Informatik, Universitit Koblenz-Landau

Erstgutachter: Jun.-Prof. Dr. Ing. Marcin Grzegorzek, Institut fiir
Bildinformatik, Departement Elektrotechnik und Informatik, Universitét
Siegen

Zweitgutachter: Prof. Dr.-Ing. Dietrich Paulus, Institut fiir
Computervisualistik, Fachbereich Informatik, Universitit Koblenz-Landau

Koblenz, im April 2011

Kurzfassung

In dieser Diplomarbeit wird ein skelettbasiertes Matching-Verfahren fiir 2D - Ob-
jekte vorgestellt. Zunéchst werden aktuelle Ansdtze zum Matchen von Objekten
vorgestellt, anschliefend werden die Grundlagen von skelettbasiertem Matching
erklart.

Ein skelettbasiertes Verfahren wurde im Rahmen dieser Arbeit geméf des vor-
liegenden Original-Paper neu implementiert. Diese Implementierung wird anhand
einer Ahnlichkeitssuche in drei Bild-Datenbanken evaluiert. Stirken und Schwi-
chen des Verfahrens werden herausgearbeitet.

Des weiteren wird der vorgestellte Algorithmus auf Erweiterungen untersucht,
die das Matchen von 3D-Objekten ermoglichen sollen. Im speziellen wird das Ver-
fahren auf medizinische Daten angewendet: Pre- und postoperative CT-Aufnahmen
der abdominalen Aorta eines Patienten vor und nach einer Operation werden mit-
einander verglichen. Problemfélle und Erweiterungsansitze fiir das Matchen von
3D-Objekten im Allgemeinen und von Blutgefifen im Speziellen werden vorge-
stellt.

Abstract

In this diploma thesis a skeleton-based matching technique for 2D shapes is in-
troduced. First, current approaches for the matching of shapes will be presented.
The basics of skeleton-based matchings will be introduced.

In the context of this diploma thesis, a skeleton-based matching approach was
implemented as presented in the original paper. This implementation is evalu-
ated by performing a similarity search in three shape databases. Strengths and
limitations of the approach are pointed out.

In addition, the introduced algorithm will be examined with respect to extend-
ing it towards matching of 3D objects. In particular, the approach is applied to
medical data sets: Pre- and postoperative CT images of the abdominal aorta of one
patient will be compared. Problems and approaches for matching of 3D objects in
general and blood vessels in particular will be presented.

Erklarung

Ich versichere, dass ich die vorliegende Arbeit selbstéindig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe und dass die
Arbeit in gleicher oder dhnlicher Form noch keiner anderen Priifungsbehorde vor-
gelegen hat und von dieser als Teil einer Priifungsleistung angenommen wurde.
Alle Ausfiihrungen, die wortlich oder sinngemif {ibernommen wurden, sind als
solche gekennzeichnet.

Die Vereinbarung der Arbeitsgruppe fiir Studien- und Abschlussarbeiten habe
ich gelesen und anerkannt, insbesondere die Regelung des Nutzungsrechts.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einver- ja [J nein [J
standen.

Der Verdffentlichung dieser Arbeit im Internet stimme ich zu. jalJ mnein OJ

Koblenz, den 7. April 2011

Contents

1 Introduction
1.1 Motivation
1.2 Document structure

2 Overview of matching techniques

3 Foundation of skeleton-based matching

3.1 Skeletons.
3.1.1 Skeletonsin2D Lo
3.1.2 Skeletonsin3D
3.1.3 Skeletonizationin 2D oL
3.1.4 Skeletonizationin3D
3.1.5 Skeleton pruningo

3.2 Matching of time serieso

3.3 Graph Matching oo o
3.3.1 Terms and definitions
3.3.2 The assignment problem

3.4 Rating of retrieval systems oo

4 Path Similarity Skeleton Graph Matching

4.1 Algorithm outlineo
4.1.1 Skeleton representation
4.1.2 Dissimilarity between end nodes
4.1.3 Matching the end nodes
4.1.4 Summaryo

4.2 Experimentso
4.2.1 End node matching L.
4.2.2 Recognition performance

5 Skeleton Graph Matching in 3D
5.1 Dataorigin

13
13
14

15

19
19
20
25
27
31
33
37
41
41
42
46

49
20
20
02
25
26
o7
57
66

75

8 CONTENTS

5.2 Considerations about matching of 3D objects 7
53 OSBin3D 80
5.3.1 Replacing the OSB function 80
5.3.2 Ordering the end nodes 81
54 Similar disc radiio 82
5.5 Dealing with noiseo oL 84
5.5.1 Preprocessing the skeletons 84
5.5.2 Skipping elements in the final matching 85
5.5.3 Apply filter to correspondences 87
5.6 Experiments 88

6 Conclusion and future work 95

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2

Skeletonization algorithms and their properties. 32
Example shapes from the Aslan and Tari database 66
Example queries in the Aslan and Tari database 67
Mismatches in the Aslan and Tari database 68
Example shapes from the kimia-99 database 70
Example shapes from the kimia-216 database 70
Example queries on the Kimia-216 database 72
Summarization of correct shapes in the 1st, 2nd,.. retrieval result. . 72
Similar shapes in the Kimia-216 database from different classes. . . 73
3D matching results 93
3D matching results after filtering 94

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Rectangle and its skeleton
Identification of junction nodes
Ambiguity in the discrete pixel space
Two different shapes with the same skeleton.
Skeletons in the presence of noise
Surface skeleton and curve skeleton of a hand shape
Morphological reduction, not preserving connectivities
Skeletonization by thinning
Voronoi diagram based skeleton. 000000
Sign map based on the euclidean distance map
Thinning of a 3D shape
Skeleton before and after pruning
Area based pruning L
Bending potential ratioo
Skeleton pruning by contour partitioning
Construction of a weighted graph
Example for an r-partite graph

Example of two skeletons to be matched.
Skeleton paths
Sampling of the skeleton path vectors.
The matching result. Matched end nodes are connected by lines. . .
Example of a good matching result
Example of a good matching result
Matching of shapes with bended object parts
Example of matching in rotated shapes
Matching between a dogand acat.
Matching in the presence of occlusions
Matching in the presence of occlusions
Presence of occlusion and missing object parts
Flipped shapes

12

4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

5.1
0.2
5.3
5.4
2.9
5.6
2.7
5.8
2.9
5.10
5.11
5.12
5.13
5.14

LIST OF FIGURES

1-to-1 matching is not always possible 64
Bad matching caused by spurious branches 65
Spurious branch L0000 65
Matching after the spurious branch has been removed 66
Matching with spurious branches, leading to bad similarity values. . 68
Crocodile skeleton before and after the manual pruning 69
Precision and recall in the kimia-99 database 71
Precision and recall in the kimia216-database 73
Schematic overview of the arteries in the human body. 76
Pre- and postoperative blood vessel volume 7
Skeleton with visualization of distance transform 78
Applying the algorithm without any alterations to 3D data 79
Replacing OSB function with the Hungarian Algorithm 81
Ordering the end nodes according to their distance to the start node 83
Adding “buffer” nodes before applying the Hungarian algorithm . . 86
Final matching with OSB function 87
Graph showing the increasing matching costs. 88
3D matching with variations in the final matching 89
3D matching with variations in the path distance definition 90
Impact of the skeleton quality on the matching result 91
The impact of the path distance definition 92
Mismatch due to similarradii 94

Chapter 1

Introduction

1.1 Motivation

The amount of image data is growing rapidly, supported by the increasing possibil-
ities to save huge amount of data. So does the number of 3D models, as advanced
scanning methods and higher processing power get less expensive and hence more
widespread.

The problems stemming from this development are similar for both 2D and
3D data: The recording and consumption of such data gets more easy, but the
complexity of searching through the data and establishing relations between these
items complicates the access to the data. In comparison to well-tried data types like
plain text documents, images and 3D-models are difficult to manage by software.
For example, an image retrieval system enables the user to browse through a
database of images. Searching in semi-structured data like text documents is less
complex as search conditions can be controlled by syntactic means like keywords
contained in the documents. Image searches have to happen by semantic aspects
which are not explicitly known in an image [Sch06].

Similarity measures for 2D or 3D images are therefore an ongoing research
topic. They are an important contribution to various applications, like multimedia
retrieval, object classification or object recognition. Multimedia retrieval deals
with the problem of similarity search in databases where no explicit similarity for
the contained objects is known. Classification and recognition usually rely on a
comparison of a query shape to a set of known prototype shapes.

Thus, comparing two shapes is a key component in the applications mentioned
before. In order to compare two shapes, salient features of the two shapes are
selected. The query shape’s features are compared to the target shape’s features
based on a predefined similarity measure. That way, the features of one object can
be mapped to the features of another object so that they are as similar as possible:

13

14 CHAPTER 1. INTRODUCTION

Correspondences are established between the objects’ features. This process is also
called matching. The matching of two 2D or 3D images is hence a key component
in all of the applications mentioned before. The challenge is to find a meaningful
similarity measure that captures most of the original shape’s properties.

1.2 Document structure

This diploma thesis can be divided into two parts: First, the promising skeleton-
based technique for matching two-dimensional objects presented in [BLO8| will
be introduced. The technique was reimplemented, evaluated and tested for lim-
itations. Second, the possibilites to extend this technique for matching three-
dimensional objects are examined. The approach is tested by matching blood
vessel data.

This document is structured as follows: Chapter 2 gives an overview of existing
work for matching techniques of 2D and 3D images. In particular, previous work for
skeleton-based matching is examined. In chapter 3, the fundamentals of skeleton-
based matching approaches are explained, including basic notations, skeletons and
fundamentals of graph matching. Basic terms and notations will be introduced.
An outline of the matching algorithm presented in [BLOS§] is described in chapter 4.
In addition, the implementation of this algorithm is evaluated in several matching
and retrieval experiments on three shape databases. Advantages and limitations of
the algorithm are pointed out. In chapter 5 the problems for applying the algorithm
for the matching of 3D data are highlighted. Some ideas on the extension of this
approach to three-dimensional objects are introduced. Conclusions and future
work are summarized in chapter 6.

Chapter 2

Overview of matching techniques

When comparing two shapes, a representation for the shapes is needed. Usually,
the shape representation is a reduction of the complex information contained in
a shape. The representation has to preserve most important geometrical and
toplogical features of a shape while making it easy to apply matching algorithms
to them. The effectiveness of an algorithm for matching two- or three-dimensional
objects highly depends on the choice of representation for the object. Apart from
color- and texture based techniques, an important group of algorithms analyze
objects based on their shape. User surveys show that users, for example in the
context of an image retrieval system, are generally more interested in matching by
shape than by color or texture [SLV99].

Typical approaches for shape-based object matching techniques will be intro-
duced in this chapter.

Point set representation One approach is the matching based on unorganized
point sets. [CRO3| state that points are the “most fundamental of all features”.
Two sets of points are mapped by finding a useful local descriptor, like color or
location, then establishing a one-to-one correspondence between the two point sets
based on the descriptors.

[BMPO02| introduce as a shape descriptor the shape context. Within this ap-
proach the shape is represented by a finite set of boundary points, which are not
required to be landmarks or salient points. For each of these boundary points,
a coarse histogram containing the relative coordinates to the other points of the
shape is computed. The goal is to find corresponding pairs of points in both shapes
with shape contexts that have the highest similarity.

Typically, in approaches based on point sets, landmark points are extracted
from the shape, and these feature points are matched [SP08|. One possibility for
a local point descriptor is SIFT (scale-invariant feature transform) as proposed in

15

16 CHAPTER 2. OVERVIEW OF MATCHING TECHNIQUES

[Low04]. SIFT features are invariant to scale and rotation, and robust to global
illumination changes.

The strength of landmark representations is that, depending on the choice of
landmark, strong and non-ambiguous correspondences between the single elements
can be established [SP08]. When used alone however, point based matching ap-
proaches tend to suffer from supoptimal conditions like noise or outlier elements
[KG10, SK05| as they usually incorporate only local properties.

Boundary representation Another object matching approach is based on bound-
ary representations. A classic way to matching curves is based upon the models
of snakes as originally proposed in [KWT88]: In this model, a snake is a spline,
conceivable as an elastic band, influenced by both internal image forces and exter-
nal constraint forces, both trying to push the snake to model itself after the shape
of an object. These forces could be caused by a user interface or can be detected
automatically. The external force pushes the snake towards the correct location
on the shape, usually salient features like edges or lines, while the internal force is
used to align the shape with the contour.

[You98] use this idea and apply it directly to contour matching by estimating
the costs to stretch or bend the query object’s contour so that it best matches the
target object’s contour. The less energy needed to match the two contours to each
other, the higher the two shapes’ similarity is.

However, boundary representations cannot access shapes’ interior. [SKO05]
states that most curve based techniques are not invariant to scale or rotation.
Another problem is that deformable objects could lead to unsatisfying results
when using curve based techniques, for example in case of articulated joints. For
some applications, curve based representations lead to good results, mainly in lim-
ited domains like recognition of hand writing, but as the experiments in [SK05]
demonstrate, most curve-based approaches show their limitations when dealing
with overlapping object parts.

Skeleton representation Another approach for object representation, the skele-
ton or medial axis, gives access to both shape interiors and boundary properties.
The skeleton is the set of points within a shape that are the center of a maximal
inscribed disc within the shape, that touches the objects boundary in at least two
points. Thus, a skeleton is the reduction of a shape to a thin line centered within
the shape. A skeleton captures essential topology and shape information of the
object in a simple form [LP09]. Skeletons hold information about the interior of
an object as well as information about the object’s outline. When objects are rep-
resented by skeletons, these skeletons are mostly reduced to a graph, and usually
graph matching techniques can be applied. These are generally more computation-

17

ally expensive than the matching of curves. Compared to curve based approaches,
skeleton-based methods show their advantages in the matching of deformable ob-
jects as they are more robust to overlaps, deformations or misplaced object parts
[SKO05].

In general, skeletons offer different possiblities for matching approaches. Com-
plete skeleton branches can be matched to the skeleton branches in the other skele-
ton. Another general approach is to match single salient skeleton points, usually
junction nodes or end nodes, or both.

Several approaches [SKK04, SK96, KSSK00, KSKO01] use a derived form of the
skeleton, called the shock graph or shock tree. Shock graphs were first introduced
in [SK96]. This derived representation differs from skeletons in that the contour
information of a shape is incorporated.

[KSSK00, KSKO01] match shock trees based on an edit-distance algorithm. The
edit distance is computed by traversing the rooted shock tree, and edit operations
like stretching or bending are applied to the traversed edges. The idea is to deform
one skeleton branch in one skeleton to another branch, that is more similar to a
specific branch in the other skeleton. Possible edit operations include operations
that might change the graph topology, as for instance inserting, merging or delet-
ing branches, and topology-preserving operations like stretching or compressing a
branch. Each edit operation comes with a predefined edit cost. The correspon-
dence between skeleton branches can then be found by finding the “cheapest” edit
operation to transform one shock graph into another. The similarity of two shapes
is defined as the sum of all edits costs. The skeleton needs to be converted to a
rooted tree before matching which might lead to a loss of topological information.

The main idea of the shock graph based approach introduced in [SKKO04] is to
“treat each shape as a point in a shape space and define the distance between two
shapes in terms of the minimum-cost deformation path connecting them” [SKKO04].
In order to reduce the dimensionality of all possible deformations, the shape space
is partitioned into shape cells, where each shape cell contains shapes having identi-
cal shock graph topology. In order to compute the similarity between two shapes,
an edit-distance algorithm similar to [KSKO01] is applied. Editing a query shape
will lead to one or more transitions between the shape cells. Correspondences
between two shapes can be established by observing these transitions.

[HHWO04] match skeletons mainly based on their topological information. Two
skeletons’ branches are matched according to their connectivity within the skeleton,
observing bifurcations at junction nodes in reference to the bifurcation angles be-
tween skeleton branches emanating from junction nodes. Furthermore, for object
recognition, the object shape variations are incorporated by computing a Gaussian
distribution on the distance values within the shape. This approach lacks flexibil-
ity for matching non-rigid objects: As the angle of branches at junction nodes

18 CHAPTER 2. OVERVIEW OF MATCHING TECHNIQUES

differ if parts of the objects are moved, this is no reliable matching indicator for
articulated joints. Moreover, junction nodes tend to get disarranged in moving
objects [XWB09| and are thus not a reliable matching feature when used without
other support matching indicators.

[DSK*06, DSD09| deal with the problem that in noisy image data, due to
errors for example in image aquisition or segmentation, one-to-one matchings are
not always possible. This approach thus significantly differs from other approaches
in the process of the final matching. In most matching approaches, a one-to-
one correspondence is enforced. That is, each element in one skeleton has to
be matched to exactly one element in the other skeleton. [DSK*06| embed two
skeleton graphs into the same space and map each node’s attributes to a vector of
masses. In this scenario, the matching of skeletons is not the matching of a graph
anymore but the computation of the minimal flow from one weighted point set
to another which can be computed by Earth Mover’s Distance (EMD) [RTG9S].
The advantage of EMD over other approaches is that it permits partial matchings
instead of enforcing one-to-one-matchings.

Most of the existing approaches based on skeletons cannot deal with holes in
the shapes which would lead to loops in the skeleton [BLOS|. One advantage of the
algorithm proposed in [BLO8| (which will be described in detail later) over other
approaches is hence that loops are no problem for this algorithm.

Furthermore, several approaches for the matching of 3D models based on skele-
tons have been proposed. In [CDST05] the distance transform value is assigned
to each skeleton point which is used in the final matching process. Again, two
skeletons are matched using the FEarth Movers Distance which also permits partial
matchings.

[BI04] propose a backtracking-based approach. The main idea is to find the
largest common subgraph of two skeletons and compute the similarity between
them. In order to find corresponding vertices and edges, the length and angles
of branches at junction nodes are incorporated when computing the similarity be-
tween two subgraphs. This approach has exponential computation complexity. As
the angles of branches in this approach are a significant measurement for similarity
non-rigid objects are hard to match with this approach.

[SSGDO03] match the vertices of two skeleton graphs. A so-called signature
is assigned to each graph vertex. These signatures are vectors representing the
structure of the underlying subgraph at this node, based on the eigenvalues of the
subgraph’s adjacency matrix. The similarity between two nodes is then defined by
the distance between these signatures. Thus, this approach only takes local shape
information into account.

Chapter 3

Foundation of skeleton-based
matching

In the following chapter the fundamental concepts that form the foundation for
this thesis will be described.

As mentioned in chapter 1, in this diploma thesis a matching technique will
be presented and evaluated. In particular, the presented matching algorithm uses
skeletons as a shape descriptor. Therefore, section 3.1 will summarize the fun-
damental concepts of skeletons in 2D and 3D images. The computation of the
similarity between salient skeleton points will later be reduced to the problem of
matching time series, that is, sequences of real numbers. Section 3.2 therefore
introduces the main ideas of the matching of time series. As the final matching of
salient skeleton points will be based on graph theory problems, the fundamentals
of graph matching will be introduced in section 3.3. Finally, the basic concept of
retrieval systems will be introduced in section 3.4, as the matching algorithm will
be evaluated by a simple retrieval software.

3.1 Skeletons

Initially, the term skeleton, also called medial azis, has to be clarified. Skeletons are
a shape descriptor for objects. Shape descriptors generally represent shapes in an
abstracted way, reducing the content of the shape to facilitate further processing
and analysis. Skeletons in particular are an “abstraction of objects, which contain
both shape features and topological structures of original objects’ [BLLO7|. First,
skeletons will be introduced for 2D objects. Then, an introduction to 3D skeletons
will be given.

