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“The biggest vulnerability is ignorance.”
- Sun Tzu in “The Art of War”





Abstract

Modern Internet and Intranet techniques, such as Web services and virtual-
ization, facilitate the distributed processing of data providing improved flexi-
bility. The gain in flexibility also incurs disadvantages. Integrated workflows
forward and distribute data between departments and across organizations.
The data may be affected by privacy laws, contracts, or intellectual property
rights. Under such circumstances of flexible cooperations between organiza-
tions, accounting for the processing of data and restricting actions performed
on the data may be legally and contractually required. In the Internet and In-
tranet, monitoring mechanisms provide means for observing and auditing
the processing of data, while policy languages constitute a mechanism for
specifying restrictions and obligations.

In this thesis, we present our contributions to these fields by providing
improvements for auditing and restricting the data processing in distributed
environments. We define formal qualities of auditing methods used in dis-
tributed environments. Based on these qualities, we provide a novel mon-
itoring solution supporting a data-centric view on the distributed data pro-
cessing. We present a solution for provenance-aware policies and a formal
specification of obligations offering a procedure to decide whether obliga-
tory processing steps can be met in the future.
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1 Managing the Distributed
Processing of Data

“Trust is good, control is better.”
- Wladimir Iljitsch Uljanow

The Internet facilitates the distributed processing of data, e.g. the commu-
nication of data via a Web site or e-mail. In the same manner, the Internet
enables organizations to offer business capabilities as independent Web ap-
plications and Web services. As standardized interfaces are used to commu-
nicate, a loose coupling is supported. Loose coupling eases the integration
of external services into internal workflows as well as the services provision-
ing to external consumers. The flexibility thereof facilitates the combination
of services from different organizations into one comprehensive, integrated
workflow leading to an agile virtual organization able to adapt more quickly
to new organizational requirements and business needs.

The gained flexibility also displays disadvantages. An integrated work-
flow forwards and distributes data between departments and across organi-
zational boundaries. Technologies, e.g. Software as a Service or Hardware as
a Service, support the further distribution of data. These data may be affected
by privacy laws, contracts, or intellectual property rights. Thus, the distribu-
tion raises privacy and data protection issues. Under such circumstances of
flexible cooperations, controlling actions and accounting for actions may be
legally and contractually required.
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Managing the Distributed Processing of Data

From a legal perspective, we can control the processing by means of con-
tracts and laws, such as service level agreements and privacy laws. Techni-
cally, we can implement the legal foundations by policies and audits. The
policies define rules for the current and future processing. The adherence
to policies can be controlled at run-time and allows for verification of the
planned processing before it is performed. The audit can be effected after
the processing.

A detailed overview about the processing is required to enable the audit.
The needed details of the overview depend on contracts or laws. The
overview consists of a model of the workflow expressing who was involved
in the processing of the data as well as why and how the processing has
been performed. Even for internal workflows, a predefined model is most
frequently lacking. In this case, the model can only be created afterwards.
The creation of the model requires information about the processing
history. This information is called provenance. Merriam-Webster defines
provenance in [Merriam-Webster, 2004] as:

1 : origin, source
2 : the history of ownership of a valued object or work of art or literature

The distributed processing of data requires an adjusted interpretation of
provenance, cf. [Sizov, 2007]:

Provenance is a formal model of the actual processing of
a certain piece of data.

In a distributed environment, provenance information can only be gen-
erated if the utilized observation mechanism facilitates the generation of a
detailed overview of data processing. Hence, we require a model of the data
processing in distributed environments along with a distributed mechanism
for logging that collects the needed information. Both model and logging
mechanism have to adhere to the confidentiality of service and data.

2



An addition mechanism is required for run-time restriction of the pro-
cessing. Policies stipulate how data is processed. Merriam-Webster defines
policies in [Merriam-Webster, 2004] as:

2 a : a definite course or method of action selected from among alterna-
tives and in light of given conditions to guide and determine present and
future decisions

b : a high-level overall plan embracing the general goals and acceptable
procedures especially of a governmental body

A similar, but more technical definition of policies is given in [Hinton and
Lee, 1994]:

Policies are statements of the goals for the behavior of a system.

Conditions of policies can depend on information about the environment,
e.g. the receiver of a data transfer. They also can depend on information
about the data itself, such as the subject of a health record. To provide
this information, we can use provenance. The provenance contains infor-
mation about data properties and about the data flow, e.g. has a health record
been de-identified1 before it has been transferred. Those statements refer
to the temporal structure of processing histories. As the temporal structure
may be very complex, a simplification is required that allows to formalize
provenance-aware policies in an institutive manner.

Contracts and laws may demand a certain reaction in the future, such as
that each health record must be deleted after a certain time. Therefore, some
policy languages foresee the possibility to specify obligations for future pro-
cessing. Obligations can conflict with each other, e.g. the obligation to keep
a log of activities conflicts with the obligation to delete private data after
a given time interval. The current processing step may also conflict with
obligations. A deleted record can not be required in the future. To prevent

1http://www.ucdmc.ucdavis.edu/compliance/guidance/privacy/deident.html
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Managing the Distributed Processing of Data

obligations from becoming unfulfillable, one has to verify the existence of
at least one future execution that fulfills all obligations and starts with the
current processing step. We call such a future execution the destiny of the
data processing. The challenge is that in dynamic environments the future
execution is specified by policy rules. Thus, a formal method is required to
decide whether a destiny exists for a planned processing step based on the
given policy rules and the history.

1.1 Thesis

So far, we have discussed the motivation of managing the distributed pro-
cessing of data. During the discussion we have identified various problems
that hamper the management. The following list summarizes these problems
and depicts our hypotheses:

1. To audit the data processing, we need a global model of the processing.
In distributed environments, such a model is most often lacking. Our
hypothesis is:

Hypothesis 1:

The distributed processing of data can be audited even if a global
model of the processing is lacking a-priori. The auditing can be
achieved by a complete and sound reconstruction of the process ex-
ecution.

2. To be able to audit the processing, we need to monitor the distributed
processing in an exhaustive manner. Applied monitoring mechanisms
have to be able to collect sound provenance information of the com-
plete processing. The monitoring is hampered by the distribution, by

4



1.1 Thesis

the autonomy of the involved organizations, and the lacking standard-
ization. In spite of these obstacles, the provenance information must
allow for a complete and sound reconstruction of the processing to be
used for auditing. Our hypothesis is:

Hypothesis 2:

A distributed, data-centric logging mechanisms can collect prove-
nance information and generate a reconstructed model that is com-
plete as well as sound regarding the global model and can be used for
auditing.

3. To restrict the processing at runtime, we need a provenance-aware pol-
icy mechanism. However, policy languages do not support the speci-
fication of provenance based policy conditions in an intuitive manner
because of the temporal structure of processing histories. Our hypoth-
esis is:

Hypothesis 3:

Policy conditions can be based on data processing histories by map-
ping the temporal structure of the histories to a graph structure.

4. A planned processing step will not render obligations unfulfillable if a
destiny exists. To verify the existence of a destiny, we need a decision
procedure based on the given set of policy rules and history. Policy
languages do neither provide such a decision procedure nor a reduc-
tion of the decision problem to another well-defined decision problem.
Such a procedure respectively reduction is required to decide the exis-
tence of a destiny. Our hypothesis is:

5



Managing the Distributed Processing of Data

Hypothesis 4:

The decision problem of the existence of a destiny considering a given
set of policy rules and the history can be reduced to the decision prob-
lem of the reachability of transitions in colored Petri nets.

1.2 General Approach

Before starting with our hypotheses, we consider different kinds of funda-
mentals in Chapter 2. These are basic concepts related to the distributed
processing of data in the Web and means for their technical realization, such
as service-oriented architectures and Web services. With colored Petri nets
and Datalog we also require certain formal models and methods. As we base
parts of our work on the eXtensible Access Control Markup Language and
the Open Provenance Model, we give an introduction of these. After dis-
cussing these fundamentals, we specify the terminology we use throughout
this thesis.

In Chapter 3, we derive requirements to tackle the hypotheses. To this end,
we introduce a health care scenario. The scenario serves as a run-through
example. The legal and contractual aspects of processing data in distributed
environments are discussed, before we analyze organizational and technical
issues that arise from auditing and restricting the distributed data processing.
Based on the scenario and discussion, we derive the requirements to solve the
organizational and technical issues. Given these requirements we validate
our hypotheses.

We validate Hypothesis 1 by providing a methodical description to audit
the data processing in distributed environments. In Chapter 4, we introduce
our approach which we call DiALog: Distributed Auditing Logs. DiALog
can specify the who, why, and how of the distributed data processing. It

6



1.2 General Approach

supports a data-centric view to model the processing of one specific data
item with all its instances. The processing can be across organizations and
independent of business processes, e.g. data which is stored and later reused.
To enable data owners to manage the distributed processing of their data,
we identify different models of the execution and define formal qualities.
These qualities are the soundness and completeness of the reconstruction. If
a reconstructed model fulfills these qualities, it can be used for an audit.

To validate Hypothesis 2, we introduce a mechanism to collect and pro-
vide the provenance information of the distributed data processing in Chap-
ter 5. We call this designated mechanism sticky logging. Sticky logging is a
generic middleware for distributed logging and is tailored to observe the pro-
cessing of single data items and its instances. It attaches the logs directly to
the processed data instances as metadata. Furthermore, sticky logging allows
for reconstructing of how data are processed by whom and why. The recon-
structed model is specified in DiALog. Sticky logging consists of two parts.
These are structures specifying the organization of the collected provenance
information as well as an architecture defining operations how to collect and
share the information about the processing. We demonstrate the feasibility of
sticky logging by a prototypical implementation. To prove the functionality
of the prototype we implement a business case.

Hypothesis 3 is validated by providing the Provenance Aware Policy def-
inition and Execution Language, short Papel in Chapter 6. Defining Papel,
we focus on policies containing conditions based on processing histories. We
use the sticky logging mechanism to provide the needed provenance. Based
on this information, policy conditions can relate to provenance information
and to the temporal structures of processing histories. We achieve this by
mapping the temporal structure to a graph structure. Besides Papel’s syntax,
we define its semantics via an interpretation function. Its feasibility is shown
by implementing Papel using Datalog. We address privacy and data protec-
tion issues that newly emerge from connecting policies with provenance.

In Chapter 7, we validate Hypothesis 4 by Care. Care is an extension of
Papel and defines syntax and semantics to specify future obligations in pol-

7



Managing the Distributed Processing of Data

icy rules. To check whether all future obligations can be met, the existence
of a destiny must be shown based on the given policy rules and processing
history. As for policy rules a procedure to decide the existence of a des-
tiny is not defined, we reduce the problem to the decision problem of the
reachability of transitions in colored Petri nets [Jensen, 1992] instead. To
reduce the problem, we provide a translation from Care policy rules to col-
ored Petri nets. In colored Petri nets we can decide the reachability and thus
decide whether there is a destiny and whether all obligations can be met in
the future.

After validating our hypotheses, we conclude by discussing our research
contributions and by giving an outlook on future work in Chapter 8.

1.3 Publications and Exploitation

This work is based on our former publications. General assumptions about
the management of data processing in distributed environments have been
published at the 5th International Workshop for Technical, Economic and Le-
gal Aspects of Business Models for Virtual Goods [Ringelstein et al., 2007b]
and in the national magazine Datenschutz und Datensicherheit [Ringelstein
et al., 2007a]. The sticky logging mechanism was published at the Workshop
on Privacy Enforcement and Accountability with Semantics [Ringelstein and
Staab, 2007] and in a second article published in Datenschutz und Daten-
sicherheit [Ringelstein, 2007]. In [Ringelstein and Staab, 2009] published
at the IEEE 7th International Conference on Web Services, DiALog is intro-
duced. And it is further discussed in the International Journal of Web Ser-
vice Research [Ringelstein and Staab, 2010a]. The definition of the syntax
and formal semantics of Papel were published in the 8th International Con-
ference on Business Process Management [Ringelstein and Staab, 2010b].
Finally, a more general discussion of Papel has been published in the IEEE
Internet Computing [Ringelstein and Staab, 2011].

Results of our work have been exploited in various research projects. We

8



1.3 Publications and Exploitation

contributed our research in the field of service-oriented architectures and
Web services to the European research project "Adaptive Services Grid".
In this project, our results help Web service providers (telecommunication
companies) to improve the automated choreography of Web services. Our
findings regarding sticky logging have been exploited in the analysis "Tech-
nique Analysis and Risk Management for Service-oriented Architectures in
Virtual Organizations" founded by the Federal Ministry for Education and
Research. With sticky logging we provide an improved solution for virtual
organizations to meet privacy laws. Virtual organizations can use sticky log-
ging as a means to respond to information requests by persons concerned.
In the European project "Knowledge Sharing and Reuse across Media", we
have exploited sticky logging and DiALog. Partners in industry use sticky
logging to monitor the distributed communication of an ad-hoc created task
force. They are able to improve the creation of task forces considering the
monitored information. Our results are exploited in "Where eGovernment
meets the eSociety". In this project, policy makers analyze comments in so-
cial networking sites to determine people’s opinions about political topics.
Our findings regarding DiALog help policy makers to inform people about
the data analysis. The people can use Papel to restrict the usage of their data.

9





2 Fundamentals of the Distributed
Processing of Data

We have to consider different kinds of fundamentals and related work. Un-
derstanding the basic concepts related to the distributed processing of data in
the Web and means for their technical realization is essential. We discuss the
related concepts of service-oriented architectures and Web services in Sec-
tion 2.1. Specific models and methods are required to specify our approach
and our decision procedure. These are colored Petri nets as well as Datalog,
which we summarize in Section 2.2. Papel is based on existing solutions for
policies and provenance. These are the eXtensible Access Control Markup
Language (XACML) and the Open Provenance Model (OPM), which we in-
troduce in Section 2.3. The terminology used throughout this work is spec-
ified in Section 2.4. We discuss the work related to our approaches in the
related work sections of the Chapters 4, 5, 6 and 7.

2.1 Distributed Environments

The Internet facilitates the distributed processing of data. Web sites, Web
applications and Web services are means for implementing distributed envi-
ronments in the Internet. In addition e-mail and other communication means
process data in a distributed manner. Apart from the Internet, the intranets
of organizations constitute distributed environments, as well.

A paradigm that specifies design principles for the distributed data pro-
cessing in the Internet and intranet are service-oriented architectures. We

11



Fundamentals of the Distributed Processing of Data

also introduce Web services as they are used to implement the service-
oriented architecture of our scenario.

2.1.1 Service-oriented Architectures

Service-oriented architecture is a software design paradigm. In a service-
oriented architecture functionality is provided as service, which can be con-
sumed and orchestrated to more complex services. The design principle
of a service-oriented architecture builds upon standards, e.g. Web ser-
vices [Booth et al., 2004] and SOAP [Gudgin et al., 2007]. Adhering to
these standards allows for an easy integration and loose coupling of ser-
vices. Loose coupling describes the ability to use services only if required
(event driven) and to easily exchange services. Through loose coupling or-
ganizations can easily provide business capabilities as services as well as
integrate external service into internal processes leading to virtual organiza-
tions [Davidow and Malone, 1992].

Essential for service-oriented architectures is the specification of inter-
faces using standardized formats to find and use services. The standardized
interfaces not only allow for combining services to more complex services
(service orchestration), but also enable the decomposition of complex busi-
ness services into flexibly interchangeable, modular components. One can
easily monitor service calls through such standardized interfaces.

Service-oriented architectures are often used together with Web services
as those meet the design principals of a service-oriented architecture. The
standardization of the Web service interfaces by the World Wide Web Con-
sortium (W3C) frames a technical implementation of the service-oriented
paradigm and various standards exists to build a service-oriented architec-
ture, e.g. SOAP, REST (Representational State Transfer) [Fielding, 2000],
and RPC (Remote Procedure Call) [White, 1976], etc. Service-oriented ar-
chitectures are supported through Web services platforms of various pro-
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2.1 Distributed Environments

ducers, such as Software AG with WebMethods1, Microsoft with .NET2,
IBM with WebSphere3, BEA with WebLogic4, and Red Hat Middleware
with JBoss5.

2.1.2 Web Services: An Example of SOA

Web services are software components that are accessible as Web resources
in order to be reused by other Web services or software. We can use Web
services to constitute a service-oriented architecture. The Web service archi-
tecture standard [Booth et al., 2004] has three major parts:

1. A standardized communication interface: For communication with
and between Web services the standards SOAP or XML-RPC (Ex-
tensible Markup Language Remote Procedure Call) are used.

2. A standardized service description: The service interfaces and the
services are described by means of WSDL (Web Service Description
Language). Each Web service provides its WSDL description allow-
ing for an easy integration of the service.

3. A standardized directory service: To automatically find and integrate
Web services, one can use an UDDI (Universal Description, Discovery
and Integration), a yellow page for Web services. However, even if the
Web service standard has quite some spreading, UDDIs could not be
established for open usage.

Web services function as middleware connecting different parties such as
companies or organizations distributed over the Web.

1http://www.softwareag.com/corporate/products/wm/default.asp,
retrieved: Nov. 29th, 2010

2http://www.microsoft.com/net/, retrieved: Nov. 29th, 2010
3http://www-01.ibm.com/software/websphere/, retrieved: Nov. 29th, 2010
4http://webservice.bea.com/, retrieved: Nov. 29th, 2010
5http://www.jboss.com/, retrieved: Nov. 29th, 2010
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Fundamentals of the Distributed Processing of Data

2.2 Formal Models and Methods

We require certain formal models and methods. Whenever possible, we in-
tend to use existing means. We did so for the modeling of the distributed
processing of data and for the specification and implementation of our pol-
icy language.

During its distributed processing, the data reaches different states as each
processing step causes state changes. A standard means to model state
changes are state-transition nets. Hence, the modeling of the distributed
data processing can be achieved by a state-transition net. A detailed descrip-
tion as to how the distributed data processing is modeled by state-transition
nets is given in Chapter 4. For the formal grounding of DiALog, we use
colored Petri nets [Jensen, 1992] a formalism for state-transition nets that is
based upon Petri nets [Petri, 1962]. Colored Petri nets are also used in Care.
We reduce the problem of deciding whether a destiny exists to the decision
problem of reachability in colored Petri nets.

Policy languages describe rules whether a data item may be processed or
not. The interpretation of a policy language is specified by its execution
semantics. We define an interpretation function to specify the execution se-
mantics of Papel. Based on the interpretation function, we have chosen Dat-
alog [Ceri et al., 1989] to provide a general implementation with a formal
grounding.

2.2.1 Petri Nets

Colored Petri nets are an extension to Petri nets [Petri, 1962]. We introduce
them, before we explain colored Petri nets in the next section. This short
introduction is based upon the work of Peterson [Peterson, 1981].

Petri nets are a model to describe systems and their processes. Through the
formal grounding of Petri nets, one can use Petri nets to formally analyze the
modeled processes. Petri nets are bipartite, directed graphs with two kinds
of nodes: places P and transitions T . Places and transitions are connected
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by the input function I and the output function O of the transitions. I maps
one transition to a set of input places and O maps one transition to a set of
output places. These connections are modeled as arcs. An example Petri net
is depicted in Figure 2.1.

Definition 2.1: Structure of Petri Nets [Peterson, 1981]

Let P∞ specify the set of all bags of places p ∈ P , a Petri net structure is
defined as a quadruple (P, T, I,O), where:

– P is a finite set of places,

– T is a finite set of transitions, disjoint from the set of places: P
⋂
T =

∅.

– I is the input function: I : T → P∞, and

– O is the output function: O : T → P∞.

arc 

transition 

place 

place  
with token 

p1 p2 

t 

Figure 2.1: A Small Petri Net.

In addition to places and transitions, Petri nets introduce a third primitive
concept called tokens. Tokens are assigned to places and modeled as dots.
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The distribution of tokens to places is described by the marking µ. Any
number of tokens in N0 may be assigned to each place.

Definition 2.2: Marking [Peterson, 1981]

Let (P, T, I,O) be a Petri net, and beN0 the nonnegative integers, a marking
µ is defined as µ : P → N0.

The marking changes during the execution of a Petri net.

Definition 2.3: Execution [Peterson, 1981]

Let (P, T, I, O) be a Petri net with the marking µ, and let #(p, I(t)) and
#(p,O(t)) are functions returning the number of occurrences of the place p
in the input respectively output bag of the transition t, a transition t ∈ T is
enabled if:

∀p ∈ P : µ(p) ≥ #(p, I(t)).

A transition t ∈ T may fire whenever it is enabled. Firing a transition t
results in a new marking µ′ defined by:

µ′(p) = µ(p)−#(p, I(t)) + #(p,O(t)).

Figure 2.1 depicts a small Petri net consisting of two places and a transi-
tion. The first place is connected to the transition by an arc and is the input
place of the transition. The transition again is connected to the second place,
the output place of the transition. The formal description of the depicted
Petri net is given in Listing 2.1.

Listing 2.1: Example Structure of a Petri Net [Peterson, 1981]

C = (P, T, I,O)
P = {p1, p2}
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T = {t}
I(t) = {p1}
O(t) = {p2}
µ(p1) = 0
µ(p2) = 1

2.2.2 Colored Petri Nets

Based on Petri nets, Jensen has defined colored Petri nets. Colored Petri
nets have the same expressiveness as Petri nets but a syntax allowing a much
easier specification of the nets. The following short summary of colored
Petri nets is based upon the work of Jensen [Jensen, 1992].

Definition 2.4: Structure of Colored Petri Nets [Jensen, 1992]

A non-hierarchical colored Petri net is defined as a nonuple CPN = (Σ, P,
T, A, N, C, G, E, I), where:

– Σ is a finite set of non-empty types, called color sets,

– P is a finite set of places,

– T is a finite set of transitions, disjoint from the set of places: P ∩ T =
∅,

– A is a finite set of arcs, disjoint from the set of places and transitions:
P ∩A = T ∩A = ∅,

– N is a node function N : A→ P × T ∪ T × P ,

– C is a color function C : P → Σ,

– G is a guard function G : T → expressions such that
∀t ∈ T : [Type(G(t)) = B ∧ Type(Var(G(t))) ⊆ Σ],
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– E is an arc expression function E : A→ expressions such that
∀a ∈ A : [Type(E(a)) = C(p(a))MS∧Type(Var(E(a))) ⊆ Σ], where
p(a) is the place of N(a), and

– I is an initialization function I : P → closed expressions such that
∀p ∈ P : [Type(I(p)) = C(p)MS ].

The Σ specifies the types, operations and functions to be used in the net
inscriptions (e.g. arc expressions, guards, color sets). The input and output
function of Petri nets are replaced by the node function that maps each arc to
a pair of source nodes and destination nodes. In contrast to Petri nets, colored
Petri nets allow multiple arcs between the same ordered pair of nodes. Each
place p is mapped by the color function C to a color set C(p). B is the
boolean type consisting of the elements {true, false}. In DiALog, we make
no use of guard functions. As specified by the arc expression function E that
maps each arc a into an expression of the typeC(p(a))MS each evaluation of
an arc expression has to result in a multi-set (indicated by MS) over the color
sets of the corresponding place. Type(v) is the type of the variable v and
Type(expr) is the type of the expression. The definition of colored Petri nets
does neither define the syntax nor semantics of expressions. It assumes both
as given. Closed expressions are expressions without variables. Var(expr)
is the set of variables in an expression expr.

To specify the behavior of colored Petri nets, we are required to define
bindings of transitions, tokens, markings as well as the enabling of steps and
their occurrence. A binding of a transition t is a function that replaces each
variable of t with a color of the correct type in a way that the guard function
evaluates to true.

Definition 2.5: Binding [Jensen, 1992]

Let ∀t ∈ T : Var(t) = {v|v ∈ Var(G(t)) ∨ ∃a ∈ A(t) : v ∈ V ar(E(a))}
be, the binding function b of a transition t is defined on Var(t), such that:
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(i) ∀v ∈ Var(t) : b(v) ∈ Type(v).
(ii) G(t) < b >.

A(t) is the function that returns the set of surrounding arcs of a transition
t. B(t) specifies the set of all bindings for t and a binding is indicated by
< and >. The state of a colored Petri net is described by the distribution of
token elements called marking. The possible state changes are derived from
the binding elements, and changes are described by steps.

Definition 2.6: Token Element, Binding Element, Marking and Step [Jensen,
1992]

A token element is defined as a pair (p, c) where p ∈ P and c ∈ C(p). A
binding element is defined as a pair (t, b) where t ∈ T and b ∈ B(t). A
marking is defined as a multi-set over the set of all tokens elements TE. A
step is defined as a non-empty and finite multi-set over the set of all binding
elements BE. The initial marking M0 is defined as the marking obtained by
evaluating the initialization expression:

∀(p, c) ∈ TE : M0(p, c) = (I(p))(c).

A step in a colored Petri net may occur if it is enabled.

Definition 2.7: Enabling and Occurring of Steps [Jensen, 1992]

Let E(x1, x2) be defined as: ∀(x1, x2) ∈ (P × T ∪ T × P ) : E(x1, x2) =∑
a∈A(x1,x2)

E(a). A step Y is enabled in a marking M iff:

∀p ∈ P :
∑

(t,b)∈Y
E(p, t) < b > ≤M(p).

A step Y that is enabled in M1 may occur, changing from the marking M1

to another marking M2
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∀p ∈ P : M2(p) = (M1(p)−
∑

(t,b)∈Y
E(p, t) < b >) +

∑
(t,b)∈Y

E(t, p) <

b >).

A(x1, x2) is the function that returns the set of arcs connecting a pair of
specified nodes. The first sum

∑
(t,b)∈Y

E(p, t) < b > specifies the tokens

which are removed. The second sum
∑

(t,b)∈Y
E(t, p) < b > specifies the

tokens that are added.
Figure 2.2 depicts a small colored Petri net consisting of two places and

a transition. The first place is connected to the transition by an arc and is
the input place of the transition. The transition again is connected to the
second place, the output place of the transition. Both transitions have an arc
expression: "n" and "n + 1". The second place holds a token of the integer
type with the value 2. The formal description of the depicted colored Petri
net is given in Listing 2.2. The colored Petri net models the increment of a
natural number by one. As a token with a value of 2 is already in the second
place, the transaction has already occurred and the input token must have
had the value 1.

Listing 2.2: Example Structure of the Colored Petri Net in Figure 2.2

Σ = {N}.
P = {p1, p2}.
T = {t}.
A = {p1_to_t, t_to_p2}

N(a) =

{
(p1, t) if a = p1_to_t
(t, p2) if a = t_to_p2

C(p) = N for all p
G(t) = true for all t
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E(a) =

{
n if a = p1_to_t
n+1 if a = t_to_p2

I(p) =

{
{1} if p = p1

{} if p = p2

arc 

transition 

place 

place  
with token 

2 
n 

arc expression 
n + 1 

p1 p2 

t 

Figure 2.2: A Small Colored Petri Net.

2.2.3 Datalog

Datalog is a database query and rule language that is designed to query de-
ductive databases. Datalog is based on the logic programming paradigm
and a subset of the general purpose logical programming language Pro-
log [Colmerauer and Roussel, 1993]. The following short introduction sum-
marizes the explanation of Datalog in [Ceri et al., 1989].

Datalog is a simplification of normal logic programs (for a detailed in-
troduction into logic programming see [Lloyd, 1993]). A Datalog program
represents knowledge as rules and facts. An example fact is that Jane Doe is
a patient. By means of rules, facts can be derived from other facts, e.g. if X
is a patient and X is pregnant, X is a female; where X is a variable.
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Definition 2.8: Syntax of Datalog [Ceri et al., 1989]

In Datalog, rules and facts are defined as Horn clauses:

L0 : −L1, .., Ln

where each Li is a literal and each literal has the form pi(t1, .., tn), where pi
is a predicate symbol and each tj is a term specifying either a variable or a
constant.

The clauses can be divided into the left hand side and right hand side. The
left hand side is called the head and the right hand side is called the body of
the clause. Facts are clauses with a empty body and rules have at least one
literal in their body. Listing 2.3 depicts the facts ‘Jane Doe is a patient’ (first
line) and ‘Jane Doe is pregnant’ (second line) as well as the rule ‘if X is a
patient and X is pregnant, X is a female’ (third line) as a Datalog program.

Listing 2.3: Datalog Rules and Facts

patient(JaneDoe).
pregnant(JaneDoe).
female(X) :- patient(X), pregnant(X).

Datalog programs have certain qualities. These guarantee that the deriv-
able set of facts is finite. To this end, all facts of a Datalog program must be
ground (see Definition 2.9), and each variable appearing in the head of a rule
must also appear in the body of the rule.

Definition 2.9: Ground Facts [Ceri et al., 1989]

A fact that does not contain any variable is ground.
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For instance, the facts in Listing 2.3 are ground.
We can consider two sets of clauses the set of ground facts called the ex-

tensional database (DBE) and the Datalog program called the intensional
database (DBI ). The semantics of Datalog are defined by a mapping (see
Definition 2.10) that is based on the following basics. Each Datalog fact F
represents an atomic formula F∗ of first-order logic [Smullyan, 1968] and
each rule R a formula R∗ of the form ∀X1, ..,∀Xm(L1 ∧ .. ∧ Ln ⇒ L0),
where X1 to Xm represent the variables occurring in R. If S is a finite set
of Datalog clauses, be cons(S∗) the set of all facts that are logical conse-
quences of S.

Definition 2.10: Semantics of Datalog [Ceri et al., 1989]

Be H the Herbrand base of the Datalog language consisting of the set of all
facts one can express with Datalog, be HE the extensional part of the Her-
brand base that contains all literals of the Herbrand base H whose predicate
is a DBE-predicate, and be HI the set of all literals in H whose predicate
is a DBI -predicate, the semantics of a Datalog program are defined by a
mapping M from HE to HI . The mapping M assigns to each possible ex-
tensional database E ⊆ HE the set M(E) of intensional result facts defined
byM(E) = cons(P ∪ E) ∩HI .

2.3 Fundamental Approaches

We based our work on different existing solutions regarding the general mod-
eling of provenance information as well as the underlying policy language.
With respect to model provenance information, we build on the Open Prove-
nance Model (OPM) [Moreau et al., 2008]. In Section 2.3.1, we summa-
rize the basic idea of OPM. Regarding policy language, we based Papel on
the eXtensible Access Control Markup Language (XACML) [Moses et al.,
2005] standard, which we shortly introduce in Section 2.3.2.
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2.3.1 Open Provenance Model

The open provenance model aims to provide a standard for modeling prove-
nance [Moreau et al., 2010]. The main constitutions of the open provenance
model are nodes, dependencies and roles. Nodes are used to model artifacts,
processes, and agents. Artifacts model subjects of state changes. The open
provenance model defines artifacts as ’immutable piece of state, which may
have a physical embodiment in a physical object, or a digital representation
in a computer system’ [Moreau et al., 2010]. The state changes are produced
by involving artifacts in a process, which is an ’action or series of actions
performed on or caused by artifacts, and resulting in new artifacts’ [Moreau
et al., 2010]. A process is performed by an agent, which is an ’contextual
entity acting as a catalyst of a process, enabling, facilitating, controlling, or
affecting its execution’ [Moreau et al., 2010].

To model the provenance, the open provenance model uses a directed
graph. Nodes represent artifacts, processes and agents. Edges model the
causal dependencies between the effect (source node) and its cause (desti-
nation node). The open provenance model defines all possible dependencies
that are used(R), wasGeneratedBy(R), wasControlledBy(R), wasTriggeredBy
and wasDerivedFrom. The R in the first two dependencies specifies the role
of the artifact during the processing, and the R of the third dependency do-
nates to the role of the agent during the processing. Figure 2.3 depicts an
example of an open provenance model specifying the updating (P1) of a
health record (A1 updated to A2 in the role R1 as the updated document) by
a hospital (Ag1 in the role R2 as actor).

2.3.2 eXtensible Access Control Markup Language

The motivation behind the eXtensible Access Control Markup Language
(XACML) is to combine many established ideas for access control poli-
cies using an extension language of XML [Moses et al., 2005]. XACML
combines single rules and policies to sets, deals with multiple subjects and
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wasGeneratedBy(R1) used(R1) P1 A1 A2 

wasGeneratedBy(R2) 

Ag1 

Figure 2.3: A Small Open Provenance Model Graph.

multi-valued attributes, supports policy enforcement, and much more.

The fundamental concept of XACML are policies that are defined as ’a
set of rules, an identifier for the rule-combining algorithm and (optionally) a
set of obligations’ [Moses et al., 2005], where a rule consists of ’a target, an
effect and a condition’ [Moses et al., 2005]. In XACML, one can combine
policies to policy sets. The policies can express permissions and prohibi-
tions. They can also contain obligations which are defined as ’an operation
specified in a policy or policy set that should be performed by the Policy
enforcement point in conjunction with the enforcement of an authorization
decision’ [Moses et al., 2005]. Apart from the policy language, XACML
defines a model for policy enforcement that specifies an accurate procedure
for accessing resources and fulfilling obligations.
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2.4 Terminology

Throughout the presentation of our work, we are required to relate to various
concepts. Some of these concepts have no clear definition in related work.
We outline our terminology for a clear understanding:

Entity An entity is an ’independent, separate, or self-contained exis-
tence’ [Merriam-Webster, 2004] that could be involved in the process-
ing of data (e.g. a Web server) or is related to data (e.g. the person
concerned).

Action An action is ’the manner or method of performing’ [Merriam-
Webster, 2004]. For instance, reading or updating a data instance are
actions.

Actor An actor is an entity actively performing actions on the data. De-
pending on the granularity, an organization or an application running
on a server or workstation can be examples of an actor.

Processing Step A processing step is a single step in the processing of data
and consists of at least one performed action or a set of performed
actions. For instance, the sharing of a data item between two entities
is a processing step that may consists of read, transfer, receive and
write actions.

Workflow A workflow is a sequence of actions or processing steps.

Process A process is a sequence of processing step executions to achieve a
business goal.

Processing History The processing history is a trace of a process that con-
stitutes a directed graph of executed processing steps.

In the following, we use the terms category, item and instance to refer to
different abstraction levels of data. See Table 2.1 for an overview about the
three abstraction levels.
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Data Category We use data category to refer to the class of data (e.g. health
records).

Data Item We use the term data item to refer to a specific piece of informa-
tion (e.g. Jane Doe’s health record).

Data Instance We use the term data instance as specific realization of a
data item (e.g. the instance of Jane Doe’s health record stored in a
specific data base).

Table 2.1: Abstraction Levels of Data.

Term Example

data category health record

data item Jane Doe‘s address

(“Example Street 13, Some City”)

data instance “Example Street 13, Some City”

@www.uni-koblenz.de/database

We use certain terms to relate persons and legal entities to data items.

Data Subject or Person-concerned We use the term data subject as it is de-
fined by the EU Directive as ’[..] an identified or identifiable natural
person [..]’ [The European Parliament and the Council of the Euro-
pean Union, 1995] the data is about. For instance, a patient is the
data subject of her health record. We extend this definition to include
subjects that are not natural persons.

Data Collector The data collector is the entity that has collected the data.
For instance, the hospital or a staff member that collected the personal
data of a patient.
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Data Owner The data owner is the entity holding the legal ownership rights
of a data item (e.g. copyrights). For instance, the hospital is the data
owner of all health records, even if a specific staff member creates it.

Data Holder We use the term data holder for the entity in possession of a
data item. For instance, if the hospital forwards a health record to a re-
search institute, the institute will be the data holder while the hospital
is still the data owner.

Finally, we use certain terms to address certain states of obligations.

Instantiated During the execution of a process, an obligation is instantiated
when its trigger condition is fulfilled. An instantiated obligation can
have one of the following states: active, fulfilled and violated.

Active An obligation instance will be active if the obligatory processing
steps have not been executed yet.

Fulfilled An obligation instance will be fulfilled if the obligatory processing
steps have been executed.

Violated The obligation instance will be violated if the obligatory process-
ing steps have not been executed and can not be executed anymore.
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3 Scenario and Requirements for
Managing the Distributed
Processing of Data

In Chapter 1, we identified the need of data subjects and owners to manage
the distributed processing of their data. Managing the distributed process-
ing of data requires the consideration of various legal, contractual, organiza-
tional and technical aspects. For instance, privacy laws affect the processing
of privacy-related data in any kind of environment, including distributed en-
vironments. In the member states of the European Union, these are privacy
laws implementing the EU Directive 95/46/EC [The European Parliament
and the Council of the European Union, 1995]. For processes distributed
among organizations located in different countries, special privacy agree-
ments define requirements, such as the Safe Harbor Frameworks1, which is
implemented between the European Union, the United States and Switzer-
land. Further rules for the usage and protection of data are defined in con-
tractual agreements concluded between the involved parties. In the Inter-
net, the rules are often specified by general service agreements for end cus-
tomers. And between organizations service level agreements are closed. Or-
ganizational and technical issues affect the implementation of the legal and
contractual requirements. For instance, the distribution of processes among
independent, autonomous organizations hampers the monitoring and the au-
diting of the processing.

