
Fachbereich 4: Informatik

Extending the E-Hyper Tableau
Calculus for Reasoning with the Unique

Name Assumption

Diplomarbeit
zur Erlangung des Grades eines Diplom-Informatikers

im Studiengang Informatik

vorgelegt von

Markus Bender

Erstgutachter: Prof. Dr. Ulrich Furbach
(Institut für Informatik, AG Künstliche Intelligenz)

Zweitgutachter: Dipl. Inform. Björn Pelzer
(Institut für Informatik, AG Künstliche Intelligenz)

Koblenz, im Januar 2012

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. � �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

. .
(Ort, Datum) (Unterschrift)

i

ii

Deutsche Zusammenfassung

In einigen Bereichen des automatischen Theorembeweisens benötigt man das
Wissen, dass Konstanten paarweise ungleich sind. Um dieses zu erreichen, fügt
man Fakten, die dieses Wissen explizit angeben, zu den Wissensbasen hinzu. Wenn
man diese Eigenschaft für viele Konstanten definieren muss, wird die Klauselmen-
ge der Wissensbasen schnell sehr umfangreich und wegen der vielen — eigentlich
irrelevanten — Ungleichheiten kann man den Blick auf das eigentlich formalisier-
te Problem verlieren. Da die Größe der Wissensbasis in vielen Fällen Einfluss auf
die Geschwindigkeit hat, ist es auch aus diesem Grund sinnvoll, die Anzahl dieser
Fakten gering zu halten.

Die unique name assumption erlaubt auf die Einführung der Ungleichheits-
Fakten zu verzichten, da sie festlegt, dass zwei Konstanten genau dann gleich sind,
wenn ihre Interpretationen identisch sind. Auf diesem Wege lässt sich das Aufblä-
hen von Wissensbasen mit Ungleichheits-Fakten verhindern.

In dieser Arbeit wird der E-Hyper-Tableau-Kalkül erweitert um die unique
name assumption nutzen zu können. Der in dieser Arbeit entwickelte Kalkül ist
vollständig und korrekt, was durch formale Beweise in dieser Arbeit belegt wird.
Um zu zeigen, dass die native Behandlung von Ungleichheiten dem Einführen von
Ungleichheits-Fakten überlegen ist, wird der Kalkül in den Theorembeweiser E-
KRHyper implementieren. Der Theorembeweiser E-KRHyper ist ein etabliertes
System und basiert in seiner ursprünglichen Version auf dem E-Hyper-Tableau.

Mit systematischen Tests wird dann gezeigt, dass die entwickelte Implementie-
rung des erweiterten Kalküls nie schlechter ist, als der original E-KRHyper, diesen
aber in einigen Fällen in der Ausführungsgeschwindigkeit deutlich übertrifft.

iii

iv

Contents

1 Introduction 1

2 Theoretical Preliminaries 3
2.1 Formal Preliminaries . 3

2.1.1 Introduction . 3
2.1.2 The First Order Logic Language 3
2.1.3 Clauses . 5
2.1.4 Interpretation . 5
2.1.5 Term Ordering . 6
2.1.6 Negligible Clauses . 7
2.1.7 Trees and Tableaux . 8

2.2 E-Hyper Tableau Calculus . 8
2.2.1 Introduction . 8
2.2.2 Inference Rules . 9
2.2.3 Rules on Tableaux . 11
2.2.4 Derivation . 13

3 Handling the Unique Name Assumption 19
3.1 Introduction . 19
3.2 Extending the Calculus . 21
3.3 Properties . 25

3.3.1 Overview . 25
3.3.2 Rewrite Systems . 26
3.3.3 Model Construction . 27
3.3.4 Completeness . 34
3.3.5 Soundness . 44

4 Implementation and Evaluation 47
4.1 Implementation . 47

4.1.1 Introduction . 47
4.1.2 E-KRHyper . 47
4.1.3 Handling Distinct Object Identifiers 49

4.2 Evaluation . 51

v

4.2.1 Introduction . 51
4.2.2 Test Conditions . 51
4.2.3 Analysis . 54

5 Related Work 63

6 Conclusion and Outlook 65

vi

Notations

If not stated otherwise, the following conventions on notations are used through-
out this thesis:

• T is the set of terms

• F is the set of functions

• C is the set of constants

• D is the set of distinct object identifiers

• V is the set of variables

• s, t, u ∈ T

• f , g, h ∈ F

• a, b, c ∈ C

• i, j ∈ D

• x, y, z ∈ V

• A, B,C are atoms

• K, L,M are literals

• A,B,C are clauses

• S,T are clause sets

• t is a tree

• N is a node

• B is a branch and an abbreviation for λ(B)

• B j is an initial segment of B

• T is an E-hyper tableau

• t∞ is the limit tree

• B∞ is the set of persistent clauses of B

With exception of the special constant t, words written in typewriter fonts
are concepts taken from the implementation.

vii

viii

Chapter 1

Introduction

In automated theorem proving, there are some problems that need information on
the inequality of certain constants[2]. In most cases this information is provided by
adding facts of form f alse ← c0 = c1 to the knowledge base. This fact explicitly
states that those two constants are unequal. Depending on the number of constants,
a huge amount of this facts can clutter the knowledge base and distract the author
and readers of the problem from its actual proposition.

For most cases it is save to assume that a larger knowledge base reduces the
performance of a theorem prover, which is another drawback of explicit inequality
facts.

Using the unique name assumption in those reasoning tasks renders the in-
troduction of inequality facts obsolete as the unique name assumptions states that
two constants are identical iff their interpretation is identical. Implicit handling of
non-identical constants makes the problems easier to comprehend and reduces the
execution time of reasoning.

Both set of clauses given in Figure 1.1 formalize the same problem. In Figure
1.1a the inequalities are explicitly stated and in Figure 1.1b implicit knowledge of
inequalities is used.

In this thesis we will show how to integrate the unique name assumption into
the E-hyper tableau calculus and that the modified calculus is sound and complete.
The calculus will be implemented into the E-KRHyper theorem prover and we will
show, by empiric evaluation, that the changed implementation, which is able to use
the unique name assumption, is superior to the traditional version of E-KRHyper.

We start by introducing some theoretical preliminaries in Chapter 2 which in-
cludes needed logical concepts (see Section 2.1) and the original version of the
E-hyper tableau calculus (see Section 2.2). In Chapter 3, we introduce the unique
name assumption (see 3.1), show how the calculus is extended (see 3.2), and prove
that the modified version of the calculus is sound and complete (see Section 3.3).

In the practical part of this thesis (see Chapter 4) we introduce the E-KRHyper
theorem prover (see Section 4.1.2) and draft how we extended it with our developed
calculus (see Section 4.1.3).

1

s e l (s t o (A, I , E) , I)=E .
s e l (s t o (A, I , E) , J)= s e l (A, J) : − not (X=Y) .
A=B:− s e l (A, sk (A, B))= s e l (B , sk (A, B)) .
s t o (s t o (s t o (s t o (s t o (a , i0 , e0) , i1 , e1) , i3 , e3) , i4 , e4) , i2 , e2)=
s t o (s t o (s t o (s t o (s t o (a , i0 , e0) , i1 , e1) , i2 , e2) , i3 , e3) , i4 , e0) .
f a l s e :− i 0= i 1 . f a l s e :− e0=e1 .
f a l s e :− i 0= i 2 . f a l s e :− e0=e2 .
f a l s e :− i 0= i 3 . f a l s e :− e0=e3 .
f a l s e :− i 0= i 4 . f a l s e :− e0=e4 .
f a l s e :− i 1= i 2 . f a l s e :− e1=e2 .
f a l s e :− i 1= i 3 . f a l s e :− e1=e3 .
f a l s e :− i 1= i 4 . f a l s e :− e1=e4 .
f a l s e :− i 2= i 3 . f a l s e :− e2=e3 .
f a l s e :− i 2= i 4 . f a l s e :− e2=e4 .
f a l s e :− i 3= i 4 . f a l s e :− e3=e4 .

(a)

s e l (s t o (A, I , E) , I)=E .
s e l (s t o (A, I , E) , J)= s e l (A, J) : − not (X=Y) .
A=B:− s e l (A, sk (A, B))= s e l (B , sk (A, B)) .
s t o (s t o (s t o (s t o (s t o (a , i0 , e0) , i1 , e1) , i3 , e3) , i4 , e4) , i2 , e2)=
s t o (s t o (s t o (s t o (s t o (a , i0 , e0) , i1 , e1) , i2 , e2) , i3 , e3) , i4 , e0) .

(b)

Figure 1.1: A problem with explicit inequality (a) and implicit inequality (b) of constants.

This implementation is then used to evaluate the impact of our extension, which
is described in Section 4.2.

We introduce projects that are related to our approach in Chapter 5.
In Chapter 6, we conclude our work and point out some future work.

2

Chapter 2

Theoretical Preliminaries

2.1 Formal Preliminaries

2.1.1 Introduction

In the following section several concepts that are needed in this thesis are intro-
duced. As most preliminaries are shared with [18] and [12], parts of the following
explanations are taken from or inspired by it.

In section 2.1.2 the first order language and some language related concepts
used in this thesis is introduced. Instead of dealing with all possible elements of
this language, a subset with certain properties, called clauses, is defined thereafter
in section 2.1.3. After the syntax is defined, the semantics are introduced in section
2.1.4 by defining the concept of interpretations. For efficient reasoning with equal-
ities, an order of terms with certain properties is required, which are discussed
in section 2.1.5. Section 2.1.6 defines the concept of redundancy and negligible
clauses, which are other important points for efficiency. Thereafter section 2.1.7
introduces trees and tableaux, which is the basis for the decision procedure being
used in this thesis and introduced in section 2.2.

2.1.2 The First Order Logic Language

Familiarity with first order logic is assumed, therefore a brief overview is given
instead of detailed formal definitions.

The language L used throughout this thesis consists of the logical symbols
∀,∃,∨,∧,¬, the elements of the set of variables V, the set of function symbols F
and the set of predicate symbols P. L is determined by the fixed signature Σ =

(F,P).
V, F, P, are possibly infinite, non-empty and mutually disjoint. The elements

of F and P have a fixed arity. Function symbols with arity zero are called constants
where C ⊆ F is the set of constants.

T is the set of terms of L and is inductively defined as follows:

1. All constants and variables are terms.

3

2. If f ∈ F has arity n and t1 . . . tn are terms, then f (t1, . . . , tn) is a term.

The set of subterms of a term u are defined as follows:

1. u is a subterm of u.

2. if u = f (t1, . . . , tn) then all subterms of t1, . . . , tn are subterms of u.

A subterm of t that is not t itself is called proper subterm.
A special binary predicate symbol is the equality '. If s, t ∈ T, s ' t is called an

equation and states, that s and t are semantically equal. Equations are symmetric,
i.e. s ' t, iff t ' s. The negation of an equation is called negative equation and
written as s ; t instead of ¬s ' t.

To simplify the introduction of the calculus later on, it is assumed that ' is
the only predicate symbol in P and therefore all atoms are equations. This does
not lead to a loss of generality as all non-equation atoms A can be transformed to
an equation A ' t where t is a newly introduced, distinct constant. For sake of
simplicity the notation p(x) is used instead of the formal notation p(x) ' t.

Formally this entails that predicates are functions with the signature T∗ →
{true, f alse} but the notions of typed functions and typed logic are not introduced
in this thesis..

The concept of positions allows to refer a specific subterm by a sequence of
natural numbers as follows: If t is a term and p is a position then t|p denotes
the subterm of t at position p. In particular, if ε is the empty sequence and t =

f (t1, . . . , tn), then t|ε = t and t|i.p = ti|p for 1 ≤ i ≤ n. If p is a position in t, then
the notation t[s]p will be used for t|p = s, and t[p/s′] represents the term obtained
by replacing t|p with s′ at position p in t. If p is obvious or unimportant within the
context, then it can be omitted, so that t[s] denotes the term t with the subterm s,
and t[s′] denotes the same term t except for its subterm s having been replaced by
s′.

The set of variables of a term t is denoted by vars(t). A term t is called ground
iff vars(t) = ∅.

A substitutionσ is a mapping from F to T, with finite domain dom(σ) = {x | x ,
σx} and a finite range ran(σ) = {xσ | x , σx}, x ∈ V. A ground substitution γ is a
substitution with vars(ran(γ)) = ∅.

A renaming ρ is a substitution which is a bijection of V onto itself.
Given two terms s and t, a substitution σ is a unifier for s and t if sσ = tσ.

σ is a most general unifier (mgu), if for any other unifier τ for s and t there is a
substitution ψ with σψ = τ .

A term s is an instance of a term t (written as s & t) if there is a substitution σ
such that sσ = t.

A term s is a variant of t (written as s ∼ t) if there is a renaming ρ such that
sρ = t.

The set of formulæ of L and is inductively defined as follows:

4

1. If p ∈ P has arity n and t1 . . . tn are terms, then p(t1, . . . , tn) is a formula.

2. If A, B are formulæ then ¬A, A ∧ B, A ∨ B are formulæ.

3. If A is a formula and x ∈ V then ∀xA,∃xA are formulæ.

A formula of form p(t1, . . . , tn) with p ∈ P and t1 . . . tn is called atomic formula
or atom.

A literal is an atom or the negation of an atom.
A literal K = L is called the complement of L.
A literal is ground if its component terms are ground.
The notions of the set of variables, substitutions, renamings, unifiers, instances

and variants are extended to literals in the obvious way.

2.1.3 Clauses

A clause C = A1 ∨ . . . ∨ Am ∨ ¬B1 ∨ . . . ∨ ¬Bn is a set of literals, usually written
as a as an implication A1, . . . , Am ← B1, . . . , Bn with m, n ≥ 0.

The set A = {A1, . . . , Am} is called the head of the clause C while B =

{B1,, Bn} is called the body of C. Accordingly, A1, . . . , Am denote both the
head atoms and the head literals of C, while B1, . . . , Bn refer to the body atoms and
¬B1, . . . ,¬Bn to the body literals. The notation A,A ← B,B refers to the clause
with the head atoms {A} ∪ A and the body atoms {B} ∪ B.

A unit is a clause consisting of exactly one literal.
A clause is empty if both its head and its body are empty. The empty clause is

denoted by �.
The notions of the set of variables, substitutions, renamings, unifiers, instances

and variants are extended to clauses in the obvious way.
A clause is ground iff its literals are ground.
A clause is pure if none of its distinct head literals share variables, that is, iff

vars(Ai) ∩ vars(A j) = ∅ for i, j ∈ {1, . . . ,m} and i , j. A substitution π is a
purifying substitution for C iff Cπ is pure.

All variables in a clause are taken to be universally quantified.
A clause set is a conjunction of clauses and is sometimes called a knowledge

base.
ΩΣ is the universal set of clauses, which contains all possible clauses for a

given signature Σ.

2.1.4 Interpretation

As we assume that ' is the only predicate symbol of the language L with signature
Σ, the Herbrand interpretation I is a set of ground Σ-equations that are considered
true in I. The notions of satisfiability and validity are defined as usual. I |= F
denotes that I satisfies F, with F being a ground Σ-literal, a ground Σ-clause or a
set thereof.

5

An E-Interpretation is an interpretation which is also a congruence relation
on the Σ-terms. IE denotes the smallest congruence relation on the Σ-terms that
includes I. IE |= F denotes that IE-satisfies F; this will be written as I |=E F,
though. Iff every E-interpretation satisfying F also satisfies F′, then this means
that F E-entails F′, written as F |=E F′.

Creating equivalence classes by using Herbrand models and the properties of
the equality (symmetry, transitivity, reflexivity) leads to an easy understandable
representation of a model. This is illustrated in Example 1

Example 1 (E-Interpretation). Assume the set of literals

{a ' b, c ' d, a ' d, f ' g, a ' g, h ' i, i ' j}

is a Herbrand model for some formula.
Then with the corresponding E-Interpretation

{{a, b, c, d, f , g}, {i, j, h}}

it is easier to see that the formula is satisfied if the constants in the two equivalence
classes are equal.

�

2.1.5 Term Ordering

For efficient equality reasoning with the E-hyper tableau calculus a term ordering
� with certain properties is needed. � must be:

1. a strict partial ordering (irreflexive, antisymmetric and transitive),

2. well-founded,

3. closed under context - if s � s′ for s, s′ ∈ T, then t[p/s] � t[p/s′] for any
t ∈ T and any position p in t,

4. liftable - if s � t for s, t ∈ T, then sσ � tσ for any substitution σ, and finally

5. total on ground terms.

� is lifted to atoms, literals and clauses in the obvious way.
� induces the non-strict ordering �. The converse is denoted by ≺ and � re-

spectively.
Such an ordering is called reduction ordering. As the specific ordering is not

of interest in the context of this work, no more details are given but it is referred to
[18] for further information.

6

2.1.6 Negligible Clauses

One important task in an efficient equality treatment is to generate the fewest pos-
sible clauses. For this, it is necessary to define criteria by which clauses can be
identified as not useful for the reasoning process.

The first criterion is that of redundancy which means that a clause is not help-
ful if it follows from a set clauses that are smaller w.r.t. �. Before this informal
description is formalized in Definition 2.1.1 following [3] the notation SD is intro-
duced.

Let S′ be the set of all ground instances of all clauses in a clause set S then
SD = {C ∈ S′ | D � C} is the set of all ground instances of all clauses of S that are
smaller w.r.t. � thanD

Definition 2.1.1 (Redundancy)
LetD be a clause, S a set of clauses.

A ground clauseD is redundant w.r.t. a clause set S iff SD |=E D.

A non-ground clauseD is redundant w.r.t. a clause set S iff every ground instance
ofD is redundant w.r.t. S.

�

The second criterion is that of non-proper subsumption. A clause is non-
properly subsumed by another clause if it is an instance of that clause. A clause
is non-properly subsumed by a set of clauses if it is an instance of a clause of this
particular clause set.

Definition 2.1.2 (Non-proper Subsumption)
LetD be a clause and S a set of clauses.

A clause D is non-properly subsumed by a clause C iff there is a substitution σ
such thatD = Cσ.

A clause D is non-properly subsumed w.r.t. a clause set S iff there is a C ∈ S that
non-properly subsumesD.

�

A clause is negligible w.r.t. to a set of clauses if it is redundant w.r.t. to this set
or non-properly subsumed w.r.t. to it.

