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Comparing the efficiency of serial and parallel
algorithms for training artificial neural networks
using computer clusters

Oleg V. Kryuchin, Alexander A. Arzamastsev, Klaus G. Troitzsch

Abstract

An estimation of the number of multiplication and addition operations for
training artificial neural networks by means of consecutive and parallel algorithms
on a computer cluster is carried out. The evaluation of the efficiency of these
algorithms is developed. The multilayer perceptron, the Volterra network and the
cascade-correlation network are used as structures of artificial neural networks.
Different methods of non-linear programming such as gradient and non-gradient
methods are used for the calculation of the weight coefficients.

Keywords: parallel algorithms, artificial neural networks, estimation of algorithm
efficiency, computer clusters.

1 Introduction

1.1 Background and aims

Nowadays artificial neural networks (ANNs) are used in different branches of science
and engineering, such as systems of artificial intelligence, image identification tasks,
mathematical simulation (in situations when it is necessary to develop a model of an
object when the structure of this object cannot be easily defined by simple rules of this
science branch), computer vision systems, analysis and forecast of time series, simulation
of social objects etc. [1, 2, 3].

Thus an ANN is a universal instrument for building mathematical models for objects
which are defined by empirical data. The main limitations of ANNs lie in the compilation
of algorithms for structure selection and in the large size of the vector of variables of
the target function which is to be minimized by the algorithm training the ANN. These
limitations define that the development of an ANN-model which is sufficient to model
a certain object may take a large amount of time.

One of the most advanced methods of solving this problem is the development of
parallel algorithms of building an ANN-model using computer clusters [4, 5, 6]. The
traditional techniques of estimating the speed of algorithms count the multiplication
and addition operations executed by these algorithms. So the aim of this paper is
the calculation of the numbers of multiplication and addition operations for serial
and parallel algorithms training the ANN. These numbers may be used for examining
parallel algorithms .
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1.2 Used network structure types

This subsection will consider a few types of ANNs. These are the multilayer perceptron
(MLP) shown in Figure 1, a cascade-correlation network shown in Figures 2-5) and a
Volterra network shown in Figure 6. These structure types were selected because they
are very often used for the approximation and the forecasting of time series [3, 7].

A multilayer perceptron (MLP) is a feedforward ANN model that maps sets
of input data into a set of appropriate output. An MLP consists of multiple layers of
nodes in a directed graph which is fully connected from one layer to the next. Except
for the input nodes, each node is a neuron (or processing element) with a nonlinear
activation function. Usually an MLP utilizes a supervised learning technique called
backpropagation for training the network but it may also use other algorithms [8, 9].
The MLP is a modification of the standard linear perceptron, which can distinguish
data which are not linearly separable [10].

Hidden neurons

Figure 1: The multilayer perceptron.

In Figure 1 7 is the vector of input data and ¢ is the output data vector. This
network has NNy, layers. The first layer is the input layer and consists of L neurons. The
last layer is the output layer and consists of P neurons. The other layers are hidden
and the i-th hidden layer consists of N; neurons.

A cascade-correlation network is a particularized multilayer neural network
construction which was recommended by Fahlman. In this network the selection of the
structure and the search for weight coefficients are executed in parallel. In each training
step one new hidden neuron is added. So training such network always consists of the
selection of the structure and of updating weight coefficients (and sometimes searching
neuron activation functions). The architecture of the cascade-correlation network is the
consolidation of neurons by links, and the view of this consolidation is the progressive
cascade. Each added neuron connects to output nodes and to all hidden neurons. All
input neurons and hidden neurons connect to each output neuron, too |11, 12|.

4



... training artificial neural networks using computer clusters. Fachbereich Informatik Nr. 13/2011

The training of this network begins before hidden neurons are added. Weight coefficients
(and activation functions) are searched for minimizing the target function value (Fig.
2).

Figure 2: The cascade-correlation network without hidden neurons.

Hidden neuron

Figure 3: The cascade-correlation network with one hidden neuron.

If after training a result is considered reasonable with respect to the feasible or
desired accuracy then the process of the training and the network structure formed
finishes. Otherwise it is necessary to add a new hidden neuron (Fig. 3). For this a
special procedure is used. At first input weights of the new neuron are formed, initialized,
updated and fixed. Then the output weights of this neuron are connected to all output
neurons. After this step new weight coefficients are searched. If the result of the training
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Hidden neurons

Figure 4: The cascade-correlation network with two hidden neurons.

Hidden neurons

Figure 5: The cascade-correlation network with few hidden neurons.

is reasonable then the training is finished, otherwise again a new neuron is added. This
process continues until the desired result of the training is obtained (pic. 4-5) [8, 14].