As the aim of this work is the management of the distributed processing of

1http://www.export.gov/safeharbor/, retrieved Nov. 23th, 2010.
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the own data, all these aspects must be considered before we can derive re-
quirements. We introduce a scenario in Section 3.1 and discuss the involved
stakeholders, the details of the process with the policies specifying rules of
the processing, and the technical architecture implemented in the scenario.
The legal and contractual aspects of processing data in distributed environ-
ments are discussed in Section 3.2 and in Section 3.3. In section 3.4, we
analyze organizational and technical issues that arise from auditing and from
using policies in distributed environments. Based on (a) the scenario, (b) the
legal and contractual aspects, and (c) the organizational and technical issues,
we derive requirements for formal models and methods that aim at managing
the distributed processing of data.

3.1 Scenario - Distributed Processes in Health Care

Managing the processing of data is required in distributed environments as
depicted by the following every-day scenario. The scenario presents the
Middle Rhine Hospital, a local hospital, and its research cooperation with
the University of Koblenz. Health records are shared between both organiza-
tions as part of the cooperation. The scenario depicts the need to audit data
processing in environments distributed across multiple organizations. The
scenario shows that it is necessary to restrict the processing of the data by
means of policy rules expressing permissions, denials and obligations.

3.1.1 Stakeholders

In the scenario, different stakeholders are involved who have different rela-
tions to the data and motivations for processing the data. The following list
depicts these stakeholders:

Middle Rhine Hospital The Middle Rhine Hospital is a local hospital.
The core business of the Middle Rhine Hospital are health services provided
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for patients. To improve their health services, the hospital is doing research
in various fields of medicine and health care. As its core business is not re-
search, it cooperates with external research institutions. Different fields of
research require the analysis of real data (e.g. cancer recognition in X-rays).
The health records of patients are a source for such data and are shared in this
scenario. To share the records, the hospital provides access for the research
institutions on a server via Internet. Since health records are highly sensitive
data, the hospital wants to be able to audit their complete processing and to
restrict their use. Beside this, the patients are asked to specify additional
policies restricting the processing of their records. If requested by the corre-
sponding patient, the hospital will delete a health record or provide it to the
patient. Regarding the health record, the hospital is the data collector and the
data owner.

University of Koblenz An institute of the University of Koblenz per-
forms research on image processing of X-rays. The University requires real
world data about patients, to analyze the correctness of research results and
the applicability of the approach for health service providers. A cooperation
with the Middle Rhine Hospital allows for using the required data and make
the necessary analysis. The University and the hospital placed a contract
about the cooperation. The contract allows the University to access health
records of patients of the hospital. However, the hospital restricts the access
to health records of patients that gave their explicit consent. The contract
restricts the use of health records for research purposes only. In addition, the
University is not allowed to forward the data to other organizations. The hos-
pital requires that the University monitors the processing of health records.
The data captured by the monitoring mechanism must enable the hospital to
audit the processing performed by the University. As long as health records
are handled or stored at the University, the University is the data holder of
the regarding records.
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Jane Doe Jane Doe is a patient of the Middle Rhine Hospital. During her
admission, Jane Doe demands that the hospital has to hand out her health
record after her treatment ends. She gives the hospital the permission to use
her record for research purposes and to share her record for this purpose with
the University of Koblenz. However, Jane Doe specifies the restriction that
only her de-identified health record can be used for research purposes. Be-
cause of other serious health issues that are not related to her current hospital
stay, but occur in her record, she demands that the hospital restricts the ac-
cess to the related parts of her health record. Regarding the health record,
Jane Doe is the Data Subject, the person concerned.

3.1.2 The Process

For our considerations we need a detailed overview of the processing of
a health record by the Middle Rhine Hospital and by the University of
Koblenz. In addition, we require details about the policies issued by the
hospital and Jane Doe for restricting the processing of her health record.
Figure 3.1 depicts an action-by-action run-through of the processing of her
health record while she is treated as a patient in the hospital and through the
research performed on her data. The steps depicted in the figure are:

1. Admission: With the admission of Jane Doe as a patient of the Middle
Rhine Hospital a new health record is created by the hospital. At the
beginning the health record is empty. The create action is logged by
the hospital. As part of the admission the personal information of Jane
Doe is collected and stored in the record. The record is stored on a file
server of the hospital and is only accessible by the hospital. Because
of organizational and legal restrictions, the hospital is initially only
allowed to use the health record for the purpose it has been created for.
The purpose is treating Jane Doe’s cerebral tumor. Even the hospital
is not allowed to perform research on the record without the consent
of Jane Doe. The regarding restrictions are expressed by Policy 1,
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Figure 3.1: Process Overview of Privacy Scenario.

which is associated with Jane Doe’s health record:

• Policy 1.1: The Middle Rhine Hospital is allowed to use
Jane Doe’s health record for treating Jane Doe as patient.

• Policy 1.2: The Middle Rhine Hospital is not allowed to use
Jane Doe’s health record for any other purposes without explicit
permission.

• Policy 1.3: The Middle Rhine Hospital is not allowed to
share Jane Doe’s health record with other organizations for any
purposes without explicit permission.

A more general policy specifies that everyone is permitted to hand out
health records to patients. Based on this policy, Jane Doe asks that
the Middle Rhine Hospital has to transfer her record to her after her
treatment ends. The additional permission and obligation are specified
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by Policy 2:

• Policy 2.1: Everyone is permitted to transfer Jane Doe’s
health record to Jane Doe.

• Policy 2.2: Jane Doe demands to receive her health record
after her discharge.

2. Examination: When the examination of Jane Doe starts, the results
are stored in her health record. The actions performed to update the
health record are logged by the Middle Rhine Hospital. The examina-
tions are carried out during the hospital stay of Jane Doe and possibly
afterwards.

3. Asking consent: Patients may choose if their data can be used for
research or not. Thus, at some point during the examination Jane Doe,
is asked whether she permits the sharing of her data. The hospital
provides the questions in natural language, e.g.:

(1) Do you allow the Middle Rhine Hospital to
use your health record for research purposes?
Yes / No.

(2) Do you allow the Middle Rhine Hospital to
forward your health record to the University
of Koblenz for research purposes? Yes / No.

As Jane Doe gives her consent that the hospital can use her record for
its research, Policy 3 is created to express this permission:

• Policy 3: The Middle Rhine Hospital is allowed to use Jane
Doe’s health record for research purposes.
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Additionally, she allows for sharing her health record with the Univer-
sity for research purposes. However, the contract between the hospital
and the University does not allow the University to forward the data to
any other organization as specified by Policy 4.

• Policy 4.1: The University of Koblenz is allowed to process
Jane Doe’s health records for research purposes.

• Policy 4.2: The University of Koblenz is not allowed to
transfer health records to any other organization.

An internal policy of the hospital requires that the patient’s permission
has to be approved by a doctor. The hospital creates Policy 5 to
express these restrictions:

• Policy 5: The sharing of health records has to be approved
by Jane Doe and the approval must be confirmed by a doctor
before the record is accessed by any other organization.

In addition to giving her consent, Jane Doe can define additional rules
for sharing her health record. Jane Doe additionally demands that her
record is only used after it has been de-identified by exchanging her
personal information by a pseudonym. Policy 6 specifies this re-
striction:

• Policy 6: Jane Doe’s personal information that is contained
in her health record has to be de-identified before the record is
shared.

Neither the health record nor the log are updated in this step.

4. Examination: As stated before Jane Doe has another health condition
that requires special confidentiality. The examination results related to
this condition are also stored in the health record and the associated
processing steps are logged. Jane Doe demands that the examinations
and examination results relating to the condition require to be hidden
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before the record is used for research. This restriction is specified by
means of Policy 7:

• Policy 7 Information contained in Jane Doe’s health record
about other conditions than her cerebral tumor have to be hidden
before the record is used for research purposes.

5. Prepare Sharing: As Jane Doe requires the hiding of confidential in-
formation and the de-identification of her health record, the hospital
has to prepare the health record before sharing it with the University.
The hospital copies Jane Doe’s health record. The copy is then shared
with the University after two preparatory steps. The first step is that
the copy is de-identified2 by replacing all data identifying the patient,
such as her name, her address, and other information that allows for
connecting the health record with Jane Doe, by a pseudonym. As sec-
ond step, the hospital removes the confidential information about Jane
Doe’s other health conditions. The hospital logs the creation of the
copy and the changes performed on it.

6. Share for Research: After the copy has been created and prepared
by the Middle Rhine Hospital, it will be shared with the University
of Koblenz under the condition that all policies are fulfilled. To this
end, the hospital stores the copy on a Server that can be accessed by
the University via the Internet. The sharing is carried out as soon
as the University accesses the copy of Jane Doe’s health record on
the server of the hospital. Through the access the copy of the record
is transferred form the hospital to the University. In addition to the
copy of the record, the associated policies are also transferred. The
data transfer has to be logged by both parties. The hospital logs the
sending of the copy and the University logs its reception. Neither the
health record nor the copy are modified in this step.

2http://www.ucdmc.ucdavis.edu/compliance/guidance/privacy/
deident.html, retrieved April 18th, 2011.
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7. Research: After receiving the records, the University performs re-
search with the data contained in the copy of Jane Doe’s health record.
During the processing of Jane Doe’s data the University controls the
compliance with the associated policies. Additionally, the University
logs all actions performed on the data, like accessing or analyzing.

8. Archiving: After Jane Doe’s treatment ends, the health record is
archived by the Middle Rhine Hospital. To this end, nurses have to
transfer all health records to the archive when a patient is discharged.
After a health record is archived, the archive is not allowed to hand
it out to patients. However, members of the hospital staff are allowed
to share health records with other staff members and with the corre-
sponding patients. The additional Policy 8 expresses these circum-
stances:

• Policy 8.1: Nurses must transfer health records to the
archive after the patient’s discharge.

• Policy 8.2: The archive is denied to transfer health records
to patients.

• Policy 8.3: The staff is permitted to transfer health records
to other staff.

The hospital may delete health records when they are not needed any-
more. As Bob is responsible for data protection in the hospital and
he is the only person allowed to delete health records, it is his duty
to delete records. Policy 9 specifies the corresponding permit and
obligation rule:

• Policy 9.1: Bob is permitted to delete health records.

• Policy 9.2: Bob must delete all health records he receives
after the patient has been discharged.

37



Scenario and Requirements for Managing the Distributed Processing of Data

3.1.3 Technical Architecture

Beside the single processing steps performed on the health record, the un-
derlying technical architecture is of relevance for our considerations. The
technical architecture describes the combination of different systems, the dis-
tribution of the systems and the communication as well as the data transfer
between the different systems. Figure 3.2 depicts the technical architecture
of the scenario.
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Figure 3.2: The Technical Architecture of the Scenario.

• Database Server: The Middle Rhine Hospital operates a dedicated
server running a database with the health records of its patients. The
server and its database can not be accessed directly by the hospital’s
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employees. To enable applications to access the data, the database
management system running on the server provides an API. The in-
terface allows for integrating the database into other applications. Au-
thorization mechanisms assure that only certain applications running
on other servers have access to the data. The database server logs all
actions performed on the data stored in its database.

The database server is also used as an archive. The archive is part
of the same database. Health records stored in the archive are not
accessible without special clearance.

• Administration Server: The Middle Rhine Hospital uses a manage-
ment software specialized for the administration of patients and health
records. The software is running on a dedicated server operated by the
hospital. The administration software is a client-server solution with
a proprietary communication protocol. To access health records via a
workstation, the workstation must be authorized. The server logs all
actions performed on the patients’ records. The server itself stores the
records on the database server using the API that is provided by the
database management system.

• Workstations: The medical staff of the Middle Rhine Hospital uses
client applications of the management software to access and manage
health records of patients. The client application is running on work-
stations. Using the workstations requires authentication by the user
and only authorized users may access the data. The workstations are
operated by the different departments of the hospital and are connected
with the server via the Intranet. The client application running on the
workstation logs all actions the user performs.

• Web Server: The Middle Rhine Hospital operates a Web server for
sharing the records with external research institutes. The Web server
provides a Web service as interface to export health records. Only au-
thorized clients can access health records by means of the Web service.
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Before sharing a health record, the Web service creates a copy of the
health record stored on the database server and prepares the copy to
be shared (e.g. de-identification). The Web server logs all data trans-
ferred by the Web service and the Web service itself logs all actions it
performs on the records.

• Storage Server: The University of Koblenz uses a specific server to
access the health records through the Web service provided by the
Middle Rhine Hospital. The access occurs via the Internet. Specific
security mechanisms are used (e.g. SSL) to protect the data transfer.
The copies of the health records held by the University are stored in
a database running on this server. The server and the database log all
actions performed on the health records. Through the connection of
the hospital’s Web server and the University’s storage server, a virtual
organization emerges [Davidow and Malone, 1992].

• Research Server and Workstations: The researchers at the Univer-
sity of Koblenz use different workstations and servers to perform their
research with the health records. Authorization and authentication
mechanisms are used to protect the records. Research servers and
workstations access the health records on the storage server via the
University’s Intranet. All research servers and workstations are re-
quired to log all actions performed on health records.

As the Web server, storage server as well as research server and worksta-
tions provide and consume services, their part of the technical architecture
constitutes a service-oriented architecture (Figure 3.2).

3.2 Legal Aspects

Different laws regulate the processing of data, e.g. copyright laws or privacy
laws. These laws are also applicable for the data processing in distributed
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environments. The analysis of these laws and their application is an extensive
task and requires expert knowledge as from a lawyer.

We analyze the legal foundation of handling personal information in Eu-
rope, such as the processing of Jane Doe’s health record. As for any kind
of data, certain laws apply for handling Jane Doe’s health record. The laws
specify rules for handling data in general and privacy-related information
in particular. In the European Union, directives define objectives for the
legislation of the member states of the European Union (EU). An EU Direc-
tive “[..] is binding on the Member States as to the result to be achieved
but leaves them the choice of the form and method they adopt to realise the
Community objectives within the framework of their internal legal order.”3

All EU Member States need to implant the EU Directive into national legis-
lation.

A Directive relating to the processing of data is the EU Direc-
tive 95/46/EC [The European Parliament and the Council of the European
Union, 1995] that defines objectives for privacy laws of private persons. We
have chosen the EU Directive 95/46/EC as starting point to derive legal re-
quirements for the distributed processing of data which is called: “Directive
95/46/EC of the European Parliament and of the Council of 24 October 1995
on the protection of individuals with regard to the processing of personal
data and on the free movement of such data”

The Directive uses the terms ‘controller’, ‘data subject’, and ‘processing’.
Article 2 defines the terms in the context of the Directive:

• A ‘controller’ “[..] shall mean the natural or legal person, public
authority, agency of any other body which alone or jointly with others
determines the purposes and means of the processing of personal data;
...”,

• a ‘data subject’ is “[..] an identified or identifiable natural person
[..]”, and

3http://eur-lex.europa.eu/en/droit_communautaire/droit_
communautaire.htm#1.3.3, retrieved April 18th, 2011.

41



Scenario and Requirements for Managing the Distributed Processing of Data

• ‘processing’ “[..] shall mean any operation or set of operations [..]
whether or not by automatic means, such as collection, [..] storage,
adaption or alteration, [..] use, disclosure by transmission, [..]”.

We start with Article 10 ‘Information in cases of collection of data from
the data subject’ and Article 11 ‘Information where the data have not been
obtained from the data subject’, which specify the information that must
be provided to the person concerned by notification. In detail, Article 10
regulates:

“[..] the controller or his representative must provide a data subject [..]

• (a) the identity of the controller and of his representative, if any;

• (b) the purpose of the processing for which the data are intended;

• (c) any further information such as the recipients or categories of re-
cipients of the data [..]”

Article 11 also compels the service provider to notify the persons con-
cerned, even if the data is not obtained from them. Article 10 and Article 11
describe the need for an information service attending to the information
rights of private persons. Such an information service can support the pro-
cess of notifying the person concerned by providing the needed information.

Article 12 ‘Right of access’ describes details that have to be given to the
person concerned by the service provider if requested:

“Member states shall guarantee every data subject the right to obtain from
the controller:

• (a) without constraint at reasonable intervals and without excessive
delay or expense:
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– confirmation as to whether or not data relating to him are being
processed and information at least as to the purposes of the pro-
cessing, the categories of data concerned, and the recipients or
categories of recipients to whom the data are disclosed,

– communication to him in an intelligible form of the data under-
going processing and of any available information as to their
source,

.. ”

Outside the European Union, there are similar laws. In the United States,
the Health Insurance Portability and Accountability Act (HIPAA) of 1996
(P.L. 104-191) [104th United States Congress, 1996] specifies privacy and
security rules for information regarding heals.

3.3 Contractual Aspects

The distribution of data does not only occur between departments of one or-
ganization but also beyond organizational boundaries. Contracts are a stan-
dard means to define rules for inter-organizational data processing. The con-
tracts are concluded between the involved organizations and entities. Like
laws, contracts define rules for data processing. They differ depending on
various aspects, e.g. the involved organizations, the kind of service, and the
binding laws. Contracts between two companies are not often publicly ac-
cessible. Only the general terms and conditions of open available services
are accessible, such as the general privacy terms and conditions of facebook4.
These also vary from service provider to service provider, but through bind-
ing laws there is a common foundation. One sort of binding laws are the
privacy laws we have already discusses in section 3.2. Thus, we apply the
legal aspects discussed before to the distributed processing of data in general
and not only the processing of private data.

4http://www.facebook.com/policy.php, retrieved April 18, 2011.
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Contracts define rules for processing data. Entities processing the asso-
ciated data must comply with these rules. The rules can be expressed by
policies. Our scenario contains a contract between the Middle Rhine Hos-
pital and the University of Koblenz. Policy 4.2 specifies parts of the
contract as policy. The policies issued by Jane Doe are also part of the con-
tract between Jane Doe and the hospital. To account for policies, a method
for handling them is required.

3.4 State of the Art and Requirements

As discussed in Chapter 1, we need the capability to manage the distributed
processing of data by means of policies in combination with audits. The sce-
nario also depicts this by requiring mechanisms which allows Jane Doe to
audit the past processing of her health record and to specify policies to re-
strict the future processing of her data. Analyzing the weaknesses of existing
means, we can identify various organizational and technical issues that ham-
per the audit and compliance checking with policies. These organizational
and technical issues need to be considered before deriving requirements for
managing the processing of data in distributed environments.

3.4.1 Organizational and Technical Issues

We identify multiple organizational and technical issues while audits should
take place in distributed environments. In addition, we identify various is-
sues with the evaluation of policies that are not directly related to the dis-
tributed environment but grow more acute in such environments. In the fol-
lowing, we provide an overview of the identified issues. We start with the
auditing of distributed processes.

For several reasons existing logging mechanisms (e.g. [Hallam-Baker and
Behlendorf, 1996], c.f. Chapter 5) are not sufficient to gain a full overview
of a workflow that is distributed among multiple organizations. The loose
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coupling of services as provided by service-oriented architectures also ham-
pers the generation of such an overview. The main reason is that existing
logging mechanism are tailored to perform logging within one execution
environment (e.g. [Lonvick, 2001]). Because of the diversity of execution
environments and of a lack of standardized interfaces for exchanging logs,
distributed logs cannot automatically be combined into one log. Without a
continuous log, a complete history of the processing cannot be reconstructed.
Existing means for modeling distributed processes (c.f. Chapter 4) are not
sufficient to model the processing of one data instance or data item. Ex-
isting models specify the actions performed on all data items processed in
one business process (e.g. [van der Aalst et al., 2004]) or the actions per-
formed by one entity on all processed data items, independent of the process
(e.g. [Barth et al., 2007]). All these weaknesses are reinforced by the dif-
ferent process ownerships in distributed workflows and the heterogeneous
environments thereof. We derive the following issues regarding the audits in
distributed environments:

Issue ‘Loosely-coupled Architectures’: At the level of implementation,
the distributed processing of data in the Web hampers the generation of
an overview. Paradigms, such as service-oriented architectures (SOA)
and software as a service (SaaS), and associated standards, such as
SOAP, allow for a loose coupling of services. The loose coupling en-
ables the incorporation of services which are defined and implemented
independently of each other running on different middleware and ex-
ecution environments. In such environments, cross cutting concerns,
such as logging, are hard to realize if they are not standardized at the
interface level. Workflows can be configured in an agile manner mak-
ing it difficult a posteriori to assert which organizations had accessed
the data during the execution of the workflow.

Issue ‘Lack of Process Awareness’: In order to report on the previous han-
dling of data, an organization must be aware of and account for their

45



Scenario and Requirements for Managing the Distributed Processing of Data

internal data flows at a specific level of granularity. Depending on the
law or contract, the level of granularity may be very fine-grained or
more abstract (e.g. has Jane Doe be treated in a certain department or
by a specific doctor). Such awareness on a fine-grained level is rarely
available explicitly for cross-organizational workflows. Single orga-
nizations may already lack a global model of the processing through
independent departments as well as through lacking or incomplete pro-
cess specifications.

Issue ‘Recurring Processing’: The creation of the first instance of a data
item is part of one specific business process. Instances of the data item
may be involved in several other processes and data instances may out-
live the process in which they have been created. Jane Doe’s record
may be stored in a data base and reused at future hospital visits of
Jane Doe. For an exhaustive answer, an overview about the processes,
where all instances of one data item are involved in, is required. Such
an overview is often lacking as the connections between business pro-
cesses are not modeled.

Issue ‘Distributed Process Ownership’: As autonomous organizations do
not want to be managed or audited by third parties, transparency de-
creases with increasing distributed process ownerships. Hence, on the
level of cross-organizational workflows the lack of process awareness
is further increased.

Besides the auditing of distributed processes, the structure of the process-
ing history is a source of issues for the evaluation of policy conditions based
on the history. Some existing policy languages allow for building policies
containing conditions based on provenance information (e.g. [Kagal et al.,
2003], c.f. Chapter 6). They lack a formal specification of how to specify
or access provenance information as well as its temporal structure and are
too weak to express policies based on provenance information. They also do
not provide means to connect data with policies in distributed environments
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and to protect sensitive information in those environments. We identify the
following organizational and technical issues:

Issue ‘Lack of Linkage’: Certain policies often relate to a specific data
item, e.g. Jane Doe’s policies regarding the processing of her health
record. If a certain entity wants to process a specific data item, the
entity will need to know which processing steps are permitted or re-
stricted. Permissions and prohibitions defined by policies often de-
pend on conditions that depend on contextual information, e.g. the
University of Koblenz will be allowed to access the health record, if
it has been de-identified. Within organizations, data and its meta data
as well as associated policies are often stored independently and only
partially linked, e.g. directed links from policies to data but not vice
versa. In distributed environments the lack of links even increases by
not providing the necessary meta data connected with transferred data.

Issue ‘Temporal Structures’ Permission and restrictions may depend on
specific states of the processing, e.g. the transfer is allowed after Jane
Doe gave her consent. Conditions of policies may relate to the history
of the data processing and the temporal structures of such histories.
Temporal structures are of high complexity and demand for complex
methods for handling. In cross-organizational workflows, where al-
ready process overviews are missing, keeping track of the processing
history and its temporal structures is even worse.

Issue ‘Sensitive Information’ The processing history may contain sen-
sitive information about the processed data (e.g. performed exami-
nations) or confidential information about organization-internal pro-
cesses. Protection mechanisms (e.g. encryption) are used to protect
this information. At the same time, parts of this information are re-
quired to interpret policy conditions.

Sometimes the current processing does not need to be restricted, but con-
tracts or laws demand a certain reaction in the future (e.g. the health record
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must be transferred to Jane Doe after her discharge). Therefore, some pol-
icy languages foresee the possibility to specify obligations, e.g. [Bradshaw
et al., 2003,Hilty et al., 2005,Lupu and Sloman, 1999,Moses et al., 2005] (cf.
Chapter 7). However, they do not provide methods to decide the existence of
a future execution that meets all obligations. We derive the following issues:

Issue ‘Invalid Future Executions’ The execution of processing steps may
conflict with active obligations in multiple ways. Fulfilling obligations
can violate policies, e.g. the need to transfer a recored, which must not
be transferred. Newly instantiated obligations can conflict with ac-
tive obligations, e.g. a record must be kept and deleted. Obligations
can hamper the execution by generating a loop, e.g. X must send the
record to Y and Y has to send it to X. The missing of a semantic spec-
ification of the dependencies between obligations and the execution of
processing steps impairs the recognition of invalid future executions.

Issue ‘Valid Processing Steps’ To prevent conflicts, one has to decide
whether all future obligations can be meet before continuing the pro-
cessing. For each current processing step the actor must decide
whether it is valid or invalid. A valid processing step does not pre-
vent the fulfillment of future obligations and does not violate any pol-
icy. Only an according decision procedure is able to decide whether a
processing step is valid or not.

3.4.2 Legal and Contractual Requirements

To manage the distributed data processing, we derive requirements for a so-
lution that overcomes the identified organizational and technical issues with
respect to the discussed legal and contractual aspects. For the legal aspects,
we can derive the Requirement Identifiability of an information service from
the Articles 10 and 11 of the EU Directive:
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Legal Requirement ‘Identifiability’: The provided information must be
sufficient to identify the entities processing the data (e.g. service
provider) as well as the recipients and sources of personal data.

The difference between non-distributed and distributed environments
is that not only one entity processes the data but many. The infor-
mation service must be able to provide a complete list of all involved
entities and their clear identification. The Issue of Lack of Process
Awareness and the Issue of Distributed Process Ownership hamper the
identification of the entities. In the scenario, the Middle Rhine Hospi-
tal and the University of Koblenz are legal entities processing the data.
On the organizational level different departments are entities and on a
technical level the different servers are single entities. Depending on
the required granularity all these entities must be identifiable. As for
the entities processing the data, the sources of the data and its recip-
ients must also be clearly identified. In our scenario, the sources are
the medical staff collecting information about Jane Doe during inter-
views and examinations. The University is a recipient of Jane Doe’s
health record. We can state that all involved entities must be clearly
identified.

From Article 12, but also from Article 10 and Article 11, we can derive
the Requirements Accessibility and Exhaustiveness:

Legal Requirement ‘Accessibility’: The information service must enable
the person concerned to access information about the complete pro-
cessing of her personal data at any time.

The information about the data processing must be accessible by the
data subject and data owner. The information service has to provide an
interface for these entities to access the data about the processing. The
interface has to not only be accessible but also usable for the entity.
While for organizations as the Middle Rhine Hospital a Web service is
reasonable, Jane Doe must be able to access the data by submitting her
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request by mail or fax. The accessibility also implies that a complete
overview of the executed parts of the process is required at any time.
This is hampered by the Issue of Lack of Process Awareness, Issue of
Loosely-coupled Architectures and Issue of Distributed Process Own-
ership. In our scenario, the hospital must provide Jane Doe with all
information about the processing of her health record. It has to pro-
vide access to all parts of the information about the processing. Thus,
the hospital is not allowed to hide the processing of Jane Doe’s health
record performed by certain internal entities or the transfer of the data
to the University of Koblenz.

Legal Requirement ‘Exhaustiveness’: The information service must in-
form about which personal data item is processed, how it is processed,
and why it is processed.

The given answer must be exhaustive and in an intelligible form. It
must cover all processing steps performed on the data independent of
the business process (cf. Issue of Recurring Processing). The answer
must contain details of each processing step, such as its category (e.g.
de-identification) and purpose (e.g. research). The different purposes
and categories must be defined in domain ontologies. In the scenario,
the Middle Rhine Hospital has defined a domain ontology that is used
by the hospital itself and the University of Koblenz to describe the pro-
cessing steps performed on patient’s health records. The first step in
the scenario is the creation of Jane Doe’s health record by the Middle
Rhine Hospital. The category of this processing step is the creation of
a health record and the purpose is the treatment of a patient.

If this information can be obtained from an information service, security
mechanisms must assure that the confidentiality of the data will be preserved.
The information that personal data is processed may also be considered as
personal data. We assume that a log contains personal data as long as it is
not proved otherwise. Analogously, we have to assume that logs contain
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information about the internal processes of the entities processing the data
(e.g. the order of processing steps). This data must be protected, as well.

Legal Requirement ‘Confidentiality’: The information service must en-
sure that only the entities performing a processing step, the person
concerned and data owner have access to information about the step.

We assume that information about the internal processes of organi-
zations is confidential. Thus processing histories are confidential (cf.
Issue of Sensitive Information). At the same time, the processing his-
tory must be provided to the person concerned or data owner. In the
scenario, the University of Koblenz must inform Jane Doe about the
processing. Because the University does not know Jane Doe, the Uni-
versity has to pass the information on to the hospital that provides the
information to Jane Doe. To keep the confidentiality of internal pro-
cesses, a protection mechanism is required.

Based on the above mentioned contractual aspects we can point out the
following requirements for a policy mechanism:

Contractual Requirement ‘Accessibility’: The policy mechanism must
provide the required policies to anybody accessing the associated
data.

To adhere to policies, an entity must check whether an performed ac-
tion complies to effective policies. To this end, the entity requires
access to the policies and must be able to identify the policies associ-
ated with the data. The Issue of Lack of Linkage hampers the access.
In our scenario, the University of Koblenz needs to know the policies
regarding Jane Doe’s health record issued by the Middle Rhine Hos-
pital and Jane Doe. Furthermore the University must not have access
to the policies of other patient’s health records (cf. Legal Requirement
Confidentiality). Thus, we require a mechanism providing the needed
policies.
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Contractual Requirement ‘Availability’: The information required by
policy conditions must be available even if confidential parts of the
data and of the provenance information stay hidden.

Policy conditions must allow for relating to contextual information
or the history of the processing. For instance, the University of
Koblenz needs to know whether Jane Doe’s health record has been de-
identified. This information must be available to all entities evaluating
policies. Data protection mechanisms may hamper the availability of
the required information (cf. Issue of Sensitive Information). Hence,
we require a mechanism to provide the needed information to enti-
ties evaluating policy conditions. In the scenario, the Middle Rhine
Hospital will have to provide the de-identification status of Jane Doe’s
record to the University of Koblenz, even if it encrypts the provenance
information.

Policy conditions may depend on the previous data processing and the
temporal aspects of the processing (e.g. order of steps in the history). We
define the following requirement:

Contractual Requirement ‘Expressiveness’: Policies must allow for con-
ditions based on temporal aspects of processing histories.

One must be able to depend permissions and restrictions on the history
of the processing of data. The language used to specify conditions has
to allow for expressing this dependencies. This is hampered by the
Issue of Temporal Structures. For instance, Policy 5 demands for
getting Jane Doe’s consent before approving her free-will by a doctor
before the record may be shared. To control whether this policy is vi-
olated, one has to be able to express exactly this temporal dependency
between these two actions.

Contracts may define obligations which must be fulfilled in the future.
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Contractual Requirement ‘To Fulfill Obligations’: Policies must allow
for specifying obligations and to decide whether all active obligations
can be meet in the future.

To comply to contracts, entities must be able to fulfill future obliga-
tions. In our scenario, Policy 2.2 demands that Jane Doe’s health
record must be transferred to Jane Doe after she is discharged. The
current processing may conflict with the fulfillment of obligations (cf.
Issue of Invalid Future Executions). For instance, the hospital may
delete Jane Doe’s health record before it is transferred to her. To ver-
ify that a processing step does not render an obligation unfulfillable,
the policy language must provide a procedure to decide whether all
future obligations can be met (cf. Issue of Valid Processing Steps).

To define formal models and develop methods for auditing and restricting
the distributed processing of data, we must not only adhere to the legal and
contractual requirements but also have to overcome the organizational and
technical issues. To this end, we point out the following additional require-
ments for our formal models and methods.

Requirement ‘Well-defined Semantics’: To avoid ambiguities and to
reach standardization, the provenance information must be formalized
using a language with a well-defined semantics.

Privacy laws ask for an exhaustive answer that provides detailed in-
formation about the processing of the data (cf. Legal Requirement
Exhaustiveness). The data must be provided in a understandable man-
ner, to reach interoperability between the involved entities. In our
Scenario, the Middle Rhine Hospital must be able to understand the
executed processing steps performed by the University. If the hospi-
tal does not understand the provided processing history, it will not be
able to audit the processing. A domain-specific language that is based
on well-defined semantics provides a mean to align taxonomies and
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associate concepts to each other. Such a language supports the orga-
nizations to overcome the Issue of Distributed Process Ownership and
the Issue of Lack of Process Awareness by enabling a common under-
standing of the provenance information.

Requirement ‘Standardized Interfaces’: Standardized interfaces are re-
quired to access and share provenance information between all in-
volved parties.

The person concerned and the data owner have the right to access the
information about the processing of their data, as demanded by the
Legal Requirement Accessibility. They have to be provided with the
provenance of their data. Using a provenance-aware policy mecha-
nism requires entities to access the provenance information to check
whether processing steps are permitted or not, see Contractual Re-
quirement Accessibility. The Issue of Distributed Process Ownership
hampers the provision of the required information and the Issue of
Loosely-coupled Architectures increases the problem by allowing for
connecting different platforms. To address these issues, we require
standardized communication means.

Requirement ‘Level of Granularity’: The used language must be able to
express details about the performed actions, their actors, their pur-
poses and their order. These details must have the required level of
granularity.

The Legal Requirement Identifiability in combination with the Legal
Requirement Exhaustiveness demands a sufficient level of detail about
the processing. An insufficient level of information hampers the com-
mon understanding of distributed processes and results from the Issue
of Distributed Process Ownership. Detailed information is required to
create an overview that helps to overcome this issue and the Issue of
Lack of Process Awareness.
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Processing of Data

In Chapter 1 and Chapter 3 we identified the need to audit the distributed pro-
cessing of data as accounting for actions performed on data may be legally
and contractually required. We also discussed that organizational and tech-
nical issues, such as the Issue of Loosely-coupled Architectures, the Issue of
Lack of Process Awareness, the Issue of Recurring Processing, and the Issue
of Distributed Process Ownership, hamper the auditing.

To control the compliance with laws, contracts, or policies, a data provider
may request information about the processing and whereabouts of their data.
The answer has to contain details defined by the contracts or laws. This can
be information about who processed the data as well as why and how the
data has been processed, cf. Legal Requirement Identifiability and Legal Re-
quirement Exhaustiveness. If there is a model of the process which facilitates
a detailed overview, the information can be derived from this model. Most
frequently such an overview is lacking, even for internal workflows. Our
hypothesis is that the distributed processing of data can be audited, even if
such global model of the processing is lacking a-priori the process execution
(cf. Section 1.1). To achieve the auditing, we require a formalism to model
the data processing in distributed environments. And we need a method-
ology that allows for auditing and fulfills the requirements we identified in
Section 3.4.

To this end, we first discuss different execution models and their relations
to each other in Section 4.1. Based on the execution models, we specify a
formal model by means of colored Petri nets in Section 4.2. We call this

55



A Model for the Distributed Processing of Data

model DiALog: Distributed Auditing Logs. DiALog can be used to model
the logical execution, to achieve a global model as well as to model the re-
constructed execution. Deriving a reconstructed execution from the physical
execution has to fulfill certain qualities to constitute a global model. We
define the qualities soundness and completeness between the reconstructed
execution and the global model in Section 4.3. The qualities are required to
assure the correctness of the audit performed by means of the reconstructed
execution. We use these qualities in Chapter 5 to develop a logging mecha-
nism that accounts for the requirements we derived in Chapter 3.

4.1 Execution Models

The execution of a process can be modeled from various perspectives. The
main model is the global model that defines the processing from a global
view. As discussed in section 3.4.1, the Issue of Lack of Process Awareness
and the Issue of Recurring Processing hamper the creation of a global model.
Various other models exist that result from the execution of the process. The
physical execution of the process (see Figure 4.6) is the actual execution of
the process in a physical and technical environment (e.g. calling and exe-
cuting a Web service). The specification of the physical execution is given
by the logical execution. The logical execution is a formal model of the
execution, which is not necessarily defined before the physical execution is
performed. In this case, it is defined by performing the physical execution.
The logical execution and the physical execution constitute both a global
model of the execution.

Observing the physical execution leads to logs that constitute the moni-
tored execution. We can create a reconstructed execution from the moni-
tored execution. If the reconstructed execution fulfills specific qualities with
respect to the logical execution, the reconstructed execution will constitute a
global model of the processing. The methodology we are looking for must
allow for generating reconstructed executions fulfilling these qualities.

56



4.1 Execution Models

4.1.1 Global Models

Global models describe how data is processed and by whom as asked for by
the Legal Requirement Exhaustiveness that we derived in Chapter 3. To this
end, a global model specifies the actions performed on the data item during
its lifespan. The lifespan of a data item ranges from the creation of its first
instance to the deletion of its last instance. During its lifespan a data item
may be involved in the execution of various business processes. The global
model specifies the parts of these processes where actions are performed on
the data. Each of the business processes may span multiple organizations and
so the global model. The global model implements contractual agreements.