Definition 2.1.3 (Negligible Clauses (prelim.))
LetD be a clause and S a set of clauses.

A clauseD is negligible w.r.t. a clause set S iff at least one of the following holds:

• D is redundant w.r.t. S.

7

• D is non-properly subsumed w.r.t. S.

�

To avoid confusion with the definitions’ names, (prelim.) is appended to the
names of those definitions that are extended later on to indicate that these are pre-
liminary definitions.

In most cases it is obvious what set of clauses S is meant and therefore the
addition w.r.t. to a clause set S might be omitted for the sake of brevity.

2.1.7 Trees and Tableaux

A tree is a directed, acyclic graph denoted by a pair (N,E) consisting of a set of
nodes N and a set of edges E ⊂ (N × N). A node that has no incoming edges is
called root a node with not outgoing edges is called leaf.

A branch B in T is a sequence N0, . . . ,Nn of nodes in T, with N0 being the root
node of T, each Ni being the immediate predecessor of Ni+1(0 ≤ i < n), and Nn

being a leaf of T.
A initial segment B j of a branch B = (Ni)0≤i<ν is defined as a sequence of

nodes of B starting with N0 and ending with N j, i.e. B j = (Ni)0≤i≤< j.
An E-hyper tableau T over a signature Σ is a pair (t, λ), where t is a finite,

ordered tree and λ is a labelling function assigning an Σ-clause to each node of t.
λ(B) = {λ(N0), . . . , λ(Nn)} is the set of clauses in B, called the tableau clauses.

For the sake of convenience, the notation C ∈ B is used iff C ∈ λ(B).
The notation B ·C represents the tableau branch obtained from attaching a node

labelled with C to the leaf of B, while B · B′ represents the tableau obtained from
concatenating B and the node sequence B′.

A branch in an E-hyper tableau is closed iff it contains the empty clause �
otherwise it is open. An E-hyper tableau is closed iff all of its branches are closed,
and it is open otherwise.

2.2 E-Hyper Tableau Calculus

2.2.1 Introduction

The E-hyper tableau calculus was developed in 2007 by Baumgartner, Furbach,
and Pelzer at the National ICT Australia and the University of Koblenz-Landau as
an extension of the hyper tableau calculus[12].

The latter was developed by Baumgartner, Furbach, and Niemelä at the Uni-
versity of Koblenz-Landau in 1996 as an efficient model generation and proof-
procedure for first-order theories. Its main idea is to combine the benefits of tableau
calculi, i.e. rich structure for the derivation process, partial models as by-product,
and the advantages of the hyper resolution, i.e. the hyper property for resolving

8

negative literals of a clause in a single inference step, universally quantified vari-
ables and subsumption as pruning technique[10].

As the hyper tableau lacked the treatment of equalities, which is mandatory in
most proving applications, the calculus was changed to treat equalities, which lead
to the E-hyper tableau calculus, which is introduced in this section.

The first step is the introduction of inference rules in section 2.2.2. Section
2.2.3 shows how the inference rules and additional rules are used to extend an E-
hyper tableau and modify its nodes. The next step is the definition of a derivation
which is done in section 2.2.4.

As in section 2.1 most concepts are shared with [18] and [12], therefore parts
of the following explanations are taken from or inspired by it.

2.2.2 Inference Rules

The E-hyper tableau calculus makes use of the four inference rules sup-left, unit-
sup-right, ref, split to work on clauses. The first three are adapted from the su-
perposition calculus to deal with equality and will be referred to as the equality
rules. If they are applicable, i.e. certain conditions are met, each of the equality
rules takes a set of clauses as input and derives a new clause. The fourth so-called
split rule is used to to create a branch split from a disjunctive clause head. As
these four inference rules operate on clauses, they will then be lifted to tableaux
in matching extension rules. Additionally, two rules for the handling of redundant
and non-properly subsumed clauses will be introduced.

In Figure 2.1 the four inference rules of the E-hyper tableau calculus and the
conditions that are needed to apply them are shown.

The sup-left rule (superposition left) applies a positive unit equation to a body
literal of another clause. If the sup-left rule is applied with clause C as left premise,
D as right premise, the mgu σ and the conclusion E, then this inference instance
will be denoted by C,D ⇒sup-left(σ) E .

The unit-sup-right rule (unit superposition right) applies a positive unit equa-
tion to another positive unit equation. If the unit-sup-right rule is applied with
clause C as left premise,D as right premise, the mgu σ and the conclusion E, then
this inference instance will be denoted by C,D ⇒unit-sup-right(σ) E.

The ref rule (reflexivity) works on a single clause and removes an equational
body literal whose both sides can be unified. If the ref rule is applied to clause C
with the mgu σ and the conclusion E, then this inference instance will be denoted
by C ⇒ref(σ) E.

The split rule (split) works on a positive disjunction. In combination with a
purifying substitution, it creates a new unit clause for each head literal. If the split
rule is applied to clause C with the purifying substitution π and the conclusions
A1π ←, . . . , Amπ ←, then this inference instance will be denoted by C ⇒split(π)
A1π←, . . . , Amπ←.

Several notions are now extended to the inference rules sup-left, unit-sup-right,
ref and split, as well as to their instances:

9

A ← s[u′] ' t,B u ' r ←
sup-left(σ) if (1-4) holds

(A ← s[r] ' t,B)σ

s[u′] ' t ← u ' r ←
unit-sup-right(σ) if (1-5) holds

(s[r] ' t ←)σ

A ← s ' t,B
ref(σ) if (6) holds

(A ← B)σ

A1, . . . , An ←split(π) if (7,8) holds
A1π← . . . Anπ←

Conditions:

1. u′ is not a variable
2. σ is a mgu of u and u′

3. uσ � rσ

4. sσ � tσ
5. (s ' t)σ � (u ' r)σ
6. σ is a mgu of s and t

7. n ≥ 2

8. π is a purifying substi-
tution for A1, . . . , An ←

Figure 2.1: Rules for the E-hyper tableau calculus.

• An inference is ground iff its constituent clauses (premises and conclusions)
are ground. For ground inferences the substitution σ and the purifying sub-
stitution π can both be assumed to be the empty substitution ε.

• If C,D ⇒sup-left(σ) E is a sup-left inference and
γ is a substitution such that Cσγ,Dσγ ⇒sup-left(ε) Eγ is ground,
then the latter is called a ground instance of C,D ⇒sup-left(σ) E.

• If C,D ⇒unit-sup-right(σ) E is a unit-sup-right inference and
γ is a substitution such that Cσγ,Dσγ ⇒unit-sup-right(ε) Eγ is ground,
then the latter is called a ground instance of C,D ⇒unit-sup-right(σ) E.

• If C ⇒ref(σ) E is a ref inference and
γ is a substitution such that Cσγ ⇒ref(ε) Eγ is ground,
then the latter is called a ground instance of C ⇒ref(σ) E.

• If C ⇒split(π) A1 ←, . . . , Am ← is a split inference and
γ is a substitution such that Cπ⇒split(ε) A1γ ←, . . . , Amγ ← is ground,
then the latter inference is a ground instance of the former.

• Let S be a set of not necessarily ground clauses:

– A ground inference C,D ⇒sup-left(ε) E is redundant w.r.t. S
iff E is redundant w.r.t. SC ∪ {D}.

– A ground inference C,D ⇒unit-sup-right(ε) E is redundant w.r.t. S
iff E is redundant w.r.t. SC ∪ {D}.

10

– A ground inference C ⇒ref(ε) E is redundant w.r.t. S
iff E is redundant w.r.t. SC.

– A ground inference C ⇒split(ε) A1 ←, . . . , Am ← is redundant w.r.t. S
iff there is an i with 1 ≤ i ≤ m such that Ai ← is redundant w.r.t. SC.

• For all inference rules sup-left, unit-sup-right, ref and split, a (possibly non-
ground) inference is redundant with respect to S iff each of its ground in-
stances is redundant w.r.t. S.

Now it is possible to define the notion of a clause set being saturated up to
redundancy, which is an important part for to the completeness of the calculus.

Definition 2.2.1 (Saturation up to Redundancy (prelim.))
A clause set S is saturated up to redundancy iff for all clauses C ∈ S such that C
is not redundant with respect to S all of the following hold:

1. Every inference C,D ⇒sup-left(σ) E,
whereD is a fresh variant of a positive unit clause from S,
such that neither Cσ norDσ is redundant w.r.t. S, is redundant w.r.t. S.

2. Every inference C,D ⇒unit-sup-right(σ) E,
whereD is a fresh variant of a positive unit clause from S,
such that neither Cσ norDσ is redundant w.r.t. S, is redundant w.r.t. S.

3. Every inference C ⇒ref(σ) E,
such that Cσ is not redundant w.r.t. S, is redundant w.r.t. S.

4. Every inference C ⇒split(σ) A1 ←, . . . , Am ←,
such that Cπ is not redundant w.r.t. S, is redundant w.r.t. S.

�

2.2.3 Rules on Tableaux

This section shows how the inference rules, introduced in section 2.2.2, can be
used to extend an E-hyper tableau. Additionally, two rules to modify the labelling
of existing node are introduced.

If T is an E-hyper tableau with a branch B, then T can be extended by applic-
ation of the extension rules shown in Figure 2.2. The Equality extension consolid-
ates the three equality inferences and the Split extension applies the split rule to a
branch.

The annotation d marks the derived clauses as decision clauses. A node labelled
with a decision clause will be referred to as a decision node.

In addition to rules that extend an E-hyper tableau, the calculus must provide
methods that destructively modify it in order to remove unwanted clauses. Those

11

BEquality if (1-4) holds
B · E

BSplit if (1,5,6) holds
B · A1 ←

d . . . B · An ←
d

Conditions:

1. there is a C ∈ B

2. there is a fresh variantD of a positive unit clause in B

3. there is a σ such that C,D ⇒R(σ) E with R ∈ {sup-left, unit-sup-right} or C ⇒ref(σ) E

4. B contains no variant of E

5. there is a π such that C ⇒split(π) A1 ←, . . . , An ←

6. B contains no variant of Ai, i ∈ {1, . . . , n}

Figure 2.2: Extension rules for E-hyper tableaux.

B · C(d) · B1 · B2Del if (1,2) holds
B · t ' t(d) · B1 · B2

B · C(d) · B1 · B2Simp if (2-4) holds
B · D(d) · B1 · B2

Conditions:

1. C is negligible w.r.t. B · B1

2. B1 does not contain a decision clause

3. B · C · B1 |=E D

4. C is redundant w.r.t. B · D · B1

Figure 2.3: Deletion and simplification rules for E-hyper tableaux.

rules are shown in Figure 2.3. The Del rule (deletion) eliminates redundant or non-
properly subsumed clauses (or more specifically, it overwrites such a clause with
a trivially true unit clause, thus preserving the node while changing its label). The
Simp rule (simplification) overwrites a clause with one that is smaller according to
the term ordering.

The notation (d) indicates that if C is a decision clause, then the resulting new
label remains a decision clause.

In both rules, the scope of clauses that may subsume the premise clause C or
make it redundant is limited to those above C in the branch B and those below until
the first decision clause. This preserves the soundness of the calculus. A decision
clause only occurs after a branch split. If there is a decision clause below C, then
C is a member of at least two branches resulting from concatenation of nodes to B
in a Split extension. Only those clauses occurring above the first decision clause

12

below C are guaranteed to be members of all branches resulting from splits below
C, and if any of these clauses make C negligible, then C must be negligible in all
branches below C. On the other hand, if a clause exclusively belonging to one
branch resulting from a split below C were to be used to overwrite C, then C would
have been destructively modified or removed from all the other branches resulting
from that split as well, even though Cmay not have been negligible in any of these.

2.2.4 Derivation

With the notion of an E-hyper tableau and rules to modify E-hyper tableaux, the
concept of a derivation can now be introduced. A derivation is a series of tableaux
that starts with the initial tableau. For all tableaux in this series holds, that they are
either the initial tableau or they have been derived by applying one of the intro-
duced rules to a tableau of the series.

A more formal definition is now given in Definition 2.2.2 and then exemplified
in Example 2.

Definition 2.2.2 (E-hyper Tableau Derivation (prelim.))
An E-hyper tableau derivation of a set {C1, . . . ,Cn} of Σ-clauses is a possibly in-
finite sequence of tableaux

D = (Ti)0≤i<κ

such that

1. T0 is the clausal tableau over Σ that consists of a single branch of length n
with the tableau clauses C1, . . . ,Cn , and

2. for all i > 0, Ti is obtained from Ti−1 by a single application of the Equality,
Split, Del or Simp rule to an open branch in Ti .

�

Example 2 (E-Hyper Tableau Derivation). Figure 2.4 shows the tableaux T0 and
T6 of an E-hyper tableau derivation. The intermediate tableaux T1 to T5 are not
shown in the figure but are introduced textual.

T0 is the initial tableau of the derivation and contains four clauses. As it is
easy to see there is an σ such that (f (x) ' x ←)σ = f (c) ' c ← holds, namely
σ = {x/c} and therefore f (c) ' c ← is non-properly subsumed by f (x) ' x ← an
can be rewritten to t ' t by an application of the Del rule. This leads to the tableau
T1.

By applying the Equality rule with underlying inference p(f (a)) ' t←, f (x) '
x←⇒unit-sup-right(σ) p(a) ' t← and σ = {x/a} on T1, T2 is derived.

For the sake of simplicity, the following steps are given as list of underlying
inference rules.

13

f (x) ' x←

f (c) ' c←

p(f (a)) ' t←

q(f (x)) ' t, r(x) ' t← p(a) ' t

f (x) ' x←

t ' t←

p(f (a)) ' t←

q(f (x)) ' t, r(x) ' t← p(a) ' t

p(a) ' t←

q(f (x)) ' t, r(x) ' t← t ' t

q(f (x)) ' t, r(x) ' t←

q(f (a)) ' t←

q(a) ' t←

r(a) ' t←

T0 T6

Figure 2.4: The tableaux T0 and T6 of an E-hyper tableau derivation.

1. C,D ⇒sup-left(σ) E , with
C = q(f (x)) ' t, r(x) ' t← p(a) ' t
D = p(a) ' t←
σ = {}

E = q(f (x)) ' t, r(x) ' t← t ' t

2. C ⇒ref(σ) E , with
C = q(f (x)) ' t, r(x) ' t← t ' t
σ = {}

E = q(f (x)) ' t, r(x) ' t←

3. C ⇒split(π) A1π←, A2π← , with
C = q(f (x)) ' t, r(x) ' t←
π = {x/a}
A1π = q(f (a)) ' t
A2π = r(a) ' t

4. C,D ⇒unit-sup-right(σ) E , with
C = q(f (a)) ' t←
D = f (x) ' x←
σ = {}

E = q(a) ' t←

These four steps lead from T2 to T6. The application of the Del rule is inde-
pendent and must not have happened as the first step but could have been some-
where between T1 and T6. The ordering of the other extension steps is fixed as
they need to be applied consecutive.

�

For using the E-hyper tableaux calculus to calculate a model for a formula or
to show that a formula is unsatisfiable, we need to define some criterion that states
how many derivation steps are necessary to make such a statement. To do so we
need some notations and concepts that are introduced now.

The first one is the concept of a limit tree. It represents the overall tree structure
of the derivation. Its set of nodes is the union of all nodes of all of the derivations
tableaux and its set of edges is the union of all edges of all of the derivations

14

tableaux. If a derivation is finite, the limit tree matches the tree of the last tableau
in the derivation. A limit tree is not a tableau as it has no associated labelling
function. A more formal definition of limit tree is given now in Definition 2.2.3.

Definition 2.2.3 (Limit Tree)
Let T = (t, λ) be an E-hyper tableau with t = (N,E) a tree consisting of the set of
nodesN and the set of edges E. Furthermore let the derivation D = ((Ni,Ei) , λi)0≤i<κ.

Then the limit tree t∞ of the derivation D is defined as:

t∞ =

 ⋃
0≤i<κ

Ni,
⋃

0≤i<κ

Ei


�

The limit tree can now be used to define the set of persistent clauses. It is a set
of clauses that contains the labels of all the nodes that have not been rewritten by
the Del or Simp rule. These clauses are used to generate a model for a given set of
formulæ or to show that the set is unsatisfiable. To construct the set of persistent
clauses the λ′-function is needed that is defined as follows:

If N is a node and λ is the labelling function then

λ′(N) :=

{λ(N)} if N ∈ dom(λ)
ΩΣ otherwise

Informally, it can be seen as a wrapper for λ, which creates a set containing
the result of λ. If λ is undefined for an input the universal set for the language
is returned. This behaviour is needed as we want to build the intersection of all
labellings for a node throughout the whole derivation process and it might happen
that a λ for a node is not yet defined in a certain derivation steps. The set of
persistent clauses is then created by joining those intersections for all nodes of a
branch.

The definition of persistent clauses is given in Definition 2.2.4 and illustrated
in Example 3.

Definition 2.2.4 (Persistent Clauses)
Let t∞ =

(⋃
0≤i<κ Ni,

⋃
0≤i<κ Ei

)
be the limit tree of the derivation D = ((Ni,Ei), λi)0≤i<κ

and B = (N j)0≤ j<ν be a (possibly infinite) branch in t∞.

Then the set of persistent clauses (of B) is defined as

B∞ =
⋃

0≤i<ν

 ⋂
0≤ j<κ

λ′j(Ni)


�

15

C0

C1

C2

C0

C1

D0

C0

C1

D0

C3

C0

C1

D0

C3

C4 C5

C0

C1

D0

C3

C4

C6

C5

C0

C1

D0

C3

C4

C6

C5

C7

T0 T1 T2 T3 T4 T5

(a)

N0

N1

N2

N3

N4

N6

N5

N7

t∞

(b)

N0

N1

N2

N3

N4

N6

B

(c)

Figure 2.5: The derivation D, starting with the initial tableau T0 (a), its limit tree t∞ (b)
and a single branch of t∞(c).

Example 3 (Limit Trees and Persitent Clauses). In Figure 2.5a a derivation with
five tableaux is given. For the sake of brevity neither concrete clauses nor concrete
extension rules are given, but it is easy to see that such an derivation is possible.

This derivation has the limit tree t∞ shown in Figure 2.5b. As the shown deriv-
ation is finite, the limit tree equals the tree of the last tableau of the derivation T5.
In Figure 2.5c the leftmost branch of t∞ is given as the branch B.

