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Abstract

Identifying reusable legacy code able to implement SOA services is still an open research issue.
This master thesis presents an approach to identify legacy code for service implementation based
on dynamic analysis and the application of data mining techniques.

As part of the SOAMIG project, code execution traces were mapped to business processes. Due
to the high amount of traces generated by dynamic analyses, the traces must be post-processed in
order to provide useful information.

For this master thesis, two data mining techniques – cluster analysis and link analysis – were
applied to the traces. First tests on a Java/Swing legacy system provided good results, compared
to an expert’s allocation of legacy code.

Zusammenfassung

Die Identifizierung von wiederverwendbarem Source-Code für die Implementierung von SOA
Services ist noch immer ein ungelöstes Problem. Diese Masterarbeit beschreibt einen Ansatz zur
Identifizierung von Legacy-Code, der für eine Service-Implementierung geeignet ist.

Der Ansatz basiert auf dynamischer Analyse und dem Einsatz von Data Mining Techniken. Im
Rahmen des SOAMIG Projekts wurden durch dynamische Analyse Geschäftsprozesse auf Source-
Code abgebildet. Der große Umfang der daraus resultierenden Traces macht eine Nachbearbeitung
der Ergebnisse notwendig.

In dieser Masterarbeit wurde die Anwendbarkeit von Data Mining Techniken zur Nachbearbeitng
der dynamischen Traces untersucht. Zwei Data Mining Verfahren, Cluster-Analyse und Link-
Analyse, wurden auf die dynamischen Traces einer Java/Swing Beispielsoftware angewendet.

Die Ergebnisse deuten auf eine gute Verwendbarkeit der beiden Data Mining Techniken zur Iden-
tifizierung von Legacy-Code für die Service-Implementierung hin.
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Chapter 1

Introduction

For the last decade, Service-Oriented Architectures (SOA) have been one of the most promis-
ing approaches to handle business needs on software: faster time-to-market, lower costs, high
reusability and business integration are buzzwords that drove most companies to implementing
SOAs [Martin, 2010]. Although SOA has been called dead some time ago [Burton Group, 2009],
SOAs are still interesting to industry. Many companies are implementing SOAs today or are plan-
ning to do so in future [Martin, 2010]. While the idea of SOA is older than a decade now, no
consensus has been found about how to implement SOAs right, so far. Various problems are still
unsolved, leaving open a broad field for researchers.

For this master thesis it has been explored how to solve one key problem of SOA development:
how to implement services by reusing legacy code. A service is viewed as an encapsulated,
reusable and business-aligned capability coming with a well-defined service specification that pro-
vides an interface description of the functionality. The service specification is implemented by a
service component which is supplied by a service provider. Its functionality is used by service
consumers [Arsanjani et al., 2008].

Having the goal of reengineering an existing system towards a SOA, services may be implemented
by reusing existing code. However, this is not a trivial task and still an open research issue [Kon-
togiannis et al., 2007].

As part of the SOAMIG project (a cooperation project between university and industry aiming at
migrating a legacy system towards SOA), dynamic analysis has been used to trace legacy code that
is executed during business processes. This information was thought to be useful for identifying
legacy code able to implement services. However, the dynamic analysis produced a large amount
of traces which must be post-processed in order to extract useful information.

For this master thesis, it has been evaluated how data mining techniques can be used to analyze
mappings of business processes to code which have been extracted by static and dynamic analy-
sis. Two data mining techniques have been chosen from the broad set of data mining techniques
available: cluster analysis and link analysis with association rules. Both techniques were applied
to a Java/Swing tool developed during the SOAMIG project to support the extraction of code from
legacy systems.

Both techniques produced useful results. Two variations of cluster analysis approaches were ap-
plied to the identification of legacy code. Both were able to compute useful results. Comparisons
to a manual clustering solution created by an expert showed, that both approaches lead to clusters
of legacy code that would be able to support the implementation of services. Link analysis with
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CHAPTER 1 INTRODUCTION

association rules created useful results, too. However, the association rules were not as expressive
as the clustering results.

In the following, the structure of the thesis is presented.

1.1 Structure of the Thesis

The remaining thesis is structured as follows.

Chapter 2 introduces the academic context of this thesis.

Part I gives an overview about the context of this thesis – migrating legacy software towards
Service-Oriented Architectures. Chapter 3 introduces the basic concepts of Service-Oriented Ar-
chitectures. In Chapter 4, a migration process towards Service-Oriented Architectures is intro-
duced.

Part II provides theoretical foundations about data mining techniques. Chapter 5 introduces data
mining and a process for data mining projects. In addition, three categories of techniques are
briefly described. It is motivated what techniques have been chosen for the identification of legacy
code. Chapter 6 introduces cluster analysis. Similarity and dissimilarity measures are defined,
three kinds of clustering algorithms are described and evaluation criteria for clustering solutions
are introduced. Chapter 7 introduces a link analysis approach based on the identification of asso-
ciation rules. Chapter 8 shortly introduces PASW, the data mining tool used in this thesis.

In Part III, the application of data mining techniques on the identification of legacy code able to
implement services is described. Chapter 9 introduces the Java/Swing legacy tool that has been
used as guinea pig in this thesis. Chapter 10 describes how dynamic analysis has been used to
trace the execution of legacy code during a business process. Chapter 11 describes how to apply
cluster analysis on the traces that have been generated during dynamic analysis to identify legacy
code able to implement services. Chapter 12 describes how to use link analysis to accomplish the
same task.

Chapter 13 summarizes the results of the thesis and gives a short outlook on future research needed
to implement the results of the thesis in real SOA migration projects.

2



Chapter 2

Research Context

In this chapter, the problem of identifying legacy code able to implement services is introduced.
The current state of research is presented and the contributions of this thesis are described.

2.1 Problem Definition

Service-oriented architectures try to integrate business knowledge into software development such
that software reflects the structure of the business processes. This is often called Business-IT-
Alignment. For this reason, the core elements of a SOA – the services – are tightly related to the
business processes they support.

As one main objective of migration projects is the reuse of existing code, legacy code must be
identified that is able to implement the services. However, legacy systems are often not structured
according to business concerns. Therefore, legacy code to support one business process may be
scattered across wide parts of the legacy system. This makes it difficult to identify legacy code
that is able to implement services.

In the following, the current state of research on identifying legacy code for service implementa-
tion is described.

2.2 Current State of Research

Identification of legacy code able to implement services is still an open research issue and not
yet explored very well [Kontogiannis et al., 2007]. However, some work has been done in static
analysis.

IBM seems1 to analyze names of operations and comment lines in order to find services [Ronen et
al., 2007]. They use information retrieval techniques to extract information from names and com-
ments. Services are defined first and code is analyzed to search for possible implementations. This
technique reflects common state of the art in trying to integrate semantics in analysis. However the
approach fails as soon as name conventions are not met or code is not documented well. In fact,

1The only source of information is a Powerpoint presentation of the IBM Haifa, Israel Research Lab. More information
is not available as IBM strictly hides its techniques due to security strategies.

3



CHAPTER 2 RESEARCH CONTEXT

most real legacy code is messy and does not provide much information in names and comments.
So IBM’s approach relies on conventions too much.

Marchetto and Ricca [2008] manually walk through legacy code first and tag classes and methods
by hand. In a second step, an automated routine identifies services from the tagged legacy code.
This approach requires a good understanding of the legacy system to be able to tag the parts
correctly. In addition, the manual tagging is tedious for real, big systems.

2.3 Contribution of the Thesis

In contrast to static analysis of source code, this thesis is based on a dynamic approach. As part of
the SOAMIG project, legacy source code used during the execution of business processes has been
traced. However, this analysis resulted in a large amount of data which require further analysis to
extract information useful for identifying legacy code able to implement services.

In this thesis, the suitability of data mining techniques for analyzing these traces has been evalu-
ated. Two data mining techniques – cluster analysis and link analysis with association rules – have
been applied successfully on the traces of a guinea pig legacy system. Results indicate that these
two techniques are suited adequate to identify legacy code service implementation.
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Service-Oriented Architectures
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Chapter 3

Principles of Service-Oriented Architectures

In this chapter, basics of Service-Oriented Architectures (SOAs) are introduced. As SOAs form
the context of the thesis, the main concepts are defined and their importance for identifying
legacy code able to implement services is motivated.

Service-Oriented Architecture (SOA) is a software engineering paradigm first mentioned 1996
by the Gartner Group [Gartner Group, 1996a,b]. Until today, there is no consent about a clear
definition of SOA. According to OASIS, SOA is defined as

“ a paradigm for organizing and utilizing distributed capabilities that may be under
the control of different ownership domains. It provides a uniform means to offer,
discover, interact with and use capabilities to produce desired effects consistent with
measurable preconditions and expectations. ” [MacKenzie, 2006, p. 29]

With SOA, software is structured into loosely-coupled and distributed capabilities, called services.
Services provide business functionalities via well-defined interfaces, are bound to consumer ap-
plications dynamically and exchange information via messages. Although encapsulating software
into well-separated capabilities was no new invention of SOA1, SOA firstly introduced a strong
focus on business processes. Based on this business-IT-alignment combined with the dynamic
binding of services, SOA promises

a) improved flexibility in customer applications,
b) higher innovation due to this flexibility,
c) development of new software by assembling existing services,
d) optimization of processes and
e) faster time-to-market.

In recent years, SOA first became a hype (SOA was sold as a “product” and everybody wanted
SOA although he didn’t know what it was). Today, the SOA hype has settled. The idea of SOA is
much clearer today. Many processes have been invented how to develop SOAs2. However, SOA is
still attractive to customers: According to a study in 2010 observing the history of SOA [Martin,

1Component-Based Development (CBD) and even Object-Oriented Programming (OOP) already followed that idea
of separating functionality of a software into more or less coarse-grained “blocks”, called components in CBD and
classes in OOP.

2For an overview about SOA development processes see [Thomas et al., 2010]
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CHAPTER 3 PRINCIPLES OF SERVICE-ORIENTED ARCHITECTURES

2010], 63% of the companies already use SOA in their company. 31% plan to use a SOA in future
and only 6% do not want to use SOA. In addition, only 9% of the companies that use SOA or plan
to do so, already finished the implementation of the SOA. These numbers indicate that, still today,
there is a broad need for SOA approaches.

In the remaining chapter, a generic architecture for SOAs is introduced. Following the layering of
this generic architecture, the main aspects of SOAs are described. This view on SOAs is following
IBM’s interpretation of Service-Oriented Architectures [Arsanjani et al., 2008; IBM Corporation,
2007].

3.1 A Generic Architecture for Service-Oriented Architectures

As already mentioned, SOA is not one fixed definition of an architecture. However, SOAs share
the strong focus on business processes and the separation of interfaces (describing what function-
ality is provided) and implementations (implementing the functionality). Therefore, the following
generic architecture can be found in most SOAs (at least in a similar way).

The generic SOA architecture is structured into five layers as shown in Figure 3.1 on the facing
page.

The Consumers layer represents applications that are used to execute business processes, e.g.,
user interfaces. The Business processes layer models the business process workflows and maps
processes to services. On this layer, the orchestration of services – i.e., the assembly of separate
services into a complete system – is implemented. The Services layer contains the services. Ser-
vices can be atomic (all functionality of the service is implemented by the corresponding service
component) or composed of other services (all or some functionality of the service is provided by
other services). The Service components layer contains the service components responsible for im-
plementing the services. Each component implements a service or parts of the service (therefore,
one service can be implemented by many components). Each component can be implemented in
a different way. As examples, components can be implemented by reusing legacy code (e.g., by
wrapping or transforming code), by using packaged applications or by implementing functionality
from scratch. The Operational systems layer contains the entities used to implement the service
components. Legacy applications, packaged applications or new code are located here.

In the following sections, the layers are described in more detail. For each layer, the basic con-
cepts are introduced. In addition, design patterns that will be used in the remaining thesis are
motivated.

3.2 Consumers Layer

The Consumers layer represents the interface between SOA and service consumers – i.e., appli-
cations that are using services. Service consumers are for example other software systems using
services or graphical user interfaces (GUIs) accessing the service directly.
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Figure 3.1: SOA layers according to Arsanjani et al. [2008]
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3.3 Business Processes Layer

The Business processes layer models the workflow of the business processes.

Definition 3.3.1 (Business process)
A business process is

“ a collection of activities that takes one or more kinds of input and creates an output
that is of value to the customer. ” [Hammer and Champy, 2006, p. 94]

Therefore, a business process defines what inputs are required and what work is to be done in
order to create some output that is useful to a customer (Figure 3.2). Activities are the detailed
descriptions of steps during a business process. Activities can be composed of other activities.
As business processes do not only describe activities that are performed on software systems, it is
useful to mark which activities are to be supported by software services (Service Activity).

Figure 3.2: Assembly of a business process

To form a complete software system, services are assembled. In SOA this is called service orches-
tration. On the business processes layer it has already been modeled how business processes are
assembled. To orchestrate services to support a business process, services are mapped to activities
of the processes. This mapping explicitly defines what functionality of a service is needed and
what information is exchanged. In an ideal situation, the software system can be assembled by
using the business process model and by using the mapping of services to processes. However,
business models often differ from how tasks are executed in reality. Therefore, they might not be
used to derive a service orchestration.
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3.4 Services Layer

In SOA, functionality is encapsulated in services.

Definition 3.4.1 (Service)
Arsanjani et al. [2008] define a service as

“ a coarse-grained, encapsulated and reusable business-aligned capability that is
exposed via well defined interfaces to its environment. ”

Services are coarse-grained, reusable entities that support one or more business processes. Ser-
vices strictly follow the “separation of concerns” paradigm. Figure 3.3 shows the separation of
concerns in services.
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Figure 3.3: Separation of concerns in services

Only the External layer of the services structure is exposed to the public. On this layer, the service
specification and the Service-Level Agreement (SLA) are accessible to service consumers. The
service specification is an interface description defining what functionality the service provides
and how to access it. The SLA is a contract about what quality a service ensures. E.g., SLAs
include definitions of maximum response times.

The Generic layer provides functionality that all services have in common. On this layer, func-
tionality to handle messaging operations (e.g., sending and retrieving) is located. In addition,
functionality to deal with service registries is implemented. Service registries (also called service
broker) are central registries that manage what services are available. Service registries inform
service consumers about what service to use for a given use case.
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The Service components layer is separated from this general service functionality. On this layer,
the business functionality of a service is implemented by service components which are described
in Section 3.5.

Services can be atomic or composed of other services (they are then called composite service).
While atomic services implement all functionality on their own, composite services use other
services to implement all or parts of the provided functionality.

3.4.1 Composite Services

Composite services use other services to implement all or parts of their functionality. A composite
service exposes one composite service specification and requires multiple services to implement
this composite specification (Figure 3.4).

Figure 3.4: Structure of composite service

To be able to specify a composite service sufficiently, a composite service specification models
which other services are required to implement the service. Therefore, it realizes one service
specification that is exposed and requires multiple service specifications that are used to implement
the provided functionality [Wahli, 2007].

3.5 Components Layer

The functionality of services is implemented by service components. Service components provide
business functionality. They realize the service specification of the service. Components can be
developed by using traditional object-oriented programming approaches or can be implemented
by reusing parts of legacy systems (see Chapter 4). One service component can implement several
services or only parts of one service.

As services can use multiple components to implement their functionality, the facade pattern as
shown in Figure 3.5 on the facing page is often used to integrate all components [Wahli, 2007]. The
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3.6 OPERATIONAL SYSTEMS LAYER

Figure 3.5: Facade pattern used to integrate various service components

task of the facade class is to delegate requests for functionality to the right component. In addition,
sub-results are assembled in the facade class before they are returned to the service consumer.

3.6 Operational Systems Layer

The operational systems layer finally describes how a service component is implemented. For
each component the implementation strategy may be selected separately. Amongst others, the
following choices are available:

• Implement from scratch

• Buy services from third-party providers

• Wrap third-party packaged application (Commercial of the shelf, COTS)

• Wrap legacy code

• Transform legacy code

Implementation from scratch is used if the functionality does not yet exist or other approaches to
reuse existing technology have failed. Third-party providers may provide ready-to-use services
that can be used. In addition, third-party non-SOA applications providing the required functional-
ity may be wrapped in order to access this existing functionality.

The two remaining choices can be used if legacy applications providing the required functionality
exist. Legacy code could then be wrapped to be accessed by the service component. Alternatively,
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legacy code may be transformed into a newer technology to become directly accessible to the
service component.

Chapter 4 will describe approaches how to reuse legacy code for SOA migrations in more detail.
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Chapter 4

SOA Migration

In this chapter, a process for migrating legacy system towards SOAs is introduced. The process
shows what activities are needed in SOA migration projects and where the identification of
legacy code able to implement services can support such migration projects.

Today, almost every company runs systems that have been implemented a long time ago. These
systems, and even those that have been developed in the last years, are still under adaptation and
maintenance to address current needs. Adapting legacy software systems to new requirements
often needs to make use of new technological advances. Business value of existing systems can
only be preserved by transferring legacy systems into new technological surroundings. Migrating
legacy systems, i.e., transferring software systems to a new environment without changing the
functionality [Sneed et al., 2010], enables already proven applications to stay on stream instead of
passing away after some suspensive servicing [Rajlich and Bennett, 2000].