4.1.2 Logical Execution

The execution of the global model can be specified by means of a labeled
transition system (cf. Definition 4.10). We call such a labeled transition
system, specifying the execution of the global model, the logical execution.
To formalize the logical execution, we have chosen colored Petri nets (see
Definition 4.1). A snippet depicting a logical execution modeled in DiALog
is shown in Figure 4.1.

Example 4.1: Example of a Logical Execution

Figure 4.1 shows a snippet of the logical execution performed on Jane Doe’s
health record as described in the scenario in Section 3.1. The snippet de-
picts the sharing of the health record between the Middle Rhine Hospital
and the University of Koblenz (step 5 and 6). The record (represented by
the token matching m) is stored in the database (databaseDB server) of
the database server of the Middle Rhine Hospital at the begin of step 5.
The first action performed on the health record is the creation of a copy
(copysharing) and has the purpose of sharing the record. The copy (rep-
resented by the token matching n) is created at the database management
system (DBMSDB server) also running on the database server. From there,
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Figure 4.1: Logical Execution.

the data instance is transfered (transfersharing) to the gateway Web ser-
vice (gateway WSWeb server) running on the Web server of the Middle
Rhine Hospital. The Web service de-identifies Jane Doe’s health record
(updateprepare sharing) with the purpose of preparing the sharing of the
record with the University of Koblenz. In step 6, the record is transfered
(transfersharing) from the gateway Web service of the Middle Rhine Hos-
pital to the storage Web service (storage WSstorage server) running on the
storage server of the Univeristy of Koblenz. To store the health record it
is transfered (transferstoring) to the database (databasestorage server) pro-
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vided by the storage server.

4.1.3 Physical Execution

Global models may exist in controlled environments (e.g. within one orga-
nization). If the global model is given, the actions performed on the data
during the execution can be monitored and audited by means of this model
(cf. [van der Aalst et al., 2008]). The global model supports the monitoring
of the data processing by predicting the single steps of the processing and
their order. The auditing is supported by the global model by providing a
formal model that can be used to verify the execution of a process.

The lack of process awareness of organizations as well as the recurring
processing of data items hamper the creation of a global model (cf. regard-
ing Issues in Section 3.4.1). The creation of a global model becomes even
harder considering the distribution of processes between various organiza-
tions, including the resulting Issue of Distributed Process Ownership.

A lot of information about the processing of the data may be lacking a
priori when the data is created and the processing starts. One reason is the
dynamic combination of workflows, as described by the Issue of Loosely-
coupled Architectures. Later, the processing of data items may continue after
the execution of all current and planned processes have ended (see Issue of
Loosely-coupled Architectures). Hence, in a dynamic and distributed envi-
ronment, it may be impossible to specify a global model.

In a Web environment, data is processed by Web services as well as other
Web applications or Web pages (e.g. Web forms). As part of the workflow
execution, entities (services, applications, etc.) call operations of other enti-
ties. We call this the physical execution of the workflow (see Figure 4.2 for
an example). Observing the processing of one specific data item during the
physical execution leads to a call history of all operations and methods that
have processed the data. The observation delivers traces of the data identify-
ing the organizations involved in the processing.
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Figure 4.2: Physical Execution.

Example 4.2: Example of a Physical Execution

Figure 4.2 depicts the physical execution of the fifth and sixth processing
step of our health care scenario. The figure shows the technical details of
the snippet of the processing that is also depicted as logical execution in
Figure 4.1.
The sharing of the health records starts at the University with the research
server requesting new health records from the storage server via the Web
service method getNewHealthRecords (call (1)). The Web service
queries the data base running on the same server by means of the database
API (call (2)). If no new record is found, the Web service calls the
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requestSharingOfHealthRecords (call (3)) operator of the gate-
way Web service provided by the Web server of the Middle Rhine Hospital.
After confirming the validity of the request, the gateway Web service for-
wards the request to the database server of the Middle Rhine Hospital using
a proprietary API provided by the database management system (call (4)).
The API reads the new health records from the database (call (5)) and re-
turns them to the gateway Web service as part of the answer of the API call
(call (4)). The gateway Web service prepares the health record for the trans-
fer and uses the SOAP response message of the request of the storage server
of the University of Koblenz (call (3)) to transfer the health records from
the hospital to the University. Finally, the health records are stored in the
database and transfered to the research server as part of the response of the
SOAP call of the getNewHealthRecords operator (call (1)).

4.1.4 Executed Subsystem

The physical execution implements the logical execution, if given. Without
logical execution, the physical execution can be carried out as long as each
actor has a local model of the execution. The local models constitute snip-
pets of the logical execution. Executing all snippets leads to the physical
execution. Hence, the physical execution will define the logical execution,
if the logical execution is not given. Concluding we can state that trough
the organizational and technical issues, aggravated by dynamic processes, it
may happen that none of the participating organizations and individuals will
neither know the complete logical nor the complete physical execution of the
process.

Processes may contain alternative execution paths and the actual path may
be selected at runtime. Thus, when the process execution is enacted, only a
subsystem of the logical execution may be involved in the actual execution
or in the processing of an observed piece of data. We call this subsystem the
executed subsystem of the logical execution (see Figure 4.3).
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Figure 4.3: Executed Subsystem of a Logical Execution.

Example 4.3: Example of an Executed Subsystem

Figure 4.3 depicts the example of Figure 4.1. In contrast to the example of
Figure 4.1 now only a subsystem of the process is executed.

A patient demands that her record must not be stored in a database of the
University of Koblenz. Thus, the storage server of the University of Koblenz
does not store the health record in its database.
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4.1.5 Monitored Execution

If the logical execution is unknown, its executed subsystem may still be re-
constructed by observing the physical execution of the process. Therefore
the physical execution have to be monitored including the actions the actors
perform on the data The monitoring leads to a log that specifies a trace (see
Definiton 4.9) of the execution. We call this log the monitored execution of
the workflow (see Figure 4.4). In Chapter 5, we introduce a logging mech-
anism capable to log the processing of pieces of data in distributed environ-
ments. If such a mechanism is not used and no continuous log generated, the
multiple distributed logs must be integrated to gain a combined monitored
execution. However, different runtime environments and logging standards
hamper the integration of different logs into one combined log.

Middle Rhine Hospital 
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Figure 4.4: Monitored Execution.

Example 4.4: Example of a Monitored Execution
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Figure 4.4 shows a monitored execution of the same snippet of our scenario
depicted by Example 4.1. The shown monitored execution makes use of the
algebraic syntax (see Definition 5.2) of the sticky logging mechanism, which
we introduce in Chapter 5. Each entry consists of a tuple (data, logentry),
where logentry is a sextuple consisting of the category of the performed
action, the actor, the entity receiving a transfered data instance, the purpose
of the action, the identifier of the action and the identifier of the preceding
action. The entries are numbered (i + 0 to i + 4). As a copy is created in
i+ 0, the example depicts the monitored execution of the processing of two
instances of the data item (record_JDoriginal and record_JDcopy_1).
In the example of Figure 4.4, the first entry depicts that the database
management system (databasemanagementsystemMRH ) running on the
database server hosted by the Middle Rhine Hospital creates a copy
(record_JDcopy_1) of Jane Doe’s health record (record_JDoriginal) from
the database (databaseMRH ). The copy is created at the database server it-
self. The purpose for copying the data instance is the sharing of the instance
for research purposes (sharing for research). The identifier of this action
is t0 and the identifier of the preceding actions is t−1.

4.1.6 Reconstructed Execution

A transition system modeling the executed path of the logical execution can
be derived from a monitored execution created by a monitoring mechanism,
which is capable to observe all required information (see Chapter 5). We call
this transition system the reconstructed execution (see Figure 4.5).

Example 4.5: Example of a Reconstructed Execution

In Figure 4.5 we depict a reconstructed execution of the executed subsys-
tem (see Figure 4.3) of the logical execution shown in Figure 4.1. We use
a labeled state-transition system to represent the reconstructed execution.
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Figure 4.5: Reconstructed Execution.

In difference to the logical execution (see Figure 4.1) the variables m and
n have been replaced by the specific data instance record_JDoriginal and
record_JDcopy_1. The labels of the transitions have been derived from the
category and purpose specified by the monitored execution. The labels of
the places have been taken from the entities specified by the monitored exe-

65



A Model for the Distributed Processing of Data

cution.

4.1.7 Relations Between Executions

Summarizing, the logical execution is a global model of the execution. It
defines the physical execution. If no logical execution is given, performing
the physical execution defines the logical execution at runtime. Logging the
physical execution leads to the monitored execution. Based on the monitored
execution, a model of the execution can be reconstructed resulting in the
reconstructed execution. The relationships between the different notions are
depicted in Figure 4.6.

defining 
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reconstructing 

Monitored 
Execution 

Logical 
Execution 

Reconstructed 
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Physical 
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Figure 4.6: Relation Between Executions.

The reconstructed execution could be used for auditing purposes if the
behavior specified by the reconstructed execution matches the behavior of
the logical execution and if the reconstructed execution models the complete
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behavior of the executed subsystem of the logical execution. We name the
quality of matching behaviors soundness and the quality of complete mod-
eling completeness. We require the soundness and completeness of recon-
structed executions to assure that statements derived from the reconstructed
execution also hold for the logical execution. Before we formalize sound-
ness and completeness by means of a graph morphism in Section 4.3, we
introduce the formal definition of DiALog in the following section.

4.2 A Formal Model for Distributed Auditing Logs

In this section, we introduce DiALog, a model of the distributed processing
of data in the Web. Defining DiAlog, we consider the Legal Requirement
Exhaustiveness we discussed in Chapter 3. In the following, we define the
structure of DiALog at the atomic level. The structure of DiAlog is designed
to formalize the structure of the process executed on the data. We discuss
the dynamics of DiALog, which define the sequence of the processing. We
define the soundness and completeness of reconstructed executions with re-
spect to logical executions in the following section.

4.2.1 Modeling Data Processing in Distributed Workflows

As a first step of defining DiALog, we have to choose a formalism suitable to
model the data processing in distributed workflows. One formalism we can
use to model the distributed processing of data items are state-transition sys-
tem. In state-transition systems, entities can be represented by states, while
actions performed on the data are modeled by transitions. Before we define
DiALog, we analyze a set of formalisms for state-transition systems such as
finite automaton, Petri nets [Peterson, 1981], and colored Petri nets [Jensen,
1992]. We have choose these, as using Petri nets and colored Petri nets
to model processes is an existing approach (e.g. [Narayanan and McIlraith,
2002]).
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The first formalism we analyze are finite automatons. Using finite automa-
ton we can model entities as states (Legal Requirement Identifiability) and
processing steps as state changes (Legal Requirement Exhaustiveness). How-
ever, finite automatons are not adequate for modeling parallel processing of
multiple data instances in one automaton. To model the parallel processing
we have to use multiple automatons, for each data instance one automaton.
As we require to make statements about the distribution of the data instances
at a certain point in time (Legal Requirement Identifiability), we are required
to link the state changes of the multiple automatons to each other. As such a
link is not defined for finite automatons we have chosen not to use them.

In Petri nets, we can model entities by means of places, processing steps
by means of transitions and data as tokens. By using multiple tokens, we
can model multiple data instances in one Petri net, and the distribution of
the tokens represents the distribution of data instances in a distributed pro-
cess. The Legal Requirement Exhaustiveness demands an exhaustive answer
that clearly identifies what has happened and when. Such an answer will be
feasible only if we use unique identifiers for data instances. The unique iden-
tification can be modeled by multiple Petri nets, one for each data instance.
The multiple Petri nets can be folded into one net. However, the folding
decreases the readability.

Instead of folding Petri nets, we can make use of colored Petri nets. Col-
ored Petri nets provide additional syntactical elements (cf. Section 2.2.2),
such as different colors (identifiers) for each token (data instance). So, we
can use colored Petri nets to model the distributed processing of multiple
data instances of one data item in one single net.

4.2.2 DiALog

In DiALog, we model the distributed processing of data items by colored
Petri nets. Even if a single colored Petri net can model the processing of
all data items of one data category with all data instances, we assume that
only the processing of one specific data item is modeled by one colored
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Petri. This restriction allows us for using one-dimensional indexes to address
data instances. It also improves the readability by a clear identification of
processed data instances. The modeling of all data items can be reached
by folding the colored Petri nets of these data items into one net and using
multi-dimensional indexes.

The atomic level of the defined structure of DiALog is able to model ac-
tions at the lower level implementations. The level of granularity of DiALog
can be freely chosen and thus allows for modeling on the required abstraction
levels. From the legal requirements (cf. Section 3.4) we derive the following
properties of distributed systems that require to be modeled:

• Actions: To meet the Legal Requirement Accessibility the process-
ing of data must be monitored. To monitor the processing, we log all
actions performed on the data. Different types of actions can be per-
formed and require different modeling (see below). All together we
distinguish the following six types of actions:

ActionTypes = {create, read, update, copy, transfer, delete}

• Actors: The Legal Requirement Identifiability postulates to log in-
formation about the service provider as well as about recipients and
sources of data. Thus, we model every actor that performs actions on
the data, that receives data, or that passes data on (e.g. a Web service
or a database).

• Data Instance: The Legal Requirement Exhaustiveness demands to
log which personal data is processed. During the execution of a pro-
cess, copy actions may occur that lead to multiple data instances of one
data item. Hence, the formalization must model each data instance and
all instances must be clearly identifiable.

We define DiALog to model the distributed processing of data instances
by means of colored Petri nets (cf. [Jensen, 1992] and Section 2.2.2).
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Definition 4.1: A Model for Distributed Auditing Logs

The distributed processing of one data item is modeled as a colored Petri net:

CPN = (Σ, P, T,A,N,C,G,E, I)

where:

– Places p ∈ P model actors.

– Transitions t ∈ T in combination with

– arcs a1, a2, .. ∈ A,

– arc expressions E(a1), E(a2), .., and

– the node function of these arcs N(a1), N(a2), .. model actions (or
combinations of actions).

– Tokens represent data instances and the color c ∈ Σ of these tokens
is an integer uniquely identifying the data instances.

– The value of the color function C(p) for the places is the integer type.

– The initialization function is ∀p ∈ P \ pc : I(p) = ∅ (pc models the
counter place, see below).

– The guard function for all transitions t ∈ T is G(t) = true if not
defined otherwise.

Arcs connect the transitions with the places where the actions are per-
formed. The arc expressions describe how data instances are moved. The
labels of transitions consist of the category of an action and its purpose (writ-
ten: categorypurpose).

The markings (without the token of the counter; the counter is introduced
below) represent the distribution of data instances of the observed data item
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in the process. Each data instance receives another, unique value allowing
for unique identification of the data instance. By using the integer value of
a token as unique identifier of the represented data instance, we are able to
clearly distinguish the single instances. Due to the statelessness of places,
additional information is needed to create new unique identifiers. To this
end, we use the counter that is modeled as part of the colored Petri net.
The counter is represented by the place pc, whose initialization function is
specified as: I(pc) = {1}

The following list describes how to model the different action types by
means of colored Petri nets. Each category of action has to be modeled by
a specific combination of places, arcs, node functions and arc expressions
as defined below. How to combine the actions to a complex process specifi-
cation is described in Section 4.2.3. We do not define a specific granularity
for modeling the data processing. DiALog allows for modeling at any detail
level (cf. Requirement Level of Granularity; e.g. a Web server may be mod-
eled as one entity or as several entities (Web services, DBMS, etc.)). Two
example models are depicted in Figure 4.13 and Figure 4.14. Both show
the same snippet of the processing of Jane Doe’s helath record, but with a
different granularity.

• Create action: The processing of a data item starts with the creation
of its first data instance (e.g. in the scenario, the health record is cre-
ated in step 1). In our model, we represent data instances by tokens
and the first token of a data item is generated by the create action.
Definition 4.2 specifies the subnet of a colored Petri net that models a
create action.

Definition 4.2: Create action as colored Petri net

Be CPN = (Σ, P, T,A,N,C,G,E, I) a colored Petri net and be
p ∈ P the place representing the entity creating the data instance. We
model create actions as:
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– a transition t ∈ T with

– guard function G(t) = [u = 1] and

– an arc a ∈ A with

– node function N(a) = (t, p) and

– arc expression E(a) = u, where u is declared as var u : N0.

Be pc ∈ P the place modeling the counter, t is connected to the
counter by two arcs ci, co ∈ A with

– the node functions N(ci) = (t, pc) and N(co) = (pc, t), and

– the arc expressions E(ci) = u+ 1 and E(co) = u.

As depicted in Figure 4.7, the create action is defined as a transition
t with three arcs (two outgoing and one incoming). One arc a leads
from the transition to the place p representing the actor where the data
item is created. The arc co is connected with the place pc (the place
modeling the counter). The transition t is protected by a guard func-
tion [u = 1], which is used to control whether the counter is set to 1.
If the counter is set to 1, no instance of the considered data item will
have been created before and the transition can still occur. The arc ci
is used to set the counter to 2, which will be the identifier of the first
copy. If the counter is set to 2 or higher, there will already be at least
one instance of the data item. In this case, the first instance of the data
item can not be created anymore and the guard function prevents the
enabling of the transition.

• Copy action: During the execution of a workflow, additional data in-
stances may be created through copying. Whenever someone accesses
the health record stored in the database of the Middle Rhine Hospi-
tal, a copy is created (cf. steps 2, 3, 4, and 5 of the scenario). In our
model, each copy action generates a new data instance represented by
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Figure 4.7: Creating the first data instances.

an additional token. Definition 4.3 defines how to model a copy action
by means of colored Petri net. The colored Petri net is depicted in
Figure 4.8.

Definition 4.3: Copy action as colored Petri net

BeCPN = (Σ, P, T,A,N,C,G,E, I) a colored Petri net, be ps ∈ P
the place representing the entity copying the data instance, and be pd ∈
P the place representing the entity where the new token is created. We
model copy actions as:

– a transition t ∈ T and

– three arcs ai, ao, ad ∈ A with

– node functions N(ai) = (ps, t), N(ao) = (t, ps), and N(ad) =
(t, pd) and with
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– arc expressions E(ai) = u and E(ao) = u, where u is de-
clared as var u : N0, and E(ad) = v, where v is declared
as var v : N0.

Be pc ∈ P the place modeling the counter, t is connected to the
counter by two arcs ci, co ∈ A with

– the node functions N(ci) = (t, pc) and N(co) = (pc, t), and

– the arc expressions E(ci) = v+ 1 and E(co) = v, where v is the
same variable as in the arc expression E(ad).

As depicted in Figure 4.8 we define the copy action as a transition t
with five arcs. Two arcs ai and ao lead to and from the place ps that
represents the actor performing the copy action. One arc ad leads from
the transition to the place pd representing the actor where the new data
instance is created. The Actor performing the copy action (ps) and the
actor where the copy is created (pd) may be different places but can
also be the same place. Likewise to the create action, the additional
two arcs ci and co are connected with the place pc used to count the
creations of data instances. The current value of the counter is used as
identifier of the new data instance. After the new instance is created
the counter is increased. As the transition has an incoming arc (ai), a
data instance must exist before the copy can be created. Hence, it is
not necessary to checked whether the counter token has a value greater
1.

• Read action: Reading information from a data instance changes nei-
ther its content nor its location (e.g. the health record of Jane Doe
is read by a researcher of the University of Koblenz in step 7 of the
scenario). The modeling of the read action must respect these cir-
cumstances. We model read actions in DiALog as specified in Defini-
tion 4.4.
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Figure 4.8: Copying of data instances.

Definition 4.4: Read action as colored Petri net

Be CPN = (Σ, P, T,A,N,C,G,E, I) a colored Petri net and be
p ∈ P the place representing the entity reading the data instance. We
model read actions as:

– a transition t ∈ T and

– two arcs ai, ao ∈ A with

– node functions N(ai) = (p, t) and N(ao) = (t, p) and

– arc expressions E(ai) = u and E(ao) = u, where u is declared
as var u : N0.

Figure 4.9 depicts the modeling of a read action as a transition t with
two arcs ai and ao leading to and from the place p that represents the
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actor performing the read action.

read 

t p 

u 

u 

Figure 4.9: Reading data instances.

• Update action: Updating a data instance changes its content, as de-
picted in step 5 of the scenario where the health record is de-identified
before it is shared. Performing an update action does not change the
location of the data instance. The presented formalization does not
distinguish whether the content of a data instance has been changed or
not (such information can be modeled by means of versioning systems
like SVN 1). Hence, the formal representation of update actions is the
same as of read actions. Definition 4.5 defines how to model an update
action by means of colored Petri nets in DiALog.

Definition 4.5: Update action as colored Petri net

Be CPN = (Σ, P, T,A,N,C,G,E, I) a colored Petri net and be
p ∈ P the place representing the entity updating the data instance. We
model update actions as:

– a transition t ∈ T and

– two arcs ai, ao ∈ A with

1http://subversion.tigris.org/, retrieved Feb 8th, 2011
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– node functions N(ai) = (p, t) and N(ao) = (t, p) and

– arc expressions E(ai) = u and E(ao) = u, where u is declared
as var u : N0.

Analogously to the read action, we model the update action as a tran-
sition t with two arcs ai and ao leading to and from the place p that
represents the actor performing the update action (see Figure 4.10).

update 

t p 

u 

u 

Figure 4.10: Updating data instances.

• Delete action: The processing of a data instance ends with its dele-
tion. In the scenario, the University of Koblenz deletes its copy of
Jane Doe’s health record after finishing its research. The copies of the
Middle Rhine Hospital still exist and thus the data item. The token
representing the data instance is removed, when the data instance is
deleted.

Definition 4.6: Delete action as colored Petri net

Be CPN = (Σ, P, T,A,N,C,G,E, I) a colored Petri net and be
p ∈ P the place representing the entity deleting the data instance. We
model delete actions as:

– a transition t ∈ T and
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– an arc a ∈ A with

– node function N(a) = (p, t) and

– arc expressions E(a) = u, where u is declared as
var u : N0.

As depicted in Figure 4.11 we model the delete action as one arc a
leading from the place p (the actor deleting the data instance) to a
transition t that has no outgoing arc. As it has no outgoing arc, the
transition t ‘consumes’ the token. Deleting one data instance does not
imply the deletion of all instances of a data item. A data item exists as
long as one data instance of the data item exists. A data item will be
deleted as soon as all instances have been deleted.

delete 

t p 
u 

Figure 4.11: Deleting data instances.

• Transfer action: Whenever a data instance is transferred from one ac-
tor to another, the associated token must also be transferred. The sce-
nario depicts many kinds of transfers between different systems (e.g.
the database server and the workstation in step 1), between different
applications (e.g. the database API and the database management sys-
tem in step 1), and between different actors (e.g. the Middle Rhine
Hospital and the University of Koblenz in step 6). Definition 4.7 de-
fines how to model a transfer action in DiALog.
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Definition 4.7: Transfer action as colored Petri net

Be CPN = (Σ, P, T,A,N,C,G,E, I) a colored Petri net, be ps ∈
P the place representing the entity sending the data instance, and be
pr ∈ P the place representing the entity receiving the data instance.
We model transfer actions as:

– a transitions t ∈ T and

– two arcs as, ar ∈ A with

– the node functions N(as) = (ps, t) and N(ar) = (t, pr) and

– the arc expressions E(as) = u and E(ar) = u, where u is de-
clared as var u : N0.

As depicted in Figure 4.12, we model the transfer action as a transi-
tion t with two arcs as and ar. The arc as leads from the place ps
to the transition t. The place ps represents the actor sending the data
instance. The second arc ar leads from the transition to the place pr,
which represents the receiving entity. During the transfer the data in-
stance and thus the value of the token remains unchanged.

u 

transfer 

t pr ps 
u 

Figure 4.12: Transferring data instances.
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4.2.3 Building Rules

To model the logical execution, the above actions are combined by merging
the subnets defining the single actions to one combined colored Petri net.
The combination must adhere to the following rules:

• Only the above defined subnets may be used and no additional ele-
ments (e.g. transitions) are allowed.

Using colored Petri nets to model complex processes, one has more
possibilities than using the elements defined by DiALog. To adhere
to the requirements defined in Chapter 3, the model of the distributed
processing of data must hold certain qualities, such as the clear iden-
tification of processing steps, of entities and of the processed data (cf.
Legal Requirement Exhaustiveness and Legal Requirement Identifia-
bility). Adding arbitrary elements of colored Petri nets may lead to
various mistakes, e.g. by adding additional transitions and arcs, iden-
tifiers may be changed or copies of data instances may be created,
which do not have unique identifiers. Using only the pre-defined el-
ements of DiALog guarantees that the requirements are met and no
mistakes are made.

• The subnets are connected by means of the places that model the dif-
ferent involved entities (not the counter place).

By modeling entities as places in DiAlog, we can reconstruct the dis-
tribution of the data instances. As actions can only be performed by
actors possessing the data, the transitions modeling these actions must
be connected to the places modeling the performing actors (cf. Legal
Requirement Identifiability).

• Each model contains only one counter, which is shared by the create
action and all copy actions, for generating unique data instance.

As the identifier used in our model must be unique for clear identifi-
cation (see the Legal Requirement Exhaustiveness), the counter place
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needs to generate such unique identifiers. If there is more than one
counter, there will be no guarantee for the generation of unique identi-
fiers. Hence, only one counter is allowed, which is not only connected
with the create action but also with all copy actions.

Example 4.6: Different Models of the Health Care Scenario

During the admission of Jane Doe her health record is created by a mem-
ber of the medical staff (create action) at a workstation of the Mid-
dle Rhine Hospital. The purpose of the creation of the health record is the
treatment of Jane Doe. After the creation the health record is shown to a
staff member (read action) who enters the personal information of Jane
Doe into the record (update action). The first step of the processing
ends with storing of the health record. To this end, the health record is first
transfered to the server component of the administration software running
on the Administration Server (transfer action). As the administra-
tion software has no direct access to the database, the software transfers the
record to the API provided by the Database server to store the record in the
database (transfer action). The database API itself access directly
the database (transfer action) where the record is stored. The pur-
pose of the transfer actions is the storing of the health record. Figure 4.13
shows a detailed model of the complete processing of Jane Doe’s health
record as described in Section 3.1 (to increase readability the figure does
not contain the counter place). Figure 4.14 depicts the same process with
another level of granularity where the Middle Rhine Hospital and the Uni-
versity of Koblenz are modeled as a single entity each.

4.2.4 Interaction between Data Instances

Each colored Petri net models the processing of exactly one data item. The
processing of a data instances may interact with the processing of other data
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Figure 4.13: DiALog model of the processing of Jane Doe’s health record.
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Figure 4.14: Less detailed model of the processing of Jane Doe’s health
record.

instances, also with data instances of other data items. Different kinds of
interactions can be distinguished, depending on the effect of the interaction
on the involved data instances:

1. The interaction has no effect on the involved data instances. For in-
stance, reading two health records to compare their content as part of
the research performed by the University of Koblenz has no effect on
the health records. In this case, no special modeling is required. Each
action (e.g. read action) is modeled in the colored Petri net of the data
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instance the action is performed on.

2. The interaction leads to the creation, update, or deletion of one or
more of the involved data instances. For instance, Jane Doe’s health
record is checked regarding as to her dietary regiment. So that, the
hospital’s food service updates its list of meals to cook. The modeling
of the interaction is implicit as the processing of the involved data
instances are modeled in the colored Petri net of the corresponding
data items (in the case of a create action, a new colored Petri net must
be created). The connection between both processes may be modeled
only by the purposes of the single actions.

3. The interaction leads to the merger of two (or more) data instances.
For instance, for research purposes the health records of different pa-
tients are aggregated to one big data set. The modeling is done implic-
itly. Merging of data instances leads to the deletion of the instances
and the creation of a new, additional data instance which is the re-
sult of the merge. If data instances are merged into a persistent data
instance, the persistent data instance will be updated while the other
ones will be deleted.

As in all three cases the modeling of the interaction is done implicitly,
some sorts of annotations (e.g. by the label of the transitions modeling the ac-
tions) can be used to represent the connection between the processing steps.
However, the connections are not modeled explicitly as they do not influence
the processing of the single data items.

4.2.5 Representation of Data Processing

In colored Petri nets a marking is the distribution of tokens in the net. In
DiALog, the markings represent the distribution of instances of one data
item. Each marking represents one state of an execution of a distributed
workflow. The occurrence of a transition leads from one state of the colored
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Petri net to another. Because transitions with their arcs are used to model
actions, the occurrence of a transition (also defined as step, cf. Definition 2.6)
represents an action. And the change of the marking represent the change of
the distribution of data instances.

Definition 4.8: Process Execution

We define the execution of a process as the occurrence of steps Y ∗ in the
colored Petri net.

The whole processing is a partially ordered set of steps due to parallel
paths of the workflow. We define such a partial order of steps as a trace.

Definition 4.9: Processing Trace

Be W a (distributed) workflow modeled by means of a colored Petri net, we
define a trace t of the processing of a data item as a partial order of occurring
steps Y ∗.

The monitored execution is a processing trace of the logical execution.

4.3 Qualities of Execution Models

In Section 4.1, we have indicated that a reconstructed execution can be used
for auditing purposes instead of a global model. To this end, the recon-
structed execution must be complete and sound with respect to the actually
executed subsystem of the logical execution. Both, the logical execution as
well as the reconstructed execution are labeled transition systems. We define
a labeled transition system as common:

Definition 4.10: Labeled Transition Systems

A labeled transition system is a triple
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(P,∆,→)

where P is the set of places, ∆ is the set of labels, and→⊆ P ×∆ × P is
the transition relation.

As only parts of the logical execution may be executed, we require to
consider the executed subsystem for the definition of soundness. We define
a subsystem of a labeled transition system as follows:

Definition 4.11: Subsystems of Labeled Transition Systems:

We define a subsystem of a labeled transition system (PT ,∆T ,→T ) as a
triple

(PS ,∆S ,→S)

where PS ⊆ PT , ∆S ⊆ ∆T , and →S ⊆ →T with the following stability
property: (x, δ, x′) ∈ →S with x, x′ ∈ PT and δ ∈ ∆T implies x, x′ ∈ PS
and δ ∈ ∆S .

Based on the definition of a labeled transition system and its subsystems
we are now able to define the soundness and completeness of reconstructed
executions.

4.3.1 Soundness Quality

We define soundness of a reconstructed execution to express that the be-
havior of the reconstructed execution matches the behavior of the logical
execution. The behavior of the reconstructed execution will match if a simu-
lation relation between the reconstructed execution and the logical execution
exists.
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A simulation is a binary relation defining matching behavior of transition
systems (cf. [Kucera and Mayr, 1999]). A first transition system will simu-
late a second transition system if the first system can match all of the state
changes of the second system.

Definition 4.12: Soundness of Reconstructed Executions

Given a logical execution L and a monitored execution M , a reconstructed
execution R generated from M is sound with respect to L, if their exists a
simulation Φ so that for all elements r ∈ R there exists an element l ∈ L so
that (r, l) ∈ Φ.

Because the reconstructed execution should match the behavior of the ex-
ecuted subsystem of the logical execution, for each element r of the recon-
structed execution an element l of the executed subsystem is required so that
(r, l) is an element of the simulation relation. Figure 4.15 depicts the sound-
ness relation between a logical execution and the reconstructed execution.
The dashed arrows between the elements of the reconstructed execution and
the logical execution depict the simulation relation between the two models.

4.3.2 Completeness Quality

We define completeness of a reconstructed execution to express that the re-
constructed execution models the complete behavior of the executed subsys-
tem of the logical execution. The reconstructed execution will model the
complete behavior, if a simulation relation between the executed subsystem
of the logical execution and the reconstructed execution exists.

Definition 4.13: Completeness of Reconstructed Executions

Given a logical execution L and a monitored execution M , a reconstructed
execution R generated from M is complete with respect to the executed
subsystem S of L, if their exists a simulation Φ so that for all elements
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Figure 4.15: Soundness of a Reconstructed Execution.

s ∈ S there exists an element r ∈ R so that (s, r) ∈ Φ.

For each element s of the executed subsystem an element r of the re-
constructed execution is required so that (s, r) is an element of the simu-
lation relation. Figure 4.15 depicts the completeness relation between an
executed subsystem of a logical execution and the reconstructed execution.
The dashed arrows between the elements depict the simulation relation be-
tween the executed subsystem of the logical execution and the reconstructed
execution.
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Figure 4.16: Completeness of a Reconstructed Execution.

4.3.3 Generation of Sound and Complete Reconstructed
Executions

At the beginning of this chapter we have indicated that reconstructed exe-
cutions are generated after the execution of the workflow and are used for
auditing purposes instead of the global model. Hence, it is a requirement
for the utilized monitoring mechanism to generate sound and complete re-
constructed executions. We discuss this for the sticky logging mechanism in
Section 5.2.

4.4 Related Work

Other work identifying the need for logging data usage in distributed en-
vironments is presented in [Weitzner et al., 2008]. The authors analyze that
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access restrictions are not sufficient to achieve policy goals, because in many
environments it cannot be guaranteed that a specific agent has no access to a
certain piece of information. The authors demand transparency of informa-
tion usage to enable accountability, but they do not present a solution.

In [Barth et al., 2007], the authors present a logic to specify and verify pri-
vacy and utility goals of business processes in non-distributed environments.
The approach does not observe the processing of specific data items in dis-
tributed environments. Instead, they observe only the data communication
by one single agent.

In the area of process mining, Petri nets are used to represent workflows.
The approach presented in [van der Aalst, 1998] models processes as activity
flows. This approach is extended by the work of [van der Aalst et al., 2004]
which additionally models the control flow including data dependencies. As
these approaches are designed to model activity and control flows, they are
not designed to represent the distributed processing of specific data items.

In [van der Aalst et al., 2008] the authors present an approach to use mes-
sage logs and BPEL specifications [Jordan et al., 2007] for conformance
checking of service behavior. In difference to our work, they assume that
a global model of the observed services is given by the BPEL specifica-
tion. The authors of [Aldeco-Perez and Moreau, 2008] and [Aldeco-Pérez
and Moreau, 2010] present an architecture for auditing private data in IT-
Systems by collecting provenance information. Their architecture is also
based on requirements specified by privacy laws, but does not provide a for-
mal specification of the data processing. Compliance of business process
models with object life cycles is addressed in [Küster et al., 2007]. The
introduced approach provides a formal method to generate process models
that are compliant with reference object life cycles. This approach does not
provide a model of the distributed data processing.

The authors of [Cederquist et al., 2005] propose to use an auditing mech-
anism to achieve accountability in distributed environments. The auditing is
done based on policies and logged actions, conditions and obligations. The
logs are assigned to agents performing the actions. Neither a mechanism is

90



4.5 Summary

provided to make the logs accessible to the service customer nor they provide
a formal model of the data processing.

To specify processes, we can use not only Petri nets, but different sorts of
formalisms. Process calculi and process algebras are a family of approaches
providing a formal semantics to specify processes and concurrent systems.
The work presented in [Bekić, 1984] is one of the first works introducing
a notion of action that can be used to specify the parallel execution of pro-
cesses. The calculus of communicating systems (CSS) [Milner, 1980], the
algebra of communicating processes (ACP) [Bergstra and Klop, 1984] and
the calculus of mobile processes (π-calculus) [Milner et al., 1992] are three
widespread extensions. Instead of colored Petri nets, we could also have
used a process algebra to specify DiALog.

The Unified Modeling Language [Object Management Group, 2010] sup-
ports various sorts of charts to model workflows, such as activity charts and
state charts. UML differs from Petri nets and process algebras by provid-
ing a graphical notation without formal semantics. A graphical specifica-
tion of processes is supported by the Business Process Modeling Notation
(BPMN) [Object Management Group, 2011]. BPMN is used to design busi-
ness processes and can be translated to BPEL specifications. The Business
Process Execution Language (BPEL) [Jordan et al., 2007] provides an exe-
cution language for Web services in business processes.

A different approach to distributed data processing is presented by the au-
thors of [Ludäscher et al., 2006]. They introduce Kepler, which is a scientific
workflow system for grids. The users are able to manage the data processing
by this system. Kepler does not consider multiple responsible entities and
that data may be processed in other workflows than originally planned.

4.5 Summary

To be able to audit the processing of a data item in a distributed environ-
ment, a global model of the execution is required. As such a global model
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is most often missing, we need a formal method enabling us to still audit the
distributed processing of data. This method has to be data-centric to be able
to trace the processing of a data item independent of business processes, ap-
plications and performed actions. It has to support distributed environments
to trace the processing across different execution environments and among
multiple organizations. Existing methods do either not consider distributed
environments or they do focus on agents or communication but not on gen-
eral processing of single data items and all their instances. In this chapter,
we have introduced DiALog, Distributed Auditing Logs. With DiALog, we
provide a mean to audit the processing of data items and their instances in
distributed environments.

DiALog is a formal model based on colored Petri nets. Before we have
specified DiALog, we defined different execution models and specified the
relations between the single models. With DiALog, we specify elements to
be used to model the logical execution as well as the reconstructed execution
of the data processing.