λ′0(N0) ∩ λ′1(N0) ∩ λ′2(N0) ∩ λ′3(N0) ∩ λ′4(N0) ∩ λ′5(N0)
⋃

λ′0(N1) ∩ λ′1(N1) ∩ λ′2(N1) ∩ λ′3(N1) ∩ λ′4(N1) ∩ λ′5(N1)
⋃

λ′0(N2) ∩ λ′1(N2) ∩ λ′2(N2) ∩ λ′3(N2) ∩ λ′4(N2) ∩ λ′5(N2)
⋃

λ′0(N3) ∩ λ′1(N3) ∩ λ′2(N3) ∩ λ′3(N3) ∩ λ′4(N3) ∩ λ′5(N3)
⋃

λ′0(N4) ∩ λ′1(N4) ∩ λ′2(N4) ∩ λ′3(N4) ∩ λ′4(N4) ∩ λ′5(N4)
⋃

λ′0(N6) ∩ λ′1(N6) ∩ λ′2(N6) ∩ λ′3(N6) ∩ λ′4(N6) ∩ λ′5(N6)
(a)

{C0} ∩ {C0} ∩ {C0} ∩ {C0} ∩ {C0} ∩ {C0}
⋃

{C1} ∩ {C1} ∩ {C1} ∩ {C1} ∩ {C1} ∩ {C1}
⋃

{C2} ∩ {D0} ∩ {D0} ∩ {D0} ∩ {D0} ∩ {D0}
⋃

ΩΣ ∩ ΩΣ ∩ {C3} ∩ {C3} ∩ {C3} ∩ {C3}
⋃

ΩΣ ∩ ΩΣ ∩ ΩΣ ∩ {C4} ∩ {C4} ∩ {C4}
⋃

ΩΣ ∩ ΩΣ ∩ ΩΣ ∩ ΩΣ ∩ {C6} ∩ {C6}

(b)

Table 2.1: Abstract (a) and concrete (b) calculation of the set of persistent clauses for the
derivation shown in Figure 2.5.

16

Table 2.1 shows how the set of the persistent clauses is constructed for the
branch B. In Table 2.1a the definition of the set of persistent clauses was written
down, without evaluating the labelling functions. In Table 2.1b λ has been evalu-
ated and the appropriate clauses are used in the formula.

This formula shows that it is possible that some nodes might not have a la-
belling at a certain derivation step as the tree is not yet enough extended. For
example N3 is introduced in T2 and therefore λ′0(N3) = λ′0(N3) = ΩΣ.

The set of persistent clauses for this example is then:

B∞ = {C0} ∪ {C1} ∪ ∅ ∪ {C3} ∪ {C4} ∪ {C6} = {C0,C1,C3,C4,C6}

Neither C2 nor D0 are members of t∞ which conforms with our intention. C2
has be rewritten, and therefore it was either redundant or non-properly subsumed
and thus was not necessarily needed to construct a model or show the clause sets
unsatisfiability. If C2 was rewritten by the Del ruleD0 = t ' t←, it is easy to see
that this clause is not of relevance. If the Simp rule caused the rewrite of C2, it has
been rewritten to a clauseD0 that is smaller w.r.t. � and already in the branch and
thusD0 is already in t∞.

�

With the concepts of limit trees and persistent clauses defined, the notion of
an exhausted branch can now be introduced. When a branch is exhausted, all
the useful rule applications are done and all following rule applications would not
contribute in creating a model. The formal definition is given in Definition 2.2.5.

Definition 2.2.5 (Exhausted Branch (prelim.))
Let t∞ be a limit tree, B = (Nk)0≤k<ν be a branch in t∞ and Bi and B j initial
segments of B .

The branch B is exhausted iff it does not contain the empty clause, and for
every clause C ∈ B∞ and every fresh variantD of every positive unit clause in B∞
such that neither C norD is redundant with respect to B∞ all of the following hold,
for all i < ν such that C ∈ Bi andD is a variant of a clause in Bi:

1. if Equality is applicable to Bi with underlying inference
C,D ⇒sup-left(σ) E,
and neither Cσ norDσ is redundant w.r.t. Bi,
then there is a j < ν such that the inference
C,D ⇒sup-left(σ) E is redundant w.r.t. B j.

2. if Equality is applicable to Bi with underlying inference
C,D ⇒unit-sup-right(σ) E,
and neither Cσ norDσ is redundant w.r.t. Bi,
then there is a j < ν such that the inference
C,D ⇒unit-sup-right(σ) E is redundant w.r.t. B j.

17

3. if Equality is applicable to Bi with underlying inference
C ⇒ref(σ) E

and Cσ is not redundant w.r.t. Bi,
then there is a j < ν such that the inference
C ⇒ref(σ) E is redundant w.r.t. B j.

4. if Split is applicable to Bi with underlying inference
C ⇒split(π) A1 ←, . . . , Am ←

and Cπ is not redundant w.r.t. Bi,
then there is a j < ν such that the inference
C ⇒split(π) A1 ←, . . . , Am ← is redundant w.r.t. B j.

�

We are now able to state which kind of derivation is of interest for deriving
a model for a set of clauses S or showing that S is unsatisfiable, namely a fair
derivation. A derivation is fair, if it contains a closed tableau or its limit tree has an
exhausted branch.

A finite E-hyper tableau derivation of a clause set S which contains an closed
tableau is called E-hyper tableau refutation of S.

The concrete connection between an exhausted branch and a model for a clause
set is given in section 3.3.

The E-hyper tableau calculus shown in this section is complete and sound.
Proofs for this properties can be found in [12].

This concludes the introduction of the original E-hyper tableau calculus.

18

Chapter 3

Handling the Unique Name
Assumption

3.1 Introduction

The unique name assumption (UNA) is a convention on how to handle equality of
objects in knowledge bases. It defines that two constants denote the same object iff
the constants are identical [21].

To be more flexible and to conform the TPTP’s way of dealing with the unique
name assumption[27] (see [26] for the latest revision of), the unique name assump-
tion is not assumed to hold for the whole set of constants, but for a subset of it,
called the set of distinct object identifiers.

Definition 3.1.1 (Distinct Object Identifiers)
The set of distinct object identifiers D ⊆ C is a subset of all constants.

�

Definition 3.1.2 (Unique Name Assumption)
Let I be an interpretation function.

The unique name assumption holds for D iff
a ' b⇔ I(a) = I(b) for all a, b ∈ D.

�

With the introduction of D some small changes need to be made to some de-
scriptions of the logical language introduced in section 2.1.2. The signature of the
language is additionally defined by D, i.e. Σ = (D,F,P). From D ⊆ C follows that
D is disjoint to V and P. To avoid confusion, the term basic constants is introduced
to explicitly denote constants that are not distinct object identifiers.

Additionally, the term ordering must fulfil the requirement that all distinct ob-
ject identifiers are smaller w.r.t. the term ordering than any other non-variable term,
i.e. ∀t ∈ (T \ (V ∪ D)),∀i ∈ D : i ≺ t.

19

Instead of modelling the unique name assumption by introducing additional
equality-/inequality axioms, the calculus is extended to take care of the needed
changes. This needs some effort, but this effort is worthwhile nevertheless as a nat-
ive handling of the unique name assumption prevents a blow-up of the knowledge
base by axioms, and as less axioms entail fewer comparisons in the reasoning pro-
cess, it leads to a performance increase when dealing with distinct object identifiers
[24].

To determine how the calculus has to be changed, a small analysis of the dis-
tinct object identifiers’ impact on the calculus follows. For most literals/clauses it
is obvious that there is no impact on the calculus, therefore only the non obvious
combinations shown below are considered.

1. i ' i←

2. f (i) ' f (i)←

3. i ' j←

4. f (i) ' f (j)←

5. ← i ' i

6. ← f (i) ' f (i)

7. ← i ' j

8. ← f (i) ' f (j)

Only positive and negative unit clauses are shown, as the non-unit clauses can
be broken down to unit clauses by using the ordinary calculus rules. f is a function
symbol and i and j are two not identical distinct object identifiers, i.e i, j ∈ D, i , j
and f ∈ F.

For 1.) i ' i ← and 2.) f (i) ' f (i) ← the calculus needs not to be changed as
these positive units are redundant and therefore rewritten to t ' t. 3.) i ' j ← is
obviously a contradiction and clauses of this form will be called unit contradiction.
To cope with unit contradictions the calculus needs to be extended. Although 4.)
f (i) ' f (j)← looks like a unit contradiction as well, it is not as the interpretation of
f might make the equation true. Therefore this clause is handled like any positive
unit.

For 5.) ← i ' i and 6.) ← f (i) ' f (i) the calculus needs not to be changed
as these clauses can be dealt with by the ref rule. 7.) ← i ' j is obviously a
tautology which can never contribute to show an inconsistency of the clause set.
As unit, this does not have an impact on the reasoning, but if a clause looks like
A ← i ' j,B with A and B not empty, literals from A or B might be used in
the reasoning which would be useless as those literal cannot contribute to show
an inconsistency. For the sake of efficiency the calculus needs to be changed to
ignore clauses of the formA ← i ' j,B which are called object tautology clauses.
Although 8.) ← f (i) ' f (j) looks like a object tautology clause as well, it is not as
the interpretation of f might make the equation true. Therefore no special treatment
is needed.

To summarize, the unique name assumption leads to two different kind of
clauses that need an adoption of the calculus. The first one is the unit contradiction
i ' j← and the second one is the object tautology clauseA ← i ' j,B.

20

This adoption is shown in the following section and then illustrated by a deriv-
ation example. In section 3.3 it is shown that the modified version of the calculus
is still sound and complete.

3.2 Extending the Calculus

The extension of the E-hyper tableau calculus being introduced in this section is an
adoption of the work of Schulz and Bonacina who introduced a way of handling
distinct object identifiers in the superposition calculus in [24].

In the first step a way of dealing with object tautology clauses, i.e. clauses of
formA ← i ' j,B with i , j is introduced.

Definition 3.2.1 (Object Tautology Clause)
Let A be a possibly empty set of head literals, B be a possibly empty set of body
literals and i, j ∈ D with i , j.

A clauseD is an object tautology clause iff is is of formA ← i ' j,B.
�

As mentioned in section 3.1 an object tautology clause cannot contribute in
closing a branch. Therefore, it is useless for the refutation attempt and should
not be used as a constituent clause for any of the calculus’ extension rules. This
behaviour can be achieved by extending Definition 2.1.3 to Definition 3.2.2 and
including object tautology clauses into the set of of negligible clauses.

Definition 3.2.2 (Negligible Clauses)
LetD be a clause and S a set of clauses.

A clause D is negligible (w.r.t. a clause set S) iff at least one of the following
holds:

• D is redundant (w.r.t. S).

• D is non-properly subsumed (w.r.t. S).

• D is an object tautology clause.

�

With the new definition of negligible clauses it is properly taken care of the
object tautology clauses as they are rewritten by the Del rule and therefore prevent
inefficient reasoning steps.

The second change concerns the handling of unit contradiction clauses, i.e.
clauses that look like i ' j ← where i and j are two non-identical distinct object
identifiers.

21

X ' Y ←unit-cont-right(σ) if (1,2) holds�

Conditions:

1. X,Y ∈ V ∪ D

2. (X ' Y ←)σ = i ' j← where i, j ∈ D and i , j

BInc if (1,2) holdsB · �

Conditions:

1. there is a C ∈ B

2. there is a σ such that C ⇒unit-cont-right(σ) �

Figure 3.1: The unit-cont-right rule and the corresponding Inc extension rule for handling
unit contradictions.

Definition 3.2.3 (Unit Contradiction)
Let i, j ∈ D with i , j.

A clauseD is an unit contradiction iff it is of form i ' j←.
�

As mentioned in section 3.1 a unit contradiction is a sign of an inconsistency
in the clause set. Therefore a new inference and a new extension rule is needed
to close a branch if it contains a unit contradiction. Figure 3.1 shows the newly
introduced unit-cont-right (unit contradiction right) inference rule and the corres-
ponding extension rule Inc (Inconsistency).

With the introduced changes some of the definitions in sections 2.2.2 and 2.2.4
need to be extended.

We start by extending Definition 2.2.1 on page 11 (saturation up to redundancy)
to Definition 3.2.4 by adding that a set S is not saturated up to redundancy if the
unit-cont-right is applicable to any clause in S. Additionally it is amended that
object tautology clauses are not considered as constituent clauses for inference
rules.

Definition 3.2.4 (Saturation up to Redundancy)
A clause set S is saturated up to redundancy iff for all clauses C ∈ S such that C
is neither an object tautology nor redundant with respect to S all of the following
hold:

1. Every inference C,D ⇒sup-left(σ) E,
whereD is a fresh variant of a positive unit clause from S,
such that neither Cσ nor Dσ is an object tautology or redundant w.r.t. S, is
redundant w.r.t. S.

22

2. Every inference C,D ⇒unit-sup-right(σ) E,
whereD is a fresh variant of a positive unit clause from S,
such that neither Cσ nor Dσ is an object tautology or redundant w.r.t. S, is
redundant w.r.t. S.

3. Every inference C ⇒ref(σ) E,
such that Cσ is neither an object tautology nor redundant w.r.t. S, is redund-
ant w.r.t. S.

4. Every inference C ⇒split(σ) A1 ←, . . . , Am ←,
such that Cπ is neither an object tautology nor redundant w.r.t. S, is redund-
ant w.r.t. S.

5. No inference C ⇒unit-cont-right(σ) � is applicable.

�

In the next step Definition 2.2.2 on page 13 E-hyper tableau derivation is ex-
tended to Definition 3.2.5 by including that the Inc rule can be used on an open
branch of a tableau T to extend it.

Definition 3.2.5 (E-Hyper Tableau Derivation)
An E-hyper tableau derivation of a set {C1, . . . ,Cn} of Σ-clauses is a possibly in-
finite sequence of tableaux D = (Ti)0≤i<κ such that

1. T0 is the clausal tableau over Σ that consists of a single branch of length n
with the tableau clauses C1, . . . ,Cn , and

2. for all i > 0, Ti is obtained from Ti−1 by a single application of the Equality,
Split, Del, Simp or Inc rule to an open branch in Ti .

�

The last definition that needs to be extended is the Definition 2.2.5 on page 17
(exhausted branch) that is extended to Definition 3.2.6 by adding that a branch is
not exhausted if the Inc can be applied to a clause in this branch. Additionally, it
is amended that object tautology clauses are not considered as constituent clauses
for inference rules.

Definition 3.2.6 (Exhausted Branch)
Let t∞ be a limit tree, B = (Nk)0≤k<ν be a branch in t∞ and Bi and B j initial
segments of B .

The branch B is exhausted iff it does not contain the empty clause, and for
every clause C ∈ B∞ and every fresh variantD of every positive unit clause in B∞
such that neither C norD is an object tautology or redundant with respect to B∞ all
of the following hold, for all i < ν such that C ∈ Bi and D is a variant of a clause
in Bi:

23

1. if Equality is applicable to Bi with underlying inference
C,D ⇒sup-left(σ) E,
and neither Cσ norDσ is an object tautology or redundant w.r.t. Bi,
then there is a j < ν such that the inference
C,D ⇒sup-left(σ) E is redundant w.r.t. B j.

2. if Equality is applicable to Bi with underlying inference
C,D ⇒unit-sup-right(σ) E,
and neither Cσ norDσ is an object tautology or redundant w.r.t. Bi,
then there is a j < ν such that the inference
C,D ⇒unit-sup-right(σ) E is redundant w.r.t. B j.

3. if Equality is applicable to Bi with underlying inference
C ⇒ref(σ) E

and Cσ is neither an object tautology nor redundant w.r.t. Bi,
then there is a j < ν such that the inference
C ⇒ref(σ) E is redundant w.r.t. B j.

4. if Split is applicable to Bi with underlying inference
C ⇒split(π) A1 ←, . . . , Am ←

and Cπ is neither an object tautology nor redundant w.r.t. Bi,
then there is a j < ν such that the inference
C ⇒split(π) A1 ←, . . . , Am ← is redundant w.r.t. B j.

5. Inc is not applicable to Bi with underlying inference
C ⇒unit-cont-right(σ) �.

�

Those introduced changes allow the E-hyper tableau calculus to deal with dis-
tinct object identifiers in a complete and sound way. Before the completeness and
soundness is formally proven in section 3.3 a derivation example is given to illus-
trate the introduced changes and their function.

Example 4 (Derivation with the modified E-hyper tableau calculus). Figure 3.2
shows the tableaux T0 and T5 of an E-hyper tableau derivation with distinct object
identifiers. The intermediate tableaux T1 to T4 are not shown in the figure but are
introduced textual.

T0 is the initial tableau of the derivation and contains three clauses. As there
are two distinct objects identifiers i, j as terms in the set of clauses, it makes sense
to use the modified version of the calculus. It is easy to see that p(x) ' t, q(f (x)) '
t← i ' j, r(g(a)) ' t is an object tautology clause as it contains i ' j on the right
side and thus the clause can be rewritten to t ' t by an application of the Del rule.
This leads to the tableau T1.

For the sake of simplicity the following steps are given as list of underlying
inference rules instead of showing all the tableaux.

24

f (a) ' i←

p(x) ' t, q(f (x)) ' t← i ' j, r(g(a)) ' t

i ' j, r(f (x)) ' t ← f (x) ' i

f (a) ' i←

t ' t←

i ' j, r(f (x)) ' t← f (x) ' i

i ' j, r(f (a)) ' t← i ' i

i ' j, r(f (a)) ' t←

i ' j←

�

r(f (a)) ' t←

T0 T5

Figure 3.2: The tableaux T0 and T5 of an E-hyper tableau derivation with DOI.

1. C,D ⇒sup-left(σ) E , with
C = i ' j, r(f (x)) ' t ← f (x) ' i
D = f (a) ' i←
σ = {x/a}
E = i ' j, r(f (a)) ' t← i ' i

2. C ⇒ref(σ) E , with
C = i ' j, r(f (a)) ' t← i ' i
σ = {}

E = i ' j, r(f (a)) ' t←

3. C ⇒split(π) A1π←, A2π← , with

C = i ' j, r(f (a)) ' t←

π = {}

A1π = i ' j←

A2π = r(f (a)) ' t←

4. C ⇒unit-cont-right(σ) � , with

C = i ' j←

σ = {}

These for steps lead from T1 to T5. The application of the Del rule is independ-
ent and must not have happened as the first step but could have been somewhere
between T1 and T5. The ordering of the other extension steps is fixed as they need
to be applied consecutive.