Migrating legacy systems to services enables both, the reuse of already established and proven
software components and the integration with new services, including their orchestration to sup-
port changing business needs. In order to gain most benefit from a migration, a comprehensive
approach supporting the migration process and enabling the reuse of legacy code is required.

In the following, a software migration process towards Service-Oriented Architectures is pre-
sented.

4.1 The SOAMIG Process

This section introduces the SOAMIG process that has been established during the SOAMIG
project. The SOAMIG process describes activities to migrate legacy systems into a Service-
Oriented Architecture [Erdmenger et al., 2011b].

During the life-cycle of a SOA migration project, four different phases are distinguished (Fig-
ure 4.1 on the next page): Preparation, Conceptualization, Migration and Transition. During each
phase, various disciplines describe what has to be done during this phase. Each discipline consists
of activities ordered in a workflow to describe the tasks in detail.
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Legend

 Conceptualization Preparation

Phase

Tool Initialization

Pre-Renovation
Business Modeling

Legacy Analysis
Target Architecture

Strategy Selection
Realization

Testing
Cut Over

Project Set-up

Discipline

Initialization Iteration #-i Iteration #0...

 Migration

Iteration #1 Iteration #j...

Business Modeling
Legacy Analysis

Target Architecture
Strategy Selection

Realization
Testing

Cut Over

 Transition

Iteration #j+1 Iteration #k...

Post-Renovation

Iteration

Tool Adaption

Technical 
Feasibility

Core 
Migration

Figure 4.1: The four phases of a SOA migration project and their disciplines

4.1.1 Phases

In the following, the four phases and their disciplines are described.

Preparation Phase

The Preparation phase deals with setting up the project and with enabling a legacy system for
migration.

The discipline Pre-Renovation deals with enabling a legacy system for migration. Legacy system
technology or design may prohibit migration efforts. Therefore, the legacy code might have to be
reengineered to allow a migration.

The discipline Project Set-up deals with organizational aspects of the project management. This
discipline includes activities like defining project goals, work packages, schedules or managing
resources.

During Tool Initialization, tools are adapted to the project needs and installed or developed espe-
cially for that project.

Conceptualization Phase

The Conceptualization phase deals with checking the feasibility of the migration by migrating an
exemplary part of the system (technical cut-through).

During Technical Feasibility, the core disciplines of the SOAMIG process are performed to mi-
grate a small but representative part of the system to check for feasibility of the migration effort.
These seven core disciplines are the same disciplines as during the Migration phase. They are
introduced in Section 4.1.2 separately.
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In addition, results and lessons-learned of the first cut-through are used to adapt the tools used for
the migration (Tool Adaption discipline).

Migration Phase

The Migration phase is the core phase of the migration project where the complete system is
migrated (maybe in multiple iterations). The seven core disciplines are described in Section 4.1.2
separately.

Transition Phase

Finally, during the Transition phase, a renovation of the migrated system is performed to clean-up
the migrated code. A Post-Renovation might be necessary as some migration techniques may re-
duce the maintainability of the system. Therefore, it might be necessary to reengineer the migrated
system to enhance quality again.

4.1.2 Core Disciplines

During Conceptualization and Migration, the seven core SOAMIG disciplines are performed to
migrate (parts of) the legacy system.

Figure 4.2 on the following page shows the seven core disciplines of the SOAMIG process. All
disciplines exchange artifacts with an integrated repository that stores all artifacts as one model.
The disciplines can be brought into a loose, logical order by reading the figure clockwise starting
from the top (Business Modeling). However, in a real project, the order may change and activities
may overlap to reflect dynamic project needs.

In the following sections, the seven core disciplines are shortly introduced.

Business Modeling

During Business Modeling, the business processes of a customer are gathered. As SOA is closely
related to business processes, it is important to define a complete model of the customer’s pro-
cesses. The business model is created using a standardized modeling language (e.g. UML 2.0
activity diagrams or BPMN) and stored in the SOAMIG repository for later analysis.

In addition to business processes, a business vision, business goals and goals for the migration
project are defined in this phase.
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Figure 4.2: The seven SOAMIG process core disciplines. The figure can be read clockwise by start-
ing from the discipline on the top (Business Modeling). Text over the arrows stands for
artifacts that are read from or written to the integrated model.
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Legacy Analysis

The goal of the Legacy Analysis phase is to explore the legacy system and to understand what
functionality it provides. Amongst legacy source code, various artifacts like legacy architecture,
test cases or user documentation are analyzed to get a complete overview about the system. Legacy
source code is transformed into a model and stored in the SOAMIG repository. Static and dynamic
analysis techniques are used to get a more abstract view on the system.

One main goal of this phase is to identify initial service candidates that support all business pro-
cesses of the customer. Various artifacts like legacy code or business processes are analyzed to
identify a complete set of service candidates.

Target Design

During Target Design, the target architecture of the to-be migrated system is defined. Service
interfaces are specified and services are composed.

The target architecture consists of three designs, the orchestration design, the service design and
the realization design. The orchestration design depicts how to orchestrate the services to support
the business processes. The service design describes the service interfaces of the required services.
The realization design describes how to implement the services.

Strategy Selection

Strategy Selection deals with how to implement the services. Based on the project requirements,
each service can be implemented by

• reimplementing functionality,

• wrapping or

• transforming legacy code.

During this phase it is defined how each service should be implemented. This may include identi-
fying legacy code that is able to be used for wrapping or migration.

Implementation

During this phase, the service are implemented. Wrappers are written, legacy code is transformed
and services are reimplemented. In addition, services are composed in this phase.

Testing

Testing is performed throughout the SOAMIG process. However, after implementing the services,
the focus lies on ensuring that everything works as expected. In addition, testing ensures that the
new systems behaves like the legacy system. Therefore, regression tests are performed in this
phase.

19



CHAPTER 4 SOA MIGRATION

Cut Over

The Cut Over phase deals with rolling out the new system for the customer. Services are published
and service consumer software and the Enterprise Service Bus are installed in the customer’s sys-
tem environment. In addition, the system is monitored to ensure that it performs in this environ-
ment as expected.

This phase concludes the SOAMIG process. The following section describes where a SOA migra-
tion process like the SOAMIG process can be supported by the results of this thesis.

4.1.3 Supporting the Migration Processes

In the SOAMIG process, the identification of legacy code able to implement services is located in
the three phases

1. Target design
2. Strategy selection
3. Implementation

Being able to identify which code can be reused to implement services supports the decision on
how to implement the service, as well as the design of the service realization. Of course, knowing
what code to use for implementation, supports the service implementation, too. Therefore, these
three activities of the process can profit from the results of this thesis.

This concludes the introduction of Service-Oriented Architectures. In the following, theoretical
principles of data mining are explained.
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Data Mining
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Chapter 5

Data Mining: Introduction

In this chapter, data mining will be shortly introduced. A process for data mining will be
provided and three categories of data mining techniques will be described.

In recent years, growing disk capacities increased the ability to store all kinds of information. To-
day, most actions concerning computers are logged: Bank transactions, online shopping protocols,
internet communication or web site usage statistics lead to an information flood stored on disk.

The goal for data mining is to analyze such data, to extract useful information and to support future
decisions by those information. Data mining applies mathematical-statistical-based techniques to
these data to extract patterns or dependencies and to forecast future trends.

Definition 5.0.1 (Data Mining)
Berry and Linoff [2004] define data mining as

“ the exploration and analysis, by automatic or semiautomatic means, of large quan-
tities of data in order to discover meaningful patterns and rules ”

As data mining is a complex process due to huge amounts of data, a process is needed to structure
data mining activities. Section 5.1 introduces such a process. Section 5.2 introduces three groups
of data mining techniques.

5.1 CRISP: Data Mining Reference Process

As data mining activities van get very complex, a process to structure data mining activities has
been invented in late 1996 [Chapman et al., 1999]. The Cross Industry Standard Process for Data
Mining (CRISP-DM) defines six phases for data mining projects as shown in Figure 5.1 on the
next page.

The six phases are described in the following.
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Figure 5.1: CRISP-DM phases according to Chapman et al. [1999]
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5.1.1 Business Understanding

Business understanding focuses on learning what data is gathered in the business domain of the
customer and what this data means. As data mining strongly relies on finding meaningful infor-
mation in data, the data analyst must know how to interpret solutions and how the results can be
useful to the customer.

5.1.2 Data Understanding

Data understanding is closely related to business understanding. Only the focus of this phase lies
on the data that should be explored. A clear understanding about what the attributes mean, what
values are stored in them is necessary. In addition, first descriptive statistics about the data (e.g.
means, distributions, attribute types or missing data) are gathered.

5.1.3 Data Preparation

Data preparation is the task that takes most of the effort in data mining projects. During data
preparation, the data is prepared for analysis. It is selected, which data is relevant for the data
mining goal. New data is created (e.g., derived from existing data), different data sources are
integrated and the data is cleaned.

A core task of this phase is to deal with missing values. Missing values are entries in the data
set that are missing or that are encoded by a special value indicating that they are missing. Miss-
ing values are often expressed by NULL, - or $NULL$. However, sometimes missing values are
encoded by more special values, e.g., 666 might indicate a missing value.

As missing values distort many data mining techniques, they must be replaced by more meaningful
values (e.g., they are replaced by the mean of the attribute).

5.1.4 Modeling

During modeling, the data mining techniques are selected, implemented and applied to the data.
The selection and application of data mining techniques introduced in this thesis is located in this
phase.

5.1.5 Evaluation

During evaluation, the data mining techniques are evaluated. It is tested how good they solve the
data mining problems and how good they can answer questions of the customer. If the evaluation
indicates bad results, the techniques are adapted.

25



CHAPTER 5 DATA MINING: INTRODUCTION

5.1.6 Deployment

Finally, the data mining techniques that passed the evaluation are deployed to the customer. This
phase includes the application of models that have been trained on test-data to real data of the
customer.

This concludes the CRISP-DM process. The following sections introduce data mining techniques
that will be applied to the identification of legacy code to implement services in Part III.

5.2 Categories of Data Mining Approaches

Data mining techniques can be grouped into three categories [Möhring, 2009]:

• Segmentation approaches segment heterogeneous data into homogeneous subgroups
• Classification approaches classify new data according to a model learned from existing data
• Link analysis approaches extract rules and dependencies between data

In the following, for each category techniques will be introduced. Each technique is shortly eval-
uated if it is suited for identifying legacy code able to implement services.

5.2.1 Segmentation Approaches

Segmentation approaches deal with dividing heterogeneous data into more homogeneous sub-
groups. In contrast to classification techniques introduced in Section 5.2.2, these groups are not
known before segmentation. They are identified during execution of the algorithms.

Clustering Approaches

Clustering approaches compute the dissimilarity or similarity between items (tuples of data).
Based on these values, a heterogeneous data set is divided into more homogeneous subgroups,
called clusters.

Suitability : Clustering approaches can be used to separate legacy code into homogeneous subgroups. The
subgroups may represent code belonging together and therefore being able to implement services.

Chapter 6 will introduce clustering techniques in detail. Chapter 11 will describe how clustering techniques
can be used to identify legacy code able to implement services.

26



5.2 CATEGORIES OF DATA MINING APPROACHES

Self-Organizing Maps

Self-Organizing Maps (SOM) are a type of artificial neural network that is trained by unsupervised
learning, i.e., without knowing correct outcome of the learning process. SOMs create a map
representing the data set. They order similar items near to each other on this map. SOMs can be
used to visually segment data.

Suitability : Although, SOMs can be used to identify groups in data, SOM solutions are often hard to
interpret. They are therefore not applied to the identification if legacy code able to implement services in
this thesis.

5.2.2 Classification Approaches

Classification approaches build a model trained by analyzing data sets with known outcome (super-
vised learning). The training data set is analyzed to identify dependencies between input variables
(variables influencing the outcome) and one class variable (variable encoding the outcome). The
model can the be applied to unknown data of the same structure to predict the outcome.

Techniques of this category are for example:

• Decision trees
• Support Vector Machines
• Discriminant Analysis
• Logistic Regression
• Bayes Classification
• Feedforward Backpropagation Networks

As classification approaches in general are not suited (see below), they are not described here.

Suitability : Classification approaches require a training data set with known outcome. This training set
must represent a representative set containing all possible data values. In order to be able to identify legacy
code for service implementation, a user would first have to classify a large amount of example code for all
services. Classification approaches could then forecast for the remaining code to which service it might
belong.

However, the classification of exemplary code for all services is time consuming and in industrial projects
not realizable. Therefore, all techniques of this category are not applied in this thesis.

5.2.3 Link Analysis Approaches

Link analysis approaches try to identify rules in data about which items are related. The ap-
proaches analyze if items often appear together in transactions. A transaction is a closed action,
e.g., a complete and finished purchase.
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Association Rules

Association rules identify rules of the kind Precondition→Consequences. Such rules are often
used in recommender systems (customers who bought X also bought Y and Z).

Suitability : In identifying legacy code for service implementation, such rules could be used to identify
“core functionality” of services: If activity A is executed, classes C, D and E are always called.

Chapter 7 will introduce the foundations of link analysis with association rules in detail. Chapter 12 will
describe the results of applying association rules on the example dataset.

Sequence Detection

Sequence detection is similar to association rules except that the sequence of the actions is con-
sidered.

Suitability : For identifying legacy code able to implement services, sequences do not play a role (it is not
important when the code of a service is executed). However, sequence detection could be interesting for
service orchestration. Often occurring sequences of activities can give a hint how to orchestrate the services
supporting these activities. However, this is not part of the topic of this theses and will therefore not be
evaluated here.

Summary of Data Mining Techniques

Two techniques have been identified that seem to be suited for identifying legacy code able to im-
plement services. The theory behind these techniques will be described in the remaining chapters
of this part. Part III will describe how to apply the techniques on the identification of legacy code
for service implementation.
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Chapter 6

Cluster Analysis

In this chapter, cluster analysis approaches are introduced. General definitions for levels of
measurement and similarity and dissimilarity measures are provided. In addition, techniques to
evaluate clustering solutions are described.

Cluster analysis (also called clustering) approaches use similarity and dissimilarity measures to
compute how closely related items (tuples of data) are.

Definition 6.0.1 (Item)
An item pi is one entry in an itemset P = {p1, . . . , pn} describing one single piece of data. An
item consists of attributes a describing properties of the item. The number of attributes of an item
is called the dimension d of the item.

Each attribute has a data type and a level of measurement (also called scale).

6.1 Data Types and Levels of Measurement

Definition 6.1.1 (Data type)
The data type of an attribute denotes the degree of quantization in the data [Gan et al., 2007]. That
is, the data type defines what kind of values an attribute can have.

An attribute can be typed into discrete or continuous (Figure 6.1). Discrete attributes have a finite
number of values, called categories.

Definition 6.1.2 (Category)
The possible values of a discrete attribute a are called categories. The set of categories for an
attribute a is called the domain L of the attribute a.

If exactly two categories exist (L = 2), an attribute is of binary type, otherwise (L 6= 2) of nominal
type. Therefore, the nominal type is a generalization of the binary type. In contrast to discrete
attributes, continuous attributes can have an infinite number of values.

In addition to the data type, attributes also have a level of measurement.

29



CHAPTER 6 CLUSTER ANALYSIS

Figure 6.1: Hierarchy of data types

Definition 6.1.3 (Level of measurement)
The level of measurement (also called scale) describes the relative significance of attribute values
[Gan et al., 2007].

Figure 6.2: Hierarchy of levels of measurement

In general, non-metric and metric scales are differentiated (Figure 6.2). Non-metric (qualitative)
attributes are represented by a discrete set of categories. Metric (quantitative) attributes are repre-
sented by numeric measurements. Table 6.1 on the next page summarizes the four levels of mea-
surement proposed by Stevens [1946]. Nominal-scaled attributes express distinctions between
their values, but do not impose an order between the values. Examples for nominal-scaled at-
tributes are color or religious affiliation. A special case are binary-scaled attributes, which are
nominal-scaled and only have two values like gender (male/female). Ordinal-scaled attributes
impose an order on their values. However, the distance between values is not quantifiable. An ex-
ample for ordinal-scaled attributes are marks in school. In contrast, interval-scaled attributes have
fixed distances between their values. An example is temperature measured in degrees Celsius. In
addition, ratio-scaled attributes define a natural, non-arbitrary zero point. Examples are height,
weight or temperature measured in degrees Kelvin.

According to the similarity values computed during clustering, items that are “similar” are put
together into one cluster.

Definition 6.1.4 (Cluster)
A cluster Cx = {p1, . . . , pm} is a set of items belonging together according to given clustering
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Non-Metric (Qualitative) Metric (Quantitative)

Nominal Ordinal Interval Ratio

Description Values stand for
labels or names
(binary: only two
values). Only
equality can be
compared.

Values stand for
labels or names and
impose an order.

Values are ordered
and measured in
fixed or equal
distances.

