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Chapter 1

Introduction

In the last decade or so, expressive Description Logics (DLs) such as SHIQ have attracted considerable
attention, due largely to their potential as ontology languages [2] for the Semantic Web [9]. The goal
of the Semantic Web is to enrich websites with machine-readable semantic information about their
contents in order to facilitate the search for information, whether by automated algorithms or by human
users. Ontologies are needed to provide these agents with common definitions of concepts in order to
ensure that the semantic information with which a website is annotated is interpreted the same way by
all agents. Description Logics are well-suited as ontology languages because they offer both clearly
defined semantics and sufficient expressive power. Until recently, though, Description Logic reasoners
were not able to reason over large real-world ontologies such as GALEN1.

In 2007, a major step forward was made when Motik et al. [6] presented HermiT2, a highly efficient
reasoner capable of deciding the satisfiability of SHIQ knowledge bases and of classifying previously
unclassifiable ontologies. HermiT’s underlying calculus is based on ’hyper tableaux’ [6], a combination
of clausal normal form tableaux and hyper-resolution [17] developed by Peter Baumgartner, Ulrich Fur-
bach and Ilkka Niemelä at University of Koblenz in 1996. In the meantime, the original Hyper Tableau
calculus was extended with efficient equality handling and the resulting calculus was named E-Hyper
Tableau calculus. It is currently implemented in E-KRHyper [16]. Due to HermiT’s success as well as
the fact that, like E-KRHyper, it works with hyper tableaux, Ulrich Furbach, Claudia Schon and Björn
Pelzer decided to extend the E-Hyper Tableau calculus with a new inference rule in order to enable it to
decide SHIQ as well.

In this thesis, I will present the result of this work, the DLE-Hyper Tableau calculus, and prove that it
is indeed a decision procedure for SHIQ. First, chapter 2 provides a general introduction to Description
Logics as well as a formal specification of the syntax and semantics of SHIQ and ALCHIQ. (The
latter DL will be relevant in the next chapter.) Chapter 3 then describes the transformation of a SHIQ
knowledge base into a set of DLE-clauses that are compatible with the DLE-Hyper Tableau calculus.
Next, the original E-Hyper Tableau calculus is covered in chapter 4 before chapter 5 presents the changes
that were made in order to obtain the DLE-Hyper Tableau calculus. Finally, in chapter 6, I will prove that
the DLE-Hyper Tableau calculus is sound, terminating and complete, which means that it is a decision
procedure. Chapter 7 contains brief descriptions of related work as well as ideas for possible future
extensions to the calculus, while chapter 8 concludes this thesis.

1http://www.opengalen.org/
2http://hermit-reasoner.com/
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Chapter 2

The Description Logics SHIQ and
ALCHIQ

Before introducing the formal syntax and semantics of SHIQ and ALCHIQ in detail, the following
section will provide a brief introduction to Description Logics (DLs) in general. While a comprehensive
treatment of DLs would go beyond the scope of this thesis, more in-depth information can be found in
[1] or [3] (available online1).

2.1 Introduction to Description Logics

Description Logics are knowledge representation languages with well-understood semantics. Their basic
building blocks are atomic concepts (unary predicates), atomic roles (binary predicates) and individuals
(constants). DL concepts are interpreted as sets of individuals, whereas roles represent binary relations
on the set of all individuals. Atomic concepts and atomic roles can be used to describe more complex
concepts and roles with the help of concept constructors.

For example, if one wanted to define the concept HappyMother as "a woman who has at least two
but no more than four children, all of whom are happy," one could use the following definition:

HappyMother ≡Woman u (≥ 2 hasChild.>) u (≤ 4 hasChild.>) u ∀hasChild.HappyChild

Woman and Happy are concepts, and hasChild denotes a role. The conjunction operator u corre-
sponds to the set intersection operator ∩. > stands for the universal concept which every individual
belongs to. The complex concept ≥ 2 hasChild.> (≥-number restriction) represents the set of those
individuals that are in a hasChild relationship with at least two distinct individuals. ≤ 4 hasChild.> (≤-
number restriction) is interpreted analogously. The set corresponding to ∀hasChild.HappyChild (value
restriction) contains all those individuals that are in a hasChild relationship with happy children only
(or no children at all).

