UNIVERSITAT
KOBLENZ - LANDAU

Fachbereich 4: Informatik

Haskell Programming Technologies

Bachelorarbeit

zur Erlangung des Grades eines Bachelor of Science
im Studiengang Informatik

vorgelegt von

Thomas Schmorleiz

Erstgutachter: Ralf Limmel
Institut fiir Informatik

Zweitgutachter: Andrei Varanovich
Institut fiir Informatik

Koblenz, im November 2011

Erklarung

Ich versichere, dass ich die vorliegende Arbeit selbstindig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einver- [J g
standen.

Der Veroffentlichung dieser Arbeit im Internet stimme ich zu. O g

(Ort, Datum) (Unterschrift)

Abstract

In this thesis we exercise a wide variety of libraries, frameworks and other technologies
that are available for the Haskell programming language. We show various applications of
Haskell in real-world scenarios and contribute implementations and taxonomy entities to
the 101companies system [[1]. That is, we cover a broad range of the 101companies fea-
ture model [2]] and define related terms and technologies. The implementations illustrate
how different language concepts of Haskell, such as a very strong typing system, polymor-
phism, higher-order functions and monads, can be effectively used in the development of
information systems. In this context we demonstrate both advantages and limitations of
different Haskell technologies.

Zusammenfassung

In der vorliegenden Arbeit untersuche ich eine breite Spanne von Libraries, Frameworks
und anderer Technologien fiir die Programmiersprache Haskell. Ich demonstriere verschie-
dene praktische Anwendungen von Haskell und trage durch Implementationen und Taxo-
nomieeinheiten zum 101companies System bei [1f]. Dies tue ich, indem ich einen groflen
Teil des 101companies feature models [2] abdecke und damit verkniipfte Defintionen von
Begriffen und Technologien in dieses System einpflege. Die Implementationen zeigen, wie
verschiedene Sprachkonzepte von Haskell wie ein sehr starkes Typensystem, Polymorphis-
mus, Funktionen hoherer Ordnungen und Monaden effektiv bei der Entwicklung von In-
formationssystemen benutzt werden konnen. In diesem Zusammenhang zeige ich sowohl
Vorteile als auch Einschridnkungen der verschiedenen Technologien auf.

Acknowledgements

I gratefully acknowledge collaboration with Ralf Lammel (Software Languages Team,
Koblenz) and Andrei Varanovich (Software Languages Team, Koblenz) on the underly-
ing 101companies software system.

Contents

ITIntroduction|

" Haskell?|

I] 3 Structure Ol 1mpIementat10n aocumentatlonsl

[2° Implementations|
2T J10Iimplementation haskellLogger]

[2.1.2 Languages|
............................

.8 Usage| . . . 0 0 0 e

[23.2 Languages|
............................

3. sagel

P39 Tssueslo

2.4 101implementationdphl o oo
241 Intenfl

242 Languages|
P43 TTechnologies|

http://101companies.org/index.php/101implementation:haskellLogger
http://101companies.org/index.php/101implementation:haskellParser
http://101companies.org/index.php/101implementation:haskellConcurrent
http://101companies.org/index.php/101implementation:dph

CONTENTS 6

DAZ Teaturesl. oo oo 20
245 Motivationl e 20
46 Tustration]« v v v ot 20
247 Architecture|. 22
................................ 22
23 101implementationhdbc, oo 22
3T Tntend o o oo o 22
252 Languages| 22
............................ 22
D34 Features. o o oo 22
255 Motivationl e 23
2.5.6 Mlustrationl 23
2.5.7 Architecture|. 24
................................ 24

[2:6 _101implementation haskellDB|, 25
................................ 25

[26.2 Languages| 25
P63 Technologies| 25
D64 TFeaturesl. oo 25
63 Motivaionl e e 25
2.6.6 ustrationl 26
2.6.7 Architecturel. 28

6.8 Usage|. 28

7 lI0Iimplementation hxt 28
DZT Tntend . . . - . o otot e 28
272 Languages| 29
............................ 29
D74 Teaturesl. o oo 29
2.7.5 Motivationl e 29

2 Hlustration] e 29
D77 Architecture]l. 30

8 Usagel 30

28 101implementation hxtPickler] 31
................................ 31

282 Languages|, . 31

8. echnologies| 31

D8A Teaturesl. o oo 31
2.8.5 Motivationl e 31
2.8.6 Mlustrationl, 31
.87 Architecture|. 33
................................ 33
29 101implementation wxHaskelll 33
................................ 33

[29.2 Languages| 33

2.9.3 Technologies|, 34

294 Features|. 34
O35 Motivation . . . - . . v e e e e 34
[29.6 TMustrationl e 34

http://101companies.org/index.php/101implementation:hdbc
http://101companies.org/index.php/101implementation:haskellDB
http://101companies.org/index.php/101implementation:hxt
http://101companies.org/index.php/101implementation:hxtPickler
http://101companies.org/index.php/101implementation:wxHaskell

CONTENTS

[2.10.1 TIntend
[2.10.2 Languages|

0. echnologies|,

2.10.8 Usage|
IT |10Iimplementation happstackl

[2.11.2 Languages|
............................

2.11 Archi e, . e e e

................................
3__Conclusionl

|A" Terms and Technologies|
[AT Writer Monadl

A3.1 Intentl
[A.3.2 DISCUSSION|o e e e e e e e e e e e

IA82 Discussionl Lo
[A9 Technology HDBC|
A9.1 Intentl

37
37
37
37
37
38
38
38
40
40
41
41
41
41
41
42
42
45
45

46

http://101companies.org/index.php/101implementation:haskellCGI
http://101companies.org/index.php/101implementation:happstack
http://101companies.org/index.php/Writer Monad
http://101companies.org/index.php/Monoid
http://101companies.org/index.php/Technology:Parsec
http://101companies.org/index.php/Functor
http://101companies.org/index.php/Technology:DPH
http://101companies.org/index.php/Parallel array
http://101companies.org/index.php/Vectorisation
http://101companies.org/index.php/MVar
http://101companies.org/index.php/Technology:HDBC

CONTENTS 8

[ATT0 Technology HaskellDB| 51
................................ 51
IAL10.2 DISCUSSION| .« . v v e e e e e e e e e e 51

[ATT [Technology DBDirect] 51
BILTIntend oo 51
IAL11.2 Discussionl v o e 51

. echnology HXT| o

[ATT2 Technology HXT 51
BAI2IIntend o oo oo 51
IAL12.2 DISCUSSION| . . . v v o e e e e e e e e e e e e e 52

.13 Technolo icklero

[ATT3Technology XML pickl 52
BAI3TIntend oo 52
IA.13.2 Discussionl e 52

[ATATArowWl 52
BIZIIntend oo o 52
[AT42 Discussionl v v vt 52

15 Technology wxHaskell
hnology wxHaskell 53
................................ 53
A.15.2 Di 100 . . o e e 53

[AT6 Zipper 53
BAI6IIntend o oo oo 53
1A.16.2 DIScussionlo e e e e e e e 53

1’7 "Technolo, appstackl

[A-T7 [Technology Happstackl 53
BAI7TIntend oo 53
IAL17.2 DISCUSSION| . v v v v v e e e e e e e e e e e e e 53

. echnolo, CISt . . . L e e e e e

[AT18Technology Hei 53

http://101companies.org/index.php/Technology:HaskellDB
http://101companies.org/index.php/Technology:DBDirect
http://101companies.org/index.php/Technology:HXT
http://101companies.org/index.php/Technology:XML pickler
http://101companies.org/index.php/Arrow
http://101companies.org/index.php/Technology:wxHaskell
http://101companies.org/index.php/Zipper
http://101companies.org/index.php/Technology:Happstack
http://101companies.org/index.php/Technology:Heist

Chapter 1

Introduction

1.1 Why Haskell?

Over the past few years the attention to the Haskell programming language has strongly
increased. One fundamental reason for this is the wide variety of libraries, frameworks
and other technologies that are available for Haskell covering domains from database pro-
gramming to GUI development. Another reason for the recent attention is the continuous
development of concurrency and data parallelism support. Technologies like the concur-
rency concept of [3]] and the GHC extension[Data Parallel Haskell| [4] provide high
performance tools for concurrent and parallel programming at a high level of abstraction.
This thesis’ implementations [haskellConcurrent| and [dph| demonstrate M Vars and DPH.

New technologies that are available for Haskell are published on Hackage [5]], a database
for Haskell packages and a centralized documentation infrastructure. In combination with
the package management system Cabal [6]], this provides an easy way to download and
install new Haskell technologies.

In this thesis we will demonstrate some of Haskell’s language features [7]: Haskell
programs are easy to write and read because of an expressive elegant syntax [8]] and a
powerful type inference system [9]]. We illustrate this in various implementations. Haskell
functions are pure, that is, they have no side effects. Any I/O actions, like file reading and
writing, database transactions and networks connections, are encapsulated inside a special
monad [10]]. This approach strictly separates the I/O actions from the pure computations
of the program. We will benefit from this feature in several real-world application like web
programming (covered by the implementations [haskel[CGl| and [happstack)) and XML
processing (covered by [Ax# and [AxtPickler)). Haskell programs are very modular because
one can divide the tasks of a program into small functions. This helps us to provide reusable
code and to avoid redundancy [7]]. Haskell is a lazy programming language, which means
that expressions are only evaluated when they are actually used [11]. Because of lazy eval-
uation we can realize streaming-based processing of data sets in databases (demonstrated

in[hdbc) [12]. We are making use of monads in Haskell to compose parsers in
and to realize logging in|haskellLogge

1.2 Coverage of the feature model

In this thesis we exercise various Haskell technologies covering most features of the 101com-
panies feature model [2]:

CHAPTER 1. INTRODUCTION 10

Table 1.1: Coverage of the feature model

basics capabilities extras

Access control
Concurrency
Distribution
Fault tolerance
Interaction

e | Logging
Mapping
Parallelism
Parsing
Persistence
Serialization
Validation
Visualization
Depth
Mentoring
Precedence

lhaskellLogger]
lhaskellParser,
lhaskellConcurrent
ldph

Thdbe
lhaskellDB
lhx{

lhxtPickler
|wxHaskell
lhaskellCGI
lhappstack]

Coverage 11| 11[11][0]1]2]0]3 1[4 [1]1]2]3][1]0]0][1]0]

e|o|o(e(o|o|e e e|e|e|Company

o|lo(ofo|o|eo|(eofeo|0o|e e Cut
o|lo|o(o(0o|0o|eo|(0o|e|e|e|Total
°
°
°

e All implementations cover the basic features of modeling a company, totaling all
salaries in a company and cutting|all salaries.

e Logging|the process of totaling and cutting salaries by means of the
is performed by [haskellLogger|

o The [haskellParser| implementation covers the features of [parsing concrete com-

pany syntax and the extra feature of mentoring.

o [haskellConcurrent]implements concurrent salary processing by using

e We exercise parallelism|in the [Data Paralle] Haskell implementation [dph].

e [Persisting company data in a database is realized in the [pdbc]| and [haskellDB]im-
plementations. In the former we execute SQL-statements represented as strings in
Haskell. In the latter we make use of a combinator library to express queries as
Haskell functions.

. and serialize| companies as XML data and process such data.

