
Fachbereich 4: Informatik

A Full 2D/3D GraphSLAM
System for Globally Consistent
Mapping based on Manifolds

Diplomarbeit

zur Erlangung des Grades

Diplom-Informatiker

im Studiengang Informatik

vorgelegt von

Frank Neuhaus

Betreuer: Dipl.-Math.(FH) Dagmar Lang, Institut für Computervisualistik,
Fachbereich Informatik, Universität Koblenz-Landau
Erstgutachter: Prof. Dr.-Ing. Dietrich Paulus, Institut für
Computervisualistik, Fachbereich Informatik, Universität Koblenz-Landau
Zweitgutachter: Dipl.-Math.(FH) Dagmar Lang, Institut für
Computervisualistik, Fachbereich Informatik, Universität Koblenz-Landau

Koblenz, im September 2011

Kurzfassung

In der heutigen Robotik-Forschung soll hauptsächlich die Interaktion von autono-
men, mobilen Robotern mit vorher nicht bekannten Umgebungen ermöglicht wer-
den. Eines der grundlegendsten Probleme, das in diesem Kontext gelöst werden
muss, ist die Frage, wo der Roboter ist und wie seine Umgebung in unmittelbarer
Nähe, aber auch an bereits besuchten Orten aussieht – das sogenannte SLAM Pro-
blem. In dieser Arbeit wird ein GraphSLAM System vorgestellt, das einen graph-
basierten Lösungsansatz für dieses Problem darstellt. Ein solches System besteht
aus einem Frontend und einem Backend. Das Frontend hat die Aufgabe, aus den
Sensordaten einen Graphen zu konstruieren, der die relative Lage der Messungen
zueinander widerspiegelt. Da sich Messungen widersprechen können, ist ein solcher
Graph im Allgemeinen inkonsistent. Das Backend hat nun die Aufgabe, diesen Gra-
phen zu optimieren, d. h. eine Konfiguration der Knoten zu bestimmen, die sich
nur minimal widerspricht. Knoten repräsentieren Roboterposen, die aufgrund der
enthaltenen Rotationen sog. Mannigfaltigkeiten sind und keinen gewöhnlichen Vek-
torraum bilden. Dies wird in der Arbeit konsequent berücksichtigt, was zu einem
sehr effizienten und eleganten Optimierungsverfahren führt.

Abstract

Robotics research today is primarily about enabling autonomous, mobile robots to
seamlessly interact with arbitrary, previously unknown environments. One of the
most basic problems to be solved in this context is the question of where the robot
is, and what the world around it, and in previously visited places looks like – the
so-called simultaneous localization and mapping (SLAM) problem. We present
a GraphSLAM system, which is a graph-based approach to this problem. This
system consists of a frontend and a backend: The frontend’s task is to incrementally
construct a graph from the sensor data that models the spatial relationship between
measurements. These measurements may be contradicting and therefore the graph
is inconsistent in general. The backend is responsible for optimizing this graph, i. e.
finding a configuration of the nodes that is least contradicting. The nodes represent
poses, which do not form a regular vector space due to the contained rotations.
We respect this fact by treating them as what they really are mathematically:
manifolds. This leads to a very efficient and elegant optimization algorithm.

5

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe und dass die Ar-
beit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgele-
gen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle
Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche
gekennzeichnet.

Die Vereinbarung der Arbeitsgruppe für Studien- und Abschlussarbeiten habe
ich gelesen und anerkannt, insbesondere die Regelung des Nutzungsrechts.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einver-
standen.

ja ⊠ nein �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. ja ⊠ nein �

Koblenz, den 28. September 2011

Contents

1 Introduction 11

1.1 Problem Statement . 11

1.2 State of the Art . 12

1.2.1 Online Methods . 13

1.2.2 Offline Methods . 14

1.3 Structure of this Work . 16

2 Mathematical Basics 17

2.1 Manifolds . 17

2.1.1 Product Manifold . 19

2.1.2 Operators . 19

2.1.3 Lie Groups . 20

2.1.4 SO(2) . 20

2.1.5 SO(3) . 21

2.2 Pose Representations . 21

2.2.1 2D . 22

2.2.2 3D . 22

2.2.3 Operations on Poses . 23

2.3 Maximum-Likelihood Method . 24

2.3.1 Multiple Simultaneous Independent Measurements 26

2.3.2 Maximum-Likelihood on Manifolds 27

3 Scan Matching 29

3.1 Iterative Closest Point Algorithm 29

3.1.1 Covariance Estimation . 31

3.1.2 Normals of Point Clouds . 32

3.1.3 Downsampling of Point Clouds 34

3.2 Correlative Scan Matching . 38

7

8 CONTENTS

4 GraphSLAM System 45
4.1 Probabilistic Problem Formulation 45
4.2 Backend . 48

4.2.1 Maximum-Likelihood Estimation 49
4.3 Frontend . 51

4.3.1 Working Principle . 52
4.3.2 Incremental Scan Matching 53
4.3.3 Loop Detection . 53
4.3.4 Loop Closing . 58

4.4 Implementation . 60
4.4.1 Backend . 60
4.4.2 Frontend . 60

5 Experiments and Results 63
5.1 Synthetic Datasets . 63

5.1.1 2D . 64
5.1.2 3D . 66

5.2 Real Datasets . 69
5.2.1 “House” Dataset . 69
5.2.2 Freiburg . 70

5.3 Fail Cases . 76
5.3.1 Incremental Scan Matching 77
5.3.2 Loop Closing . 77

6 Conclusion 79
6.1 Future Work . 80
6.2 Acknowledgements . 81

List of Figures

2.1 Visualization of a chart . 19

3.1 Visualization of the results of Algorithm 2 34

3.2 Uneven point densities . 35

3.3 Difference between Euclidean and geodesic distances 36

3.4 Typical Poisson sampling pattern 36

3.5 Results of Poisson downsampling 38

3.6 Lookup table for correlative scan matching 40

4.1 Example of a Bayes net of the SLAM problem 46

4.2 Bayes net with marginalized out landmarks 47

4.3 Example of a pose/feature graph 48

4.4 Marginalization of the pose/feature graph from Figure 4.3 48

4.5 Constraint error function . 50

4.6 Bayes net showing a chain of poses 55

4.7 Visual explanation of the simplified pose overlap test 59

5.1 Development of the graph of the “W10 k” dataset during optimization 65

5.2 Comparison of the χ2 errors of different optimizers on the “W10 k”
dataset . 66

5.3 Comparison of the χ2 errors of different optimizers on the “sphere-
mednoise” dataset . 67

5.4 Optimization steps of the “sphere-mednoise” dataset 68

5.5 MappingCube . 70

5.6 Resulting point cloud of the “House” dataset 71

5.7 Graph generated for the “House” dataset 71

5.8 Closing the first loop of the “House” dataset 72

5.9 Execution times for the algorithms which are part of incremental
scan matching in the “House” dataset 72

5.10 Point cloud of the “Freiburg” dataset after optimization 73

9

10 LIST OF FIGURES

5.11 Execution times for the algorithms which are part of incremental
scan matching in the “Freiburg” dataset 74

5.12 Closing the first loop of the “Freiburg” dataset 75
5.13 Point cloud of the “Freiburg” dataset viewed from the side 76

Chapter 1

Introduction

1.1 Problem Statement

Robotics research today is primarily about enabling autonomous, mobile robots
to seamlessly interact with arbitrary, previously unknown environments. This
includes knowing where things are located in the world, which areas have been
visited by the robot before and the question how the robot can reach a desired
location. To achieve any of these goals, a robot needs to maintain a map of the
environment, and it needs to know its current position inside this map at all times.
This is the so-called simultaneous localization and mapping (SLAM) problem.

Variants of this problem can also occur when no actual robot is present. For
example there are companies manufacturing highly-precise 3D laser range finders,
such as Z+F1 or RIEGL2. These laser range finders are used by architects, in foren-
sic applications or for planning the layout of factories for instance. Up to now, the
measurement process typically starts by manually attaching numerous markers to
the walls, which can be detected and identified in the infra-red reflectance data
provided by the devices. After that a surveyor sets the device up at carefully
thought out and previously planned locations, and performs the actual measure-
ment. When the measurements are done, the actual registration is performed
offline on a computer which identifies the markers in the images and computes the
required rigid-body transformations to align the markers and thus the scans. A
large part of the total time required for the measurements goes into the planning
phase, which includes attaching markers to the walls. It seems possible to reduce
this time by avoiding the use of markers.

Note how this registration problem is essentially the same as the typical SLAM
problem. The difference is that there is typically a larger distance between subse-

1Website: http://www.zf-laser.com/
2Website: http://www.riegl.com/

11

http://www.zf-laser.com/
http://www.riegl.com/

12 CHAPTER 1. INTRODUCTION

quent scans, and that nothing is known about any motion that occured between
the scans. In other words, there is no real motion model or control input.

In this work, we will develop a system to build globally consistent maps using
a graph-based formulation of this variation of the SLAM problem. We explain all
relevant steps including pre-processing, scan matching and data-association, which
together form the SLAM frontend, as well as the optimization of the graph using a
maximum-likelihood-based approach. This optimization step is part of the SLAM
backend.

Throughout this work, we take special care of the fact that the optimization is
performed on poses, which are so-called manifolds, and do not form a regular R

n

vectorspace. This leads to a very elegant and efficient optimization algorithm.

Our backend is essentially going to be an implementation of SLoM [Her]. Our
frontend is an adaption of algorithms by Olson [Ols08] to make them compatible
with manifolds and to make them able to deal with 3D data.

1.2 State of the Art

Algorithms for solving the (metrical) SLAM problem can coarsely be separated into
two groups: online and offline methods. Online methods compute a map at the
most recent timestamp, discarding all previous measurements after incorporating
the contained information. In contrast, offline methods consider all the sensor
readings at once and try to build a map from that.

Online methods have inherent disadvantages: Since they only see the mea-
surements up to a certain time, it is much harder to tell whether the current
measurements are outliers or not. Also since sensor readings are discarded after
every time step, it is generally not possible to revise the data-association at a later
point in time, which can cause the algorithm to get stuck in a local minimum.
Offline methods are typically computationally much more expensive, yet their in-
creased flexibility gives them the potential to deliver much higher quality maps
than online methods.

The term offline has recently become a little misleading. In principle any
offline approach can be used online by running the full mapping algorithm after
every time step. This is inefficient of course. Yet efficiency can be regained by
exploiting the problem’s coherency and avoiding update rules that keep working
on a majority of the previous measurements. Taking offline methods and adapting
them for online use is an idea that is becoming increasingly popular, and was used
in [KM07] and [GKS+10] for instance.

1.2. STATE OF THE ART 13

1.2.1 Online Methods

Virtually all online methods are instances of the Bayes filter [TBF05], which is
a probabilistic framework for incorporating measurements into the current proba-
bilistic belief of the world.

The first real solutions of the SLAM problem were typically feature-based on-
line methods based on the Kalman filter. This approach is commonly known
as EKF-SLAM and was first described by Cheeseman and Smith in [SC86], and
later refined. Variants are still used today for example in [Dav03]. Every fea-
ture, as well as the robot pose is represented in the Kalman filter’s state, which
is modeled as a multivariate Gaussian. Therefore all covariances between the fea-
tures and the robot pose are modeled. Modeling all these covariances between
all features requires huge covariance matrices, which results in scalability issues.
Incorrect data-associations can permanently corrupt the state or even make the
filter diverge. Therefore high quality features are required, which is often an issue.
Another shortcoming of the EKF-SLAM method is that the distribution of the
robot position is modeled as a Gaussian, effectively restricting the algorithm to
one data-association hypothesis only.

The FastSLAM algorithm developed by Montemerlo et al. in [MTKW02] ad-
dresses many of the issues associated with the EKF-SLAM algorithm. The key
insight of the method is a clever factorization of the SLAM posterior, together with
the observation the landmarks are conditionally independent given the path of the
robot. This allows the problem to be decomposed into the estimation of the tra-
jectory, and the estimation of the landmarks. The conditional independence of the
landmarks allows each landmark to be estimated with its own Kalman filter. No
covariances between the features have to be considered. This is the reason for the
massively improved computational complexity in comparison to EKF-SLAM. The
estimation of the trajectory is done with a particle filter, which is better suited for
complex non-linear motion- and measurement models. It also supports multiple
hypotheses on the data-association, which makes it much more capable of closing
loops.

Further improvements to FastSLAM have been done by Grisetti et al. [GSB07]
in an approach called GMapping: The feature-based map representation was re-
placed with a grid map. Additionally the number of particles needed for proper
operation of the filter has been reduced significantly by incorporating measure-
ments into the proposal distribution.

The GMapping approach is specific to 2D since it uses grid maps, which are
not easily (i. e. efficiently) extensible to 3D. FastSLAM is usable in 3D in principle,
however it would require a lot of particles to cover the high number of degrees of
freedom of the robot pose, making it rather inefficient. EKF-SLAM easiest to use
in 3D, and is in fact often used there, for example in [Wei05] or the aforementioned

14 CHAPTER 1. INTRODUCTION

[Dav03]. The core problem there remains the lack of robustness to false data-
associations.

Note that all of the above mentioned algorithms can theoretically close ar-
bitrary large loops. The only requirement is perfect data-association. For the
particle-filter-based approaches, this means that at least one particle needs to
have the correct data-association. This means that the larger the loop is, the
more particles are needed to close it. In practice, the number of particles is always
limited, and perfect data-association can not be achieved in any of the approaches.

1.2.2 Offline Methods

Being able to associate a current sensor reading with any previous sensor read-
ing, as well as being able to revisit the data-association at a later point in time
introduces a whole new sub problem to the SLAM problem: The frontend. The
part that is focused on the optimization, given the data-association is called the
backend.

Backends

Offline methods are dominated by graph-based approaches. This is due to the
fact that graphs are naturally able to capture all sensor data collected by a robot,
as well as the relations between them. The first graph-based approach was origi-
nally developed by Lu and Milios in [LM97] and later extended to 3D by Borrman,
Elseberg, Nüchter et al. [BE, Nüc06, BEL+08]. They constructed a graph contain-
ing robot poses and nonlinear constraints between the poses, which were derived
from scan matching. In a second step, this graph was globally optimized using
least-squares.

Instead of using least-squares to minimize the error of the whole graph at once,
Olson suggested [Ols08] using a variant of stochastic gradient descent. The idea
was to pick individual constraints in a random order, each time distributing the
error to a loop connecting the two nodes. The error distribution exploits a clever
relative parametrization of the robot poses. The idea is that in each step, the
error of the picked constraint is reduced, which may of course slightly increase the
error of other constraints. Since a different constraint is picked every step and
since the step size is decreases with every step, the method converges against some
equilibrium, i. e. a point where all forces cancel out. Olson’s method is amongst
the most efficient ones for 2D.

Olson’s error distribution scheme is not directly usable in 3D due to the non-
commutativity of rotations. Yet Grisetti et al. [GGS+07] managed to adapt the
algorithm to 3D in an approach called TORO. They found a different way to
distribute the error which is based on the spherical linear interpolation operation

1.2. STATE OF THE ART 15

on unit quaternions. While the approach is mathematically a little different from
a regular stochastic gradient descent, it still follows its spirit. Later on Grisetti’s
approach was refined to use a tree parametrization for the robot poses [GSB09],
further improving the convergence behavior over Olson’s algorithm.