In expressive Description Logics such as SHIQ it is also possible to define relationships between
roles. For example, it would make sense to state that any two individuals that are in a hasChild relation-
ship are also in a relatedTo relationship. This can be expressed as follows:

hasChild v relatedTo

v is essentially equivalent to the subset operator ⊆. (In fact, the ≡ operator used to define Happy-
Mother is unnecessary as every axiom of the form C ≡ D can be replaced by the two axioms C v D
and D v C.) The above axiom states that the binary relation represented by the role hasChild must be

1http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2007/BaHS07a.pdf
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contained in the relation assigned to relatedTo. Now suppose we wanted relatedTo to be interpreted as a
symmetric relation. This can be done using the inverse role operator −:

relatedTo v relatedTo−

We have thus stated that the relation represented by relatedTo is a subset of its own inverse relation.
Finally, a DL knowledge base (KB) can also contain assertions about particular individuals. The

following assertions express that Mary is a woman who is the mother of Tim, who is a happy child.
She is also the mother of Timothy, but as indicated by the last assertion, Tim and Timothy are to be
interpreted as the same person:

Woman(mary),

HappyChild(tim),

hasChild(mary, tim),

hasChild(mary, timothy),

tim ' timothy

While the above examples have hopefully conveyed a feel for the syntax and semantics of Descrip-
tion Logics, it is now time to formally define the expressive DLs SHIQ andALCHIQ.

2.2 Syntax and Semantics of SHIQ andALCHIQ

This section is essentially a summary of the relevant information found in [13] and [2], with the latter
article containing more details on topics such as inference problems in DL knowledge bases. We will
first have a look a the syntax of SHIQ before covering its semantics.

Given a set of atomic roles NR, the set of roles is defined as NR∪{R− | R ∈ NR}, where R− denotes the
inverse role corresponding to the atomic role R. In order to avoid having to use unnecessarily complex
expressions such as R−−−− (which is simply equivalent to R), let Inv be a function on the set of roles that
computes the inverse of a role, with Inv(R) = R− and Inv(R−) = R.

A role inclusion axiom is an expression of the form R v S , where R and S are atomic or inverse
roles, respectively. A transitivity axiom is of the form Trans(S ) for S an atomic or inverse role. An
RBox R is a finite set of role inclusion axioms and transitivity axioms.
v∗ denotes the reflexive transitive closure of v over {R v S , Inv(R) v Inv(S ) | R v S ∈ R}. A

role R is transitive in R if there exists a role S such that S v∗ R, R v S ∗, and either Trans(S ) ∈ R or
Trans(Inv(S )) ∈ R. If no transitive role S with S v∗ R exists, R is called simple.

Let NC be the set of atomic concepts. The set of concepts is then defined as the smallest set contain-
ing >, ⊥, A, C u D, C t D, ∃R.C, ∀R.C, ≥ n S .C, and ≤ n S .C for A ∈ NC , C and D concepts, R a role,
S a simple role, and n a non-negative integer.

A general concept inclusion (abbreviated as GCI) is of the form C v D, and a TBox T is a finite set
of GCIs.

Given a set NI of individuals, an ABox A is a finite set of concept assertions C(a), role assertions
R(a, b), and equality as well as inequality assertions a ' b and a ; b, where C is a concept, R is a role,
and a, b ∈ NI are individuals.

A SHIQ knowledge base K is a triple (R,T ,A). When dealing with several different knowledge
bases, the notations KR, KT and KA will be used to denote the RBox, TBox and ABox, respectively,
of the KB K . The tuple I = (·I ,∆I) is an interpretation for K iff ∆I is a nonempty set and ·I assigns an
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element aI ∈ ∆I to each individual a, a set AI ⊆ ∆I to each atomic concept A, and a relation RI ⊆ ∆I ×∆I

to each atomic role R. Based on these building blocks, ·I assigns values to more complex concepts and
roles as described in Table 2.1. I is a model of K (I |= K) if it satisfies all axioms and assertions in R,
T andA as shown in Table 2.1.