. also covers/mapping| XML data to values of algebraic datatypes for com-
panies. haskellDB|and [hdbc map query results to values in Haskell.

e The feature of [interacting with a company by means of an user interface is covered
by the GUI-based standalone implementation and the web applications

haskellCGl|and [happstack]

e |haskellCGl and [happstack|are also providing [distribution of company data.

o [happstack]additionally performs jvalidation of user input.

http://101companies.org/index.php/Category:101basics
http://101companies.org/index.php/Category:101capabilities
http://101companies.org/index.php/Category:101extras
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Access control
http://101companies.org/index.php/101feature:Concurrency
http://101companies.org/index.php/101feature:Distribution
http://101companies.org/index.php/101feature:Fault tolerance
http://101companies.org/index.php/101feature:Interaction
http://101companies.org/index.php/101feature:Logging
http://101companies.org/index.php/101feature:Mapping
http://101companies.org/index.php/101feature:Parallelism
http://101companies.org/index.php/101feature:Parsing
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/101feature:Serialization
http://101companies.org/index.php/101feature:Validation
http://101companies.org/index.php/101feature:Visualization
http://101companies.org/index.php/101feature:Depth
http://101companies.org/index.php/101feature:Mentoring
http://101companies.org/index.php/101feature:Precedence
http://101companies.uni-koblenz.de/index.php/101feature:Company
http://101companies.uni-koblenz.de/index.php/101feature:Total
http://101companies.uni-koblenz.de/index.php/101feature:Cut
http://101companies.uni-koblenz.de/index.php/101feature:Logging
http://101companies.uni-koblenz.de/index.php/101feature:Parsing
http://101companies.org/index.php/101feature:Mentoring
http://101companies.uni-koblenz.de/index.php/101feature:Concurrency
http://101companies.uni-koblenz.de/index.php/101feature:Parallism
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/101feature:Serialization
http://101companies.org/index.php/101feature:Mapping
http://101companies.org/index.php/101feature:Interaction
http://101companies.org/index.php/101feature:Distribution
http://101companies.org/index.php/101feature:Validation

CHAPTER 1. INTRODUCTION 11

1.3 Structure of implementation documentations

In the next chapter we will describe this thesis’ set of implementations. These documenta-
tions all follow a common structure, which is described in [13]]. That is, we start off with
an intent describing the implementation at hand in a short phrase. We then list all used
languages and technologies. For instance, all implementations list Haskell as a language
and mention the Haskell compiler GHC or the Haskell interpreter GHCil as a technology.
After that we list all implemented features as described in the last section. Followed by that
is a short motivation discussing the contribution of the implementation to the 101compa-
nies software corpus. We then illustrate idiomatic code of the implementation. The usage
section describes how one can run or deploy the implementation. Additionally some docu-
mentations list issues of the current status of the implementation in question. All sections
use links to the 101companies wiki [14]] and links to this thesis’ appendix, which defines
terms and technologies.

http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Technology:GHC
http://101companies.org/index.php/Technology:GHCi

Chapter 2

Implementations

2.1 I0limplementation haskellLogger

2.1.1 Intent
Logging in Haskell by means of the

2.1.2 Languages
e Haskell

2.1.3 Technologies
e GHCi

2.1.4 Features
e Company

Total

e Cut

Logging

2.1.5 Motivation

We exercise logging| in Haskell by making use of the That is, during the
process of totaling and |cutting|companies| we log messages regarding intermediate results.

In this implementation we choose that logs should be of type [String], yet they could

be of any type.

12

http://101companies.org/index.php/101implementation:haskellLogger
http://101companies.org/index.php/101feature:Logging
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Technology:GHCi
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Logging
http://101companies.org/index.php/101feature:Logging
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Company

CHAPTER 2. IMPLEMENTATIONS 13

2.1.6 Illustration
Logging cutting

We provide functionality for cutting all company, department and employee salaries. In
the following we will show how cutting all salaries in a given department is realized in the
current implementation.

Listing 2.1: Cut.hs

1 cutLogDept :: Int —-> Department -> Writer Log
Department

2 cutLogDept n d@ (Department name m dus eus) = do

3 tell [replicate n ’"\t’ ++ "Starting cutting "

4 ++ "department \""

5 ++ name

6 ++ "\", old Total ="

7 ++ (show $ totalDept d)]

8 cutManager <- cutLogEmployee (n + 1) m

9 cutDus <- mapM (cutLogDept (n + 1)) dus

10 cutEus <- mapM (cutLogEmployee (n + 1)) eus

11 let cutD = Department name cutManager cutDus cutEus

12 tell [replicate n ’\t’ ++ "Done cutting "

13 ++ "department \""

14 ++ name

15 ++ "\", new Total ="

16 ++ (show $ totalDept cutD)]

17 return cutD

In line 3 we log the start of the process of cutting a department by adding a message
containing the department’s name and the old total salary. We make use of the tell
function, which is provided by the Control.Monad. Writer module, to add messages to the
log. To prettyPrint this log we indent all log lines using the given indent size n. In line 8
we cut the department manager’s salary by passing the manager and an increased indent
size to cutLogEmployee. To cut all sub departments and employees we make use of
the monadic map function mapM in lines 9 and 10. In the following lines we log that
department cutting is finished and what the new total salary is. In line 17 we return the cut
Department value.

2.1.7 Architecture

Total.hs and (Cut.hs contain functionality to total and cut salaries while logging the pro-
cess of doing so. [Types.hs holds the log type and a function for prettyprinting logs. The
algebraic datatype for companies can be found in Company.hs. Main.hs| collects test
scenarios for totaling and cutting a sample company provided by SampleCompany.hs.

2.1.8 Usage
e Main.hslhas to be loaded into GHCi.

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellLogger/Cut.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellLogger/Total.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellLogger/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellLogger/Types.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellLogger/Company.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellLogger/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellLogger/SampleCompany.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellLogger/Main.hs?view=markup

CHAPTER 2. IMPLEMENTATIONS 14

e The main function has to be applied.

e The output should be equal to the content of the file baselinel

One can also use the Makefile| with a target zest for test automation.

2.2 10limplementation haskellParser

This implementation is a joint work with Ralf Limmel and Martijn van Steenbergen.

2.2.1 Intent
Parsing textual syntax with [Parsec]in Haskell

2.2.2 Languages
e Haskell

2.2.3 Technologies
¢ |GHCi
.

2.2.4 Features
e Company

e [Total

e Cut

e Mentoring

e Serialization

e Parsing

2.2.5 Motivation

We make use of Haskell’s parser, combinator library| to parse concrete textual syn-
tax for companies. We combine smaller parsers, say for salaries, to larger parsers, say for
departments and employees, to build a parser for companies. In terms of parsing we exer-
cise sequence, alternative and option. This implementation also demonstrates
and functor combinators provided by the Control. Applicative module.

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellLogger/baseline?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellLogger/Makefile?view=markup
http://101companies.org/index.php/test automation
http://101companies.org/index.php/101implementation:haskellParser
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Technology:GHCi
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Mentoring
http://101companies.org/index.php/101feature:Serialization
http://101companies.org/index.php/101feature:Parsing
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Parsing
http://101companies.org/index.php/Category:Library
http://101companies.org/index.php/101feature:Company

CHAPTER 2. IMPLEMENTATIONS 15

2.2.6 Illustration
Parser type

We define a type alias of all parsers that are defined in this implementation:

Listing 2.2: Parser.hs

1 type P = Parsec String ()

That is, we are dealing with parsers of stream type String and state type () (no state).
The return type of running such a parser is explained further below.

Primitive parsers

In order to build the company parser we first need some primitive parsers. For parsing a
given String value we define:

Listing 2.3: Parser.hs

1 pString :: String -> P String
2 pString s = string s <x spaces

This parser also consumes trailing spaces. We also need a parser for literals. pLit parses
a quoted string:

Listing 2.4: Parser.hs
1 pLit :: P String
2 pLit = string "\"" x> many (noneOf "\"") <x string "\""
<x spaces

Parsing a department

Listing 2.5: [Parser.hs

1 pDepartment :: P Department

2 pDepartment = Department

3 <$ pString "department" <x> pLit

4 <x pString "{" <> pEmployee "manager"

5 <x> many pSubUnit <x pString "}"

We make use of the (<$) :: Functor £f == a — £ b — f a operator in
line 3. That is, we pass the department constructor Department and a parser for all
constructor parameters (for name, manager and for the list of subunits) to receive a parser
for departments. In line 3 we parse the keyword for department declaration “department”.

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Parser.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Parser.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Parser.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Parser.hs

CHAPTER 2. IMPLEMENTATIONS 16

In the next line we parse the department name, followed by an opening curly bracket. We
compose a parser for the department’s manager using the employee parser pEmployee,
which should use “manager” as the keyword. In the last line many :: f a — £
[a] is used to parse the list of subunits using pSubUnit as the parser for each sub-
units. Finally, we define that we expect a closing curly bracket at the end of a department
declaration.

Running the Parser

Running the company parser is realized by making use of runbP:

1 runP :: Stream s Identity t => Parsec s u a -> u —>
SourceName -> s —> Either ParseError a

We illustrated above that we use parsers of type Parsec String (), which on the top
level parse values of type Company. Therefore we can simplify the type signature:

1 Parsec String () Company —-> () —-> SourceName —-> String
—-> Either ParseError a

When we choose "input™" as the source name we can define a function to run the com-
pany parser:

Listing 2.6: Parser.hs

1 parseCompany :: String —-> Either ParseError Company
2 parseCompany = runP (spaces %> pCompany <x eof) ()
3 "input"

We added a parser for possible leading spaces and a parser for the EOF-symbol.

Executing the Parser

In|Main.hs we execute the company parser:

Listing 2.7: Main.hs

| parsedCompany <- 1iftM parseCompany $
2 readFile "sample.Company"

The variable parsedCompany either holds a ParseError value or a parsed company.
We define a function for printing, which handles both cases:

Listing 2.8: Main.hs

1 eitherPrint :: Show a => Either ParseError Company —> (
Company —-> a) —-> IO ()

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Parser.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Main.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Main.hs

CHAPTER 2. IMPLEMENTATIONS 17

2> eitherPrint (Right c) f = print $ f c
3 eitherPrint (Left e) _ = print e

In case parsing was successful this function applies a given function to the company and
prints the result. In case of a parse error, it prints the error message. We can use this
function to print the total salary of parsedCompany in case of parsing success:

1 eitherPrint parsedCompany total

2.2.7 Architecture

Parser.hs provides the Parsec-based parser. Company.hs holds the algebraic datatype for
companies, while Total.hs| and Cut.hs| provide functionality to total and cut companies.
SampleCompany.hs holds a sample company used to be compared to a parsed sample
company (hosted by sample.Company). Main.hs collects test scenarios.

2.2.8 Usage
e Main.hs|has to be loaded into GHCi.

e The main function has to be applied.

e The output should be equal to the content of the file baselinel

One can also use the Makefile| with a target test for test automation.

2.3 10Iimplementation haskellConcurrent

2.3.1 Intent

Concurrent programming in Haskell

2.3.2 Languages
o Haskell

2.3.3 Technologies
¢ |GHCi

2.3.4 Features
e Company

o [Total

o Cut

e Concurrency

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Parser.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Company.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Total.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/SampleCompany.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/sample.Company?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/baseline?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellParser/Makefile?view=markup
http://101companies.org/index.php/test automation
http://101companies.org/index.php/101implementation:haskellConcurrent
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Technology:GHCi
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Concurrency

CHAPTER 2. IMPLEMENTATIONS 18

2.3.5 Motivation

We make use of Haskell’s concurrency| support. That is, we divide computations into
multiple threads and make use of synchronized variables (MVar), which are shared among
different threads. Each thread totals or cuts| only the salaries in a specified department;
subdepartments are handled by new threads. The result of the computations (Float resp.
Company values) are stored in an MVar and then collected and aggregated with other
results by the “upper” thread.