As a global model and the model of the logical execution is lacking in
distributed environments, we defined the soundness and completeness of the
derivation of the reconstructed execution. By means of these qualities, we
can verify whether a logging mechanism can generate reconstructed execu-
tions that can be used for auditing purposes instead of the missing global
model. In the following chapter, we introduce sticky logging, a logging
mechanism able to generate reconstructed executions. We also verify that
it fulfills the soundness and completeness qualities.

We confirm Hypothesis 1 through DiALog as it provides a formal model
for distributed data processing based on which we define the soundness and
completeness qualities of reconstructed executions. We have published the
presented work at the International Conference on Web Services [Ringelstein
and Staab, 2009] and in the Journal of Web Service Research [Ringelstein
and Staab, 2010a].
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Processing of Data

DiALog serves as a formal method for auditing the distributed processing of
data. To generate a monitored execution that can serve as input to generate
sound and complete reconstructed executions, a monitoring mechanisms is
required that overcomes the organizational and technical issues we identified
in Chapter 3. These issues are the Issue of Loosely-coupled Architectures, the
Issue of Lack of Process Awareness, the Issue of Recurring Processing, and
the Issue of Distributed Process Ownership. To collect the needed prove-
nance information, we require a distributed mechanism for logging in dis-
tributed environments. Existing logging mechanisms, such as the Extended
Log File Format [Hallam-Baker and Behlendorf, 1996] or syslog [Lonvick,
2001], are not sufficient to gain a full overview of a workflow that is dis-
tributed among multiple organizations. The main causes are the logging in
single execution environments, the diversity of execution environments and
the lack of standardized interfaces for exchanging logs. Because of these,
aggregating distributed logs remains a challenge. Our hypothesis is that a
distributed, data-centric logging mechanism is able to collect the relevant
information and to provide a sound and complete reconstruction of the pro-
cessing.

In the following, we present sticky logging. Sticky logging monitors the
processing of data items (independent of the actual business process) at-
taching the logs directly to the processed data as metadata. Furthermore,
sticky logging allows for the reconstruction of how the data was processed
by whom and why. The sticky logging mechanism defines a mathematical
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structure, it specifies a set of logging operations and algorithms based on this
structure, and it defines a logging ontology.

The basic idea of sticky logging is to attach the log directly to the data
as metadata. Thereby, the log is transferred together with the data along the
processing path whenever the data is transferred. In a service-oriented archi-
tecture, the log is passed as part of a service call. To be able to observe the
data processing and to manage the passing of logs, the sticky logging mecha-
nism is a layer between the execution environment (e.g. JBoss) and business
software (e.g. Web services). The log is returned to the service consumer
after the processing making the log accessible to the person concerned.

To introduce the sticky logging mechanism, we discuss the mathematical
structure of its logs, its several operations describing how to log as well as
when a log needs to be transferred to whom, and its method to generate the
reconstructed execution in Section 5.1. In Section 5.2, we prove that sticky
logging can be used for the generation of sound and complete reconstructed
executions. We specify the sticky logging ontology and give a description of
a prototype implementation of the sticky logging middleware in Section 5.3.
In this section, we also sketch how the sticky logging mechanism is used to
inform the person concerned and we discuss a mechanism for restricting the
access to the logs.

5.1 A Formal Method for Sticky Logging

The formal method of the sticky logging mechanism consists of three parts.
A data structure specifies sticky logs including log entries, an algorithm de-
scribes how to monitor the execution and another algorithm defines how to
reconstruct a DiALog model from a sticky log.

5.1.1 The Data Structure of Sticky Logs

Fundamental for sticky logging is that a log Λ is attached to the correspond-
ing data instance d. Each log is connected with a token that represents a data
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instance in DiALog, as specified in Chapter 4. A log is a partially ordered set
of log entries λ. The log entries are used to record the performed actions on
d. In DiAlog, the performance of an action is represented by the occurrence
of the transitions representing the actions. The data about an action consists
of the category χ of the action, the performing actor α (i.e. the corresponding
place), the receiving actor β of a transfer action (β = ε, if it is not a transfer
or copy action), and the set of purposes Ψ of the action. To achieve the par-
tial order of the actions, a unique identifier id is assigned to each action and
the preceding action is linked by its identifier pid. We define a log entry of a
sticky log by means of the following data structure:

Definition 5.1: Data Structure of Log Entries of Sticky Logs

A log entry λ is a sextuple (χ, α, β,Ψ, id, pid) where:

• χ is the category of the action,

• α is the performing actor,

• β is the actor receiving a transferred or copied data instance,

• Ψ is a set of purposes of the performance,

• id is the unique identifier of the action, and

• pid is the unique identifier of the preceding action.

Using this definition we define a sticky log by the following data structure:

Definition 5.2: Data Structure of Sticky Logs:

A sticky log m is a tuple (d,Λ) where:

• d is a data instance and
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• Λ is the set of all log entries λ that are related to d.

5.1.2 Logging the Execution

To log the processing, the logging mechanism needs to perform certain op-
erations whenever a transition occurs (see Table 5.1). If the transition rep-
resents a create or copy action, a new log will be created. If the transition
models a transfer action, the log will be transferred together with the data
instance.

The processing of an instance ends with its deletion, without deleting the
sticky log. Instead the log is returned to the actor with the source data in-
stance. The actor and the source data instance are identified by references
specified during the copying of the data. The returned log is merged with the
log of the source instance. After merging the logs, all references contained
in logs of copies of the deleted data instance have to be updated to refer to
the merged sticky log. If the deleted instance is the last instance of a specific
data item, the log will be returned directly to the person or organization that
initially created the first instance of the data. This person or organization is
responsible for answering information requests by the person concerned.

The occurrence of any action requires the extension of the log by a log
entry monitoring the action (see Table 5.1). In this section, we present a
mathematical operation defining the creation of the log entries and the up-
dates to the set of all sticky logs when an action occurs. The set of all sticky
logs contains the logs associated with all instances of the observed data item.
A log may contain the processing of more than one data instance, such as the
result of a deletion of an instance and the merge of the log with the log of the
origin data instance. Listing 5.1 depicts the logging operation describing the
capability of the sticky logging mechanism.

The input of the operation is the set of all sticky logs M associated with
the observed data item, the occurred transition t, the arc expressions E(ai)
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Table 5.1: Operations of the Sticky Logging Mechanism.
Performed Action Logging Operation

Creation of the first 1) Creating a new sticky log Λd.
data instance d. 2) Attaching the log Λd to the created data instance d.

3) Creating a log entry λd,1 about the creation of the data
instance.

4) Adding the log entry λd,1 to the sticky log Λd.
Creating a copy c 1) Creating a log entry λd,n about the copying of the data
of d. instance.

2) Creating a new sticky log Λc.
3) Attaching the log Λc to the created data instance c.
4) Creating a log entry λc,1 about the creation of the

copy c.
5) Referring the log entries λd,n and λc,1 to each other.
6) Adding the log entry λd,n to the sticky log Λd.
7) Adding the log entry λc,1 to the sticky log Λc.

Reading, updating 1) Creating a log entry λd,n about the performed action.
or transferring d. 2) Adding the log entry λd,n to the sticky log Λd.
Deleting d. 1) Creating a log entry λd,n about the deletion of the data
(not the last instance.
data instance.) 2) Adding the log entry λd,n to the sticky log Λd.

3) Identifying another data instance e of the data item by
using a reference (of a copy action) in Λd.

4) Merging the logs Λd and Λe by adding all log entries
of Λd to Λe.

5) Updating all references in other logs pointing to Λd to
point to Λe.

Deleting of the last 1) Creating a log entry λd,n about the deletion of the data
data instance d. instance.

2) Adding the log entry λd,n to the sticky log Λd.
3) Returning Λd to the owner of the data item (e.g. the

person concerned).
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of the input arc, and the places involved in the action p, ps, pd, and/or pr
(depending on the category of action). If the action is a copy action, the arc
expression E(ao) of the output arc leading to pd is also required. The log
entry λd (and λc of copy actions) is added to the sticky log md (respectively
mc) of the associated data instance d (respectively c). The output is the set
of all sticky logs including the updated sticky log md (and mc).

As DiALog does not define a specific level of detail for observing the pro-
cessing, the sticky logging mechanism does also not define a specific level
of detail. Depending on the required or desired detail level, an entity may
be a software, a server or workstation as well as a person or a organizational
entity, etc. Analogously, data items may be single words in an address, the
full address or a text document containing the address. Any granularity can
be used as required by contracts or laws. The specific level must be chosen
whenever the sticky logging implementation is used (see Section 5.3.3).

Listing 5.1: Logging operator to log actions:

The input is the set of sticky logs and the elements of the logical execution
modeling the performed action.

01 INPUT: M: set of sticky_logs,
t: transition,
E(ai): arc_expression,
E(ao): arc_expression,
p: place,
ps: place,
pd: place,
pr: place;

The logical execution models data instances as tokens. When a transition
occurs the value of the token is assigned to the variable n by the arc ex-
pression E(ai) of the input arc. The value of a token uniquely identifies the
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data instance. If the identifier in the monitored execution is based on this
value, the data instance will also be uniquely identifiable in the monitored
execution. The arc expression is evaluated and the identified data instance
is assigned to d:

02 data_instance d =
getDataInstance(E(ai).evaluateExpression());

The logical execution models the category as label (without index) of the
transition. The category of the action is assigned to χ:

03 category χ = t.getCategory();

The copy action is special, because two data instances are involved. These
are the source instance and the newly created data instance. We need to
identify the newly created data instance. Analogously to the arc expression
E(ai), the arc expression E(ao) is used to identify the newly created in-
stance.

04 if (χ == "copy")
05 data_instance created_d =

getDataInstance(E(ao).evaluateExpression());

The logical execution models actors as labels of places p. Depending on the
category of an action two actors may be involved, which are assigned to α
and β. Transfer actions involve two actors: the sender ps and the receiver
pr. In copy actions, the two actors, the source ps and the destination pd, are
involved. All other actions involve only one actor.

06 if (χ == "transfer")
07 actor α = ps.getActor();
08 actor β = pr.getActor();
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09 else
10 if (χ == "copy")
11 actor α = ps.getActor();
12 actor β = pd.getActor();

13 else
14 actor α = p.getActor();
15 actor β = ε;

The purpose is encoded as index of the label of the occurring transition t.

16 action_purpose Ψ = t.getLabel().getIndex();

An identifier of the action as well as an identifier of the preceding action
needs to be logged to achieve an order of actions. Each identifier is required
to be unique.

17 action_identifier id = createUniqueId();
18 action_identifier pid =

getIdOfLastLogEntryOf(d);

After retrieving the information about the processing the log entry is created.
If the action is a copy action, a second log entry for the newly created data
instance will be created, too.

19 log_entry λ1 = (χ, α, β, Ψ, id, pid);
20 if (χ == "copy")
21 log_entry λ2 = (χ, α, β, Ψ, id, null);

Finally, the log entries are added to the associated sticky logs. Then the set
of all sticky logs is updated and returned.
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22 sticky_log m1 = M.getStickyLogOf(d);
23 set_of_log_entries Λ1 =

m1.getSetOfLogEntries();
24 M.updateStickyLog(d, Λ1 ∪ {λ1});
25 if (χ == "copy")
26 sticky_log m2 =

M.getStickyLogOf(created_d);
27 set_of_log_entries Λ2 =

m2.getSetOfLogEntries();
28 M.updateStickyLog(created_d, Λ2 ∪ {λ2});

29 OUPUT: M;

If the person concerned requests information before the processing ends,
the current log will need to be received. One can receive the current log
by forwarding a request to all actors that processed copies of the data item.
The forwarding can be done following the same paths as the copied data
instances. Then the logs are returned and merged. The following example
depicts a log entry generated by the sticky logging mechanism.

Example 5.1: A Log Entry generated by the Sticky Logging Mechanism.

In step 6 of our scenario (see Section 3.1), the health record of Jane Doe is
transferred from the Middle Rhine Hospital (α = MRH) to the University
of Koblenz (β = UKOB). The data instance d of the health record, which is
transferred, has the identifier record_JDcopy_1. To log the action t4 the hos-
pital creates a log entry describing the action by its category χ = transfer,
the involved actors α and β, as well as the purpose Ψ of sharing the record
for research. The log entry is then added to the log Λ. Finally, the hospital
connects Λ with the data instance d:
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(record_JDcopy_1, {(′transfer′, MRH, UKOB,
′sharing for research′, t4, t3)})

5.1.3 Reconstructing the Execution

Based on the information logged by the sticky logging mechanism, a transi-
tion system modeling the processing of one data item can be reconstructed.
The reconstruction of the transition system can be done by using the infor-
mation contained in the above-introduced data structure. Listing 5.2 depicts
the reconstruction operation for a log entry.

The reconstruction takes the set of all sticky logs M of one data item as
input and creates a colored Petri net, which models the actors involved in
the processing and actions performed on the data. Each sticky log m of the
set of all sticky logs M is selected and the corresponding places, transitions,
arcs, and node functions are specified.

Listing 5.2 depicts an algorithm implementing the mathematical operation
describing the reconstruction of one log entry. The input of the operation
is the log entry in combination with the already reconstructed parts of the
colored Petri net modeling the reconstructed execution. Not the complete
colored Petri net, but only the required information is passed. The required
information is the sets of places, the set of transitions, and the set of arcs
as well as the node function. The output is the extended part of the colored
Petri net modeling the processed log entry.

Listing 5.2: Reconstructing operation

The Input is the log entry and the sets of already reconstructed places P ,
transitions T , arcs A, and the node function N .

01 INPUT: λ: log_entry,
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P: set of places,
T: set of transitions,
A: set of arcs,
N: node_function;

The first step of the reconstruction is the creation of the places pi and po for
the involved actors. The actors are specified by α and β of the log entry λ.
Each place represents a certain actor. The actors are distinguished by the
unique identifier of the actors, as defined by the monitored execution. The
reconstructed places are added to the set of places.

02 get α from λ;
03 place pα = createPlaceModeling(α);
04 P = P ∪ {pα};

05 get β from λ;
06 if (β != ε)
07 place pβ = createPlaceModeling(β);
08 P = P ∪ {pβ};
09 else
10 place pβ = pα;

Then a transition t modeling the logged action is reconstructed and added
to the set of transitions T . For actions which occur multiple times only one
transition is created. Actions are identical, if their input places, their out-
put places, their category, and their purposes are the same. The action is
identified in the log entry by the value of id, which uniquely identifies the
transition.

11 get id from λ;
12 transition t = createTransitionModeling(id);
13 T = T ∪ {id};
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For the transition the input and output arcs ai and ao are created and added
to the set of arcs A. The node functions of these arcs N(ai) and N(ao) are
defined as N(ai) = (pi, t) and N(ao) = (t, po). In the case that β = ε, α
specifies pi and po of the transition.

14 arc ai = createArc();
15 arc ao = createArc();
16 A = A ∪ {ai, ao}
17 N(ai) = (pα, t)
18 N(ao) = (t, pβ)

Finally, the updated sets and node function are returned.

19 OUTPUT: P, T, A, N

5.2 Proof of Soundness and Completeness

A sound and complete reconstructed execution can be used for auditing pur-
poses as discussed in Section 4.3. We prove that the sticky logging mecha-
nism can create reconstructed executions that have these qualities.

Proposition 5.1:

A reconstructed execution created by means of the sticky logging mechanism
is sound and complete (as defined in Section 4.3) regarding the executed
subsystem of the logical execution. �

We prove the proposition by induction over the structural length of the
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colored Petri net modeling the logical execution. The basis of the induction
is a logical execution consisting only of a create action. We prove that the
proposition holds for this minimal (not empty) logical execution. As induc-
tion step, we extend a given logical execution which fulfills the proposition
by one action. We prove the proposition by extending the workflow by each
category of action.

Proof 5.1: Soundness and Completeness of Sticky Logging by Induction

Basis of Induction

Each processing of a data item starts with the creation of the first data
instance. The basis of the induction is a workflow consisting only of one
step, a create action creating the first data instance.

The logical execution of the first step is L1 and consists of one transition
t1 with the label create, one place p1 that represents the actor, and an arc
a1 leading from t1 to p1 (N(a1) = (t1, p1)) with the arc expression u. This
logical execution is depicted in Figure 5.1. The logical execution consists of
two more arcs and the additional place pc modeling the counter for creating
unique identifiers.

The execution happens by the occurrence of the create transition. This
step (i = 1) creates a new token with a new, unique value (= X) and adds
this token to p1. The monitoring (according to Listing 5.1) of the logical
execution leads to the following monitored execution M1:

M1 = {(X, (“create”, actormodeled by p1 , ε, “purpose”, 1, 0))}

The reconstruction (according to Listing 5.2) based on the monitored
execution leads to the reconstructed execution R1. The reconstruction leads
to a colored Petri net with the following sets: the set of places P ′ = {p′1} ,
the set of transitions T ′ = {t′1}, and the set of arcs A′ = {a′1} with the node
function N ′(a′1) = (t′1, p

′
1).
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E(a1) = u 

u + 1 

pc 

create 

t1 p1 

if u = 1 then u 
else empty 

Figure 5.1: Induction Basis: Single Create Action.

Soundness: The following relation:

Φ1 = {(t′1, t1), (p′1, p1), (a′1, a1)}

is a simulation between L1 and R1. Hence, the reconstructed execution is
sound with respect to the logical execution.

Completeness: The parts of the colored Petri net used to model the counter
are not part of the actual executed subsystem S1 of the logical execution.
The following relation:

Φ2 = {(t, t′), (p, p′), (a, a′)}

is a simulation between R1 and S1. Because Φ2 can be specified, the
reconstructed execution is complete with respect to the executed subsystem
of the logical execution.
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Induction Step

Given a reconstructed execution Rn, which is sound and complete with
respect to the logical execution Ln, we show that a reconstructed execu-
tion Rn+1 is also sound and complete with respect to the associated logical
execution Ln+1. Whereas, Ln+1 extends the logical execution Ln by one ad-
ditional action. In detail, we have to prove the soundness and completeness
of adding an action of each category.

• Read actions: We start by adding a read action. Before we add the
action we choose one existing place pk out of Pn as actor. Adding a
read action to Ln, adds one transition tn+1 with the label read and
two arcs am+1 and am+2 leading from pk to tn+1 and back to pk. The
node function for am+1 and am+2 is defined asN(am+1) = (pk, tn+1)
and N(am+2) = (tn+1, pk). The arc expression of both arcs is u.
Figure 5.2 depicts the added parts of the colored Petri net.

read 

tn+1 pk tl 
E(aj) = u 

E(am+1) = u 

E(am+2) = u 

Figure 5.2: Induction Step: Read Action.

Monitoring the occurrence of tn+1, which reads a data instance repre-
sented by a token with the value X at pk, in step i+ 1 creates the log
entry mi+1:

mi+1 = (X, (“read”, actormodeled by pk , ε, “purpose”, i+ 1, i))
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The log entry mi+1 is added to the monitored execution Mi leading to
Mi+1:

Mi+1 = Mi ∪ {mi+1}

The reconstruction is an iterative process. The reconstruction of Rn+1

starts by processingMi. Mi leads toRn, which is sound and complete
with respect to Ln (basis of induction). After Mi, the last iteration
step processes the newly added log entry mi+1. Because Rn was re-
constructed fromMi, it consists of the set of places P ′n, the set of tran-
sitions T ′n, and the set of arcs A′n with the node function N ′n. Rn+1

extends these sets. The set of places remains unchanged:

P ′n+1 = P ′n

because the log entry contains only the actor modeled by p′, which is
already element of P ′. However, the new transition t′n+1 is added to
T ′n:

T ′n+1 = T ′n ∪ {t′n+1}

The arcs are added to A′n leading to:

A′n+1 = A′n ∪ {a′m+1, a
′
m+2}

Soundness: Let Φ1,n be the simulation between Ln and Rn. The
following relation

Φ1,n+1 = Φ1,n ∪ {(t′n+1, tn+1), (a′m+1, am+1), (a′m+2, am+2)}

is a simulation between Ln+1 and Rn+1. Thus, the reconstructed
execution is sound with respect to the logical execution Ln+1.
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Completeness: Let Φ2,n be the simulation between Rn and the exe-
cuted subsystem Sn of the logical execution. The occurrence of tn+1

leads to the executed subsystem Sn+1. The following relation

Φ2,n+1 = Φ2,n ∪ {(tn+1, t
′
n+1), (am+1, a

′
m+1), (am+2, a

′
m+2)}

is a simulation betweenRn+1 and Sn+1. Because Φ2,n+1 can be spec-
ified, the reconstructed execution is complete with respect to the exe-
cuted subsystem of the logical execution Ln+1.

• Update and actions: The soundness and completeness proofs of up-
date actions can be shown analogously to the proofs of read actions.
The induction step can be seen in Figure 5.3.

update 

pk tl 
E(aj) = u 

tn+1 

E(am+1) = u 

E(am+2) = u 

Figure 5.3: Induction Step: Update Action.

• Copy actions: The next action is the copy action. Before we add the
action we choose one existing place pk out of Pn as actor. Adding a
copy action to Ln adds one transition tn+1 with the label copy, the
place pd (where the new instance is created) and three arcs am+1,
am+2 and am+3 leading from p to tn+1, from tn+1 to pk, and from
tn+1 to pd. The node function for am+1, am+2, and am+3 is de-
fined as Nn+1(am+1) = (pk, tn+1), Nn+1(am+2) = (tn+1, pk) and
Nn+1(am+3) = (tn+1, pd). The arc expression of am+1 and am+2 is
u and the one of am+3 is v. Two arcs connecting the transition with
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the counter place are added. These are irrelevant for the following
proof as they do not model the workflow itself and are not part of the
executed subsystem. Figure 5.4 depicts the extension of the workflow
model by a copy action.

v+1 

pc 

copy 

tn+1 pd 

v 

pk tl 
E(aj) = u E(am+3) = v 

E(am+1) = u 

E(am+2) = u 

Figure 5.4: Induction Step: Copy Action.

Monitoring the occurrence of tn+1 (by means of the operator specified
in Listing 5.1), which occurs in step i + 1 and copies a data instance
represented by a token with the value X at pk and creating a new
instance represented by a token with the value Y at pd, creates the log
entries mX,i+1 and mY,1. mX,i+1 is the log entry associated to X and
mY,1 is the log entry associated to Y .

mX,i+1 =
(X, (“copy”, actormodeled by pk , actormodeled by pd , “purpose”, i+ 1, i))

mY,1 =
(Y, (“copy”, actormodeled by pk , actormodeled by pd , “purpose”, i+ 1, i))
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The log entry mX,i+1 is then added to the monitored execution MX,i

leading to MX,i+1: The log entry mY,1 is then added to the monitored
execution MY,0, which is empty, leading to MY,1:

MX,i+1 = MX,i ∪ {mX,i+1}
MY,1 = MY,0 ∪ {mY,1}

The reconstruction (cf. Listing 5.2) of Rn+1 starts by processing the
sticky logs of both data instances MX,i and MY,0 leading to Ei. Af-
terwards, the last iteration step processes the newly added log entries
mX,i+1 andmY,1. Rn is sound and complete with respect to Ln (basis
of induction) and consists of the set of places P ′n, the set of transitions
T ′n, and the set of arcs A′n with the node function N ′n. Rn+1 extends
these sets. The reconstructed place p′d may model an actor having been
involved in the workflow already or not. This does not affect the fol-
lowing proof as all actors are uniquely identifiable leading to the same
reconstructed places. Thus, p′d is added to P ′n leading to:

P ′n+1 = P ′n ∪ {p′d}

The new transition t′n+1 is also added to T ′n:

T ′n+1 = T ′n ∪ {t′n+1}

Finally, the arcs are added to A′n leading to:

A′n+1 = A′n ∪ {a′m+1, a
′
m+2, a

′
m+3}

Soundness: Let Φ1,n be the simulation between Ln and Rn. The
following relation:

Φ1,n+1 = Φ1,n ∪
{(p′d, pd), (t′n+1, tn+1), (a′m+1, am+1), (a′m+2, am+2), (a′m+3, am+3))}
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is a simulation between Ln+1 and Rn+1. Thus, the reconstructed
execution is sound with respect to the logical execution Ln+1.

Completeness: Let Φ2,n be the simulation between Rn and the exe-
cuted subsystem Sn of the logical execution. The occurrence of tn+1

leads to the executed subsystem Sn+1. The following relation:

Φ2,n+1 = Φ2,n ∪
{(pd, p′d), (tn+1, t

′
n+1), (am+1, a

′
m+1), (am+2, a

′
m+2), (am+3, a

′
m+3))}

is a simulation betweenRn+1 and Sn+1. Because Φ2,n+1 can be spec-
ified, the reconstructed execution is complete with respect to the exe-
cuted subsystem of the logical execution Ln+1.

• Transfer actions: Before we add a transfer action to the workflow we
choose one existing place pk out of Pn as actor. Adding the transfer
action to Ln adds one transition tn+1 with the label transfer, the
place pr (receiving the transfered instance) and two arcs am+1 and
am+2 leading from pk to tn+1 and from tn+1 to pr. The node func-
tion for am+1 and am+2 is defined as N(am+1) = (pk, tn+1) and
N(am+2) = (tn+1, pr). The arc expressions of am+1 and am+2 are u.
The extended colored Petri net is depicted in Figure 5.5.

transfer 

pr pk tl 
E(aj) = u E(am+2) = u E(am+1) = u 

tn+1 

Figure 5.5: Induction Step: Transfer Action.
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The occurrence of tn+1 transfers a data instance represented by a token
with the value X from pk to pr. tn+1 occurs in step i + 1 and creates
the log entry mi+1.

mi+1 = (X, (“transfer”, actormodeled by pk ,
actormodeled by pr , “purpose”, i+ 1, i))

The log entry mi+1 is added to the monitored execution Mi leading to
Mi+1:

Mi+1 = Mi ∪ {mi+1}

Ri+1 is reconstructed by starting with the sticky log MX,i. Followed
by processing the newly added log entry mX,i+1. Rn is sound and
complete with respect to Rn (basis of induction) and consists of the
set of places P ′n, the set of transitions T ′n, as well as the set of arcs
A′n with the node function N ′n. Rn+1 extends these sets and the node
function. The reconstructed place p′r may model an actor, perhaps not
having been involved in the workflow so far. This does not affect the
following proof because all actors are uniquely identifiable leading to
the same reconstructed places. Thus, p′r is added to P ′n leading to:

P ′n+1 = P ′n ∪ {p′r}

The new transition t′n+1 is also added to T ′n:

T ′n+1 = T ′n ∪ {t′n+1}

Finally, the arcs are added to A′n leading to:

A′n+1 = A′n ∪ {a′m+1, a
′
m+2}
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Soundness: Let Φ1,n be the simulation between Ln and Rn. The
following relation

Φ1,n+1 =
Φ1,n ∪ {(p′r, pr), (t′n+1, tn+1), (a′m+1, am+1), (a′m+2, am+2))}

is a simulation between Ln+1 and Rn+1. Hence, the reconstructed
execution is sound with respect to the logical execution Ln+1.

Completeness: Let Φ2,n be the simulation between Rn and the exe-
cuted subsystem Sn of the logical execution. The occurrence of tn+1

leads to the executed subsystem Sn+1. The following relation:

Φ2,n+1 =
Φ2,n ∪ {(pr, p′r), (tn+1, t

′
n+1), (am+1, a

′
m+1), (am+2, a

′
m+2)}

is a simulation betweenRn+1 and Sn+1. Because Φ2,n+1 can be spec-
ified, the reconstructed execution is complete with respect to the exe-
cuted subsystem of the logical execution Ln+1.

• Delete actions: Before we add a delete action to the workflow we
choose one existing place pk out of Pn as actor. Applying the delete
action to Ln adds one transition tn+1 with the label delete and one
arc am+1 leading from pk to tn+1. The node function for am+1 is
defined as N(am+1) = (p, tn+1). The arc expression of am+1 is u.
The extended colored Petri net is depicted in Figure 5.6.

In step i + 1, tn+1 occurs. In this step, the data instance represented
by a token with the value X from pk is deleted. Monitoring the occur-
rence creates the log entry mi+1.

mi+1 = (X, (“delete”, actormodeled by pk , ε, “purpose”, i+ 1, i))

The log entry mi+1 is added to the monitored execution Mi leading to
Mi+1:
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delete 

pk tl 
E(aj) = u 

tn+1 

E(am+1) = u 

Figure 5.6: Induction Step: Delete Action.

Mi+1 = Mi ∪ {mi+1}

Rn+1 is reconstructed by starting with the sticky log MX,i. After-
wards, the last iteration step processes the newly added log entry
mX,i+1. Rn is sound and complete with respect to Rn (basis of in-
duction) and consists of the set of places P ′n, the set of transitions T ′n,
as well as the set of arcs A′n with the node function N ′n. Rn+1 extends
these sets. As no new place is added, the set P ′ stays unchanged:

P ′n+1 = P ′n

The new transition t′n+1 is added to the set T ′:

T ′n+1 = T ′n ∪ {t′n+1}

Finally, the arcs are added to A′ leading to:

A′n+1 = A′n ∪ {a′m+1, a
′
m+2}

Soundness: Be Φ1,n the simulation between Ln and Rn. The follow-
ing relation
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Φ1,n+1 = Φ1,n ∪ {(t′n+1, tn+1), (a′m+1, am+1))}

is a simulation between Ln+1 and Rn+1. Hence, the reconstructed
execution is sound with respect to the logical execution Ln+1.

Completeness: Be Φ2,n the simulation between Rn and the executed
subsystem Sn of the logical execution. Performing tn+1 leads to the
executed subsystem Sn+1. The relation:

Φ2,n+1 = Φ2,n ∪ {(tn+1, t
′
n+1), (am+1, a

′
m+1)}

is a simulation betweenRn+1 and Sn+1. Because Φ2,n+1 can be spec-
ified, the reconstructed execution is complete with respect to the exe-
cuted subsystem of the logical execution Ln+1.

By means of the basis of the induction we have shown that a minimal
logical execution can be monitored by the sticky logging approach leading
to a reconstructed execution, which is sound and complete with respect to the
logical execution. By means of the induction step we have proved that this
also holds after adding the execution of any category of action to an existing
logical execution. We have proved that a reconstructed execution created by
means of the sticky logging mechanism is sound and complete (as defined in
Section 4.3) regarding the executed subsystem of the logical execution.

5.3 The Sticky Logging Mechanism

In section 5.1, we have depicted a mathematical structure that specifies the
information required to be logged by the sticky logging mechanism. And we
have presented an algorithm describing how to generate log entries. In this
section, we introduce a semantic formalism to monitor distributed data pro-
cessing that implements the mathematical structure and formal algorithm. To
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demonstrate its feasibility, we implement the sticky logging mechanism as
JBoss message handler. However, such a distributed monitoring mechanism
rises various issues of accountability, confidentiality, security and privacy,
which we address later on.

5.3.1 Semantic Monitoring

To enable a semi-automated analysis of sticky logs, we introduce a se-
mantic formalism (cf. Requirement Well-defined Semantics). We chose
OWL [Motik et al., 2009] as well as RDF [Klyne et al., 2004] and use
data types in compliance with the XML schema definition (XSD) [Peter-
son et al., 2006] (cf. Requirement Standardized Interfaces). The semantic
formalism consists of the sticky logging ontology. The sticky logging ontol-
ogy introduces the upper level concepts StickyLoggingConcept and
DomainConcept. The sub-concepts of StickyLoggingConcept de-
fine the sticky logging formalism. These are the concepts DataInstance,
Action, Entity, LogEntry and ActionType with various sub-
concepts representing the different sorts of actions. The DomainConcept
has two sub-concepts PurposeCategory and CommunicationMean,
which serve as upper-level concepts for all concepts defined in domain on-
tologies and referred to by sticky logs. The concepts of the sticky logging
ontology and their relations to each other are depicted in Figure 5.7. In the
following we introduce the various concepts and their properties.

The monitoring mechanism needs to clearly identify the processed data
item and its sources (cf. Legal Requirement Exhaustiveness). Data items
may have multiple instances, e.g. through copying. A sticky log is attached
to each instance clearly identifying the different instances. Logs of dif-
ferent instances need to be combined whenever a data instance is deleted.
Hence, all associated data instance require to be clearly identified in the
sticky log. To represent the instance of a data item, we introduce the concept
DataInstance.
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logsAction 
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Figure 5.7: Sticky Logging Ontology.

Concept Definition 5.1: DataInstance

The concept DataInstance has the following properties:

– hasCopy [0..n]1: If this data instance has been copied, this property
will link to the resources describing the copy.

– hasSource [0..n]: If the data item of the described instance contains
data of another data item (e.g. merging of two instances or extracting
from another data item), the value of this property will be the URI of
the source.

– hasTimeStamp [1]: At that point in time the information about this
data instance has been added to the log. Given two different descrip-

1The value given in brackets specifies the cardinalities of the properties.
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tions of the same data instance, this information can be used to deter-
mine which one is more up to date.

– hasUUID [1]: A unique identifier clearly identifying the data in-
stance. To assure that the identifier is unique we use Universally
Unique Identifiers (UUID) [Leach et al., 2005].

– isCopyOf [0..1]: If this data instance is a copy of another instance
of the same data item, this property will link to the resource describing
the original instance.

– isDeleted [0..1]: After deleting the data instance, the boolean
value of this property must be set to ‘true’.

– isPrimary [0..1]: A boolean value, which is used to indicate
whether this instance is the original instance or whether it is a copy.
The original instance is the instance that is created first.

and the following axiomatization in OWL:

DataInstance v StickyLoggingConcept u
∀ hasCopy.DataInstance u
∀ hasSource.DataInstance u
∀ hasTimeStamp.date u
= 1 hasTimeStamp.date u
∀ hasUUID.uuid u = 1 hasUUID.uuid u
∀ isCopyOf.DataInstance u
≤ 1 isCopyOf.DataInstance u
∀ isDeleted.boolean u
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≤ 1 isDeleted.boolean u
∀ isPrimary.boolean u
≤ 1 isPrimary.booelan

Listing 5.3 depicts a snippet of the log that is attached to the instance of
Jane Doe’s health record created by the Middle Rhine Hospital. The snippet
contains the triples describing the data instance.

Listing 5.3: Example of a Data Instance.

:record_JD_1 rdf:type sl:DataInstance
:record_JD_1 sl:hasUUID "50a410f0-bc8a-..."
:record_JD_1 sl:isPrimary "true"
:record_JD_1 sl:hasTimeStamp "Mon Nov 23 11:58.."

To increase readability, we use sl: as namespace for the concepts
and properties defined as part of the sticky logging ontology in-
stead of http://west.uni-koblenz.de/stickylogging.
To enhance the readability, we replace the URIs defin-
ing the resources by short identifiers (e.g. :record_JD_1
instead of http://www.mrh.example/50a410f0-
bc8a-4afe-a7c4-...).

As discussed before, specific actions require to be logged. Which actions
are logged depends on the agreed-upon level of granularity and is part of
underlying contracts. Sticky logging describes each action that requires to
be logged by its own log entry. The log entry is attached to the sticky log
associated with the data instance the action is performed on. In the log entry,
an action is represented by the concept Action.
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Concept Definition 5.2: Action

The concept Action has the following properties:

– hasPurpose [1..n]: Besides the category of an action its purpose
is of importance, to check whether a performed action has been jus-
tified. The possible purposes of an action depend on the performing
entity and on its domain. Actions in the hospital domain have purposes
such as treatment, adjusting medication, etc. To enable a flexible def-
inition of purposes, concepts defined in domain ontologies are used.
The property hasPurpose links to a concept of such an ontology
describing the purpose of the action.

– hasSequentialNumber [1]: An integer value holding the sequen-
tial number of the action. The sequential number is used to achieve the
partial order of the performed actions.

– hasTimeStamp [1]: The point in time the action has been per-
formed.

– hasUUID [1]: A unique identifier that clearly identifies this action.

– performedBy [1]: An URI pointing to the resource describing the
entity that has performed the action.

– performedOnDataInstance [1]: This property links to the re-
source describing the data instance the action is performed on. The
link is required to clearly connect action and data instance even after
the log has been merged with logs of other data instances.

– transferredAs [0..1]: A string specifying the identification of a
data instance during a transfer (e.g. parameter of the Web service the
data instance is passed, or the attachment identifier of an e-mail).