All of the methods above need to perform numerical optimization on poses.
While this is more or less straightforward in 2D, it is not in 3D. The reason for that
is the topological structure of the space of 3D rotations, SO(3), which is in fact not
a normal R

n vector space but a so-called manifold. Hertzberg, Frese et al. [Her,
FL06] developed an encapsulation of manifolds, that allows them to be treated
as regular vector spaces by many existing algorithms. Hertzberg implemented a
framework called SLoM that allows solving arbitrary least-squares problems on
manifolds, including many 2D and 3D SLAM problems. The implementation does
not include a SLAM frontend however.

Grisetti et al. have extended Hertzbergs approach by a hierarchical component
in their algorithm called HOG-Man [GKS+10]. The idea of the algorithm is to
maintain a hierarchy of graphs during online operation of the robot. Each hierarchy
level represents a different abstraction level of the graph. The algorithm then
proceeds to optimize the coarsest level. The poses in areas that were subject to
significant changes are propagated to the next level. Thus the algorithm effectively
limits the amount of poses that have to be optimized during online use. Note
though that the computational advantages of the algorithm only shine when there
are a lot (i. e. thousands) of poses to be optimized. Also note that in pure offline
use, the algorithm offers no qualitative advantages to Hertzberg’s approach [Her]:
They locally converge to the same solution. However there are some computational
advantages, as the hierarchy allows quickly deriving an initial guess for the higher
resolution hierarchy levels.

Frontends

Gutmann et al. [GK99] propose a 2D approach which they call “Local Registra-
tion and Global Correlation”. Edges between subsequent scans are automatically
generated via scan matching. In order to generate loop-closing edges, they corre-
late a small patch of the local map with the global map, noting that a single scan
alone typically does not provide enough information to reliably close loops.

The probably most common frontend for the 2D case was proposed by Olson.
In order to generate edges between pairs of scans, he proposes an algorithm called
“Real-Time Correlative Scan Matching” [Ols09a]. It is essentially a scan match-
ing algorithm which can handle high amounts of uncertainty both in translation
and rotation. It also yields an uncertainty estimate which can be used for the
measurements on the edges of the graph.

16 CHAPTER 1. INTRODUCTION

To generate loop-closing edges, Olson [Ols09b] first estimates the uncertainty of
other nodes in the graph, conditioned on the current robot pose, with an algorithm
called Dĳkstra projection. After that, the likelihood that the current scan overlaps
with other scans is computed. Loop-closing edges are inserted when this value is
above some threshold. Since the process of adding these edges is error prone, he
suggests a spectral clustering approach in order to determine mutually agreeing
edges. He notes that correct edges will always agree with each other, since there
is only one truth. Incorrect edges however are typically wrong in many different
ways, and thus these edges do not agree with each other.

Apart from these frontends for metrical, graph-based SLAM, there are also
SLAM methods which only aim to construct topologically correct maps only. An
example for this is an approach developed by Cummins et al. which is called
FAB-MAP. It is an appearance-based method which aims to recognize previously
visited places using camera images. While such topological SLAM methods are
not exactly the same as the metrical frontends presented above, one can certainly
consider these approaches when trying to close large loops.

1.3 Structure of this Work

The next chapter contains some mathematical background on things that are going
to occur throughout the work, such as manifolds or the representation of poses.

The third chapter focuses on scan matching, i. e. the determination of a rigid-
body transformation which aligns two laserscans or a laserscan and a reference
map, as well as an uncertainty estimate for this transformation.

The fourth chapter is about the actual GraphSLAM system. It makes use of
these local, scan-to-scan matching algorithms presented earlier in order to con-
struct a graph describing the constraints between the scans. The chapter also
explains how to optimize this graph and how to detect and handle loops.

The fifth chapter presents the results and experiments we have done to evaluate
our system.

The last chapter concludes our work and presents ideas for improvements and
possibilities for future work.

Chapter 2

Mathematical Basics

This chapter presents a number of mathematical basics which are needed in this
work. We proceed to present an introduction to manifolds, the mathematical name
for structures which locally behave like typical R

n vector spaces. After that, we
elaborate on two particularly important manifolds, which are used in this work:
the 2D and 3D pose representations. In the final section of this chapter, we present
the probabilistically motivated derivation of the maximum-likelihood method, and
present a way to make this method work on manifolds.

2.1 Manifolds

A wide range of algorithms including (non-)linear optimization techniques, but
also the Kalman filter, particle filters and many others are designed to work on
R
n vector spaces, i. e. they make implicit assumptions especially on the continuity

and linearity of the space they work on. When these assumptions are not met,
which is most commonly the case for angles or other rotational representations for
example, those algorithms generally fail in some way, when no special care is taken.
They may show suboptimal performance, produce states that do not make sense
to the user or even diverge. To some extent, these problems can be circumvented
by the user (for example by repeated renormalization of angles, quaternions etc.),
but this is very cumbersome, problem-specific and does not always work. The
reason for all the above mentioned problems is that some spaces are not R

n vector
spaces, and thus should not be treated as such. In most cases, these spaces are
so-called manifolds. Respecting this fact leads to a very elegant solution to the
above mentioned problems.

A manifold is a space that locally behaves like a R
n vector, but globally behaves

(or rather may behave) very differently. The number n denotes the dimension of
the manifold. It is the number of independent parameters that are needed to

17

18 CHAPTER 2. MATHEMATICAL BASICS

describe a point – sometimes also called the degrees of freedom. A trivial example
for a manifold is any Euclidean R

n space itself. A more interesting example is a
line inside any R

n space: It forms a one dimensional manifold, because the space
has one degree of freedom, even when the line resides in three dimensional space
for example.

In general all one dimensional manifolds are differently shaped curves. Even
a closed curve forms a one dimensional manifold. A simple example for this is
the surface of a unit circle: To unambiguously describe any point on the circle, a
single angle θ ∈ [0, 2π[is required. In contrast to the line example though, this
parameter itself does not form a typical R

1 vector space: The difference between
two angles is supposed to be the shortest angle between the two angles for instance,
and it is not possible to achieve this using a simple difference of two elements of the
space. Instead of using an angle, one could also attempt to represent each point
as a two dimensional vector with a unit constraint. It does not get any better
though, because now the problem is that one can not simply add or subtract any
two members of the space without violating the unit constraint.

As stated above, the main characteristic of manifolds is that they locally behave
like a R

n space. The mathematical term for “behaving like R
n” is being locally

homeomorphic to R
n:

Definition 1. Let X and Y be topological spaces. X is locally homeomorphic to
Y if every point x ∈ X has an open set U containing x, for which there exists a
function ϕ : U → Y , which is a homeomorphism, i. e. ϕ is a bĳective, continuous
map with a continuous inverse.

Along with its domain, a function like this is called a coordinate chart or just
chart [Lee02]:

Definition 2. Let M be the manifold space. A (coordinate) chart on M is a pair
(U, ϕ), where U is an open subset of M and ϕ is a local homeomorphism from U
to R

n.

A visual explanation of these definitions can be found in Figure 2.1. Charts
basically describe how points from the manifold can be mapped to R

n and vice
versa. In order to cover the whole manifold space, multiple charts may be required.
A set of these charts, whose combined domains cover the whole manifold space is
called an atlas:

Definition 3. Let A = {(Ui, ϕi)} be a set of charts corresponding to a manifold
M . A is called an atlas of M iff M =

⋃

i Ui.

In order to obtain a smooth manifold, coordinate charts actually need to be
“smoothly compatible” to each other, which means that transitioning between the

2.1. MANIFOLDS 19

R
n

ϕ

M

U

x

Figure 2.1: Visualization of a coordinate chart of a manifoldM . An open set U around
a point x is mapped to an open set in a R

n space.

local R
n spaces of different charts is smooth. We do not want to go too much

into detail about that though, as we are only going to use manifolds where this
requirement is fulfilled. More details on smooth manifolds can be found in [Lee02].

2.1.1 Product Manifold

It can be shown [Her] that the Cartesian product of two manifolds is a mani-
fold again. This allows combining different manifolds to one joint manifold in a
straightforward way. The manifold elements as well as the local R

n spaces are sim-
ply concatenated. Thus, the dimensions of the two manifolds add up: For example
if a manifold with the local space R

3 is combined with a manifold with the local
space R

4 the local space of the combined manifold is simply R
7.

2.1.2 Operators

In order to facilitate working with the manifold, we follow [Her] and define the
following operators:

⊞ :M ×R
n →M ⊟ :M ×M → R

n

x⊞ δ := ϕ−1
x (ϕx(x) + δ) y ⊟ x := ϕx(y)− ϕx(x) (2.1)

The ⊞ operator basically allows moving through the manifold space using small
Euclidean increments, whereas the ⊟ operator does the inverse: it recovers the
Euclidean “difference” between two locations in the manifold space.

The idea behind these operators is to hide the mathematical details of the
manifold behind an interface that resembles the typical + and − operators in

20 CHAPTER 2. MATHEMATICAL BASICS

Euclidean spaces, thus allowing a more or less straightforward adaption of many
existing methods and algorithms to manifolds.

Note that the ⊞ operator is only well defined for reasonably small values of δ
and the ⊟ operator is only defined for x and y which are close enough together.
This follows from the local homeomorphism requirement, which states that around
every x there exists an open set U which is homeomorphic to R

n. While U has to
exist, nothing was said about its size, so it could be arbitrarily small.

2.1.3 Lie Groups

An important special case arises when the manifold together with some operator
“·” also satisfies the group axioms. A group like this is called a Lie group. Using
the group’s inverse and concatenation operators, one can choose ϕx for any x ∈ M
as:

ϕx(y) := ϕid(x
−1y) (2.2)

Here, ϕid is a chart map centered around the group’s identity element. The ad-
vantage of this definition is that one only needs to define ϕid instead of an whole
atlas of charts. Using this definition, the ⊞ and ⊟ operators simplify to:

x⊞ δ := xϕ−1
id (δ) x⊟ y := ϕid(x

−1y) (2.3)

2.1.4 SO(2)

The two dimensional special orthogonal group SO(2) is the set of 2D rotation
matrices, which can be written as:

SO(2) = {R ∈ R
2×2 |RRT = RTR = I2 ∧ det R = 1} (2.4)

Since SO(2) together with the matrix multiplication forms a Lie group, we only
need to define a chart ϕid. Since the group only has one degree of freedom, this
chart maps to R

1. We define it as follows:

ϕid : SO(2)→ R : ϕid(R) = atan2(R2,1, R1,1) (2.5)

ϕ−1
id : R→ SO(2) : ϕ−1

id (δ) =

(

cos δ − sin δ
sin δ cos δ

)

(2.6)

The function ϕid maps a rotation matrix to the rotation angle δ ∈]−π, π] encoded
in the matrix.

Typically, one does not represent members of SO(2) by a matrix, but simply
by the encoded rotation angle. In that case, ϕid changes to:

ϕid : SO(2)→ R : ϕid(δ) = atan2(sin δ, cos δ) = δ − 2π

⌊

δ + π

2π

⌋

(2.7)

ϕ−1
id : R→ SO(2) : ϕ−1

id (δ) = δ (2.8)

2.2. POSE REPRESENTATIONS 21

Inserting into the definitions of the ⊞ and ⊟ operators yields:

x⊞ δ := x+ δ x⊟ y := atan2(sin(x− y), cos(x− y)) (2.9)

Note how ϕid acts as a “normalizer” for the angle: All angles are mapped to]−π, π],
which ensures the well-behavedness of the ⊟ operator.

2.1.5 SO(3)

In analogy to SO(2), the space of rotations in 3 dimensional space, SO(3), is
defined as follows:

SO(3) = {R ∈ R
3×3 |RRT = RTR = I3 ∧ det R = 1} (2.10)

Just like its two dimensional counterpart, SO(3) forms a Lie group and thus we
only need to choose a ϕid.1 Again we do not want to represent rotations directly
using rotation matrices. We will use unit quaternions instead, which can be used
to represent all possible rotations. We define ϕid as:

ϕid : SO(3)→ R
3 : ϕid(q) =

qu
||qu||

2 arctan
||qu||

qw
(2.11)

ϕ−1
id : R

3 → SO(3) : ϕ−1
id (v) =

(

cos(||v||
2

), sin(||v||
2

) vT

||v||

)T
if ||v|| > 0

(

1, 0, 0, 0
)T

otherwise
(2.12)

This choice of ϕid maps rotations to a vector whose direction defines their rotation
axis, and whose length defines the amount to rotate around that axis. Note that
this is essentially the quaternion logarithm. However, the latter is typically defined
using the arccos of qw. Quaternions are in fact a double cover of SO(3), meaning
that there are two different quaternions, representing the same rotation. These
quaternions are q and −q. One can imagine one to rotate in clockwise and the
other in counter clockwise direction. Our definition using arctan ensures that both
of these quaternions are mapped to the same vector in R

3 [HWFS].

2.2 Pose Representations

Poses are a combination of a position and an orientation. They are ubiquitous in
computer vision and robotics to describe the kinematic state [TBF05] of robots,

1In principle, one can choose a different ϕid than the one we provided, as long as it satisfies
the requirements for charts. However we have not evaluated the effect of different choices on the
algorithms developed later on this work.

22 CHAPTER 2. MATHEMATICAL BASICS

cameras, or other sensors. Poses are essentially rigid-body transformations and
thus the obvious way to represent them are transformation matrices. However
there are also a number of alternatives, which are more comfortable to work with,
and which are better for algorithms.

This section presents such alternatives to represent poses in both 2D and 3D,
along with operators that allow composing poses, finding the relative pose between
two absolute poses and inverting a pose.

Note that the positional part of a pose is a typical R
n vector space. The

rotational part is an SO(2) or SO(3) space. In the previous section we have
shown all of these are manifolds. Thus a pose, which can be considered as the
Cartesian product of the position and the rotation is a manifold again according
to the product manifold rule from Section 2.1.1.

2.2.1 2D

In 2D, a pose is most commonly [LM97] represented as a three dimensional vector
containing the position and orientation of the robot:

x = (x, y, θ)T = (tT, θ)T (2.13)

This pose can be written equivalently as the following transformation matrix:

X =

cos θ − sin θ x
sin θ cos θ y

0 0 1

 =

(

Rθ t
0 1

)

(2.14)

The pose’s inverse is:

x−1 = (−RT
θ t,−θ)T with X−1 =

(

RT
θ −RT

θ t
0 1

)

(2.15)

Note that X represents a transformation that transforms points from the local
coordinate system of the robot to world coordinates (and not vice versa as one
may tend to think).