A Volterra network is a dynamic network for the nonlinear adaptation of an array
of signals following each other. The input vector Z(¢) (which is shown in formula (1))
activates the network at moment 7. As the Volterra series is defined, the output signal
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y(1) is calculated by formula (2).

f(t) = (It7$t Tyeooy Ly L) (1)
L L
y(v) = Z Wiy Tomiy) + Z (Z wil,iQxL—ile—i2)> +.o (2)
i1=1 11=1 \i2=1
+ Z (Z (Z Ce Z (wil,iz,...,inLfilmLfiz R xL’i}()))
i1=1 \i2=1 \i3=1 ig=1

where weights w;,, Wi, iy, Wiy 4s.iss Wiy inis,is €bC. are called Volterra kernels and correspond
to the reaction of the highest factors. This polynomial degree is called the Volterra series
degree 3, 15].
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Hidden neurons

Figure 6: The Volterra network.

2 Number of operations for calculating output values

2.1 Activation functions of neurons

An artificial neuron model is an individual identity element which must sum up
signals which enter with associated weight coefficients (this is an analog of the biological
prototype of the synaptic force). Afterwards an activation function (which is usually
nonlinear) is executed and formulates the output signal of the neuron.

7
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Cyr

PE Pr1

Figure 7: The model of the McCulloch-Pitts neuron.

The model of McCulloch-Pitts was one of the first models of the artificial neuron.
For the signal generation it uses the threshold function (3).

- 1, If>0;

The function (3) is an activation function. The argument of this function is calculated

by formula (4).
No—1

rp= ) Guy (4)
i=0

where w is the weight coefficients vector, 5 is the vector of input signals which has
lenght N,.

The McCulloch-Pitts model with its training strategy is called “the simple perceptron”
[16]. There are other activation function flavors. The functions used most often are the
sigmoid and the tangent.

As it is shown in figure 7 a general neuron has two impulses (adjugate weight
coefficients). One of these impulses (which is called “the internal impulse” (p;)) is fixed
when weight coefficients are trained and the second impulse (which is called “the external
impulse” (pg)) is updated together with the former. The activation function argument
has a coefficient and so the neuron output value can be calculated by formula (5).

y=1 (Cf (IZ (&wi) + pr +pE>> ()

=0

The usage of impulses (p; and pg) and a coefficient (¢;) allows to customize activation
functions flexibly.

It symbolizes a number of multiplication operations which are executed for the
calculation of the i-th neuron output value (by formula (5)) as ¢,, and it symbolizes a
addition operations number as é’n Values ¢, and é’n of different activation functions are
showed in table 1.
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Table 1: Numbers of operations which are executed for calculation of output neuron
value.

The function | The number of | The number of

flavor addition multiplication
operations ((,) | operations ((,)

Yy = CrXy 2 1

y = czwz 2 2

y = C£x£ 2 3

y = ¢y 2 3

y = sin(cpzy) 2 28

y = cos(csxy) 2 28

y = tan(csxy) 2 24

y = ctyg(crxy) 3 24

V= e 3 2

Yy = T 3 12

Yy m 3 12

2.2 Calculation of output values of different network types

The number of multiplication operations which are necessary for the calculation of
the ANN output values depends on the number of multiplication operations which are
executed for the calculation of output values of neurons and the number of synapses:

lu—1

Gy = Z Calfti) + L (6)

where [, is the number of neurons in the ANN, [,, is the number of synapses (weights).
Analogously the number of addition operations which are necessary for the calculation
of ANN output values is calculated:

lu—1

=Y Cnlm) +lw+ G (7)
=0

where (; is the number of addition operations which are necessary for changing the
marker of the obstruction cocycle.

It is possible to modify formulas (6)-(7) for different types of ANNs. So formulas
(8)-(9) formulate operations numbers for the MLP:

lu—1 Np—1

Gym = ZCn(/Lz) + Z NiNi_ (8)
i=0 i=1
lu_]- NL—l

G = Y Galp) +2 Y NiNi +2N, + P+ L 9)
i=0 i=1

9
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In a similar way one can calculate numbers of operations for the cascade-correlation
network (calculated by formulas (10) and (11)) and the Volterra network (calculated
by formulas (12) and (13)):

l,—1 Ni—1

Go = D Galm)+ Y (No+i) + P(Ny + Ny) (10)
liz—ol 17\7?4

Ge = Y Glw)+2 3 (No+i) +2P(No + N)) + Ny +2P+ L (11)
liiol =0

Gr = D Gl (12)

. l;iol . Np—1

Gv = Z Cn (i) + 2 Z NiN;_q + L(N, —1) (13)
=0 =1

2.3 Reduction of addition operations to multiplication operations

For reduction of addition operations to multiplication operations the coefficient o is
used. This coefficient value is directly proportional to the time spent for one addition
operation and inversely related to the time spent for one multiplication operation. So one
multiplication operation needs the time which is necessary for o addition operations and
one addition operation can be changed to ¢ multiplication operations. So it is possible
to formulate equations (14)-(16).