19

20 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

3.1.1 Skeletons in 2D

For the first time, skeletons as a shape descriptor were mentioned 1967 in the work
of Harry Blum [Blu67| about visual perception of shapes. According to Blum’s idea,
from each edge and each corner of an object, waves are spreading uniformally in all
directions. These waves don’t interfere with each other, and all waves propagate in
the same speed. Two waves are cancelled as soon as they collide with each other.

One can imagine that the foreground pixels in a binary image are made of
prairie grass. All shape boundary points are then set on fire simultaneously, and
the fire fronts propagate inside the object at the same speed. After some time, two
or more of these fire fronts will converge in a point which is then said to belong to
the skeleton S of the shape. After a clash, the involved fire fronts are extinguished
[Ogn92|.

Another geometrical model of skeletons is to consider skeletons as the set of
all interior points of an object, where each point is the center of the largest disc
that exactly fits within the object boundary, called the largest inscribed disc. In
particular, a disc A is said to be a maximal inscribed disc if the following conditions
hold [Mai99|:

1. A is totally contained in the shape
2. There is no other disk totally contained in the shape which contains A

A maximal inscribed disk A centered at a skeleton point p touches the object
boundary in at least two points.

Figure 3.1: Rectangle and its skeleton, marked in black lines. A and B are skeleton
points, as both are the center of a maximal inscribed disc, touching the boundary in at
least two points. Image source: [Pall.

Figure 3.1 shows a simple example, a rectangle and its corresponding skeleton.
Three points within the shape are highlighted: A, B and C'. The maximal inscribed

3.1. SKELETONS 21

disc that center on them but fit within the shape is shown. The surrounding discs
centered at A and B touch the object boundary in at least two points. Thus, A
and B are skeleton points. C' is not a skeleton point, as the maximal inscribed
disc centered at C' touches the boundary at only one point. From the skeleton’s
definition it can be concluded that the skeleton is always completely contained
within the shape.

Both theoretical models - the propagation model and the model of maximal
inscribed discs - are equivalent. The geometric consideration underlying both is
that each skeleton point is equidistant to at least two boundary points.

Formally, and with the idea of maximal discs in mind, the skeleton S of a shape
2 with the boundary 0f) is defined as the set of all “points p in €2 that have at
least two boundary points a, b at minimum distance of p” [Ren09]:

S={peQ|3a,beda#b|p—al=|p—0l=D(p)} (3.1)

where D : Q) — R, is the distance transform, “assigning to each object point the
minimum distance to the boundary” [Ren09|. The boundary points a,b with the
described properties are called the feature points of the skeleton point p.

Figure 3.1 shows that a skeleton is a connected set of digital arcs, in this
example, straight lines. These curves are called skeleton branches. Each skeleton
branch consists of a finite number of skeleton points. Skeleton points can be
classified according to the number of their feature points. Skeleton points having
exactly two feature points are called connection points. Point B in the figure is
a so-called junction point, that is, a skeleton point where at least three skeleton
branches meet. Junction points have at least three feature points, depending on
the number of branches they are connecting. The maximal inscribed disc of an
endpoint partly overlaps with the shape contour. Thus, the feature points form
one contiguous set [Ren09].

For the purpose of image analysis, skeletons are often further simplified by
creating the so-called skeleton graph. A skeleton graph is a reduction of the original
skeleton to only end points and junction points, as these are the kind of points that
hold the skeleton’s topological information. Thus, the skeleton graph is created
by removing all connection points and directly connecting the remaining points
[YBYLO7, BLOS].

To use skeletons as a shape descriptor in digital image processing, the theo-
retical concepts of the skeleton have to be mapped to the discrete pixel space. A
shape’s skeleton is usually encoded in a binary image. Given a binary skeleton
image, the skeleton is defined by the set of pixels labeled as foreground pixels.
Generally, one foreground pixel represents one skeleton point. Henceforth, a pixel
in the skeleton binary image labeled as foreground will be referred to as skeleton
pixel, and the words skeleton point and skeleton pixel will be used interchangeably.

22 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

When processing a skeleton image, it is desirable to be able to identify the
topological points, that is, end points and junction points, by the examanation
of the 8-neighborhood of the skeleton pixel. For example, a skeleton pixel having
exactly one adjacant skeleton pixel is an end point. The distinction between the
two remaining types of skeleton points is a little more complex. Generally, a skele-
ton point where at least three skeleton branches meet is called junction point, and
skeleton points that are neither end points nor junction points are called connec-
tion points. For the discrete case, one could conclude that junction points always
have at least three adjacent skeleton pixel in the 8-neighborhood, while connection
points have exactly two adjacent skeleton pixels. However, in practice, there are
pixel constellations where connection points have more than two neighbors. An
example is shown in figure 3.2. The left half of the image shows an example skele-

7

e
B <

Figure 3.2: Junction points can not be identified unambiguously in the 8-neighborhood.
As can be seen in the skeleton cut-outs in the right, in some constellations, the choice
of junction points depends on the order in which pixels are traversed when creating the
skeleton graph.

ton. The pixel rasters drawn in larger scale in the right half of the image show a
cut-out, of the skeleton in the left. As shown in the cut-outs, the choice of junc-
tion point depends on the order in which pixels are traversed when creating the
skeleton graph. Obviously, in this pixel constellation three different pixels could
be chosen as junction point. Thus, the identification of junction points requires
more consideration. One possibility is to classify junction points as they are en-
countered while traversing the skeleton branches, while all neighboring nodes are
classified as connection points. This would lead to random choices, as the choice of
junction point highly depends on the starting point for the traversal of the skeleton
points. This issue is not widely discussed in literature. [RJPO0O0] propose to deal
with this issue by assigning priorities to different types of connections of skeleton
pixels. The idea is to trace the skeleton branch at potential junction points in a

3.1. SKELETONS 23

way, that edge-connected neighbors are traversed first. The skeleton point with
the most edge-connected neighbors will be chosen as the junction point.

Skeleton properties An object’s skeleton has the following properties, which
can be derived from its formal definition [CS07, Ren09, Mai99|:

Centered By definition, skeletons are centered within the object. Furthermore,
a skeleton S of an object F' is totally contained in F. One problem with
this condition is the discretization in image processing. Due to inaccuracies
in the discrete pixel space, the skeleton might not be exactly centered. For
example, in a rectangle with a height of an even number of pixels, there are
two pixels that could be seen as center of the object, as shown in Figure 3.3.

Figure 3.3: In the discrete pixel space, skeletons are not exactly defined. In this
example, each square represents a pixel, grey pixels are boundary pixels. The clash of
the two fire fronts implied by the two arrows would be between the pixels marked with
red, which is not possible.

Thin The skeleton abstracts the original shape to a thin representation, and
thus has one dimension less than the original shape. In the discrete two-
dimensional case, the object is abstracted to a thin line. This means that
the skeleton is exactly one pixel thick at each position.

Homotopic A skeleton preserves the topology of the original object, as was
proven in [Lie04]. Simply said, “two objects have the same topology if they
have the same number of components, tunnels and cavities” [CS07|. That is,
the upper-level structures of an object €2 and its skeleton .S can be mapped
onto another by a continuous transformation [Mai99).

Reconstruction The structure of the skeleton alone is not sufficient for recon-
struction of the original shape. To allow the reconstruction of the original
shape from a skeleton, additional information has to be stored with the skele-
ton. If the distance of a skeleton point to its feature points is known, the

24 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

original shape can be restored as it is known that the feature vectors pa and
pb pointing from a skeleton point p to its feature points a and b are normal
to the shape boundary [Ren09]. This structure is then called a medial axis
transform. However, in practice, accurate reconstruction can get difficult
due to inaccuracies in the pixel space, as shown in figure 3.3.

Uniqueness The medial axis transform is unique for different shapes. However,
the skeleton is not: Two different objects can have the same skeleton. An
example is shown in figure 3.4

Figure 3.4: Two different shapes, having the same skeleton. Image source: [Pal]

Connected A skeleton is contiguous. No gaps or holes exist on any skeleton
branch. In the discrete pixel space, this means that every skeleton point has
at least two skeleton points in its 8-neighborhood, besides end points, which
have exactly one skeleton neighbor pixel in the 8-neighborhood.

Transformation invariant As isometric transformations do not change the ge-
ometry of a shape, skeletons are invariant to isometric transformations like
rotation, translation and uniform scale change.

Unstable The biggest weakness of skeletons is their instability towards noise. Fig-
ure 3.5 shows the skeletons of a bird and the influence of various deformations
by noise.

The types of noise are classified as salt-and-pepper noise and boundary noise.
Salt-and-pepper, as shown in figure 3.5b, is the most intrusive noise in the
context of object skeletons. Removing one single pixel in the shape causes a
change in topology. Boundary noise can cause additional branches, as shown
in figure 3.5c and 3.5d.

Typically, these problems are dealt with by preprocessing the input image,
i.e. with gaussian smoothing. Additional branches, occuring by boundary
noise, can be eliminated after skeletonization. This instance is called pruning,
which will be explained later.

3.1. SKELETONS 25

Figure 3.5: 3.5a: regular skeleton. 3.5b: skeleton distorted by noise within the shape.
3.5c and 3.5d: skeleton distorted by boundary noise.

3.1.2 Skeletons in 3D

Up to now, skeletons for two-dimensional objects were discussed. Skeletons in
the three-dimensional space are quite similar in the main principles, but are more
difficult to define.

In general, a skeleton is a reduction of dimensions of the original shape. For
the two-dimensional case, this means that two-dimensional planes are mapped to
a set of one-dimensional lines, as described earlier. In the three-dimensional case,
a distinction between S32 surface skeletons and S*! curve skeletons is made.

(a) Surface skeleton (b) Curve skeleton

Figure 3.6: Figure 3.6a: Surface skeleton of a hand shape. Figure 3.6b: Curve skeleton
of a hand shape. Image source: [Ren09|

The surface skeleton is the direct transfer of the Blum skeleton to three dimen-
sional data and thus, has similar properties. The definition of a skeleton point is

26 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

adjusted so it can apply to 3D: A skeleton point is not the center of a maximal in-
scribed disc, but the center of a maximal inscribed sphere. One can imagine that
this direct transfer of the blum skeleton to 3D does not directly lead to curves,
like in 2D, but to surfaces within the 3D shape. Thus, the surface skeleton is
a set of manifolds, called sheets [Ren09]. These sheets can be 2D surfaces and
curves. Curves occur mainly in object parts with tubular form, while surfaces can
be expected in more flattened object parts. An example for a surface skeleton is
shown in figure 3.6a. The figure shows that the surface skeleton has a 2D surface
structure inside the palm of the hand, while the fingers contain curves, similar to
the two-dimensional skeletons. .

In most applications, however, a further reduction of the object is desired.
Curve skeletons are a reduction of three-dimensional shapes to only one dimen-
sional curves. The problem with curve skeletons is that they are not well defined,
and no mathematical definition has been formulated yet [DS06|. The problem
lies hereby in the fact that the most desirable property of the curve skeleton -
centeredness - is difficult to define mathematically for 3D curve skeletons. While
for tubular shapes, like the fingers in the hand shape shown in figure 3.6a, the
centered skeleton is comparatively easy to define and compute, for more complex
shapes, it becomes less clear which points are “centered” within the shape.

Curve skeletons are conceptually related to the Blum skeletons, Thus, they
share many properties. As curve skeletons lack of a formal definition, however,
most properties are more explicit requirements rather than implied by their defi-
nition [Ren09].

Centered As mentioned before, this most prominent desired property of curve
skeletons is hard to compute, and various approaches have been proposed
to define the centeredness of the one-dimensional curve within the three-
dimensional object. For example, one possibility is to restrict the curve
skeleton to a subset of the surface skeleton [DS06].

Thin Like the two-dimensional Blum skeleton, the curve skeleton should be thin.
For the discrete three-dimensional space this means the skeleton should be
exactly one voxel thick.

Homotopic The curve skeleton should preserve the original shape’s topology. In
the three-dimensional space this means that each tunnel in the shape results
in a loop in the curve skeleton.

Reconstruction As the curve skeleton preserves the geometry of the original
shape to a lesser extent, the reconstruction of the shape based on the curve
skeleton is generally not possible. Usually, the curve skeleton preserves only

3.1. SKELETONS 27

geometric information about salient features in the shape, as they are sup-
posed to reach into all salient parts of the original shape and terminate at
prominent points on the shape contour.

Connected Like the two-dimensional Blum skeleton, the curve skeleton is sup-
posed to be connected. That is, there should be no missing voxels (“holes”)
in the skeleton branches.

3.1.3 Skeletonization in 2D

The process of extracting a skeleton from an object is called skeletonization. In
the following, skeletonization algorithms are introduced, first for 2D and then also
for 3D shapes.

There are in principle four main classes for skeletonization techniques: Grass-
fire simulations, thinning algorithms, algorithms based on Voronoi diagrams, and
distance map based algorithms [BLL07, PSST03, Ren09].

Grassfire simulations Grassfire simulations actually try to implement the idea
of skeletons as proposed by Blum, simulating fire fronts spreading from a shape’s
contour. Algorithms of this class are rather rare [OK95]. An early work is intro-
duced in [Mon69|, where each fire front is represented by a sequence of straight-line
segments and arcs. In [LL92|, active contours are used to model the fire fronts.
The snakes in this approach are controlled by a 3D surface H, specified by a previ-
ously computed distance transform. A weight is assigned to the snake that makes
it fall down on the slopes of the surface.

Thinning algorithms The general idea of thinning algorithms is to iterativily
erase pixels from the shape boundary, until only a skeleton remains. A boundary
pixel p is deleted depending on the configuration of the neighbor pixels of p. In
each iteration, contour pixels of the shape are inspected for their topological rele-
vance. The idea is to identify those pixels that are essential for representing the
shape. Like in other morphological operators, the conditions that dictate whether
a pixel can be deleted without changing the object’s toplogy are usually encoded
by structuring elements, also called kernel or template. A match of the template
within the shape causes the center pixel to be deleted.

One of the difficulties in thinning algorithms is that they have to consider
global properties of the shape, like connectedness, though they operate only in a
3 x 3 window. Another problem is to locate skeleton end points as these must
not get deleted [DP81]. Thus, a pixel is deletable, if it is no end point, and if no
connectivities in the original image are destroyed [LLS92|. That is, if two pixel p
and ¢ were connected in the original shape, and both pixels are not deleted during

28 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

the process, they need to stay connected after the deletion. For example, the
erosion shown in figure 3.7 is no valid thinning operation, as parts of the original
shape get disconnected during the process.

Figure 3.7: Parts of the object get disonnected in the reduction process. Thus, the
erosion shown is no valid thinning operation.

The process of deleting pixels is repeated until no pixels can be deleted any
more without violating the operator’s conditions. Obviously, the result of the
thinning process in sequential algorithms heavily relies on the order how pixels are
removed. Thus, the result of an iteration depends not only on the result of the
previous iteration, but also on the removed pixels in the current iteration. Parallel
algorithms deal with this issue by inspecting multiple points for deletion. That
way, in parallel algorithms the removal of pixels depend only on the result of the
previous iteration. Figure 3.8 shows an example of the thinning process on a simple
binary image.

Thinning algorithms usually guarantee connected skeletons. But mostly, the
result is not perfectly thinned as not all unnecessary pixels can be deleted in the
thinning process, and unimportant skeleton branches may remain. Thus, addi-
tional postprocessing methods are needed.

Voronoi diagrams Another class of skeletonization algorithms are techniques
based on Voronoi diagrams. A Voronoi diagram paritions the given space in so
called Voronoi cells. Usually, the input is a set of points in a plane, called gen-
erating points or sites. A Voronoi cell of a site is then the set of all points on
the plane, that are closer to this site than to any other site on the plane. In the
context of skeletonization, boundary points are used as sites. The Voronoi edges
located completely outside the shape are discarded, as are edges that intersect
with the shape boundary. All remaining Voronoi edges form the skeleton. De-
pending on the number of generating points, the skeleton resulting from Voronoi
based approaches consist of more or less long straight lines. Figure 3.9 shows an

3.1. SKELETONS 29

1

cccocncoccccaﬂcc
° © ol el el | ©
oooeovooﬂﬂnncoco
oooooucmiinioooo
oﬂoonooiiiﬂiﬂnﬂc
OQDOOOHHHHHODOGO
cccocﬂﬂﬂﬂﬂﬂcannc

0
0
0
1]
1]
1]
]
1]
0
0
0
0
0
o0
0
0

cococoocococcccce e
coﬂﬂﬂﬂcnoccocﬂcc
cﬂcoc D=======DG o

cﬂoocoeocncococc
Oooao@eoonoococe
oooocooooonocncc
cooncaooocﬂccocc
cconcncnnﬂocencc

OODODOOOHOOQQOQO

O O 0 OO0 OO0 O 0000 0000
oﬂcocacooﬂcooooo
OOOOOOO:OOOOOOOO
Oooenniooeoocoeo
ooﬂﬂcnoooocoﬂocc
C Q0000 000000 0000
cCoocOoOocOO0OO0O000RO00

Q0 QO Q0 Q Q Q0 Q QQQQ
OO0 00 OO0 0000 0000

oo EEEEEEccc o2 0

o
e
&
4]
o
o

1]

1|

1]

1]

1]

[1]

(1]
0
o
o

0 0 QOO0 Q00 00Q00 Q000

~~
¢}
~

(a) (b)

Figure 3.8: Figure 3.8a: Structuring elements. The image is thinned sequentially by
the structuring element shown, and then with the remaining six 90 °rotations of the two
elements in each iteration. This process is repeated until no pixels are removed any more.
Figure 3.8b: Original shape. Figure 3.8c: Skeleton, after the thinning process. Image
source: [FPWWO04].

example of a skeleton, extracted from a Voronoi diagram. The most severe prob-
lem in Voronoi diagram based methods is the choice of generating points. The
more sampling points were used, the more spurious branches are contained in the
resulting skeleton. Besides, the approach is very sensitive to boundary noise. If
the number of sample boundary points is to high, the generation of the Voronoi
diagram becomes intensive in computational time as well as in memory usage. If
too few sampling points are used, it becomes more likely that important boundary
points are not taken into account for skeleton generation.

Distance maps The idea in distance map based approaches is to first compute
the distance map for the input shape. Different distance functions have been used
for that purpose. The euclidean distance map is neither trivial nor efficient to com-
pute, but the euclidean distance can be substituted by simpler distance functions
like chessboard or Manhattan distance. This usually leads to less complex com-
putations, but reduces the distance precision. The skeleton can then be extracted
from the computed distance map. The general idea is as follows: The distance map
can be seen as a height map, and skeleton points can be found at local maxima.
This might lead to single points on the distance map’s peaks, which requires addi-
tional post processing methods to guarantee connected results. [Cha07| introduce
an algorithm for finding the ridges in the distance map by creating a sign map for
an object’s distance map: The rows of the distance map are scanned from left to
right. If a pixel has a higher value than its left neighbor, this pixel in the sign map
is marked by a “+”. If both pixels have the same value in the distance map, the

30 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

Figure 3.9: Example for a Voronoi diagram based skeleton. The original shape (a
rectangle) is shown in grey. The black dots are sampled on the shape boundary as
generating points. The corresponding Voronoi cells are indicated by black lines. Voronoi
edges outside the shape, as well as Voronoi edges intersecting with the shape boundary
are discared. The remaining edges form the skeleton, marked in red. Image source: [Pal].

current pixel is marked with a “0”, and it is marked with a “-” if the left neighbor
has a higher value than the current pixel. The process is repeated for the columns
of the distance map. The resulting sign maps are visualized in figure 3.10.