The pose corresponding to the identity transformation is:

id = 0 (2.16)

2.2.2 3D

In 3D, there are several different commonly used representations. In this work
we use a seven dimensional vector containing the position and orientation of the
robot, where the orientation is represented by a unit quaternion:

x = (x, y, z, qw, qx, qy, qz)
T = (tT,qT)T (2.17)

2.2. POSE REPRESENTATIONS 23

Just like in the 2D case, the equivalent transformation matrix is:

X =

(

Rq t
0 1

)

(2.18)

The pose’s inverse is
x−1 = (−RT

q t,q∗T)T (2.19)

where Rq is the rotation matrix corresponding to the quaternion q:

Rq =

1− 2q2y − 2q2z 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1− 2q2x − 2q2z 2qyqz − 2qxqw
2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2x − 2q2y

 (2.20)

The pose corresponding to the identity transformation is:

id = (0, 0, 0, 1, 0, 0, 0)T (2.21)

An alternative way of storing the orientation would be to represent the orien-
tation by three Euler angles for example. Since the space of 3D rotations, SO(3)
has three degrees of freedom, this representation is minimal. Yet this representa-
tion has a number of disadvantages: It is very difficult to compose and invert and
additionally suffers from a well known singularity called the gimbal lock problem.

The unit quaternion representation we use does not expose any of these dis-
advantages. It is not minimal however, since it technically has four degrees of
freedom, which are constrained to three by the unit constraint. This is not a prob-
lem though, since we are going to respect the fact that poses are a manifold by
only accessing it via the previously defined operators ⊞ and ⊟.

2.2.3 Operations on Poses

Two important operations on poses are the pose compounding and differencing
operations, represented by the ⊕ and ⊖ symbols respectively.

Both operators can be defined in terms of the underlying transformation ma-
trices:

a ⊕ d = b ⇐⇒ d = b⊖ a ⇐⇒ AD = B (2.22)

Where A,D and B are the transformation matrices belonging to the poses a,d
and b respectively. Here, d can be interpreted as the relative pose transformation
that has to be executed in a to get to b.

In the 2D case, this results in:

B =

(

Rθa ta
0 1

)(

Rθd td
0 1

)

=

(

Rθa+θd Ratd + ta
0 1

)

(2.23)

24 CHAPTER 2. MATHEMATICAL BASICS

Consequently:

b = a ⊕ d =

(

Ratd + ta
θa + θd

)

=

xa + xd cos θa − yd sin θa
ya + xd sin θa + yd cos θa

θa + θd

 (2.24)

In the 3D case, the same derivation results in

b = a ⊕ d =

(

Rqatd + ta
qaqd

)

(2.25)

where qa and qd are the quaternions corresponding to pose a and b and Rqa is
again the rotation matrix corresponding to the quaternion qa.

D = A−1B =

(

RT
θa
−RT

θa
ta

0 1

)(

Rθb tb
0 1

)

=

(

Rθb−θa RT
θa

(tb − ta)
0 1

)

(2.26)

It follows that:

d = b⊖ a =

(

RT
θa

(tb − ta)
θb − θa

)

=

(xb − xa) cos θa + (yb − ya) sin θa
−(xb − xa) sin θa + (yb − ya) cos θa

θb − θa

 (2.27)

Again in the 3D case, the same derivation results in:

d = b⊖ a =

(

RT
qa

(tb − ta)
q∗aqb

)

(2.28)

2.3 Maximum-Likelihood Method

The maximum-likelihood method is the problem of determining the parameters x
which maximize the likelihood function p(x | z), where z is a measurement of the
parameters.2 In other words, we are interested the parameters, that best explain
the measurements we are seeing. We start off by rewriting this term as:

p(x | z) = η p(z |x) p(x) (2.29)

∝ p(z |x) (2.30)

The first step follows from Bayes’ rule. The newly introduced η is a normalizer,
which is constant for all x. The second step follows from an uninformed prior for x,

2In fact sometimes one is not only interested in the likeliest parameters, but also in the whole
distribution p(x | z). In the Gaussian case, that is both the mean and the covariance matrix of
the distribution.

2.3. MAXIMUM-LIKELIHOOD METHOD 25

which means that we assume we do not know anything about x and thus assume
it to be uniformly distributed.

The remaining term p(z |x), which is called the measurement model, is the
probabilistic formulation of the so-called measurement function f, which explains
how parameters are mapped to measurements. We model this relationship with
additive Gaussian noise:

z = f(x) + ω with ω ∼ N (0,Ω−1) (2.31)

This can be written equivalently in terms of an error function e.3

ez(x) := z− f(x) with ez(x) = ω (2.32)

We only want to consider the case where x and z are normally distributed. This
is only the case when f and thus ez(x) is linear with Gaussian, additive noise.
Unfortunately, both functions are non-linear in general. Therefore we first linearize
it using a first-order Taylor expansion around x = x0:

ez(x0 + h) ≈ ez(x0) + Jh with J =
∂ ez(x)

∂ x

∣

∣

∣

∣

∣

x=x0

(2.33)

This approximation of is exact when ez is already linear. Since ez(x) = ω ∼
N (0,Ω−1), we write can write p(z |x) as:

M = p(z |x) = g(ez(x0) + Jh, 0,Θ) (2.34)

where g(x,m,Θ) is a multivariate Gaussian with mean m, and covariance matrix
Θ−1. For the sake of brevity, we simply call this term M from now on.

We actually want to find an x that maximizesM . Since we had to replace ez(x)
by its Taylor expansion though, we can no longer directly compute the optimal
x. Instead, we can only compute an increment h which maximizes this linearized
measurement model. Finding an increment h that maximizes M , is equivalent to
minimizing its natural logarithm:

ln(M) = ln(g(ez(x0) + Jh, 0,Θ)) (2.35)

= −
1

2
(ez(x0) + Jh)TΘ(ez(x0) + Jh) + const. (2.36)

= −
1

2
(ez(x0)TΘez(x0) + 2hTJTΘez(x0) + hTJTΘJh) + const. (2.37)

3This formulation has the advantage that the − operator, which essentially compares f(x)
and z, can be non-linear. We will make use of this in Section 2.3.2

26 CHAPTER 2. MATHEMATICAL BASICS

Derive by h and set derivative to 0:

0
!

=
∂ ln(M)

∂ h
= −JTΘez(x0)− JTΘJh (2.38)

⇐⇒ JTΘJh = −JTΘez(x0) (2.39)

The last line is a regular linear equation system of the form Ax = b, with A being
symmetric in this case. Thus h can be computed using the Cholesky decomposition
for example.

Having found this increment h, we can now improve our guess for x to x1 =
x0 + h. Thus we iteratively compute a series of increments h, until the method
converges, i. e. h becomes sufficiently small. As a consequence, the method only
converges to a local optimum, which can coincide with the global optimum if the
initial guess is close enough.

2.3.1 Multiple Simultaneous Independent Measurements

So far we only considered the case where we are in possession of one measurement
z of the parameters x. Another important case is when we have multiple, condi-
tionally independent measurements z1, z2, . . . , zn: The likelihood function to be
maximized then becomes:

p(x | z1, z2, . . . , zn) (2.40)

This can be rewritten as:

p(x | z1, z2, . . . , zn) = η p(z1, z2, . . . , zn |x) p(x) (2.41)

∝ p(z1, z2, . . . , zn |x) (2.42)

=
n
∏

i=1

p(zi |x) (2.43)

The first two steps are the same as in the previous subsection. The last step follows
from the conditional independence of the measurements zi. The result is that the
likelihood to be maximized is merely a product of the individual measurement
models. In the last subsection we then proceeded to take the log-likelihood of the
individual measurement models. The product thus transforms into a sum and can
be simplified to:

(

n
∑

i=1

JT
i ΘiJi

)

h =
n
∑

i=1

JT
i Θiezi(x0) (2.44)

with Ji =
∂ ezi(x)

∂ x

∣

∣

∣

∣

∣

x=x0

This is again a linear system of the form Ax = b and can be solved the same
fashion as in the single-measurement case.

2.3. MAXIMUM-LIKELIHOOD METHOD 27

2.3.2 Maximum-Likelihood on Manifolds

At the beginning of this section, we assumed that the parameters and the mea-
surement are Gaussian random variables. When these spaces are no longer regular
R
n vector spaces, the “additive” nature of this noise no longer makes sense, as one

can not meaningfully add a small offset to an element of a manifold in general.
Instead we can use the ⊞ operator we defined in Section 2.1.2 to extend the notion
of a Gaussian distribution to manifolds [HWFS]:

N (µ,Σ) := µ⊞N (0,Σ) (2.45)

Note that Σ is no longer in the space of the manifold, but in the space of the
locally linear R

n space.
In the derivation at the beginning of this section, we introduced the error

function in Equation (2.32), which we linearized using the Taylor expansion. This
expansion uses the + operator which is not available on manifolds. Thus, instead
of doing a Taylor expansion of ez(x) around x = x0 directly in the parameter
space, we will perform a Taylor expansion of e(x0 ⊞ h) around h = 0:

ez(x ⊞ h) ≈ ez(x ⊞ 0) + Jh = ez(x) + Jh (2.46)

In this case however, J is defined as

J =
∂ ez(x ⊞ h)

∂ h

∣

∣

∣

∣

∣

h=0

(2.47)

Using this new linearization of ez, we can basically perform the same derivation
as at the beginning of the section. There are two essential differences though:

• The increment h that is computed in every iteration, is now added to the
current parameter estimate using the ⊞ operator instead of the ordinary +
operator.

• As explained at the beginning of the section, the involved normal distribution
now respects the structure of the manifold. Thus, the dimension of the term
itself as well as the information matrix Θ is now equal to the dimension of
the R

n space, that the chart corresponding to the manifold maps to.

The pseudo code of the revised algorithm is given in Algorithm 1.

28 CHAPTER 2. MATHEMATICAL BASICS

Algorithm 1 Algorithm for Maximum-Likelihood on Manifolds

Input: x0 – Initial Guess
Input: maxIterations, ǫ – Stopping criteria
Output: xi – Maximum-Likelihood Solution

for (i = 1→ maxIterations)
{

J = ∂ f(xi⊞d)
∂ d

∣

∣

∣

d=0

Solve JTΘJh = −JTΘe(xi) for h
xi = xi−1 ⊞ h
if (||h|| < ǫ)

break
}
return xi

Chapter 3

Scan Matching

Scan matching algorithms have the primary purpose of computing a rigid-body
transformation (or a relative pose) which aligns two laserscans, or a laserscan with
an existing map. We proceed to present the well-known iterative closest point
(ICP) algorithm, which provides local convergence for 2D and 3D point clouds.
After that we will look at pre-processing algorithms that can be combined with
the ICP algorithm. Finally we will look at an algorithm which also works when
only a very bad initial guess is known.

For both algorithms, we will also derive Gaussian uncertainty estimates. These
will be useful later on because they define a Gaussian (pseudo-)measurement of
the relative pose of one scan to another. We will use these as building blocks of
our SLAM graph in the next chapter.

3.1 Iterative Closest Point Algorithm

This section presents a summary of the iterative closest point (ICP) algorithm as
presented in [Nüc06]. It is an algorithm to find a rigid-body transformation that
best aligns two sets of points, namely the model setM = {mi} and the data set
D = {di}. Given we knew which points of the one set correspond which points of
the other set, the error function to be minimized would be:

E(R, t) =
|M|
∑

i=1

|D|
∑

j=1

wi,j||mi − (Rdj + t)||2 (3.1)

Here R and t define a rigid-body transformation and wi,j is a binary weight which
is set to 1 if point i from the model set corresponds with point j from the data
set, and 0 otherwise. An alternative but equivalent formulation considers only
corresponding point pairs from the two sets instead of using a binary weight. Let

29

30 CHAPTER 3. SCAN MATCHING

C = {(i, j) |wi,j = 1} be the set of corresponding point tuple indices. Then we can
rewrite E as:

E(R, t) =
∑

(i,j)∈C

||mi − (Rdj + t)||2 (3.2)

The function is obviously minimal for values of R, t which transform the data set
in a way that the sum of squared distances between the corresponding points is
minimal.

There are a multitude of possibilities in minimizing E including generic meth-
ods such as gradient descent and the Levenberg-Marquardt algorithm [Fit01] but
also problem-specific methods based on the singular-value-decomposition (SVD),
quaternions, dual quaternions or the QR-decomposition. We will focus on the
probably simplest method, which is based on the SVD of the correlation matrix
H between the correspondence sets. The latter is defined as:

H =
∑

(i,j)∈C

(dj − d̄)(mi − m̄)T (3.3)

Here d̄ and m̄ are the means of the points in the correspondence set:

d̄ =
1

|C|

∑

(i,j)∈C

dj m̄ =
1

|C|

∑

(i,j)∈C

mj (3.4)

Now R and t can be found using:

R = VUT t = m̄−Rd̄ (3.5)

where VΛUT = svd(H)

The method above immediately yields the optimal transformation to minimize E
in closed form, given the correspondences are known. The problem is that the
point correspondences are typically unknown. The key idea of the algorithm is to
iteratively compute the point correspondences:

1. Given an initial guess for the alignment, find the tentative correspondence
of each data point as its nearest neighbor in the model set. If there is no
nearest neighbor within a radius of dmax, the point is considered not to have
any correspondences.

2. Find R,t that minimize E using Equations (3.3), (3.4) and (3.5). Transform
the data set by R,t.

3. Repeat the two steps above until the error is below a threshold ǫ.

3.1. ITERATIVE CLOSEST POINT ALGORITHM 31

The correspondence set is expected to improve over time, ultimately ending up
with the correct correspondence set.

The ICP algorithm can be shown to converge locally with dmax =∞, however
practically it usually also converges for finite values of dmax. The main issue of the
algorithm is that it needs a good initial guess in order to converge to the correct
local minimum of E. How good the initial guess needs to be strongly depends on
the geometry of the two point sets and also the choice of dmax. High values of this
parameter tend to increase the convergence radius of the solution, however they
also lower the precision of the computed transformation because of the increased
likelihood of false data-associations.

One heuristic to choose dmax is to use a high value in the early iterations of the
algorithm to exploit the high convergence radius, gradually decreasing it in later
iterations in order to increase the precision of the solution.

Other variants

There are a lot of variants of the ICP algorithm which refine certain aspects of
the algorithm, such as the “trimmed ICP” (TrICP) [CSSK02] or the “metric based
ICP” (MbICP) [Min05].

In a fashion similar to a k-trimmed mean filter in image processing which
tries to avoid outliers in the computation of the mean of a number of values, the
trimmed ICP aims to avoid false data-associations by sorting all correspondences
by distance and only accepting a certain number of the closest matches.

The metric-based ICP suggests different metrics in order to find the nearest
neighbor of a point. In the description of the algorithm above, we simply assumed
an Euclidean metric. However it is quite obvious that this method has disadvan-
tages in presence of rotational errors, as small rotational errors quickly result in
large Euclidean distances between points.

All of the variants tend to improve the convergence behavior and/or the preci-
sion of the result. Yet the convergence stays local at all times.

3.1.1 Covariance Estimation

Borrmann et. al presented a way to compute the covariance matrix of the ICP
alignment in [BEL+08] for the 3D case. Their algorithm yields a covariance es-
timate Σ around the computed relative pose x. Since no manifolds were used
in the cited work though, this covariance estimate is in the 7-dimensional pose
space itself, and not in the locally linear 6-dimensional space of the pose manifold.
In order to “convert” this covariance estimate, we propagate the pose Gaussian
through the linearization of function (x, δ)→ x ⊞ δ at δ = 0. This ends up doing
nothing to the mean pose itself since x ⊞ 0 = x, but it allows to transform the Σ

32 CHAPTER 3. SCAN MATCHING

into the locally linearized space of the manifold. The matrix resulting matrix Σ′

is given by:

Σ′ = JTΣJ with J =
∂ x ⊞ δ

∂ δ

∣

∣

∣

∣

∣

δ=0

(3.6)

Note that we are only going to need this covariance estimation (and in fact the
whole ICP) in the 3D case.