Values for which a
natural zero point
is defined.

Operations equals(),
!equals()

. . .<,≤,>≥ . . .+,− . . .∗,÷

Examples religious affiliation,
gender

marks in school temperature in
degrees Celsius

Height, weight

Table 6.1: Levels of Measurement [Möhring, 2009]

criteria (e.g., distance or similarity values). The set C = {C1, . . . ,Ck} is the set of all disjoint
clusters for the given dataset, called clustering solution. One dataset can have many different
clustering solutions.

At the end of the clustering process, items in one cluster are similar to each other and dissimilar
to items of other clusters, ideally. Therefore, a cluster builds a homogeneous subgroup of items.
A user has to interpret the meaning of the clusters then [Schulze, 2007]. During the clustering
process, four core decisions are to be made:

1. Select a similarity or distance measure (Section 6.2)
2. Select a cluster distance measure (Section 6.4)
3. Select a clustering algorithm (Section 6.5)
4. Decide how to interpret clustering solution (Section 6.6)

These steps are described in the remaining chapter in more detail.

6.2 Similarity and Distance Measures for Homogeneous-Scaled
Attributes

Similarity and distance (dissimilarity) measures compute a numeric value describing how similar
or dissimilar two items are. They are defined as follows [Schmitt, 2004].

Definition 6.2.1 (Similarity measure s)
Let P = {p1, . . . , pn} be a set of items. A function

s : P×P→ [0,1]
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is called similarity function iff

∀pi, p j ∈ P

s(pi, pi) = 1∧ (6.1)

s(pi, p j) = s(p j, pi) (6.2)

Definition 6.2.2 (Distance measure d)
Let P = {p1, . . . , pn} be a set of items. A function

d : P×P→ R+
0

is called distance function iff

∀pi, p j ∈ P be:

d(pi, pi) = 0∧ (6.3)

d(pi, p j) = d(p j, pi) (6.4)

Similarity and distance measures are related and can be transformed. A similarity value can be
calculated from a distance and vice versa.

s(pi, p j) = 1−
d(pi, p j)

max
pi,p j∈P

(d(pi, p j))
(6.5)

d(pi, p j) = 1− s(pi, p j) (6.6)

Depending on the level of measurement of the attributes, different similarity and distance measures
are used. In the remaining section, various measures are introduced for each level of measurement.
In this section, items are assumed to be scale-homogeneous.

Definition 6.2.3 (Scale-homogeneous items)
Two items are scale-homogeneous if both items have the same attributes and all attributes of both
items have the same data type and the same level of measurement.

Section 6.3 will introduce measures for mixed-scaled items.

Definition 6.2.4 (Mixed-scaled items)
Two items are mixed-scaled if both items have pairwise the same attributes but the attributes of an
item do not need to have the same level of measurement.
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6.2.1 Measures for Nominal-Scaled Attributes

Nominal-scaled attributes provide a finite set of categories. Categories of nominal-scaled attributes
are not ordered and therefore can only be compared for equality. The similarity between items
with nominal, non-binary attributes can be computed by using the Generalized Simple Matching
Coefficient sGSMC(pi, p j). It is defined as

sGSMC(pi, p j) =
Ns

d
(6.7)

with Ns being the number of attributes where both attributes have the same value and d the dimen-
sion of the two items. A corresponding distance measure is provided by:

dGSMC(pi, p j) = 1− Ns

d
(6.8)

Alternatively, nominal-scaled attributes may be transformed into several binary-scaled attributes.
Each category is transformed into a new binary attribute representing this category. The state of
the original attribute is represented by setting the binary attribute corresponding to this state to 1
and all other binary attributes to 0. Similarity and distance can then be measured as presented
in Section 6.2.2. However, depending on the number of categories, this approach might generate
many new attributes [Möhring, 2009].

6.2.2 Measures for Binary-Scaled Attributes

Binary-scaled attributes are nominal-scaled attributes with only two categories. They can be com-
pared by using the General Simple Matching Coefficient that had already been presented in Sec-
tion 6.2.1. In addition, various other measures weighting the different states of the items exist.
These measures use a contingency matrix between the items pi and p j (Table 6.2).

pi / p j 1 0
1 N11 N10
0 N01 N00

Table 6.2: Contingency matrix between two items pi and p j

N11 is the number of attributes, both items have set to 1, N00 the number of attributes, both items
have set to 0. N10 and N01 are the number of attributes, one of the items has set to 1 and the
other item has set to 0 respectively. The sum of all four values is the dimension of the attribute
d = N11 +N10 +N01 +N00. Using this contingency matrix, similarity and dissimilarity of two
binary-scaled items may be computed.

There are two types of measures for binary-scaled attributes: symmetric and asymmetric measures
[Gan et al., 2007]. Symmetric measures take the value of N00 into account while asymmetric
measures do not. Often, the number of attributes two items have not in common is much greater
than they do have in common. Considering the N00 values may then distort a comparison of both
items. Therefore, the N00 are ignored in measures for asymmetric attributes. Table 6.3 on the
next page shows various similarity and distance measures for both, symmetric and asymmetric
binary-scaled attributes.
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Measure s(pi, p j) d(pi, p j) Range

Symmetric measures

Simple Matching
N11 +N00

d
N10 +N01

d [0,1]

Tanimoto/Rogers
N11 +N00

d +N10 +N01

2(N10 +N01)

d +N10 +N01
[0,1]

Asymmetric measures

Jaccard N11

N11 +N10 +N01

N10 +N01

N11 +N10 +N01
[0,1]

Russel-Rao
N11

d
1− N11

d [0,1]

Table 6.3: Measures for binary-scaled attributes [Gan et al., 2007]

6.2.3 Measures for Ordinal-Scaled Attributes

As with nominal-scaled attributes, values of ordinal-scaled attributes represent categories, too.
Therefore, measures for nominal-scaled attributes may be used for ordinal-scaled ones, too (see
Section 6.2.1).

However, for ordinal-scaled attributes, categories are ordered. This information about ordering
can be used to calculate more specific distances and similarities for ordinal-scaled attributes than
for nominal-scaled ones.

Let L(a) = {l1, . . . , lo} be the domain of an attribute a. The “distance” between two categories lx
and ly can be defined as how many categories lz are between the two categories:

d(lx, ly) = #{lz | lx ≤ lz < ly} (6.9)

The greater the number of “intra-categories”, the greater is the difference between the two cate-
gories.

Based on this observation, ordinal-scaled attributes are often transformed into interval-scaled at-
tributes. Here, the problem is to introduce an appropriate numeric value for each category that
preserves the order of the categories and provides an appropriate spacing between the values.

One approach commonly used is to recode categories into their rank, that is their index in the
ordered set L: l1 = 1, l2 = 2, . . . , lo = o. For each attribute a of item pi, the category of the attribute
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is replaced by its rank ri(a).1

The similarity or distance between items with ordinal-scaled attributes can then be calculated
using similarity or distance measures for metric-scaled attributes (which will be introduced in the
following section) using the rank instead of the category.

6.2.4 Measures for Metric-Scaled Attributes

Metric-scaled attributes (interval-scaled and ratio-scaled) are defined by numeric measurements
following a linear scale (i.e., the space between measurements is fixed). In the following, various
distance measures are presented2.

One of the distance functions for metric-scaled attributes most commonly used is the Minkowski
Distance. It is defined as follows.

Definition 6.2.5 (Minkowski Distance dLm)
Let P = {p1, . . . , pn} ∈ R be a set of items. If each item pi has d dimensions, the Minkowski
Distance is a function

dLm : P×P→ R+
0

computing the distance between two items pi and p j:

dLm(pi, p j) =

(
d

∑
a=1
| pi[a]− p j[a] |m

) 1
m

(6.10)

Depending on the choice of the parameter m, the distance is computed in different ways. The most
common values of m lead to functions having their own names.

The City Block Distance (m = 1) or Manhattan Distance expresses the length of the shortest ge-
ometrical path between two items pi and p j in a d-dimensional space with the restriction that all
segments of the path must be parallel to one of the axes:

dL1(pi, p j) =
d

∑
a=1
| pi[a]− p j[a] | (6.11)

The Euclidean Distance (m = 2) expresses the shortest, geometrical distance between two items
pi and p j in an d-dimensional space:

dL2(pi, p j) =

√
d

∑
a=1

(pi[a]− p j[a])2 (6.12)

1If different attributes shall be compared – i.e., they have a different number of categories – ranks are normalized by
the number of categories. The normalized value is then zi(a) =

ri(a)
|L(a)| ∈ [0,1]

2Usually, similarity is not computed for metric-scaled attributes. However it can be calculated by transforming the
distance as introduced in Equation 6.5 on page 32
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The Chebyshev Distance (m = ∞) or maximum distance is defined as the maximum value of the
distances of the attributes [Gan et al., 2007]:

dL∞
(pi, p j) =

d
max
a=1
| pi[a]− p j[a] | (6.13)

Normalization of Metric-scaled Measurement Units

Assuming scale-homogeneity, it is not ensured that an attribute in two items has the same mea-
surement unit. E.g., a length might be measured in meters in the first item and in centimeters in the
second item (both attributes have the same data type, the same level of measurement and describe
the same property).

Unfortunately, the choice of different measurement units for metric-scaled attributes has a high
impact on distance measures. The choice of measurement units may act as weighting of an at-
tribute that might lead to unintended distance values (e.g., expressing one attribute containing
lengths (a1) in centimeters and expressing another attribute containing other lengths (a2) in me-
ters, weights a1 by a factor of 100). To solve this problem, values are normalized, e.g., by using
the z-transformation. The normalized value z(pi[a]) for an attribute a of item pi is computed as
follows:

z(pi[a]) =
pi[a]−mean(a)

stdDev(a)
(6.14)

with the mean mean and the standard deviation stdDev of a defined as (n being the size of the set
of items):

mean(a) =
1
n ∑

pi∈P
pi[a] (6.15)

stdDev(a) =

√
1

n−1 ∑
pi∈P

pi[a]2 (6.16)

Using this z-transformed value instead of the original value reduces the impact of measurement
units significantly.

6.3 Measures for Mixed-Scaled Attributes

Up to this point, items have been assumed to be scale-homogeneous. However, items are described
by attributes with different levels of measurement, in most cases. In order to unify measurement,
all attributes could be transformed to the same level of measurement. For example, all attributes
could be transformed into binary-scaled attributes. However, this approach leads to a loss of
information. Alternatively, all attributes could be transformed into interval-scaled ones. As a
drawback, additional unknown information must be added to lower-scaled attributes (e.g., for
nominal attributes, some ordering must be defined, although there is no ordering imposed).
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So both transformation approaches lead to some sort of wrong information brought into the data.
Therefore, a measurement must be found that is able to compute the distance taking all levels of
measurement into account.

The general idea is to measure the similarity or distance for each level of measurement sepa-
rately [Gan et al., 2007]. For all nominal attributes of the two items, one similarity or distance
value is computed using a measure for nominal attributes; similarly, for all binary, ordinal or
metric attributes of the two items, an appropriate measure is used. Finally, all similarity or dis-
tance values are summed up to get an overall value. Using distance measures, e.g., the follow-
ing single values could be calculated. For nominal-scaled attributes, the Generalized Simple
Matching Coefficient (Equation 6.7 on page 33) can be used: dGSMC(pi, p j) =

1−Ns,s
u . Asym-

metric binary-scaled attributes can be compared by using the Jaccard Coefficient (Table 6.3 on
page 34) dJaccard = N10+N01

N11+N10+N01
. Metric-scaled and ordinal-scaled attributes can be compared by

transforming ordinal-scaled values to metric-scaled values; then, the Euclidean distance (Equa-
tion 6.12 on page 35) can be used for metric-scaled and transformed ordinal-scaled attributes:

dL2(pi, p j) =
√

∑
d
a=1 (pi[a]− p j[a])2. Finally, all distances are summed up to a single value:

dOverall = ω1dGSMC +ω2dJaccard +ω3dL2 where ω1, . . . ,ω3 are arbitrary weightings of the single
values.

However, this approach does not lead to normalized values. Especially for similarity measures, the
overall value must be in the range [0,1]. Therefore, an adapted approach must be used, normalizing
the result to the range of [0,1].

6.3.1 General Similarity Coefficient

The following, widely used approach has been developed for this purpose [Gan et al., 2007]. For
two d-dimensional points pi and p j with attributes a, the General Similarity Coefficient sGSC is
defined as follows:

sGSC(pi, p j) =

d
∑

a=1
w(pi[a], p j[a])∗ s(pi[a], p j[a])

d
∑

a=1
w(pi[a], p j[a])

(6.17)

w(pi[a], p j[a]) and s(pi[a], p j[a]) are defined differently for each level of measurement.3 For
asymmetric-binary-scaled attributes they are defined as:

s(pi[a], p j[a]) =

{
1 both attributes have the value true
0 otherwise

w(pi[a], p j[a]) =

{
0 both attributes have the value false
1 otherwise

3This version of the SGSC is adapted to ignore missing values as there are no missing values in the data used for this
thesis. For the original version including missing values see [Gan et al., 2007].
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Figure 6.3: Various distance measures for cluster distances

For nominal- or ordinal-scaled attributes they are defined as:

s(pi[a], p j[a]) =

{
1 pi[a] = p j[a]
0 otherwise

w(pi[a], p j[a]) = 1

For metric-scaled attributes they are defined as:

s(pi[a], p j[a]) = 1−
| pi[a]− p j[a] |

Ra
with Ra the size of the range of the attribute a.

w(pi[a], p j[a]) = 1

The General Similarity Coefficient results in values between 1 (items are identical) and 0 (items
are extremely different).

6.4 Measures for Cluster Distances

The similarity and distance measures presented in the previous sections all compute the similarity
or distance between two items. In addition, measures to compute the similarity or distance between
two clusters are needed.

In the following, various distance measures between two disjoint clusters Cx = {p1, . . . , pn} with
n items and Cy = {q1, . . . ,qm} with m items are described (Figure 6.3).

The single-linkage (nearest-neighbor) approach defines the distance between two clusters Cx and
Cy as the shortest distance (according to a given distance measure) between their items (Fig-
ure 6.3a):

dNearestNeighbor(Cx,Cy) = min
pi∈Cx,p j∈Cy

d(pi,q j) (6.18)

The complete-linkage (furthest neighbor) approach defines the distance between two clusters as
the largest distance between their items (Figure 6.3a):

dFurthestNeighbor(Cx,Cy) = max
pi∈Cx,p j∈Cy

d(pi,q j) (6.19)
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The between-groups linkage (also called between-groups average, BAverage) approach defines the
distance between two clusters as the mean of all distances between each item in the first cluster
and each item in the second cluster (Figure 6.3b on the preceding page):

dBAverage(Cx,Cy) = mean
pi∈Cx,p j∈Cy

d(pi,q j) (6.20)

The within-groups linkage (also called within-groups average, WAverage) approach defines the
distance between two clusters as the mean of all distances between all items in the two clusters
(Figure 6.3c on the facing page). With Cx,y =Cx∪Cy, WAverage is defined as:

dWAverage(Cx,Cy) = mean
pi,p j∈Cx,y

d(pi, p j) (6.21)

A more complex distance measure is the log-likelihood distance which is described in the follow-
ing.

6.4.1 Log-Likelihood Distance

The log-likelihood distance between two clusters Cx and Cy is defined as [SPSS, 2006]:

dlog(Cx,Cy) = ξCx +ξCy−ξ〈Cx,Cy〉 (6.22)

where ξCx , ξCy are the log-likelihoods for clusters Cx and Cy and ξ〈Cx,Cy〉 is the log-likelihood for
the union of clusters Cx and Cy.

The log-likelihood ξc for one cluster c4 is:

ξc =−Nc

(
∑

a∈Amet

1
2

log(σ̂2
a + σ̂

2
c,a)+ ∑

a∈Anmet

Êc,a

)
with (6.23)

Êc,a =− ∑
l∈La

Nc,a,l

Nc
log

Nc,a,l

Nc
(6.24)

Amet is the total number of metric-scaled attributes, Anmet is the total number of non-metric-scaled
attributes. Nc is the number of items in cluster c. Nc,a,l is the number of items in cluster c belonging
to the l-th category of the a-th attribute. σ̂2

a is the estimated variance for the a-th metric-scaled
attribute for all items. σ̂2

c,a is the estimated variance for the a-th metric-scaled attribute for items
in cluster c.

The log-likelihood ξc for one cluster c measures a kind of variance within this cluster. The first
part of the formula −Nc ∑a∈Amet

1
2 log(σ̂2

a + σ̂2
c,a) measures the variance of metric-scaled attributes.

The second part ∑a∈Anmet Êc,a measures the variance for non-metric-scaled attributes [Bacher et al.,
2004].

The log-likelihood distance dlog(Cx,Cy) = ξCx +ξCy−ξ〈Cx,Cy〉 measures if the sum of variances of
both clusters is bigger than the variance would be if the clusters would have been joined.

