
Tobias Walter

Bridging Technological Spaces:
Towards the Combination of
Model-Driven Engineering and
Ontology Technologies

July 25, 2011

Vom Promotionsausschuss des Fachbereichs 4: Informatik der
Universität Koblenz-Landau zur Verleihung des akademischen
Grades Doktor der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation.

Vorsitzender des Promotionsausschusses:
Prof. Dr. Rüdiger Grimm

Promotionskommission

Vorsitzender: Prof. Dr. Felix Hampe
Berichterstatter: Prof. Dr. Jürgen Ebert

Prof. Dr. Steffen Staab
Prof. Dr. Gerti Kappel

Tag der wissenschaftlichen Aussprache: 29. Juni 2011

Abstract

Model-Driven Engineering (MDE) aims to raise the level of abstraction in soft-
ware system specifications and increase automation in software development.
Modelware technological spaces contain the languages and tools for MDE that
software developers take into consideration to model systems and domains.

Ontoware technological spaces contain ontology languages and technologies
to design, query, and reason on knowledge. With the advent of the Semantic
Web, ontologies are now being used within the field of software development,
as well.

In this thesis, bridging technologies are developed to combine two tech-
nological spaces in general. Transformation bridges translate models between
spaces, mapping bridges relate different models between two spaces, and, inte-
gration bridges merge spaces to new all-embracing technological spaces. API
bridges establish interoperability between the tools used in the space.

In particular, this thesis focuses on the combination of modelware and
ontoware technological spaces. Subsequent to a sound comparison of languages
and tools in both spaces, the integration bridge is used to build a common
technological space, which allows for the hybrid use of languages and the
interoperable use of tools. The new space allows for language and domain
engineering.

Ontology-based software languages may be designed in the new space where
syntax and formal semantics are defined with the support of ontology lan-
guages, and the correctness of language models is ensured by the use of on-
tology reasoning technologies. These languages represent a core means for
exploiting expressive ontology reasoning in the software modeling domain,
while remaining flexible enough to accommodate varying needs of software
modelers.

Application domains are conceptually described by languages that allow
for defining domain instances and types within one domain model. Integrated
ontology languages may provide formal semantics for domain-specific lan-
guages and ontology technologies allow for reasoning over types and instances
in domain models.

A scenario in which configurations for network device families are modeled
illustrates the approaches discussed in this thesis. Furthermore, the implemen-
tation of all bridging technologies for the combination of technological spaces
and all tools for ontology-based language engineering and use is illustrated.

Zusammenfassung

Die modellgetriebene Softwareentwicklung beabsichtigt die Spezifikation von
Softwaresystemen durch Modelle zu vereinfachen und die automatisierte En-
twicklung zu verbessern. Die Modellierungssprachen und Werkzeuge, die zur
Modellierung von Systemen und Anwendungsdomänen herangezogen werden,
werden in modellbasierten technologischen Räumen zusammengefasst.

Ontologiebasierte technologische Räume enthalten Ontologiesprachen und
Technologien zum Entwurf, der Anfrage und dem Schlussfolgern von Wis-
sen. Mit der Verbreitung des semantischen Webs werden Ontologien in der
Entwicklung von Software zunehmend eingesetzt.

In dieser Arbeit werden zur Kombination von technologischen Räumen
Brückentechnologien vorgestellt. Transformationsbrücken übersetzen Mod-
elle, Abbildungsbrücken stellen Beziehungen zwischen Modellen verschiedener
technologischer Räume her und Integrationsbrücken verschmelzen Räume zu
neuen allumfassenden technologischen Räumen. API Brücken erschaffen In-
teroperabilität zwischen Werkzeugen.

Diese Arbeit beschäftigt sich insbesondere mit der Kombination von mod-
ellbasierten und ontologiebasierten technologischen Räumen. Nach einem Ver-
gleich zwischen Sprachen und Werkzeugen der einzelnen Räume wird die
Integrationsbrücke herangezogen um einen neuen gemeinsamen technologis-
chen Raum zu erstellen, der den hybriden Gebrauch von Sprachen und den
interoperablen Einsatz von Werkzeugen ermöglicht.

Die Syntax und Semantik von Modellierungssprachen kann mit Hilfe von
Ontologiesprachen spezifiziert werden. Die Korrektheit von Modellen wird
durch den Einsatz von Ontologietechnologien gewährleistet. Ontologiebasierte
Modellierungssprachen erlauben den Nutzen von Anfrage- und Schlussfol-
gerungstechnologien. Sie sind darüber hinaus so flexibel um verschiedene An-
forderungen von Softwareentwicklern zu erfüllen.

Domänenspezifische Sprachen unterstützen neben der Spezifikation von
Systemen auch die konzeptionelle Beschreibung von Domänen durch Modelle,
die aus möglichen Laufzeitinstanzen und deren Typen bestehen. Integrierte
Ontologiesprachen helfen eine formale Semantik für Domänenmodellierungs-
sprachen zu definieren und Ontologietechnologien ermöglichen das Schlussfol-
gern über Typen und Instanzen.

Alle Ansätze in dieser Arbeit werden mit Hilfe eines Szenarios, in dem
die Konfigurationen für Familien von Netzwerkgeräte modelliert werden, ver-
anschaulicht. Ferner werden die Implementationen aller Brückentechnologien
zur Kombination von technologischen Räumen und alle Werkzeuge für die
ontologiebasierte Entwicklung von Modellierungssprachen illustriert.

Danksagung

An dieser Stelle möchte ich all jenen danken, die mir durch ihre fachliche und
persönliche Unterstützung bei der Erarbeitung dieser Dissertation zur Seite
standen.

Mein erster Dank geht an Prof. Dr. Jürgen Ebert und Prof. Dr. Steffen
Staab. Sie haben mir ermöglicht in Koblenz zu promovieren und in einem in-
ternationalen Projekt zu arbeiten. Beide haben mit vielen spannenden Diskus-
sionen und gezielter konstruktiver Kritik zur Entstehung dieser Arbeit beige-
tragen.

Prof. Dr. Gerti Kappel danke ich für das Interesse an meiner Arbeit und
die Bereitschaft diese Dissertation zu begutachten.

Mit Gerd Gröner und Fernando Silva Parreiras habe ich das Büro geteilt
und zusammen mit Hannes Schwarz viele interessante Diskussionen geführt.
Für die vielen gemeinsamen Stunden in Koblenz und auf Dienstreisen bin ich
allen sehr dankbar.

Auch meinem gesamten Kollegenkreis bin ich zu Dank verpflichtet. Obwohl
ich jeweils ein halbes Mitglied des Instituts für Web Science and Technologies
(WeST) und des Instituts für Softwaretechnik (IST) bin, werde ich stets von
beiden als ein volles Mitglied akzeptiert.

Die zahlreichen Treffen im Rahmen des EU Forschungsprojekts Marrying
Ontology and Software Technology (MOST) boten mir die Möglichkeit meine
Ideen zu präsentieren und mit unseren Partnern Beispiele zu erarbeiten, die
in dieser Arbeit zur Veranschaulichung meiner Ideen dienen.

Dankbar bin ich auch allen studentischen Hilfskräften, die im Rahmen des
MOST und des TwoUse Projekts in den vergangenen drei Jahren halfen, die
in dieser Arbeit vorgestellten Ansätze zu realisieren.

Mein letzter Dank geht an meine Familie und Freunde, die mich stets
unterstützt haben und so auch ihren Beitrag zu dieser Arbeit geleistet haben.

Contents

Part I Introduction and Motivation

1 Introduction . 3
1.1 Challenges in Model-Driven Engineering . 5

1.1.1 Shortcomings in Model-Driven Engineering 5
1.1.2 Shortcomings in Domain-Specific Modeling 7
1.1.3 Key Challenges of this Thesis . 8

1.2 Research Questions . 9
1.3 Thesis Road Map . 11
1.4 Dissemination and Publications . 12

Part II Foundations

2 A Modelware Technological Space . 17
2.1 Chapter Context . 18

2.1.1 Road Map . 18
2.1.2 Relation to OMGs Model Hierarchy 21

2.2 The TGraph Approach . 21
2.2.1 TGraphs . 21
2.2.2 Graph Schemas . 24
2.2.3 grUML. 28
2.2.4 Relation to MOF Metametamodels 32

2.3 Modelware Tools and Services . 33
2.3.1 GReQL - Graph Repository Query Language 33
2.3.2 GReTL - Graph Repository Transformation Language . 36

2.4 Conclusion . 38

3 An Ontoware Technological Space . 39
3.1 Chapter Context . 39
3.2 Description Logics . 40

10 Contents

3.2.1 DL Families . 41
3.2.2 Relation to First Order Logic and Complexity 46
3.2.3 OWA and CWA . 47

3.3 Ontoware Models . 51
3.3.1 Ontoware Models as TGraph . 51
3.3.2 Concrete Syntaxes . 54

3.4 Ontoware Reasoning and Querying Services 54
3.4.1 Standard Reasoning Services . 54
3.4.2 Non-Standard Reasoning Services 55
3.4.3 SPARQL Querying Services . 57

3.5 Conclusion . 59

4 Comparison of Modelware and Ontoware 61
4.1 Chapter Context . 61
4.2 Comparison of Modeling Languages and Concepts 62

4.2.1 Common Concepts . 63
4.2.2 Variations . 64

4.3 Comparison of Query Technologies . 65
4.3.1 Query Language Concepts . 66
4.3.2 Semantics and Entailment . 66
4.3.3 Constraint Validation . 66

4.4 Reasoning Technologies . 68
4.4.1 Schema Reasoning . 69
4.4.2 Schema+Instance Reasoning . 69
4.4.3 Open World Reasoning . 70

4.5 Conclusion . 71

Part III Combinations

5 Bridging Technologies . 75
5.1 Chapter Context . 75

5.1.1 Example Modeling Language . 75
5.1.2 Bridge Classification and Chapter’s Road Map 76

5.2 Transformation Bridge . 78
5.2.1 Transformation Definition . 79
5.2.2 Transformation Use . 80
5.2.3 Discussion . 80

5.3 Integration Bridge . 81
5.3.1 Integration Definition . 82
5.3.2 Integration Use . 93
5.3.3 Discussion . 97

5.4 Mapping Bridge . 99
5.4.1 Mapping Definition . 99
5.4.2 Mapping Use . 101

Contents 11

5.4.3 Discussion . 103
5.5 API Bridge . 106

5.5.1 API Bridge Implementation . 107
5.5.2 API Bridge Use . 107
5.5.3 Discussion . 109

5.6 Related Work . 109
5.7 Conclusion . 112

6 Language Engineering and Use with Ontology Technologies 115
6.1 Chapter Context . 116

6.1.1 Technological Space . 116
6.1.2 Linguistic Metamodeling . 118
6.1.3 Chapter Road Map . 118

6.2 Integration Bridge for Linguistic Instantiable Models 118
6.2.1 Integration Definition . 119
6.2.2 Integration Use . 123

6.3 Defining and Validating Constraints . 129
6.3.1 Defining Constraints . 129
6.3.2 Validating Constraints . 133

6.4 Related Work . 137
6.5 Conclusion . 139

7 Conceptual Domain Engineering with Ontological
Instantiation . 141
7.1 Chapter Context . 141

7.1.1 Domain Engineering . 141
7.1.2 Ontological Metamodeling . 142
7.1.3 Chapter Road Map . 144

7.2 Extending Modeling Languages for Ontological Metamodeling . 145
7.3 Integrating Ontological Metamodeling with Ontology

Languages . 147
7.3.1 Integration Definition . 148
7.3.2 Integration Use . 150

7.4 Expressions and Services for Ontological Metamodeling 151
7.4.1 Expressions for Domain Instances and Domain Types . . 152
7.4.2 Services for Domain Analysis . 153

7.5 Related Work . 156
7.6 Conclusion . 156

Part IV Applications

12 Contents

8 Domain-Specific Modeling Environments 161
8.1 Chapter Context . 161

8.1.1 Reused and Adopted Technologies and Approaches 161
8.1.2 Chapter Road Map . 162

8.2 Case Study . 162
8.2.1 Scenario . 163
8.2.2 Goals and Relations to Challenges 167

8.3 Application of Bridging Approaches . 167
8.3.1 Integration Definition . 168
8.3.2 Integration Use . 168

8.4 Accomplished Goals . 170
8.4.1 Constraints for Configuration Types (Goal 1) 170
8.4.2 Formal Semantics (Goal 1) . 170
8.4.3 Debugging and Suggestions (Goal 2 and 3) 171

8.5 Conclusion . 172

9 Joint Language and Domain Engineering 173
9.1 Chapter Context . 173

9.1.1 Reused and Adopted Technologies and Approaches 173
9.1.2 Chapter Road Map . 173

9.2 Case Study . 174
9.2.1 Application Context and Roles . 175
9.2.2 Scenario . 176
9.2.3 Goals and Relations to Challenges 179

9.3 Application of Bridging and Modeling Approaches 180
9.3.1 2-Dimensional Metamodeling Language 181
9.3.2 Integration with OWL . 183

9.4 Accomplished Goals . 183
9.5 Conclusion . 184

Part V Finale

10 Tool Support and Proof of Concept . 187
10.1 Tool Support . 187

10.1.1 Implementation Context . 187
10.1.2 Implementations with JGraLab . 188
10.1.3 TwoUse Toolkit . 194
10.1.4 MOST Workbench . 195

10.2 Proof of Concept . 197
10.2.1 Challenge 1: Bridging Technologies 197
10.2.2 Challenge 2: Formal Semantics and Correctness of

Languages . 198
10.2.3 Challenge 3: Tooling . 199
10.2.4 Challenge 4: Domain Modeling . 199

Contents 13

10.3 Conclusion . 200

11 Conclusion and Outlook . 201
11.1 Thesis Contribution . 201
11.2 Outlook and Future Work . 204

A Appendix . 205
A.1 Additional Definitions for the TGraph Technological Space . . . 205

A.1.1 Self-Conformance of grUML . 205
A.1.2 Visualizations of Graph Schemas . 208
A.1.3 Model-Theoretic Semantics of Graph Schemas 210
A.1.4 Modelware Basic Services . 213

A.2 OWL 2 Metamodel . 214
A.3 Bridging Technologies . 225

A.3.1 Example of Transformation Bridge 225
A.3.2 Example of API Bridge . 229

A.4 Grammar for the Ecore+OWL language . 234

References . 245

Index . 253

B Curriculum Vitae - Tobias Walter . 255

Part I

Introduction and Motivation

1

Introduction

Nowadays Model-Driven Engineering (MDE) plays a key role in the descrip-
tion and engineering of software systems [Sch06]. Models are the central ar-
tifacts in model-driven engineering. They are designed using modeling lan-
guages and edited, queried, and transformed using corresponding tools during
software development. Models describe views of the real world systems and
applications.

Models may be defined by several modeling languages. Modeling languages
are usually defined in their concrete syntax (the visual notation used), their
abstract syntax (the structure behind the visualization), and their semantics
(the intended meaning of given models). Language designers develop modeling
languages which are applied by language users, who use the concrete syntax
to build conforming models.

A prominent modeling language is UML - the Unified Modeling Lan-
guage [OMG07b]. UML provides a visual notation and is a general-purpose
modeling language since it provides concepts that are not dependent on any
application domain. UML allows for modeling several views of a software sys-
tem. Additionally to general-purpose modeling languages, Domain-Specific
Languages (DSL) may be used. They focus on specific application domains
and provide domain-specific abstractions and notations for the design of spe-
cific aspects of a system [KT07].

The concrete languages and tools used to develop the software depend on
the technological spaces and modeling environments. A technological space is a
working context with a set of associated modeling concepts and tools [KBA02].
A modeling environment provides all the software facilities, modeling lan-
guages, tools, and services for the development and support of software prod-
ucts [NE93].

A prominent technological space is the Meta Object Facility (MOF) tech-
nological space initiated by the Object Management Group (OMG) [OMG06].
In MOF the software development process is populated with a number of dif-

4 1 Introduction

ferent models. They are described by different languages. The most popular
is the UML.

We consider such UML/MOF-inspired technological spaces as Modelware
Technological Spaces.

Besides modelware technological spaces other spaces can be easily iden-
tified, e.g., the XML technological space [W3C11], or the grammarware tech-
nological space [SW09]. The XML technological space is widely accepted as a
standard for representation and exchange of structured and semi-structured
data where XML documents are the central concept. The grammarware tech-
nological space is concerned with grammars, grammar-based description lan-
guages, and associated tools. A further space is the ontoware technological
space, which is introduced below. In general, all spaces provide languages and
tools, and they have advantages as well as drawbacks.

The heterogeneity of and the insufficient interoperability between techno-
logical spaces often hinders the simultaneous use of their respective languages,
tools, and services. In this thesis we are going to tackle the interoperability
between modelware technological spaces and other technological spaces. For
the combination of technological spaces, appropriate techniques are required.
We consider these techniques as bridges.

To define these bridges between technological spaces, their similarities
(commonalities) and their dissimilarities (variabilities) must first be identi-
fied. The comparison leads to a mapping of the underlying concepts of spaces
and is used as a basis for building concrete bridges.

Besides languages we must consider the tools and services. We will discover
the technologies, which bring profit to the respective other spaces.

With the advent of the Semantic Web [AH08], ontologies are used in soft-
ware modeling [WPS09, WPSE10], as well. Though in the stronger sense an
ontology is a formal explicit specification of a shared conceptualization for a
domain of interest [GOS09], the term ontology is actually being used for log-
ical knowledge bases in a broader sense. Ontologies are based on description
logics (DL) [BCM+03], and the term ontology is more and more used as a
synonym for description logics knowledge bases in general.

Similar to software models, ontologies may be described by languages. A
prominent example is the World Wide Web Consortium (W3C) standard Web
Ontology Language (OWL) in its current version 2 [MPSH09]. OWL 2 allows
for class based modeling. It provides a rich set of primitives used to formally
conceptualize a domain. OWL 2 allows for defining classes representing the
concepts of the domain. Class descriptions are extended by logical expres-
sions on the properties that classes have. Axioms in OWL 2 ontologies define
conditions on class memberships.

Given an ontology conceptualizing a domain, ontology reasoning tools and
services may be used to check the correctness of logical expressions and derive

1.1 Challenges in Model-Driven Engineering 5

relations between classes or its members. Information that is implicitly defined
in an ontology can be made explicit by reasoning tools.

The OWL-based way of modeling together with reasoning and querying
tools is summarized as Ontoware Technological Space, opposed to MOF/UML-
like modeling and tooling in modelware technological spaces. To differentiate
ontologies used as a shared conceptualization in the semantic world wide web
and models described by OWL 2 representing a DL knowledge base, we in-
troduce in this thesis the notion of ontoware models. Ontoware models are
software models written in OWL 2 and represent a DL knowledge base.

In this thesis we concentrate on the combination of modelware and onto-
ware technological spaces. We will depict some challenges for modelware tech-
nological spaces, which may be tackled by ontoware technological spaces. We
consider applications in the field of domain-specific modeling. We will show
how the combinations of languages of the two spaces are used for domain-
specific modeling and how different tools and services support the modeling
tasks.

The remaining sections belonging to this chapter are structured as follows:
In Section 1.1 we set up the key challenges for this thesis summarizing the
requirements and shortcomings in model-driven engineering. We present the
research contribution of this thesis by positioning research questions in Sec-
tion 1.2. Answers to these research questions tackle the key challenges with
the use of ontology languages and technologies. We illustrate the road map of
this thesis providing guidance to the reader on how to read it in Section 1.3.
In Section 1.4 we comment on the dissemination of the approaches presented
in this thesis.

1.1 Challenges in Model-Driven Engineering

In this section we are going to present the shortcomings and requirements
in model-driven engineering and domain-specific modeling. Given these short-
comings and requirements we set up four key challenges which are tackled in
this thesis with the use of ontology languages and technologies.

1.1.1 Shortcomings in Model-Driven Engineering

Model-Driven Engineering (MDE) targets the improvement of software qual-
ity, reuse, and efficient software development [Béz06, MCF03]. The approach
of model-driven engineering suggests to handle models as primary artefacts. In
several steps they are transformed into executable models (e.g., source code).

France and Rumpe present in [FR07] a research road map for model-
driven development of complex software. They present three categories of
open challenges for MDE.

6 1 Introduction

MDE 1: The modeling language challenge deals with the creation of problem-
level abstractions using modeling languages. Modeling languages should
provide abstractions of problems to be modeled and solved. This may be
achieved by general purpose modeling languages. In addition, language
extension mechanisms should allow for integrating suitable and domain-
specific concepts abstracting a specific domain to one integrated modeling
language.

MDE 2: The separation of concerns challenge arises from the problem that
different views of one system are modeled using multiple languages. Mod-
eling languages such as UML [OMG07b] support the design of systems
from several fixed viewpoints. Nevertheless, concepts in one viewpoint may
depend on those provided by other viewpoints. Modeling environments
should provide mechanisms to integrate languages for separate views to
one modeling language providing a consistent view to the complete system
to be modeled.

MDE 3: The model manipulation challenge describes the design and use of
model transformations. Typical model transformations define (binary) re-
lations between two sets of models, where one set describes all source mod-
els, the other set describes the target models. A mechanism implementing
the transformation considers a source model and produces a target model.
Besides traditional transformations, modeling environments must support
other forms becoming more widely used in MDE: (a) Model compositions
take two source models representing different views and produce an inte-
grated view. (b) Model decomposition is used to produce multiple target
models for one integrated model. (c) Model translations transform a source
model to a target model expressed in a different language better suited
for some other purpose.

In addition to the problems described by France and Rumpe, Atkinson
and Kühne describe in their papers [AK03, AK01] the foundations of infra-
structures for model-driven engineering. An infrastructure for model-driven
engineering must support the capabilities for language engineering and use.
Much of their recent work on enhancing the infrastructure has focused on
metamodeling as a method for engineering languages. Such infrastructures
are supported by the traditional 4-layer metamodeling hierarchy.

The 4-layer metamodeling hierarchy provided by OMG [OMG06] describes
the specification and the use of modeling languages. At the M3 layer a
metametamodel is defined. At the M2 layer the language is specified by defin-
ing a metamodel. Its elements are instances of elements in the metametamodel.
At the M1 layer the specified language can be used for creating a model, which
is an instance of the metamodel. All models at the M1 layer are representa-
tions of real world elements lying at the M0 layer.

Given the 4-layer metamodeling hierarchy, Atkinson and Kühne identify
problems:

1.1 Challenges in Model-Driven Engineering 7

MDE 4: The metamodeling hierarchy implies that all instantiation relation-
ships between types and instances are fundamentally of the same kind.
But different kinds of types exist. Types can prescribe instances to ful-
fill given properties, and types are used to describe sets of instances by
formulating the characteristics instances have.

MDE 5: A preference exists for using metalevel descriptions to provide prede-
fined concepts. Besides metamodel designers, language users require the
capability to dynamically extend the set of types by specializing given
types or by adding new metatypes.

1.1.2 Shortcomings in Domain-Specific Modeling

Domain-specific modeling (DSM) aims for raising the level of abstraction be-
yond programming languages and source code by modeling the solution in a
language that directly uses concepts and rules from a specific problem do-
main. In the context of model-driven engineering, domain models, designed
using DSLs, may be combined with other models in standardized languages to
form a complete and consistent overall view to the system under development.

There is an agreement about the challenges faced by current DSL ap-
proaches [GFC+08]:

DSM 1: (Tooling) For many DSLs even basic tools such as debuggers or test-
ing engines are missing. Such tools are costly to build, but they are nec-
essary because DSL tools must provide the abstraction and the assistance
for the domain to be modeled.
A typical activity in programming is debugging to find and repair defects
in programs. Domain models designed using domain-specific modeling lan-
guages may also have defects, e.g., models may not conform to language
specifications or elements in models may contradict each other. Debuggers
for domain models should identify the defects and suggest how to repair
them.

DSM 2: (Interoperability) Facilities for language interoperability are an im-
provement for domain-specific modeling. Domain modelers can shift freely
between domain-appropriate languages to model systems under different
aspects.
Different parts of the same system may be described by using different
DSLs. Thus, there must be a means to relate concepts across language
borders and a means to ensure consistency [FR07]. Therefore, France and
Rumpe require a sound integration approach of DSLs.

DSM 3: (Formal semantics) The design of DSLs is often concentrated on the
syntax. The abstract syntax, achieved by a metamodel, defines the domain
concepts available for domain modeling. The concrete syntax provides
notations for simplified modeling. Often a clear definition of semantics,
the meaning of domain concepts the language provides, is not achieved.
Formal semantics precisely describe the meaning of models in such a way

8 1 Introduction

so that they do not remain open to different interpretations by different
persons (or machines).
Formal semantics are required for validating domain models and evaluat-
ing well-formedness rules restricting the use of domain concepts. Usually
domain models are validated and verified informally in design reviews.
Such procedures might be error-prone. Proving properties about concepts
and relationships in the domain is not possible due to the lack of formal
semantics of DSLs. Given a formal semantic defined for a DSL, seman-
tic analysis may help to validate the conformity of domain models with
respect to language specifications.

1.1.3 Key Challenges of this Thesis

In the following we are going to set up key challenges, which summarize the
problems, shortcomings, and requirements from the MDE and DSM commu-
nity.

Challenge 1 (Bridging Technologies)

Since software systems to be built are modeled from different perspec-
tives using several modeling languages, we must establish techniques that
allow for combining modeling languages. We consider these techniques
as bridges. Hence, the bridging technologies challenge discusses generic
bridges used for the composition and the decomposition of modeling lan-
guages. For each bridge a sound procedure how to establish it for two given
modeling languages and how to use it for respective conforming models
must be developed.

The approached shortcomings and requirements for this challenge are:
MDE 2,3; DSM 2.

Challenge 2 (Formal Semantics and Correctness of Languages)

The semantics of modeling languages is often not defined explicitly but
hidden in modeling tools. To fix a specific formal semantics for models it
should be defined declaratively in the metamodel. To make well-formedness
constraints more explicit, they also should be defined declaratively in the
metamodel specification.

The approached shortcomings and requirements for this challenge are:
MDE 1; DSM 3.

Challenge 3 (Tooling)

Tooling is important for productive and error-free modeling. Model edi-
tors may be extended by integrated debugging and assistance services. A
challenge is to develop a meta-tool infrastructure so that tools for DSLs
can be created more easily [GFC+08, FR07]. Tools provide a set of ser-
vices to users of DSLs [BGMR03]. Meta-tools also provide services, which

1.2 Research Questions 9

encapsulate basic functionalities and which are used by tool developers to
implement the services for DSL users.

The approached shortcomings and requirements for this challenge are:
DSM 1.

Challenge 4 (Domain Modeling)

Domain designers prefer the use of type descriptions to define concepts
classifying domain instances in domain models. They require the capability
to dynamically extend the set of types by specializing given types or by
adding new metatypes. To design models consisting of several type layers,
language users need appropriate languages. This challenge discusses the
design of syntax and semantics of (domain-specific) modeling languages
allowing for dynamically extending the set of domain types available for
modeling.

The approached shortcomings and requirements for this challenge are:
MDE 4, 5.

1.2 Research Questions

In this thesis we are going to show how to tackle the key challenges listed
in Section 1.1.3 with the combination of modelware technological spaces with
ontoware technological spaces.

To combine modelware and ontoware languages and tools, we are going to
ask research questions. These questions are stated at the beginning of each
chapter in this thesis. In this section we are going to summarize these research
questions to illustrate how they are arranged and related throughout the whole
thesis.

Modelware and ontoware technological spaces provide the design of mod-
els using languages as well as providing tools and services. Before we start
bridging them, we need a consistent view of both spaces. We must answer the
question:

Question 1: What are the particular languages and tools in the respective
spaces?
(RQ1,2,3,4)

We must describe the syntax and semantics of languages used in the spaces
and we must specify the tools and services the spaces provide.

Having a unique and consistent view of both technological spaces and their
languages, tools, and services, we are going to answer the following question:

Question 2: What are the commonalities and variations of a modelware tech-
nological space and an ontoware technological space?
(RQ5)

10 1 Introduction

The goal is to find a mapping of language concepts that syntactically and
semantically have similar properties in both spaces. Furthermore, variations
of language concepts and tools must be indicated to outline benefits of tech-
nologies in the respective other space.

A mapping of concepts may help to establish bridges to combine both
spaces. To realize and use bridges we must answer the question:

Question 3: What are the techniques to bridge technological spaces?
(RQ6)

We will develop bridges, indicate their respective advantages, and show
how they are established and how they are used in a modeling environment.
The goal is to present the bridges in a generic way such that they can be used
for the combination of several spaces besides modelware and ontoware.

Having mechanisms to combine technological spaces, we are going to con-
sider the combined use of modelware and ontoware languages and tools.

We target the engineering of new modeling languages in combination with
ontology languages via bridges. Ontology languages with their rich set of prim-
itives and their formal semantics may support the design of syntax and se-
mantics of software modeling languages. We are going to answer the question:

Question 4: How may the formal semantics of ontology languages be used for
software modeling languages?
(RQ7,9)

Answering this question, we target the engineering of new modeling lan-
guages in combination with ontology languages via bridges. Ontology lan-
guages may support the design of syntax and semantics in the software lan-
guage engineering process. Having modeling languages designed and bridged
with ontology languages, we must consider their use. Since ontology technolo-
gies allow for reasoning we must consider the question:

Question 5: How do ontology technologies support the design and correctness
of models?
(RQ8,10)

The goal is to detect tools and services from the ontoware space that may
help in using a modeling language. Besides editors, the users of languages are
interested in the correctness of models and they require guidance through the
modeling process. If defects in models are detected, the software modeler is
guided in the deagnosis and handling of defects.

The techniques used to bridge modeling languages, the approaches of using
ontology languages for software modeling, and, the detected ontology tech-
nologies supporting software modeling, may all be applied in domain-specific
modeling. Therefore, we are going to tackle the following question:

Question 6: How are integrated ontology technologies applied in domain-
specific modeling?
(RQ11,12)

1.3 Thesis Road Map 11

To illustrate the use of ontology technologies in domain-specific modeling,
we are going to consider the domain of network routers. Here domain-specific
languages may be bridged with ontology languages and ontology technologies
may be used for the correctness and support of designing domain models
representing network routers.

1.3 Thesis Road Map

In Figure 1.1 we illustrate the road map of this thesis giving an overview of
all chapters. It depicts the relations between chapters and the assignment of
research questions.

Based on the requirements and shortcomings coming from the MDE com-
munity, we have established four key challenges that tackle these requirements
and shortcomings with the use of ontology technologies.

In Part II we introduce the foundations for this thesis. We introduce a
modelware technological space in Chapter 2 and an ontoware technological
space in Chapter 3. The goal of these chapters is to specify the languages
and services in a common framework making them comparable. Chapter 4
provides the comparison of both spaces comparing the languages and tools.
Further, the chapter targets the establishment of a first mapping of language
concepts between both spaces and figures out the potentials of modelware
tools and ontoware tools.

In Part III of this thesis we show the combinations of modelware lan-
guages and technologies with ontoware technologies. In Chapter 5 we present
the bridging technologies. We specify how they are established for two given
languages and we show how they are used. The Chapters 6 and 7 consider
these bridging technologies. Here we illustrate approaches that profit from
ontology technologies in language engineering, use, and conceptual domain
engineering.

Given several combinations of modelware and ontoware, we present in
Part IV applications in the field of domain-specific modeling. In Chapter 8
we present a modeling environment for developing and using domain-specific
modeling languages. In Chapter 9 we present the joint design of modeling
languages for language engineering and domain engineering. In both chapters
ontology languages are used to define the semantics of modeling languages
and reasoning services are used for more productive modeling.

In Part V we conclude this thesis. In Chapter 10 we present the tools
realizing the approaches discussed in this thesis. We furthermore review the
key challenges set up in Section 1.1.3 and mention where in the thesis they
are tackled and applied. Chapter 11 concludes this thesis and gives an outlook
to future work.

12 1 Introduction

Comparison
(Cha. 4)

Modelware TS
(Cha. 2)

Ontoware TS
(Cha. 3)

Bridging Technologies
(Cha. 5)

Tool Support and Proof of Concept
(Cha. 10)

Part II
Foundations

Part III
Combinations

Part IV
Applications

Part V
Finale

Conclusion and Outlook
(Cha. 11)

Part I
Introduction
and Motivation

Language Engineering
and Use
(Cha. 6)

Conceptual Domain
Engineering

(Cha. 7)

Domain-Specific
Modeling Environments

(Cha. 8)

Joint Language and
Domain Engineering

(Cha. 9)

RQ 1,2 RQ 3,4

RQ 5

RQ 6

RQ 7,8 RQ 9,10

RQ 11 RQ 12

Challenges
(Cha. 1)

Figure 1.1. Road map of this thesis.

1.4 Dissemination and Publications

For the dissemination of the approaches discussed in this thesis, we have
published several research papers at international conferences and workshops.
The relevant ones and their contribution to the chapters are listed below.

Chapter 4: Walter, T., Schwarz, H., Ren, Y.: Establishing a Bridge from
Graph-based Modeling Languages to Ontology Languages. In: Proceed-
ings of the 3rd Workshop on Transforming and Weaving Ontologies in
Model Driven Engineering (TWOMDE). Volume CEUR of 604, CEUR-
WS.org (2010) [WSR10].

Chapter 5: Ebert, J., Walter, T.: Interoperability services for models and
ontologies. In: Databases and Information Systems VI. Volume 224 of

1.4 Dissemination and Publications 13

Frontiers in Artificial Intelligence and Applications, IOSPress (2011) 19-
36 [EW10].

Chapter 5: Walter, T., Ebert, J.: Combining DSLs and Ontologies Using
Metamodel Integration. In: Proceedings of the IFIP Working Conference
on Domain-Specific Languages. Volume 5658 of LNCS, Springer (2009)
148-169 [WE09].

Chapter 6: Staab, S., Walter, T., Gröner, G., Silva Parreiras, F.: Model
Driven Engineering with Ontology Technologies. In: Reasoning Web. Vol-
ume 6325 of LNCS, Springer (2010) 62-98 [SWGP10].

Chapters 6, 8: Walter, T., Silva Parreiras, F., Staab, S.: OntoDSL: An Ontology-
Based Framework for Domain-Specific Languages. In: Proceedings of the
12th International Conference on Model Driven Engineering Languages
and Systems, (MoDELS). Volume 5795 of LNCS, Springer (2009) 408-
422 [WPS09].

Chapters 7, 9: Walter, T., Silva Parreiras, F., Staab, S., Ebert, J.: Joint Lan-
guage and Domain Engineering. In: Proceedings of the European Confer-
ence Modelling Foundations and Applications (ECMFA). Volume 6138 of
LNCS, Springer (2010) 321-336 [WPSE10].

Besides conference talks for the respective publications above, we have
given tutorials dealing with the combination of MDE and ontology technolo-
gies:

• Silva Parreiras, F., Walter, T., Wende, C., Thomas, E.: Model-Driven
Software Development with Semantic Web Technologies. In: Tutorial at
the 6th European Conference on Modelling Foundations and Applications,
ECMFA 2010, Paris, France, June 15-18, 2010. (2010)

• Silva Parreiras, F., Walter, T., Wende, C., Thomas, E.: Bridging Software
Languages and Ontology Technologies. In: SPLASH ’10: Proceedings of
the ACM international conference companion on Object oriented pro-
gramming systems languages and applications companion, October 17,
2010, Reno/Tahoe, Nevada, USA., ACM (2010) 311-315

• Gasevic, D., Silva Parreiras, F., Walter, T.: Ontologies and Software Lan-
guage Engineering. In: Tutorial at Generative Programming and Com-
ponent Engineering (GPCE’10) co-located with Software Language En-
gineering (SLE 2010), October 10, 2010, Eindhoven, The Netherlands.
(2010)

Part II

Foundations

2

A Modelware Technological Space

Modeling environments provide the capability for defining and using modeling
languages. A modeling language is usually defined in its concrete syntax (the
visual notation used), its abstract syntax (the structure behind the visualiza-
tion) and its semantics (the intended meaning of given models).

The concrete syntax of a modeling language can be specified by textual
or visual notations. A wide-spread approach to define the abstract syntax of
modeling languages is to use UML class diagrams as so-called metamodels
of the language. The semantics of modeling languages may be defined by a
natural language specification or by set theory and predicate logics.

In modeling environments a given model is usually represented by its ab-
stract syntax graph. This graph has to be conformant to its metamodel defin-
ing the abstract syntax of the language. Since this metamodel itself is also
a model (designed with the modeling language for class diagrams), its ab-
stract syntax graph has to be conformant to a further class diagram, called
the metametamodel defining the language of these class diagrams.

To define bridging technologies interrelating modeling languages (Chal-
lenge 1) and to formally define the meaning of models (Challenge 2), we
answer the following question in this chapter:

RQ1: How are models and metamodels formally defined and how do they
relate?

Besides the aspect of designing models we consider their use. Given a
modeling language, services are needed to create and manipulate models.
Since models are becoming large, querying services help to retrieve elements.
Changes to and evolution of modeling languages as well as interoperability
with other tools require the manipulation of models, which is achieved by
model transformations. In this chapter we exemplify services and tools pro-
vided by a modelware technological space. To support the usability and pro-
cessing of models (Challenge 3) we answer the question:

RQ2: Which services does a modelware technological space provide?

18 2 A Modelware Technological Space

2.1 Chapter Context

In this chapter we present a modelware technological space according to the
definition given in [KBA02]:

A technological space is a working context with a set of associated concepts,
body of knowledge, tools, required skills, and possibilities.

In the context of this chapter we concentrate on the set of associated
concepts to model different kinds of modelware models and their relation.
Furthermore, we concentrate on tools. Tools in a modelware technological
space are composed of services.

2.1.1 Road Map

We describe the road map and structure of Section 2.2 along Figure 2.1, which
depicts the metamodeling hierarchy of the TGraph technological space using
the following concepts:

• The right column contains concrete models, i.e., an instance model, a
schema, and a metaschema, the latter two being class diagrams.
• The left column contains the abstract syntax graphs of these models, i.e.,

an instance graph, a schema graph, and a metaschema graph.
• The vertical axis (conformsTo) depicts the conformance of the graphs/-

models to those of the next higher level, i.e., it describes how models relate
to metamodels.
• The horizontal dimension (visualizes) relates the models to their abstract

syntax graph, i.e., it describes that the models are visualizations of their
graphs.

Instance Layer. We start at the instance layer in Section 2.2.1 and present the
definition of the concept of TGraphs, which are typed, attributed, and ordered
directed graphs. In this thesis they are used as abstract syntax graphs to
represent models. We use UML object diagrams [OMG07b] to depict TGraphs,
but they may also be visualized by other more user-friendly visual or textual
concrete notations if appropriate. Figure 2.2 illustrates the instance layer. It
depicts a TGraph, which describes the abstract syntax representation of a
state chart, and its visualization.

Schema Layer. For prescribing the structure of TGraphs and for assigning
predefined types to their vertices and edges, we introduce graph schemas in
Section 2.2.2. Graph schemas are depicted as UML class diagrams [OMG07b].
The subset of UML needed for defining the structure of TGraphs is called
grUML (cf. Section 2.2.2). grUML diagrams are used to define the set of
abstract syntax graphs of a given modeling language. Figure 2.2 illustrates
the schema layer. It depicts a grUML diagram, which prescribes the structure
of TGraphs representing a state chart model. To make the grUML diagrams
amenable for a formal treatment, we initially translate them to an obvious set
notation (cf. Section 2.2.2).

2.1 Chapter Context 19

TGraph Visualized TGraph

Graph Schema
(TGraph)

grUML Metaschema
(grUML diagram)

grUML Metaschema
(TGraph)

Graph Schema
(grUML diagram)

visualizes

visualizes
(informal)

visualizes

conformsTo

conformsTo

Sec. 2.2.1Sec. 2.2.1

Sec. 2.2.2Sec. 2.2.3

Sec. 2.2.3App. A.1.1

conformsTo

visualizes

set notation

conformsTo

set notationset notation

set notation

Sec. 2.2.2

conformsTo

conformsTo

Metaschema Layer

Schema Layer

Instance Layer

App. A.1.2

Figure 2.1. The TGraph metamodeling hierarchy.

conformsTo Relation. Based on the set notation of graph schemas, we define
the conformsTo relation between TGraphs and schemas in Section 2.2.2. A
TGraph conforms to a schema if its vertices conform to the vertex classes and
its edges conform to the edge classes of the schema and all other properties
of the schema are respected appropriately.

Metaschema Layer. Since graph schemas are models designed using the
grUML language, every graph schema can also be represented by its own
abstract syntax graph (cf. Section 2.2.3). Such as the prescription of TGraphs
by graph schemas, we introduce a metaschema for prescribing the schema
graphs in Section 2.2.3. This schema is called grUML metaschema, since it
defines the abstract syntax of grUML precisely.

Visualizes Relation. Since we are tackling any kind of modeling language, the
relation between the model and its abstract syntax graph is not formalized.
In practice, this relation may be defined by some parser that extracts the
abstract syntax from the model or (in the opposite direction) by some ren-
dering procedure that generates the model from its abstract syntax graph.
The relation may also be embodied in an editor that simultaneously holds
the visualized model and its abstract syntax graph. grUML diagrams are vi-
sualizations of their abstract syntax graphs (ASGs). Since the visualization
relationship is not used in this thesis, in Appendix A.1.2 we define the relation
as a function on the set notation of a grUML diagram. The function returns
for each grUML diagram element the element of the ASG, which is visualized
by the given element.

20 2 A Modelware Technological Space

TGraph visualized TGraph

Graph Schema (grUML diagram)

visualizes
(informal)

Schema Layer

Instance Layer event1
s2

s1 s3

event2

event1

set notation

conformsTo

Figure 2.2. Example of a TGraph, its visualization and its conformance to a grUML
diagram.

Self-Conformance. In Section 2.2.3 we present the grUML metaschema rep-
resented as grUML diagram (using the UML class diagram syntax). In Ap-
pendix A.1.1 we present the grUML metaschema as TGraph. Since the
conformsTo relation relates TGraphs with graph schemas defined by the
set notation, in Appendix A.1.1 we show how the grUML metaschema (as
a TGraph) conforms to the grUML metaschema (as a grUML diagram).

Semantics. In Appendix A.1.3 we extend the semantics definition of modeling
languages for designing TGraphs. We consider the relation between schemas
and graphs where schemas represent the set of all possible graphs, which is
called the extension of a given graph schema.

Since the visualizes relation, the grUML self-conformance, and the graph
schema semantics are not relevant for this thesis but are needed for a com-
plete view on the TGraph metamodeling hierarchy, they are presented in
Appendix A.1.

2.2 The TGraph Approach 21

2.1.2 Relation to OMGs Model Hierarchy

Table 2.1 relates the layers of the metamodeling hierarchy of the TGraph
approach with the one proposed by OMG [OMG06].

As well as the TGraph approach, OMG suggests to separate models in
different layers. Besides the M0 layer (representing the real world and not
depicted in Table 2.1) the OMG model hierarchy differs between M1 layer,
M2 layer and M3 layer. The direct counterparts in the TGraph approach are
the instance layer, the schema layer and the metaschema layer.

At the M1 layer models are defined, which are comparable to TGraphs.
Models in the OMG model hierarchy are described by metamodels lying at
the M2 layer. Metamodels are comparable to graph schemas in the TGraph
approach. To structure and prescribe metamodels OMG considers the MOF
metametamodel at the M3 layer. In the TGraph metamodeling hierarchy, the
grUML metaschema is used to prescribe the structure of graph schemas, which
are the counterparts of metamodels in the TGraph approach.

OMG TGraph Approach

M3 layer MOF Metametamodel Metaschema layer grUML Metaschema

M2 layer Metamodel Schema layer Graph Schema

M1 layer Model Instance layer TGraph

Table 2.1. Relation between the OMG’s model hierarchy and the TGraph approach.

Since we are going to bridge modeling languages and to define its semantics
and correctness, we need a well-defined understanding of the metamodel hi-
erarchy and formal definitions of models, metamodels, and metametamodels.
Hence, in this thesis we decide to consider the TGraph technological space as
a formal basis for precise definitions of any kind of model. It is more powerful
and formally defined compared to EMOF [OMG06].

Subsequent to the introduction of the TGraph approach, in Section 2.2.4
we comment on the mapping of concepts provided by the MOF metameta-
model and the grUML metaschema.

2.2 The TGraph Approach

Since we need a formal description of a metamodel hierarchy, we present in this
section precise definitions for TGraphs, the formal representations of models,
graph schemas, the formal representation of metamodels, and its relations.

2.2.1 TGraphs

TGraphs are a powerful category of graphs, which is able to represent not only
structural connections, but also all type and attribute information needed for
an object-based view on the represented model.

22 2 A Modelware Technological Space

Basic Definitions and Notations

TGraphs are typed, attributed, and ordered directed graphs, i.e., all graph
elements (vertices and edges) are typed and may carry type-dependent at-
tribute values. Furthermore, there are orderings of the vertex and the edge
sets of the graph and of the incidences at all vertices. Lastly, all edges are
directed.

Definition 1 (TGraph)

Let

• Vertex be the universe of vertices,
• Edge be the universe of edges,
• TypeId be the universe of type identifiers,
• AttrId be the universe of attribute identifiers, and
• Value be the universe of attribute values.

Assuming two finite sets

• a vertex set V ⊆ Vertex and
• an edge set E ⊆ Edge.

G = (Vseq ,Eseq , Iseq , type, value) is a TGraph iff

• Vseq ∈ iseq V is a permutation of V ,
• Eseq ∈ iseq E is a permutation of E ,
• Iseq : V→ (iseq E × {in, out}) is an incidence function where

∀ e ∈ E : ∃!v ,w ∈ V : (e, out) ∈ ran Iseq(v) ∧ (e, in) ∈
ran Iseq(w),

• type : V ∪ E → TypeId is a type function, and
• value : V ∪ E → (AttrId 7 7→ Value) is an attribute function where

∀ x , y ∈ V ∪ E : type(x) = type(y) =⇒ dom(value(x)) =
dom(value(y)).

Thus, a TGraph consists of an ordered vertex set V and an ordered edge
set E , which are connected by the incidence function Iseq , which assigns the
sequence of its incoming and outgoing edges to each vertex. Furthermore, all
elements (i.e., vertices and edges) have a type and carry a type dependent set
of attribute-value pairs.

Notations

Besides the notations for graphs below we introduce mathematical notations
used in this thesis.

A = B defines the equality of two sets and a ∈ A states the membership
of a in A. ¬p states the negation of the predicate p, p ∧ q and p ∨ q state
the conjunction and disjunction of two predicates p and q . ∀ and ∃ are the
universal and existential quantifiers. p ⇒ q states the implication of q by p.

2.2 The TGraph Approach 23

X ↔ Y is a binary relation with X ↔ Y = P(X × Y) where P is the
power set. The maplet notation x 7→ y is a graphic way of expressing the
ordered pair (x , y). x 7→R y expresses (x , y) ∈ R.

dom and ran define the domain and range of a binary relation. dom :
(X ↔ Y) → P(X) with dom R = {x ∈ X | ∃ y ∈ Y : (x , y) ∈ R} and
ran : (X ↔ Y)→ P(Y) with ran R = {y ∈ Y | ∃ x ∈ X : (x , y) ∈ R}

X 7→ Y is the set of partial functions with {f : X ↔ Y | ∀ x ∈ X , y1, y2 ∈
Y : (x 7→ y1) ∈ f ∧ (x 7→ y2) ∈ f ⇒ y1 = y2}. X → Y is the set of total
functions with {f : X 7→ Y | dom f = X }.

In the following we give some simplified notation for easily accessing
TGraphs.

The functions α : Edge → Vertex and ω : Edge → Vertex denote start
vertex α(e) and target vertex ω(e) of some edge e ∈ E , respectively.

The relation → ⊆Vertex ×Vertex with

→ ={(v ,w) ∈ Vertex ×Vertex | ∃ e ∈ Edge : α(e) = v ∧ ω(e) = w}

defines that there exists some edge e ∈ Edge from vertex v to vertex w by
writing v → w (here using an infix notation instead of (v ,w) ∈→).

The relation →⊆ Vertex ×Vertex × F(TypeId) with

→ ={(v ,w , {t1, . . . , tl}) ∈ Vertex ×Vertex × F(TypeId) |
∃ e ∈ Edge : α(e) = v ∧ ω(e) = w ∧ type(e) ∈ {t1, . . . , tl}}

defines that there exists some edge e ∈ Edge of type t1, t2, . . . , tn from
vertex v ∈ V to vertex w ∈ V by writing v → {t1, . . . , tn}w (here using an
infix notation instead of (v ,w , {t1, ..., tn}) ∈→).

A path from v0 to vk in a TGraph G is an alternating sequence

P= < v0, e1, v1, ..., ek , vk >, k ≥ 0

of vertices and edges, where ∀ i ∈ N with 1 ≤ i ≤ k : α(ei) = vi−1∧ω(ei) = vi .
The existence of a path between v0 and vk is denoted by v0 →∗ vk .

The set Γ+(v) = {w ∈ Vertex | v → w} represents all direct successors of
vertex v . The set Γ+(v , t) = {w ∈ Vertex | v → {t}w} represents all direct
successors of vertex v ∈ V via some outgoing edge of type t .

The set Γ−(v) = {w ∈ Vertex | w → v} represents all direct predecessors
of vertex v ∈ V . The set Γ−(v , t) = {w ∈ Vertex | w → {t}v} represents all
direct predecessors of vertex v ∈ V via some incoming edge of type t .

The function δ+ : Vertex → N with δ(v) =]Γ+(v) returns the number of
outgoing edges of vertex v ∈ V . The function δ+ : Vertex ×TypeId → N with
δ(v , t) =]Γ+(v , t) returns the number of outgoing edges of type t of vertex
v ∈ V . The function δ− : Vertex → N with δ(v) =]Γ−(v) returns the number
of incoming edges of vertex v ∈ V . The function δ− : Vertex × TypeId → N
with δ(v , t) =]Γ−(v , t) returns the number of incoming edges of type t of
vertex v ∈ V .

24 2 A Modelware Technological Space

All v ,w denote vertices, all e edges, all t denote types for vertices or edges
and all a attributes. x , y is used if it is not relevant, if the element is a vertex
or edge. Functions, if not defined otherwise, are denoted by f .

Example of a TGraph

Figure 2.2 depicts at the instance layer in the left column a TGraph whose
concrete syntax is similar to that of UML object diagrams [OMG07b]. A
visualization of the same TGraph is depicted at the instance layer in the right
column.

The TGraph describes a concrete state machine with three states s1, s2
and s3, three transitions, and two events event1 and event2. event1 triggers
the transition that goes from s1 to s2 and the transition that goes from s2 to
s3. event2 triggers the transitions that go from s3 to s2.

All vertices have a type (defined after : in the top of each vertex) and
although it is not depicted in Figure 2.2 all edges also have a type (e.g., there
are types of edges connecting states and transitions and other types of edges
connecting transitions and events).

The model in the right column of Figure 2.2 depicts a possible visualization
of the TGraph depicted in the left column. Here, the vertices of type Start,
State, and Final are visualized by correspondent state elements. All vertices of
type Transition are depicted by an arrow. Source and target of each transition
are distinguished in the TGraph by edges, where the role of the edge beside the
state is denoted with source or target. Each vertex of type Event is represented
as an annotation. Events are assigned to those transitions, which are related
by an edge in the TGraph.

Since we want to express more state machine graphs with the same struc-
ture of states, transitions, and events, where e.g., transitions have exactly one
source and target state and where events are only able to trigger transitions,
we are going to introduce graph schemas.

2.2.2 Graph Schemas

Graph schemas prescribe the structure of TGraphs and allow for assigning
predefined types to vertices and edges of the TGraph. Types are arranged
in a type hierarchy and have a set of predefined attributes. A graph schema
describes which types of edges are incident with which types of vertices. In
addition, types of edges can have multiplicities at both ends that allow a vertex
only to be connected via edges of a given type with a predefined number of
other vertices.

Example of a Graph Schema

Figure 2.2 depicts at the schema layer an example of a graph schema for
state machine TGraphs. The syntax is similar to that of UML class dia-
grams [OMG07b]. The classes denote vertex types for states, transitions, and

2.2 The TGraph Approach 25

events. The associations between classes denote edge types for relations be-
tween states and incoming or outgoing transitions and for the relation between
events and transitions. Thus class diagrams may be used to describe graph
schemas. The subset of the UML-class diagrams that have a TGraph seman-
tics is called grUML (graph UML). grUML is a metamodeling language that
allows for describing graph schemas. In this case the graph schema can be
called a grUML diagram. grUML is introduced in Section 2.2.3.

We consider a core of constructs that are sufficient for defining a valid
graph schema. We will consider vertex classes and edge classes where both
can be attributed. Vertex classes are represented by UML classes in a grUML
diagram. Edge classes are represented by UML associations in a grUML dia-
gram. If edge classes are attributed or have sub- or supertypes, they are then
represented by UML association classes. Attributes may have the domains
String, Integer, Double, and Boolean. The incidences of each edge class define
constraints, since they restrict the types of the start and the end vertex of
an edge. Furthermore, both incidences of an edge class define multiplicities,
which restrict the number of vertices linked with some other vertex via an
edge of a given edge class.

Graph Schemas in Concrete Syntax

Graph schemas are represented in set notation. Based on a given graph schema
GS represented as a grUML diagram, we set up the sets and functions de-
scribed in Definition 2.

Definition 2 (Set Notation for a grUML Diagram)

The set notation of a grUML diagram consists of the sets:

• VGS is the set of all classes in the grUML diagram.
• EGS is the set of all associations in the grUML diagram.
• AttrGS is the set of attribute identifiers nested in classes of the grUML

diagram.
• Domain = {Int ,Double,String ,Bool} is the set of all possible domain

identifiers for attributes.

Furthermore, it provides the functions:

• typeDefinition : VGS ∪ EGS → (AttrGS 7 7→ Domain) represents the
assignment of attributes to classes or associations in the grUML dia-
gram.

• isA : VGS ∪EGS ×VGS ∪EGS represents the relation of subtypes with
supertypes as it is defined in the grUML diagram.

• relates : EGS → VGS × VGS represents the incidence relation of asso-
ciations and classes in the grUML diagram.

• multiplicity : EGS → Multiplicity × Multiplicity with Multiplicity =
{(min,max) ∈ N × N1 | min ≤ max ≤ ∞} represents the assignment
of multiplicities for both, association start and end.

26 2 A Modelware Technological Space

Conformance of TGraphs and Graph Schemas

Having a formal definition of TGraphs (cf. Definition 1) and grUML diagrams
in set notations (cf. Definition 2), we can describe when and how a TGraph
conforms to a graph schema.

In the TGraph Definition 1 the type function assigns a type identifier to
each vertex and edge. These identifiers originate from the sets VGS and EGS ,
where GS is the graph schema, which prescribes the structure of the TGraph.
However, the type function gives no information about which constraints a
vertex or edge of the given type must fulfill and which attribute values may
be allocated by values. In general, the type function does not suffice to describe
the conformance of TGraphs to graph schemas.

Thus we introduce a conformsTo function in Definition 3, which describes
the conformance of vertices and edges to classes and associations of a grUML
diagram precisely.