3.1.2 Normals of Point Clouds

One problem of the ICP algorithm as presented in the previous section is, that due
to the way it searches for nearest neighbors, it is likely to make point correspon-
dences, which can not possibly be correct due to the way the point clouds were
captured. An example for this is a wall which was scanned from two sides. Now
the points from one side of the wall are potentially associated with points from
the other side of the wall. Since all our point clouds are the result of a single 3D
laser scan, we can determine the normal of each point in the point cloud. These
normals make it possible to check whether the surface in the two query points
faces in roughly the same direction. If they are facing in opposite directions, the
correspondence can be rejected.

Normals are quite simple to compute given surface information of an object.
When dealing with point clouds however, surface information is generally unavail-
able.

In order to estimate the normal at a certain point, it is required to first esti-
mate the surface at that point. One possibility to do that is to first approximate
the surface of the whole point cloud and then computing the normals from this
approximation.

Since this is quite complex, we follow a much simpler alternative method, that
only considers the local neighborhood of every point by computing its nearest
neighbors. Given the set of N nearest neighbors xi with i = 1..N , we compute the
mean x̄ and the covariance matrix Σ using:

x̄ =
1

N

N
∑

i=1

xi (3.7)

Σ =
N
∑

i=1

(xi − x̄)(xi − x̄)T (3.8)

Assuming local planarity of the surface, the eigenvector corresponding to the small-
est eigenvalue of the eigen decomposition of the covariance matrix Σ, is a vector
that is normal to the surface.

A small issue is that the sign of the normal is undetermined. Fortunately we
can use domain specific knowledge to determine it: The point clouds considered

3.1. ITERATIVE CLOSEST POINT ALGORITHM 33

in this work are all a result of laser scans. Consequently all surface normals have
to point towards the position of the laser scanner (which is usually the origin).

The pseudo code for the described algorithm is given in Algorithm 2. Some
implementation notes:

• The function getNeighbors mentioned in Algorithm 2 could either be imple-
mented as a radius search or as a k-NN search. It is to be expected that a
radius search makes more sense in this case and yields higher quality nor-
mals, because all normals are computed from a local surface patch of the
same size. Yet we typically use a k-NN search with k = 10, because it is
computationally cheaper, and because there are no problems in areas with
low point densities. The downside of this method is that it suffers artifacts
in areas with extremely high point densities, as it will attempt to compute
normals from tiny clouds of points with no distinct shape in that case. These
artifacts are also visible at the top of the left picture of Figure 3.1. We chose
not to deal with these artifacts because only a very small part of the point
cloud is affected, which does not interfere with our algorithm.

• The main loop inside of Algorithm 2 is in fact embarrassingly parallel, mean-
ing that it is extremely easy to parallelize. This optimization has been ap-
plied in the implementation.

Algorithm 2 Computing normals from point clouds

Input: origin – Position of the laserscanner
Input: pointSet – Point Cloud
Output: normals – Normals for every point

foreach (p in pointSet)
{
{xi} = getNeighbors(p, pointSet)
x̄ = 1

N

∑N
i=1 xi

Σ =
∑N
i=1(xi − x̄)(xi − x̄)T

QΛQT = eig(Σ) // compute eigendecomposition
n = Q.col(arg minv Λv,v)
if (nT(p− origin) > 0)

n = −n
normals[p] = n

}
return normals

34 CHAPTER 3. SCAN MATCHING

Figure 3.1: Visualization of the results of Algorithm 2 applied to a typical point cloud.
The colors are subject to the mapping XY Z → RGB : n → 1

2 (n + 1). More examples
can be found throughout this work, as we frequently use this color mapping since it
yields well-perceivable images of point clouds.

of neighbors
k = 5 k = 10 k = 20 k = 40 k = 80

1 Thread 5234 ms 6583 ms 9307 ms 15042 ms 29544 ms
6 Threads 1598 ms 1830 ms 2278 ms 3333 ms 6113 ms

Table 3.1: Processing time in ms of a typical scan with 970 k points.

Results

An example for the computed normals can be found in Figure 3.1. To get an idea
of the time required to compute the normals, the total computation time for a
typical scan with around 970 k points for different amounts neighbors are shown
in Table 3.1. The measurements were performed on a machine with a Intel Core-i7
920 Quad Core processor with 2.66 Ghz and enabled HyperThreading. In order to
solve the k-NN problem, we use the FLANN library1.

3.1.3 Downsampling of Point Clouds

During the ICP algorithm, every considered point pair usually has an equal in-
fluence on the result of the computation. The consequence is that the algorithm
is biased towards areas having a high density of points. Such areas occur in ev-

1The FLANN library is available at http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

3.1. ITERATIVE CLOSEST POINT ALGORITHM 35

Figure 3.2: Uneven point densities in 2d (left) and 3d (right). The colors in the right
hand side image indicate the height. The area right above the location from where the
scan has been recorded shows a much higher point density.

ery laser scan due to the working principle of laser range finders. Uneven point
densities can also occur when 3D laser range finders are built by rotating a 2D
laser range finder: When the scanner is simply rotated around a certain axis for
example, the area right above/below has a significantly higher density than the
rest (see Figure 3.2).

What is needed to make the ICP algorithm unbiased to point densities is a
subset of the point cloud in which all points are uniformly spaced in terms of
geodesic distance. The geodesic distance is the shortest distance between two
points on the surface on an object when only movement on this surface is allowed.

Poisson Disk Sampling

The computation of the aforementioned geodesic distance requires surface infor-
mation, which is generally not readily available for laser scanned point clouds.
Thus we approximate this distance using an Euclidean distance metric. This ap-
proximation is reasonable, though not perfect and especially complex areas will
suffer undersampling (see Figure 3.3 for an illustration of the difference between
geodesic and Euclidean distance). However, especially in the early iterations where
the transformation estimate is not very good, complex areas are rarely very helpful
for ICP anyway because of the high probability of false data-associations.

Therefore we want a point cloud that is evenly sampled in terms of Euclidean
distance. A good way to guarantee an even sampling is to define a certain radius
r and to make sure that there is no point in a sphere with that radius around any
other point. This sampling policy is called Poisson disk sampling. It is related to
techniques originating from computer graphics [Coo86] and is also known under

36 CHAPTER 3. SCAN MATCHING

Euclidean Distance

Geodesic Distance

Surface

Figure 3.3: Illustration of the difference between Euclidean and geodesic distances.

Figure 3.4: A typical pattern encountered after performing Poisson downsampling.
The structure of the points is in a way regular, yet the pattern appears quite random.
The regularity originates from the fact that there is always a certain minimum distance
enforced between any two points. The randomness is due to the random selection of
points from the input point set.

the name “Dart Throwing” [CJR+09]. It is said to have good statistical properties
in the cited papers.

A straightforward implementation of this definition would be to keep a kD-tree
for all points already in the downsampled point set. One could then loop over all
points and perform a sphere query in the kD-tree to find out whether any point
is in this sphere, and thus violates the above mentioned constraint. If this is the
case, the current point is discarded, otherwise it is accepted, and inserted both
into the downsampled point set and into the kD-tree.

While this method basically works, linearly iterating through the point cloud
has a number of disadvantages. First note that point clouds are typically sorted
in some way, i. e. they are spatially coherent. This could lead to potential aliasing
effects in the downsampled result set. Another issue is that after accepting a
point, subsequent points are very likely to be located in the sphere around the just
accepted point. This can lead to very poor performance.

3.1. ITERATIVE CLOSEST POINT ALGORITHM 37

To counteract these issues, one could first shuffle the points, or iterate over
them in a randomized order. Since the implementation of these two alternatives
is a bit cumbersome and inefficient, we chose to simply randomly pick points from
the point cloud, aborting the selection process either when we have found the
desired number of points, or once a certain degree of “oversampling” has occured.
Oversampling happens when a point is picked which is inside the sphere of a
previously picked point. We simply proceed picking another random point in that
case. Limiting the amount of oversampling makes sure that the selection process
is terminated once a sufficiently good result has been reached. Without this, the
algorithm could potentially loop forever, never happening to find an acceptable
point.

The pseudo code for this algorithm can be found in Algorithm 3. Figure 3.4
shows typical “patterns” encountered when downsampling point clouds using this
algorithm (or with Poisson downsampling in general).

Algorithm 3 Poisson Disk Sampling

Input: pc – Point Cloud
Input: r – Sphere Radius
Input: d – # of points to sample down to
Input: oversampling – Oversampling Coefficient
Output: dpc – Downsampled Point Cloud

kd = new KDTree

for (i = 1→ oversampling · d)
{

p = selectRandomPoint(pc)
if (kd.radiusSearch(p,r)==∅)
{

kd.insert(p)
dpc.append(p)
if (dpc.size()== d)

break // desired # of pts found
}

}

return dpc

38 CHAPTER 3. SCAN MATCHING

Figure 3.5: The image on the left shows the input point cloud with about 1.7 million
points. The image on the right shows the result after applying the Poisson downsampling
algorithm. The point cloud was downsampled to 80 k points and the radius defining the
minimum allowed distance between two points was set to 3 cm.

Results

Figure 3.5 shows a point cloud before and after downsampling using our algorithm.
Note that it is obviously quite hard to perceive, since uneven point densities, which
normally make it possible to see what kind of scenario a point cloud shows, are
exactly what the poisson sampling strives to remove. When taking a close-up
look at any downsampled surface, they typically look like in Figure 3.4. To get
an idea of the time required for this operation: Downsampling the point cloud
in Figure 3.5, which originally had about 1.7 million points, to 80 k points with
a minimum allowed distance between two points of 3 cm and an oversampling
coefficient of 15, the algorithm requires about 290 ms on our machine.

3.2 Correlative Scan Matching

The previous section discussed the ICP algorithm and we mentioned that the
algorithm only works properly if the initial guess for the transformation between
the two scans is good enough. Unfortunately, this is the main problem of the
algorithm. As we are going to see in the next chapter, there are some cases where
a good prior is unavailable. Therefore we need a method to perform the registration
of two scans without a good prior.

This section first presents the summary of an algorithm, which is called “Real-
Time Correlative Scan Matching”, originally developed by Olson in [Ols09a] to
align 2D point clouds, and then proceeds to present our extension of this algorithm
to 3D.

3.2. CORRELATIVE SCAN MATCHING 39

Olson’s algorithm strives to find the distribution p(xi |xi−1,u,m, z), which is
essentially the typical SLAM posterior. The underlying Bayes net states that the
robot pose at time i, xi, is affected by the control input u. In addition the robot
makes a measurement z at time i, which is affected by the current robot pose xi
as well as the map m.

The application of Bayes’ rule as well the use of conditional independence
assumptions from the described Bayes net, allows transforming the distribution as
follows:

p(xi |xi−1,u,m, z) ∝ p(z |xi,m) p(xi |xi−1,u) (3.9)

The second factor is the motion model of the robot. It is typically known in terms
of a Gaussian. In case of not knowing anything about the motion of the robot,
it can be assumed to be uniformly distributed. The first factor, the observation
model, is usually a very complex function with many local maxima, which is the
reason why locally operating algorithms such as ICP or other methods struggle
finding the maximum-likelihood solution of the posterior. Finding the distribution
of the observation model is the “hard part” of finding the full posterior, and thus
the following algorithm is focused on it. The main objective is to compute the xi,
which maximizes the observation model. A desired byproduct is the computation
of an estimate for the uncertainty of the solution. In order to be able to search for
the maximum-likelihood solution, we first need a way to evaluate the observation
model for a specific xi.

A common assumption is to assume that all rays in the laserscan are indepen-
dent measurements. This assumption allows simplifying the observation model:

p(z |xi,m) =
∏

k

p(zk |xi,m) (3.10)

Here zk corresponds to a single measurement of the laserscan and p(zk |xi,m) is the
likelihood of observing that specific measurement. In practice, the evaluation of the
individual p(zk |xi,m) is done via a lookup table: It contains the log probabilities
of making a laser measurement at each position in the world. Thus, computing
log p(z |xi,m) means transforming the scan z by the pose xi, and summing up the
values in the lookup table at the positions corresponding to the laser endpoints.

The lookup table is basically a 2D array where each cell is assigned the log
likelihood of a Gaussian of the nearest point in the map. If no point is near, a low
constant value is assigned to the cell. A visualization of a lookup table, which was
constructed in this way can be found in Figure 3.6.

A naive/brute-force way to find the distribution p(z |xi,m) would be to loop
over all possible xi, computing the value of the likelihood function everywhere.
This allows finding the covariance, and the maximum-likelihood solution. Since
xi refers to a two dimensional pose having three degrees of freedom, three nested

40 CHAPTER 3. SCAN MATCHING

Figure 3.6: The image on the left shows a typical 2D laser scan, serving as the map
m. The image on the right shows a lookup table corresponding to this laser scan, which
can be used to compute the measurement likelihood of a certain laser scan z being
p(z |xi,m). Every position in the image corresponds to the log likelihood of observing
a laser point at that position.

loops are needed for this (in fact four since one has to loop over the scan points
as well). While this may be acceptable for small search spaces, it is generally too
inefficient for large ones consisting of large rotational search ranges in combination
with translational search windows in the order of several meters.

Olson suggests using a multi-level resolution approach to speed up the compu-
tation. He suggests using two resolution levels, but the algorithm basically works
for arbitrary amounts of resolution levels. The idea is to downsample the lookup
table in a way that each cell in the low resolution table equals the maximum of
the corresponding cells in the high resolution table. The suggested downsampling
factor is 10, so 10× 10 fine cell are mapped to one coarse cell. This methodology
has an interesting property: When computing p(z |xi,m) at a specific xi using the
coarse lookup table, the result is conservative in the sense that the probability is
always overestimated in comparison to a lookup at the finest resolution level. This
means that the coarse lookup table can be used to identify areas with a potentially
high probability mass, which can then, in a second step, be further analyzed using
the fine lookup table. If during this step, a probability is discovered that is higher
than the maximum reachable probability of a coarse block, then this coarse block
can be skipped. Therefore areas with a low probability mass are skipped at the
highest resolution.

3.2. CORRELATIVE SCAN MATCHING 41

Since a big part of the total probability mass is sampled this way, one can
compute a good uncertainty estimate Σ using:

K =
∑

j

x
(j)
i x

(j)T
i

p(x
(j)
i |xi−1,u,m, z) (3.11)

u =
∑

j

x
(j)T
i

p(x
(j)
i |xi−1,u,m, z) (3.12)

s =
∑

j

p(x
(j)
i |xi−1,u,m, z) (3.13)

Σ =
1

s
K −

1

s2
uuT (3.14)

The summations cover all the samples done at the highest resolution. The key
advantage of this estimate in comparison to an ICP based covariance estimate is
that it accounts for a large part of the probability mass of the density function
– even parts that are not close to the maximum-likelihood solution. Thus it not
only takes the sensor noise into account, but also the possibility of wrong data-
association. In contrast, the ICP based covariance only accounts for uncertainty
introduced by sensor noise, which is reflected in the probability distribution in
immediate vicinity of the computed transformation. This generally makes ICP
covariance estimates overconfident.