In the following, various clustering algorithms are introduced.
4For better readability of formulas, a small c has been used to describe an arbitrary cluster instead of Cx

39



CHAPTER 6 CLUSTER ANALYSIS

6.5 Clustering Algorithms

The clustering algorithm defines how items are grouped together. There are several types of ap-
proaches which are described briefly in the following. For a detailed discussion of clustering
algorithms, see [Gan et al., 2007].

6.5.1 Hierarchical Clustering Approaches

Hierarchical clustering approaches build clusters iteratively. There are two ways to perform the
clustering process:

1. Agglomerative hierarchical clustering
2. Divisive hierarchical clustering

Both approaches are described in the remaining section.

Agglomerative hierarchical clustering approaches can be seen as bottom-up approaches. Algo-
rithm 1 describes the agglomerative hierarchical clustering algorithm.

Algorithm 1 Agglomerative hierarchical clustering algorithm

1: Place each item pi ∈ P in an own cluster: C1 = {p1}, . . . ,Cn = {pn}
2: while # clusters > 1 do
3: Compute distances d(Cx,Cy) between all clusters
4: Merge two clusters with:

min
Cx,Cy∈C

(d(Cx,Cy))

5: end while

At the beginning, each item is associated to its own cluster. The distances between all clusters
are computed using one of the measures for cluster distances (see Section 6.4). Then, the two
most similar clusters are merged iteratively. The iteration ends when all items are in one cluster.
Alternatively, a user can stop the clustering process at any time if he decides that the current
clustering solution is the intended one.

In divisive hierarchical clustering approaches, all items are in one cluster at the beginning. In
each step, one cluster is split into two smaller clusters, according to given criteria. The division
process ends when all items are in their own cluster (containing only one entry) or a user stops
the clustering process. A splitting criterion might be the average dissimilarity to all other items,
as used by DIANA (Divisive Analysis, Algorithm 2 on the facing page).

DIANA iteratively removes the most dissimilar item from the largest cluster and creates a new
cluster with this item. It then moves items of the largest cluster that are more similar to the new
cluster, there. The iteration stops when all clusters contain only one item or when a user stops the
clustering process.
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Algorithm 2 DIANA algorithm

1: Associate all items pi ∈ P to one single initial cluster C1 = {p1, . . . , pn}
2: repeat
3: Select cluster with the largest diameter: . The diameter is the largest dissimilarity of two

items.

diameter(Cx) = max
Cx∈C

( max
pi,p j∈Cx

(d(pi, p j)))

4: repeat
5: Find item with the biggest average dissimilarity to all other items:

pmax = max
pi∈Cx

(average
p j∈Cx

(d(pi, p j)))

6: Initialize a new cluster S (called splinter group) with pmax:

S = {pmax}

7: For all items pi /∈ S, compute:

D(pi) = average
p j /∈S

(d(pi, p j))− average
p j∈S

(d(pi, p j))

8: if D(pi)≥ 0 then
9: S = {pi}∪S . pi is more similar to S than to Cx

10: end if
11: until Di < 0
12: until all clusters contain only 1 item

A major drawback of both hierarchical clustering approaches is the inability to change decisions
made earlier in the clustering process. Once two clusters are merged (or divided), they can not be
split up (or merged) anymore. In addition, hierarchical approaches are slow on large datasets as
they must pre-compute a complete distance matrix in advance.

A major advantage of hierarchical approaches is the open number of clusters as the user can
interrupt the clustering process at any time.

A more complex, hierarchical clustering approach facing the performance issue, is the TwoStep
algorithm which is described in the following. Section 6.5.2 will introduce a different approach –
the partitioning clustering approach – facing the inability to change decisions made earlier in the
clustering process.

TwoStep Hierarchical Clustering Approach

TwoStep, developed by Chiu et al. [2001] is a hierarchical agglomerative clustering approach using
two stages of clustering [SPSS, 2001]:
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1. Sequential pre-clustering of the dataset to reduce the number of items the hierarchical algo-
rithm must process

2. Hierarchical agglomerative clustering of the pre-clusters into the final solution

The first stage scans over the dataset in sequential order and decides if an items should be allocated
to a pre-cluster or should start a new pre-cluster based on a distance criterion. The pre-clustering
is implemented by using cluster feature (CF) trees, a special form of trees, introduced with the
BIRCH clustering algorithm [Zhang et al., 1996].

Definition 6.5.1 (Cluster Feature (CF))
A cluster feature is a summarized representation of a cluster. A cluster feature stores the following
information about a cluster: the number of items in the cluster, the linear sum of the items and the
squared sum of the items.

Cluster feature trees are hight-balanced trees that have cluster features as nodes. Non-leaf nodes
have one cluster feature summarizing the cluster feature values of their child nodes. Leaf nodes
represent clusters.

The standard settings of the implementation result in a maximum number of 512 pre-clusters.

In the second stage, the pre-clustered dataset is processed by an hierarchical agglomerative al-
gorithm using the log-likelihood distance as distance measure (see Section 6.4.1). Because the
algorithm has to process 512 pre-clusters at most, performance issues do not influence the algo-
rithm.

Determining the Best Number of Clusters Automatically

As an additional feature, the TwoStep algorithm provides a possibility to compute the “best” num-
ber of clusters automatically. This number is determined in two steps. First, the maximum number
of clusters is estimated using Akaike’s Information Criterion (AIC) or Bayes’ Information Crite-
rion (BIC). They are defined as follows [Bacher et al., 2004; SPSS, 2006].

Definition 6.5.2 (Akaike’s Information Criterion (AIC))
Let k be the number of clusters of the current clustering solution. Akaike’s Information Criterion

(AIC) for this solution is defined as:

AICk =−2
k

∑
i=1

ξCi + rk (6.25)

where

rk = k

{
2Amet +

Anmet

∑
a=1

La−1

}
(6.26)

La is the number of categories for the a-th attribute and the other parameters are defined as in
Section 6.4.1. rk is the sum of all metric-scaled attributes and all categories of non-metric-scaled
attributes in all k clusters.
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Definition 6.5.3 (Bayes’ Information Criterion (BIC))
Bayes’ Information Criterion (BIC) is defined as:

BICk =−2
k

∑
i=1

ξCi + rk logn (6.27)

where n is the number of all items in the dataset and the other parameters are defined as in Defini-
tion 6.5.2.

With ε being an arbitrary threshold value5, the maximum number of clusters is the number of
clusters of a solution where

AICk

AICk−1
< ε or (6.28)

BICk

BICk−1
< ε (6.29)

still holds.

Second, the “best” number of clusters is determined by looking at the “ratio change” of distances
between two clusters when they are merged:

R(k) =
dk−1

dk
(6.30)

dk−1 is the distance when k clusters are merged to k−1 clusters. The “best” number of clusters is
obtained where a big jump in the ratio R(k) occurs. A big jump in R(k) indicates, that two clusters
have been merged although their distance was much bigger than in merges before. Therefore, this
merge seems to be wrong.

Summarizing, the TwoStep algorithm is able to handle large datasets with mixed-scaled items
and to determine the right number of clusters automatically. However, a decision made during
the clustering process is still not revertible. In the following, a different approach able to change
decisions during the clustering process is introduced.

6.5.2 Partitioning Clustering Approaches

Partitioning clustering approaches use an error function (or objective function) for computing
how good a clustering solution is. Starting from an initial clustering solution (with a fixed number
of clusters), the approaches optimize the solution against this error function. The approaches
terminate as the clustering solution does not change anymore.

One of the most popular partitioning approaches is the k-means algorithm using the following
error function E.

Let C = {C1, . . . ,Ck} be the k clusters of the dataset. Then E is defined as:

E = ∑
Cx∈C

∑
pi∈Cx

d(pi,µ(Cx)) (6.31)

5In the original implementation, ε is 0.04
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with µ(Cx) being the mean of the cluster Cx.

The k-means algorithm tries to minimize this error function iteratively (Algorithm 3).

Algorithm 3 k-means algorithm

1: Set k initial cluster means (seeds): M = {µ(C1), . . . ,µ(Ck)}
. Initialization step

2: repeat
3: Associate all items to nearest cluster (i.e., with the minimal distance to the cluster):

dminimal = min
pi∈P,Cx∈C

(d(pi,Cx))

. Assignment step

4: Re-compute cluster means M̂ = {µ̂(C1), . . . , µ̂(Ck)} with:

µ̂(Cx) =
1
|Cx | ∑

pi∈Cx

(pi), Cx ∈C

. Update step

5: until clusters do not change anymore

First, k initial cluster means (seeds) are set (initialization). They can be selected randomly, com-
puted by some heuristic (e.g., k seeds are set in a way, that their distances are maximal) or given by
a user. The remaining algorithm is an iteration of assignments (items are associated to the nearest
mean, or seed in the first iteration) and updates (the means of all clusters are recomputed). As
distance measure, any of the measures introduced in Section 6.2.4 can be used. The original im-
plementation of the k-means algorithm used the squared Euclidean distance [Hartigan and Wong,
1979]. The iteration terminates when the clusters do not change anymore.

Partitioning approaches have one big advantage over hierarchical approaches: they are much
faster. However, the number of clusters is fixed and the clustering result highly depends on the
initial cluster seeds.

In addition, k-means requires pure metric-scaled variables in order to be able to compute the mean.
Non-metric variables must be transformed into metric ones before using k-means.

6.5.3 Fuzzy Clustering Approaches

The clustering approaches presented in the previous sections assigned an item to exactly one clus-
ter. This is called a hard or crisp assignment. In practice, it is often unintuitive to choose such a
strict association.

Fuzzy clustering approaches provide a more natural assignment to clusters in such situations.
Here, one item is mapped to all clusters by a membership function. The membership function
u(pi,Cx) describes the degree of membership of each item pi to each cluster Cx:

u : P×C→ [0,1] (6.32)
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Calculating the membership for all items and clusters results in a matrix U , called the fuzzy k-
partition of the dataset:

U =



u(p1,C1) · · · u(p1,Cx) · · · u(p1,Ck)
...

. . .
...

u(pi,C1)
. . .

...
...

. . .
...

u(pn,C1) · · · · · · · · · u(pn,Ck)


(6.33)

One of the well known fuzzy clustering algorithms is the fuzzy k-means algorithm. The fuzzy
k-means algorithm tries to minimize the following error function iteratively:

Eq =
n

∑
i=1

k

∑
j=1

uq(pi,Cx)d2(pi,µ(Cx)) (6.34)

where q is a parameter controlling the “fuzziness” of the resulting clusters (q > 1). A value of
q near to 1 leads to crisper assignments of items to clusters, a high value leads to more fuzzy
assignments

The fuzzy k-means algorithm works as described in Algorithm 4.

Algorithm 4 Fuzzy k-means algorithm

1: Set initial cluster means (seeds): M = {µ(C1), . . . ,µ(Ck)}
2: Compute initial membership Matrix U with:

uq(pi,Cx) =

(
d2(pi,Cx)

)− 1
q−1

k
∑

l=1

(
d2(pi,Cl)

)− 1
q−1

, pi ∈ P,Cx ∈C

. Initialization steps

3: repeat
4: Re-compute cluster means M̂ = {µ̂(C1), . . . , µ̂(Ck)} with:

µ̂(Cx) =

n
∑

i=1
uq(pi,Cx)pi

n
∑

i=1
uq(pi,Cx)

, Cx ∈C

. Update step

5: Update membership matrix U to Û according to step 2.
. Assignment step

6: until max
pi∈P,Cx∈C

| uq(pi,Cx)− ûq(pi,Cx) |< ε . ε is a termination criterion with 0≤ ε ≤ 1

Similar to the k-means algorithm, the clustering process can be grouped into the steps initialization,
assignment and update. During the two initialization steps, the cluster seeds are set (randomly, by
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CHAPTER 6 CLUSTER ANALYSIS

a heuristic or by a user). In addition, the initial membership matrix is computed. During the
following iterations, the cluster means are recomputed (update step) and the membership matrix is
updated (assignment step). The iteration stops when the change of the assignments is smaller than
a given termination criterion ε . In Section B.1, a detailed example of the fuzzy k-means algorithm
is provided.

After having executed one of the clustering approaches presented in this section, the clustering
solution must be interpreted.

6.6 Interpreting Clustering Solutions

After the clustering algorithms have finished, it is a user’s task to interpret the clustering solution.
There are no “right” or “wrong” clustering solutions. Based on the initial research question, there
are only solutions that help answering this question, or not. Therefore, a clustering solution can
be called “suitable” if it is interpretable and gives answers to the initial research question.

If a clustering solution is not suitable, other algorithms could be used and parameters could be ad-
justed to get different clustering results that might be more suitable. Therefore, clustering analyses
are heavily influenced by subjective decisions and interpretations.

However, it is often tried to rate clustering solutions more objectively. To rate a clustering solution,
two main approaches are possible:

1. rating on data with known allocation (supervised rating)
2. rating on data with unknown allocation (unsupervised rating)

They are introduced in the following.

6.6.1 Rating on Data With Known Allocation

If the true allocation of items is known, this knowledge can be used to evaluate how exact a
clustering technique matches this true allocation.

Let A be the true allocation of the data and C be the solution computed by a clustering approach.
To rate how good the clustering solution matches the true allocation, four values are defined [Gan
et al., 2007]:

1. N11 is the number of pairs of items which are in the same cluster in C and in the same cluster
in A

2. N10 is the number of pairs of items which are in the same cluster in C but in different clusters
in A

3. N01 is the number of pairs of items which are in different clusters in C but in the same cluster
in A

4. N00 is the number of pairs of items which are in different clusters in C and in different
clusters in A
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6.6 INTERPRETING CLUSTERING SOLUTIONS

N is then N = N11 +N10 +N01 +N00.

The precision of a clustering solution is defined as the ratio of items, a clustering technique has
computed right [Tan et al., 2009]:

precision =
N11

N11 +N10
(6.35)

The recall is defined as the ratio of items, the system matched against the items expected by the
true allocation:

recall =
N11

N11 +N01
(6.36)

As both measures are contrary (greater precision decreases recall and greater recall leads to de-
creased precision), the optimal values are subjective. For this reason, both values are often merged
into one value, the F-measure. The F-measure is the harmonic mean of precision and recall:

F =
2∗precision∗ recall

precision+ recall
(6.37)

Precision, recall and F-measure rate a clustering solution based on how well the items have been
classified (classification-centric measures). In addition, the similarity between the clustering solu-
tion and the true allocation can be measured (similarity-based measures).

Various indices exist, measuring the similarity between C and A. One of the indices used most
commonly is the Rand statistic [Gan et al., 2007]:

R =
N11 +N00

N
∈ [0,1] (6.38)

The Rand statistic and similar indices express how similar the clustering solution and the true
allocation are. Therefore, higher index values express a better fitting of the clustering solution to
the true allocation.

The main problem of ratings on data with known allocation is that the true allocation of the data
must be known. If the true allocation is not known, it can be created for an example set of the data:
First an expert selects a subset of the data that should be representative for the complete set. He
then clusters this subset manually according to his expert knowledge. His clustering solution is
then defined to be the true allocation of the data. However, creating a true allocation for an example
set manually might be time-consuming, as the example set must be large enough to represent the
complete dataset. Therefore, ratings for data with unknown allocation are needed.

6.6.2 Rating on Data With Unknown Allocation

Rating on data with unknown allocation can only use internal information of the clustering solu-
tion. As the “ideal” clustering solution is defined to provide high cohesion within the clusters and
low coupling between the clusters, these measures are often used to rate a clustering solution. The
Silhouette Coefficient combines both measures [Tan et al., 2009]. Algorithm 5 on the following
page describes how to compute the silhouette value for one single point. The average silhouette
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Algorithm 5 Computing the silhouette value for one item
1: Calculate average distance between pi to all other items in the same cluster Cx:

ai = average
p j∈Cx

(d(pi, p j))

. cohesion

2: With pi ∈Cx, calculate for each cluster Cy 6=Cx the average distances between pi and p j ∈Cy.
Take the minimum value with respect to all clusters:

bi = min
Cy 6=Cx

(average
p j∈Cy

(d(pi, p j)))

. coupling

3: The silhouette value for pi is then:

silhouette(pi) =
bi−ai

max(ai,bi)

. silhouette(pi) ∈ [−1,1]

value of all points of a cluster leads to the silhouette value of this cluster:

silhouette(Cx) = average
pi∈Cx

(silhouette(pi)) (6.39)

Similarly, the silhouette value of a complete clustering solution C (called silhouette coefficient) is
computed:

silhouette(C) = average
Cx∈C

(silhouette(Cx)) (6.40)

Kaufman and Rousseeuw [2009] propose a subjective, but widely accepted interpretation of sil-
houette values (Table 6.4). This interpretation is based on the observation, that the silhouette value

Silhouette coefficient Interpretation

0.71 – 1.00 A strong structure has been found
0.51 – 0.70 A reasonable structure has been found
0.26 – 0.50 The structure is weak and could be artificial;

please try additional methods on this dataset
< 0.25 No substantial structure has been found

Table 6.4: Proposed interpretation of silhouette coefficient [Kaufman and Rousseeuw, 2009]

is near to 1 if ai is small (high cohesion) and bi is big (low coupling). I.e., the distances to items
within their own cluster are small while distances to other clusters are high. The items are there-
fore “well-clustered”. A silhouette value around zero means that distances within a cluster are
similar to distances to other clusters. Therefore, items could belong to other clusters, as well. The
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solution is therefore weak. Values below zero indicate that distances to other clusters are even
smaller than within clusters.