l,—1 Np—1

Zym = Gynmr + UéyM = Z Calpts) + Z NiNifl +
i=0 i=1

l,ufl NL—l
+O’(Z<N<Mi>+2 Z NiN'_l—FQNL—i-P—i—L) (14)
=0 =1
A lu,—1 Ni—1 R
2y = CyC’ + O-CyC = Z Cn(ﬂz) + Z (NO + Z) +
=0 1=0
A A l,u,_l ~ Nlil A~
+P(No+ Ni) 4+ 0 | > Cn(m) +2 > (No+1i) | + (15)
=0 1=0

+o (QP(NO + Ny + Ny +2P + L)

lu—1

v = Gy oty =Y Glw)+
=0

+o (MZ QCN(,UI') + 2 i NiNL'_l + L(NL — 1)) (16)

=0 i=1

10
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3 Number of operations of algorithms of training

3.1 The general coefficient of the efficiency

The coefficient of efficiency depends on the numbers of operations which are calculated
by the serial and the parallel algorithm. Its value is calculated by formula (17):

alZ)=— (17)

where z is the number of operations in the serial algorithm, Z is the number of
operations in the parallel algorithm (in the processor which executes the maximum
number of operations) and n is the number of processors.

3.2 Level of calculating the value of the target function

The value of the target function is calculated by formula (18). In this equation the
calculation of ¢ for the i-th row of the pattern needs (, + 1 multiplication operations (¢,
operations for the calculation of ANN output values and one operation for the squaring)
and éy + 2P addition operations.

E = (di,j — F(fl, 117, /I)j)Q (18)

where z and d are patterns (input and output) which consist of N rows, o/ is the weights
coefficients vector, fi is the vector of activation functions of neurons, F' is the function

which calculates output values of the ANN, P is the number of output neurons in the
ANN.

So for the calculation of the full inaccuracy € N((,+1)+1 multiplication and fy+2P
addition operations are needed. And it is necessary to execute N addition operations
for the summation.

So it is possible to formulate equations (19)-(21) which show the numbers of operations
which are executed by the algorithms of calculating the value of the target function.

¢ = N(G+1)+1 (19)
( = N((+2P) (20)
Ze = Ca"‘o-ée:N(Cy"f'l_’_O—éy—f_QUP)—}_l (21)

If there are n processors and the pattern consists of N rows then each processor
can calculate the inaccuracy for the part of the pattern (equation (23)) for processor
number k and equation (22) for the lead processor. Then the zero processor sums up
(formula (24)). So the lead processor sends M rows to each processor, calculates the
inaccuracy by M rows, receives the inaccuracies from other processors and calculates

11
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the result. Values of M and M are calculated by formulas (25)-(26) [4, 17].

M—-1P-1
g0 = Y Y (dij— F(&,w,0),)* (22)
i—0 =0
M P-1
e = D (iigrnyinty — FEigourry s @ 0);)°, k>0 (23)
i—0 j—0
n—1

o
I
2|~
(]

Ek (24)

o

]

[& ., N modn=0;
M= { [%}7 N mod n # 0; (25)
~ M, N mod n = 0;
M= {N—M(n—l), N mod n # 0; (26)

It is necessary for the parallel algorithm:
e to divide the pattern into n parts and send it to processors before the training;

e to send the vector of weights coefficients w to each nonzero processor and receive
the inaccuracy value g, in each iteration of the calculation of the value of the
target function.

For sending or receiving one element one multiplication and two addition operations
are necessary. So for sending the pattern which will be worked on by the k-th processor
the lead processor executes M (P+L) multiplications and 2M (P+L) addition operations
and it executes M(P + L)(n — 1) multiplications and 2M (P + L)(n — 1) addition
operations for sending patterns to all nonzero processors. Thus the number of pattern
elements which are sent is P (P = MP + ML). The segmentation of the pattern into n
parts needs two multiplication and N addition operations and thus for accomplishing
the first step in the lead processor 2+ P(n—1) multiplication and N42P(n—1) addition
operations and P multiplication and 2P addition operations in nonzero processors are
needed. The non-lead processors cannot begin to receive data until the lead processor
sends it so k-th processor (k > 0) waits 2 + kP multiplication and N + 2kP addition
operations which are executed by the lead processor for sending patterns to the k-th
processor. Thus the k-th processor (k > 0) executes 2 + kP + oN + 20kP vacuous
operations which conform with the preparatory operations in the lead processor and
7(?, v) operations of the sending (the time of making these operations conforms with the
time of the interprocessor sending P numbers where the time rate of the interconnection
is v). So the lead processor executes C’g(g) multiplication operations, and the k-th nonzero
processor executes 06(2). The values of Cég) and Cs(g) are calculated by formulas (27)-