A concept C is called satisfiable w.r.t. R and T iff there exists a model I of R and T with CI , ∅.
The concept D subsumes C w.r.t. R and T (C v(R,T ) D) iff CI ⊆ DI holds in every model I of R and
T . C and D are called equivalent w.r.t. R and T (C ≡(R,T ) D) iff they subsume each other. As a result,
checking whether two concepts C and D are equivalent can be reduced to checking whether the concepts
subsume each other. Checking subsumption can then be reduced to checking satisfiability: C v(R,T ) D
holds iff C u ¬D is unsatisfiable w.r.t. R and T .

Concepts and Roles

>I = ∆I (universal concept)
⊥I = ∅ (empty concept)

(¬C)I = ∆I\CI (negation)
(C t D)I = CI ∪ DI (disjunction)
(C u D)I = CI ∩ DI (conjunction)

(R−)I = {(y, x) | (x, y) ∈ RI} (inverse role)
(∀R.C)I = {x | ∀y : (x, y) ∈ RI ⇒ y ∈ CI} (value restriction)
(∃R.C)I = {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI} (exists restriction)

(≥ n R.C)I = {x | ]{y | (x, y) ∈ RI ∧ y ∈ CI} ≥ n} (≥-number restriction)
(≤ n R.C)I = {x | ]{y | (x, y) ∈ RI ∧ y ∈ CI} ≤ n} (≤-number restriction)

TBox axioms

C v D⇒ CI ⊆ DI (concept inclusion axiom)

RBox axioms

R v S ⇒ RI ⊆ S I (role inclusion axiom)
Trans(R)⇒ (RI)+ ⊆ RI (transitivity axiom)

ABox assertions

C(a)⇒ aI ∈ CI (concept assertion)
R(a, b)⇒ (aI , bI) ∈ RI (role assertion)

a ' b⇒ aI = bI (equality assertion)
a ; b⇒ aI , bI (inequality assertion)

Table 2.1: Model-theoretic semantics of SHIQ. ]N denotes the number of elements in the set N; R+ is the
transitive closure of R.

The negation normal form nnf (C) of a concept C is the concept that is equivalent to C but contains
negations only in front of atomic concepts. For example, given two atomic concepts A and B and
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an atomic role R, the following example demonstrates how the negation normal form of the complex
concept C is computed:

C = ¬((A u B) t ∃R.A)

C′ = ¬(A u B) u ¬(∃R.A)

C′′ = (¬A t ¬B) u ∀R.¬A = nnf (C)

¬̇C is used as an abbreviation for nnf (¬C).

The Description Logic ALCHIQ is equivalent to SHIQ except that it does not have transitive
roles.

2.3 Example

In order to get a feel for the semantics of SHIQ, consider the knowledge base K = (R,T ,A), whose
components contain the axioms and assertions introduced in the previous section:

R = {hasChild v relatedTo,

relatedTo v relatedTo−}

T = {HappyMother ≡ Woman u (≥ 2 hasChild.>) u (≤ 4 hasChild.>) u ∀hasChild.HappyChild}

A = {Woman(mary),

HappyChild(tim),

hasChild(mary, tim),

hasChild(mary, timothy),

tim ' timothy}

We will now construct a model I of K . Let ∆I = {mary, tim}, with maryI = mary, timI = tim
and timothyI = tim, as the equality assertion in the ABox requires tim and timothy to have identi-
cal interpretations in any model of K . For the remaining ABox assertions to be true in I, we must
have maryI ∈ WomanI , timI ∈ HappyChild and (maryI , timI) ∈ hasChildI , so let Woman = {mary},
HappyChildI = {tim} and hasChildI = {(mary, tim)}.

Now consider the RBox axioms. Since hasChild v relatedTo implies hasChildI ⊆ relatedToI , we
set relatedToI = {(mary, tim)} for now. However, this would entail (relatedTo−)I = {(tim,mary)}, which
would mean that the second RBox axiom is false in I because relatedToI is not a subset of (relatedTo−)I .
Hence, we need to add (tim,mary) to relatedToI , which gives us the symmetric relations relatedToI =

(relatedTo−)I = {(mary, tim), (tim,mary)}.