�

3.3 Properties

3.3.1 Overview

This section shows that the modified E-hyper tableau calculus is still sound and
complete. The basis for the proofs is taken from [12] and adapted accordingly.

There are four main parts in this section. In the first part the concept of term
rewriting systems is introduced, which are used as a means to construct a model
for a set of clauses.

25

The details how to construct a model for a given set of clauses are given in
the second part (Proposition 3). It leads to the result that the shown procedure is
complete, i.e. if a clause set has a model the method can derive it (Theorem 4).

So far, the actual E-hyper tableau calculus has not been involved as only sets
of clauses were considered. In part three, we show that if the set of persistent
clauses has a model, the set of clauses of the initial tableau is satisfiable, i.e. the
E-hyper tableau calculus is complete (Theorem 13). This is done by showing that
the set of persistent clauses for an exhausted branch is saturated up to redundancy
(Proposition 11). This enables us to use the result of the previous part, i.e. a
rewriting system can be a model for a set of clauses.

The fourth and last part is a straight forward proof for the soundness of the
calculus (Theorem 16).

3.3.2 Rewrite Systems

This section gives a rough introduction on rewrite systems as only concepts needed
for the following proofs are mentioned. More details on term rewriting can be
found in [3, 13, 17].

Given is a logic L with the signature Σ. A rewrite system is a possibly infinite
set of rewrite rules where a rewrite rule is an expression of the form l r with l
and r Σ-terms. If a rewrite system only works on ground terms it’s called a ground
rewrite system. A ground rewrite system R with l � r, for every rule l r ∈ R is
called ordered rewrite system. We assume � to be the term ordering introduced in
section 2.1.5.

If the rewrite system does not contain two different rules of the forms l r
and s[l] t, i.e. no left hand side of a rule can be rewritten by another rule, it is
lhs-irreducible.

A term rewriting system is called confluent iff all of its terms are confluent. A
term s is confluent iff the following holds: If there are rewriting rules s ∗ u and
s ∗ v then there are rules such that u ∗ t and v ∗ t, i.e. different ways of
rewriting s finally yield the same result. This property is also called Church-Rosser.

If a ordered ground rewrite system is lhs-irreducible it is a convergent ground
rewrite system, i.e. it is confluent and does terminate. For two given Σ-terms s and
t and a convergent rewrite system R, R |=E s ' t holds iff there is exactly one Σ-
term u such that s ∗R u and t ∗R u, where R |=E S denotes that the interpretation
{l ' r | l r ∈ R} satisfies S.

If s ∗R u and t ∗R u, s and t are joinable by R.
If s ∗R t and there is no rewrite rule with left hand side t, t is called the

(R-)normalform of s.
In the following section R and its variations will always denote a ground lhs-

irreducible rewrite system.
One way of proving that is often used in this section is well-founded induction

on the order of the terms. As the base cases are obvious in the most cases, they are
not shown.

26

3.3.3 Model Construction

This section shows how a given set of clauses S induces a ground lhs-irreducible
rewrite system RS and how the rewrite system can be used to show the satisfiability
of S. We assume that S does not contain unit contradictions. It is safe to make
this assumption for our purpose as later on the set of persistent clauses will be the
set we are examining and by definition of an exhausted branch, this set must not
contain unit contradictions. The main idea is to interpret a ground positive unit
clause as a rewrite rule, i.e. l ' r and r ' l can be seen as the rewrite rule l r if
l � r or as r l if r � l.

The first step is to define how the rewrite system and thus the potential model
is constructed (see Definition 3.3.1). Then we introduce and prove Lemma 1 to
show that if a rewrite system is a model for a clause then the extension of that
rewrite system is still a model for that clause. Lemma 2 then claims the fact that the
rewrite system for a clause is an extension of the rewrite system for a smaller (w.r.t.
�) clause. Proposition 3 claims the model construction abilities of the introduced
method. It is needed in the proof of Theorem 4 that states, that if a clause set is
saturated up to redundancy and does not contain the empty clause, this clause set
is satisfiable.

The rewrite system RS for S can be developed by using induction on the term
ordering to create the rewrite rules for all clauses of S starting with the smallest
one. Each clause C ∈ S has two sets of rewrite rules associated with it where RC
contains the rewrite rules of all clauses that are smaller than C and εC contains the
rewrite rule for C itself if it is a positive unit or is empty otherwise. Therefore RS
can be derived by joining all RC for all ground Σ-clauses C of S.

Before a more formal definition is given in Definition 3.3.1, the notion
⋃
C�D εD

is introduced that denotes the union of εD for all clausesD such that C � D holds.

Definition 3.3.1 (Rewrite System Construction)
Let S be a set of clauses and C ∈ S a clause.

• εC =


{l r} if C = l ' r ← is a ground instance of a positive unit in S,

l � r, and l is irreducible w.r.t. RC
∅ otherwise

• RC =
⋃
C�D εD.

• RS =
⋃
C∈S εC

�

For future use, it is useful to know that a superset of a rewrite systems satisfies
at least all the clauses that are satisfied by the original rewrite system. This property
is formalized in Lemma 1 and its validity is shown by the following proof.

27

Lemma 1
Let S be a clause set, C = A ← B ∈ S a ground clause and R and R′ rewrite
systems such that RC ⊆ R ⊆ R′ ⊆ RS holds.

If R |=E C then R′ |=E C.
�

Proof. Suppose R |=E C holds. Let A be a head literal ofA.
We now prove that if R |=E A ← B holds R′ |=E A ← B holds as well. The

main idea is to examine two different cases where in the first we assume R |=E B

and in the second R 6|=E B.

Case 1 (R |=E B)

Suppose R |=E B. With R |=E B and R |=E A ← B, R |=E A must hold. As
first order logic with equality is monotonous and R ⊆ R′, R′ |=E A holds and thus
R′ |=E A ← B.

Case 2 (R 6|=E B)

Suppose R 6|=E B. This case is proven by contradiction therefore we assume R′ |=E

B and R′ 6|=E A for any A in A which leads to R′ 6|=E A ← B. For R′ |=E B and
R 6|=E B there must be a B = s ' t in B such that R′ |=E B but R 6|=E B. In other
words s ' t is joinable by R′ but not by R, i.e. there are rewrite rules in (R′ \ R) to
rewrite s and t to a common normalform u.

Every rule l r ∈ RS is obtained from a ground instance of l ' r ←∈ S. As
we assume l r ∈ (R′ \ R) and RC ⊆ R it follows l r < RC. By definition of RC
(see Definition 3.3.1) for all clausesD that are not in RS,D � C holds. As C looks
like A1, . . . , An ← s ' t, B1, . . . , Bm, it entails C , l ' r ← and thus l ' r ←� C
holds.

By the definition of the reduction ordering (see Definition 2.1.5) it follows that
l r cannot be used for rewriting s or t. As no rule in (R′ \ R) can be used to
rewrite s and t the R′- and R-normalforms of s and t are the same and therefore
R′ |=E s ' t and R |=E s ' t holds.

As this is a contradiction to our assumption that R′ |=E B holds but R′ |=E A
does not, this entails R′ 6|=E B or R′ |=E A. Thus R′ |=E A ← B.

�

At this point it is useful to state that the rewrite rules of a clauseD are a subset
of the rewrite rules for clause C that is larger thanD according to the term ordering.
This property is formalized in Lemma 2 and its validity is shown by the following
proof which is basically the application of the rewrite system construction rules
(see Definition 3.3.1).

28

Lemma 2
Let S be a clause set and C,D ∈ S be ground.

If C � D then RD ∪ εD ⊆ RC
�

Proof. Suppose C,D ∈ S be ground and C � D. By definition of the construction
procedure for the rewrite system (see Definition 3.3.1) RC =

⋃
C�E εE and RD =⋃

D�E εE.
With C � D it follows εD ⊆ RC and RD ⊆ RC which in combination entails

RD ∪ εD ⊆ RC.
�

The following proposition (see Proposition 3) is the core element of this part.
It states that RC∪εC |=E C. Additionally, it states that a clause C is either redundant
to a set of clauses S and RC already satisfies C or else when C is not redundant w.r.t.
S, extension of RC by εC will satisfy C.

Before we can introduce the proposition we need to introduce the notion SC
that is defined as follows. For a clause set S, a clause C ∈ S and a grounding
substitution γ, SC is the set of all ground clauses that are smaller than C, i.e. SC =

{D ∈ S | C � Dγ}.
As the proposition has two cases, the proof is done in two cases. The first one is

just a straight forward approach by using induction on the ordering of the clauses.
The second case takes different forms of clauses into account and either shows by
contradiction that this kind clause can not appear, or that the property holds.

Proposition 3 (Model Construction)
Let S be a clause set that is saturated up to redundancy and such that � < S.

Then for every ground instance C of every clause from S the following holds:

1. If SC |=E C then εC = ∅ and RC |=E C

2. If SC 6|=E C then RC ∪ εC |=E C

�

Proof. The propositions’ two cases are proven separately by combining well-founded
induction on the ground instances of S and contradiction. For the induction we
choose a ground clause C ∈ S and assume the proposition holds for all ground
instancesD ∈ S with C � D.

Case 1 (SC |=E C)

Suppose SC |=E C. By combining the conclusions of both of the propositions
cases and using well-founded induction on the term ordering RD ∪ εD |=E D can

29

be concluded for every clauseD ∈ SC with C � D. With Lemma 2 RD ∪ εD ⊆ RC
holds which leads to RC |=E D by using Lemma 1. As RC |=E D holds for all
D ∈ SC, RC |=E SC holds and with the premisses of this case SC |=E C, RC |=E C

holds as desired.
As its proven that SC |=E C holds, it remains to be shown that εC = ∅. This

is done by trying to derive a contradiction. Therefore we assume εC = {l r}
with C = l ' r ←. For l and r to be equal in the E-interpretation induced by
the convergent rewrite system RC both terms must be joinable i.e. they must have
the same normalform w.r.t. RC. Therefore there must be a rewrite rule in RC that
rewrites l. If l can be rewritten it is not irreducible which is a contradiction to the
definition for εC , ∅ (see Definition 3.3.1).

Case 2 (SC 6|=E C)

Suppose SC 6|=E C. This entails that C is not redundant w.r.t. SC and therefore
not redundant w.r.t. S, and C a ground instance of a clause E ∈ S, i.e. Eγ =

C for a grounding substitution γ, E cannot be redundant w.r.t. S. The proof of
the propositions second case is now done by analysing different structures for the
clause C and then try to show that this kind of clause cannot appear or to show that
RC ∪ εC |=E C holds. For trying to derive a contradiction we use S 6|=E E and the
definition of saturated up to redundancy (see Definition 3.2.4)

1. C = (E[x])γ and xγ is reducible w.r.t.. RC.

Suppose C = Eγ, for some clause E ∈ S and some (grounding) substitution
γ and E contains a variable x, i.e. E[x]. Suppose as well that xγ is reducible
w.r.t. RC. We show by contradiction that this case cannot appear.

If xγ is reducible, there must be a rule l r ∈ RC and l must occur in xγ,
i.e. xγ[l].

We now assume a (grounding) substitution γ′ that is similar to γ in such a
way, that both substitution are identical with the exception that where γ has
l, γ′ has r, i.e. the rewrite rule l r has been applied. Thus xγ′ = xγ[r].
As only larger terms are rewritten, l � r holds and therefore Eγ � Eγ′ which
in combination with the induction hypothesis leads to REγ′ ∪ εEγ′ |=E REγ.
From Eγ � Eγ′ and Lemma 2 follows REγ′ ∪ εEγ′ ⊆ REγ which with Lemma
1 leads to REγ |=E Eγ

′.

Because of l r ∈ RC, Eγ = C and by definition of γ′ conclude with
congruence RC |=E C which is a contradiction to SC 6|=E C.

2. C = (A ← s ' t,B)γ and sγ = tγ.

Suppose C = (A ← s ' t,B)γ for some clauseA ← s ' t,B ∈ S and some
grounding substitution γ and sγ = tγ holds. We show by contradiction that
this case cannot appear.

30

If sγ = tγ there is an inference A ← s ' t,B ⇒ref(σ) (A ← B)σ with
σ being the mgu of s and t and part of the grounding substitution γ, i.e.
γ = σδ for a substitution δ. By the definition of saturation up to redundancy
(see Definition 3.2.4) and the propositions premiss that S is saturated up to
redundancy such an inference is redundant. Therefore the clause (A ← B)σ
is redundant w.r.t. SC, i.e. SC |=E (A ← B)σ which trivially entails SC |=E

A ← s ' t,B. As C = A ← s ' t,B this is a contradiction to SC 6|=E C.

3. C = (A ← s ' t,B)γ with (s ' t)γ = i ' j, with i, j ∈ D and i , j.

Suppose C = (A ← s ' t,B)γ for some clauseA ← s ' t,B ∈ S and some
grounding substitution γ and (s ' t)γ = i ' j holds with i and j are two
non-identical distinct object identifiers. We show by contradiction that this
case cannot appear.

As i and j are two non-identical members ofD and the unique name assump-
tion applies to D the equation i ' j can never be true. With the false literal
i ' j in the body of the clause the whole clause becomes true. From this
follows that C can be written as t ' t←, i.e. C = t ' t←.

As SC |=E t ' t← holds trivially it is a contradiction to SC 6|=E C.

4. C = (A ← s ' t,B)γ and sγ � tγ and sγ is irreducible w.r.t. RC.

Suppose C = (A ← s ' t,B)γ for some clauseA ← s ' t,B ∈ S and some
grounding substitution γ and sγ , tγ holds. Furthermore assume that sγ is
the larger side of the equation (s ' t)γ i.e. sγ � tγ and that sγ is irreducible
w.r.t. RC.

As sγ is irreducible w.r.t. RC and therefore sγ and tγ are not joinable w.r.t.
RC, RC 6|=E sγ ' tγ holds. With sγ ' tγ in the body of the clause C this
trivially entails RC |=E C which is one part that was to be shown.

The second part of the first cases’ conclusion holds trivial, as C is not a
positive unit and by definition of the rewrite system (see Definition 3.3.1)
εC = ∅ holds.

5. C = (s ' t ←)γ with (s ' t ←)γ = i ' j←, i, j ∈ D and i , j.

Suppose C = (s ' t ←)γ for some positive unit clause (s ' t ←) ∈ S and
some grounding substitution γ and (s ' t)γ = i ' j holds with i and j are
two non-identical distinct object identifiers. We show by contradiction that
this case cannot appear.

If such a C exists the inference C ⇒unit-cont-right(γ) � is applicable. This
is clearly a contradiction to the preconditions of the model construction in
Proposition 3 as S is required to be saturated up to redundancy and by case 4
of the definition of saturation up to redundancy 3.2.4 a set where unit-cont-
right is applicable is not saturated up to redundancy.

31

6. C = (s ' t ←)γ and sγ � tγ and sγ is irreducible w.r.t. RC.

Suppose C = (s ' t ←)γ for some positive unit clause (s ' t ←) ∈ S and
some grounding substitution γ and sγ , tγ. Furthermore assume that sγ is
the larger side of the equation (s ' t)γ i.e. sγ � tγ and that sγ is irreducible
w.r.t. RC.

Thus, by definition of the rewrite system (see Definition 3.3.1) εC = {s t}
which trivially entails RC ∪ εC |=E C

7. C = (A1, . . . , Am ←)γ and m ≥ 2.

Suppose C = Eγ for some positive non-unit clause E = (A1, . . . , Am ←) ∈ S
and some grounding substitution γ and m ≥ 2. Furthermore assume γ = πδ

for a purifying substitution π and some (possibly empty) substitution δ. We
show by contradiction that this case cannot appear.

From the assumption of case 2 follows that C is not redundant w.r.t. S
which entails that E is not redundant w.r.t. S. By the definition of satur-
ation up to redundancy (see Definition 3.2.4) and the requirement, that S is
saturated up to redundancy conclude that E ⇒split(π) A1π ←, . . . , Amπ ←

is redundant w.r.t. S. This entails that in particular its ground instance
C ⇒split(ε) A1γ ←, . . . , Amγ ← is redundant w.r.t. S. By definition of re-
dundancy (see Definition 2.1.1) SC |=E Aiγ holds for some i with 1 ≤ i ≤ m
which entails SC |=E C.

8. C = (E[s])γ and sγ is reducible at an non-variable position.

In this case we need to consider the clauses that do not fall into any of the
previous cases. Therefore we analyse which kind of formulæ are not yet
treated which lead to two cases:

(a) E = A ← s ' t,B with sγ � tγ, sγ is reducible w.r.t. RC and γ is a
grounding substitution.

(b) E = s ' t ←with sγ � tγ, sγ is reducible w.r.t. RC and γ is a grounding
substitution.

As both cases can be treated in a similar way, we use a shared approach to
show by contradiction that both kind of clauses cannot appear.

As sγ is reducible by RC there must be a rule l r ∈ RC that rewrites sγ. As
case 2.1. already deals with the application of rewrite rules at a variable po-
sition we now assume that sγ is not rewritten at or below a variable position.
More formal sγ[l]p is a non-variable position of s for any p.

By construction of the rewrite rules (see Definition 3.3.1), the rule l r
is obtained from the ground instance of a positive unit clause in S. Let
F = l′ ' r′ ← be a fresh variant of the appropriate unit clause and assume
that γ is extended in such way that l′γ = l and r′γ = r.

32

As l r ∈ RC and thus l′γ r′γ ∈ RC C � F γ must hold. As C � F γ
and by the induction hypothesis the proposition holds for all clauses smaller
(w.r.t. �) than C, it has to hold for F .

Considering the first case of the proposition i.e. SF γ |=E F γ which requires
εF γ = ∅ and thus lγ rγ < RS. Therefore this case is not possible and the
second case of the proposition i.e. SF γ 6|=E F γ, stating that F γ is redundant
w.r.t. S, must hold.