Definition 3 (Conformance of TGraphs)

For a given TGraph G = (Vseq ,Eseq , Iseq , type, value) and a grUML dia-
gram GS described by its set notation, the conformsTo function is declared
as follows:

conformsTo : V ∪ E → P(VGS) ∪ P(EGS)

The conformsTo function assigns vertices and edges of a given TGraph
G to sets of vertex classes and edge classes of a graph schema GS :

• All vertices in G conform to some class in the grUML diagram assigned
by the type function and to the supertypes of this class:

∀ v ∈ V : conformsTo(v) = {t ∈ VGS | type(v) isA∗ t}

• All edges in G conform to some association assigned by the type func-
tion and to the supertypes of this association:

∀ e ∈ E : conformsTo(e) = {t ∈ EGS | type(e) isA∗ t}

Given Definition 3, a TGraph G , and a graph schema GS , all vertices
and edges must fulfill constraints that are given by classes and incidences of
associations.

Start and end vertex of an edge must conform to the corresponding classes,
which are incident with the association in the grUML diagram1:

1 Throughout this chapter, first(relates(t)) and second(relates(t)) return the
source and target vertex classes of an edge class t . first(multiplicity(t)).min

2.2 The TGraph Approach 27

∀ e ∈ E :first(relates(type(e))) ∈ conformsTo(α(e))

∧second(relates(type(e))) ∈ conformsTo(ω(e))

All vertices of a TGraph must fulfill the multiplicity restrictions for each
association their type is incident with. Thus, each vertex must not have less
or more outgoing or incoming edges as defined by the multiplicity function for
each association in a grUML diagram:

∀ t ∈ EGS :∀ e ∈ E : ∀ v ∈ V : first(relates(t)) ∈ conformsTo(α(e))⇒
second(multiplicity(t)).min ≤

]{e ∈ E | t ∈ conformsTo(e), (e, out) ∈ Iseq(v)}
≤ second(multiplicity(t)).max

∧
∀ e ∈ E : ∀ v ∈ V : second(relates(t)) ∈ conformsTo(ω(e))⇒

first(multiplicity(t)).min ≤
]{e ∈ E | t ∈ conformsTo(e), (e, in) ∈ Iseq(v)}

≤ first(multiplicity(t)).max

All vertices and edges exactly allocate those attributes with values, which
are provided by the class or association, respectively, or one of their super-
types:

∀ x ∈ V ∪ E : dom(value(x)) =

{a ∈ AttrGS | t ∈ conformsTo(x),

a ∈ dom(typeDefinition(t)), t ∈ VGS ∪ EGS}

For all vertices and edges of the graph, all values assigned to an attribute
must conform to the domain of the attribute. Therefore, we use the func-
tion valueSet : Domain → P(Value), which assigns all natural numbers
to the Int-domain (valueSet(Int) = N), all real numbers to the Double-
domain (valueSet(Double) = R), all boolean values to the Bool -domain
(valueSet(Bool) = {true, false}) and all character strings to the String-
domain (valueSet(String) = {set of all possible strings}).

∀ x ∈ V ∪ E :∀ a ∈ dom(value(x)),∀ t ∈ conformsTo(x) :

(value(x))(a) ∈ valueSet((typeDefinition(t))(a))

and first(multiplicity(t)).max return the lower and upper multiplic-
ity annotated at the edge class source. second(multiplicity(t)).min and
second(multiplicity(t)).max return the lower and upper multiplicity annotated
at the edge class target.

28 2 A Modelware Technological Space

Now, since we have defined the conformsTo function for vertices and edges,
we can precisely set up a relation conformsTo, which defines when a given
TGraph G conforms to a graph schema GS (written G conformsTo GS):

conformsTo ⊆ {G | G is a TGraph} × {GS | GS is a graph schema}

with

conformsTo = {(G ,GS) | ∀ v ∈ V : conformsTo(v) ∈ VGS∧
∀ e ∈ E : conformsTo(e) ∈ EGS}

where the conformsTo functions for vertices and edges ensure that required
attribute implementations and multiplicity restrictions are fulfilled.

2.2.3 grUML

Since all graph schemas should contain classes to define sets of vertices and
associations which in turn define sets of edges where both can be attributed
and related by a specialization relationship, respectively, graph schemas are
described by some metaschema. This schema is provided by grUML as the
grUML-Metaschema.

grUML Metaschema

grUML (graph UML) is a sublanguage of UML and is based on TGraphs.
grUML allows for defining graph schemas that represent classes of TGraphs.

Figure 2.3 depicts a part of the grUML metaschema. VertexClass describes
types for vertices, which are represented in a grUML diagram by a UML
class. Each vertex class can have several subclasses or superclasses via Spe-
cializesVertexClass. EdgeClass describes types for edges, which are represented
in a grUML diagram by a UML association. Each edge class can have sev-
eral subclasses or superclasses via SpecializesEdgeClass. Each edge connects
two vertex classes via some IncidenceClass. EdgeClass and VertexClass are spe-
cializations of GraphElementClass. Thus they can be part of a Package, which
is contained by the Schema of the graph. Furthermore, GraphElementClass is
a specialization of AttributedElementClass. Hence, all graph elements can be
attributed.

Figure 2.4 depicts the excerpt of the grUML schema, which is responsible
for defining domains. Here each attribute has a domain. Among others, grUML
provides basic domains for Integer, Double, String, or Boolean values.

Graph Schemas in Abstract Syntax

After we have presented the grUML schema we are going to present the for-
malization of graph schemas in abstract syntax represented as a TGraph.

2.2 The TGraph Approach 29

Figure 2.3. Simplified structure of the grUML schema.

Figure 2.4. Excerpt of the domains provided by the grUML schema.

Example

Figure 2.5 depicts the graph, which is an instance graph of the grUML schema.
A visualization of the instance graph in Figure 2.5 is the grUML diagram at
the schema layer in Figure 2.2.

The graph consists of vertices of type VertexClass, which define concrete
vertex classes for states, transitions, and events. It consists of vertices of type
EdgeClass, which define concrete edge classes for linking states with other
states via transitions and events with transitions. (The vertices of type At-
tribute representing the name attribute for states and events are not depicted.

30 2 A Modelware Technological Space

They are linked with the vertex, which nests the attribute and with a vertex
representing the String domain.)

Figure 2.5. State machine graph schema in abstract syntax.

In Definition 2 we gave a formalization of grUML-diagrams (in concrete
syntax) in set notation, which contains the sets VGS , EGS , AttrGS and
Domain and additional functions for attribute assignments (typeDefinition),
type hierarchy definitions (isA), incidences (relates), and their multiplicities
(multiplicity) (cf. Definition 2).

This formalization was used to define the conformsTo relation between
TGraphs and the graph schema (represented as grUML diagram).

Now we are going to repeat this formalization of a set notation with regard
to graph schemas in abstract syntax, which are represented as a TGraph.
In both ways, the conformsTo relation with its constraints can be applied
independently on a TGraph to prove that it conforms to a graph schema,
either in abstract or concrete syntax form.

Definition 4 (Set Notation for a Graph Schema as TGraph)

For a given TGraph G = (Vseq ,Eseq , Iseq , type, value), which represents
a graph schema in abstract syntax, the set notation of this graph schema
consists of the sets:

2.2 The TGraph Approach 31

• VGS = {v ∈ V | type(v) = VertexClass}
• EGS = {e ∈ V | type(e) = EdgeClass}
• AttrGS = {a ∈ V | type(a) = Attribute}
• Domain = {Int ,Double,String ,Bool} is the set of all possible domain

identifiers for attributes.

Furthermore, the set notation has the functions:

• typeDefinition : VGS ∪ EGS → (AttrGS 7 7→ Domain) represents the
assignment of attributes to vertex classes or edge classes:

∀ t ∈ VGS ∪ EGS :typeDefinition(t) = fas

with fas = A→ X where A = Γ+(t ,HasAttribute)

∧∀ a ∈ A : a 7→fas d , a → {HasDomain}d

• isA : VGS ∪ EGS ×VGS ∪ EGS represents the relation of subtypes:

isA =

{(tsub , tsup) | tsub → {SpecializesVertexClass,SpecializesEdgeClass}tsup}

• relates : EGS → VGS × VGS represents the incidence relation of edge
classes and vertex classes:

∀ e ∈ EGS :relates(e) = (v ,w), e → {ComesFrom} → {EndsAt}v
∧ e → {GoesTo} → {EndsAt}w

• multiplicity : EGS → Multiplicity × Multiplicity with Multiplicity =
{(min,max) ∈ N × N1 | min ≤ max ≤ ∞} represents the assignment
of multiplicities for both incidences:

∀ t ∈ EGS :multiplicity(t) = ((mins ,maxs)(mint ,maxt)) with :

∃ vi1 , vi2 ∈ V with type(vi1) = type(vi2) = IncidenceClass :

mins = (value(vi1))(min),

maxs = (value(vi1))(max), t → {ComesFrom}vi1 ,
mint = (value(vi2))(min),

maxt = (value(vi2))(max), t → {GoesTo}vi2

In this Section 2.2.3 we have seen that graph schemas can be represented
in abstract and in concrete syntax. In the case of abstract syntax, the schema
represents a TGraph whose conforming schema is the grUML metaschema.
In the case of concrete syntax, the graph schema is represented as a grUML
diagram and is used to describe the structure of TGraphs. In Section 2.2.2 we

32 2 A Modelware Technological Space

have shown, that TGraphs conform to a graph schema if their vertices and
edges fulfill the conditions of respective types.

2.2.4 Relation to MOF Metametamodels

Besides grUML and its TGraph approach there are some other metamodeling
languages and approaches available. We consider the prominent approach of
OMG with its metamodeling language MOF (Meta Object Facility) [OMG06].
The OMG approach provides the metamodeling language MOF with its sub-
sets EMOF (Essential MOF) and CMOF (Complete MOF) (where EMOF is
a subset of CMOF). We are going to compare both languages with grUML.

To simplify the MOF language and to facilitate ease of implementation
and conformance, MOF 2 defines EMOF as a kernel metamodeling capabil-
ity [OMG06]. The core of EMOF provides the capability to describe classes
using the class Class in the metametamodel, which is similar to the grUML
class VertexClass. The association superclass in the EMOF metametamodel al-
lows for defining specialization hierarchies, which is provided by grUML using
the SpecializesVertexClass association. EMOF allows for defining properties of
classes (by creating instances of Property), which are used either for attribut-
ing the classes (here the property has a datatype) or to define references to
other classes (here the property has as type a class). Since all graph elements
in a TGraph can be attributed, grUML allows for defining attributes of ver-
tex classes. In addition to EMOF, grUML allows for defining attributes of
edge classes. References in metamodels can be described by grUML defining
instances of EdgeClass together with two instances of IncidenceClass, which
define the two ends of the TGraph edge. A difference of grUML compared
to EMOF is the specialization of edge classes, which is not supported for
properties. Similar to the EMOF Property, IncidenceClass allows for defining
multiplicities. The opposite association in EMOF is realized by simple TGraph
edges, which are navigable in both directions.

To support the attribution of associations and the relation of association
types in hierarchies, MOF provides CMOF. In addition to EMOF, the CMOF
metametamodel provides the concept Association. Associations in CMOF are
classifiers, can be attributed, and have two ends that are described by the
class Property. Since associations are classifiers, again they can be connected
by associations. Such a construct is not available in grUML. Here, edge classes
in a graph schema cannot be connected with other edge classes using an
edge class. In addition to EMOF, CMOF allows for defining redefinitions and
subsettings of properties (association ends). This is supported by grUML with
regard to edge classes and is described in [Bil10].

In general we can state that the power of grUML lies between EMOF and
CMOF.

2.3 Modelware Tools and Services 33

2.3 Modelware Tools and Services

In this section we are going to introduce the tools and services a modelware
technological space provides. In particular we focus on tools and services us-
able for the TGraph technological space where all models are represented by
a graph.

In Section 2.3.1 we present the Graph Repository Query Language (GReQL)
used to query TGraphs. In Section 2.3.2 we introduce the Graph Repository
Transformation Language (GReTL) used to transform TGraphs according to
a transformation definition to TGraph conforming to a given target graph
schema. To complete the service specifications for modeling environments, in
Appendix A.1.4 we introduce basic services, which allow for creating graphs.
These services are used to either create a graph conforming to some graph
schema, or to create a schema graph conforming to the grUML metaschema,
which is visualized as a grUML diagram.

2.3.1 GReQL - Graph Repository Query Language

The Graph Repository Query Language is a declarative, expression-based
query language for TGraphs [EB10, Bil08, Mar06]. It can be used to extract
information from TGraphs, for example, attributes of vertices and edges or
complete structures inside of graphs. Typical GReQL queries are the so-called
FWR expressions and quantified expressions. One purpose of quantified ex-
pressions returning a boolean value in this work is the definition of constraints
for graph schemas.

Regular Path Expressions

One feature of GReQL is its definition of regular path expressions over the
graph structure defined in the graph schema. We are going to describe the
main constructs to define regular path expressions.

Simple Path Description. In GReQL a simple path description consists of an
edge symbol (--> (outgoing) , <-- (incoming), <-> (direction not important))
and optionally an edge type restriction in curly brackets. The following simple
path descriptions check if v has an outgoing edge to w, if v and w are connected
by some edge (where the direction is not important), or if w has an incoming
edge of type hasIncoming from a vertex v:

v −−> w
v <−> w
w <−−{hasIncoming} v

Edge Path Description. In GReQL an edge path description --exp-> matches
exactly one edge, given as expression exp. The following expression checks
whether vertex v is connected via the outgoing edge e with the vertex w:

v −−e−> w

34 2 A Modelware Technological Space

Goal- and Start-restricted Path Description. In GReQL the start and end
vertices of a path description can be restricted. A vertex class expression,
which restricts the start or end vertex is separated from the path description
with a &. The following expression ensures that a vertex t is connected via an
outgoing edge with the vertex s of type State:

t −−> & {State} s

Sequential Path Description. GReQL supports the concatenation of path de-
scriptions to sequential path descriptions. The following expression ensures
that the vertex i is connected via a sequence of two edges with the vertex v:

i −−>−−> v

Optional and Alternative Path Description. In GReQL a path description
can be marked as optional by surrounding it with brackets. The following
expression ensures that the vertex o has a path of length one or optionally
two to the vertex v:

o −−>[−−>] v

In GReQL it is possible to define paths as alternatives by separating them
with a pipe. The following expression ensures that the vertex i is connected
via an outgoing edge with a vertex of type State or alternatively a vertex of
type Final:

i −−> &{State}| −−> &{Final}

Exponentiated and Iterated Path Description. Exponentiated path descrip-
tions are defined by some path description followed by a given natural num-
ber. The following expressions ensures that the vertex i has an outgoing path
of length 2 to the vertex v:

i −−>ˆ2 v

GReQL supports the iteration of path descriptions by the use of Kleene
operators * and +. The following expression ensures that i and f are connected
by a path of arbitrary length (at least one edge):

i −−>+ f

Quantified Expressions

GReQL supports the use of quantifications, which specify whether all (uni-
versal quantification) or at least one (existential quantification) element of a
given set of elements must fulfill a given condition.

The universal quantification in GReQL is realized by using the forall key-
word. The following expression defines that all vertices s of vertex class State
must fulfill the condition after @, i.e., the name-attribute may not be the
empty string:

2.3 Modelware Tools and Services 35

forall s:V{State} @ not(n.name = ””)

The existential quantification is realized by using the exists keyword. The
expression below defines that for each vertex f of vertex class Final, at least
one vertex t of vertex class Transition exists, which is connected to f via a
hasIncoming edge:

forall f:V{Final} @ exists t:V{Transition} @ t −−>{hasIncoming} f

From-With-Report Expressions

FWR-expressions consist of the three clauses from, with and report. The from-
clause declares variables for concerned elements (e.g., vertices and edges) in
the graph. The domains of variables can be taken from the types defined in
the graph schema. The optional with-clause summarizes predicates, which have
to be fulfilled by the variables. These predicates can include powerful graph-
oriented expressions such as regular path expressions. Finally, the report-clause
determines the result structure of the query.

The following query exemplifies the FWR-expressions. It queries over all
pairs of vertices i and f of type Initial and Final and reports a bag of pairs of
vertices, which are linked via an iteration of a sequence of hasOutgoing and
hasIncoming edges.

from i:V{Initial}, f:V{Final}
with i (−−>{hasOutgoing}−−>{hasIncoming})+ f
report i, f end

GReQL Querying Service

In Table 2.2 we specify a querying service, which gets a TGraph as input and
a GReQL query and returns an answer set.

Name GReQL Query Answering

Signature ResultSet greqlQuery(Graph g, Greql2 q)

Pattern a=Modelware.greqlQuery(g, q)

Description evaluates the GReQL query q on the TGraph g and computes the
answer a. If there is no answer a is null.

Table 2.2. GReQL querying service.

Relation to OCL

The result of a comparison in [SE10] of GReQL with the Object Constraint
Language [WK03] (OCL) is that they are similar to a great extent, so that

36 2 A Modelware Technological Space

expressions in one language can in most cases be translated to the other one.
OCL features, which are not present in GReQL are the capability to define
contexts for expressions and an operation to iterate over collections with the
capability to store the result of an expression involving the current element
and to reuse this result in the next iteration. The advantages of GReQL are its
graph orientation with the ability to efficiently handle graph structures and
the support of regular path expressions to describe the structure of paths. In
particular, the computation of the transitive closure is not possible with OCL.

2.3.2 GReTL - Graph Repository Transformation Language

GReTL [HE11], the Graph Repository Transformation Language, is a language
for transforming TGraphs and graph schemas. In contrast to other transfor-
mation languages, the target schema of a GReTL transformation does not
need to be predefined, but can be created in the course of the transforma-
tions.

We introduce GReTL by giving an overview of the GReTL framework,
which is implemented in Java and by describing the elementary transformation
operations used in this work.

GReTL Framework

The GReTL transformation framework is based on Java and is integrated
with the JGraLab library for handling TGraphs. The central components of
the GReTL transformation framework are the abstract class Transformation
and the class Context. The Transformation class provides the set of transforma-
tion operations (where three operations are described below). They are used
to create elements in the target schema and instances in the target graph.
By subclassing the Transformation class, concrete transformations are imple-
mented. The method transform(), which is provide by the Transformation class
as abstract method, is overwritten and uses the elementary transformation
operations. When instantiating a Transformation subclass, an instance of the
class Context has to be passed to the constructor. It specifies the source schema
and graphs and contains a reference to the target graph after the execution
of the transformation.

GReTL Transformation Operations

To describe the transformation of models represented as TGraph to other
models, three GReTL transformation operations are presented that allow for
creating vertices, edges, and defining attribute values. All transformation op-
erations are encapsulated by a Transformation object t.

Table 2.3 specifies the operation used to instantiate vertices of a given type
for all elements described by a semantic expression.

2.3 Modelware Tools and Services 37

Name Instantiate Vertices

Signature void instantiateVertices(VertexClass c, String semanticExpression)

Pattern t.instantiateVertices(c, s)

Description instantiates vertices of type c for each element in the set described by
the semantic expression s. t is the Transformation object.

Table 2.3. Basic transformation operation: instantiateVertices.

The example given below illustrates the use of the instantiateVertices oper-
ation. The first use of the operation instantiates for all vertices of type State
and reported by the semantic expression a new vertex of type Class. The sec-
ond use of the operation instantiates for all vertices of type State and reported
by the semantic expression a new vertex of type IRI.

t.instantiateVertices(”Class”, ”from v:V{State} reportSet v end”);
t.instantiateVertices(”IRI”, ”from v:V{State} reportSet v end”);

Table 2.4 specifies the operation used to instantiate edges of a given type
for all elements described by a semantic expression. The semantic expression
reports a triple, which describes the elements being the archetypes and the
archetypes for source and target element of the new edge to be instantiated.

Name Instantiate Edges

Signature void instantiateEdges(EdgeClass c, String semanticExpression)

Pattern o.instantiateEdges(c, s)

Description instantiates edges of type c for each element in the set described by the
semantic expression s. t is the Transformation object.

Table 2.4. Basic transformation operation: instantiateEdges.

The example given below illustrates the use of the instantiateEdges oper-
ation. The use of the operation instantiates for all pairs v and w of vertices
belonging to the archetypes of vertices of type Class and IRI a new edge if v
and w are the same. The edge connects those two vertices in the target graph
having the archetype v and w.

t.instantiateEdges(”HasEntityIRI”, ”from v:keySet(img Class), w:keySet(img IRI) with v=w reportSet v, v
, w end”);

Table 2.5 specifies the operation used to instantiate attributes in a given
graph element class for all elements described by a semantic expression.
The semantic expression reports a map, which maps the elements being the
archetypes for the new attributes to the value assigned to the instantiated
attribute.

The example given below illustrates the use of the instantiateAttributeVal-
ues operation. The use of the operation assigns to the iri attribute of the vertex
class IRI the value reported by the semantic expression, which is the name of
the archetype of v.

38 2 A Modelware Technological Space

Name Instantiate Attribute Values

Signature void instantiateAttributeValues(GraphElementClass t, Attribute a, String
semanticExpression)

Pattern t.instantiateAttributeValues(c, a, s)

Description instantiates the attributes a in the graph element class c and maps
its value to the value described in the semantic expression. t is the
Transformation object.

Table 2.5. Basic transformation operation: instantiateAttributeValues.

t.instantiateAttributeValues(”IRI”, ”iri”, ”from v:keySet(img Class) reportMap v, v.name end”);

2.4 Conclusion

In this chapter we presented the TGraph technological space as one model-
ware technological space and answered the two research questions RQ1 and
RQ2 asking for the concepts and languages, and the tools and services in a
technological space.

The TGraph technological space allows for graph-based modeling, i.e., all
models are described as a graph and may be visualized by respective concrete
syntaxes. An approach to prescribe the structure of graphs is to use UML
class diagrams representing graph schemas (metamodels). A graph has to be
conformant to its graph schema. Since a graph schema itself is also a model
its abstract syntax graph has to be conformant to a further class diagram,
representing the metaschema (metametamodel).

With respect to the tools and services we presented GReQL as a language
to query TGraphs and GReTL to transform TGraphs.

3

An Ontoware Technological Space

In this chapter we present an ontoware technological space. In particular we
describe the concepts associated with the technological space and the tools it
provides. The ontoware technological space mainly allows for designing and
processing ontoware models. To bridge modelware models and ontoware mod-
els, as targeted by Challenge 1, they must be formally described by a modeling
language defined by its metamodel, at least one concrete syntax and formal se-
mantics. The formal semantics of a modeling language for designing ontoware
models will underpin Challenge 2. It promises the definition of constraints and
formal semantics of modeling languages (cf. Chapter 6 to 7). The following
research question arises for the ontoware technological space:

RQ3: What are the appropriate modeling languages to design ontoware mod-
els?

Based on a software language to design ontoware models and based on
formal semantics, reasoning tools provide services for inferring implicit facts
for ontoware models and for querying them. These services are used to support
the tooling (Challenge 3) in software modeling. In this chapter we specify these
services:

RQ4: What are the services provided by an ontoware technological space?

All services describe the basic functionalities of ontology technologies.
They are subsumed by an ontoware API, which later is used to build more
complex user services.

3.1 Chapter Context

In this chapter we follow the definition and representation of models and meta-
models introduced in Chapter 2. Figure 3.1 schematically depicts an ontoware
technological space and describes the road map belonging to this chapter.

40 3 An Ontoware Technological Space

First, in Section 3.2.1 we start with the foundations of description logics
and knowledge bases. A knowledge base is a special kind of database holding
facts for the knowledge of a special domain. Description logics (DL) are a
family of formal knowledge representation languages. All facts in a description
logics knowledge base are written in such a language.

Description logics knowledge bases underlay the open world assumption
by default. In Section 3.2.3 we consider the differences between an open and
closed world and show which additional facts are needed to close a knowledge
base.

In Section 3.3.1 we show how to represent description logics knowledge
bases as ontoware models, where ontoware models are represented by TGraphs
in abstract syntax form. These TGraphs are described by a graph schema rep-
resenting the metamodel of OWL 2. The metamodel of OWL 2 is completely
depicted in the Appendix A.2.

Finally, in Section 3.4 we present services for reasoning and querying on-
toware models.

conformsTo

OWL2 Metamodel

set notation

Ontoware Model
Description Logics
Knowledge Base

represents

closed world/
domain

Querying
Services

Reasoning
Services

Sec. 3.2.2

Sec. 3.4

Sec. 3.2.1

App. A.2

Sec. 3.3.1

Metamodel
Layer

Model
Layer

Figure 3.1. Ontoware technological space and road map of Chapter 3.

3.2 Description Logics

Description logics are a family of logics to represent structural knowledge [BCM+03].
A wide variety of description logics is developed with different expressive
means. Thus, designers can choose the logic that is most suited for their
goals.

A knowledge base containing the facts for the knowledge of a special do-
main consists of two main components: a terminological box (TBox) and an
assertional box (ABox). In the TBox the domain to be modeled is described
by using a concrete language coming from a description logics family. In the

3.2 Description Logics 41

ABox concrete knowledge is asserted by instances of concepts and roles, the
latter defines relations between concepts in the TBox.

Description logics are based on formal model-theoretic semantics [Far03].
Once the knowledge is established by concepts and roles, separate as well as
joint sound and complete reasoning about TBox and ABox is possible. Reason-
ing allows for inferring implicit knowledge in the knowledge base. Section 3.4
provides a list of reasoning services.

3.2.1 DL Families

Concepts and roles are the basic elements of a description logic (DL). A specific
DL is defined by a specific set of atomic constructs it provides to form complex
expressions over concepts and roles. Concepts describe sets of instances, where
roles describe sets of relations between instances.

The following concept intuitively describes a set of models, which only
contain entities, which in turn must have a reference or attribute as a feature.

Model u∀ containsModelEntity .(Entity u∃ hasFeature.(ReferencetAttribute))

Different description logics have received specific names. FL [BL84] is the
language with the basic syntactic elements - concepts and roles. In addition it
allows for universal quantification, unqualified existential quantification and
conjunction. An example in FL is the following one, which describes a model,
where all entities have a feature (which is not qualified):

Model u ∀ containsModelEntity .(Entity u ∃ hasFeature.>)

The description logic AL [MS91] extends FL with negation of atomic
concepts, where ALC extends AL with full negation. An example for ALC
is the following one, which describes those entities, which have at least one
reference feature:

Entity u ∃ hasFeature.Reference

Below, we give a precise definition of ALC, concept inclusion axioms, TBox
and ABox, and interpretations. In Tables 3.1 to 3.4 we show a summary of
the most commonly used constructs and their semantics, which are based on
the interpretation definition.

Definition 5 ([Sat03])

Let C and R be disjoint sets of concept and role names. The set of ALC-
concepts is the smallest set such that each concept name A ∈ C is an
ALC-concept and, if C and D are ALC-concepts and r is a role name,
then

¬C ,C uD ,C tD ,∃ r .C , and ∀ r .C are also ALC-concepts.

42 3 An Ontoware Technological Space

A general concept inclusion axiom (GCI) is of the form C v D for C ,D
ALC-concepts. A TBox is a finite set of GCIs. An interpretation I =
(∆I , ·I) consists of a non-empty set ∆I , the interpretation domain, and a
mapping ·I , which associates with each concept name A, a set AI ⊆ ∆I ,
and, with each role name r , a binary relation rI ⊆ ∆I ×∆I .

The interpretation of complex constructs is defined in Tables 3.1 to 3.4.
An interpretation I satisfies a GCI C v D if C I ⊆ DI ; I satisfies a

TBox T if I satisfies all GCIs in T - in this case, I is called a model of T .
An element d with dI ∈ C I is called an instance of C and, if (dI , eI) ∈

rI , the e is called an r -successor of d .
An assertion is of the form d ∈ C or (d , e) ∈ r . The finite, possibly

empty set A of assertions is called the ABox.
An interpretation I is a model of the ABox A if it satisfies all its

assertions, i.e., dI ∈ C I holds for all assertions of the form d ∈ C and
(dI , eI) ∈ rI holds for assertions of the form (d , e) ∈ r .

A knowledge base Σ in a DL is a pair Σ = (T ,A), where T is a TBox
and A is an ABox.

A knowledge base in the DL ALC is depicted in Figure 3.2. In the following
example (in which C ≡ D is the abbreviation for two GCIs C v D and
D v C) we define in the TBox that devices are only linked with configurations
and a slot exists for each configuration. In the ABox we assert the instance
device23 of type Device, the instance conf 24 of type Configuration and the
instance slot25 of type Slot . Furthermore, we assert that device23 goes via
hasConfiguration to conf 24, which goes via hasSlot to slot25.

TBox:

Device ≡ ∀ hasConfiguration.Configuration

Configuration ≡ ∃ hasSlot .Slot

ABox:

device23 ∈ Device

conf 24 ∈ Configuration

slot25 ∈ Slot

(device23, conf 24) ∈ hasConfiguration

(conf 24, slot25) ∈ hasSlot

Figure 3.2. DL knowledge base in ALC.

3.2 Description Logics 43

Transitive Roles

Starting with ALC we recognize that it does not provide means to express
transitive roles. The following concept describes a device, which consists of
some configuration that is composed by cards:

Device u ∃ hasPart .(Configuration u ∃ hasPart .Card)

This concept is not subsumed by the concept Device u ∃ hasPart .Card
although it is obviously a specialization of the upper one. Hence, ALC is
extended to S. S is the description logic, which extends ALC with transitive
roles (cf. Table 3.1).

Role Hierarchies, Inverse and Functional Roles

A role inclusion of the form hasConfiguration v hasPart is used to define a
role hasConfiguration as a subrole of hasPart . We are able to express that if
two instances are related by the role hasConfiguration, they are also related
by the role hasPart . A finite set of role inclusions builds a role hierarchy. SH
is the extension of S by role hierarchies (cf. Table 3.1).

It is useful if roles are bidirectional. For example, if we want to express
that some Device has as a part (via the role hasPart) some Configuration,
the Configuration belongs to Device (via the role belongsTo). To design bidi-
rectional roles, the extension of SH by I provides the definition of inverse
roles (cf. Table 3.1). In the example belongsTo is the inverse of hasPart
(belongsTo ≡ hasPart−, where R ≡ U is the abbreviation for R v U and
U v R).

The description logic F extends SHI by the use of functional roles (cf.
Table 3.1). Functional roles ensure that for each instance there can be at most
one distinct instance via the functional role. For example, the functional role
belongsTo ensures that an instance belongs at most to another given instance.

All constructs in Table 3.1 build the description logic SHIF [Sat03].
SHIF is equivalent to the ontology language OWL-Lite [Hor05].

Nominals and Number Restrictions

Nominals are used to define concepts that exactly describe a set of speci-
fied instances (cf. Table 3.2). For example, the concept ∃ hasPart .{card256}
describes those instances, which are linked via hasPart with the instance
card256. The description logic O extends SHIF by the use of nominals.

The constructs for number restrictions are used to define concepts, which
contain those instances that are connected via a role to at least or at most a
given number of instances (cf. Table 3.2). The concept ≥ 1hasPart describes
those instances, which are composed by at least one other instance. N de-
scribes the description logic, which provides number restrictions.

44 3 An Ontoware Technological Space

Construct Syntax Semantics

atomic concept A AI ⊆ ∆I

S

atomic role R RI ⊆ ∆I ×∆I
transitive role R ∈ R+ {(x , y), (y , z)} ⊆ RI → (x , z) ∈ RI

top > >I = ∆I

bottom ⊥ ⊥I = ∅
conjunction C1 u C2 (C1 u C2)I = C I1 u C I2
disjunction C1 t C2 (C1 t C2) = C I1 t C I2
negation ¬C (¬C)I = ∆I/C I

universal quantification ∀P .C (∀P .C)I = {x | ∀ y : (x , y) ∈ RI → y ∈ C I}
existential quantification ∃P .C (∃P .C)I = {x | ∃ y : (x , y) ∈ RI ∧ y ∈ C I}
role hierarchy R v S RI ⊆ SI H
inverse role R− {(x , y) | (y , x) ∈ R} I
functional role R ∈ F {(x , y), (x , z)} ⊆ RI → y = z F

Table 3.1. DL constructs SHIF .

Extending SHIF with the constructs in Table 3.2 (ON) builds the de-
scription logic SHOIN [HPS04]. OWL-DL ontologies can be transformed into
knowledge bases conforming to SHOIN [HPS04].

Construct Syntax Semantics

nominals {o1} t . . . t {on} ({o1} t ... t {on})I = {oI1 , ..., oIn } O
at least restriction ≥ nP (≥ nP)I = {x |]{y : (x , y) ∈ PI} ≥ n} N
at most restriction ≤ nP (≤ nP)I = {x |]{y : (x , y) ∈ PI} ≤ n}

Table 3.2. DL constructs ON .

Generalized Role Inclusion and Qualified Number Restrictions

The description logic H provides the definition of hierarchies of roles. The
description logic R provides a more general construct for describing hierar-
chies of roles (cf. Table 3.3). It allows for expressing that if an instance is
connected by a sequence of roles with some other instance, then the two in-
stances are also connected to each other by the super role. For example, if
an instance is connected via hasConfiguration followed by hasCard with some
other instance, then the two instances are also connected by hasDeviceCard
if hasConfiguration ◦ hasCard v hasDeviceCard is defined in the TBox.

In addition, the description logic R allows for defining concepts that con-
tain all instances, which are connected via a given role to themselves.

While the description logic N only allows for defining unqualified num-
ber restriction, the description logic Q allows for defining qualified number
restrictions. Qualified number restrictions contain those instances that are
connected by a role to at least or at most a given number of instances of a

3.2 Description Logics 45

specified concept (cf. Table 3.3). While ≥ 1hasPart describes those instances,
which are composed by at least one other instance (here the type is not spec-
ified), ≥ 1hasPart .Configuration restricts that the hasPart-successors are of
type Configuration.

Extending SHOIN with the constructs in Table 3.3 (RQ) builds the
description logic SROIQ [Hor08].

Construct Syntax Semantics

universal role U ∆I ×∆I

Rgeneralized role in-
clusion axioms

R1 ◦ R2 v R RI1 ◦ RI2 v RI

self concept ∃S .SELF (∃S .SELF)I = {x | (x , x) ∈ SI}
at least restriction ≥ nS .C (≥ nS .C)I =

{x |]{y | (x , y) ∈ SI ∧ y ∈ C I} ≥ n} Q

at most restriction ≤ nS .C (≤ nS .C)I =
{x |]{y ∈ ∆I | (x , y) ∈ RI ∧ y ∈ C I} ≤ n}

Table 3.3. DL constructs RQ.

Datatypes and Data Values

To complete the presentation of different description logics, Table 3.4 intro-
duces the constructs of D. D extends every description logic by the support
of datatypes and datavalues. In a description logic a datatype theory D is a
mapping from a datatype to a set of values. The datatype domain, written
∆ID , is the union of the mappings of the datatypes [HPS04]. D provides con-
structs to define data type roles and restricting them by quantifications and
cardinality restrictions. Its syntax and semantics are presented in Table 3.4.

Construct Syntax Semantics

datatype D DD ⊆ ∆ID

D

datatype role U U I ⊆ ∆I ×∆ID
data values v vI = vD

data nominals {v} {v}I = {vI}
datatype existential
quantification

∃U .D (∃U .D)I = {x | ∃ y : (x , y) ∈ U I ∧ y ∈ DD}

datatype universal
quantification

∀U .D (∀U .D)I =
{x | ∀ y : (x , y) ∈ U I → y ∈ DD}

data at least restric-
tion

≥ nU .D (≥ nU .D)I =
{x |]{y | (x , y) ∈ U I ∧ y ∈ DD} ≥ n}

data at most restric-
tion

≤ nU .D (≤ nU .D)I =
{x |]{y | (x , y) ∈ U I ∧ y ∈ DD} ≤ n}

Table 3.4. DL constructs D.

46 3 An Ontoware Technological Space

The description logic SROIQ(D) builds the basis for the ontology lan-
guage OWL 2 [Hor08, MPSH09]. OWL 2 is used in the remaining chapters
and is discussed in Section 3.3.1.

3.2.2 Relation to First Order Logic and Complexity

The meaning of DL families is usually given in model-theoretic semantics.
However, they can be represented by First Order Logic (FOL) terms, where
concepts correspond to unary predicates and roles correspond to binary pred-
icates [Bor96]. Table 3.5 summarizes the correspondences.

Construct Name DL Syntax FOL Syntax

atomic concept A A(x)
atomic role R R(x , y)
transitive role R ∈ R+ ∀ x , y , z .(R(x , y) ∧ R(y , z)→ R(x , z))
subclass axiom A v B ∀ x .A(x)→ B(x)
disjunction C1 t . . . t Cn C1(x) ∨ . . . ∨ Cn(x)
conjunction C1 u . . . u Cn C1(x) ∧ . . . ∧ Cn(x)
negation ¬C ¬C (x)
universal quantification ∀P .C ∀ y .(P(x , y)→ C (y))
existential quantification ∃P .C ∃ y .(P(x , y) ∧ C (y))
cardinality restriction ≤ nS .C ∃ y1, . . . , yn .

∧
1≤i≤n(P(x , yi) ∧ C (yi))

object subproperty R v S ∀ x , y .R(x , y)→ S(x , y)

Table 3.5. Relation between DL and FOL (excerpt).

DL families represent a strict subset of FOL. Although the expressiveness
of FOL is higher it does have some significant practical drawbacks. FOL is un-
decidable in the general case, and often does not allow for sound and complete
reasoning [GOS09, GHVD03].

The most widely used reasoning technique for DLs is the tableau-based ap-
proach introduced by Schmidt-Schauss and Smolka [MS91]. Given an ABox
the tableau-based approach tries to conduct to a model, which is also a model
of a corresponding TBox [Baa09]. The tableau-based approach for consistency
reasoning in DLs is a decision procedure [Baa09]. A procedure is a decision
procedure, if it returns either true or false, and if it is: sound, i.e., the posi-
tive answers should be correct; complete, i.e., the negative answers should be
correct; terminating, i.e., it should always give an answer in finite time.

In the following, we comment on the complexity of the consistency check-
ing problem. We differ between data complexity, taxonomic complexity, and
combined complexity :

Data complexity: the complexity measured with respect to the number of
facts in the knowledge base.

Taxonomic complexity: the complexity measured with respect to the size of
the axioms in the knowledge base.

3.2 Description Logics 47

Combined complexity: the complexity measured with respect to both, the size
of the axioms and the number of facts.

Table 3.6 summarizes the complexity results for OWL 2, OWL DL and
OWL Lite for the consistency inference problem (an ABox A is consistent
with regard to the TBox T if it has a model I, which is also a model of
T [Baa09]).

Language Taxonomic Complexity Data Complexity Combined Complexity

OWL 2 2NP-complete Open (NP-Hard) 2NP-complete
OWL-DL NEXPTIME-complete Open (NP-Hard) NEXPTIME-complete
OWL-Lite EXPTIME-complete NP-complete EXPTIME-complete

Table 3.6. Complexity of OWL 2 tractable fragments [Gra07].

3.2.3 OWA and CWA

The interpretation of knowledge bases underlies by default the open world
assumption (OWA). Besides OWA other interpretations like the closed world
assumption (CWA) may be defined.

The OWA assumes incomplete information by default. That means, if a
fact f in a knowledge base is missing, ¬f cannot be inferred. The question if
the fact f is true or false can only be answered with unknown. If the fact ¬f
is added to the knowledge base, the question if the fact f is true is directly
answered with false. The OWA is mainly suitable for systems and application
domains, which are assumed to be incomplete and where users do not have
full access to all information. Such a prominent system, for example, is the
World Wide Web (WWW).

The CWA assumes all relevant facts as part of the knowledge base. If
the fact f is not in the knowledge base we can directly infer ¬f . A typical
example where CWA is used are database systems. Databases only contain
information, which is explicitly stored.

Figure 3.3 gives an example of a consistent knowledge base in OWA. The
TBox expresses that all devices have at most one configuration and that all
configurations are of type Configuration. The ABox describes that device1 has
the two configurations conf 1 and slot1, where conf 1 is of type Configuration
and slot1 is of type Slot . This knowledge base is consistent (since the ABox
has a model, which is also a model of the TBox). The fact that the device has
two configurations and in addition one configuration is of type Slot does not
affect the consistency. The reason why the knowledge base is consistent de-
pends on the OWA and the unique name assumption (UNA, cf. Section 3.2.3).
A reasoner validating the knowledge base assumes that the type of slot1 is
Configuration (in addition to Slot). So far, there is no fact in the knowledge
base expressing that slot1 is not of type Configuration. A contradiction with

48 3 An Ontoware Technological Space

an inconsistent knowledge base only occurs if the two types are defined as
disjoint (Slot v ¬Configuration). In addition, a reasoner assumes that the
instances conf 1 and slot1 are the same because devices have at most one con-
figuration. If we explicitly define conf 1 and slot1 as different, the knowledge
base becomes inconsistent.

TBox:

Device v∀ hasConfiguration.Configuration

u ≤ 1hasConfiguration.Configuration

ABox:

Device(device1)

Configuration(conf 1)

Slot(slot1)

(device1, conf 1) ∈ hasConfiguration

(device1, slot1) ∈ hasConfiguration

Figure 3.3. Consistent knowledge base in OWA.

A further characteristic of the OWA is the answering of queries. The fol-
lowing (class-based) query retrieves all instances which are not devices:

NotDevice ≡ ¬Device

When applying the query on the knowledge base above, the result in OWA
is an empty set. We could assume that the instances conf 1 and slot1 possibly
have the type Device, since it is not specified in the knowledge base that
Configuration and Slot are disjoint with Device.

Closing the World

Many approaches were developed for closing knowledge bases and allowing
reasoners to validate integrity constraints.

An approach that simulates the local CWA by introducing a new language
construct is the one presented in [DLN+96, GM05]. Here a K-operator is in-
troduced, which allows for locally closing concepts and roles. The K-operator
only considers instances, which are known by the knowledge base. An ex-
tension of OWL by epistemic operators therefore allows for non-monotonic
features known from closed world systems, such as default rules, integrity
constraints or epistemic querying [GM05].

3.2 Description Logics 49

An implementation of the K-operator is available for the reasoner Pel-
let [SPG+07], but it is only usable for the description logic ALC.

Ensuring Integrity Constraints

Although the open world assumption has many advantages in software mod-
eling (e.g., reasoning and validation of incomplete models) we have to ensure
that the validation of integrity constraints defined in SROIQ is still possible.

While for a closed world new language constructs (e.g., epistemic oper-
ators) are introduces, for a closed domain additional facts using given DL
constructs are used.

To establish a closed domain, the > concept is defined as equivalent with
the set of all known instances [MHRS06]. Here, the language construct O
for nominals is considered. Hence, this closing approach, for example, is not
available for OWL-Lite [Hor05].

In the following we consider basic integrity constraints and show how to use
existing DL constructs to validate them. If the integrity of the data modeled
in an ontoware model should be checked, ontoware modeling and validating
tools must provide the automatic creation of the additional facts presented in
the following.

Simulating Unique Name Assumption

The unique name assumption (UNA) requires that if instances have differ-
ent names they are understood as being different. In OWA the UNA is not
considered since two instances are explicitly not declared as being different.
The description logic O provides a solution for simulating UNA. It provides
the nominal concept and thus allows for defining instances as being differ-
ent from each other. Two instances i1 and i2 are different from each other
(i1 6= i2) if the nominal concept {o1} is disjoint with the nominal concept
{o2} ({o1} v ¬{o2}).

Ensuring Types of Instances

To ensure that a given instance device1 only has the asserted type Device,
all other concepts (besides super concepts) must be declared as being disjoint
with Device (e.g., Device v ¬(Slot t Configuration)). Hence, instances of
Device cannot be of types Slot or Configuration.

Ensuring Role Start- and End-Types

The following axiom in the TBox of a knowledge base restricts the instances
of Configuration to be connected with some instance of type Slot .

Configuration v ∃ hasSlot .Slot

50 3 An Ontoware Technological Space

In a closed domain we must ensure that the type of instances connected
via hasSlot to slots is only Configuration. We have to add the following axiom
to the TBox to close the domain:

∃ hasSlot .> v Configuration

Furthermore, all concepts must be declared as disjoint with Configuration
(Configuration v ¬(Device t Slot)).

To ensure that configuration instances are only connected with slot in-
stances via the hasSlot role, we have to introduce the following axiom to close
the domain:

Configuration v ∀ hasSlot .Slot

In addition, all concepts in the TBox must be disjoint with the target type
Slot . For example, Slot is declared as disjoint with Configuration and Device
(Slot v ¬(Device t Configuration)).

Ensuring Cardinalities

The following axiom in the TBox of a knowledge base describes the instances
of Configuration to be connected with exactly two slots.

Configuration v= 2hasSlot .Slot

The knowledge base in Figure 3.2 with the cardinality restriction for con-
figurations above and the ABox below, is consistent although the number of
slots are either too low (for conf 1) or too high (for conf 2).

conf 1 ∈ Configuration conf 2 ∈ Configuration

slot1 ∈ Slot slot2, slot3, slot4 ∈ Slot

(conf 1, slot1) ∈ hasSlot (conf 2, slot2) ∈ hasSlot

(conf 2, slot3) ∈ hasSlot

(conf 2, slot4) ∈ hasSlot

To validate cardinality constraints in a closed domain, we first of all have to
apply the unique name assumption on all instances in the ABox as described
above. To avoid the assumption of further instances, which are not explicitly
defined in the knowledge base, all concepts are defined as being equivalent to
the set of instances they are describing. Thus, for concepts Configuration and
Slot we define:

Configuration ≡ {conf 1, conf 2}
Slot ≡ {slot1, slot2, slot3, slot4}

3.3 Ontoware Models 51

Furthermore, Configuration and Slot are defined as disjoint:

Configuration v ¬Slot

To obtain an inconsistency for the numbers of slots for the two configura-
tions (conf 1 and conf 2) in the knowledge base given above, we explicitly have
to declare which instances of Slot are not connected with conf 1 and conf 2
respectively. Here we use negative role assertions. The description logic O al-
lows for declaring negative role assertions, e.g., by defining that the instances
of the (nominal) concept {conf 1} have no link via hasSlot to the (nominal)
concept {slot2} ({conf 1} v ¬hasSlot .{slot2}). As an abbreviation we use the
6∈ symbol:

(conf 1, slot2) 6∈ hasSlot

(conf 1, slot3) 6∈ hasSlot

(conf 1, slot4) 6∈ hasSlot

(conf 2, slot1) 6∈ hasSlot

In general it is possible to check the validity of integrity constraints. Since
modelware models are often processed in a closed world, there are two disad-
vantages of checking constraints. First, the number of additional axioms in the
knowledge base increases and thus reduces the performance of reasoning tools
(no scalability). Secondly, if the ABox is modified (e.g., by adding, updating
or deleting instances and role assertions) all the additional axioms must be
rebuilt (no monotonicity).

3.3 Ontoware Models

An ontoware technological space provides languages to design ontoware mod-
els. Section 3.2 presented the description logics family and showed how DL
knowledge bases are defined. The Web Ontology Language 2 (OWL 2) is used
to design models in an ontoware technological space. Such models are used to
model a description logics knowledge base in SROIQ(D).

3.3.1 Ontoware Models as TGraph

An ontoware model in abstract syntax form is represented by a TGraph. The
ontoware model in Figure 3.4 models the knowledge base from Figure 3.2.
In the middle of Figure 3.4 an Ontology vertex is used to represent the com-
plete knowledge base. The vertex is linked with all axioms. The upper part
of Figure 3.4 represents the TBox consisting of vertices for classes and object
properties, declarations, and IRIs. In addition, vertices for class axioms (such
as the one for equivalent classes) and class expressions (e.g., for universal and

52 3 An Ontoware Technological Space

existential quantifications) are declared. In the lower part of Figure 3.4 the
ABox is modeled. Here, vertices for individuals, declarations, and IRIs are
declared and corresponding vertices for assertions are used to represent the
typing and linking of individuals.

Figure 3.4. Ontoware model as TGraph.

A more user friendly representation of the knowledge base is depicted in
Figure 3.5. The model in Figure 3.5 is a visualization of the TGraph in Fig-
ure 3.4 using the textual OWL 2 Functional-Style syntax, which is introduced
in the next section.

Since we want to express more ontoware models with the same structure
of axioms, we use the metamodel GSOWL, which is fully presented in Ap-

3.3 Ontoware Models 53

Ontology(DeviceOntology

Declaration(Class(Device))
EquivalentClasses(Device ObjectAllValuesFrom(hasConfiguration Configuration))

Declaration(Class(Configuration))
EquivalentClasses(Configuration ObjectSomeValuesFrom(hasSlot Slot))

Declaration(Class(Slot))

Declaration(ObjectProperty(hasSlot))

Declaration(ObjectProperty(hasConfiguration))

Declaration(Individual(device23))
ClassAssertion(device23 Device)
ObjectPropertyAssertion(hasConfiguration device23 conf24)

Declaration(Individual(conf24))
ClassAssertion(conf24 Configuration)
ObjectPropertyAssertion(hasSlot conf24 slot25)

Declaration(Individual(slot25))
ClassAssertion(slot25 Slot)
)

Figure 3.5. Ontoware model representing the knowledge base in Figure 3.2.

pendix A.2. Figure 3.6 just presents a small excerpt of GSOWL, which depicts
concepts of the TBox of the ontoware model given in Figure 3.5.

Figure 3.6. OWL 2 metamodel (excerpt).

54 3 An Ontoware Technological Space

3.3.2 Concrete Syntaxes

In the following we present two alternative textual concrete syntaxes for on-
toware models, namely the OWL 2 Functional-Style syntax and the OWL 2
Manchester syntax. Both syntaxes are equivalent [HPS09], i.e., an onto-
ware model designed in Manchester syntax can be translated to a model in
Functional-Style syntax, and vice versa.

Axiom-based Syntax

For the visualization of an ontoware model we used in Figure 3.5 the OWL 2
Functional-Style syntax [MPSH09]. The syntax allows for designing axiom-
based ontologies. Figure 3.5 depicts an ontoware model represented in Functional-
Style syntax showing an axiom-based ontology. An axiom-based ontology con-
sists of a set of axioms for classes, object properties, data properties, and in-
dividuals. Axioms are used in combination with class expressions, object and
data property expressions, and individuals.

Frame-based Syntax

Figure 3.7 depicts the ontoware model in Figure 3.5 using the OWL 2 Manch-
ester syntax [HPS09]. The syntax is frame-based. Instead of axiom-based on-
tologies each frame-based ontology consists of a set of frames. Frames are used
to define classes, object and data properties, and individuals. Each frame con-
tains axioms restricting the element the frame represents. A frame for classes
contains class axioms. A frame for object properties contains object property
axioms. A frame for data properties contains data property axioms. A frame
for individuals contains individual axioms (assertions).

3.4 Ontoware Reasoning and Querying Services

All services used to reason on ontoware models and to query ontoware models
are implemented as static operation and are part of the Ontoware API. In
Section 3.4.1 we present standard reasoning services to check the consistency
of ontoware models, the satisfiability of classes in ontoware models, to clas-
sify instances and to validate the subsumption relation between two classes.
In Section 3.4.2 we present services used to explain unsatisfiability and in-
consistencies in ontoware models. Section 3.4.3 presents a query language for
querying ontoware models.

3.4.1 Standard Reasoning Services

In the following we are going to present four standard reasoning services. All
services provide means to derive and retrieve implicit knowledge based on the

3.4 Ontoware Reasoning and Querying Services 55

Class: Device
EquivalentTo:

hasConfiguration only Configuration

Class: Configuration
EquivalentTo:

hasSlot some Slot

Class: Slot

ObjectProperty: hasConfiguration

ObjectProperty: hasSlot

Individual: slot25
Types:

Slot

Individual: device23
Types:

Device
Facts:

hasConfiguration conf24

Individual: conf24
Types:

Configuration
Facts:

hasSlot slot25

Figure 3.7. Ontoware Model represented in Manchester-Style Syntax.

logical foundation of ontoware models by DL knowledge bases. In particular we
present services for consistency checking, satisfiability checking, classification,
and subsumption in Tables 3.7 to 3.10. All services are encapsulations of the
correspondent services implemented in Pellet [SPG+07]. In contrast to the
services of Pellet they can be directly adopted on ontoware models as defined
in Section 3.3.

Name Consistency Checking

Signature boolean isConsistent(Ontology o)

Pattern b=Ontoware.isConsistent(o)

Description returns true, if the ABox A of o is consistent with regard to its TBox T .
A is consistent with regard to the TBox T , if it has a model I, which
is also a model of T [Baa09].

Table 3.7. Reasoning service: consistency checking.

3.4.2 Non-Standard Reasoning Services

Reasoning services for inconsistency checking or satisfiability checking al-
low for detecting problems in ontoware models. Language users create on-

56 3 An Ontoware Technological Space

Name Satisfiability Checking

Signature boolean isSatisfiable(Ontology o, ClassExpression c)

Pattern b=Ontoware.isSatisfiable(o, c)

Description returns true if the class expression c in o is satisfiable. c is satisfiable if
(c)I 6= ∅ for some model I of T [Baa09].

Table 3.8. Reasoning service: satisfiability checking.

Name Classification

Signature boolean classify(Ontology o, ClassExpression c, Individual i)

Pattern b=Ontoware.classify(o, c, i)

Description returns true if i in o is an instance of the class expression c. i is an
instance of c if (i)I∈(c)I for all models I of T and A [Baa09].

Table 3.9. Reasoning service: classification.

Name Subsumption Checking

Signature boolean subsume(Ontology o, ClassExpression csup , ClassExpression csub)

Pattern b=Ontoware.subsume(o, csup , csub)

Description returns true if csub is subsumed by csup . csub is subsumed by csup if
(csub)I ⊆ (csup)I for all models I of T [Baa09].

Table 3.10. Reasoning service: subsumption checking.

toware models and use the consistency checking service or satisfiability ser-
vice to validate them. If the model has problems, language users require
an explanation in order to find out the reason why the problem holds.
In [KPSH05, KPHS07, HS05] several techniques are presented for computing
justifications (sets of OWL 2 axioms), which entail the problem in the ontol-
ogy. In Table 3.11 we give the specification of an explanation service, which
encapsulates the methods in [KPSH05, KPHS07] for computing justifications
and the services implemented in Pellet [SPG+07].

Name Axiom Explanation

Signature Set<Set<Axiom>> explainAxiom(Ontology o, Axiom a)

Pattern S=Ontoware.explainAxiom(o, a)

Description returns a set S of sets of axioms, where each set si∈S of axioms is
minimal and entails the axiom a. a is entailed by si if all models of si
also satisfy a.

Table 3.11. Reasoning service: explanation of an axiom.

The explanation service in Table 3.11 can easily be used to compute jus-
tifications for an unsatisfiable class C in an ontology o: explainAxiom(o, Sub-
ClassOf(C Nothing).

3.4 Ontoware Reasoning and Querying Services 57

We present an additional service for inconsistency explanations in Ta-
ble 3.12. When an inconsistency is detected in the ontoware model, for one in-
consistency a single set of axioms causing the problem is extracted [SPG+07].

Name Inconsistency Explanation

Signature Set<Set<Axiom>> explainInconsistency(Ontology o)

Pattern S=Ontoware.explainInconsistency(o)

Description returns a set S of minimal sets of axioms for each inconsistency. If at
least one axiom of each set si∈S is removed from o, o becomes consis-
tent.

Table 3.12. Reasoning service: inconsistency explanation.

3.4.3 SPARQL Querying Services

In the following we introduce a query language for RDF graphs, namely
SPARQL. Since ontoware models may be translated to RDF graphs, the
SPARQL query language allows for querying ontologies. An implementation
of a SPARQL query engine is provided by Pellet [SPG+07].