This concludes the introduction of clustering approaches. In Chapter 11, clustering approaches
will be used to support the identification of legacy code able to implement services.
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Chapter 7

Link Analysis With Association Rules

In this chapter, the identification of association rules is described. Definitions, an algorithm and
evaluation criteria for association rules are provided.

In addition to finding groups in data (cluster analysis), a goal of data mining is to identify associ-
ations between items (link analysis). These associations can be expressed in form of association
rules. Association rules are defined as follows [Agrawal et al., 1993]:

Definition 7.0.1 (Association rule)
Given a set of items P = {p1, . . . , pn}, an association rule is a rule of the form

A→C (7.1)

with A⊆ P, C ⊆ P and A∩C =∅.
A is called the antecedent and C is called the consequent of the rule.
The rule is the read as “if all items in A occur, then all items in C occur, too.

Association rules describe which items in a set of transactions appear together. A transaction is a
set of joint items, e.g., items that have been bought in one purchase. Then the whole purchase is
one transaction and the goods which have been bought together are the items in this transaction.

Definition 7.0.2 (Transaction)
Let T = {t1, . . . , tn} be a set of transactions. Each transaction ti has a unique transaction id and
contains a subset of items ti ⊆ P.

Example : Association rules are often used in recommender systems of online shops. E.g., if a rule
notebook → {keyboard,mouse} exists, customers who are thinking about buying a notebook will get a
hint that “customers who bought a notebook also bought a keyboard and a mouse”.

As association rule algorithms often compute a high number of rules, quality measures have been
introduced to identify “good” rules. They are described in the following.
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7.1 Quality Measures for Association Rules

Quality measures for association rules mainly rate how often the antecedents or consequents of a
rule exist in the dataset [Lallich et al., 2007]. Three measures are often used to rate the quality of
an association rule:

1. Support
2. Confidence
3. Lift

They are defined in the following.

7.1.1 Support, Confidence and Lift

Let P = {p1, . . . , pn} be a set of items and T = {t1, . . . , tm} with ti ⊆ P be the set of transactions. In
addition, let A→C be an association rule as defined in Definition 7.0.1 on the preceding page.

Definition 7.1.1 (support(B))
The support of a set of items B ⊆ P is defined as the relative frequency of B to T [Möhring,
2009]:

support(B) =
| {ti ∈ T | B⊆ ti} |

| T |
(7.2)

Definition 7.1.2 (support(A→C))
The support for an association rule is then defined as the joint occurrences of A and C to T :

support(A→C) =
| {ti ∈ T | (A∪C)⊆ ti} |

| T |
(7.3)

Summarizing, the support of an association rule describes in how many transactions the antecedent
and the consequent occur together compared to the number of all transactions.

In contrast, the confidence of an association rule is defined as the frequency of joined occurrences
of A and C related to the antecedent A:

Definition 7.1.3 (confidence(A→C))

confidence(A→C) =
| {ti ∈ T | (A∪C)⊆ ti} |
| {ti ∈ T | A⊆ ti} |

(7.4)

=
support(A→C)

support(A)
(7.5)

52



7.2 THE APRIORI APPROACH

Summarizing, the confidence of an association rule describes in how many transactions A and C
occur together if A occurs.

The lift of an association rule compares the confidence of the rule to a confidence assuming that
the antecedent and consequent are not correlated.

Definition 7.1.4 (lift(A→C))
If A and C were not correlated to each other, the support is computed as follows:

support∗(A→C) = support(A)∗ support(C) (7.6)

Then, the confidence is computed as:

confidence∗(A→C) =
support(A)∗ support(C)

support(A)
(7.7)

= support(C)

The lift of the association rule is then:

lift(A→C) =
confidence(A→C)

confidence∗(A→C)
(7.8)

=
confidence(A→C)

support(C)
(7.9)

A lift value of 1 means, that the confidence of the rule is equal to a confidence computed for the
antecedent and consequent being independent. That is, the confidence is not better than the rule
being randomly put together. Lift values greater 1 indicate, that the confidence of the rule is better
than it would be for a random rule. Lift values smaller than 1 indicate that the rule is even worse
than for a random rule.

These measures are used in algorithms to identify “interesting” rules. Given arbitrary threshold
values, only rules with support, confidence or lift values greater than the thresholds are accepted
as interesting rules.

One of the oldest algorithms to identify interesting association rules that is still used today is
introduced in the following section.

7.2 The Apriori Approach

One of the oldest but still used link analysis approaches is the Apriori approach. The Apriori
approach [Agrawal and Srikant, 1994] is based on the identification of frequent itemsets.

Definition 7.2.1 (Frequent itemset)
Let P = {p1, . . . , pn} be the set of all distinct items occurring in the complete dataset and let the
itemset Q be a subset of P (Q⊆ P).
With ε being a user-defined threshold value, Q is called frequent itemset, if measure(Q)> ε . The
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measure can be any measure to rate the quality of a set of items (Section 7.1).

Agrawal and Srikant [1994] used in their original approach the support as measure. Then, an
itemset Q is called frequent if:

support(Q)> εsup (7.10)

The basic idea of the Apriori approach is to compute all possible itemsets for P and to mark
those itemsets with a support greater εsup as frequent. As the number of possible itemsets quickly
reaches huge dimensions, pruning techniques are needed that are able to reduce the number of
itemsets for which the support is calculated.

As pruning technique, the Apriori approach uses the apriori property.

Definition 7.2.2 (Apriori property)
Each subset of a frequent itemset is a frequent itemset, too [Agrawal and Srikant, 1994].

That means that an itemset with a non-frequent subset is non-frequent, too. In addition, a frequent
itemset can be generated only out of a smaller frequent itemset [Möhring, 2009].

This characteristic is used by the Apriori approach to prune most of the uninteresting itemsets.

Today, various algorithms based on the apriori idea exist. In the following, the original algorithm
proposed by Agrawal et al. [1993] is described.

7.2.1 The Apriori Algorithm

The Apriori algorithm has two stages:

1. Compute frequent itemsets
2. Create association rules

They are described in the following.

Stage 1 – Compute Frequent Itemsets

The first stage of the Apriori algorithm is to compute all frequent itemsets. The Apriori property
is used here for more efficient computation of the frequent itemsets.

Let Lk be the frequent itemset with | Lk |= k. Lk contains all itemsets Qi with support(Qi)> εsup.

Algorithm 6 on the next page shows the pseudocode of the Apriori algorithm. It is described in
the following [Han and Kamber, 2004].

In the first step of the algorithm, L1 is initialized as the set of frequent items. An item pi is called
frequent if support(pi)> εsup.
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Algorithm 6 Apriori algorithm: Stage 1 – Compute frequent itemsets

Input: Dataset D, threshold value εsup

Output: Set of frequent itemsets L = {L1, . . . ,Lm}
1: k = 1
2: L = {}
3: L1 = set of frequent items
4: repeat
5: k = k+1
6: Ck = Lk−1 on Lk−1 . Join step

7: Lk = {}
8: for all Itemset M ∈Ck do
9: if ∀ (k−1)-itemsets Si ⊂M : support(S)> εsup then Lk = Lk∪Si

10: end if
11: end for . Prune step

12: L = L∪Lk
13: until L does not change anymore

The remaining algorithm is an iteration of join and prune steps as described in the following.

To find the frequent k-itemset Lk, a candidate k-itemset Ck is computed by joining Lk−1 with itself:
Lk−1 on Lk−1 (join step).1

In the Apriori algorithm, two itemsets are allowed to be joined (are “joinable”) if the following
condition is met: For comparison, all items of an itemset are compared in lexical ascending order.
Then, two itemsets Qi and Q j are joinable, if their first k− 2 items are equal. I.e., the join is
applicable if:

Qi[1] = Q j[1]∧Qi[2] = Q j[2]∧ . . .∧Qi[k−2] = Q j[k−2] (7.11)

During the prune step, all non-frequent itemsets are removed from Ck. Ck is a superset of Lk
containing all frequent k-itemsets but also containing non-frequent k-itemsets. Computing the
support values for all itemsets in Ck to determine which itemsets are frequent would result in
big computational effort. Therefore, the apriori property is used, to identify which itemsets are
frequent: If a k-itemset Qi ∈Ck contains at least one sub-itemset of the length k− 1 that is non-
frequent (i.e., it is not contained in Lk−1), then the whole k-itemset Qi is non-frequent, too. It is
then removed from Ck. After having checked all itemsets of Ck, Ck only contains frequent itemsets
and is then defined to be Lk. The k-itemset Lk is then added to the set of all frequent itemsets L.

The iteration ends when no new frequent itemsets are added during a complete iteration (i.e., L
does not change anymore).

1The Apriori approach was originally developed for mining association rules from relational databases. Therefore,
the join is defined as in relational algebra.
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Stage 2 – Computing Association Rules

During the second stage of the Apriori algorithm, the frequent itemsets are used to compute
“strong” association rules. in the original algorithm, strong was defined as a confidence value
greater than a given threshold (confidence(A→C)> εcon f ).

Given the set of frequent itemsets L computed during stage 1, association rules are formed as
follows (Algorithm 7).

Algorithm 7 Apriori algorithm: Stage 2 – Compute association rules

Input: Set of frequent itemsets L = {L1, . . . ,Lm}, threshold value εcon f

Output: Set of strong association rules R
1: R = { }
2: for all Li ∈ L do
3: Generate all non-empty subsets S = {S1, . . . ,Sn} with S j ⊆ Li

4: for all S j ∈ S do
5: if confidence(S j→ (Li−S j))> εcon f then R = R∪{S j→ (Li−S j)}
6: end if
7: end for
8: end for

For each frequent itemset Li ∈ L, all non-empty subsets S j ⊆ Li are generated. For each of these
subsets, check if a rule S j→ (Li−S j) has a higher confidence than the threshold:

confidence(S j→ (Li−S j))> εcon f (7.12)

All rules meeting this criterion are returned as strong association rules.

This concludes the introduction of link analysis with association rules. In Chapter 12, association
rules will be used to support the identification of legacy code able to implement services.
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Chapter 8

Data Mining Tool: PASW

In this chapter, the data mining tool PASW which has been used in this thesis is introduced
briefly.

To be able to apply the techniques that have been introduced in Chapter 6 and Chapter 7, a tool is
needed. In this thesis, IBM’s PASW Modeler 14 has been used [SPSS, 2011].

PASW Modeler is a data mining tool specialized on mining useful information from large datasets.
PASW provides a graphical user interface and allows to model data mining tasks in a visual way.

Figure 8.1 on the following page shows the main window of PASW.

The central part of the PASW GUI is the data mining stream. On this stream, all data mining tasks
are modeled visually. In PASW, data mining tasks are provided as nodes. Tasks are grouped into
seven categories:

Data sources. Load datasets in various formats (e.g., SQL or CSV)
Data operations. Select, aggregate or sort items of a dataset. Join multiple data sources
Fiel operations. Manipulate items (e.g., filter, rename, change level of measurement, manipulate

attributes, create new attributes)
Diagrams. Visualize items in various diagrams (e.g., box plots histograms or radar charts)
Modeling. Create data mining models for classification, segmentation and link analysis (e.g., k-

Means, TwoStep or Apriori-based association rules)
Output. Visualize data (e.g., as table or matrix) and compute basic statistics (e.g., mean, median

or standard deviation)
Export. Export data into various formats (e.g., SQL or CSV)

On PASW’s stream window, single data mining tasks of these categories are assembled. The task
nodes are connected by links, representing the data flow between each task.

Example : In Figure 8.1 on the next page, a file is imported on the left, using the import node. The import
node specifies data format and the level of measurement of the attributes. The imported dataset is forwarded
to various nodes using the dataset as input.
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Figure 8.1: PASW workbench
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Modeling nodes (e.g., the K-Means cluster analysis node) are used to adapt the parameters of a
model. They are used to generate a model with the given parameters. This model is represented
as a “nugget”. In Figure 8.1 on the facing page, the K-Means cluster analysis node generated a
k-Means model represented by K-Means cluster model nugget below the K-Means cluster analysis
node.

The following example describes how to assemble single data mining tasks to cluster an post-
process a dataset.

Example : In Figure 8.1 on the preceding page, a file (CSV format) is imported with the import node 1©.

The dataset if forwarded to the K-Means cluster analysis node 2©. In this node, parameters of the k-
Means clustering algorithm are specified. A k-Means nugget is created, representing the k-Means clustering
algorithm with the given parameters 3©. The dataset is forwarded to this nugget and clustered by the k-
Means algorithm. The output of the nugget 3© is the clustered dataset (the clustering solution is represented
by an additional attribute containing the number of the cluster, an item belongs to).

The clustered dataset is forwarded to the Filter node. In the filter node 4©, some uninteresting attributes are
filtered out. The remaining dataset (without the filtered attributes) is forwarded to the Typ node. In the Typ
node 5© a data format and a level of measurement for the cluster-solution attribute is selected.

As final step of this example1, the dataset is forwarded to the Sortieren node where the dataset is sorted
according to the natural order of the cluster-solution attribute.

By connecting single data mining tasks, complex data mining scenarios may be modeled in
PASW.

Further information about using PASW to identify legacy code for service identification is pro-
vided in Chapter 11 and Chapter 12. In the following, the application of data mining techniques
to identify legacy code for service implementation is explained.

1the remaining steps are not described here anymore.
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Service Realization by Legacy Code
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Chapter 9

Running Example

In this chapter, a guinea pig legacy system is introduced that was used to explore the possibilities
of data mining techniques in identifying legacy code for service implementation. A business
process for this legacy system is described.

In order to analyze how data mining techniques can be used to identify legacy code for service
implementations, an example in the context of the SOAMIG project has been chosen.

The SOAMIG project1 addresses semi-automatic migrations of legacy software systems towards
Service-Oriented Architectures, based on model-driven techniques and code transformation. The
following scenario that is used as example for this thesis, has been derived from one of the work-
packages of SOAMIG.

9.1 Scenario

As part of the SOAMIG project, one task was to identify and to initially implement a set of exem-
plary services by extracting code from the legacy system. During the SOAMIG project, the explo-
ration and extraction was supported by the SoamigExtractor tool [Erdmenger et al., 2011a].

The SoamigExtractor is a Java/Swing-based tool, visualizing the package and inheritance structure
of a given legacy system. In both views, classes, fields and methods are shown. For methods, the
call hierarchy can be navigated along, i.e., methods calling the selected method or methods the
selected method is calling can be navigated to. Methods that should be extracted to the target
architecture (a service implementation) are selected. The tool automatically calculates all required
methods, classes and fields of the selected methods and includes them in the extraction process.
Finally, the selected methods are extracted and stored as SOAMIG XML interchange format.
Additional tools can then generate Java code from the XML files.

In the following, the business process to extract legacy code is introduced.

1http://www.soamig.de
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9.2 Business Modeling

For this example, one business process has been identified: The extraction of legacy source code
in order to implement a service (Figure 9.1 on the facing page).

The EXTRACTION business process starts with a request for extracting legacy code to implement a
given service. The service developer working on the request first loads the TGraph representation
of the legacy source code from the SOAMIG repository into the SoamigExtractor tool.

Next, he uses the SoamigExtractor to identify and select elements that should be extracted from
the legacy system to implement the service. This step results in a selection of elements that should
be extracted.

Optionally, he can decide to refactor some or all of the selected elements, then. The result is a
selection of the refactored and unrefactored elements.

After the refactorings, the developer may decide to store the refactorings persistently in the SOAMIG
TGraph. For this purpose, he can save the graph containing the refactored elements back to the
SOAMIG repository.

Finally, all selected elements are exported into XML files. These files are then handed back to the
requester who can use a different tool to generate Java code from the XML files.

In the following chapters, it is described how to identify legacy code that is able to implement
services supporting the EXTRACTION business process.
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Chapter 10

Dynamic Analysis

In this chapter, dynamic analysis is introduced. It is motivated how business processes can be
used for dynamic analysis scenarios. A tool-chain is described to execute the dynamic analysis.

Whereas static analysis techniques focus on analyzing legacy source code files, dynamic analysis
techniques focus on analyzing properties of a running software system [Cornelissen, 2009]. For
tracing the execution of a running system, the system must be extended to log which code it
executes. One way not changing the overall behavior of the system is to instrument the system
under observation using aspects (e.g., AspectJ). These aspects can be programmed to log which
code is executed, then.1

In addition, a scenario is defined describing how to interact with the running system so it triggers
all code of interest. To ensure completeness of the analysis results, it is important to ensure that
all parts of interest in the code are really executed during a scenario.

In the following section, the definition of such scenarios is described in the context of identifying
legacy code able to implement services.

10.1 Using Business Processes for Dynamic Analysis

As described, dynamic analysis traces the execution of code during a given scenario. The selection
of appropriate scenarios influences the results of such an analysis.