(28)).

cO = 24 P(n—1)+0oN+2Ps(n—1) (27)
CW = 24 kP + 0N +20kP +4(P,v) + P +20P (28)

As figure 8 shows, the parallel calculation of the inaccuracy consists of few steps:

12
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‘ . The lead DI’OCESSOI" . The nonzero processor

2: the sending weights coefficients

3 the calculation of the value of the inaccuracy

.

| 4 the receiving the inaccuracy value

3! the calculation of the value of the inaccuracy

|
|
| 5 the calculation of the result

]

O

Figure 8: The diagram of steps of the parallel calculation of the target function value.

1. sending elements of the vector of weight coefficients (the length of this vector
is [,,) to all nonzero processors. For this the lead processor executes [, (n — 1)
multiplication and 2{,,(n—1) addition operations and the other processors execute
[, multiplication and 2[,, addition operations for receiving the data. So the k-th
processor executes Cg(z) and the lead processor executes C’E(é) operations. The values

of Cg(g) and CE(,? are calculated by formulas (29)—(30).

cV = (n=1)(ly, +20l,) (29)

£

CW = Kkl + 20kl + Y(ly, v) + Ly + 200, (30)

2. calculating the value of the inaccuracy: each processor uses its part of the pattern,
so the numbers of operations are calculated by formula (31) for the lead processor
and (32) for the nonzero processors.

C? = M +1+0(,+20P)+1 (31)
C? = M +1+0(,+20P)+1 (32)

3. receiving the inaccuracy value by the lead processor. For this, the nonzero processors
execute one multiplication and two addition operations, and the zero processor
executes n — 1 multiplication and 2n — 2 addition operations for receiving and 1+
20 4+ (1, v) operations for waiting. So the lead processor executes CE(S') operations

(the value of C’S) is calculated by formula (33)) and other processors execute C’E(i)
(this value is calculated by formula (34)).

CE = n—14+20(n—1)+~(1,0) +1+20 (33)
O(z) = 1420 (34)

4. calculating the result by the zero processor. For this, it is necessary to execute
n — 1 addition operations and one multiplication operation.

13
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So the number of operations which are necessary for these steps are shown in table

Table 2: Numbers of operations which are necessary for the steps of the parallel
calculation of the inaccuracy.

Step Zero processor Nonzero (k-th) processor
1 ly(n —1)(1+20) | kly + 20kl + v(ly,v) + Ly + 201,
2 | M(zy+1420P)+1 M(z,+1+20P)+1
3 n+2on+v(1,v) 1+ 20
4 on—1)+1

Before the lead processor begins to receive the results of the operations which were
calculated by other processors it sends weight coefficients to all other processors and
calculates g (for ythis it executes C.y operations) and the other processors receive
the vector w, calculate the value of the inaccuracy e, and send the result to the lead
pProcessor.

Coo = Lu(n—1)(1+20)+ M, +1+0(,+20P) +1 (35)
Coo = (1420)(kly+ 1w+ 1) +v(ly,v) + (36)
+M(Cy+1+0(, +20P) +1

[t is necessary to consider the time of sending the inaccuracy value (y(1,v)). Thus the
zero processor can begin to receive data from the k-th processor after max é'eo, Copn + (1, v))

operations. The receiving finishes after the slowest processor has sent its inaccuracy
value, and this is why the parallel calculation of the inaccuracy needs Z. operations
(calculated by formula (37)).

Z. = max (max (égo + k(20 + 1), Cop + (1, U))) +
+on—1lo+1 (37)

So it is possible to conclude (38) which shows the efficiency of the algorithm which
executes the parallel calculation of the value of the target function.

_ I8Z€ _|_ )\8
nl.Z. +C0 + A

a:(Z) (38)

where I, is the number of operations for the calculation of the inaccuracy, A, is the
number of other operations of algorithms (which do not belong to the calculation of the
inaccuracy).

3.3 Full enumeration method

This method searches all variants of weight coefficients values. So the value of the
i-th weight coefficient in the I-th iteration is calculated by formula (39). The method

14
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iterates I times (the value of I is calculated by formula (41)).

wh = dewn 4 g x d mod w +1 (39)
¢ o 0 ! §(Z) S;

1, 1 =1, —1;

W o=93"1 ([—l}w_l?m] + 1) i<y —1; (40)

j=it1 %
+ 1) (41)

ly—1 lup _ lqlown
I — J J
where [7, [9°%" are the upper and lower limits of the i-th weight coefficient, s; is the

i=0 J
[ (A

step of the ¢-th scanning of the weight coefficient, and [,, is the weights count.
It is possible to calculate the number of multiplication operations which are executed
by the serial algorithm of the full enumeration by formula (42).