– transferredVia [0..1]: If the action transfers the data instance,
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this property will link to the used communication means (e.g. an e-
mail message identifier, or an URI of a Web service operation).

and the following axiomatization in OWL:

Action v StickyLoggingConcept u
∀ hasPurpose.PurposeCategory u
≥ 1 hasPurpose.PurposeCategory u
∀ hasSequentialNumber.integer u
= 1 hasSequentialNumber.integer u
∀ hasTimeStamp.date u = 1 hasTimeStamp.date u
∀ hasUUID.uuid u = 1 hasUUID.uuid u
∀ performedBy.Entity u = 1 performedBy.Entity u
∀ performedOnDataInstance.DataInstance u
= 1 performedOnDataInstance.DataInstance u
∀ transferredAs.string u
≤ 1 transferredAs.string u
∀ transferredVia.CommunicationMean u
≤ 1 transferredVia.CommunicationMean

The DiALog model distinguishes six types of actions in Chap-
ter 4. These are create, read, update, copy, transfer, and delete ac-
tions. These actions are represented by the concepts CreateAction,
ReadAction, UpdateAction, CopyAction, TransferAction,
and DeleteAction. All action types are sub-concepts of ActionType
and have the following axiomatization in OWL:
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CreateAction v ActionTypes

ReadAction v ActionTypes

UpdateAction v ActionTypes

CopyAction v ActionTypes

TransferAction v ActionTypes

DeleteAction v ActionTypes

After the deletion of a data instance the associated log is returned and
merged with the log of the origin of the copy. Thus, the sticky log-
ging uses two more actions categories the LogReturnAction and the
LogMergeAction. These additional actions are not performed on data
instances but on the associated logs after an instance is deleted. The action
concepts have the following axiomatization in OWL:

LogReturnAction v ActionTypes

LogMergeAction v ActionTypes

Further required actions or sub-concepts of existing action concepts can be
defined in domain ontologies (e.g. De-identifyAction as sub-concept
of UpdateAction). Listing 5.4 depicts the create action performed on
Jane Doe’s health record in the health care scenario.

Listing 5.4: Example of a Create Action.

:action_1 rdf:type sl:CreateAction
:action_1 sl:hasPurpose "treatment"
:action_1 sl:performedBy :mrh

123



Monitoring the Distributed Processing of Data

:action_1 sl:hasUUID "e92b0434-3cba-..."
:action_1 sl:hasTimeStamp "Mon Nov 23 ..."
:action_1 sl:performedOnDataInstance :record_JD_1
:action_1 sl:hasSequentialNumber "1"

The explicit identification of the entity that performs actions on the data
instance is crucial for achieving accountability (cf. Legal Requirement Iden-
tifiability). An organization has also to be clearly associated with all log
entries it is responsible for. It is also of importance that log entries may not
be modified or changed by another entity. We introduce the concept Entity
to represent an entity within a sticky log. The formalism demands the use of
mechanisms to sign RDF graphs as described in [Carroll, 2003].

Concept Definition 5.3: Entity

The concept Entity has the following properties:

– hasAddress [0..1]: A contact address of the entity that meets the
requirements made by law or contract (for instance a postal address or
an e-mail address).

– hasID [1]: A legally effective identifier of the entity (e.g. trade reg-
ister number, international securities identifying number (ISIN), etc.).

– hasLogged [0..n]: This property is an URI linking to the resources
describing the log entries the entity is responsible for.

– hasName [0..1]: A literal representing the name of this entity.

– hasPGPCertificate [1]: An URI linking to the entities PGP cer-
tificate.

– hasSignature [1]: The signature that signs all log entries con-
nected with this entity.
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– hasTimeStamp [1]: The point in time the information about this
entity has been added to the log. Given two different descriptions of
the same entity, this information can be used to determine which one
is more up to date.

– hasUUID [1]: A unique identifier that clearly identifies this entity.

and the following axiomatization in OWL:

Entity v StickyLoggingConcept u
≤ 1 hasAddress u
= 1 hasID u
∀ hasLogged.Entity u
≤ 1 hasName u
∀ hasPGPCertificate.uri u
= 1 hasPGPCertificate.uri u
∀ hasSignature.string u = 1 hasSignature.string u
∀ hasTimeStamp.date u = 1 hasTimeStamp.date u
∀ hasUUID.uuid u = 1 hasUUID.uuid

The example in Listing 5.5 depicts how the Middle Rhine Hospital identi-
fies itself by instantiating the Entity-concept and setting its properties.

Listing 5.5: Example of an Entity Description.

:mrh rdf:type sl:Entity
:mrh sl:hasName "Middle Rhine Hospital"
:mrh sl:hasID "ISIN US0001234567"
:mrh sl:hasPGPCertificate "www.mrh.example/cert.asc"
:mrh sl:Signature "HrdSDFc..."
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:mrh sl:hasTimeStamp "Mon Nov 23 11:58:19..."

The concept LogEntry represents one log entry. A log entry contains the
record of all information about one single action performed on the processed
data.

Concept Definition 5.4: LogEntry

The properties of the LogEntry-concept are

– hasTimeStamp [1]: The point in time the log entry has been added
to the log.

– hasUUID [1]: A unique identifier that clearly identifies this log entry.

– loggedBy [1]: This property contains an URI that points to the re-
source describing the entity logging this entry.

– logsAction [1]: An URI linking to the resource describing the ac-
tion logged by this entry.

and the following axiomatization in OWL:

LogEntry v StickyLoggingConcept u
∀ hasTimeStamp.date u = 1 hasTimeStamp.date u
∀ hasUUID.uuid u = 1 hasUUID.uuid u
∀ loggedBy.Entity u = 1 loggedBy.Entity u
∀ logsAction.Action u = 1 logsAction.Action

Listing 5.6 depicts the beginning of a log entry about the create action
of Jane Doe’s health record (see Listing 5.4) logged by the Middle Rhine
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Hospital. The last line of the listing shows the link between the logging
entity (the Middle Rhine Hospital) and the logged entry.

Listing 5.6: Example of a Log Entry.

:logEntry_1 rdf:type sl:LogEntry
:logEntry_1 sl:hasUUID "cf2f30c0-39c1-..."
:logEntry_1 sl:logsAction :action_1
:logEntry_1 sl:hasTimeStamp "Mon Nov 23 11:58.."
:logEntry_1 sl:hasSequentialNumber "1"

:mrh sl:hasLogged :logEntry_1

5.3.2 Risk Management

Monitoring executions of processes raises various issues of accountability,
confidentiality, security and privacy. We shortly address some prominent
issues and discuss the solution provided by sticky logging:

Accountability: One issue is that a logging entity must not be able to
deny a established log entry. To guarantee that an organization is not able
to do so, the sticky logging mechanism makes use of signatures. Signatures
assure that a logging entity is accountable for the log entries it made. Another
problem is the correctness of the log itself that is threatened by a modification
of the log by any entity passing the log. The signatures are also used to
assure that the log is not modified by another organization or entity. For both
purposes each logging entity has to sign its log entries by means of a digital
signature mechanism, e.g. the approach presented in [Carroll, 2003].
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Confidentiality and Security: Another issue is the security of confi-
dential information about the involved organizations. As the sticky log is
attached to the data instances and moved along the execution path, other
organizations may access the contained provenance information and reveal
confidential internal matters of other involved parties. To restrict the access
of third parties to the logged information, an access control mechanism is re-
quired (see Legal Requirement Confidentiality). We propose that each actor
encrypts the logged information. If a public key infrastructure [Rivest et al.,
1978] is utilized, the logging entities can use the public key of the data owner
or person concerned to encrypt the log entries. The data owner or the person
concerned can access the log entries by means of their private key.

Privacy and Information request: Privacy laws demand that informa-
tion by request must be fulfilled. As different organizations are involved in
the distributed data processing, each of these organizations monitors its part
of the processing by means of the sticky logging mechanism. If the process-
ing ends or information is requested, and the person concerned may request
the information at any time and as often as they want during the processing,
the log will be transferred to the person concerned. The person concerned
is able to generate the transition system of the reconstructed execution from
the logs representing the monitored execution (see Section 4.1). The re-
constructed execution represents the parts of the workflow involved in the
processing of the private data. Finally, the person concerned is able to audit
whether contractual or legal agreements have been violated.

5.3.3 Prototype Description

By implementing Sticky Logging2 we have shown its feasibility. We imple-
mented the sticky logging mechanism as a Java-based API. The API can be
integrated in any kind of software.

2Together with the bachelor thesis writer Martin Schnorr.
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Execution environments, such as Web application servers, are common
for the Web. To integrate multiple applications at once as well as to eas-
ily integrate legacy applications, the sticky logging mechanism should be
part of execution environments or a layer between execution environment
(i.e. JBoss) and business software (i.e. Web services). As such a layer, the
sticky logging mechanism can observe the communicated data and manage
the passing of logs. The prototype implements the sticky logging mecha-
nism as a generic layer for JBoss, as depicted in Figure 5.8. As such a layer,
sticky logging can not observe outgoing calls apart from calls to an observed
application or execution environment. Details about the internal application
logic can also not be observed. In both cases, the sticky logging API must
be directly integrated into the application.

Middle Rhine Hospital 

Web Server Storage 
Server 

gateway 
Web 

service 

storage 
Web 

service 

Service Call 

Data Transfer 

Sticky Logging Sticky Logging 

JBoss JBoss 

.. admission   exami- 
  nation 

   share for 
   research 

    prepare 
share 

    research 

1 4 5 6 7 

Figure 5.8: Example architecture with JBoss.

To access the layer between execution environment and Web application
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or Web service, the environment of JBoss provides a handler API. Handlers
are executed as part of the execution stack of Web service calls. Incoming
Web service calls as well as the outgoing return messages can be intercepted
through the handlers. By implementing such a handler, the sticky logging
mechanism can be positioned between the JBoss and the Web service. The
sticky logging mechanism can detach incoming logs from the service call
and attach the updated logs to the return message of the service call. The
updated logs consist of the incoming log and the log entries attached by the
handler as well as by the sticky logging API called directly from the services
application logic.

Technically, the prototype attaches the logs by including them into the
SOAP messages [Gudgin et al., 2007] that are used to call services. The
log is included using the attachment mechanism of SOAP, as depicted in
Figure 5.9. After the execution of the service, the log is returned within
the SOAP answer. The returned logs are merged with the log of the calling
service. The logs make use of the sticky logging ontology we presented in
Section 5.3.1. Sticky logging uses Sesame3 to handle the RDF statements.

For the visualization of sticky logs, we4 have implemented a tool named
LogAnalyzer. The LogAnalyzer visualizes the log entries as a graphical pro-
cessing trace. The graphical representation provides details about the entities
performing actions on the observed data item and the actions they have per-
formed. Figure 5.10 depicts a screenshot of the tool.

To show the functionality of the sticky logging mechanism, a scenario
with a project partner in the project X-Media5 has been implemented as pro-
totype. In the scenario, an engineer collects data about an incident and writes
a report. Both are forwarded to a department of the company organizing a
task force. The implementation provides a client application that transfers
the incident reports and data to a Web service. The Web service forwards the

3Sesame: http://openrdf.org/
4Together with the student worker Roland Naglo.
5"Knowledge Sharing and Reuse across Media" (X-Media, FP6-26978) funded by the In-

formation Society Technologies (IST) 6th Framework Programme.
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Figure 5.9: Sticky Log in a SOAP Message.

data to various experts (via e-mail) and analysis applications (via Web ser-
vice). All applications, the client application as well as the Web services and
e-mail clients use the sticky logging prototype. At any point in the process,
the task force leader can access the monitored information via the LogAna-
lyzer to get an overview about the process and to audit the decisions made.

5.4 Related Work

Most of the work related to the sticky logging mechanism is also of relevance
to DiALog. We discussed this work in Section 4.4. In this section, we discuss
approaches that are related to aspects specific to the sticky logging.

In [Hallam-Baker and Behlendorf, 1996], the authors introduce the Ex-
tended Log File Format a logging solutions for the Web. This solution logs
communication actions focusing on the communication of data by Web ap-
plications. It does not focus on the processing of the data and does not ob-
serve the processing of specific data items in distributed environments.
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Figure 5.10: Screenshot LogAnalyzer.

Karjoth et al. introduce in [Karjoth et al., 2003] the sticky policy paradigm.
When data is transmitted to an organization via Web form, the applicable
policies and the user’s opt-in and opt-out choices are also included in the
form. If the data is transferred to another organization, the sticky policies
will be transferred, as well. The work Karjoth et al. attach policies to data
instead of logs. Another mechanism that attaches privacy-related informa-
tion to data is the Platform for Privacy Preferences (P3P) [Wenning et al.,
2006]. The P3P formalism is restricted to policies and allows only the use of
a few pre-defined categories to describe the type of data and the purpose of
their usage.

Other work also see the need for a specification of metadata. The Dublin
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Core Metadata for Resource Discovery [Weibel et al., 1998] specifies con-
cepts to describe properties of resources in the Web. With the concept creator
it supports the specification of some provenance but processing histories can
not be specified. The open provenance model specifies a graphical repre-
sentation of provenance [Moreau et al., 2008]. It supports the modeling of
processes and the usage of data in these processes. It does not provide con-
cepts to specify action categories and purposes.

5.5 Summary

After we have provided DiALog in Chapter 4, we still require a monitoring
mechanism. This mechanism must be able to observe the distributed data
processing and to produce sound and complete reconstructed executions. In
this chapter, we have introduced sticky logging, a data-centric monitoring
mechanism designed for distributed environments. We have presented an
architecture and a prototype of the sticky logging mechanism implementing
DiALog.

The sticky logging mechanism is designed to monitor the processing of
specific data items and can be used to observe contractual obligations or
organization-internal policies. The mechanism consists of a data structure to
store the information and of a set of operations describing how to log and
how to manage the logs. Apart from these, the mechanism provides meth-
ods to reconstruct a model from a log. The feasibility of sticky logging has
been shown by a prototype implementation which provides an API to realize
sticky logging as a generic extension of JBoss. We have proved that recon-
structed executions generated by the sticky logging mechanism are sound
and complete with respect to the logical execution.

The following chapter will make use of the sticky logging mechanism to
provide provenance information required for the evaluation of policies. Poli-
cies are often used to regulate usage rights of data. The policy conditions
may depend on the past processing of the data, such as whether pseudonyms
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are used or back-ups performed. Without extra metadata describing the
provenance of the data the verification may not be possible. Sticky logging
is a means to provide the provenance information required to decide whether
certain policy conditions are met.

We confirm Hypothesis 2 through sticky logging as it provides a formal
method for monitoring the distributed data processing which is able to gen-
erate sound and complete reconstructed executions. We have published the
formal methods of sticky logging at the Workshop on Privacy Enforcement
and Accountability with Semantics [Ringelstein and Staab, 2007], we re-
flected the idea behind this approach in an article published in Datenschutz
und Datensicherheit [Ringelstein, 2007], and we published the mathemati-
cal proof of the soundness and completeness quality in the Journal of Web
Service Research [Ringelstein and Staab, 2010a].
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6 Provenance-aware Policies for
the Distributed Processing of
Data

The distributed processing of data is restricted by contractual and legal re-
quirements for protecting data and privacy as discussed in Chapter 1 and
Chapter 3. In the Internet, contracts and laws are represented as policies
that “are statements of the goals for the behavior of a system” [Hinton and
Lee, 1994]. Policy conditions frequently depend on information about the
environment, e.g. the receiver of a data transfer. They also can depend
on information about the data, such as the subject of a health record. The
needed information can be about the previous processing called provenance.
Apart from other domain knowledge representing environmental parameters,
provenance information exhibits temporal structures. Some policy languages
support policies containing conditions based on the domain knowledge part
of provenance information, e.g. XACML [Moses et al., 2005] or Rei [Kagal
et al., 2003]. However, they lack a specification of how to specify or ac-
cess the temporal structure of provenance. Including such temporal domain
knowledge into purely declarative yet efficiently implementable languages
such as Datalog constitutes a non-trivial challenge.

The Issue of Temporal Structures complicates policy languages to express
policies based on provenance information. To overcome this issue, the tem-
poral structure needs to be represented and queried using expressions such
as after or before. Our hypothesis is that we can express history-based pol-
icy conditions by mapping the temporal structure of the histories to a graph
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structure.
To target these issues, one has to collect and provide provenance informa-

tion. In closed environments, the information can be collected with various
existing logging mechanisms and can be accessed by various, often propri-
etary, solutions. As soon as processes span multiple organizations and data
is transferred across organizational boundaries, one has to capture and pro-
vide the provenance information in a standardized manner (cf. Requirement
Standardized Interfaces). For this purpose, we combine sticky logging (see
Chapter 5) with the open provenance model (OPM) [Moreau et al., 2008] for
providing and representing provenance data in a standardized format.

After providing the provenance, one has to extend policy conditions to
relate to provenance information and its temporal structure. Based on the
open provenance model, we introduce a formal language that specifies the
relation between policy condition and provenance information. We specify
the language by an abstract syntax based on the syntactical structure of eX-
tensible Access Control Markup Language (XACML). We call our approach
Papel: Provenance-Aware Policy definition and Execution Language. In Pa-
pel, the complex temporal structure of processing histories is modeled as
graph structure.

We have to address newly emerging privacy and data protection risks that
arise by making provenance information accessible to policy engines (cf. Is-
sue of Sensitive Information). Such mechanisms have to balance between the
need to validate policy rules using provenance information and the require-
ment to protect privacy and data, e.g. using log encryption (see Chapter 5).
Thus, the policy maker should be enabled to choose between full or limited
transparency of the forwarded provenance information. For achieving such
flexibility, we introduce attributes and reduced facts. These allow the policy
maker to disclose only an appropriate amount of confidential information to
third parties.

To tackle the above-mentioned problems, we analyze the foundations of
Papel and introduce its syntax based on the foundations, in Section 6.1. We
also discuss means to protect data and privacy in this section. We define
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the semantics of Papel in Section 6.2, before we discuss the Datalog imple-
mentation of our abstract syntax in Section 6.3. In Section 6.4, we analyze
related work in this field.

6.1 Foundations and Syntax of Papel

In this section, we describe the foundations of Papel and the abstract syntax
Papel defines to express provenance information and polices rules based on
provenance information. The syntax of Papel is depicted in Table 6.11. We
require to model provenance information and policies. To this end, we make
use of concepts of the Open Provenance Model and of the eXtensible Access
Control Markup Language. To integrate both we introduce an abstract syntax
extending the abstract syntax of XACML.

6.1.1 About Provenance

Various monitoring mechanisms can be used to collect provenance informa-
tion. We choose sticky logging (cf. Chapter 5) as it allows for attaching
logs directly to the processed data and automatically forwards the logs along
with the data. Other approaches may also be used, e.g. [Hallam-Baker and
Behlendorf, 1996].

The collected provenance information must be shared in an agreed format.
One standard for provenance information is the Open Provenance Model
(OPM) [Moreau et al., 2008] that represents provenance of data processing
as graph structure. OPM defines the term processing as an “action or se-
ries of actions performed on or caused by artifacts, and resulting in new
artifacts” [Moreau et al., 2008]. In Papel, we use primitives to define prove-
nance information (Primitive is the start symbol of the provenance part
of the Papel syntax; see Table 6.1). Papel represents the graph structure of
OPM by the step primitive, which represents single processing steps (see
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Table 6.1: Syntax of Papel.1
Papel Syntax for Provenance Information:

Syntax Element EBNF syntax
Primitive Step | ReducedFact | Attribute ;
Step "step ("Data", "Actors", "InvolvedAgents",

"Category", "Purpose", "ID", "PIDs")." ;
ReducedFact "reduced ("Data", "(Actors | "hidden")",

"(InvolvedAgents | "hidden")",
"(Category | "hidden")",
"(Purpose | "hidden")", "ID", "PIDs")." ;

Attribute "attribute ("Data", "Name", "Value",
"ID")." ;

Papel Syntax for Policies:

Syntax Element EBNF syntax
Rule Permission | Restriction | Assignment ;
Permission "permit (ID) IF " Condition "." ;
Restriction "deny (ID) IF " Condition "." ;
Assignment "assignment (ID) IF " Condition

"DO" SetAttribute | SetReducedFact "." ;
Condition Primitive | ("(NOT" Primitive | Condition |

"permit (ID)" | "deny (ID)" ")") |
("(" Primitive |Condition | "permit (ID)" |
"deny (ID)" BooleanOperator Primitive |
Condition | "permit (ID)" |
"deny (ID)" ")") |
(Step | ReducedFact "AFTER" Step |
ReducedFact ")") ;

SetAttribute "set_attribute ("Data", "Name", "Value",
"ID")." ;

SetReducedFact "set_reduced ("Data",
"(Actors | "hidden")",
"(InvolvedAgents | "hidden")",
"(Category | "hidden")",
"(Purpose | "hidden")", "ID", "PIDs")." ;

BooleanOperator "AND" | "OR" | "XOR" ;
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Definition 6.1), and the connection of these steps.

Definition 6.1: Processing Step

We define the representation of a processing step as a 7-tuple with the
following syntax:

step (Data, Actors, InvolvedAgents, Category,
Purpose, ID, PIDs)

where:
- Data refers to the artifact processed during the execution of the processing
step,
- Actors are the agents controlling the processing step,
- InvolvedAgents are agents involved in the processing step that did not
trigger the processing,
- Category is the category of the processing step,
- Purpose is the purpose of executing the processing step,
- ID is the unique identifier of the processing step, and
- PIDs are the unique identifiers of the directly preceding processing steps.

In OPM an artifact is defined as an “immutable piece of state, which may
have [..] a digital representation in a computer system” [Moreau et al.,
2008] and an agent is defined as a “contextual entity acting as a catalyst of a
process, enabling, facilitating, controlling, affecting its execution” [Moreau
et al., 2008]. An example of an involved agent in our running example is
the University of Koblenz as receiver of the transfer of health records. The
unique identifiers are specified as in OPM.

From the relationships between the attributes ID and PIDs one can easily
derive a partial order ≤S over the set of processing steps. The partial or-
der constitutes a graph structure modeling the temporal structure of the pro-

1The syntax of literals, such as Name, Category, etc., is not specified in the table.
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cessing history, whereby some actions may occur concurrently on different
computer systems. Besides these constituents of OPM, the step primitive
also specifies the Category and Purpose of a processing step. The pos-
sible categories and the possible purposes are defined in a domain specific
ontology.

Example 6.1: Example of a Processing Step.

As depicted in Figure 3.1, the first processing step is the creation of Jane
Doe’s health record by the hospital. The purpose of creating the record is
the treatment of Jane Doe:

step (record_JD, {mrh}, {}, create, treatment,
1, {0})

This example and the following examples make use of logical constants
record_JD, mrh, create and patient_treatment, which must be
defined in domain ontologies and corresponding databases. In the scenario,
these are provided by the Middle Rhine Hospital. For readability of the run-
through example, we use integers to denote the identifiers though in general
such a simplification is not possible.

We use the step primitive and the reduced primitive (see Defini-
tion 6.6) to specify the processing provenance and the attribute primi-
tive (see Definition 6.4) to specify attributes and their value (see Table 6.1).
The information about the single processing steps, attribute assignments and
reduced facts are collected during the execution of a process and represents
the processing history.

Definition 6.2: Processing History

Let S be the set of all processing steps and let A be the set of all attribute
assignments and let R be the set of all reduced facts, a history H is defined
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as a set of processing steps, attribute assignments and reduced facts:

H ⊆ S ∪A ∪R

Over each of the three sets S, A, andR a partial order is defined (≤S ,≤A,
and ≤R). The transitive closure of the union of these order relations defines
the global partial order ≤H over the elements of H (≤H= (≤S ∪ ≤A ∪ ≤R
)∗).

Not all entries of the history may be transferred to all other agents. A
system owner may decide to disclose only partial provenance information
to subsequent policy engines in the processing line in order to protect data
or privacy. The reader will find more details on this in the corresponding
section 6.1.5, where we also define attributes and reduced facts in detail.
Next, we explain the core of Papel, i.e. the application of policies on fully
transparent provenance information.

6.1.2 About Policies

To specify policies for inter-organizational exchange of data, Papel uses an
existing policy language as starting point. Papel builds on concepts from the
eXtensible Access Control Markup Language (XACML) [Moses et al., 2005],
which is a standard defining an XML based policy framework. XACML
supports three policy elements, i.e. permission (permit), restriction (deny)
and obligation (cf. Chapter 7). XACML policies define rules by connecting
a set of subjects (actors) with a set of targets (data) and by specifying the
conditions of the rule. If the conditions are fulfilled, XACML rules will
result in a given effect, which is permit or deny.

In Papel, we also use rules to specify policies (Rule is the start symbol
of the policy part of the Papel syntax, cf. Table 6.1). Policy rules (see Def-
inition 6.3) are provided by the person concerned or rights owner. Papel
models permissions as rules specifying which sorts of processing steps are
permitted.
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Likewise, restrictions are modeled as rules specifying which processing
steps are denied. Permissions are specified by means of permit rules and
restrictions by means of deny rules. The rules consist of the name, which
indicates the type of policy (permit or deny), and the body of the rule,
which defines the conditions (see Section 6.1.3), and is specified after the
IF statement.

Definition 6.3: Policy Rules

Policy rules are defined as the functions permit : Φ → {true, false} and
deny : Φ → {true, false}, where Φ is the set of all identifiers. The rules
have the following syntax:

permit (ID) IF Condition.
deny (ID) IF Condition.

where:
- ID is the parameter to pass the identifier of a processing step that will be
checked if it is permitted or denied, and
- Condition is the logical expression specifying whether a processing step
is permitted or denied.

The parameter ID specifies the processing step that will be checked
whether it is permitted or denied (e.g. permit (3) will check if the step
with the identifier 3 is permitted). By using the variable parameter ID, the
policy engine of an agent may match the condition of a rule against elements
from the history known by this agent.

The semantics of Papel define that all processing steps will be denied if not
explicitly permitted. Denial can be used to overwrite or restrict the explicit
permissions. Conflicting permit and deny rules have to be interpreted as
denial overwriting permissions (see Example 6.2).

Papel specifies a third type of rules that we call assignment rules.
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As permit and deny rules, assignment rules may depend on a
condition and have the parameter ID, which refers to the current pro-
cessing step. Assignment rules specify the change of an attribute value
by use of the set_attribute primitive. The assignment rule and
set_attribute primitive are discussed in detail in Section 6.1.5.

6.1.3 Condition Statements

A permit or deny rule will be effective if its condition is true. The intuitive
semantics of a condition is that it will be true for the corresponding ID if the
corresponding step, reduced fact or attribute assignment matches the con-
straints formulated in the condition. In Papel, conditions can be composed
using the following logical operators: NOT, AND, OR, XOR and AFTER (see
Example 6.5). Parentheses are used to specify the interpretation order of
complex statements. By the AFTER operator, one can access the partial or-
der of the processing steps in the history and relate them to the status of the
system at a particular point in time (in the subsequent section the reader will
see a detailed example).

Example 6.2: Policy 1 in Papel

Policy 1 is created in step 1 of the scenario (see Section 3.1) after Jane
Doe is admitted as a patient. This example formalizes Policy 1 as a set
of three rules:

The Middle Rhine Hospital is allowed to use Jane Doe’s health record to
treat her as a patient.

permit (ID) IF step (record_JD, {mrh}, _, _,
treatment, ID, _).

They are not allowed to use it for any other purpose nor are they allowed to

143



Provenance-aware Policies for the Distributed Processing of Data

transfer her health record to any other organization or entity.

deny (ID) IF step (record_JD, {mrh}, _, _,
Purpose, ID, _)

AND NOT (Purpose = treatment).

deny (ID) IF step (record_JD, {mrh}, _, transfer,
_, ID, _).

In the example we make use of the logical constant mrh, which represents
the Middle Rhine Hospital. The Data parameter of the step primitive
is set to record_JD, which is the unique identifier of Jane Doe’s health
record. Thus, the three rules of Policy 1 are directly connected to the
health record of Jane Doe.

The example uses unnamed variables indicated by _. The _ represents
another unnamed variable each time it is used. An unnamed variable matches
all possible values of its type.

The first rule of the example permits the processing of Jane Doe’s health
record by the Middle Rhine Hospital for treatment purposes. The second
rule explicitly denies all processing steps that do not have the purpose of
treating Jane Doe as a patient. In Papel, restrictions override permissions
(see Section 6.2.5). The third rule of this example denies the transfer of
record_JD, even if it is for research or treatment purposes, and restricts
the permission of the first rule.

Example 6.3: Policy 3 in Papel

This example depicts Policy 3 that allows the Middle Rhine Hospital to
use Jane Doe’s health record for research purposes.

permit (ID) IF step (record_JD, {mrh}, _, _,
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research, ID, _).

This rule still conflicts with the second rule of Policy 1 as implemented
in Example 6.2. So, we change this policy rule to:

deny (ID) IF step (record_JD, {mrh}, _, _, Purpose,
ID, _)

AND NOT (Purpose = treatment)
AND NOT (permit(ID)).

In some instances a restriction should be overridden by a per-
mission as in aboves example. This can be achieved by adding
AND NOT permit (ID) or more complex statements to the condition,
which define exceptions.

6.1.4 Connecting Provenance and Policies

Based on the modeling of provenance information and the specification of
policies that disregard provenance information, one may combine both to
specify policies that take provenance information into account. To demon-
strate the connection between policies and provenance information in Papel,
we discuss the following specification of policy Policy 6:

Example 6.4: Policy 6 in Papel

The following example depicts the implementation of Policy 6 of the
running example. The patient demands that her health record is de-identified
before it is transfered:

permit (ID) IF step (record_JD, _, _, transfer, _,
ID, {PID})
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AND step (record_JD, _, _, update,
de-identify, PID, _).

We have used the step primitive before (see Example 6.2) to relate to the
actual processing step identified by ID. However, in Example 6.4 we use the
step primitive to address provenance information, as well. Permission will
be granted only if the provenance information contains the description of a
matching step. In Section 6.2, a detailed definition of the semantics of Papel
is given.

The second step primitive refers to a preceding processing step. By using
the variable PID, we can specify that the de-identification step has to be
performed directly before the processing step to be permitted. If the variable
is not used, any de-identification step performed at anytime will fulfill the
condition.

Using the AFTER operation allows us to address the temporal structure
of the history in a more flexible manner. a AFTER b specifies that the
element a of the known history has to occur after the element b of the known
history as specified by the partial order (≤H ). In difference to Example 6.4,
the policy in Example 6.5 does not require that the de-identification must
directly precede the data transfer.

Example 6.5: Policy 6 using the AFTER Operator

The patient demands that her health record is transferred only after it has
been de-identified:

permit (ID) IF (step (record_JD, _, _, transfer, _,
ID, _)

AFTER step (record_JD, _, _, update,
de-identify, _, _)).

In this example, the first line of the policy refers to the current process-
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ing step referred to by the variable ID. The processing step is performed on
record_JD. Through the combination by the AFTER operator, the second
part in the example is referring to a step preceding ID, which is also per-
formed on record_JD. The permission will be granted only if the prove-
nance information contains the description of a matching step.

This example policy formulation would still allow for the possibility that
record_JD was first de-identified, then re-identified and finally trans-
ferred. If one wanted to rule out transfer steps in such a case, one would
have to add an explicit deny rule or query a variable status as allowed by the
formulation of policies with attributes (see Section 6.1.5).

As the following example depicts, by the AFTER operator, we can access
the partial order of longer paths of processing steps in the history.

Example 6.6: Policy 5 in Papel

The following example illustrates the implementation of Policy 5.
Permit the transfer after the confirmation of the access approval:

permit (ID) IF (step (record_JD, {ukob}, _, access,
_, ID, _)

AFTER (step (record_JD, {mrh}, _, _,
confirmation, _, _)

AFTER step (record_JD, {patient}, _, _,
access_approval, _, _))).

6.1.5 Data and Privacy Protection

The provenance information can be used as source of information about the
processing history. However, it may contain sensitive data, such as the prove-
nance information about adjusting Jane Doe’s cancer medication. While full
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encryption of the provenance information may render policy execution im-
possible, partial encryptions may trade-off between the need for checking
policy compliance and security concerns (see the Contractual Requirement
Accessibility). To overcome these issues, Papel introduces attributes as well
as reduced facts.

Attributes are used to specify provenance information that can be ex-
pressed by a value, e.g. de-identification status or modification counter. They
can be used to carry an attribute value along a set of processing steps in the
history until the attribute value is changed again.

Definition 6.4: Attributes

We define the representation of an attribute as a 4-tuple with the following
syntax:

attribute (Data, Name, Value, ID)

where:
- Data refers to the data instance the attribute belongs to,
- Name is the name of the attribute,
- Value is its assigned value,
- ID identifies the processing step.

Likewise, we define the representation of the set attribute predicate as a
4-tuple with the following syntax:

set_attribute (Data, Name, Value, ID)

where Data, Name, Value and ID are specified as before.

The value of the attribute is assigned by the actor performing the process-
ing step. The assignment is done according to the assignment rules (see
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Definition 6.5) defined by the creator of the policies. Each attribute has ex-
actly one specific value at a time, possibly undefined. The latest setting of the
attribute preceding a specific point in time specifies its value. If the attribute
de-identified is set to true in step 2 and not set again until step 6, it
will still have the value true in step 6. If an attribute is set concurrently to
different values, its value will be undefined at the point in time when the two
concurrent histories merge again.

Definition 6.5: Assignment Rules

We represent assignment rules by the following syntax:

assignment (ID) IF Condition DO Assignment.

where:
- ID is the parameter to pass the identifier of a processing step that triggers
the assignment,
- Condition is the condition specifying whether an assignment is trig-
gered or not, and
- Assignment is the assignment specifying the setting of attributes and
reduced facts.

The following example depicts the use of attributes and assignment rules.

Example 6.7: Policy 6 with Attributes

This example illustrates the permit rule and the assignment rule required
to implement Policy 6 using the attribute de-identified assigned
to the record_JD. The policy rule of this example will grant the transfer
of record_JD only, if it is not re-identified between the de-identification
and the transfer steps: The patient demands that her health record will be
transferred only if it is de-identified at the time of transfer:
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permit(ID) IF (step (record_JD, _, _, transfer, _,
ID, _) AND

attribute (record_JD, de-identified,
true, ID)).

If the executed processing step de-identifies the record, set the attribute
named de-identified to true, and if the record is re-identified, set
the attribute to false:

assignment(ID) IF step (record_JD, _, _, _,
de-identify, ID, _)

DO set_attribute (record_JD,
de-identified,
true, ID).

assignment(ID) IF step (record_JD, _, _, _,
re-identify, ID, _)

DO set_attribute (record_JD,
de-identified,
false, ID).

Attributes may not be expressive enough to provide all required informa-
tion, e.g. to answer the question whether the last de-identification has been
performed by a specific actor. In this case, someone who performs logging
can use reduced facts in Papel. A reduced fact is a step description that is
reduced to the necessary and contains only the required information. Differ-
ently than the full description, the information conveyed by the reduced fact
must not be encrypted to not hamper querying the information.

Definition 6.6: Reduced Facts

We define the representation of a reduced fact as a 7-tuple with the following
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syntax:

reduced (Data, Actors, InvolvedAgents, Category,
Purpose, ID, PIDs)

where:

- Data refers to the artifact processed during the execution of the process-
ing step,
- Actors are the agents controlling the processing step,
- InvolvedAgents are agents that did not trigger the processing step,
but are involved,
- Category is the category of the processing step,
- Purpose is the purpose of executing the processing step,
- ID is the unique identifier of the processing step, and
- PIDs are the unique identifiers of the directly preceding processing steps.

Likewise, we define the set_reduced primitive of as a 7-tuple with the
following syntax:

set_reduced (Data, Actors, InvolvedAgents,
Category, Purpose, ID, PIDs)

where Data, Actors, InvolvedAgents, Category, Purpose, ID
and PIDs are specified as for the reduced primitive.

To protect data or privacy, the parameters Data, Actors,
InvolvedAgents, Category, and Purpose can be set selec-
tively to the special zero value hidden. The parameters ID and PIDs
must not be set to hidden. These two parameters are required to reproduce
the (partial) order of processing steps.
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Example 6.8: Reduced Facts

The following example depicts the provenance information of a processing
step of the department for nuclear medicine (Step 4 in our scenario):
The processing step updates the health record by adding a new cancer
medication:

step (record_JD, {nuclear_medicine}, {},
update, new_cancer_medication, 3, {2})

If this information is not relevant to the analysis of the University of
Koblenz, the Middle Rhine Hospital will encrypt the original information
about the processing step and will provide reduced provenance information
fulfilling Policy 7:

reduced (record_JD, hidden, hidden, update, hidden,
3, {2})

6.2 Execution Semantics of Papel

In this section, we define the semantics of Papel. The semantics of Papel
specifies whether a given execution step violates a given set of policy rules
under consideration of a given history. The interpretation of a policy rule in
Papel shall be true, if and only if the condition of the rule is true. We define
a Tarskian semantics mapping syntactic elements of Papel onto subsets and
relations over a universe U . Based on these semantics we define when a set
of policies is fulfilled under a given history H (see Definition 6.2). First we
define minimal models of a history H:
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Definition 6.7: A Minimal Model of a History

We define a minimal modelM of a historyH as a model to which no strictly
smaller Herbrand model of the history H exists [Lloyd, 1993].

A minimal model of a history is only a model of the history and of subparts
of the history. Based on the definition of a minimal model of a history we
define when a set of policies is fulfilled:

Definition 6.8: Fulfilling a Set of Policy Rules

We define that a set of policy rules R is fulfilled with respect to a history
H if each minimal model M of the history H is also a model of the set of
policy rules R.