These sign maps are then analysed to find ridges. The most obvious indicator
for a ridge is a “+-"-pattern in the sign map. To handle two neighboring points
having the same distance to the object boundary, the “4-0-" pattern is also included
as an indicator for a ridge. With this technique, the result is still not connected,
so the gaps have to be filled by tracing the maximum gradient paths around the
found ridges.

Each of the skeletonization algorithms have their advantages and disadvantages.
Neither of them can preserve all desired skeleton properties as discussed before.
[CSMO07]| examine the classes of skeletonization algorithms with respect to their
preservation of some of the desired properties. Table 3.1 shows an overview of
their conclusions.

The examination is based on the general idea of the skeletonization algorithm
classes. However, variations of these classes can have subtle differences in some
of these properties. For example, the centeredness of the skeleton produced by a
skeletonization algorithm based on Voronoi diagrams depends on the density of
the sampling points.

3.1. SKELETONS 31

Figure 3.10: Both sign maps based on the euclidean distance map. The left figure
shows the sign map for the image’s rows, the right image shows the sign map for the
image’s columns. Image source: [LKMT]

3.1.4 Skeletonization in 3D

For 3D, skeletonization algorithms are based on similar concepts as the 2D algo-
rithms. The skeletonization approaches in 3D can be classified into the same classes
as the 2D algorithms: Grassfire simulations, thinning algorithms, algorithms based
on Voronoi diagrams, and distance map based algorithms.

Grassfire simulations [QSO04] model the skeletonization process after the orig-
inal idea of Blum and simulate the wave propagation within the shape. Where two
wave fronts meet, the point is marked as a skeleton point. This simple approach
leads to surface skeletons, as in complex objects, the waves are rarely expected to
clash in one centerline. [SLSKO07| generate curve skeletons by using a grassfire sim-
ulation: They use model deformations to observe competing fire fronts to extract
multiple centered lines, approximations for the actual skeleton. By keeping track
of the reconstruction of the original shape, the “best” centered axis is chosen from
the set of generated lines.

Thinning algorithms The idea of thinning algorithms in 3D is similar to the
thinning algorithms in 2D, namely to iteratively delete those voxels from the shape
border that satisfy specific geometric and topological contraints. The thinning
algorithms in 3D however can also be classified by the type of skeleton they produce.

32 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

Thinning | Voronoi | Distance Map
Centered - - v
Thin - v v
Homotopic v v -
Reconstruction - - -
Connected v v -
Robust - - -
Invariance - v v

Table 3.1: An overview of the skeletonization algorithms and the properties they guar-
antee in the resulting skeletons.

Some algorithms extract the surface skeleton [Ber95, Pal08| while others directly
compute the curve skeleton [PK98, XTP03, LG07|. Like in 2D, the difficulty is
to preserve the global connectivity by only inspecting the 3 x 3 x 3 neighborhood
of a voxel. Usually, a voxel is tested against a set of template voxels to test if it
can be removed without changing the topology. A schematic visualization of the
thinning process is shown in figure 3.11.

DEIRTS,

i

s |

1]

-

ii= ! L (¢ phase0

iii i 0 phase 1

Igi i phase 2
E @ phase?
! @ phase4

Figure 3.11: Thinning of a 3D shape. In each phase, voxels are erased from the shape
border, until only a center line - indicated in this figure by the dark voxels - remains.
Image source: [Pall.

3.1. SKELETONS 33

Voronoi diagrams A skeletonization approach for 3D meshes based on Voronoi
diagrams is introduced in [HBKO01]. From the computed Voronoi cells, the Voronoi
poles are extracted, resulting in a point cloud within the volume. Two Voronoi
poles are then connected by an edge if the corresponding mesh vertices also were
connected by an edge. Thus, each mesh triangle is mapped to a triangle of Voronoi
poles, forming a surface skeleton within the shape.

Distance maps Another way to skeletonize 3D volumes uses the volume’s dis-
tance transform as basis. [TWO02] compute the skeleton by computing the 2D-
distance transform for each axis-parallel 2D slice in the 3D volume. In the next
step, the resulting three volumes are intersected voxel by voxel, and that way, the
3D centerline is obtained. [DWTO06]| present a distance map based skeletonization
algorithm using the GPU. The volume’s distance transform is computed and sam-
pled in a 3D texture. The distance value is assigned to the depth channel of the
voxel, and the skeleton can then be extracted using the Z-buffer depth test.

3.1.5 Skeleton pruning

Usually, the skeletons generated by the proposed skeletonization approaches con-
tain spurious branches, mostly caused by boundary noise. Thus, the used skele-
tonization algorithm has to ensure stability of the skeleton. There are generally
two main approaches to handle this problem: The first one is to preprocess the
input shape, typically by smoothing. The idea is to eliminate noise before the
skeleton is computed. The other possibility is to edit the skeleton during or after
the skeletonization process and to erase unimportant skeleton branches based on
a predefined importance measure. The process of finding and deleting spurious
skeleton parts is called pruning. Generally, the pruning process can be integrated
in the skeletonization process or it can be applied after the skeletonization process.
Figure 3.12 shows an example for a skeleton before and after pruning.

The problem is to find a meaningful significance measure for skeleton points and
skeleton branches, respectively. Spurious branches should get deleted completely,
while branches holding important information about the object’s geometry have
to be preserved. An introduction to pruning techniques is presented in [SB9S|.

In [THO2| an area-based pruning method is proposed. The idea is to analyse if
features on the object boundary that lead to additional skeleton branches are to be
considered noise or significant features. For this purpose, the features are defined
as the set of triangles associated with any subtree of the skeleton. An example
is shown in figure 3.13. Features that cover an area smaller than a user-defined
threshold are considered as noise, and thus, the skeleton branches caused by these
features can be deleted.

34 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

Z |
g)
%

o
s
ey
S

Figure 3.12: Left: skeleton containing spurious branches. Right: Skeleton after pruning.
Image source: [BLLO7|

[O192] propose several relevance measures for skeleton points based on the
boundary curve connecting a skeleton point’s feature points. This approach is
based on the fundamental observation that skeleton branches that lie deep within
the object are less sensitive to boundary noise than the outer parts. The length
of the shortest path from one feature point to the other along the boundary is
considered to be an indicator for the importance of a skeleton point. If this distance
is long, the concerned skeleton point is likely to lie deep inside the object and thus
may not be removed. If the distance is below a threshold, this indicates that
the skeleton point was caused by noise and can be removed. Connectivities are
preserved in this approach, but pruning based on the residual function might lead
to the loss of end nodes.

[SBH*11] introduce a siginificance measure based on the bending potential
ratio. The bending potential ratio is defined for a skeleton point p and its feature
points ¢; and ¢z. An isosceles triangle with the base qiqz is defined with the
additional vertex g such that

d(g,q1) = d(g,q2) = %l(fhﬂh) (3.2)

where [(q1, g2) is the arc length between ¢; and ¢y, measured on the boundary. g is
then called the ghost point of the contour segment between ¢; and go. The bending

potential ratio is defined
h
e(p,q1,q2) = h—g (3.3)
P

where h, is the height of triangle ¢, 9¢2, and h,, ist the height of triangle ¢;pgs.

3.1. SKELETONS 35

Figure 3.13: Area-based pruning. The left image shows the original, unpruned skeleton.
The shaded regions in the right image are smaller in area than the given user-defined
threshold. Image source: [TH02]

As hg is influenced by the length of the contour segment, it holds information
about the bending of the contour segment. The assumption is, the higher h, is
the more significant is the corresponding skeleton point p.

The bending potential ratio contains not only local information of the contour
segment between ¢; and ¢, encoded by hy, but also the context where it is located.
If a skeleton point is located on a broad part of the object, it is more likely to be
interpreted as a feature if only the arc length of the contour segment is taken into
account. Therefore, h, is included to avoid hastily considering skeleton points as
features. Figure 3.14 shows a visualization of the bending potential ratio.

Since the skeleton to work on is the fundament for further analysis, the used
skeletonization and pruning algorithm have to be chosen carefully. For the exper-
iments in this diploma thesis, the pruning algorithm introduced in [BLLO7| has
been used, as it promises to preserve the shape topology, while removing most
spurious branches. Besides, the applicability of this approach has been proven in
[BLO8]. The proposed technique is based on the observation that shapes usually
can be segmented into a few regions or visual parts, and for each of these regions,
only one skeleton branch is needed to represent it. The main idea of this prun-
ing approach is therefore to remove all skeleton points whose feature points are
located on the same contour segment. The difficulty is to partition the contour
in a meaningful way. An algorithm for simplifying shapes called Discrete Curve
FEvolution (DCE) proposed in [LL99b| and [LL99a] is used for this purpose.

The fundamental observation of DCE is that, due to finite image resolution, a
shape boundary in an image can be represented as a finite polygon. During the
process of DCE, the polygon vertices with the smallest shape contributions are
removed recursively from the shape boundary. Thus, in every evolution step, a

36 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

Figure 3.14: Definition of the bending potential ratio. p is the skeleton point to be
examined for relevance, ¢; and ¢y are the feature points of p. Image source: [SBHT11]

polygon is obtained in which the less important vertices of the previous polygon
are removed, until only a subset of boundary vertices remains that best represents
the original shape.
The unanswered question remaining is what “important” means in this context.
In [LLI9b| a relevance measure for a vertex v, depending on v and its two neighbor
vertices u,w in the polygon P! of the current evolution process i, is introduced.
Intuitively, the relevance measure takes into account the shape contribution of
vertex v to the current polygon. Formally, it is given by
Blil

K(v,u,w) = K(B,h,b) = R (3.4)

where 3 is the turn angle at v in P?, [; is the length of the polygon edge 7u and
[is the length of the polygon edge vw. The assumption is, the higher the value
of K(u,v,w) is, the larger is the shape contribution of arc wo UTw to the polygon
in the current evolution step. The vertices with the lowest relevance value can be
deleted.

The pruned skeleton is then computed with respect to the obtained DCE seg-
ments, while concave vertices are ignored. The deletion of a vertex v results in the

3.2. MATCHING OF TIME SERIES 37

deletion of a complete skeleton branch, namely of the branch ending at v. As the
remaining boundary points remain at their position, the skeleton is not displaced
by this process. Figure 3.15 shows an example for the simplification of the original
shape. By deleting boundary points, also skeleton branches are deleted.

Figure 3.15: Skeleton pruning by contour partitioning. The original contour of the
shape gets simplified in each evolution step. The simplified polygon is marked in red.
The deletion of a vertex results in the deletion of the skeleton branch ending at this
vertex. Image source: [BLL07]

3.2 Matching of time series

The concept of time series can be used in various applications, such as word recog-
nition and tracking of moving objects in video sequences. As will be shown later,
also a skeleton’s end nodes can be treated as time series. Therefore, in this section
the matching of time series is introduced.

A time series is a sequence of data points, that is, real numbers. One of the main
problems when dealing with time series is that the time axis might be partially
streched or compressed. For example in speech recognition, speakers might vary
in their pronouncation of words especially in the extent of vocals.

38 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

Various approaches have been proposed to deal with the matching of time
series. The general idea is usually to arrange both time series a and b in a matrix
R, where each matrix cell R;; holds the information about the cost to align the
two elements a; and b;. The best alignment for a and b is then found by mapping
elements of a to elements of b which is then the problem of finding the cheapest
path through the matrix.

One problem when using dynamic time warping (DTW) [BC94]| is that the
exact beginning and ending of the time series have to be known for both sequences
which is not always the case. Minimal Variance Matching (MVM) [LMWT05]
deals with this problem by treating the cost matrix R as a directed graph.

However, the problem remaining in both approaches is the dealing with outlier
elements in one the two time series. An outlier element is an element in one of
the two series that cannot be matched to any element in the other series. Out-
lier elements can have a significant effect on the overall alignment result. Every
element of series a must correspond to some element of the series b, and vice
versa. The Longest Common Subsequence (LCSS) [DGM97| approach deals with
these outlier elements by aligning subsequences, found by moving a window over
the two sequences. The performance of this approach depends largely upon the
configuration of a manually set threshold.

An extension of DTW and MVM, respectively, that deals with the problem of
outlier elements, is the Optimal Subsequence Bijection proposed in [LWKTMO7].
As OSB also is used in the matching algorithm proposed in 4, this approach will
now be explained in detail.

Given are two time series a = (ai,...,a,) and b = (by,...,b,). “The goal
of OSB is to find subsequences a’ of a and b of b such that @’ best matches o
[LWKTMO07|. First, the two time series are arranged in a cost matrix R. The
elements of a are charted in the matrix rows, the elements of b are charted in the
matrix columns. The matrix cell R;; contains the similarity value for a; and b;.
There are no restrictions on the distance function used. One possibility is to use
the difference between a; and b;:

Tij = (b] — ai) (35)

The idea is to find the least-value path through the matrix without going back-
wards, neither in the rows nor in the columns. As in MVM, the idea is to treat
the cost matrix as a directed acyclic graph. The vertices of the graph are all in-
dex pairs (i,7) € {1,...,m} x {1,...,n}. Thus, one graph vertex represents one
matrix cell. Two vertices (7,) and (k,1) are connected by an edge if the following
conditions hold:

1. ©+ 1 < k, that is, rows in the matrix can be skipped, but it is not allowed
to go backwards

3.2. MATCHING OF TIME SERIES 39

2. 7+ 1 <, that is, columns in the matrix can be skipped, but it is not allowed
to go backwards.

The edge weight w((1, j), (k,l)) depends upon whether the two vertices (7, j) and
(k,l) are directly adjacent in the matrix. In particular, the edge weight w is
determined by

d(a;, b;), ifi+t+l=Fkandj+1<I

w(('laj)a(kal)) = { kE—i—1 .jumpcost7 ifi4+1<k andj+ 1< (36)

The first definition covers the case that the two vertices represent two consecutive
rows in the cost matrix. The distance between two elements d(a;, b;) is defined
by the entry in the cost matrix at index (i,j). There is no explicit penalty for
skipping columns. The second condition holds if rows are skipped in the cost
matrix. The value jumpcost in this definition is a constant used as a penalty for
skipping rows in the matrix. This constant has to be chosen carefully, as too many
elements might be skipped if the penalty is too low, but if jumpcost is too high,
elements might be forced to align even if they do not correspond. [BLO08| propose
to compute jumpcost as

Jjumpcost = mean;(min;(d(a;,b;))) + std;(min;(d(a;,b;))) (3.7)

For every element a; the closest element b; is found. For all of these minimum dis-
tance values, the mean is computed, and the standard deviation for these minimum
distance values is added.

Once the weighted graph is built, the problem of matching the two input time
series can be solved by finding the shortest path through the graph, using the
shortest path algorithm on a directed acyclic graph. Each path can start at ry;,
for j = 1,...,n — m, that is, in the first row in the first n — m columns. The
end vertex for each path is restricted to r,,; with j = n —m,...,n. For any
correspondence f, the total distance between two time series is then defined by

da,b,) = — S (o, by)? (3.9
i=1

The following example, extended from [LWKTMO7|, will show the basic prin-
ciples of the OSB function. Given are the two time series a = (1,2,8,6,8) and
b=(1,2,9,3,3,5,9). First, the two time series are used to create the difference
matrix R with R;; = b; — a;:

0 1 8 2 2 4 8
-1 0 7 1 1 3 7

R=|-7 =61 -5 -5 -3 1 (3.9)
5 -4 3 -3 -3 -1 3
-7 =6 1 -5 -5 -3 1

40 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

Based on this matrix, the directed weighted graph can be constructed as
desribed above: The elements in the matrix are represented by graph nodes. Nodes
are connected by an edge if this edge would not mean that one can traverse the
matrix in a wrong order, that is, going upwards in the rows or backwards in the
column. To each edge a weight is assigned: if the edge connects two nodes (i, j)
and (k,l) that represent two consecutive rows in the matrix, the edge weight is
given by the value of matrix entry (k,l). If the edge connects two nodes that are
at least two rows in the matrix apart from each other, the edge weight is given
by jumpcost, multiplied by the number of skipped rows. To make it possible to
skip also the border elements (that is, the first and last row and the first and
last column), dummy rows and column are added to the beginning and end of the
matrix. Figure 3.16 shows the edge creation for entry (0,0) in the matrix to the
first few graph nodes, the remaining nodes are skipped in this figure to preserve a
better overview.

)

‘
‘

——()

(2-0-1)*jc (2-0-1)*jc (2-0-1)*jc
1
(3-0-1)*jc (3-0-1)*jc (3-0-1)*jc

Figure 3.16: An example for the construction of a directed acyclic graph, based on
the path distance matrix in 3.9. The graph nodes are the elements of the matrix. The
figure shows the edge creation from the upper left entry (0,0) in the matrix to the nearest
other graph nodes (the other nodes are not shown to ensure a clear arrangement). The
abbreviation jc stand for the constant jumpcost. Observe that skipping columns in the
matrix is not explicitly punished, in constrast to the skipping of rows in the matrix.

:

For all other nodes in the graph the procedure is the same as shown in figure
3.16. Once the graph is built, the shortest path algorithm on a directed acyclic

3.3. GRAPH MATCHING 41

graph can be applied to find the cheapest path through the matrix. The path
found by this approach is highlighted in the following matrix:

0 1 8 2 2 4 8
-1 0 7 1 1 3 7
R=|-7 =61 -5 -5 -3 1 (3.10)
5 —4 3 -3 -3 -1 3
-7 =6 1 -5 -5 -3 1

The highlighted entries are the corresponding elements of the time series. In
this example, no rows are skipped. Finally, the overall distance between the two
sequences is computed as defined in equation 3.8.

3.3 Graph Matching

Many real-world scenarios such as networks, path finding problems or communica-
tion flows can be described by graphs. As will be shown later, also the matching of
two shapes can be mapped to a graph matching problem. Thus, fundamentals of
graph matching will be introduced in the following section. An important field of
graph theory research, the assignment problem, will be discussed in section 3.3.2.

3.3.1 Terms and definitions

Formally, a graph is defined as follows [Die05, BM76, Jun07|: A graph G is an
ordered pair G = (V| E) of sets, where V is a non-empty, finite set of vertices,
and a set of edges F where the elements of £ are 2-element subsets of V', with
V N E = (. Thus, a graph consists of vertices that are connected by edges. Two
vertices u and v are connected if there is an edge e € E with e = (u,v). If two
vertices are connected by an edge, they are said to be adjacent or neighbors. A
vertex in a graph is said to be incident with an edge if it is connected to another
vertex by this particular edge.

The number of vertices in a graph is called its order, denoted by | G |. If all
edges e € E are an unordered pair of vertices u,v € V the graph is said to be
undirected. If all edges e € E are an ordered pair of vertices, the graph is said to
be directed.

Edges can be defined uniquely by the two vertices they connect. However,
additional information can be assigned to the edges, called weights or costs. A
graph with weighted edges is called a weighted graph. Weighted graphs are used
in many contexts, such as routing or matching problems.

A graph path is a non-empty graph such that V' = {zg,x1,..., 2} and E =
{zox1, 2129, ..., Tk_12%}. A path length in unweighted graphs is determined by

42 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

the number of vertices visited in the path. In weighted graphs the path length is
usually determined by the sum of the weights of the traversed edges.

Graphs can be classified according to their properties. One class of graphs is
the r-partite graphs. A graph G = (V, E) is called r-partite if the vertices of G can
be partitioned into r classes such that each edge has its ends in different classes,
with » € N+ and r > 2. That is, two vertices within the same class must not be
adjacent.

Figure 3.17: Example for a bipartite graph. Image source: [Wik11].

A special case of the r-partite graph is the bipartite graph with r = 2. In
particular, it has been shown that the object matching in image processing can be
mapped to the bipartite graph matching problem. Figure 3.17 shows an example
for a bipartite graph.