For SOA migrations, interesting scenarios are provided by the business processes supported by a
legacy system. As SOAs tightly relate code to business processes, tracing which legacy code is
executed during what step of a process can be used for service implementation.

However, the business model provides a business-centric view on activities. In order to capture all
legacy code that is executed during a business process, a more detailed description on how to use
the legacy system during dynamic analysis is needed. Such a detailed description is given by the
workflow model.

1As the logging of all code executions of a system generates a large amount of data, additional analyses are needed to
evaluate the trace logs. For this reason, data mining techniques are applied to identify code for service implementa-
tion.
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10.1.1 Workflow Models: An Implementation-Centric View on Business Processes

Figure 10.1 shows the relation of the business process model to the workflow model.

Figure 10.1: Relation of business model to workflow model

The workflow model is derived from the business process model. Therefore, it describes what ac-
tivities are executed during a business process. In addition, the workflow model adds information
about what functionality of the legacy system is required during this activity.

During dynamic analysis, it is traced which activity is executed. The details about functionality
are used to give advice which functionality of the legacy system to execute during the dynamic
analysis. This detailed advice ensures that no functionality of the legacy system is missed during
dynamic analysis.

The following section introduces the workflow model that has been designed for the EXTRACTION

business process.

10.2 Workflow Model for Extraction Business Process

For the workflow model, the business process model designed in Figure 9.1 on page 65 is enhanced
by adding information about what functionality (stereotype <<Functionality>>) is executed
during each activity.
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Figure 10.2 shows the workflow model for the EXTRACTION business process that is supported
by the SoamigExtractor tool.

Figure 10.2: Exemplary business process: Extraction of legacy code for service implementation

The first step is to load the TGraph representing the legacy system. The TGraph may be un-
compressed as .tg file or gzip-compressed as .tg.gz file. Both formats can be handled by the
SoamigExtractor (Figure 10.3).

Figure 10.3: Details of load graph functionality

After loading the graph, the core activity of this business process is executed: the selection of
elements that should be extracted from the legacy system to implement a service. A user has three
choices, how to select elements (Figure 10.4 on the next page):

1. Select single elements by hand (SELECT SINGLE ELEMENTS)
2. Select all elements that have been called during a workflow (SELECT BY WORKFLOW)
3. Select all elements that have been called during an activity of a business process (SELECT

BY ACTIVITY)

All three techniques can be used to select elements that should be extracted. After having selected
an element, various refactorings can be performed (Figure 10.5 on the following page):

• Move class to other package (COPYMETHODTYPE)
• Copy method to other class (MOVECLASSTYPE)
• Remove superclass of class (REMOVESUPERCLASS)

The process of selecting and refactoring elements is iterative. It ends when all desired elements
have been selected. After having selected a set of elements that should be extracted from legacy
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Figure 10.4: Details for activity Select element

Figure 10.5: Details for activity Refactor element
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code, the user may optionally store the graph containing the refactorings back to a graph file.

Finally, the selected elements are exported in XML files conforming to the SOAMIG exchange
format.

This detailed workflow can now be used to perform the dynamic analysis. Although the workflows
are ordered in sequence, this sequence should not be understood as strict ordering. The ordering
only gives hints to a user, how to navigate best through the activities during dynamic analysis.

In the following section, the tool set-up of the dynamic analysis is described.

10.3 Set-Up for the Dynamic Analysis

During dynamic analysis, the following tasks are executed:

1. Trace the progress of the analysis scenario (which activity of the business process is exe-
cuted when)

2. Log code executions of the legacy system (which code is executed when)
3. Store both pieces of information synchronously
4. Create trace links between legacy code and the activities of business processes

Figure 10.6 shows the tool set-up developed during the SOAMIG project to support these tasks
[Fuhr et al., 2010].

SOAMIG
Repository

AspectJ
Traceing

Log-File

Load
business

processes

Log execution of business processes

Log behavior of legacy system

Create trace links

2

1

3

4

Trace 
Analyzer

Log
Server

Business
Process
Tracer

Manifest actual activity sequence

Instrument legacy system

Instrumented
Legacy
System

Figure 10.6: Set-up of the dynamic analysis
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The Business Process Tracer. The Business Process Tracer 1© is a graphical user interface
developed during the SOAMIG project. The BPT loads the story workflows from the SOAMIG
Repository and visualizes them as shown in Figure 10.7.

Figure 10.7: The Business Process Tracer tool

During the dynamic analysis, a user operates the tracer in parallel to the legacy system. In the
tracer, an activity is selected and activated and then the user executes the functionality on the
legacy system by using its user interface.

Whenever an activity is activated or deactivated in the tracer, a message containing a timestamp
and that activity’s name is sent to the Log Server.

Experiences in the SOAMIG project have shown that each business process can be executed in
multiple ways when using the user interface of the legacy system. Therefore, the tracer does not
enforce that the order in which activities are activated, matches the order in the idealized workflow
model.

The Instrumented Legacy System. The legacy system is instrumented using AspectJ 2©. The
aspect defines pointcuts for the execution of methods and constructors. Before and after each
pointcut, a message is sent to the Log Server. This message contains a timestamp, the name of
the current thread and the qualified name and signature of the method or constructor that has been
invoked.

The Log Server. The Log Server 3© receives the messages sent from the Business Process Tracer
and the instrumented legacy system and stores them in log files. The Log Server provides a syn-
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chronization mechanism which guarantees the correct order of the logged messages, even though
the legacy system and the Business Process Tracer are running on different machines with clocks
ticking asynchronously.

The Trace Analyzer. So far, all components of the dynamic analysis framework dealt with
recording the sequence of activity (de)activations and the corresponding method and constructor
calls.

The Trace Analyzer’s 4© job is to parse the log files and to create trace links between activities and
methods. The trace links are then stored back to the repository.

The Trace Analyzer iterates over the log file entries and from the begin activitiy and end

activity entries, it determines the activity in the business process model, which was executed at
that time. Between the begin and end entry for an activity, there are method and constructor calls,
which were executed in the legacy system while executing this activity. Therefore, a traceability
link is created, connecting the activity in the business process model to the definitions of the
called methods in the source code model. In case of constructor calls, the link leads to the class
definitions from which objects are instantiated.

Additionally, the actual sequence of executed activities is integrated into the business process
model by creating special edges between activities. Each path through the graph, consisting of
activities and those edges represents one concrete instances of a business process (a workflow).

After integrating the static business process model with the static source code model by manifest-
ing dynamically gathered information as edges in the repository, additional analyses can exploit
these enhancements.

The remainder of this thesis describes how to use data mining techniques on the integrated model
in order to identify legacy code that is able to implement services.
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Chapter 11

Using Cluster Analysis to Identify Legacy Code
for Service Implementation

In this chapter, clustering techniques are used to identify legacy code that is able to implement
services. Two clustering approaches using different input data are presented and compared.

Using clustering techniques to identify code to implement services, clustering algorithms must
divide legacy code into homogeneous groups so that each cluster can form a service.

The clustering approaches have to discriminate between

1. services that support exactly one activity (business services),
2. services that support multiple activities, i.e., they are used by other services (support ser-

vices) and
3. services that provide general functionality to all other services, e.g., logging mechanisms

(helper services).

In order to structure the process of identifying legacy code able to implement services by using
data mining techniques, the CRISP data mining process (Section 5.1) has partially been applied.
For each data mining approach presented in the remaining chapter, the following steps of CRISP
are described:

1. Data preparation
2. Modeling
3. Evaluation

In the following, two clustering approaches are presented and compared to each other.

11.1 First Approach: Clustering Classes According to Usage in
Activities

The first approach was to cluster classes of the SoamigExtractor according to how often they have
been used in the activities of the example business process.
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Example : The class de.soamig.extractor.operations.refactorings.Refactoring has
been used during the activities as follows:

• 3% in activity SELECT ELEMENT

• 97% in activity REFACTOR ELEMENT

The following hypotheses have been established for the clustering approaches.

Hypothesis 11.1.1 (Business services)
Classes that are (almost) exclusively used in one activity implement business functionality for this
activity.

Hypothesis 11.1.2 (Support services)
Classes that are used (almost) even in the same sub-set of activities belong to a support service
used in these activities.

Hypothesis 11.1.3 (Helper services)
Classes that are used in all activities equally, belong to helper services providing cross-cutting
concerns (e.g., logging).

These three types of services are visually exemplified in Figure 11.1.

Qualified name % Activity 1 % Activity 3 % Activity 2

de.example.Class1 0,99 0,01 0
de.example.Class2 0,97 0,01 0,02

de.example.Class3 0,58 0,41 0,01
de.example.Class4 0,41 0,59 0

de.example.Class5 0,34 0,33 0,33

Figure 11.1: Visual clustering according to usage. The blue box is a business service, the red box is a
composite service and the green box is a helper service

Class1 and Class2 are almost exclusively used in Activity 1. Therefore, they seem to implement
business functionality that is only used in this activity. So, both classes should be put into a service
supporting Activity 1. Class3 and Class4 are used almost evenly in Activity 1 and Activity 3.
So they might be a support service supporting these two activities. Finally, Class5 is used equally
in all three activities and therefore seems to be a cross-cutting helper service.

For these types of services, legacy code able to implement them will be identified by the clustering
approach as described in the following.

11.1.1 Data Preparation

To be able to apply PASW’s clustering abilities, data must be exported from the TGraph that had
been created during dynamic analysis into CSV format. For this purpose, a Java program has been
written that extracts all necessary information and stores them as comma-separated values.
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In this first approach, for each class of the SoamigExtractor, it has been computed how often the
class has been used in all activities. As first try, absolute values have been used. However, it turned
out that absolute values lead to non-interpretable clustering solutions as they are not standardized.
Therefore, usage has been computed in percentage values.

To be able to evaluate the clustering solutions, an expert created an ideal clustering solution (called
“true allocation”). According to this solution, each class in the data set has been allocated to one
of the following seven clusters of the true allocation:

1. load: The cluster representing a service to load graphs
2. save: The cluster representing a service to save graphs
3. extract: The cluster representing a service to extract elements as XML files
4. select: The cluster representing a service to select elements
5. refactor: The cluster representing a service to refactor elements
6. data: The cluster representing a helper-service for data access
7. gui: The cluster representing a helper-service supporting visualization and the GUI

During Evaluation, this true allocation will be used to evaluate the quality of the clustering solu-
tions.

Summarizing, the data set used in this first approach has the following structure:

• Qualified name: The qualified class name
• PER_Select element: Usage of the class in the activity SELECT ELEMENT in percentage
• PER_Extract elements: Usage of the class in the activity EXTRACT ELEMENTS in per-

centage
• PER_Save graph: Usage of the class in the activity SAVE GRAPH in percentage
• PER_Load graph: Usage of the class in the activity LOAD GRAPH in percentage
• PER_Refactor element: Usage of the class in the activity REFACTOR ELEMENT in per-

centage
• True allocation: The “true cluster” the class belongs to, defined by an expert

11.1.2 Modeling

Figure 11.2 on the following page shows the modeling of the clustering approach in PASW.

Node 1© is the import node loading the csv-file that has been described in Section 11.1.1. Node
2© is the “Data Audit” node, providing general statistics about the variables of the data set. Node
3© is the “Auto Clustering” node. This node is used to simultaneously generate, explore and rate

multiple clustering solutions. In this node, clustering algorithms, settings and evaluation criteria
can be selected.

As clustering algorithms, TwoStep (an hierarchical-agglomerative approach, see Section 6.5.1)
and k-Means (a partitioning approach, see Section 6.5.2) have been selected. The settings for both
algorithms were as follows.
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Figure 11.2: Modeling of the clustering in PASW

Settings for TwoStep were:

• Standardize numeric fields
• Number of clusters: automatically computed and fixed

– Automatically computed: between 2 and 15 clusters
– Fixed number of clusters: 2,3,4,5,6,7,8

• Distance measure: Euclidean distance and Log-Likelihood
• Clustering criterion: Bayes’ Information Criterion (BIC) and Akaike’s Information Crite-

rion (AIC)

Settings for k-Means were:

• Fixed number of clusters: 2,3,4,5,6,7,8

As first evaluation criterion, the silhouette value (see Section 6.6.2) has been used. Solutions with
a silhouette value smaller than 0,71 have been dismissed.

Executing the Auto Clustering node generates node 4© containing all clustering solutions meeting
the evaluation criterion (silhouette bigger than 0,71). PASW generated five solutions meeting the
initial evaluation criterion. They have been explored and evaluated during the Evaluation phase as
described in the following.
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File Rand Statistic Jaccard Precision Recall F-Measure Mean of Coefficients

first-
approach-
TwoStep-
auto-
clusters.csv

0,731 0,424 0,430 0,965 0,595 0,629

first-
approach-
k-Means-
6clusters.csv

0,806 0,435 0,519 0,730 0,606 0,619

first-
approach-
k-Means-
8clusters.csv

0,824 0,434 0,559 0,661 0,606 0,617

first-
approach-
k-Means-
7clusters.csv

0,816 0,425 0,543 0,661 0,596 0,608

first-
approach-
k-Means-
5clusters.csv

0,711 0,370 0,401 0,826 0,540 0,570

Table 11.1: Evaluation coefficients for the five clustering solutions that have been computed by PASW

11.1.3 Evaluation

During Evaluation, the clustering solutions generated by PASW have been evaluated.

For a first impression, node 5© visualizes the data set containing the computed clustering solution
as table.

Node 6© exports the data set containing the computed clustering solutions as csv-files. These
exported files have been imported in a Java tool computing various quality measures for the clus-
tering solutions. These measures are used to get a first impression about which clustering solutions
are helpful and which are not.

Quality Measures for Clustering Solutions

As the true allocation of the items is contained in the data set, quality measures for known alloca-
tions (see Section 6.6.1) can be computed. For this purpose, a Java application has been written,
reading the true allocations and the computed clustering solutions for the data set. The application
computes various measures as introduced in Section 6.6.1. Table 11.1 shows the coefficients com-
puted by the application (sorted according to the mean of the coefficients in descended order).

Parallel to these coefficients measuring the quality of the solutions in comparison to the true al-
location defined by an expert, PASW computes the silhouette values for all solutions (sorted in
descended order):
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1. k-Means, 8 clusters: silhouette = 0,9
2. k-Means, 7 clusters: silhouette = 0,885
3. k-Means, 6 clusters: silhouette = 0,883
4. k-Means, 5 clusters: silhouette = 0,778
5. TwoStep: silhouette = 0,723

The numbers indicate, that all clustering solutions have similar quality according to the coeffi-
cients. However, looking at the silhouette values, another ordering on the quality is applied. This
is a hint that the true allocation may not match the usage of the classes.

Which solutions can be used to form useful services now depends on the interpretation of the
clusters. In the following, three representative solutions are interpreted with the help of PASW.

Interpreting the TwoStep Solution

The solution with the highest mean of coefficients is a solution computed by the TwoStep algo-
rithm. Although the mean of coefficient was the highest, this solution had the smallest silhouette
value (0,723). In this solution, the number of clusters has been computed automatically. As re-
sults, three clusters have been formed. As distance measure, Log-Likelihood has been used. The
clustering criterion was the Akaike’s Information Criterion (AIC).

The Auto Clustering node of PASW supports the visual interpretation of the clustering solu-
tion. Figure 11.3 on the facing page shows the three clusters that have been computed automati-
cally by the TwoStep algorithm. For each cluster, the five input attributes (PER_Refactor element,
PER_Load Select element, . . . ) are listed. For each attribute, the diagrams show the relative
occurrences of values for the classes in the given cluster.

Figure 11.4 on page 82 provides a more detailed view on such a relative occurrence diagram for
the attribute PER_Refactor element in Cluster-3. On the x-axis, all possible values of the
attribute are shown. As the attribute PER_Refactor element contains percentage values about
how often a class has been used in this activity, the range is [0,1]. The y-axis denotes how many
classes (in percent) with the given usage value are located in Cluster-3.

This view helps interpreting the clusters in the following way: Cluster-3 does not contain any of
the classes that are often (with more than 70 %) used by the REFACTOR ELEMENT activity. Also,
Cluster-3 contains most of the classes that are used by the activity REFACTOR ELEMENT rarely
(with 0 % – 60 %). Therefore, the classes in this cluster are not highly related to the REFACTOR

ELEMENT activity.

In addition to the relative occurrence, the absolute distribution can be viewed (Figure 11.5 on
page 82). This view underlines, that most of the classes that have low usage values in the activity
REFACTOR ELEMENT, are located in Cluster-3. No classes with high values are located in Cluster-
3.

Looking at Figure 11.3 on the next page, e.g., Cluster-3 can be interpreted as follows. Cluster-3
contains classes that are almost exclusively used in the SELECT ELEMENT activity (the right part
of the diagram is at 100 %). Therefore, this cluster may form a business service supporting the
SELECT ELEMENT activity. However, this cluster contains classes that are often used in the LOAD
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Figure 11.3: First approach: Relative occurrence view on clustering solution computed by TwoStep
algorithm
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Figure 11.4: First approach: Detailed relative occurrence view on attribute PER_Refactor element in
Cluster-3

Figure 11.5: First approach: Detailed absolute occurrence view on attribute PER_Refactor element in
Cluster-3
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GRAPH activity (0 % to 80 %) and classes that are sometimes used in the REFACTOR ELEMENT

activity (0 % to 60 %). So this cluster may not be shaped very well as it contains classes that are
used in other activities, too.