2.3.6 Illustration

Concurrent cutting

We create new threads using forkIO :: IO () — IO ThreadId provided by
Haskell’s concurrency library Control.Concurrent. This function executes the given
IO action in a new thread and returns a ThreadId value. On the top company level we
do so for every department:

Listing 2.9: Cut.hs

1 cutCompany :: Company —> IO Company
2 cutCompany (Company n depts) = do

3 mvars <- forM depts $ \d -> do
4 mvar’ <- newEmptyMVar

5 forkIO $ cutDept mvar’ d

6 return mvar’

7 cutDepts <- takeAllMVars mvars
8 return $ Company n cutDepts

We iterate over the departments by making use of forM in line 3. For each department we
create a new empty MVar value, which we then pass to the cut function, which we start in
anew thread. We collect all MVar values in mvars. In line 7 we wait for the results of the
computations. The new company is returned in line 8. Similar to this we cut departments:

Listing 2.10: |Cut.hs

1 cutDept :: MVar Department —-> Department —-> IO ()

2 cutDept mvar (Department n m dus eus) = do

3 mvars <— forM dus $ \d -> do

4 mvar’ <- newEmptyMVar

5 forkIO $ cutDept mvar’ d

6 return mvar’

7 cutDus <- takeAllMVars mvars

8 putMVar mvar $ Department n (cutEmployee m)

9 (cutDus)

10 (map cutEmployee eus)

The difference to cutCompany is that cutDept puts the new department in a given
Mvar value.
The cutting of direct department employees is not performed in a new thread:

http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/101feature:Concurrency
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/Cut.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/Cut.hs

CHAPTER 2. IMPLEMENTATIONS 19

Listing 2.11: |Cut.hs

1 cutEmployee :: Employee —> Employee
2 cutEmployee (Employee name address salary) = Employee
name address $ salary / 2

Collecting results

Both functions cut Company and cutDept need to wait for the child-threads to termi-
nate. To do so we provide a function takeAllMVars:

Listing 2.12: |Utils.hs

1 takeAllMVars :: [MVar a] —> IO [a]
2 takeAllMVars = mapM takeMVar

This function takes all MVar values one by one blocking on every empty M Var.

2.3.7 Architecture

Total.hs and Cut.hs|provide functionality for totaling and cutting salaries in a concurrent
way. |Utils.hs|contains a function to collect content of a list of MVar values. The algebraic
datatype for companies can be found in Company.hs. Main.hs collects test scenarios for
totaling and cutting a sample company hosted by SampleCompany.hs.

2.3.8 Usage
e Main.hslhas to be loaded into GHCi.

e The main function has to be applied.

e The output should be equal to the content of the file baselinel

One can also use the Makefile with a target zest for test automation.

2.3.9 Issues

e The current implementation does not address the problem of a possibly unbalanced de-
partment tree.

e The collection function for M Vars blocks on every empty element. We may need a more
sophisticated collection function.

2.4 10limplementation dph

2.4.1 Intent

Exercise |data parallelism|in Haskell using |Data Parallel Haskell|

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/Cut.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/Utils.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/Total.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/Utils.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/Company.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/SampleCompany.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/baseline?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellConcurrent/Makefile?view=markup
http://101companies.org/index.php/test automation
http://101companies.org/index.php/101implementation:dph
http://101companies.org/index.php/Parallelism
http://101companies.org/index.php/Language:Haskell

CHAPTER 2. IMPLEMENTATIONS 20

2.4.2 Languages
e Haskell

2.4.3 Technologies
e GHC (Version 7.2.1)
e GHCi (Version 7.2.1)

2.4.4 Features
e Company

e [Total

e Cut

e Parallelism

2.4.5 Motivation

We exercise data parallelism in Haskell (DPH). That is, we total and |cut| salaries in a

company| by making use of and DPH-specific functionality on these arrays.
In this context we also demonstrate some of DPH’s (current) limitations (see illustration

section for details):

e The inability to mix and non-vectorised code.
e No vectorization support for user-defined types.

o A DPH-specific Prelude with specific primitive types.

e Data parallelism can only be applied to arrays.

The first two limitations force us to have both vectorised and non-vectorised modules, in
which we define the company datatype. The last limitation forces us to flatten the company
to a list of salary values, which are of a DPH-float type, before salaries can be totaled and
cut. The resulting list of cut salary values has then to be “reconsumed” by the company in
question. These flatten/consume and other conversion computations obviously take more
time than we gain by switching to parallel salary functions, but this implementation is sup-
posed to demonstrate Haskell’s data parallelism support rather than being about efficiency.

2.4.6 Illustration
Cutting in Parallel

As we mentioned in the motivation section, data parallelism can only be applied to arrays.
We therefore flatten the company to become a list of salaries (see SalaryFlattener.hs for
details).

http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Technology:GHC
http://101companies.org/index.php/Technology:GHCi
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Parallelism
http://101companies.org/index.php/101feature:Parallelism
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/Prelude
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/SalaryFlattener.hs?view=markup

CHAPTER 2. IMPLEMENTATIONS 21

Non-vectorised code Unfortunately the normal Prelude list type [a] is not sup-
ported in vectorised modules, but a special array type called PArray a. We therefore
need a special function in a non-vectorised module for converting between [Float] and
PArray Float before we can cut in parallel:

Listing 2.13: |Cut.hs

1 cut :: Company —> Company
2 cut ¢ = (consumeSalaries c¢) (toList $ cutV $ fromList $
flattenSalaries c)

We first flatten the company, then convert the salary list to PArray Float and call the
cut function cutV from a vectorised module. After that we convert back to [Float] and
call consumeSalaries to replace all salaries in the company tree.

Vectorised code In the vectorised module for cutting, where we want to work data
parallel, we declare:

Listing 2.14: CutV.hs

1 {—-# LANGUAGE ParallelArrays #-}
2 {—# OPTIONS_GHC —-fvectorise #-}

This tells GHC|to vectorise this module and that this module uses parallel arrays. We then
define the interface function between vectorised and non-vectorised code cutV:

Listing 2.15: |CutV.hs

1 cutV :: PArray Float -> PArray Float
2 {—# NOINLINE cutV #-}
3 cutV v = toPArrayP (cutVP (fromPArrayP v))

This function converts from PArray Float to a parallel array [:Float:], calls the
parallel code and converts back to PArray Float. A parallel array can only be used
in a vectorised module, so only here can we convert to it. Marking this function —#
NOINLINE cutV #- makes it usable in non-vectorised modules. cutP calls the ac-
tual data parallel function cut VP, which uses a parallel map function to cut all list values:

Listing 2.16: |CutV.hs

1 cutVP :: [:Float:] -> [:Float:]
2 cutVP = mapP (/2)

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/Cut.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/CutV.hs
http://101companies.org/index.php/Technology:GHC
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/CutV.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/CutV.hs

CHAPTER 2. IMPLEMENTATIONS 22

2.4.7 Architecture

The module in|SalaryFlattener.hs|contains functionality to flatten a company and to re-
place all salaries. Total.hs| and |Cut.hs|host the code for converting between [Float]
and PArray Float and calling data parallel functions for totaling and cutting salaries,
which can be found in TotalV.hs| and CutV.hs. The algebraic datatype for companies
can be found in Company.hs. SampleCompany.hs|holds a sample company. |Main.hs
collects test scenarios for totaling and cutting.

2.4.8 Usage

e All sources have to be compiled using the GHC-options —c -0Odph -fdph-sedq.
e Main.hs has to be loaded into GHCi.

e The main function has to be applied.

e The output should be equal to the content of the file baselinel

One can also use the Makefile with a target zest for test automation.

2.5 10Iimplementation hdbc

2.5.1 Intent
Database programming with

2.5.2 Languages
e Haskell
e SQL (MySQL dialect)

2.5.3 Technologies
o [HDB

o MySQL

e GHCi

e ODBC

2.5.4 Features
e Company

Total

e Cut

Persistence

Mapping

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/SalaryFlattener.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/Total.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/TotalV.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/CutV.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/Company.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/SampleCompany.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/baseline?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/dph/Makefile?view=markup
http://101companies.org/index.php/test automation
http://101companies.org/index.php/101implementation:hdbc
http://101companies.org/index.php/Category:Database_management_system
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Language:SQL
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Technology:GHCi
http://101companies.org/index.php/Technology:ODBC
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/101feature:Mapping

CHAPTER 2. IMPLEMENTATIONS 23

2.5.5 Motivation

We use[HDBC]|to query persisted company data. That is, we use embedded SQL/in Haskell
to total and cut/company salaries within a database. SQL query results are mapped to
special HDBC datatypes. In this context we demonstrate the use of prepared statements in
HDBC. We illustrate lazy fetching of query results. To connect to the MySQL/database we
use an ODBC back-end. The actual functionality to cut and total salaries is independent
from the concrete database implementation,

2.5.6 Illustration

Connecting

In Main.hs we connect to the MySQL database by using an ODBC driver and appropriate
connection information:

Listing 2.17: Main.hs

1 let connString = "Driver={MySQL ODBC 5.1 Driver};"
2 ++ "Server=localhost;"

3 ++ "Port=3306;"

4 ++ "Database=10lcompanies;"

5 ++ "User=root;"

6 conn <— connectODBC connString

Totaling

The function total defines a statement to total all salaries:

Listing 2.18: Total.hs

1 total :: IConnection conn => conn -> String -> IO
Double

2 total conn cName = do

3 stmt <- prepare conn $

4 "SELECT salary " ++

5 "FROM employee, company " ++

6 "WHERE company.name = ? and " ++

7 "company.id = employee.cid"

8 execute stmt [toSgl cName]

9 res <- fetchAllRows stmt

10 return $ sum (map (fromSgl.head) res)

In lines 3-7 we use a prepared statement in which the company name placeholder is then
replaced by the given name cName. The statement is executed and we use the lazy HDBC
function fetchAllRows in line 9 to get all salaries, which we then sum up lazy to a
Double value and return in line 10. That is, salaries are fetched one by one from the
database. We can now use the open connection to total all salaries:

http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/Language:SQL
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/Category:Database_management_system
http://101companies.org/index.php/101feature:Mapping
http://101companies.org/index.php/Prepared statement
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Technology:ODBC
http://101companies.org/index.php/Category:Database_management_system
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Main.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Total.hs

CHAPTER 2. IMPLEMENTATIONS 24

Listing 2.19: Main.hs

1 let cName = "meganalysis"
2 o0ldTotal <- total conn cName

Functionality to cut all salaries uses an UPDATE statement instead of SELECT (see Cut.hs
for details).

2.5.7 Architecture

Company.sqlland Meganalysis.sql provide SQL-scripts to create and populate company
tables. Total.hs|and Cut.hs| provide totaling and cutting functionality using SQL state-
ments. [Main.hs|collects test scenarios for totaling and cutting.

2.5.8 Usage
Setup

We need a local database server. In the following we explain the steps for XAMPP [[15].
We also need an SQL tool to create and populate tables. In the following we explain the
steps for the MySQL Workbench [16].

e Download and install XAMPP.
e Open the "XAMPP Control Panel” and start ”Apache” and "Mysql”.
e A local MySQL Server is now running:

Server Host: localhost
Port: 3306

Username: root

Password: (empty password)

e Connect to the database in MySQL Workbench.

e Select the ”101companies” schema or create it.

e Create company tables: Run the SQL script/Company.sql.

e Populate company tables: Run the SQL script Meganalysis.sql.

Testing
e [Main.hs has to be loaded into GHCi.
e The main function has to be applied.

e The output should be equal to the content of the file baselinel

One can also use the Makefile| with a target test for test automation.