The pseudo code for the algorithm can be found in Algorithm 4.

Extension to 3D

The algorithm we just presented is designed to work on 2D laser scans only. Naively
extending it to 3D seems infeasible, because the volume of the six dimensional
search space would typically be huge. We try to deal with the problem by essen-
tially reducing the 3D alignment problem to 2D.

We first note that since almost all robots have integrated IMUs (inertial mea-
surement units), or simply 3-axis-accelerometers, a good guess for the roll and
pitch angle of the scans is typically known. Therefore only x, y, z as well as the
yaw angle remain to be estimated.

Virtually all 3D laser scans contain “vertical structures” such as walls, pillars,
bushes or the sides of cars. The next idea is to first filter vertical structures (which
do even not have to be exactly straight), and then project them on the xy plane.
The result is a set of 2D points, which resembles a 2D scan. A point is present
in this scan at every position that contains a vertical structure somewhere at that
x,y position. The interesting property of this approach is, that the result is almost
z independent, i. e. scans taken at different heights (z coordinates) exhibit almost
the same vertical structure points in the xy plane. This essentially decouples the

42 CHAPTER 3. SCAN MATCHING

Algorithm 4 Correlative Scan Matching

Input: m – Reference scan or map
Input: z – Scan to be aligned with the map
Output: xi – Maximum-likelihood solution
Output: Σ – Covariance estimate of the solution

• Build fine lookup table
• Downsample fine lookup table to get a coarse lookup table
• Evaluate estimates for p(z |xi,m) using the coarse lookup table for all xi in the

search window
• Sort cells by the likelihood
Best = 0 // stores highest likelihood found at the fine resolution so far
forever
{
• Pick the coarse cell with the highest likelihood L
• If L<Best

break
• Evaluate p(z |xi,m) using the fine lookup table for all xi in the current

coarse cell, keep Best and corresponding xBest updated
}
• Compute Σ from all lookups in the fine table

return xBest,Σ

3.2. CORRELATIVE SCAN MATCHING 43

estimation of x, y and yaw from the z coordinate. Therefore the general idea of
our algorithm is:

1. Compute projection of vertical structures

2. Compute x, y and yaw using correlative scan matching

3. Estimate z

4. Given the initial guess, perform the actual registration using ICP

Step one is done with an extremely simple algorithm. We simply create a zero-
initialized 2D grid, project the points down on the xy plane and increment the
corresponding grid cell value. After all points are processed that way, a second
pass filters out the 2D positions of cells that contain more than a certain number
of points, and whose z range is larger than a certain threshold. The grid we use
has a cell size of 12 cm.

Step three assumes the scans are approximately aligned in x, y, yaw, pitch
and roll already. In order to estimate z, we compute the number of “inliers” for
different values of z, and choose the z which has the maximum amount of inliers.
We consider an inlier as a point from one scan that has a neighbor in the other
scan within a certain range. We typically sample a z range of ±3 m in steps of
10 cm. Our threshold for accepting a point as an inlier is 30 cm. The query points
are taken from a Poisson downsampled version of the query scan.

Having estimated x, y, z and yaw this way, we perform a final ICP step with
this initial guess. This is required for several reasons:

• The discretization and inaccuracies introduced in step 1

• The discrete sampling of z in step 3

• The values for pitch and roll are often known approximately, but not exactly.

• We need a covariance matrix of the solution which covers all six degrees
of freedom, which could not be obtained otherwise. As a consequence, we
are unfortunately stuck with the overconfident ICP covariance estimate once
again in the 3D case.

Chapter 4

GraphSLAM System

This chapter presents the actual graph-based SLAM system, which serves to gen-
erate globally consistent maps from 2D or 3D laserscans. The main idea is to
represent scans, or rather the poses from which they were taken, as nodes in a
graph. Constraints between these nodes are generated in form of Gaussian (pseudo-
)measurements using the scan matching techniques derived in the previous chapter.
Since measurements generally do not fully agree with each other, the result is a
contradictory graph.

As indicated previously, a SLAM system is basically a composition of two
subsystems: The frontend and the backend. We will first focus on the probabilis-
tic formulation of the problem, which represents the mathematical basis for the
backend. The backend allows finding a configuration of graph’s nodes, which is
maximally consistent. It does not deal with the construction of the maintenance
of this graph though. This part is done by the frontend, which will be presented
afterwards. The frontend essentially creates a new node for every laserscan passed
on to the system and derives the constaints between them.

4.1 Probabilistic Problem Formulation

The SLAM problem comprises the estimation of both the trajectory of the robot
x as well as all feature positions θ given the measurements z. Mathematically the
(full) solution to the problem can be described as the parameters which maximize
the following likelihood function:

p(x, θ | z) (4.1)

The downside of this formulation of the problem is the huge number of unknowns
[OLT06]: Both the true robot poses and the feature positions are unknown and
need to be estimated at the same time. The fact that there is usually a large

45

46 CHAPTER 4. GRAPHSLAM SYSTEM

x1 x2 x3

z1,1 z2,1 z2,2 z2,3

u1

θ1 θ2 θ3 θ4

z3,3 z3,4

u2(control input)

poses

measurements

landmarks

x4

u3

z4,4 z4,1

Figure 4.1: The image shows an example situation of the SLAM Bayes net. Circles
correspond to random variables and edges indicate conditional dependence. Gray circles
are known quantities, white circles are unknown. The xi represent random variables for
different poses of the robot. At every pose, the robot observes a number of landmarks.
Each observation is a random variable on its own. The random variable ui represent
control input given to the robot. In this work we do not assume to have any control
input, which is why the dependence is drawn with dashed lines. The lack of control
input however enforces that subsequent poses have common landmark measurements. A
particularly interesting measurement is z4,1, as it is a re-observation of the landmark θ1
and closes a loop with the first and the second pose.

amount of landmarks makes the problem very high-dimensional and thus very
hard to solve. To facilitate the computation, this equation can be decomposed
into two factors using the chain rule: [MTKW02]

p(x, θ | z) = p(x | z) p(θ |x, z) (4.2)

Instead of jointly estimating both x and θ, this factorization allows for a sequential
estimation of x and θ, thus greatly reducing the search space.

Using the Bayes ball algorithm on the underlying dynamic Bayesian network
(an example situation is depicted in Figure 4.1), distinct θi can be found to be
conditionally independent given x and z [MTKW02]. Therefore the second term
can be further decomposed:

p(x, θ | z) = p(x | z)
∏

i

p(θi |x, z) (4.3)

The first term, p(x | z) estimates the robot’s trajectory, given the measurements.1

The second term estimates the location of the features, given both the robot’s

1It is equivalent to Equation (4.1) in which the features have been marginalized out: p(x | z) =
∫

p(x, θ | z) dθ

4.1. PROBABILISTIC PROBLEM FORMULATION 47

x1 x2 x3

z1,2 z2,3 z3,4

x4

z4,2

z4,1

Figure 4.2: The same Bayes net as in Figure 4.1 except that the landmarks have been
marginalized out and the control inputs have been omitted. Note that the zi,j above are
new random variables and do not correspond to the “old ones” in Figure 4.1.

trajectory and the measurements. Due to the mutual conditional independence of
the features, it is relatively easy to compute since each feature can be considered
separately.

The first term can also be considered as a marginalized version of the first
term from Equation (4.1) where the features θ were removed. As a result of that,
the Bayes net is altered in a way that new (pseudo-)measurements are added
between two poses which previously observed common features.2 As an example,
marginalizing out the landmarks from the Bayes net in Figure 4.1 results in the
Bayes net given in Figure 4.2.

In the context of this work, we are primarily interested in this first term p(x | z),
i. e. the localization part of the SLAM problem, and we seek to find the maximum
of that likelihood function:

arg max
x

p(x | z) (4.4)

Once the optimal trajectory has been found, it could be used to find the corre-
sponding optimal feature positions, by computing the following term for each θi:

arg max
θi

p(θi |x, z) (4.5)

This last step is out-of-scope of this work though.

Pose Graphs

Before proceeding to the computation of Equation (4.4), we are going to present
an alternative view on the dynamic Bayesian network introduced in the previous

2This is a result from the theory of graphical models. The prefix pseudo indicates that these
measurements are not actual measurements made by some device, but they are the result of
aggregating the actual measurements.

48 CHAPTER 4. GRAPHSLAM SYSTEM

pose 0 pose 1

landmark

Figure 4.3: Example of a pose/feature graph [Ols08]

pose 0 pose 1

Figure 4.4: Pose graph after marginalizing out the features of the pose/feature graph
from Figure 4.3. The new edges are highlighted in blue. Their direction is arbitrarily
chosen and does not matter.

section, which has a slightly more intuitive visualization, which is also closer to
the actual implementation.

Nodes are again random variables and represent the pose of the robot, or the
position of other landmarks and features in the world. Edges between nodes are
also random variables and correspond to estimated or measured relative motion
(for example from odometry). Edges from nodes to landmarks are measurements
of the relative position of the landmark to the respective pose of the robot. In the
context of this work, we will assume all of these measurements to be Gaussian.

Figure 4.3 shows an example a graph constructed this way. Figure 4.4 shows a
graph that corresponds to the marginalization of the previous graph.

4.2 Backend

We will now present the backend, which is only concerned with the computation
of Equation (4.4). Therefore it is fairly detached from the real world: It neither
directly works with sensor data nor does it do any data-association or outlier
rejection. It only tries to find the maximum-likelihood solution to the problem.

4.2. BACKEND 49

The construction and maintenance of the graph required by the backend is going
to be discussed in the next section.

4.2.1 Maximum-Likelihood Estimation

This section presents a way to compute the optimal, i. e. maximum-likelihood tra-
jectory x given the set of measurements z and an initial guess x0 for the trajectory.
The vector x is a concatenation of the individual poses of the robot’s trajectory:

x = (xT
1 ,x

T
2 , . . .)

T (4.6)

The individual poses xi use the representations derived in Section 2.2. As shown
in Section 2.1, both the positions and the orientations contained in them are
manifolds, which together form a manifold again.

The term z = {zij} denotes the set of all Gaussian measurements attached
to the edges of the underlying graph. An edge from node i to node j has the
covariance matrix Θ−1

ij .
As shown in Equation (4.4) we need to find an x which maximizes:

p(x | z) = p(x | zi1j1 , zi2j2, . . . , zinjn) (4.7)

As we found out in Section 2.3, this requires iterated solving of:

∑

ij

JT
ijΘijJij

h =
∑

ij

JT
ijΘijezij (x0) (4.8)

with Jij =
∂ ezij (x ⊞ h)

∂ h

∣

∣

∣

∣

∣

h=0

The function ezij computes the error of the constraint between node i and j. We
will choose it as:

ezij (x) = (xj ⊖ xi) ⊟ zij (4.9)

A visual explanation of this function can be found in Figure 4.5. The first part,
xj ⊖ xi computes the relative pose between the currently best guess for their
absolute poses. zij is a measurement of the same quantity.

Taking the difference between them with the ⊟ operator computes a difference
vector between the two in the locally linear R

n space of the manifold. In a world
with perfect measurements, both would be equal and the error would simply be
0. It is sane to use the ⊟ operator since the two quantities are supposedly close
together given a reasonable guess for x.

The Jacobian Jij is:

Jij =
(

j i

0 . . . A . . . B . . . 0
)

(4.10)

50 CHAPTER 4. GRAPHSLAM SYSTEM

zij

xj ⊖ xi

(xj ⊖ xi) ⊟ zij

xi xj

Figure 4.5: xi and xj are the poses of node i and node j in the current state x. The
term xj ⊖ xi describes the relative pose from node i to node j. zij is a measurement
of this relative pose. The ⊟ operator calculates the difference between the two in the
locally linear R

n space of the pose manifold. If the current configuration of the nodes
and the measurement are equal, this difference would become zero.

Here A and B represent the partial derivatives of ezij by xi and xj respectively.
The actual formulas depend on whether we work in 2D or 3D and are not given
in this work. Our implementation can compute them either numerically or via
AutoDiff3. A symbolic derivation is possible though.

The important part is that only two blocks of the Jacobian are actually oc-
cupied, while the majority of entries is zero. This is obvious because deriving by
anything other than xi and xj yields zero since they do not even occur in ezij .
Thus the term JT

ijΘijJij from Equation (4.8) becomes:

JT
ijΘijJij =

j i

0 . . . 0 . . . 0 . . . 0
... . . .

... . . .
... . . .

...
j 0 . . . ATΘijA . . . ATΘijB . . . 0

... . . .
... . . .

... . . .
...

i 0 . . . BTΘijA . . . BTΘijB . . . 0
... . . .

... . . .
... . . .

...
0 . . . 0 . . . 0 . . . 0

(4.11)

3We use the NumericalDiff and AutoDiff modules from the Eigen math library:
http://eigen.tuxfamily.org

4.3. FRONTEND 51

The term JT
zij

Θijezij (x0) becomes:

Jij(x)TΘijeij(x0) =

0
...

j ATΘijezij (x0)
...

i BTΘijezij (x0)
...
0

(4.12)

Looking at the non-zero structure of this matrix, we can simply start with a zero
matrix and a zero vector, loop over all edges and add up the non-zero blocks, in
order to efficiently compute the sum in Equation (4.8). Some further notes on the
occupancy of the matrix:

• Two blocks i,j are non-zero if node i and node j are connected, which is
the same as in the adjacency matrix of the underlying graph. In addition to
that, all diagonal blocks are non-zero, given there are no nodes in the graph
without any edges. We have to disallow this case though, because it would
make the equation system underconstrained.

• The matrix is typically very sparse: Consider a loop around a building that
consists of 30 scans and 31 edges (one edge between each subsequent scan,
and one from the last to the first scan). The matrix would consist of 30×30 =
900 blocks, of which only 90 would be occupied. The occupied fraction of
blocks gets even lower as the size of the loop is increased. Higher occupancy
only occurs when there are a lot of loop-closing edges. This happens for
example when a robot keeps revisiting the same places: Every node added
to the graph could potentially result in dozens of loop-closing edges. For
practical use, the frontend needs to make sure that the number of loop-
closing edges does not get out of control.

The sparsity of the matrix makes it necessary to use sparse matrix methods to
solve the equation system. More on this can be found in Section 4.4.

4.3 Frontend

The iteration derived the previous section allows us to find the optimal configura-
tion of the nodes in the graph. The task of the frontend, which we will discuss

52 CHAPTER 4. GRAPHSLAM SYSTEM

now, is to construct and update this graph so that the backend can perform its
optimization on it.

Note that being able to minimize the error of a given, inconsistent graph is a
very important part of solving the GraphSLAM problem. At first glance, it might
even seem like the backend was the main component of a GraphSLAM system.
However the frontend is maybe even more important: If the backend does not get
a proper graph to begin with, the results can be bad or even catastrophic. Just
like with any least-squares optimization, a single outlier can drastically degrade or
even downright ruin the result.

Therefore it is extremely important that the frontend ensures that no ’bad’
graphs are passed on to the backend.