3.3.2 The assignment problem

A matching M in the context of graphs, also called correspondence, is a subset of
all edges in a graph G such that no edges share the same end nodes. In other words,
all edges e € M are disjunct, meaning none of the edges are incident with the same
vertices. If all vertices v € V' are incident with an edge in M the matching is said
to be perfect.

The term “matching” is now used in two different contexts. Henceforth, the
term will be used for both matching of shape features, as mentioned in chapter
1, as well as for the matching in graph theory. The context should reveal the
particular meaning.

3.3. GRAPH MATCHING 43

A widely spreaded application of graph matching is the matching in a bipartite
weighted graph. A matching M in a bipartite graph maps each vertex in one class
to the vertices in another class. This problem is better known as the assignment
problem. The matching cost w(M) is then determined by the sum of all weights of
the matching edges. A matching M is called a minimum weighted correspondence
in a bipartite weighted graph G if w(M) < w(M') for every possible matching in
G.

Kuhn [Kuhb55] introduces the assignment problem with the following scenario:
Given is a set of persons and a set of jobs. Each person can be assigned to any
job by a predefined cost. The goal is to assign exactly one person to exactly
one job, such that the sum of all assignment costs is minimal. In other words,
the minimum weighted correspondence for the bipartite graph consisting of one
vertex set V7, containing all persons, and one vertex set V5, consisting of all jobs,
is wanted.

Solving this problem by a brute-force algorithm would require computing the
costs for each possible assignment. That would be n! possible assignments, de-
pending on the number of nodes to be matched, resulting in exponential runtime
complexity. A solution to this problem with a better performance is the Hungarian
Algorithm, originally proposed as Hungarian Method in 1955 by Harold W. Kuhn
[Kuhb55] and revised by James Munkres in 1957 [Mun57|. Since then, it is known
as Hungarian Algorithm or Kuhn-Munkres-Algorithm.

Given is a cost matrix R with dimensions n x n, with n being the number of
persons and jobs to be assigned, respectively. The entries of R, 7;;, denote the
assignment cost of person i for the job 7. A set of elements of a matrix is called
independent if neither of them are located in the same row or column. The goal is
to find n independent elements so that the sum of the assignment costs is minimal.

The main approach of the algorithm is to iterativelly increase the number of
zero elements in the matrix. In detail, the steps of the Hungarian algorithm are
as follows [Cas10)|:

Step 1 For each row in the cost matrix, find the row minimum entry. Substract
this minimum from each entry in the row.

Step 2 For each column in the cost matrix, find the column minimum entry. Sub-
stract this minimum from each entry in the column. The matrix resulting
from step 1 and step 2 in this algorithm is also called reduced matrix.

Step 3 Cover all zero elements in the matrix with the minimum number of vertical
and horizontal lines possible.

Step 4 If the number of covered columns is equal to the number of columns in the
matrix, the reduced matrix already contains a unique optimal assignment,

44 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

and a solution is found. If the number of covered columns is less than the
number of columns in the matrix, go to step 5.

Step 5 Find the minimum entry value in the cost matrix that has not been cov-
ered. That minimum is substracted from every uncovered number and is
added to every number covered with two lines. Go back to step 3 and repeat
until all columns are covered.

An example will show the usage of the Hungarian algorithm [Cas10]. Given is
the cost matrix shown in the following table:

Job A | Job B | Job C | Row minimum
Person A 4 2 8 2
Person B 4 3 7 3
Person C 3 1 6 1

Each entry in the cost matrix describes the cost to assign the person denoted
in the row to the job denoted in the column. The goal is to find an assignment of
each person to a job so that each person is assigned to exactly one job, and the
assignment cost is minimal.

The row minima are charted in the last column. First the matrix has to be
reduced, according to step 1 and 2 in the algorithm. First, for each row, the
row minimum is substracted from each entry in the row, leading to the following
matrix:

Job A | JobB | Job C
Person A 2 0 6
Person B 1 0 4
Person C 2 0 5)
Column minimum 1 0 4

The column minima are charted in the last row. In step 2 of the algorithm, the
column minima are substracted from each entry in the column, resulting in the
following cost matrix:

Job A | JobB | Job C
Person A 1 0 2
Person B 0 0 0
Person C 1 0 1

This matrix is referred to as the reduced matrix. Now, the minimum number
of lines is used to cover all zero elements in the reduced matrix. Vertical and

3.3. GRAPH MATCHING 45

horizontal lines are possible. There is no elegant solution for finding the optimal
covering. In principle, a trial-and-error procedure has to be done.

Job A | Job B | Job C
Person A 1 ER 2
Person B B H
Person C 1 3; 1

As one can see, the minimum number of lines needed to cover all lines is 2, which
is smaller than the number of columns which is 3. Thus, no unique assignment
has been found yet.

The minimum uncovered number m in the reduced matrix is 1. m is now
substracted from every uncovered element in the matrix, and is added to every
element covered twice, leading to the following matrix:

Job A | JobB | Job C
Person A 0 0 1
Person B 0 1 0
Person C 0 0 0

Step 3 is then applied again to the resulting matrix: All zero elements in the
matrix are covered with the minimum number of lines possible. In this case, 3
lines are needed.

Job A | JobB | Job C
Person A
Person B E I i)
Person C

As the number of lines needed to cover all zero elements is equal to the number
of columns in the matrix, unique assignments can be found in the matrix. As there
is no row or column with just one zero elements in the matrix, one can start by
choosing an abritary zero element. For example, Person A can be assigned to Job
A, leaving Person B and C and Job B and C unassigned. As the only zero element
for Person B is Job C, and the only zero elements for Person C is Job B, Job C is
assigned to Person B, and Job B is assigned to Person C. The minimum weighted
correspondence in this example thus is {(Person A, Job A), (Person B, Job C),
(Person C, Job B)}. The total costs for this assignment can be computed by the
sum of all matching costs in the original cost matrix.

In this example, the total matching cost is 12.

46 CHAPTER 3. FOUNDATION OF SKELETON-BASED MATCHING

Job A | JobB | Job C
Person A @ 2 8
Person B 4 3 @
Person C 3 D 6

Actually, in most scenarios, more than one solution is possible. Also in this
example, three minimum weighted correspondences can be found. If as initial
assignment the assignment (Person A, Job B) is chosen, both Person B and Person
C can be assigned with minimal cost to the remaining to jobs, resulting also in a
matching cost of 12.

3.4 Rating of retrieval systems

A system that performs a similarity search in a database for a query given by
the user is called an information retrieval system [Sch06]. In order to evaluate
the matching algorithm introduced in chapter 4, a simple retrieval system was
implemented. The challenge in information retrieval is that the similarity search
is performed under semantic aspects. In contrast to conventional data retrieval
systems, for example in relational databases, the search conditions are not explic-
itly known. In data retrieval systems, all results are syntactically fully consistent
with the query. Usually, the amount of result documents in a retrieval system is
limited by the total amount of returned documents or by some threshold for the
similarity value.

A common way to rate a retrieval system is the computation of precision and
recall values. For this purpose, one distinguishes between relevant and irrelevant
documents. Moreover, one does not take into account that the result list of re-
turned documents is an ordered list [Sch06]. Each document is then classified in
one of the following classes:

e correct alarms (ca): this class contains all documents that are relevant to
the query, and the retrieval system rated them as relevant.

e correct dismissals (cd): this class contains all document that are not relevant
to the query, and the retrieval system rated them as not relevant.

e false alarms (fa): this class contains all documents that are not relevant to
the query, but the retrieval system rated them as relevant anyway.

e false dismissals (fd): this class contains all documents that are relevant to
the query, but the retrieval system rated them as irrelevant.

3.4. RATING OF RETRIEVAL SYSTEMS 47

The quality measure precision P, describes to what extent the documents found
by the retrieval system are relevant. The precision P, is computed by
ca
P, = p— (3.11)
The qualitiy measure recall R, describes to what extent relevant documents in the
database where found. The recall R, is computed by
ca
R, = p— (3.12)
Both quality measures always depend on a query ¢q. The computation of both
measures require a manual relevance rating for the documents by the user. Both
precision and recall values lie between 0 and 1. The higher the value for precision
and recall is, the “better” is the retrieval system . The “perfect” retrieval system
would have a precision and recall value of 1 for any query. Usually, precision and
recall are not only computed for one single query but for multiple queries. In
order to evaluate a retrieval system the mean value for both precision and recall
for multiple queries is computed.

Both precision and recall not only depend on the query, but also on the number
of result documents. If the retrieval system always returns all documents stored
in the underlying database, the recall value will always be 100 percent, while the
precision value in this case would be very low [Sch06]. If only the document the
most similar to the query is returned, the precision value is likely to be 100 percent,
but the recall value is very low. A common way to deal with this behaviour is the
combined precision-recall-diagram which treat the precision values as a function of
the recall values, as introduced in [Sch06]. As more precision values are possible
for each recall value, only the best precision value is displayed, all other values are
ignored.

Chapter 4

Path Similarity Skeleton Graph
Matching

In [BLOS| an algorithm is presented to match two-dimensional object silhouettes
based on their skeletons. In particular, one skeleton’s end nodes are matched to the
end nodes of another shape’s skeleton. The skeleton end nodes are salient features
of an object as they are important for holding the shape’s geometry information:
Skeleton branches are supposed to end in significant visual parts of the shape.
Thus, it is a reasonable assumption that each end node can be mapped to its
counterpart in the other skeleton. Besides, end nodes are interesting features as
they are part of the shape contour as well as part of the skeleton.

The matching is done by comparing the similarity between the shortest paths
between the end nodes. Correspondences between the end nodes are established.
Furthermore, the total similarity between two shapes is calculated. A detailed
description of the algorithm follows in the next section. The example of the two
bird shapes in figure 4.1 will guide through the explanations. The implementation
of the algorithm is evaluated in section 4.2.

[-

5“4

S 0

7
r\‘g 2

Figure 4.1: Example for two skeletons to be matched.

(9]

49

50 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

4.1 Algorithm outline

The input of the algorithm is four binary images: Two binary images containing
the objects’ silhouettes, and two binary images containing the objects’ skeletons.
The goal is to find correspondences between distinctive points of the two objects
- the skeleton’s end nodes -, as well as finding the total costs to match these two
objects.

As a preparation, the skeletons are ordered by the number of their end nodes:
the skeleton with fewer end nodes is referred to as the query skeleton, the skeleton
with more end nodes is referred to as the target skeleton. In the example shown
in 4.1, both skeletons S and S” have the same number of end nodes, so they don’t
have to be reordered. S is thus referred to as the query skeleton, while S’ is referred
to as the target skeleton.

The algorithm can be split into three steps, which are described in detail in
the following sections.

4.1.1 Skeleton representation

The algorithm uses a special representation for skeletons that not only incorporates
the skeleton characteristics, but also the shape’s contour information.

A key concept in the algorithm is the usage of information about skeleton paths.
A skeleton path p(v,,,v,) in a skeleton is the shortest path between a pair of end
nodes v,, and v,, with the limitation that all points on the shortest path have
to be skeleton points. Figure 4.2 shows a series of images, displaying all skeleton
paths emanating from one example end node.

The skeleton paths can be found by constructing a weighted skeleton graph for
the skeleton. The edge weight for an egde connecting two vertices in the graph
is defined by the length of the skeleton branch connecting the two corresponding
skeleton points in the original skeleton. It is then possible to apply a shortest
path algorithm, like Dijkstra’s algorithm, on the resulting graph. [BLO08| choose a
special representation for the skeleton paths that does not only include information
about the skeleton itself, but also information about the object contour. For this
purpose, a skeleton path p(v,,,v,) is sampled with M equidistant points. Since
all points on a skeleton path are skeleton points, they are the center of a maximal
inscribed disc within the object contour. The radius of the maximal disc R, (t)
at this point is obtained, for each point t of the sampled skeleton points. Thus,
for each sample point, the distance to its feature point is known.

The distance of a point ¢ to its feature points is not exactly calculated, but
approximated by the distance transform DT'(t). Afterwards, the distance is nor-

4.1. ALGORITHM OUTLINE 51

Figure 4.2: The whole skeleton (top left) and all skeleton paths emanating from end
node 0, the end node in the birds’s head

malized to make the method invariant to the scale. Finally, the distance is approx-
imated and normalized as follows:

DT(t)

Rm,n =
NLO Zi\i)l DT(s)

(4.1)

The quotient involves the distance transform values of all points within the object:
Ny is the number of pixels in the original shape, and s; varies over all N, pixels
in the shape. Thus, the average distance transform value of all object pixels is
involved in the calculations. This step makes the method invariant to scale.

That way, an ordered list of M distance values is obtained for each skeleton
path. All distance values are noted in a vector, called the path vector.

Ryn = (Ryn(t))iz12,.00 = (11,72, ..., T) (4.2)

52 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

Figure 4.3: Sampling of a skeleton path. The sampling points are indicated in red. The
distance to their feature points is indicated by the grey circles. For the skeleton path
representation, the distance of the skeleton points to their feature points is measured and
noted in the skeleton path vector. The sampling points are equidistant.

Figure 4.3 schematically shows the sampling of the skeleton path from end node
0 to end node 7 in skeleton S in figure 4.1. The resulting skeleton path vector is
used to describe the skeleton path.

4.1.2 Dissimilarity between end nodes

In the previous step, a compact representation for skeleton paths was obtained,
including additional contour information. This information about the skeleton
paths will be used to express the similarity between two end nodes. In particular,
the dissimilarity between the skeleton paths emanating from a pair of end nodes
is used to compute the similarity between these two end nodes.

Skeleton Path Dissimilarity The remaining question to be dealt with is still
what “dissimilarity” means here. The dissimilarity between two skeleton paths,
called the path distance, is based on the obtained path vectors. Let r and 7' be
the path vectors for two skeleton paths p(u,v) and p(v’,v"). [and I’ are the length
of p(u,v) and p(u’,v"), respectively. In order to make the approach invariant to
scale, the lengths are normalized. Finally, the path distance between the two
skeleton paths is defined by

(ri —77)? (I = 1})°
7’@"‘7“/' to l2+lg (43)

7

pd(p(u, v), p(u',v") = Z

i=1

The motivation is that similar skeleton paths are expected to have consecutive
skeleton points with similar radii in their maximal inscribed discs. The scaling fac-

4.1. ALGORITHM OUTLINE 93

tor in the denominator in this equation “weights the radii difference with respect
to the radii values, that is, if both radii are large, their difference must be signifi-
cant” [YBYLO07|. This factor is motivated by the observation of human perception:
Differences in thicker parts of an object must be more significant to be noticed by
humans than differences in thin parts [XWBO09|.

It is necessary to involve the path lengths [and I’ in the calculations, as the
chosen path vector representation does not include the path length - each path
vector has the same length, namely M, the fixed number of sample points. The
importance of the skeleton path length can be weighted by an arbitrary weight
factor & € R*. The higher « is, the more relevant the similarity of the path length
becomes.

In the examples shown, it becomes clear that all skeleton paths emanating from
the same end node are very similar in the beginning, as they share the first skeleton
branch, but begin to vary as soon as the first junction node is passed. Furthermore,
it might become obvious that similar end nodes in the two skeletons have similar
paths emanating from them, while dissimilar end nodes have bigger differences in
their emanating skeleton paths. This observation will be shown by referring to the
two example birds in figure 4.1. Clearly, the end nodes in the beaks, marked with
7, would be a correct match. There is a pair of skeleton paths from end node 7 in
both skeletons to one of the other end nodes in the skeletons that are similar to
each other, according to the path distance definition in equation 4.3. For example,
the skeleton path p(7,1) in skeleton S and skeleton path p(7’,1’) in skeleton S are
expected to have similar skeleton path vector entries.

Still the question is how the information in the skeleton path distances ema-
nating from a pair of end nodes can be used for describing the similarity between
two end nodes. The idea is to encode the information of all path distances for a
pair of end nodes in one matrix, referred to as the path distance matrix. Such
a path distance matrix can be defined for each combination of end nodes in the
two skeletons. These path distance matrices describe the dissimilarity between
two end nodes. They contain information about the path distances between all
skeleton paths emanating from the two specific end nodes.

Let skeleton S with K + 1 end nodes and S” with NV 4+ 1 end nodes be the
two skeletons to be matched, with K < N. For example, the matching costs for
the end nodes vy from skeleton S and v}, from skeleton S" are wanted. First,
the end nodes of both skeletons are ordered by traversing the object contour in
clockwise direction, starting at vy in skeleton S and at v}, in S’, respectively,
resulting in a sorted list of end nodes for each skeleton: {wv,v;1,...,v;x} for S
and {vjg, v}y, ..., vy} for S,

54 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

The path distance matrix between two end nodes v; from skeleton S and v},
from skeleton S’ is defined as

pd(p(vio, Uu),P(U}o, 031)) - pd(p(vio, Uu),p(?};o, UéN))
(vio, Vo) = : : : (4.4)
pd(p<vi07UiK>7p<U;O7U;1)) e pd(p(vi07viK)7p(v;O7U;’N))

The path distance matrix thus encodes information about the similarity of all
skeleton paths emanating from the two skeleton end nodes to be matched. The
assumption for the following computations is that similar end nodes are similar in
the skeleton paths emanating from them.

For further computations, it is necessary to extract a scalar value from the path
distance matrix to express the similarity between end nodes. Based on the path
distance matrix, it is now possible to compute the total costs to match a pair of
end nodes in the two skeletons. The problem of computing the similarity of two
end nodes is in this approach considered as the problem of elastic matching of time
series, that is, the skeleton’s end nodes are treated as a time series. It is handled
by Optimal Subsequence Bijection (OSB), which was proposed in [LWKTMO07]| and
already introduced in chapter 3.

As described earlier, the basic idea is to find the cheapest path through a given
distance matrix. In the case of skeleton matching, the path distance matrix is used
as the input cost matrix for OSB. The idea behind this is, that the more similar
any of the emanating paths from two end nodes are, the more similar those end
nodes are. OSB is order-preserving, going backwards is not allowed in the matrix,
neither in the rows nor in the columns. Thus, the order of the end nodes still holds
an important information about the contour as they previously were ordered by
traversing the shape contour.

For example, the following matrix shows the path distance matrix between end
node 0 in graph S and end node 0’ in graph S’ in figure 4.1.

0.41 31.75 31.82 4538 47.36 48.0 48.34 2.75
26.03 0.17 201 828 6.59 6.61 631 184
26.06 1.03 0.26 13.09 6.74 707 7.84 17.57
38.32 856 1349 0.12 835 6.94 433 31.72
40.74 6.59 685 804 0.19 0.18 1.21 31.36
41.09 6.71 767 6.19 094 035 0.28 32.01
4087 6.29 797 47 157 0.81 0.12 32.04
1.64 18.47 1991 2788 30.93 31.04 30.74 1.14

pdm(0,0') =

(4.5)

Applying OSB to this path distance matrix leads to an alignment of the ema-
nating skeleton paths from the two skeleton nodes with the possibility of skipping
paths, if no corresponding path is found. This would mean that the end node

4.1. ALGORITHM OUTLINE %)

of this path is not contained in the other sequence of end nodes. The cheapest
path through the example matrix, found by this approach, is highlighted in the
following matrix:

0.41 31.75 31.82 4538 47.36 48.0 48.34 2.75
26.03 0.17 2.01 828 6.59 6.61 6.31 184
26.056 1.03 0.26 13.09 6.74 7.07 7.84 17.57
38.32 856 1349 0.12 835 694 433 31.72
40.74 6.59 685 804 0.19 0.18 1.21 31.36
41.09 6.71 7.67 6.19 094 035 0.28 32.01
4087 6.29 797 47 157 081 0.12 32.04
1.64 18.47 1991 2788 30.93 31.04 30.74 1.14

pdm(0,0") =

(4.6)
In this example, the cheapest path is almost completely the diagonal from the
left upper entry to the bottom right entry, but the last entry is skipped. The value
in this entry is more expensive than skipping it: As there is a low-cost alignment
in each row of the matrix, the constant value to punish skipping of rows is very
low. If the two skeletons have end nodes that would not match any end node in the
other skeleton, it is likely that more rows and columns in the matrix are skipped.
The total similarity, that is, the cost for matching the two nodes 0 in S and 0 in
S’ is computed based on all entries in the matrix visited by the shortest path: Each
entry is squared, then added to the sum. Then, the squared root is computed for
the complete sum and divided by the number of aligned elements. In this example,
this would be

V0.412 +0.172 + 0.262 + 0.122 + 0.192 + 0.352 + 0.122
7

~0.006 (4.7)

4.1.3 Matching the end nodes

The steps as described in the previous paragraph are done for every combination
of end nodes in the two skeletons. This way, for each combination of end nodes a
scalar is obtained, expressing the similarity between the two end nodes.