To distinguish if this cluster more supports REFACTOR ELEMENT or SELECT ELEMENT, the
cluster-comparison view shown in Figure 11.6 on the following page can be used. For each at-
tribute, the view shows the median of the whole data set (the black vertical line) as well as the
medians of the clusters (colored squares). The view shows that classes in Cluster-3 have a smaller
median in the usage values of Refactor element than the overall median. In contrast, Cluster-2 has
a higher median in the Refactor element attribute. For the Select element attribute, the median of
Cluster-2 is lower and the median of Cluster-3 is higher than the overall median. This strength-
ens the interpretation, that Cluster-3 supports the SELECT ELEMENT activity whereas Cluster-2
supports the REFACTOR ELEMENT activity.

The remaining clusters can be interpreted as follows. Cluster-2 is more well-shaped. It contains
classes that are almost exclusively used in the REFACTOR ELEMENT activity. These classes are
not used in other activities very often (the other diagrams have no high values on the right part
of the diagrams). So this clusters may provide a definition for a business service supporting the
REFACTOR ELEMENT activity.

Finally, Cluster-1 contains classes that are solely used in one of the three activities SAVE GRAPH,
LOAD GRAPH or EXTRACT ELEMENTS. Cluster-1 may therefore provide a “Graph-IO” service
supporting these three activities.

In addition to this interpretation, the clustering solution can be compared to the true allocation
defined by the expert (Figure 11.7 on page 85).

The three allocations load, save and extract have been put into one cluster by the TwoStep ap-
proach. Cluster-2 contains all classes of the refactor allocation plus most of the gui classes.
Cluster-3 contains all classes of the select allocation plus all data classes. This view explains
why the TwoStep 3-clusters solution got the highest values in the quality coefficients: As these
coefficients only rate how many item-pairs are in the same cluster and how many are not, ratings
are high for this solution.

In the following, two solutions computed by the k-Means algorithm are interpreted and compared
to the TwoStep solution.

Interpreting the k-Means 6-Cluster Solution

The solution with the second highest mean of coefficients was computed by the k-Means algo-
rithm. As parameter, a fixed number of 6 clusters has been set. This solution had a silhouette
value of 0,883, promising a more well-shaped solution than the TwoStep solution.

Looking at Figure 11.8 on page 85, the clusters can be interpreted as follows.

Cluster-1 contains classes that are almost exclusively used in the SELECT ELEMENT activity and
therefore could form a business service to support this activity. Cluster-2 only contains one class
used during the SAVE GRAPH activity and could form a business service for saving graphs. Cluster-
3 contains a class used during the LOAD GRAPH activity and Cluster-4 contains a class used only in
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Figure 11.6: First approach: Comparing Cluster-2 and Cluster-3 of the TwoStep solution
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Figure 11.7: First approach: Comparing the TwoStep 3-clusters solution to the true allocation

Figure 11.8: Relative occurrence view on k-Means 6-clusters solution
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EXTRACT ELEMENTS. They can form services to support their activities, respectively. Cluster-5
contains classes that are used most often during REFACTOR ELEMENT forming a business service
for this activity.

So far, all clusters have been well-shaped, providing explicit business functionality to their ac-
tivities. In contrast, Cluster-6 seems to contain classes, that are spread over the three activities
REFACTOR ELEMENTS, SELECT ELEMENT and LOAD GRAPH. Therefore, this cluster may form
a support service used during these three activities.

Figure 11.9 compares the clustering solution to the true allocation.
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Figure 11.9: First approach: Comparing the k-Means 6-clusters solution to the true allocation defined
by the expert

Cluster-2, 3 and 4 perfectly match the expert’s intuitive allocation of legacy classes to services.
Cluster-1 and 4 match the true allocation, too. However, they contain additional classes which had
been allocated to the data or gui service by the expert. Finally, Cluster-6 is a mix of data and gui
classes.

In the following, a solution splitting the last, mixed-up cluster, is presented.

Interpreting the k-Means 7-Cluster Solution

The k-Means 7-clusters solution is similar to the k-Means 6-clusters solution. The well-shaped
clusters are identical. Only the last cluster that mixed-up classes to support REFACTOR ELE-
MENTS, SELECT ELEMENT and LOAD GRAPH has been divided into two separate clusters.

Figure 11.10 on the facing page shows the relative occurrences view on the 7-clusters solution.
In this view, the clusters have been named according to their interpretation. In contrast to the 6-
clusters solution, Cluster-6 of the 7-clusters solution focuses on supporting the activities REFAC-
TOR ELEMENT and LOAD GRAPH whereas Cluster-7 focuses on supporting SELECT ELEMENT.
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Figure 11.10: First approach: Relative occurrence view on k-Means 7-clusters solution

A comparison to the true allocation (Figure 11.11 on the next page) shows that the classes belong-
ing to the true allocations data and gui that formed one cluster in the 6-clusters solution, have been
split up into two clusters. However, this splitting did not follow the true allocation. So now both
smaller clusters contain classes of both allocations.

Producing even more clusters (as in the k-Means 8-clusters solution) does not lead to solutions that
are interpretable more easily. Also, the k-Means 5-clustering solution does not add new possibili-
ties for interpretation. Therefore, these approaches are not interpreted in detail. In the following,
the results of this first clustering approach are wrapped up.

11.1.4 Summary of the First Approach

As summarizing conclusion of this first approach it can be noted that the non-ambiguous classes
that are (more or less) distinctly used in one of the activities have been separated well. However,
the approach has problems with splitting up the helper classes (belonging to the true allocations
gui and data). The approach could not match the expert’s intuition.

However, analysis of the legacy code and interviews with the expert indicated, that some of the
helper classes are exclusively used in one of the activities (e.g., the class StringTextField is al-
located to the true allocation gui as it is a plain GUI class. However this GUI element is solely used
in refactoring dialogs and therefore put into the refactorings cluster by the approaches). Hence,
allocating them to these clusters might be a better fit than implicated by the true allocation.
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Figure 11.11: First approach: Comparing the k-Means 7-clusters solution to the true allocation defined
by the expert

In the following, another approach is presented, trying to better fit the expert’s intuition by adding
additional information other than the usage values.

11.2 Second Approach: Clustering Classes According to Usage in
Activities Extended by Knowledge about Packages

The first approach of clustering the data according to the usage values showed good results in
allocating classes that have been used almost exclusively in any of the activities. To achieve a
better allocation of classes that have been used in multiple activities, this approach adds a new
input variable: the package names of the classes.

Hypothesis 11.2.1 (Knowledge about Package)
Knowledge about the package of a class leverages the clustering of classes that are used in multiple
activities.

In this section, the three clustering approaches

1. TwoStep
2. k-Means, 6 clusters and
3. k-Means, 7 clusters

are applied to a data set that has been extended by an attribute containing the qualified pack-
age name of a class. The results are compared to the clustering solutions computed in the first
approach.
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EXTENDED BY KNOWLEDGE ABOUT PACKAGES

Figure 11.12: Second approach: Modeling

11.2.1 Data Preparation

In addition to the attributes used in the first approach (Section 11.1.1), the package of a class is
retrieved by the graph extractor tool. The input data in the second approach contains the following
attributes:

• Qualified name: The qualified class name
• Qualified package name: The qualified package name
• PER_Select element: Usage of the class in the activity SELECT ELEMENT in percentage
• PER_Extract elements: Usage of the class in the activity EXTRACT ELEMENTS in per-

centage
• PER_Save graph: Usage of the class in the activity SAVE GRAPH in percentage
• PER_Load graph: Usage of the class in the activity LOAD GRAPH in percentage
• PER_Refactor element: Usage of the class in the activity REFACTOR ELEMENT in per-

centage
• True allocation: The “true cluster” the class belongs to, defined by an expert

11.2.2 Modeling

The modeling set-up is similar to the modeling of the first clustering approach (Section 11.1.2). Fig-
ure 11.12 shows the modeling in PASW. As input file, the csv-file (with package names) is loaded.
The auto clustering node has been set to generate the three models that have been interpreted in
Section 11.1.3 with the same settings. The models and settings are:

1. TwoStep (compute number of clusters automatically, distance measure = Euclidean, cluster-
ing criterion: AIC)

2. k-Means (number of clusters = 6)
3. k-Means (number of clusters = 7)

The three clustering solutions are evaluated in the following.
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11.2.3 Evaluation

Table 11.2 shows the quality for both approaches (without packages and with packages as input
attribute).

File Rand Statistic Jaccard Precision Recall F-Measure Mean of Coefficients

second-
approach-
TwoStep-
auto-
clusters.csv

0,916 0,699 0,727 0,948 0,823 0,822

second-
approach-
k-Means-
7clusters.csv

0,866 0,540 0,647 0,765 0,701 0,704

second-
approach-
k-Means-
6clusters.csv

0,841 0,497 0,587 0,765 0,664 0,671

first-
approach-
TwoStep-
auto-
clusters.csv

0,731 0,424 0,430 0,965 0,595 0,629

first-
approach-
k-Means-
6clusters.csv

0,806 0,435 0,519 0,730 0,606 0,619

first-
approach-
k-Means-
7clusters.csv

0,816 0,425 0,543 0,661 0,596 0,608

Table 11.2: Quality measures for both clustering approaches

Comparing the mean of the coefficients, the second approach computes better results than the first
approach. However, silhouette values are far smaller than with the first approaches:

1. First approach (without packages)

a) k-Means, 7 clusters: silhouette = 0,885
b) k-Means, 6 clusters: silhouette = 0,883
c) TwoStep: silhouette = 0,723

2. Second approach (with packages)

a) k-Means, 6 clusters: silhouette = 0,542
b) TwoStep: silhouette = 0,534
c) k-Means, 7 clusters: silhouette = 0,485
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These number indicate that the second approach may better fit to the true allocation but that the
true allocation may not reflect the true usage of the classes during the activities.

The three clustering solutions are interpreted in the following; they are compared to the solutions
of the first approach, too.

Interpreting the TwoStep Solution with Packages

The relative occurrences view on the TwoStep clustering solution shows a similar picture com-
pared to the first approach in a way that the graph IO activities (Load graph, Save graph and Ex-
tract elements) are still put together into one cluster (Figure 11.13 on the following page). Also,
one cluster for the REFACTOR ELEMENT activity has been built.

In contrast to the TwoStep solution of the first approach, the cluster supporting SELECT ELEMENT

has been split up into two clusters. Cluster-3 now only contains classes, that are exclusively used in
the SELECT ELEMENT activity. Figure 11.14 on page 93 shows the absolute distribution of classes
in Cluster-3. All classes of the operations.selection package are located in this cluster,
supporting the interpretation that this clusters supports the SELECT ELEMENT activity.

The new cluster, Cluster-4, now contains classes that are often used in SELECT ELEMENT as well
as REFACTOR ELEMENT. Contrary to the plain usage values, these classes have been put into
an own cluster because of their packages. All classes in Cluster-4 belong to one of the pack-
ages extractor, gui or types. So this cluster may build a supporting service for the SELECT

ELEMENT and REFACTOR ELEMENT activities.

Comparing the TwoStep solution to the true allocation, Cluster-3 is now a perfect fit with the select
allocation (Figure 11.15 on page 94). Cluster-2 covers the refactor allocation. Cluster-1 combines
the allocations load, save and extract. Cluster-4 covers the complete data allocation and parts of
the gui allocation.

Interpreting the k-Means 6-Clusters Solution with Packages

The k-Means 6 clusters solution of the second approach is very similar to the first approach (Fig-
ure 11.16 on page 94).

Only the cluster containing the select allocation has now less classes belonging to the data alloca-
tion. These classes have been moved to the supporting cluster.

Interpreting the k-Means 7-Clusters Solution with Packages

The k-Means 7 clusters solution is very similar to the first approach, too ((Figure 11.17 on page 94)).

In the second approach, some data classes that had been allocated to the select cluster now are
put into the data cluster. In addition, the two clusters with the data and gui allocation are now
separated very well.

Looking at the classes that are still mis-allocated, it can be stated that these classes are really exclu-
sively used in the SELECT ELEMENT activity and the REFACTOR ELEMENT activity. Therefore,
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Figure 11.13: Clustering solution for the TwoStep algorithm including packages
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Figure 11.14: Absolute distribution of classes in Cluster-3
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Figure 11.15: Comparing the TwoStep solution of the second approach to the true allocation
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Figure 11.16: Comparing the k-Means 6 clusters solution of the first approach (without packages) and
the second approach (with packages)
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Figure 11.17: Comparing the k-Means 7 clusters solution of the first approach (without packages) and
the second approach (with packages)
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these classes do fit well into these clusters and the true allocation might have to be adapted to fit
this clustering solution.

11.2.4 Summary of the Second Approach

Summarizing, the introduction of package information especially helped to separate the supporting
clusters. The business clusters are not affected by the additional information.

However, the package information distracted the clustering algorithms from the usage values. The
solutions might now better fit the package structure. But if this structure does not group classes
well, it might destroy good clustering solutions that had been based on the usage values.

As best practice, a legacy analyst should trade off very well if package information should be
included in clustering. If the package structure of a legacy system groups classes according to
their functionality, the information might support the clustering. But if the classes are structured
badly, the package information might mislead the clustering algorithms.

11.3 Discussing the Suitability of Clustering Approaches for
Identifying Legacy Code able to Support Services

For the first approach, three hypotheses have been set up (Hypothesis 11.1.1, Hypothesis 11.1.2
and Hypothesis 11.1.3 on page 76) stating, that clustering approaches can separate legacy code
into clusters able to form three types of services.

As described in Section 11.1, legacy code for business services can be identified very well. As
the legacy code is (almost) exclusively used is one activity, clustering approaches achieved a good
allocation of this code.

The clustering solutions had more problems with the allocation of legacy code for support services.
As this code is used almost evenly in multiple activities, the clustering solutions did not always
allocate code well (compared to the true allocation defined by an expert). The first approach only
using the usage values did not match the expert’s intuition very well. However, manually expecting
the legacy code revealed that the mis-allocated classes where often used explicitly in one of the
activities. Therefore, the clustering solution might be a better fit than the expert’s intuition. The
second approach adding information about the package names achieved a better matching to the
true allocation. However, if packages are structured badly in other legacy systems, this information
might distract the clustering algorithms.

For the third type of service – helper services – no code could be identified in this legacy system.
The reason might be, that there is no code that is used in all services (e.g., logging mechanisms).

A problem still remaining is to identify the optimal number of clusters without knowing the legacy
code. Four of the six presented solutions where computed by the k-Means algorithm which re-
quires a given number of target clusters. A first hint for the number of clusters might be the
number of activities. However, that only covers the number of resulting business services and
ignores support service and helper services. Therefore, an understanding of how many services
will be needed may be necessary, first.
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However, two of the six solutions where computed by the TwoStep algorithm. This algorithm is
able to compute the optimal number of clusters automatically. As these solutions did fit to the
expert’s intuition, too, this may be a promising approach to allocate code without knowing the
number of target clusters.

Summarizing, the clustering approaches achieved good results in allocating legacy code to clusters
that can form services to support the activities. In the following chapter, link analysis is explored
on its suitability for identifying legacy code to implement services.
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Chapter 12

Using Association Rules to Identify Legacy
Code for Service Implementation

In this chapter, two association rules approaches are introduced. Results are presented and their
usefulness is discussed.

The motivation of association rules is to identify relationships between items of a dataset (Chap-
ter 7). As the identification of association rules is based on frequencies, multiple workflows are
needed. For this thesis, eight different workflows have been generated. They vary in the activities
that were executed as well as the functionality that was executed during the activities. Therefore,
the workflows represent a broad coverage of variance of how the SoamigExtractor tool can be
used. Association rule identification aims at finding rules that apply to most of the workflows and
therefore are valid for most scenarios the tool can be used for.

Choosing which data should be analyzed and how this data if formatted for input to the algorithm
influences the identification of association rules. In the following, two variations on the input
format are presented.

12.1 First Approach: Identify Legacy Code Supporting Activities

The first approach aims at identifying legacy classes that are almost exclusively used during one
activity. This approach should generate results quite similar to the clustering approaches (Chap-
ter 11) except that it does only identify code exclusively used in one activity (business service).

12.1.1 Data Preparation

For the first approach, the following attributes have been exported from the TGraph containing the
legacy code, business processes and trace links:

workflowId. The id of the workflow
activity. The name of the activity
class. The qualified name of a class
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So, each line of the dataset describes, what class has been called by what activity during which
workflow.

12.1.2 Modeling

After importing the file containing the data as described in Section 12.1.1, the dataset is ana-
lyzed by the Apriori algorithm to identify association rules. PASW’s Apriori implementation can
handle two input formats: The classical transaction format as described in Chapter 7 as well as
regular datasets (containing no transactions). Using a regular dataset (the dataset used for the
first approach is regular as it does not contain transactions), PASW interprets each item as own
transaction.