4.3.1 Working Principle

The frontend essentially has to accomplish four main tasks:

Incremental Scan Matching Once a new scan is received by the frontend, it
needs to be aligned with the previous scan. Due to the fact that we do
not assume to have any control input or motion model, this step is already
non-trivial.

Loop Detection After adding a new scan (or a number of new scans) to the
graph via incremental scan matching, we need to check whether any loops
have been closed. If so, the relative pose between the two scans needs to be
estimated and the actual loop closing is started.

Loop Closing After two potentially overlapping poses have been found, they are
attempted to be registered given the relative pose estimate from the loop
detection. If successful, an edge is added to the graph.

Evaluation/Monitoring The loop closing step can be error-prone. In a sub-
sequent step, the consistency of all loop-closing edges should be monitored
and evaluated as suggested by Olson in [Ols09b]. Inconsistent loop closing
hypotheses can be disabled or deleted. Note that this step has not been
implemented in this work due to time constraints. More details on the con-
sequences of this can be found in Section 6.1.

After adding any nodes or edges to the graph, we run the backend in order to make
the graph stay the maximum-likelihood solution at all times. Strictly speaking,
running the backend is only needed after adding a loop-closing edge though.

We will now elaborate on the implementation of the individual tasks highlighted
above.

4.3. FRONTEND 53

4.3.2 Incremental Scan Matching

Whenever a new scan is received by the frontend, we need to add it to the graph
and connect it to existing nodes in the graph by deriving Gaussian relationships
between the nodes. We assume not to know anything about the motion model,
and instead assume that subsequent scans were recorded in a way that they have
a sufficient amount of overlap. This assumption effectively restricts the magnitude
of the translation between the scans by about ±30 m for all practical scenarios. It
also allows the registration of each scan with its predecessor.

To perform this registration specific registration step, which we call incremen-
tal scan matching, we use the correlative scan matching algorithm explained in
Section 3.2. For 2D scans, we simply use the original algorithm by Olson. For
3D scans, we use our extension explained in the same section. The 3D extension
makes use of the ICP algorithm, which was explained in Section 3.1. In order to
speed up this step, and in order to make it unbiased to uneven sampling, we use
the Poisson sampling explained in Section 3.1.3.

3D scans are typically quite far apart, which means that even though the scans
may have significant overlap, the appearance of different elements of the world
may drastically change. A common example for this is that a wall or a pillar
is observed from different sides in the two scans. We observed that due to the
fact that the ICP algorithm will search for its nearest neighbors in a sphere, the
data-association often fails by associating points from one side of a wall in the first
scan, with points from the other side of the wall in the second scan. Because this
affects many points systematically in the same way, the result of the algorithm is
influenced and the two sides of the wall are “collapsed” to a single wall without
thickness.

To cope with this problem, we also compute the normals for each scan as
explained in Section 3.1.2, and use them to reject attempts to associated points
having opposingly faced normals, i. e. cases where nT

1 n2 < 0.

Having applied either Olson’s algorithm or our extension of the latter, depend-
ing on whether we are dealing with 2D or 3D data, we have found a relative pose
along with a covariance matrix describing the uncertainty of the registration. They
form a Gaussian pseudo measurement, which can be attached to an edge between
the two nodes.

4.3.3 Loop Detection

After a scan was added to the graph via incremental scan matching, we need
to check whether this scan closes a loop. In general, closing a loop in the graph
means finding pairs of poses which are likely to have sufficiently overlapping sensor
readings, even though they may be topologically far away from each other.

54 CHAPTER 4. GRAPHSLAM SYSTEM

We will now derive a method that allows determining whether two poses are
potentially overlapping. If they are, the corresponding scans can be matched and
an additional edge can be added to the pose graph. We call the first part of this
procedure loop detection, the second part of deriving the edge to be inserted into
the graph is actual loop closing, which is explained in the next section.

At first we will look at two poses, that already have an edge connecting them.
The edge corresponds to a Gaussian measurement of the associated relative pose or
transformation. This measurement can be used to compute the probability that a
point from the first scan corresponds with a point of the second scan, by inserting
the points into the positional part of the Gaussian. Using this methodology, we
could determine the number of points that are likely (e. g. probability ≥ 95%) to
have a correspondence in the other scan.

The method above only works when we consider two poses that already have
a Gaussian measurement between them. If we want to apply the same logic to
two poses xi and xj in general, we first need to compute a Gaussian representing
a hypothetical measurement between the two nodes. Mathematically this is the
distribution p(xj | z,xi), i. e. the distribution of xj given all measurements and the
pose xi. One way to compute this would be to take the graph, fix xi using an
absolutely certain measurement and run the backend on it. While this yields the
correct means for all j, we lack the corresponding covariances. They could be
computed by inverting the information matrix JTΘJ from Section 2.3. Since the
backend actually computes p(x | z) it would contain all covariances4, and not just
the covariance of xj . The problem is that inverting the whole information matrix
just to retrieve a single block from the diagonal is computationally very inefficient
(and in fact infeasible, because the covariance matrix of a sparse information matrix
is quite dense).

Therefore we consider an approximation for p(xj | z,xi) which is called the
Dĳkstra projection [BNLT04, Ols09b, Ols08]. The idea of the algorithm is: Instead
of considering all paths from node xi to xj , as the just described correct method
would do, we only consider the single most certain path. If there is just a single
path to xj , the results are identical to the correct method. Otherwise, if there
are multiple paths, the computed covariance is conservative in the sense that the
covariance is always overestimated. This is because multiple paths to xj means
there are more measurements of that pose, and measurements will always decrease
the covariance.

As the name suggests, the algorithm is implemented as a variant of the Dĳkstra
algorithm. Recall that the latter is parametrized with a start node, and then
proceeds to compute the shortest path from this node to every other node in
the graph. The key data structure is a sorted list (priority queue) of nodes that

4That is cov(xk1
,xk2

) for all possible values of k1 and k2

4.3. FRONTEND 55

x1 x2 x3

z1,2 z2,3 z3,4

x4
...

...

Figure 4.6: Bayes net in the situation where only a single chain of poses is considered,
without any loop-closing edges.

are still to be expanded. The sorting order is determined by the distance to the
node. The queue is initialized with the start node and the associated total distance
zero. In every step, the algorithm greedily picks the node with the lowest distance
and inserts its undiscovered neighbors into the queue until all nodes have been
discovered. The distance attributed to newly inserted nodes is determined as the
sum of distance of the current node and the “length” of the edge that is being
followed.

This algorithm is now adapted as follows: Instead of associating a distance with
each node, we now store the covariance matrix of the hypothetical measurement
between the start node and the current node with each node. Instead of sorting
the queue by distance, we now sort the queue by certainty, where certainty is
expressed as the determinant of the associated covariance matrix. The reasoning
behind that is that the determinant is related to the area/volume of the covariance
matrix, which in turn influences the potential search area for the scan matcher
[Ols09b]. This sorting order ensures, that we will always find the “most certain”
path to every node. What remains is the question how to determine the covariance
matrix of the nodes that are inserted into the queue, i. e. how the covariance of a
node is propagated through an edge.

Covariance Propagation

First note that each entry in the queue corresponds to a certain path through the
graph, i. e. every node on the path has one predecessor. Assuming the poses on the
path are numbered x1 to xt, we want to know the parameters (more specifically
the covariance) of the Gaussian distribution p(xt | z2:t,xt−1). We can expand this
term as follows5:

5Note that the derivation is similar to the inclusion of the motion model in the classical Bayes
filter algorithm [TBF05].

56 CHAPTER 4. GRAPHSLAM SYSTEM

p(xt | z2:t,x1) =
∫

p(xt | z2:t,xt−1,x1) p(xt−1 | z2:t−1,x1) dxt−1 (4.13)

=
∫

p(xt | zt,xt−1) p(xt−1 | z2:t−1,x1) dxt−1 (4.14)

The second step follows from conditional independence assumptions encoded in the
Bayes net of this situation, which is given in Figure 4.6. The term p(xt | zt,xt−1)
is a Gaussian describing how the state t results from the last state t − 1 and the
current measurements. In our case this is simply:

p(xt | zt,xt−1) = N (xt; xt−1 ⊕ zt,Σzt) (4.15)

The second term, p(xt−1 | z2:t−1,x1) is exactly the same likelihood as we are trying
to compute, only up to node t− 1 instead of t. Note that at t = 1 it is a Gaussian
with infinitely small covariance. Therefore both terms are Gaussians and the result
can be expressed recursively as:6

p(xt | z2:t,x1) = N (xt; xt−1 ⊕ zt,J1Σt−1JT
1 + J2ΣztJ

T
2) (4.16)

with J1 =
∂ ((xt−1 ⊞ δ)⊕ (zt ⊞ ǫ)) ⊟ (xt−1 ⊕ zt)

∂ δ

∣

∣

∣

∣

∣

δ=0

and J2 =
∂ ((xt−1 ⊞ δ)⊕ (zt ⊞ ǫ)) ⊟ (xt−1 ⊕ zt)

∂ ǫ

∣

∣

∣

∣

∣

ǫ=0

Note that the notation N (xt; . . .) indicates that the variable inside the Gaussian
is xt instead of the typical x.

The last equation yields the actual propagation rule for the covariance: When
we have the covariance Σt−1 of the current node t−1, and want to follow an edge, we
can compute the covariance of the node t by computing Σt = J1Σt−1JT

1 + J2ΣztJ
T
2 .

This is the main step for enabling the Dĳkstra projection to use Gaussians on
manifolds.

This concludes the Dĳktra projection algorithm. The pseudo code is given
in Algorithm 5. Note that the derivation above and the pseudo code are slightly
simplified, as they ignore the fact that sometimes edges have to be traversed against
their edge direction. To handle this case properly, one can simply invert the edge
measurement and then proceed as if all edges pointed away from the start node.

Further Simplifications

In the introduction to this section, we suggested computing the number of poten-
tially corresponding scan points in order to determine whether the sensor readings

6The derivation for why the integral of the product of the two Gaussians results in the given
Gaussian can be found in the derivation of the Kalman filter prediction in [TBF05]

4.3. FRONTEND 57

Algorithm 5 Dĳkstra Projection

Input: startNode – Start Node
Input: graph – Graph
Output: sigmas – Covariance matrices for each node

Q=[(startNode,0)] // init queue with startNode, zero covariance matrix
visited=∅

while (!isEmpty(Q))
{

(curNode,Σt−1) = extractMin(Q) // select min. determinant
sigmas[curNode] = Σt−1

visited = visited
⋃

{curNode}
foreach ((src,dst,zt,Σzt) in getOutEdges(graph,curNode))
{

if (dst ∈ visited)
continue

Σt = J1Σt−1JT
1 + J2ΣztJ

T
2

insert(Q,(dst,Σt))
}

}
return sigmas

58 CHAPTER 4. GRAPHSLAM SYSTEM

of two poses overlap. A computationally cheaper variant suggested in [Ols09b]
is to not consider the individual laser scan points. Instead, the idea is to reduce
every scan to a sphere whose center c equals the centroid of the laser scan points,
and whose radius r is defined by the mean distance to the centroid.

In order to test whether the two spheres potentially overlap, we first compute
shortest vector s connecting the two spheres:

∆c =
cj − ci
||cj − ci||

(4.17)

s = ∆c ·max(0, ||cj − ci|| − ri − rj) (4.18)

This vector is now inserted into the previously computed Gaussian, or more prac-
tically into the Mahalanobis distance equation in the exponent. The idea is to
check whether the sphere around ci intersects with the ellipsoid around cj, which
has previously been extruded by an amount of rj :

sT Σ|pos s ≤ χ2
max (4.19)

The parameter χ2
max is used to vary the size, i. e. the total contained probability

mass, of the ellipsoid. We use χ2
max = 3. The variable Σ|pos is the positional part

of the covariance matrix. If the 3D pose representation derived in Section 2.2.2 is
used for example this would be the upper left 3× 3 block of the actual covariance
matrix.

A visual explanation of this overlap test can be found in Figure 4.7.

4.3.4 Loop Closing

The actual loop closing comprises the derivation of a Gaussian pseudo measure-
ment, given the information that two poses/scans are potentially overlapping and
given an estimated relative pose between them along with uncertainty estimate.
Just like during the incremental scan matching step, we use the correlative scan
matching algorithms described in Section 3.2 to perform the registration. In this
case however, we have a prior and an uncertainty estimate of the latter, which are
derived from the Dĳkstra projection algorithm.

In the 2D case, we again simply stick to the original correlative scan match-
ing algorithm by Olson. In the 3D case, everything depends on the uncertainty
estimate. If it indicates a large uncertainty, e. g. translational uncertainties of
≥ 0.5 m, we perform exactly the same thing as in the incremental scan matching
step, which is our 3D extension of Olson’s algorithm. If the estimated uncertainty
is small, we apply the ICP algorithm only, since the initial guess of the relative
pose is most likely good enough for the ICP algorithm to converge to the correct
local minimum.

4.3. FRONTEND 59

b

b
b

xi

xk

cj

3σ ellipse of p(xk |xi)
sensor range at xi

3σ ellipse extruded by sensor range

b

b

b

ck
ci

xj

Figure 4.7: The image shows three poses xi, xj and xk. At each pose, the laserscanner
performed a measurement whose centroid was located at ci, cj and ck respectively.
Additionally, an average measurement distance from this measurement was determined,
and is visualized with the dashed circles around the centroids. For xk and xj , the 3σ
uncertainty ellipses of p(xk |xi) and p(xj |xi) are shown in dark green around the sensor
data centroid corresponding the poses. They represent an area where the true location of
the respective centroid can be found with high certainty. The light green dashed ellipses
are variants of these uncertainty ellipses, which have been extruded the sensor range.
Thus this area represents an area that possibly contains sensor data for each respective
pose. — We consider a pose to be potentially overlapping with the current pose xi, if
the extruded ellipses around the centroids intersect with the circle around the sensor
range of ci. In the depicted sample, xj is potentially overlapping with xi while xk is
not.

60 CHAPTER 4. GRAPHSLAM SYSTEM

4.4 Implementation

The implementation of our GraphSLAM system was done in C++, making heavy
use of templates. Therefore, large parts of our implementation are header-only.
The reason for this is that one of our goals was to have a very generic implemen-
tation where the 2D and 3D variants share as much code as possible.

In order to represent the pose graphs, we use the Boost Graph Library (BGL)7.
All of our linear algebra is done with Eigen8, which is a truly excellent templated
math library.

4.4.1 Backend

The maximum-likelihood estimation in our backend is carried out using the sparse
matrix classes included in the Eigen library. Before starting the iteration, we
initialize a sparse matrix with the expected non-zero blocks. We then iterate over
the edges in the graph, summing up the corresponding non-zero blocks as indicated
in the Equation (4.11) in Section 4.2.1.

The equation system is solved with a sparse Cholesky solver. We use the
SparseLLT class in Eigen’s SparseExtra module, together with the CholMod back-
end.

The Jacobians of the error function ezij can either be computed with numerical
differentiation provided by Eigen’s NumericalDiff module, or with the AutoDiff
method provided in Eigen’s AutoDiff module. Making them work on the same
functor ended up a being a little tricky and requiring heavy template use. Yet we
chose to do so in order to avoid duplicate code.