RDF Graphs

The Resource Description Framework (RDF) is a World Wide Web Consor-
tium (W3C) standard for describing and structuring data in the World Wide
Web (WWW). In RDF the data is described and structured by RDF graphs.
They describe information about resources and relate them. RDF graphs are
built on a vocabulary, which consists of three disjoint sets: A set of unified
resource identifiers (URIs) Vuri , which refer to resources, a set of blank node
(bnode) identifiers Vbnode , which refer to nodes in the graph without any mean-
ing, and, a set of literals Vlit used for data values. An RDF graph is a finite
set of RDF triples consisting of a subject, a predicate, and an object. RDF
triples are of the form (s, p, o) ∈ (Vuri ∪Vbnode)×Vuri × (Vuri ∪Vbnode ∪Vlit).

SPARQL Query

The current W3C recommendation for the SPARQL Protocol and RDF Query
Language (SPARQL is a recursive acronym) corresponds to version 1.1 [HS10].
The main building blocks of a SPARQL query are Basic Graph Patterns
(BGP). A SPARQL BGP is a set of triple patterns. A triple pattern is an
RDF triple in which variables might appear. The variables come from the in-
finite set Vvar , which is disjoint with the sets Vuri , Vbnode , and Vlit described
above.

58 3 An Ontoware Technological Space

The solution of a SPARQL query with regard to an RDF graph G is
described by a solution mapping µ from the variables in the query to RDF
terms, such that the substitution of variables in the BGP of the query would
yield a graph, which is entailed by G (according to the definition of entailments
in RDF semantics, e.g., in the Simple Entailment Regime [GP10] an RDF
graph entails all its subgraphs). In [GP10] different entailment regimes are
explained. In this work we consider the OWL 2 Entailment Regime, which is
presented below.

Based on BGPs, more complex queries can be created by using SPARQL
constructs such as projection (SELECT), joins (OPTIONAL), union (UNION),
and constraints (FILTER) [PS08]. Figure 3.8 depicts a SPARQL query, which
asks for all instances of type Device.

SELECT DISTINCT ?i
WHERE {

?i rdf:type Device
}

Figure 3.8. Simple SPARQL query.

Translating Ontoware Models to RDF Graphs

In [PSM10] a mapping between ontologies and RDF graphs is presented. This
mapping allows for establishing a translation of ontologies described by on-
toware models to RDF graphs, and vice versa a translation of RDF graphs
satisfying certain restrictions to ontologies [PSM10].

The translation from ontologies to RDF graphs considers all ontoware
constructs (axioms, class, object property and data property expressions, and
individuals, etc.) and translates them to sets of RDF triples according to the
mapping defined in [PSM10].

The translation from RDF graphs to ontologies relies on parsing rules
defined by given triple patterns to be matched in the RDF graph. These
triple patterns describe which nodes in an RDF graph are representing which
constructs of an ontology. Since ontoware models can be translated to RDF
graphs they can be queried by SPARQL.

OWL 2 Direct Semantics and Entailment Regime for SPARQL

SPARQL 1.0 has only be defined as a query language over RDF graphs, not
taking into account RDF Schema or OWL ontologies [Pol10].

Answering full SPARQL queries on top of OWL has already preliminar-
ily been addressed so far [SP07, KS08] and is proposed to be provided by
SPARQL 1.1 [GP10].

3.5 Conclusion 59

The semantics and its entailment is similar to that of description logics
(cf. Tables 3.1 to 3.4). It is based on interpretations of basic graph patterns,
which are mapped to DL axioms defined in a DL knowledge base.

The solution set S (Q) of a query Q is a set of variable mappings µ :
Vvar → Vuri ∪ Vlit . A variable mapping µ(Q) is a solution if it is entailed by
the knowledge base K representing the ontoware model. The entailment of
µ(Q) by K is defined in the OWL 2 entailment regime. In short, it defines
that µ(Q) is entailed by K if all models for K are also models for µ(Q). The
OWL 2 entailment regime is explained in [GP10] precisely.

SPARQL Querying Service

Since we are able to transform ontoware models to RDF graphs we can use
SPARQL as a query language to query ontoware models. Table 3.13 specifies
the available SPARQL querying service.

Name SPARQL Query Answering

Signature ResultSet evaluateSparqlQuery(Ontology o, Query q)

Pattern a=Ontoware.evaluateSparqlQuery(o, q)

Description evaluates the SPARQL query q on the ontology o and computes the
answer a. If there is no answer the service returns null.

Table 3.13. SPARQL querying service.

3.5 Conclusion

In this chapter we presented an ontoware technological space and answered the
two research questions RQ3 and RQ4 asking for the concepts and languages,
and the tools and services in an ontoware technological space.

The ontoware technological space provides the OWL 2 modeling language
to describe ontoware models. Ontoware models are formally represented by
TGraphs. The structure of those TGraphs is described by a graph schema,
which represents the metamodel of the ontology language OWL 2. Ontoware
models have model-theoretic semantics, which are defined by description log-
ics.

The ontoware technological space provides different services for reasoning
and querying. Reasoning services allow for checking the consistency of onto-
ware models and for inferring implicit knowledge. The querying service allows
for asking SPARQL queries against ontoware models.

4

Comparison of Modelware and Ontoware

In Chapter 2 we presented the TGraph approach as a modelware technologi-
cal space, where all models are represented as a TGraph. The space provides
services for querying and transforming TGraphs. In Chapter 3 we presented
the ontoware OWL 2 technological space. The space allows for designing on-
toware models, which conform to the ontology language OWL 2. Additionally
it provides a set of reasoning and querying services. Before we combine both
spaces in Part III, we are going to describe the commonalities and differences.

To adopt ontology technologies for modelware models we must identify
the commonalities of concepts for designing ontoware models and modelware
models (Challenge 1). To support the tooling by ontology technologies (Chal-
lenge 3) we must identify the advantages of such technologies. Therefore we
are going to answer the question:

RQ5: What are the commonalities and variations of a modelware technolog-
ical space and an ontoware technological space?

We are going to show the commonalities and variations of languages and
concepts to design data models as well as of services and tools to query and
reason on descriptions in data models.

4.1 Chapter Context

In Chapters 2 and 3 we described a modelware technological space and an on-
toware technological space. Since we consider the definition given by Kurtev et
al. of the term technological space [KBA02], we are interested in a comparison
of modeling concepts and tools provided by both technological spaces.

Figure 4.1 depicts an overview of the comparison. In Section 4.2 we are
going to compare the grUML language with the ontology language OWL 2.
We will establish a mapping between both languages, which represents the
common concepts. Additionally, we depict differences of both languages. In
Section 4.3 we are going to compare the query languages provided by both

62 4 Comparison of Modelware and Ontoware

technological spaces. We are going to compare GReQL with SPARQL, where
the comparison is mainly based on [SE10]. Finally, we are going to consider
the reasoning technologies provided exclusively by the ontoware technological
space. Since such technologies are not available in the modelware technological
space, in Section 4.4 we are going to present the benefits using them in software
modeling.

DL Reasoning

GReQL Querying

Model

grUML Metametamodel

Modelware Technical Space Ontoware Technical Space

Metamodel

OWL2 Metamodel

TBox

ABox

Ontology

Sec. 4.3

Sec. 4.4

SPARQL Querying

Language and
Concepts

Tools and
Services

Sec. 4.2

Figure 4.1. Overview of the comparison of modelware and ontoware.

4.2 Comparison of Modeling Languages and Concepts

In this section we are going to compare the modeling languages and concepts
the respective spaces provide. As a modelware modeling language we consider
grUML, as an ontoware data modeling language we consider OWL 2.

OWL 2 allows for modeling instance layer (ABox) and concept layer
(TBox). With respect to the TGraph approach and besides grUML used to
model graph schemas, we consider Vertex, Edge, and Attribute Assignment as
the concepts to model a TGraph.

We are going to depict a first mapping between concepts of both spaces in
Section 4.2.1. In Section 4.2.2 we are going to present its variations. We are
going to indicate that the OWL 2 language compared to grUML provides a
more expressive set of primitives used to describe data models.

4.2 Comparison of Modeling Languages and Concepts 63

4.2.1 Common Concepts

Comparing Sections 2.2.3 and 3.3, where we have introduced the grUML lan-
guage and the OWL 2 language, at first glance we intensionally find similar
concepts, which are juxtaposed in Table 4.1.

] Modelware Concept Ontoware Concept

1

Graph Schema

VertexClass

TBox

Class
2 EdgeClass ObjectProperty
3 Attribute DataProperty
4 Domain Datatype
5 Multiplicities Cardinality class expressions
6 SpecializesVertexClass SubClassOf
7 SpecializesEdgeClass SubObjectPropertyOf

8
TGraph

Vertex
ABox

Individual
9 Edge ObjectPropertyAssertion
10 AttributeAssignment DataPropertyAssertion

Table 4.1. Mapping between modelware concepts and ontoware concepts.

grUML allows for defining vertex classes in graph schemas, while OWL 2
allows for designing OWL classes in ontoware models. Both concepts are used
to classify sets of instances, vertices, and individuals, respectively (1).

Edge classes in graph schemas are used to classify sets of edges between
vertices. The counterpart in ontoware is the object property describing a set
of relations between two individuals (2).

Attributes in grUML are used to define relations between vertices and
edges of a given class (where the attribute is nested) and values of a particular
domain. Data properties in OWL are similar to attributes since they define
relations between individuals and values (3).

In grUML, domains describe the possible ranges of attributes. In OWL
datatypes define the ranges of data properties. Basically, both concepts rep-
resent a set of values (4).

The definition of multiplicities of edge classes in graph schemas is achieved
by the annotation of the respective incidences. They restrict a vertex to only
being connected via edges of a given type with at least and at most a number
of vertices typed by a given vertex class. In OWL class expressions for the
restriction of cardinalities of individuals may be defined. These class expres-
sions describe those individuals, which are linked via a given object property
with at most and at least a given number of instances (5).

grUML allows for defining type hierarchies for vertex classes and edge
classes. OWL 2 provides similar concepts. They allow for defining subclass re-
lations between OWL classes and subproperty relations between object prop-
erties (6, 7). Specializations defined in grUML require vertices and edges to
implement the properties of its type and all supertypes, while subclassing in

64 4 Comparison of Modelware and Ontoware

OWL declares sets of individuals and sets of relations as subset of other sets
of individuals and other sets of relations respectively.

TGraphs are composed of typed vertices, typed edges, and attribute as-
signments. The counterpart is the ABox of ontoware models, which consists
of individuals having a type, object property assertions defining the linking of
two individuals via an object property, and, data property assertions defining
the assignment of values to a given attribute belonging to some individual (8,
9, 10).

4.2.2 Variations

After we illustrated commonalities of grUML and OWL 2, we continue the
comparison by depicting variations. For the ontology language OWL 2, we
mention those constructs, which are not replaceable by respective counterparts
in grUML-based graph schemas. In the case of the grUML metamodeling
language we mention those constructs, which are not directly representable in
an ontoware model.

OWL

Besides the description of classes, properties and instances, OWL 2 provides
a comprehensive set of class expressions and axioms used to extend the de-
scription of modeled data in ontologies.

In OWL 2, class expressions and property expressions are combined to
form new class expressions. Class expressions represent sets of individuals by
formally describing the properties of individuals. Class expressions in OWL 2,
which have no counterpart in grUML, are the ObjectIntersectionOf, ObjectU-
nionOf, and ObjectComplementOf for the standard set-theoretic operations on
class expressions (in logical languages these are usually called conjunction,
disjunction, and negation, respectively). Furthermore, constructs for quanti-
fied expressions for the description of classes containing those instances being
linked with some individual (using the ObjectSomeValuesFrom class expres-
sion) or only with individuals (using the ObjectAllValuesFrom class expression)
of a given type, are not provided by grUML. OWL 2 provides the description
of classes by enumerating individuals. A counterpart of the ObjectOneOf class
expression is not available in grUML.

The following class expression, which is defined as equivalent to the class
Device describes those individuals, which are linked via the property hasCon-
figuration with at least one individual of type ComplexConfiguration or with
one of the individuals config7603 or config7604.

EquivalentClasses(Device ObjectSomeValuesFrom(hasConfiguration ObjectUnionOf(ComplexConfiguration
ObjectOneOf(config7603 config7604))))

OWL 2 provides an extensive set of axioms used to state what is true in
the domain [MPSH09]. In particular OWL 2 provides the use of class axioms
and property axioms.

4.3 Comparison of Query Technologies 65

Class axioms are used to express relationships between two or more class
expressions. The EquivalentClasses axiom states that two class expressions de-
scribe the same set of individuals, while the DisjointClasses axiom states that
the sets of individuals described by both class expressions are disjoint. In the
listing above the EquivalentClasses axiom states the equivalence of the set of
individuals described by Device and the set described by the ObjectSomeVal-
uesFrom class expression. grUML allows for relating classes by specialization
relationships. Additional relations between the sets of instances described by
classes are not possible.

Object property axioms are used to characterize and establish relationships
between object property expressions. An OWL 2 object property transitivity
axiom describes that an object property expression is transitive. Furthermore,
OWL 2 allows for stating that two object properties are equivalent or disjoint.
If two object properties are equivalent or disjoint, the sets of relations between
individuals they describe are equivalent or disjoint. grUML does not provide
constructs to relate the sets of edges described by an edge class.

OWL 2 allows for composing two or more object properties to one object
property chain being the specialization of another object property. The ob-
ject property hasDeviceCard in the following is defined as the composition of
hasCard and hasDeviceCard. In grUML the composition of edge classes is not
possible.

SubObjectPropertyOf(SubObjectPropertyChain(hasConfiguration hasCard) hasDeviceCard)

grUML

The main distinction of the grUML metamodeling language compared to
OWL 2 is the definition of attributes for edge classes. Hence, edges in TGraphs
may be attributed. OWL 2 does not allow for defining attributes (or data prop-
erties) assigned to object properties. In OWL 2 only classes can be defined as
a domain of a data property.

Edges in TGraphs may be traversed in both forward and backward direc-
tion.

In addition grUML allows for (sub-)packaging vertex classes and edge
classes. The hierarchical (sub-)packaging concepts are not available for on-
toware models.

Concluding Section 4.2 we state that OWL 2, compared to usual metamod-
eling languages like grUML, provides a rich set of primitives for the description
of data models.

4.3 Comparison of Query Technologies

In this section we compare the query language GReQL from the modelware
technological space with SPARQL from the ontoware technological space. This

66 4 Comparison of Modelware and Ontoware

comparison is mainly based on the work by Schwarz and Ebert. For technical
details of the comparison we refer to [SE10].

4.3.1 Query Language Concepts

As shown in [SE10], SPARQL and GReQL provide various features, which
partially are not shared by both language. For example, the construction
of RDF graphs by SPARQL CONSTRUCT queries and the usage of stand-
alone GReQL regular path expressions. Hence, SPARQL and GReQL are not
mutually substitutable, i.e., it is not always possible to replace a SPARQL
query by an equivalent GReQL query and vice versa.

Anyway, there is an intersection of constructs, which are mapped in Ta-
ble 4.2 (which is taken from [SE10]). The central concepts to be compared are
SELECT and ASK queries in SPARQL and FWR expressions in GReQL.

4.3.2 Semantics and Entailment

The translations and mappings mentioned in Table 4.2 are syntactic transla-
tions of query languages where constructs may have similar semantics.

SPARQL with Simple Entailment [HS10] behaves similarly to GReQL: it
only retrieves information explicitly defined in an RDF graph. In this case the
different semantics of RDF and TGraphs do not bear any relevance to the
mapping and translation of the query languages.

SPARQL with OWL 2 Direct Semantics Entailment Regime allows for
querying RDF graphs (which can be mapped to OWL 2 ontologies) plus the
entailed facts. The semantics and their entailment is similar to that of de-
scription logics (cf. Tables 3.1 to 3.4).

In Section 4.4 we comment in more detail on the querying of inferred facts.

4.3.3 Constraint Validation

In [ST09], Sirin et al. show that constraint validation can be reduced to
SPARQL query answering. They consider three kinds of constraints:

Typing constraints require that individuals that participate in a relation
should be instances of certain types.

Participation constraints require that instances of the constrained class
should be involved in an object property assertions (existence).

Uniqueness constraints require that an individual cannot participate in
multiple object property assertions with the same property (functional prop-
erties).

The following SPARQL query gives an example for a participation con-
straint check. As mentioned in Table 4.2, ASK queries are used to ensure
existential quantifications. The query given below checks whether one device
without configuration exists. Here the well-known method for representing

4.3 Comparison of Query Technologies 67

SPARQL
query part

GReQL concept Comment

prologue — no correspondence for base URI or prefixes
in GReQL

query
form

SELECT report part of (a
union of) FWR ex-
pression(s)

if UNION or OPTIONAL are used, it maps
to the union of multiple FWR expressions
instead of a single one. In SPARQL, pat-
tern alternatives are syntactically specified
with the UNION keyword. Optional parts
of the graph pattern may be specified syn-
tactically with the OPTIONAL construct.
If DISTINCT or REDUCED are specified,
reportSet is used. The DISTINCT keyword
ensures that solutions in the sequence are
unique. The REDUCED keyword permits
the elimination of some non-unique solu-
tions.

CONSTRUCT — no support in GReQL for building graphs.
In SPARQL, the CONSTRUCT query form
returns a single RDF graph specified by a
graph template.

ASK existentially quan-
tified expression

ASK queries in SPARQL are used to test
whether or not a query pattern has a solu-
tion.

DESCRIBE — no support for returning descriptions spec-
ified in graphs in GReQL. The DESCRIBE
form returns a single result RDF graph
containing RDF data about resources.

dataset — no support for querying multiple graphs in
GReQL.

where
clause

with SE-
LECT query
form

from and with
parts of (a union
of) FWR expres-
sion(s)

Variables in the where clause are mapped
to declarations in the from part(s). Triple
patterns and FILTERs are mapped to the
with part(s). FILTER in SPARQL restricts
the solutions of a graph pattern match ac-
cording to a given expression.

with ASK
query form

declaration part
and boolean
expression in
existentially quan-
tified expression

Variables in the where clause are mapped
to declarations in the declaration part of
the quantified expression. Triple patterns
and FILTERs are mapped to the boolean
expression.

solution modifier — no support in GReQL for sorting or con-
trolling the number of solutions.

— all other expres-
sions, e.g., regular
path expressions

no support in SPARQL for other GReQL
concepts.

Table 4.2. Mapping between SPARQL and GReQL concepts [SE10].

68 4 Comparison of Modelware and Ontoware

negation as failure (NAF)1 is based on a pattern of OPTIONAL / FILTER /
!BOUND operators.

ASK WHERE { ?x rdf:type Device .
OPTIONAL {

?x hasConfiguration ?y .
?y rdf:type Configuration .
}

FILTER(!BOUND(?y))}

Experience shows that path expressions are a powerful means for prescrib-
ing properties of user models in practical applications [EWD+96].

In the W3C working draft SPARQL 1.1 is extended by the definition of
property paths2. A property path is a possible path through an RDF graph
between two nodes. Property paths may be composed of constructs for alter-
native and sequenced paths or paths of arbitrary length. Unlike regular path
expressions in GReQL, variables (nodes) cannot be used as part of the path
itself, only at the begining and the end.

Since SPARQL 1.1 is still a working draft, we were not able to test these
additional constructs with Pellet3 in version 2.1.1 and the Jena API4 in version
2.6.3.

We may conclude the comparison of GReQL and SPARQL with the mes-
sage that the use of a respective query language depends of the kind of appli-
cation.

GReQL seems to be more applicable for constraint definition. GReQL
provides support for regular path expressions. SPARQL 1.1 will support path
expressions. Furthermore, in most cases the GReQL syntax seems to be more
concise. This especially applies to the fact that all constraints evaluated
by a SPARQL query must be formulated as a set of RDF triples. Conse-
quently, complex GReQL constraints should be more easily graspable than
their SPARQL counterparts.

On the other hand SPARQL provides the querying of entailed facts, or the
construction of new RDF graphs for the results of a query.

4.4 Reasoning Technologies

Modelware technologies as presented in Section 2.3 mainly do not provide rea-
soning facilities. Reasoning on modelware models is principally enabled after
a translation to a logic-based representation, e.g to Alloy [ABGR07], Descrip-
tion Logics [BCG05], OWL 2 [WSR10], or Object-Z [Eva98, EWD+96]. When
using such formal representations, one could reason on modelware models

1 http://www.w3.org/TR/rdf-sparql-query/
2 http://www.w3.org/TR/sparql11-query/
3 http://clarkparsia.com/pellet/
4 http://jena.sourceforge.net/

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-query/
http://clarkparsia.com/pellet/
http://jena.sourceforge.net/

4.4 Reasoning Technologies 69

and formally prove properties through inference and make implicit knowl-
edge of interest explicit [BCG05]. Description Logics reasoners (such as Pel-
let [SPG+07], or Racer [HM01]) allow for joint as well as for separate sound
and complete reasoning at both, the schema and the instance layers.

4.4.1 Schema Reasoning

Schema reasoning considers all concept descriptions in ontoware models inde-
pendent of their instances. Based on the descriptions in the schema, schema
reasoning allows for inferring new facts, which might be queried, e.g., using
SPARQL, or detected by reasoning services.

Language designers creating graph schemas may possibly be interested in
computing the vertex classes and edge classes, which are not satisfiable, i.e.,
classes, which cannot be instantiated without the graph becoming inconsis-
tent. The following GReQL constraint is not satisfiable because it simultane-
ously forbids and requires that Configuration vertices have a successor.

forall c:V{Configuration} @ exists s:V{Slot} @ not(c −−>{hasSlot} s) and (c −−>{hasSlot} s)

The tools available in the modelware technological space presented in
Chapter 2 do not allow for detecting the unsatisfiability of elements in graph
schemas. If we encode the GReQL constraint as an axiom of an ontoware
model, we will be able to reason and infer new facts. The listing below repre-
sents the GReQL constraint above as class description being part of an OWL 2
ontology.

SubClassOf(Configuration ObjectIntersectionOf(ObjectComplementOf(ObjectSomeValuesFrom(hasSlot
Vertex)) ObjectSomeValuesFrom(hasSlot Vertex)))

Facts for unsatisfiability of class expressions may be derived by queries or
the given reasoning service presented in Table 3.8. The SPARQL query below
queries for the fact of unsatisfiability. It uses the ontology with all additional
facts inferred by a DL reasoner as data model:

SELECT DISTINCT ?t
WHERE {

?t rdfs:subClassOf owl:nothing
}

The satisfiability checking service presented in Table 3.8 considers an on-
toware model and may infer the unsatisfiability based on all descriptions. The
result of this check is that the OWL class Configuration described above is not
satisfiable.

4.4.2 Schema+Instance Reasoning

Description logics reasoners allow for joint reasoning on both schema and
instance layer. Given an ontoware model describing TBox concepts and ABox

70 4 Comparison of Modelware and Ontoware

instances, reasoners allow for classifying individuals to find their possible types
described in the schema.

The following excerpt of an ontoware model depicts a TBox axiom stating
that every device is linked via hasConfiguration with some configuration. The
corresponding ABox consists of two individuals d and c. d is linked with c,
which is of type Configuration.

// TBox axiom
EquivalentClasses(Device ObjectSomeValuesFrom(hasConfiguration Configuration))

// ABox axioms
Declaration(Individual(d))
ObjectPropertyAssertion(hasConfiguration d c)
Declaration(Individual(c))
ClassAssertion(c Configuration)

Based on a common description of schema and instance layer within one
ontoware model, reasoners may infer new facts. Based on the descriptions in
TBox and ABox, the SPARQL query below asks for all named types, that an
individual i has. In the case of the individual d it returns the type Device.

SELECT DISTINCT ?t
WHERE {

i rdf:type ?t
}

Using the reasoning service specified in Table 3.9, we are able to classify
the individual d to find its possible type. The result is the class Device, since
d fulfills all descriptions defined by the class expression.

4.4.3 Open World Reasoning

The Open World Assumption (OWA) assumes incomplete information as de-
fault and allows for reasoning on incomplete models, while the Closed World
Assumption (CWA) assumes all positive to be facts as part of the knowledge
base (cf. Section 3.2.3).

For quantified expressions a reasoner assumes that a given individual is
linked with other individuals. Although an individual is not linked with a
given number (cardinality) of other individuals, a reasoner would assume by
default that cardinality restrictions are fulfilled by assumed individuals in the
domain.

The ontoware model below describes an incomplete knowledge base. In
the TBox we define that each device must have a configuration and that each
configuration must have a slot. In the ABox we declare the individuals d and
c. d is linked with c, which is of type configuration.

// TBox axiom
EquivalentClasses(Device ObjectSomeValuesFrom(hasConfiguration Configuration))
EquivalentClasses(Configuration ObjectSomeValuesFrom(hasSlot Slot))

// ABox axioms
Declaration(Individual(d))
ObjectPropertyAssertion(hasConfiguration d c)

4.5 Conclusion 71

Declaration(Individual(c))
ClassAssertion(c Configuration)

Although the knowledge base is incomplete (c is not linked with a slot),
reasoners are able to infer facts based on all descriptions in TBox and ABox.
In the example above a reasoner infers that the individual d is of type device,
because it is linked with some configuration although the configuration c is
not complete (i.e., it is not linked with a slot).

4.5 Conclusion

In this chapter we have answered RQ5 asking for the commonalities and vari-
ations of the TGraph modelware technological space and the ontoware tech-
nological space.

We compared the data modeling languages grUML and OWL 2. We de-
tected many common concepts having similar semantics. In addition to the
common concepts, OWL 2 provides a comprehensive set of class expressions
and axioms used to extend the description of modeled data in ontologies.
grUML is more powerful in the definition of attributes since it allows for
attributing edge classes.

In the second part of this chapter we compared the query technologies
of both technological spaces. SPARQL and GReQL provide various features,
which are not shared by the respective other language. In the case of querying
and constraining modelware models, GReQL with its regular path expressions
is more applicable. Advantages of SPARQL are detected if we add DL reason-
ing capabilities. Based on the descriptions in data models, reasoning allows
for inferring new facts, which might be queried.

Part III

Combinations

5

Bridging Technologies

Model-driven engineering (MDE) makes use of concrete modeling languages
for the description of models. Often a variety of different modeling languages is
used simultaneously to describe a software system from several viewpoints. In
the context of MDE, several models in different standardized languages may
be combined to form a complete and consistent overall model of the system
under development.

In the context of this thesis we consider the combination of modelware
technological spaces with ontoware technological spaces. Appropriate tech-
niques are required to combine technological spaces (Challenge 1). We consti-
tute these techniques as bridges. A modeling environment provides the estab-
lishment of a bridge and the use of a bridge. We need to answer the question:

RQ6: What are the techniques to bridge technological spaces?

In this chapter we develop four kinds of bridges, namely a transformation
bridge, an integration bridge, a mapping bridge, and an API bridge. All bridges
represent generic ways for combining two modeling languages. In the context
of this work, they are used to combine a modelware modeling language with
the ontology language OWL 2.

5.1 Chapter Context

In this section we present a domain-specific modeling language, which is an
example for bridging it with the ontology language OWL 2. Finally we present
this chapter’s road map where we classify all kinds of bridges to be presented.

5.1.1 Example Modeling Language

In this chapter we consider BEDSL, the Business Entity Domain-Specific Lan-
guage [KMS09], to be integrated with the ontology language OWL 2. We con-
sciously choose a simple modeling language, which is worthwhile for being
integrated with a more expressive language such as OWL 2.

76 5 Bridging Technologies

BEDSL is a structural modeling language for describing several entities,
attributing them and relating them by specialization relationships and refer-
ences between two entities.

Figure 5.1 depicts an example model in textual concrete syntax of BEDSL.
The model consists of one data type definition and three entity definitions.
The entity Device consists of a name attribute, whose datatype is String and
of a reference hasCard, which defines a connection from entity Device to the
entity Card. The opposite reference of hasCard is belongsToDevice, which is
defined in the entity Card. Entity Router is a specialization of Device, while
entity Card contains the reference belongsToDevice.

model DeviceModel {
datatype String;

entity Device {
attribute name : String;
reference hasCard : Card oppositeOf belongsToDevice;
}

entity Router specializes Device {
}

entity Card {
reference belongsToDevice : Device;
}
}

Figure 5.1. BEDSL model.

Figure 5.2 depicts the metamodel of BEDSL, which conforms to the
grUML metaschema. The language is used to describe business entity mod-
els, which consist of sets of entities and data types. Each entity can have an
optional super type, a set of references and attributes. Each reference (and its
reverse reference) is used to point from one entity to some other entity, while
each attribute is used to store data values conforming to some data type. A
special kind of a data type is an enumeration, which consists of a number of
entries.

5.1.2 Bridge Classification and Chapter’s Road Map

All bridges are defined at the level of graph schemas by language designers.
Here graph schemas represent metamodels as well as metametamodels. After
the bridge has been designed its adoption by language users takes place at
the model layer. Figure 5.3 depicts this chapter’s road map and illustrates the
description of the following bridges:

Transformation: The first class of bridges provides transformations to create
for an input model a respective output model according to a transforma-
tion definition. The transformation definition established by a language

5.1 Chapter Context 77

Figure 5.2. Metamodel of BEDSL.

designer describes which types of elements in the input model are consid-
ered to build an element in the target model. The transformation bridge
is presented in Section 5.2.

Integration: The second class of bridges we discuss are the integration bridges.
The result of the bridge establishment is an integrated metamodel, which
is the merge of the abstract syntax definitions of two modeling languages.
An integrated metamodel allows language users to create hybrid models.
Hybrid models are build by constructs conforming to an integrated mod-
eling languages. Language users use projection services to build models
conforming to one of the metamodels to be combined for a given hybrid
model. The projection of a hybrid model is a model, which consists only
of the elements that conform to concepts of one given metamodel to be
integrated, or, of merged concepts of the integrated metamodel. The in-
tegration bridge is presented in Section 5.3.

Mapping: The third class of bridges supports the mapping of models, which
may be developed separately. Based on a mapping definition describing
which constructs in metamodels can be mapped, users are able to de-
clare mappings between elements of two different modeling languages.
Language users consider derive services to trace mappings. The deriva-
tion of a mapped model consists of those elements of the opposite model,

78 5 Bridging Technologies

which are incident with mappings. The mapping bridge is presented in
Section 5.4.

Implementation: The fourth class of bridges is the API bridge (a bridge be-
tween Application Programming Interfaces). API bridges are established
by the implementation of services using the operations and services of
given APIs used to traverse models and those services of another API to
build new models. The API bridge is presented in Section 5.5.

Hybrid Model

modelware

ontoware

Sec. 5.3

Ontoware
Model

Modelware
Model

projection

projection

Ontoware
Model

Modelware
Model

transformation

Sec. 5.2

Ontoware
Model

Modelware
Model

mapping

derive

Sec. 5.4

Ontoware
Model

Modelware
Model

API API
use

Sec. 5.5

Figure 5.3. Road map of Chapter 5.

In addition, we compare all bridges and discuss advantages and disad-
vantages of the bridges respectively. Section 5.6 concludes this chapter by
presenting related work in the field of bridging modeling languages.

5.2 Transformation Bridge

The transformation bridge is considered to switch automatically from a given
modelware model (as the input) to an ontoware model (as the output). The
bridge is established as a transformation service developed by the language
designer and used by the language user.

5.2 Transformation Bridge 79

5.2.1 Transformation Definition

The establishment of the transformation bridge consists of the definition how
modelware models conforming to a modeling language are transformed to
ontoware models.

A transformation service that transforms a modelware model conforming
to a metamodel GS to an ontoware model conforming to the metamodel
GSOWL is specified as follows (cf. Table 5.1). All transformation services are
implemented as a static method being part of the class TransformationBridge.

Name Transformation Service

Signature GSOWL transform(GS m)

Pattern mowl=TransformationBridge.transform(m)

Description transforms a model m to an ontoware model mowl according to a trans-
formation definition.

Table 5.1. Transformation service: transform.

The first step in the establishment of a transformation service is the map-
ping of concepts provided by the metamodel GS of the modelware modeling
language (e.g., GSBEDSL) and the metamodel GSOWL of the ontology lan-
guage OWL 2. In the case of a transformation bridge the mapping is needed
to denote which elements from a modelware model are transformed to which
elements in a newly created ontoware model. The relation is mainly based
on intensional knowledge of both languages and is defined by the language
designer.

With regard to our example modeling language BEDSL from the model-
ware and the ontology language OWL 2 from the ontoware, we can identify
the following vertex classes and edge classes, which are presented in Table 5.2.

Relation Nr. BEDSL OWL 2

1. Model Ontology

2. Entity Class

3. Datatype Datatype

4. Reference ObjectProperty

5. Attribute DataProperty

6. Enumeration, EnumerationEntry DataOneOf, Literal

7. hasSupertype SubClassOf

8. hasOpposite InverseObjectProperty

Table 5.2. Mapping of concepts of BEDSL metamodel and OWL 2 metamodel.

In general all model elements of BEDSL models are transformed to OWL 2
elements such as Class, ObjectProperty, DataProperty, etc. (Relation 2-8, cf.

80 5 Bridging Technologies

Table 5.2). The creation of an Ontology element is necessary to define an
element that contains all other ontology elements and the axioms predicating
them (Relation 1, cf. Table 5.2).

We mentioned that the output of the transformation service returns an on-
toware model, which is created according to transformation rules. To describe
these transformation rules we use the three GReTL transformation opera-
tions that allow for creating vertices, edges, and defining attribute values. In
Section 2.3.2, GReTL and the three operations are introduced.

In Appendix A.3.1 we exemplify the implementation of the transforma-
tion. Here, GReTL is used to transform models conforming to the BEDSL
metamodel to ontoware models written in OWL 2.

5.2.2 Transformation Use

As specified in Table 5.1 the transformation service requires a modelware
model m and delivers a corresponding ontoware model mowl . Thus, when
using the transformation bridge, one must first create a modelware model,
which conforms to the source metamodel GS of the given modeling language.

Example

Figure 5.1 depicts a modelware model m, which conforms to the BEDSL
metamodel GSBEDSL. Using the transformation service transform the ontoware
model mowl is created:

mowl=TransformationBridge.transform(m);

Figure 5.4 depicts the target ontoware model mowl . Here we have a pure
OWL 2 ontology document that is processable by ontoware reasoning tools.

5.2.3 Discussion

A transformation generates a new model conforming to the target language
from a given model, which in turn conforms to the source language. This kind
of bridging usually implies some loss of information, since both languages
have different properties not all of which are transformable into the other
languages [EW10].

Based on the mapping of the modeling language to be transformed and the
ontology language the transformation bridge is established. It is realized by
a transformation service, which is used for automatically producing ontoware
models from given modelware models.

Having a transformation service, language users are able to build mod-
elware models with the modeling language and concrete syntaxes they are
familiar with. But the users are restricted to the expressiveness (e.g., different
syntactic constructs) of the modeling language they are working with.

5.3 Integration Bridge 81

Ontology(DeviceModel

Declaration(Class(Device))

Declaration(Class(Router))
SubClassOf(Router Device)

Declaration(Class(Card))

Declaration(ObjectProperty(belongsToDevice))
ObjectPropertyDomain(belongsToDevice Card)
ObjectPropertyRange(belongsToDevice Device)

Declaration(ObjectProperty(hasCard))
ObjectPropertyDomain(hasCard Device)
ObjectPropertyRange(hasCard Card)

InverseObjectProperties(hasCard belongsToDevice)

Declaration(DataProperty(name))
DataPropertyDomain(name Device)
DataPropertyRange(name xsd:string)
)

Figure 5.4. Visualized ontoware model.

5.3 Integration Bridge

Due to the needs of multiple modeling languages and their simultaneous use,
we present an integration bridge for the combination of two modeling lan-
guages to one integrated language. The integration bridge we are going to
present supports language designers in the construction of an integrated meta-
model, a combined representation of the abstract syntax definition of two
modeling languages. The integrated metamodel allows for designing one in-
tegrated overall view representing a hybrid merge of different views of the
system to be modeled. Since the integration bridge provides a loss-free merge
of modeling languages, the overall model can still be projected to its parts
representing just one view.

Figure 5.5 depicts a hybrid model, which is visualized by a textual concrete
syntax. It is built by constructs of BEDSL and OWL 2, which are integrated
seamlessly. Besides the typical BEDSL elements the hybrid model contains
an object property with name belongsToDevice and two axioms for domain
and range. Here, the integrated modeling language provides the definition of
both, references and object properties. In addition, a DisjointClasses axiom is
defined, which is directly adopted on Device and Card, since they provide the
properties of both, BEDSL Entity and OWL Class.

For the need of interoperability between a modeling environment and rea-
soning tools, a projection service is realized. It translates hybrid models to
ontoware models, which are the input for reasoning tools.

82 5 Bridging Technologies

model DeviceModel {

entityClass Device disjointWith Card{
reference hasCard : Card;
}

entityClass Router subClassOf Device{
}

entityClass MobileDevice subClassOf Device{
}

entityClass Card {
}

objectProperty belongsToDevice{
domain: Card;
range: Device;
}
}

Figure 5.5. Hybrid model in concrete syntax.

5.3.1 Integration Definition

The establishment of the integration bridge consists of the definition how the
metamodels of a modeling language and the ontology language are integrated.
The integration is supported by a set of integration services. These services
are provided by the modeling environment and used by the language designer.
The integration of two modeling languages consists of three steps.

In the first step, the mapping as introduced in Section 5.2.1 is necessary
where language designers relate the different constructs provided by the mod-
eling languages to be integrated.

The second step creates a disjoint union of the two metamodels. The sets
for vertex classes, edge classes, and attributes are united.

In the third step, different integration services are applied on the united
graph schema to either merge two vertex classes, edge classes or attributes
to one single vertex class, edge class or attribute, respectively, to relate two
vertex classes by an edge class, or to create hierarchies of types for vertex
classes or edge classes, respectively.

The result is the integrated metamodel, which represents the abstract
syntax definition of an integrated modeling language.

The integration bridge itself is encapsulated in one object of type Inte-
grationBridge, which is initialized by the respective constructor specified in
Table 5.3.

1. Mapping and Adaptations

Before an integration bridge is established, a mapping is performed, equal
to that in Section 5.2.1. In the mapping step different constructs of the two
modeling languages are compared and related.

5.3 Integration Bridge 83

Name Integration Bridge Constructor

Signature IntegrationBridge IntegrationBridge(Schema GS1, Schema GS2)

Pattern b = new IntegrationBridge(GS1, GS2)

Description initializes the integration bridge object b with the schemas GS1 and
GS2.

Table 5.3. Integration bridge constructor.

Sometimes, related constructs in the metamodels to be integrated are re-
alized by different constructs. For example, in BEDSL an association is used
to define the specialization relationship between two entities, while in OWL 2
a separate class is used to define an OWL class expression being a subclass of
another class expression. To relate an association with a class an adaptation
of the metamodels is performed.

For all adaptations of metamodel GS to a metamodel GSa , language de-
signers have to implement a service, which gets as input a model conforming
to GS and returns a model conforming to GSa . Models must also be adapted
since the adapted metamodels are integrated. Adaptation services are required
by language users to automatically change the structure of models in such a
way that they are useable for the integration bridge. In Table 5.4 we specify
a respective static adaptation service, which is provided by the Convert class.
The service may be implemented as a transformation with source metamodel
GS and target metamodel GSa .

Name Adaptation Service

Signature GSa adaptation(GS m)

Pattern ma=Convert.adaptation(m)

Description adapts a model m by refactoring its structure according to the adapta-
tion of GS to GSa .

Table 5.4. adaptation service.

2. Disjoint Union of Metamodels

For the initial union of two metamodels we specify a metamodelUnion service.
It considers the two graph schemas GS1 and GS2 representing the metamodels
to be unified and initializes the metamodel GSInt . The metamodelUnion service
is specified in Table 5.5, which may be invoked directly in the integration
bridge constructor.

3. Applying Integration Services

All integration services directly consider elements of the metamodel GSInt

and either merge them, or relate them by a specialization relationship or an

84 5 Bridging Technologies

Name Metamodel Union Service

Signature void metamodelUnion()

Pattern b.metamodelUnion()

Description constructs the graph schema GSInt , which is the disjoint union of the
two graph schemas GS1 and GS2. GS1 and GS2 are taken from the in-
tegration bridge object. After the union the object provides a reference
to GSInt . All incidences of edge classes and specialization relationships
between classes, all multiplicities annotating edge classes, and all at-
tributes nested in vertex classes or edge classes in GSInt are kept as
defined in the two graph schemas GS1 and GS2. b is the integration
bridge object.

Table 5.5. metamodelUnion service.

association. The result of applying a set of integration services is an integrated
metamodel that is represented by GSInt , which consists of parts of GS1 and
GS2, which are connected seamlessly.

After the definition of the integration services and an example, in this
section we are going to show how to store the information within which ele-
ments of the two metamodels are integrated. This information is considered
in Section 5.3.2 where we introduce projection services.

Merge Vertex Classes Service

The mergeVertexClasses service, specified in Table 5.6, is used if the meaning
of two vertex classes is the same. The two vertex classes are replaced by a new
single vertex class. All properties of the two vertex classes to be merged (e.g.,
incidences with edge classes or specialization relationships and attributes) are
moved to the new vertex class.

Name Merge Vertex Class Service

Signature VertexClass mergeVertexClasses(VertexClass t1, VertexClass t2, String
qualifiedName)

Pattern tm=b.mergeVertexClasses(t1, t2, s)

Description merges the two vertex classes t1 and t2 by replacing them with a new
vertex class tm with name s in GSInt . tm is newly created in GSInt .
All incidences with edge classes and specialization relations, which are
incident with t1 or t2, and all attributes nested in t1 or t2 are moved
to the new vertex class tm . b is the integration bridge object.

Table 5.6. Integration service: mergeVertexClasses.

Specialization Service

The specializeClasses service, specified in Table 5.7, is used if two vertex
classes or two edge classes in a graph schema are related where one of them

5.3 Integration Bridge 85

specializes the other. Subsequently the two vertex or edge classes are related
by a specialization relation.

Name Specialization Service

Signature void specializeClasses(GraphElementClass tsub , GraphElementClass tsup)

Pattern b.specializeClasses(tsub , tsup)

Description creates a specialization relationship between two given vertex classes or
edge classes tsub and tsup in GSInt . b is the integration bridge object.

Table 5.7. Integration service: specializeClasses.

Associate Classes Service

The associateClasses service, specified in Table 5.8, is used if two vertex classes
in a graph schema should be associated by an edge class. Two incidences are
required to define precisely the edge class between the two vertex classes.

Name Association Service

Signature EdgeClass associateClasses(VertexClass ts , IncidenceClass is , VertexClass
tt , IncidenceClass it , String name)

Pattern tec=b.associateClasses(ts , is , tt , it , n)

Description associates two vertex classes ts and tt by a newly created edge class tec
with name n in GSInt . tec has the two incidences is (for vertex class ts)
and it (for vertex class tt). b is the integration bridge object.

Table 5.8. Integration service: associateClasses.

Merge Edge Classes Service

The mergeEdgeClasses service, specified in Table 5.9, is used if two edge classes
are identified to represent the same relations between two vertex classes. Fur-
thermore, the multiplicities must match for both incidences. Incident vertex
classes at one edge class end must be the same or specializations for the other
edge class.

Merge Attribute Service

The mergeAttributes service, specified in Table 5.10, is taken into account if
one vertex class or edge class contains two attributes that are identified to be
merged. Both attributes to be merged must have the same domain.

The set of integration services presented in this section is easily extendable.
But it depends on the technological space where the integration services are

86 5 Bridging Technologies

Name Merge Edge Classes Service

Signature EdgeClass mergeEdgeClasses(EdgeClass t1, EdgeClass t2, String qualified-
Name)

Pattern tm =b.mergeEdgeClasses(t1, t2, s)

Description merges two edge classes t1 and t2 by replacing them with a new edge
class tm with name s in GSInt . All specialization relations and all nested
attributes are moved to the new edge class. b is the integration bridge
object. Before the merge, the service ensures that the multiplicities at
the incidences of t2 are the same or more specific than the multiplicities
at the incidences of t1, and that the vertex classes at the incidences of
t2 are the same or specializations of vertex classes at the incidences of
t1.

Table 5.9. Integration service: mergeEdgeClasses.

Name Merge Attributes Service

Signature Attribute mergeAttributes(Attribute a1, Attribute a2, String name)

Pattern am=mergeAttributes(a1, a2, s)

Description merges two attributes by replacing them with a new attribute with
name s. The service ensures that the domains of a1 and a2 are the
same or that of a2 describes a subset of the domain of a2. Furthermore,
attributes must be in the same vertex class or edge class, or a2 is in a
specialization of that of a1. b is the integration bridge object.

Table 5.10. Integration Service: mergeAttributes.

being implemented. E.g., in the EMOF technological space [OMG06] a special-
ize-service for references is not implementable because EMOF does not allow
for specializing references, while in the CMOF technological space [OMG06]
an associateClasses and specializeClasses service to create an association or
specialization relationship between two associations may be used.

Example

In the following we are going to present the creation of the integration bridge
for BEDSL and OWL 2. The metamodels of both languages are described the
by graph schemas GSBEDSL and GSOWL.

1. Mapping and Adaptation. Before applying any integration services a map-
ping (comparable to that in Section 5.2.1) is necessary. This step is needed
to denote which constructs can be integrated and how they must be inte-
grated. The mapping is mainly based on intensional knowledge on GSBEDSL

and GSOWL.
To integrate the two languages based on the mapping, an adaptation of the

BEDSL metamodel is necessary. Figure 5.6 depicts the metamodel GSa
BEDSL,

which is the adapted version of GSBEDSL. We adapt four parts of GSBEDSL.
The hasSupertype association is materialized by a new class because it

should be integrated with the SubClassOf class from the OWL 2 metamodel

5.3 Integration Bridge 87

(1). The hasFeature association in BEDSL relates entities with features. Be-
cause subsequent to an integration the relation should model domain axioms
for object properties and data properties, we have to materialize the hasFea-
ture association by two new classes HasReference and HasAttribute (2). The
pointsTo association is materialized by a new class because it should be inte-
grated with the object property range class from the OWL 2 metamodel (3).
The hasAttributeDatatype association is materialized by a new class because
it should be integrated with the data property range class from the OWL 2
metamodel (4).

Figure 5.6. GSa
BEDSL, the adaptation of the BEDSL metamodel.

With all metamodels in its adapted version being ready to be integrated,
the integration bridge object is instantiated.

b = new IntegrationBridge(GSa
BEDSL, GSOWL);

88 5 Bridging Technologies

2. Metamodel Union. The second part of the integration consists of a simple
metamodel union, which constructs the initial integrated metamodel GSInt .
It contains all elements (vertex classes, edge classes, and attributes) of the
two source metamodels.

b.metamodelUnion();

3. Integration Services. In the third part of the integration, several integra-
tion services are applied on the initial GSInt where the integration services to
be executed are intensionally based on the mapping defined in step 1. Subse-
quent to applying the integration services on related constructs we get a new
integrated metamodel represented by GSInt . The listings below may represent
scripts designed by a domain-specific language used to declaratively describe
the integration. These integration scripts may be executed and its result is
the integrated metamodel.

Since the integrated metamodel is complex we present excerpts in Fig-
ures 5.7, 5.8, and 5.9 and illustrate the respective use of integration services.
Figure 5.7 depicts the integration of the BEDSL constructs Model, Entity,
and HasSupertype with the respective OWL constructs. Model becomes a spe-
cialization of Ontology since all constructs provided by OWL should be part
of a BEDSL model (1). Entity and Class are merged to a new vertex class
called EntityClass (2). It allows on the one hand for defining references and
attributes, on the other for several OWL class axioms. Expressions can also
be applied on it. In steps (3) to (5) the concerns of HasSupertype in BEDSL
and SubClassOf in OWL are merged. The new vertex class SubClassOf allows
for defining several subclass relations between several class expressions, for
instance EntityClass.

b.specializeClasses(Model, Ontology); // (1)
EntityClass=b.mergeVertexClasses(Entity, Class, ”EntityClass”); // (2)
SubClassOf=b.mergeVertexClasses(HasSupertype, SubClassOf, ”SubClassOf”); // (3)
hasSuperClass=b.mergeEdgeClasses(definesSuperClass, hasSupertype, ”definesSuperClass”); // (4)
definesSubClass=b.mergeEdgeClasses(definesSubClass, hasSubtype, ”definesSubClass”); // (5)

Figure 5.8 depicts the integration of the BEDSL construct Reference with
the respective OWL constructs. Reference becomes a specialization of Ob-
jectProperty (6). Thus, references can be involved in object property axioms
and expressions. References are connected via the classes HasReference and
PointsTo with EntityClass. These relations in OWL 2 are designed by Object-
PropertyDomain and ObjectPropertyRange constructs. Hence, in steps (7) to
(12), the concerns of links between entity classes and references are becoming
specializations of the respective constructs in OWL.

b.specializeClasses(Reference, ObjectProperty); // (6)
b.specializeClasses(HasReference, ObjectPropertyDomain); // (7)
b.specializeClasses(hasReferenceSource, definesDomainClassExpression); // (8)
b.specializeClasses(hasReferenceTarget, definesDomainObjectProperty); // (9)
b.specializeClasses(PointsTo, ObjectPropertyRange); // (10)
b.specializeClasses(pointsToSource, definesRangeClassExpression); // (11)
b.specializeClasses(pointsToTarget, definesRangeObjectProperty); // (12)

5.3 Integration Bridge 89

Figure 5.7. Integration of BEDSL Model, Entity, and HasSupertype with OWL
constructs.

Figure 5.9 depicts the integration of the BEDSL construct Attribute and
Datatype with the respective OWL constructs. Attribute becomes a specializa-
tion of DataProperty (13). Thus, attributes can be involved in data property
axioms and expressions. Attributes are connected via the classes HasAttribute
and HasAttributeDatatype to the EntityClass. These relations in OWL 2 are
designed by DataPropertyDomain and DataPropertyRange constructs. Hence,
in steps (14) to (19) the concerns of links between entity classes and refer-
ences become specializations of the respective constructs in OWL. The vertex
classes for data types are merged to one single class (20). Thus, data types can
be used by attributes and data properties. In steps (21) to (24) the concerns
of Enumeration and DataOneOf are merged. The new vertex class DataEnu-
meration allows for modeling a set of literal entries, while the vertex class
LiteralEntry is the result of the merge of Entry and Literal. To provide only one
relation between the new vertex classes DataEnumeration and LiteralEntry, the
edge classes containsEntry and containsLiteral are merged. Furthermore, the
attributes value and lexicalForm are merged to have only one attribute for
defining the literal value.

b.specializeClasses(Attribute, DataProperty); // (13)
b.specializeClasses(HasAttribute, DataPropertyDomain); // (14)
b.specializeClasses(hasAttributeSource, definesDataPropertyDomainClassExpression); // (15)
b.specializeClasses(hasAttributeTarget, definesDomainDataProperty); // (16)
b.specializeClasses(HasAttributeDatatype, DataPropertyRange); // (17)
b.specializeClasses(hasAttributeDatatypeSource, definesRangeDataProperty); // (18)
b.specializeClasses(hasAttributeDatatypeTarget, definesRangeDataRange); // (19)

90 5 Bridging Technologies

Figure 5.8. Integration of BEDSL Reference with OWL constructs.

Datatype=b.mergeVertexClasses(Datatype, Datatype, ”Datatype”); // (20)
DataEnumeration=b.mergeVertexClasses(Enumeration, DataOneOf, ”DataEnumeration”); // (21)
LiteralEntry=b.mergeVertexClasses(EnumerationEntry, Literal, ”LiteralEntry”); // (22)
containsLiteralEntry=b.mergeEdgeClasses(containsEntry, containsLiteral, ”containsLiteralEntry”); // (23)
lexicalValue=b.mergeAttributes(value, lexicalForm, ”lexicalValue”); // (24)

Integration Tracing

In the following we are going to describe how to keep the information which
metamodel elements of an integrated metamodel, especially the elements built
by integration services, originate from which metamodel elements of the lan-
guages being integrated. This information is considered in Section 5.3.2 where
we introduce projection services. A projection service for a given language is
used to extract those parts of a model conforming to the integrated meta-
model, which are built by constructs of the given language to be integrated.
For example, a projection service for the ontology language OWL gets as input
a model conforming to the integrated metamodel and returns a pure ontoware

5.3 Integration Bridge 91

Figure 5.9. Integration of BEDSL Attribute and Datatype with OWL constructs.

model. The projection service for BEDSL gets the same model as an input
but returns only those parts, which are built by using BEDSL constructs.

To keep the information of the mapping step (cf. Section 5.2.1) we use
traceability techniques as introduced in [SEW10].

Defining Traceability Links

In order to trace metamodel elements we extend the grUML metaschema
(cf. Section 2.2.3) by the traceability reference schema as it is suggested
in [SEW10]. Since we want to define traceability relations expressing the merge
of two vertex classes, edge classes, and attributes to a new respective one and
specializations of classes we identify vertex classes, edge classes and attributes

92 5 Bridging Technologies

as traceable entities. We create a specialization relation between the grUML
classes GraphElement (representing vertex and edge classes), Attribute and
TraceableEntity.

In addition we want to express how the metamodel elements are related
to each other by means of the integration services used to integrate them. For
each integration service we define specializations of TraceabilityRelationship,
which is the association in the traceability reference schema used to define
traceability links between entities. We define the edge classes MergeVertex-
Classes, MergeEdgeClasses, MergeAttributes, SpecializeClasses, and Associate-
Classes.

Two vertex classes are linked via two MergeVertexClasses edges with the
vertex class representing the merge of both. Two edge classes are linked via two
MergeEdgeClasses edges with the edge class representing the merge of both.
Two attributes are linked via two MergeAttributes edges with the attribute
representing the merge of both. Two vertex classes or edge classes are linked
via two SpecializeClasses edges with the two vertex classes and edge classes,
respectively, being linked via a specialization relationship. Two vertex classes
are linked via two AssociateClasses edges with the edge class connecting them.

Figure 5.10 depicts the extension of the grUML metaschema by the new
classes for modeling traceability links between metamodel elements.

Figure 5.10. grUML metaschema extended for Traceability.

Recording Traceability Links

The recording of the integration steps is achieved in a separate schema graph
named GS t

Int , which conforms to the extended grUML metaschema (cf. Fig-
ure 5.10). GS t

Int is initialized during the use of the metamodelUnion service
adopted on the schema graphs of GS1 and GS2 (cf. Table 5.5). Firstly, GS1

and GS2 are two disjoint parts of GS t
Int .

For each integration service executed, new corresponding traceability re-
lationships between the two elements considered by the service are created

5.3 Integration Bridge 93

in GS t
Int . These traceability relationships are linked with the element, which

is the result of an integration service (a merged vertex class, edge class or
attribute, or a new edge class). In the case of the specialization service, the
two vertex classes or edge classes being specialized are linked via two Special-
izeClasses edges with two new classes, which represent the two classes that are
connected by a specialization edge.

Example

Above we illustrated 24 integration services applied on GSInt . As mentioned
above for each integration service a new traceability relationship edge must
be created in GS t

Int .
Figure 5.11 presents an excerpt of the (isolated) schema graph GS t

Int where
8 traceability relationships are created to describe the 4 steps 1, 2, 8 and 9 of
the integration of GSBEDSL and GSOWL.