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Main.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Company.sql?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Meganalysis.sql?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Total.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Company.sql?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Meganalysis.sql?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/baseline?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hdbc/Makefile?view=markup
http://101companies.org/index.php/test automation

CHAPTER 2. IMPLEMENTATIONS 25

2.6 10limplementation haskellDB

2.6.1 Intent
Type-save [database| programming with

2.6.2 Languages
e Haskell
e SQL

2.6.3 Technologies
.
e ODBC

e MySQL
o GHCi

2.6.4 Features
e Company

o Total

o Cut

Persistence

Mapping

2.6.5 Motivation

We make use of to express database [queries| as [Haskell functions rather than
SQL-statements (like in the [@ implementation). That is, we use the rich combinator
library of HaskellDB to express totaling and cutting| statements based on relational alge-
bral We illustrate combinators for projection, selection, aggregation and renaming. Query
results are mapped to values of user-defined attributes in Haskell. We connect to the un-
derlining MySQL database through a HaskellDB{HDBC}ODBC back-end. We show the
common approach of separating query/statement definition from the actual database imple-
mentation-dependent query/statement execution [17]. That is, the queries and statements
themselves are database implementation-independent.

This implementation also demonstrates the use of We use this tool to gen-
erate modules describing the database. These modules are the basis for querying the rela-
tional data.

http://101companies.org/index.php/101implementation:haskellDB
http://101companies.org/index.php/Category:Database_management_system
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Language:SQL
http://101companies.org/index.php/Technology:ODBC
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Technology:GHCi
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/101feature:Mapping
http://101companies.org/index.php/Category:Database_management_system
http://101companies.org/index.php/Query
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Language:SQL
http://101companies.org/index.php/Category:Library
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/Relational algebra
http://101companies.org/index.php/Relational algebra
http://101companies.org/index.php/101feature:Mapping
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Technology:ODBC
http://101companies.org/index.php/Category:Database management system
http://101companies.org/index.php/Category:Database management system

CHAPTER 2. IMPLEMENTATIONS 26

2.6.6 Illustration

Connecting to the database

We provide a function to connect to a database and execute an action:

Listing 2.20: MyConnection.hs

1 execute :: (Database -> IO a) —-> IO a
2 execute = connect driver conf
3 where
conf = [("Driver","MySQL ODBC 5.1 Driver")

(
;, ("Port","3306")
, ("Server", "localhost")
("User", "root")

("Database", "l0lcompanies"™)]

14

® N N »n A

14

We use connect and driver, which are both provided by the HDBC-ODBC back-end.
By looking at the return type of the function one can see that any database function of type
Database — IO acanbe appliedtoexecute resulting in the specified IO action and
possibly a result of type a. By encapsulating the connection process like this we achieve
complete independence from the underling database implementation for all queries and
statements.

DBDirect

We use the DBDirect command dbdirect-hdbc-odbc (see the usage section for the
complete command). This command generates a module describing the database by nam-
ing tables and fields. Compiling this module with GHC creates one module per table, each
module holding actual variables for tables and fields. These variables are the basis for the
following totaling query.

Totaling

We import the description modules for the companies and employees tables:

Listing 2.21: Total.hs

1 import qualified DBDesc.Employee as E
2 import qualified DBDesc.Company as C

We define a special field for storing the sum of all salaries:
Listing 2.22: Total.hs

data Ttl = Ttl

instance FieldTag Ttl where fieldName _ = "ttl"

T N

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/MyConnection.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Total.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Total.hs

CHAPTER 2. IMPLEMENTATIONS 27

s ttl :: Attr Ttl Double
6 ttl = mkAttr Ttl

We declare Tt 1 to be an instance of the FieldTag class by specifying what the name of
the field should be. We use this field and HaskellDB’s mkAt t r to define an attribute tt 1
for holding a Double value. The actual total query is defined as follows:

Listing 2.23: Total.hs

1 total :: String -> Query (Rel (RecCons Ttl (Expr Double
) RecNil))

> total cname = do

3 es <- table E.employee

4 cs <- table C.company

5

6 restrict $

7 (fromNull (constant 0) (cs!C.xid) .==. es!E.cid

8 L&& .

9 cs!C.name .==. constant cname)

10
11 project (ttl << _sum (es!E.salary))

We are working in the Query monad. The table functions return all records in the given
table. Using two tables gives us the relational cross product of those tables lines 3 and 4.
We use HaskellDB’s selection function restrict in line 6-9 to select only those rows in
which the company-id of the employee is equal to the company which has the given name
cname. By making use of project inline 11 we only select the salary column and then
use the aggregation function _sum to total all salaries. After that we put the total value in
ttl.

Executing the query

We use query and execute to execute the totaling query:

Listing 2.24: Main.hs

1 let cname = "meganalysis"
> [res] <- execute $ (flip $ query) $ total cname

This gives us a list (which we expect to be a singleton list) of records. We can now access
the tt1 attribute of the record res by using the (!) -operator and print the total value:

Listing 2.25: Main.hs

I print $ res!ttl

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Total.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Main.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Main.hs

CHAPTER 2. IMPLEMENTATIONS 28

2.6.7 Architecture

We provide MySQL-scripts to create (see Company.sql) company tables and populate
(see Meganalysis.sql) these tables. Total.hs| and Cut.hs| provide totaling and cutting
functionality using HaskellDB’s relational algebra library. MyGConnection.hs| encapsu-
lates the process of connecting to the MySQL database. Main.hs collects test scenarios
for totaling and cutting.

2.6.8 Usage
Setup

e Follow the steps of setting up the database as described in the usage section for the[hdbc]
implementation.

Generating the database description

o Execute the following command in the implementation folder:

dbdirect-hdbc-odbc "DBDesc" "DBDesc" \
"Driver=MySQL ODBC 5.1 Driver;\
Port=3306;\
Server=localhost; \
User=root;\
Database=101lcompanies"

A L AW N -

e Compile the DBDesc module using GHC: ghc DBDesc

Testing
e [Main.hs has to be loaded into GHCi.
e The main function has to be applied.

e The output should be equal to the content of the file baselinel

One can also use the Makefile with a target fest covering both database descriptions gen-
eration and testing.

2.7 101implementation hxt

2.7.1 Intent
Tree-based XML processing with[HXT]in Haskell

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Company.sql?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Meganalysis.sql?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Total.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/MyConnection.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/baseline?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellDB/Makefile?view=markup
http://101companies.org/index.php/101implementation:hxt
http://101companies.org/index.php/Language:Haskell

CHAPTER 2. IMPLEMENTATIONS 29

2.7.2 Languages
o XML
e Haskell

2.7.3 Technologies
° Haskell XML Toolbox
e GHCi

2.7.4 Features
e Company

e Total

e Cut

e Serialization

e Mapping

2.7.5 Motivation

Companies are represented in XML and the [Haskell XML Toolbox]is used for processing
such company XML data. That is, we use HXT’s rich combinator [library| to formulate
a query for totaling and a transformation for cutting salaries in a given company XML
tree. Totaling results are mapped to Float values in Haskell. The concept of is
demonstrated in this implementation, because the combinator library is heavily based on
this concept. That is, we exercise arrow combinators and functions.

2.7.6 Illustration

In the following we will demonstrate the construction of an arrow for totaling and how one
can run this arrow in IO.

Total

We define a query for totaling all company salaries:

Listing 2.26: Total.hs

1 total :: ArrowXml a => a XmlTree Float
> total = listA (deep $ hasName "salary"
3 >>>

4 getChildren

5 >>>

6 getText)

7 >>>

8 arr (sum. (map read))

http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Technology:GHCi
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Serialization
http://101companies.org/index.php/101feature:Mapping
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Category:Library
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Mapping
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/101feature:Total
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxt/Total.hs

CHAPTER 2. IMPLEMENTATIONS 30

In line 2 we query all salary nodes by using deep $ hasName "salary" :: ArrowXml
a = a XmlTree XmlTree. Thisis an arrow from Xm1Tree to Xm1lTree, say a fil-

ter for all salary nodes. In general deep only finds non-nested results, but because of the

fact that we are dealing with text nodes, which can not be nested, this is acceptable in this
situation. In lines 2-6 the result of this arrow is then combined with getChildren >>>
getText by using >>>. The new arrow of type ArrowXml a = a XmlTree
String returns the text of each salary node.

We then use Control. Arrow.ArrowList’s 1istA in line 2 to collect all results from
this arrow in an array, giving us a new arrow of type ArrowXml a = a XmlTree
[String].

In line 7 the result of this arrow is passed to the lifted version of (sum. (map read))

(Read ¢, Num c) = [String] — c,whichin thiscaseisoftype: ArrowXml
a = a [String] Float.

The overall emerging arrow, giving us the total salary, is of type ArrowXml a = a

XmlTree Float.

Running an arrow

When we combinate the arrow for reading a sample company from a XML file with the
totaling arrow we get:

Listing 2.27: Main.hs

1 readDocument [] "sampleCompany.xml" >>> total

We use runX :: TIOSArrow XmlTree ¢ — IO [c] for running this arrow in
I0. The function returns all results of a given arrow in a list. Because we except this list to
be a singleton list, we can write:

Listing 2.28: Main.hs

1 [ttl] <- runX (readDocument [] "sampleCompany.xml"
2 >>> total)

tt1 holds the total salary of a sample company.

2.7.7 Architecture

Total.hs provides the arrow for totaling salaries as described in the illustration section.
Cut.hs|contains a transformation arrow for cutting salaries. Main.hs collects test scenarios
for totaling and cutting XML data provided by sampleCompany.xml|

2.7.8 Usage
e Main.hs has to be loaded into GHCi.
e The main function has to be applied.

e The output should be equal to the content of the file baselinel

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxt/Main.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxt/Main.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxt/Total.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxt/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxt/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxt/sampleCompany.xml?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxt/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxt/baseline?view=markup

CHAPTER 2. IMPLEMENTATIONS 31

One can also use the Makefile with a target zest for test automation.

2.8 10limplementation hxtPickler

2.8.1 Intent
H/X mapping| with

2.8.2 Languages
o XML
e Haskell

2.8.3 Technologies
o HXT

. (comes with HXT)
e (GHCi

2.8.4 Features
e Company

e [Total

e Cut

Serialization

Mapping

2.8.5 Motivation

We exercise mapping from Haskell to XML data by making use of [HXT[s [XML pickler]
and functions. That is, we declare XMLPickler instances for companies, depart-
ments and employees and define appropriate pickler functions. In this context we illustrate
predefined picklers and pickler combinators. This enables us to serialize values of jalge-
braic datatypes|for companies as XML/ data.

2.8.6 Illustration

A Pickler for Companies

To define a pickler for companies we declare an instance of XMLPickler:

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxt/Makefile?view=markup
http://101companies.org/index.php/test automation
http://101companies.org/index.php/101implementation:hxtPickler
http://101companies.org/index.php/H/X mapping
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Technology:GHCi
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Serialization
http://101companies.org/index.php/101feature:Mapping
http://101companies.org/index.php/101feature:Mapping
http://101companies.org/index.php/101feature:Serialization
http://101companies.org/index.php/Algebraic datatype
http://101companies.org/index.php/Algebraic datatype
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/Language:XML

CHAPTER 2. IMPLEMENTATIONS 32

Listing 2.29: |Pickler.hs

1 instance XmlPickler Company where
2 xpickle = xpCompany

The pickler function xpCompany is defined as follows:

Listing 2.30: Pickler.hs

1 xpCompany :: PU Company

2 xpCompany

3 = xpElem "company" $

4 xpWrap (uncurry Company

5 , \c => (cname c

6 , depts c

7)

8) S

9 xpPair (xpAttr "name" xpText)
10 (xpList xpickle)

For implementing xpCompany we use xpElemin line 3. By using this function we define
that a company, represented in XML, should be inside a XML tag labeled "company”. The
pickler for the content of the tag is defined by the second argument of xpElem.

xpWrapisoftype (a — b, b — a) — PU a — PU b. Itreturns a Pickler
(PU) for b and expects a pair of functions from a to b and vice versa and a Pickler for a
(PA a).