Note that all of the modules mentioned here except the “core” sparse matrix
functionality is currently marked as “unsupported” which indicates that their inter-
faces are subject to change or that the implementation is incomplete or immature.
We have encountered several issues in AutoDiff for example, but worked around
them in order to be able to test this exciting feature.

4.4.2 Frontend

Our extension of the correlative scan matching algorithm to 3D used the ICP
algorithm as one of it’s sub steps, which again needed the normals of the point
clouds to be aligned. As indicated earlier, the nearest neighbor queries, which are
needed for computing the normals and during the operation of the ICP are done
with the FLANN library9.

7Website: http://www.boost.org/doc/libs/release/libs/graph/
8Website: http://eigen.tuxfamily.org
9Website: http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

http://www.boost.org/doc/libs/release/libs/graph/
http://eigen.tuxfamily.org
http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

4.4. IMPLEMENTATION 61

In the loop detection step, we needed to estimate the covariance of a node
relative to another node using the Dĳkstra projection. The Dĳkstra algorithm
included in the BGL turned out to be unsuitable for this purpose. The main
problem was its inability to traverse edges against their edge direction. While
our edges did have a meaningful direction, these directions were not supposed to
restrict traversability. Additionally it was not quite clear how one could make it
pick the path with the highest total certainty in every step.

In general, the BGL turned out to be a little clumsy and immature in some
aspects, which regularly slowed down or halted the development. Yet it is still an
interesting library, with and we actually adopted some of their ideas such as the
use of property maps for our own algorithms.

In order to speed up the computations, we developed multi-threaded implemen-
tations of the normal computation and the ICP algorithm. All other algorithms
run in a single thread only, but we are considering to make use of parallel program-
ming in the correlative scan matching as well.

Chapter 5

Experiments and Results

This chapter presents the results of the experiments with our GraphSLAM system.
We divided this chapter into a section which is only concerned with open datasets,
where the data-association problem has been solved already. This allows evaluating
the backend separately without the need of any frontend. After that we will analyze
the performance of the whole system on real-world datasets.

Even though all of our algorithms work both in 2D and 3D in principle, the
frontend is focused on 3D worlds. One reason is that 2D scans tend to have
more ambiguities than 3D scans and also the achievable accuracy of scan-to-scan
matching is lower, since there is a much lower amount of matched points. In
turn 2D datasets typically have much more frequent measurements. All these
2D-specific characteristics require proper treatment in the frontend. Olson for
example suggests locally grouping the scans before passing them on to the actual
frontend [Ols08]. Though we have done some basic experiments with real 2D data,
we eventually decided to focus on 3D data only as they represent our primary area
of interest.

We would also like to point out that the evaluation of SLAM problems in
general is quite difficult: There are hardly any datasets with ground truth pose
information available, which explains the lack of quantitative comparisons the
second section of this chapter.

All time measurements were performed on a machine with a Intel Core-i7 920
Quad Core processor with 2.66 Ghz and enabled HyperThreading.

5.1 Synthetic Datasets

In order to evaluate the backend, we will use a number of publicly available graphs
that need to be optimized. For these graphs, the data-association problem, which
is normally the task of the frontend, has been solved already.

63

64 CHAPTER 5. EXPERIMENTS AND RESULTS

All of these datasets are simulated trajectories of an imaginary robot, where
subsequent poses are connected by constraints. In addition to that, there are loop
closing constraints, which were generated when a robot reaches a position similar
to a previously visited location. All of the constraints are corrupted by noise.

Note that despite these datasets being synthetic, the obtained χ21 error can
never reach zero. Even with the “perfect” node configuration, each constraint will
report a slight error corresponding to the residual of the individual measurements.
Also the “ground truth” node configuration that was used to create the dataset
does not correspond to the minimum χ2 error. However with a dense graph, where
there are multiple paths connecting any two vertices, the χ2 error of the ground
truth node configuration gets closer and closer to minimum χ2 error.

These properties make the evaluation of the results a bit difficult. It does
not make much sense to compare the results directly to the ground truth node
positions. But also the χ2 error alone is not a good indicator of the overall quality
of the result. It is only an indicator for how well the constraints defined through
the individual measurements are satisfied.

5.1.1 2D

The first dataset we consider is the “W10 k” dataset created by Grisetti et al.
[GSGB07]2, representing a simulated trajectory in a grid-world, consisting of a
total of 10000 poses and around 64000 edges connecting them. As explained above,
loop closing constraints were generated once the simulated robot reached a position
similar to a previously visited position once again. Additionally each constraint is
corrupted by noise.

Our implementation of the backend is able to optimize the dataset within 12
iterations. Each iteration takes between 693 ms and 705 ms, which is unsurprisingly
constant. This is because at every iteration, the same computations have to be
carried out – the only difference is the actual numbers. An average of about 460 ms
is spent updating the linear system, while about 196 ms are spent solving the linear
system (see Section 2.3). The rest of the time is used to update the current state
estimate, compute error estimates and other minor things. The total computation
time is around 11 seconds, including the time to load the graph into memory. When
the derivatives are computed using AutoDiff instead of numerically, the time to
update the system reduces to about 176 ms, which lowers the total computation
time to around 8 s.

A visualization of the graph at various steps during the optimization can be
found in Figure 5.1, the development of the χ2 error can be found in Figure 5.2.

1The χ2 error is equal to ez(x)Θez(x) from Section 2.3. It is the quantity which is minimized
during the maximum-likelihood estimation.

2It is available at http://www.openslam.org/toro.html

5.1. SYNTHETIC DATASETS 65

(a) Input (b) After 3 iterations

(c) After 5 iterations (d) After 12 iterations (converged)

Figure 5.1: Graph of the “W10 k” dataset at different points during the execution of
the optimization algorithm. Note that only the trajectory is shown and not the edges
between the poses.

This figure also shows a comparison of our backend with the SLoM [Her] and
TORO [GGS+07] backends. Since the used approach is more or less the same as
SLoM and only the implementation differs, development is almost identical (the
actual numbers differ a bit of course).

TORO in comparison is able to reduce the error much quicker at the beginning,
and then struggles to find a good solution. Also the best solution found by TORO
is worse than the solution by SLoM or our implementation.

As for the computation time, TORO required a total of about 13 s for the 30
iterations. It did not report convergence though. SLoM performed slightly faster
than our approach requiring around 6 seconds. At least a part of the reason for the
better performance seemed to be the quicker load time for the data files though.

66 CHAPTER 5. EXPERIMENTS AND RESULTS

100

1000

10000

100000

1e+06

1e+07

1e+08

0 5 10 15 20 25 30 35

C
h
i^

2

Iteration

Our backend

SLoM

TORO

Figure 5.2: Comparison of the χ2 errors of different optimizers on the “W10 k” dataset.
Note that the graphs for our approach and for SLoM are almost identical and thus hard
to distinguish.

5.1.2 3D

The next dataset is a 3D dataset called “sphere-mednoise” created by Grisetti et
al. [GSB09]3. It is a simulated trajectory on a sphere, which has been corrupted
with noise. It consists of 2200 nodes with 8647 edges, therefore representing a
relatively dense dataset, where every node has around 8 neighboring nodes. The
high connectivity makes it a little unrealistic, though it is probably a good test case
for optimization algorithms, because it is supposedly quite difficult to optimize.

Using numerical differentiation, our algorithm needed 23 iterations to optimize
the dataset, which took about 15 seconds. In every iteration around 167 ms were
spent on updating the linear system and 439 ms were spent solving it. A visualiza-
tion of the graph at different points in the iteration can be found in Figure 5.4.

In this dataset, we found an interesting deviation between AutoDiff and nu-
merical differentiation. One would actually expect AutoDiff to perform better
in general, simply because it always computes the exact Jacobians, whereas nu-
merical differentiation only yields a finite-difference approximation. As shown in
Figure 5.3 though, AutoDiff appears to get almost “stuck” for several iterations,
hardly improving on the χ2 error at all. In fact in all of our experiments, we have
never found a case where AutoDiff performed significantly better than numerical

3It is available at http://www.openslam.org/toro.html

5.1. SYNTHETIC DATASETS 67

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 10 20 30 40 50

C
h

i^
2

Iteration

Our backend (AutoDiff)

Our backend (NumericalDiff)

SLoM

TORO

Figure 5.3: Comparison of the χ2 errors of different optimizers on the “sphere-mednoise”
dataset

differentiation. Our guess is that the finite differencing actually has a smoothing
effect on the cost function, providing better guidance to the maximum-likelihood
solution.

In all cases however, a single iteration using AutoDiff is faster than using
numerical differentiation. In this case AutoDiff needed only 129 ms to update
the linear system.

As expected, SLoM is again on par with our implementation. The slightly dif-
ferent convergence behavior can be blamed on different libraries for solving sparse
linear systems – we use CholMod whereas SLoM uses CSparse – as well as differ-
ent methods or step sizes to compute the required Jacobians. What is interesting
though is that while it takes 29 iterations for it to converge, the computation time
of about 40 seconds is much higher than ours.

TORO in comparison performs much worse in this case due to the higher non-
linearity and complexity of the problem. Even after 300 iterations taking about 3
minutes of computing time, the χ2 error is still sits at about 9600.

68 CHAPTER 5. EXPERIMENTS AND RESULTS

(a) Input (b) After 12 iterations

(c) After 15 iterations (d) After 23 iterations (converged)

Figure 5.4: Visualization of the optimization steps of the “sphere-mednoise” dataset.
The first image shows the unaltered input. The second image was taken after 12 itera-
tions, the third one after 15 iterations and the last one after the algorithm converged,
which was after 23 iterations. Note that only the main trajectory is shown, i. e. loop
closing edges are omitted.

5.2. REAL DATASETS 69

5.2 Real Datasets

Real datasets evaluate the whole SLAM system. All parts have to work together
in order to produce a globally consistent map. Yet our analysis focuses on the
frontend, since we already evaluated the backend in the previous section and since
we noticed that it is typically not the cause of problems.

For both datasets presented here, we have set the search window of the cor-
relative scan matching algorithm, which is needed for the incremental alignment
of the scans, to ±20 m in x and y direction and to ±π for the yaw angle. Before
applying the ICP algorithm, the point clouds were downsampled to 80 k points.

In some cases, the correlative scan matching algorithm failed and we needed to
provide initial guesses for x, y and yaw in these cases. The rest of the incremental
alignment steps, being the z estimation and the subsequent ICP algorithm work
correctly at all times. An explanation for potential reasons for the failure of this
algorithm can be found in Section 5.3.

Also note that we do not provide runtimes for the backend, even though they
are contained in the total runtime of the algorithm. This is because it is almost
negligible as the graphs in these datasets are so small.

5.2.1 “House” Dataset

The “House” dataset was recorded with a MappingCube (see Figure 5.5) by the
V&R Vision&Robotics GmbH4. It is essentially a 3D laser scanner, which performs
3D scans by rotating a commercially available 2D laser scanner. The scan resolu-
tion is variable, but we set it up to capture around one million points per scan. In
order to measure a large area, the scanner is first set up at a certain location. After
that, the scanning process is started via an Android-based remote control. When
the scanning procedure is finished, the device is carried on to the next location.
At the chosen resolution, recording one scan requires about 30 seconds.

Our dataset consists of a total of 117 scans and took about 2 hours to capture
(which means that roughly another 30 seconds per scan were needed to move the
scanner to the next location). It is a mixed in- and outdoor scenario which was
recorded in and around a typical house with a surrounding garden. It contains
quite a few loops which even cover multiple floors of the building. The scans cover
a total of three floors, and there are even scans which were taken on the roof of
the garage which is adjacent to the house in order to close loops with scans which
were taken in the area around the garage.

4Website: http://www.vision-robotics.de

70 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.5: MappingCube by the V&R Vision & Robotics GmbH

Figure 5.6 shows pictures of the point cloud after running our algorithm on the
data. The generated graph is shown in Figure 5.7. Figure 5.8 shows the current
point cloud before and after closing the first loop.

Our system required around 23 minutes to fully process the dataset, including
the start of the application, reading the scan files, computation of normals, incre-
mental scan matching, loop closing, and the execution of the backend. 19 loop
closing edges were inserted by the frontend. The correlative scan matching which
is part of the incremental scan matching failed for 5 scan pairs.

The whole incremental scan matching typically took around 9 seconds. A
detailed analysis of the runtimes of the sub algorithms involved in the incremental
scan matching can be found in Figure 5.9. The time for loop closing is very similar,
except that the normals do not have to be computed again, and the estimation is
slightly faster because a prior is available.

5.2.2 Freiburg

The “Freiburg” dataset was recorded by Bastian Steder at the University of Freiburg
and is available online5. It features a total of 77 laserscans taken on a trajectory
of about 700 m. The trajectory consists of two large loops with a quite large over-
lapping area in the middle. The individual laser scans were taken with a SICK
laser scanner on a pan-tilt unit and consist of about 150 k to 200 k points each.
An aerial image of the area can be seen in Figure 5.10. The dataset also contains
odometry information, which we did not end up using though, as we decided not
to use any control input.

5The dataset is available at: http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/

http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/

5.2. REAL DATASETS 71

Figure 5.6: Resulting point cloud of the “House” dataset after optimization from
different point of views. Only 1

10 of the points are shown, which is still around 12 million
points.

Figure 5.7: Orthographic projection of the graph generated in the “House” dataset.
The colors ranging from purple to orange encode the height of the edges, where purple
indicates the lowest height.

72 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.8: Point cloud of the “House” dataset before and after closing the first loop.
One can (hopefully) see the room align with the previous measurements.

87
00

m
s

Normals

25
0m

s

3D
→

2D

55
0m

s

x/
y/

ya
w

Est
.

12
50

m
s

z Est.

60
0m

s

ICP

26
00

m
s

Figure 5.9: Execution times for the algorithms which are part of incremental scan
matching in the “House” dataset. Note that the ICP step includes downsampling the
scans, as well as the computation of the covariance matrix. The term “3D→2D” refers
to the algorithm which projects vertical structures down to the xy-plane which was
explained in Section 3.2

5.2. REAL DATASETS 73

D

A

B

C

Figure 5.10: Top: An aerial image of the mapped area, taken from Microsoft Bing
Maps (http://maps.bing.com). Bottom: An orthographic projection of the combined
point cloud of all scans after optimization from a similar point of view.

74 CHAPTER 5. EXPERIMENTS AND RESULTS

52
50

m
s

N
or

m
al
s

25
0m

s

3D
→

2D

55
0m

s

x/y/yaw Est.

12
50

m
s

z Est.

60
0m

s

ICP

26
00

m
s

Figure 5.11: Execution times for the algorithms which are part of incremental scan
matching in the “Freiburg” dataset. Note that the ICP step includes downsampling the
scans, as well as the computation of the covariance matrix.

The registration process took a total of 6 minutes and 37 seconds. Again,
this includes the start of the application, reading the scan files, computation of
normals, incremental scan matching, loop closing, and the execution of the backend.
A total of 12 loop closing edges were inserted in the process. The correlative scan
matching algorithm failed for three scan pairs. The resulting point cloud is shown
in Figure 5.10. The computed graph is overlaid on top of this image.