ZwF 225]F+20']F (42)

where z. is the number of operations which are needed for the calculation of the
inaccuracy value.

If there are n processors then each nonzero processor iterates Jp times (formula
(43)), and the lead processor iterates .Jp times (formula (44)) [17].

[I—F}, Ir mod n = 0;
- { [% , Ir mod n # 0; (43)
7 Jr, Ir mod n = 0;
= { Ip — Jp(n—1), Ir mod n # 0; (44)

For the calculation of the number of multiplication operations which are executed
by the parallel algorithm of the full enumeration it is necessary to analyse the steps of
this algorithm. As figure 9 shows, the parallel algorithm consists of five steps:

1. initialization;

2. sending data from the lead processor to other processors;

3. enumeration of values of weight coefficients which belong to this processor;
4. sending data from all processors to zero processor;

5. selection of the best configuration;

In the first step the lead processor executes 2l, addition operations (I, for the
organization of the obstruction cocycle and [, for the awarding). So C’S}O = 20l,, and

Cfvl}k = 0. In the second step the lead processor executes [,,(n — 1) multiplication and
2l,,(n — 1) addition operations. The other processors execute [, multiplication and 2[,,
addition operations but they can begin before the zero processor sends data, so the
LIONZETr0 Processors execute 01(72,2 multiplication operations (calculated by formula (45)).

CP =1y (k + 2ko + 20 + 1) + (L, v) (45)

15
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| _The lead DI’OCESSOI" . The nonzero processor

1 initialization

i

2: sending

3. enumeration

'—
|
|
|

enumeration

(9]

L

4 sending

o

U

- the best configuration selection

Figure 9: The diagram of the parallel full enumeration method steps.

Table 3: Numbers of multiplication operations in steps of the parallel full enumeration
algorithms.

Step Zero processors Nonzero (k-th) processor
1 201,
2 Ly(n —1)(1 4 20) Lo(k + 2ko + 20 + 1) + (1w, v)
3 ZedJp + 20JF zeJp 4+ 20Jp
4 | n(ly +1)(1+420) +v(l, +1) (I + 1)(1 + 20)
) 2om

The number of operations in the third step is analogous to the number of operations
which are executed by the serial algorithm.

In the fourth step the lead processor needs to get the best weights coefficients and
the inaccuracy value which belongs to these coefficients. It needs to get this information
from each processor, so it executes (n — 1)({,, + 1) multiplication and 2(n — 1)(l,, + 1)
addition operations, and the nonzero processors execute [,,+1 multiplication and 2[,,+2
addition operations. And the lead processor has to wait for the sending.

In the fifth step zero processor executes 2n addition operations. The reduction of
addition operations to multiplication operations allows to get values which are shown
in table 3.

Before the the lead processor begins to receive weight coefficients and inaccuracy
values, it executes three steps (the total number of operations is Crg), and the other
processors execute four steps (the total number of operations is Cgy). The alues of Crg

16
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and Cpy, are calculated by formulas (46)—(47).

~

CwFO = 20-lw+lw(n_1)(1+20)+Z€jF+20-jF (46)
Corr lo(k 4 2ko + 0 + 1) + Ly, v) + 2.Jp + 20 Tp + (47)

And it is necessary to consider the time for sending the inaccuracy value and the
weight coefficients. The receiving finishes after the the slowest processor has sent the
inaccuracy, and this is why the parallel calculation of inaccuracy needs to execute Z,,p
operations. This value is calculated by formula (48).

A A

Zwr = max <max <CwF0 +k(ly+1)(20 4+ 1), Curr + v(lw + 1,2}))) +

k=1l.n—1
+(ly +1)(1 + 20) + 20n (48)

So the efficiency of the parallel algorithm can be defined in formula (49):

ZwF 2elp +201F
w Z p—t p—y
“ F( ) nZwF nZwF

3.4 Gradient methods

Gradient methods are based on the calculation of a gradient vector and change the
values of the weight coefficients in the opposite direction:

) = =1 — 5Dyeld) (50)

where § is the coefficient of training and Ve is the gradient which is calculated by
formula (51) [18, 19]. The values of p(w) and the coefficient vector § are selected and it
is necessary for £!) to be less than e/~ for each element of the coefficient vector (as
is shown in formula (52)). The searching of the minimum continues until the reduction
of the gradient norm is below the value which was set before (or the finishing the time
which is allowed for the training).