6.2.1 The Basic Semantics

In Papel, the universe U is the set:

U = ∆ ∪ Γ ∪X ∪Ψ ∪ Φ ∪N ∪ V ,

where ∆ is the set of artifacts (e.g. data instances), Γ is the set of agents
(including actors), X is the set of categories, Ψ is the set of purposes, Φ is
the set of processing step identifiers, N is the set of attribute identifiers, and
V the set of attribute values. These subsets of U are mutually disjoint. For
the following definitions be P (Z) the power set of the set Z.

Definition 6.9: The Partial Interpretation Function I

We define I to map atomic elements of Papel onto the (parts of) our universe
U as follows:
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DataI ∈ ∆,
ActorsI ⊆ Γ,

InvolvedAgentsI ⊆ Γ,
CategoryI ∈ X ,
PurposeI ∈ Ψ,

IDI ∈ Φ,
PIDsI ⊆ Φ

NameI ∈ N , and
ValueI ∈ V .

The predicate representing the performed processing steps step, which are
elements of the history H , is interpreted as stepI ⊆ U7:

stepI ⊆ ∆× P (Γ)× P (Γ)×X ×Ψ× Φ× P (Φ)

the predicate representing the reduced facts reduced, which are elements of
the history H , is interpreted as reducedI ⊆ U7:

reducedI ⊆ ∆× P (Γ)× P (Γ)×X ×Ψ× Φ× P (Φ)

and the predicate representing the attribute assignments attribute, which are
elements of the history H , is interpreted as attributeI ⊆ U5:

attributeI ⊆ ∆×N × V × Φ× P (Φ).

The partial interpretation function I must satisfy the following constraints:

• Each identifier φ ∈ Φ must clearly identify one processing step
(injective function from φ to step):

∀φ ∈ Φ : (δ1, α1, β1, χ1, ψ1, φ, ρ1), (δ2, α2, β2, χ2, ψ2, φ, ρ2) ∈
stepI ⇒ δ1 = δ2∧α1 = α2∧β1 = β2∧χ1 = χ2∧ψ1 = ψ2∧ρ1 = ρ2.
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• Likewise, at each processing step specified by φ ∈ Φ each attribute
has exactly one value at a time:

∀φ ∈ Φ : (δ, µ, ν1, φ, ρ1), (δ, µ, ν2, φ, ρ2) ∈ attributeI ⇒ ν1 =
ν2 ∧ ρ1 = ρ2.

The processing history is defined as partial order≥⊆ Φ×Φ of processing
steps, reduced facts, and attribute assignments. A tuple (φ, η) is element of
≥, if the processing step specified by η precedes the processing step specified
by φ or if η = φ. Before we define ≥, we define the relation � ⊆ Φ× Φ of
directly preceding processing steps, reduced facts, and attribute assignments
and the relation > ⊆ Φ× Φ of strictly preceding processing steps.

Definition 6.10: Immediately Preceding Processing Steps

We define a processing step sζ as immediately preceding another processing
step sφ if sφ is the successor of sζ :

� = {(φ, ζ)|∃(δs, αs, βs, χs, ψs, φ, ρs) ∈ stepI ∧ ζ ∈ ρs ∨
∃((δa, µa, νa, φ, ρa) ∈ attributeI ∧ ζ ∈ ρa}.

A processing step precedes another processing step, if a trace of consecu-
tive processing steps exists that connects both steps:

Definition 6.11: Strict Partial Order of Processing Steps

We define the strict partial order > ⊆ Φ × Φ of processing steps, reduced
facts and attribute assignments as:

> = {(φ, η)|(φ � η) ∨ ∃ζi ∈ Φ : (φ � ζi) ∧ (ζi � η)∨
∃ζ1, .., ζn ∈ Φ : (φ � ζ1) ∧ (ζ1 � ζ2) ∧ .. ∧ (ζn � η)}.
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Finally, we define the (non-strict) partial order of processing steps.

Definition 6.12: Partial Order of Processing Steps

We define the partial order≥⊆ Φ×Φ of processing steps, reduced facts and
attribute assignments as:

≥ = {(φ, η)|(φ = η) ∨ (φ > η)}.

6.2.2 Logical expressions

In Section 6.1.3, we introduced the following syntactical elements NOT,
AND, OR, and XOR. Their semantics are defined in the same manner as the
corresponding boolean expressions (see Table 6.2).

Definition 6.13: The Relations: ‘not’, ‘and’, ‘or’ and ‘xor’

Let e be a logical expression, we define the not-relation as not ⊆
{true, false}, where:

(not(e))I =

{
true if eI = false,

false else.

Let e and f be logical expressions, we define the and-relation as and ⊆
{true, false}, where:

(and(e, f))I =

{
true if eI ∧ f I = true,

false else.

Let e and f be logical expressions, we define the or-relation as or ⊆
{true, false}, where:
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(or(e, f))I =

{
true if eI ∨ f I = true,

false else.

Let e and f be logical expressions, we define the xor-relation as xor ⊆
{true, false}, where:

(xor(e, f))I =

{
true if (eI ∧ ¬f I) ∨ (¬eI ∧ f I) = true,

false else.

We introduce the syntactical element AFTER to address the temporal
structure of the history. The AFTER statement is defined by the following
relation:

Definition 6.14: The after-Relation

Let s1 and s2 be processing steps or reduced facts, we define the after-
relation as afterI ⊆ (stepI ∪ reducedI)× (stepI ∪ reducedI), where:

(after(s1, s2))I =


true if s1 = (.., id1, ..) ∧ s2 = (.., id2, ..)∧

(idI1 > idI2),
false else.

6.2.3 Processing Steps, Reduced Facts and Attributes

In the following, we extend the interpretation function I (see Definition 6.9)
by the interpretation of non-atomic syntactic expressions of Papel.

A processing step is specified by the step predicate. The following def-
inition specifies how the step predicate is interpreted by the interpretation
function I .
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Table 6.2: Condition Statements.

Syntax Natural language semantics
A A is true
NOT A A is not true
A AND B A and B are true
A OR B A or B (non-exclusive or) are true
A XOR B either A or B (exclusive or) is true
B AFTER A first A and then B (in the given order2) are true
IF Condition if the Condition is fulfilled

Definition 6.15: Interpretation of the Step Predicate

Let I be the partial interpretation function, let _ be an unspecified param-
eter, let S be a substitution of variables to Papel terms, let e be the logical
expression in which the step predicate occurs and let (eS)I be true, the in-
terpretation of the step predicate is defined by the function (step)I : U7 →
{true, false}:

(step(δ, α, β, χ, ψ, φ, ρ))I =

true if ∃(δ′, α′, β′, χ′, ψ′, φ′, ρ′) ∈ stepI :

(δI = δ′ ∨ δ = _ ∨ {δ 7→ δ′} ⊆ S)∧
(αI = α′ ∨ α = _ ∨ {α 7→ α′} ⊆ S)∧
(χI = χ′ ∨ χ = _ ∨ {χ 7→ χ′} ⊆ S)∧
(ψI = ψ′ ∨ ψ = _ ∨ {ψ 7→ ψ′} ⊆ S)∧
(φI = φ′ ∨ φ = _ ∨ {φ 7→ φ′} ⊆ S)∧
(ρI = ρ′ ∨ ρ = _ ∨ {ρ 7→ ρ′} ⊆ S),

false else.

2The processing history can be represented as a directed graph. Thus, processing steps can
be in order if they can be connected by a path in the graph.
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We distinguish three different sorts of terms specifying parameters of step
predicates. These are named identifiers (e.g. record_JD), unspecified pa-
rameters (_) and variables (e.g. ID). In the first case, the interpretation of
the term must equal the regarding element of the step s′ ∈ stepI (e.g.
record_JDI = δ′). In the second case, each element of the associated
type will match. In the last case, a substitution S must exist that substitutes
the variable specified by the term with the regarding element of the step (e.g.
{ID 7→ φ′} ⊆ S). After performing the substitution, the interpretation of the
logical expression e, in which the step predicate occurs, must be true.

Similar to the step predicate, the reduced predicate is interpreted by the
interpretation function I as defined by the following definition.

Definition 6.16: Interpretation of the Reduced Fact Predicate

Let I be the partial interpretation function, let S be a substitution of variables
to Papel terms, let e be the logical expression in which the reduced predicate
occurs and let (eS)I be true, the interpretation of the reduced predicate is
defined by the function (reduced)I : U7 → {true, false}:

(reduced(δ, α, β, χ, ψ, φ, ρ))I =

true if ∃(δs, αs, βs, χs, ψs, φs, ρs) ∈ stepI :

(δI = δs ∨ δ = hidden ∨ {δ 7→ δs} ⊆ S)∧
(αI = αs ∨ α = hidden ∨ {α 7→ αs} ⊆ S)∧
(χI = χs ∨ χ = hidden ∨ {χ 7→ χs} ⊆ S)∧
(ψI = ψs ∨ ψ = hidden ∨ {ψ 7→ ψs} ⊆ S)∧
(φI = φs ∨ {φ 7→ φs} ⊆ S)∧
(ρI = ρs ∨ {ρ 7→ ρs} ⊆ S) ,

false else.

In difference to processing steps, the reduced facts must be explicitly set.
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Apart the interpretation of the reduced predicate, we require to define the
interpretation of the set_reduced predicate that is used to specify the setting
of reduced facts.

Definition 6.17: Interpretation of the Setting Predicate for Reduced Facts

Let I be the partial interpretation function, let
(δs, αs, βs, χs, ψs, φs, ρs) ∈ stepI be the processing step de-
scribed by the reduced fact, be φIr = φs and ρIr = ρs, and be
δIr = δs ∨ δr = hidden, αIr = αs ∨ αr = hidden, βIr = βs ∨ βr = hidden,
χIr = χs ∨ χr = hidden, and ψIr = ψs ∨ ψr = hidden. We define
the interpretation of the set_reduced predicate by the following function
(set_reduced)I : U7 → {true, false}:

(set_reduced(δr, αr, βr, χr, ψr, φr, ρr))
I ={

true if (δIr , α
I
r , β

I
r , χ

I
r , ψ

I
r , φ

I
r , ρ

I
r) ∈ reducedI ,

false else.

An attribute is specified by the attribute predicate. The following defi-
nition specifies interpretation of this predicate by the interpretation function
I .

Definition 6.18: Interpretation of Attribute Predicate

Let I be the partial interpretation function, we define the in-
terpretation of the attribute relation by the following function
(attribute)I : U5 → {true, false}:

(attribute(δ, n, v, φ, ρ))I =
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

true if (δI , nI , vI , φI , ρI) ∈ attributeI ,
true if (δI , nI , vI , φI , ρI) /∈ attributeI∧

∃(δI , nI , vI , φl, ρl) ∈ attributeI ∧ (φI > φl) ∧
¬∃(δm, nm, vm, φm, ρm) ∈ attributeI :

(φI > φm) ∧ (φm > φl),

false else.

An attribute has the value assigned in the current step, or if no value is
assigned in the current step, it will have the value that has been assigned last.
The assignment of an attribute is specified by the set_attribute predicate.
The interpretation of this predicate is defined as follows:

Definition 6.19: Interpretation of the Setting Predicate of Attributes

Let I be the partial interpretation function, we define that the
set_attribute predicate is interpreted by the following function
(set_attribute)I : U5 → {true, false}:

(set_attribute(δ, n, v, φ, ρ))I ={
true if ∀η ∈ Φ : η � φI → (δI , nI , vI , η, {φI}) ∈ attributeI ,
false else.

The result of the interpretation of the set_attribute predicate will be true
if the value of the attribute is updated in all directly succeeding processing
steps.
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6.2.4 Permission, restriction and assignment

Permissions, restrictions, and assignments are defined as predicates on Φ.
The predicates are defined by the functions permit : Φ → {true, false},
deny : Φ → {true, false}, and assignment : Φ → {true, false}. We
define these functions and their interpretation in the following.

Permit rules specify processing steps that are allowed to be performed.
We define the permit function in a way that it is true for all steps that
are permitted and false for all steps that are not permitted. Considering
only permit rules, ‘not permitted’ does not imply that a rule is denied. The
interpretation order of Papel specifies that all steps, which are not explicitly
permitted, are considered as denied.

Definition 6.20: Permit Function

We define permit : Φ → {true, false} as a function that will be true if
the processing step identified by ID is permitted. If it is not permitted, it
will be false.

The interpretation of the permit predicate is specified by the following
definition:

Definition 6.21: Interpretation of Permit Predicate

Let p1, p2, .., pn be the logical expressions specifying the conditions of all
rules defining permissions. The predicate permit is interpreted as follows:

(permit(ID))I =


true if ∃ (δ, α, β, χ, ψ, φ, ρ) ∈ stepI :

IDI = φ ∧ (pI1 ∨ pI2 ∨ .. ∨ pIn) = true

false else
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Prohibited processing steps are specified by deny rules. So, we define the
deny function to be true for all denied steps and false for all not denied
steps. Considering only deny rules, ‘not denied’ does not imply that a rule
is permitted. And the interpretation order of Papel specifies that all steps,
which should be permitted, must be explicitly permitted.

Definition 6.22: Deny Function

deny : Φ → {true, false} is a function that will be true if the processing
step identified by ID is denied. If it is not denied, it will be false.

The interpretation of the deny predicate is defined as follows:

Definition 6.23: Interpretation of Deny Predicate

Let d1, d2, .., dm be the logical expressions specifying the conditions of all
rules defining restrictions, deny is interpreted as follows:

(deny(ID))I =


true if ∃ (δ, α, β, χ, ψ, φ, ρ) ∈ stepI :

IDI = φ ∧ (dI1 ∨ dI2 ∨ .. ∨ dIm) = true

false else

The setting of attributes is specified by assignment rules. But, the assign-
ment rules do not set the attributes. We define the assignment function
to be true for all processing steps that do not violate assignment rules and
false for all steps violating assignment rules.

Definition 6.24: Assignment Function

assignment : Φ → {true, false} is a function that will be true if the
processing step identified by ID does not violate an assignment. If it violates

163



Provenance-aware Policies for the Distributed Processing of Data

an assignment, it will be false.

The interpretation of the assignment predicate is defined as follows:

Definition 6.25: Interpretation of Assignment Predicate

Let c1, c2, .., ck be the logical expressions specifying the conditions of
all rules defining assignments and be a1, a2, .., ak the set_attribute and
set_reduced predicates of all rules defining assignments, the predicate
assignment is interpreted as follows:

(assignment(ID))I =
true if ∃ (δ, α, β, χ, ψ, φ, ρ) ∈ stepI : IDI = φ∧

((¬cI1 ∨ aI1) ∧ (¬cI2 ∨ aI2) ∧ .. ∧ (¬cIk ∨ aIk)) = true

false else

6.2.5 Fulfilling Policies

Policies will be fulfilled with respect to a history if each minimal model of a
history is also a model of the policies (see Definition 6.8). This definition in
combination with the Papel semantics have the conclusion that a processing
history will fulfill a set of policy rules, if all processing steps in the history
are permitted by permissions (permitI ) and not prohibited by restrictions
(denyI ) and if no assignment (assignmentI ) has been violated.

6.3 Implementation

Implementing Papel, we have demonstrated its feasibility. In the imple-
mentation the provenance information is provided as a database. To access
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the provenance information, we use the database query language Datalog.
We have chosen Datalog to provide a general implementation with a formal
grounding. We also introduce the sticky policy framework. The sticky policy
framework extends the sticky logging framework with policies. Through the
combination of both, accessing provenance information is eased.

6.3.1 Implementing Papel with Datalog

In our implementation, we use facts to specify the provenance information
and rules to query the information. We do the implementation by a mapping.
Each Papel primitive is mapped to a Datalog fact. For each identifier in Papel
(e.g. record_JD) an unique atom in Datalog is created. For each policy
rule in Papel a Datalog rule is created (see the implementation example be-
low).

To validate a set of policies the following preparation steps are required:

1. A Datalog fact is generated for each processing step, reduced fact and
attribute assignment that is described by the provenance information.
The facts are added to the database;

2. All Datalog rules required to specify the semantics of Papel are added
to the database;

3. The Datalog rules specifying the policies are added to the database;
and

4. A Datalog fact specifying the processing step that should be performed
is added to the database.

After this preparation, the database is ready to be queried by rules which
verify whether processing steps are permitted or denied or whether assign-
ments have been violated. In the following, we explain the preparation steps
in detail.
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Mapping Provenance Information to Facts: Starting with the step
primitive, we use Datalog facts to specify the information about processing
steps. Listing 6.1 depicts the provenance information of the health care sce-
nario as Datalog facts. Reduced facts (reduced primitive) are represented
analogously by Datalog (see line 3 of Listing 6.1). Attribute assignments
(attribute) are also translated to Datalog facts (see line 5 of Listing 6.1).

Listing 6.1: Provenance Information represented as Datalog Facts

1: step(record, mrh, _, create, treatment, 1, 0).
2: step(record, mrh, _, update, examination, 2, 1).
3: reduced(record, hidden, hidden, create, hidden,

3, 2).
4: step(record, mrh, _, deidentified, privacy,

4, 3).
5: attribute(record, deidentified, true, 4).
6: step(record, mrh, ukob, transfer, research,

5, 4).
7: step(record, ukob, _, read, research, 6, 5).

The additional semantics of the reduced primitive are captured by a rule
introduced below (see Listing 6.2). Also the attribute primitive requires
further Datalog rules to implement its full semantics defined by Papel (see
below and Listing 6.3).

In Papel, we may use sets in primitives specify-
ing provenance information, e.g. for multiple actors
step(_, {mrh, ukob}, _, _, _, 6, 5) or multiple pre-
ceding processing steps step(_, mrh, _, _, _, 9, {8, 7}).
The sets are interpreted as elements of the corresponding type (see Defini-
tion 6.15). Thus, each set is implemented as a single constant in Datalog
(e.g. mrh_ukob) beside the set of preceding processing steps. As the
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preceding processing steps specify the structure of the graph, we must be
able to address the single preceding steps. Each step primitive (likewise
for reduced facts) that has more than one preceding processing step is
represented by multiple Datalog facts; one for each preceding processing
step.

Implementing Papel’s Semantics with Datalog Rules: After adding
facts representing the provenance information, we add Datalog rules formal-
izing the semantics of Papel. The first rule enables the querying of reduced
facts. The rule (see Listing 6.2) provides the mapping from the reduced to
the step primitive.

Listing 6.2: Implementation of the Mapping between Reduced Facts and
Steps

8: step(Data, Actors, InvolvedAgents, Category,
Purpose, ID, PIDs) :-

reduced(Data, Actors, InvolvedAgents, Category,
Purpose, ID, PIDs).

The attribute predicate of Papel specifies the assignment of a value to
an attribute. Each attribute has exactly one specific value at a time, possibly
undefined. The attribute’s latest setting preceding a specific point in time
specifies that attribute’s value at that point in time. This circumstances are
addressed by the Datalog implementation of the check_attribute pred-
icate depicted in Listing 6.3, which allows for checking whether an attribute
has a specific value at a certain point in time (see line 18 of Listing 6.5 for
an application of the predicate). The changed_later predicate is used to
validate whether an attribute has been changed between to assignments and
is used as helper predicate by the check_attribute predicate.
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Listing 6.3: Getting Attribute Value

9: changed_later(Data, Name, Value, PID, ID) :-
attribute(Data, Name, Value, ID),
attribute(Data, Name, NewerValue, IID),
after(ID, IID), after(IID, PID),
not(Value = NewerValue).

10: check_attribute(Data, Name, Value, ID) :-
attribute(Data, Name, Value, ID).

11: check_attribute(Data, Name, Value, ID) :-
attribute(Data, Name, Value, PID),
after(ID, PID),
not(changed_later(Data, Name, Value, PID,

ID)).

To address the temporal structure of processing histories, we have intro-
duced the AFTER operator in Papel. The AFTER operator is used to access
the processing history. In the implementation, we can access the graph struc-
ture of the processing history by means of the step identifiers ID. The iden-
tifier ID in combination with the identifier PID of the preceding processing
step define a partial order of the processing steps, which defines directed
paths through the execution history. To express arbitrary paths, we imple-
ment a general path rule (see line 12 and 13 in Listing 6.4). To query
for direct preceding processing steps, we implemented a directPath rule
analogously (see line 14). The implementation of the AFTER operator (see
line 15) is an application of this path rule.
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Listing 6.4: Implementation of the AFTER Operator

12: path(Begin, End) :- step(_, _, _, _, _, End,
Begin).

13: path(Begin, End) :- path(Begin, Intermediate),
path(Intermediate, End).

14: directPath(Begin, End) :- step(_, _, _, _, _,
End, Begin).

15: after(ID, PID) :- path(PID, ID).

Apart from the AFTER operator, Papel uses the boolean operators NOT,
AND, OR, and XOR. These can be expressed by standard means of Datalog.

Specifying Policies in Datalog: The implementation of the policies of
our scenario is achieved by Datalog rules. The conditions are specified as
the body of the rule. The following listing depicts the implementation of
the Policy 4 and Policy 6 of the health care scenario. Policy 4
specifies that the University of Koblenz is allowed to process health records
for research purposes, but the University of Koblenz is not allowed to trans-
fer the health records (see lines 16 and 17). Policy 6 demands that the
transfer of the health record will only be allowed if the record has been de-
identified (see line 18). The rule implementing Policy 6 makes use of the
check_attribute predicate we introduced above.

Listing 6.5: Policy 4 and 6 in Datalog

16: permit(ID) :- step(record_JD, ukob, _, _,
research, ID, _).
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17: deny(ID) :- step(record_JD, ukob, _,
transfer, _, ID, _).

18: permit(ID) :- step(record_JD, _, _, transfer,
_, ID, _),

check_attribute(record_JD,
deidentified,
true, ID).

Beside permit and deny rules, Papel specifies assignment rules.
As assignments in Papel are used to set attributes or specify reduced facts,
in the implementation we write the assignment part of the rule (after the
DO) as head of the Datalog predicate and the condition as its body. The
following example depicts the Datalog implementation of the assignment
rules of Example 6.7.

Listing 6.6: Assignment of the Deidentifaction Attribute

19: attribute(record_JD, deidentified, true,
ID) :-

step(record_JD, _, _, update, deidentify,
ID, _).

20: attribute(record_JD, deidentified, false,
ID) :-

step(record_JD, _, _, update, reidentify,
ID, _).

As for provenance information, Papel allows for using sets in conditions,
e.g. step(_, {mrh, ukob}, _, _, _, ID, _). As Datalog does not
natively support such sets and the semantics of Papel define such sets as sin-
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gle elements of the corresponding type (see Definition 6.15), those sets are
represented as single constants in Datalog. An exception to this rule is the
set of preceding processing steps, which is implemented by specifying mul-
tiple predicates analogous to step primitives specifying provenance infor-
mation (see also in aboves paragraph on ‘Mapping Provenance Information
to Facts’).

This issue is aggravated in condition statements that use variables to
address processing steps and preceding processing steps. Such condi-
tions require a more extensive implementation to assure that the uni-
fication works as intended. For instance, the condition statement:
step(record_JD, _, _, update, _, ID, {8, A}). We have
to assure that the unification mechanism of Datalog does not substitutes A
with 8, or if more variables are given, will not substitute multiple variables
with the same processing step identifier. To overcome this issue, we have
to explicitly specify that the variables and given constants are different. We
achieve this by specifying restricting constraints, e.g. A ! = 8.

Validating Processing Steps: After the previous preparation steps, we
can use the implementation to request whether a processing is (or has been)
allowed or not. As Papel defines an interpretation order in Section 6.2.5,
we must consider the following three rules expressing the policy validation
strategy:

1. If at least one permission is true, the action will be permitted.

2. If at least one restriction is true, the action will be prohibited, even if
it has been permitted.

3. If permissions and restrictions are true, the action is prohibited (re-
striction > permission).

The following rule considers the validation strategy and is used to query
whether the processing step identified by the given ID will be allowed or
not:
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Listing 6.7: Is a Processing Step Allowed

21: isAllowed (ID) :- permit (ID), not (deny (ID)).

The following query is executed eventually, where id is an identifier of an
actual processing step:

Listing 6.8: Is a Processing Step Allowed

isAllowed (id).

6.3.2 Sticking Policies to Data Items

In this section, we introduce the sticky policy framework that extends the
sticky logging framework by policies. Through the combination, accessing
provenance information is eased.

Each policy is associated with one data item. Hence, we define a sticky
policy as a pair of data items and policies, as a sticky log is a pair of data
instances and logs. In a distributed process multiple instances of a data item
may exist. To each data instance a copy of the policies is attached. The
attaching is achieved by adding the policy to the data instances as part of
the RDF graph containing the log. A policy may be specified by a resource
describing the policy or by an URI pointing to an external resource (e.g.
Web address) that contains the policy. Thus, each time a new data instance is
created not only a new log needs to be created, but also all policies and links
are copied and added to the RDF graph of the new log.

Changes of policies need to be propagated along the processing path. The
propagation is achieved by means of the references that are part of the sticky
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logs. This way no additional information is required and up-to-date policies
are directly accessible with the data.

The policies are attached to the associated data by including them into the
RDF graph of the sticky log, like depicted by Listing 6.9. The listing shows
the attaching of Policy 3 of the health care scenario to Jane Doe’s health
record. By means of Policy 3 Jane Doe allows the Middle Rhine Hospital
to use her health record for research.

Listing 6.9: Attaching a Policy to a Data Item

:Record_JD sp:protectedBy :Policy3
:Policy3 sp:expressedBy "permit(ID) IF step(

record_JD, {mrh}, _,
_, research, ID, _)."

Alternatively, references can be used to point to resources containing poli-
cies. This method can be used for generic policies (as Policy 1) that are
not expected to change or, if they change, the updated version is of relevance
(e.g. policies based on laws). The server hosting the policy must be trust
worthy (e.g. government server).

Listing 6.10: Attaching a Generic Policy

:Record_JD sp:protectedBy :Policy1
:Policy1 sp:specifiedAt "http://mrh.ex/policy"

6.4 Related Work

Many general purpose policy languages exist that are applicable for our pur-
pose. Papel is based on one of these existing languages. It uses the main
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policy elements ‘restriction’ (deny) and ‘permission’ (permit), as defined in
the eXtensible Access Control Markup Language (XACML) [Moses et al.,
2005]. Policies, which are based on complex environmental knowledge such
as provenance information, can not easily be specified using XACML. Thus,
Papel extends the expressiveness of XACML conditions to cover information
about the processing history of data.

As a foundation for more complex policy conditions we use the work of
Kagal et al. [Kagal et al., 2003]. They present a domain-centric and entity-
centric policy language named Rei. Rei provides a mechanism to model
speech acts and to delegate policies. The conditions in Rei are specified
in Prolog. However, Rei does not define how to model conditions based
on provenance information. Papel extends the work of Rei by defining a
formalism for conditions based on provenance information and by provid-
ing a model-theoretical semantics for the temporal structures and the state
changes. New language primitives such as AFTER and assignment have
been added in such parsimonious manner that Papel can be captured nicely
in a purely declarative Datalog implementation.

Related work in the area of temporal logic, linear temporal logic in partic-
ular, is used to validate the compliance of histories with specified policies.
The authors of [Bauer et al., 2009] describe access control policies that re-
late to histories of transactions using their policy language PTLTLFO. As
PTLTLFO is a general purpose language, it does not define a specific se-
mantics for provenance or data flows. However, PTLTLFO might probably
be used to implement Papel.

Other related work is the Web Services Policy 1.5 - Framework (WS-
Policy) [Vedamuthu et al., 2007] that provides a model and syntax to specify
policies about entities in a Web services-based system. As WS-Policy is used
to specify policies about entities, e.g. Web services, and not about processed
data, it is not in the target of the WS-Policy framework to model conditions
based on provenance information.

Table 6.3 gives an overview of related work in the field of policy lan-
guages. The table compares the different properties of policy languages that
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are crucial for connecting policies and provenance information. In our ex-
ample, the Middle Rhine Hospital is required to link policies to Jane Doe’s
health record to make them available for the University of Koblenz. To ful-
fill the Contractual Requirement Availability, policies require to be asso-
ciated with a specific data item (Property 1). As the hospital and Jane Doe
must be able to express provenance-aware policies (Property 2), the Contrac-
tual Requirement Expressiveness asks for policy conditions that can relate to
knowledge about the data. Some scenarios require data flow (Property 3)
and access control policies (Property 4). In our example, one requires both
access control and data flow control to express Policy 4. The availability
of the provenance data (see Contractual Requirement Accessibility) gener-
ates new risks for privacy and data protection. The policy language should
be able to protect confidential provenance information (Property 5), e.g. to
maintain privacy and data protection. The table depicts whether the language
has a syntax definition (Property 6), a formal semantics (Property 7) and an
implementation (Property 8).

Table 6.3 shows that Papel provides an original and significant contribu-
tion by enlarging policy languages with provenance access. Other dimen-
sions exist that are not treated by Papel but may be combined with Pa-
pel. Some policy languages define policies of actors (cf. [Vedamuthu et al.,
2007]) or transactions (cf. [Bauer et al., 2009]) not resources. Other ap-
proaches provide methods to enforce policy compliance in closed environ-
ments, such as organizations (cf. [Ashley et al., 2003]) or data silos (cf. [Gan-
don and Sadeh, 2004]). Other languages consider credentials to gain access
rights (cf. [Becker and Sewell, 2004] and [Wang et al., 2002]), support roles
and role delegation (cf. [Sandhu et al., 1996], [Becker and Sewell, 2004]
and [Hilty et al., 2005]), provide algorithms to identify violated policies
(cf. [Accorsi and Wonnemann, 2010]) or provide a role-based access control
framework for workflow systems allowing a clear separation of permission
aspects and workflow aspects (cf. [Wainer et al., 2003]). Various approaches,
such as [Byun et al., 2005], [Byun and Li, 2008] and [Ni et al., 2010], extend
the role based access control model (RBAC). Those extensions cover privacy
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Table 6.3: Comparison of Approaches Related to Papel.
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Papel X X X X X X X X
XACML - - - X - X - X

[Moses et al., 2005]
EPAL - - - X - X X X

[Ashley et al., 2003]
WS-Policy - - - (1) - X - X

[Vedamuthu et al., 2007]
Rei - - - X - X (X) X

[Kagal et al., 2003]
XrML X - - X - X - X

[Wang et al., 2002]
Casandra - - - X - X X X

[Becker and Sewell, 2004]
e-Wallet X - - X - X (2) X

[Gandon and Sadeh, 2004]
IFAudit - X X - - X X X

[Accorsi and Wonnemann, 2010]
PTLTL FO - X - X - - X -

[Bauer et al., 2009]
RBAC X - - X - X X -

[Sandhu et al., 1996]
W-RBAC X - - X - X X -

[Wainer et al., 2003]
[Hilty et al., 2005] X - - X - X X -

(1) WS-Policy provides data usage policies.
(2) e-Wallet provides a formal policy processing algorithm.
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aspects providing a privacy-based access control model.
A different use of provenance information is depicted in [Naja et al.,

2010]. The authors collect the provenance of decision processes in multi
agent systems. They use the collected information to understand the made
decisions and to check compliance with policies. Many other applications for
provenance exists. An overview of the use of provenance in the Web is given
in [Moreau, 2010]. The authors of the survey [Cheney et al., 2009] discuss
various provenance solutions and means for databases, such as the prove-
nance of queries. In scientific workflows, provenance is used to reconstruct
and comprehend results. The surveys [Simmhan et al., 2005] and [Bose and
Frew, 2005] introduce and compare approaches in this field.

That actions have a certain purpose is also considered by other approaches.
In [Tschantz et al., 2011], the authors present a method for planning with
purpose. They assume an environment, where all possible actions are spec-
ified beforehand. The approach assigns each performed action a probability
that it has served a certain purpose. The purpose is derived from the given
state of the system and is used to detected conspicuous actions. In [Agrawal
et al., 2002], the authors take a step forward inspired by the Hippocratic
Oath. Their vision is a system that takes responsibility for the performed
actions. The authors derive the challenges and issues that arise from the
implementation of their vision.

6.5 Summary

Conditions of policies may depend on the previous processing of data. Such
policies define restrictions depending on the processing history. Existing pol-
icy languages do not specify how to access the temporal structure of prove-
nance information and how to model state changes occurring in such histor-
ical data. To solve these issues, we have introduced Papel, a provenance-
aware policy definition and execution language.

We have based Papel on existing means to express provenance (OPM) and
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policies (XACML). Papel introduces a method for mapping the temporal
structure of processing histories to a graph structure. We have specified the
AFTER operator to access the partial order of processing steps in the pro-
cessing history. Through the mapping and the AFTER operator, one is easily
able to specify policies conditions relating to provenance information. By
implementing Papel in Datalog we have not only shown its feasibility but
also demonstrated that it can be implemented by means of a purely declar-
ative logic programming language. This shows that Papel is less complex
than temporal logic.

As certain risks arise from providing provenance information with data
in distributed environments, we have identified the requirement to consider
means for data protection. We have analyzed how data protection can be
achieved and how data protection can complicate the interpretation of policy
conditions. To accomplish both, we have presented means to validate com-
pliance with given policies even if the required provenance information is
confidential.

Through Papel we confirm Hypothesis 3 by providing a syntax and seman-
tics for policy conditions that can take the temporal structures of processing
histories into account. The results of the work presented in this chapter have
been published at the International Conference on Business Process Man-
agement [Ringelstein and Staab, 2010b] and in the IEEE Internet Computing
Journal [Ringelstein and Staab, 2011].
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7 Meeting Your Future Obligations
with Care

We have discussed how contracts and laws set rules for the processing of
data, in Chapter 1 and Chapter 3. In Chapter 6, we have shown how policy
languages provide means to restrict the current processing of data through
permission and denial rules. As specified by the Contractual Requirement
to Fulfill Obligations, sometimes the current processing does not need to be
restricted, but contracts or laws demand a certain future reaction, such as to
delete all health records after a certain time. Some policy languages fore-
see the possibility to specify obligations, which consist of trigger conditions
and obligatory processing steps. The obligatory processing steps must be
performed in future after the trigger condition has been fulfilled.

In the case of permissions and denials, actors can directly determine
whether planned processing steps violate rules. Regarding obligations, a
decision made now may lead to a violation in future by preventing the exe-
cution of obligatory processing steps as described by Issue of Invalid Future
Executions that we introduced in Chapter 3. Hence, the future must be con-
sidered while deciding which processing step should be performed next, as
the selected step must not prevent the fulfillment of obligatory processing
steps. Existing policy languages that allow for specifying obligations, such
as [Bradshaw et al., 2003, Lupu and Sloman, 1999, Moses et al., 2005], do
not provide procedures to decide whether there is a future execution meeting
all obligations.

In Chapter 3 we discussed the Issue of Valid Processing Steps. Because of
this issue, the actor has to verify the feasibility of at least one future execu-
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tion path that fulfills all obligations. This path has to prevent the violation
of obligations under consideration of the given permission and denial rules.
As an execution can consist of multiple parallel paths, we discuss execution
graphs in the following. We call an execution graph that fulfills all obliga-
tions and does not violate any permission or denial a valid execution graph.
The subgraph of a valid execution graph containing all future processing
steps is called the destiny of the data processing.

The problem is to decide whether a destiny exists at the current point in the
execution. One requires a decision procedure to compute this. With Care we
provide a formal decision procedure by reducing the given decision problem
to the problem of deciding reachability in colored Petri nets [Jensen, 1992,
Mayr, 1981]. We translate the given policies and the history to a colored
Petri net before we decide reachability within the colored Petri net.

To provide a solution, we first discuss the application and the problems of
obligations in the health care scenario of Chapter 3 in Section 7.1. As the
current state of an obligation depends on information about the processing
history, e.g. has the obligation rule been instantiated, we have defined Care
in such a way that it extends Papel. We give an overview of the required
refinements of the syntax and semantics of Papel in Section 7.2. Based on
these refinements, Care defines syntax and semantics of future obligations in
Section 7.3. In Section 7.4, we formalize the decision problem and define
the translation to colored Petri nets. Before we conclude, we discuss related
work in Section 7.5.

7.1 Violating Obligations

In the case of permissions and denials, actors can directly determine whether
planned processing steps violate rules or not. Accessing a health record with-
out explicit permission is such a violation. An obligation rule may be vio-
lated in future by a decision made now, such as deleting a health record that
should have been stored for auditing purposes later. To avoid violations,
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one must consider the future while deciding which processing step should
be performed next. The selected step must neither prevent the fulfillment of
obligatory processing steps in future nor violate any other policy rule.

To discuss our solution, we use the following terminology:

• Possible Processing Steps: The execution of processing steps in an
environment can be restricted. An example of such a restriction is that
an entity can only process data instances during their life span. In our
scenario, Jane Doe’s health record cannot be read before it is created
or after it is deleted. Processing steps that can be executed under con-
sideration of environment restrictions are called possible processing
steps.

• Allowed Processing Steps: Allowed processing steps are possible
processing steps that do not violate permit or deny rules.

• Valid Processing Steps: We call allowed processing steps that do not
render instantiated obligations unfulfillable valid processing steps.