In Figure 5.11, the vertex classes bedsl.Model and owl2.Ontology are linked
via SpecializeClasses edges with two vertex classes representing the counter-
parts in the integrated metamodel; they are also linked with a specializa-
tion edge. The vertex classes bedsl.Entity and owl2.Class are both linked via a
MergeVertexClasses edge with the vertex class representing the merged integra-
tion.EntityClass. The edge classes bedsl.containsEntry and owl2.containsLiteral
are linked via a MergeEdgeClasses edge with the edge class representing the
merge of both. The attributes value and lexicalForm are linked via a MergeAt-
tributes edge with the attribute representing the merge of both.

5.3.2 Integration Use

The use of the integration bridge allows for combined modeling and is sepa-
rated in the creation of hybrid models, models that conform to the metamodel
of an integrated modeling language, and its projection to ontoware models.

Creating Hybrid Models

When using an integration bridge, the first step is to create hybrid models.
Hybrid models are models, which conform to the metamodel of an integrated
modeling language. An example of a hybrid model is depicted in Figure 5.5.

Since we are bridging modeling languages with ontology languages, the
graph schema GSInt results from the integration of the graph schema of a
modeling language (e.g., GSBEDSL) and that of the ontology language (e.g.,
GSOWL).

Load Models

Existing models are taken into consideration as an alternative to the creation
of hybrid models. The reuse of existing models to be extended by additional

94 5 Bridging Technologies

Figure 5.11. Integration services recorded.

OWL constructs is based on a load service, which may be implemented by
a transformation. In the case of the BEDSL language the service transforms
models conforming to the BEDSL metamodel into models conforming to the
integrated metamodel. In general, the integration bridge object provides two
services to load models conforming to GS1 and GS2, respectively. The load
service for GSi (with i ∈ {1, 2}) is specified in Table 5.11.

Name Load BEDSL Service

Signature GSInt load(GSi m)

Pattern mh=b.load(m)

Description transforms model m to a hybrid model mh . b is the integration bridge
object providing the service. For all elements of a model m conforming
to GSi , corresponding elements in the hybrid model are created where
the type of the element in the hybrid model is the same as the element
to be transformed has in the GSi model. If the type is not available in
GSInt (e.g., because it is merged) the type of the element to be created
in the hybrid model is the final integrated type.

Table 5.11. Load service.

5.3 Integration Bridge 95

Name Projection Service

Signature GSi projectGSi (GSInt mh)

Pattern m=b.projectGSi (mh)

Description returns a model m, which conforms to GSi . m consists of those vertices
and edges in mh , which conform to vertex classes or edge classes in GSi or
conform to merged or specialized elements in GSInt which can be traced
back to constructs of GSi . All attribute assignments in m conform to at-
tributes nested in vertex classes or edge classes in GSi or conform to merged
attributes, which can be traced back to attributes in GSi .

Table 5.12. Projection service.

Projection to Ontoware Models

An important service on a hybrid model is its projection to a TGraph con-
forming purely to one of the respective original metamodels (e.g., to GSOWL

or GSBEDSL). Language users require projection services because they need
interoperability with tools they used before the integration; for example, on-
tology reasoners only allow ontology models (TGraphs conforming to GSOWL)
as input, while BEDSL tools only work with BEDSL models.

The projection of integrated models depends on the integration. A pro-
jection service creates a TGraph conforming to a metamodel, which has been
integrated. The projected TGraph contains elements, which are projections
of elements in the integrated metamodel. The projection service selects only
those elements in the integrated model, which conform to integrated con-
structs (e.g., merged classes and classes integrated by specialization) or, which
conform to pure language constructs.

The IntegrationBridge object provides such projection services, one for each
metamodel GS1 or GS2 to be integrated. Table 5.12 depicts the specification of
the projection service for GSi (where i ∈ {1, 2}) getting as input an integrated
model and returning a model conforming to GSi .

For each element in a hybrid model the projection service projectGSi must
check where the type of the element originates from. To identify the type of
an element, the type function as specified in Definition 1 is used.

If the type is a vertex class or edge class in GSi , the service creates a new
element in the projected model having the same type.

If the service cannot find the type in GS1 or GS2 the service must con-
sider the traceability information stored in GS t

Int . The service iterates through
all vertex classes and edge classes and checks if the type name is stored in
some qualifiedName attribute. If the element having the right qualifiedName
attribute is the target of a MergeVertexClasses or MergeEdgeClasses edge, a
new element in m is created having as type the one being defined in GSi ,
which is the start of a sequence of traceability edges leading to the merged
type. Additionally, the projection service has to analyze traceability relation-
ships of type SpecializeClasses. If the type originates from the graph schema
GSi and if it is linked via a SpecializeClasses edge with a vertex class or edge

96 5 Bridging Technologies

class being part of the integrated metamodel, and, if it is defined as super-
class, then for all instances of the corresponding subclass, elements in m are
created, which have the type of the superclass.

Besides the creation of a new model m for a hybrid model mh the projec-
tion service establishes a projection function pmh

with

pmh
: Vertex ∪ Edge 7→ Vertex ∪ Edge,

and pmh
(x) = x ′ where x is some vertex or edge in mh and x ′ is the projection

of x created in mo . This function is encapsulated by the integration bridge
object for each hybrid model that is projected and keeps the relation between
elements in m and mh .

Besides vertices and edges, attribute assignments are also projected. For
each attribute assignments (value(x))(a) (where x ∈ V ∪ E is in mh and
a ∈ AttrId) the service checks if a originates from GSi . If a originates
from GSi , the service defines an attribute assignment (value(pmh

(x)))(a) =
(value(x))(a). If a does not originate from GSi , the service checks if a is a
merged attribute in GSInt by analyzing all traceability relationships of the
type MergeAttributes. If it is a merged attribute the service defines an at-
tribute assignment (value(pmh

(x)))(a) = (value(x))(a ′) where a ′ is the start
of a sequence of MergeAttributes edges to a in the schema graph GS t

Int .

Example

In the following we present an example where the projection service for GSOWL

(=GS2) is used. The service is provided by the integration bridge object b
encapsulating the integration of GSBEDSL and GSOWL.

Figure 5.5 depicts a hybrid model, which is visualized by a textual concrete
syntax. It conforms to the integrated metamodel, which (partially) is depicted
in Figures 5.7, 5.8, and 5.9.

The projection service is applied on the integrated model mh in Figure 5.5
and returns the ontoware model mo in Figure 5.12.

mo = b.projectGSOWL
(mh);

The instances of SubClassOf, DisjointClasses, or ObjectProperty (with do-
main and range axioms) are elements that come from GSOWL. They are pro-
jected directly to correspondent elements in the ontoware model mo .

The type EntityClass is neither defined in GSBEDSL nor in GSOWL. But
in GS t

Int a MergeVertexClass traceability relationship edge exists, which is
incident with a vertex class with a qualified name attribute set to ”integra-
tion.EntityClass”. The edge starts at the vertex class with a qualified name
attribute set to owl2.Class. Thus, for all EntityClass vertices a correspondent
OWL class is created in mo .

Reference and Attribute are integrated with ObjectProperty and DataProp-
erty via a specialization relationship (cf. GS t

Int). Thus, for all instances of
Reference and Attribute an object property or data property is created in mo .

5.3 Integration Bridge 97

Figure 5.12 depicts the final ontoware model represented in OWL 2 Func-
tional style syntax, which is the projection of the hybrid model in Figure 5.5.

Ontology(DeviceModel

Declaration(Class(Device))
DisjointClasses(Device Card)

Declaration(Class(Card))
DisjointClasses(Card Device)

Declaration(Class(Router))

Declaration(Class(MobileDevice))
SubClassOf(MobileDevice Device)

Declaration(ObjectProperty(belongsToDevice))
ObjectPropertyDomain(belongsToDevice Card)
ObjectPropertyRange(belongsToDevice Device)

Declaration(ObjectProperty(hasCard))
ObjectPropertyDomain(hasCard Device)
ObjectPropertyRange(hasCard Card)
)

Figure 5.12. Visualized ontoware model.

5.3.3 Discussion

The integration of two languages results in one all-embracing new modeling
language. To achieve the integration the mapping of concepts (which defines
an intersection of both languages) has to be used to define a new modeling
language, which corresponds to the union of the source languages [EW10].

From the perspective of language designers, the integration bridge pro-
vides a set of services for building integrated modeling languages. From the
perspective of language users, the integration bridge provides a common view
on modelware models and ontoware models by using hybrid models.

The modeling of hybrid models requires an understanding of both inte-
grated languages. A language designer starts with the mapping of constructs
of the metamodels to be integrated. Depending on how different constructs
relate to each other, specific integration services are applied. A language user
has to be familiar with different concrete syntaxes (at least one for each mod-
eling language) and how they are used in combination.

To provide interoperability between different tools, projection services are
given by the integration bridge. Projection services extract all relevant infor-
mation from hybrid models and translate them to models understandable by
given tools.

98 5 Bridging Technologies

Integration Bridge vs. Transformation Bridge

To compare both bridges we consider any existing BEDSL model m, which
conforms to GSBEDSL. We assume the transformation service specified in Sec-
tion 5.2.1, which transforms BEDSL models to ontoware models, and, the
integration bridge combining GSBEDSL and GSOWL as established in Sec-
tion 5.3.1.

To get an ontoware model mt
o for the BEDSL model m we use the trans-

formation service as follows:

m t
o=TransformationBridge.transform(m);

If b is the integration bridge object encapsulating the integration of BEDSL
and OWL, we are able to adapt, load, and project the BEDSL model m as
follows:

ma=Convert.adaptation(m);
mh=b.load(ma);
m i

o=b.projectGSOWL
(mh);

Without any change of mh using the integrated modeling language, we can
state that the two bridges return equal ontoware models:

mi
o =t

o

In the next listing the same BEDSL model m is adapted and loaded but
using the new integrated modeling language some ontology construct is added:

m′
a=Convert.adaptation(m);

m′
h=b.load(ma);

m′
h .createVertex(”owl2.DisjointClasses”);

...
m i′

o =b.projectGSOWL
(mh);

Having the change in m ′h the projected model is different from the trans-
formed model, because projection services also consider additional OWL con-
structs:

mi′
o 6= mt

o

The main difference between the two bridges is the use of the new in-
tegrated language provided by the integration bridge. It allows the use of
additional constructs exclusively provided by the ontology language OWL 2.
These constructs are projected to a pure ontoware model. The transformation
service only considers pure BEDSL constructs for the creation of ontoware
models. The parallel use of both modeling languages is not possible.

5.4 Mapping Bridge 99

5.4 Mapping Bridge

While the integration bridge allows for hybrid modeling, the mapping bridge
allows for the separate design and use of different modeling languages. Both
languages can be developed independently by a language designer. They are
bridged by integrating them with a given mapping metamodel. Language users
can use the mapped modeling languages separately. In addition, mappings can
be defined to declare relations between model elements.

5.4.1 Mapping Definition

In the following we present the establishment of a mapping bridge, which is
used in Section 5.4.2.

Mapping Metamodel

The establishment of a mapping bridge is mainly based on a generic mapping
metamodel, which defines how mappings are organized. Figure 5.13 depicts
the mapping metamodel, which describes mapping models. Here, a mapping
model connects a modelware model and an ontoware model and consists of a
set of mapping assertions. These mapping assertions (represented by the class
Mapping in the metamodel) are first-class elements that exist independently
of the modelware models and ontoware models. The mapping metamodel is
represented by the graph schema GSmap

Figure 5.13. Mapping metamodel.

In the context of bridging modeling languages with ontology languages, the
mapping metamodel allows for defining mappings between ontoware model el-
ements and modelware model elements. Hence, the metamodel provides classes
for both kinds of elements. We define that several modelware elements may
be mapped to an arbitrary number of ontoware elements. Each modelware el-
ement may have a counterpart in the ontoware model where the counterpart
may consist of complex constructs (e.g., properties with domain and range
axioms). Vice versa, ontoware elements may have counterparts in modelware
models via mappings.

100 5 Bridging Technologies

Integration

To use the mapping metamodel with concrete modeling languages and on-
tology languages, and, to define concrete mappings between modelware and
ontoware elements, the mapping metamodel must be integrated with the cor-
responding languages.

Figure 5.14 depicts the integrated mapping metamodel where the meta-
models of BEDSL and OWL 2 are combined with the mapping metamodel.

To map modelware elements with ontoware elements its types are defined
as a specialization of ModelwareElement. We define that BEDSL models can
be mapped with OWL 2 ontologies. Each entity and feature from BEDSL
can be mapped with ontoware elements. Furthermore, we define that each
OWL 2 class, individual, object property, data property, and in addition each
OWL 2 axiom can be mapped with modelware elements. Thus we define the
corresponding classes coming from the OWL 2 metamodel as specialization of
OntowareElement.

Figure 5.14. Mapping metamodel integrated with the BEDSL and OWL 2 meta-
model.

Constraints

Since the pure mapping metamodel allows for example to map BEDSL enti-
ties with OWL properties or BEDSL references with OWL classes, there is
a need for constraining the metamodel. Constraints (e.g., defined in GReQL,
cf. Section 2.3.1) restrict the definitions of mappings, such that attributes are
only mapped with OWL data properties, or entities are only mapped with
OWL classes or individuals.

forall e:V{Entity} @ forall v:V @ e <−−{fromElement}−−>{toElement} & {Class, Individual} v
forall e:V{Attribute} @ forall v:V @ e <−−{fromElement}−−>{toElement} & {DataProperty} v

5.4 Mapping Bridge 101

5.4.2 Mapping Use

The mapping bridge is taken into consideration if the modelware model and
the ontoware model are developed separately. Instead of the integration bridge
both models stay separate from each other.

The mapping bridge is encapsulated by an object b of type Mapping-
Bridge. It contains the integrated mapping metamodel GSInt (accessible via
o.getMappingMetamodel()) defining which constructs of the two languages can
be mapped. In addition, it provides the services for loading existing models, for
defining mappings between models and for deriving counterparts of a model.

Load Models

Before mappings between modelware model and ontoware model can be de-
fined, the models must be loaded into the mapping bridge.

The mapping bridge provides two services to load a modelware model
and an ontoware model respectively. The services are defined in Tables 5.13
and 5.14.

Name Load Modelware Model Service

Signature void load(ModelwareModel mm)

Pattern b.load(mm)

Description creates a modelware model mm , which conforms to the integrated map-
ping metamodel. The modelware model b.mm is referenced by the map-
ping bridge object.

Table 5.13. Load modelware model service.

Name Load Ontoware Model Service

Signature void load(OntowareModel mo)

Pattern b.load(mo)

Description creates an ontoware model mo , which conforms to the integrated map-
ping metamodel. The ontoware model b.mo is referenced by the map-
ping bridge object.

Table 5.14. Load ontoware model service.

Mapping Models

As mentioned in the definition of the mapping bridge, modelware elements
can be mapped with ontoware elements. In Table 5.15 we specify a mapping
service, which describes how two elements vm and vo a mapped.

102 5 Bridging Technologies

Name Mapping Service

Signature void mapping(ModelwareElement vm , OntowareElement vo)

Pattern b.mapping(vm , vo)

Description maps the modelware element vm with the ontoware element vo via a
Mapping vertex. vm and vo are part of b.mm and b.mo , respectively.
The mapping is encapsulated by the mapping bridge object b.

Table 5.15. Mapping service.

The mapping service is used to model the relation between a modelware
element and an ontoware element. In Figure 5.15 we present an example model
consisting of a BEDSL part, an OWL 2 part and a part where the mappings
between the two models are modeled.

Derive Models

Having a mapping established between a modelware model and ontoware
model, the mapping bridge provides a derive service for deriving a concrete
ontoware model for a given modelware model.

The derive service checks if a mapping in the mapping model exists for
elements of a given modelware model. If such mapping exists, the counterpart
in the ontoware model is put into a new ontoware model representing the
derivation of the given modelware model. The derivation of a mapped model
consists of those vertices of the opposite model, which in turn are incident
with mappings, plus all edges, which are connecting mapped elements.

The derive service is represented in Table 5.16.

Name Derive Service

Signature OntowareModel derive(ModelwareModel mb)

Pattern mo=b.derive(mb)

Description checks if for the elements in mb a mapping in mm exists. If a mapping
exists, the counterpart in the ontoware model is put into a new ontoware
model mo . All edges between derived vertices in mo are created in mo

with respect to GSOWL.

Table 5.16. Derive Service.

Analogously we can implement a derive service, which gets as input an
ontoware model and returns a modelware model. In the following we present
an example model consisting of a BEDSL part, an OWL 2 part and a part
where the mappings between the two models are modeled.

Example

Figure 5.15 depicts an example model, which consists of a modelware model,
an ontoware model, and a mapping model.

5.4 Mapping Bridge 103

In the upper part a modelware model is designed by creating enti-
ties and connecting them by references. In particular, modelware.Device and
modelware.Card are declared. Furthermore, modelware.deviceInstance and model-
ware.cardInstance are defined and connected by references modelware.instance-
OfDevice and modelware.instanceOfCard with modelware.Device and model-
ware.Card.

To semantically define that modelware.deviceInstance and modelware.card-
Instance are instances of modelware.Device and modelware.Card, the modelware
model is mapped to an ontoware model expressing these facts. Hence, in the
second part of Figure 5.15 the two correspondent OWL classes ontoware.Device
and ontoware.Card and the OWL individuals ontoware. deviceInstance and on-
toware. cardInstance are declared.

In the third part of Figure 5.15 they are mapped with the correspondent
modelware elements. Since axioms are not named elements they are directly
listed in the mapping, but originally they belong to the ontoware model part.
For example, the two class assertion axioms are directly mapped to the refer-
ences modelware.instanceOfDevice and modelware.instanceOfCard.

Mappings are defined by using the mapping keyword. They are declared
using the mapping service defined in Table 5.15, where both parameters within
the round brackets are the elements to be mapped. The mapping model itself
is not directly given as parameter because it is encapsulated by the mapping
bridge object.

Having the modelware model mm depicted below, which is just a part of
that displayed in Figure 5.15, we can use the derive service to get those parts
of mo in Figure 5.15, which are mapped with the device model below.

model DeviceModel {
entity modelware.Device{
}
entity modelware.Card {
}
}

Using the derive service, we get the ontoware model mo .

mo=b.derive(mm);

The ontoware model mo depicted below consists of the two classes onto-
ware.Device and ontoware.Card since they are linked via mappings with the
entities modelware.Device and modelware.Card.

Ontology(DeviceOntology
Declaration(Class(ontoware.Device))
Declaration(Class(ontoware.Card))

)

5.4.3 Discussion

The mapping bridge allows for designing and using different modeling lan-
guages separately. From the perspective of a language designer, the modeling

104 5 Bridging Technologies

model DeviceModel {
entity modelware.Device{
}
entity modelware.Card {
}
entity modelware.deviceInstance{

reference modelware.instanceOfDevice : modelware.Device;
reference modelware.hasCardInstance : modelware.cardInstance;

}
entity modelware.cardInstance{

reference modelware.instanceOfCard : Card;
}
}
∗∗∗
Ontology(DeviceOntology
Declaration(Class(ontoware.Device))
Declaration(Class(ontoware.Card))

Declaration(Individual(ontoware.deviceInstance))
Declaration(Individual(ontoware.cardInstance))

)
∗∗∗
MappingModel{
mapping(modelware.Device, ontoware.Device)
mapping(modelware.Card, ontoware.Card)

mapping(modelware.deviceInstance, ontoware.deviceInstance)
mapping(modelware.cardInstance, ontoware.cardInstance)

mapping(modelware.instanceOfDevice, ClassAssertion(ontoware.deviceInstance ontoware.Device))
mapping(modelware.hasCardInstance, ClassAssertion(ontoware.cardInstance ontoware.Card))
}

Figure 5.15. Mapping of modelware model and ontoware model (concrete syntax).

language and the ontology language are bridged by integrating them with a
mapping metamodel defining which modelware model and ontoware model el-
ements can be mapped. From the perspective of language users, all languages
are used separately. The user must be familiar with syntax and semantics of
both languages. In addition a mapping language is provided to define map-
pings. Having mappings established between a modelware model and an on-
toware model, the counterparts of modelware elements can be derived.

Because different languages and their models can be designed and used
independently, modeling environments and reasoning tools can be used sepa-
rately.

Mapping Bridge vs. Integration Bridge

To compare both bridges we consider any existing BEDSL model mm and any
existing OWL 2 model mo . We assume that the mapping bridge combining
BEDSL and OWL is encapsulated by the object bm , and that the integration
bridge combining BEDSL and OWL is encapsulated by the object bi .

To define any mappings between mm and mo using the mapping bridge we
must load the two models. After the load, different mappings may be defined

5.4 Mapping Bridge 105

between two elements e1 and c2, where e1 belongs to mm and c2 belongs to
mo . We are able to derive those parts of mo , which are mapped with elements
in mm . The Result is the ontoware model m ′o .

bm .load(mm);
bm .load(mo);
bm .mapping(e1, c2);
...
m′

o=bm .derive(mm)

To load the model mm into the integration bridge we may have to adapt
it first. After loading, we are able to project the hybrid model mh to the
ontoware model m ′′o .

m′
a=Convert.adaptation(mm);

m′
h=bi .load(ma);

m′′
o =bi .projectGSOWL

(mh);

When comparing m ′o and m ′′o , generally both ontoware models are not
equal (m ′o 6= m ′′o). The reason is that the integration of constructs and the re-
spective projection service, both encapsulated by bi , is established by language
designers before using the bridge. Using the integration bridge the language
user has no choice to affect the counterpart in ontoware models, as it is pos-
sible with the mapping service using the mapping bridge. For example, using
the integration bridge, all BEDSL entities are projected to OWL classes. The
mapping bridge allows a less restrictive combination of modelware and onto-
ware model elements at the level of language users (e.g., BEDSL entities may
be mapped to OWL classes or individuals.), but therefore requires a better
understanding of ontology languages.

Mapping Bridge vs. Transformation Bridge

To compare both bridges we once again consider any existing BEDSL model
mm and any existing OWL 2 model mo . We assume that the mapping bridge
combining BEDSL and OWL is encapsulated by the object bm .

To define any mappings between mm and mo using the mapping bridge,
we must load the two models. After loading different mappings may be defined
between two elements e1 and c2, where e1 belongs to mm and c2 belongs to
mo . We are able to derive those parts of mo , which are mapped with elements
in mm . The result is the ontoware model m ′o .

bm .load(mm);
bm .load(mo);
bm .mapping(e1, c2);
...
m′

o=bm .derive(mm)

The transformation bridge provides a transform service, which directly gets
the BEDSL model mm and returns the ontoware model m ′′o . When comparing
m ′o and m ′′o , generally both ontoware models are not equal (m ′o 6= m ′′o). A
transformation service prescribes which types of elements are produced in an

106 5 Bridging Technologies

ontoware model according to a transformation definition. A language user has
no option to define the possible type of target elements, since the transforma-
tion is predefined by the language designer. Compared to the transformation
bridge, the mapping bridge allows for defining a less restrictive relation of
modelware model elements with ontoware model elements, but therefore re-
quires an understanding of ontology languages.

5.5 API Bridge

In this section we are going to present the API bridge. In Section 5.5.1 we show
how to design an API bridge. The example we present allows for translating
BEDSL graphs to ontoware models. In Section 5.5.2 we show how to use the
API bridge.

API bridges are established by the implementation of services using the
operations and services of given APIs used to traverse models and those ser-
vices of another API to build new models. The API bridge is designed by the
language designer and used by the language user.

In the following we are going to exemplify the use of the OWL API in ver-
sion 3.0.01. It is developed primarily at the University of Manchester [HB09].
Before we go into detail how to use the OWL API we comment on its archi-
tecture depicted in Figure 5.16. Here, the OWLOntologyManager provides a
central point for creating, loading, changing, and saving many ontologies. On-
tologies are represented by the interface OWLOntology. An ontology is created
or loaded by an ontology manager and each ontology is unique to a particular
manager by its IRI. Each ontology consists of a set of OWL axioms and a set
of OWL annotations (which are not discussed in this thesis).

Figure 5.16. Architecture showing the management of ontologies of the OWL
API [HB09].

1 http://owlapi.sourceforge.net/

http://owlapi.sourceforge.net/

5.5 API Bridge 107

In the next subsections (and in the Appendix A.3.2) we present Java meth-
ods. These methods show how to use the services provided by the OWL API to
create a new ontology based on the result of services used to traverse BEDSL
models.

5.5.1 API Bridge Implementation

The API bridge to translate BEDSL graphs to ontoware models is established
by a language designer. He implements the Java class APIBridge, which is
partially depicted in Figure 5.17 and later provided to the language user. The
bridge uses the JGraLab library2 to read BEDSL graphs and it uses the OWL
API [HB09] to build ontologies.

Before the bridge for the separate constructs of BEDSL is implemented,
the relation between constructs of BEDSL and corresponding OWL entities
and axioms relies on a mapping. We use the mapping presented in Table 5.2.
This mapping is defined by the language designer and it is based on intensional
knowledge.

The API bridge keeps a reference to the OWLOntologyManager, which
provides the central point for creating, loading, changing, and saving differ-
ent ontologies. All changes to an ontology are applied via the manager. An
OWLDataFactory is obtained from the manager. It is used to create entities
and different axioms.

A map in the APIBridge class manages the relation between vertices in a
BEDSL graph and OWL entities in an ontology. The method bridgeBEDSL-
Graph gets as input a BEDSL graph and iterates through all models in the
graph. Each model is translated by the method bridgeModel to a separate
ontology.

An implementation of the bridgeModel method is shown in the Ap-
pendix A.3.2.

5.5.2 API Bridge Use

In the following we comment on the use of the API bridge.

Translation of Models

Figure 5.18 illustrates the use of the API bridge. Here, for a given BEDSL
graph (e.g., loaded from the file networkDeviceModel.tg) a new APIBridge
object is created, which provides the public method bridgeBEDSLGraph. For
each model in the BEDSL graph, this method directly creates a new ontology
and saves them in separate files.

2 http://jgralab.uni-koblenz.de

http://jgralab.uni-koblenz.de

108 5 Bridging Technologies

public class APIBridge {

OWLOntologyManager manager;
OWLDataFactory factory;

HashMap<Vertex, OWLEntity> owlEntityMap = new HashMap<Vertex, OWLEntity>();

public APIBridge() {
manager = OWLManager.createOWLOntologyManager();
factory = manager.getOWLDataFactory();
}

public void bridgeBEDSLGraph(BEDSL g) {
Iterator<Model> iteratorModel = g.getModelVertices().iterator();

while(iteratorModel.hasNext()){
bridgeModel(iteratorModel.next());
}
}
...
}

Figure 5.17. API bridge class.

public static void main(String[] args) {
Graph graph = null;
try{

graph = GraphIO.loadGraphFromFile(”networkDeviceModel.tg”, BEDSLSchema.instance(), new
ProgressFunctionImpl());

}catch(Exception e){
e.printStackTrace();
}
new APIBridge().bridgeBEDSLGraph((BEDSL)graph);

}

Figure 5.18. Using the API bridge.

Reasoning Services

Reasoners, which should process ontologies managed by the ontology man-
ager of the OWL API are declared by a separate reasoner interface. It gets
as parameter the manager and provides methods for all common reasoning
services. Figure 5.19 shows how to adopt the consistency checking service on
the device ontology and how to check if the class Device is satisfiable.

Reasoner reasoner = new Reasoner(manager);
reasoner.loadOntology(deviceOntology);
boolean consistent = reasoner.isConsistent();
boolean satisfiable = reasoner.isSatisfiable(device);

Figure 5.19. Using reasoning services.

5.6 Related Work 109

5.5.3 Discussion

The API bridge allows for building ontologies. It is defined via a programming
interface provided by an existing API. The bridge itself encapsulates the mod-
eling of ontology constructs by services and methods. On the one hand, this
ensures a higher consistency of ontologies with regard to the OWL 2 language
definition, since the methods have well-defined pre- and post-conditions (for
example, only instances of ClassExpression can be connected with class ax-
ioms). On the other hand, the API is restricted by the set of methods and
services it provides (for example, only those elements can be created for which
a get-method in the OWL-API data factory exists).

To access and use the API, other tools must provide an implementation
interface as well. Metamodels and models to be translated to ontologies must
be accessible via services provided by a respective API. The JGraLab library
provides such an interface for accessing graph schemas and graphs.

Comparison with other Bridges

The transformation bridge allows for producing ontoware models by a given
modelware model according to some transformation definition. The API
bridge, if the modelware model is accessible via an implementation interface,
provides services and methods to produce an ontology. Both bridges provide
a service/method, which gets a modelware model as input and returns an
ontoware model. Nevertheless, the API bridge establishment relies on the ex-
isting methods a respective API provides. A transformation service may be
implemented with access to all model elements.

In contrast to the integration bridge, the API bridge does not allow for
modeling hybrid models. The API bridge gets a modelware model as input and
allows for producing a correspondent ontoware model using a set of predefined
methods.

The mapping bridge allows for modeling modelware and ontoware models
separately, which is not possible with the API bridge. In addition it allows
for defining mapping relations between different modelware and ontoware el-
ements.

5.6 Related Work

The related work for this chapter is separated into related work for each of
the four bridges. Before dealing with related approaches concerning a concrete
bridge, we refer to a paper also dealing with different kinds of bridges.

In [KBJK03] three metamodel integration patterns are presented, which
are equal to our set of metamodel bridges. The reference pattern in [KBJK03]
allows for integrating two complementary metamodels. Similar to our map-
ping bridge it supports loose coupling and navigation between complementary

110 5 Bridging Technologies

parts via reference links. The transformation pattern in [KBJK03] allows for
describing transformations between a source metamodel and a target meta-
model. A transformation allows for generating models conforming to a target
metamodel from models conforming to a source metamodel. The merge pat-
tern in [KBJK03] is used if two metamodels are used concurrently and are
tightly coupled. Each merge pattern consists of a set of merge rules used to
merge parts of source and target metamodel.

The transformation bridge is the most commonly used bridge. The main
differences are the transformation language (e.g., ATL [JABK08], QVT [Kur08])
and the modeling languages involved in the transformation. In the example in
Section 5.2 we used GReTL as a transformation language, which transforms
BEDSL models to ontoware models. Our transformation bridge is similar to
the transformation pattern given in [JABK08, Kur08]. Our transformation
service, implementing the transformation, gets a source model conforming to
the source metamodel as input and transforms it to a target model conform-
ing to a target metamodel (in our case the OWL 2 metamodel). In contrast,
our transformation service itself is not a model conforming to the transforma-
tion language metamodel. It is implemented in Java using the GReTL library.
A further transformation bridge is described in [SE10]. Here a schema-aware
translation from schema-like RDF graphs to grUML schemas and TGraphs
is presented. The mutual transformation of the respective query languages
SPARQL and GReQL is also described in this work. The transformation is
also implemented in GReTL.

In [NE93] a reference model for frameworks of software engineering envi-
ronments is presented. Here, the reference model addresses interoperability
and integration of different software engineering environment. One issue of
a software engineering environment is the functionality for integration. As
proposed in [NE93], our integration bridge provides from the perspective of
a language user a common view into a hybrid model consisting of model-
ware and ontoware constructs. Via the projection services it allows different
tools (e.g., reasoning tools) to process hybrid models. As required in [NE93],
from the perspective of a language designer, the integration bridge provides a
consistent interface for integrating languages.

In [Süt01] the syntactic integration of visual modeling languages is con-
sidered. In particular, [Süt01] mentions three ways of integrating the abstract
syntax: integration of types by merging two concepts, connecting two con-
cepts by a specialization relationship, and integrating two concepts by an
associations. In general, our integration approach extends the three ways of
integration by allowing the merge of associations and attributes. In addition,
our approach provides the projection of hybrid models (integrated models) to
models conforming to one of the modeling languages to be integrated.

In [LBM+01, LNK+01] a framework for metamodel composition is pre-
sented. It consists of operators (equivalence and inheritance operators) for

5.6 Related Work 111

combining metamodels. In addition, the framework provides operations for
translating models. [LNK+01] describes translation operations, which allow
for translating models conforming to some metamodel to be combined into
models conforming to the integrated metamodel. Furthermore, [LBM+01]
presents translation operations to map integrated models to executable mod-
eling languages. Compared to our integration approach, we provide a set of
integration services, which are similar to the composition operators relating
concepts of the metamodels to be integrated and combining them. Instead of
translations to executable languages we provide a projection service. However,
the idea of projection is similar to the translation in [LBM+01], since we must
project our hybrid models to ontoware models to have a consistent input for
reasoning tools executing the ontoware models. A translation from a model
conforming to a modeling language to be integrated to a model conforming
to the integrated language can be realized by implementing a transformation
service, which uses the integrated metamodel as a target metamodel and the
metamodel to be integrated as source metamodel.

Kolovos et al. describe in [KPP06] the Epsilon Merging Language (EML)
used to merge two source models being instances of two given source meta-
models to a target model being instance of a given target metamodels. In
a comparison phase equivalent elements of the source models are identified
by match-rules. Each match-rule can compare pairs of instances of two spe-
cific metaclasses and decides if they match and conform to each other. In the
merging phase, two activities produce elements in the target model. The el-
ements that have been identified as matching are merged into a sequence of
model elements in the target model and the elements for which a match has
not been found in the opposite model are transformed into elements of the
target model. In contrast to our integration bridge, we are first building a new
integrated metamodel for the two given source metamodels. This integrated
metamodel is either directly used for hybrid modeling, or models conforming
to source metamodels are transformed (loaded) to hybrid models. While our
integration bridge supports the design of new integrated metamodels and pro-
vides projection of hybrid models, the Epsilon Merging Language targets the
merge of instance models.

In [Hei09], Heidenreich et al. present a mapping bridge. It allows for map-
ping feature models with any arbitrary Ecore-based metamodel. Compared to
our approach, mappings are declaratively defined and a mapping metamodel
is used to express the relation between the Ecore language and the feature
description language. In contrast to our approach the two languages to be
mapped are fixed and instead of features, elements of ontoware models can be
mapped. We allow for integrating our mapping metamodel with any language
metamodel to map its instances to ontoware elements.

Kappel et al. present in [KWRS11] a mapping bridge for model-based
tool integration. Given a mapping language, different operators are used to
relate classes, attributes, and references (CAR - the name of the mapping

112 5 Bridging Technologies

language) of two metamodels. Given a mapping model and source and target
metamodels, transformations may be generated. They are used to apply the
mappings on models from both languages. In contrast to our mapping bridge,
the CAR language is restricted to class based modeling languages (only classes,
references and attributes can be mapped), while our mapping metamodel has
the capability of being integrated with several DSLs. Therefore, CAR mapping
models may be translated to transformations. This however is not provided
by our approach.

Whenever metamodels or models are accessible via an implementation
interface, an API bridge can be realized. Object-oriented and ontological rep-
resentations are integrated in the paper of Puleston et al. [PPCR08]. In par-
ticular a framework is described that combines Java programs with OWL on-
tologies to support hybrid modeling, where parts of the model are developed
directly in Java and other parts of the model are developed directly in OWL.
The connections between both representations are established by APIs, which
allow for accessing knowledge resources (RDF-based repositories) or object-
oriented models (written in Java). In [SEL+10] an API bridge between the
JGraLab library and its query language GReQL and the ADOxx platform3

is mentioned to facilitate efficient querying as well as constraint specifications
by GReQL and their automated checking for ADOxx models.

5.7 Conclusion

In this chapter we presented four different bridging approaches. All bridges
provide methods for combining different modeling languages. We answered
RQ6 by developing the bridging technologies for the combination of modelware
modeling languages and the ontology language OWL 2.

The transformation bridge is used to translate modelware models into
ontoware models according to some transformation definition.

The integration bridge supports language designers to combine different
modeling languages. Language users are able to use both languages simul-
taneously and to create hybrid models. The use of the integration bridge is
proposed if language users want to design models with the language they are
familiar with, but in addition want to simply annotate model elements with
ontology constructs.

The mapping bridge allows for using modeling languages separately and
combining models by just declaring mappings between model elements. The
use of the mapping bridge is suggested if ontoware models already exist or the
languages to be combined are complementary.

3 ADOxx R© is the extensible, multi-lingual, multi-os, repository-based platform for
the development of modeling tools of the BOC Group. ADOxx R© is a registered
trademark of the BOC Group, http://www.boc-group.com.

http://www.boc-group.com

5.7 Conclusion 113

The API bridge provides services to create, modify, and save ontologies.
In addition, it provides services for different reasoning tasks. The API bridge
is used if modelware models and metamodels to be translated to an ontoware
model are only accessible via an implementation interface, which might be
also given by an API.

6

Language Engineering and Use with Ontology
Technologies

Language engineering is concerned with linguistic metamodeling, where the
abstract syntax of a modeling language is designed by a metamodel to pre-
scribe the structure of user models. Language designers are responsible for
the correctness of instance models built by language users (Challenge 2). A
modeling environment should provide a metamodeling language with formal
semantics to language designers that enables the combined definition of meta-
models and constraints. Since ontology languages provide formal semantics,
we need to answer the question:

RQ7: How may ontology languages be used to define semantics and con-
straints of modeling languages?

Since language designers rely on the metamodeling languages they are familiar
with, the ontology language used to write constraints must be bridged with
the languages they use (Challenge 1).

Language users are using a modeling language by creating user models.
They require services for checking the consistency of a model with regard to its
metamodel. If the model is not consistent they require services to detect the
inconsistency in the model and to get suggestions on how to repair the model
(Challenge 3). Based on a bridge combining the design of metamodels and
conforming models with ontologies, ontology technologies can help to ensure
model correctness. We answer the following question:

RQ8: How do ontology technologies support model correctness?

Modeling environments should provide ontology technologies encapsulated
as user services to languages users. Hence, language users do not need any
experience for using ontoware tools.

116 6 Language Engineering and Use with Ontology Technologies

6.1 Chapter Context

In this section we present the context of this chapter. We start with the tech-
nological space used in this chapter and present examples used in the following
sections. In Section 6.1.2 we consider the notion of linguistic metamodeling.
Section 6.1.3 presents a road map for the remaining sections of this chapter.

6.1.1 Technological Space

Models and metamodels are defined in the TGraph technological space. Hence,
models are represented by a TGraph conforming to a metamodel represented
by a grUML diagram (cf. Section 2.2).

An example grUML diagram is given in Figure 6.1. It describes the Ecore
metametamodel, which represents the abstract syntax of a language to spec-
ify metamodels. Here, metamodels are composed of packages, which contain
model elements. Model elements are characterized by its name. Model ele-
ments as well as packages are located elements. Classes are model elements
that can be specialized and contain several structural features. Structural
features are either references or attributes and have a type. In the case of ref-
erences the type is a class. In the case of an attribute the type is a datatype or
an enumeration consisting of literals. Several attributes of structural features
allow for defining multiplicities of features and whether their instances are
ordered or unique. In addition, references can be defined as a container of the
elements they point to. A reference can also have an opposite reference.

The Ecore language is supported by KM3 [JB06, ATL05] (where KM3
is the abbreviation for Kernel MetaMetaModel). KM3 provides a textual
concrete syntax that eases the implementation of Ecore-based metamod-
els. Its syntax is simple and has some similarities with the Java nota-
tion [ATL05]. TGraphs conforming to the grUML diagram representing the
Ecore metametamodel are visualized by this textual concrete syntax. Fig-
ure 6.2 depicts such a visualized TGraph representing the metamodel of an
activity diagram language (similar to that in [OMG07b]).

Activity diagrams consist of activity nodes and activity edges. Action
nodes are activity nodes, which model concrete actions within an activity.
Object nodes can be used in a variety of ways, depending on where values or
objects are flowing from and to. Control nodes (e.g., initial and final nodes,
decision and merge nodes, and fork and join nodes) are used to initialize,
coordinate, and finalize the flows between other activity or object nodes.

Activity diagrams contain two types of edges, where edges have exactly
one source and one target node. One edge is used for object flows and another
edge for control flows. An object flow edge models the flow of values to or
from object nodes. A control flow is an edge that starts an action or control
node subsequent to the previous one finishing.

6.1 Chapter Context 117

Figure 6.1. Ecore metametamodel as grUML diagram.

package ActivityLanguage {
abstract class ActivityNode {
reference incoming [0−∗] : ActivityEdge oppositeOf target;
reference outgoing [0−∗] : ActivityEdge oppositeOf source;
attribute name : String;
}
class ObjectNode extends ActivityNode {
}
class Action extends ActivityNode {
}

abstract class ControlNode extends ActivityNode { }
class Initial extends ControlNode { }
class Final extends ControlNode { }
class Decision extends ControlNode { }
class Merge extends ControlNode { }
class Fork extends ControlNode { }
class Join extends ControlNode { }

abstract class ActivityEdge {
reference source [1−1] : ActivityNode;
reference target [1−1] : ActivityNode;
attribute condition : String;
}
class ObjectFlow extends ActivityEdge { }
class ControlFlow extends ActivityEdge { }
}

Figure 6.2. Visualized TGraph representing the metamodel of an activity language.

118 6 Language Engineering and Use with Ontology Technologies

6.1.2 Linguistic Metamodeling

Environments for model-driven engineering (MDE) provide the facility for
defining and using modeling languages.

One part of the language definition is the definition of the abstract syntax
by designing metamodels. The abstract syntax definition is used to prescribe
the structure of models conforming to the metamodel. The metamodel layer
is known as the language definition layer, since it defines the abstract syntax
of a modeling language.

A metamodel is instantiated to define models at the model layer. For ex-
ample, the model in Figure 6.2 (representing the metamodel of an activity
language) is built by instantiating the Ecore metametamodel in Figure 6.1.
Here the Ecore metametamodel representing the abstract syntax of a meta-
modeling language prescribes the structure of metamodels (represented as
TGraphs and used to design Ecore conformant metamodels).

The relation between language definition layers and the model layer con-
sisting of its instances is known as linguistic instanceOf relationship. The
elements at the model layer are known as linguistic instances [AK03]. Lin-
guistic metamodeling means the definition of metamodels, which represent
the abstract syntax of a modeling language and prescribe the structure of
models [AK03].

6.1.3 Chapter Road Map

Figure 6.3 depicts this chapter’s road map. In Section 6.2.1 we start with
the establishment of an integration bridge between Ecore and OWL 2. The
result is an integrated metamodel, which conforms to the grUML metaschema
(cf. Section 2.2.3). The bridge is used to define hybrid metamodels. Since
the hybrid metamodels are instantiable, we show how they are represented
in set notation. They are projected together with corresponding linguistic
instances to ontoware models as shown in Section 6.2.2. In Section 6.3.1, we
show how to define constraints in hybrid models that prescribe the structure
of corresponding linguistic user models. In Section 6.3.2, the inconsistency
management for user models is presented.

We conclude this chapter by presenting related approaches in Section 6.4.

6.2 Integration Bridge for Linguistic Instantiable Models

Language designers creating metamodels are responsible for the correctness of
instance models built by language users. Language designers require a meta-
modeling language, which enables the combined definition of metamodels and
constraints. Below we depict the design of the class ObjectNode, this being
part of the metamodel for the activity diagram language. Here, a language de-
signer has seamlessly annotated the class definition by an OWL 2 SubClassOf
axiom, which states that object nodes are only incident with object flows.

6.2 Integration Bridge for Linguistic Instantiable Models 119

conformsTo

Sec. 6.2.2

Sec. 6.2.2

conformsTo

Linguistic Instance Model
(TGraph)

Ontoware Model

projection

Inconsistency
Management

Sec. 6.3.2

Metametamodel
Layer

Metamodel
Layer

Model
Layer

Hybrid Metamodel

set notation

Integrated Metametamodel

OWL2

Ecore

Ecore part

OWL2 partPrescriptive
Expressions

Sec. 6.3.1

set notation

Sec. 6.2.1

projection

Figure 6.3. Road map of Chapter 6.

...
class ObjectNode subClassOf (outgoing only ObjectFlow) and (incoming only ObjectFlow)
...

In Section 6.2.1 we present the establishment of the bridge where the in-
tegration services presented in Section 5.3.1 are used. This bridge supports
language designers in defining Ecore-based metamodels together with inte-
grated OWL 2-based annotations.

Since language users are creating linguistic instances of metamodels, we
present a method to project both the metamodel and model to one common
ontoware model in Section 6.2.2. Given such ontoware model building the
description of metamodel and model reasoning technologies from Chapter 3
may be used to validate the correctness of instance models with respect to
their metamodel.

6.2.1 Integration Definition

The integration bridge between Ecore and OWL is established as suggested
in Section 5.3.1.

1. Mapping and Adaptation

In the first step a mapping is established, which is based on the intensional
knowledge of the two languages to be integrated. In [KKK+06], Kappel et al.
present a mapping between Ecore concepts and concepts in the OMG Ontology
Definition Metamodel [OMG07a]. We adapted this mapping by juxtaposing
Ecore concepts with OWL 2 concepts in Table 6.1.

120 6 Language Engineering and Use with Ontology Technologies

] Ecore OWL 2

1. Metamodel Ontology

2. Class Class

3. Datatype Datatype

4. Reference ObjectProperty

5. Attribute DataProperty

6. Enumeration DataOneOf

7. Literal Literal

8. hasSuperType SubClassOf

Table 6.1. Mapping of Ecore and OWL 2.

Figure 6.4. Adapted Ecore metametamodel GSa
Ecore (excerpt).

In addition, the Ecore metametamodel GSEcore is adapted to make it ca-
pable of being integrated with the metamodel of OWL 2. An excerpt of the
adapted Ecore metametamodel is depicted in Figure 6.4.

We adapt three parts of GSBEDSL. The hasSupertype association is mate-
rialized by a new class, since it should be integrated with the SubClassOf class
from the OWL 2 metamodel (1). The containsFeature association in Ecore
relates entities with features. Since subsequent to an integration the relation
should model domain axioms for object properties and data properties, re-
spectively, we have to materialize the containsFeature association by two new
classes ContainsReference and ContainsAttribute (2). The hasType association
is materialized by two new classes, since it should be integrated with the
classes for object property and data property range from the OWL 2 meta-
model (3). The new classes representing the range of an Ecore feature are
HasReferenceType and HasAttributeType.

With all metamodels in their adapted versions being capable of being
integrated, the integration bridge object b is instantiated.

b = new IntegrationBridge(GSa
Ecore , GSOWL);

6.2 Integration Bridge for Linguistic Instantiable Models 121

2. Metamodel Union

The second part of the integration consists of a simple metamodel union, which
constructs the initial integrated metamodel GSInt . It contains all elements
(vertex classes, edge classes, and attributes) of the two source metamodels.

b.metamodelUnion();

3. Integration Services

In the third part of the integration, several integration services are applied on
the initial GSInt where the integration services to be executed are intensionally
based on the mapping defined in step 1. After applying the integration services
on related constructs, we get a new integrated metamodel represented by
GSInt .

Since the integrated metamodel is complex, we present excerpts in Fig-
ures 6.5, 6.6, and 6.7 and illustrate the respective use of integration services.

Figure 6.5 depicts the integration of the Ecore constructs Metamodel, Class,
and HasSupertype with the respective OWL constructs. Metamodel becomes
a specialization of Ontology, since all OWL 2 constructs should be available
for the design of Ecore metametamodels (1). Ecore Class and OWL Class are
merged to a new vertex class called Class (2). The new class allows on the
one hand for defining references and attributes, on the other hand several
OWL class axioms and expressions can be applied to it. In steps (3) to (5)
the concerns of HasSupertype in Ecore and SubClassOf in OWL 2 are merged.
The new vertex class SubClassOf allows for defining several subclass relations
between several class expressions.

b.specializeClasses(Metamodel, Ontology); // (1)
EntityClass=b.mergeVertexClasses(Class, Class, ”Class”); // (2)
SubClassOf=b.mergeVertexClasses(HasSupertype, SubClassOf, ”SubClassOf”); // (3)
hasSuperClass=b.mergeEdgeClasses(definesSuperClass, hasSupertypeTarget, ”definesSuperClass”); // (4)
definesSubClass=b.mergeEdgeClasses(definesSubClass, hasSupertypeSource, ”definesSubClass”); // (5)

Figure 6.6 depicts the integration of the Ecore construct Reference with
the respective OWL constructs. Reference becomes a specialization of Object-
Property (6). Thus, references can be involved in object property axioms and
expressions. References are connected via the classes ContainsReference and
HasReferenceType with Class. These relations in OWL 2 are designed by Ob-
jectPropertyDomain and ObjectPropertyRange constructs. Hence, in steps (7)
to (12), the concerns of relations between classes and references are becoming
specializations of the respective constructs in OWL.

b.specializeClasses(Reference, ObjectProperty); // (6)
b.specializeClasses(ContainsReference, ObjectPropertyDomain); // (7)
b.specializeClasses(containsReferenceSource, definesDomainClassExpression); // (8)
b.specializeClasses(containsReferenceTarget, definesDomainObjectProperty); // (9)
b.specializeClasses(HasReferenceType, ObjectPropertyRange); // (10)
b.specializeClasses(hasReferenceTypeSource, definesRangeObjectProperty); // (11)
b.specializeClasses(hasReferenceTypeTarget, definesRangeClassExpression); // (12)

122 6 Language Engineering and Use with Ontology Technologies

Figure 6.5. Integration of Ecore Metamodel, Class, and HasSupertype with OWL 2
constructs.

Figure 6.6. Integration of Ecore Reference with OWL 2 constructs.

6.2 Integration Bridge for Linguistic Instantiable Models 123

Figure 6.7 depicts the integration of the Ecore constructs Attribute and
Datatype with the respective OWL constructs. Attribute becomes a specializa-
tion of DataProperty (13). Thus, attributes can be involved in data property
axioms and expressions. Attributes are connected via the classes ContainsAt-
tribute and HasAttributeType with Class. These relations in OWL 2 are de-
signed by DataPropertyDomain and DataPropertyRange constructs. Hence, in
steps (14) to (19), the concerns of links between entity classes and references
become specializations of the respective constructs in OWL. The vertex classes
for data types are merged to one single class (20). Thus, data types can be
used by attributes and data properties. In steps (21) to (23) the concerns of
Enumeration and DataOneOf are merged. The new vertex class DataEnumera-
tion allows for modeling a set of literal entries, while the vertex class Literal is
the result of the merge of EnumLiteral and Literal. To provide only one relation
between the new vertex classes DataEnumeration and Literal, the edge classes
containsLiteral in Ecore and containsLiteral in OWL 2 are merged.

b.specializeClasses(Attribute, DataProperty); // (13)
b.specializeClasses(ContainsAttribute, DataPropertyDomain); // (14)
b.specializeClasses(containsAttributeSource, definesDataPropertyDomainClassExpression); // (15)
b.specializeClasses(containsAttributeTarget, definesDomainDataProperty); // (16)
b.specializeClasses(HasAttributeType, DataPropertyRange); // (17)
b.specializeClasses(hasAttributeTypeSource, definesRangeDataProperty); // (18)
b.specializeClasses(hasAttributeTypeTarget, definesRangeDataRange); // (19)

Datatype=b.mergeVertexClasses(Datatype, Datatype, ”Datatype”); // (20)
DataEnumeration=b.mergeVertexClasses(Enumeration, DataOneOf, ”DataEnumeration”); // (21)
LiteralEntry=b.mergeVertexClasses(EnumLiteral, Literal, ”Literal”); // (22)
containsLiteralEntry=b.mergeEdgeClasses(containsLiteral, containsLiteral, ”containsLiteral”); // (23)

6.2.2 Integration Use

Having an integration bridge established as described above, a language de-
signer can create hybrid models. Hybrid models in the context of this chapter
represent language metamodels with integrated OWL 2 constructs. For exam-
ple, in Figure 6.8 a language designer enriches the activity diagram language
metamodel from Figure 6.2 by extending the class ActivityNode by an addi-
tional reference called edge. With the pure Ecore language it is not possible
to define references as transitive or as a chain of many references. Using an
integrated language, a language designer declares the reference edge as tran-
sitive (using the keyword transitive) and defines that the reference edge is
composed by a chain of the references outgoing and target (using the keyword
subPropertyChain).

Besides OWL object property axioms and OWL object property expres-
sions, which are adopted by Ecore references, a language designer is also able
to create OWL class axioms and OWL class expressions. In Figure 6.8 he
defines that the class ActivityNode is equivalent to a class expression, which
requires, via the reference edge, to be connected to some Final node. A lan-
guage designer restricts the class representing initial nodes in such a way so

124 6 Language Engineering and Use with Ontology Technologies

Figure 6.7. Integration of Ecore Attribute with OWL constructs.

that each node, which directly appears after an initial node, must have the
type Action or ControlNode. Thus, no object nodes are allowed directly after
the initial node. In addition, all object nodes only have incoming and outgoing
object flows and control flows do not have object nodes as target or source.

As mentioned in Section 6.1.2 metamodels such as the one in Figure 6.8
allow for creating linguistic instances. All linguistic instances build a model
whose elements are structured according to the prescriptive metamodel.

Since we are in a graph-based technological space, all models, especially in-
stance models in abstract syntax, are represented as a TGraph. The structure
of TGraphs is defined by its schema. We state that if a model is linguisti-
cally instantiable, it can be represented in set notation defined for schemas in
Section 2.2.2. In set notation it describes which elements are instantiated to
vertices in the model, which elements are instantiated to edges linking vertices
in the model, and how vertices and edges are attributed.

The definition how a model is represented in set notation must be estab-
lished separately for each metametamodel, a metamodel whose instance mod-
els in turn are instantiable. In Table 6.2 we precisely describe a service named
toSchema, which as an input gets a hybrid model conforming to GSEcoreOWL

and returns a graph schema defined by its set notation that allows for creating
linguistic instances. The service must be established by the Ecore language
designer and is implemented into the modeling environment. The language
designer might rely on a mapping between concepts in the Ecore metameta-
model [SBPM08] and the grUML metaschema. This mapping is presented

6.2 Integration Bridge for Linguistic Instantiable Models 125

class ActivityNode subClassOf edge some Final{
reference incoming [0−∗] : ActivityEdge oppositeOf target;
reference outgoing [0−∗] : ActivityEdge oppositeOf source;
attribute name : String;
transitive reference edge [0−∗] : ActivityNode subPropertyChain outgoing o target;
}

...

class Initial subClassOf outgoing only ControlFlow {}

...

class ObjectNode subClassOf (outgoing only ObjectFlow) and (incoming only ObjectFlow) {}

...

abstract class ActivityEdge {
reference source [1−1] : ActivityNode;
reference target [1−1] : ActivityNode;
}

class ObjectFlow subClassOf ActivityEdge {}
class ControlFlow subClassOf ActivityEdge and (target only (not ObjectNode)) and (source only (not

ObjectNode)) {}

Figure 6.8. Hybrid model representing a metamodel with integrated OWL 2-based
annotations.

in [Hec10]. The toSchema service is implemented as a static method being
part of the Convert class.

Name Convert Service

Signature Schema toSchema(GSEcoreOWL G)

Pattern GS=Convert.toSchema(G)

Description converts a hybrid metamodel G (represented by a TGraph) to a graph
schema GS . All classes in the hybrid metamodel G become vertex
classes. All references define an edge class. The set of attributes is com-
posed by all attributes in a hybrid metamodel G, where all possible
domains provided by a graph schema are defined by datatype defini-
tions in G.

Table 6.2. toSchema Service.

To convert a TGraph representing an Ecore-based metamodel to a new
graph schema, we have to set up the graph schema by its set notation as
introduced in Definitions 2 and 4.