The whole incremental scan matching typically took around 5 seconds. A
detailed analysis of the runtimes of the sub algorithms involved in the incremental
scan matching can be found in Figure 5.11. In comparison to the previous dataset,
our algorithms performed a bit faster. The reason for that is mainly that the point
clouds are more than 5 times as big as in the “House” dataset, and not all sub
algorithms – especially the computation of the normals – are immune to this.

Loop closing edges are present at the areas A, B and C (see top of Figure 5.10).
However actual loops are only closed at A and B. Figure 5.12 shows two images
taken at position B before and after closing the loop at that position. One can
clearly see the wall suddenly lines up with the previous measurements.

Note that when viewed from the side, the area D on the right seems to be
slightly bent downwards (see top of Figure 5.13), which is supposedly wrong. In-
dicators for that are also the covariance ellipsoids visualized at the bottom of
Figure 5.13, which have been computed with the Dĳkstra projection explained
earlier. They show a high uncertainty in the height in the considered area. Im-
precision in the height are quite common in outdoor scenarios. Roughly vertical
walls or other obstacles help to constrain both the x, y and the yaw angle. In or-
der to constrain pitch, roll and z, horizontal structures are needed. While indoor
scenarios have both the floor, the ceiling and other miscellaneous objects, outdoor
scenarios often have the ground as more or less the only horizontal structure. To
make things worse, the ground is often undersampled due to the low distance of

5.2. REAL DATASETS 75

Figure 5.12: These pictures were taken at the stylized eye near position B before (left)
and after (right) closing the loop. The blue ellipsoids rendered at each pose indicate the
uncertainty relative to the first pose and were computed using the Dĳkstra projection
algorithm. After the loop is closed, the uncertainty of the last poses in the loop abruptly
decreases, since there is now a new, more certain path to that location.

76 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.13: Point cloud of the “Freiburg” dataset after optimization taken at position
D. Top: The right part of point cloud appears to be slightly bent downwards. Bottom:
The σ-covariance ellipsoids in these areas. They have been computed using the Dĳkstra
projection.

the laserscanner to the ground plane, and noisy due to grass or other asperities of
the surface.

5.3 Fail Cases

As indicated earlier in this chapter, the backend appears to be extremely reliable,
given the frontend provides a locally correct graph, i. e. a graph where any edge
approximately correctly aligns the scans it connects. The critical part which is
much more likely to fail is the frontend. There are two things which typically go
wrong in case something goes wrong:

5.3. FAIL CASES 77

5.3.1 Incremental Scan Matching

In the previous chapter we assumed not to use any control input, which led to the
fact that we do not really have a motion model, which in turn means that we are
completely reliant on the scan matching between two subsequent scans to succeed
– there is nothing to fall back on. The algorithm we use for incremental scan
matching is the extension of the correlative scan matching algorithm presented in
Section 3.2 to 3D. The critical part of this algorithm is the estimation of the x, y
translations and yaw angle: If any part of the algorithm fails, it’s typically this
part. The main reasons for it to fail are:

• The two scans to be matched are in fact too far apart. Therefore the amount
of overlap is not sufficient.

• There are geometrical ambiguities in the scans such as repeating structures

• The heuristic to reduce the 3D world to only the 2D vertical structures fails.
An example for this would be an outdoor scenario with only sloped hills, but
no clear objects such as trees or bushes.

An inherent problem of this type of matching is that one has to find a trade off
between forcing the algorithm to overlap the scans and allowing the algorithm to
accept a low amount of overlap in favor of good matches. For example one can
always find relative poses between the scans where all points with a neighbor in
the other scan match perfectly, simply by moving them so far apart that only
very few points actually have neighbors. Increasing the penalty for points without
neighbors forces the algorithm to make the scans overlap more so that more points
have neighbors. Increasing the penalty by too much makes the algorithm simply
align regions with a lot of points, even if they dont fit well, just in order to avoid
the penalty.

The cause of this problem is the fact that the reference scan (or map) is in-
complete. This is always the case in a SLAM like context and thus this problem
is probably unavoidable at this point.

5.3.2 Loop Closing

In order to detect loops, we use the potential overlap test together with the Dĳkstra
projection presented in Section 4.3.3. After identifying pairs of scans which can
potentially be matched, we again use the correlative scan matching algorithm. The
problem is that it is hard to tell whether two scans have a sufficient amount overlap

78 CHAPTER 5. EXPERIMENTS AND RESULTS

in order to be matched, and even after matching them it is hard to tell whether
the matching actually succeeded6.

This can lead to incorrect edges being inserted into the graph, which breaks the
least-squares nature of the optimization algorithm, which is not robust to outliers.
Also note that the covariance associated with these edges does often not account
the uncertainty induced by potentially wrong data-association. Therefore the edge
is wrong and yet fairly confident to be right.

6After all if one could define a measure that tells the “true” quality of the matching result,
one could have used this for optimization in the first place.

Chapter 6

Conclusion

In this work, we have presented a full graph-based SLAM system, which does not
use a real robot motion model or control input – a variant of the problem which
is particularly interesting for commercial 3D laser range finders used in surveying
or in forensic applications. It could also be used as a black-box slam system on
robots, or be extended with a motion model and used like a traditional SLAM
system. While all our algorithms are essentially usable in 2D and 3D and in fact
our implementation actually uses the same code for a large part of the algorithms,
we eventually focused the implementation of our frontend on 3D data.

All necessary algorithms and steps needed to implement a similar system were
explained thoroughly and without shying away from mathematical details. Fol-
lowing just recently published work by Hertzberg, Frese et al., our whole system
is based on the idea of representing poses as manifolds in order to have a math-
ematically sound framework for running optimization algorithms on poses. In
order to consequently use manifolds, adaptions of existing algorithms such as the
computation of the ICP covariance of the Dĳkstra projection were needed.

Our system comprises both the SLAM front- and backend. The latter is based
on the maximum-likelihood method and is essentially an implementation very sim-
ilar to SLoM. This “reimplementation” has been done mostly for learning purposes
and in order to explore potential improvements.

We have examined the possibility of using AutoDiff techniques instead of nu-
merical differentiation or manual symbolic differentiation. While we observed a
slightly worse performance of AutoDiff in this case, we still believe there are nu-
merous interesting applications for it, especially in even higher dimensional spaces
where numerical differentiation becomes even more inefficient. The use of C++
templates, as well as the Eigen library even allowed using the same code for both
differentiation techniques (even though it was admittedly not an easy thing to do).

In our frontend, we mostly extended existing 2D methods from Olson to 3D
and made them respect the pose manifold.

79

80 CHAPTER 6. CONCLUSION

Our implementation is based on C++, focussing on generic code in order to be
able to support both the 2D and the 3D case, as well as numerical differentiation
and Autodiff without unnecessary duplication of code.

6.1 Future Work

While working on this thesis, we have found numerous interesting opportunities
for future research on this topic:

• A number of recent publications such as the work by Rusu et al. [RBMB08]
for example, explore the use of point cloud features in order to perform the
registration. This could be used instead of – or maybe even parallel to –
our extension of the correlative scan matching algorithm to 3D in order to
make the alignment of point clouds with no or a bad initial guess even more
robust.

• In our work we used a very simple method of not introducing too many loop-
closing edges: We artificially restricted the number of loop-closing edges that
can be added for each node to one. This becomes a problem as the robot
keeps coming back to the same locations. Thus it is not a very good and
scalable thing to do and certainly calls for more sophisticated solutions.

• The number of nodes/scans in our graph keep growing and growing as more
measurements are being done. This is unsuitable for achieving the goal of
“life-long-learning”. A robot should be able to drive around for hours in the
same area, without struggling ever-growing memory, space or time require-
ments. Our idea to achieve that would be to take clusters of scans having
a high coherency (where coherency is defined by registration accuracy), and
to join them together to a new node, potentially discarding unnecessary or
repeated measurements in the process.

• It seems like it should be possible to use appearance-based, topological SLAM
methods such as [CN10] as a way to determine potentially overlapping poses
in the frontend. This could be used instead of or in addition to the rather
crude method used in this work, especially in very large outdoor datasets
which are getting more and more common.

• As already mentioned in Section 4.3.1, Olson suggested the use of a spectral
clustering approach in order to validate the correctness of loop-closing edges.
We started the implementation of this method but were not able to finish it
due to time constraints. Yet we feel like this is a crucial thing to implement
for this method, since the backend is unable to deal with outliers and no

6.2. ACKNOWLEDGEMENTS 81

matter how good the frontend is – it can never guarantee not to make mis-
takes. Robustness and perfection are not achieved by not making mistakes,
they are achieved through the ability to properly deal with mistakes and the
ability to rethink and revise previously made decisions.

6.2 Acknowledgements

We would like to thank Bastian Steder and Giorgio Grisetti for publishing the
datasets we used in our evaluation, as well as the V&R Vision & Robotics GmbH
for providing their MappingCube for our measurements. We would also like to
thank Giorgio Grisetti and Christoph Hertzberg for open-sourcing their implemen-
tations, which allowed a comparison of the results. Finally we would like to thank
all contributors of the FLANN, Eigen and Boost libraries for their excellent work
on these projects.

Bibliography

[BE] D. Borrmann and J. Elseberg. Global konsistente 3D Kartierung am
Beispiel des Botanischen Gartens in Osnabrück. Bachelor’s thesis,
University of Osnabrück, 2006.

[BEL+08] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and
J. Hertzberg. Globally consistent 3D mapping with scan matching.
Robotics and Autonomous Systems, 56:130–142, 2008.

[BNLT04] M. Bosse, P. M. Newman, J. Leonard, and S. Teller. SLAM in Large-
scale Cyclic Environments using the Atlas Framework. International
Journal of Robotics Research, 23(12):1113–1139, 2004.

[CJR+09] D. Cline, S. Jeschke, A. Razdan, K. White, and P. Wonka. Dart
throwing on surfaces. Computer Graphics Forum, 28:1217–1226, 2009.

[CN10] M. Cummins and P. Newman. Appearance-only SLAM at large scale
with FAB-MAP 2.0. International Journal of Robotics Research, 2010.

[Coo86] R. L. Cook. Stochastic sampling in computer graphics. ACM Trans-
actions on Graphics (TOG), 5:51–72, 1986.

[CSSK02] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek. The trimmed
iterative closest point algorithm. Object recognition supported by user
interaction for service robots, 3(c):545–548, 2002.

[Dav03] A. J. Davison. Real-time simultaneous localisation and mapping with
a single camera. In Proc. of the Int. Conf. on Computer Vision
(ICCV), 2003.

[Fit01] A. W. Fitzgibbon. Robust registration of 2D and 3D point sets. In
Proc. of British Machine Vision Conference, pages 662–670, 2001.

[FL06] U. Frese and Schröder L. Vorlesungsskript: Theorie der Sensorfusion.
http://www.informatik.uni-bremen.de/agebv/de/VeranstaltungTDS06,
Version: 2006. Last accessed: 20.09.2011.

83

http://www.informatik.uni-bremen.de/agebv/de/VeranstaltungTDS06

84 BIBLIOGRAPHY

[GGS+07] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Ef-
ficient estimation of accurate maximum likelihood maps in 3D. In
Proc. of the IEEE Int. Conf. on Intelligent Robots & Systems (IROS),
pages 3472–3478, 2007.

[GK99] J. S. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In Proc. of the 1999 IEEE International Symposium
on Computational Intelligence in Robotics and Automation. (CIRA),
pages 318–325, 1999.

[GKS+10] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg.
Hierarchical optimization on manifolds for online 2D and 3D mapping.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
pages 273–278, 2010.

[GSB07] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for
grid mapping with rao-blackwellized particle filters. IEEE Transac-
tions on Robotics, 23:2007, 2007.

[GSB09] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint
network optimization for efficient map learning. IEEE Transactions
on Intelligent Transportation Systems, 10:428–439, 2009.

[GSGB07] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree param-
eterization for efficiently computing maximum likelihood maps using
gradient descent. In Proc. of Robotics: Science and Systems (RSS),
2007.

[Her] C. Hertzberg. A framework for sparse, non-linear least squares prob-
lems on manifolds. Diploma thesis, University of Bremen, 2008.

[HWFS] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder. Integrat-
ing generic sensor fusion algorithms with sound state representation
through encapsulation of manifolds. Information Fusion. To appear.
Preprint available on arXiv as eprint 1107.1119.

[KM07] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR), 2007.

[Lee02] J. M. Lee. Introduction to Smooth Manifolds. Springer, 2002.

[LM97] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Autonomous Robots, 4:333–349, 1997.

BIBLIOGRAPHY 85

[Min05] J. Minguez. Metric-based scan matching algorithms for mobile robot
displacement estimation. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2005.

[MTKW02] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to the simultaneous localization and mapping prob-
lem. In Proc. of the AAAI National Conference on Artificial Intelli-
gence, 2002.

[Nüc06] A. Nüchter. Semantische dreidimensionale Karten für autonome mo-
bile Roboter, volume 303 of Dissertationen zur künstlichen Intelligenz.
Akad. Verl.-Ges. Aka, Berlin, 2006. Zugl.: Bonn, Univ., Diss., 2006.

[Ols08] E. Olson. Robust and Efficient Robotic Mapping. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, June 2008.

[Ols09a] E. Olson. Real-time correlative scan matching. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), pages 4387–4393, 2009.

[Ols09b] E. Olson. Recognizing places using spectrally clustered local matches.
Robotics and Autonomous Systems, 57:1157–1172, 2009.

[OLT06] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose
graphs with poor estimates. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), pages 2262–2269, 2006.

[RBMB08] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Aligning Point
Cloud Views using Persistent Feature Histograms. In Proc. of the
IEEE Int. Conf. on Intelligent Robots & Systems (IROS), 2008.

[SC86] R. C. Smith and P. Cheeseman. On the representation and estimation
of spatial uncertainty. International Journal of Robotics Research,
5:56–68, 1986.

[TBF05] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[Wei05] J. Weingarten. EKF-based 3D slam for structured environment re-
construction. In Proc. of the IEEE Int. Conf. on Intelligent Robots &
Systems (IROS), pages 2–6, 2005.

	Introduction
	Problem Statement
	State of the Art
	Online Methods
	Offline Methods

	Structure of this Work

	Mathematical Basics
	Manifolds
	Product Manifold
	Operators
	Lie Groups
	SO(2)
	SO(3)

	Pose Representations
	2D
	3D
	Operations on Poses

	Maximum-Likelihood Method
	Multiple Simultaneous Independent Measurements
	Maximum-Likelihood on Manifolds

	Scan Matching
	Iterative Closest Point Algorithm
	Covariance Estimation
	Normals of Point Clouds
	Downsampling of Point Clouds

	Correlative Scan Matching

	GraphSLAM System
	Probabilistic Problem Formulation
	Backend
	Maximum-Likelihood Estimation

	Frontend
	Working Principle
	Incremental Scan Matching
	Loop Detection
	Loop Closing

	Implementation
	Backend
	Frontend

	Experiments and Results
	Synthetic Datasets
	2D
	3D

	Real Datasets
	„House“ Dataset
	Freiburg

	Fail Cases
	Incremental Scan Matching
	Loop Closing

	Conclusion
	Future Work
	Acknowledgements