• Execution and Execution Graphs: The processing of data consists
of performing multiple processing steps called the execution. The pro-
gression of the execution specifies a partial order of processing steps.
A graph representing this partial order is called an execution graph.
An execution graph of processing Jane Doe’s health record is depicted
in Figure 7.1. In the figure, the processing steps are modeled as ar-
rows.

• History: The history is the execution graph of all processing steps
performed until a point in time. In the figure, the vertical, dotted line
represents the current time. On the left side of the line is the history
consisting of the already performed processing steps s1 to s6 and s8.

• Future Execution Graph: The graph of all possible future process-
ing steps constitutes the future execution graph. The future execution
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graph is a partial order of processing steps that is disjunct from the
history and where all processing steps appear after processing steps of
the history. In Figure 7.1, the future execution graph is on the right
side of the dotted line.

• Destiny: The destiny is the subgraph of the future execution graph
containing all valid processing steps. In Figure 7.1 the subgraph be-
tween the dashed lines represents the destiny.

s1 
admission 

s2 
examination 

s3 
asking 

permission 

s8 
discharge 

s10  
s20 

s40 
s41 

s31 s32 

s21 
s22 

Future Execution Graph History 

Destiny 

now 

s30 s4 
examination s5 

prepare 
sharing 

s6 
sharing s7 

research 

Figure 7.1: History, Future and Destiny of the Scenario.

In Chapter 3, we have introduced the health care scenario. The processing
starts with the creation of the health record in step s1 depicted in Figure 7.1.
After the creation the record has been read and updated by different depart-
ments of the hospital in (partially) parallel steps s2 to s6.

In the last step of the process described in the scenario in Section 3.1.2,
Jane Doe is discharged by a nurse. The nurse transfers the health record
to the administration in step s8. By discharging Jane Doe, the obligation
specified by Policy 2.2 is instantiated and the health record has to be
transfered to her. After the instantiation of the obligation various possible
processing steps can be chosen. Depending on the choice, certain problems
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may occur that hamper the fulfillment of this obligation. In the following,
we give some examples for both valid and invalid executions which are also
shown in Figure 7.1.

• Invalid Execution by Policy Violation: The archive hands out the
record to Jane Doe (step s10). This processing step fulfills the obli-
gation specified by Policy 2.2 but violates Policy 8.2 .

• Invalid Execution by Obligation Violation: As everyone is allowed to
hand out Jane Doe’s health record, the archive transfers the record to
Bob (step s20). Bob has to delete the health record (step s21) following
the obligation specified by Policy 9.2, even if the record has to be
transferred to Jane Doe (step s22) following Policy 2.2. In this
case, the already instantiated obligation specified by Policy 2.2
will become violated if the obligation specified by Policy 9.2 is
fulfilled. On the other hand, the obligation of Policy 9.2 will be
violated if the obligation of Policy 2.2 is fulfilled.

• Invalid Execution by Loop: The archive transfers the record to a nurse
(step s30). Following Policy 8.1 the nurse has to transfer the
record to the archive (step s31), which may transfer it again to a nurse
(step s32). By transferring the record back to the archive, the nurse
fulfills the obligation specified by Policy 8.1 and does not violate
the obligation specified by Policy 2.2. As long as the nurse does
not give the record to the patient, the process will be in a loop and obli-
gation specified by Policy 2.2 will remain active and unfulfilled.

• Valid Execution: A physician may release the record to Jane Doe
(step s41) after receiving it from the administration (step s40). This
execution graph describes a destiny.

The shorter arrows indicate additional possible future processing steps not
discussed in this scenario.
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The aim of Care is to provide a procedure to decide the existence of a
destiny of Jane Doe’s health record. The procedure has to be based on the
given policy rules and the processing history.

7.2 Refining Papel

To express policy rules and the processing history, Care is based on Papel
(see Chapter 6). Care refines Papel by introducing new concepts, like destiny
and obligations, but also by refining existing concepts. In this section, we
give a short overview of the refined syntax and semantics. This overview
focuses on the definitions required by Care, i.e. processing steps, history,
and permit and deny rules. We introduce the syntax of processing steps as
we skip the specification of the purpose to increase readability. The purpose
is not required for our further considerations. We add the specification of an
involved data instance as it is required by merge actions, which we newly
introduce in Care. In Care, Definition 6.1 is refined as follows:

Definition 7.1: Care Syntax of Processing Steps

We define the representation of a processing step as a 7-tuple with the
following syntax:

step (Data, SecondData, Actor, Receiver,
Category, ID, PIDs)

where:
- Data refers to the data instance processed during the execution of the pro-
cessing step,
- SecondData refers to the data instance created by a copy action or con-
sumed by a merge,
- Actor is the entity controlling the processing step,
- Receiver is the entity receiving a data transfer,
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- Category is the category of the processing step,
- ID is the unique identifier of the processing step, and
- PIDs are the unique identifiers of the directly preceding processing steps.

As in Papel, ID is the identifier of the current processing step and PIDs is
the set of identifiers of the directly preceding steps. Both model the directed
graph of partially ordered processing steps.

Example 7.1: Provenance Information of a Processing Step in Care

After Jane Doe’s stay at the hospital ends, the nurse Alice transfers her
health record to the administration:

step (record_jd, NULL, alice, administration,
transfer, 8, {4}).

In the example, record_jd, alice and administration are in-
stances of concepts defined in the domain of the Middle Rhine Hospital,
while transfer is an action category as specified by DiALog (see Chap-
ter 4).

The semantics of Papel is defined by a model theoretical interpretation
function. In Care, we refine the universe U . The universe is the set U =
∆ ∪ Γ ∪X ∪Φ, where ∆ is the set of data instances, Γ is the set of entities,
X is the set of action categories and Φ is the set of processing step identifiers.
These subsets of U are mutually disjoint. The corresponding interpretation
function I is defined as follows:

Definition 7.2: Interpretation Function

The interpretation function I defines a mapping from atomic elements of
Papel to (parts of) the universe U . I is defined to map atomic elements of
Papel onto the (parts of) our universe U as follows:

185



Meeting Your Future Obligations with Care

DataI ∈ ∆,
SecondDataI ∈ ∆,

ActorI ∈ Γ,
ReceiverI ∈ Γ,
CategoryI ∈ X ,
IDI ∈ Φ, and
PIDsI ⊆ Φ.

Processes are executed by actors performing actions on the data. Perform-
ing an action on a data item constitutes a processing step. The performed
processing steps occur in partial order. Papel defines the interpretation of
processing steps as given in Definition 6.15. As Care refines the syntax of
processing steps, it also refines the definition of the interpretation:

Definition 7.3: Interpretation of Processing Steps

Let I be the interpretation function, let _ be an unspecified parameter, let S
be a substitution of variables to Papel terms, let e be the logical expression in
which the step predicate occurs and let (eS)I be true, the interpretation of
the step predicate is defined by the function (step)I : U7 → {true, false}:

(step(δ, η, α, β, χ, φ, ρ))I =

true if ∃(δ′, η′, α′, β′, χ′, φ′, ρ′) ∈ stepI :

(δI = δ′ ∨ δ = _ ∨ {δ 7→ δ′} ⊆ S)∧
(ηI = η′ ∨ η = _ ∨ {η 7→ η′} ⊆ S)∧
(αI = α′ ∨ α = _ ∨ {α 7→ α′} ⊆ S)∧
(χI = χ′ ∨ χ = _ ∨ {χ 7→ χ′} ⊆ S)∧
(φI = φ′ ∨ φ = _ ∨ {φ 7→ φ′} ⊆ S)∧
(ρI = ρ′ ∨ ρ = _ ∨ {ρ 7→ ρ′} ⊆ S),

false else.
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Each s ∈ stepI is uniquely identified by one φ with the following con-
straint ∀si, sj ∈ stepI : φsi 6= φsj ∨ si = sj .

The history assembles the parts of a process execution that have been com-
pleted so far, i.e. its provenance. We refine the Papel definition of a history
H by defining the history as partially ordered set of already performed pro-
cessing steps:

Definition 7.4: History

We define a history of a data processing as partial order ≤H ⊆ Φ × Φ of
processing steps. A tuple (ρ, φ) is an element contained in ≤H , if the pro-
cessing step specified by φ has been performed and if the processing step
specified by ρ precedes the processing step specified by φ or if ρ = φ. We
define ΩH ⊆ Φ to be the set of processing step identifiers in the history
ΩH = {φ | (φ, ρ) ∈ ≤H ∨(ρ, φ) ∈ ≤H }.

Papel uses policies to manage the processing of data. In Papel, policies
are rules specifying permitted and denied processing steps. The following
example shows policy rules from our scenario specified in the refined syntax
of Papel:

Example 7.2: Permission rule of Policy 2.1 and denial rule of Policy 8.2

Everyone is permitted to transfer Jane Doe’s health record to Jane Doe:

permit (ID) step (record_jd, _, _, jane_doe,
transfer, ID, _).

The archive is denied to transfer health records to patients.

deny (ID) step (H, _, archive, P, transfer, ID, _)
AND instance_of (H, health_record)
AND instance_of (P, patient).

The variable ID identifies the current processing step. The relation
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instance_of will be evaluated to true if the term assigned to the vari-
ables H and P specify instances of the health_record and patient
concepts. This requires domain knowledge, which must be given using a
formalism such as Datalog or first order logic. The step primitives will be
evaluated to true if steps s ∈ stepI exist that match the parameters of the
primitives, whereby the variable ’_’ specifies a new unnamed variable each
time it is used.

We introduce a normal form of policy rules. Policies in normal form have
a specific syntactical structure.

Definition 7.5: Policy Normal Form

We define permit and deny rules to be in normal form, if their condition
does not use disjunction and if they have the following syntax:

{permit, deny} (ID) Step_pattern[ AND Constraint].

In normal form, the conditions of permit rules do not use negation.

By means of the ID variable the current processing step is identified. Pol-
icy conditions without disjunction can only address one current processing
step. The current step is specified by a step primitive. We call this specifi-
cation the step pattern and the rest of the condition the constraint, which is
optional.

In Papel, conditions are composed by boolean operators including
negation. In normal form, the use of the negation operator is not
allowed in permit rules. This does not affect the expressiveness as
the negation can be expressed by means of deny rules. The rule
permit (ID) step (H, _, archive, _, transfer, ID, _)
AND NOT instance_of (H, health_record) can be expressed
by the two rules permit (ID) step (_, _, archive, _,
transfer, ID, _) and deny (ID) step (H, _, archive, _,
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transfer, ID, _) AND instance_of (H, health_record).
Policy conditions can consist of multiple disjunctive parts. Policies

in normal form only consist of conditions without disjunction. Pol-
icy rules with disjunction can be decomposed to policy rules without
disjunction by transforming their conditions into disjunctive normal
form. The permit rule ‘permit (ID) IF step (record_jd, _,
A, B, transfer, ID, _) AND (instance_of(A, nurse)
OR instance_of (A, physician)) AND
instance_of(B, patient)’ uses disjunction. This rule can be
expressed by two single permit rules. The first permits nurses to transfer the
record record_jd to a patient and the second rule permits for physicians
to do the transfer.

In Papel, we have defined policy rules by functions (Φ→ {true, false})
expressing whether a processing step is permitted or denied (see Defini-
tion 6.20 and 6.22). The interpretation order of permission and denial defines
that a processing step will be allowed if it is permitted and not denied (denial
overrides permission) (see Section 6.2.5). From this interpretation order, we
can derive the is_allowed function. This function expresses whether a pro-
cessing step is allowed under the given set of policies and the provenance
specified in the history ≤H .

Definition 7.6: Allowed Processing Steps

Be φs the identifier of the processing step, be p1, p2, ..., pn the state-
ments defining the conditions of permit policies, and be d1, d2, .., dm
the statements defining the conditions of deny policies, we define the
is_allowed : stepI → {true, false} function as follows:

is_allowed(s) =


true if (p1(φs)

I ∨ p2(φs)
I ∨ ... ∨ pn(φs)

I = true) ∧
¬(d1(φs)

I ∨ d2(φs)
I ∨ ... ∨ dm(φs)

I = true)

false else
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This summary of Papel focuses on the parts refined by Care. For a com-
plete definition of syntax and semantics of permit and deny rules as well as
the AFTER operator to address provenance information in policy conditions,
please refer to the definition of Papel in Chapter 6. Papel provides means to
express purposes as well as attributes, and protection mechanisms for prove-
nance information. Care can be easily extended by these.

7.3 Extending Syntax and Semantics Towards
Obligations

While Papel focuses on extending policies towards provenance-awareness
and by this towards the history of the data processing, Care looks into the
future of the data processing, its destiny. To express the future, we extend
syntax and semantics of Papel by obligations, based on the definitions in
Section 7.2.

7.3.1 Care Syntax

Obligations are rules specifying trigger conditions and obligatory processing
steps. A condition of an obligation rule that is fulfilled instantiates the obli-
gation. An obligatory processing step will be fulfilled if it has been executed
finally. Even if Care is action-based, one can compare this to the Future op-
erator of temporal logic [Pnueli, 1981]. As the definition of processing steps
models the graph structure of the execution, one can also specify obligatory
processing steps that must be performed in n steps after the instantiating of
the obligation (cf. the Next operator of temporal logic).

Definition 7.7: Obligation Rule

We define the syntax of an obligation rule as :
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obligation IF Trigger_condition
DO {AT ANYTIME, AFTERWARDS}

Obligatory_processing_steps.

where:

- Trigger_condition is the condition specifying when an obligation is
activated, and
- Obligatory_processing_steps specifies the obligatory process-
ing steps.

Both Trigger_condition and Obligatory_processing_steps
are specified by means of expressions using Boolean operators as well as the
AFTER operator to combine step primitives and further primitives defined
in the domain, such as the instance_of primitive in Example 7.2. The
AFTER is used to address the partial order of processing steps in the history,
as introduced in Papel in Chapter 6. AT ANYTIME and AFTERWARDS
define so called time constraints. AFTERWARDS specifies that the obligatory
processing step must be performed after the obligation is instantiated, e.g. a
back-up must be created after an update is performed. While an obligation
using AT ANYTIME will be also fulfilled if the obligatory processing step
has been performed before the condition has been triggered. The following
example depicts obligation of Policy 2.2 from the scenario:

Example 7.3: Obligation of Policy 2.2

Jane Doe demands to receive her record after her discharge:

obligation IF step (record_jd, _, _, _, discharge,
_, _)

DO AFTERWARDS step (record_jd, _, _,
jane_doe, transfer,
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_, _).

The first step primitive specifies the trigger condition after the IF. Be-
hind the AFTERWARDS the second primitive specifies a pattern for the oblig-
atory processing step.

7.3.2 Care Semantics

The definitions introduced in this section specify the semantics of Care.
The axioms stipulate how performing processing steps constitute an exe-
cution graph. In the following axioms and definitions, we use ’_’ to repre-
sent Skolem constants. Each occurrence of ’_’ represents another unnamed
Skolem constant.

Like the history of performed processing steps, the possible future of the
processing is represented by an execution graph:

Definition 7.8: Future Execution Graph

The future execution graph is defined as a partial order ≤F ⊆ Φ × Φ of
processing steps that is disjunct from the history ≤H ∩ ≤F = ∅.

If the history is not empty ≤H 6= ∅, all processing steps in ≤F will appear
after processing steps of the history:

∀(ρ, φ) ∈ ≤F : (∃ (ζ, η) ∈ ≤H : η < ρ) ∧ ( 6 ∃ (ζ, η) ∈ ≤H : ρ ≤ η).

If the history is empty ≤H = ∅, the first step of ≤F has to be a create action
(δ, ε, α, ε, create, φ, ∅) and all other steps must appear after this step :

∀(ρ, _) ∈ ≤F : φ ≤F ρ.

We define ΩF ⊆ Φ to be the set of identifiers of the processing steps in the
future execution graph ΩF = {φ | (φ, ρ) ∈ ≤F ∨(ρ, φ) ∈ ≤F }.
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The conjunction of history and future execution is the partial order ≤E
defining the execution graph: ≤E = ≤H ∪ ≤F . We define the subgraph ≤A
of≤E consisting of the allowed processing steps as: ≤A = {(φ, ρ)|(φ, ρ) ∈
≤E ∧ is_allowed(φ) = true}. ΩE and ΩA are defined accordingly.

The structure of the execution graph ≤E is specified by the execution of
processing steps. The structure depends on the action category of the exe-
cuted processing steps (see Figure 7.2). In Care, seven upper-level categories
of actions are specified, which are a refinement of the six action categories
defined in DiALog (see Chapter 4): The set of action categoriesX is defined
as follows:

X = {create, read, update, transfer, delete, copy,merge}

The categories create, read, update, transfer, copy and delete rep-
resent the same categories as in DiALog. The merge action describes the
merging of two or more data instances into one instance.

s1 on δ 
admission 
(create) 

s2 on δ 
examination 

s3 on δ 
asking 

permission 

s8 on δ 
discharge 

s4 on δ 
examination 

s5 on η 
prepare 
sharing 

s6 on η 
sharing Processing steps fulfilling the axioms 

Processing steps violating the axioms 

si on δ 

Sk on δ 
(create) 

sj on δ 

sl on δ s99 on δ 
(delete) 

s7 on η 
research 

Figure 7.2: Structure of Execution Graphs.

Parallel processing steps can influence each other, such as reading and up-
dating a data instance in parallel. Without additional specifications it is not

193



Meeting Your Future Obligations with Care

clear whether the read is performed on the original or on the updated data
instance. The order of processing steps is crucial for the evaluation of pol-
icy conditions. For instance, if the condition requires that a read has been
performed after an update action, a clear representation of the parallel pro-
cessing is required. To achieve a clear representation, Care demands that
the parallel processing of single data items is explicitly represented by the
parallel processing of different instances of this item. Explicit parallel pro-
cessing can be achieved by copying the data instance first and processing the
copy parallel to the original instance. Hence, only one processing step can
be performed on a data instance δ ∈ ∆ at a time. In Figure 7.2, the step sj
is not a valid parallel processing step performed on δ. The following axiom
specifies this constraint:

Axiom 7.1: Explicit Parallel Processing

Let (δ, _, _, _, _, φ′, ρ′), (δ, _, _, _, _, φ′′, ρ′′) ∈ stepI be two processing steps
performed on the same data instance δ ∈ ∆ and both steps occur in the
execution graph φ′, φ′′ ∈ ΩE , the steps may not be performed in parallel:

∀ (δ, _, _, _, _, φ′, ρ′), (δ, _, _, _, _, φ′′, ρ′′) ∈ stepI : φ′ ≤E φ′′ ∨ φ′′ ≤E φ′

The axiom stipulates that for all pairs of processing steps
(δ, _, _, _, _, φ′, ρ′) and (δ, _, _, _, _, φ′′, ρ′′) ∈ stepI performed on the
same data instance δ occurring in the execution graph φ′ ∈ ΩE ∧φ′′ ∈ ΩE

one step of the pair must precede the other step φ′ ≤E φ′′ or φ′′ ≤E φ′. If
one processing step precedes another processing step, the processing steps
will be in a sequential order and not parallel.

The processing of a data instance starts with its creation and cannot be
processed before it is created. In Figure 7.2, the processing starts with step
s1.
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Axiom 7.2: Creation of a Data Instance

Let (δ, ε, α, ε, create, φ, ∅) ∈ stepI be a processing step performed by the
actor α ∈ Γ creating the data instance δ ∈ ∆, and let the processing step oc-
cur in the execution graph φ ∈ ΩE , the data instance δ cannot be processed
before its creation:

(∀ (δ, _, _, _, _, ζ, _) ∈ stepI : φ ≤E ζ)∧
(∀ (_, δ, _, _, _, ζ ′, _) ∈ stepI : φ ≤E ζ ′)

Let (δ, η, α, ε, copy, φ, ρ) ∈ stepI be a processing step performed by the
actor α ∈ Γ creating the copy η ∈ ∆ of the data instance δ ∈ ∆, and let the
processing step occur in the execution graph φ ∈ ΩE , the data instance η
cannot be processed before its creation:

(∀ (η, _, _, _, _, ζ, _) ∈ stepI : φ ≤E ζ)∧
(∀ (_, η, _, _, _, ζ ′, _) ∈ stepI : φ ≤E ζ ′)

The axiom stipulates that from the occurrence of any processing step
(δ, _, _, _, _, ζ, _) ∈ stepI performed on δ or η in the execution graph
ζ ∈ ΩE follows that the step occurs after the creation or copy step
φ ≤E ζ. Analogously, the axiom stipulates that all processing steps
(_, δ, _, _, _, ζ, _) ∈ stepI involving δ or η are performed after the creation
or copy step. If a processing step performed on δ or η occurs before the cre-
ation or copy, this axiom will be violated. In Figure 7.2, step si is performed
before the creation step s1 and violates the axiom. The axiom will also be
violated if another processing step creates the same data instance, such as
step sk in Figure 7.2.

After the creation of a data instance, it can be processed during its life
span. Care postulates that a processing step uniquely identified by φ ∈ Φ
and performed on δ will only be executable by an actor α ∈ Γ, if the actor
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is in possession of δ. We first define the ≺δ relation to specify the nearest
preceding processing steps performed on the same data instance δ in ≤E .

Definition 7.9: Nearest Preceding Processing Steps

Let δ ∈ ∆ be a data instance, and let <E ⊆ ≤E be the strict sub-relation
of the execution graph. The nearest preceding processing step relation ≺δ ⊆
Φ× Φ of δ is defined as follows:

≺δ= {(ρ, φ) |
((∃(δ, _, _, _, _, ρ, _), (δ, _, _, _, φ, _) ∈ stepI : ρ <E φ)∨
(∃(δ, _, _, _, _, ρ, _), (_, δ, _, _, φ, _) ∈ stepI : ρ <E φ)∨
(∃(_, δ, _, _, _, ρ, _), (δ, _, _, _, φ, _) ∈ stepI : ρ <E φ)∨
(∃(_, δ, _, _, _, ρ, _), (_, δ, _, _, φ, _) ∈ stepI : ρ <E φ))∧

( 6 ∃(δ, _, _, _, _, ζ, _) ∈ stepI : (ρ <E ζ <E φ)∧
( 6 ∃(_, δ, _, _, _, ζ ′, _) ∈ stepI : (ρ <E ζ

′ <E φ)}

The axiom stipulates that a pair of different (ρ <E φ) processing steps will
be in ≺δ if both are performed on δ or involve δ and if no other processing
step ζ exists that is performed on δ or involves δ and occurs between ρ and
φ (ρ <E ζ <E φ).

The environment of the data processing may restrict the access of entities
to data instances. In the scenario, Jane Doe cannot read her record without
a hospital member having passed it to her. If an entity can perform actions
on a data instance, we will call the entity to be in possession of the data
instance. In Care, policy conditions and obligatory processing steps may
require an explicit modeling of the change of possession by transfer actions.
Care stipulates that each data instance can only be possessed by one entity at
a time and the possession can only be changed by transfer actions.

Definition 7.10: Possession

Let s = (δ, η, α, β, χ, φ, ρ) ∈ stepI be a processing step. We define the
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possession relation posφ ⊆ Γ×∆ after performing s as follows:

• if χ ∈ {create, read, update, copy,merge}, (α, δ) ∈ posφ ∧ ∀γ ∈
Γ : ((γ, δ) ∈ posφ)→ (γ = α),

• if χ ∈ {copy}, (α, η) ∈ posφ ∧∀γ ∈ Γ : ((γ, δ) ∈ posφ)→ (γ = α),

• if χ ∈ {transfer}, (β, δ) ∈ posφ ∧ ∀γ ∈ Γ : ((γ, δ) ∈ posφ) →
(γ = β), and

• if χ ∈ {delete}, @γ ∈ Γ : (γ, δ) ∈ posφ.

α can only perform an action on δ if the nearest preceding processing steps
leads to α possessing δ. In the case of a merge action, α has to also possess
η. From Axiom 7.1 follows, that only one nearest preceding processing step
exists for each data instance.

Axiom 7.3: Possession of Data Instances

Let (δ, η, α, β, χ, φ, ρ) ∈ stepI with χ ∈ X\{create} be the processing step
to be performed, the nearest preceding processing step φ′ ≺δ φ performed
on δ has to lead to (α, δ) ∈ posφ′ . If χ ∈ {merge}, the nearest preceding
processing step φ′′ ≺η φ performed on η has to lead to (α, η) ∈ posφ′′ .

As a data instance cannot be processed before its creation, a data instance
cannot be processed after its deletion, such as step sl in Figure 7.2:

Axiom 7.4: Deletion of a Data Instance

Let (δ, ε, α, ε, delete, φ, ρ) ∈ stepI be the processing step deleting the data
instance δ ∈ ∆ performed by the actor α ∈ Γ, and let the processing step
occur in the execution graph φ ∈ ΩE , δ cannot be processed after it has
been deleted:
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(∀ (δ, _, _, _, _, ζ, _) ∈ stepI : ζ ≤E φ) ∧
(∀ (_, δ, _, _, _, ζ, _) ∈ stepI : ζ ≤E φ)

Let (δ, η, α, ε,merge, φ, ρ) ∈ stepI be the processing step consuming the
data instance η ∈ ∆ as part of a merge with the data instance δ ∈ ∆, and
let the processing step occur in the execution graph φ ∈ ΩE , η cannot be
processed after it has been deleted:

(∀ (η, _, _, _, _, ζ, _) ∈ stepI : ζ ≤E φ) ∧
(∀ (_, η, _, _, _, ζ, _) ∈ stepI : ζ ≤E φ)

The axiom stipulates that from the occurrence of processing steps
(δ, _, _, _, _, ζ, _) ∈ stepI performed on δ or η in the execution graph
ζ ∈ ΩE follows that they occur before the deletion respectively merge
step ζ ≤E φ. Analogously, the axiom stipulates that all processing steps
(_, δ, _, _, _, ζ, _) ∈ stepI involving the data instance are performed before
the deletion respectively merge step. If a processing step performed on δ or
η occurs after the deletion or merge, this axiom will be violated.

Based on the definition of the interpretation of logical expressions in Pa-
pel, we define the semantics of obligation rules. We start by the interpretation
of the logical expression specifying the trigger condition. The evaluation of
the trigger condition is done according to the evaluation of condition state-
ments in Papel in Section 6.2.2. A trigger condition will be evaluated to true
if the logical expression specifying the condition is evaluated to true. If the
logical expression contains variables, a substitution has to exist after which
the expression evaluates to true.

The evaluation of the logical expression specifying obligatory processing
steps is done accordingly. The expression will be evaluated to true if the
specified processing steps have been executed. Again, substitutions will be
used if the expression contains variables.

Based on these definitions, we formally define when an obligation is in-
stantiated and when it is fulfilled. An obligation will be instantiated if the
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logical expression specifying the trigger condition is interpreted to true.
Given a history, an obligation can be instantiated multiple times. If the logi-
cal expression of the trigger condition uses variables, the single instances can
differ. The different instances can be identified by the used substitutions. An
instance will be fulfilled if the logical expression specifying the obligatory
processing steps is interpreted to true under consideration of the according
substitution and of the time constraint specified by the obligation rule.

Definition 7.11: Interpretation of Obligations

Let O be the set of all obligation rules, let o ∈
O be a policy rule specifying an obligation o =
"obligation IF Trigger_condition DO {AT ANYTIME,
AFTERWARDS} Obligatory_processing_steps.", let Σ be the
set of all substitutions and let S ∈ Σ be a substitution specifying an instance
of o. Let ΦT be the set of identifiers of the processing steps instantiating the
trigger condition and let ΦO be the set of step identifiers of the obligatory
processing steps.

In a given execution graph ≤E , a substitution will specify an instance of an
obligation if the trigger condition is interpreted to true after applying the
substitution. The is_instance : O × Σ × 2Φ×Φ → {true, false} function
is defined as:

is_instance(o, S,≤E) =


true if ((Trigger_condition S)I =

true) ∧ ΦT ⊆ ΩE

false else

In a given execution graph ≤E , an obligation o will be instantiated if
at least one substitution S exists that specifies an instance of o. The
is_instantiated : O × 2Φ×Φ → {true, false} function is defined as:
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is_instantiated(o,≤E) =


true if ∃ S ∈ Σ : is_instance(o, S,≤E) =

true

false else

In a given execution graph≤E , an instance of an obligation will be fulfilled if
a substitution T ∈ Σ exists that extends S ⊆ T and if the expressions spec-
ifying the trigger condition and obligatory processing steps are interpreted
to true after applying T . The is_instance_fulfilled : O × Σ × 2Φ×Φ →
{true, false} function is defined as:

is_instance_fulfilled(o, S,≤E) =

true if the time constraint is AT ANYTIME ∧
∃ T ∈ Σ : S ⊆ T : (Trigger_condition T )I = true ∧
(Obligatory_processing_steps T )I = true ∧
ΦT ∪ ΦO ⊆ ΩE

true if the time constraint is AFTERWARDS ∧
∃ T ∈ Σ : S ⊆ T : (Trigger_condition T )I = true ∧
(Obligatory_processing_steps T )I = true ∧
∀(φT , φO) ∈ ΦT × ΦO : φT ≤E φO ∧
ΦT ∪ ΦO ⊆ ΩE

false else

In a given execution graph ≤E , an obligation rule will be fulfilled if all its
instances are fulfilled. The is_fulfilled : O → {true, false} function is
defined as:
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is_fulfilled(o,≤E) =


true if ∀S ∈ Σ : (is_instance(o, S,≤E) ∧

is_instance_fulfilled(o, S,≤E) =

true).

false else

Based on these axioms and definitions, we define the destiny. We will call
an execution graph closed if all obligations that have been instantiated have
also been fulfilled. If an execution graph is closed, no obligations will be
currently active or violated.

Definition 7.12: Closed Execution Graph

Let Os be the set of specified obligation rules. We define an execution graph
≤E as closed if all obligations are either not instantiated or all instances of
obligations are fulfilled:

closed(≤E) =


true if ∀o ∈ Os : is_instantiated(o,≤E)→

is_fulfilled(o,≤E).

false else

In our scenario depicted in Figure 7.1, the steps s1 to s7 do not instantiate
any obligation. The execution graph is closed until the execution of s8. By
executing s8 the obligation specified by Policy 2.2 is instantiated. Be-
cause this obligation is not fulfilled by the steps s1 to s8, the execution graph
is no longer closed.

The destiny is a subgraph of the future execution graph (≤F ) consisting
of only allowed processing steps (φ ∈ ΩA), which extend the history to a
closed execution graph (≤C = ≤H ∪ ≤D):
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Definition 7.13: Destiny

We define the destiny ≤D ⊆ Φ× Φ as partial order of processing steps:

≤D = {(φ, ρ)| (φ, ρ) ∈ ≤F ∧ (φ, ρ) ∈ ≤A ∧
∃ ≤C : (φ, ρ) ∈ ≤C ∧ (≤H ⊆ ≤C) ∧ (≤C \ ≤H) ⊆ ≤A) ∧ closed(≤C)}.

In our scenario, a physician may release the record to Jane Doe after re-
ceiving it from the administration. In Figure 7.1, s41 and s40 represents
these two processing steps. This solution fulfills the obligation specified by
Policy 2.2. The steps s1 to s8 together with s40 and s41 constitute a
closed execution graph. s1 to s8 are the history and s40 as well as s41 are
part of the destiny.

The dependencies between history ≤H , future execution ≤F and destiny
≤D are depicted in Figure 7.1.

7.4 Checking for Unfulfillable Obligations

Instantiated obligations will be unfulfillable if the future has no destiny.
Thereby, the existence of a destiny has to observe the specifications of permit
and denial rules, as well as obligation rules. To decide upon the existence of
a destiny, we translate Care policy rules to colored Petri nets in order to use
existing methods for deciding upon reachability in colored Petri nets. We
specify the decision problem and make some basic assumptions before we
define the translation.

7.4.1 Decision Problem and Procedure

Obligation rules specify obligatory processing steps that must be fulfilled af-
ter the obligation has been instantiated. At a given point in time, multiple
obligations may be active and additional obligations may be activated during
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the future execution. At the same time, a planned processing step may lead to
a violation of obligations by triggering conflicting obligations, by rendering
obligations unfulfillable or by instantiating obligations that violate policies.
Hence, before performing the planned processing step, the actor should ver-
ify the existence of a destiny that follows the planned step. The problem is
to decide whether a destiny exists or not, as the only information about the
future processing is the given set of policy rules and the current history:

Definition 7.14: Deciding the Existence of a Destiny

An applicable decision procedure will return true if for a given set of policy
rules and a given history a destiny exists, else it will return false.

Real world business processes must be executable in finite time implying
the reachability of all obligatory processing steps in a finite partial order of
steps. If a destiny exists, it must be a finite subgraph of the future execution
graph. One can verify the existence of the destiny by verifying the reacha-
bility of all current and future obligatory processing steps within the finite
subgraph of the future execution graph. The obligatory processing steps must
be reachable by means of allowed processing steps. Search algorithms can
be used to find such a sub-graph. Starting with an open domain unspecified
many alternative processing steps can be performed. For instance, an un-
specified number of recipients can be chosen if it is permitted to transfer a
data instance to anybody. To achieve decidability, we are required to have a
finite number of alternatives in each step. As the open domain is restricted by
the policy rules, we use these as a starting point for our decision procedure.

Care provides a decision procedure by reducing the decision problem of
the existence of a destiny to the well-defined decision problem of the reach-
ability of nodes in colored Petri nets. The given policy rules are translated
under consideration of the current history to a colored Petri net CPN = (Σ,
P, T, A, N, C, G, E, I). Care decides the existence of a destiny by deciding
the reachability of the transitions representing the future obligation.

203



Meeting Your Future Obligations with Care

7.4.2 Assumptions

We make a few assumptions about the conditions under which the policy
language Care is used. We assume the stability of the set of policy rules,
i.e. that the set of given policy rules does not change during the process
execution.

Assumption 7.1: Stability of the Set of Policies

The given set of policy rules does not change during the execution of a pro-
cess.

Missing or wrong steps in the history can lead to misinterpretations of
obligation rules. Hence, we assume the correctness of the history ≤H :

Assumption 7.2: Correctness of the History

All processing steps that have been performed during the process execution
are part of the history ≤H and the information about these steps is correct.
The history does not contain additional processing steps that have not been
performed.

To assure that instantiated obligations stay instantiated, we assume the
monotony of the history ≤H :

Assumption 7.3: Monotony of the History

By progressing the execution of a process, processing steps may only be
added to the history ≤H of this process execution and may not be removed
from the history.
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7.4.3 Reducing the Decision Problem

To answer the decision problem, we translate the given policy rules in normal
form to a colored Petri net. The translation has to comply with the axioms
specified in Section 7.3.2. The inputs of the translation are the specified
permit and deny rules in normal form as well as the history and the given do-
main knowledge. The output is the colored Petri net representing the future
execution graph: CPN = (Σ, P, T, A, N, C, G, E, I).

The modeling of CPN is based on the definition of DiALog in Chapter 4.
In DiALog, processing steps are modeled as transitions and each transition
is connected to the place representing the actor performing the action. Care
represents actors as parts of tokens. The tokens represent the possession of
data instances by entities. In Care, permit rules specify permitted process-
ing steps which we represent as transitions in CPN . While each transition
models exactly one sort of processing step in DiALog, one transition repre-
sents a set of permitted processing steps in Care. The guard expression of
the transition specifies this set of processing steps. Deny rules further restrict
the permitted processing steps. In CPN , these restrictions are represented
by adapting the guard expressions accordingly. We can use the guard ex-
pressions to specify the allowed processing steps as syntax and semantics of
Care do not support function symbols. Without function symbols, we cannot
generate infinitely many elements. This circumstance leads to Care having
a finite model. Because of this property, we can use Datalog as implemen-
tation, as we did for Papel in Chapter 6. In CPN , we specify the guard
expressions using the Datalog semantics.

The tokens representing the possession consist of triples. They have the
following syntax (actor, data_instance, log). The first element
represents the actor possessing the data instance. This representation of pos-
session in the colored Petri net adheres to Axiom 7.3. As CPN models the
processing of all instances of one data item, the second element identifies the
possessed instance. The third element of the triple is the log associated with
the data instances. A single place p ∈ P contains all these tokens.
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Policy rules specify entities by identifying named entities or by using in-
stance of concepts, such as nurses and patients in Policy 8.3 ‘nurses
must transfer health records to the archive after the patient’s discharge’.
The first element of the possession triple represents either the named entity
or an unnamed instance of a certain concept. In the scenario, Jane Doe is
a named entity and patient is a concept. In CPN , Jane Doe is identified
by a reference, such as jane_doe. An instance of an unnamed patient is
represented by a reference to the concept patient1. The index is used to
clearly distinguish different instances of the concept.

Each permit rule is represented as transitions t ∈ T connected to p by arcs
a ∈ A with the node function N and the arc expression function E. The
guard function G(t) specifies the constraints specified by the policy con-
dition, such as ‘all data instances, which are health records’ or ‘all data
instances, which have been updated before’. The occurrence of a transition
represents an allowed processing step. Most transitions are modeled as de-
fined in Chapter 4. The definition of copy actions differs from the definition
in DiALog by not having an involved agent. The refinement of the copy ac-
tion is depicted in Figure 7.3 as well as in Definition 7.15.