We now need to treat the two different kind of formulæ separately for one
step as follows:

(a) For E = A ← s ' t,B consider the ground sup-left rule

(Aγ ← sγ[l′γ]p ' tγ,Bγ),F γ ⇒sup-left(ε) Aγ ← sγ[r′γ]p ' tγ,Bγ
(3.1)

Because p is a position of a non-variable term in s, say, l′′, the sup-left
inference

(A ← s[l′′]p ' t,B),F ⇒sup-left(σ) (A ← s[r′]p ' t,B)σ (3.2)

exists, where σ is a mgu of l′ and l′′ and γ = σδ for some substitution
δ. The ground sup-left inference (1) then is a ground inference of the
sup-left inference (2).

(b) For E = s ' t ← consider the ground unit-sup-right rule

(sγ[l′γ]p ' tγ ←),F γ ⇒unit-sup-right(ε) sγ[r′γ]p ' tγ ← (3.3)

Because p is a position of a non-variable term in s, say, l′′, the unit-
sup-right inference

(s[l′′]p ' t ←),F ⇒unit-sup-right(σ) (s[r′]p ' t ←)σ (3.4)

exists, where σ is a mgu of l′ and l′′ and γ = σδ for some substitution
δ. The ground unit-sup-right inference (3) then is a ground inference
of the unit-sup-right inference (4).

As we concluded, that F γ is not redundant w.r.t. S, the more general clause
Fσ can neither be redundant w.r.t. S.

By case 2 of the definition of saturation up to redundancy (see Definition
3.2.4) the inferences (2) and (4) are redundant w.r.t. S and thus their ground
instances (1) and (3) are redundant w.r.t. S as well.

For the sake of brevity and to treat both cases a) and b) at once we introduce
the new clause G where we assume that it is the conclusion of the inference

33

(1) or the inference (2). For the following it makes no difference if G =

Aγ ← sγ[r′γ]p ' tγ,Bγ or G = sγ[r′γ]p ' tγ ← as it holds for both cases.

By definition of redundancySC∪{F }γ |=E G. By induction over the ordering
of the clauses and the combination of both conclusions of the proposition we
derive RH ∪ reH |=E H for every H ∈ SC. In combination with lemma 2
this leads to RH ∪ εH ⊆ RC which with lemma 1 leads to RC |=E H , for every
clauseH ∈ SC. This is equivalent with RC |=E SC.

As F = (l′ ' r′)γ is present as a rewrite rule l′γ r′γ ∈ RC thus l r ∈
RC, it follows trivially that RC |=E F γ. In combination with RC |=E SC and
SC ∪ {F }γ |=E G conclude RC |=E G.

From l r ∈ RC conclude by congruence RC |=E C which in combination
with RC |=E SC is a contradiction to SC 6|=E C.

�

The last step of this part concerns the static completeness (see Theorem 4) that
claims, that a clause set, that is saturated up to redundancy and does not contain
the empty clause is E-satisfiable. To show that the set is E-satisfiable it suffices to
prove that there is a model for this set. This is basically done straight forward by
using Proposition 3 to show that there is a model for such a set.

Theorem 4 (Static Completeness)
Let S be a clause set saturated up to redundancy.

If � < S then S is E-satisfiable.
�

Proof. Suppose � < S. For S to be E-satisfiable there must be an E-Model. We
therefore show that RS is an E-model for S by showing that RS |=E Cγ for an
arbitrary chosen clause C ∈ S and an arbitrary chosen grounding substitution γ.
Proposition 3 leads to RCγ ∪ εCγ |=E Cγ which with Lemma 1 leads to RS |=E Cγ

what was to be shown.
�

This concludes the second part of this section. So far we have only talked of
set of clauses and the E-hyper tableau calculus was not involved. In the following
chapter we use the properties gathered so far in relation with the E-hyper tableau
calculus rules and properties to prove its completeness.

3.3.4 Completeness

We can now use the results about static completeness to prove Theorem 13 that
is the main contribution of this part and states that the modified version of the E-
hyper tableau calculus is complete, i.e. if a fair derivation of a set of clauses is not
a refutation, then the set of clauses is E-satisfiable.

34

To prove Theorem 13 by using Theorem 4 we need have a set of clauses that
is saturated up to redundancy. Thus Proposition 11 is introduced and proven that
states, that the set of persistent clauses of an exhausted branch of an fair derivation
is saturated up to redundancy.

Additionally, a couple of lemmas, which are introduced now, are needed for
the proves. The first one is Lemma 5 which states that if a clause C is satisfied
by the union of the set of clauses of an initial segment of a branch and the set of
clauses S, then C is satisfied by the union of S and the set of persistent clauses of
that branch, as well.

Lemma 5
Let C1 and C2 be ground clauses, S a set of ground clauses, D a derivation, t∞ the
limit tree of D and B a branch of t∞. Furthermore let B j be the initial segment of
B and B∞ the set of persistent clauses for B.

If (B j)C1 ∪ S |=E C2 for some j < ν then (B∞)C1 ∪ S |=E C2.
�

Proof. To proof that (B∞)C1 ∪ S |=E C2 holds we use well-founded induction and
assume that the lemma holds for all clauses C′1 with C1 � C

′
1.

If (B j)C1 ⊆ (B∞)C1 then the results follows from the monotonicity of first-order
logic with equality. If (B j)C1 * (B∞)C1 we can use the compactness of first order-
logic with equality to remove the clauses that are in (B∞)C1 but not in (B j)C1 . Thus
we define (B j)C1 to be a finite subset of (B j)C1 for which the entailment in the
lemmas premiss ((B j)C1 ∪ S |=E C2) holds.

Let B′ = (B j)C1 \(B∞)C1 be those clauses from (B j)C1 that are not an instance of
any persisting clause in (B∞)C1 . We now choose a C′ ∈ B′ which by construction
is a ground clause of (B j)C1 that is not in (B∞)C1 , i.e. C′ ∈ (B j)C1 and C′ < (B∞)C1 .

If C′ ∈ (B j)C1 but C′ < (B∞)C1 the clause C′ was removed from the clause set
Bk by the application of the Del or Simp rule at a certain step k < κ. Therefore
C′must be an object tautology clause, or non-properly subsumed or redundant. We
now consider each possibility.

1. C is an object tautology clause

Suppose C was removed from Bk because it was an object tautology clause,
i.e. Cσ is likeA,← i1 ' i2,B with i1, i2 ∈ D and i1 , i2.

As i1 and i2 are two non-identical members of D and the unique name as-
sumption applies to D the equation i1 ' i2 can never be true. With the false
literal i1 ' i2 in the body of the clause the whole clause becomes true.

As there can be no non-tautological clauses D such that true |=E D the
lemma holds trivially.

2. C is non-properly subsumed

35

Suppose C was removed from Bk because it was non- properly subsumed
by a clause D ∈ Bk. C must be a proper instance of D as by the derivation
rules Equality and Split no derived clause set Bi can contain a clause and
a variant of it. The converse relation to proper instantiation, called proper
generalisation, is well founded. Thus, by induction on this ordering, there
is a clause D′ in B∞ that non- properly subsumes C. As C′ is an instance
of C and C is an instance of D′, C′ is an instance of D′. With D′ ∈ B∞,
C′ is an instance of a persisting clause in B∞ which is a contradiction to
the construction of B′ as B′ contains those clauses of (B j)C1 that are not an
instance of any persisting clause in B∞. Therefore this case is impossible.

3. C is redundant

Suppose C was removed from Bk because it and its instance C′ was redund-
ant w.r.t. a specific subset B′′ of the derived branch Bk+1 where B′′ is the
branch specified in the definition of the Del and Simp derivation rules. Be-
cause B′′ ⊆ Bk+1 it follows, that C′ is redundant w.r.t. Bk+1 i.e. (Bk+1)C′ |=E

C′. By monotonicity of first order logic with equality (Bk+1)C′ ∪ S |=E C
′

holds.

As C′ ∈ B′ and B′ ⊆ (B j)C1 it follows that C′ ≺ C1. By induction then

(B∞)C′ ∪ S |=E C
′. (3.5)

C′ ≺ C1 leads to (B∞)C′ ⊆ (B∞)C1 which in combination with (5) and the
monotonicity of first order logic with equality entails

(B∞)C1 ∪ S |=E C
′. (3.6)

This entailment allows us to replace the clause C′ in the premise (B j)C1 by
the stronger set (B∞)C1 ∪ S. That is from (B j)C1 ∪ S |=E C2 and 6 follows

(
(B∞)C1 ∪ S

)
∪

(
(B j)C1 \ {C

′}
)
∪ S |=E C2. (3.7)

As this has to hold for all members of B′, (7) can be extended to

(
(B∞)C1 ∪ S

)
∪

(
(B j)C1 \ B′

)
∪ S |=E C2. (3.8)

With the definition of B′ = (B j)C1 \ (B∞)C1 which implies (B j)C1 \ B′ ⊆
(B∞)C1 and (8) (B∞)C1 ∪ S |=E C2 follows immediately.

�

The result of Lemma 5 allows a straight forward proof of Lemma 6 which
states, that if a clause is redundant to the set of clauses for an initial segment of a
branch it is redundant to the set of persistent clauses of this branch as well.

36

Lemma 6
Let C be a clause, D a derivation, t∞ the limit tree of D and B a branch of t∞.
Furthermore let B j be the initial segment of B and B∞ the set of persistent clauses
for B.

If C is redundant w.r.t. B j for some j < ν then C is redundant w.r.t. B∞.
�

Proof. Suppose C is redundant w.r.t. B j for some j < ν. To show that C is redund-
ant w.r.t. B∞ it suffices to show that an arbitrary ground clause of C is redundant
w.r.t. B∞. Therefore letD = Cγ for a grounding substitution γ. As C is redundant
w.r.t. B j its instance D is redundant w.r.t. B j, i.e. (B j)D |=E D. Lemma 5 leads to
the conclusion (B∞)D |=E D i.e. D is redundant w.r.t. B∞.

�

For the proof of Proposition 11 four more lemmas are needed. The first three
claim, that if an application of the sup-left, unit-sup-right, ref and split rule is
redundant with respect to the set of clauses of an initial segment of a branch, the
application of those rules is redundant with respect to the set of persistent clauses
for this branch.

The fourth lemma claims that if the unit-cont-right is not applicable to the set of
clauses of an initial segment of a branch, it is not applicable to the set of persistent
clauses.

Lemma 7 formalizes this statement for the sup-left and unit-sup-right inference
rules. The according proof is straight forward by applying definitions and Lemma
5.

Lemma 7
Let C be a clause, D be a positive unit clause, D a derivation, t∞ the limit tree of
D and B a branch of t∞. Furthermore let B j be the initial segment of B and B∞ the
set of persistent clauses for B.

Any inference C,D ⇒R(σ) E, where R ∈ {sup-left, unit-sup-right} that is re-
dundant w.r.t. B j, for some j < ν, is redundant w.r.t. B∞.

�

Proof. Suppose an inference C,D ⇒R(σ) E, where R ∈ {sup-left, unit-sup-right}
is redundant w.r.t. B j, for some j < ν. To show that C,D ⇒R(σ) E is redundant
w.r.t. to B∞ it suffices to show that an arbitrary ground instance of the inference
is redundant w.r.t. B∞. Let γ be an arbitrary grounding substitution such that
γ = σδ and Cγ,Dγ ⇒R(ε) Eδ is a ground instance of C,D ⇒R(σ) E we show that
Cγ,Dγ ⇒R(ε) Eδ is redundant w.r.t. B∞.

As C,D ⇒R(σ) E is redundant w.r.t. B j it follows trivially that Cγ,Dγ ⇒R(ε)
Eδ is redundant w.r.t. B j i.e. (B j)Cγ ∪ {Dγ} |=E Eγ which with Lemma 5 leads to

37

(Bi)Cγ ∪ {Dγ} |=E Eγ, i.e. Cγ,Dγ ⇒R(ε) Eδ is redundant w.r.t. B∞, which was to
be shown.

�

Lemma 8 formalizes this statement for the ref inference rules. The according
proof is similar to that of Lemma 7.

Lemma 8
Let C be a clause, D be a positive unit clause, D a derivation, t∞ the limit tree of
D and B a branch of t∞. Furthermore let B j be the initial segment of B and B∞ the
set of persistent clauses for B.

Any inference C ⇒ref(σ) E that is redundant w.r.t. B j, for some j < ν, is
redundant w.r.t. B∞.

�

Proof. Suppose an inference C ⇒ref(σ) E is redundant w.r.t. B j, for some j < ν. To
show that C ⇒ref(σ) E is redundant w.r.t. to B∞ it suffices to show that an arbitrary
ground instance of the inference is redundant w.r.t. B∞. Let γ be an arbitrary
grounding substitution such that γ = σδ and Cγ ⇒ref(ε) Eδ is a ground instance of
C ⇒ref(σ) E we show that Cγ ⇒ref(ε) Eδ is redundant w.r.t. B∞.

As C ⇒ref(σ) E is redundant w.r.t. B j it follows trivially that Cγ ⇒ref(ε) Eδ is
redundant w.r.t. B j i.e. (B j)Cγ ∪ ∅ |=E Eγ which with Lemma 5 leads to (Bi)Cγ ∪
∅ |=E Eγ, i.e. Cγ ⇒ref(ε) Eδ is redundant w.r.t. B∞, which was to be shown.

�

Lemma 9 takes care of the remaining rule of the original calculus, namely
split. Again the prove is a straight forward application of definitions but this time
in combination with Lemma 6.

Lemma 9
Let C be a positive clause, π a purifying substitution for C, D a derivation, t∞ the
limit tree of D and B a branch of t∞. Furthermore let B j be the initial segment of
B and B∞ the set of persistent clauses for B.

If the inference C ⇒split(π) A1 ←, . . . , Am ← is redundant w.r.t. B j, for some
j < ν, then it is redundant w.r.t. B∞.

�

Proof. Suppose an inference C ⇒split(π) A1 ←, . . . , Am ← is redundant w.r.t.
B j, for some j < ν. To show that C ⇒split(π) A1 ←, . . . , Am ← is redundant
w.r.t. to B∞ it suffices to show that an arbitrary ground instance of the inference is
redundant w.r.t. B∞. Let γ be an arbitrary grounding substitution such that γ = πδ

and Cγ ⇒split(ε) A1δ ←, . . . , Amδ ← is a ground instance of C ⇒split(π) A1 ←

, . . . , Am ← we show that Cγ ⇒split(ε) A1δ ←, . . . , Amδ ← δ is redundant w.r.t.
B∞.

38

As C ⇒split(π) A1 ←, . . . , Am ← is redundant w.r.t. B j it follows trivially that
Cγ ⇒split(ε) A1δ ←, . . . , Amδ ← is redundant w.r.t. B j, i.e. Aiδ ← for some i with
1 ≤ i ≤ m is redundant w.r.t. B j. With Lemma 6 Aiδ ← is redundant w.r.t. B∞
which entails that Cγ ⇒split(ε) A1δ←, . . . , Amδ← δ is redundant w.r.t. to B∞.

�

The last lemma needed to prove Proposition 11 is Lemma 10. The prove is
done by contradiction and application of the appropriate definitions.

Lemma 10
Let C be a positive unit, D a derivation, t∞ the limit tree of D and B a branch of t∞.
Furthermore let B j be the initial segment of B and B∞ the set of persistent clauses
for B.

If an inference C ⇒unit-cont-right(σ) � is not applicable to B j, for some j < ν and
some substitution σ, then it is not applicable to B∞.

�

Proof. Suppose an inference C ⇒unit-cont-right(σ) � is not applicable to B j, for
some j < ν. To show that C ⇒unit-cont-right(σ) � is not applicable to B∞ if it is
not applicable to B j, we show by way of contradiction that it is not possible for
C ⇒unit-cont-right(σ) � to be applicable to B∞ but to be not applicable to B j.

For C ⇒unit-cont-right(σ) � to be applicable in B∞ there must be a clause C ∈ B∞
and an grounding substitution σ such that Cσ = i1 ' i2 ← with i1, i2 ∈ D and
i1 , i2.

From the definition of the set of persistent clauses (see Definition 2.2.4) follows
that B j = B∞] B where B is the set of clauses that have been rewritten in the
derivation. By contradiction assume that C ∈ B. That is C has been rewritten by
the Del or Simp rule. It is easy to see that there is no possibility that C can be
rewritten and thus C < B. Thus C ∈ B j must hold.

But if C ∈ B j, then C ⇒unit-cont-right(σ) � is applicable which clearly is a contra-
diction.

�

Now Proposition 11, that states, that with an fair derivation the set of persistent
clauses of an exhausted branch is saturated up to redundancy, is introduced and
proven. The main idea of the proof is to show that all the requirements of the
definition of saturation up to redundancy (see Definition 3.2.4) are fulfilled.

Proposition 11 (Exhausted branches are saturated up to redundancy)
If B is an exhausted branch of a limit tree of some fair derivation then B∞ is satur-
ated up to redundancy.

�

39

Proof. Suppose B is an exhausted branch of a limit tree of some fair derivation. To
show that B∞ is saturated up to redundancy it suffices to chose an arbitrary clause
C ∈ B∞ that is not redundant w.r.t. and prove that the properties for saturation up
to redundancy (see Definition 3.2.4) hold for C.

Before we take care of the four properties of saturation up to redundancy, notice
that if there is branch B j with j < ν and C is redundant w.r.t. B j it follows from
lemma 6 that C is redundant w.r.t. B∞ and nothing remains to be shown.

Therefore suppose that C is not redundant w.r.t. B j, for all j < ν.

1. C ⇒unit-cont-right(σ) �

By Definition 3.2.6 a branch B where Inc is applicable with underlying in-
ference C ⇒unit-cont-right(σ) � is not exhausted. Therefore there must be no
C ∈ B such that Cσ is like i1 ' i2 ← with i1, i2 ∈ D and i1 , i2.

From Lemma 10 it follows, that if unit-cont-right is not applicable to B it is
neither applicable to B∞.

Thus there is no clause in B∞ such that the inference rule unit-cont-right is
applicable which concludes the fourth case of the definition of saturation up
to redundancy (see Definition 3.2.4).

2. C,D ⇒R(σ) E where R ∈ {sup-left, unit-sup-right}

Suppose there is an inferenceC,D ⇒R(σ) Ewhere R ∈ {sup-left, unit-sup-right},
σ is a substitution andD is a fresh variant of a positive unit clause from B∞.