In lines 4-8 the first part of the first argument of the wrapping pickler is uncurry
Company. It defines how to construct a Company value from a pair of name and depart-
ments. The second part of the pair defines the opposite direction: How to disassemble a
company into its components.

The second argument of xpWrap in lines 9-10 defines the actual pickler for the (name,
departments) pair (this is PA a in the type signature of the wrapping pickler). We use the
combinator for pairs xpPair :: PU a — PU b — PU (a, Db). The pickler for
the company name is defined by using a pickler for XML attributes and a pickler for text.
That is, the company name should be an attribute of the “company” tag. The pickler for
the list of departments is defined by making use of a combinator for lists and xpickle.
Because of type inference and because we also declare a XMLPickler instance for de-
partments, Haskell will choose the appropriate pickler function for departments.

Pickling a Company

Pickling a company is realized by using arrows:

Listing 2.31: Main.hs

1 runX (constA company
2 >>>
3 xpickleDocument xpCompany [withIndent yes] $

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/Pickler.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/Pickler.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/Main.hs

CHAPTER 2. IMPLEMENTATIONS 33

4 "sampleCompanyCut .xml"

A lifted sample company is passed to the arrow for pickling a document. In this case
xpickleDocument expects a pickler for companies, some writing options and a file
name.

Unpickling a Company

To unpickle a company the arrow function xunpickleDocument is used:

Listing 2.32: Main.hs

1 [companyl] <- runX (xunpickleDocument xpCompany $
2 [withRemoveWS yes] $
3 "sampleCompany.xml")

runX returns a list of arrow results, which we except to be a singleton list. On success
companyl should hold the unpicklered company.

2.8.7 Architecture

Pickler.hs holds the pickler definitions for companies, departments and employees. The
algebraic datatype for companies can be found in Company.hs.Total.hs and Cut.hs| pro-
vide totaling and cutting functionality. sampleCompany.xml holds a sample company.
Main.hs collects test scenarios for pickling/unpickling, totaling and cutting companies.

2.8.8 Usage
e [Main.hs has to be loaded into GHCi.
e The main function has to be applied.

e The output should be equal to the content of the file baselinel

One can also use the Makefile| with a target zest for ftest automation.

2.9 10Iimplementation wxHaskell
2.9.1 Intent

Provide interaction on companies by means of [wxHaske

2.9.2 Languages
e Haskell

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/Main.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/Pickler.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/Company.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/Total.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/sampleCompany.xml?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/baseline?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/hxtPickler/Makefile?view=markup
http://101companies.org/index.php/test automation
http://101companies.org/index.php/101implementation:wxHaskell
http://101companies.org/index.php/101feature:Interaction
http://101companies.org/index.php/Language:Haskell

CHAPTER 2. IMPLEMENTATIONS 34

2.9.3 Technologies
.

e GHC

e GHCi

2.9.4 Features
e Company

e Total

e Cut

Interaction

2.9.5 Motivation

We use the library to provide a simple GUI for companies. One can navigate
the hierarchical company structure, cut totaled salaries and edit fields for values of prim-
itive types. We make use of the inspired focus concept to specify which part of
the company should be shown or saved after editing. This concept also helps us to read
departments/employees from a given position within the company and write transformed
departments/employees back.

2.9.6 Illustration

Focus datatype

We are using a datastructure inspired by the concept of to specify positions of
components within the company. We provide an algebraic datatype Focus:

Listing 2.33: |[Focus.hs

data Focus =
CompanyFocus
| DeptFocus [Int]
| ManagerFocus [Int]
| EmployeeFocus [Int] Int
deriving (Show, Read)

[Y o N

We define one constructor per company datatype and one for managers. For example to
construct a focus for an employee one needs to pass:

e A list of indexes: Starting from the company root this list is used to navigate through the
departments and subdepartments to the employee’s department.

e An index: The index of this employee in the employee’s department’s employees list.

On top of this definition we provide functions to get sub and upper foci and to read and
write company components (see Focus.hs|for details).

http://101companies.org/index.php/Technology:GHC
http://101companies.org/index.php/Technology:GHCi
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Interaction
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/Primitive Type
http://101companies.org/index.php/Primitive Type
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Focus.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Focus.hs?view=markup

CHAPTER 2. IMPLEMENTATIONS 35

The views

For each company datatype, that is Company, Department and Employee, Views.hs
provides a view to display the specific component including buttons to navigate and cut
salaries. All of these functions are of type Frame () — Focus — Company —
IO (). Thatis, given the global frame, a focus and a company these functions perform
GUI actions (which are IO actions). In the following we demonstrate how an employee is
displayed.

Viewing an employee showEmployee is the view function for employees:

Listing 2.34: Views.hs

1 viewEmployee :: Frame () -> Focus —-> Company -> IO ()
2 viewEmployee f focus c = do

3 —-— reading employee

4 let e = readkEM focus c

5 —-— setting up frames and panels

6 set £ [text := "Employee \"" ++ ename e ++ "\""]
7 p <- panel f [textColor := textBlue]

8 —-— boxes for name, address and salary

9 nameBox <- entry p [text := ename e]

10 addressBox <- entry p [text := address e]

11 salaryBox <- entry p [text := show $ salary e]
12 —-— cut button

13 cButton <- cutButton p f focus c

14 —-— back button

15 bButton <- backButton p f focus c

16 -— save button

17 sButton <- button p

18 [text := "Save"

19 , size := Size 50 22

20 , on command := do {

21 newName <- get nameBox text;

2 newAddress <- get addressBox text;
23 newSalary <- get salaryBox text;

2% objectDelete p;

25 viewEmployee f focus $

26 writeEM focus c $

27 Employee newName newAddress $

28 read newSalary; 1}]

29 —-— compose layout

30 setEmployeelayout f p sButton bButton nameBox

addressBox salaryBox cButton

In line 4 we read the employee in question using the Focus module’s function readEM. In
lines 6-7 we set the frame title and create a new panel for this view. In lines 9-11 we create
one input box per employee field. We create buttons to cut the employee’s salary and to
go back to the department level in lines 13-15. In lines 17-28 we set up a save button:

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Views.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Views.hs

CHAPTER 2. IMPLEMENTATIONS 36

When a user clicks the button, the name, address and salary fields are read, the panel is
deleted, the employee is updated in the company and the new company is displayed. In
the last line we call setEmployeeLayout, which composes the layout using various
layout combinators (see Views.hs for details).

Cutting button

On each view the GUI provides a button to cut all salaries:

Listing 2.35: |Views.hs

1 cutButton :: Panel () —-> Frame () —-> Focus —-> Company
-> IO (Button ())
2 cutButton p £ focus c =

3 button p [text := "Cut"

4 , size := Size 50 22

5 , on command := do {

6 objectDelete p;

7 view f focus $ readCutWrite focus c;}]

When the user clicks the button the command action (lines 5-7) is executed. First the
view’s panel is deleted in line 6. We use readCutWrite to cut the company component’s
salaries. This function reads the component in question based on the focus, then cuts this
component’s salaries and replaces it in the given company. In line 7 the command action
calls view to view the company, department or employee. Based on the focus view
decides which concrete view-function to call:

Listing 2.36: Views.hs

1 view:: Frame () —-> Focus —-> Company —-> IO ()

2 view f focus = view’ f focus

3 where

4 view’ = case focus of

5 CompanyFocus -> viewCompany

6 (DeptFocus _) -> viewDept

7 (EmployeeFocus _ _) —-> viewEmployee

8 (ManagerFocus _) -> viewEmployee

Starting the GUI

We use xwHaskell’s start :: IO a — IO (). This function runs the given GUI

of type IO a while discarding a and returning IO ():

Listing 2.37: Main.hs

1 gui :: IO ()
2 gui = do
3 f <- frame [textBgcolor := colorRGB 112 128 144

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Views.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Views.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Views.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Main.hs

CHAPTER 2. IMPLEMENTATIONS 37

4 , resizeable := False

5 , fontWeight := WeightBold
6 , fontUnderline := False

7 , position := Point 50 50]
8 showCompany f CompanyFocus company

9

10 main :: IO ()

11 main = start gui

In lines 3-7 gui creates the main frame for all views passing a list attributes, which
are assigned by making use of assign operator (:=). In the last line the function calls
showCompany passing the frame, the root focus and a sample company in line 8.

2.9.7 Architecture

Views.hs provides one view per company datatype. |Main.hs starts the GUIL The alge-
braic datatype for companies can be found in Company.hs, a sample company in Sam-
pleCompany.hs. Focus.hs provides a focus datatype and functions on top of it. Total.hs
and Cut.hs provide functionality to total and cut salaries.

2.9.8 Usage
e Main.hs has to be compiled using GHC

e The output executable has to run.

There is a Makefile with a target start covering both stepts.

2.10 I0Iimplementation haskell CGI

2.10.1 Intent
Web programming| with CGI in Haskell

2.10.2 Languages
e Haskell

e XHTML

e CSS

2.10.3 Technologies
e CGI
e GHC

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Views.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Company.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/SampleCompany.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/SampleCompany.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Focus.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Total.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/wxHaskell/Main.hs?view=markup
http://101companies.org/index.php/101implementation:haskellCGI
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Technology:CGI
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Language:XHTML
http://101companies.org/index.php/Language:CSS
http://101companies.org/index.php/Technology:CGI
http://101companies.org/index.php/Technology:GHC

CHAPTER 2. IMPLEMENTATIONS 38

2.10.4 Features
e Company

Total

o Cut

Interaction

Distribution

2.10.5 Motivation

We make use of the CGI|library for Haskell to provide a C/S |web application for |compa-
nies. That is, we exercise processing requests| from and returning responds|to a web client
using the CGI technology. We extract request parameters from the URL. That is, we make
use of HTTP| GET parameters. The user can either request to view or cut a company/de-
partment/employee or to save an edited company/department/employee. By making use of
the[Zipper]inspired focus concept (see the illustration section of the[wxHaskellimplemen-
tation for details) and by passing such a focus parameter in the URL we specify which part
of the company should be displayed. Client-sided company data is stored in cookies. We
also demonstrate the use of a XHTML combinator library|to compose new pages.

2.10.6 Illustration

The server is set up as follows:

Listing 2.38: Main.hs

1 main = runCGI $ handleErrors cgiMain

We use a default error handler provided by the CGI library Network.CGI. cgiMain is
the main request handler, which is shown in the next section. In the following we will
demonstrate how a specific request is processed by the server.

Cutting an employee’s salary

Scenario: After receiving an employee view the user clicks the cut button in the browser.
The browser sends a request to the server using this URL:
http://localhost/cgi-bin/HaskellCgi/company.cgi?focus=EmployeeFocus%20[1,0,0]%200&
action=Cut

Because of the fact that the CGI library does not support any extraction of informa-

tion out of the URL path (as opposed to the implementation), parameters are
encoded as URL parameters:

e The action (here Cut)

e The focus (here EmployeeFocus [1,0,0])

http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Interaction
http://101companies.org/index.php/101feature:Distribution
http://101companies.org/index.php/Technology:CGI
http://101companies.org/index.php/Web Application
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/HTTP Request
http://101companies.org/index.php/HTTP Respond
http://101companies.org/index.php/URL
http://101companies.org/index.php/Technology:HTTP
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/Cookie
http://101companies.org/index.php/Language:XHTML
http://101companies.org/index.php/Category:Library
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Main.hs

CHAPTER 2. IMPLEMENTATIONS 39

Main request handler The main request handler is defined as follows:

Listing 2.39: Response.hs

1 cgiMain :: CGI CGIResult

2 cgiMain = do

3 f <- getInput "focus"

4 let focusP = maybe CompanyFocus read f
5 a <- getInput "action"

6 let actionP = maybe View read a

7 chtml <- (doAction actionP) focusP

8 let title = "lO0lcompanies WebApp"

9 output $ renderHtml $ page title $ chtml
10 where

1 doAction ap = case ap of

12 View -> doView

13 Cut —> doCut

14 Save —> doSave

We are working inside the CGI monad, which is provided by the CGI library. In lines 3
and 5 getInput :: MonadCGI m = String — m (Maybe String) tries
to get the focus and action input parameters as St ring values, which we process in lines
4 and 6. If a parameter is set, that is, get Input returns Just a, we read the String to
values of Focus and Action. If a parameters is not set, we use a default focus respec-
tively a default action.