The problem is to assign each end node in S to an end node in S’ based on the
matching costs found in the previous steps. For this purpose, all found cost values
are stored in a cost matrix, containing all cost values for the two skeletons. The
cost matrix C(S, S”) for two skeletons is defined as

c(vo,v5) (v, vy) ... c(vg,vly)
c(v,vy) c(vr,vy) ... (v, V)

C(S,S") =

c(vi,vy) clvg,vy) ... c(vg,vy)

o6 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

Thus, each row j in the cost matrix contains the costs for matching the end
node m; in the target skeleton S’ to each end node in the query skeleton .S, while
each column ¢ in the matrix contains the costs for matching end node n; in the
target skeleton S’ to each end node in the query skeleton S.

An example is given in the following matrix. This matrix shows the cost matrix
for matching the two birds in figure 4.1.

0.1 9.72 321 245 498 434 546 7.53 0.31
10.04 0.28 0.42 6.19 4.77 479 4.87 2.25 2.89
3.1 048 0.1 0.17 4.7 5.05 482 2.25 218
225 748 039 0.16 5.55 4.82 5.18 6.46 24
C(S,S')=| 49 47 44 48 0.11 048 4.62 3.31 4.15 (4.9)
443 5.71 488 4.17 0.77 0.13 6.26 4.88 3.86
4.62 4.85 53 4.77 493 6.23 0.11 5.26 5.15
7.8 329 264 626 296 4.48 6.08 0.13 0.55
1.69 3.35 295 2.68 397 3.2 579 202 0.27

In this example, the value at index (0,0) in the matrix is the costs to match the
skeleton end node 0 in skeleton S and end node 0" in skeleton S’. This matrix, in
turn, can be seen as input weight matrix for the Hungarian algorithm, as described
in section 3.3.2. The problem of matching two objects is thus reduced to the
classic assignment problem in a bipartite graph: The end nodes of skeleton S' is
one set of vertices V', and the end nodes of skeleton S’ is another set of vertices
V’. Both vertex sets can be seen as a partition in a bipartite graph. The cost of
matching one vertex in V' to a vertex in V' is given by the corresponding entry in
the cost matrix. If the Hungarian algorithm is applied as shown in section 3.3.2,
the minimum weight correspondence can be found. Figure 4.4 shows the found
assignments, indicated by lines connecting two matched end nodes.

In a final step, the total cost to match the two skeletons can be computed by
the sum of all edge weights.

4.1.4 Summary

In summary, the proposed algorithm can be split into the three following basic
parts:

1. Getting a compact skeleton representation, based on the distance of the
skeleton points to their feature point on the contour. These distances are
stored in a vector.

2. Computing the costs to match one end node to another. This is done as
follows:

4.2. EXPERIMENTS 57

‘ﬁ'
‘_.&
Qf—'

Figure 4.4: The matching result. Matched end nodes are connected by lines.

P

(a) A path distance matrix is created for two end nodes, encoding informa-
tion about the dissimilarity between the skeleton paths emanating from
those end nodes.

(b) OSB is applied to find the shortest path through the matrix to obtain
the total costs to match these two nodes

This is done for all combinations of end nodes. The obtained values are
stored in a matrix.

3. Matching the skeleton end nodes by applying the Hungarian algorithm to
the cost matrix obtained in the previous step.

4.2 Experiments

In the context of this diploma thesis, the algorithm introduced in [BLO8| was re-
implemented. The experiments are split into two parts: First, some examples for
end node matchings are shown. In the second part, the recognition performance
of the method is shown by using images from three shape databases.

4.2.1 End node matching

First, the matching method was tested on several example images of non-rigid
objects, in particular elephants, a subset of the animal dataset used in [BLT09].
Although the algorithm works well for various examples, it also has some limita-
tions which will be summarized in section 4.2.1.

Figure 4.5 shows a very simple example. Correct matchings are indicated by
green lines. Wrong matchings are indicated in red lines. In this example, all end

o8 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

=
@,’n\

/J

Figure 4.5: Example of a good matching result. Correct matchings are indicated by
green lines. Wrong matchings are indicated by red lines. In this example, all end nodes
have been matched correctly.

nodes have been matched correctly, that is, the end nodes are matched like a
human would except it. In this case, both shapes are very similar to each other,
varying only in few details, and one of the shapes is slightly smaller than the other.

Figure 4.6 shows a slightly more complex example. Again, the two shapes are
quite similar, but overlaps occur due to the bending of the front legs. It can be
observed that even though the two front legs are overlapping in the left image, the
algorithm finds the correct correspondences between the front legs.

Figure 4.7 shows an example where the two shapes are flipped horizontally. As
will be shown later, a simple alteration had to be made for the algorithm to make
it invariant to rotation. The bending of the trunk does not have any effect on
the matching result, as deformations in object parts that don’t have any effect on
the radii of the maximal inscribed discs are not punished in this approach. One
mismatch has been found in this example, indicated by the red line. Nevertheless
it can be observed that both end nodes in the two skeletons do not have any
matching partner in the other respective skeleton. This kind of mismatch will be
examined in section 4.2.1.

In the example shown in figure 4.8, one of the shapes is rotated, but most of
the end nodes have still been matched correctly. However, the two end nodes in
the trunk are swapped in the matching result. This is due to the fact that when
traversing the contour they are encountered in reverse order. As the skeleton paths
emanating from these two end nodes are very similar, they are swapped in the final
matching result.

4.2. EXPERIMENTS 29

o

L)

AN

Figure 4.6: Example of a good matching result. All end nodes have been matched
correctly, in spite of overlaps in the front legs.

Figure 4.7: Example of a matching between shapes with bent object parts.

60 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

A

B

v Y 7

4 i)
((‘[¢

Figure 4.8: Example of a matching of rotated shapes. The two end nodes in the
elephants’ trunk are swapped in the matching, that is, if a human should establish the
correspondences between the skeleton end nodes manually, he would match the two end
nodes in the trunk the other way around. This is due to the fact that the skeleton paths
emanating from these two end nodes in both skeletons are quite similar, and as in both
skeletons the order for the two end nodes in the trunk is switched when traversing the
contour, they get falsely matched.

4.2. EXPERIMENTS 61

"

™

N

Figure 4.9: Matching between a dog and a cat.

Further matching experiments were performed with the Kimia99 database
[SKKO04], a subset of the MPEG-7 database [LLE00]. This database contains
mostly non-rigid objects and several shapes with occlusions.

Figure 4.9 shows that establishing correspondences between two different an-
imals, in this case a dog and a cat is possible as long as the two animals have
similar characteristics.

Several experiments were performed to test the algorithm’s performance in the
presence of occlusion. Figure 4.10 shows the matching of two hand shapes. One
of the hand shapes is partly occluded, so that the fingertips seem to be missing.
All the same, the correspondences are established correctly as the characteristics
of the two shapes remain similar.

Figure 4.10: Matching in the presence of occlusions

Another type of occlusion is when not only object parts seem to be missing like
in the previous example, but the occluding object is also included in the shape.

62 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

Figure 4.11 shows two examples of this scenario. Again, the two hand shapes are
matched correctly.

A\ '\\ hh)
W W
W &

N
s

Figure 4.11: Matching in the presence of occlusions

\

In the original paper, two similar shapes were matched, but in their experi-
ments, some correspondences could not be established correctly. This is assumed
to be due to an implementation detail in the choice of parameters in the OSB
function. In the implementation of the OSB function it is possible to determine
how many rows are allowed be skipped in the matrix. It is assumed that a fixed
value was chosen for the original implementation. For the new implementation in
the context of this diploma thesis, a variable value was chosen, depending on the
difference in the number of skeleton end nodes in the two skeletons, making the
described approach more flexible in situations like the shown occlusions.

~K

Figure 4.12: Matching in the presence of occlusions and deformations.

However, the absence of one finger in one of the shapes, caused by the defor-
mation of the hand and the projection to the 2D plane, leads to one mismatch, as

4.2. EXPERIMENTS 63

shown in figure 4.12. The skeleton paths in the fingers are quite similar. Hence,
the order of occurance of the fingertips’ end nodes is an important indicator for
their similarity. As the order in this example is misleading, a mismatch occurs.

Limitations

As shown before, the algorithm has some limitations that will now be summarized
and explained.

Flipped Images In the case of flipped images, that is the two shapes point in
different directions, the correct matching costs for a pair of end nodes cannot be
found. The weak point is the OSB function.

Consider for example the scenario where one shape should be matched to ex-
actly the same shape, but flipped horizontally. The path distance matrix for two
corresponding end nodes would in this case include a cheapest path from the upper
right corner to the lower left corner, as shown in the following example matrix:

7 5 8 0
2 3 0 8

(vio, V) = 5 0 3 5 (4.10)
0o 5 2 7

The actual shortest path is highlighted in grey. As the OSB function does not
allow to go backwards in the matrix, neither in the rows nor in the columns, this
cheapest path can’t be found, and the resulting matching costs are no reliable
indicator for the similarity of two end nodes.

As a solution, the algorithm is applied twice: once for the original images, and
once with one image flipped horizontally. From the resulting two match lists, the
one with lesser matching costs will be chosen as the real matching. In most cases
this works quite well. There are cases, however, in which this method fails to
determine correctly if shapes are flipped or not.

For example, the shapes in figure 4.13 are oriented in opposite directions, but
the matching costs for the second run with one of the images flipped leads to
lower matching costs than the first run. Thus, in the algorithm the two shapes
are assumed to be oriented in the same direction, which in the end leads to an
unsatisfying matching.

Enforcing of 1-to-1-matching Another problem is caused by the fact that the
algorithm requires a 1-to-1 matching between the two skeletons which is not always
possible. This problem is closely related to the problem mentioned previously, that
spurious branches can have a negative impact on the matching results.

64 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

Figure 4.13: In some cases, the method fails to determine if shapes are flipped or not.

R

J ¥

Figure 4.14: 1-to-1 matching is not always possible. In this example, all matchings
have been found correctly, but the two remaining end nodes with no matching partner
in the other skeleton are matched.

See for example figure 4.14, which shows an acceptable matching result for
two elephant shapes. All correspondences have been found correctly, but both
skeletons have one additional end node that has no matching partner in the other
skeleton. As the Hungarian Algorithm forces all end nodes to find a matching
partner in the other skeleton, the two remaining nodes are matched, even though
they do not correspond. In fact, this is not only a limitation of this particular
algorithm , but a problem of all matching algorithms that reduce the matching
problem to a 1-to-1 matching in a bipartite graph. Using a different model than
the matching of a bipartite graph for the final matching could be a solution to this
problem. For example, the Earth Mover’s Distance (EMD) [RTGO00] also allows
partial matchings. This could be a solution to better deal with noisy skeleton data.

4.2. EXPERIMENTS 65

Spurious branches This problem is related to the limitation described in the
previous paragraph. The algorithm requires optimal skeletons, where each skeleton
branch represents a significant visual part of the shape. If one of the skeletons
contains spurious branches, this can have a negative impact on the matching result.

Figure 4.15: Spurious branches can have a deep impact on the matching result. The
figure shows a matching between two elephant shapes, where no correct correspondences
could be established at all. If one inspects the left elephant in detail, one can see that
he has a spurious branch in the tail. Figure 4.16 shows a cut-out of the affected area.

Figure 4.15 shows the assignments between two elephant shapes. As can be
seen, none of the found correspondences is correct. If the skeleton of the left
elephant is inspected in detail, one can see that the left elephant has a spurious
branch in the tail that does not represent a significant visual part of the object.
The affected area is shown in figure 4.16 in detail.

Figure 4.16: Cut-out of the elephant shape in figure 4.15. The elephant’s tail contains
one spurious branch that has a negative impact on the matching result.

If this branch is removed manually, the result is still not perfect, but the number
of correct correspondences is now six of the eight possible matchings, as shown in
figure 4.17.

66 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

J Y

{7

- i

rn. '8

Figure 4.17: Once the spurious branch is removed manually, the matching result gets
much better, reducing the number of wrong matches to two.

Thus, one has to make sure that the input skeletons do not contain spurious
branches. Again, a possible solution could be to use an algorithm that also allows
partial matchings for the final matching, for example the Farth Mover’s Distance
[RTGOO].

4.2.2 Recognition performance

As the proposed method computes a value for the similarity of two shapes based
on the end node correspondences, it can also be used for object recognition in a
shape database. A very simple retrieval system was implemented to evaluate the
matching algorithm. In this retrieval system, it is possible to enter a shape and
its skeleton as a query, and the matching algorithm is applied to the query and all
other shapes in the database. All shapes in the database are ordered according to
their computed similarity to the query, with the highest similarity first.

As a first database, a subset of the Aslan and Tari shapes [AT05] is used. It
contains eleven classes of shapes, and each class contains four images. One example
for each of the classes is shown in table 4.1.

Table 4.1: Example shapes from the Aslan and Tari database [ATO05].

4.2. EXPERIMENTS 67

The shapes’ skeletons were obtained from the implementation of the Discrete
Curve Ewvolution algorithm [BLLO7] ', with the parameters p = 4, T} = 1 and
number _wvertice = 15.

In this first experiment, each of the shapes in the database was used as a query.
The parameters used were M = 50 and o = 40. All shapes in the database are
ordered according to their similarity value, resulting in an ordered result list. As
there are four images in each class, the query and the first three result shapes
should be in the same class.

Query | 1st 2nd 3rd 4th 5th 6th Tth

el a%
tAn o0l ok
b éeneokr
Nk A ¥ &

Table 4.2: Example queries in the Aslan and Tari database.

{ €% ¥

Table 4.2 shows four example queries in the Aslan and Tari database. In the
left column, the query image is shown. From left to right, the computed similarity
to the query image drops. In the shown examples, the first three search results are
in the same class as the query image, that is, the result is optimal.

A common way to rate a retrieval system is the computation of precision and
recall values. As the number of relevant documents is known for each query, this
value can be used as the number of returned result documents in the similarity
search. For this small database, the average precision for the number of three
result documents is an interesting value in order to rate the retrieval system. The
average is computed for all queries, that is, all images in the database have been
used as a query. The precision is computed for each query in relation to the number
of returned result documents, which in this case is 3. Under these conditions, the
average precision for this retrieval system is 0.93. If one summarizes the number
of correct shapes for all queries among the first three retrieval results, one obtains
43, 41, and 41. The perfect result for this database subset would be 44, 44, 44.

Lavailable at http://sites.google.com/site/xiangbai/BaiSkeletonPruningD CE.zip

68 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

In order to analyze the limitations of the algorithm however, it is helpful to
inspect the mismatches in detail, especially the queries where two or even three
mismatches occured. Table 4.3 summarizes all queries to the shape database with
wrong results. While the mismatches in the first three rows are easily explained

st 2nd 3rd 4th 5th 6th 7th 8th

AVeoad
* X x & K
3 4Yav)d
~ SO
3 4¥Vea
ol Q%

Table 4.3: Mismatches in the Aslan and Tari database. Wrong results are highlighted
in red.

NN &
{1 |or|8 & 3
VNG YRENE: 3%

as the wrong results and the query have quite similar shapes, the mismatches for
the queries of class “crocodile” in the last four rows are somewhat surprising. The
high matching costs between the four crocodile shapes become more obvious when
inspecting the skeletons and their end node matching in detail.

Figure 4.18: Matching with spurious branches, leading to bad similarity values.

4.2. EXPERIMENTS 69

Figure 4.18 shows two example assignments of the crocodile with the worst
recognition result to two other crocodiles. The example shows that the problem
is again that the crocodiles’ skeletons have spurious branches and therefore end
nodes that do not find a matching partner in the other skeleton. In the best
case, all correspondences are established correctly, but the end node matching
contains additional correspondences that were established due to the fact that
the algorithm requires one-to-one correspondences, as shown in the left image in
figure 4.18. Assignments like these have generally high matching costs, leading to
distorted total similarity values. In the worst case however, the whole matching
process gets corrupted by these additional branches, as shown in the right image
in figure 4.18.

In order to support this assumption, additional experiments were performed.
The most problematic skeletons, the crocodile skeletons, were manually pruned,
and the whole experiment was repeated. One example for the manual pruning of
the crocodile skeleton is shown in figure 4.19. With these alterations one obtains
44, 44, 41 for the number of correct shapes in the first, second and third result.
The average precision for three returned result documents for each query in this

altered shape database is 0.98.

_ |

4,

-,

W,

Figure 4.19: Crocodile skeleton before and after the manual pruning.

Further experiments were performed with a subset of 60 images of the kimia-
99 shape database [SKKO04]. This subset contains six classes with 10 images in
each of them. Included are rigid as well as non-rigid objects. The challenge when
using this database for experiments is that several of the contained shapes include
partial occlusions. Examples of these occluded shapes already have been shown in
section 4.1.3. Table 4.4 shows further example shapes from the kimia-99 database.

Again, each shape has been used as a query. Since each class consists of ten
shapes, the first nine results in the similarity search should be in the same class
as the query. The average precision in relation to 9 returned result documents is
0.84. Figure 4.20 shows the development of the average precision and recall values
with an increasing number of result documents.

70 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

~ Xyw¥e @
~ ApWe a

Table 4.4: Example shapes from the kimia-99 database [SKKO04|

One important fact about this diagram is that the recall value does not reach
1.0, even though in the diagram, the average precision and recall values for eleven
result documents is shown, and thus, takes two additional documents within ac-
count. The flat recall curve in the end indicates that in some classes the most
dissimilar shapes are so dissimilar that they do not appear in the result list, even
if the number of returned result documents is higher than the number of relevant
documents. This corelates to the precision graph that drops drastically after the
first eight result documents. This is also reflected if one summarized the number
of correct result in the first nine result documents: one obtains 60, 58, 57, 54, 56,
51, 49, 45 and 22. Inspecting the mismatches in detail shows that even though in
large part correct correspondences were found even for occluded shapes, the total
similarity values for these occluded shapes are too high for the shapes to be rec-
ognized to belong to the same class as the query. Another aspect is again dealing
with spurious branches in the skeletons.

The last experiments to evaluate the recognition performance were done with
the kimia-216 shape database. This shape database consists of 18 categories with
12 images in each of them. Example shapes are shown in table 4.5.

"itMmMI._ & - BY

Table 4.5: Example shapes from the kimia-216 database

The parameters used for these experiments were the same as for the previous
experiments: The skeletons were computed by the Discrete Curve Fvolution al-
gorithm [BLLO7|, with the parameters p = 4, T} = 1 and number _vertice = 15.
Again, the parameters used were M = 50 and a = 40.

Five example queries and the first eight most similar results are shown in table
4.6.