Os O Os
= o 1
ve (8w0’ 8w1’ ’ 8wlw_1> (5 )
o = gd-b + g‘(f)ﬁ(u—;(f—l)) (52)

Three methods which are the most useful will be considered. These are the steepest
descent method, QuickProp and RPROP. They use different formulas for updating the
weight coefficients.

The steepest descent method uses formula (53) or sometimes (54).

pwd)) = —vel=b (53)

1) (n Oe(@~)

17
w,’ = w, +s; D —|—qu§ b (54)
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Table 4: Numbers of operations which are necessary for one iteration of gradient

methods.
The multiplicative | The additive
Method operations operations
number number
The steepest descent L (G +4) Lu(Ce +5)
QuickProp Lo (o +4) Lo (G +5)
RPROP lo(Co +4) lo(C. +4)

where ¢ is the coefficient of the moment which lies in the interval [0, 1]. As can be
seen, this algorithm executes three multiplication and two additive operations for the
calculation of updating one element of the weight coefficient vector.

The algorithm QuickProp which was suggested by Falman uses formula (55) |20, 21].

Aw® = LAY Awl™) 20 (55)
‘ sDel=0  Aw™Y = 0

% ) )

-1
min vl _ 0D

)

1
& =

; C]MAX) (56)

The maximal value of the coefficient of the moment gpr4x is 1.75 [22]|. This algorithm
executes three multiplicative and two additive operations too.

Another heuristic algorithm which is called RPROP (Resilient back PROPagation)
was developed by Riedmiller and Brawn [23, 24]. It calculates the elements of the vector
of coefficients by formula (57).

min(9a351_1)> qMAx), ng([_l)vggl_z) >0
351) = max(QbSEI_I)JJM]N)a Vggl_l)vggl_m <0 (57)
81(1—1)7 v€§1—1)V€§1—2) _ 0

where qyrax and ¢y 7y are maximal and minimal values of the coefficient of the training
(qarax=50, qury = 107% |24]), ¢, and ¢, are constant (¢,=1.2, ¢=0.5) [25]. The
speciality of this method is that it ignores the gradient value. The vector of the direction
p(w) is determined by the sign (-1, 0, 1) [26]. This algorithm executes three multiplication
and one addition operations.

It is necessary to execute & + 1 multiplicative and & + 3 additive operations for
the calculation of one element of the gradient. So it is possible to formulate that one
operation needs the operations numbers which are showed in table 4.

As shown in figure 10, each parallel iteration of the gradient method consist of few
steps:

e sending the vector of weight coefficients « to all nonzero processors by the lead
processor;

18
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| . The |ead DI’OCESSOI" - The NONZero processor

| |
| 1. sending the weight coefficients vector |
| I
| |
|

2 calculation elements 30 calculation elements

3 sending new values

Figure 10: The diagram of the parallel gradient method steps.

e calculating the elements of the part of weight coefficients and the gradient which
belongs to the current processor;

e sending new values of weight coefficients to the lead processor by all nonzero
processors.

The first step needs [,,(n — 1) multiplicative and 2[,,(n — 1) additive operations in
the lead processor and l,,(k + 1) + (I, v) operations in the k -th processor (k). The
number of operations which are necessary for the second step are shown in table 5. For
the third step it executes Ly multiplicative and 21, additive operations in the non-lead
processors and it executes Lyn + (L, v) (ly(n —1) multiplicative (L,(n — 1) operations
for the receiving and I,, operations for the waiting) and 2l,,(n — 1) additive operations
in the lead processor.

The first step needs oy weo operations in the lead processor and oW wG in other
processors (these values are calculated by formulas (58)-(59)). The second step needs
C’(%O and C(Zc);k, operations (see the data from table 5) and the third step needs C koperamons
(calculated by formula (60)) in the nonzero processors. So the lead processor has to wait
for C’wG operations before it starts receiving. The value of CwG is calculated by formula

(61).

c = ly(n—1)(1+20) (58)
Clp = Lok +1)(1+20) +Y(l,v) (59)
c® = I, +20l, (60)
Cuc = max (CL + Co, Ol + CL + CE% + (T v)) (61)

So the parallel algorithm executes Z,, operations (calculated by formula (62)), and
the efficiency of parallel gradient algorithms which is calculated by formula (63) may

19
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Table 5: Numbers of operations which are necessary for the second step of the parallel
iteration of gradient methods.

Method Number of | Number of | Number of | Number of
mult. additive mult.. additive
operations | operations | operations | operations
in the in the in the in the
lead lead non-lead non-lead
processor processor processor processor
The steepest
descent Ny (G+4) | Ny (&e+5) | Ly (G+4) | 1y (C+5)
QuickProp | Ny (G +4) | N (G +5) | Lo (C+4) | Ly (¢ +5)
RPROP No (Gc+4) | Ny C+4) | @b (C+4) | L, (E+4)

be formulated as (64) for the method of the steepest decent and QuickProp and (65)
for RPROP.