To show that B∞ is saturated up to redundancy it suffices to show one of the
following: Cσ is redundant w.r.t. B∞,Dσ is redundant w.r.t., C,D ⇒R(σ) E

is redundant w.r.t. B∞.

If there is a j < ν such that Cσ is redundant w.r.t. B j, then by Lemma 6 Cσ
is redundant w.r.t. B∞, which concludes this case. The same holds forDσ.

Hence we assume that neither Cσ norDσ is redundant w.r.t. B j for all j < ν.

To show that C,D ⇒R(σ) E is redundant w.r.t. B∞ it suffices to show that an
arbitrary ground instance Cγ,Dγ ⇒R(ε) Eδ of the inference C,D ⇒R(σ) E

with the grounding substitution γ = σδ and some substitution δ is redundant
w.r.t. to B∞.

As C ∈ B∞ there must be an i < ν such that for all j with i ≤ j < ν, C ∈ B j.
And as D is an variant of a clause in B∞ there must be an i′ such that for
all j′ with i′ ≤ j′ < ν, D is a variant of a clause in B j′ . Without loss of
generality assume that i ≥ i′ and thus D is a variant of a clause in B j for all
i ≤ j < ν.

Under these conditions, the derivation rule Equality is applicable to Bi with
underlying inference C,D ⇒R(σ) E unless E is a variant of a clause in Bi

which would entail that the inference is redundant w.r.t. Bi and conclude this
proof.

40

By assumption Cσ and Dσ are not redundant w.r.t. B j for every j < ν.
As B is an exhausted branch and the definition of exhausted branches (see
Definition 3.2.6) states there is a k < ν such that the inference C,D ⇒R(σ) E

is redundant w.r.t. Bk by Lemma 7 follows that this inference is redundant
w.r.t. B∞.

This holds for its ground inference Cγ,Dγ ⇒R(ε) Eδ as well.

3. C ⇒ref(σ) E

Suppose there is an inference C ⇒ref(σ) E where σ is a substitution.

To show that B∞ is saturated up to redundancy it suffices to show that Cσ is
redundant w.r.t. B∞ or C ⇒ref(σ) E is redundant w.r.t. B∞.

If there is a j < ν such that Cσ is redundant w.r.t. B j, then by Lemma 6 Cσ
is redundant w.r.t. B∞, which concludes this case.

Hence we assume that Cσ is not redundant w.r.t. B j for all j < ν.

To show that C ⇒ref(σ) E is redundant w.r.t. B∞ it suffices to show that an
arbitrary ground instance Cγ ⇒ref(ε) Eδ of the inference C ⇒ref(σ) E with the
grounding substitution γ = σδ and some substitution δ is redundant w.r.t. to
B∞.

As C ∈ B∞ there must be an i < ν such that for all j with i ≤ j < ν, C ∈ B j.

Under these conditions, the derivation rule Equality is applicable to Bi with
underlying inference C ⇒ref(σ) E unless E is a variant of a clause in Bi which
would entail that the inference is redundant w.r.t. Bi and conclude this proof.

By assumption Cσ is not redundant w.r.t. B j for every j < ν. As B is an
exhausted branch and the definition of exhausted branches (see Definition
3.2.6) states there is a k < ν such that the inference C ⇒ref(σ) E is redundant
w.r.t. Bk by Lemma 8 follows that this inference is redundant w.r.t. B∞.

This holds for its ground inference Cγ ⇒ref(ε) Eδ as well.

4. C ⇒split(π) A1 ← , Am ←

Suppose there is an inference C ⇒split(π) A1 ←, . . . , Am ← where π is a
purifying substitution.

To show that B∞ is saturated up to redundancy it suffices to show that Cπ is
redundant w.r.t. B∞ or C ⇒split(π) A1 ← , Am ← is redundant w.r.t. B∞.

If there is a j < ν such that Cσ is redundant w.r.t. B j then by Lemma 6 Cσ
is redundant w.r.t. B∞ which concludes this case.

Hence we assume that Cσ is not redundant w.r.t. B j for all j < ν.

To show that C ⇒split(π) A1 ← , Am ← is redundant w.r.t. B∞ it suffices
to show that an arbitrary ground instance Cγ ⇒split(ε) A1δ← , Amδ← of
the inference C ⇒split(π) A1 ← , Am ← with the grounding substitution
γ = πδ and some substitution δ is redundant w.r.t. to B∞.

41

As C ∈ B∞ there must be an i < ν such that for all j with i ≤ j < ν, C ∈ B j.

Under these conditions, the derivation rule Split is applicable to Bi with un-
derlying inference C ⇒split(π) A1 ← , Am ← unless Ah ← for some
1 ≤ h ≤ m is a variant of a clause in Bi which would entail that the inference
is redundant w.r.t. Bi and conclude this proof.

By assumption Cσ is not redundant w.r.t. B j for every j < ν. As B is
an exhausted branch and the definition of exhausted branches (see Defini-
tion 3.2.6) states there is a k < ν such that the inference C ⇒split(π) A1 ←

. . . . , Am ← is redundant w.r.t. Bk by Lemma 9 follows that this inference is
redundant w.r.t. B∞.

This holds for its ground inference Cγ ⇒split(ε) A1δ← , Amδ← as well.

�

For the proof of the following theorem an additional lemma is needed. Lemma
12 states that if a rewrite system entails an clause set, and a clause is redundant
with respect to this clause set, the rewrite system entails the clause. The proof is
done straight forward.

Lemma 12
If R |=E S and C is redundant w.r.t. S then R |=E C.

�

Proof. Suppose R |=E S and C is redundant w.r.t. S. To show R |=E C it suffices
to show that for an arbitrary ground clause D of C, i.e. D = Cγ for a grounding
substitution γ, R |=E D holds. As C is redundant w.r.t. S it follows trivially thatD
is redundant w.r.t. S, i.e. SD |=E D. With the assumption R |=E S and SD ⊂ S we
can conclude R |=E D.

�

Theorem 13 states the completeness of the modified E-hyper tableau calculus,
i.e. if a fair derivation for a clause set is not a refutation, this clause set is satisfiable.

The proof is straight forward and mainly relies on the theorem of static com-
pleteness (see Theorem 4) and the proposition that exhausted branches are satur-
ated up to redundancy.

Theorem 13 (Completeness of E-Hyper Tableaux)
Let S be a clause set and D a fair derivation of S.

If D is not a refutation the S is satisfiable.
�

Proof. By definition D’s limit tree has an exhausted branch B.

42

As B is an exhausted branch, by definition it does not contain the empty clause.
Furthermore by proposition 11 B∞ is saturated up to redundancy and because of
� < B it follows � < B∞.

By theorem 4 B∞ is satisfiable as there is a rewrite system RB∞ that is an E-
model for B∞, i.e. RB∞ |=E B∞.

To prove the theorem it suffices to show that RB∞ |=E S which can be done by
showing that for any clause C ∈ S RB∞ |=E C holds.

By definition of derivation B0 is the single branch of the initial tableau of the
derivation D and thus equivalent with S. Therefore assume C ∈ B0.

If C ∈ B∞, RB∞ |=E C follows immediately from RB∞ |=E B∞. Therefore
suppose C < B∞.

If C ∈ B0 but C < B∞ the clause C was removed from the clause set Bk by the
application of the Del or Simp rule at a certain step. Therefore Cmust be an object
tautology clause, or non-properly subsumed or redundant. We now consider each
possibility.

1. C is an object tautology clause

Suppose C was removed from Bk because it was an object tautology clause,
i.e. Cσ is likeA,← i1 ' i2,B with i1, i2 ∈ D and i1 , i2.

As i1 and i2 are two non-identical members of D and the unique name as-
sumption applies to D the equation i1 ' i2 can never be true. With the false
literal i1 ' i2 in the body of the clause the whole clause becomes true. Thus
RB∞ |=E C follows trivially.

2. C is non-properly subsumed

Suppose C was removed from Bk because it was non- properly subsumed
by a clause D ∈ Bk. C must be a proper instance of D as by the derivation
rules Equality and Split no derived clause set Bi can contain a clause and a
variant of it. The converse relation to non-proper subsumption, called proper
generalisation, is well founded. Thus, by induction on this ordering, there is
a clause D′ in B∞ that non- properly subsumes C. As D′ ∈ B∞ applies and
Rbbi |=E D

′ holds, RB∞ |=E C holds as well.

3. C is redundant

Suppose C was removed from Bk because it was redundant w.r.t. a specific
subset B′ of the derived branch Bk+1 where B′ is specified in the definition
of the Del and Simp derivation rules. Because B′ ⊆ Bk+1 it follows trivially,
that C is redundant w.r.t. Bk+1. By Lemma 6 C is redundant w.r.t. B∞ which
with Lemma 12 leads to RB∞ |=E C.

�

With the completeness of the modified E-hyper tableau calculus shown and
proven, the third part of the properties is concluded. The following and final part
now takes care of the soundness.

43

3.3.5 Soundness

Now the soundness of the extended E-hyper tableau calculus is introduced and
proven. In contrast to the completeness this part is rather straight forward and
compact. It starts with Lemma 14 that states that if a premise of a derivation rule
Equality, Split, Del or Simp is E-satisfiable, one conclusion is E-satisfiable as well.
The proof is done straight forward by showing this statement for each of the four
derivation rule.

Lemma 14
For each of the derivation rules Equality, Split, Del and Simp holds, if the premise
of the rule is E-satisfiable, then one of its conclusions is E-satisfiable as well.

�

Proof. The claim is proven be examining each rule on its own.
For the Equality rule we take a look at the sup-left and unit-sup-right rule. If the

premiss of such a rule is E-satisfiable then there is an E-model I. With the axioms
of congruence it follows immediately that I is an E-model for the conclusion as
well. For ref the claims follows immediately from the reflexivity. With sup-left,
unit-sup-right and ref being the underlying inference rules for the Equality rule, it
can be concluded that the claim holds for Equality.

For Split, assume an E-model I for the premiss B. With A1, . . . , Am ←∈ B and
the purifying substitution π, I is an E-model for (A1, . . . , Am ←)π. As all variables
are implicitly universally quantified I has to be an E-model for ∀(A1, . . . , Am ←)
Due to purification the set of variables of each Ai is disjunct which allows to write
∀A1π∨ . . .∨ ∀Amπ instead of ∀(A1π∨ . . .∨ Amπ). Thus I is an E-model for one of
B · A1π←

d, . . . , B · Amπ←
d.

For Del the claim holds directly from its definition.
For Simp assume an E-model I for the premiss. From the definition of the

Simp rule(see Fig. 2.3) (B · C · B1) |=E D for clauses C, D and branches B, B1
follows thatD holds in I.

�

The next step is Lemma 15 that states, that if the derivation rule Inc is ap-
plicable, its premise is E-unsatisfiable. The prove is straight forward and uses the
definition of the Inc derivation rule.

Lemma 15
If the derivation rule Inc is applicable, its premise is E-unsatisfiable.

�

Proof. For Inc to be applicable, there must be a C ∈ B and a substitution σ such
that the inference C ⇒unit-cont-right(σ) � can be applied. Therefore C and σ must be
of such a form that Cσ = i1 ' i2 ← with i1, i2 ∈ D and i1 , i2.

44

As i1 and i2 are two non-identical distinct object identifiers and the unique
name assumption applies to the set of distinct object identifiers this equation can
never be true. Therefore there is no E-model for i1 ' i2 ← and as C is clause of B,
the branch B is E-unsatisfiable.

�

Finally both just introduced lemmas are used to prove Theorem 16, that states
the soundness of the extended E-hyper tableau calculus, i.e. if a clause set has an
E-hyper tableau refutation it is E-unsatisfiable.

Theorem 16 (Soundness of E-Hyper Tableaux)
Let S be a clause set that has a refutation. Then S is E-unsatisfiable.

�

Proof. Assume a refutation leads to the closed tableau T. From Lemma 15 and
the contrapositive of Lemma 14 we conclude that if a tableau Ti of a derivation
contains only E-unsatisfiable branches, this holds for its predecessor Ti−1 as well.
Following the definition of a refutation, the final tableau T only consists of E-
unsatisfiable branches.

By induction on the length of the refutation we can conclude that the ini-
tial tableau T0, consisting of one branch with the tableau clauses from S, is E-
unsatisfiable.

�

This concludes the theoretical part of this work.

45

46

Chapter 4

Implementation and Evaluation

4.1 Implementation

4.1.1 Introduction

Instead of starting from scratch with implementing the calculus, it was decided to
extend the E-KRHyper prover. In section 4.1.2, we give a short introduction of the
existing system before we explain some of the made adoptions in Section 4.1.3.

Subsequently, the set-up and results of the evaluation of the approach are shown
in Section 4.2.

4.1.2 E-KRHyper

The E-KRHyper system[19, 20] is an automated theorem prover by Björn Pelzer at
the Universität Koblenz-Landau, which implements the E-hyper tableau calculus.
It is based on the KRHyper system[28, 29] by Christoph Wernhard at the Uni-
versität Koblenz-Landau, which is an implementation of the original hyper tableau
calculus. The development of the KRHyper was stopped when it was superseded
by the introduction of the E-KRHyper system. Both systems are well established
and used in different areas. The areas of use include amongst others natural ques-
tion answering[14], e-learning [8, 11] and ontology reasoning [9].

Both systems are written in the OCaml programming language[16]. It is a
strong and static typed functional language, which allows to used other program-
ming paradigms, as well, and offers the possibility to create high performance pro-
grams.

As the implementation of the E-KRHyper system involves about 29,000 lines
of code and has a high complexity, a full-fledged explanation would exceed the
scope of this thesis. Thus the introduction of the system is not a complete descrip-
tion of the code but only a glimpse on the parts that are of special importance for
the general functionality of the prover or subject to change due to the extension of
the calculus. Some more information on implementation details can be found in

47

[18]. The version of E-KRHyper that was used as foundation for our implementa-
tion was 1_2(05122011).

E-KRHyper can use two different kinds of input formats, namely the TPTP
syntax and the protein[7] syntax. The latter is referred to as tme-syntax, as well,
due to the .tme-file extension of protein files.

The input files are handled by a parser/lexer combination, where the lexer trans-
forms the input into a stream of tokens. This stream of tokens is processed by the
parser that uses clausify.ml and term.ml to create the appropriate terms and
formulae out of these tokens.

Instead of writing the lexer and parser from scratch, the lexer is generated by
ocamllex and the parser is generated by ocamlyacc. Thus one does not need to
write the parser or lexer but just an appropriate lex (.mll) or yac (.mly) file.

A term is either the representation of a logical term or it is a so called Meta-
statement which represents a command for E-KRHyper like #(run)., which starts
the proving process.

If the term is the representation of a logical term or formula, methods from
env.ml and ic.ml are used to create the appropriate clauses and add them to
the initial node of the E-hyper tableau, which is represented by a variable of type
Tableau.node. The implementation of an E-hyper tableau differs from the theor-
etical introduction as a node does not represent a single clause but a set of clauses.
As long as no split occurs, the algorithm generates new clauses if possible, which
are then added to the node. If the split rule is applied, new Tableau.nodes are
created and the newly introduced nodes inherit the clauses of their father node.
With this behaviour a Tableau.node contains the clauses of all the nodes that lie
between the root and the next split in the E-hyper tableau.

In the theory, it does not matter which rules to apply in which order, as long as
it leads to a fair derivation. In the implementation however, the order of rule ap-
plications influences runtime performance. Thus E-KRHyper derives new clauses
according to a certain principle, which we introduce now in a simplified version.
All clauses have a certain weight assigned that either depends on the number of
positions in the clause or on the depth of the clause. By parameter it can be chosen
which of the two methods to calculate the weight is used. The derivation process
starts with the set of clauses in the start node and a certain maximum weight. The
weight limit is set and is used as boundary for a iterative deepening strategy to con-
struct the tableau. Now sup-left, unit-sup-right and ref rules are applied to all pos-
sible clauses and the resulting clauses are added to the node as well. The rules are
only applicable if the weight of the generated clause is smaller than the maximum
weight. If no more applications of sup-left, unit-sup-right or ref are possible under
this conditions, and the split rule is applicable, the algorithm applies the split rule
and hence introduce new branches. Now the procedure is repeated for the newly
generated branches. If there is no more way to generate clauses with a weight less
than the weight limit, the algorithm evaluates if all clauses that can be generated
and have a weight that is equal or greater than the weight limit, are redundant. In
that case the tableau has at least one open exhausted branch and the derivation is

48

finished. If there are overweight clauses, which are not redundant, the weight limit
is increased, a backtracking mechanism is used and the algorithm continues. The
usage of the weight as criterion for splitting prevents early branch splitting which
would result in a bad runtime behaviour. Delaying the splitting indefinitely would
lead to an incomplete calculus, as early splits are sometimes needed to be able to
close a tableau. [18] offers more details on this issue.

The term ordering that is needed for the calculus is provided by lrpOrder.ml,
which implements methods that represent the � relation.

To avoid confusion, the code of the unchanged version of the E-KRHyper is
called traditional code.

4.1.3 Handling Distinct Object Identifiers

To avoid the introduction of errors and unwanted side effects and to benefit from the
existing implementation as much as possible, we looked for a way to adapt the E-
KRHyper to the presented calculus with as few changes as possible in the code. The
chosen solution does not implement a new datatype for distinct object identifiers
but introduces a new boolean attribute doi in the record Term.symbol, which is
the datatype for representing logical constants in the implementation. As doi is
false by default and thus has to be set explicitly and as there are no code segments
in the traditional code that consider doi, this is a suitable method to introduce
distinct object identifiers without side effects on the existing code. This behaviour
follows the intention of the logic as distinct object identifiers are represented as
constants with special properties. As the ability to store and process distinct object
identifiers with the implementation of the traditional calculus does not suffice for
an implementation of the extended calculus, the missing changes in the code are
introduced now.

The first step in proper handling of distinct object identifiers is to enable E-
KRHyper to load problem files that contain distinct object identifiers. The TPTP
syntax specifies that distinct object identifiers are strings that are enclosed in double
quotes — for example "a" — and we follow this specification. For an easier com-
prehension when printing terms, the double quotes are kept as part of the constant’s
name.

For the TPTP syntax, the lexer — tptpLexer.ml — has already been able
to process distinct object identifiers and to produce DISTINCT_OBJECT tokens.
For the tme-syntax, the generator file tmeLexer.mll was extended to mirror this
behaviour.