In addition, the algorithm has been limited to identify rules of the form

class→ activity (12.1)

The rule is read like “If the class was class then it was called during the activity activity”.

The minimal support εsup has been set to 01. The minimal confidence εcon f has been set to
80,0%.

12.1.3 Evaluation

Applying the Apriori algorithm to the first approach resulted in 22 rules matching the given criteria
εsup and εcon f . The rules are listed in Figure 12.1.

Figure 12.1: Result of first association rules approach: Mapping classes to activities

The antecedents of the result all have small support values. They result from the fact, that the
classes (antecedents) are used exclusively in their activities. For this reason, the minimum support

1An explanation why these values have been chosen is provided in Section 12.1.3
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has been set to 0. In addition, the confidence values of the rules are all beyond 80 % (as εcon f =
80%). As an example, the rule

de.soamig.extractor.gui.actions.GenerateXMLAction→ Extract elements

(with support = 0.62,confidence = 100)

can be interpreted as: “In 100% of the times, the class GenerateXMLAction was called, it
was called during the activity EXTRACT ELEMENTS. Compared to all class calls, the class
GenerateXMLAction was called in 0.62% of the calls.”

The high lift values (all bigger than 1) indicate, that the rules are not based on random nature but
result from the dataset. The higher a lift value is, the more expressive a rule is.

Comparing the result to the results of the clustering solutions shows, that the rules propose an
allocation similar to the clustering solutions for the case of explicitly used classes. However, the
clustering solutions put additional classes into the clusters, that are not covered by the association
rules.

Compared to the true allocation defined by the expert, the results suffers from the same limitations
as the clustering approach: Some classes belonging to the GUI are exclusively used in one of the
activities. Therefore, they are allocated to this activity instead of a helper service.

Summarizing, the first association rules approach identified classes that are explicitly used in one
activity. The result can be used to check the correctness of a clustering solution. If both data
mining techniques result in similar outcomes, this supports the correctness of the results.

The second association rules approach will highlight a different possibility how association rules
can be used: It identifies legacy code belonging together.

12.2 Second Approach: Identify Joint Legacy Code

The second approach aims at identifying legacy code that is used together across all activities.
Legacy code that is always used together, independent of the activity in which it is used, may
indicate that this code should not be split up on different services.

12.2.1 Data Preparation

For this, data has been brought into transaction format. That is, each activity of a workflow has
been defined as one transaction (because it has been the smallest, atomic unit during dynamic
analysis). Same activities during different workflows are defined as different transactions, too.
For each transaction, the classes called during this workflow and activity have been defined as
items. The input dataset has the following format:

transactionId unique id composed of workflow id, activity name and increasing counter (added if
an activity has already been executed during the workflow)

items A set of qualified class names of classes called during the transaction
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12.2.2 Modeling

PASW’s Apriori algorithm has been configured to handle transaction data as provided by the
input dataset. When using the transaction format, the algorithm tries to identify association rules
between items (here classes).

Similar to the first association rules approach, the Apriori algorithm has been set-up as follows:

• Number of items in antecedent and consequent: one item each
• Minimum support εsup = 0.0%
• Minimum confidence εcon f = 80.0%

The algorithm generates rules of the form

Class→Class (12.2)

if classes are often (> 80%) used together in any activity.

12.2.3 Evaluation

Applying the algorithm to the transaction dataset results in 403 rules. Representative parts of the
result are interpreted in the following.

Figure 12.2 shows all rules having the class SelectByActivityAction as antecedent.

Figure 12.2: Result of second association rules approach: Identifying associated functionality

All rules have a confidence value of 100 %, that is, if the class SelectByActivityAction has
been called, then the consequent class has always been called, too. However, this does not allow
the interpretation, that both classes are always used together!

Example : The rule SelectByActivityAction → GUIUtils has a confidence of 100 %. That means, if
SelectByActivityAction has been called in an activity, then the class GUIUtils has always been
called in that activity, too.

However, a rule for the opposite direction (GUIUtils→ SelectByActivityAction) does not exist because
when GUIUtils has been called, SelectByActivityAction has not always been called!

As an consequence, an absolutely secure interpretation as “is always used together” requires for
two classes Class1 and Class2 that two rules exist in the result set:

Class1→Class2 ∧ (12.3)

Class2→Class1 (12.4)
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In addition, the lift value of a rule may indicate if it is a strong rule, even if the opposite rule is not
in the result set. Lift values of rules for classes that do not belong together seem2 to be near to 1.
That is, these rules are not better than rules that were computed based on independent items. In
contrast, rules for classes that really belong together seem to have higher lift values.

Taking this into account and looking at the result excerpt in Figure 12.2 on the facing page, only the
classes (1) SelectByTypeAction, (2) SelectionAction and (3) ExtActivityImpl seem to
belong to the SelectByActivityAction class. To find a complete set of classes belonging to-
gether, rules have to be analyzed transitively. That is, starting from SelectByActivityAction,
the consequents of the three associated classes mentioned above must be analyzed, if rules exist
that have one of the consequent as antecedent (Figure 12.3).

Rules for Antecedent1

Rules for Antecedent2

Rules for Antecedent3

Antecedent1

Consequent1.1à 

Consequent1.2à 

Antecedent2

 =

Consequent1.1

Consequent2.1à 

Consequent2.2à 

Antecedent3

 =

Consequent1.2

Consequent3.1à 

Consequent3.2à 

Figure 12.3: Transitive processing of association rules

Transitive processing3 of the rules for the SelectByActivityAction result in the following
classes belonging to SelectByActivityAction:

1. [. . .].gui.actions.SelectByTypeAction
2. [. . .].gui.actions.SelectionAction
3. [. . .].operations.Operation
4. [. . .].operations.selectionSelectActivity
5. [. . .].operations.selectionSelectMethod
6. [. . .].operations.selectionSelectionCommand
7. [. . .].types.ExtActivityImpl

Analyzing the legacy code and including the expert’s intuition, these classes indeed belong to-
gether. However, legacy code covering the functionality “select activity by workflow” is missing.
A reason could be that this functionality has not been executed very often during the workflows.

2The result set has been examined manually
3Here, this processing is performed manually
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In addition, when it was executed, it was the only select functionality that was executed. There-
fore, the result is not surprising, as no workflows exist that used together the select by workflow
functionality and the other select functionalities.

Summarizing, the second association rules approach can be used to identify legacy code that was
commonly used together. The granularity of the result depends on the granularity of the activities:
Coarse-grained activities lead to larger sets of code that has been used together.

12.2.4 Discussing the Suitability of Association Rules for Identifying Legacy Code
able to Implement Services

Link analysis with association rules could be used successfully to support the identification of
legacy code for service implementation. The first approach was used to check the correctness of
the clustering solutions. The second approach was able to identify legacy code belonging together,
independent of the activity it was used in.

However, the second approach is influenced by the granularity of activities. If they are modeled
too coarse-grained, too much functionality will be identified as belonging together. Compared to
the clustering approaches, it may be necessary to define activities more fine-grained.

This chapter concludes the application of data mining techniques on the legacy system. The fol-
lowing chapter will summarize the thesis and will provide a brief outlook on tasks open for future
research.
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Chapter 13

Conclusion and Outlook

In this thesis, data mining techniques have been evaluated on their suitability for identifying legacy
code able to implement services.

After motivating the context of the thesis, the current state of research has been depicted and the
contribution of this thesis has been described.

In Part I, the principles of Service-Oriented Architecture have been introduced. Following, a
generic architecture for SOAs and the basic concepts of SOAs have been defined.

A process for SOA migration projects has been introduced. The four phases (i) preparation,
(ii) conceptualization, (iii) migration and (iv) transition have been introduced and the seven core
disciplines (i) Business Modeling, (ii) Legacy Analysis, (iii) Target Architecture, (iv) Strategy
Selection, (v) Realization, (vi) Testing and (vii) Cut Over have been described. In addition, this
thesis has been brought into the context of such a SOA migration process.

In Part II, data mining has been introduced. The CRISP-DM reference process for data mining
has been described. The three categories of data mining approaches – segmentation, classification
and link analysis have been explained and their suitability for identifying legacy code able to
implement services has been explored briefly. In the following, two data mining techniques have
been described in more detail: cluster analysis and link analysis with association rules.

The theory about cluster analysis included the description of similarity and dissimilarity measures
for various levels of measurement. Three types of clustering algorithms have been introduced:
hierarchical, partitioning and fuzzy clustering algorithms. For the hierarchical type, one agglom-
erative and one divisive clustering algorithms has been presented. In addition, the TwoStep algo-
rithm has been described. For the partitioning type, the k-Means algorithm has been introduced
and for the fuzzy type, the fuzzy k-Means algorithm has been depicted. To conclude the chapter
about cluster analysis, the interpretation of clustering solutions has been explained. Ratings on
data with known allocation (precision, recall, F-Measure, Rand’s index) as well as a rating on data
with unknown allocation (silhouette value) have been defined.

The theory about link analysis included the definition of quality measures for association rules
(support, confidence and lift) and the explanation of the Apriori approach.

In addition, the data mining tool PASW has been introduced briefly.

In Part III, cluster analysis and link analysis have been applied to an example legacy system in
order to identify legacy code able to implement services. The guinea pig legacy system (the
SoamigExtractor) has been described and an exemplary business process supported by the tool
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has been defined. A more detailed description of business processes – workflow models – have
been introduced for dynamic analysis. The set-up of the dynamic analysis has been described,
too.

For cluster analysis, two approaches have been applied. The first approach analyzed information
about the usage in percent of legacy classes during the activities of the exemplary business process
that had been captured during dynamic analysis. The results showed, that this approach computed
clustering results that were useful to identify legacy code for service implementation. However, the
results did not exactly match the expectations of an expert who would have allocated some classes
to different services (contrary to their usage). For this reason, information about the package of a
class has been added in the second approach. Adding this piece of information lead to results that
matched the expert’s intuition more precisely.

For link analysis with association rules, two approaches have been applied, too. The first approach
tried to identify legacy code for service implementation (similar to the clustering approaches).
Results showed that association rules lead to solutions similar to the clustering solutions. That
supported the correctness of the clustering solutions. The second approach tried to identify legacy
code belonging together. The rules were able to identify legacy code that belongs together. How-
ever, the approach generated many rules. So the results would have to bee post-processed to be
really useful.

To wrap-up the results of the thesis: the two data mining techniques cluster analysis and asso-
ciation rules have been applied to the identification of legacy code for service implementation,
successfully. Cluster analysis resulted in solutions that were more easily interpretable than the
results of association rules. However, both approaches are promising techniques to support the
identification of legacy code for service implementation.

In future research, the results of this thesis must be confirmed on industrial systems. It must be
evaluated if the techniques can deal with bigger, more complex and more eroded legacy systems.
In addition, it must be explored if other programming languages than Java affect the suitability of
these techniques.
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Appendix A

Common Usage of placeholders

A.1 Distance Functions

In the context of distance functions or similarity functions, the following placeholders are used.

Placeholder Meaning

pi[a],qi[a] One data item (= point = object). Each attribute of the item is described as one
dimension a.

d The dimension of an attribute (number of attributes).
P = {. . .} A set of items
Subscripts i, j and k Subscripts used to describe any item of a set.
Subscripts m, n and o Subscripts/superscripts used to define any size of a set. In addition, stands for

the last item of the set.
C = {C1, . . . ,Ck} A set of k clusters
Cx = {pi, . . . pn} A cluster Cx containing items
Subscripts x, y and z Subscripts used to describe any cluster of a set.
Subscript k Subscript used to define the size of a set of clusters
s(p1, p2) A similarity function computing the similarity between point p1 and point p2.
d(p1, p2) A distance function computing the distance between point p1 and point p2.
dLm The Minkowski distance function where m is a parameter (here, m does not

stand for the size of a set). Based on the values of m, the resulting functions
have special names.
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Appendix B

Examples

This section provides detailed examples for various data mining techniques. As the examples
take much space and would therefore interrupt the flow of reading, they have been put in the
appendix.

B.1 Example for Fuzzy k-means Algorithm

In this example the items given in Table B.1 ought to be clustered using the fuzzy k-means algo-
rithm that had been described in Section 6.5.3.

ID LOC Inheritance depth

c1 25 3
c2 27 3
c3 29 2
c4 40 0
c5 48 1
c6 52 2

Table B.1: Example data set containing six items with two ratio-scaled attributes each.

The example data set contains six items, representing classes. Each item has two ratio-scaled
attributes. LOC denotes the lines of code of the class and inheritance depth represents the height
of the inheritance tree of the class.

The items can be noted as vectors alternatively:

p1 = {25;3}
p2 = {27;3}
p3 = {29;2}
p4 = {40;0}
p5 = {48;1}
p6 = {52;2}

The fuzzy k-means clustering process starts with two initialization steps.
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Step B.1.1 (Set initial cluster means)
First, the user has to decide how many clusters should be computed. Here, we decide to compute
2 clusters: k = 2.
The initial cluster means (seeds) are set to:

µ1(C1) = {30;3}
µ1(C2) = {50;2}

This assignment is chosen arbitrarily.

Step B.1.2 (Compute initial membership matrix)
We have to decide how to choose the parameter q (controlling the “fuzziness” of the clusters)
and which distance function to use. In this example, we decide to set q to q = 2 and to use the
Euclidean distance to compute distances between items pi and cluster means µ(C j):

d(pi,µ(C j)) =

√
d

∑
a=1

(pi[a]−µ(C j)[a])2

Now, the initial membership matrix U is computed. For each item, the degree of membership to
each seed is computed using the following formula:

uq=2(pi,C j) =

(
d2(pi,C j)

)− 1
2

k
∑

l=1

(
d2(pi,Cl)

)− 1
2

, i = 1, . . . ,n∧ j = 1, . . .k (B.1)

The upper part of the fraction computes the squared distance to the mean of C j. The lower part
sums up the distances of pi to all C j. The formula therefore computes the degree of membership
for pi to each C j.
Now, we compute the initial membership matrix U1:

U1 C1 C2

p1 0.83 0.17
p2 0.88 0.12
p3 0.94 0.06
p4 0.49 0.51
p5 0.11 0.89
p6 0.08 0.92

Table B.2: Initial membership matrix U1

After these two initialization steps, the algorithm iteratively updates the cluster means (update
step) and the membership matrix that declares the degree of membership of each item to each
cluster. Therefore, this step is called the assignment step.

The iteration stops if the membership matrix does not change anymore significantly.
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Step B.1.3 (Recompute cluster means)
Based on the initial membership matrix, the cluster means are re-computed using the following
formula:

µ̂(C j) =

n
∑

i=1
uq(pi,C j)pi

n
∑

i=1
uq(pi,C j)

(B.2)

The new cluster means are then:

µ2(C1) = {30.3;2.19}
µ2(C2) = {45.05;1.39}

Step B.1.4 (Update membership matrix)
Now, the membership matrix is updated according to the new means using Equation B.1 on the
preceding page:

U2 C1 C2

p1 0.79 0.21
p2 0.84 0.16
p3 0.92 0.08
p4 0.35 0.65
p5 0.14 0.86
p6 0.24 0.76

Table B.3: Updated membership matrix U2

Step B.1.5 (Check termination criterion)
After this first iteration it is checked whether the termination criterion is fulfilled not not. For this
purpose, the difference between the old membership matrix U1 (the initial membership matrix)
and the updated membership matrix Û is computed:

U1−U2 C1 C2

p1 0.04 -0.04
p2 0.04 -0.04
p3 0.01 -0.01
p4 0.15 -0.15
p5 -0.03 0.03
p6 -0.16 0.16

Table B.4: Checking the termination criterion U1−U2

We decide to set the termination criterion to ε = 0.1. Because the largest value of this matrix

109



APPENDIX B EXAMPLES

(u(p4,C1) = 0.15) is bigger than ε , the clustering process continues.

Step B.1.6 (Recompute cluster means)
During the update step, the cluster means are recomputed. They are now:

µ3(C1) = {31.21;2.24}
µ3(C2) = {43.65;1.34}

Step B.1.7 (Update membership matrix)
During the assignment step, the membership matrix is updated according to the new means:

U3 C1 C2

p1 0.75 0.25
p2 0.80 0.20
p3 0.87 0.13
p4 0.30 0.70
p5 0.21 0.79
p6 0.29 0.71

Table B.5: Updated membership matrix U3

Step B.1.8 (Check termination criterion)
Next, the termination criterion is checked again:

U2−U3 C1 C2

p1 0.04 -0.04
p2 0.05 -0.05
p3 0.06 -0.06
p4 0.05 -0.05
p5 -0.06 0.06
p6 -0.04 0.04

Table B.6: Checking the termination criterion U2−U3

The largest value is now u(p3,C1) = 0.06, and therefore the termination criterion is fulfilled:
max(|U2−U3 |) = 0.06 < 0,1 = ε . The clustering process terminates and the membership matrix
U3 represents the clustering solution.
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