Zwe = Ia(Cue+ k(ly +1)(20 +1) 4+ 20l,(n — 1)) + Ag (62)
ZwG
w A —
wal?) = 2 (63)
Il (G + 4+ 0Ce + 50) + A
awQ(Z) = " (64)
Igly(Co + 4+ 0. +40) + A

where I is the number of iterations and, A\g is the number of other operations of the
algorithm.

4 Results

4.1 Experiments

For checking the formulas which were developed here an experiment was done. In
this experiment a forecast of currency exchange rates €/$was attempted at. It uses two
ANN structures, namely a multilayer perceptron (Fig. 11) and a Volterra network. The
pattern consisted of 300 rows and each row consisted of 12 input and one output values.
The results of this experiment are shown in table 6.

Another experiment was the prediction of shrimp mass caught in the Indian ocean.
For this experiment the MLP (Fig. 12) was used. Results are shown in table 7.

Thus the efficiency of the parallel algorithm of the full enumeration is about 95%,
the efficiency of the gradient algorithms is about 93% and the efficiency of the parallel
algorithms of the target function minimizing is about 91%.
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Figure 11: The MLP which was used for the prediction of currency pair quotations

Table 6: Values of efficiency coefficient for prediction of currency pair quotations.

41 0.9127 | 0.9521 | 0.9319
0.9111 | 0.9509 | 0.9302
8 | 0.9101 | 0.9492 | 0.9293

(o}

) A
: ) ,:
! 2 4 4
K
L Ly
TN
L o g ~ » \\\

Figure 12: The MLP which was used for the forecast of the shrimp mass which was
caught.

4.2 Conclusion

The time which is necessary for training the ANN by the parallel algorithm can be
calculated by formula (66):

t
no(Z) (66)

T =
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Table 7: Values of the efficiency coefficient for predicting the shrimp mass which was
caught.

Processors number | o, A F Q@
4 0.9124 | 0.9518 | 0.9312
6 0.9112 | 0.9501 | 0.9304
8 0.9103 | 0.9494 | 0.9297

where t is the time which is necessary for training the ANN by the seral algorithm.
So it is possible to conclude that the usage of parallel algorithms of training ANNs
allows to lower capacity and time expenses. So parallel algorithms are very effective.
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Glossary

the number of operations which are executed
in the ¢ step of parallel algorithm of the
calculation of the inaccuracy in the k-th
processor, 12

the number of operations which are executed
in the ¢ step of parallel full enumeration
algorithm in the k-th processor, 16

the number of operations which are executed
in the ¢ step of parallel gradient algorithm in
the k-th processor, 21

the function which calculates output values of
the ANN, 10, 11

the number of iterations which are done by full
enumeration algorithm, 15

is the number of iterations which are done by
the gradient algorithm, 21

the number of calculation of the inaccuracy in
the parallel algorithm of the calculation of the
target function value, 14

the number of iterations which are done by
parallel full enumeration algorithm in the non-
lead processor, 15

the number of neurons in the input layer, 2
the number of pattern rows which are used
by the non-lead processor for the calculation
of the inaccuracy in the parallel calculation of
the target function value, 11

the number of rows in a pattern, 10

the number of layers in the network, 2

the number of neuron input, 7

the number of neurons in the output layer, 2
the number of operations which are executed
by the parallel algorithm (additive operation
are recuted to multiplicative operations), 10
the number of operations which are necessary
for the parallel calculation of the calculation of
the target function value (additive operation
are recuted to multiplicative operations), 11
the number of operations which are
executed by the parallel full enumeration
algorithm (additive operation are recuted to
multiplicative operations), 17
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the number of operations which are executed
by the parallel gradient algorithm (additive
operation are recuted to multiplicative
operations), 21

the value of the change of the i-th weight
coefficient, 18

the coefficient of the efficiency of the parallel
algorithm (additive operation are recuted to
multiplicative operations), 10

the coefficient of the efficiency of the parallel
algorithm of the calculation of the target
function value, 14

the coefficient of the efficiency of the
parallel full enumeration algorithm (additive
operation are recuted to multiplicative
operations), 17

the coefficient of the efficiency of the
parallel gradient algorithm of QuickProp and
the steepest descent (additive operation are
recuted to multiplicative operations), 21

the coefficient of the efficiency of the parallel
gradient algorithm of RPROP (additive
operation are recuted to multiplicative
operations), 21

the function which returns the number of
operations which are necessary for the sending
data from one processor to other, 12

the number of operations which are executed
by the lead processor for the sending
weight coefficients to all other processors and
calculates inaccuracy ¢y by the algorithm
which parallel calculates the target function
value, 14