As the right-hand side of the TBox axiom is empty in I (while Mary is a woman whose children are
all happy, she does not have enough distinct children to be considered a happy mother in our world), we
can simply set HappyMotherI = ∅. Since every axiom and assertion in K is now true in I, I is a model
of K .
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As an example of a less intuitive interpretation that is also a model of K , consider the following
definition of I:

∆I = {tim,mary}

timI = tim

timothyI = tim

maryI = mary

HappyMotherI = {mary}

WomanI = {mary}

HappyChildI = {mary, tim}

hasChildI = {(mary, tim), (mary,mary)}

relatedToI = {(mary, tim), (tim,mary), (mary,mary)}

In this interpretation, Mary is a happy mother because she has two distinct, happy children. The fact
that she is her own child may seem strange, but it is possible in the world described by this knowledge
base.

13
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Chapter 3

Transforming SHIQ into DLE-Clauses

In order to decide the satisfiability of a SHIQ knowledge base K using the DLE-Hyper Tableau calcu-
lus, it must first be transformed into a set of DLE-clauses, a variant of the DL-clauses described in [13].
The transformation is a five-step process: first, K is transformed into an equisatisfiable ALCHIQ
knowledge base Ω(K) (section 3.1). Ω(K) is then brought into its equisatisfiable normalized form
∆(Ω(K)) (section 3.2). Next, the RBox and TBox of ∆(Ω(K)) are turned into a set of DL-clauses
Ξ(∆(Ω(K))) such that ∆(Ω(K)) and Ξ(∆(Ω(K)))∪∆(Ω(K))A are equisatisfiable (section 3.5). The trans-
formations up to this point were all described by Motik et al. in [13]. Then, Ξ(∆(Ω(K)))∪∆(Ω(K))A is
converted into an equisatisfiable set of DL-clauses DL(∆(Ω(K))), which is finally transformed into an
equisatisfiable set of DLE-clauses DLE(∆(Ω(K))) (section 3.5) that can be processed by the DLE-Hyper
Tableau calculus (to be introduced in chapter 5).

3.1 From SHIQ toALCHIQ

Motik et al. [13] transform a SHIQ KB K into an equisatisfiable ALCHIQ KB Ω(K) by removing
all transitivity axioms using a procedure presented in [12]. The following two definitions describe the
procedure and are almost verbatim copies of Definitions 5.1.1 and 5.1.2 in [12]. Note that C and D
denote concepts, while R and S are roles.

Definition 3.1.1 (Concept Closure [12]). For a SHIQ knowledge base K = (R,T ,A), let clos(K)
denote the concept closure of K , defined as the smallest set of concepts satisfying the following condi-
tions:

• If C v D ∈ T , then nnf (¬C t D) ∈ clos(K);

• If C ≡ D ∈ T , then nnf (¬C t D) ∈ clos(K) and nnf (¬D tC) ∈ clos(K);

• If C(a) ∈ A, then nnf (C) ∈ clos(K);

• If C ∈ clos(K) and D is a subconcept of C, then D ∈ clos(K);

• If ≤ n R.C ∈ clos(K), then nnf (¬C) ∈ clos(K);

• If ∀R.C ∈ clos(K), S v∗ R, and Trans(S ) ∈ R, then ∀S .C ∈ clos(K).

Definition 3.1.2 ([12]). For a SHIQ knowledge base K , Ω(K) is anALCHIQ knowledge base con-
structed as follows:

• Ω(K)R is obtained from KR by removing all axioms Trans(R);
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• Ω(K)T is obtained by adding to KT the axiom ∀R.C v ∀S .(∀S .C), for each concept ∀R.C ∈
clos(K) and role S such that S v∗ R and Trans(S ) ∈ KR;

• Ω(K)A = KA

Lemma 3.1.1. K is satisfiable if and only if Ω(K) is satisfiable.

Proof. This Lemma is identical to Theorem 5.2.3 in [12], which contains the proof. �

3.2 Normalizing anALCHIQ Knowledge Base

Before an ALCHIQ knowledge base K can be converted into a set of DLE-clauses, it must first be
transformed into a normalized ALCHIQ knowledge base ∆(K). The following section lays out the
theory behind the normalization process, while section 3.2.2 presents a practical example.

3.2.1 Theory

The following definition by Motik et al. [13] formally specifies the conditions under which a knowledge
base is considered normalized. The actual normalization procedure is described in Table 3.1.