We call doAction, which is defined in lines 11-14. Based on the Action value
doAction returns one of the action functions dovView, doCut or doSave. In this
scenario the case expression matches on Cut and doActionreturns doCut. cgiMain
applies the focus to the action function in line 7. The action function returns an Html
value, which is used in line 9 as the content of a new page, rendered to an HTML document
and returned as the CGIResult.

Cutting the cookie The function doCut performs the actual cut action on the com-
pany cookie:

Listing 2.40: |Cut.hs

1 doCut :: Focus —-> CGI Html

2 doCut f = do

3 c <- tryReadCCookie

4 let cutC = readCutWrite f c¢
5 writeCCookie cutC

6 return $ html f cutC

The company cookie is read using t ryReadCCookie:

Listing 2.41: Save.hs

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Response.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Cut.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Save.hs

CHAPTER 2. IMPLEMENTATIONS 40

1 tryReadCCookie = 1iftM (fromMaybe company) $
2 readCookie "companyCookie"

This function tries to read the company cookie. If the client does not have this cookie
stored, the default company is returned. In line 4 doCut calls readCutWrite, which
reads a company, department or employee based on the focus, cuts it and replaces it within
the company (see Cut.hs|for details). In line 5 the manipulated company is written back
into the cookie using writeCCookie:

Listing 2.42: Save.hs

I writeCCookie s = setCookie $
2 newCookie "companyCookie" $
3 show s

Returning HTML After the company data is saved in the cookie doCut calls html
passing the focus and the new company:

Listing 2.43: CompanyHtml.hs

1 html :: Focus —-> Company -> Html

2 html f = case f of

3 CompanyFocus —> companyHtml £
4 (DeptFocus _) —-> deptHtml f

5 (EmployeeFocus _ _) —-> employeeHtml f
6 (ManagerFocus _) -> employeeHtml f

Based on the focus htm1l calls one of the functions for composing HTML. In this scenario
case matches on (EmployeeFocus - _) and employeeHtml is called. This func-
tion composes HTML for the employee in question using various HTML combinators (see
CompanyHtml.hs|for details).

2.10.7 Architecture

In [Main.hs| the server is set up using request handlers provided by Response.hs. The
save actions are performed by functionality hosted by Save.hs. An algebraic datatype
for actions is definied in [Types.hs. HTML pages are composed in CompanyHtml.hs|
The algebraic datatype for companies can be found in Company.hs| Focus.hs|provides
a focus datatype and functions on top of it. A sample company can be found in Sample-
Company.hs. Cut.hs and [Total.hs provide cut and total functionality.

2.10.8 Usage

o First you need a webserver. In the following we explain the steps for XAMPP [[15]].
e Compile Main.hs|to a CGI file using GHC:

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Save.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/CompanyHtml.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/CompanyHtml.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Response.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Save.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Types.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/CompanyHtml.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Company.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Focus.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/SampleCompany.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/SampleCompany.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Total.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Main.hs?view=markup

CHAPTER 2. IMPLEMENTATIONS 41

1 ghc --make -o company.cgi Main.hs

e Place company.cgi in the folder cgi-bin of your XAMPP installation.
e Place style.css|in the folder htdocs of your XAMPP installation.

e Open http://localhost/cgi-bin/haskellCGl/company.cgi in a web browser to see the ap-
plication’s root view.

Compiling the project is scripted by the run target in Makefile.hs.

2.11 I0limplementation happstack
2.11.1 Intent
Web programming| with [Happstack]in Haskell

2.11.2 Languages
Haskell

JavaScript
e XHTML
e (CSS

2.11.3 Technologies
o GHC
° Dp ki

o [Heist

2.11.4 Features
e Company

e Total

e Cut

e [nteraction

e Distribution

e Validation

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/style.css?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/haskellCGI/Makefile.hs?view=markup
http://101companies.org/index.php/101implementation:happstack
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Language:XHTML
http://101companies.org/index.php/Language:CSS
http://101companies.org/index.php/Technology:GHC
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Interaction
http://101companies.org/index.php/101feature:Distribution
http://101companies.org/index.php/101feature:Validation

CHAPTER 2. IMPLEMENTATIONS 42

2.11.5 Motivation

This implementation provides a small C/S \web application written with the help of the
framework. We exercise the use of routing filters| to filter requests by action:
A user can either view a specific part of a/company, |cut a specific part or save a company
component after manipulation of primitive fields. The company is stored in a client-side
cookie. The part to be viewed, cut or saved is specified by making use of the in-
spired focus concept (see the[wxHaskelllimplementation for details). We also demonstrate
validation: When processing a save-request, sent by an HTML form, the server applies var-
ious validators to eventually return error messages, which will be displayed to the user in
the browser. As a response the client receives HTML documents, which are composed by
making use of the [Heis XHTML|templating engine.

2.11.6 Illustration

In the following we will demonstrate how a specific request is processed by the server.

Saving an Employee

Scenario: After requesting to view a manager the user manipulates the input fields and
submits a request by clicking a save button. The browser sends an HTTP-request together
with a company-cookie to the server. The URL looks like this:
http://localhost:8000/Employee/Save/ManagerFocus%20[0]/?Name=Erik&Address=
Utrecht&Salary=1234.0

Routing filter We set up a simple HTTP server:

Listing 2.44: Main.hs

I main = simpleHTTP nullConf $

2 msum [path $ \v —-> path $ \a —-> path $

3 \f —> mainPart a v f

4 , serveDirectory EnableBrowsing [] "static"]

We specify two possible server behaviours (values of ServerPartT) in a list, which we
then apply to the MonadP lus-function msum. This function tries to run each server until
one serverstart succeeds. The first list element uses Happstack’s path function to extract:

e The view (here Employee)
e The action (here Save)

e The focus (here ManagerFocus [0])

In case the extraction fails the server falls back to being a file server in line 4. In case
extraction succeeds mainPart is called passing the action, the view and the focus:

Listing 2.45: Serverparts.hs

| mainPart :: Action -> View —-> Focus —-> ServerPartT IO
Response

http://101companies.org/index.php/Web Application
http://101companies.org/index.php/Category:Framework
http://101companies.org/index.php/Routing filter
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/Cookie
http://101companies.org/index.php/101feature:Validation
http://101companies.org/index.php/Browser
http://101companies.org/index.php/Language:XHTML
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Main.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Serverparts.hs

CHAPTER 2. IMPLEMENTATIONS 43

2 mainPart View viewPart
3 mainPart Cut = cutPart
4 mainPart Save savePart

In this scenario mainPart matches on Save and calls savePart passing the view and
the focus:

Listing 2.46: Serverparts.hs

Saving
1 savePart :: View —-> Focus —-> ServerPartT IO Response
2 savePart v £ = do
3 s <- save
4 case s of
5 (Left errs) -> do
6 c <- readCCookie
7 displayPart v f c errs
8 (Right newc) -> displayPart v f newc []
9 where
10 save = case v of
11 CompanyV —-> saveCompany f
12 DeptV —-> saveDepartment £
13 EmployeeV -> saveEmployee f

The function starts by calling a save function, which is chosen based on the given View

value. The save-functions, which are all of type Focus — ServerPartT IO (Either

[(ENames, String)] Company) either return a list of error information or the new
company. In case of errors savePart calls displayPart in line 7 passing the old
company (read from the cookie) and the errors. In case of success the new company and an
empty list of errors is passed to displayPart inline 8. In this scenario saveEmployee
is called by savePart:

Listing 2.47: Save.hs

1 saveEmployee :: Focus -> ServerPartT IO (Either [(
ENames, String)] Company)
2 saveEmployee f = do

3 c <- readCCookie

4 name <- look "Name"

5 address <- look "Address"

6 salary <- lookRead "Salary"

7 let newe = Employee name address salary
8 let ev = validateEmployee c f newe

9 case ev of

10 (Just errs)

11 -> return $ Left errs

12 Nothing

13 -> do

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Serverparts.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Save.hs

CHAPTER 2. IMPLEMENTATIONS 44

14 let newc = writeEM f c newe

15 addCookie Session $

16 (mkCookie "company" (show newc))
17 return $ Right newc

saveEmployee reads the company from a cookie and extracts the request parameters
from the URL in lines 3-6. These values are used to compose the new Employee value in
line 7. In line 8 this employee is then passed to the validation function validateEmployee
of type Company — Focus — a — Maybe [(ENames,String)]. If the val-
idation succeeds, validateEmployee returns Nothing. In this case the employee
is replaced within the company, which is then re-stored in the cookie and returned by the
function (lines 14-16). Otherwise validateEmployee returns error information, which

is then also returned by saveEmployee in line 11.

Validation The validation functionality can be found in the Validators module:

Listing 2.48: |Validators.hs

1 validateEmployee :: Validations Employee

2 validateEmployee ¢ f (Employee n a s) = if null vs

3 then Nothing

4 else Just $ concat vs

5 where

6 vs = catMaybes

7 [validateNA ¢ £ (n,a)
8 , validateSalary c f s]

validateEmployee composes two validations (see Validators.hs|for details):

e validateNA checks whether the employee’s name/address pair is unique in the com-
pany c.

e validateSalary checks two things regarding the employee’s salary:

— It checks whether by changing the salary the employee’s department-manager still
receives the highest salary within the department.

— It checks whether the salary has a positive value.

In case both validations return Nothing, validateEmployee returns Nothing. Oth-
erwise it returns the list of all error messages.

Binding and Responding The user might have tried to assign an invalid salary and
an invalid name/address pair to the manager in question. Validation therefore would return
error information. savePart would call displayPart passing the old company and
the error messages:

Listing 2.49: Serverparts.hs

1 displayPart :: View —-> Focus —-> Company -> [(ENames,
String)] -> ServerPart Response

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Validators.hs
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Validators.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Serverparts.hs

CHAPTER 2. IMPLEMENTATIONS 45

2 displayPart v £ ¢ errs = do

3 td <- newTemplateDirectory’ tDir $

4 eNamesBinder errs $ binder f c $
5 emptyTemplateState tDir

6 render td (B.pack tname)

7 where

8 binder = case v of

9 CompanyV —-> companyBinder

10 DeptV —> departmentBinder
1 EmployeeV -> employeeBinder

12 where

13 tname = case v of

14 CompanyV —-> "company'"

15 DeptV -> "department"

16 EmployeeV —-> "employee"

Inlines 8-16 displayPart decides which template and which binder to apply by making
use of a case expression on the given view. The binder will bind all template variables to
strings or small HTML fragments (splices). After that eName sBinder will bind the error
messages to template variables. Both binders can be found in |Binder.hs. They return a
function of type Monad m = TemplateState m — TemplateState m. That
is, binders are state transformers for templates. displayPart then renders the HTML
document, which is sent to the client as the response in line 6.