Hence, the service sets up the following sets and archetype functions for a
TGraph G and the schema GS which is returned:

• VGS = {v | v ∈ reprG
m (Class)} defines the set of vertex classes. The

function cGS : VGS → Class describes the archetype of the vertex classes
in GS .

126 6 Language Engineering and Use with Ontology Technologies

• EGS = {e | e ∈ reprG
m (Reference)} defines the set of edge classes. The

function cGS : EGS → Reference describes the archetype of the edge class
in GS .

• AttrGS = {a | a ∈ reprG
m (Attribute)} defines the set of attributes. The

function cGS : AttrGS → Attribute describes the archetype of the at-
tributes in GS .

• Domain = {d | d ∈ reprG
m (Datatype)} defines the set of all possible

domains for attributes. The function cGS : Domain → Datatype describes
the archetype of the datatypes in GS .

reprG
m is the function which returns all instances for a given schema element

and a given instance graph (cf. Appendix A.1.3). For each class in a hybrid
model a vertex class to be instantiated is defined in VGS . All references in the
hybrid model define an edge class in EGS . The set of attributes is composed
by all attributes in a hybrid model, where all possible domains provided by a
graph schema are defined by datatypes in the schema.

In addition to the four sets above, the service sets up the following func-
tions and relations:

• typeDefinitionGS : VGS ∪ EGS → (AttrGS 7 7→ Domain)
with (typeDefinitionGS (v))(a) = d if
cGS (v)→ {containsAttributeSource} → {containsAttributeTarget}cGS (a)
→ {hasAttributeTypeSource} → {hasAttributeTypeTarget}cGS (d)

• isAGS : VGS ∪ EGS ↔ VGS ∪ EGS with isAGS = {(v ,w) | cGS (v) →
{hasSupertypeSource} → {hasSupertypeTargetcGS (w)}}

• relatesGS : EGS → VGS ×VGS with relates(e) = (v ,w) if
cGS (v)→ {containsReferenceSource} → {containsReferenceTarget}
→ {hasReferenceTypeSource} → {hasReferenceTypeTarget}cGS (w).

• multiplicityGS : EGS → Multiplicity×Multiplicity with multiplicityGS (e) =
((0, ∗), (min,max)) and
min = (value(cGS (e)))(lower) and max = (value(cGS (e)))(upper)

The typeDefinition function assigns those attributes to classes, which are
linked via a ContainsFeature class with the respective Class instance in the hy-
brid model. The domain of an attribute is defined via the sequence of hasAt-
tributeTypeSource and hasAttributeTypeTarget edges. Specialization relations
in hybrid models conforming to the metamodel GSEcoreOWL are only defined
between two classes. All pairs connected via the HasSupertype class are related
by isA. Two vertex classes are related by an edge class if they are linked via
a Reference instance in the hybrid model. The multiplicities for an edge class
are defined by the lower and upper attributes defined for reference vertices in
the hybrid model. Because references only have multiplicities for the target
end, the multiplicities for the source are set to 0 to any (0,*).

Having defined when a model is linguistically instantiable, we define a
specific projection service, which projects an Ecore-based metamodel with

6.2 Integration Bridge for Linguistic Instantiable Models 127

OWL 2 annotations and a conforming model to one ontoware model. The ser-
vice is provided by the IntegrationBridge class and requires an IntegrationBridge
object representing the combination of Ecore and OWL 2 as established in
Section 6.2.1. The service is invoked each time, when a language user requires
reasoning facilities for the current model under developmentt. The service is
specified in Table 6.3.

Name Multi-layer Projection Service

Signature GSOWL projectGSOWL(GSEcoreOWL mh , Graph g , IntegrationBridge b)

Pattern mo=IntegrationBridge.projectGSOWL(mh , g , b)

Description projects a linguistic instantiable metamodel mh and an instance graph
g to an ontoware model mo . b is the IntegrationBridge object encapsulat-
ing the integration of GSa

Ecore and GSOWL and providing the projection
of mh to the TBox part of mo . For each vertex in g , mo is extended
by an individual. For each edge e in g an object property assertion is
created in mo . For each attribute assignment a data property assertion
is created in mo .

Table 6.3. Multi-layer projection service.

Having an integration bridge object b for the integration of Ecore and
OWL 2 and the projection function pmh

as defined in Section 5.3.2 for each
projection of a hybrid model, we are able to precisely describe the steps of
building the ABox in the ontoware model mo .

mo is initially created by the projection service provided by b: mo =
b.projectGSOWL

(mh). Furthermore, a new projection function pg : Vertex ∪
Edge 7→ Vertex ∪ Edge is declared (besides pmh

) for each instance model
projected.

1. For each vertex v in g , mo is extended by an individual i , which is asserted
by pmh

(cGS (type(v))) the projection of the type of v in mh . In addition,
pg defines v 7→pg

i
2. For each edge e in g an object property assertion vopa is created in mo

connecting pg(α(e)) and pg(ω(e)), the projections of source and target
vertex. The object property assertion instantiates the object property
pmh

(cGS (type(e))), the projection of the type of e in mh . In addition,
pg is extended by e 7→pg

vopa
3. For each attribute assignment (value(x))(a) (x ∈ V ∪E of g , a ∈ AttrId)

a data property assertion vdpa is created in mo connecting pg(x), the
projection of x with the value (value(x))(a). The data property assertion
instantiates the data property pmh

(cGS (a)), the projection of a.

Example

Based on the metamodel depicted in Figure 6.8, we present an example of the
extended projections service.

128 6 Language Engineering and Use with Ontology Technologies

In Figure 6.9(a) a TGraph is depicted. The model it represents is vi-
sualized in Figure 6.9(b) using the concrete syntax of UML activity dia-
grams [OMG07b]. The TGraph is a linguistic instance of the schema converted
from the metamodel in Figure 6.8. For instance, its vertices have the types
Initial, Action, ControlFlow, Decision, Merge or Final. Edges in the TGraph are
linguistic instances of edge classes, which in turn are converted from references.
In the TGraph one edge represents the instances of two opposite references.

(a) Inconsistent process model in concrete syntax

(b) Inconsistent process model as TGraph

Figure 6.9. Process models.

The projection service specified in Table 6.3 is able to project the TGraph
in Figure 6.9(a) together with the hybrid metamodel in Figure 6.8 to one
ontoware model. An excerpt of the ontoware model is depicted in Figure 6.10.
It depicts the two axioms for restricting activity nodes and initial nodes, the
declarations for object properties and also the definition of the transitive edge
object property building a chain of outgoing and target. In the lower part,
three individuals are created for defining the initial action, the Receive Order
action, and the final action. In addition, a control flow individual connects
the initial individual with that of the Receive Order action.

6.3 Defining and Validating Constraints 129

Ontology(OrderDiagram

EquivalentClasses(ActivityNode ObjectSomeValuesFrom(edge Final))

SubClassOf(Initial ObjectSomeValuesFrom(outgoing ObjectSomeValuesFrom(target ObjectUnionOf(
ControlNode Action))))

...

Declaration(ObjectProperty(target))
Declaration(ObjectProperty(outgoing))
Declaration(ObjectProperty(source))
Declaration(ObjectProperty(incoming))

Declaration(ObjectProperty(edge))
TransitiveObjectProperty(edge)
SubObjectPropertyOf(SubObjectPropertyChain(outgoing target) edge)

Declaration(Individual(f1))
ClassAssertion(f1 Final)
DataPropertyAssertion(name f1 ”Finish”)

Declaration(Individual(i1))
ClassAssertion(i1 Initial)
DataPropertyAssertion(name i1 ”Start”)

Declaration(Individual(a1))
ClassAssertion(a1 Action)
DataPropertyAssertion(name a1 ”Receive Order”)

Declaration(Individual(c1))
ClassAssertion(c1 ControlFlow)
ObjectPropertyAssertion(target c1 a1)
ObjectPropertyAssertion(source c1 i1)

...
)

Figure 6.10. Ontoware model representing the hybrid model and the linguistic user
model (excerpt).

6.3 Defining and Validating Constraints

In this section we are going to show which OWL 2-based expressions language
designers are able to formulate within metamodels. All expressions are defined
by an integrated ontology language and restrict the structure of user models.

User models are created by language users. They want to ensure the consis-
tency of their models. Many works deal with inconsistency management using
description logics [Van05] and the debugging of ontoware models [Kal06]. In
this section we are going to present basic services for inconsistency manage-
ment and guidance of user models represented as a TGraph.

6.3.1 Defining Constraints

In the following we present a set of expressions used to constrain the structure
of user models. All expressions are defined by language designers in metamod-

130 6 Language Engineering and Use with Ontology Technologies

els using an integrated metamodeling language. The grammar for the textual
design of Ecore-based metamodels with integrated OWL 2-based annotations
is given in the Appendix A.4.

Class Expressions

Classes are used to define types for instances and to prescribe instances, e.g.,
to be connected to other instances of a given type. For more complex types,
class expressions are defined and bound to classes by using class axioms.

A class is combined with a class expression by an equivalent classes axiom,
if the set of instances described by the class expression should be equal to the
set of instances typed by the class. In the following example we declare the
class ObjectNode as being equivalent to a class expression describing those
instances, which are either of type DataStore or DataBuffer. Thus, instances are
of type ObjectNode, if, and only if they are instance of DataStore or DataBuffer.

class ObjectNode equivalentTo DataStore or DataBuffer {}

In the following example, the subclass of axiom is used to state that the set
of instances having the type Initial is a subset of instances having an outgoing
edge. The class expression prescribes initial nodes to have at least one outgoing
edge.

class Initial subClassOf outgoing some (ObjectFlow or ControlFlow) {}

Class expressions are also used to prescribe the use of attributes in in-
stances, which can only be assigned by a given value or values of a specific
datatype. In the following example, we prescribe instances of ActivityNode to
have a name, which is not the empty string. The data range representing the
empty string is described by a DataOneOf construct (defined by { }) and is
negated by the DataComplementOf construct (defined by the not-operator).
It is bound to name using the DataAllValuesFrom construct (using the only
keyword).

class ActivityNode subClassOf name only (not {””})

To prescribe instances of ActivityNode to have at least one name, we use the
DataAllValuesFrom construct. In the following example, we define a superclass
of ActivityNode representing those instances, which have a name attribute set
to some string value.

class ActivityNode subClassOf name some String

Path- and Multiplicity Expressions

Experience shows that path expressions are a powerful means for prescrib-
ing properties of user models in practical applications [EWD+96]. In the fol-
lowing paragraphs, we present all basic path and multiplicity expressions,

6.3 Defining and Validating Constraints 131

which are used to prescribe the relation between two instances in a model. All
expressions are defined in a hybrid model designed by using the integrated
Ecore+OWL metamodel. They can be composed to more complex path ex-
pressions.

Start- and Target-Restriction

To prescribe the type of an instance where edges of a given type start, we
define a subclass of the start type. This subclass describes all instances where
an edge of the given type starts. The subclass is restricted by a superclass,
which describes the start type. The following example prescribes all instances
where an outgoing edge to an object flow vertex starts to be an object node or
an action. Here, the subclass axiom is used to relate two (anonymous) classes.

(outgoing some ObjectFlow) subClassOf (ObjectNode or Action)

To prescribe the type of an instance where an edge of a given type should
end, we define a superclass, which describes those instances, which are con-
nected via the edge only to instances of the given type. In the following exam-
ple for each target edge, which starts at some object node, we prescribe that
its target is only an object node or an action.

class ObjectFlow subClassOf (target only (ObjectNode or Action)) {}

Sequential Edges

To prescribe instances of a given type to be connected with a sequence of
edges, the sequence is described as a superclass consisting of nested class
expressions. Each class expression prescribes instances to be connected with
a sequence of an outgoing and a target edge. The following example prescribes
initial nodes to be connected with some activity node via a sequence of two
edges.

class Initial subClassOf (outgoing some (target some ActivityNode)) {}

Alternative Edges

To allow instances to be connected with two alternative paths, the class ex-
pressions representing the paths are combined by the or operator. The example
in the following allows all instances of ObjectFlow to be connected with some
object node or alternatively with some action.

class ObjectFlow subClassOf ((target some ObjectNode) or (target some Action)) {}

132 6 Language Engineering and Use with Ontology Technologies

Optional Edges

To prescribe instances of a given type to be connected with optional paths, a
superclass is created describing the default path and the optional path using
the or operator. In the superclass the optional edge is separated by the or
operator. In the following example, all object nodes must have some edge to
an action node, or optionally a second edge, which ends at an action node.

class ObjectNode subClassOf (edge some (Action or (edge some Action))) {}

Iterated Edges

Iterated edges are realized by object property expressions that are declared as
transitive. To prescribe instances of a given type to be connected with some
other instance of a specific type via a sequence of edges, a superclass is created.
The superclass describes those instances, which are connected via a transitive
edge with the instances of the given type. In the example, we prescribe the
initial nodes to be connected via an arbitrary length of a sequence of edges
with some final node, i.e., each final node must be reachable from all nodes
in the diagram.

class Initial subClassOf edge some Final{}

Multiplicities

Cardinality restrictions are used to prescribe instances to be connected with
a number of other instances. They are defined as class expressions, which
describe those instances connected with at least (using the min-keyword), at
most (using the max-keyword), or exactly (using the exact-keyword) a given
number of instances of a given type via edges of a given type. In the following
example, we define a superclass of Final, which restricts its instances to be
connected with at least one incoming control flow.

class Final subClassOf incoming min 1 ControlFlow {}

Property Axioms

The use of references and attributes may be restricted by additional OWL 2
object and data property axioms. In the following we give two examples for ref-
erences and attributes. The full list of axioms is presented in the Appendix A.4.

Axioms for References

References in metamodels may be annotated by OWL 2 axioms for object
properties. The reference edge specified in the class ActivityNode is defined as
transitive.

In addition, as a subproperty it has the chain of outgoing and incoming
where both are also references.

6.3 Defining and Validating Constraints 133

class ActivityNode {
...
transitive reference edge [0−∗] : ActivityNode subPropertyChain outgoing o target;
}

Axioms for Attributes

Such as the additional axioms for references, attributes specified in classes can
be annotated. In the example below the attribute id is defined as functional.

class ActivityNode {
...
functional attribute id : Integer;
}

6.3.2 Validating Constraints

Modeling environments should check whether models fulfill the prescription
of the metamodel or not. If the models do not conform to the metamodel,
language user need suggestions to where and how to repair the model. In
the following we are going to present services, which allow for inconsistency
management and for suggesting model elements to be used. All services are
based on ontoware models, which are projections of the metamodel (with
additional constraints) and a user model.

Validation in Open World and Closed Domain

The services presented in the following may be adopted on ontoware models
which may be assumed in an open or closed world. In Table 6.4 we illustrate
the decision when to use OWA and when to use CWA or a closed domain,
respectively.

World Assumption OWA CWA/Closed Domain

Model State under development ready for deployment

Table 6.4. Use of OWA and CWA for model validation.

We differ between the states a model has in the development. If a model
is under development, then all (reasoning) services applied consider an open
world. Hence, facts that are missing may be assumed by default by reasoners.
If a model is in a final state, i.e., it is ready for deployment, then all services are
applied under closed world assumption. Hence, the model must be complete
and missing facts are not assumed.

134 6 Language Engineering and Use with Ontology Technologies

Inconsistency Detection

Syntactic consistency ensures that a specification conforms to the metamodel
of the modeling language specified by the language designers. This guarantees
that the model is well-formed [Van05].

Inconsistency Management

In [FST96] inconsistency management is defined as the process by which
inconsistencies in software models are handled to support the goals of the
stakeholders concerned. The process of inconsistency management consists of
activities for detecting, diagnosing, and handling inconsistency [NER00].

Detecting: The detection of inconsistencies is the activity of checking for in-
consistencies in user models with regard to a metamodel. Different ap-
proaches for the detection of inconsistencies are possible [SZ01]. In this
work we consider a logic based approach with detecting logical inconsis-
tency [HS05], where models together with metamodels are projected to
ontoware models, and, which are consistent if an interpretation exists.
Otherwise they are inconsistent.

Diagnosing: The diagnosis of inconsistencies is concerned with the identifi-
cation of the elements causing an inconsistency [SZ01]. The diagnosis is
a basic for inconsistency handling. Several methods are available for de-
bugging ontoware models and identifying inconsistent parts [Kal06]. Since
models specified by language users are graphs, we are going to develop a
service delivering the vertices of the graph causing the inconsistency.

Handling: Inconsistency handling is concerned with identifying possible ac-
tions for dealing with an inconsistency [SZ01]. For ontoware models sev-
eral repair strategies are developed [Kal06]. In the following we develop a
service suggesting valid types for instances involved in an inconsistency.

All services are subsumed by an API for inconsistency management. The
API consists of services for inconsistency detection, diagnosis and handling.
The services are implemented as static methods in the class InconsistencyMan-
agement.

Services for Inconsistency Management

Figure 6.11 depicts an incomplete process model (in abstract and concrete
syntax). It consists of an initial node, an action node, and an object node. All
nodes are connected by control flow edges. With respect to the metamodel in
Figure 6.8, the model is incomplete because a final node is missing. Further-
more the model obviously contains one inconsistency in an open world, which
is detected, diagnosed, and handled in the following.

6.3 Defining and Validating Constraints 135

(a) Inconsistent process model in concrete syntax

(b) Inconsistent process model as TGraph

Figure 6.11. Inconsistent process model.

Name Inconsistency Detection Service

Signature boolean isConsistent(Metamodel mm, TGraph g, IntegrationBridge b)

Pattern r=InconsistencyManagement.isConsistent(mm, g, b)

Description returns r=true if the instance model represented as a TGraph g is con-
sistent with regard to the metamodel mm. b is the integration bridge
object, which encapsulates the integration of Ecore and OWL and pro-
vides the projection service.

Table 6.5. Inconsistency detection service.

Detection. A language user who wants to detect if his model is consistent
uses the consistency checking service specified in Table 6.5 provided by the
inconsistency management API.

This service uses the inconsistency service specified in Table 3.7, which gets
an ontoware models as input. This ontoware model is built by the projection of
the hybrid metamodel and an instance model using the multi-layer projection
service.

For the model in Figure 6.11 and the metamodel in Figure 6.8 the service
isConsistent returns false.

Diagnosis. Having an inconsistent model such as the activity diagram in Fig-
ure 6.11(b), language users want to diagnose the inconsistency. To identify
which elements of the model are involved in the inconsistency, the language
users require a service, which returns a set of vertices. The service, specified in
Table 6.6, reuses the explanation service for inconsistent ontoware models in
Table 3.12. We assume that the metamodel is consistent and that all classes
are satisfiable.

136 6 Language Engineering and Use with Ontology Technologies

Name Inconsistent Elements Service

Signature Set<Set<Vertex>> getInconsistentElements(Metamodel mm, TGraph g,
IntegrationBridge b)

Pattern S=InconsistencyManagement.inconsistentVertices(mm, g, b)

Description returns a set of sets S of vertices in the instance model g, which are
involved in the inconsistency of g with respect to the metamodel mm.
b is the integration bridge object, which encapsulates the integration
of Ecore and OWL and provides the projection service.

Table 6.6. Inconsistent elements service.

Since an instance model can have multiple inconsistencies, the service may
return multiple sets of vertices being involved in the respective inconsistency.

To compute sets of vertices leading to inconsistencies, the service in Ta-
ble 6.6 uses the projection mo of a hybrid metamodel mm and a respective
instance model g achieved by the multi-layer projection service. The service
uses an explanation set E for the inconsistent ontoware model mo using the
inconsistency explanation service specified in Table 3.12. For each set in E
the service puts those vertices into one result set in S, which occur in some
construct for the given set in E.

Since the model in Figure 6.11 has just one inconsistency, the ontoware
explainInconsistency service returns the following set of axioms:

1)
SubClassOf(ControlFlow ObjectIntersectionOf(ObjectAllValuesFrom(target ObjectComplementOf(

ObjectNode)) ObjectAllValuesFrom(source ObjectComplementOf(ObjectNode))))

ObjectPropertyAssertion(target cf d)
ClassAssertion(cf ControlFlow)
ClassAssertion(d ObjectNode)

For the explanation given above, the getInconsistentElements service re-
turns the set {cf,d}. Modeling environments may highlight these vertices in
the editors to illustrate where the language users may look for problems in
their models.

Handling. Several strategies for ontology debugging and repairing have been
developed. A simple strategy is to analyze the sets of vertices separately. A
solution for handling inconsistencies and to repair models, is to provide a set
of valid types for one vertex leading to an inconsistency. Replacing the type
of the given vertex by exactly one valid type leads to a consistent model. This
is realized by a type suggestion service specified in Table 6.7.

To suggest valid types, the service uses the projection mo of a hybrid
metamodel mm and a respective instance model g achieved by the multi-layer
projection service. For a vertex v causing an inconsistency, the service returns
a named type t for v if the inconsistency in which v is involved is solved and
no other inconsistencies in mo occur.

6.4 Related Work 137

Name Type Suggestion Service

Signature Set<Class> suggestType(Metamodel mm, TGraph g, Vertex v, Integra-
tionBridge b)

Pattern s=InconsistencyManagement.suggestType(mm, m, v, b)

Description returns a set s of classes from mm, which are valid types for the vertex
v in g, i.e., replacing the type of v by a valid type corrects the incon-
sistency caused by the wrong type. b is the integration bridge object,
which encapsulates the integration of Ecore and OWL and provides the
projection service.

Table 6.7. Type suggestion services.

The type suggestion service applied on cf returns the valid type ObjectFlow.
Applying the type suggestion service on vertex d in Figure 6.11(b) returns
Action and all possible control nodes.

Further complex strategies analyze all explanation sets and for instance
base on axiom rating as shown in [Kal06]. A simple strategy is to compute the
frequency of an axiom. Here the number of times the axiom appears in each
set of the various inconsistencies is counted. If an axiom appears in all sets for
n different inconsistencies, removing or changing the axiom from the ontology
ensures that n inconsistencies are repaired. Thus, the higher the frequency,
the lower (better) the rank assigned to the axiom.

6.4 Related Work

In the following we are going to present related work concerning the ap-
proaches presented in Chapter 6. We separate the related approaches in two
parts. The first part deals with related work in the field of prescribing the
structure of user models. In the second part we consider related work con-
cerned with services for inconsistency management and user guidance.

Among approaches with constraints to prescribe the structure of user mod-
els, one can use languages such as OCL, F-Logic or Alloy to formally describe
models.

In [ABGR07] a transformation of UML class diagrams with OCL con-
straints [WK03] to Alloy is proposed to exploit analysis capabilities of the
Alloy Analyzer [Jac06]. Compared to our work, [ABGR07] considers only one
model layer in which the UML models (e.g., class diagrams) are designed.
In contrast, we consider two layers (metamodel layer and instance layer) to
be transformed into a logic representation. Hence, the capabilities of our ap-
proach are more language user oriented, in the sense that we provide services
for problems (e.g., inconsistencies) language users have in the design of user
models.

138 6 Language Engineering and Use with Ontology Technologies

F-Logic is a further prominent rule language that combines logical formu-
las with object oriented and frame-based description features. Different works
(e.g., [GLR+02]) have explored the usage of F-Logic to describe and validate
well-formedness constraints and expressions for MOF conformant metamod-
els. F-Logic rules can be interpreted at both the model and instance levels. In
contrast to our work, the integration cited above is achieved by transforming
MOF models into a knowledge representation language. Thus, the expressive-
ness available for language designers is limited to MOF. Our approach extends
these approaches by enabling language designers to use an integrated ontology
language, to specify classes with additional integrated constraints increasing
the expressiveness of the language.

Many papers are dealing with inconsistency management and assisting
modeling and debugging models.

In [Van05] the detection and resolution of inconsistencies in UML models
with description logics (DL) is presented. Here, UML models are translated to
DL knowledge bases, which allow for querying and reasoning. Similar to our
approach of linguistic metamodeling, [Van05] presents an approach for check-
ing structural inconsistencies of UML models with regard to its metamodel.
Here, the DL knowledge base ABox represents the user model where the TBox
encodes the UML metamodel. In contrast to our approach, the bridge between
UML and DL is established by a transformation, which precisely defines, which
UML metamodel elements are translated to DL constructs. The bridge is ad-
equate since [Van05] is dealing with the UML language only. Generally, for
linguistic metamodeling and consistency checks of user models, we propose an
integration bridge. The bridge allows language designers to define their own
constraints embedded within an arbitrary language metamodel.

There are quite a few works in the field of assisting modeling and debug-
ging models. For example, [CK05, CP06] deals with tool support for creating
feature models. Here the prescription of valid feature configuration is based
on OCL constraints [WK03]. They provide the propagation of configuration
choices, auto-completion of configurations, and the debugging of incorrect
configurations. [WSN+08] deals with model intelligence where existing con-
straint specifications in OCL [WK03] are used to query for valid endpoints of
relationships in models. Such queries guide users towards correct solutions.

[MM09, MMM08] present a modeling editor for process models with
syntax-based assistance. The editor provides the completion and preserva-
tion of model correctness. The syntax of the process modeling language is
formally defined by graph grammars. Compared to our approach of validat-
ing and guiding user modeling, all approaches mentioned above base on a
formal representation of the abstract syntax of a modeling language (either
by constraint languages like OCL, graph grammars, or by description logics).
But in contrast to our approaches, no integrated modeling of constraints is
possible.

6.5 Conclusion 139

6.5 Conclusion

In this chapter we used the integration bridge presented in Section 5.3 and
extended its projection service. We answered RQ7, asking for design of mod-
eling languages with OWL, by presenting an integration bridge, which allows
the definition of language metamodels with integrated ontology-based con-
straints to restrict the structure of user models. In addition to the integration
bridge, metamodels as well as conforming models are projected to one on-
toware model. Thus, the language specifications as well as the user models
are formally and simultaneously represented by one ontoware model. Based
on this formalization, different services for language users are automatically
provided. As an answer for RQ8, asking for the use of ontology technologies in
software modeling, we showed how language users benefit from services for in-
consistency detection to localize problems in models, inconsistency diagnosis
to explain problems in models, and inconsistency handling to repair models.

7

Conceptual Domain Engineering with
Ontological Instantiation

Besides language engineering and use, modeling environments may support
the tasks of domain engineering with ontology languages and technologies.
One task of domain engineering is the design of conceptual domain models,
which describe an application domain. Conceptual domain models are built by
domain modelers and consist of domain instances representing objects in the
real world and types classifying these instances (Challenge 4). We are going to
show how to design modeling languages for the creation of conceptual domain
models. We need to answer the question:

RQ9: What are the structures of modeling languages for conceptual domain
models?

To adopt ontology technologies for conceptual domain models, we inte-
grate the domain engineering languages with ontology languages. Based on
the integrated ontology language, domain modelers are able to define ontol-
ogy based expressions to describe types as well as instances in domain models.
The projection of domain models delivers an ontoware model. This ontoware
model is the input for several domain engineering services provided by a mod-
eling environment to domain modelers (Challenge 3). We need to answer the
question:

RQ10: How do ontology technologies support conceptual domain modeling?

7.1 Chapter Context

A domain is described by an area of knowledge or activity characterized by
a set of concepts and terms understood by practitioners in that area. Such
areas, for example, are network devices or order processing systems.

7.1.1 Domain Engineering

In [Cza98] the term domain engineering is defined as follows:

142 7 Conceptual Domain Engineering with Ontological Instantiation

Domain Engineering is the activity of collecting, organizing, and storing past
experience in building systems or parts of systems in a particular domain
in the form of reusable assets (i.e., reusable work products), as well as
providing an adequate means for reusing these assets (i.e., retrieval, qual-
ification, dissemination, adaptation, assembly, etc.) when building new
systems.

Domain Engineering is composed of three main processes: Domain Anal-
ysis, Domain Design, and Domain Implementation. Figure 7.1 illustrates all
parts. We comment on each of the processes but in this chapter we mainly
concentrate on domain analysis and the design of conceptual domain models.

Domain Analysis Domain Design
Domain

Implementation

domain
knowlede

domain
model

archi-
tecture

Domain Engineering

Figure 7.1. Domain engineering according to [Cza98].

The objective of domain analysis is to select and define the domain of focus
and to collect relevant domain information and to integrate this information
into a coherent domain model [Cza98]. One result of the domain analysis is a
conceptual domain model. It describes the concepts in a domain expressed in
some appropriate modeling formalism (e.g., using ontology languages [Gui05]
or domain-specific languages [WPSE10]).

The task of domain design is to develop an architecture for the systems
in the domain. Domain implementation follows after domain design. During
domain implementation several appropriate technologies to implement com-
ponents are applied.

7.1.2 Ontological Metamodeling

In this chapter we consider special kinds of models, namely conceptual domain
models, which describe the concepts of an existing or new application domain.
The conceptual domain model consists of both domain instances and domain
types, which classify the instances.

In contrast to linguistic instances (cf. Section 6.1.2) domain instances in
conceptual domain models are so-called ontological instances of domain types.
The hasType relation between domain instances and domain types is the on-
tological instantiation relation, which in contrast to the linguistic instanceOf
relation lies in one model. Within one conceptual domain model, domain types

7.1 Chapter Context 143

and domain instances are subsumed in layers, respectively. These layers are
called ontological layers.

Conceptual domain models are used in the domain analysis to describe the
problem domain a software system should support. Hence, conceptual domain
models are of descriptive nature. A schematic conceptual domain model is
depicted in the left column of Figure 7.2. It consists of domain instances, which
describe the system instances in the real world. All domain instances and
their relations build the ontological O1 layer, which is part of the conceptual
domain model. To classify domain instances, domain modelers define domain
types lying in the ontological O2 layer.

A conceptualization of the domain is represented by the O2 layer. The
design of a domain specific language inevitably requires conceptual domain
modeling. The derivation of a metamodel for a new modeling language is a
way to interpret the type layer in a domain model into a suitable form that
possesses pragmatic values [AZW06].

While the problem space is used to analyze a domain, the solution space
is responsible for the design of new system models representing systems from
the domain. The main differences to conceptual models are that they are
prescriptive, i.e., they prescribe the design of a system. Metamodels prescribe
the structure of models representing a system (cf. Section 6.1.2).

In software product line engineering, domain modelers identify the domain
types for given domain instances, language designers formalize them for a new
modeling language and application engineers (language users) use modeling
language to create models describing products within the domain [WL99].

In general a new language metamodel prescribes the structure of further
models describing system instances within the same domain.

For conceptual domain modeling, ontology languages are often considered
since they support the distinction between type and instance layer within one
model. Since domain modelers may not be experienced in the use of ontol-
ogy languages, they require domain-specific languages to describe conceptual
domain models with concepts and notations they are familiar with.

Figure 7.3 depicts an extended BEDSL model (a model of the business
entity domain-specific language (BEDSL) which consists of a type and an
instance layer. The new language BEDSL+DE provides the capability for
domain analysis. In the type layer of the model in Figure 7.3 the entities
Cisco, CiscoConfiguration, CiscoSlot, CiscoCard, HotSwappableOSM, and Su-
pervisor are defined. In the instance layer the domain instances cisco7603,
ciscoConfiguration7603, cisco7604, slot1, supervisor720, and supervisor360 are
defined.

Since a conceptual domain model consists of both domain instances and
domain types, instances can be classified by domain types via an explicit
hasType relation. In Figure 7.3, ciscoConfiguration7603 and slot1 are connected
via the hasType relation with the respective entities classifying them. In ad-
dition instances are linked with each other using references.

144 7 Conceptual Domain Engineering with Ontological Instantiation

Instance
layer

Real world
(domain)

linguistic instanceOf

system instances

represented by

Metamodel

System
model

Analysis
Problem Space

(descriptive)

Design
Solution Space
(prescriptive)

Conceptual domain model

Domain types

Domain instances

describe

ontological hasType

Type
 layer O2 layer:

O1 layer:

derived from

Figure 7.2. Relation between conceptual domain models and metamodels.

In [AK03], Atkinson and Kühne describe the capability of infrastructures
for model-driven engineering. One capability is to dynamically extend the set
of domain types available for describing the domain instances in the concep-
tual domain model (for instance by introducing a new domain type, e.g., Net-
gear). This requires the capability to define new types of instances. Atkinson
and Kühne refer to this as ontological metamodeling because it is concerned
with the description of concepts that exist in a certain domain and have dif-
ferent properties.

7.1.3 Chapter Road Map

Figure 7.4 represents the road map belonging to this chapter. In Section 7.2
we show how modeling languages must be extended to provide ontological
metamodeling. We present a generic extension for metamodels, which allows
for describing ontological instances and which must be integrated with that
of a (domain-specific) modeling language. In Section 7.3 we describe how to
integrate the OWL 2 ontology language with modeling languages providing
ontological metamodeling. The integrated ontology language allows for the
creation of hybrid models with descriptive expressions enriching a conceptual
domain model. Based on the underlying model-theoretic semantics of con-
ceptual domain models, different services are provided. The expressions are
presented in Section 7.4.1 and the services are presented in Section 7.4.2.

Section 7.5 concludes this chapter by presenting related work in the field
of conceptual domain modeling.

7.2 Extending Modeling Languages for Ontological Metamodeling 145

model DeviceModel {
// ontological domain type layer
entity Cisco {

reference hasConfiguration : CiscoConfiguration;
}

entity CiscoConfiguration {
reference hasSlot : CiscoSlot;

}

entity CiscoSlot {
reference hasCard : CiscoCard;
}

entity CiscoCard { }

entity HotSwappableOSM specializes CiscoCard { }

entity Supervisor { }

// ontological domain instance layer
instance cicso7603{

hasConfiguration ciscoConfiguration7603;
}

instance cisco7604 { }

instance ciscoConfiguration7603 hasType CiscoConfiguration{
hasSlot slot1;

}

instance slot1 hasType CiscoSlot {
hasCard supervisor360;
}

instance supervisor720 { }

instance supervisor360 { }
}

Figure 7.3. Device conceptual domain model.

7.2 Extending Modeling Languages for Ontological
Metamodeling

In this section we are going to show how to extend modeling languages with
the capability for designing conceptual domain models.

In particular we show how to extend the modeling language BEDSL (the
business entity domain-specific language presented in Section 5.1) to allow the
description of domain types and instances in conceptual domain models such
as the one shown in Figure 7.3.

To extend modeling languages with the capability for designing conceptual
domain models, the metamodel of a modeling language is integrated with a
generic metamodel for modeling ontological instances.

Figure 7.5 depicts the generic metamodel extension, which is represented
by the graph schema GSDE . Since we are in a graph-based technological space

146 7 Conceptual Domain Engineering with Ontological Instantiation

conformsTo

Hybrid Domain Model

Ontological Metamodel
Extension

projection Ontoware Model
(TGraph)

Domain Engineering
Services

integration DSL
Metamodel

set notation

OWL2 Metamodel
integration

Descriptive
Expressions

Metamodel
Layer

Model
Layer

Sec. 7.2

Sec. 7.4.2

Sec. 7.3

Sec. 7.4.1

Figure 7.4. Road map of Chapter 7.

ontological instances are structured as a directed graph. The metamodel allows
for describing ontological instances. They are connected by links and have
attributes assigned by a given value.

Figure 7.5. Metamodel extension GSDE for languages with ontological instantia-
tion.

To extend BEDSL with the capability for describing BEDSL models con-
sisting of entities and ontological instances, the BEDSL metamodel GSBEDSL

is integrated with the metamodel GSDE using the integration bridge.
In particular, the associateClasses service (cf. Table 5.8) is used by the

language designer to create three designated associations:

hasInstanceType: The association hasInstanceType allows for defining the has-
Type relation between a domain instance and an entity in a BEDSL+DE
model. Each instance has optionally one to many entities as domain types.

7.3 Integrating Ontological Metamodeling with Ontology Languages 147

hasLinkType: The association hasLinkType allows for defining the hasType re-
lation between a link and a reference in a BEDSL+DE model. Each link
has exactly one reference as type.

hasAttributeType: The association hasAttributeType allows for defining the
hasType relation between an attribute assignment and an attribute in a
BEDSL+DE model. Each attribute assignment has exactly one attribute
as type.

Figure 7.6 depicts an excerpt of the metamodel for the new BEDSL+DE
language represented by the graph schema GSBEDSL+DE . It allows for model-
ing explicit ontological instantiation relationships between instances and en-
tities, links and references, and attribute assignments and attributes, respec-
tively.

Figure 7.6. BEDSL+DE metamodel.

7.3 Integrating Ontological Metamodeling with Ontology
Languages

In this section we are going to show how to bridge ontology languages with
modeling languages allowing the design of conceptual domain models with two
ontological layer. We are going to show how to integrate a modeling language
for ontological metamodeling with the OWL 2 metamodel. We exemplify the
integration by bridging the new BEDSL+DE language with OWL 2.

148 7 Conceptual Domain Engineering with Ontological Instantiation

7.3.1 Integration Definition

The integration of BEDSL+DE with OWL 2 is an extension of the one pre-
sented in Section 5.3.1. We present the integration in three steps as introduced
in Section 5.3.

1. Mapping and Adaptation

The first step in the establishment of an integration bridge is a mapping
where language designers intensionally relate corresponding constructs of the
two languages to be integrated.

As mentioned the integration of BEDSL+DE and OWL 2 depends on the
one already shown in Section 5.3.1. Table 7.1 is an extension of Table 5.2
(which relates BEDSL with OWL 2).

] BEDSL+DE OWL 2

1. OntologicalInstance Individual

2. Link ObjectPropertyAssertion

3. AttributeAssignment DataPropertyAssertion

4. Value Literal

Table 7.1. Mapping of BEDSL+DE and OWL 2 (extension for Table 5.2).

As shown in Section 5.3.1 we use the adaptation of GSBEDSL to be ca-
pable of being integrated with GSOWL. In addition to the adaptations in
Section 5.3.1, the relation hasInstanceType in GSBEDSL+DE is materialized by
a separate class, because the type relation in OWL 2 is represented as an own
class (ClassAssertion) as well.

The adapted metamodel of the new variant of BEDSL is represented by
the graph schema GSa

BEDSL+DE . Together with GSOWL it is put into the
integration bridge constructor specified in Table 5.3.

b = new IntegrationBridge(GSa
BEDSL+DE , GSOWL);

b is the new integration bridge object, which encapsulates all metamodels
to be integrated and provides the respective services.

2. Metamodel Union

The second part of the integration consists of a simple metamodel union,
which constructs the initial integrated metamodel GSInt . It contains all ele-
ments (vertex classes, edge classes, attributes) of the two source metamodels
GSa

BEDSL+DE and GSOWL.

b.metamodelUnion();

7.3 Integrating Ontological Metamodeling with Ontology Languages 149

3. Integration Services

Since in Section 5.3.1 all integrations of BEDSL constructs with OWL 2
constructs are given, we are going to show how to integrate the additional
BEDSL+DE constructs for instance modeling with the constructs of the on-
tology language OWL 2. To do this we use the integration bridge object b,
which already encapsulates the integration of the BEDSL language constructs
with OWL 2 constructs as described in Section 5.3.1.

In the following we describe the integration of the BEDSL constructs for
defining instantiations of entities with the corresponding constructs OWL 2
provides. OntologicalInstance becomes a specialization of Individual. Both
classes are used to represent instances in BEDSL models and ontoware models,
respectively. HasInstanceType and ClassAssertion are combined using a special-
ization relationship, since both classes are used to define the instantiation of
an Entity to an instance and a ClassExpression to an individual, respectively.
In Step 27 and 28 the associations linking the above mentioned concepts are
integrated.

b.specializeClasses(OntologicalInstance, Individual) // (25)
b.specializeClasses(HasInstanceType, ClassAssertion) // (26)
b.specializeClasses(instantiatesEntity, instantiates); // (27)
b.specializeClasses(types, asserts); // (28)

Figure 7.7 illustrates the integration steps presented in the listing above
by showing the correspondent excerpt of GSInt .

Figure 7.7. Part of GSInt relevant for the instantiation of EntityClasses.

The next use of integration services builds the integration of the BEDSL+DE
constructs for defining instantiations of references with corresponding OWL 2
constructs. In particular, BEDSL+DE Link becomes a specialization of OWL 2
ObjectPropertyAssertion. Both describe the relation between two instances
with respect to some object property or reference, respectively. In steps 30 to
32 the concerns of the associations connecting Link and ObjectPropertyAsser-
tion with OntologicalInstance and Individual, and Reference and ObjectProper-
tyExpression, respectively, are integrated.

b.specializeClasses(Link, ObjectPropertyAssertion); // (29)
b.specializeClasses(comesFrom, definesSource); // (30)
b.specializeClasses(goesTo, definesTarget); // (31)
b.specializeClasses(hasLinkType, hasProperty); // (32)

150 7 Conceptual Domain Engineering with Ontological Instantiation

Figure 7.8 illustrates the integration steps presented in the listing above
by showing the correspondent part of GSInt .

Figure 7.8. Part of GSInt relevant for the instantiation of References.

The next listing describes the integration of the BEDSL+DE constructs
for defining instantiations of attributes with corresponding OWL 2 constructs
for defining data property assertions. In particular, BEDSL+DE Value be-
comes a specialization of OWL 2 Literal. Both describe an atomic value. The
attributes describing the value are merged in step 34. BEDSL+DE Attribute-
Assignment becomes a specialization of OWL 2 DataPropertyAssertion. Both
describe the relation between one instance and a literal value with respect to
some data property or attribute, respectively. In steps 36 to 38 the concerns
of the associations connecting AttributeAssignment and DataPropertyAssertion
with OntologicalInstance and Individual, and Attribute and DataPropertyExpres-
sion, respectively, are integrated.

b.specializeClasses(Value, LiteralEntry); // (33)
b.mergeAttributes(value, lexicalForm, ”lexicalValue”); // (34)
b.specializeClasses(AttributeAssignment, DataPropertyAssertion); // (35)
b.specializeClasses(hasAttributeAssignment, definesSourceIndividual); // (36)
b.specializeClasses(assigns, definesTargetLiteral); // (37)
b.specializeClasses(hasAttributeType, hasDataProperty) // (38)

Figure 7.9 illustrates the integration steps in the listing above by presenting
the corresponding part of GSInt .

7.3.2 Integration Use

The integrated metamodel (partially depicted in Figures 5.7, 5.8, 5.9, 7.7, 7.8,
and 7.9) allows for describing models such as the one shown in Figure 7.3.
In addition, after the integration with GSOWL, it allows for defining OWL 2-
based expressions and axioms in BEDSL+DE models.

Figure 7.10 shows an excerpt of a conceptual domain model, which is
enriched by OWL 2-based expressions. It is a hybrid conceptual domain model
and conforms to GSInt .

A feature of the integration bridge is its projection of hybrid models to
ontoware models. In Table 5.12 we specified the projection service, which got

7.4 Expressions and Services for Ontological Metamodeling 151

Figure 7.9. Part of GSInt relevant for the instantiation Attribute and AttributeAs-
signment.

model DeviceModel {
entity Cisco equivalentTo hasConfiguration only CiscoConfiguration{
reference hasConfiguration : CiscoConfiguration;
}

entity CiscoConfiguration equivalentTo hasSlot some CiscoSlot{
reference hasCiscoSlot : CiscoSlot;
}

entity CiscoSlot {
}

instance cisco7603 hasType Cisco {
hasConfiguration ciscoConfiguration7603;
}

instance ciscoConfiguration7603 hasType CiscoConfiguration {
}
}

Figure 7.10. Hybrid conceptual domain model (excerpt).

as input a hybrid model conforming to GSInt and projects it to an ontoware
model. Since all instantiation constructs are integrated with corresponding
OWL 2 constructs, the projection service allows for interpreting ontological
instances in hybrid models and projects them to individuals in the ontoware
model. In addition, instantiations of entities, references, and attributes are
projected to OWL 2 class assertions, object property assertions, and data
property assertions, respectively. In Figure 7.11 we exemplify the projection
of the hybrid conceptual domain model in Figure 7.10.

7.4 Expressions and Services for Ontological
Metamodeling

Besides the explicit hasType relation between a domain instance and a named
type, in Section 7.4.1 we also explain how to define anonymous types and
expressions covering type and instance layer. In Section 7.4.2 we present a set

152 7 Conceptual Domain Engineering with Ontological Instantiation

Ontology(DeviceModel

Declaration(Class(Cisco))
EquivalentClasses(Cisco ObjectAllValuesFrom(hasConfiguration CiscoConfiguration))

Declaration(Class(CiscoConfiguration))
EquivalentClasses(CiscoConfiguration ObjectSomeValuesFrom(hasSlot CiscoSlot))

Declaration(Class(CiscoSlot))

Declaration(ObjectProperty(hasCiscoSlot))

Declaration(ObjectProperty(hasConfiguration))

Declaration(Individual(cisco7603))
ClassAssertion(cisco7603 Cisco)
ObjectPropertyAssertion(hasConfiguration cisco7603 ciscoConfiguration7603)

Declaration(Individual(ciscoConfiguration7603))
ClassAssertion(ciscoConfiguration7603 CiscoConfiguration)
)

Figure 7.11. Ontoware model being the projection of the domain model in Fig-
ure 7.10.

of services that are used by domain modelers to validate conceptual domain
models and to retrieve implicit domain information.

7.4.1 Expressions for Domain Instances and Domain Types

Domain analysis is an iterative process. Domain instances are represented in
conceptual domain models and are classified by domain types. At the begin-
ning of domain engineering, the conceptual domain models are incomplete
because either instances are still not modeled or domain types and relations
are missing.

Anonymous Types of Domain Instances

If the set of domain types in conceptual domain models is incomplete, domain
modelers use OWL 2-based class expressions (representing anonymous types)
to assert existing domain instances. In the following example the instance
cisco7604 has an anonymous domain type describing those instances, which
have a configuration with a Supervisor card plugged into some slot.

instance cisco7604 hasType hasConfiguration some (hasSlot some (hasCard some Supervisor)) {
}

Class Expressions for Domain Types

To restrict domain types in conceptual domain models, domain modelers use
class axioms. Class axioms are used to link a domain type with a class expres-
sion, which restricts the instances of the domain type. In the following example

7.4 Expressions and Services for Ontological Metamodeling 153

the entity Cisco is defined as being equivalent with a class expression. It re-
stricts all domain instances of Cisco to be linked with a configuration, which
via hasSlot has a Supervisor card.

entity Cisco equivalentTo hasConfiguration some (CiscoConfiguration and hasSlot some (Slot and hasCard
some Supervisor)) {

reference hasConfiguration : CiscoConfiguration;
}

Expressions Covering Different Layers

Domain modelers are able to model type and instance layers within one con-
ceptual domain model. They need to model expressions covering both layers.

In the following example the entity Supervisor, which is a domain type, is
defined as being equivalent with the two instances supervisor720 and supervi-
sor360.

entity Supervisor equivalentTo {supervisor720, supervisor360} {
}

The following instance definition gives an example of an incomplete con-
ceptual domain model. Let us assume that the instances for the configuration
and the slots are missing in the conceptual domain model. A domain modeler
just describes the link of the instance cisco7603 to the instance supervisor720
as a type. The type represented as an anonymous class expression describes
those instances, which are linked via the chain of hasConfiguration, hasSlot,
and hasCard with the instance supervisor720.

instance cicso7603 hasType hasConfiguration some (hasSlot some (hasCard some {supervisor720})) {
}

7.4.2 Services for Domain Analysis

Domain modelers use services to validate conceptual domain models and to re-
trieve implicit information. These services are adopted on conceptual domain
models conforming to the metamodel of the BEDSL+DE+OWL language de-
signed in Section 7.3. All services we are going to present in the following are
part of the ConceptualDomainEngineering class. All services require as an in-
put an IntegrationBridge object, which encapsulates the integrated metamodel
GSBEDSL+DE+OWL and which provides the projection service to project mod-
els to ontoware models.

Domain Instance Classification

During the description of the domain there are instances existing in the con-
ceptual domain model without any domain type. Domain modelers require
the automatic classification of these instances to get their possible types.

154 7 Conceptual Domain Engineering with Ontological Instantiation

The service specified in Table 7.2 allows for determining of the domain
types that a domain instance has in a conceptual domain model conforming
to GSBEDSL+DE+OWL.

Name getDomainTypes Service

Signature Set<EntityClass> getDomainTypes(Model m, OntologicalInstance i, Inte-
grationBridge b)

Pattern S=ConceptualDomainEngineering.getDomainTypes(m, i, b)

Description returns the set S of named domain types, which classify the domain
instance i in the hybrid conceptual domain model m.

Table 7.2. getDomainTypes service.

The service uses the projection of m to an ontoware model mo and the
classification service in Table 3.9 to find all OWL classes describing some
individual iv (where iv is the projection of the instance i). For example, the
instance cisco7603 in Figure 7.3 together with the descriptions in Section 7.4.1
is classified as Cisco.

Domain Consistency Checking

Domain modelers may want to check the consistency of domain instances with
regard to their domain types. This ensures a correct domain description. The
domain consistency service is presented in Table 7.3.

Name Domain Consistency Service

Signature boolean isConsistent(Model m, IntegrationBridge b)

Pattern r=ConceptualDomainEngineering.isConsistent(m, b)

Description returns true if the domain instances in m are consistent with respect to
their domain types.

Table 7.3. Domain consistency service.

The service uses the projection of m to an ontoware model mo and the
consistency checking service in Table 3.7 to compute the consistency of mo .
For example, the instance cisco7605 (in a closed domain) as shown below,
which is directly linked via hasCard to the card supervisor720, leads to an
inconsistency in a conceptual domain model, because the Cisco device cannot
directly be linked with cards.

instance cisco7605 {
hasCard supervisor720;
}

7.4 Expressions and Services for Ontological Metamodeling 155

Domain Type Satisfiability Checking

Besides consistency of domain instances with regard to their types, domain
modelers may also want to check the satisfiability of domain types. This en-
sures that domain types are instantiable.

In Table 7.4 the service for checking the satisfiability of a domain type is
specified.

Name Domain Satisfiability Service

Signature boolean isSatisfiable(Model m, ClassExpression c, IntegrationBridge b)

Pattern b=ConceptualDomainEngineering.isSatisfiable(m, c, b)

Description returns true if the class expression c in m is satisfiable.

Table 7.4. Domain satisfiability service.

The service uses the projection of m to an ontoware model mo and the
satisfiability checking service in Table 3.8 for ce in mo (where ce is the pro-
jection of the entity e) For example, the entity Cisco defined in the following
is recognized as not being satisfiable by the service, because on the one hand
it must have a CiscoConfiguration, on the other hand it cannot have such
configuration.

entity Cisco equivalentTo (hasConfiguration only CiscoConfiguration) and not(hasConfiguration only
CiscoConfiguration) {

reference hasConfiguration : CiscoConfiguration;
}

Domain Instance Retrieval

Domain modelers may want to retrieve domain instances fulfilling a given
type description. The service specified in Table 7.5 returns a set of instances,
which are described by a given class expression.

Name Domain Instance Retrieval Service

Signature Set<OntologicalInstance> retrieveDomainInstances(Model m, ClassEx-
pression c, IntegrationBridge b)

Pattern S=ConceptualDomainEngineering.retrieveDomainInstances(m, c, b)

Description returns the set of domain instances that are classified by the class ex-
pression c.

Table 7.5. Domain instance retrieval service.

The instance retrieval service uses the projection of m to an ontoware
model mo and puts all instances into the set if their projection is classified by
the class expression. The following class expression used to retrieve instances

156 7 Conceptual Domain Engineering with Ontological Instantiation

returns those, which are linked via the chain of hasConfiguration, hasSlot, and
hasCard with the domain instance supervisor720. For the examples given above,
the retrieval service returns the instance cisco7603.

hasConfiguration some (hasSlot some (hasCard some {supervisor720}))

7.5 Related Work

In the following we compare the approaches presented in this chapter with
related work. We depict related work on foundations of infrastructures for
model-driven engineering. In addition we give some related work, which deals
with ontological metamodeling.

Already in 2003, Atkinson and Kühne defined requirements of model-
driven development infrastructures. Besides requirements for defining abstract
syntax, concrete syntax and semantics within the infrastructure, they suggest
to consider the dimensions of language engineering and domain engineering
[AK03]. As proposed in [AK03] we provide the facility to build types and
instances at the same model layer and thus allow for dynamically extending
the set of domain types available for modeling.

In [LK09] a metamodeling language is presented, which allows for build-
ing ontological theories as a base for modeling languages from the philosoph-
ical point of view. The metametamodel consists of elements for individuals
and universals (types) and in addition provides a textual concrete syntax.
In addition to this approach, we provide formal semantics in particular for
the hasType relation, since the metamodel elements are integrated with the
OWL 2 metamodel.

In [GOS07] an ontological metamodel extension for generative architec-
tures (OMEGA) is described as an extension to the MOF 1.4 metamodel that
allows for ontological metamodeling. The core addition to the original MOF
model is the introduction of concepts for MetaElement and Instance, which
form the basis for all instantiations. In fact, the hasType relation between
instances and meta-elements is implemented by a simple UML association,
which does not provide any semantics to further tools.

7.6 Conclusion

In this chapter we presented an approach to support conceptual domain mod-
eling with ontology technologies. We answered RQ 9 and RQ 10, asking for the
structure of languages for conceptual domain modeling and how to combine
them with ontology languages. Therefore, we first had to define which model-
ing languages allow for conceptual domain modeling. We presented a generic
approach for extending class-based modeling languages to support the defi-
nition of types and their instances within one conceptual domain model. To

7.6 Conclusion 157

support conceptual domain modeling by ontology technologies, we used the
integration bridge to allow the design of conceptual domain models together
with ontology-based descriptions of types and instances. Based on the formal
representation of projected conceptual domain models by ontoware models,
several services are provided for validating and supporting conceptual domain
modeling.

Part IV

Applications

8

Domain-Specific Modeling Environments

Modeling environments play an important role in domain-specific develop-
ment. These environments support the design and use of domain-specific lan-
guages.

In this chapter we report on an application of the integration bridge pre-
sented in Section 6.2. We illustrate the use of ontology technologies to describe
DSLs for network device series. The formal semantics of OWL 2 together with
reasoning services allow for addressing (1) constraint definition, (2) sugges-
tions, and (3) debugging. Based on a scenario provided by the Polish IT
company Comarch, we show how to design metamodels for domain-specific
languages where additional constraints and semantics of the languages are
formulated by integrated ontology-based annotations. We are going to answer
the question:

RQ11: How do ontology technologies support the design and use of domain-
specific modeling languages?

8.1 Chapter Context

As introduced in Section 2.2.1 and 2.2.2 all models are formally represented
by a TGraph and all metamodels are formally represented by a graph schema.

8.1.1 Reused and Adopted Technologies and Approaches

The metamodeling languages considered in this chapter are used in an inte-
grated manner together with the ontology language OWL 2. Therefore, we
rely on the integration bridge introduced in Section 5.3 and its extension
for linguistically instantiable models presented in Section 6.2. The integra-
tion bridge provides a mechanism to project metamodels with ontology-based
annotations plus conforming instance models to one ontoware model. Meta-
models are defined using the Ecore+OWL language. The language allows for

162 8 Domain-Specific Modeling Environments

defining Ecore-based metamodels, which may have ontology-based annota-
tions as presented in Section 6.3.1. For the debugging of domain models we
rely on the services for inconsistency management in Section 6.3.2.