Definition 7.15: Copy Action in Colored Petri Nets

Let CPN = (Σ, P, T,A,N,C,G,E, I) be a colored Petri net and let p ∈ P
be the place representing the entity copying the data instance. We model
copy actions as

• a transition t ∈ T and

• three arcs ai, ao, ad ∈ A with

• node functions N(ai) = (p, t), N(ao) = (t, p), and N(ad) = (t, p)
and with

• arc expressions E(ai) = u and E(ao) = u, where u is de-
clared as var u : N0, and E(ad) = v, where v is declared as
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var v : N0.

Let pc ∈ P be the place modeling the counter, t is connected to the counter
by two arcs ci, co ∈ A with

• the node functions N(ci) = (t, pc) and N(co) = (pc, t), and

• the arc expressions E(ci) = v+1 and E(co) = v, where v is the same
variable as in the arc expression E(ad).

v + 1 

pc 

copy 

t ps 

v 

v 

u 

u 

Figure 7.3: Colored Petri Net Representation of Copy Actions in Care.

Care introduces merge actions as action category to model the explicit
parallel processing postulated by Axiom 7.1. The merge actions are defined
by Definition 7.16 and depicted in Figure 7.4.

Definition 7.16: Merge Action in Colored Petri Nets
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Let CPN = (Σ, P, T,A,N,C,G,E, I) be a colored Petri net and let p ∈ P
be the place representing the entity merging the data instances. We model
merge actions as

• a transition t ∈ T and

• three arcs ai, ao, as ∈ A with

• node functions N(ai) = (p, t), N(ao) = (t, p), and N(as) = (p, t)
and with

• arc expressions E(ai) = u and E(ao) = u, where u is declared as
var u : N0, andE(as) = v, where v is declared as var v : N0.

merge 

t ps 

v 

u 

u 

Figure 7.4: Colored Petri Net Representation of Merge Actions in Care.

Step 1 of the translation describes how to represent permissions in CPN .
The condition of the permit rules permiti, which are given in normal from,
are translated to transitions ti ∈ T . Based on the output of this step, Step 2
specifies the representation of denial. As deny rules restrict the permitted
processing steps, they are represented by extending the guard expressions
of the transitions. The extension of the expression implements the specified
restriction.

An additional place pe ∈ P is required to implement the change of pos-
session through transfer actions. This place contains tokens representing all
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named actors as well as tokens representing variable actors of certain con-
cepts. The named actors and concepts can be derived from the history and
the given domain knowledge. The modeling of pe and its connection with
transfer actions is depicted in Figure 7.5. The initial marking of the place pe
is derived in Step 3.

transfer 

t pe p 

(actor, data_instance,  
 log) 

(receiver) 

(receiver) 

(receiver, data_instance,  
 log U {s}) 

Figure 7.5: Transfer Action with Possession Change.

Considering Axiom 7.2 a data instance may not exist before it is created
by a create or copy action. We implement this axiom by using a counter
place pc as defined by DiALog in Section 4.2.2. The modeling of create
and copy actions with a counter place guarantees that all data instances
have a unique identifier. Likewise, delete and merge actions consume
the token representing the deleted data instance. By consuming the tokens
the associated data instance cannot be processed anymore as postulated by
Axiom 7.4. During its lifespan, the data instance is processed by actors
possessing the instance.

To translate a given set of policy rules in normal form to a colored Petri
net, we require the set to be finite and to consist of finitely long rules. In
Papel, only policy conditions referring to a finite number of different ele-
ments are allowed. Conditions as ‘infinitely many different actors have to
read this record’ cannot be specified. Papel does also not support universal
quantification without restricting the bound variables to a finite set of specific
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elements. The rule ‘all nurses have to read the record’ can only be verified
if the set of all nurses is specified.

Obligation rules are not considered during the translation as the required
processing steps will be already represented if they are allowed. To complete
the translation the initial marking of p has to represent the current state of
possession. The initial marking is derived in Step 4.

After translating all policy rules, we can decide the existence of a des-
tiny by deciding whether a certain occurrence sequence exists. In CPN ,
the occurrence of a transitions simulates the execution of a processing step.
Through the variables bound by the arc expressions, each occurrence of a
transition clearly represents one specific processing step. An occurrence
sequence represents an execution graph. If an occurrence sequence exists
which represents a closed execution graph, a destiny will exist. As the reach-
ability of transition is decidable in colored Petri nets [Mayr, 1981], the exis-
tence of such a sequence can be decided by deciding the reachability of the
transitions representing the obligatory processing steps.

(Step 1) Representing Permissions in CPN

A permit rule defines permitted processing steps by specifying the affected
data instances, entities, action categories and processing steps. Each permit
rule permiti is translated to a transition ti as specified in Table 7.1 and de-
picted in Example 7.4. In normal form, permit rules have the following
syntax permit (ID) Step_Pattern AND Constraint. The step
pattern is translated to a transition with arcs, arc expressions and guard ex-
pression. If variables occur in the condition, a substitution S is defined to
match the variables with parameters specified by the arc expression of the
transition. After translating the step pattern, the according substitution Si is
applied to the constraint. The resulting expression is attached to the guard
expression G(ti)← G(ti)’+(Constraint Si)’.

210



7.4 Checking for Unfulfillable Obligations

Table 7.1: Translation of Permissions to Transitions (Part 1).
Construct Step Pattern CPN Elements
named Data step(δ, ...) G(ti)← ’(data_instance = δ)’
variable Data step(_, ...) G(ti)←’true’
w/o constraint
variable Data step(D, ...) Si ← Si ∪ {D 7→ data_instance}
with constraint
named step(..., η, ...) G(ti)← ’(’+G(ti)+’) ∧
SecondData (second_data_instance = η)’
variable step(..., _, ...)
SecondData
w/o constraint
variable step(..., E, Si ← Si∪
SecondData ...) {E 7→ second_data_instance}
with constraint
named step(..., α, ...) G(ti)← ’(’+G(ti)+’) ∧
Actor (actor = α)’
variable step(..., _, ...)
Actor
w/o constraint
variable step(..., A, ...) Si ← Si ∪ {A 7→ actor}
Actor
with constraint
named step(..., β, ...) G(ti)← ’(’+G(ti)+’) ∧
Receiver (receiver = β)’
variable step(..., _, ...)
Receiver
w/o constraint
variable step(..., B, ...) Si ← Si ∪ {B 7→ receiver}
Receiver
with constraint

211



Meeting Your Future Obligations with Care

Table 7.2: Translation of Permissions to Transitions (Part 2).
Construct Step Pattern CPN Elements

named step(..., create, T ← T ∪ {ti}
Category ...) A← A ∪ {ai,o, ai,ci, ai,co}

N(ai,ci)← (pc, ti)
E(ai,ci)← ’(data_instance,

{})’
N(ai,o)← (ti, p)
E(ai,o)← ’(actor,
data_instance, {step(
data_instance, NULL,
actor, NULL, create,
getID(), NULL)})’

N(ai,co)← (ti, pc)
E(ai,co)←

’(data_instance + 1, {})’
named step(..., read, T ← T ∪ {ti}
Category ...) A← A ∪ {ai,i, ai,o}

N(ai,i)← (p, ti)
E(ai,i)← ’(actor,
data_instance, log)’

N(ai,o)← (ti, p)
E(ai,o)← ’(actor,
data_instance, log ∪ {
step(data_instance, NULL,
actor, NULL, read,
getID(), getPIDs(log))})’

named step(..., update, T ← T ∪ {ti}
Category ...) A← A ∪ {ai,i, ai,o}

N(ai,i)← (p, ti)
E(ai,i)← ’(actor,
data_instance, log)’
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Table 7.3: Translation of Permissions to Transitions (Part 3).
Construct Step Pattern CPN Elements

N(ai,o)← (ti, p)
E(ai,o)← ’(actor,
data_instance, log ∪ {
step(data_instance, NULL,
actor, NULL, update,
getID(), getPIDs(log))})’

named step(..., T ← T ∪ {ti}
Category transfer, A← A ∪ {ai,i, ai,o, ai,ei, ai,eo}

...) N(ai,i)← (p, ti)
E(ai,i)← ’(actor,
data_instance, log)’

N(ai,o)← (ti, p)
E(ai,o)← ’(receiver,
data_instance, log ∪ {
step(data_instance, NULL,
actor, receiver, transfer,
getID(), getPIDs(log))})’

N(ai,ei)← (pe, ti)
E(ai,ei)← ’(receiver)’
N(ai,eo)← (ti, pe)
E(ai,eo)← ’(receiver)’

named step(..., copy, T ← T ∪ {ti}
Category ...) A← A ∪ {ai,i, ai,o, ai,d, ai,ci, ai,co}

N(ai,i)← (p, ti)
E(ai,i)← ’(actor,
data_instance, log)’

N(ai,ci)← (pc, ti)
E(ai,ci)←

’(second_data_instance, {})’
N(ai,o)← (ti, p)
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Table 7.4: Translation of Permissions to Transitions (Part 4).
Construct Step Pattern CPN Elements

E(ai,o)← ’(actor,
data_instance, log ∪ {
step(data_instance,
second_data_instance,
actor, NULL, copy,
getID(), getPIDs(log))})’

N(ai,d)← (ti, p)
E(ai,d)← ’(actor,
second_data_instance, {
step(second_data_instance,
NULL, actor, NULL,
create, getID(), NULL)})’

N(ai,co)← (ti, pc)
E(ai,co)←

’(second_data_instance + 1,
{})’

named step(..., merge, T ← T ∪ {ti}
Category ...) A← A ∪ {ai,i, ai,o, ai,s}

N(ai,i)← (p, ti)
E(ai,i)← ’(actor,
data_instance, log)’

N(ai,s)← (p, ti)
E(ai,s)← ’(actor,
second_data_instance,
second_log)’

N(ai,o)← (ti, p)
E(ai,o)← ’(actor,
data_instance, log ∪
second_log ∪ {
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Table 7.5: Translation of Permissions to Transitions (Part 5).
Construct Step Pattern CPN Elements

step(data_instance,
second_data_instance,
actor, NULL, merge,
getID(),
getPIDs(log))})’

named step(..., delete, T ← T ∪ {ti}
Category ...) A← A ∪ {ai,i}

N(ai,i)← (p, ti)
E(ai,i)← ’(actor,
data_instance, log)’

variable step(..., _, ...) In this case a transition for
w/o constraint each action category must be added
Category according to the translation

of the different categories.
variable step(..., X, ...) In this case a transition for
with constraint each action category must be added
Category according to the translation

of the different categories with
Si ← Si∪ {X 7→ category}
where category is the actual category.

named ID step(..., φ, ...) G(ti)← ’(’+G(ti)+’) ∧
(getID()= φ)’

variable ID step(..., _, ...)
w/o constraint
variable ID step(..., V , ...) Si ← Si∪
with constraint {V 7→ getID()}
named PIDs step(..., ρ) G(ti)← ’(’+G(ti)+’) ∧

(getPIDs(log)= ρ)’
variable PIDs step(..., _ )
w/o constraint
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Table 7.6: Translation of Permissions to Transitions (Part 6).
Construct Step Pattern CPN Elements

variable PIDs step(..., R) Si ← Si∪
with constraint {R 7→ getPIDs(log)}
getID() returns the ID of the current step.
getPIDs(log) derives the ID of the directly preceding steps from the history.

Example 7.4: Translating Permit Rules

In this and the following examples, we depict the application of the reduction
algorithm by translating the Policies 2, 8 and 9 of our scenario. We depict
the detailed application of Step 1 by translating the permission defined by
Policy 2.1: Everyone is permitted to transfer Jane Doe’s health record to
Jane Doe:

permit (ID) step (record_jd, _, _, jane_doe,
transfer, ID, _).

The result of the translation is also depicted in Figure 7.6. The step
pattern of this permission rule is step (record_jd, _, _,
jane_doe, transfer, ID, _). We translate the named data
instance δ = record_jd to the following guard expression:
G(t2.1) = ’(data_instance = record_jd)’ as specified in Ta-
ble 7.1. The variable second data instance and the variable actor do
not require any translation. The named receiver β = jane_doe
is translated to the following extended guard expression: G(t2.1) =
’(data_instance = record_jd) ∧ (receiver = jane_doe)’.
The action category of the step pattern is transfer. We add the
transition t2.1 to the set of transitions T ← T ∪ {t2.1}. The transition
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is connected to p by two arcs a2.1,i and a2.1,o. The transition is also
connected to pe by two arcs a2.1,ei and a2.1,eo. We update the set of arcs
A← A ∪ {a2.1,i, a2.1,o, a2.1,ei, a2.1,eo} and specify the arc function of these
arcs N(a2.1,i) = (p, t2.1), N(a2.1,o) = (t2.1, p), N(a2.1,ei) = (pe, t2.1) and
N(a2.1,eo) = (t2.1, pe). The arc expressions of the added arcs are speci-
fied as: E(a2.1,i) = ’(actor, data_instance, log)’, E(a2.1,o) =
’(receiver, data_instance, log ∪ {step(data_instance,
NULL, actor, receiver, transfer,
getID(), getPIDs(log))})’, E(a2.1,ei) = ’(receiver)’,
and E(a2.1,eo) = ’(receiver)’. The identifier of the processing step
is specified by the variable ID, which we translate to the substitution
S2.1 = {ID 7→ getID()}. As the permit rule has no constraint, the
substitution is not used. The identifier set of the preceding processing steps
is specified by a variable without constraint and requires no translation.

t2.1 pe p 

(actor, data_instance, log) 

(receiver) 

(receiver) 

(receiver, data_instance,  
 log U {step(data_instance, NULL, actor,  
receiver, transfer, getID(), getPIDs(log)}) 

[(data_instance = record_jd) ∧ (receiver = jane_doe)] 

Figure 7.6: Translation result of Policy 2.1.

We translate Policy 8.3: The staff is permitted to transfer health records to
other staff:

permit (ID) step (H, _, S, T, transfer, ID, _) AND
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instance_of (H, health_record) AND
instance_of (S, staff) AND
instance_of (T, staff).

analogously to the following elements of CPN :

T ← T ∪ {t8.3}.

G(t8.3) = ’(instance_of (data_instance,
health_record) AND instance_of (actor, staff) AND
instance_of (receiver, staff))’.

A← A ∪ {a8.3,i, a8.3,o, a8.3,ei, a8.3,eo}.

N(a8.3,i) = (p, t8.3), N(a8.3,o) = (t8.3, p), N(a8.3,ei) = (pe, t8.3) and
N(a8.3,eo) = (t8.3, pe).

E(a8.3,i) = ’(actor, data_instance, log)’, E(a8.3,o) =
’(receiver, data_instance, log ∪ {step(data_instance,
NULL, actor, receiver, transfer, getID(),
getPIDs(log))})’, E(a8.3,ei) = ’(receiver)’, and E(a8.3,eo) =
’(receiver)’.

We also translate Policy 9.1: Bob is permitted to delete health records:

permit (ID) step (H, _, bob, _, delete, ID, _) AND
instance_of (H, health_record).

to the following elements of CPN :

T ← T ∪ {t9.1}.

218



7.4 Checking for Unfulfillable Obligations

G(t9.1) = ’(actor = bob) ∧ (instance_of (data_instance,
health_record))’.

A← A ∪ {a9.1,i}.

N(a9.1,i) = (p, t9.1).

E(a9.1,i) = ’(actor, data_instance, log)’.

Figure 7.7 depicts CPN after the translation of all three permit rules.

t2.1 

pe p 

E(a2.1,i) 

G(t2.1) 

E(a2.1,ei) 

E(a2.1,o) E(a2.1,eo) 

t8.3 

E(a8.3,i) 

G(t8.3) 

E(a8.3,ei) 

E(a8.3,o) E(a8.3,eo) 

t9.1 

E(a9.1,i) 

G(t9.1) 

Figure 7.7: Representation of the Policy Rules 2.1, 8.3 and 9.1.
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(Step 2) Representing Denial in CPN

Deny rules define restrictions to the permitted processing steps. In CPN ,
the permitted steps are represented by transitions ti. We translate each deny
rule denyj to an extension gj of the guard expressions G(ti) of these tran-
sitions. If variables occur in a condition and constraint of a deny rule, a
substitution Sj will be defined to substitute the variables of the constraint
with the according parameters of the transition. As gj express restrictions,
they are negated and attached to the guard expressions: ∀ti ∈ T : G(ti) =
G(ti)+’∧¬(gj ∧ (Constraint Sj))’. We translate one deny rule denyj
after the other as depicted in Table 7.7. Example 7.5 shows the translation of
one deny rule of our scenario.

Table 7.7: Translation of Deny Rules to Guard Expressions (Part 1).
Construct Step Pattern CPN Elements
named Data step(δ, gj ← gj’+’(data_instance = δ)’

...)
variable Data step(_, gj ← ’true’
w/o constraint ...)
variable Data step(D, Sj ← Sj ∪ {D 7→ data_instance}
with constraint ...)
named step(..., η, gj ← ’(’+gj+’) ∧
SecondData ...) (second_data_instance = η)’
variable step(..., _,
SecondData ...)
w/o constraint
variable step(..., E, Sj ← Sj ∪
SecondData ...) {E 7→ second_data_instance}
with constraint
named Actor step(..., α, gj ← ’(’+gj+’) ∧ ’(actor = α)’

...)
variable Actor step(..., _, gj ← gj
w/o constraint ...)
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Table 7.8: Translation of Deny Rules to Guard Expressions (Part 2).
Construct Step Pattern CPN Elements
variable Actor step(..., A, Sj ← Sj ∪ {A 7→ actor}
with constraint ...)
named Receiver step(..., β, gj ← ’(’+gj+’) ∧

...) (receiver = β)’
variable Receiver step(..., _,
w/o constraint ...)
variable Receiver step(..., B, Sj ← Sj ∪ {B 7→ receiver}
with constraint ...)
named Category step(..., χ, gj ← ’(’+gj+’) ∧ (category = χ)’

...) where category is the category of the
transition ti

variable Category step(..., _,
w/o constraint ...)
variable Category step(..., X, Sj ← Sj ∪ {X 7→ category}
with constraint ...) where category is the category of the

transition ti
named ID step(..., φ, gj ← ’(’+gj+’) ∧

...) (getID()= φ)’
variable ID step(..., _,
w/o constraint ...)
variable ID step(..., V , Sj ← Sj ∪ {V 7→ getID()}
with constraint ...)
named PIDs step(..., ρ) gj ← ’(’+gj+’) ∧

(getPIDs(log) = ρ)’
variable PIDs step(..., _)
w/o constraint
variable PIDs step(..., R) Sj ← Sj ∪ {R 7→ getPIDs(log)}
with constraint
getID() returns the ID of the current step.
getPIDs(log) derives the ID of the directly preceding steps from the history.
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Example 7.5: Translating Policy 8.2

We depict the application of Step 2 by translating Policy 8.2:

deny (ID) step (H, _, archive, P, transfer,
ID, _) AND

instance_of(H, health_record) AND
instance_of(P, patient).

The deny rule consists of a step pattern step (H, _, archive,
P, transfer, ID, _) and a constraint instance_of(H,
health_record) AND instance_of(P, patient). The transla-
tion is done as specified by Table 7.7.
The step pattern of Policy 8.2 specifies a variable data instance H. As
the policy specifies a constraint, the variable data instance is translated to
a substitution S8.2 = {H 7→ data_instance}. The variable second
data instance is specified without relation to the constraint and requires no
translation. The named actor α = archive is translated to a guard ex-
pression g8.2 =’(actor = archive)’. A variable with constraint spec-
ifies the receiver. We extend the substitution accordingly S8.2 = {H 7→
data_instance, P 7→ receiver}. The action category is specified
as transfer and the according translation extends the guard expression
g8.2 =’(actor = archive) ∧ (category = transfer)’. The place
holder category will be replaced when the guard expression is attached to
each guard expressions representing processing steps in CPN . A vari-
able specifies the identifier of the processing step. The translation of the
variable extends the substitution S8.2 = {H 7→ data_instance, P 7→
receiver, ID 7→ getID()} . The specification of the preceding pro-
cessing steps does not require any translation.
After the step pattern is translated, the variables in the con-
straint are substituted as specified by Sj . The resulting constraint
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instance_of(data_instance, health_record) AND
instance_of(receiver, patient) is added to the guard expres-
sion g8.2 = ’(actor = archive) ∧ (category = transfer) ∧
(instance_of(data_instance, health_record) AND
instance_of(receiver, patient))’. The negation of g8.2 is
attached to the guard expressions of the transitions representing per-
mitted processing steps. Based on the Example 7.4, we have one
transition t2.1. As t2.1 is a transfer action the place holder cate-
gory is replaced accordingly leading to the updated guard expression
G(t2.1) = ’(data_instance = record_jd) ∧ (receiver =
jane_doe) ∧ ¬ ((actor= archive) ∧ (transfer= transfer) ∧
(instance_of(data_instance, health_record) AND
instance_of(receiver, patient)))’.
The guard expressions of the transitions t8.3 and t9.1 are updated ac-
cordingly leading to G(t8.3) = ’(instance_of (data_instance,
health_record) AND instance_of (actor, staff) AND
instance_of (receiver, staff)) ∧ ¬ ((actor = archive) ∧
(transfer = transfer) ∧ (instance_of(data_instance,
health_record) AND instance_of (receiver, patient)))’
andG(t9.1) = ’(actor= bob) ∧ (instance_of (data_instance,
health_record)) ∧ ¬ ((actor = archive) ∧
(delete = transfer) ∧ (instance_of(data_instance,
health_record) AND instance_of(receiver, patient)))’.

(Step 3) Representing Entities in CPN

In this step, we derive tokens representing all entities specified by in-
stances or concepts in policy rules or the domain ontology. The derived
tokens are added to the place pe. Instances are translated to tokens rep-
resenting exactly this instance, e.g. one token in pe represents Jane Doe
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(I(pe)← I(pe)∪{(jane_doe)}). For each concept a token representing
an instance of the concept is added. To fulfill certain policy rules, it is neces-
sary to change these tokens. The policy condition ‘three different physicians
are required to confirm the examination results’ requires the representation
of three unnamed physicians. Hence, we use indices to identify different in-
stances of a concept, e.g. for the medical staff a token (staffi) is added:
I(pe)← I(pe) ∪ {(staffi)}.

In policy rules, ‘_’ specifies variable entities without constraints. Any
entity matches this specification. We introduce the everyone concept as the
according domain concept. This concept is the root concept of all other
concepts. In CPN , the everyone concept is represented like other domain
concepts.

To generate new instances of a concept a special transition tgenerate is
connected with the place pe. The connection is done by two arcs, which
are an incoming arc ci with node function N(ci) = (pe, tgenerate) and an
outgoing arc co with N(co) = (tgenerate, pe). The arc expressions are
E(ci) = (concepti) and E(co) = (concepti), (concepti+1).
Each occurrence of this transition generates a new token to represent another
instance of the concept represented by the token enabling the occurence.

Example 7.6: Representing Entities

The Policy 2.1 ‘Everyone is permitted to transfer Jane Doe’s health record
to Jane Doe’ relates to everyone and Jane Doe. To represent the everyone
concept and the named entity Jane Doe, we add two tokens to the initial
marking of pe:

I(pe)← I(pe) ∪ {(everyone 1),(jane_doe)}.

Policy 8.1 ‘Nurses must transfer health records to the archive after the
patient’s discharge’, Policy 8.2 ‘The archive is denied to transfer health
records to patients’ and Policy 8.3 ‘The staff is permitted to transfer health
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pe 

(concept i), 
(concept i+1) 
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Figure 7.8: Colored Petri Net Modeling the Generation of Entity Instances.

records to other staff ’ introduces the nurse, patient and staff concepts and
the named entity archive. We update the initial marking of pe accordingly:

I(pe)← I(pe)∪{(nurse 1),(patient 1),(staff 1),(archive)}.

The Policy 9.1 ‘Bob is permitted to delete health records’ relates to Bob:

I(pe)← I(pe) ∪ {(bob)}.

Figure 7.9 depicts CPN after the translation of all policy rules including the
tgenerate transition.

(Step 4) Deriving the Initial Marking

We derive the initial marking of the place p from the current distribution of
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Figure 7.9: Representation of the Policies 2, 8 and 9.

the data. The current distribution of the data can be derived from the history.

Example 7.7: Deriving the Initial Marking

In our scenario, the record is stored at the archive after Jane Doe
is discharged. As the archive is in possession of a record, we add
a token (archive 1, record_JD, log) to the place p by spec-
ifying the initialization function of this place I(p) ← I(p) ∪
{(archive 1, record_JD, log)}.

7.4.4 Discussion

As the reachability of transitions in colored Petri nets is decidable [Mayr,
1981], the existence of a destiny will be decidable if the decision problem
can be reduced to the decision problem of the reachability. The introduced
translation algorithm represents an implementation of the decision problem.
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The translation reduces the problem to decide the existence of a destiny in
a future execution graph specified by a given set of policy rules and a given
history to the problem to decide the reachability of certain transitions in a
colored Petri net.

Based on the specified obligation rules one can derive a transition that
will only occur if the processing history of a data instance is closed. By this
transition, the tokens representing data instances with a closed history are
removed from the colored Petri net. Care decides the existence of a destiny
by deciding the reachability of a state where all data instances have been
removed.

7.5 Related Work

There are a wide range of general purpose policy languages that support
obligations and are applicable for our purpose (e.g. KAoS [Bradshaw
et al., 2003], Ponder [Lupu and Sloman, 1999], Rei [Kagal et al., 2003],
XACML [Moses et al., 2005]). Table 7.9 gives an overview of related work
in the field of policy languages supporting obligations. The table compares
the different properties of policy languages that are crucial for expressing
obligations and deciding the existence of a destiny. To support obliga-
tions (Property 1), a policy language has to specify a syntax (Property 1.1).
Apart from a syntax definition, the policy language requires formal seman-
tics (Property 1.2). To decide whether future obligations can be met, the
formal semantics have to support future obligations (Property 1.3) and the
policy language has to provide a decision procedure (Property 1.4). The
availability of provenance information is crucial for interpreting obligations
rules (Property 2). (Property 3) and (Property 4) depict whether the policy
language specifies data flow or access control policies.

Care makes use of the main policy elements ‘denial’, ‘permission’, and
‘obligation’ as defined in the eXtensible Access Control Markup Language
(XACML) [Moses et al., 2005]. XACML cannot easily specify policies,
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Table 7.9: Comparison of Approaches Related to Care.
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Care X X X X X X X X
XACML X X - - - - - X

[Moses et al., 2005]
Ponder X X - - - X - X

[Lupu and Sloman, 1999]
Rei X X X - - - - X

[Kagal et al., 2003]
XrML X X - - - - - X

[Wang et al., 2002]
ODRL X X (1) - - - - X

[Ianella, 2007]
PTLTL FO - - - - - X - X

[Bauer et al., 2009]
[Hilty et al., 2005] X X X - - X - X

(1) The authors of [Pucella and Weissman, 2006] introduce a semantic
definition for parts of ODRL.

which are based on complex environmental knowledge such as provenance
information. As Papel extends the expressiveness of XACML conditions to
relate to provenance, we based Care on Papel. Care extends Papel by intro-
ducing syntax and semantics of obligations.

Instead of using colored Petri nets [Jensen, 1992] to decide the reach-
ability, one can use search algorithms (cf. [Russell and Norvig, 2003]) or
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planning approaches, like STRIPS [Fikes and Nilsson, 1971] or ADL [Ped-
nault, 1989]. While STRIPS and ADL are state-based, COLLAGE [Lansky,
1994] presents an action-based planning approach based on temporal logic.
One can also consider temporal logic [Pnueli, 1981] instead of colored Petri
nets. Temporal logic is state-based, while the obligations defined by most
policy languages are action-based (e.g. [Bradshaw et al., 2003, Lupu and
Sloman, 1999, Kagal et al., 2003, Moses et al., 2005, Wang et al., 2002]).
Using temporal logic would require the definition of an additional transla-
tion from action-based obligations to state-based obligations. As temporal
logic is a general purpose language, one would also have to define the se-
mantics of policies and process provenance. [Hilty et al., 2005] presents a
temporal logic based policy language to specify access control policies sup-
porting obligations. The approach provides a solution to enforce obligations
at runtime, but not to verify whether obligations are met in future.

A field related to Care is compliance checking of business process models.
The authors of [Namiri and Stojanovic, 2007] use patterns to check compli-
ance of process models with rules at design time of the process. A similar
approach is presented in [Goedertier and Vanthienen, 2006]. The authors
use an extension of deontic logic [von Wright, 1951,Føllesdal and Hilpinen,
1971] a formalism to express permissions and obligations. They also check
the compliance of processes with rules at design time. In [Awad et al., 2010],
the authors translate a set of rules specified in linear temporal logic to a Büchi
automaton [Büchi, 1966]. The automaton is used to check whether the spec-
ified rules contain cyclic dependencies, contradictions or data issues, e.g.
the data has to have different states at the same time. In [Ghose and Ko-
liadis, 2007] and [Awad et al., 2009], the authors present solutions to resolve
such violations at run-time. These approaches use pattern-based or planning-
based strategies to automatically determine a solution. All these compliance
checking approaches assume that a model of the business process and the
future execution is given.

Many other dimensions may be relevant in different settings for policy
definitions. These dimensions are not treated by Care but can be com-
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bined with Care. There are policy languages that define policies for actors
(cf. [Vedamuthu et al., 2007]) or transactions (cf. [Bauer et al., 2009]) and not
for resources. Other languages model usage rights (cf. [Ianella, 2007, Wang
et al., 2002]). Some approaches provide methods to enforce policy compli-
ance in closed environments, such as organizations (cf. [Ashley et al., 2003])
or data silos (cf. [Gandon and Sadeh, 2004]). Further languages consider
credentials to gain access rights (cf. [Becker and Sewell, 2004, Wang et al.,
2002]), relate access control policies to histories of transactions (cf. [Bauer
et al., 2009]), support roles and role delegation (cf. [Becker and Sewell,
2004, Hilty et al., 2005]), provide algorithms to identify violated policies
(cf. [Accorsi and Wonnemann, 2010]), or support the specification of time
intervals in obligations (cf. [Hilty et al., 2005]). Some policy languages spec-
ify constraints on other policy languages (cf. [Speiser and Studer, 2010]).

7.6 Summary

The application of obligations in dynamic environments raises various is-
sues, such as to decide whether an instantiated obligation can be fulfilled in
the future. To solve this issue, Care first defines the destiny of a data pro-
cessing. The destiny is defined as the subgraph of the future execution graph
that meets all obligations and consists only of valid future processing steps.
An instantiated obligation will be unfulfillable if the future has no destiny.
The existence of a destiny has to obey the specifications of permit and denial
rules, as well as obligation rules.

We have based Care on Papel considering existing means to express obli-
gations (XACML). With Care, we extend Papel by specifying the syntax
and semantics of obligations. Care defines the problem to decide whether
a destiny exists and provides an according decision procedure using reduc-
tion. The decision procedure defines a translation from Care policy rules
to colored Petri nets to use existing decision procedures for deciding upon
reachability of nodes. By deciding the reachability of nodes we can decide
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7.6 Summary

upon the existence of a destiny.
Through Care we confirm Hypothesis 4 by providing syntax and semantics

for obligation rules and by providing a decision procedure to answer the
question whether all future obligations can be met.
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8 Conclusion

“The Journey is the Destination.”
-Confucius

In this thesis we have presented approaches to manage the distributed data
processing. Challenges have been addressed in the area of data provenance
(past), restriction of data processing (now) and the destiny of data process-
ing (future). For our research we have exploited state transition systems
(colored Petri nets) to provide an improved model of the distributed process-
ing of data items. Simulation relations have been specified to define sound-
ness and completeness relations between execution models. We have used
semantic methods to provide a well-defined, data-centric monitoring mech-
anism for distributed environments. A formal syntax of a provenance-aware
policy language has been provided and we have exploited model theory and
interpretation functions to define the semantics of the language. To base a
procedure to decide the existence of a destiny on the well-defined decision
problem of reachability in colored Petri nets, we have used reduction.

8.1 Findings and Research Contribution

Through our research we have made various contributions in different areas.

• Process Modeling: We have provided a new formalism capturing a
novel aspect to the field of process models, DiALog. With DiALog,
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we add a means to model the data centric view of data processing to the
features of existing process models. The features of the other process
models cover the modeling of the control flow as well as the data flow
of processes. These models do not focus on modeling the processing
of single data items that may span multiple processes. Apart from
the data centric approach, we have designed DiALog to model the
processing in distributed environments. Also other models allow for
modeling distributed environments. The combination with the data
centric modeling approach and the use of colored Petri nets leads to
DiALog visualizing the distribution of all instances of one specific
data item in distributed environments.

• Qualities of Execution Models: We have identified different cate-
gories of execution models. Each of these models describes a different
aspect of the execution of the data processing (logical, technical, etc.).
We set the different models in relation to each other and defined sound-
ness and completeness qualities. By the soundness and completeness
qualities we can prove whether an instance of one execution model
of a certain category can be used to make statements that normally
require an instance of another category.

• Process Auditing: DiALog provides a new view on the processing of
data items that vary from existing process models. This allows for a
novel auditing approach that institutes the data centric point of view.
Auditing from this point of view servers the auditing of data privacy
and data protection issues. We have provided the formal grounding to
use other execution models instead of the global model.

• Process Mining: Existing means to mine the processing of data are
often restricted to single systems or agents. Mining methods for dis-
tributed environments concentrate on the data communication between
the involved entities but not on other actions performed on the data.
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With sticky logging we have added a method for distributed and data-
centric process mining to this field.

• Process Provenance: Processing histories are part of provenance in-
formation consisting either of linear traces or complex temporal struc-
tures. In distributed environments, data may be processed in parallel.
Linear processing traces, in difference to temporal structures,are not
sufficient to express processing histories with parallel paths. On the
other hand, temporal structures require complex reasoning. With Pa-
pel, we have extended existing approaches to express processing his-
tories by reducing the temporal structure to a graph structure and by
defining an after operator to access the temporal aspect of the process-
ing history.

• Policy Languages (Provenance): Policy languages provide various
means to base policy conditions on metadata. However, either they
do not consider processing histories at all or they are general purpose
languages. Even if the general purpose languages can be used to ex-
press provenance based policy conditions, the existing approaches do
not define any semantics to express or access the temporal structure
of processing histories. With Papel, we have provided a novel ap-
proach that extends other approaches by providing a formal definition
of the semantics required to address provenance-based policy condi-
tions considering processing histories.

• Policy Languages (Obligations): Existing policy languages foresee
the possibility to specify obligations. Some languages also provide
means to enforce obligations at runtime. They do not consider the
future processing and thus do neither specify an according decision
problem nor decision procedure. With Care, we have given a defi-
nition of the problem to decide whether the current processing step
allows to meet all future obligations or whether it renders obligations
unfulfillable. We have provided a procedure to answer the decision
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problem by reducing it to a well-defined decision problem in colored
Petri nets.

Apart from the single findings, we have introduced integrated means to
manage the distributed processing of data. These are DiALog, sticky log-
ging, Papel and Care. All approaches are integrated with each other. Sticky
logging uses DiALog as formal model for process provenance and the re-
construction mechanism fulfills the qualities defined by DiALog. Papel uses
sticky logging to gather and provide the provenance information required
to evaluate policy conditions. Care extents Papel to specify obligations for
the future processing and to decide whether those future obligations can be
met. We have provided one integrated approach to validate the hypotheses
we made in Chapter 1.

8.2 Outlook and Future Work

This thesis is based on requirements derived from current laws and end user
agreements. Constantly new ways to use the Internet emerge, such as cloud
computing. The demand of data owners and persons concerned to manage
the processing of their data also changes. Such changes are initiated by ad-
justments in the perception of data privacy as caused by the introduction of
services, such as Google Street View1 in Europe. The architecture of the
Internet itself changes as well. For instance, by establishing social network
sites, e.g. Facebook2, as a new layer between the transportation and applica-
tion layer.

These developments change the way data is processed and they affect how
the processing is perceived. Even if cloud computing and social network
sites are less distributed, data owners and persons concerned may have the
impression that they are more ‘cloudy’. New risks arise from those develop-

1Google Street View, maps.google.com, retrieved: Dec. 14th, 2010
2Facebook, www.facebook.com, retrieved: Dec. 14th, 2010
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ments. Our work already constitutes a first step to audit the data processing
in other Web environments as cloud computing and social network site.

Another prominent risk by using social network sites is the risk of data
items influencing the processing of each other. Data stored in the profile
of a social networking site may influences the users credit rating for online
shopping. Our approach is also a first step to monitor such influences and to
restrict the flow of information in the Internet.

Laws and contracts will adapt as answer to such changes eventually. How-
ever, it can not be predicted whether these changes will have an impact on the
demands of data owners or the persons concerned to manage the distributed
processing of their data.
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