the number of operations which are executed
by non-lead processors for the receiving the
vector of weight coefficients, the calculating
the value of the inaccuracy ¢ and the sending
result to the lead processor by the algorithm
which parallel calculates the target function
value, 14

the number of operations which are executed
by the lead processor in first three steps
(pro)(l) + CwF())(Q) + CwFO)(S) by the parallel
full enumeration algorithm, 17
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the number of operations which are executed
by non-lead processors in first four steps
(Curr)® + Cupr)® + Cupr)® + Cupr)@ by
the parallel full enumeration algorithm, 17
the number of operations which are waited
by the lead processor before the beginning
receiving weight coefficients in parallel
gradient algorithms, 21

the number of iterations which are done by
parallel full enumeration algorithm in the lead
processor, 15

the number of pattern rows which are used by
the lead processor for the calculation of the
inaccuracy in the parallel calculation of the
target function value, 11

the number of neurons in the ¢-th layer, 2
the number of weight coefficients (and
elements of the gradient vector) which are
calculated in the lead processor by the parallel
gradient algorithm, 20

the number of pattern elements which are
sent by the lead processor to each nonzero
process in the parallel calculation of the target
function value, 12

the number of additive operations which are
necessary for the calculation of the target
function value, 11

the number of additive operations which are
necessary for the calculation of the output
values of a neuron, 7

the number of additive operations which are
necessary for the calculation of the output
values of the i-th neuron, 9

the number of additive operations which are
necessary for the calculation of the output
values of an ANN, 9

the number of additive operations which are
necessary for the calculation of the output
values of a cascade-correlation network, 9

the number of additive operations which are
necessary for the calculation of the output
values of a multilayer perceptron, 9
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the number of additive operations which are
necessary for the calculation of the output
values of a Volterra network, 9

the number of weight coefficients (and
elements of the gradient vector) which are
calculated in the non-lead processor by the
parallel gradient algorithm, 20

is the number of operations which are done
by the gradient algorithm and which are not
operations of the parallel calculation of weight
coefficients, 21

the number of operations of the parallel
algorithms (of the calculation of the target
function value) which are not belong to the
calculation of the inaccuracy, 14

the coefficient of the reduction of additive
operations to multiplicative operations, 10
the activation functions vector, 9

the vector of the gradient, 18

the vector of functions of the changing weight
coefficients, 18

the vector of the training, 18

the vector of weight coefficients, 5

the vector of input values, 2

the vector of output values, 2

the number of multiplicative operations which
are necessary for the calculation of the target
function value, 11

the number of multiplicative operations which
are necessary for the calculation of the output
values of a neuron, 7

the number of multiplicative operations which
are necessary for the calculation of the output
values of the i-th neuron, 9

the number of multiplicative operations which
are necessary for the calculation of the output
values of an ANN, 9

the number of multiplicative operations which
are necessary for the calculation of the output
values of a cascade-correlation network, 9

the number of multiplicative operations which
are necessary for the calculation of the output
values of a multilayer perceptron, 9
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the number of multiplicative operations which
are necessary for the calculation of the output
values of a Volterra network, 9

the coefficient of an activation function, 7

an output pattern matrix, 10

the lower limits of the i-th weight coefficient,
15

the upper limits of the i-th weight coefficient,
15

the total number of neurons in a network, 9
the number of weights coefficients, 12

the number of used processors, 11

the external impulse, 7

the internal impulse, 7

the coefficient of the moment, 18

the points of time, 5

the rate of an interconnect, 12

the number of operations which are executed
by the serial algorithm (additive operation are
recuted to multiplicative operations), 10

the number of operations which are necessary
for the calculation of the serial calculation of
the target function value (additive operation
are recuted to multiplicative operations), 11
the number of operations which are necessary
for the calculation of the output values of
a neuron (additive operation are reduced to
multiplicative operations), 7

the number of operations which are necessary
for the calculation of the output values of the
i-th neuron (additive operation are recuted to
multiplicative operations), 9

the number of operations which are necessary
for the calculation of the output values of
an ANN (additive operation are recuted to
multiplicative operations), 9

the number of operations which are
executed by the serial full enumeration
algorithm (additive operation are recuted to
multiplicative operations), 17

the number of operations which are executed
by the serial gradient algorithm (additive
operation are recuted to multiplicative
operations), 21
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2yC the number of operations which are necessary
for the calculation of the output values
of a cascade-correlation network (additive
operation are recuted to multiplicative
operations), 9

2yM the number of operations which are necessary
for the calculation of the output values of a
multilayer perceptron (additive operation are
recuted to multiplicative operations), 9

2yv the number of operations which are necessary
for the calculation of the output values of
a Volterra network (additive operation are
recuted to multiplicative operations), 9
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