Definition 3.2.1 (Normalization [13]). For A an atomic concept, the concepts A, ¬A, >, and ⊥ are
called literal concepts. A GCI is normalized if it is of the form > v

⊔n
i=1 Ci, where each Ci is of the

form B, ∀R.B, ≥ n R.B, or ≤ n R.B, and B is a literal concept. A TBox T is normalized if all GCIs
in it are normalized. An ABox A is normalized if (i) each concept assertion in A is of the form B(s)
or ≥ n R.B for B a literal concept, (ii) each role assertion in A contains only atomic roles, and (iii) A
contains at least one assertion. A knowledge base K is normalized iff T andA are normalized.

Note that the RBox is not affected by the transformation.

Lemma 3.2.1. An ALCHIQ knowledge base K is satisfiable if and only if ∆(K) is satisfiable; ∆(K)
can be computed in polynomial time; and ∆(K) is normalized.

Proof. This Lemma is identical to Lemma 1 in [13], which contains the proof. �

3.2.2 Example

In this section, we will transform anALCHIQKB into a normalizedALCHIQKB. Since the SHIQ
KB K that was introduced in section 2.3 does not contain transitive roles, it is also an ALCHIQ KB,
so we can use is as input to the normalization procedure. We then compute K’s normalized form ∆(K).
Recall that the RBox R was defined as follows:

R = {hasChild v relatedTo,

relatedTo v relatedTo−}

Since the axioms in R are not affected by the transformation, we have ∆(K)R = R. Next, consider
the TBox T :

T = {HappyMother ≡ Woman u (≥ 2 hasChild.>) u (≤ 4 hasChild.>) u ∀hasChild.HappyChild}

First of all, we expand the ≡ operator, which is simply an abbreviation for v and w:

HappyMother v Woman u (≥ 2 hasChild.>) u (≤ 4 hasChild.>) u ∀hasChild.HappyChild (1)

Woman u (≥ 2 hasChild.>) u (≤ 4 hasChild.>) u ∀hasChild.HappyChild v HappyMother (2)
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∆(K) = {>(ι)} ∪
⋃
α∈R∪A ∆(α) ∪

⋃
C1vC2∈T ∆(> v nnf (¬C1 tC2))

∆(> v C tC′) = ∆(> v C t αC′) ∪
⋃n

i=1 ∆(αC′ v Ci) for C′ =
�n

i=1 Ci

∆(> v C t ∀R.D) = ∆(> v C t ∀R.αD) ∪ ∆(αD v D)
∆(> v C t ≥ n R.D) = ∆(> v C t ≥ n R.αD) ∪ ∆(αD v D)
∆(> v C t ≤ n R.D) = ∆(> v C t ≤ n R.¬̇αD′) ∪ ∆(αD′ v D′) for D′ = ¬̇D

∆(D(a)) = {αD(a)} ∪ ∆(αD v D)
∆(R−(a, b)) = {R(b, a)}

∆(β) = {β} for any other axiom β

αC =

QC if pos(C) = true
¬QC if pos(C) = false

where QC denotes a fresh atomic
concept unique for C

pos(>) = false
pos(⊥) = false
pos(A) = true

pos(¬A) = false

pos(C1 uC2) = pos(C1) ∨ pos(C2)
pos(C1 tC2) = pos(C1) ∨ pos(C2)

pos(∀R.C1) = pos(C1)
pos(≥ n R.C1) = true

pos(≤ n R.C1) =

pos(¬̇C1) if n = 0
true otherwise

Table 3.1: Computing the normalized form ∆(K) of an ALCHIQ knowledge base K : A is an atomic concept,
Ci are arbitrary concepts, C is a possibly empty disjunction of arbitrary concepts, D is not a literal
concept, and ι is a fresh individual.
Source: [13] (Table 2)

By the first line in Table 3.1, TBox axioms of the form C1 v C2, for C1 and C2 arbitrary concepts, are
first rewritten as> v nnf (¬C1tC2). In this example, ¬C1tC2 corresponds to the following expressions
for axioms (1) and (2), respectively:

¬HappyMother t (Woman u (≥ 2 hasChild.>) u (≤ 4 hasChild.>) u ∀hasChild.HappyChild)