8.1.2 Chapter Road Map

Figure 8.1 depicts the road map belonging to this chapter. In Section 8.2 we
present a case study where network device series are designed by language
users. They use a domain-specific language to describe a device series in a
domain model. Language users rely on a DSL whose metamodel is presented
in Section 8.3. To design a metamodel with integrated ontology-based restric-
tions and axioms, we use the Ecore+OWL metamodeling language (cf. Sec-
tion 6.2.1). Given an ontoware model being the projection of metamodel and
domain model we illustrate how to support domain modeling with ontology
technologies in Section 8.4.

conformsTo

conformsTo

Domain Model

Ontoware
Model

projection

Domain-Specific
Services

Metametamodel
Layer

Metamodel
Layer

Model
Layer

DSL Metamodel

set notation

Ecore+OWL
Metametamodel

Ecore part

OWL2 part

set notation

projection

Sec. 8.3

Sec. 8.2

Sec. 8.4

Figure 8.1. Road map of Chapter 8.

8.2 Case Study

Domain-specific languages (DSLs) are used to model and develop systems of
a specific application domain. Such languages are high-level and provide ab-
stractions and notations for better understanding and the easier modeling of
applications in a special domain. A variety of different domain-specific lan-
guages are used to develop one large software system. Each DSL focuses on

8.2 Case Study 163

different problem domains and as far as possible on automatic code genera-
tion [KT07].

Domain-specific languages are designed by DSL designers. The developed
DSL is used by the domain experts to build domain models describing the
domain of a software system. The domain models they create are represented
in a visual concrete syntax.

In the scenario we detect goals, which are related to the design and use
of domain-specific languages and to the challenges presented in Section 1.1.3.
Goals in this section capture the various objectives for the design and use of
DSLs a modeling environment should target [vL01].

8.2.1 Scenario

Comarch1, one of the industrial partners in the MOST project2, has provided
the scenario for domain-specific modeling. The company is specialized in de-
signing, implementing and integrating IT solutions and services for operations
support system (OSS) used by telecommunication providers [Com11]. For soft-
ware development, Comarch uses model-driven methods with different kinds
of domain-specific languages being deployed during the modeling process.

Comarch develops a domain-specific language to model series of physical
network devices. For example, the Cisco 7600 series is a series of large network
routers designed and manufactured by Cisco Systems3. Figure 8.2.1 depicts
three possible routers of the Cisco 7600 series. The general structure of all
devices of every series consists of a bay, which has a number of shelves. A
shelf contains slots into which cards can be plugged. For example, the router
Cisco 7609 in the middle of Figure 8.2.1 has 9 slots of which all are allocated.
Logically, a shelf with its possible slots and cards is stored as a configuration.
In general, a series is represented by a device type and describes a set of
network routers. A device series is described by a specific configuration type.
Each configuration type requires a set of specific card types plugged into an
appropriate slot type.

DSL designers at Comarch design a DSL to model different device types
(e.g., to model the type of the Cisco 7600 series). The goal of DSL designers is
to formally describe the logical structures of the configuration types. (Goal 1).

Figures 8.3 to 8.7 depict five steps of the development of the configuration
type for the Cisco 7600 series. We have chosen a graphical concrete syntax,
which is taken from the MOST workbench. The MOST workbench (cf. Sec-
tion 10.1.4) implements the support of domain modeling with ontology tech-
nologies. The graphical syntax consists of shapes, which represent elements
in domain models. These elements are instances of classes in the metamodel.
The name of the class, which is instantiated, is mentioned within the model
element.
1 http://www.comarch.com/
2 http://www.most-project.eu/
3 http://www.cisco.com/

http://www.comarch.com/
http://www.most-project.eu/
http://www.cisco.com/

164 8 Domain-Specific Modeling Environments

Figure 8.2. Devices of the Cisco 7600 Series [Cis04].

Firstly (step 1, Figure 8.3), the domain expert starts with an instance
of the general concept DeviceType representing a device series. All devices of
the Cisco 7600 series require at least one configuration. Thus he plugs in a
ConfigurationType element into the device.

Dev iceType

Cisco7600

ConfigurationType

Figure 8.3. Step 1: Creating initial domain model for a new device type.

8.2 Case Study 165

In step 2 (Figure 8.4) the domain expert adds exactly three slot types to
the configuration type for the Cisco series. At this point the domain expert
verifies whether the configuration satisfies the DSL restrictions. Although the
domain model is incomplete, it is not inconsistent. Thus queries against it are
possible asking if the domain model consists of at least one configuration with
at least one slot.

Dev iceType

Cisco7600

ConfigurationType

SlotType

SlotType

SlotType

Figure 8.4. Step 2: Adding slots to the configuration.

After adding three slot types to the configuration type, the domain expert
plugs in some card types to complete the end product (step 3, Figure 8.5).
He inserts two LineCards (which represent the type of cards for port connec-
tivity and service modules) and one PortAdapter (which represent the type of
cards to enable services for voice, video and data transfer). At this point the
domain expert wants to check the consistency of his configuration type by
invoking the corresponding functionality. In the example, the domain model
in step 3 (cf. Figure 8.5) is inconsistent because the mandatory processor card
type is missing. The domain expert requires debugging support and needs an
explanation why his model is inconsistent and how to correct it (Goal 3).

Dev iceType

Cisco7600

ConfigurationType

SlotType

LineCard

SlotType

LineCard

SlotType

PortAdapter

Figure 8.5. Step 3: Plugging card types into slots and checking the consistency.

166 8 Domain-Specific Modeling Environments

In step 4 (cf. Figure 8.6) an explanation service would explain that every
device type requires some Processor card to control the device and that one
of the three card types must be replaced by it (Goal 2).

Dev iceType

Cisco7600

ConfigurationType

SlotType

Processor

SlotType

LineCard

SlotType

PortAdapter

Figure 8.6. Step 4: Repairing the domain model.

The DSL defines the knowledge to which special types of cards are re-
quired and allowed by a specific configuration. Having the information that a
configuration type in step 5 (cf. Figure 8.7) is connected with three slots in
which some Processor and at least some LineCard or PortAdapter is plugged in,
the refinement of the Configuration type to the more specific type WANCon-
figuration is recommended to the domain expert (Goal 2) by the environment.
Since it was inferred that the device type has a WANConfiguration, in step 5,
the recommendation service also suggests to change the type of the Device
element to the more specific type InternetRouter.

InternetRouter

Cisco7600

WANConfiguratio
n

SlotType

Processor

SlotType

LineCard

SlotType

PortAdapter

Figure 8.7. Step 5: Automatic classification of domain model elements.

8.3 Application of Bridging Approaches 167

8.2.2 Goals and Relations to Challenges

We concentrate on the goals derived from the scenario and relate them to
the challenges presented in Section 1.1.3. The should be targeted by domain-
specific modeling environments and are classified with regard to the two actors
concerned: DSL designer and domain expert. First of all we will present the
DSL designer’s goals:

1. Constraints and Semantics Definition: The DSL development envi-
ronment should allow for defining seamlessly integrated constraints over
the DSL metamodel. DSL designers have to define formal semantics of the
DSL and constraints, which elements in domain models have to fulfill.
Related challenges: 1, 2

The following goals concern the domain expert:

2. Suggestions for suitable domain concepts: Domain experts need sug-
gestions for domain concepts to be used because they may not be familiar
with all concepts the DSL provides. Domain experts normally commence
modeling with generic concepts such as DeviceType or ConfigurationType
(especially if they are first-time users of the DSL). The environment sug-
gests the refinement of elements to the most suitable ones such as WAN-
Configuration or InternetRouter (step 5). Such classifications together with
explanations help novice domain experts to understand how to work with
the DSL.
Related challenge: 3

3. Debugging: Domain experts debug their domain models to find errors
they may contain and to get an explanation on how to correct the model.
They would like have information about any consequences of applying
given domain constructs. In the scenario, domain experts want to know
whether they have to replace the LineCard card type with a Processor card
type (step 3).
Related challenge: 3

Goal 1 exemplifies Challenge 1 and 2. To support the definition of con-
straints and semantics an appropriate language must be considered and
bridged with languages DSL designers are familiar with. To offer suggestion
and debugging services, the modeling environment for domain experts must
provide appropriate services. These three goals are related to Challenge 3.

8.3 Application of Bridging Approaches

Modeling environments at Comarch are based on the tool-ready and reusable
implementation of Ecore [SBPM08]. Most of the DSL metamodels at Comarch
are defined by the Ecore metamodeling language [MK08, KMS09]. To support

168 8 Domain-Specific Modeling Environments

the aforementioned goals and to be compatible with existing tools, we propose
to build a modeling environment, which provides an integration of the Ecore
language [SBPM08] and the OWL 2 language (cf. Section 3.3.1).

DSL designers define the abstract syntax of a domain-specific language by
designing a metamodel. They require a concrete syntax to model the meta-
models together with embedded constraints.

8.3.1 Integration Definition

The integration of Ecore and OWL 2 is presented in Section 6.2.1. The result
is an integrated metametamodel describing the abstract syntax of a language
to define new language metamodels with seamlessly embedded OWL annota-
tions.

The integrated metametamodel is presented in Figures 6.5, 6.6, and 6.7.
Table 8.1 gives an overview of the constructs being integrated.

] Ecore OWL 2

1. Metamodel Ontology

2. Class Class

3. Datatype Datatype

4. Reference ObjectProperty

5. Attribute DataProperty

6. Enumeration DataOneOf

7. Literal Literal

8. hasSuperType SubClassOf

Table 8.1. Integrated Ecore and OWL 2 construcs.

8.3.2 Integration Use

Given an integrated metamodeling language as built in Section 6.2.1, DSL
designers are able to design hybrid metamodels.

DSL designers at Comarch rely on the languages and concrete syntaxes
they are familiar with. Hence, we provide the Java-like KM3-syntax [JB06]
(a concrete syntax for Ecore [SBPM08]) with an integrated OWL syntax.
DSL designers are able to describe classes in DSL metamodels seamlessly
integrated with OWL axioms and expressions. The grammar of the textual
concrete syntax of the Ecore+OWL language is given in the Appendix A.4.

In Figure 8.8 we depict an excerpt of the metamodel of the Physical Device
DSL (PDDSL) in concrete syntax. The metamodel is a hybrid model, which
is an instance of the metamodel GSEcoreOWL.

Using the KM3 syntax, the DSL designer defines that a DeviceType is
linked with ConfigurationTypes, an InternetRouter is a specialization of De-
viceType, each ConfigurationType has SlotTypes and in each SlotType different

8.3 Application of Bridging Approaches 169

card types can be plugged in. All specific configuration types and card types
are specializations of ConfigurationType and CardType, respectively. In Sec-
tion 8.4.1 we comment on the additional axioms modeled with the integrated
ontology language.

package PDDSL {
class DeviceType {
reference hasConfiguration [1−∗]: ConfigurationType;
}

class InternetRouter extends DeviceType, equivalentTo hasConfiguration min 1 (VoiceConfiguration or
WANConfiguration) {

}

class ConfigurationType extends (hasSlot some (hasCard some Processor)){
reference hasSlot [1−∗]: SlotType;
}

class VoiceConfiguration extends ConfigurationType and (hasSlot only (hasCard only (not LineCard))),
equivalentTo hasSlot some (hasCard some VoiceInterface) {

}

class WANConfiguration extends ConfigurationType, equivalentTo (hasSlot min 3 SlotType) and (
hasSlot some (hasCard some (LineCard or PortAdapter))) {

}

class SlotType {
reference hasCard [0−∗]: CardType;
}

class CardType {
}

class Processor extends CardType {
}

class PortAdapter extends CardType and (inv(hasCard) some (inv(hasSlot) some (ConfigurationType
and hasSlot some (hasCard some Processor)))) {

}

class LineCard extends CardType {
}

class VoiceInterface extends CardType and (inv(hasCard) only (inv(hasSlot) only (ConfigurationType
and hasSlot only (hasCard only (not LineCard))))) {

}
}

Figure 8.8. Metamodel of the Physical Device DSL.

Besides hybrid metamodeling the projection of a metamodel and a model
is also required. We reuse the service presented in Table 6.3. It gets as input a
hybrid metamodel and a domain model. The output of the projection service
is an ontoware model. It represents both, the DSL metamodel with its OWL
annotations and the instance model. The ontoware model is used by reasoning
tools and is the basis for all services provided to designers and users.

170 8 Domain-Specific Modeling Environments

8.4 Accomplished Goals

Now that we have presented the application of the Ecore+OWL integration
bridge we will show how the goals stated in Section 8.2.2 are accomplished.

8.4.1 Constraints for Configuration Types (Goal 1)

In Figure 8.8 a DSL designer builds the metamodel of the PDDSL language
using integrated Ecore+OWL metamodeling language. Besides the structure
of devices, the DSL designer also defines constraints in the metamodel. There-
fore, he uses the integrated OWL 2 language (an adaptation of the Manchester
Style syntax [HPS09]), which is integrated with the existing KM3 syntax. In
Figure 8.8 the designer states that every InternetRouter device has at least one
VoiceConfiguration or WANConfiguration. A ConfigurationType is a WANCon-
figuration if and only if it is linked with at least three slot types in which either
a LineCard or a PortAdapter card type is plugged in. A ConfigurationType is
a VoiceConfiguration if and only if it has a slot in which a VoiceInterface is
plugged in.

In addition, DSL designers are able to define the following restrictions over
configurations and cards:

Required Card Types: All possible configuration types require that a Processor
card is plugged in:

class ConfigurationType extends (hasSlot some (hasCard some Processor))

Disallowed Card Types: The VoiceConfiguration type disallows the use of Line-
Cards:

class VoiceConfiguration extends ConfigurationType and hasSlot only (hasCard only (not LineCard))

Card Type Inclusion: If the card type PortAdapter is part of a configuration
type then this configuration type must also implement the processor card
type:

class PortAdapter extends CardType and (inv(hasCard) some (inv(hasSlot) some (
ConfigurationType and hasSlot some (hasCard some LineCard))))

Card Type Exclusion: If the card type VoiceInterface is part of a configuration
then LineCards are disallowed:

class VoiceInterface extends CardType and (inv(hasCard) only (inv(hasSlot) only (ConfigurationType
and hasSlot only (hasCard only (not LineCard)))))

8.4.2 Formal Semantics (Goal 1)

The Ecore language has model-theoretic semantics. Ecore adopts the seman-
tics of the integrated ontology language. Hence, elements in a PDDSL meta-
model have a formal meaning. A class in the PDDSL metamodel describes a

8.4 Accomplished Goals 171

set of instances in the domain model. A reference in the PDDSL metamodel
describes a set of links between instances of a corresponding type. Attributes
in the metamodel describe links between instances and values in the domain
model. Reasoning based on the semantics is possible after the projection of
metamodel and model to one ontoware model.

8.4.3 Debugging and Suggestions (Goal 2 and 3)

To accomplish the goals for debugging and suggestions, domain experts are
able to use the services for inconsistency management and suggestions as
presented in Section 6.3.2.

Figure 8.9 depicts a domain model, which is incomplete because the
mandatory VoiceInterface card type for the VoiceConfiguration is missing. Fur-
thermore a LineCard is already inserted.

Dev iceType

DeviceType

VoiceConfiguratio
n

Slot

LineCard

Slot

Slot

Figure 8.9. Incomplete and inconsistent domain model.

To detect inconsistencies in models, domain experts consider the inconsis-
tency detection service specified in Table 6.5. For the model in Figure 8.9 the
service returns false because the model is not consistent.

The reason for the model not being consistent depends on the VoiceIn-
terface card type which excludes the LineCard (cf. the PDDSL metamodel
in Figure 8.8). Although the VoiceInterface card type is not part of the cur-
rent configuration, the reasoner assumes this fact, since it is required for each
VoiceConfiguration. In an open world reasoners assume missing facts in models
as default, which are described in metamodels. Domain experts are interested
in the elements affecting the inconsistency. The inconsistent elements service
specified in Table 6.6 returns the set { voiceconfiguration, slot1, linecard}.
In a development environment, these elements are highlighted in the editor
to show the part of a model which is not consistent. To get suggestions for
valid card types in configurations, domain experts consider the type suggestion
service specified in Table 6.7. For example, for the instance of type LineCard

172 8 Domain-Specific Modeling Environments

the service suggests the possible type VoiceInterface and all other card types,
which do not contradict the configuration.

8.5 Conclusion

In this chapter we presented the application of ontology technologies to design
and use domain-specific languages.

Before answering RQ 11, asking for the use of ontology technologies in
domain-specific modeling, we presented a scenario where network device series
are designed. The creation of a domain model is achieved by DSL experts
using a physical device domain-specific language (PDDSL). To design a DSL,
which specifies the different valid configurations of a network device series, we
use the Ecore+OWL metamodeling language. In the scenario OWL 2 helps
to specify the logical restrictions for configuration types of network devices
series. The integration bridge combining the Ecore language with OWL allows
for projecting the DSL metamodel and conforming domain models to one
ontoware model. Given such an ontoware model, language users benefit from
the generic inconsistency management API, which is based on the ontoware
reasoning services.

9

Joint Language and Domain Engineering

In this chapter we join the concerns of language engineering and conceptual
domain engineering towards a new comprehensive approach of domain-specific
development. It allows domain modelers to build domain models containing
both types and instances, and it allows language designers to define language
metamodels prescribing the structure of conceptual domain models. We an-
swer the question:

RQ12: Is there a metamodeling language that features the joint design of
metamodels and conceptual domain models?

9.1 Chapter Context

In this chapter all models are formally represented by a TGraph (cf. Sec-
tion 2.2.1) and all metamodels are formally represented by a graph schema
(cf. Section 2.2.2).

9.1.1 Reused and Adopted Technologies and Approaches

To achieve the capability for conceptual domain engineering, we extend the
metamodels as described in Section 7.2. This extension allows for defining
an explicit ontological instantiation relationship in conceptual domain mod-
els. This relationship connects ontological instances, i.e., vertices, edges, and
attribute assignments, with the respective types.

9.1.2 Chapter Road Map

Figure 9.1 depicts this chapter’s road map. In Section 9.2 we extend the do-
main models from Section 8.2. Here we consider conceptual domain models
consisting of domain types and domain instances related by an ontological
hasType relationship. Such conceptual domain models are designed by domain

174 9 Joint Language and Domain Engineering

modelers. To prescribe the structure of conceptual domain models, prescrip-
tive metamodels are defined, which consist of metatypes and metainstances.
Conceptual domain models and the metamodel are related by the linguistic
instanceOf relationship. In Section 9.3 we present a metamodeling language,
which allows for the joint definition of metamodels and conceptual domain
models and the explicit definition of a linguistic and ontological instantiation
relationship. Language designers using the metamodeling language can de-
sign DSL metamodels at the metamodel layer, which is related to language
engineering. Domain modelers and language users are able to create domain
models containing both domain types and instances. Domain models lie at
the model layer and must conform to DSL metamodels via the linguistic in-
stanceOf relationship.

Ecore+Instance+OWL Metamodel
(grUML Diagram)

set notation

DSL Metamodel

Conceptual domain model

conformsTo

linguistic instanceOf

domain types domain instances

domain metatypes domain metainstances

Sec. 9.3

Sec. 9.2

Sec. 9.2
Model
Layer

Metamodel
Layer

Metametamodel
Layer

Joint model for
metamodel

and
domain model

Figure 9.1. Road map of Chapter 9.

9.2 Case Study

In this section we start with an introduction of an application context, which
introduces the different dimensions of metamodeling and roles used in this
section. Afterwards we present a scenario where we extend the PDDSL lan-
guage to provide the definition of conceptual domain models consisting of an
explicit ontological instantiation relation.

9.2 Case Study 175

In Section 8.3 we presented the design of the metamodel of PDDSL by
language designers using the Ecore+OWL metamodeling language. Language
users consider PDDSL to create domain models, which are composed of lin-
guistic instances of the elements given in the metamodel.

In this case study we are going to extend the PDDSL language, since we
discovered that language users want to model both, the series (e.g., the Cisco
7600 series) and in addition concrete devices of this series (e.g., the Cisco
7603). Thus, we extend PDDSL to define conceptual domain models with two
ontological layers.

9.2.1 Application Context and Roles

Language designers using MDD environments require the facility to define
the abstract syntax, at least one concrete syntax and the semantics of the
language to be designed. From the language engineering perspective and with
respect to Figure 9.2(a), linguistic instantiation supplies a linear metamod-
eling hierarchy [AK01]. The metametamodel is instantiated by the language
designer to define the metamodel. The metamodel itself is instantiated by a
language user to built domain models.

For example, the metatype elements and the metainstance elements in the
metamodel are linguistic instances of the metametamodel element class. type
elements and instance elements in the domain model are linguistic instances
of the metatype element and metainstance element at the metamodel layer.

In Figure 9.2(b) the elements of Figure 9.2(a) are exemplified by con-
crete model elements from the domain of network devices (cf. Section 8.2.1).
Here, DeviceType is a metatype and a possible linguistic instance of Device-
Type is Cisco7600. On the right of Figure 9.2(b) we have DeviceInstance as
a metainstance. A linguistic instance of DeviceInstance is cisco7603 at the
domain models layer.

At the domain model layer a domain modeler defines two ontological lay-
ers (O2 and O1) within his domain model. He defines type elements (at O2),
corresponding instance elements (at O1), and connects them by an ontolog-
ical hasType relation. The relation itself is defined in the metamodel, which
strongly prescribes the design of domain models (e.g., types cannot be con-
nected to other types via hasType). With regard to Figure 9.2(b), Cisco7600 is
a domain type, which has a domain instance called cisco7603 via an ontological
hasType relation. The hasType relation between a DeviceType and a Device-
Instance is defined at the metamodel layer. Furthermore, a domain modeler
can specialize domain types by creating subclass relationships, or vice versa,
subsume given domain types by one super type.

We are going to present a scenario provided by Comarch. The scenario
exemplifies Figure 9.2. It shows how the elements metatype, metainstance,
type, and instance are defined in a metamodel and domain model and how the
instantiation relations are modeled.

176 9 Joint Language and Domain Engineering

metainstance
Metamodel

(Language designer)

Domain model
(Domain designer /

Language User)

metatype

O2 Ontological Layer O1 Ontological Layer

type instance

Metametamodel class

linguistic instanceOf

linguistic instanceOflinguistic instanceOf

ontological
metaHasType

ontological
hasType

(a) Application context in general

DeviceInstance
Metamodel

(Language designer)

Domain model
(Domain designer /

Language User)

DeviceType

O2 Ontological Layer O1 Ontological Layer

Cisco7600 cisco7603

Metametamodel class

linguistic instanceOf

linguistic instanceOflinguistic instanceOf

ontological
metaHasType

ontological
hasType

(b) Example of application context

Figure 9.2. Linguistic and ontological metamodeling.

9.2.2 Scenario

As mentioned in Section 8.2.1, Comarch is specialized in software for telecom-
munication providers. Some of the tools that Comarch develops for telecom-
munication providers are dealing with the modeling of physical network de-
vices. This is a domain-specific task since different configurations of network
devices have to be modeled (cf. Section 8.2.1).

The following language metamodel (Figure 9.3) and domain model (Fig-
ure 9.4) are designed using a textual concrete syntax, which is based on an
extended KM3 syntax [JB06].

9.2 Case Study 177

Explicit Modeling of Ontological and Linguistic Instantiation
Relationship

The domain of physical network devices as shown in Section 8.3 is described
by a DSL, which provides the core metatypes such as DeviceType, Configura-
tionType, SlotType and CardType with respective specializations.

Comarch language designers want to provide the facilities of conceptual
domain modeling to language users and domain modelers. Thus, they have to
provide a language, which allows for creating domain types and instances in
domain models. Furthermore, the ontological instantiation relation must be
explicitly defined.

Metatypes together with the connecting metareferences describe the gen-
eral structure of a network device and are defined in a metamodel, which is
depicted in Figure 9.3. In the same metamodel the Comarch language designer
defines metainstances using the metainstance-keyword. Here the ontological
instantiation relation is defined by the metaHasType-keyword.

A domain model is depicted in Figure 9.4 and consists of linguistic in-
stances of model elements in the metamodel. Here both domain types and in-
stances are defined using the type- and instance-keyword. Using the instanceOf-
keyword, each domain type and domain instance is defined as a linguistic in-
stance of a corresponding metatype and metainstance. For example, domain
type Cisco7600 is a linguistic instance of DeviceType, while supervisor720 is a
linguistic instance of CardInstance.

A mandatory task in the creation of domain models is the definition of an
explicit hasType relation between instances and domain types. In the example
in Figure 9.4, a domain modeler uses the hasType-keyword to define that the
ontological instance supervisor720 has the named type CiscoCard. References
such as hasSlot in the type definitions on the one hand represent links, which
are linguistic instances of corresponding references in the metamodel, on the
other they define new references for links between ontological instances.

In addition, expressions based on the ontology language OWL 2 are defined
in the metamodel to prescribe the domain models (cf. Section 6.3.1) or to de-
scribe the domain (cf. Section 7.4.1). For example, in Figure 9.3 an equivalent
classes axiom is used to define that each configuration type instance must be
linked with at least some card via some slot.

Combination of Language Engineering and Domain Engineering

To ensure the correctness of domain models, Comarch wants to prescribe the
design of each domain model. The core domain should be described by a DSL,
which is used by domain modelers and language users to build domain models.
So far the DSLs designed by Comarch do not allow for the creation of both
types and instances in the domain model. To accomplish the prescription of
the design of domain models, a Comarch language designer wants to describe
DSLs in such a way as described in Figure 9.3. Here a metamodel of the

178 9 Joint Language and Domain Engineering

metatype DeviceType {
metareference hasConfiguration [1−1]: ConfigurationType;
}

metatype ConfigurationType equivalentTo hasSlotType some (hasCardType some CardType){
metareference hasSlot [1−∗]: SlotType;
}

metatype SlotType {
metareference hasCard [0−∗]: CardType;
}

metatype CardType {
}

metatype Processor extends CardType {
}

metatype LineCard extends CardType {
}

metainstance DeviceInstance metaHastype DeviceType {
metalink hasConfigurationInstance [1−∗]: ConfigurationInstance;
}

metainstance ConfigurationInstance metaHastype ConfigurationType {
metalink hasSlotInstance [1−∗]: SlotInstance;
}

metainstance SlotInstance metaHastype SlotType {
metalink hasCardInstance [0−∗]: CardInstance;
}

metainstance CardInstance metaHastype CardType {
}

Figure 9.3. Metamodel of the extended PDDSL.

extended PDDSL is depicted, which not only allows for the description of the
core domain of physical network devices, it also distinguishes between domain
types and instances.

Language users and domain modelers use PDDSL and create linguis-
tic instances, which build the conceptual domain model depicted in Fig-
ure 9.4. Thus, every domain model consists of domain types (using the type-
keyword) and corresponding instances (using the instance-keyword). Further-
more, each complete device has to follow the given structure of the order
device-configuration-slot-card and must contain at least one card, which is
prescribed by the DSL. Without a DSL that prescribes the design of domain
models, a second domain modeler would be able to create domain models,
which describe devices containing elements in the order device-slot-card. Such
models of the same domain are not comparable with other domain models
and not capable of being integrated.

9.2 Case Study 179

type Cisco7600 instanceOf DeviceType {
reference hasConfiguration [1−1]: Cisco7600Configuration;
}

type Cisco7600Configuration instanceOf ConfigurationType equivalentTo hasSlot some hasCard some
Supervisor {

reference hasSlot [1−∗]: CiscoSlot;
}

type Cisco7600Slot instanceOf SlotType {
reference hasCard [0−∗]: CiscoCard;
}
type Cisco7600Card instanceOf CardType { }
type HotSwappableOSM instanceOf LineCard, extends Cisco7600Card { }
type Supervisor instanceOf Processor, equivalentTo oneOf(supervisor720, supervisor360) { }

instance cicso7603 instanceOf DeviceInstance{
hasConfiguration cicso7603configuration;
}

instance cisco7604 instanceOf DeviceInstance, hasType restrictionOn hasSlot with some restrictionOn
hasCard with some Supervisor {

}

instance cicso7603configuration instanceOf ConfigurationInstance, hasType Cisco7600Configuration{
hasSlot slot1;
}

instance slot1 instanceOf SlotInstance, hasType Cisco7600Slot {
hasCard supervisor360;
}
instance supervisor720 instanceOf CardInstance, hasType Cisco7600Card { }
instance supervisor360 instanceOf CardInstance, hasType Cisco7600Card { }

Figure 9.4. Conceptual domain model containing types and instances.

9.2.3 Goals and Relations to Challenges

Given the scenario above we identified two goals a modeling environment
should target:

1. Explicit Modeling of Ontological and Linguistic Instantiation
Relationship: To create elements in a conceptual domain model, domain
modelers and language users require a (domain-specific) language whose
abstract syntax is represented by a metamodel. This language should pre-
scribe the design of conceptual domain models and provide a linguistic
instantiation mechanism for the design of types and instances in domain
models. In addition domain modelers require explicit modeling of an on-
tological instantiation relationship. It allows for assigning a conforming
domain type to domain instances in the domain model.

2. Combination of Language Engineering and Domain Engineering:
A second goal is related to the joint use of linguistic and ontological in-
stantiation. The problem in using pure DSLs, which only allow for creating
linguistic instances of elements in the metamodel, is a lack of flexibility in
dynamically extending the set of domain types in domain models. Domain

180 9 Joint Language and Domain Engineering

modelers call for the capability to define or extend the set of domain types
for modeling domain instances. This requires the simultaneous definition
of types and instances in one domain model. Here an appropriate language
metamodel is needed, which provides concepts to allow for defining both
types and instances.
On the other hand, since pure domain engineering allows for creating
arbitrary domain types, different domain models of the same domain may
have different types, which do not fit together. Here some prescriptive
language for domain models can be necessary to make them comparable
and capable for being integrated.

The goals mentioned above are related to Challenge 4. They ask for the
capability to dynamically extend the set of domain types available for mod-
eling and this in turn requires the capability to define domain metatypes and
metainstances in DSL metamodels.

9.3 Application of Bridging and Modeling Approaches

In this section we present an approach and an architecture, which provides
simultaneous linguistic and ontological metamodeling.

Figure 9.5 presents a multi-layered architecture depicting the environment
usable for language engineering and extended with the functionalities for do-
main engineering.

Core of the environment is the Ecore+Instance+OWL 2 language, whose
abstract syntax is described by an integrated metametamodel. It consists of
an (extended) Ecore metametamodel (cf. Section 6.1.1) integrated with an
OWL 2 metamodel (cf. the Appendix A.2). Excerpts of the metametamodel
are depicted in Figure 9.6, 9.7, and 9.8.

The integrated metametamodel is used to define elements at the meta-
model layer. Here the environment provides the facility for language engineer-
ing and allows for building DSL metamodels. These metamodels may contain
the definition of domain metatypes and metainstances.

The DSL defined at the metamodel layer describes the core structure of
a domain and is also used by a domain modeler and language user to build
domain models at the model layer. Because the metamodel allows for creating
domain types (using the concept metatype) and domain instances (using the
concept metainstance), domain modelers and language users are able to model
two ontological layers O2 and O1. Layer O2 consists of domain types and layer
O1 consists of domain instances. Both ontological layers are connected by the
explicit ontological hasType relation between domain types and instances.

The OWL 2 part of the new metamodeling language is used to define
axioms and restrictions in the metamodel and domain model.

To reason on the additional semantics, especially that of the explicit
hasType- and instanceOf relations, the domain model at the M1 layer with

9.3 Application of Bridging and Modeling Approaches 181

its types and instances is transformed to an ontoware model represented by
the DE Ontology (domain engineering ontology). Its TBox describes the ter-
minology of the domain and represents the domain types together with its
constraints, while the ABox contains concrete assertions about domain in-
stances.

In the case of language engineering and language use, the metamodel to-
gether with its metatypes and metainstances is transformed into the TBox
contained by the LE Ontology (language engineering ontology). Each of the
linguistic instances of the metamodel are transformed into the ABox.

The two ontoware models are used by reasoning tools, which provides addi-
tional services. These services for validating and explaining the metamodel can
be used by the different users of the environment (cf. Sections 6.3.1 and 7.4.2).

Ecore+Instance+OWL2

instancetype

DE Ontoware
Model

TBox

ABox

LE Ontoware
Model

TBox

ABox
Domain Model

 Layer
with O2, O1

Metametamodel
Layer

Metamodel
Layer

D
o

m
a

in

En
g

in
ee

ri
n

g

DSL Metamodel
metatype

Domain Model

linguistic instantiation

metainstance

ontological
hasTyp

ontological
metaHasTtype

La
n

g
u

a
g

e
En

g
in

ee
ri

n
g

conformsTo

Figure 9.5. Architectural overview of the environment for linguistic and ontological
metamodeling.

9.3.1 2-Dimensional Metamodeling Language

Figure 9.6 depicts an extension of the Ecore metametamodel. In particular we
connect the Ecore classes Class, Reference, and Attribute with the respective
classes representing their instances. Class is linked via the instantiation class
HasVertexType with Vertex. Hence, we are able to define vertices as ontological
instance of Ecore classes. Reference is linked with Edge and Attribute is linked
with AttributeAssignment. Hence, we are able to define edges as ontological
instances of references and attribute assignments as ontological instances of
attributes.

The Ecore+Instance metametamodel provides all concepts for modeling
(meta-)types and (meta-)instances (cf. Figure 9.7). The metametamodel dif-

182 9 Joint Language and Domain Engineering

Figure 9.6. Ecore extension for instance modeling.

ferentiates between elements of the metamodel layer and those of the model
layer. Metamodel elements for example are Metatype and Metainstance. Both
can be connected by a MetaHasType relation. Model elements for example are
Type and Instance, which can be connected by a hasType relation.

Figure 9.7. Type and instance modeling.

Besides (meta-)type and (meta-)instance definitions, the Ecore+Instance
metametamodel also consists of concepts to model a Metareference and a Met-
alink in the metamodel layer (cf. Figure 9.8). Both can be connected with
respective linguistic instances in the model layer, which are defined as a Ref-
erence or as a Link.

9.4 Accomplished Goals 183

Figure 9.8. Reference and link modeling.

9.3.2 Integration with OWL

The integration of the Ecore+Instance metametamodel with the OWL 2 meta-
model is accomplished as described in Section 7.3. The Ecore classes Class,
Reference, and Attribute become specializations of the OWL classes Class, Ob-
jectProperty, and DataProperty, respectively. Vertex becomes a specialization
of Individual. The HasVertexType construct becomes a specialization of the
OWL ClassAssertion construct. The Edge construct and the AttributeAssign-
ment construct become specializations of OWL ObjectPropertyAssertion and
DataPropertyAssertion, respectively.

9.4 Accomplished Goals

In the following we analyze the approach with respect to the goals in Sec-
tion 9.2.3.

Explicit Modeling Ontological and Linguistic Instantiation
Relationship (Goal 1)

To address the modeling of ontological and linguistic instantiation relation-
ships we built a metametamodel, which allows for defining metatypes and
metainstances within a language metamodel. This metamodel allows for cre-
ating types and instances in one domain model. Furthermore, the metamodel
allows for explicitly designing a linguistic instanceOf relationship, which re-
lates elements of two different modeling layers and an ontological hasType
relationship, which allows for relating domain types with corresponding do-
main instances at the model layer.

Combination of Language Engineering and Domain Engineering
(Goal 2)

To consider the combination of language engineering and domain engineer-
ing we created the Ecore+Instance+OWL 2 metametamodel that joins both

184 9 Joint Language and Domain Engineering

concerns. Language designers using the metametamodel can design DSL meta-
models at the metamodel layer, which is related to language engineering. Do-
main modelers and language users are able to create domain models containing
both, domain types and instances. Domain models lie at the model layer and
must conform to DSL metamodels via the linguistic instanceOf relationship.

9.5 Conclusion

In this chapter we presented an application of ontology technologies used for
the combined language and domain engineering.

As an answer for RQ 12 we presented a metamodeling language, which
allows for the joint definition of metamodels and conceptual domain models,
and the explicit definition of a linguistic and ontological instantiation rela-
tionship.

Language designers using the metamodeling language can design DSL
metamodels at the metamodel layer, which is related to language engineer-
ing. Domain modelers and language users are able to create domain models
containing both domain types and instances. Domain models lie at the model
layer and must conform to DSL metamodels via the linguistic instanceOf re-
lationship.

Part V

Finale

10

Tool Support and Proof of Concept

In this chapter we are going to present the tool support and proof of concept
of the approaches presented in this thesis.

We are going to present the tools implementing the services discussed in
this thesis. We differ between implementations in JGraLab and in the TwoUse
toolkit, which are realized by the author of this thesis, and the MOST work-
bench, which provides a tool for industrial modeling tasks but also concerns
the approaches presented in this thesis. All implementations are presented in
Section 10.1.

Besides the tool support of approaches we are going to consider the key
challenges we set up in Section 1.1.3. We are going to show, which approaches
presented in this thesis tackle which of the key challenges. The proof of concept
evaluation is presented in Section 10.2.

10.1 Tool Support

The services presented in this thesis for the support of language designers and
users are realized by tools. We depict these tools and illustrate how they are
implemented.

10.1.1 Implementation Context

Figure 10.1 depicts an overview of implementations and assigns the respective
frameworks and environments used to realize the approaches presented in
each chapter. Furthermore, the figures in this chapter illustrating the classes
providing the services are related to the chapters presenting the approaches.

The implementations with JGraLab (cf. Section 10.1.2) reach from Chap-
ter 2 to Chapter 3. Within JGraLab the metamodels of all modelware lan-
guages (cf. Figure 10.2) and the ontoware language OWL 2 (cf. Figure 10.3)
are realized. All modelware services are realized in JGraLab. The ontoware

188 10 Tool Support and Proof of Concept

services work on OWL2 graphs. However, these services encapsulate services
provided by Pellet [SPG+07]. These services are accessed using the OWL
API [HB09], which is externally implemented. Basic modelware and ontoware
services are provided by the foundation layer.

Bridges are implemented with the support of JGraLab. They are estab-
lished on graph schema layer and used at the TGraph layer (cf. Figures 10.4
and 10.5). Such as the bridging services, the APIs for inconsistency man-
agement (cf. Figure 10.6) and conceptual domain modeling (cf. Figure 10.7)
consider graphs and schemas as inputs and all outputs are also elements of
a respective graph or schema. All services are provided by the combination
layer.

The language engineering with the integrated metamodeling language
Ecore+OWL is realized within the TwoUse toolkit (cf. Section 10.1.3). The
conceptual domain modeling with ontological instantiation is realized in the
MOST Workbench (cf. Section 10.1.4). In the application layer we show the
tools considered by end users.

Since in Chapter 4 only a conceptual comparison is achieved, no imple-
mentations are available.

10.1.2 Implementations with JGraLab

The usage of TGraphs and graph schemas is supported by the JGraLab li-
brary1. JGraLab is a full Java implementation of TGraphs and schemas and of-
fers an API for the creation, manipulation, and traversal of graphs. JGraLab is
implemented at the Institute for Software Technology (Working Group Ebert)
at the University of Koblenz-Landau2.

JGraLab provides two APIs: a generic API for handling graphs without
schema information and a schema-specific API for handling graphs with re-
spect to a given graph schema. The schema-specific API is generated on the
basis of a given schema. It supports the treatment of schemas and graphs in
terms of vertex and edge classes, which are implemented as Java interfaces
and classes. Vertices and edges are the respective objects.

Languages

Languages are represented in JGraLab by a graph schema. We differ between
modelware and ontoware languages.

Modelware Languages

All modelware languages (e.g., BEDSL) are represented by their own graph
schema. The graph schema in JGraLab is used to generate a schema-specific
API allowing for building and traversing respective conforming TGraphs.

1 http://jgralab.uni-koblenz.de/
2 http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert

http://jgralab.uni-koblenz.de/
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert

10.1 Tool Support 189

Foundation
layer

Combination
layer

Application
layer

Cha. 2 Cha. 3

Cha. 5

Cha. 6 Cha. 7

Cha. 8 Cha. 9

Fig. 10.2 Fig. 10.3

Fig. 10.4 Fig. 10.5

Fig. 10.5

Fig. 10.6 Fig. 10.7

Fig. 10.8 Fig. 10.9

OWL API
(external)

realized in MOST Workbench
(Sec. 10.1.4)

realized in
TwoUse Toolkit

(Sec. 10.1.3)

implemented with JGraLab
(Sec. 10.1.2)

Fig.
5.16

Figure 10.1. Implementation overview.

The class Modelware depicted in Figure 10.2, provides all services to create
a graph for a given schema, to delete a graph, and to query a graph with a
GReQL query. They are implemented as static operations.

All graph classes (e.g., BEDSL) are specializations of Graph. Graph pro-
vides the services for the manipulation of graphs for given vertex classes and
edge classes. Its specializations provide schema specific services, e.g., to build
entities.

190 10 Tool Support and Proof of Concept

Figure 10.2. Class signatures of modelware services.

Ontoware Languages

In JGraLab the ontology language OWL 2 is represented by its own graph
schema, which is considered for the generation of a schema-specific API. The
API allows for building TGraphs representing an OWL 2 ontology.

The class OWL2 depicted in Figure 10.3, represents the graph class for
all TGraphs representing ontoware models. Hence, it provides services for the
creation of ontologies, classes, individuals, and properties, etc.

The class Ontoware provides all services for ontologies. It provides all stan-
dard and non-standard reasoning services and the SPARQL query service.
The services are implemented as static operations. They get an ontology as
parameter.

Figure 10.3. Class signatures of ontoware services.

10.1 Tool Support 191

To save ontoware models as *.owl file or to prepare ontoware models for
reasoners, we use the OWL API. The OWL API in version 3.0.03 is developed
at the University of Manchester [HB09]. The API is closely aligned with the
OWL 2 specification (cf. [MPSH09] and Section 3.3) and supports parsing and
the rendering of ontologies written for example in OWL Functional Syntax
or OWL Manchester-Syntax. It supports the treatment of ontologies in terms
of object-oriented concepts, i.e., OWL classes and properties or axioms are
implemented as Java classes. The use of the OWL API was illustrated in
Section 5.5.1.

Services

All services for bridging, inconsistency management and domain engineering
work on TGraphs. Hence, ontoware models are always invisible for language
designers and users.

Bridging Services

In the following we illustrate the classes providing the services for transfor-
mation and integration bridge.

Transformation Bridge. The class BEDSL2OWL depicted in Figure 10.4 im-
plements the transformation bridge from BEDSL models to ontoware models.
It is a specialization of the GReTL class Transformation and overrides the op-
eration transform. In transform the complete transformation is implemented
using the service provided by GReTL.

The class TransformationBridge provides a transform service implemented
as a static operation. It gets as input a BEDSL model and returns an ontoware
model represented by an OWL2 graph. This service is provided to the user
and uses the transform services in BEDSL2OWL.

Figure 10.4. Class signature of transformation services.

3 http://owlapi.sourceforge.net/

http://owlapi.sourceforge.net/

192 10 Tool Support and Proof of Concept

Integration Bridge. The class implementing the integration bridge is depicted
in Figure 10.5. The integration bridge is instantiated using the constructor
which gets as input the two graph schemas to be integrated. In addition, the
IntegrationBridge class provides the union service and all integration services.

For the use of the integration bridge, the class provides two services to
load graphs. The services may be used to transform a graph to a hybrid
model conforming to the integrated graph schema. Besides the load services
the integration bridge provides the two projection services.

For the projection of linguistically instantiable metamodels and their in-
stances, the bridge provides the multi-layer projection services projectGSOWL.
It is implemented as a static operation and gets as input a metamodel con-
forming to the metametamodel EcoreOWL (in Section 6.2 implemented as a
graph schema), an instance graph and the integration bridge object encapsu-
lating the respective integration bridge.

The class Convert provides an API with services for producing a schema
for an EcoreOWL graph and an adaptation service, which adapts a BEDSL
graph.

Figure 10.5. Class signature of integration bridge.

10.1 Tool Support 193

Inconsistency Management and Domain Engineering Services

The services for inconsistency management and domain engineering are also
implemented in the TGraph technological space. Inputs of these services are
schemas and graphs and also elements of these (i.e., vertices and edges). The
outputs of these services are elements of a TGraph or a schema. Hence, users
do not get in touch with ontologies.

The InconsistencyManagement class depicted in Figure 10.6 implements the
services for inconsistency management. All services get as input a metamodel
and a respective instance graph, as well as the integration bridge object, and
are implemented as static operations.

Figure 10.6. Class signature of inconsistency management services.

The DomainEngineering class depicted in Figure 10.7 implements the ser-
vices for domain engineering. All services are implemented as static operation
and get a conceptual domain model and the integration bridge object as input.

Figure 10.7. Class signature of domain engineering services.

Reasoning Services

All reasoning services (cf. Figure 10.3) are encapsulated by services for incon-
sistency management and domain engineering . They use the implementations
provided by Pellet4. Pellet is an OWL 2 reasoner implemented by the US com-
pany Clark&Parsia5. Pellet supports all standard and non-standard reasoning
services presented in Sections 3.4.1 and 3.4.2. In addition it provides an in-
terface for answering queries. These queries can be formulated in SPARQL.

4 http://clarkparsia.com/pellet/
5 http://clarkparsia.com/

http://clarkparsia.com/pellet/
http://clarkparsia.com/

194 10 Tool Support and Proof of Concept

Pellet reasoners may be used as a Java object providing services for loading
ontologies and reasoning on ontologies. The use of Pellet via the OWL API
was illustrated in Section 5.5.2.

10.1.3 TwoUse Toolkit

The TwoUse Toolkit implemented at the WeST institute6 is developed in the
Eclipse Platform using the Eclipse Modeling Framework [SBPM08], and is
freely available for download on the project website7. We have enriched the
TwoUse toolkit with the editors for textual modeling languages.

Languages

In Figure 10.8 we see the view of a DSL designer modeling an integrated
metamodel.

Figure 10.8. View of the language designer in the TwoUse Toolkit.

6 http://west.uni-koblenz.de/
7 http://code.google.com/p/twouse/

http://west.uni-koblenz.de/
http://code.google.com/p/twouse/

10.1 Tool Support 195

Integrated metamodeling is based on an integration of Ecore and OWL
as explained in Section 6.2. The language designer uses the textual concrete
syntax, which is the combination of the KM3 syntax and an adaptation of the
OWL Manchester syntax.

For the implementation of editors for textual modeling languages we use
EMFText8. EMFText is developed by the Software Technology Group of the
Dresden University of Technology. It is an Eclipse plug-in that allows for
defining textual concrete syntaxes for modeling languages described by an
Ecore-based metamodel. After the specification of an Ecore-based language
metamodel, language designers must specify the textual concrete syntax. The
textual concrete syntax is defined as a set of EBNF rules, one for each class in
the metamodel. Subsequently, EMFText automatically generates the language
editor, which is a new Eclipse plug-in. The new editor provides features like
syntax highlighting, code completion, or error reporting. Figure 10.8 depicts
the editor generated for the Ecore+OWL language. For detailed information
on EMFText we refer to publications [HJK+09] and its official web site: http:
//www.emftext.org/.

Bridging with JGraLab

A bidirectional bridge between the Ecore technological space and the TGraph
technological space is implemented by Heckelmann [Hec10]. The bridge al-
lows for converting models (conforming to some Ecore-based metamodel) to
TGraphs and in addition it allows for converting Ecore-based metamodels
to graph schemas. The current implementation additionally allows for trans-
forming grUML-based graph schemas and TGraphs to Ecore-based metamod-
els and conforming models. Since the expressiveness of grUML compared to
Ecore is higher, information (e.g., the type information of edge classes) either
gets lost or this information has to be materialized by additional elements in
Ecore-based metamodels (e.g., edge classes are transformed to separate Ecore
classes with two references defining source and target).

10.1.4 MOST Workbench

Compared to the TwoUse toolkit, the MOST workbench, implemented by
BOC9, provides a framework usable for industrial domain-specific modeling
tasks. Comparing the usability of both frameworks, the MOST workbench
provides a graphical user interface provided to DSL users. This is currently
not available in the TwoUse toolkit.

8 http://www.emftext.org/
9 http://www.boc-group.com

http://www.emftext.org/
http://www.emftext.org/
http://www.emftext.org/
http://www.boc-group.com

196 10 Tool Support and Proof of Concept

In Figure 10.9 we depict a screenshot of the MOST workbench. The work-
bench is developed in the ADOxx platform10 by the company BOC, which
is also industrial partner in the MOST project. The tool supports the devel-
oping of domain-specific languages, which may be coupled to different visual
concrete syntaxes. A language such as the physical device domain-specific lan-
guage (PDDSL) may be developed within the workbench by a DSL designer.
In Figure 10.9 we see the view of a DSL user modeling concrete devices (e.g.,
cisco 7603) being a member of the Cisco 7600 Routers Series.

Figure 10.9. View of the DSL user in the MOST workbench.

10 ADOxx R© is the extensible, multi-lingual, multi-os, repository-based platform for
the development of modeling tools of the BOC Group. ADOxx R© is a registered
trademark of the BOC Group, http://www.boc-group.com.

http://www.boc-group.com

10.2 Proof of Concept 197

The integrated modeling is based on the ADOxx generic graphical model-
ing editor. To enable integrated modeling with OWL descriptions, languages
to be integrated as well as the OWL metamodel are defined using the ADOxx
M3 metametamodel (called ADOxx Meta2Model [BZ09]). Then the integra-
tion has been performed according to the integration approach presented in
Section 5.3 [MSZ10].

The reasoning services are realized by a separate validation services compo-
nent implemented by Comarch. Like the TwoUse toolkit, the reasoning compo-
nent relies on Pellet. The component firstly projects models and metamodels
to a format, which is readable by OWL reasoners. In addition it implements
domain-specific services for inconsistency management and guidance [MSZ10].

10.2 Proof of Concept

In this section we present a proof of concept. We consider all key challenges (cf.
Section 1.1.3) and mention those approaches presented in this thesis, which
concern the challenges, and those applications, which exemplify the solutions.

10.2.1 Challenge 1: Bridging Technologies

Challenge 1 discusses the development of generic bridges used for the com-
position and the decomposition of modeling languages. Specific bridges are
those combining modeling languages with ontology languages.

Approaches

All bridging approaches are presented in Chapter 5. We developed four dif-
ferent bridges for different purposes.

A transformation bridge (cf. Section 5.2) creates a respective output model
according to a transformation definition and an input model. The transforma-
tion bridge usually implies some loss of information, since both languages may
have different properties not all of which are transformable into the other lan-
guages. Users are restricted to the expressiveness (e.g., syntactic constructs)
of the source language they are working with.

An integration of two languages using the integration bridge (cf. Sec-
tion 5.3) results in one all-embracing new modeling language. To achieve the
integration for a given mapping of concepts (which defines an intersection of
both languages), integration services are used to define the new modeling lan-
guage. An integrated metamodel allows language users to use the combined
modeling languages in parallel. Its result is a hybrid model. Language users
use for a given hybrid model projection services to derive models conforming
to one of the metamodels to be combined.

A mapping bridge (cf. Section 5.4) allows for combining two complemen-
tary languages. Models may be developed separately by language users. Based

198 10 Tool Support and Proof of Concept

on a mapping definition describing which constructs in metamodels can be
mapped, users are able to declare mappings between elements of two different
modeling languages.

An API bridge (cf. Section 5.5) is established by the implementation of
services using the operations and services of given APIs used to traverse mod-
els, and those services of another API to build new models. On the one hand,
the API bridge ensures a higher consistency of models, since the operations to
create models may have well-defined pre- and post-conditions. On the other
hand, the API is restricted by the set of methods and services it provides.

Applications

Applications in this thesis are mainly presented for the integration bridge
since it is the most used and strongest form of bridging. In Chapter 8, we
presented an application of the integration bridge. Based on the integration
of the metamodeling language Ecore and the ontology language OWL 2, DSL
designers are able to implement metamodels of DSLs with annotated OWL-
based axioms and expressions. If DSL users need any services, the environment
projects the metamodel as well as the domain model to an ontoware model.

10.2.2 Challenge 2: Formal Semantics and Correctness of
Languages

Challenge 2 deals with the definition of formal semantics and the correctness
of modeling languages.

Approaches

In Chapter 6 we presented the integration of the Ecore metamodeling language
with OWL 2. Given the integration, language designers are able to design
additional restrictions and expressions directly in the metamodel definition.
In Section 6.3.1 we show that several path expressions may be designed using
the integrated ontology language. These restrictions and expressions constrain
user models defined by language users using the enriched metamodel. The
Ecore language adopts the model-theoretic semantics of OWL 2, i.e., for a
given element in an Ecore-based metamodel, its extension is described by sets
of individuals, or relations between individuals, respectively.

Applications

Applications of the integration of Ecore and OWL are presented in Chapter 8.
Here the PDDSL (Physical Device Domain-Specific Language) is designed
defining the configurations of physical network device series. DSL designers
may use the integrated ontology language to define restrictions to ensure the
design of valid configurations in domain models by DSL users.

10.2 Proof of Concept 199

10.2.3 Challenge 3: Tooling

Challenge 3 concerns the support of designing and using modeling languages
with tools.

Approaches

A basis for all tools and services supporting validation and suggestions of mod-
els are the reasoning services provided by the ontoware technological space.
Services for language users are enabled after the transformation, projection,
or mapping of modelware models to ontoware models. This is achieved by all
bridges presented in Chapter 5.

Based on the ontoware model and the reasoning services provided by the
ontoware technological space, new domain- and language specific services may
be implemented. Section 6.3.2 presents strategies and services for inconsis-
tency management. Here services provide the detection, diagnosis, and hand-
ling of inconsistencies in user models. Section 7.4.2 presents a set of services
used in domain engineering for the validation of conceptual domain models.

Applications

Applications of the use of services relying on ontology technologies are pre-
sented in Section 8.4. Here the validation of (incomplete) domain models rep-
resenting network device series is achieved. If models are inconsistent the
respective inconsistent parts may be visualized. In addition suggestions on
how to repair the models are given.

10.2.4 Challenge 4: Domain Modeling

Challenge 4 deals with the design of syntax and semantics of (domain-specific)
modeling languages allowing for dynamically extending the set of domain
types available for modeling.

Approaches

In Chapter 7 we presented the approaches for designing DSLs for conceptual
domain modeling. We define which parts of metamodels are necessary for the
definition of type and instance layer, respectively, and how they are related.
For the definition of semantics the metamodel of DSLs for conceptual domain
modeling is integrated with the OWL 2 metamodel. Hence, elements in the
type layer represent sets of domain instances or relations of domain instances,
respectively.

200 10 Tool Support and Proof of Concept

Applications

In Chapter 9 we presented an application of Challenge 4. We have enriched the
metamodeling language Ecore, usually used for metamodel engineering, with
the facility for conceptual domain engineering. Hence, language designers are
able to design DSLs prescribing the structure of conceptual domain models.
Domain modelers building conceptual domain models may benefit from the
definition of type and instance layer within one domain model.

10.3 Conclusion

In this chapter we have illustrated the tool support for bridging software mod-
eling with ontology technologies, and we have discussed how the challenges
are tackled by the approaches presented in this thesis.

We have presented the tooling implemented with the use of JGraLab and
the infrastructure provided by the TwoUse toolkit. JGraLab was used to re-
alize the easy creation, manipulation, and traversal of TGraphs and graph
schemas. To provide a simple implementation of Ecore-based metamodels
with OWL-based annotations, we extended the TwoUse toolkit with respec-
tive editors. A third tool is the MOST workbench implemented for industrial
domain-specific modeling tasks.

Besides tool support we discussed the challenges set up in Section 1.1.3.
We showed that all are tackled by respective approaches in this thesis and are
applied in Part IV of this thesis.