In its original version, tptpParser.ml, was handling the DISTINCT_OBJECT
token in a non-proper way, so we changed the behaviour that Clausify.Doi is
called. This constructor creates an object of the type Clausify.Doi that is then
saved as a prototype term. Prototype terms are needed due to some technical-
ities as intermediate step between parsing and the generation of the proper terms.
tmeParser.ml had no support for the DISTINCT_OBJECT token and was extended
in the same fashion as the TPTP version.

49

To create the proper term representation, the prototype stream is iterated and if
an objects of type Clausify.Doi is processed an object of type Term.Constant
is created. This behaviour is similar to the behaviour for prototype terms of type
Clausify.Constant but in the first case, the boolean flag doi is set during the
creation.

To simplify the handling of distinct objects, two additional methods are intro-
duced in term.ml. Both are called with a parameter of type term. The first one
returns whether this term is an equality of two non-equal distinct object identifiers
and the second one returns if this term can be instantiated to be such an equality,
i.e. if the parameter is of form i ' j or X ' j or X ' Y with i, j ∈ D, X,Y ∈ V
and i , j. This distinction of the two methods is needed: If an equation appears
as a positive unit it suffices to check if it is a possible contradiction, i.e. the latter
method returns true, and if the signature of the loaded problem contains two non-
identical distinct object identifiers to classify it as false. This behaviour is sound
as all variables are implicitly universally quantified and thus it is enough to find
one substitution that leads to a contradiction. This method cannot be used if an
equation is a subterm of a larger clause, as one or both sides of the equation might
appear in other literals of the same clause and thus it is not sound to just chose a
substitution that leads to a contradiction.

To check if a problem contains at least two non-identical distinct object identi-
fiers, the method has_dois was implemented in ic.ml. The symbol_table that
contains all the symbols that appear in a problem is iterated and the method returns
true if there are at least two distinct object identifiers.

In ic.ml a method is introduced to check if a clause is an object tautology
clause. A boolean flag is_object_tautology is added to the record Ic.clause
which is the datatype to represent clauses, to prevent repetitive calls to the method.
When creating a new clause the method is called once and the flag is set accord-
ingly. To avoid the addition of useless clauses, while creating the initial node,
clauses, that are an object tautology are not added. This is done by extending a
conditional statement in the method make_and_add_clause in env.ml .

Another modification that improves the performance by keeping the set of
clauses small was introduced in ic.ml. The method is_redundant was extended
so that it returns true for distinct object tautologies.

For the actual reasoning with unit contradictions, ic.ml was extended with the
method process_head_literals in the following way. If the head literal is a
unit contradiction a BranchClosed exception is raised to signal that this branch
of the proof is closed. This behaviour is also applied if the head literal is a pos-
sible unit contradiction and the knowledge base contains at least two non-identical
distinct object identifiers.

The adoption of the ordering in lrpOrder.ml is done straight forward. In the
traditional code, the means of comparing two constants was to compare their names
lexicographically. We introduce an additional step that checks if the two constants
that are compared are distinct object identifiers. If both are distinct object identi-
fiers, or both are not distinct object identifiers, the lexicographical comparison is

50

used to determine the greater term. In the case where exactly one of the constants
has its doi flag set, compare defines this constant to be the smaller one, which
conforms the requirement of the calculus.

At this point the implementation of the calculus is finished. For efficiency
reason, we introduce another small change. In the traditional implementation, there
is a check in ic.ml before creating a split in the proof. This check has two pur-
poses. On the one hand it looks for complemented units of the head literals. If
such a complement exist no new branch is created as it is already shown, that it
is possible to close the branch. On the other hand it looks for clauses that are
identical and then removes the duplicates. This prevents the creation of unneces-
sary branches as well. For our implementation we extended the method in such
way, that unit contradictions are removed before splitting. This is sound, as this
resembles a closed branch.

4.2 Evaluation

4.2.1 Introduction

With a suitable implementation at hand, we are now able to evaluate the impact of
the changed calculus. Therefore we split the evaluation in two independent parts.
In the first part we show that the modified implementation does not perform worse
on problems that do not contain distinct object identifiers. In the second part we
show that the use of distinct object identifiers has benefits for the execution time.

We start by introducing the machine that is used for running the benchmarks
and we then introduce the test data that we use (see Section 4.2.2). In the second
part of this section (see Section 4.2.3) we present and discuss the gathered data and
give a short conclusion on the evaluation.

4.2.2 Test Conditions

All of the following benchmarks have been executed on the same machine with the
following specifications:

CPU: Intel Core 2 Quad (Q9550) @ 2.83GHz

Memory: 4GB PC2-6400

Operating System: openSUSE 11.3

Kernel Version: 2.6.34.10-0.2-desktop

OCaml Version: 3.12.0

For showing that the introduced changes do not impair the reasoning if no dis-
tinct object identifiers are involved a sample of the TPTPv5.3.0 problems is used as
basis for a comparison of traditional and modified implementation. Those samples

51

are chosen as follows. In the first step, we randomly choose 4000 TPTP prob-
lems out of the set of CNF and FOF problems, where we use 2000 problem of
each problem form. 1. These two types of problems can be processed by the E-
KRHyper system. The 4000 problems are then randomly divided into four lists of
equal length. Then four instances of the traditional version of E-KRHyper are star-
ted, where every instance processes one list of problems. This splitting was chosen
to utilise the four CPU cores — four hardware cores, no hyperthreading — of the
test machine, as a single instance of E-KRHyper does not benefit from multiple
cores. The overall execution time for each of the four instances is measured and
stored and the results of the proof attempt for each problem is saved. When all
4000 problems are processed, the procedure is repeated with the modified version
of the E-KRHyper. In both cases a time limit of 300 seconds and a memory limit
of 1024 MB are set. If the proof attempt of a problem breaks one limit, the proof
attempt is interrupted.

For showing that the introduced changes improve E-KRHyper’s behaviour if
distinct object identifiers are used in problems, appropriate examples are needed.
Unfortunately the TPTP contains only eight problems that utilise distinct object
identifiers. Three of those problems are neither CNF nor FOF and thus not suitable
for E-KRHyper. Two of the remaining problems cannot be used as they contain
symbols that are not supported by E-KRHyper, which leaves three usable examples
of the TPTP that contain distinct object identifiers for evaluating our approach. The
synthetic benchmarks STORECOMM and STORECOMM-INVALID[1, 2], which
are introduced now where thus be chosen as problems for evaluating our approach.

Both problem classes are situated in the theory of arrays, and as it is not nat-
ively supported by E-KRHyper, we need axioms to describe the theory of arrays.
We start by introducing the function sel : ARRAY×INDEX → ELEMENT , which
returns the element that is stored at the given index of the given array, and the func-
tion sto : ARRAY × INDEX ×ELEMENT → ARRAY , which returns an array that
is constructed by storing a given element at the given index of a given array. Addi-
tionally we need the skolem function sk : ARRAY×ARRAY → INDEX as a helper
function, as neither the E-hyper tableau nor E-KRHyper is able to handle existen-
tial quantified variables. Those three operations are sufficient for our purpose and
allow to introduce the following axioms of the theory of arrays to E-KRHyper.

sel(sto(A, I, E), I) = E (4.1)

sel(sto(A, I, E), J) = sel(A, J)⇐ I , J (4.2)

A = B⇐ sel(A, sk(A, B)) = sel(B, sk(A, B)) (4.3)

Due to some technicalities, Axiom 4.2 cannot be used in this form. Thus we
rewrite it to the semantically equivalent formula 4.4.

1The two problem sets are generated by using the TPTP’s script tptp2T once with parameter
Form CNF and once with parameter Form FOF

52

I = J, sel(sto(A, I, E), J) = sel(A, J) (4.4)

This formula contains I and J in both subformulæ of the disjunctive head, i.e.
it is not pure. Thus E-KRHyper looks for an appropriate purifying substitution
when this clause is used in the proving process, which does not terminate for this
case. Hence the formula must be adopted to prevent the infinite search for a puri-
fying substitution which we achieve by adding the domain predicates index(I) and
index(J) to the body of the clause. This guarantees a pure head, when the split-rule
is applied and thus prevents the not regularly terminating search for a purifying
substitution. This modification leads to the formula 4.5.

I = J, sel(sto(A, I, E), J) = sel(A, J)⇐ index(I), index(J) (4.5)

Thus equations 4.1, 4.3 and 4.5 form the axioms for the theory of arrays, that
are used in the test cases.

A test case from STORECOMM is the task to show that given two permutations
of unique store operations on an array they result in the same array.

A test case from STORECOMM-INVALID is the task to show that given two
sequences of unique store operations that differ in at least one element they do not
result in the same array.

In this context, the term unique store operation implies, that each index of an
array is written to exactly one time.

For evaluation we, need four different kinds of test cases: STORECOMM
without native handling of distinct object identifiers, STORECOMM with native
handling of DOI, STORECOMM-INVALID without native handling of DOI, and
STORECOMM-INVALID with native handling of DOI.

To create a test case, four parameters are needed: A list p = 0, . . . , n − 1, a
permutation of that list, called q, a flag that indicates if we want to generate a test
case for STORECOMM or STORECOMM-INVALID v and a flag that indicates if
this test case uses distinct object identifiers or not d.

Independent of the chosen parameters every test case contains the three axioms
which describe the theory of arrays. Additionally every test contains n unique
predicates of form index(ix). with 0 ≤ x < n introducing the constants, which
represent the arrays indices. If distinct object identifiers are used, this predicates
look like index(”ix”).

If no distinct object identifiers are used, we need to express that all indices and
are distinct, which is done by introducing

(
n
2

)
unique predicates of form f alse :- ix =

iy. with (x, y) ∈ Cn
2 where Cn

2 is the set of 2-combinations over {0, . . . , n − 1}. Ad-
ditionally we need to express that all elements are distinct, which is done by intro-
ducing

(
n
2

)
unique predicates of form f alse :- ex = ey. with (x, y) ∈ Cn

2.
The actual property that is to be proven is then added by the equality predicate

Tn,v,d(q) = Tn,v,d(p). where Tk,v,d(l) is defined as follows.

53

Tk,v,d(l) =



a if k = 0
sto(Tk−1,v,d(l), il(k), e0) if k = 1 and v = 0 and d = 0
sto(Tk−1,v,d(l), ”il(k)”, ”e0”) if k = 1 and v = 0 and d = 1
sto(Tk−1,v,d(l), il(k), el(k)) if 0 ≤ k < n and v = 1 and d = 0
sto(Tk−1,v,d(l), ”il(k)”, ”el(k)”) if 0 ≤ k < n and v = 1 and d = 1

For illustration, Figure 4.1 shows four files for the four different type of test
cases for an array with length two. For a better overview, the axioms are shown
once and then referred to by the meta symbol «AXIOMS» in the specific examples.

For evaluation, we created test cases for array length from 6 to 20 elements with
10 different samples for each length, which results in 15∗10∗4 = 600 files. We split
the 600 files into four lists, depending on the fact if they involve distinct objects or
not and if they cover STORECOMM or STORECOMM-INVALID. Four instances
of the E-KRHyper are started where each works on one list. The problems without
distinct object identifiers are processed by the traditional version and the problems
with distinct object identifiers are processed by the modifies version. The execution
time and outcome of each problem is saved.

4.2.3 Analysis

Table 4.1 show the results for the evaluation of the 4000 chosen TPTP problem
files. The first seven rows of the first column contain the different kind of res-
ults that E-KRHyper can produce for a problem. MemoryOut is returned, when
the memory limit is exceeded in the derivation process and Timeout is returned,
when the time limit is exceeded in the derivation process. E-KRHyper returns
ERROR when a fatal error occurs in the reasoning process. The other four res-
ults Satisfiable, Unsatisfiable, Theorem, CounterSatisfiable are result types defined
by TPTP. Execution time is the overall time needed to finish all problems and is
computed by adding the execution times needed by each of the four instances of
E-KRHyper.

The data gathered suppose that the introduced modifications do not impair E-
KRHyper’s behaviour for problems without distinct object identifiers. The differ-
ences of the number of problems that broke the memory or time limit is not of
interest and the difference in the execution time is insignificant.

At the first glance, the fact that there is one problem that was classified as
satisfiable by the traditional implementation but not the modified one seems like
a grave impact, but it is not the case. The problem in question is YN513-1 and
additional examinations were done to understand this behaviour. When running
this single problem multiple times with both versions of E-KRHyper, the results
were alternating between Satisfiable and Timeout. This leads to the assumption
that the time needed to solve the problem is close to the timeout limit and external
interruptions — like a redistribution of CPU time by the linux kernel — delay

54

s e l (s t o (A, I , E) , I) = E .

I = J ; s e l (s t o (A, I , E) , J) = s e l (A, J) :−
index (I) ,
index (J) .

A = B :− s e l (A, sk (A, B)) = s e l (B , sk (A, B)) .

(a) The AXIOMS.

<<AXIOMS>>

index (i 0) .
index (i 1) .

f a l s e :− i 0 = i 1 .
f a l s e :− e0 = e1 .

s t o (s t o (a , i1 , e1) , i0 , e0) = s t o (s t o (a , i0 , e0) , i1 , e1) .

(b) STORECOMM without distinct object identifiers.

<<AXIOMS>>

index (" i 0 ") .
index (" i 1 ") .

s t o (s t o (a , " i 1 " , " e1 ") , " i 0 " , " e0 ") = s t o (s t o (a , " i 0 " , " e0 ") , " i 1 " , " e1 ") .

(c) STORECOMM with distinct object identifiers.

<<AXIOMS>>

index (i 0) .
index (i 1) .

f a l s e :− i 0 = i 1 .
f a l s e :− e0 = e1 .

s t o (s t o (a , i1 , e1) , i0 , e0) = s t o (s t o (a , i0 , e0) , i1 , e0) .

(d) STORECOMM-INVALID without distinct object identifiers.

<<AXIOMS>>

index (" i 0 ") .
index (" i 1 ") .

s t o (s t o (a , " i 1 " , " e1 ") , " i 0 " , " e0 ") = s t o (s t o (a , " i 0 " , " e0 ") , " i 1 " , " e0 ") .

(e) STORECOMM-INVALID with distinct object identifiers.

Figure 4.1: Examples for STORECOMM and STORECOMM-INVALID files with size
two.

55

Result Traditional Extended Difference
Satisfiable 84 83 -1
Unsatisfiable 594 595 +1
Theorem 569 569 0
CounterSatisfiable 116 116 0
MemoryOut 1555 1548 -7
Timeout 1020 1027 +7
ERROR 62 62 0
Execution time 498741s 498592s -149s
Average Execution time 124.69s 124.65s -0.04s

Table 4.1: Results for 4000 TPTP problems with traditional and modified version.

the execution long enough to break the timeout limit. Therefore the difference
in the outcome is not caused by the introduced changes. Running this example
without time and memory limits always produces the result Satisfiable for both
code versions.

The same holds for the problem LCL210-3, which was classified as Memory-
Out in the traditional implementation and as Unsatisfiable in the modified version.
For determining a MemoryOut, the OCaml garbage collector is needed and its
behaviour is not fully predictable. Running this example multiple times without
limits always produced the same result in both versions of the code.

For the second part of the evaluation the first result is that all of the 600 test
cases where classified correctly, i.e. all STORECOMM cases lead to an fair deriv-
ation with an open tableau and all STORECOMM-INVALID cases lead to a closed
tableau. These results were found for the DOI and non-DOI version.

Table 4.2 shows the execution times for the benchmark runs. Instead of printing
the results for the 15 different array sizes, with ten samples each, we calculated the
arithmetic mean for each array size and benchmark type in Table 4.2a and the vari-
ation coefficients in Table 4.2b. Figure 4.2 illustrates the average execution times,
where Figure 4.2a shows the result for STORECOMM and Figure 4.2b shows the
result for STORECOMM-INVALID.

The first observation one can make is, that the runtime of all four cases grows
in an exponential way. This behaviour could already be seen in preliminary tests
and lead to the decision to not use arrays with more then 20 elements for the sake
of keeping the overall runtime of the test reasonable. Execution times of more than
20 minutes for a single problem make a real world use quite unlikely.

Another observation that is easy to make is the rather huge difference between
the average execution times of STORECOMM and STORECOMM-INVALID cases
with the same size. With knowledge of E-KRHyper’s mode of operation and the
E-hyper tableau calculus this gap is plausible. For an invalid case the derivation of
a branch stops as soon as a contradiction can be found. For an valid case there is
no contradiction to close the branch and thus the calculus must derive new clauses

56

STORECOMM STORECOMM-INVALID
Array Size DOI[s] Non-DOI[s] DOI[s] Non-DOI[s]

6 0.029 0.030 0.022 0.024
7 0.053 0.054 0.033 0.038
8 0.100 0.100 0.073 0.081
9 0.199 0.201 0.095 0.107

10 0.423 0.425 0.276 0.300
11 0.922 0.934 0.541 0.619
12 2.054 2.071 1.253 1.382
13 4.634 4.675 2.602 2.861
14 10.405 10.500 5.687 6.264
15 23.877 24.112 12.452 13.830
16 51.745 52.346 27.582 30.656
17 117.512 118.762 59.623 65.744
18 252.547 255.559 142.025 155.980
19 572.019 578.030 285.065 308.958
20 1234.563 1246.758 665.620 731.205

(a) Average execution times.

STORECOMM STORECOMM-INVALID
Array Size DOI Non-DOI DOI Non-DOI

6 0.040 0.035 0.289 0.287
7 0.039 0.040 0.303 0.295
8 0.038 0.038 0.279 0.256
9 0.034 0.031 0.506 0.507

10 0.053 0.052 0.410 0.408
11 0.039 0.039 0.139 0.106
12 0.046 0.045 0.333 0.324
13 0.048 0.051 0.459 0.449
14 0.066 0.065 0.360 0.349
15 0.057 0.055 0.345 0.331
16 0.037 0.037 0.311 0.276
17 0.052 0.052 0.384 0.370
18 0.053 0.052 0.294 0.268
19 0.041 0.042 0.447 0.450
20 0.044 0.045 0.292 0.263

(b) Variation coefficients for the benchmark.

Table 4.2: Statistical data of the results for STORECOMM and STORECOMM-
INVALID.