2.11.7 Architecture

Main.hs| holds the server using various server parts in Serverparts.hs. The actual save
action is performed by functionality in Save.hs. |Binder.hs contains functions to bind
template variables. The validators can be found in |Validators.hs using helper functions
hosted by Utils.hs. The algebraic datatype for companies can be found in Company.hs,
a sample company in SampleCompany.hs. Functionality to total and cut is provided
by Total.hs| and |Cut.hs. |Focus.hs provides a focus datatype and functions on top of it.
Various types used by the server can be found in [Types.hsl The static| folder contains
the sytlesheet for the application and images, while templates contains the (X)HTML
templates.

2.11.8 Usage

e Main.hs can to be consulted with runhaskell to avoid the compilation step.

There is a Makefile with a target run to do this.

e Open http://localhost:8000/Company/View/CompanyFocus to demo, starting with the
root view.

http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Binder.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Serverparts.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Save.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Binder.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Validators.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Utils.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Company.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/SampleCompany.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Total.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Cut.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Focus.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Types.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/static?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/templates?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Main.hs?view=markup
http://developers.svn.sourceforge.net/viewvc/developers/repository/101companies/implementations/happstack/Makefile?view=markup

Chapter 3

Conclusion

In this thesis we have demonstrated a wide variety of Haskell technologies. By cover-
ing most of the features of the 101companies system’s feature model we have shown that
Haskell is in fact very much usable in real world applications such as database program-
ming and GUI development. The combination of modular and concise libraries and frame-
works and Haskell’s elegant and expressive syntax results in readable and thus maintain-
able applications:

We made use of the concept of monads to compose logs in the |haskellLogger]

implementation.

We also used monads for parsing company syntax in [naskellFParserl In combina-
tion with the functor combinator library this provided an elegant and expressive way

to define parsers.

In|haskellConcurrent|we demonstrated concurrent programming at a high level of

abstraction by means of

Data parallel programming was exercised in the[@implementation illustrating the

use of [parallel arrays|and the process of [vectorisation

Two forms of database programming were covered. In[hdbc SQL statements were
represented as strings in Haskell, while the [haskellDB|implementation made use of
arich combinator library for defining queries as Haskell functions.

[Arrows|and arrow combinators enabled us to process company XML data in the [ix{]
implementation.

Mapping values of algebraic datatypes in Haskell to XML data by making use of
XML picklers| was exercised in the [ixtPickler]|implementation.

A GUlI-application for interacting with companies was realized in[|wxHaskell] which
illustrated the use of a portable GUI library for Haskell. We introduced the zipper
inspired concept of foci.

Interacting with companies by means of a web application was implemented by

haskellCGl| and [wxhappstack| The former showing a CGI-based approach using
(X)HTML combinators in Haskell. The latter illustrating a web application frame-

work providing support for routing filters and an (X)HTML template engine.

46

Appendix A

Terms and Technologies

A.1 'Writer Monad

A.1.1 Intent

A monad in functional programming for composing auxiliary results

A.1.2 Discussion

In a functional programming language the Writer monad can be used to compose auxiliary
results, like logs [18]]. In the following we will focus on Haskell.

Writer newtype

The Writer newt ype can be defined as follows [|19]:

I newtype Writer w a = Writer { runWriter :: (a, w) }

Thatis, Writer w a is just a wrapper for a pair, where a is the type the actual result of
the computation and w is the type of the auxiliary result.

Instance declaration

The Writer monad is based on ideas of [20]. Haskell defines it as follows [19]:

1 instance (Monoid w) => Monad (Writer w) where

2 return x = Writer (x, mempty)

3 (Writer (x,v)) >>= f = let (Writer (y, v')) = f x
4 in Writer (y, v ‘mappend' v

")

The contraint (Monoid w) = Monad (Writer w) inline 1 declares: Writer w
is an instance of the Monad typeclass, if w is an instance of the typeclass The

47

http://101companies.org/index.php/Writer Monad
http://101companies.org/index.php/Category:Monad
http://101companies.org/index.php/Functional programming
http://101companies.org/index.php/Language:Haskell

APPENDIX A. TERMS AND TECHNOLOGIES 48

return function in line 2 returns the given value x as the result of the computation. The
auxiliary result is given by mempty, which is provided by the Monoid typeclass.

The second function for minimal complete definition is (>>=) . It applies x, the result
of the given writer, to the given function f. f returns a Writer value with computation
result y and the auxiliary result v’ . The overall result is a new Writer with result y and
the composed auxiliary result.

A.2 Monoid
A.2.1 Intent

An algebraic structure with a neutral element and an associative operation

A.2.2 Discussion

In abstract algebra a monoid is an algebraic structure defining a neutral element and an
associative binary operation [21]].
In Haskell the concept of monoids is realized by using a typeclass [|22]].

Instance declaration

To declare an instance of this typeclass in Haskell one needs to define two functions (min-
imal complete defintion) [22]:

e mempty :: a (neutral element)
e mappend :: a — a — a (associative binary operation)
Lists

The list type [a] is an instance of the Monoid typeclass, and can be declared as follows
[23]:

1 instance Monoid [a] where
2 mempty = []
3 mappend = (++)

A.3 Technology Parsec
A.3.1 Intent

A parser combinator library in Haskell

http://101companies.org/index.php/Monoid
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Category:Typeclass
http://101companies.org/index.php/Technology:Parsec
http://101companies.org/index.php/Parsing
http://101companies.org/index.php/Category:Library
http://101companies.org/index.php/Language:Haskell

APPENDIX A. TERMS AND TECHNOLOGIES 49

A.3.2 Discussion

Parsec is a combinator library in Haskell to construct parsers based on Monads| [24}25]]. It
allows you to combine smaller parsers to more complex parsers by making use of combi-
nators for alternatives, sequence or option. Parsec also provides some predefined parsers,
for example for parsing values of primitive types.

A.4 Functor
A4.1 Intent

A mathematical concept for mapping

A.4.2 Discussion

In mathematics functors are a type of mapping [26].
In Haskell functors are realized as a typeclass defining one function, which generalizes
the map function for lists [27].

Instance declaration

Declaring an instance of this typeclass requires defining fmap [28]]:

i1 fmap :: Functor f => (a -> b) > f a > f b

The instance declaration for lists can be defined as follows:

1 instance Functor [a] where
2 fmap = map

Applicative Functors

Applicative functors enrich the normal functor typeclass by various functions. They allows
one to compose computations, much like monads [29}30].

A.S Technology DPH

A.5.1 Intent

A GHC | extension for data parallelism

http://101companies.org/index.php/Monad
http://101companies.org/index.php/Functor
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Technology:DPH
http://101companies.org/index.php/Technology:GHC

APPENDIX A. TERMS AND TECHNOLOGIES 50

A.5.2 Discussion

This extensions allows GHC to provide support for nested data parallelism [4,31]. DPH
(Data Parallel Haskell) uses [vectorised|modules to encapsulate data parallel code. In these
modules one can make use of and various data parallel operations on these
arrays [4].

A.6 Parallel array
A.6.1 Intent

An [array| for data parallelism in Haskell

A.6.2 Discussion

This |data structurel can be used in vectorized modules in Haskell and comes with various
data parallel operations [4]]. In contrast to an ordinary list [a] parallel arrays are denoted
[:a:] [31].

A.7 |Vectorisation

A.7.1 Intent

Lifting functions into vector space

A.7.2 Discussion

Vectorising a module in [Haskell| lifts functions in this module into the vector space [32].
It is an essential transformation in [Data Parallel Haskelll According to [3]] vectorisation
consists of two parts:

e Transformation of all data in parallel arrays to values of primitive types.

e Transformation of code to manipulate such data.

A.8 MVar
A.8.1 Intent

A thread synchronization variable in Haskell

http://101companies.org/index.php/Module
http://101companies.org/index.php/Parallel array
http://101companies.org/index.php/Array
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Category:Data structure
http://101companies.org/index.php/Vectorization
http://101companies.org/index.php/Module
http://101companies.org/index.php/Vectorisation
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/MVar
http://101companies.org/index.php/Language:Haskell

APPENDIX A. TERMS AND TECHNOLOGIES 51

A.8.2 Discussion

M Vars are variables for thread synchronization in Haskell being either empty or holding a
value [3,/33]]. The module Control. Concurrent.MVar provides various functions for MVar
values [34].

A9 Technology HDBC

A9.1 Intent
An|API (implementation) for embedded SQL programming in Haskell

A.9.2 Discussion

HDBC enables one to express database queries as strings in Haskell and execute these
queries on various database implementations| [35]].

A.10 Technology HaskellDB
A.10.1 Intent

A combinator library for expressing database queries in Haskell

A.10.2 Discussion

HaskellDB allows one to declare queries based on frelational algebra in a type-safe and
declarative way and execute these queries on a relational database [17,[36].

A.11 Technology DBDirect
A.11.1 Intent

A program generator for database|definitions in Haskell

A.11.2 Discussion

DBDirect is used in to generate modules describing a running database. These
modules are the basis for defining queries on this database [36].

A2 Technology HXT

A.12.1 Intent
A toolbox for tree-based XML processing in Haskell

http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Module
http://101companies.org/index.php/Technology:HDBC
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/Category:API implementation
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Category:Database_management_system
http://101companies.org/index.php/Technology:HaskellDB
http://101companies.org/index.php/Category:Library
http://101companies.org/index.php/Category:Database_management_system
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Relational algebra
http://101companies.org/index.php/Technology:DBDirect
http://101companies.org/index.php/Category:Program generator
http://101companies.org/index.php/Category:Database_management_system
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Module
http://101companies.org/index.php/Query
http://101companies.org/index.php/Technology:HXT
http://101companies.org/index.php/Category:Toolkit
http://101companies.org/index.php/Language:Haskell

APPENDIX A. TERMS AND TECHNOLOGIES 52

A.12.2 Discussion

Haskell XML Toolkit is a set of tools for processing XML data by using and arrow
combinators [37]. That is, the combinators are a DSL within Haskell for XML processing.

A.13 Technology XML pickler

A.13.1 Intent
An|H/X mapping technology

A.13.2 Discussion

XML picklers come with the [Haskell XML Toolbox] They allow one to “pickle” values of
Haskell jalgebraic datatype to XML data, and “unpickle” this data back to Haskell values
[38].Both transformations are realized by using

1 xunpickleDocument :: PU a —-> SysConfigList -> String —->
IOStateArrow s b a

That is, given a pickler PU a for a datatype a, a configuration list and a filename this
function returns a stateful I/O arrow. This is an arrow from an arbitrary type b to the type
in question a.

A.14 Arrow
A.14.1 Intent

An abstract means for describing computation composition

A.14.2 Discussion

With Arrows, like monads, one can compose computations as defined by [39]. Arrows
allow you to do so in a more general and abstract way. For instance, arrows can be inde-
pendent of the input or take multiple inputs [40].

In Haskell arrows are implemented as a typeclass.

Instance declaration

In order to declare an instance of this [typeclass one needs to define two functions. [41]]:

e Arrow a = arr :: (b — c) — a b c: Lifts a function of type b — ¢
into the arrow space.

e Arrow a = first :: a b c — a (b, d) (c, d): Appliesacomputa-
tion only to a part of the input and copies the rest to the output. [40]]

http://101companies.org/index.php/Category:Domain-specific_language
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Technology:XML pickler
http://101companies.org/index.php/H/X mapping
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Algebraic datatype
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Arrow
http://101companies.org/index.php/Category:Monad
http://101companies.org/index.php/Category:Typeclass
http://101companies.org/index.php/Category:Typeclass

APPENDIX A. TERMS AND TECHNOLOGIES 53

A.15 Technology wxHaskell

A.15.1 Intent
A GUI library for Haskell

A.15.2 Discussion

The wxHaskell library is built on jwxWidgets| allowing one to implement portable GUI
applications in Haskell [42].