Each shape from the shape database has been used as a query. There are eleven
relevant documents in the database for each query. The average precision value in

4.2. EXPERIMENTS 71

kimia99

U 1
precision —+—
~ recall —-x-—--

— 3 3 5 3 3 X7 5 3 3 3
o : e :
5 0.5 | /,” O O SO DUOS S SSSOROON HASSOS
2 | | i b | | i | | |
o : : : P : : : : ; ;
@ | | i X | | i | | |
o e S S 2t S S A S S
| | >;<” | | | i | ; ;
02t A 4
i i i 1 i i i 1 i i
1 2 3 4 5 6 7 8 9 10 11

number of documents

Figure 4.20: Average precision and recall development in the kimia-99 database with
increasing number of result documents.

relation to eleven returned result documents is an interesting measurement for the
quality of the retrieval system, which in this case is 0.81. Figure 4.21 shows the
development of the average precision and recall values for an increasing number of
returned result documents.

Table 4.7 summarizes the number of all correct shapes for the first eleven
retrieval results in comparison to the values listed in the original paper.

Obviously, the results are not as good as in the original paper. The assumption
is that the input skeletons play a significant role here. Several skeletons used in the
experiments in the context of this thesis contain spurious branches which can have
a profound impact on the quality of the end node matching, leading to distorted
overall similarity values. This effect has been observed in many of the query results.

To verify this assumption, further experiments were performed on some of the
more problematic classes. This time, some of the skeletons in the database were
pruned manually so that each skeleton branch represents a significant visual part
of the original shape. As the significant parts of shapes of the same class should
be quite similar, the skeletons get more comparable. Using the manually pruned
skeletons leads to better results in the performed queries. For example, the average

72 CHAPTER 4. PATH SIMILARITY SKELETON GRAPH MATCHING

=

Query | 1st 2nd 4th 5th 6th 7th 8t

kdk. b
hai
m

>
whWwH
mamaa

— — — f—

soeeomn

Table 4.6: Example queries on the Kimia-216 database. In the left column, the query
shape is shown. From left to right, the eight most similar shapes in the database are
shown. The similarity to the query drops from left to right.

r'e ¥C:

1 DES
LAINE A I g
it Ikt g

Ist 2nd 3rd 4th 5th 6th T7th 8th 9th 10th 11th

Original paper 216 216 215 216 213 210 210 207 205 191 177

Own results 205 208 202 199 200 192 184 167 161 130 96

Table 4.7: Summarization of correct shapes in the 1st, 2nd,.. retrieval result.

precision for the queries from the “bird”-class went up from 0.69 to 0.81, the average
precision for the queries from the “camel” class went up from 0.63 to 0.73

It can also be observed that the average precision value for the kimia-99 and
kimia-216 database is worse than for the Aslan and Tari database. The reason
for this partly lies with the composition of data in both databases. In the Aslan
and Tari database, the algorithm’s performance for non-rigid shapes is mainly
evaluated. Parts of the shapes are bent, but besides that, the shapes within a
class are quite similar to each other.

The main challenge in the Kimia-99 database is that several shapes are oc-
cluded.

The Kimia-216 database contains non-rigid objects as well as rigid objects. The
main problem with this database is that some of the classes are very similar in
their shapes, while within some classes, there is a huge variety. Table 4.8 shows
some examples of shapes that belong to different classes, but are very similar and
thus, lead to several mismatches in the retrieval result.

In summary, the matching algorithm shows acceptable results in the retrieval
experiments. Matching of non-rigid objects poses no problem as deformations

4.2. EXPERIMENTS 73

kimia216

U 1
precision —=""

- recgll ¥ x—-

07 e X -
— f f 5 f f = 5 f f f
[+ : - :
o :
5 05} K i
@ |
5] H H - H H H H H H
@ | | i | | i | | |
T (T B e e S —
03 | =

i i i 1 i i i 1 i i
1 2 3 4 5 6 7 8 9 10 11
number of documents

Figure 4.21: Average precision and recall development in the kimia216 database with
increasing number of result documents.

Table 4.8: Similar shapes in the Kimia-216 database from different classes.

that do not change the shape breadth are not punished. Suboptimal skeletons
with spurious branches however can lead to severe mismatches. In the context
of extending the algorithm into the third dimension some ideas, amongst others,
were developped to deal with this problem. These ideas are introduced in the next
chapter.

Chapter 5

Skeleton Graph Matching in 3D

In this chapter, the algorithm described in section 4 will be examined with respect
to extending it into the third dimension. The algorithm will be applied to three-
dimensional medical data. The goal is to compare pre- and postoperative blood
vessel volumes.

5.1 Data origin

The idea is to compare two aorta images of the same patient before and after an
EVAR procedure was performed. The aorta is

“the main trunk of a series of vessels which convey the oxygenated
blood to the tissues of the body for their nutrition. It commences at
the upper part of the left ventricle, where it is about 3 cm in diameter,
and after ascending for a short distance, arches backward and to the
left side ...; it then descends within the thorax ..., passes into the
abdominal cavity ..., and ends, considerably diminished in size (about
1.75 cm in diameter) ...by dividing into the right and left common
iliac arteries. Hence it is described in several portions, the ascending
aorta, the arch of the aorta, and the descending aorta, which last is
again divided into the thoracic and abdominal aorte.” [GG73]

Figure 5.1 shows an overview of the arteries in the human body. The imaged
region is located at the descending aorta, in particular, at the lower parts of the
abdominal aorta (aorta abdominalis), at the aortic bifurcation (bifurcatio aortae),
where the abdominal aorta divides into the right and left common iliac arteries
[FS08|. The region is highlighted in grey in figure 5.1.

As mentioned before, the idea is to match two aorta volumes of the same
patient, before and after surgery. The patient was suffering from abdominal aortic

75

76 CHAPTER 5. SKELETON GRAPH MATCHING IN 3D

Brachiocephalic External carotid a,
trunk . Internal carotid a.
Right subclavian a. . (urlununcaru-tta-
. Internal thoracic a,
Aaillary 3. Left subclavian a.
Descending
Aorta "
' Left gastric a.
Celiac
‘:""k Splenic a.
Eep - -
brachiala, g “P“‘“;m .
Common —_J)]
hepatic a. — Renala.
Brachial a. Inferior vica
Radiala, Dmm;

\\ ~ Common
iliac a.

- - xtemal
N

Figure 5.1: Schematic overview of the arteries in the human body. Image source:
[SSST06].

aneurysm, AAA, before the procedure. An aneurysm is a blood-filled bulge in
the wall of a blood vessel. With an increasing size of the aneurysm, the risk of
rupture increases. The rupture of an aneurysm can lead to death [FS08|. One
standard procedure to deal with AAA is EVAR (endovascular aneurysm repair)
which carries a “reduced early morbidity rate and mortality compared to open
operation for aneurysim repair* [RHL11].

Both data volumes (before and after EVAR) were gathered by CT scan. The
interesting areas are then segmented and skeletonized using the built-in thinning

5.2. CONSIDERATIONS ABOUT MATCHING OF 3D OBJECTS 77

filter from the Insight Toolkit (ITK) . An example of the resulting volumes is
shown in figure 5.2.

up a\

Figure 5.2: Pre- and postoperative blood vessel volumes. Left: Before surgery. Right:
After surgery.

Though the main application of the 3D algorithm will be the matching of parts
of aorta volumes it is desirable to develop a general extension of the algorithm in
3D that not only applies to this special kind of 3D data, but also to possible other
scenarios.

5.2 Considerations about matching of 3D objects

Before introducing the alterations that were made to make the algorithm work in
3D, some general observations and expected problems will be listed in the following
section.

The key concept of the algorithm is the skeleton path and the distance from
the sample points to their feature points. In general, the idea can also be applied
to 3D data as the 3D curve skeleton has (or at least should have) similar properties
as the 2D Blum skeleton, like continuity and thickness of exactly one voxel, which
makes the sampling of the path possible. As mentioned earlier, the centeredness

thttp:/ /www.itk.org/

78 CHAPTER 5. SKELETON GRAPH MATCHING IN 3D

of the 3D curve skeleton is difficult to define mathematically, which could have
an impact on the results. In this particular application however this is less of a
problem, as the blood vessels have a tubular form where the centeredness of the
curve skeleton is easier to define.

Some problems in the 2D experiments stem from overlapping object parts
caused by the projection to the 2D plane. For example, some animal shapes
in the experiments seem to have only three legs, which makes the matching pro-
cess difficult. There is no projection in 3D, and there are are no overlaps to be
expected. This can have a positive impact on the matching results.

Though the general idea of the algorithm can be applied to 3D data, some prob-
lems are expected to occur. The biggest problem expected is that the algorithm
requires the skeleton end nodes to be ordered, which happens when traversing the
contour of the input shape. In 3D, traversing a contour is not possible. As the
OSB function which extracts a scalar value from the path distance matrix is order-
preserving, either this step has to be replaced by another approach that isn’t, or
a meaningful order for the end nodes in 3D has to be found.

Another expected problem results from the special application in the matching
of blood vessels: The blood vessel volumes do not vary very much in their thickness.
Thus, the distance from any skeleton point to the boundary is homogenous in every
part of the volume.

Figure 5.3: Skeleton with visualization of distance transform

Figure 5.3 shows a skeleton where the distance to the shape boundary is visu-
alized. The darker the voxel’s color, the broader the shape at this point is. As can
be seen, the brightness values do not vary siginificantly over the skeleton. Just
the area above the aortic bifurcation is considerably thicker than the rest of the
shape.

The algorithm requires optimal skeletons, that is, each skeleton branch should
represent a visual part of the object. As already shown in 4.2.1, spurious or missing
branches can lead to unsatisfying matching results. The provided medical data

5.2. CONSIDERATIONS ABOUT MATCHING OF 3D OBJECTS 79

however is quite noisy, resulting from inaccuracies during the image acquisition, the
segmentation process and skeletonization. Some branches are shortened or cut off
completely in one skeleton, but are still existent in the other skeleton. An example
can be seen in figure 5.2: the shape is not connected, and neither is the skeleton,
resulting in shortened branches. In the following discussion, the disconnected parts
are simply ignored. Ignoring the disconnected parts can, however, lead to problems
in the matching results.

Applying the 2D algorithm without any alterations and without any explicit
ordering of the end nodes may lead to random matching results. In the case of
blood vessel volume data this problem can be worked around, as the pictures
are usually taken from a similar point of view, and the implicit ordering of the
skeleton end nodes in their appearance in the 3D space can be used as an order:
The volume’s bounding box is scanned in the direction of x-, y- and z axis and
end nodes are stored to an ordered list when they occur in the scans. Figure
5.4 shows the matching between two blood vessels. Corresponding end nodes are
connected by a line, while the color of the line indicates true and wrong matchings,
respectively.

Figure 5.4: Applying the algorithm without any alterations to 3D volumes. The pa-
rameters used were o = 70 and M = 50.

No alterations have been made to the algorithm in this example, and the im-
plicit order of the end nodes in the bounding box is used. As can be seen in this
example, 8 of 14 correspondences are correct assignments, but 6 of the found cor-

80 CHAPTER 5. SKELETON GRAPH MATCHING IN 3D

respondences are mismatches. These mismatches result from the problems already
mentioned. Considering that both skeletons contain end nodes that do not have
a matching partner in the other this is an acceptable result, but a more robust
approach is desired that also is reliable for general matching of 3D objects, even if
the point of view differs for the two shapes. Furthermore, a solution for filtering
the wrong matchings is desirable.

In summary, there are three main problems to deal with when applying the
introduced algorithm to 3D:

e 0SB in 3D: The OSB function requires ordered end nodes, but in 3D, they
cannot be ordered by traversing the contour.

o Similar disc radii: The volumes do not vary much in their breadth. The disc
radii are similar for each skeleton point.

e Dealing with noise: The skeletons are too noisy. The branches are shortened
at different levels or cut off completely.

Some ideas and alterations have been developed to resolve or mitigate the
problems pointed out above and thus, will lead to more robust matching results.
These ideas will be shown in the next sections with two example volumes. More
experiments with other datasets will follow in section 5.6.

5.3 OSB in 3D

As mentioned before, the main weak point in the algorithm for the matching of 3D
data is the OSB function which requires ordered end nodes. The solution would
be to replace OSB by another function that is not order preserving, or to find a
meaningful order for the end nodes.

5.3.1 Replacing the OSB function

The OSB function is used to compute the similarity between two end nodes by
aligning their emanating skeleton paths. In order to replace OSB one needs another
function that is capable of finding optimal assignments in a given cost matrix, but
without requiring any order. One possibility that comes to mind is the Hungarian
Algorithm which also extracts matching costs for a given cost matrix, and thus
can also be used for extracting the similarity value from the path distance matrix.

Figure 5.5 shows a matching between the two example shapes, with the OSB
function replaced by the Hungarian algorithm.

The number of wrong correspondences in this example has increased to 8 out of
14. The result quality does not increase in other examples either. Thus, using the

5.3. OSB IN 3D 81

Figure 5.5: Applying the algorithm to 3D data, with replacing the OSB function by
Hungarian algorithm. The parameters used were o = 70 and M = 50.

Hungarian algorithm instead of the OSB function does not seem to be a reliable
procedure. The problems are:

e The Hungarian algorithm is not capable of skipping elements. The CT scans
however contain several spurious branches which makes skipping elements
necessary.

e The weakness of the OSB function for the application in 3D is also its
strength: By requiring ordered end nodes, the OSB function does not only
incorporate the similarity of the emanating skeleton paths, but also contour
information. When using the Hungarian algorithm instead, this information
about the shape cannot be used anymore. Furthermore, the disc radii are
very similar for each skeleton point, which leads to similar skeleton paths.
Without the additional information about the shape contour the path dis-
tance alone is not a reliable similarity indicator.

5.3.2 Ordering the end nodes

As was shown in the previous section, replacing the OSB function by the Hungarian
algorithm is not a reliable procedure for computing the similarity between end

82 CHAPTER 5. SKELETON GRAPH MATCHING IN 3D

nodes. Hence, it is desirable to find an ordering of the end nodes in 3D to make it
possible to use OSB also in 3D.

Obviously, it is not possible to order the end nodes by traversing the shape’s
contour, as was done in the two-dimensional case. For the aorta volumes the
implicit order of the end nodes by their occurance in the 3D space can be used.
As the point of view is very similar for both volumes, the end nodes are expected
to occur in a similar order.

For other 3D images, this might not be a good solution as the 3D models are
not always expected to be aligned. One possibility to order the end nodes is to
order the end nodes by their distance to the start node.

Assuming that the similarity between two end nodes i and i’ in two skeletons G
and G’ is wanted, the end nodes in skeleton GG are then ordered so that the first end
node 7 in the list of ordered end nodes is the end node with the shortest distance
to 2. The distance is measured by the length of the skeleton path between ¢ and
9. The second end node is the end node i; with the second shortest distance to i,
and so on. This again results in an ordered set of end nodes (ig, i1, ...,4y). The
same procedure is applied to the end nodes in skeleton G’. Given this ordering for
the end nodes, this set can be used for the creation of the path distance matrix,
and, as a meaningful order is now at hand, an order-preserving function like OSB
can be used for finding the similarity between a pair of end nodes.

Figure 5.6 shows an example for this procedure. The number of mismatches in
the shown example was reduced to five mismatches out of 14.

However, this approach is sensitive to noisy input data, where corresponding
skeleton branches do not have similar lengths, as was the case in all of the available
data sets. The order of the end nodes in this case might not be the same for the two
skeletons. Several experiments even showed that for most of the available aorta
images the implicit order of the end nodes by their occurance in the 3D space is a
more reliable ordering.

5.4 Similar disc radii

This issue does not stem from applying the algorithm to 3D data, but from the
special application in matching blood vessel volumes. The problem is that the
disc radii are quite similar for all skeleton points in this special kind of data. The
disc radii are hence a less significant indicator for similar skeleton paths than in
conventional test shapes. Due to the fact that the preoperative volume shows an
aneurysm, the radii are even expected to vary slightly for corresponding paths.
Moreover, three of the available nine test volumes are perforated due to segmen-
tation errors. In these cases, the disc radii vary strongly even for corresponding
paths.

5.4. SIMILAR DISC RADII 83

Figure 5.6: In this matching, the skeletons’ end nodes are ordered by their distance to
the start node, so that the OSB function can be used to extract the similarity costs for
two end nodes.

Thus, an idea for a more reliable approach in this application would be to
replace the path distance definition as defined in equation 4.3. In this definition,
the skeleton path vectors of the radii of the maximal inscribed discs are the most
important parameter for determining the similarity between two skeleton paths.
The assumption is that for several cases, the path length is a more significant indi-
cator for path similarity. Therefore, equation 4.3 is substituted with the following
definition:

pd(p(u,v), p(u',v') = (I; — 17)* (5.1)

The equation has become much simpler: The part with the disc radii was removed
completely. Instead, only the path lengths are incorporated. Thus, the weight fac-
tor « is not needed anymore. The denominator, [;+1., also has been removed from
the equation, only the absolute difference between the path lengths is incorporated.

First experiments showed that in the perforated volumes this new path distance
definition is a reliable alternative to the one introduced in the original paper.
However, for most cases, the path length alone is not a reliable similarity measure
as several branches are shortened at different levels.

84 CHAPTER 5. SKELETON GRAPH MATCHING IN 3D

5.5 Dealing with noise

As mentioned before, the skeletons of the blood vessel volumes contain spurious
branches that are not contained in the other skeleton and thus, both skeletons
contain end nodes that cannot be matched non-ambitigously to an end node in
the other skeleton. Also, branches may be shortened or cut off in different levels in
the two shapes, so that correct correspondences are difficult to find. This can have
a negative impact on the matching results, as shown in the previous examples. In
the available data sets, it is difficult to find a similarity measure for skeleton end
nodes that leads to perfect matching results.

Thus, to improve the quality of the matching results, it is necessary to deal
with this noise. In general, there are three possible approaches to deal with this
problem:

1. Preprocess the skeletons: One possibility is to preprocess the skeletons so
that at least some of the spurious branches are removed before the matching
process.

2. Skipping elements in the final matching: An alteration in the matching pro-
cess could be performed that allows the skipping of end nodes in the final
matching.

3. Apply filter to correspondences: The third possibility is to filter the found
correspondences after the matching process according to a predefined signif-
icance indicator.

All of these approaches will lead to results where not all end nodes are matched,
but the total quality of the matching result will increase.

5.5.1 Preprocessing the skeletons

A relevance measure for skeleton branches in order to remove the spurious branches
is desirable. However, preprocessing the skeletons before the matching process is
difficult as no semantic information about the skeletons is known at this point.
Thus, it is difficult to determine which branches should be removed before further
computations.

However, it is possible to determine the significance of a skeleton branch based
on its length. Shorter branches are generally less significant for the representation
of the shape compared to longer branches. It is possible to eliminate these short
branches: For each end node, the length of the emanating skeleton branch is
determined. All branches that have a length smaller than a given threshold are
deleted.

5.5. DEALING WITH NOISE 85

This procedure does not guarantee better results. In fact, the results can
get even worse as it can lead to branches being removed in one skeleton, but
the corresponding branches in the other skeleton are not. Finding the optimal
threshold to get better results is a difficult task and not all spurious branches
will be found. As can be seen in the previous examples, spurious branches are
not always short enough that they would be eliminated in this process, without
deleting other, more significant branches.

5.5.2 Skipping elements in the final matching

So far, the final matching was always performed by the Hungarian algorithm which
enforces one-to-one correspondences. However, one-to-one correspondences are not
always possible. An alteration to the final matching process is desirable that also
allows the skipping of elements.