57

6 8 10 12 14 16 18 20
0

200

400

600

800

1,000

1,200

1,400

size of array

av
er

ag
e

ex
ec

ut
io

n
tim

e
[s

]

Traditional Calculus Modified Calculus

(a) Average execution time for STORECOMM.

6 8 10 12 14 16 18 20
0

200

400

600

800

1,000

1,200

1,400

size of array

av
er

ag
e

ex
ec

ut
io

n
tim

e
[s

]

Traditional Calculus Modified Calculus

(b) Average execution time for STORECOMM-INVALID.

Figure 4.2: Execution times for STORECOMM (a) and STORECOMM-INVALID (b).

58

5 10 15 20
0.8

0.85

0.9

0.95

1

size of array

(a)

5 10 15 20
0.8

0.85

0.9

0.95

1

size of array

(b)

Figure 4.3: Relative execution times for STORECOMM (a) and STORECOMM-
INVALID (b).

until the criterion for an exhausted branch is met, i.e. all newly generated clauses
are redundant with respect to the set of already existing clauses. As E-KRHyper
derives new clauses by applying all applicable rules to all suitable combinations of
clauses, it is plausible that this needs more time.

Due to the exponential growth, a comparison of E-KRHyper’s runtime per-
formance in the traditional and modified version is not possible with the diagrams
in Figure 4.2 as the bars for small array sizes are not visible at all.

Therefore we have decided to normalize the execution times by choosing the
value of the tradition version to be 1 and thus dividing the result for the DOI version
by the according value of the non-DOI version. This leads to a relative comparison
of both versions, which is shown in Figure 4.3, which is suitable for comparing
the performance of the DOI and non-DOI version. For STORECOMM (see Fig-
ure 4.3a) the differences in the average execution times of traditional and modified
version is insignificant. A possible explanation relies on the fact that an exhausted
branch needs to be derived for showing a clause set to be satisfiable and thus many
clauses need to generated. As neither the unique name assumption nor the inequal-
ity axioms for the non-DOI version do contribute in this process, it is plausible that
the execution times do not change.

For STORECOMM-INVALID (see Figure 4.3b) the execution times for the
modified version are about 7 to 13 percent faster than the ones of the traditional
implementation. This supports the theoretical assumption that the use of distinct
object identifiers can lead to an improvement of the reasoning process. With native
handling of distinct object identifiers, the reasoning stops the instant a (possible)
unit contradiction is found. In the traditional implementation E-KRHyper is ex-
haustively creating new clauses and is able to close a branch if it — by chance —
was the right combination of constituent clauses that lead to a contradiction.

As no obvious tendency can be seen in Figure 4.3b, we calculated variations
coefficients. The results are shown in Table 4.2 and illustrated in Figure 4.4.

59

6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

size of array

va
ri

at
io

n
co

effi
ci

en
t

Traditional Calculus Modified Calculus

(a) Variation coefficients for STORECOMM.

6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

size of array

va
ri

at
io

ns
co

effi
ci

en
t

Traditional Calculus Modified Calculus

(b) Variation coefficients for STORECOMM-INVALID.

Figure 4.4: Variation coefficients for STORECOMM (a) and STORECOMM-INVALID
(b).

60

For the STORECOMM cases (see Figure 4.4a) the variations coefficients’ val-
ues are below 0.1 and uniformly distributed which proposes that the chosen samples
have a high quality and thus the result of our benchmark for STORECOMM has a
high validity.

For the STORECOMM-INVALID cases (see Figure 4.4b) on the other hand,
the variations coefficients’ value are rather high and heavily fluctuating. In combin-
ation with the unsteadiness of relative gain of the mean execution time this leads to
the assumption that there is a factor involved that influences the benefit of distinct
object identifiers.

A possible factor that might lead to such a behaviour is the structure of the
nested store operation, i.e. the order of the permutation used. This is plausible as
the order of the store operations determine how many proof steps are needed. This
is a subject for further investigation.

For an overall comparison of the system’s performance, we wanted to compare
our results with CVC3[4] which is a satisfiability solve with native handling of the
theories of arrays. As some preliminary tests with STORECOMM problems of
size 20 from the SMT-LIB[5] resulted in execution times of less than a second, we
decided to not do a full evaluation as CVC3 performance is clearly superior to the
traditional and modified version of E-KRHyper.

We conclude this section by summarizing the results of the analysis. The first
result is that the modification of the calculus does not impair the reasoning with
problems that do not contain distinct object identifiers. The second result is that the
execution time of E-KRHyper grows exponentially with respect to the array size for
the benchmarks STORECOMM and STORECOMM-INVALID. We have further
shown with a high confidence, that the use of distinct object identifiers does not
lead to a better performance for test cases of the STORECOMM benchmark. This
result is independent of the array size. For the test cases of the STORECOMM-
INVALID benchmark the use of distinct object identifiers lead to a speed-up of 7 to
13 percent. The results allow to assume that the order of the store operations influ-
ences the improvement of the execution time. The last result of this sections states
that neither the traditional nor the modified version of E-KRHyper can compete in
the STORECOMM and STORECOMM-INVALID benchmarks with a satisfiabil-
ity prover, which support native handling of arrays.

Due to the positive results of the evaluation, the introduced changes will be part
of the next release of the E-KRHyper system.

61

62

Chapter 5

Related Work

As the topic of reasoning with the unique name assumption or distinct object iden-
tifiers has not yet gotten a lot of attention in the field of automated reasoning, there
is only one paper known to us that is related with this thesis.

In [24], Schulz and Bonacina show a way to handle distinct object identifiers
in the superposition calculus. The superposition calculus works on a set of clauses
and uses derivation rules on members of the set to derive and add new clauses. If
the empty clause can be derived the set is unsatisfiable.

Schulz and Bonacina identified two forms of clauses that require a change of
the calculus. These two forms are semantically equivalent with what is called an
unit contradiction and an object tautology clause in our approach and are thus
handled in a similar way.

Four new rules have been introduced. If a clause contains a literal of the form
i ; j with i, j ∈ D and i , j, the object tautology deletion rule is used to remove
this clause from the clause set as it cannot contribute in deriving the empty clause.
This behaviour is similar with declaring an object tautology clause as negligible
and thus rewriting it in the modified E-hyper tableau calculus.

The counterpart to the unit-cont-right inference rule and Inc extension rule is
the object equality cutting rule. It removes literals of the form i ' j with i, j ∈ D
and i , j from clauses as they are invalid and the goal of the calculus is to derive
the empty clause.

There are two additional rules, which can be seen as variations of the object
equality cutting rule for not fully instantiated literals. If there is a clause that con-
tains a literal of the form X ' i or X ' Y with i ∈ D, X,Y ∈ V, a substitution σ is
applied to the whole clause to derive the literal i ' j with i, j ∈ D and i , j, which
is then deleted from the clause.

To evaluate their approach they extended a version of the E-prover[22, 23]
and used instances of the STORECOMM and STORECOMM-INVALID benchmark
classes[1, 2]. To rate the performance, they compared four different systems:
CVC[25], which is a validity checker where the axioms for the theory of arrays
is part of the actual system, CVC-Lite[6], which is the successor of CVC and has

63

native support for the theory of arrays, as well, a version of the E-prover with
support for distinct objects identifiers and a version of the E-prover that does not
support DOI and thus needs additional facts to define the inequality of distinct array
indices.

The results of those tests are promising. The execution times of the version
of E that supports DOI for the valid cases are identical with the runtime of CVC
and with the invalid cases they are even lower. The version of E that does not
support DOI and therefore relies on additional facts for the reasoning process is
considerably slower, which supports the claim, that native handling of the unique
name assumption can be beneficial for certain reasoning tasks.

64

Chapter 6

Conclusion and Outlook

Using the unique name assumption instead of facts to define inequalities of con-
stants reduces the number of clauses in knowledge bases and thus allows the reader
to focus on the parts that are of actual importance for a problem. A smaller set of
clauses allows faster reasoning, as well.

This thesis shows a way to extend the E-hyper tableau calculus for reasoning
with the unique name assumption. It was proven that the extended calculus is sound
and complete, and we implemented the calculus in the E-KRHyper system.

This implementation was then used for evaluating whether the use of distinct
object identifiers has an impact on the outcome or needed time for proving a prob-
lem. The evaluation shows that the implemented changes do not harm the reason-
ing without distinct object identifiers and significantly improves the execution time
for unsatisfiable problems with distinct object identifiers. For proving problems
that are satisfiable and contain distinct object identifiers there is an improvement as
well, but it is hardly significant. This behaviour was explained with E-KRHyper’s
mode of operation.

Another observation made in the evaluation process was the large scattering
of execution times for STORECOMM-INVALID samples with same array size.
We suppose that the structure of the problem, i.e. the order of the store opera-
tions, has an impact on the execution time and the difference of the execution times
between the traditional and modified version of the E-KRHyper. Thus future work
is needed to perform a thorough study on the correlation of array size, order of
store operations and execution time for a single sample to elaborate and support
this assumption.

Independent of the actual execution time and the speed-up of the execution
time by using distinct object identifiers, we learned that we cannot compete with
a SMT-solver like CVC3 in STORECOMM and STORECOMM-INVALID which
is not that exceptional as CVC3 is specifically tailored for solving such problems.

Additional tests with different benchmarks can be beneficial for judging the
overall impact of distinct object identifiers in reasoning problems. An example
of another benchmark can be found in [15]. Ganzinger and Sofronie-Stokkermans

65

introduce a way for reasoning in many valued logics that make heavy use of distinct
truth values and thus might be suitable for using the unique name assumption.

Another point for future work is the implementation. For this thesis some parts
were implemented in a straight forward manner and there is ample opportunity for
optimisation.

By the results of Schulz and Bonacina and our approach, the use of distinct
objects can be beneficial for the reasoning process. Therefore we encourage an
extension of the TPTP by more problems that use distinct object identifiers to raise
the interest for this topic.

While developing this thesis, certain ideas evolved, how this can be used in
future extensions: If there is a formalism to mark a function as being bijective, the
current calculus could be extended without great effort to treat those functions with
the unique name assumption. Another idea is the introduction of a typed logic in
such a case the calculus needs only small adoption to be able to handle equalities
of two different types as an unit contradiction. The probably most useful idea is
to introduce a mechanism into E-KRHyper which is able to determine whether a
constant is better used as distinct object identifier or basic constant. This decision
can be dependent on the occurrences of inequality facts, and it would provide a
mean for a faster derivation process.

66

Bibliography

[1] Alessandro Armando, Maria Paola Bonacina, Aditya Kumar Sehgal, and
Silvio Ranise. High-performance deduction for verification: A case study
in the theory of arrays. In Notes of the Workshop on Verification, Third Fed-
erated Logic Conference (FLoC02), pages 103–112, 2002.

[2] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan
Schulz. New results on rewrite-based satisfiability procedures. ACM Trans-
actions on Computational Logic (TOCL), 10(1), 2009.

[3] Leo Bachmair and Harald Ganzinger. Equational reasoning in saturation-
based theorem proving. In Wolfgang Bibel and Peter H. Schmitt, editors,
Automated Deduction — A Basis for Applications, volume I: Foundations.
Kluwer, Dordrecht, 1998.

[4] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Her-
manns, editors, Computer Aided Verification, 19th International Conference,
CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, volume 4590 of
Lecture Notes in Computer Science, pages 298–302. Springer, jul 2007. ISBN
978-3-540-73367-6. Berlin, Germany.

[5] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.smt-lib.org, 2004-2012. Accessed
January, the 27th 2012.

[6] Clark W. Barrett and Sergey Berezin. CVC Lite: A new implementation
of the cooperating validity checker category B. In Rajeev Alur and Doron
Peled, editors, Computer Aided Verification, 16th International Conference,
CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings, volume 3114
of Lecture Notes in Computer Science, pages 515–518. Springer, 2004. ISBN
3-540-22342-8.

[7] Peter Baumgartner and Ulrich Furbach. PROTEIN: A PROver with a Theory
Extension INterface. In Alan Bundy, editor, Automated Deduction - CADE-
12, 12th International Conference on Automated Deduction, Nancy, France,
June 26 - July 1, 1994, Proceedings, volume 814 of Lecture Notes in Com-
puter Science, pages 769–773. Springer, 1994. ISBN 3-540-58156-1.

67

www.smt-lib.org

[8] Peter Baumgartner and Ulrich Furbach. Living books, automated deduction
and other strange things. In Dieter Hutter and Werner Stephan, editors, Mech-
anizing Mathematical Reasoning, Essays in Honor of Jörg H. Siekmann on
the Occasion of His 60th Birthday, volume 2605 of Lecture Notes in Com-
puter Science, pages 249–267. Springer, 2005. ISBN 3-540-25051-4.

[9] Peter Baumgartner and Renate A. Schmidt. Blocking and other enhance-
ments for bottom-up model generation methods. In Ulrich Furbach and
Natarajan Shankar, editors, Automated Reasoning, Third International Joint
Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceed-
ings, volume 4130 of Lecture Notes in Computer Science, pages 125–139.
Springer, 2006. ISBN 3-540-37187-7.

[10] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper tableaux. In
José Júlio Alferes, Luís Moniz Pereira, and Ewa Orlowska, editors, Logics
in Artificial Intelligence, European Workshop, JELIA ’96, Évora, Portugal,
September 30 - October 3, 1996, Proceedings, volume 1126 of Lecture Notes
in Computer Science, pages 1–17. Springer, 1996. ISBN 3-540-61630-6.

[11] Peter Baumgartner, Ulrich Furbach, Margret Groß-Hardt, and Alex Sinner.
Living book - deduction, slicing, and interaction. Journal of Automated Reas-
oning, 32(3):259–286, 2004.

[12] Peter Baumgartner, Ulrich Furbach, and Björn Pelzer. Hyper tableaux with
equality. In Frank Pfenning, editor, Automated Deduction - CADE-21, 21st
International Conference on Automated Deduction, Bremen, Germany, July
17-20, 2007, Proceedings, volume 4603 of Lecture Notes in Computer Sci-
ence, pages 492–507. Springer, 2007. ISBN 978-3-540-73594-6.

[13] Marc Bezem, Jan Willem Klop, and Roel de Vrijer. Term Rewriting Systems,
volume 55 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, 2003. ISBN 0521391156.

[14] Ulrich Furbach, Ingo Glöckner, and Björn Pelzer. An application of auto-
mated reasoning in natural language question answering. AI Communica-
tions, 23(2-3):241–265, 2010.

[15] Harald Ganzinger and Viorica Sofronie-Stokkermans. Chaining techniques
for automated theorem proving in many-valued logics. In Multiple-Valued
Logic, 30th IEEE International Symposium, ISMVL 2000, Portland, Oregon,
USA, May 23-25, 2000, Proceedings., pages 337–344. IEEE Computer Soci-
ety, 2000.

[16] INRIA. Website of OCaml. http://caml.inria.fr/, 2005-2012. Ac-
cessed January, the 27th 2012.

68

http://caml.inria.fr/

[17] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem prov-
ing. In John Alan Robinson and Andrei Voronkov, editors, Handbook of
Automated Reasoning, pages 371–443. 2001.

[18] Björn Pelzer. E-KRHyper – extending the KRHyper theorem prover with
equality reasoning. Diplomarbeit, University of Koblenz-Landau, March
2007.

[19] Björn Pelzer. Project website of E-KRHyper. http://userpages.
uni-koblenz.de/~bpelzer/ekrhyper/, 2007-2012. Accessed January,
the 27th 2012.

[20] Björn Pelzer and Christoph Wernhard. System description: E-KRHyper. In
Frank Pfenning, editor, Automated Deduction - CADE-21, 21st International
Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007,
Proceedings, volume 4603 of Lecture Notes in Computer Science, pages 508–
513. Springer, 2007. ISBN 978-3-540-73594-6.

[21] David Poole, Alan Mackworth, and Randy Goebel. Computational Intelli-
gence: A Logical Approach. Oxford University Press, New York, January
1998.

[22] Stephan Schulz. E - a brainiac theorem prover. AI Communications, 15(2-3):
111–126, 2002.

[23] Stephan Schulz. System description: E 0.81. In David A. Basin and Michaël
Rusinowitch, editors, Automated Reasoning - Second International Joint
Conference, IJCAR 2004, Cork, Ireland, July 4-8, 2004, Proceedings, volume
3097 of Lecture Notes in Computer Science, pages 223–228. Springer, 2004.
ISBN 3-540-22345-2.

[24] Stephan Schulz and Maria Paola Bonacina. On handling distinct objects in
the superposition calculus. In Boris Konev and Stephan Schulz, editors, Im-
plementation of Logics, 5th International Workshop, IWIL 2005, Montevideo,
Uruguay, March 13th, 2005, Proceedings, pages 66–77, 2005.

[25] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooperating valid-
ity checker. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer
Aided Verification, 14th International Conference, CAV 2002,Copenhagen,
Denmark, July 27-31, 2002, Proceedings, volume 2404 of Lecture Notes in
Computer Science, pages 500–504. Springer, 2002. ISBN 3-540-43997-8.

[26] Geoff Sutcliffe. The TPTP website. www.tptp.org, 2004-2012. Accessed
January, the 27th 2012.

[27] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure:
The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):
337–362, 2009.

69

http://userpages.uni-koblenz.de/~bpelzer/ekrhyper/
http://userpages.uni-koblenz.de/~bpelzer/ekrhyper/
www.tptp.org

[28] Christoph Wernhard. System description: KRHyper. Fachberichte
Informatik 14–2003, Universität Koblenz-Landau, Universität Koblenz-
Landau, Institut für Informatik, Universitätsstr. 1, D-56070 Koblenz,
2003. URL http://www.uni-koblenz-landau.de/koblenz/fb4/
publications/fachberichte/fb2003/rr-14-2003.pdf.

[29] Christoph Wernhard. Project website of KRHyper. http://userpages.
uni-koblenz.de/~wernhard/krhyper/, 2003-2012. Accessed January,
the 27th 2012.

70

http://www.uni-koblenz-landau.de/koblenz/fb4/publications/fachberichte/fb2003/rr-14-2003.pdf
http://www.uni-koblenz-landau.de/koblenz/fb4/publications/fachberichte/fb2003/rr-14-2003.pdf
http://userpages.uni-koblenz.de/~wernhard/krhyper/
http://userpages.uni-koblenz.de/~wernhard/krhyper/