11

Conclusion and Outlook

In the last chapter of this thesis we conclude the complete work presenting a
summarized overview and provide an outlook for future work.

11.1 Thesis Contribution

In this section we consider and answer the questions we stated in Section 1.2
and mention how they are related to the key challenges in Section 1.1.3.

Question 1: What are the particular languages and tools in the
respective spaces?

Before any of the key challenges are tackled, a specification of concepts, lan-
guages, and tools is needed. In this thesis we combined a modelware and an
ontoware technological space. Hence, we first analyzed these spaces.

Modelware technological spaces provide metamodeling languages to define
the abstract syntax definition of a modeling language. grUML is a metamodel-
ing language that allows for using UML class diagrams to define graph schemas
representing metamodels. Metamodels are used to prescribe the structure of
instance models. With respect to the tools and services, a modelware techno-
logical space provides the basic editor tools to create and manipulate models.
In addition, querying tools and transformation tools are provided to retrieve
facts from given instance models, or to translate models to models conforming
to another modeling language.

The ontoware technological space we presented is based on OWL 2 as the
language to model ontoware models (ontologies). Given an ontoware model,
the ontoware technological space provides reasoning and querying tools. Rea-
soning tools are used to emphasize inferred knowledge in ontoware models.
Querying tools are used to retrieve facts from ontoware models, where these
facts may be stated explicitly in the model or may be inferred facts by rea-
soners.

202 11 Conclusion and Outlook

Question 2: What are the commonalities and variations of a
modelware technological space and an ontoware technological
space?

For the comparison of modelware and ontoware technological spaces, we com-
pared modeling languages provided by both spaces and the tools and services
they offer. With respect to the key challenges, a comparison of spaces is needed
to detect languages and services, which may help to define correctness and for-
mal semantics of modeling languages (Challenge 2) and to support the tooling
by additional services (Challenge 3). Furthermore, a comparison is needed to
identify concepts which can be bridged (Challenge 1).

In particular, we compared the data modeling languages grUML and
OWL 2. We identified many common concepts having similar semantics. In
addition to the common concepts, OWL 2 provides a comprehensive set of
class expressions and axioms used to extend the description of modeled data
in ontologies. grUML is more powerful in the definition of attributes, since it
allows for attributing edge classes.

Besides languages we compared the query technologies of both techno-
logical spaces. SPARQL and GReQL provide various features, which are not
shared by the respective other language. In the case of querying and constrain-
ing modelware models, GReQL with its regular path expressions seems to be
more applicable. Advantages of SPARQL are discovered if we add reasoning
capabilities. Based on the descriptions in data models, reasoning allows for
inferring new facts, which might be queried.

Question 3: What are the techniques to bridge technological
spaces?

In this thesis we presented four different bridging technologies. All bridges
provide services for combining two arbitrary modeling languages from different
technological spaces (Challenge 1).

The transformation bridge is used to translate models according to some
transformation definition. The integration bridge supports language designers
to combine the metamodels of two modeling languages. Language users are
able to use both languages simultaneously and to create hybrid models. The
mapping bridge allows for using modeling languages separately and combining
models by just declaring mappings between model elements. The API bridge
provides predefined methods and services to create, modify, and save models.

Question 4: How may the formal semantics of ontology languages
be used for software modeling languages?

The integration of ontology languages with metamodeling languages allows
the definition of language metamodels with integrated ontology-based expres-
sions. They define the abstract syntax of a modeling language and restrict the
structure of user models.

11.1 Thesis Contribution 203

The integration of ontology languages with modeling languages for con-
ceptual domain modeling allows the description of domain models where the
description of domain types and instances may be enriched by ontology-based
expressions (Challenge 4).

The concrete syntax of modeling languages stays the same but may be
extended by the definition of annotations representing ontology-based expres-
sions.

To establish model-theoretic semantics for a given language (Challenge 2),
the language is integrated with an ontology language, which specifies the se-
mantic extensions of given model elements. The definition of semantics of mod-
eling languages may also be achieved by a translation of models to ontoware
models, which formally describe model elements according to the semantics.

Question 5: How do ontology technologies support the design and
correctness of models?

The use of modeling languages may be supported by ontoware services (Chal-
lenge 3).

Based on a metamodel with ontology-based expressions and based on the
formal semantics ontology languages have, several services for language users
and domain modelers may be implemented. These services profit from the
reasoning services freely provided by ontoware reasoning tools.

Language users benefit from services for inconsistency detection to localize
problems in models, for inconsistency diagnosis to explain problems in models,
and inconsistency handling to repair models.

Domain modelers use services for validating conceptual domain modeling
and retrieving information from such models.

Question 6: How are integrated ontology technologies applied in
domain-specific modeling?

All key challenges tackled with use of ontology languages and technologies are
exemplified by a scenario for domain-specific modeling.

Metamodeling languages bridged with ontology languages allow language
designers to build DSL metamodels with additional OWL 2-based expressions
conceptualizing and restricting the domain to be modeled.

Integration bridges combining metamodeling languages with OWL 2 allow
for the projection of the DSL metamodel and conforming domain models to
one ontoware model. Given such an ontoware model, several domain-specific
services to support tooling may be established based on the services provided
by ontoware reasoning tools. They are used by language users for guidance
and inconsistency management.

204 11 Conclusion and Outlook

11.2 Outlook and Future Work

After we concluded this thesis we are going to present an outlook and future
work. Based on the techniques and approaches developed for this thesis we
set up some tasks, which should be tackled in the future.

Improvements of Bridging Technologies

One future task will be the extension of our bridging approaches. We will ex-
plore the simultaneous combination of more than two languages. Since several
languages are integrated simultaneously, the respective integration informa-
tion must be kept. Here we expect an extension of the traceability models.
Since elements in metamodels are often annotated by constraints, e.g., writ-
ten in GReQL or OCL [WK03], these also have to be integrated. We have to
explore approaches that allow for merging constraints as well. Ontology tech-
nologies could help to find contradictions between these constraints because
they allow for schema reasoning.

Furthermore, since metamodels are integrated, the integration bridge
should also provide the capability to integrate conforming models.

The set of integration services described in Section 5.3.1 has been chosen
for combining languages, which own compositional semantics, i.e., languages
whose overall semantics are a combination of the partial semantics of some
of the metaclasses (vertex and/or edge classes). This property allows to build
the integration merely using operations on the metaclasses. By extending the
set of integration services, we also plan deal with other languages.

Bridging MDE with Other Spaces

The bridges presented in this work may be used to combine ontoware spaces
with modelware spaces. Nevertheless, the bridging technologies may be used
to combine other technological spaces.

One space we could imagine is that for software product line engineering
(SPLE) [PBL05]. Such spaces provide concepts and languages for describing
commonalities as well as variations of software products being part of one fam-
ily. SPLE spaces provide tools and services for validating configurations and
generators to build source code for a valid configuration. The integration with
a modelware technological space could enable the definition of variations and
dependencies between concepts in language metamodels. Instances of these
metamodels may build a concrete configuration of a software system, which
is validated and translated to source code by SPLE tools.

To compare the use of ontology technologies in software modeling with
technologies from other logic-based spaces, the bridging technologies may be
reused. For example, the Alloy space [Jac02] providing the Alloy analyzer,
which is used to validate modelware models, may be compared with our on-
toware technological space.

A

Appendix

A.1 Additional Definitions for the TGraph Technological
Space

A.1.1 Self-Conformance of grUML

In the following, we informally show that the grUML metaschema conforms
to itself.

Therefore, we present excerpts of the grUML metaschema as graph schema
in abstract syntax. Since this graph schema in abstract syntax fulfills Defini-
tion 1 it is a TGraph. Hence, we have to show that we can create a TGraph
that describes the structure of the grUML metaschema and which conforms
to the grUML metaschema, which in turn acts as the graph schema for the
TGraph.

For the self-conformance we consider only a core of constructs ((1) vertex
classes, edge classes; (2) type hierarchies; (3) attributes; (4) multiplicities).

(1) Vertex Class and Edge Class

Figure A.1 depicts a partial TGraph that describes the relation of VertexClass
and EdgeClass as it is described in the grUML metaschema (cf. Figure 2.3).

Three vertices describe the vertex classes VertexClass, IncidenceClass and
EdgeClass. Three further vertices describe the edge classes ComesFrom, GoesTo
and EndsAt. All vertices are related to each other, where each edge class has
exactly two edges to vertices representing the incidences of an edge. Further
each incidence class vertex is linked to a vertex representing one end of the
edge class.

The TGraph in Figure A.1 conforms to the grUML metaschema. All ver-
tices of the graph conform to the type (represented in the vertex after ”:”)
and to its supertypes, since all multiplicity restrictions are locally fulfilled and
all necessary attributes are allocated by values conforming to the domain of
the attributes. Further all edges in the graph conform to edge classes of the

206 A Appendix

 : VertexClass
qualifiedName = "VertexClass"
abstract = false

 : IncidenceClass
min = 0
max = -1
direction = OUT
aggregation = NONE
roleName = ""

 : VertexClass
qualifiedName = "IncidenceClass"
abstract = false

 : EdgeClass
abstract = false
qualifiedName = "EndsAt"

 : VertexClass
abstract = false
qualifiedName = "EdgeClass"

 : IncidenceClass
aggregation = NONE
min = 1
max = 1
direction = IN
roleName = ""

 : EdgeClass
qualifiedName = "ComesFrom"
abstract = false

 : IncidenceClass

aggregation = NONE
min = 1
max = 1
direction = IN
roleName = ""

 : IncidenceClass

min = 1
max = 1
aggregation = COMPOSITE
direction = OUT
roleName = ""

 : EdgeClass
abstract = false
qualifiedName = "GoesTo"

 : IncidenceClass
min = 1
max = 1
direction = IN
aggregation = NONE
roleName = ""

 : IncidenceClass
min = 1
max = 1
direction = OUT
aggregation = COMPOSITE
roleName = ""

- targetclass

- incidence- incidence

- targetclass

- from- to

- incidence

- targetclass

- to - incidence

- targetclass

- from

- incidence

- targetclass

- to

- targetclass

- incidence- from

Figure A.1. grUML VertexClass- / EdgeClass-constructs in abstract syntax.

schema, since all start and end vertices conform to the corresponding vertex
classes.

Locally means that we only consider those multiplicity restrictions that
must be fulfilled within the scope of defining vertex classes, edge classes and
incidence classes including their attributes. For example, restrictions, which
ensure that each vertex class or each edge class has to belong to exactly one
package, which is part of one graph schema, are not considered.

(2) Type Hierarchies

Figure A.2 depicts the TGraph, which describes the constructs to define type
hierarchies of vertex classes and edge classes.

For specialization associations between vertex classes or edge classes one
vertex in the TGraph of type EdgeClass is used to describe the relation between
two vertex classes via two corresponding vertices of type IncidenceClass.

In both cases one vertex class and edge class can have 0 to many sub-
and/or superclasses.

The TGraph in Figure A.2, representing the constructs for type hierar-
chies, conforms to the grUML metaschema. All vertices of the graph conform
to the type and to its supertypes, since all multiplicity restrictions are ful-
filled locally and all necessary attributes are allocated by values conforming
to the domain of the attributes. Further all edges in the graph conform to
edge classes of the schema, since all start and end vertices conform to the
corresponding vertex classes.

(3) Attributes

Figure A.3 depicts the TGraph, which describes the constructs to define at-
tributes for vertex classes and edge classes. Since the vertices, which represent

A.1 Additional Definitions for the TGraph Technological Space 207

 : VertexClass

qualifiedName = "VertexClass"
abstract = false

 : VertexClass

abstract = false
qualifiedName = "EdgeClass"

 : EdgeClass
abstract = false
qualifiedName = "SpecializesEdgeClass"

 : EdgeClass
abstract = false
qualifiedName = "SpecializesVertexClass"

 : IncidenceClass
aggregation = NONE
min = 0
max = -1
roleName = "superclass"
direction = IN

 : IncidenceClass
aggregation = NONE
min = 0
max = -1
roleName = "subclass"
direction = OUT

 : IncidenceClass
aggregation = NONE
min = 0
max = -1
roleName = "superclass"
direction = IN

 : IncidenceClass
aggregation = NONE
min = 0
max = -1
roleName = "subclass"
direction = OUT

- targetclass

- incidence

- targetclass

- incidence

- from - to

- targetclass

- incidence

- targetclass

- incidence

- from - to

Figure A.2. grUML constructs for type hierarchy definition in abstract syntax.

vertex class and edge class, are specializations of the vertex for AttributedEle-
mentClass they are able to be connected via a vertex representing the edge
class HasAttribute and two corresponding vertices for incidence classes with
some vertex representing the type for attributes. Further each attribute has
a domain.

 : VertexClass
abstract = true
qualifiedName = "AttributedElementClass"

 : VertexClass

abstract = false
qualifiedName = "Attribute"

 : VertexClass
abstract = true
qualifiedName = "Domain"

 : VertexClass
abstract = false
qualifiedName = "VertexClass"

 : VertexClass
abstract = false
qualifiedName = "EdgeClass"

 : VertexClass
abstract = true
qualifiedName = "GraphElementClass"

 : EdgeClass

abstract = false
qualifiedName = "HasAttribute"

 : EdgeClass

abstract = false
qualifiedName = "HasDomain"

 : IncidenceClass
aggregation = COMPOSITE
min = 1
max = 1
roleName = ""
direction = OUT

 : IncidenceClass
aggregation = NONE
min = 0
roleName = ""
direction = IN
max = -1

 : IncidenceClass
aggregation = COMPOSITE
min = 1
max = 1
roleName = ""
direction = OUT

 : IncidenceClass
aggregation = NONE
min = 1
max = 1
roleName = ""
direction = IN

- subclass

- superclass

- subclass

- superclass

- subclass

- superclass

- incidence

- targetclass

- incidence

- targetclass

- incidence

- targetclass

- incidence

- targetclass

- from - to - from - to

Figure A.3. grUML constructs for attribute definitions in abstract syntax.

The TGraph in Figure A.3, representing the constructs for defining at-
tributes, conforms to the grUML metaschema. All vertices of the graph con-

208 A Appendix

form to the type and to its supertypes, since all multiplicity restrictions are
fulfilled locally and all necessary attributes are allocated by values conform-
ing to the domain of the attribute. Further all edges in the graph conform
to edge classes of the schema, since all start and end vertices conform to the
corresponding vertex classes.

(4) Multiplicities

Figure A.4 depicts the TGraph, which describes the constructs for defining
multiplicities in incidence classes of one edge class. Each edge class is linked
with two incidence classes, which have two attributes with domain Integer
defining the min- and max-multiplicity.

 : VertexClass

abstract = false
qualifiedName = "IncidenceClass"

 : Attribute
name = "min"
defaultValue = 0

 : Attribute
name = "max"
defaultValue = 1

 : IntegerDomain
qualifiedName = "Integer"

- attribute - attribute

- domain - domain

Figure A.4. grUML constructs for multiplicity definitions in abstract syntax.

The TGraph in Figure A.4, representing the constructs for defining multi-
plicities, conforms to the grUML metaschema. All vertices of the graph con-
form to the type and to its supertypes, since all multiplicity restrictions are
locally fulfilled and all necessary attributes are allocated by values conform-
ing to the domain of the attribute. Further all edges in the graph conform
to edge classes of the schema, since all start and end vertices conform to the
corresponding vertex classes.

A.1.2 Visualizations of Graph Schemas

Since we have graph schemas in abstract syntax form (represented as a
TGraph conforming to the grUML metaschema) and in concrete syntax form
(represented as a grUML diagram), in the following we are going to define a
relation between both kinds of schemas. This relation is described by a vis
function, which defines which elements of a grUML diagram are visualizations
of which elements of a graph schema in abstract syntax.

We define the vis function in Definition 6.

Definition 6 (Visualization of Graph Schemas)

The vis function maps elements of a graph schema in concrete syntax
GSCS to elements of a graph schema in abstract syntax GSAS .

A.1 Additional Definitions for the TGraph Technological Space 209

Visualizations of Vertex Classes. If GSAS is the graph schema in abstract
syntax of GSCS then vis is an isomorphism with

vis : VGSCS
→ VGSAS

and

∀ t ∈ VGSCS : ∃ t ′ ∈ VGSAS : vis(t) = t ′

where t ′.qualifiedName is the name of the class t in VGSCS

Visualizations of Edge Classes. If GSAS is the graph schema in abstract
syntax of GSCS then vis is an isomorphism with

vis : EGSCS
→ EGSAS

and

∀ t ∈ EGSCS
: ∃ t ′ ∈ EGSAS

: vis(t) = t ′

where t ′.qualifiedName is the name of the association t in VGSCS

Visualizations of Attributes. If GSAS is the graph schema in abstract syn-
tax of GSCS then vis is an isomorphism with

vis : AttrGSCS
→ AttrGSAS

and

∀ a ∈ AttrGSCS : ∃ a ′ ∈ AttrGSAS : vis(a) = a ′

where a ′.name is the name of the attribute a in AttrGSCS
and d with

a ′ → {HasDomain}d is also the domain of a.

Correlation of Graph Schema Functions

Having a visualization relation between a graph schema GSAS in abstract
syntax and a graph schema GSCS in concrete syntax, we can show that the
results of the set notation functions (in Definition 2) of GSCS correlate with
the corresponding results of the set notation functions (in Definition 4) for
GSAS .

If t is a class or association, the vertex class or edge class in GSAS , which
is visualized by t , has the same attributes with the same domain:

∀ t ∈ VGSCS
∪ EGSCS

: ∀ a ∈ dom typeDefinitionGSCS
(t) :

vis(a) ∈ dom typeDefinitionGSAS
(vis(t))

∧ (typeDefinitionGSCS
(t))(a) = (typeDefinitionGSAS

(vis(t)))(vis(a))

210 A Appendix

If tsub is specialized by tsup , then the elements in GSAS , which are visual-
ized by tsub and tsup , are also related by a specialization relationship:

∀ tsub , tsup ∈ VGSCS
∪ EGSCS

:

tsub isAGSCS
tsup ⇒ vis(tsub) isAGSAS

vis(tsup)

If t is the association in GSCS , which relates the classes ts and tt , then the
edge class in GSAS , which is visualized by the association t relates the two
vertex classes, which are visualized by ts and tt :

∀ t ∈ EGSCS
: ∃ ts , tt ∈ VGSCS

:

relatesGSCS
(t) = (ts , tt)⇒ relatesGSAS

(vis(t)) = (vis(ts), vis(tt))

If t is an association, then the edge class in GSAS , which is visualized by
the association t , has the same multiplicities:

∀ t ∈ EGSCS : multiplicityGSCS (t) = multiplicityGSAS (vis(t))

A.1.3 Model-Theoretic Semantics of Graph Schemas

After we discussed in Section 2.2.2 how TGraphs conform to its graph schema,
we are going to consider the relation between schemas and graphs where
schemas represent the set of all possible graphs. The set of all possible graphs
belonging to one graph schema is called its extensions. Since schemas consist
of classes defining vertex classes, associations defining edge classes, incidences
of edge classes, and attributes nested in vertex and edge classes, we describe
the extension for each of them.

Representation Sets of Graph Schemas

In the following the semantic extension is assigned to each element of a graph
schema by corresponding representation functions repr , which interpret graph
schema elements by mapping them to subsets of vertices and edges of a given
TGraph and to values as given in Definition 1.

Definition 7 (Model-theoretic semantics of graph schemas)

For a given graph schema GS in set notation and for a given TGraph G we
define interpretation functions for vertex classes, edge classes, incidences,
and attributes.

Vertex Classes and Edge Classes. The interpretation function reprG
VC as-

signs to each vertex class of a graph schema GS a set of vertices of a
TGraph G :

reprG
VC : VGS → P(V)

A.1 Additional Definitions for the TGraph Technological Space 211

The set V ⊆ V is the semantic extension of vertex class t if reprG
VC (t) =

V .
The interpretation function reprG

EC assigns to each edge class of a graph
schema a set of edges of a TGraph G :

reprG
EC : EGS → P(E)

The set E ⊆ E is the semantic extension of an edge class t if
reprG

EC (t) = E .

Incidences. The interpretation function reprG
Inc assigns to each edge class

of a graph schema a pair of functions, which define start vertex and target
vertex of edges of a TGraph G :

reprG
Inc : EGS → (E → V)× (E → V)

Attributes. The interpretation function reprG
Att assigns to each attribute

nested in a type of a grUML diagram a function, which defines the alloca-
tion of the attribute within a concrete vertex or edge:

reprG
Att : AttrGS → (V ∪ E 7 7→ Value)

Given Definition 7, the semantic extensions of vertex classes and edge
classes must fulfill some restrictions.

Incidence Restriction. The representation of the two incidences of an edge
class is a pair of functions, which define the incidences of an edge. The edge
class only represents connections of vertices from the semantic extensions of
vertex classes, which are related by the given edge class:
∀ t ∈ EGS : reprG

Inc(t) = (α, ω) with α : E → A and ω : E → B if

E =reprG
EC (t) ∧

A =reprG
VC (relates(t).first) ∧

B =reprG
VC (relates(t).second)

Thus each edge e ∈ E links two vertices from A and B .

Attribute Restriction. The representation of an attribute is a function, which
assigns vertices and edges, which contain the attribute to a set of values. The
set of values must be part of the universe of all attribute values and the set
of values must be equal with the domain of the attribute:
∀ a ∈ AttrGS : reprG

Att(a) = fval with fval : V ∪ E → D if

D ⊆ Value ∧
∀ x ∈ V ∪ E : valueSet((typeDefinition(type(x)))(a)) = D

Thus, all values assigned to an attribute a are in the universe of all values
and the domain of a is D as defined in the schema.

212 A Appendix

Type Hierarchies. If tsub ∈ VGS ∪ EGS is subtype of tsuper ∈ VGS ∪ EGS

(tsub isA∗ tsuper), then every vertex or edge x with type(x) = tsub must addi-
tionally implement all attributes, which are nested in tsuper . If tsub and tsuper
are the vertex classes, the following condition must hold:

∀ v ∈ reprG
VC (tsub) : ∀ a ∈ dom typeDefinition(tsuper) : a ∈ dom value(v)

If tsub and tsuper are edge classes the following condition must hold:

∀ e ∈ reprG
EC (tsub) : ∀ a ∈ dom typeDefinition(tsuper) : a ∈ dom value(e)

Furthermore, each vertex v with type(v) = tsub must be incident with a
valid number of edges conforming to the edge classes, which are incident with
tsuper :

∀ v ∈ reprG
VC (tsub) :

∀ t ∈ {t ∈ EGS | relates(t).first = tsuper} :

(multiplicity(t).second).min ≤ δ+(v , t) ≤ (multiplicity(t).second).max

∀ t ∈ {t ∈ EGS | relates(t).second = tsuper} :

(multiplicity(t).first).min ≤ δ−(v , t) ≤ (multiplicity(t).first).max

(Since tsub isA0 tsuper implies tsub = tsuper all vertices must be incident
with a valid number of edges conforming to the edge classes, which are incident
with tsub .)

Relation between conformsTo and repr

Now, concluding Section 2.2.2 and A.1.3, we have defined how a given TGraph
conforms to its graph schema and which sets of TGraphs are described by a
given graph schema.

We are able to relate both functions for representations and conformance
for a given graph schema GS and a TGraph G . We are able to state that each
vertex class of a graph schema only represents those vertices, which conform
to the vertex class itself:

∀ t ∈ VGS : ∀ v ∈ reprG
VC (t) : t ∈ conformsTo(v)

We can state the same for edge classes of a graph schema, which only
represent those edges, which conform to the edge class itself:

∀ t ∈ EGS : ∀ e ∈ reprG
EC (t) : t ∈ conformsTo(e)

Further we can state that all start and end vertices, which are represented
by the two incidences of an edge class conform to vertex classes, which are
incident with the edge class in the graph schema:

∀ t ∈ EGS :reprG
Inc(t) = (α, ω) with α : E → A, ω : E → B :

∀ v1 ∈ A : relates(t).first ∈ conformsTo(v1)∧
∀ v2 ∈ B : relates(t).second ∈ conformsTo(v2)

A.1 Additional Definitions for the TGraph Technological Space 213

A.1.4 Modelware Basic Services

Basic services are mainly used to create a graph and to manipulate a graph
by creating or deleting vertices and edges and setting attribute values. Since
graph schemas can be represented as graphs (cf. Definition 4), the services
specified below allow for defining and manipulating graph schemas as well.

The service specified in Table A.1 is used to create an empty graph for
a given graph schema. The service specified in Table A.2 is used to delete a
graph. The services are provided by the Modelware class.

Name Create Graph

Signature Graph createGraph(Schema s)

Pattern g=Modelware.createGraph(s)

Description creates a new graph g, which conforms to s.

Table A.1. Basic service: createGraph.

Name Delete Graph

Signature void deleteGraph(Graph g)

Pattern g=Modelware.deleteGraph(g)

Description deletes the graph g.

Table A.2. Basic service: deleteGraph.

The service specified in Table A.3 creates a vertex for a given vertex class.
The services in the following are provided by the graph object returned by
the createGraph service specified in Table A.1.

Name Create Vertex

Signature Vertex createVertex(VertexClass c)

Pattern v=g.createVertex(c)

Description creates a new vertex v of type c in the graph g.

Table A.3. Basic service: createVertex.

The service specified in Table A.4 allows for the deletion of a vertex in a
given graph.

The service specified in Table A.3 creates an edge for a given edge class.
The service is provided by the graph object returned by the createGraph service
specified in Table A.1.

The service specified in Table A.6 allows for the deletion of an edge in a
given graph.

214 A Appendix

Name Delete Vertex

Signature void deleteVertex(Vertex v)

Pattern g.deleteVertex(v)

Description deletes the vertex v in the graph g.

Table A.4. Basic service: deleteVertex.

Name Create Edge

Signature Edge createEdge(EdgeClass c, Vertex v, Vertex w)

Pattern e=g.createEdge(c)

Description creates a new edge e of type c in the graph g, which goes from the
vertex v to the vertex w.

Table A.5. Basic service: createEdge.

Name Delete Edge

Signature void deleteEdge(Vertex e)

Pattern g.deleteEdge(e)

Description deletes the edge e in the graph g.

Table A.6. Basic service: deleteEdge.

The service specified in Table A.7 allows for setting a given attribute to a
given value.

Name Set Attribute

Signature void setAttribute(Attribute a, Object o)

Pattern g.setAttribute(e)

Description sets the attribute a in the graph g to the value described by o.

Table A.7. Basic service: setAttribute.

A.2 OWL 2 Metamodel

As mentioned in Section 3.2, SROIQ(D) is the description logic, which de-
fines all possible constructs and semantics for OWL 2 (including datatypes
and data roles). For all SROIQ(D) constructs we show how they are realized
by correspondent constructs in OWL 2. We show the constructs in concrete
syntax using the textual OWL 2 Functional-Style Syntax [MPSH09] and in
abstract syntax by presenting excerpts of the metamodel GSOWL.

A.2 OWL 2 Metamodel 215

Knowledge Bases in OWL 2

Every ontoware model describes TBox and ABox of a DL knowledge base
as ontology. An ontology has an IRI and contains a set of axioms. Table A.8
shows the constructs OWL 2 provides to model an ontology.

OWL 2 / DL Construct OWL 2 Functional-Style Syntax DL Syntax

ontology / knowledge base Ontology(IRI)

Table A.8. OWL 2 construct for an initial ontology.

Figure A.5 depicts the part of GSOWL, which is used to declare an ontology
in an ontoware model and connects it with axioms.

Figure A.5. OWL 2 constructs in GSOWL for declaring an ontology.

Description Logic Constructs S in OWL 2

As shown above the description logic S allows for defining concepts and (tran-
sitive) roles. In addition it allows for defining the negation, the disjunction
and the conjunction of several concepts, and quantifications over roles. Ta-
ble A.9 describes which OWL 2 constructs realize the constructs provided by
the description logic S.

Figure A.6 depicts the part of GSOWL, which is used to declare classes
and object properties in an ontoware model. The declaration axiom is used
to define several entities like classes and object properties and requires an
IRI. An object property is declared as transitive via the given object property
axiom.

Figure A.7 depicts the part of GSOWL, which is used to declare quan-
tifications in ontoware models. The object some values construct describes
those individuals, which are linked with at least an instance of the given class
expression by the given object property expression. The object all values con-
struct describes those individuals, which are only linked with instances of the
given class expression by the given object property expression.

Figure A.8 depicts the part of GSOWL, which is used to declare boolean
combinations in ontoware models. The object complement construct describes

216 A Appendix

OWL 2 / DL Construct OWL 2 Functional-Style Syntax DL Syntax

class / concept Declaration(Class(A)) A

object property / role Declaration(ObjectProperty(R)) R

transitive object property /
transitive role

TransitiveObjectProperty(R) R ∈ R+

object intersection / conjunction ObjectIntersectionOf(C1 ... Cn) C1 u ... u C2

object union / disjunction ObjectUnionOf(C1 ... Cn) C1 t ... u Cn

object complement / negation ObjectComplementOf(C) ¬C

object some values /
existential quantification

ObjectSomeValuesFrom(P C) ∃P .C

object all values /
universal quantification

ObjectAllValuesFrom(P C) ∀P .C

Table A.9. OWL 2 constructs for description logic S.

Figure A.6. OWL 2 constructs in GSOWL for declaring classes and object proper-
ties.

Figure A.7. OWL 2 constructs in GSOWL for declaring quantifications.

A.2 OWL 2 Metamodel 217

the complement of one given class expression. The object union construct
describes the union of at least two class expressions. The object intersection
construct describes the intersection of at least two class expressions.

Figure A.8. OWL 2 constructs in GSOWL for declaring boolean connectives.

Description Logic Constructs R in OWL 2

The description logic R allows for defining general role hierarchies and self
concepts. Table A.10 describes which OWL 2 constructs realize these con-
structs.

OWL 2 / DL Construct OWL 2 Functional-Style Syn-
tax

DL Syntax

top object property /
universal role

topObjectProperty U

sub object property /
generalized role inclusion

SubObjectPropertyOf(
SubObjectPropertyChain(R1 ... Rn)
R)

R1 ◦ . . .Rn v R

object has self / self concept ObjectHasSelf(S) ∃S .SELF

Table A.10. OWL 2 constructs for description logic R.

Figure A.9 depicts the description of sub object property hierarchies in
GSOWL. A sub object property axiom in an ontoware model relates exactly two
object property expressions. The sub object property chain is a specific object
property expression and allows for representing an ordered chain of object
properties. Besides sub object property hierarchies Figure A.9 presents the
construct for the self concept. It describes a class expression, which contains
those individuals that are connected via a given object property to themselves.

Description Logic Constructs O in OWL 2

The description logic O allows for defining nominals, which are enumerations
of individuals. Table A.11 describes which OWL 2 construct realizes nominals.

218 A Appendix

Figure A.9. OWL 2 constructs in GSOWL for role hierarchies and self concepts.

OWL 2 / DL Construct OWL 2 Functional-Style Syn-
tax

DL Syntax

object one of / nominals ObjectOneOf(i1 ... in) {i1} t ... t {in}
Table A.11. OWL 2 constructs for description logic O.

Figure A.10 depicts the description of the object one of construct for
ontoware models. It is a class expression that represents an enumeration of
at least one individual. Individuals in an ontoware model are entities, which
have an IRI and must be declared.

Figure A.10. OWL 2 constructs in GSOWL for nominals.

Description Logic Constructs I in OWL 2

The description logic I allows for defining inverse roles. Table A.12 describes
which OWL 2 construct realizes inverse roles.

Figure A.11 depicts the description of the object inverse of construct for
ontoware models. It is an object property expression that represents the in-
verse of exactly one other object property expression.

A.2 OWL 2 Metamodel 219

OWL 2 / DL Construct OWL 2 Functional-Style Syn-
tax

DL Syntax

object inverse of/ inverse roles ObjectInverseOf(R) R−

Table A.12. OWL 2 constructs for description logic I.

Figure A.11. OWL 2 constructs in GSOWL for inverse roles.

Description Logic Constructs Q in OWL 2

The description logic Q allows for defining quantified cardinality restrictions.
Table A.13 describes which OWL 2 constructs realize these restrictions.

OWL 2 / DL Construct OWL 2 Functional-Style Syn-
tax

DL Syntax

object min cardinality /
at least restriction

ObjectMinCardinality(n S C) ≥ nS .C

object max cardinality /
at most restriction

ObjectMaxCardinality(n S C) ≤ nS .C

object exact cardinality /
exact restriction

ObjectExactCardinality(n S C) = nS .C

Table A.13. OWL 2 constructs for description logic Q.

Figure A.12 depicts the description of cardinality restrictions for object
properties. Each restriction is a class expression and contains an attribute to
define the cardinality. Each restriction represents those individuals, which are
connected by an object property expression to at least, at most, and exactly
a given number of instances of a specified class expression, respectively.

Description Logic Constructs D in OWL 2

The description logic D allows for defining data roles and datatypes. Ta-
ble A.14 describes which OWL 2 constructs realize datatypes, data roles and
data nominals.

Figure A.13 depicts the constructs of GSOWL, which allow for defining data
ranges and data properties in ontoware models. Data properties are specific
data property expressions. A data range is either a datatype (e.g., Integer,
String, Boolean, etc.) or is realized by a data one of construct, which represents

220 A Appendix

Figure A.12. OWL 2 constructs in GSOWL for cardinality restrictions.

OWL 2 / DL Construct OWL 2 Functional-Style Syn-
tax

DL Syntax

datatype / datatype D D

data property / datatype role Declaration(DataProperty(U)) U

data one of / data nominals DataOneOf(v) {v}
literal / data value v v

Table A.14. OWL 2 constructs for description logic D for datatypes and data roles.

an enumeration of literals (data values) valued by a lexical string. In addition,
Figure A.13 presents the data property assertion construct, which allows for
connecting individuals with literals via a given data property.

Figure A.13. OWL 2 constructs in GSOWL for data ranges and data properties.

A.2 OWL 2 Metamodel 221

Table A.15 describes which OWL 2 constructs realize quantifications on
data roles.

OWL 2 / DL Construct OWL 2 Functional-Style Syn-
tax

DL Syntax

data some values from /
datatype existential quantification

DataSomeValuesFrom(U D) ∃U .D

data all values from /
datatype universal quantification

DataAllValuesFrom(U D) ∀U .D

Table A.15. OWL 2 constructs for description logic D for data quantifications.

Figure A.14 depicts the constructs of GSOWL, which allow for defining
quantifications on data properties. All quantification are class expression,
which describe those individuals that are connected to some data values or
only are connected to data values of a given data range.

Figure A.14. OWL 2 constructs in GSOWL for data property quantifications.

Table A.16 describes which OWL 2 constructs realize cardinality restric-
tions on data roles.

Figure A.15 depicts the description of cardinality restrictions for data
properties. Each restriction is a class expression and contains an attribute
to define the cardinality. Each restriction represents those individuals, which
are connected by a data property expression to at least, at most, and exactly
a given number of literals of a specified data range, respectively.

222 A Appendix

OWL 2 / DL Construct OWL 2 Functional-Style Syn-
tax

DL Syntax

data min cardinality /
data at least restriction

DataMinCardinality(n U D) ≥ nU .D

data max cardinality /
data at most restriction

DataMaxCardinality(n U D) ≤ nU .D

data exact cardinality /
data exactly restriction

DataExactCardinality(n U D) = nU .D

Table A.16. OWL 2 constructs for description logic D for data cardinality restric-
tions.

Figure A.15. OWL 2 constructs in GSOWL for data property cardinality restric-
tions.

General Concept Inclusion Axioms and Assertions in OWL 2

As explained in Definition 5, each DL knowledge base consists of a TBox
and an ABox, while the TBox consists of GCIs and the ABox consists of
assertions. Table A.17 shows, which constructs OWL 2 provides to model
description logics GCIs and assertions.

Figure A.16 depicts the description of GCI constructs in GSOWL. Here,
the disjoint classes axiom and the equivalent classes axiom are linked to at
least two class expressions, where the subclass axiom is linked to exactly one
superclass and one subclass.

Figure A.17 depicts the description of assertions in GSOWL. Here, class
assertions are used to define the type represented as class expression of one
given individual. Object property assertions are used to assert a given object
property by declaring a source and a target individual.

Auxiliary Axioms and Expressions in OWL 2

In the following, we describe some auxiliary axioms, which can be derived by
combining existing constructs.

A.2 OWL 2 Metamodel 223

OWL 2 / DL Construct OWL 2 Functional-Style Syntax DL Syntax

subclass / GCI SubClassOf(C D) C v D

equivalent classes / GCIs EquivalentClasses(C1 ... Cn) C1 ≡ ... ≡ Cn

disjoint classes / GCIs DisjointClasses(C1 ... Cn) Ci u Cj ≡ ⊥
(1 ≤ i < j ≤
n)

class assertion /
class assertion

ClassAssertion(C c) c ∈ C

object property assertion /
role assertion

ObjectPropertyAssertion(R e d) (e, d) ∈ R

Table A.17. OWL 2 concrete syntax for GCIs and assertions.

Figure A.16. OWL 2 constructs in GSOWL for declaring class axioms.

Figure A.17. OWL 2 constructs in GSOWL for individual assertions.

224 A Appendix

Table A.18 describes which OWL 2 constructs realize domain and range
axioms for object properties.

OWL 2 / DL Construct OWL 2 Functional-Style Syntax DL Syntax

object property domain /
role domain

ObjectPropertyDomain(R C) ∃R.> v C

object property range / role range ObjectPropertyRange(R C) > v ∀R.C

Table A.18. OWL 2 concrete syntax for domain and range of roles.

Figure A.18 depicts the constructs in GSOWL for defining domain and
range of an object property.

Figure A.18. OWL 2 constructs in GSOWL for object property domain and range.

Table A.19 describes which OWL 2 constructs realize domain and range
axioms for data properties.

OWL 2 / DL Construct OWL 2 Functional-Style Syntax DL Syntax

data property domain /
data role domain

DatatPropertyDomain(U C) ∃U .> v C

data property range /
data role range

DatatPropertyRange(U D) > v ∀U .D

Table A.19. OWL 2 concrete syntax for domain and range of data roles.

A.3 Bridging Technologies 225

Figure A.19 depicts the constructs in GSOWL for defining domain and
range of a data property. The data property domain and range axiom define
that the domain of a data property expression is a class expression and the
range is a data range.

Figure A.19. OWL 2 constructs in GSOWL for data property domain and range.

A.3 Bridging Technologies

A.3.1 Example of Transformation Bridge

In the following we give an example where we present eight transformation
steps, one for each relation given in Table 5.2. The set of transformation
steps describe how the output of a transformation service transformGSBEDSL is
produced, which conforms to GSOWL. All transformation steps are formally
specified in GReTL.

1. Model to Ontology

For all vertices conforming to Model in the modelware model a new vertex of
type Ontology is created in the ontoware model. The ontology is connected
with an IRI, which is defined by the name of the model. Figure A.20 specifies
the transformation step.

2. Entity to OWL Class

For all vertices of type Entity in the modelware model a new vertex of type
Class is created in the ontoware model. A declaration is created and linked
with the class. The name of the entity is assigned to a correspondent IRI. At
the end the declaration axiom is added to the ontology created in the first
step. Figure A.21 specifies the transformation step.

226 A Appendix

instantiateVertices(”Ontology”, ”from v:V{Model} reportSet v end”);
instantiateVertices(”IRI”, ”from v:V{Model} reportSet v end”);
instantiateAttributeValues(”IRI”, ”iri”, ”from v:keySet(img Ontology) reportMap v, v.name end”);
instantiateEdges(”HasOntologyIRI”, ”from v: keySet(img Ontology), w: keySet(img IRI) with v=w

reportSet v, v, w end”);

Figure A.20. Transformation step 1: BEDSL model to OWL ontology.

instantiateVertices(”Class”, ”from v:V{Entity} reportSet v end”);
instantiateVertices(”Declaration”, ”from v:V{Entity} reportSet v end”);
instantiateVertices(”IRI”, ”from v:V{Entity} reportSet v end”);
instantiateAttributeValues(”IRI”, ”iri”, ”from v:keySet(img Class) reportMap v, v.name end”);
instantiateEdges(”HasEntityIRI”, ”from v:keySet(img Class), w:keySet(img IRI) with v=w reportSet v, v,

w end”);
instantiateEdges(”DeclaresEntity”, ”from v:keySet(img Declaration), w:keySet(img Class) with v=w

reportSet v, v, w end”);
instantiateEdges(”HasAxioms”, ”from v:keySet(img Ontology), w:keySet(img Declaration), e:E with v−−

e−>&{Entity}w reportSet e, v, w end”);

Figure A.21. Transformation step 2: BEDSL entity to OWL class.

3. Datatype to Datatype

For all vertices of type Datatype in the modelware model a new vertex of
type Datatype is created in the ontoware model. The name of the data type
in the modelware model is defined by an IRI in the ontoware model. At the
end the declaration axiom is added to the ontology. Figure A.22 specifies the
transformation step.

instantiateVertices(”Datatype”, ”from v:V{Datatype} reportSet v end”);
instantiateVertices(”Declaration”, ”from v:V{Datatype} reportSet v end”);
instantiateVertices(”IRI”, ”from v:V{Datatype} reportSet v end”);
instantiateAttributeValues(”IRI”, ”iri”, ”from v:keySet(img Datatype) reportMap v, v.name end”);
instantiateEdges(”HasEntityIRI”, ”from v:keySet(img Datatype), w:keySet(img IRI) with v=w reportSet v

, v, w end”);
instantiateEdges(”DeclaresEntity”, ”from v:keySet(img Declaration), w:keySet(img Datatype) with v=w

reportSet v, v, w end”);
instantiateEdges(”HasAxioms”, ”from v:keySet(img Ontology), w:keySet(img Declaration), e:E with v−−

e−>&{Datatype}w reportSet e, v, w end”);

Figure A.22. Transformation step 3: BEDSL data type to OWL data type.

4. Reference to Object Property

For all vertices of type Reference in the modelware model a new vertex of
type ObjectProperty is created in the ontoware model. The name of the object
property is defined by an IRI. In addition, two axioms defining domain and
range of the object property are created and linked with the corresponding

A.3 Bridging Technologies 227

classes and the object property in the ontoware model. At the end the decla-
ration axiom and the two object property axioms for domain and range are
added to the ontology. Figure A.23 specifies the transformation step.

instantiateVertices(”ObjectProperty”, ”from v:V{Reference} reportSet v end”);
instantiateVertices(”Declaration”, ”from v:V{Reference} reportSet v end”);
instantiateVertices(”IRI”, ”from v:V{Reference} reportSet v end”);
instantiateAttributeValues(”IRI”, ”iri”, ”from v:keySet(img ObjectProperty) reportMap v, v.name end”);
instantiateEdges(”HasEntityIRI”, ”from v:keySet(img ObjectProperty), w:keySet(img IRI) with v=w

reportSet v, v, w end”);
instantiateEdges(”DeclaresEntity”, ”from v:keySet(img Declaration), w:keySet(img ObjectProperty) with v

=w reportSet v, v, w end”);
instantiateVertices(”ObjectPropertyDomain”, ”from e:E{HasFeature}, v,w:V with v−−e−>&{Reference

}w reportSet e end”);
instantiateEdges(”HasDomainObjectProperty”, ”from e:keySet(img ObjectPropertyDomain), v,w:V with v

−−e−>&{Reference}w reportSet e, e, w end”);
instantiateEdges(”HasDomainClassExpression”, ”from e:keySet(img ObjectPropertyDomain), v,w:V with v

−−e−>&{Reference}w reportSet e, e, v end”);
instantiateVertices(”ObjectPropertyRange”, ”from e:E{PointsTo}, v,w:V with v−−e−>&{Entity}w

reportSet e end”);
instantiateEdges(”HasRangeObjectProperty”, ”from e:keySet(img ObjectPropertyRange), v,w:V with v

−−e−>&{Entity}w reportSet e, e, v end”);
instantiateEdges(”HasRangeClassExpression”, ”from e:keySet(img ObjectPropertyRange), v,w:V with v

−−e−>&{Entity}w reportSet e, e, w end”);
instantiateEdges(”HasAxioms”, ”from v:keySet(img Ontology), w:keySet(img Declaration), e:E with v−−

e−>&{Reference}w reportSet e, v, w end”);
instantiateEdges(”HasAxioms”, ”from v:keySet(img Ontology), e:keySet(img ObjectPropertyDomain), w:V

with v−−>−−e−>&{Reference}w reportSet e, v, e end”);
instantiateEdges(”HasAxioms”, ”from v:keySet(img Ontology), e:keySet(img ObjectPropertyRange), w:V

with v−−>−−>−−e−>&{Entity}w reportSet e, v, e end”);

Figure A.23. Transformation step 4: BEDSL reference to OWL object property.

5. Attribute to DataProperty

For all vertices of type Attribute in the modelware model a new vertex of type
DataProperty is created and declared in the ontoware model. The name of the
data property is defined by an IRI. In addition, two axioms defining domain
and range of the data property are created and linked with the corresponding
class and the data type, respectively. At the end the declaration axiom and
two data property axioms for domain and range are added to the ontology.
Figure A.24 specifies the transformation step.

6. Enumeration to DataOneOf

For all vertices of type Enumeration in the modelware model a new vertex of
type DataOneOf is created in the ontoware model. In addition, for all enu-
meration entries of a given enumeration a literal is created in the ontoware
model and connected with the corresponding DataOneOf range. Figure A.25
specifies the transformation step.

228 A Appendix

instantiateVertices(”DataProperty”, ”from v:V{Attribute} reportSet v end”);
instantiateVertices(”Declaration”, ”from v:V{Attribute} reportSet v end”);
instantiateVertices(”IRI”, ”from v:V{Attribute} reportSet v end”);
instantiateAttributeValues(”IRI”, ”iri”, ”from v:keySet(img DataProperty) reportMap v, v.name end”);
instantiateEdges(”HasEntityIRI”, ”from v:keySet(img DataProperty), w:keySet(img IRI) with v=w

reportSet v, v, w end”);
instantiateEdges(”DeclaresEntity”, ”from v:keySet(img Declaration), w:keySet(img DataProperty) with v=

w reportSet v, v, w end”);
instantiateVertices(”DataPropertyDomain”, ”from e:E{HasFeature}, v,w:V with v−−e−>&{Attribute}w

reportSet e end”);
instantiateEdges(”HasDomainDataProperty”, ”from e:keySet(img DataPropertyDomain), v,w:V with v−−

e−>&{Attribute}w reportSet e, e, w end”);
instantiateEdges(”HasDataPropertyClassExpression”, ”from e:keySet(img DataPropertyDomain), v,w:V

with v−−e−>&{Attribute}w reportSet e, e, v end”);
instantiateVertices(”DataPropertyRange”, ”from e:E{HasAttributeDatatype}, v,w:V with v−−e−>&{

Datatype}w reportSet e end”);
instantiateEdges(”HasRangeDataProperty”, ”from e:keySet(img DataPropertyRange), v,w:V with v−−e

−>&{Datatype}w reportSet e, e, v end”);
instantiateEdges(”HasDataPropertyRange”, ”from e:keySet(img DataPropertyRange), v,w:V with v−−e

−>&{Datatype}w reportSet e, e, w end”);
instantiateEdges(”HasAxioms”, ”from v:keySet(img Ontology), w:keySet(img Declaration), e:E with v−−

e−>&{Attribute}w reportSet e, v, w end”);
instantiateEdges(”HasAxioms”, ”from v:keySet(img Ontology), e:keySet(img DataPropertyDomain), w:V

with v−−>−−e−>&{Attribute}w reportSet e, v, e end”);
instantiateEdges(”HasAxioms”, ”from v:keySet(img Ontology), e:keySet(img DataPropertyRange), w:V

with v−−>−−>−−e−>&{Entity}w reportSet e, v, e end”);

Figure A.24. Transformation step 5: BEDSL attribute to OWL data property.

instantiateVertices(”DataOneOf”, ”from v:V{Enumeration} reportSet v end”);
instantiateVertices(”Literal”, ”from v:V{EnumerationEntry} reportSet v end”);
instantiateEdges(”ContainsLiterals”, ”from v:keySet(img DataOneOf), w:keySet(img Literal) with v−−>

w reportSet v, v, w end”);
instantiateAttributeValues(”Literal”, ”lexicalValue”, ”from v:keySet(img Literal) reportMap v, v.value end

”);

Figure A.25. Transformation step 6: BEDSL enumeration to OWL DataOneOf.

7. hasSupertype to SubClassOf-Axiom

For all edges of type hasSupertype between two Entity vertices in the modelware
model a new vertex of type SubClassOf is created in the ontoware model and
connected with the corresponding OWL classes, which are involved in the
given specialization relationship. At the end the subclass axiom is added to
the ontology. Figure A.26 specifies the transformation step.

8. hasOpposite to InverseObjectProperty-Axiom

For all edges of type hasOpposite between two references in the modelware
model a vertex of type InverseObjectProperty is created in the ontoware model.
It is connected with the object property representing one reference and the
object property representing the opposite reference. At the end the inverse
object properties axiom is added to the ontology. Figure A.27 specifies the
transformation step.

A.3 Bridging Technologies 229

instantiateVertices(”SubClassOf”, ”from e:E{HasSupertype} reportSet e end”);
instantiateEdges(”HasSubClass”, ”from e:keySet(img SubClassOf), v:keySet(img Class), w:V with v−−e

−>w reportSet e, e, v end”);
instantiateEdges(”HasSuperClass”, ”from e:keySet(img SubClassOf), v:keySet(img Class), w:V with w

−−e−>v reportSet e, e, v end”);
instantiateEdges(”HasAxioms”, ”from v:keySet(img Ontology), e:keySet(img SubClassOf), w:V with v

−−>−−e−>w reportSet e, v, e end”);

Figure A.26. Transformation step 7: BEDSL hasSupertype to OWL SubClassOf.

instantiateVertices(”InverseObjectProperty”, ”from e:E{OppositeOf} reportSet e end”);
instantiateEdges(”HasInversedObjectProperty”, ”from e:keySet(img InverseObjectProperty), v,w:V{

Reference} with v−−e−>w reportSet e, e, v end”);
instantiateEdges(”HasInverseObjectProperty”, ”from e:keySet(img InverseObjectProperty), v,w:V{

Reference} with v−−e−>w reportSet e, e, w end”);
instantiateEdges(”HasAxioms”, ”from v:keySet(img Ontology), e:keySet(img InverseObjectProperty), w:V

with v−−>−−>−−e−>w reportSet e, v, e end”);

Figure A.27. Transformation step 8: BEDSL hasOpposite to OWL InverseObject-
Property.

A.3.2 Example of API Bridge

In the following we are going to present the implementation of methods for
all kinds of constructs BEDSL provides. These methods get an element of the
BEDSL graph as input and use the ontology manager to add new axioms to
a given ontology.

Bridge Models

The bridgeModel method in Figure A.28 gets a BEDSL model as input and
first of all creates a new ontology. The IRI is defined according to the name
of the model. Two collections are declared to collect only those hasSuperType
edges and Feature vertices, which are locally defined in the given BEDSL
model. Subsequently the method iterates over all entities, specialization rela-
tionships, datatypes, and features in the model and invokes the corresponding
bridging methods, which are presented in the following. All bridging methods
get the ontology to be extended by additional axioms as input, the BEDSL
model element, which should be translated, and the prefix manager, which
encapsulates the prefix used to name all entities in the ontology.

Bridge Entities

The bridgeEntity method in Figure A.29 creates a new OWL class for a given
Entity vertex. The name of the OWL class is defined by the name of the entity.
A declaration axiom is added to the ontology declaring the OWL class.

230 A Appendix

private void bridgeModel(Model m) {
try {

// Define IRI and Prefix of the ontology
IRI iri = IRI.create(”http://www.semanticsoftware.eu/”+m.get name());
OWLOntology ontology = manager.createOntology(iri);
String base = ”http://semanticsoftware.eu/”;
PrefixManager pm = new DefaultPrefixManager(base);

// Create collections for HasSuperType edges and Feature vertices in the model
Collection<HasSupertype> hasSuperTypeCollection = new ArrayList<HasSupertype>();
Collection<Feature> featureCollection = new ArrayList<Feature>();

// Iterate over all Entity vertices
Iterator<ContainsModelEntity> containsEntityIterator = m.getContainsModelEntityIncidences().

iterator();
while(containsEntityIterator.hasNext()){

Entity e = (Entity)containsEntityIterator.next().getOmega();
bridgeEntity(ontology, pm, e);

// Collect all HasSupertype edges in the model
Iterator<HasSupertype> hasSuperTypeIterator = (e.getHasSupertypeIncidences(EdgeDirection.OUT
).iterator());
while(hasSuperTypeIterator.hasNext()){

hasSuperTypeCollection.add(hasSuperTypeIterator.next());
}

// Collect all Feature vertices in the model
Iterator<HasFeature> hasFeatureIterator = e.getHasFeatureIncidences().iterator();
while(hasFeatureIterator.hasNext()){

featureCollection.add((Feature)hasFeatureIterator.next().getOmega());
}
}

// Iterate over all HasSupertype edges in the model
Iterator<HasSupertype> hasSuperTypeIterator = hasSuperTypeCollection.iterator();
while (hasSuperTypeIterator.hasNext()) {

bridgeHasSupertype(ontology, hasSuperTypeIterator.next());
}

// Iterate over all Datatype vertices in the model
Iterator<ContainsModelDatatype> containtsDatatypeIterator = m.

getContainsModelDatatypeIncidences().iterator();
while(containtsDatatypeIterator.hasNext()) {

bridgeDatatype(ontology, pm, (Datatype)containtsDatatypeIterator.next().getOmega());
}

// Iterate over all Features in the model
Iterator<Feature> featureIterator = featureCollection.iterator();
while(featureIterator.hasNext()) {

Feature f = (Feature) featureIterator.next();
if(f instanceof Reference)

bridgeFeature(ontology, pm, (Reference)(f));
if(f instanceof Attribute)

bridgeFeature(ontology, pm, (Attribute)(f));
}

saveOntology(m.get name()+”.owl”, ontology);

} catch (OWLOntologyCreationException e) {
e.printStackTrace();
}

}

Figure A.28. API bridge for BEDSL models.

A.3 Bridging Technologies 231

private void bridgeEntity(OWLOntology o, PrefixManager pm, Entity e) {
OWLClass c = factory.getOWLClass(e.get name(), pm);
OWLDeclarationAxiom d = factory.getOWLDeclarationAxiom(c);
manager.addAxiom(o, d);
owlEntityMap.put(e, c);
}

Figure A.29. API bridge for BEDSL entities.

Bridge HasSupertype Relations

The bridgeHasSupertype method in Figure A.30 creates a subclass axiom in
the ontology for a HasSupertype edge. The subclass axiom relates the OWL
classes, which are created for the corresponding entities being incident with
the given HasSupertype edge.

private void bridgeHasSupertype(OWLOntology o, HasSupertype h) {
OWLSubClassOfAxiom sub = factory.getOWLSubClassOfAxiom((OWLClass)owlEntityMap.get(h.

getAlpha()), (OWLClass)owlEntityMap.get(h.getOmega()));
manager.addAxiom(o, sub);
}

Figure A.30. API bridge for BEDSL HasSupertype edges.

Bridge Datatypes

The bridgeDatatype method in Figure A.31 translates a BEDSL datatype into
corresponding OWL constructs.