One possibility is to extend the Hungarian algorithm to also allow the skipping
of elements in the cost matrix. The easiest way to do so is to add additional
dummy rows and columns to the cost matrix, besides the ones that are needed
to make the matrix square. These additional rows and columns can be seen as
additional dummy nodes in both skeletons. These dummy nodes act like a buffer:
If the assignment of two elements is too expensive, they will be matched to one of
the dummy nodes instead.

Figure 5.7 shows a matching of the previous example volumes, with four addi-
tional nodes added before applying the Hungarian algorithm. As can be seen in
this example, this alteration leads to additional mismatches in the lower part of
the blood vessel, but the wrong matchings in the top were eliminated. All in all,
the number of mismatches is reduced to two out of 10, but this also comes with the
loss of correct matches that could have been found otherwise. The challenge with
this approach is, however, to find the best number of additional dummy nodes. If
the number is too small, mismatches will still occur. If the number is too high,
possible correct matchings might not be found. The experiments showed that too
few or too many additional nodes in the Hungarian algorithm can even lead to
more mismatches.

Another more robust approach would be to substitute the Hungarian algorithm
in the final matching for another matching algorithm that allows the skipping of
elements. One possibility would be to replace the Hungarian algorithm by the
OSB function. The problem again is that OSB requires a meaningful order of
the end nodes. Otherwise, the cheapest path in the matrix cannot be found. The
order already introduced for applying the OSB in the intermediate step to extract a
similarity value from a path distance matrix can be used at this point: The distance
from any end node to the start node can be used as order criterion. The remaining
question is how to choose the “start node”. The solution is to apply OSB multiple

86 CHAPTER 5. SKELETON GRAPH MATCHING IN 3D

Figure 5.7: In this matching, four additional nodes were added before applying the
Hungarian algorithm. The original path distance definition as described in [BL0O8| was
used, with the parameters a = 70 and M = 50.

times, once for each combination of end nodes. For each combination of end nodes
i and 7’ in the two skeletons G and G’ the following procedure is performed: The
end nodes of skeleton G are ordered according to their distance to end node i,
measured by the length of the skeleton path between the two skeleton end nodes.
The same procedure is applied to end node i’ and skeleton G’. This results in two
ordered lists of skeleton end nodes {i, g, 1, ..., ip} for G and {7, i, 4], ..., ¢y} for
G'. Based on this order, a new cost matrix can be built as input matrix for the
OSB function: The end nodes are charted in the cost matrix’s rows and columns,
respectively, according to their order in the ordered list. The cell (i,,,4,) in the
cost matrix contains the assignment cost between the two end nodes i,, and 7/,.
The OSB function can be applied to the resulting cost matrix to find corresponding
end nodes while skipping elements that are too expensive to be aligned.

This procedure is done for each combination of end nodes in the two skeletons.
The “best” matching, that is, the matching with the lowest total matching costs,
is assumed to be the right matching.

Figure 5.8 shows an example for this procedure. The number of wrong corre-
spondences has been reduced to four mismatches out of 13.

5.5. DEALING WITH NOISE 87

Figure 5.8: The original path distance definition was used in this example, with o = 70
and M = 50. The OSB function has been used to compute the final matching.

5.5.3 Apply filter to correspondences

The previous examples have shown that it is difficult to define a similarity measure
based on the skeleton paths when dealing with noisy data. Especially if both
skeletons contain end nodes with no matching partner in the other skeleton optimal
matchings (with few or even no mismatches) are not possible. The idea is now to
filter the result, so that mismatches are deleted.

For example, the matching result for the scenario shown in figure 5.5 should be
filtered. One solution is to filter the found matchings according to their matching
costs. Figure 5.9 shows a graph with the matching costs. The curve’s upward trend
starting at x = 12 indicates that the mismatches indeed possess higher matching
costs. Thus, the filtering of matchings with high matching costs could be a possible
solution to eliminate mismatches.

The remaining question to be dealt with is how to find a threshold for the
filtering. The first approach tested is to compute the mean of all matching costs,
and then delete all matchings with a computed matching cost that is higher then
the mean. Another threshold could be found by computing the median of all
assignment costs. The first experiments have shown that in general, when using
the median as a threshold, more matchings are eliminated than when using the
mean. Thus, more mismatches are eliminated, but this comes at the cost that also
correct matchings are deleted.

88 CHAPTER 5. SKELETON GRAPH MATCHING IN 3D

Matching costs

T T T T T T T T T T T
costs ——

2.5 B

Costs

15 / a

'
l | - . — —
"
Y
—
0.5 - 4
1 1 1 1 | 1 1 1 1 | 1 | | 1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Matching No.

Figure 5.9: Graph showing the increasing matching costs.

Filtering by matching costs is a general approach and could also be applied to
other 3D shapes as well. Another filter approach that can be used especially in
medical data is the filtering by angle: As the two volumes are aligned to each other
in the 3D space, the lines indicating correct assignments stand in a similar angle
to each other. Thus, one can compute the average angle in x, y and z direction
between these matching lines and filter those matchings whose matching lines differ
too much from the average angle in any direction. First experiments have shown
that after filtering the result with this simple approach only few matchings remain,
in several cases even all matchings are deleted. Future work could thus include a
better formula for filtering the matching results by angle.

5.6 Experiments

In the previous section, ideas were introduced to make the algorithm in [BLOS§]
more robust for the matching of 3D data, especially the matching of aorta volumes.
In summary, these ideas are:

e Order the end nodes by distance, or replacing OSB function by Hungarian
algorithm

e Use a different definition for path distances

e Filter the found matchings

5.6. EXPERIMENTS 89

e Replace the Hungarian algorithm in the final matching with OSB.

The single approaches also can be combined with each other to achieve better
results. The question is which combination of these ideas performs best on the
available data sets. Different configurations in the algorithm can have a significant
effect on the matching result.

(b) ()

Figure 5.10: Different configurations in the final matching algorithm. Figure 5.10a:
Hungarian Algorithm was used for the final matching. Figure 5.10b: Hungarian Algo-
rithm was used for the final matching, and two dummy nodes were added. Figure 5.10b:
OSB was used for the final matching.

For instance, figure 5.10 shows the impact of the final matching algorithm in
one data set. Different configurations of the final matching were applied to one
dataset. In this example, the configuration vary only in the final matching. In all
configurations, no explicit order was used for the end nodes. The path distances
are defined by the radii, but without denominator. The figure shows that less
matchings are found in total when OSB is used instead of Hungarian algorithm
for the final matching, as several assignments with high costs are skipped. This
comes with the disadvantage that several correct matchings cannot be found, but
most of the false matchings (in the shown example all of them) are filtered out.

Figure 5.11 shows the matching results in another dataset, with variations in
the definition of the path distance. All remaining parameters stayed the same in
the three setups: The end nodes were not explicitly ordered, OSB has been used to
extract the similarity values of the path distance matrices and the final matching
was also performed by applying OSB. By substituting the original path distance
definition from the paper, the number of mismatches in this example could be
reduced from four to two.

Of course, another important parameter influencing the matching result is the
quality of the input skeletons. Figure 5.12 shows the image of the same aorta

90 CHAPTER 5. SKELETON GRAPH MATCHING IN 3D

(b)

Figure 5.11: Different configurations of the path distance definition. Figure 5.11a:
Original path distance from the paper. Figure 5.11b: Path distance by the path length,
including the denominator proposed in the original paper. Figure 5.11c: Path distance
by path length, without denominator.

data, segmented and skeletonized with different parameters. In both matching
processes, the end nodes were not ordered. The path distances were determined
by the path length only - due to the occuring holes in one of the volumes, the radii
are not meaningful. The OSB function has been used to compute the matching
costs between two end nodes, and OSB has been used for the final matching. The
results were filtered by the mean of all matching costs. Spurious branches lead to
three mismatches in figure 5.12a, while the same setup with the “cleaner” skeletons
lead to no mismatches.
First experiments showed that the best approach is:

e The end nodes should not be ordered. In several cases the level of skeleton
branch shortening is too different for both skeletons. Thus, the proposed
order by length is more an approximation than a real order. The implicit
order of the end nodes by their occurence in the 3D cube has shown to be a
more reliable order than the one introduced before.

e OSB should be used to compute the similarity between two end nodes. The
noisy data leads to several spurious branches in the skeletons and makes skip-
ping skeleton elements necessary, which is not possible with the Hungarian
algorithm.

e OSB should be used for the final matching. Due to spurious branches, it is
necessary to be able to skip elements in the final matching process. Adding
dummy nodes to the Hungarian algorithm also deals with this problem, but
the number of nodes to be added varies depending on the data. OSB is more

5.6. EXPERIMENTS 91

(a) (b)

Figure 5.12: Impact of the skeleton quality on the matching result. The volumes shown
are the result of the same image, but segmented with different parameters.

reliable for that purpose without manually setting additional parameters.
Using OSB instead of the Hungarian algorithm usually leads to the loss of
some correct matchings as well, but the overall quality of the matching result
increases by being able to skip spurious branches.

The only parameter where no general solution could be found was the definition
of the path distance. The choice of the path distance definition highly depends on
the quality of the input skeleton, as shown in figure 5.13.

Unfortunately, the number of available data sets is very small. This makes
a proper evaluation impossible. Only nine pairs of pre and post surgery blood
vessel images are available in total, three of them contain distortions the algorithm
can only handle by usage of alternative path distance definitions, as for example
shown in figure 5.13. As this kind of issue is more a problem of the segmentation
and skeletonization and the corresponding data is not really helpful in evaluating
the algorithm, these data sets were left out in the experiments. All experiments
performed in the context of this thesis are therefore only approximate values. It
is not possible to determine the approach’s performance properly with this little
data.

The question is how the matching algorithm can be evaluated for the matching
of aorta volumes. While the algorithm’s performance for 2D shapes was tested
by performing similarity searches in three shape databases, this procedure is not
practical for the matching of aorta images. Instead, the correct matchings in each
data set have been counted for this purpose. The definition of a “correct” matching
is difficult in the context of noisy blood vessel data. As most of the skeletons

92 CHAPTER 5. SKELETON GRAPH MATCHING IN 3D

(b)

Figure 5.13: The impact of the path distance definition on the matching result. Obvi-
ously, in the shown example the path radii are no reliable indicator for path similarity:
Due to the accrued holes in one of the volumes, the radii at the skeleton paths differ too
much between the two skeletons. Figure 5.13a: The path distance is computed as in the
original paper. Figure 5.13b: The path distance is computed by the difference in the
path length.

contain shortened or cut off branches it is often not possible to determine correct
or false matchings.

Therefore, the experiments are performed as follows: First, a ground truth is
established by establishing correspondences between the end nodes in all data pairs
manually. In this ground truth, only unambigitous end node correspondences were
established in order to avoid distorted results. End nodes with no unique matching
partner in the other skeleton are ignored as they would lead to distorted results. In
the next step, the algorithm is applied to each pair of pre- and postoperative images
with the parameters described above. The found end node matchings are compared
to the ground truth. Matchings involving only end nodes that were not matched
in the ground truth are ignored as they cannot be classified unambigitously. All
found assignments are classified according to the following definitions:

e If the assignment involves at least one end node m that is contained in any
ground truth assignment, this assignment is further examined:

5.6. EXPERIMENTS 93

— If the assignments maps m to the same end node n in the respective
other skeleton as in the ground truth, this assignment as classified as
correct.

— If the assignment does not map m to the same end node n in the
respective other skeleton as in the ground truth, this assignment is
classified as wrong.

e If the end node matching involves no end node that is contained in any
ground truth matching, the matching is classified as noise.

The results for the six data pairs available are shown in table 5.1. The table

ground truth | correct | wrong | noise
1 8 5 2 11
2 9 5 4 4
3 9 6 3 4
4 11 10 1 1
5 3 1 1 9
6 7 4 3 6
total 47 31 14 35

Table 5.1: Summary of correct and wrong matchings in the six pre- and postoperative
data pairs. The single pairs are charted in the rows. The column “ground truth” indicates
the total number of manually established correspondences in the ground truth. The last
three columns chart the number of end node matchings found by the algorithm, classified
by the characteristica described before.

shows that 31 of the 47 matchings established manually in the ground truth were
found by the algorithm. In total, 14 mismatches were found, and 35 of the found
matchings were classified as noise.

By additionally filtering the results the number of mismatches and noise can
be reduced significantly, but this comes at the cost that also correct matchings are
eliminated. In the filtered results, only 22 of the initial 47 ground truth match-
ings were found, but only seven matchings were classified as wrong, and only 12
matchings were classified as noise. This behaviour is shown in table 5.2.

If one examines the mismatches in detail, one realizes that mismatches occur
mainly due to the following reasons:

e The skeleton paths generally are quite similar in the aorta volumes. This was
already shown in figure 5.3. It is thus difficult to distinguish skeleton paths
within one volume from each other, only based on the path radii. Hence,
several end nodes get switched in the matching result because the skeleton

94 CHAPTER 5. SKELETON GRAPH MATCHING IN 3D

ground truth | correct | wrong | noise

1 8 5 2 2

2 9 4 2 3

3 9 4 2 1

4 11 4 0 0

5 3 1 1 3

6 7 4 0 3
total 47 22 7 12

Table 5.2: Summary of correct and wrong matchings in the six pre- and postoperative
data pairs. Correspondences with a matching cost higher than the mean of all correspon-
dences are filtered out.

paths emanating from them are similar. The problem becomes even clearer
if one inspects the application of the algorithm: The data to be matched
are a blood vessel before a surgery - with an aneurysm - and after surgery
- without an aneurysm. As an aneurysm is a bulge in the wall of a blood
vessel, the radii are likely to differ between the two images.

e The blood vessel volumes contain several junction nodes from which similar
short branches emanate. An example is shown in figure 5.14. The end nodes
at those branches are very similar in their skeleton paths and thus, are likely
to be switched.

Figure 5.14: Example for a mismatch due to similar radii, highlighted in red. The two
end nodes cannot be distinguished based on the path radii.

e Several end nodes have no obvious matching partner in the other skeleton.
Due to that ambiguity and the fact that the path radii are quite similar
for all skeleton points, it is likely that skeleton paths get switched in the
matching process.

Chapter 6

Conclusion and future work

This diploma thesis consists of two parts: First, an existing skeleton based 2D
shape matching algorithm was introduced and analyzed for strengths and limita-
tions. Then, ideas have been developped to extend the described algorithm for the
matching of 3D data.

The matching of salient features of a shape is a key component in several
applications such as image retrieval or object recognition. The matching algorithm
introduced in this thesis uses the skeleton as a shape descriptor. Skeletons are a
reduction of the original shape: 2D objects can be abstracted to one-dimensional
curves, 3D objects can be represented by planes or curves. Skeletons “contain both
shape features and topological structures of original objects” [BLL0O7|. The goal of
the algorithm is to match the end nodes of a shape’s skeleton. The end nodes of a
skeleton hold important geometric information about the shape. In addition, they
are an interesting contour feature as they are part of the skeleton as well as part
of the contour. The algorithm is based on a special skeleton representation that
not only incorporates the skeleton structure, but also contour information of the
shape, like width. The skeleton’s topology is not explicitly incorporated. Instead,
the similarity between the shortest paths connecting two end points are used to
compute the similarity between two end points.

In the experiments for 2D, the algorithm showed its advantages when dealing
with non-rigid objects and articulated joints. An average precision of 0.93 (0.98
with manually pruned skeletons, respectively) for the Aslan and Tari database
shows that shape deformations that do not affect the skeleton topology or the
path radii have no impact on the matching results. The experiments with the
Kimia-99 and Kimia-216 database also showed acceptable results with an average
precision of 0.84 and 0.81, respectively.

However, problems in the recognition performance occured when shapes of
different classes were similar. In addition, overlaps had a negative impact on the
recognition results. A severe limitation of the algorithm is that it requires optimal

95

96 CHAPTER 6. CONCLUSION AND FUTURE WORK

skeletons. The experiments showed that spurious branches in one of the skeletons
lead to distorted matching results in several cases, affecting the object recognition
performance when using the described matching algorithm in a retrieval system.

This sensitivity to noisy skeletons occuring in the 2D experiments poses also
one of the problems in the matching of the 3D data. Another problem for the
extension of the algorithm to match 3D data is that in 2D, the order of the end
nodes as obtained by traversing the contour is an important matching indicator,
holding important information about the shape. As it is not possible to traverse
the contour in 3D, this important information about the object shape cannot be
used anymore. First experiments showed that as an alternative idea the ordering
of the skeleton end nodes by their distance to each other was not reliable enough
when dealing with noisy data. In the context of the matching of CT images the
implicit order of the end nodes by their occurance in the 3D cube posed a more
reliable order criterion a sthe point of view in this type of image is the same, and
the arrangement of the volume in the 3D cube can assumed to be similar.

In general, the matching of blood vessel volumes as done in the experiments, is
a challenging problem for any matching algorithm. The skeletons contain several
spurious branches with no obvious matching partner in the other skeleton. On
top of that, all skeleton branches are quite similar to each other as the radii of
the maximal inscribed discs hardly vary for any skeleton points. The sensitivity
to spurious branches of the introduced algorithm, the lack of contour information
and less significant skeleton path radii information thus are all expected to have a
negative impact on the matching results.

Due to the lack of testing data no reliable experiments could be performed, but
the first analysis showed that the algorithm is able to find correct matchings in
optimal skeletons, but is quite prone to noisy data. In the first analysis, 31 of 47
matchings in the manually established ground truth could be found, but also 14
mismatches occured. The matching results are expected to improve if skeletons
with less noise are used.

Noisy data poses a problem when choosing an optimal configuration for the
algorithm: While in optimal skeletons, the original path distance definition usually
leads to acceptable results, an alternative has to be used for several cases, for
example, if holes occured in the volumes due to segmentation errors. Another
problem is that due to noisy data, a filtering of the matching results is necessary.
In the experiments, matchings were deleted from the result if their matching cost
was higher than a given threshold, for example the mean of all found matching costs.
The problem hereby is that due to the fact that the skeleton paths all are quite
similar in this kind of data, the matching costs are not the optimal indicator for
a wrong matching: Several of the wrong end node matchings could be eliminated
by the introduced methods, but this comes with the cost that also several correct

97

matchings are eliminated. In the filtered matching results, the mismatches were
reduced to seven, but only 22 of the initial 47 ground truth matchings could be
found.

A first step to a more reliable matching algorithm for blood vessels was done by
replacing the Hungarian algorithm by applying the OSB function multiple times.
That way, no one-to-one correspondence is enforced anymore which was one of the
main problems when dealing with spurious skeleton branches. Using OSB instead
of the Hungarian algorithm led too less mismatches, as the skipping of elements
is possible. Thus, skipping elements in the final matching is an important step
to improve the matching results. However, the OSB approach is limited by the
fact that it requires a meaningful order of the end nodes. An alternative would
be to combine the approach with other methods: Using a matching model that
also allows for partial matching, but does not require an explicite order of the end
nodes, like the Earth Mover’s distance [DSKT06], could lead to more robustness
in this approach.

The introduced method is a generic approach that can be applied to any kind
of data. For the challenging task of matching blood vessel volumes, further im-
provements are necessary. Single branches cannot be matched unambiguously only
based on the path radii, as they are too similar and likely to be switched in the
matching process. One possibility would be to further involve the skeleton’s topol-
ogy in the matching process. For example, the skeleton’s junction nodes could be
included in the matching process. In the original paper, the junction nodes were
disregarded as the authors argued that junction nodes are not reliable in non-rigid
objects. However, in the application of the matching of blood vessel volumes, the
junction nodes also carry important information about the aorta. Though aorta
volumes are, of course, non-rigid objects, they are usually hardly deformed in a
CT scan. Xu et. al. [XWB09| present an approach to involve junction nodes in
the matching process based on skeleton paths for 2D shapes. Another approach
to incorporate the junction nodes in the matching process would be to involve the
angles of the emanating branches at junction nodes, as they are expected to be
similar for aorta images of the same patient.