A.16 Zipper
A.16.1 Intent

A concept of a data structure for manipulating locations within a data structure

A.16.2 Discussion

In functional programming zippers are used to write data into locations within a given data
stucture. The idea of a focus that can move left, right, up and down is used to specify
locations [43[]. The concept was proposed by Huet [44].

A.17 Technology Happstack
A.17.1 Intent

A framework for web programming|in Haskell

A.17.2 Discussion

Some features of Happstack are [45]46]:

e Route filters to extract URL path components.
e An integrated HTTP-server.

e Support for most Haskell database interfaces.

e Integration of various HTML templating systems such as[Heis{

A.18 Technology Heist

A.18.1 Intent
A XHTML templating engine for Haskell

http://101companies.org/index.php/Technology:wxHaskell
http://101companies.org/index.php/GUI
http://101companies.org/index.php/Category:Library
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Technology:WHaskell
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Zipper
http://101companies.org/index.php/Category:Data structure
http://101companies.org/index.php/Functional programming
http://101companies.org/index.php/Technology:Happstack
http://101companies.org/index.php/Category:Framework
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Language:Haskell
http://101companies.org/index.php/Route filter
http://101companies.org/index.php/URL
http://101companies.org/index.php/Technology:HTTP
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Technology:Heist
http://101companies.org/index.php/Language:XHTML
http://101companies.org/index.php/Category:Templating engine
http://101companies.org/index.php/Language:Haskell

APPENDIX A. TERMS AND TECHNOLOGIES 54

A.18.2 Discussion

With Heist one can combine templates in a flexible manner. To generate dynamic web
pages one can bind strings and XHTML fragments (splices) to template variables in Haskell
[47./48].

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Ralf Lammel, Thomas Schmorleiz, and Andrei Varanovich. 101 ways to cut
salaries, 2011. 10 pages Online since 28 April 2011. http://softlang.
uni-koblenz.de/10lcompanies/cutl01/.

101companies feature model.
http://10lcompanies.uni-koblenz.de/index.php/Category:
101lfeature.

S.P. Jones and S. Singh. A tutorial on parallel and concurrent programming in haskell.
In Proceedings of the 6th international conference on Advanced functional program-
ming, pages 267-305. Springer, 2008.

Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M T
Chakravarty. Harnessing the Multicores: Nested Data Parallelism in Haskell. In
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2008), volume 2 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 383—414, Dagstuhl, Germany, 2008. Schloss Dagstuhl—
Leibniz-Zentrum fuer Informatik.

Hackage introduction.
http://hackage.haskell.org/packages/hackage.htmll

The Haskell Cabal: Common Architecture for Building Applications and Libraries.
http://www.haskell.org/cabal/.

HaskellWiki: Why Haskell matters.
http://www.haskell.org/haskellwiki/Why_ Haskell_matters.

HaskellWiki: Introduction.
http://www.haskell.org/haskellwiki/Introductionl

HaskellWiki: Type inference.
http://www.haskell.org/haskellwiki/Type_inferencel.

HaskellWiki: 10 inside.
http://www.haskell.org/haskellwiki/IO_insidel.

HaskellWiki: Performance/Laziness.
http://www.haskell.org/haskellwiki/Performance/Laziness.

B. O’Sullivan, D. Stewart, and J. Goerzen. Real world Haskell. O’Reilly Series.
O’Reilly, 2009.

101companies: README format.
http://10lcompanies.orqg/index.php/l0lcompanies:README.

55

http://softlang.uni-koblenz.de/101companies/cut101/
http://softlang.uni-koblenz.de/101companies/cut101/
http://101companies.uni-koblenz.de/index.php/Category:101feature
http://101companies.uni-koblenz.de/index.php/Category:101feature
http://hackage.haskell.org/packages/hackage.html
http://www.haskell.org/cabal/
http://www.haskell.org/haskellwiki/Why_Haskell_matters
http://www.haskell.org/haskellwiki/Introduction
http://www.haskell.org/haskellwiki/Type_inference
http://www.haskell.org/haskellwiki/IO_inside
http://www.haskell.org/haskellwiki/Performance/Laziness
http://101companies.org/index.php/101companies:README

BIBLIOGRAPHY 56

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

101companies project page.
http://10lcompanies.org/index.php/l0lcompanies:Project.

Apache friends: XAMPP.
http://www.apachefriends.org/en/xampp.html.

MySQL Workbench.
http://dev.mysql.com/downloads/workbench/.

B. Bringert, A. Hockersten, C. Andersson, M. Andersson, M. Bergman,
V. Blomgqyvist, and T. Martin. Student paper: HaskellDB improved. In Proceedings
of the 2004 ACM SIGPLAN workshop on Haskell, pages 108—115. ACM, 2004.

Wikipedia: Monad (functional programming).
http://en.wikipedia.org/wiki/Monad_ (functional__
programming) #Writer_monad.

M. Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. No Starch
Press Series. No Starch Press, 2011.

Mark P. Jones. Functional Programming with Overloading and Higher-Order Poly-
morphism. In Advanced Functional Programming, First International Spring School
on Advanced Functional Programming Techniques-Tutorial Text, pages 97-136, Lon-
don, UK, 1995. Springer.

Wikipedia: Monoid.
http://en.wikipedia.org/wiki/Monoid.

Hackage: Data.Monoid.
http://hackage.haskell.org/packages/archive/base/4.4.0.
0/doc/html/Data—-Monoid.htmll

Wikibooks: Haskell/Monoids.
http://en.wikibooks.org/wiki/Haskell/Monoids.

Daan Leijen. Parsec, a fast combinator parser. Technical Report 35, Department of
Computer Science, University of Utrecht (RUU), October 2001.

HaskellWiki: Parsec.
http://www.haskell.org/haskellwiki/Parsec.

Wikipedia: Functor.
http://en.wikipedia.org/wiki/Functor.

GHC Documentation: Data.Functor.
http://haskell.org/ghc/docs/6.12.2/html/libraries/
base-4.2.0.1/Data-Functor.htmll.

Hackage: Control.Monad: Functor.
http://hackage.haskell.org/packages/archive/base/4.4.0.
0/doc/html/Control-Monad.html#t:Functor.

HaskellWiki: Applicative functor.
http://www.haskell.org/haskellwiki/Applicative_functor.

Conor McBride and Ross Paterson. Applicative programming with effects. J. Funct.
Program., 18(1):1-13, 2008.

http://101companies.org/index.php/101companies:Project
http://www.apachefriends.org/en/xampp.html
http://dev.mysql.com/downloads/workbench/
http://en.wikipedia.org/wiki/Monad_(functional_programming)#Writer_monad
http://en.wikipedia.org/wiki/Monad_(functional_programming)#Writer_monad
http://en.wikipedia.org/wiki/Monoid
http://hackage.haskell.org/packages/archive/base/4.4.0.0/doc/html/Data-Monoid.html
http://hackage.haskell.org/packages/archive/base/4.4.0.0/doc/html/Data-Monoid.html
http://en.wikibooks.org/wiki/Haskell/Monoids
http://www.haskell.org/haskellwiki/Parsec
http://en.wikipedia.org/wiki/Functor
http://haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-Functor.html
http://haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-Functor.html
http://hackage.haskell.org/packages/archive/base/4.4.0.0/doc/html/Control-Monad.html#t:Functor
http://hackage.haskell.org/packages/archive/base/4.4.0.0/doc/html/Control-Monad.html#t:Functor
http://www.haskell.org/haskellwiki/Applicative_functor

BIBLIOGRAPHY 57

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

HaskellWiki: Data Parallel Haskell.
http://www.haskell.org/haskellwiki/GHC/Data_Parallel_
Haskelll

R. Leshchinskiy, M. Chakravarty, and G. Keller. Higher order flattening. Computa-
tional Science—ICCS 2006, pages 920-928, 2006.

GHC Documentation: Control.Concurrent.MVar.
http://www.haskell.org/ghc/docs/latest/html/libraries/
base/Control-Concurrent—-MVar.html.

Hackage: Control.Concurrent.MVar.
http://hackage.haskell.org/packages/archive/base/4.3.1.
0/doc/html/Control-Concurrent—-MVar.html.

Hackage: HDBC.
http://hackage.haskell.org/package/HDBCl

Daan Leijen and Erik Meijer. Domain specific embedded compilers. In Proceedings
of the 2nd conference on Domain-specific languages, DSL °99, pages 109-122, New
York, NY, USA, 1999. ACM.

HaskellWiki: HXT.
http://www.haskell.org/haskellwiki/HXT.

HaskellWiki: Conversion of Haskell data from/to XML.
http://www.haskell.org/haskellwiki/HXT/Conversion_of_
Haskell_ data_from/to_XML.

John Hughes. Generalising monads to arrows. Science of Computer Programming,
37(1-3):67-111, 2000.

Arrows: A General Interface to Computation.
http://www.haskell.org/arrows/.

GHC Documentation: Control.Arrow.
http://www.haskell.org/ghc/docs/latest/html/libraries/
base/Control-Arrow.htmll

Daan Leijen. wxHaskell: a portable and concise GUI library for haskell. In Proceed-
ings of the 2004 ACM SIGPLAN workshop on Haskell, Haskell *04, pages 57-68,
New York, NY, USA, 2004. ACM.

HaskellWiki: Zipper.

http://www.haskell.org/haskellwiki/Zipper.

Gérard P. Huet. The Zipper. J. Funct. Program., 7(5):549-554, 1997.

Happstack website.
http://happstack.com/index.htmll

HaskellWiki: Web/Frameworks: Happstack.
http://www.haskell.org/haskellwiki/Web/Frameworks#
Happstack.

Hackage: Heist.
http://hackage.haskell.org/package/heist.

Heist tutorial.
http://snapframework.com/docs/tutorials/heistl

http://www.haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://www.haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Concurrent-MVar.html
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Concurrent-MVar.html
http://hackage.haskell.org/packages/archive/base/4.3.1.0/doc/html/Control-Concurrent-MVar.html
http://hackage.haskell.org/packages/archive/base/4.3.1.0/doc/html/Control-Concurrent-MVar.html
http://hackage.haskell.org/package/HDBC
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/arrows/
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Arrow.html
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Arrow.html
http://www.haskell.org/haskellwiki/Zipper
http://happstack.com/index.html
http://www.haskell.org/haskellwiki/Web/Frameworks#Happstack
http://www.haskell.org/haskellwiki/Web/Frameworks#Happstack
http://hackage.haskell.org/package/heist
http://snapframework.com/docs/tutorials/heist

	Introduction
	Why Haskell?
	Coverage of the feature model
	Structure of implementation documentations

	Implementations
	101implementation haskellLogger
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation haskellParser
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation haskellConcurrent
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage
	Issues

	101implementation dph
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation hdbc
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation haskellDB
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation hxt
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation hxtPickler
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation wxHaskell
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation haskellCGI
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation happstack
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	Conclusion
	Terms and Technologies
	Writer Monad
	Intent
	Discussion

	Monoid
	Intent
	Discussion

	Technology Parsec
	Intent
	Discussion

	Functor
	Intent
	Discussion

	Technology DPH
	Intent
	Discussion

	Parallel array
	Intent
	Discussion

	Vectorisation
	Intent
	Discussion

	MVar
	Intent
	Discussion

	Technology HDBC
	Intent
	Discussion

	Technology HaskellDB
	Intent
	Discussion

	Technology DBDirect
	Intent
	Discussion

	Technology HXT
	Intent
	Discussion

	Technology XML pickler
	Intent
	Discussion

	Arrow
	Intent
	Discussion

	Technology wxHaskell
	Intent
	Discussion

	Zipper
	Intent
	Discussion

	Technology Happstack
	Intent
	Discussion

	Technology Heist
	Intent
	Discussion