The method differs between primitive datatypes and enumerations. In the
case of primitive datatypes, the method checks whether the datatype is a
String, Integer, Boolean, or Double datatype by checking the name attribute.
For each type a corresponding datatype in the ontology is declared. In the
case of BEDSL enumerations a DataOneOf construct is created and filled with
OWL literals. These literals are defined for each enumeration entry being part
of the given enumeration.

Bridge Features

In Figure A.32 five different methods are implemented to bridge references
and attributes in BEDSL models.

The method bridgeFeature getting a Reference as input declares a cor-
responding object property in the given ontology and invokes the methods
bridgeHasFeature and bridgePointsTo.

The method bridgeHasFeature differs between HasFeature edges, which end
at Reference vertices and also those, which end at Attribute vertices. For edges

232 A Appendix

private void bridgeDatatype(OWLOntology o, PrefixManager pm, Datatype d) {
if(!(d instanceof Enumeration)){
if(d.get name().equalsIgnoreCase(”String”)){

OWLDatatype string = factory.getOWLDatatype(”xsd:string”, pm);
OWLDeclarationAxiom dec = factory.getOWLDeclarationAxiom(string);
manager.addAxiom(o, dec);
owlEntityMap.put(d, string);
}
if(d.get name().equalsIgnoreCase(”Integer”)){

OWLDatatype integer = factory.getOWLDatatype(”xsd:integer”, pm);
OWLDeclarationAxiom dec = factory.getOWLDeclarationAxiom(integer);
manager.addAxiom(o, dec);
owlEntityMap.put(d, integer);
}
if(d.get name().equalsIgnoreCase(”Boolean”)){

OWLDatatype bool = factory.getOWLDatatype(”xsd:boolean”, pm);
OWLDeclarationAxiom dec = factory.getOWLDeclarationAxiom(bool);
manager.addAxiom(o, dec);
owlEntityMap.put(d, bool);
}
if(d.get name().equalsIgnoreCase(”Double”)){

OWLDatatype doub = factory.getOWLDatatype(”xsd:double”, pm);
OWLDeclarationAxiom dec = factory.getOWLDeclarationAxiom(doub);
manager.addAxiom(o, dec);
owlEntityMap.put(d, doub);
}
}
else {

Enumeration e = (Enumeration) d;
Set<OWLLiteral> literals = new HashSet<OWLLiteral>();

Iterator<ContainsEntry> containsEntryIterator = e.getContainsEntryIncidences().iterator();
while(containsEntryIterator.hasNext()) { literals.add(factory.getOWLLiteral(((EnumerationEntry

)(containsEntryIterator.next().getOmega())).get value()));
}

OWLDataOneOf dataoneof = factory.getOWLDataOneOf(literals);
OWLDatatype dataOneOfDatatype = factory.getOWLDatatype(e.get name(), pm);
OWLDatatypeDefinitionAxiom def = factory.getOWLDatatypeDefinitionAxiom(dataOneOfDatatype,

dataoneof);
manager.addAxiom(o, def);
owlEntityMap.put(e, dataOneOfDatatype);

}
}

Figure A.31. API bridge for BEDSL data types.

of type HasFeature being incident with a Reference vertex, the method adds
an object property domain axiom to the ontology. The axiom connects the
class, which was created for the entity containing the feature with the ob-
ject property, which in turn was created for the reference. For edges of type
HasFeature being incident with an Attribute vertex the method adds a data
property domain axiom to the ontology. The axiom connects the class, which
was created for the entity containing the feature with the data property, which
in turn was created for the attribute.

The bridgePointsTo method creates an object property range axiom. It
connects the object property representing the reference in the ontology with
the class representing the entity where the PointsTo edge ends.

A.3 Bridging Technologies 233

The method bridgeFeature getting an Attribute as input declares a corre-
sponding data property in the given ontology and invokes the methods bridge-
HasFeature and bridgeHasAttributeDatatype.

The bridgeHasAttributeDatatype method creates a data property range ax-
iom for a HasAttributeDatatype edge. The axiom connects the data property
representing the Attribute vertex being incident with the given HasAttribute-
Datatype edge, with the datatype in the ontology being the translation of the
datatype in the BEDSL model.

private void bridgeFeature(OWLOntology o, PrefixManager pm, Reference r){
OWLObjectProperty op = factory.getOWLObjectProperty(r.get name(), pm);
OWLDeclarationAxiom d = factory.getOWLDeclarationAxiom(op);
manager.addAxiom(o, d);
owlEntityMap.put(r, p);

bridgeHasFeature(o, r.getFirstHasFeature());
bridgePointsTo(o, r.getFirstPointsTo());
}

private void bridgeHasFeature(OWLOntology o, HasFeature e) {
if(e.getOmega() instanceof Reference) {

OWLObjectPropertyDomainAxiom d = factory.getOWLObjectPropertyDomainAxiom((
OWLObjectProperty)owlEntityMap.get(e.getOmega()), (OWLClass) owlEntityMap.get(e.getAlpha())
);

manager.addAxiom(o, d);
}
if(e.getOmega() instanceof Attribute) {

OWLDataPropertyDomainAxiom d = factory.getOWLDataPropertyDomainAxiom((OWLDataProperty)
owlEntityMap.get(e.getOmega()), (OWLClass)owlEntityMap.get(e.getAlpha()));

manager.addAxiom(o, d);
}
}

private void bridgePointsTo(OWLOntology o, PointsTo e) {
OWLObjectPropertyRangeAxiom r = factory.getOWLObjectPropertyRangeAxiom((OWLObjectProperty)

owlEntityMap.get(e.getAlpha()), (OWLClass)owlEntityMap.get(e.getOmega()));
manager.addAxiom(o, r);
}

private void bridgeFeature(OWLOntology o, PrefixManager pm, Attribute a){
OWLDataProperty op = factory.getOWLDataProperty(a.get name(), pm);
OWLDeclarationAxiom d = factory.getOWLDeclarationAxiom(op);
manager.addAxiom(o, d);
owlEntityMap.put(a, op);

bridgeHasFeature(o, a.getFirstHasFeature());
bridgeHasAttributeDatatype(o, pm, a.getFirstHasAttributeDatatype());
}

private void bridgeHasAttributeDatatype(OWLOntology ontology, PrefixManager pm,
HasAttributeDatatype h) {

OWLDataPropertyRangeAxiom a = factory.getOWLDataPropertyRangeAxiom((OWLDataProperty)
owlEntityMap.get(h.getAlpha()), (OWLDatatype)owlEntityMap.get(h.getOmega()));

manager.addAxiom(ontology, a);
}

Figure A.32. API bridge for BEDSL features.

234 A Appendix

A.4 Grammar for the Ecore+OWL language

In the following, we present the grammar to design textual Ecore-based meta-
models with OWL 2-based annotations:

#KM3 Grammar

package = ”package” name ”{” classifiers ”}”;

classifiers = (classifier);
classifier = class | datatype | enumeration;

class = [”abstract”] ”class” name [supertypes] [classaxioms] ”{” features ”}”;

supertypes = ”extends” typelist;
typelist = {typeref”, ”} typeref;

features = {feature};
feature = attribute | reference;

attribute = [frontDataPropertyAxioms] ”attribute” name multiplicity ”:” typeref [endDataPropertyAxioms]
”;”;

reference = [frontObjectPropertyAxioms] ”reference” name multiplicity iscontainer ”:” typeref ”oppositeOf
” name [endObjectPropertyAxioms] ”;”;

multiplicity = bounds (”ordered”);
bounds = ”[” integer ”−” integer ”]” | ”[” integer ”− ∗]” | ”[∗]”;
iscontainer = (”container”);

datatype = ”datatype” name ;

enumeration = ”enumeration” name ”{” literals ”}”;

literals = literal { ”;” literal };
literal = ”literal” name ;

typeref = name;

digit = ”0”..”9”;
integer = digit {digit};

name = (letter | ” ”) { letter | digit | ” ” } ;
letter = ”a”..”z” | ”A”..”Z” ;

KM3 Grammar Extension

classaxioms = classAxiom {”,” classAxiom} ;
classAxiom = (”equivalentTo” CE | ”disjointWith” CE | ”subClassOf” CE | ”disjointUnionOf” CE CE {CE

}) ;
CE = (name | ”not” CE | CE ”and” CE { ”and” CE } | CE ”or” CE {”or” CE} | OPE (”some” | ”only”)

CE | OPE ”Self” | OPE (”min” | ”max” | ”exactly”) integer CE | DPE (”some” | ”only”)
dataRange | DPE (”min” | ”max” | ”exactly”) integer dataRange) ;

frontObjectPropertyAxioms = frontObjectPropertyAxiom {”,” frontObjectPropertyAxiom} ;
endObjectPropertyAxioms = endObjectPropertyAxiom {”,” endObjectPropertyAxiom} ;
frontObjectPropertyAxiom = (”functional” | ”inversefunctional” | ”symmetric” | ”asymmetric” | ”reflexive

” | ”irreflexive” | ”transitive”) ;
endObjectPropertyAxiom = (”equivalentTo” OPE | ”subPropertyOf” OPE | ”domain” CE | ”range” CE |

”disjointWith” OPE | ”inverseOf” name | ”subPropertyChain” OPE ”o” OPE {”o” OPE}) ;
OPE = name | ”inv(” name ”)” ;

frontDataPropertyAxioms = frontDataPropertyAxiom {”,” frontDataPropertyAxiom} ;
endDataPropertyAxioms = endDataPropertyAxiom {”,” endDataPropertyAxiom} ;
frontDataPropertyAxiom = ”functional” ;

A.4 Grammar for the Ecore+OWL language 235

endDataPropertyAxiom = (”equivalentTo” DPE | ”subPropertyOf” DPE | ”domain” CE | ”range”
dataRange | ”disjointWith” DPE);

DPE = name ;

dataRange = (dataConjunction ”or” dataConjunction { ”or” dataConjunction }) | dataConjunction;

dataConjunction = (dataPrimary ”and” dataPrimary { ”and” dataPrimary }) | dataPrimary ;

dataPrimary = [”not”] dataAtomic;

dataAtomic = Datatype | ”{” literalList ”}” | ”(” dataRange ”)”;

Datatype = name;

literalList = name { ”;” name };

List of Figures

1.1 Road map of this thesis. 12

2.1 The TGraph metamodeling hierarchy. 19
2.2 Example of a TGraph, its visualization and its conformance

to a grUML diagram. 20
2.3 Simplified structure of the grUML schema. 29
2.4 Excerpt of the domains provided by the grUML schema. 29
2.5 State machine graph schema in abstract syntax. 30

3.1 Ontoware technological space and road map of Chapter 3. 40
3.2 DL knowledge base in ALC. 42
3.3 Consistent knowledge base in OWA. 48
3.4 Ontoware model as TGraph. 52
3.5 Ontoware model representing the knowledge base in Figure 3.2. 53
3.6 OWL 2 metamodel (excerpt). 53
3.7 Ontoware Model represented in Manchester-Style Syntax. 55
3.8 Simple SPARQL query. 58

4.1 Overview of the comparison of modelware and ontoware. 62

5.1 BEDSL model. 76
5.2 Metamodel of BEDSL. 77
5.3 Road map of Chapter 5. 78
5.4 Visualized ontoware model. 81
5.5 Hybrid model in concrete syntax. 82
5.6 GSa

BEDSL, the adaptation of the BEDSL metamodel. 87
5.7 Integration of BEDSL Model, Entity, and HasSupertype with

OWL constructs. 89
5.8 Integration of BEDSL Reference with OWL constructs. 90
5.9 Integration of BEDSL Attribute and Datatype with OWL

constructs. 91

238 List of Figures

5.10 grUML metaschema extended for Traceability. 92
5.11 Integration services recorded. 94
5.12 Visualized ontoware model. 97
5.13 Mapping metamodel. 99
5.14 Mapping metamodel integrated with the BEDSL and OWL 2

metamodel. 100
5.15 Mapping of modelware model and ontoware model (concrete

syntax). 104
5.16 Architecture showing the management of ontologies of the

OWL API [HB09]. 106
5.17 API bridge class. 108
5.18 Using the API bridge. 108
5.19 Using reasoning services. 108

6.1 Ecore metametamodel as grUML diagram. 117
6.2 Visualized TGraph representing the metamodel of an activity

language. 117
6.3 Road map of Chapter 6. 119
6.4 Adapted Ecore metametamodel GSa

Ecore (excerpt). 120
6.5 Integration of Ecore Metamodel, Class, and HasSupertype with

OWL 2 constructs. 122
6.6 Integration of Ecore Reference with OWL 2 constructs. 122
6.7 Integration of Ecore Attribute with OWL constructs. 124
6.8 Hybrid model representing a metamodel with integrated

OWL 2-based annotations. 125
6.9 Process models. 128
6.10 Ontoware model representing the hybrid model and the

linguistic user model (excerpt). 129
6.11 Inconsistent process model. 135

7.1 Domain engineering according to [Cza98]. 142
7.2 Relation between conceptual domain models and metamodels. . 144
7.3 Device conceptual domain model. 145
7.4 Road map of Chapter 7. 146
7.5 Metamodel extension GSDE for languages with ontological

instantiation. 146
7.6 BEDSL+DE metamodel. 147
7.7 Part of GSInt relevant for the instantiation of EntityClasses. 149
7.8 Part of GSInt relevant for the instantiation of References. 150
7.9 Part of GSInt relevant for the instantiation Attribute and

AttributeAssignment. 151
7.10 Hybrid conceptual domain model (excerpt). 151
7.11 Ontoware model being the projection of the domain model in

Figure 7.10. 152

List of Figures 239

8.1 Road map of Chapter 8. 162
8.2 Devices of the Cisco 7600 Series [Cis04]. 164
8.3 Step 1: Creating initial domain model for a new device type. . . . 164
8.4 Step 2: Adding slots to the configuration. 165
8.5 Step 3: Plugging card types into slots and checking the

consistency. 165
8.6 Step 4: Repairing the domain model. 166
8.7 Step 5: Automatic classification of domain model elements. 166
8.8 Metamodel of the Physical Device DSL. 169
8.9 Incomplete and inconsistent domain model. 171

9.1 Road map of Chapter 9. 174
9.2 Linguistic and ontological metamodeling. 176
9.3 Metamodel of the extended PDDSL. 178
9.4 Conceptual domain model containing types and instances. 179
9.5 Architectural overview of the environment for linguistic and

ontological metamodeling. 181
9.6 Ecore extension for instance modeling. 182
9.7 Type and instance modeling. 182
9.8 Reference and link modeling. 183

10.1 Implementation overview. 189
10.2 Class signatures of modelware services. 190
10.3 Class signatures of ontoware services. 190
10.4 Class signature of transformation services. 191
10.5 Class signature of integration bridge. 192
10.6 Class signature of inconsistency management services. 193
10.7 Class signature of domain engineering services. 193
10.8 View of the language designer in the TwoUse Toolkit. 194
10.9 View of the DSL user in the MOST workbench. 196

A.1 grUML VertexClass- / EdgeClass-constructs in abstract syntax. . 206
A.2 grUML constructs for type hierarchy definition in abstract

syntax. 207
A.3 grUML constructs for attribute definitions in abstract syntax. . . 207
A.4 grUML constructs for multiplicity definitions in abstract syntax.208
A.5 OWL 2 constructs in GSOWL for declaring an ontology. 215
A.6 OWL 2 constructs in GSOWL for declaring classes and object

properties. 216
A.7 OWL 2 constructs in GSOWL for declaring quantifications. 216
A.8 OWL 2 constructs in GSOWL for declaring boolean connectives. 217
A.9 OWL 2 constructs in GSOWL for role hierarchies and self

concepts. 218
A.10 OWL 2 constructs in GSOWL for nominals. 218
A.11 OWL 2 constructs in GSOWL for inverse roles. 219

240 List of Figures

A.12 OWL 2 constructs in GSOWL for cardinality restrictions. 220
A.13 OWL 2 constructs in GSOWL for data ranges and data

properties. 220
A.14 OWL 2 constructs in GSOWL for data property quantifications. 221
A.15 OWL 2 constructs in GSOWL for data property cardinality

restrictions. 222
A.16 OWL 2 constructs in GSOWL for declaring class axioms. 223
A.17 OWL 2 constructs in GSOWL for individual assertions. 223
A.18 OWL 2 constructs in GSOWL for object property domain and

range. 224
A.19 OWL 2 constructs in GSOWL for data property domain and

range. 225
A.20 Transformation step 1: BEDSL model to OWL ontology. 226
A.21 Transformation step 2: BEDSL entity to OWL class. 226
A.22 Transformation step 3: BEDSL data type to OWL data type. . . 226
A.23 Transformation step 4: BEDSL reference to OWL object

property. 227
A.24 Transformation step 5: BEDSL attribute to OWL data property.228
A.25 Transformation step 6: BEDSL enumeration to OWL

DataOneOf. 228
A.26 Transformation step 7: BEDSL hasSupertype to OWL

SubClassOf. 229
A.27 Transformation step 8: BEDSL hasOpposite to OWL

InverseObjectProperty. 229
A.28 API bridge for BEDSL models. 230
A.29 API bridge for BEDSL entities. 231
A.30 API bridge for BEDSL HasSupertype edges. 231
A.31 API bridge for BEDSL data types. 232
A.32 API bridge for BEDSL features. 233

List of Tables

2.1 Relation between the OMG’s model hierarchy and the TGraph
approach. 21

2.2 GReQL querying service. 35
2.3 Basic transformation operation: instantiateVertices. 37
2.4 Basic transformation operation: instantiateEdges. 37
2.5 Basic transformation operation: instantiateAttributeValues. 38

3.1 DL constructs SHIF . 44
3.2 DL constructs ON . 44
3.3 DL constructs RQ. 45
3.4 DL constructs D. 45
3.5 Relation between DL and FOL (excerpt). 46
3.6 Complexity of OWL 2 tractable fragments [Gra07]. 47
3.7 Reasoning service: consistency checking. 55
3.8 Reasoning service: satisfiability checking. 56
3.9 Reasoning service: classification. 56
3.10 Reasoning service: subsumption checking. 56
3.11 Reasoning service: explanation of an axiom. 56
3.12 Reasoning service: inconsistency explanation. 57
3.13 SPARQL querying service. 59

4.1 Mapping between modelware concepts and ontoware concepts. . 63
4.2 Mapping between SPARQL and GReQL concepts [SE10]. 67

5.1 Transformation service: transform. 79
5.2 Mapping of concepts of BEDSL metamodel and OWL 2

metamodel. 79
5.3 Integration bridge constructor. 83
5.4 adaptation service. 83
5.5 metamodelUnion service. 84
5.6 Integration service: mergeVertexClasses. 84

242 List of Tables

5.7 Integration service: specializeClasses. 85
5.8 Integration service: associateClasses. 85
5.9 Integration service: mergeEdgeClasses. 86
5.10 Integration Service: mergeAttributes. 86
5.11 Load service. 94
5.12 Projection service. 95
5.13 Load modelware model service. 101
5.14 Load ontoware model service. 101
5.15 Mapping service. 102
5.16 Derive Service. 102

6.1 Mapping of Ecore and OWL 2. 120
6.2 toSchema Service. 125
6.3 Multi-layer projection service. 127
6.4 Use of OWA and CWA for model validation. 133
6.5 Inconsistency detection service. 135
6.6 Inconsistent elements service. 136
6.7 Type suggestion services. 137

7.1 Mapping of BEDSL+DE and OWL 2 (extension for Table 5.2). 148
7.2 getDomainTypes service. 154
7.3 Domain consistency service. 154
7.4 Domain satisfiability service. 155
7.5 Domain instance retrieval service. 155

8.1 Integrated Ecore and OWL 2 construcs. 168

A.1 Basic service: createGraph. 213
A.2 Basic service: deleteGraph. 213
A.3 Basic service: createVertex. 213
A.4 Basic service: deleteVertex. 214
A.5 Basic service: createEdge. 214
A.6 Basic service: deleteEdge. 214
A.7 Basic service: setAttribute. 214
A.8 OWL 2 construct for an initial ontology. 215
A.9 OWL 2 constructs for description logic S. 216
A.10 OWL 2 constructs for description logic R. 217
A.11 OWL 2 constructs for description logic O. 218
A.12 OWL 2 constructs for description logic I. 219
A.13 OWL 2 constructs for description logic Q. 219
A.14 OWL 2 constructs for description logic D for datatypes and

data roles. 220
A.15 OWL 2 constructs for description logic D for data quantifications.221
A.16 OWL 2 constructs for description logic D for data cardinality

restrictions. 222

List of Tables 243

A.17 OWL 2 concrete syntax for GCIs and assertions. 223
A.18 OWL 2 concrete syntax for domain and range of roles. 224
A.19 OWL 2 concrete syntax for domain and range of data roles. 224

References

ABGR07. Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray.
UML2Alloy: A challenging model transformation. In Proceedings of
Model Driven Engineering Languages and Systems, MoDELS 2007, vol-
ume 4735 of LNCS, pages 436–450. Springer, 2007.

AH08. Dean Allemang and Jim Hendler. Semantic Web for the Working Ontol-
ogist: Effective Modeling in RDFS and OWL. Morgan Kaufmann, 2008.

AK01. Colin Atkinson and Thomas Kühne. The Essence of Multilevel Meta-
modeling. In Proceedings of the International Conference on The Unified
Modeling Language, UML, volume 2185 of LNCS, pages 19–33. Springer,
2001.

AK03. Colin Atkinson and Thomas Kühne. Model-Driven Development: A
Metamodeling Foundation. IEEE Software, 20(5):36–41, 2003.

ATL05. ATLAS Group LINA & INRIA, Nantes. KM3: Kernel MetaMetaModel
- Manual version 0.3, 2005.

AZW06. Uwe Aßmann, Steffen Zschaler, and Gerd Wagner. Ontologies, Meta-
Models, and the Model-Driven Paradigm. Ontologies for Software Engi-
neering and Software Technology, pages 249–273, 2006.

Baa09. Franz Baader. Description Logics. In Reasoning Web. Semantic Tech-
nologies for Information Systems, volume 5689 of LNCS, pages 1–39.
Springer, 2009.

BCG05. Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning
on UML class diagrams. Artificial Intelligence, 168(1-2):70–118, 2005.

BCM+03. F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-
Schneider. The description logic handbook: theory, implementation, and
applications. Cambridge University Press New York, 2003.

Béz06. Jean Bézivin. Model Driven Engineering: An Emerging Technological
Space. In Generative and Transformational Techniques in Software En-
gineering, volume 4143 of LNCS, pages 36–64. Springer, 2006.

BGMR03. Jean Bézivin, Sébastien Gérard, Pierre-Alain Muller, and Laurent Ri-
oux. MDA components: Challenges and Opportunities. In Proceedings
of Workshop on Metamodelling for MDA, pages 23–41, 2003.

Bil08. Daniel Bildhauer. Auswertung der TGraphanfragesprache GReQL 2.
Diploma Thesis, University of Koblenz-Landau, 2008.

246 References

Bil10. Daniel Bildhauer. On the relationships between Subsetting, Redefinition
and Association Specialization. In Databases and Information Systems
VI, volume 224 of Frontiers in Artificial Intelligence and Applications,
pages 108–121. IOSPress, 2010.

BL84. Ronald J. Brachman and Hector J. Levesque. The tractability of sub-
sumption in frame-based description languages. In Proceedings of the 4th
National Conference on Artificial Intelligence (AAAI-84), pages 34–37,
1984.

Bor96. Alex Borgida. On the relative expressiveness of description logics and
predicate logics* 1. Artificial intelligence, 82(1-2):353–367, 1996.

BZ09. Andreas Bartho and Srdjan Zivkovic. Modeled software guidance/engi-
neering processes and systems. Deliverable ICT216691/TUD/WP2-
D2/D/PU/b1.00, Technial University Dresden, BOC, 2009. MOST
Project, http://www.most-project.eu/.

Cis04. Cisco Systems. Presseinformationen, March 2004. http://cebit2004.

cisco.de/cis_pmap/data/de/bilder.html.
CK05. Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based

feature modeling and constraints: A progress report. In Proceedings of
International Workshop on Software Factories at OOPSLA’05, 2005.

Com11. Comarch. Operations support systems - solutions for tele-
coms, April 2011. http://www.comarch.com/telecommunications/

our-offer/operations-support-systems-oss-suite.
CP06. Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based

model templates against well-formedness ocl constraints. In Proceed-
ings of the 5th international conference on Generative programming and
component engineering, pages 211–220. ACM, 2006.

Cza98. Krzysztof Czarnecki. Generative Programming. PhD thesis, Department
of Computer Science and Automation Technical University of Ilmenau,
1998.

DLN+96. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Werner Nutt,
and Andrea Schaerf. An epistemic operator for description logics. Arti-
ficial Intelligence, 100(1-2):225–274, 1996.

EB10. Jürgen Ebert and Daniel Bildhauer. Reverse Engineering Using Graph
Queries. In Graph Transformations and Model-Driven Engineering, vol-
ume 5765 of LNCS, pages 335–362. Springer, 2010.

Eva98. Andy S. Evans. Reasoning with UML class diagrams. In Proceedings of
2nd IEEE Workshop on Industrial Strength Formal Specification Tech-
niques, pages 102–113. IEEE Computer Society, 1998.

EW10. Jürgen Ebert and Tobias Walter. Interoperability services for models
and ontologies. In Databases and Information Systems VI, volume 224
of Frontiers in Artificial Intelligence and Applications, pages 19–36. IOS-
Press, 2010.

EWD+96. Jürgen Ebert, Andreas Winter, Peter Dahm, Angelika Franzke, and
Roger Süttenbach. Graph Based Modeling and Implementation with
EER / GRAL. In Proceedings of Conceptual Modeling - ER’96, volume
1157 of LNCS, pages 163–178. Springer, 1996.

Far03. James Farrugia. Model-theoretic semantics for the web. In WWW ’03:
Proceedings of the 12th international conference on World Wide Web,
pages 29–38, New York, NY, USA, 2003. ACM.

http://cebit2004.cisco.de/cis_pmap/data/de/bilder.html
http://cebit2004.cisco.de/cis_pmap/data/de/bilder.html
http://www.comarch.com/telecommunications/our-offer/operations-support-systems-oss-suite
http://www.comarch.com/telecommunications/our-offer/operations-support-systems-oss-suite

References 247

FR07. Robert B. France and Bernhard Rumpe. Model-driven Development of
Complex Software: A Research Roadmap. In Proceedings of the Work-
shop on the Future of Software Engineering (FOSE), pages 37–54, 2007.

FST96. Anthony Finkelstein, George Spanoudakis, and David Till. Managing
Interference. In ISAW ’96: Joint proceedings of the second international
software architecture workshop (ISAW-2) and international workshop on
multiple perspectives in software development (Viewpoints ’96) on SIG-
SOFT ’96 workshops, pages 172–174. ACM, 1996.

GFC+08. Jeff Gray, Kathleen Fisher, Charles Consel, Gabor Karsai, Marjan
Mernik, and Juha-Pekka Tolvanen. Panel - DSLs: the good, the bad,
and the ugly. In OOPSLA Companion ’08. ACM, 2008.

GHVD03. Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.
Description logic programs: combining logic programs with description
logic. In Proceedings of the 12th International Conference on World Wide
Web, WWW ’03, pages 48–57, New York, NY, USA, 2003. ACM.

GLR+02. Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew
Wood. Transformation: The missing link of MDA. In Proceedings of
1st International Conference on Graph Transformation, volume 2505 of
LNCS, pages 90–105. Springer, 2002.

GM05. Stephan Grimm and Boris Motik. Closed World Reasoning in the Seman-
tic Web through Epistemic Operators. In Proceedings of the 1st OWL
Experiences and Directions Workshop (OWLED-2005), volume 188 of
CEUR Workshop Proceedings. CEUR-WS.org, 2005.

GOS07. Ralf Gitzel, Ingo Ott, and Martin Schader. Ontological Extension to
the MOF Metamodel as a Basis for Code Generation. The Computer
Journal, 50(1):93–115, 2007.

GOS09. Nicola Guarino, Daniel Oberle, and Steffen Staab. What Is an Ontology?
Handbook on Ontologies, pages 1–17, 2009.

GP10. Birte Glimm and Bijan Parsia. SPARQL 1.1 Entailment Regimes. http:
//www.w3.org/TR/2010/WD-sparql11-entailment-20100126/, January
2010.

Gra07. Bernardo Cuenca Grau. OWL 2 Web Ontology Language Tractable Frag-
ments. http://www.w3.org/2007/OWL/wiki/Tractable_Fragments,
2007.

Gui05. Giancarlo Guizzardi. Ontological Foundations for Structural Conceptual
Models. PhD thesis, Centre for Telematics and Information Technology,
Enschede, The Netherlands, 2005.

HB09. Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for
Working with OWL 2 Ontologies. In Proceedings of the OWL Experiences
and Directions Workshop, volume 529 of CEUR Workshop Proceedings.
CEUR-WS.org, 2009.

HE11. Tassilo Horn and Jürgen Ebert. The GReTL Transformation Language.
In Proceedings of the 4th International Conference on Model Transfor-
mation (ICMT 2011), LNCS. Springer, 2011. to appear.

Hec10. Kristina Heckelmann. Abbildung von Ecore nach grUML. Bachelor The-
sis, University of Koblenz-Landau, 2010.

Hei09. Florian Heidenreich. Towards systematic ensuring well-formedness of
software product lines. In Proceedings of the First International Work-
shop on Feature-Oriented Software Development, pages 69–74. ACM,
2009.

http://www.w3.org/TR/2010/WD-sparql11-entailment-20100126/
http://www.w3.org/TR/2010/WD-sparql11-entailment-20100126/
http://www.w3.org/2007/OWL/wiki/Tractable_Fragments

248 References

HJK+09. Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and
Christian Wende. Derivation and Refinement of Textual Syntax for Mod-
els. In Proceedings of European Conference on Model-Driven Architecture
Foundations and Applications, volume 5562 of LNCS, pages 114–129.
Springer, 2009.

HM01. Volker Haarslev and Ralf Möller. Description of the racer system and its
applications. In Proceedings of Description Logics Workshop, volume 49
of CEUR Workshop Proceedings. CEUR-WS.org, 2001.

Hor05. Ian Horrocks. OWL: A Description Logic Based Ontology Language.
In Logic Programming: 21st International Conference, volume 3668 of
LNCS, pages 1–4. Springer, 2005.

Hor08. Ian Horrocks. Ontologies and the Semantic Web. Communications of
the ACM, 51(12):58–67, 2008.

HPS04. Ian Horrocks and Peter Patel-Schneider. Reducing OWL entailment to
description logic satisfiability. Web Semantics: Science, Services and
Agents on the World Wide Web, 1(4):345–357, 2004.

HPS09. Matthew Horridge and Peter F. Patel-Schneider. OWL 2 Web
Ontology Language Manchester Syntax. http://www.w3.org/TR/

owl2-manchester-syntax, October 2009.
HS05. Peter Haase and Ljiljana Stojanovic. Consistent Evolution of OWL On-

tologies. In Proceedings of Second European Semantic Web Conferenc,
ESWC 2005, volume 3532 of LNCS, pages 182–197. Springer, 2005.

HS10. Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. http:
//www.w3.org/TR/sparql11-query/, June 2010.

JABK08. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL:
A model transformation tool. Science of Computer Programming, 72(1-
2):31–39, 2008.

Jac02. Daniel Jackson. Micromodels of Software: Lightweight Modelling and
Analysis with Alloy, 2002.

Jac06. Daniel Jackson. Software Abstractions: logic, language, and analysis. The
MIT Press, 2006.

JB06. Frédéric Jouault and Jean Bézivin. KM3: a DSL for Metamodel Specifi-
cation. In Formal Methods for Open Object-Based Distributed Systems,
volume 4037 of LNCS, pages 171–185. Springer, 2006.

Kal06. Aditya Kalyanpur. Debugging and Repair of OWL Ontologies. PhD
thesis, University of Maryland, College Park, 2006.

KBA02. Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. Technological Spaces:
An Initial Appraisal. In CoopIS, DOA’2002 Federated Conferences, In-
dustrial track, Irvine, 2002.

KBJK03. Harald Kühn, Franz Bayer, Stefan Junginger, and Dimitris Karagiannis.
Enterprise Model Integration. In Proceedings of E-commerce and Web
Technologies, volume 2738 of LNCS, pages 379–392. Springer, 2003.

KKK+06. Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler,
Thomas Reiter, Werner Retschitzegger, Wieland Schwinger, and Manuel
Wimmer. Lifting metamodels to ontologies: A step to the semantic inte-
gration of modeling languages. In Proceedings of International Confer-
ence on Model Driven Engineering Languages and Systems(MoDELS),
volume 4199 of LNCS, pages 528–542. Springer, 2006.

http://www.w3.org/TR/owl2-manchester-syntax
http://www.w3.org/TR/owl2-manchester-syntax
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

References 249

KMS09. Marek Kasztelnik, Krzysztof Miksa, and Pawel Sabina. Case study de-
sign. Deliverable ICT216691/CMR/WP5-D2/D/RE/b1, Comarch, 2009.
MOST Project, http://www.most-project.eu/.

KPHS07. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifi-
cations of OWL DL entailments. In Proceedings of the 6th International
Semantic Web Conference, volume 4825 of LNCS, page 267. Springer,
2007.

KPP06. Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. Merging Mod-
els with the Epsilon Merging Language (EML). In Proceedings of Inter-
national Conference on Model Driven Engineering Languages and Sys-
tems(MoDELS), volume 4199 of LNCS, pages 215–229. Springer, 2006.

KPSH05. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James A. Hendler. De-
bugging unsatisfiable classes in owl ontologies. Web Semantics: Science,
Services and Agents on the World Wide Web, 3(4):268–293, 2005.

KS08. Petr Kremen and Evren Sirin. SPARQL-DL Implementation Experience.
In Proceedings of the 4th OWL Experiences and Directions DC Work-
shop (OWLED-DC-2008), volume 496 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

KT07. Steve Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling. John
Wiley & Sons, 2007.

Kur08. Ivan Kurtev. State of the Art of QVT: A Model Transformation Lan-
guage Standard. In Applications of Graph Transformations with Indus-
trial Relevance, volume 5088 of LNCS, pages 377–393. Springer, 2008.

KWRS11. Gerti Kappel, Manuel Wimmer, Werner Retschitzegger, and Wieland
Schwinger. Leveraging Model-Based Tool Integration by Conceptual
Modeling Techniques. In The Evolution of Conceptual Modeling, vol-
ume 6520 of LNCS, pages 254–284. Springer, 2011.

LBM+01. Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Péter Völgyesi, Greg Nord-
strom, Jonathan Sprinkle, and Gabor Karsai. Composing domain-specific
design environments. IEEE Computer, 34(11):44–51, 2001.

LK09. Alfons Laarman and Ivan Kurtev. Ontological Metamodeling with Ex-
plicit Instantiation. In Proceedings of the Conference on Software Lan-
guage Engineering, volume 5969 of LNCS, pages 174–183. Springer, 2009.

LNK+01. Akos Ledeczi, Greg Nordstrom, Gabor Karsai, Peter Volgyesi, and Miklos
Maroti. On metamodel composition. In Proceedings of IEEE Interna-
tional Conference on Control Applications, 2001.

Mar06. Katrin Marchewka. GReQL 2. Diploma Thesis, University of Koblenz-
Landau, 2006.

MCF03. Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Model-driven
development. IEEE software, 20(5):14–18, 2003.

MHRS06. Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler. Can
OWL and Logic Programming live together happily ever after? In Pro-
ceedings of the 5th International Semantic Web Conference, volume 4273
of LNCS, pages 501–514. Springer, 2006.

MK08. Krzysztof Miksa and Marek Kasztelnik. Definition of the case study
requirements. Deliverable ICT216691/CMR/WP5-D1/D/PU/b1, Co-
march, 2008. MOST Project, http://www.most-project.eu/.

MM09. Steffen Mazanek and Mark Minas. Business process models as a showcase
for syntax-based assistance in diagram editors. In Proceedings of Model

250 References

Driven Engineering Languages and Systems (MoDELS), volume 5795 of
LNCS, pages 322–336. Springer, 2009.

MMM08. Steffen Mazanek, Sonja Maier, and Mark Minas. Auto-completion for
Diagram Editors based on Graph Grammars. In Proceedings of IEEE
Symposium on Visual Languages and Human-Centric Computings, pages
242–245. IEEE, 2008.

MPSH09. Boris Motik, Peter F. Patel-Schneider, and Ian Horrocks. OWL 2 Web
Ontology Language: Structural Specification and Functional-Style Syn-
tax. http://www.w3.org/TR/owl2-syntax/, October 2009.

MS91. Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descrip-
tions with complements. Artificial intelligence, 48(1):1–26, 1991.

MSZ10. Krzysztof Miksa, Pawel Sabina, and Srdjan Zivkovic. First demon-
strator and report on experiences. Deliverable ICT216691/CMR/WP5-
D3/D/PU/b1, Comarch, 2010. MOST Project, http://www.most-
project.eu/.

NE93. NIST ISEE Working Group and ECMA TC33 Task Group on the Ref-
erence Model. Reference Model for Frameworks of Software Engineering
Environments, TR/55, 3rd Edition. Technical report, 1993.

NER00. Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Lever-
aging Inconsistency in Software Development. Software Development,
33(4):24–29, 2000.

OMG06. OMG. Meta Object Facility (MOF) Core Specification. Object Manage-
ment Group, January 2006.

OMG07a. OMG. Ontology definition metamodel. OMG Adopted Specification
OMG Document Number: ptc/2007-09-09, September 2007.

OMG07b. OMG. Unified Modeling Language: Superstructure, version 2.1.2. Object
Management Group, November 2007.

PBL05. Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques. Springer,
2005.

Pol10. Axel Polleres. SPARQL 1.1: New Features and Friends (OWL2, RIF). In
Web Reasoning and Rule Systems, volume 6333 of LNCS, pages 23–26.
Springer, 2010.

PPCR08. Colin Puleston, Bijan Parsia, James Cunningham, and Alan Rector. In-
tegrating object-oriented and ontological representations: A case study
in Java and OWL. In Proceedings of the International Semantic Web
Conference, volume 5318 of LNCS, pages 130–145. Springer, 2008.

PS08. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language
for RDF. http://www.w3.org/TR/rdf-sparql-query/, January 2008.

PSM10. Peter F. Patel-Schneider and Boris Motik. OWL 2 Web Ontology
Language Mapping to RDF Graphs. http://www.w3.org/TR/2009/

REC-owl2-mapping-to-rdf-20091027/, October 2010.
Sat03. Ulrike Sattler. Description Logics for Ontologies. In Conceptual Struc-

tures for Knowledge Creation and Communication, volume 2746 of LNAI,
pages 96–116. Springer, 2003.

SBPM08. David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework (2nd Edition). Addison-Wesley,
2008.

Sch06. Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engi-
neering. Computer, 39:25–31, 2006.

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/
http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/

References 251

SE10. Hannes Schwarz and Jürgen Ebert. Bridging Query Languages in Se-
mantic and Graph Technologies. In Reasoning Web. Semantic Technolo-
gies for Software Engineering, volume 6325 of LNCS, pages 119–160.
Springer, 2010.

SEL+10. Hannes Schwarz, Jürgen Ebert, Jens Lemcke, Tirdad Rahmani, and Srd-
jan Zivkovic. Using Expressive Traceability Relationships for Ensuring
Consistent Process Model Refinement. In Proceedings of the 15th IEEE
International Conference on Engineering of Complex Computer Systems.
IEEE Computer Society, 2010.

SEW10. Hannes Schwarz, Jürgen Ebert, and Andreas Winter. Graph-based trace-
ability: a comprehensive approach. Software and Systems Modeling,
9(4):473–492, 2010.

SP07. Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL Query for OWL-
DL. In Proceedings of the 3rd OWL Experiences and Directions Workshop
(OWLED-2007), volume 258 of CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

SPG+07. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,
and Yarden Katz. Pellet: A practical OWL-DL Reasoner. Web Seman-
tics: Science, Services and Agents on the World Wide Web, 5(2):51–53,
2007.

ST09. Evren Sirin and Jiao Tao. Towards integrity constraints in owl. In Pro-
ceedings of the Workshop on OWL: Experiences and Directions (OWLED
2009), volume 529 of CEUR Workshop Proceedings. CEUR-WS.org,
2009.

Süt01. Roger Süttenbach. Formalisierung visueller Modellierungssprachen ob-
jektorientierter Methoden. PhD thesis, University of Koblenz-Landau,
2001.

SW09. Daniel A. Sadilek and Guido Wachsmuth. Using grammarware languages
to define operational semantics of modelled languages. In Proceedings of
the 47th International Conference on Objects, Components, Models and
Patterns (TOOLS), volume 33 of Lecture Notes in Business Information
Processing. Springer, 2009.

SWGP10. Steffen Staab, Tobias Walter, Gerd Gröner, and Fernando Silva Parreiras.
Model Driven Engineering with Ontology Technologies. In Reasoning
Web, volume 6325 of LNCS, pages 62–98. Springer, 2010.

SZ01. George Spanoudakis and Andrea Zisman. Inconsistency Management in
Software Engineering: Survey and Open Research Issues. Handbook of
Software Engineering and Knowledge Engineering, 1:329–380, 2001.

Van05. Ragnhild Van Der Straeten. Inconsistency Management in Model-driven
Engineering. An Approach using Description Logics. PhD thesis, Vrije
Universiteit Brussel, Belgium, 2005.

vL01. Axel van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Proceedings of IEEE International Symposium on Requirements
Engineering, pages 249–253. IEEE Computer Society, 2001.

W3C11. W3C. Extensible Markup Language (XML). http://www.w3.org/XML/,
April 2011.

WE09. Tobias Walter and Jürgen Ebert. Combining DSLs and Ontologies Using
Metamodel Integration. In Proceedings of IFIP Working Conference on
Domain-Specific Languages, volume 5658 of LNCS, pages 148–169, 2009.

http://www.w3.org/XML/

252 References

WK03. Jos Warmer and Anneke Kleppe. The Object Constraint Language: Get-
ting Your Models Ready for MDA. Addison-Wesley, 2003.

WL99. David M. Weiss and Chi Tau Robert Lai. Software Product-Line Engi-
neering: A Family-Based Software Development Process. Addison Wes-
ley, 1999.

WPS09. Tobias Walter, Fernando Silva Parreiras, and Steffen Staab. OntoDSL:
An Ontology-Based Framework for Domain-Specific Languages. In Model
Driven Engineering Languages and Systems, 12th International Confer-
ence, MODELS, volume 5795 of LNCS, pages 408–422. Springer, 2009.

WPSE10. Tobias Walter, Fernando Silva Parreiras, Steffen Staab, and Jürgen
Ebert. Joint Language and Domain Engineering. In Proceedings of Euro-
pean Conference Modelling Foundations and Applications, volume 6138
of LNCS, pages 321–336. Springer, 2010.

WSN+08. Jules White, Douglas C. Schmidt, Andrey Nechypurenko, , and Egon
Wuchner. Model intelligence: an approach to modeling guidance. UP-
GRADE, 9(2):22–28, 2008.

WSR10. Tobias Walter, Hannes Schwarz, and Yuan Ren. Establishing a Bridge
from Graph-based Modeling Languages to Ontology Languages. In Pro-
ceedings of 3rd Workshop on Transforming and Weaving Ontologies in
Model Driven Engineering (TWOMDE), volume CEUR of 604. CEUR-
WS.org, 2010.

Index

conformsTo, 26

ABox, 40
API Bridge, 106

Implementation, 107
Reasoning Services, 108
Translation Service, 107

Bridging Technology, 75

Closed World Assumption, 47
CWA, 47

Debugging, 167
Description Logics, 40
ALC, 41
D, 45
SHIF , 43
SHOIN , 43
SROIQ, 44
S, 43
Complexity, 46
Knowledge Base, 41

Domain Analysis, 153
getDomainTypes service, 153
isConsistent service, 154
isSatisfiable service, 155
retrieveDomainInstances service, 155

Domain Engineering, 141
Domain Analysis, 141
Domain Design, 141
Domain Implementation, 141

Domain Model, 143, 152
Conceptual, 143

Ecore, 116
KM3, 116
Metamodel, 116

EMF Text, 195

First Order Logic, 46

Graph Repository Query Language, 33
greqlQuery service, 35
Concepts, 66
From-With-Report Expressions, 35
GReQL, 33
Quantified Expressions, 34
Regular Path Expressions, 33

Graph Repository Transformation
Language, 36

instantiateAttributeValues service, 37
instantiateEdges service, 37
instantiateVertices service, 36
GReTL, 36

Graph Schema, 24, 25
Abstract Syntax, 28
Concrete Syntax, 25

graph Unified Modeling Language, 28
grUML, 28
Metaschema, 28

Hybrid Model, 93

Inconsistency Management, 134
Detection, 135
Diagnosis, 135
Handling, 136

Integration Bridge, 81
Integration Service

254 Index

adaptation service, 83
associateClasses service, 85
load service, 94
mergeAttributes service, 85
mergeEdgeClasses service, 85
mergeVertexClasses service, 84
metamodelUnion service, 83
project service, 95
specializeClasses service, 85
Multi-layer Projection Service, 127

JGraLab, 188

Language Engineering, 115
Linguistic Metamodeling, 118

toSchema convert service, 125
instanceOf relationship, 118
Multi-layer Projection Service, 127

Mapping Bridge, 99
Mapping Metamodel, 99
Mapping Service

derive service, 102
load service, 101
mapping service, 101

Meta Object Facility, 21, 32
CMOF, 32
EMOF, 32

Metamodel Constraints, 129
Class Expressions, 130
Multiplicity Expressions, 130
Path Expressions, 130
Property Axioms, 132

Metamodeling Hierarchy, 19
Modelware, 17
MOST Workbench, 195

Object Constraint Language, 35
Ontological Metamodeling, 142

hasType relationship, 143
Metamodel Extension, 145

Ontoware
Ontoware Model, 51

Ontoware Technological Space, 39
Open World Assumption, 47

OWA, 47
OWL API, 193

Pellet, 193

Reasoning Service, 54
classify service, 55
explainAxiom service, 56
explainInconsistency service, 57
isConsistent service, 55
isSatisfiable service, 55
subsume service, 55

Resource Description Framework, 57

Set Notation, 25
SPARQL, 57

evaluateSparqlQuery service, 59
Concepts, 66
Query, 57

TBox, 40
TGraph, 21
Transformation Bridge, 78

transform service, 79
TwoUse Toolkit, 194

Unique Name Assumption, 49

Web Ontology Language, 51
Functional-Style syntax, 54
Manchester syntax, 54
OWL, 51

B

Curriculum Vitae - Tobias Walter

Personal

Dipl. Inform. Tobias Walter Tel.: +49 261 287 2716
Fax: +49 261 287 100 2716

University of Koblenz-Landau E-mail: walter@uni-koblenz.de
Universitaetsstr. 1 Web: http://walter.semanticsoftware.eu
56070 Koblenz - Germany

Born on October 11, 1982.
German Citizen.

Education

10/2002 - 05/2008 RWTH Aachen University, Aachen, Germany
Diploma in Computer Science.

Employments

05/2008 - 08/2011 University of Koblenz-Landau, Koblenz, Germany
Research Assistant at the Institute for Software
Technology and the Institut for Web Science and
Technology.

04/2007 - 09/2007 Ericsson Eurolab GmbH, Aachen, Germany
Diploma student.

http://walter.semanticsoftware.eu

256 B Curriculum Vitae - Tobias Walter

Publications

2011

Ebert, J., Walter, T.: Interoperability services for models and ontologies. In:
Databases and Information Systems VI. Volume 224 of Frontiers in Arti-
ficial Intelligence and Applications, IOSPress, 19-36.

2010

Walter, T., Parreiras, F.S., Gröner, G.,Wende, C.: OWLizing: Transforming
Software Models to Ontologies. In: Ontology-Driven Software Engineer-
ing. ODiSE’10, ACM (2010), 7:1-7:6.

Parreiras, F.S., Walter, T., Gröner, G.: Visualizing Ontologies with UML-like
notation. In: Ontology-Driven Software Engineering. ODiSE’10, ACM
(2010) 4:1-4:6

Parreiras, F.S., Walter, T., Wende, C., Thomas, E.: Bridging software languages
and ontology technologies: tutorial summary. In: SPLASH/OOPSLA Com-
panion, ACM (2010) 311-315

Parreiras, F.S., Gröner, G., Walter, T., Staab, S.: A Model-Driven Approach
for Using Templates in OWL Ontologies. In: Knowledge Engineering and
Management by the Masses. Volume 6317 of LNCS., Springer (2010) 350-
359

Staab, S., Walter, T., Gröner, G., Parreiras, F.S.: Model Driven Engineering
with Ontology Technologies. In: Reasoning Web. Volume 6325 of LNCS,
Springer (2010) 62-98

Walter, T., Schwarz, H., Ren, Y.: Establishing a Bridge from Graph-based
Modeling Languages to Ontology Languages. In: Proceedings of 3rd Work-
shop on Transforming and Weaving Ontologies in Model Driven Engineer-
ing (TWOMDE). CEUR-WS.org.

Walter, T., Parreiras, F.S., Staab, S., Ebert, J.: Joint Language and Domain
Engineering. In: Proceedings of European Conference Modelling Founda-
tions and Applications. Volume 6138 of LNCS, Springer (2010) 321-336

Miksa, K., Kasztelnik, M., Sabina, P., Walter, T.: Towards Semantic Model-
ing of Network Physical Devices. In: Models in Software Engineering,
Workshops and Symposia at MODELS 2009. Volume 6002 of LNCS,
Springer (2010) 329-343

2009

Walter, T., Parreiras, F.S., Staab, S.: OntoDSL: An Ontology-Based Frame-
work for Domain-Specific Languages. In: Model Driven Engineering Lan-
guages and Systems, 12th International Conference, MODELS. Volume
5795 of LNCS., Springer (2009) 408-422

B Curriculum Vitae - Tobias Walter 257

Walter, T.: Combining Domain-Specific Languages and Ontology Technolo-
gies. In: Proceedings of the Doctoral Symposium at MODELS 2009. Vol-
ume 2009-566 of Technical Report., School of Computing, Queen’s Uni-
versity (2009) 34-40

Walter, T., Ebert, J.: Combining ontology-enriched Domain-Specific Languages.
In: Proceedings of 2nd Workshop on Transforming and Weaving Ontolo-
gies in Model Driven Engineering (TWOMDE). Volume CEUR of 531.,
CEUR-WS.org (2009)

Walter, T., Ebert, J.: Combining DSLs and Ontologies Using Metamodel In-
tegration. In: Proceedings of IFIP Working Conference on Domain-Specific
Languages. Volume 5658 of LNCS, Springer (2009) 148-169

Parreiras, F.S., Saathoff, C., Walter, T., Franz, T., Staab, S.: APIs a gogo: Au-
tomatic Generation of Ontology APIs. In: Proceedings of the IEEE Inter-
national Conference on Semantic Computing (ICSC), IEEE Computer
Society (2009) 342-348

2008

Mosler, C., Walter, T.: ECARES-Projekt: Kombination von graphbasierten
Redesign-Analysen. In: Proceedings of Workshop Software Reengineering.
Volume 126 of LNI., GI (2008) 149-153

	Part I Introduction and Motivation
	Introduction
	Challenges in Model-Driven Engineering
	Shortcomings in Model-Driven Engineering
	Shortcomings in Domain-Specific Modeling
	Key Challenges of this Thesis

	Research Questions
	Thesis Road Map
	Dissemination and Publications

	Part II Foundations
	A Modelware Technological Space
	Chapter Context
	Road Map
	Relation to OMGs Model Hierarchy

	The TGraph Approach
	TGraphs
	Graph Schemas
	grUML
	Relation to MOF Metametamodels

	Modelware Tools and Services
	GReQL - Graph Repository Query Language
	GReTL - Graph Repository Transformation Language

	Conclusion

	An Ontoware Technological Space
	Chapter Context
	Description Logics
	DL Families
	Relation to First Order Logic and Complexity
	OWA and CWA

	Ontoware Models
	Ontoware Models as TGraph
	Concrete Syntaxes

	Ontoware Reasoning and Querying Services
	Standard Reasoning Services
	Non-Standard Reasoning Services
	SPARQL Querying Services

	Conclusion

	Comparison of Modelware and Ontoware
	Chapter Context
	Comparison of Modeling Languages and Concepts
	Common Concepts
	Variations

	Comparison of Query Technologies
	Query Language Concepts
	Semantics and Entailment
	Constraint Validation

	Reasoning Technologies
	Schema Reasoning
	Schema+Instance Reasoning
	Open World Reasoning

	Conclusion

	Part III Combinations
	Bridging Technologies
	Chapter Context
	Example Modeling Language
	Bridge Classification and Chapter's Road Map

	Transformation Bridge
	Transformation Definition
	Transformation Use
	Discussion

	Integration Bridge
	Integration Definition
	Integration Use
	Discussion

	Mapping Bridge
	Mapping Definition
	Mapping Use
	Discussion

	API Bridge
	API Bridge Implementation
	API Bridge Use
	Discussion

	Related Work
	Conclusion

	Language Engineering and Use with Ontology Technologies
	Chapter Context
	Technological Space
	Linguistic Metamodeling
	Chapter Road Map

	Integration Bridge for Linguistic Instantiable Models
	Integration Definition
	Integration Use

	Defining and Validating Constraints
	Defining Constraints
	Validating Constraints

	Related Work
	Conclusion

	Conceptual Domain Engineering with Ontological Instantiation
	Chapter Context
	Domain Engineering
	Ontological Metamodeling
	Chapter Road Map

	Extending Modeling Languages for Ontological Metamodeling
	Integrating Ontological Metamodeling with Ontology Languages
	Integration Definition
	Integration Use

	Expressions and Services for Ontological Metamodeling
	Expressions for Domain Instances and Domain Types
	Services for Domain Analysis

	Related Work
	Conclusion

	Part IV Applications
	Domain-Specific Modeling Environments
	Chapter Context
	Reused and Adopted Technologies and Approaches
	Chapter Road Map

	Case Study
	Scenario
	Goals and Relations to Challenges

	Application of Bridging Approaches
	Integration Definition
	Integration Use

	Accomplished Goals
	Constraints for Configuration Types (Goal 1)
	Formal Semantics (Goal 1)
	Debugging and Suggestions (Goal 2 and 3)

	Conclusion

	Joint Language and Domain Engineering
	Chapter Context
	Reused and Adopted Technologies and Approaches
	Chapter Road Map

	Case Study
	Application Context and Roles
	Scenario
	Goals and Relations to Challenges

	Application of Bridging and Modeling Approaches
	2-Dimensional Metamodeling Language
	Integration with OWL

	Accomplished Goals
	Conclusion

	Part V Finale
	Tool Support and Proof of Concept
	Tool Support
	Implementation Context
	Implementations with JGraLab
	TwoUse Toolkit
	MOST Workbench

	Proof of Concept
	Challenge 1: Bridging Technologies
	Challenge 2: Formal Semantics and Correctness of Languages
	Challenge 3: Tooling
	Challenge 4: Domain Modeling

	Conclusion

	Conclusion and Outlook
	Thesis Contribution
	Outlook and Future Work

	Appendix
	Additional Definitions for the TGraph Technological Space
	Self-Conformance of grUML
	Visualizations of Graph Schemas
	Model-Theoretic Semantics of Graph Schemas
	Modelware Basic Services

	OWL 2 Metamodel
	Bridging Technologies
	Example of Transformation Bridge
	Example of API Bridge

	Grammar for the Ecore+OWL language

	References
	Index
	Curriculum Vitae - Tobias Walter