Bibliography

[ATO5]

[BCY4]

[Ber95]

[BI04]

[BLOS]

[BLLO7]

[BLT09]

[Blu67]

[BM76]

AsLAN, Cagri ; TARI, Sibel: An Axis-Based Representation for
Recognition. In: Proceedings of the Tenth IEEE International Con-
ference on Computer Vision, 2005, S. 1339-1346

BERNDT, Donald J. ; CLIFFORD, James: Using Dynamic Time
Warping to Find Patterns in Time Series. In: KDD Workshop, 1994,
S. 359-370

BERTRAND, Gilles: A parallel thinning algorithm for medial surfaces.
In: Pattern Recognition Letters 16 (1995), Nr. 9, S. 979-986

BRENNECKE, Angelika ; ISENBERG, Tobias: 3D Shape Matching
Using Skeleton Graphs. In: Simulation and Visualization, 2004, S.
299-310

BAIl, Xiang ; LATECKI, Longin J.: Path Similarity Skeleton Graph

Matching. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 30 (2008), S. 12821292

BArl, Xiang ; LATECKI, Longin J. ; L1u, Wen-Yu: Skeleton Pruning

by Contour Partitioning with Discrete Curve Evolution. In: IEEFE
Trans. Pattern Anal. Mach. Intell. 29 (2007), S. 449-462

Bal, Xiang ; Liu, Wenyu ; Tu, Zhuowen: Integrating contour
and skeleton for shape classification. Version:2009. http://sites.
google.com/site/xiangbai/animaldataset. IEEE Workshop on
NORDIA, 2009. — Forschungsbericht

In: BLum, H.: A transformation for extracting new descriptors of
shape. Bd. Models for the Perception of Speech and Visual For. MIT
Press, 1967, S. pp. 362-380

BonDy, J.A. ; Murty, U. S. R.: Graph theory with applications.
London, UK : Macmillan, 1976

99

100

[BMP02]

[Cas10]
[CDS05]

[Cha07]

[CRO3|

[CS07]

[CSMO7]

[DGMO7]

[Die05)

[DP81]

[DS06]

BIBLIOGRAPHY

BELONGIE, Serge ; MALIK, Jitendra ; PUZICHA, Jan: Shape Match-
ing and Object Recognition Using Shape Contexts. In: IEEE Trans.
Pattern Anal. Mach. Intell 24 (2002), Nr. 4, S. 509-522

CASTELLO, Beryl: Introduction to Optimization. Course Notes, 2010

CORNEA, Nicu D. ; DEMIRCI, M. F. ; SILVER, Deborah ; SHOKO-
UFANDEH, Ali ; DICKINSON, Sven J. ; KANTOR, Paul B.: 3D Object
Retrieval using Many-to-many Matching of Curve Skeletons. In: SMT
"05: Proceedings of the International Conference on Shape Modeling
and Applications 2005. Washington, DC, USA : TEEE Computer
Society, 2005, S. 368-373

CHANG, Sukmoon: Extracting Skeletons from Distance Maps. In:
IJCSNS International Journal of Compute Science and Network Se-
curity 7 (2007)

CHEN, Hui ; RANGARAJAN, Anand: A new point matching algo-
rithm for non-rigid registration. In: Computer Vision and Image
Understanding 89 (2003), Nr. 2-3, S. 114-141

CORNEA, Nicu D. ; SILVER, Deborah: Curve-skeleton properties, ap-
plications, and algorithms. In: IEEE Transactions on Visualization

and Computer Graphics 13 (2007), S. 530-548

CORNEA, Nicu D. ; SILVER, Deborah ; MIN, Patrick: Curve-Skeleton
Properties, Applications, and Algorithms. In: IEEFE Transactions on
Visualization and Computer Graphics 13 (2007), S. 530-548

DaAs, Gautam ; GUNOPULOS, Dimitrios ; MANNILA, Heikki: Finding
Similar Time Series. In: Proceedings of the First European Sympo-

sium on Principles of Data Mining and Knowledge Discovery. Lon-
don. UK : Springer London, 1997, S. 88-100

DIESTEL, Reinhard: Graph Theory (Graduate Texts in Mathemat-
ics). Springer Verlag, 2005

DAvies, E.R. ; PLUMMER, A.P.N.: Thinning algorithms: A critique
and a new methodology. In: Pattern Recognition 14 (1981), Nr. 1-6,
S. 53 — 63. — 1980 Conference on Pattern Recognition

DEY, Tamal K. ; SUN, Jian: Defining and computing curve-skeletons
with medial geodesic function. In: Proceedings of the fourth Euro-
graphics symposium on Geometry processing. Aire-la-Ville, Switzer-
land, Switzerland : Eurographics Association, 2006, S. 143-152

BIBLIOGRAPHY 101

[DSD09)

[DSK*06]

[DWTO6]

[FPWW04]

[FS08]

[GGT3]

[HBKO1]

[HHWO04]|

[Jun90]

[Jun07]

[KG10]

[KSKO1]

DEMIRCI, M. F. ; SHOKOUFANDEHAND, Ali ; DICKINSON, Sven:
Skeletal Shape Abstraction from Examples. In: IEEE Trans. Pattern
Anal. Mach. Intelligence 31 (2009), Nr. 5, S. 944-952

DEMIRCI, M. F. ; SHOKOUFANDEH, Ali ; KESELMAN, Yakov ; BRET-
ZNER, Lars ; DICKINSON, Sven J.: Object Recognition as Many-to-
Many Feature Matching. In: Int. J. Comput. Vision 69 (2006), S.
203-222

DORTMONT, M. A. M. M. ; WETERING, H. M. M. d. ; TELE, Alexan-
dru: Skeletonization and Distance Transforms of 3D Volumes Using
Graphics Hardware. In: DGCI, 2006, S. 617-629

FISHER, Robert ; PERKINS, Simon ; WALKER, Ashley ; WOLFART,
Erik: Image Processing Learning Ressources. http://homepages.
inf.ed.ac.uk/rbf/HIPR2/thin.htm. Version: 2004

FALLER, Adolf ; SCHOUNKE, Michael: Der Kdrper des Menschen. Ein-

fiihrung in Bau und Funktion. 15. Thieme Flexible Taschenbiicher,
2008

GRAY, Henry ; Goss, Charles M.: Anatomy of the human body. 29.
Philadelphia : Lea & Febiger, 1973

HisADA, Masayuki ; BELYAEV, Alexander G. ; KUNII, Tosiyasu L.:
A 3D Voronoi-Based Skeleton and Associated Surface Features. In:
Pacific Conference on Computer Graphics and Applications 0 (2001)

HE, Lei ; HAN, Chia Y. ; WEE, William G.: Graph matching for
object recognition and recovery. In: Pattern Recognition 37 (2004),
Nr. 7, S. 15571560

JUNGNICKEL, Dieter: Graphen, Netzwerke und Algorithmen. Wis-
senschaftsverlag Mannheim /Wien /Ziirich, 1990

JUNGNICKEL, Dieter: Graphs, Networks and Algorithms. 3. Springer
Publishing Company, 2007 [Jun90|

KiM, Jaechul ; GRAUMAN, Kristen: Asymmetric region-to-image
matching for comparing images with generic object categories. In:
CVPR, 2010, S. 2344-2351

KLEIN, Philip N. ; SEBASTIAN, Thomas B. ; KiMIA, Benjamin B.:
Shape matching using edit-distance: an implementation. In: Pro-
ceedings of the twelfth annual ACM-SIAM symposium on Discrete

102

[KSSKOO]

[Kuh55]

[KWTS8S]

[LGO7]

[Lie04]

[LKMT]

[LL92|

[LL99a]

[LLI9b]

[LLEO0O]

BIBLIOGRAPHY

algorithms. Philadelphia, PA, USA : Society for Industrial and Ap-
plied Mathematic, 2001, S. 781-790

KLEIN, Philip ; SRIKANTA, Tirthapura ; SHARVIT, Daniel ; KIMIA,
Ben: A tree-edit-distance algorithm for comparing simple, closed
shapes. In: Proceedings of the eleventh annual ACM-SIAM sympo-
stum on Discrete algorithms. Philadelphia, PA, USA : Society for
Industrial and Applied Mathematic, 2000, S. 696-704

KuHN, Harold W.: The Hungarian Method for the assignment prob-
lem. In: Naval Research Logistics Quarterly 2 (1955), S. 83-97

KAss, Michael ; WITKIN, Andrew ; TERZOPOULOS, Demetri:

Snakes: Active contour models. In: International Journal of Com-
puter Vision 1 (1988), Nr. 4, S. 321-331

Lonou, Christophe ; GILLES, Bertrand: Two symmetrical thinning

algorithms for 3D binary images, based on P-simple points. In: Pat-
tern Recognition 40 (2007), S. 2301-2314

LIEUTIER, Andre: Any open bounded subset of Rn has the same
homotopy type as its medial axis. In: Comput.-Aided Des. 36 (2004),
S. 1029-1046

LARSEN, Jeppe V. ; KNUDSEN, Lars ; MADSEN, Rasmus K. ; TAKLE,
Christian M.: Skeletonization using distance transform. http://wuw.
cvmt .dk/education/teaching/f10/MED8/CV/Stud/838.pdf

LEYMARIE, Frederic ; LEVINE, Martin D.: Simulating the Grassfire
Transform Using an Active Contour Model. In: IEEFE Trans. Pattern
Anal. Mach. Intell. 14 (1992), S. 56-75

LATECKI, Longin J. ; LAKAMPER, Rolf: Convexity rule for shape

decomposition based on discrete contour evolution. In: Comput. Vis.
Image Underst. 73 (1999), S. 441-454

LATECKI, Longin J. ; LAKAMPER, Rolf: Polygon Evolution by Ver-
tex Deletion. In: Proceedings of the Second International Conference

on Scale-Space Theories in Computer Vision. London, UK : Springer
Verlag, 1999, S. 398-409

LATECKI, L. J. ; LAKAMPER, Rolf ; ECKHARDT, T.: Shape descrip-
tors for non-rigid shapes with a single closed contour. In: Computer
Vision and Pattern Recognition, 2000. Proceedings. IEEE Confer-
ence on Bd. 1, 2000, S. 424-429 vol.1

BIBLIOGRAPHY 103

[LLS92]

[LMW+03]

[Low04]

[LP09)

[LWKTMO7]

[Mai99]

[Mon69]

[Mun57]

[Ogn92|

[0192]

[OK95]

LAwM, Lousia ; LEE, Seong-Whan ; SUEN, Ching Y.: Thinning
Methodologies-A Comprehensive Survey. In: IEEE Trans. Pattern
Anal. Mach. Intell. 14 (1992), S. 869-885

LATECKI, Longin J. ; MEGALOOIKONOMOU, Vasileios ; WANG,
Qiang ; LAKAEMPER, Rolf ; RATANAMAHATANA, C. A. ; KEOGH,
E.: Partial Elastic Matching of Time Series. In: Proceedings of the
Fifth IEEFE International Conference on Data Mining. Washington,
DC, USA : IEEE Computer Society, 2005, S. 701-704

LoweE, David G.: Distinctive Image Features from Scale-Invariant
Keypoints. In: International Journal of Computer Vision 60 (2004),
Nr. 2, S. 91-110

LAksHMI, J. K. ; PUNITHAVALLI, M.: A Survey on Skeletons in
Digital Image Processing. In: Proceedings of the International Con-
ference on Digital Image Processing. Washington, DC, USA : IEEE
Computer Society, 2009, S. 260—-269

LATECKI, Longin J. ; WANG, Qiang ; KOKNAR-TEZEL, Suzan ;
MEGALOOIKONOMOU, Vasileios: Optimal Subsequence Bijection.
In: ICDM ’07: Proceedings of the 2007 Seventh IEEFE International
Conference on Data Mining. Washington, DC, USA : TEEE Com-
puter Society, 2007, S. 565-570

MAILLET, S. M.: Binary Digital Image Processing: A Discrete Ap-
proach. Academic Press, 1999

MONTANARI, Ugo: Continuous Skeletons from Digitized Images. In:
J. ACM 16 (1969), S. 534-549

MUNKRES, James: Algorithms for the Assignment and Transporta-
tion Problems. In: Journal of the Society of Industrial and Applied
Mathematics 5 (1957), S. 32-38

OGNIEWICZ, Robert L.: Discrete Voronoi Skeletons, Swiss Federal
Institute of Technology Zurich, Diss., 1992

OGNIEWICZ, R. ; TLG, M.: Voronoi Skeletons: Theory and Applica-
tions. In: CVPR92, 1992, S. 63-69

OGNIEWICZ, R.L. ; KUBLER, O.: Hierarchic Voronoi skeletons. In:
Pattern Recognition 28 (1995), Nr. 3, S. 343-359

104

[Pal]

[Pal0g]

[PK93]

[PSS+03]

[QS004]

[Ren09]

[RHL11]

[RIPOO]

[RTGOS|

[RTGOO]

[SBOg]

[SBH*11]

BIBLIOGRAPHY

PALAGYI, Kalmén: Skeletonization. http://www.inf.u-szeged.
hu/"palagyi/skel/skel.html

PAavLAGyl, Kalman: A 3D fully parallel surface-thinning algorithm.
In: Theoretical Computer Science 406 (2008), S. 119-135

PavLAGYI, Kalman ; KuBaA, Attila: A 3D 6-subiteration thinning

algorithm for extracting medial lines. In: Pattern Recogn. Lett. 19
(1998), S. 613-627

P1zER, Stephen M. ; SIDDIQI, Kaleem ; SZEKELY, Gabor ; DAMON,
James N. ; ZUCKER, Steven W.: Multiscale Medial Loci and Their
Properties. In: Int. J. Comput. Vision 55 (2003), S. 155-179

QUADROS, W.R. ; SHIMADA, K. ; OWEN, S. J.: 3D discrete skele-
ton generation by wave propagation on PR-octree for finite element
mesh sizing. In: Proceedings of the ninth ACM symposium on Solid
modeling and applications, 2004, S. 327-332

RENIERS, Dennie: Skeletonization and segmentation of binary vozel
shapes, Technische Universiteit Eindhoven, Diss., 2009

RUCKERT, Ralph ; HEpP, Wolfgang ; LUTHER, Bernd: Chirurgie der
abdominalen und thorakalen Aorta. In: Chirurgie der abdominalen
und thorakalen Aorta. Berliner Gefafschirurgie, 2011

REINDERS, Freek ; JACOBSON, Melvin E. D. ; PosT, Frits H.: Skele-
ton Graph Generation for Feature Shape Description. In: [IFEE
TCVG Symposium on Visualization, Springer Verlag, 2000, S. 73-82

RUBNER, Yossi ; ToMAsI, Carlo ; GUIBAS, Leonidas J.: A Metric
for Distributions with Applications to Image Databases. In: Pro-
ceedings of the Sizth International Conference on Computer Vision.

Washington, DC, USA : IEEE Computer Society, 1998, S. 59—

RUBNER, Yossi ; ToMASI, Carlo ; GUIBAS, Leonidas J.: The Earth

Mover’s Distance as a Metric for Image Retrieval. In: Int. J. Comput.
Vision 40 (2000), S. 99-121

SHAKED, Doron ; BRUCKSTEIN, Alfred M.: Pruning medial axes.
In: Comput. Vis. Image Underst. 69 (1998), S. 156-169

SHEN, Wei ; Bal, Xiang ; HU, Rong ; WANG, Hongyuan ; LATECKI,
Longin J.: Skeleton growing and pruning with bending potential
ratio. In: Pattern Recognition 44 (2011), S. 196-209

BIBLIOGRAPHY 105

[Sch06]

[SK96]

[SKO03]

[SKK04]

[SLSKO07]

[SLV99]

[SPOg]

[SSGDO3]

SSS+06]

[THO2]

[TW02

SCHMITT, Ingo: Ahnlichkeitssuche in Multimedia-Datenbanken. Re-
trieval, Suchalgorithmen und Anfragebehandlung. Miinchen, 2006

SipDIQI, K. ; KiMIA, B.B.: A shock grammar for recognition. In:

Computer Vision and Pattern Recognition, IEEE Computer Society
Conference on 0 (1996), S. 507

SEBASTIAN, Thomas B. ; KiMIA, Benjamin B.: Curves vs. skeletons
in object recognition. In: Signal Processing 85 (2005), Nr. 2, S.
247-263

SEBASTIAN, Thomas B. ; KLEIN, Philip N. ; KiMmIA, Benjamin B.:
Recognition of Shapes by Editing Their Shock Graphs. In: [EEFE
Transactions on Pattern Analysis and Machine Intelligence 26

(2004), Nr. 5, S. 550-571

SHARF, Andrei ; LEWINER, Thomas ; SHAMIR, Ariel ; KOBBELT,
Leif: On-the-fly Curve-skeleton Computation for 3D Shapes. In:
Computer Graphics Forum, (Proceedings FEurographics 2007) 26
(2007), Nr. 3, S. 323-328

SCHOMAKER, Lambert ; LEAU, Edward de ; VUURPILIL, Louis: Us-
ing Pen-Based Outlines for Object-Based Annotation and Image-
Based Queries. In: VISUAL, 1999, S. 585-592

SipDIQI, Kalem ; PI1ZER, Stephen: Medial Representations: Mathe-
matics, Algorithms and Applications. Springer Publishing Company,
2008

SUNDAR, H. ; SILVER, Deborah ; GAGVANI, Nikhil ; DICKINSON,
Sven J.: Skeleton Based Shape Matching and Retrieval. In: Shape
Modeling International, 2003, S. 130-142, 290

SCHUNKE, Michael ; SCHULTE, Erik ; SCHUMACHER, Udo ; LAM-
PERTI, Edward D. ; Ross, Lawrance M.: Thieme Atlas of Anatomy:
General Anatomy and Musculoskeletal System. Thieme Flexible
Taschenbiicher, 2006

TAM, Roger ; HEIDRICH, Wolfgang: Feature-Preserving Medial Axis

Noise Removal. In: Proceedings of the Furopean Conference on Com-
puter Vision (ECCV), 2002

TELEA, Alexandru ; WK, Jarke J.: An augmented Fast Marching

Method for computing skeletons and centerlines. In: Proceedings of
the symposium on Data Visualisation 2002, 2002, S. 251t

106

[Wik11]

[XTP03]|

[XWBO0Y

[YBYLO7]

[You9s]

BIBLIOGRAPHY

WIKIPEDIA: Bipartite graph — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Bipartite_
graph&oldid=411125443. Version:2011. — [Online; accessed 9-
March-2011]

XI1E, Wenjie ; THOMPSON, Robert P. ; PERUCCHIO, Renato: A
topology-preserving parallel 3D thinning algorithm for extracting the
curve skeleton. In: Pattern Recognition 36 (2003), Nr. 7, S. 1529
1544

XU, Yao ; WENYU, Liu ; BAI, Xiang: Skeleton Graph Matching
Based on Critical Points Using Path Similarity. In: ACCV (3), 2009,
S. 456-465

YANG, Xingwei ; BAI, Xiang ; YU, Deguang ; LATECKI, Longin J.:
Shape Classification Based on Skeleton Path Similarity. In: Energy
Minimization Methods in Computer Vision and Pattern Recognition
Bd. 4679. Springer Verlag, 2007, S. 375-386

YOUNES, Laurent: Computable Elastic Distances between Shapes.
In: STAM J. Appl. Math 58 (1998), S. 565-586