¬(Woman u (≥ 2 hasChild.>) u (≤ 4 hasChild.>) u ∀hasChild.HappyChild) t HappyMother

Next, the negation normal forms are computed (the first expression is in negation formal form al-
ready) and ’> v’ is added:

> v ¬HappyMother t (Woman u (≥ 2 hasChild.>) u (≤ 4 hasChild.>) u

∀hasChild.HappyChild)

> v ¬Woman t (≤ 1 hasChild.>) t (≥ 5 hasChild.>) t (≥ 1 hasChild.¬HappyChild) t

HappyMother

Note that the ∀-operator in front of hasChild.HappyChild was turned into ∃, which is written here
as ’≥ 1’ since the two constructors are equivalent. The second axiom is already normalized, but in the
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case of the first one, a fresh concept C needs to be introduced to get rid of the conjunction. This yields
the following set of axioms:

> v ¬HappyMother tC

C v Woman

C v (≥ 2 hasChild.>)

C v (≤ 4 hasChild.>)

C v ∀hasChild.HappyChild

> v ¬Woman t (≤ 1 hasChild.>) t (≥ 5 hasChild.>) t

(≥ 1 hasChild.¬HappyChild) t HappyMother

After normalizing the four newly introduced axioms, we finally obtain

∆(K)T = {> v ¬HappyMother tC,

> v ¬C tWoman,

> v ¬C t (≥ 2 hasChild.>),

> v ¬C t (≤ 4 hasChild.>),

> v ¬C t ∀hasChild.HappyChild,

> v ¬Woman t (≤ 1 hasChild.>) t (≥ 5 hasChild.>) t

(≥ 1 hasChild.¬HappyChild) t HappyMother}

As for the ABox, we only need to add the assertion >(ι). Apart from that, nothing needs to be done
sinceA only contains atomic concepts and roles. Hence, the normalized ABox ∆(K)A looks as follows:

∆(K)A = {>(ι),

Woman(mary),

HappyChild(tim),

hasChild(mary, tim),

hasChild(mary, timothy),

tim ' timothy}

3.3 Syntax and Semantics of DL-Clauses and DLE-Clauses

DL-clauses were defined by Motik et al. in [13]. The following definition is basically a verbatim copy
of Definition 3 in [13] except for some minor changes.

Let NV be a set of variables disjoint from the set of SHIQ individuals NI . A DL-atom is an
expression of the form C(s), R(s, t), or s ' t for s and t variables or individuals, C a concept and R
a role. A DL-clause is an expression of the form

V1 ∨ · · · ∨ Vn ← U1 ∧ · · · ∧ Um

where Ui and V j are atoms, m ≥ 0 and n ≥ 0. The conjunction U1 ∧ · · · ∧ Um is called the body and the
disjunction V1 ∨ · · · ∨ Vn is called the head of the clause. Correspondingly, the atoms V j are also called
head atoms, while Ui are called body atoms.

Given an interpretation I = (∆I , ·I ) and a variable mapping µ : NV → ∆I , let aI,µ = aI for an indi-
vidual a and xI,µ = µ(x) for a variable x. For s and t variables or individuals, C a concept, R a role, Ui
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and V j atoms, and S a set of DL-clauses, satisfaction in I and µ is defined in [13] as follows:

I, µ |= C(s) if sI,µ ∈ CI

I, µ |= R(s, t) if (sI,µ, tI,µ) ∈ RI

I, µ |= s ' t if sI,µ = tI,µ

I, µ |=
∨n

j=1 V j ←
∧m

i=1 Ui if I, µ |= Ui for all 1 ≤ i ≤ m implies I, µ |= V j for some 1 ≤ j ≤ n

I |=
∨n

j=1 V j ←
∧m

i=1 Ui if I, µ |=
∨n

j=1 Vn ←
∧m

i=1 Ui for all variable mappings µ
I |= S if I |= C for all C ∈ S

DLE-clauses are defined almost identically, with one minor difference: DL-atoms of the form C(s)
and R(s, t) are represented by the DLE-atoms C(s) ' t and R(s, t) ' t, respectively. t represents a special
constant that is not contained in the set of variables or individuals. This means that all DLE-atoms are
equations. The semantics of DL-clauses and DLE-clauses are essentially identical, with satisfaction of
C(s) ' t and R(s, t) ' t in I and µ defined as follows:

I, µ |= C(s) ' t if sI,µ ∈ CI

I, µ |= R(s, t) ' t if (sI,µ, tI,µ) ∈ RI

Apart from that, the semantics are identical to DL-clause semantics. The above definition only differs
from the corresponding definition for DL-clauses due to the slight change in syntax. It is easy to see that
the DLE-atoms C(s) ' t and R(s, t) ' t and the DL-atoms C(s) and R(s, t) are actually equivalent. In
fact, the ’' t’ will usually be omitted and the C(s) ' t and R(s, t) ' t atoms in DLE-clauses will simply
be written as their DL-counterparts C(s) and R(s, t) since this makes the clauses more readable. This
simplified representation is also used in the following definition.

Definition 3.3.1 (Clause Names). Let a and b be individuals, C an atomic concept or a ≥-number
restriction, A an atomic concept, and R an atomic role. Then, a role clause is a unit clause of the form
(R(a, b)←). Clauses of the form (C(a)←) are called concept clauses. If C is a ≥-number restriction, the
clause is also called an at-least clause. The negative unit clause (← A(a)) is called a negative concept
clause. An equality clause is a unit clause of the form (a ' b←), whereas an inequality clause is a unit
clause of the form (← a ' b).

3.4 From NormalizedALCHIQ to DL-Clauses

Now that the notion of DL-clauses has been defined, we will cover Motik et al.’s [13] method of trans-
lating the RBox and TBox of a normalizedALCHIQ knowledge base K into a set of DL-clauses.

3.4.1 Theory

The procedure is described in Table 3.2, with Ξ(K) denoting the resulting set of DL-clauses.

Lemma 3.4.1. Let K = (R,T ,A) be a normalized ALCHIQ knowledge base. Then, I |= K if and
only if I |= Ξ(K) and I |= A.

Proof. This Lemma is identical to Lemma 2 in [13], which contains the proof. �

The transformation described so far is exactly the one used by Motik et al. [13]. However, while
their calculus works with ABoxes, the DLE-Hyper Tableau calculus can only process sets of clauses,
which means we need to transform the ABoxA into a set of DL-clauses as well.
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Ξ(K) ={[
∧n

i=1 head(Ci)]← [
∨n

i=1 body(Ci)] | for each > v
⊔n

i=1 Ci in T }∪

{ar(S , x, y)← ar(R, x, y) | for each R v S in R}

ar(R, s, t) =

R(s, t) if R is an atomic role
S (t, s) if R is an inverse role and R = S −

head(C) and body(C) are defined as follows for a concept C:
C head(C) body(C)
A A(x)
¬A A(x)
≥ n R.A ≥ n R.A(x)
≥ n R.¬A ≥ n R.¬A(x)
∀R.A A(yC) ar(R, x, yC)
∀R.¬A ar(R, x, yC) ∧ A(yC)
≤ n R.A

∨n+1
i=1

∨n+1
j=i+1 yi

C ≈ y j
C

∧n+1
i=1 [ar(R, x, yi

C) ∧ A(yi
C)]

≤ n R.¬A
∨n+1

i=1 [A(yi
C) ∨

∨n+1
j=i+1 yi

C ≈ y j
C]

∧n+1
i=1 ar(R, x, yi

C)

Table 3.2: Translation of the RBox R and TBox T of a normalizedALCHIQ knowledge baseK into a set Ξ(K)
of DL-clauses. The variables y(i)

C are unique for the concept C (and i) and different from x.
Source: [13] (Table 3, slightly modified)

Definition 3.4.1. Let Π(A) denote the set of DL-clauses obtained from A by applying the conversion
rules shown in Table 3.3. The set of DL-clauses DL(K) obtained from a normalizedALCHIQ knowl-
edge base K = (R,T ,A) is then defined as DL(K) = Ξ(K) ∪ Π(A).

Lemma 3.4.2. DL(K) is satisfiable if and only if Ξ(K) ∪A is satisfiable.

Proof. It is easy too see that the conversion rules in Table 3.3 transform each assertion in A into an
equisatisfiable DL-clause, so Π(A) and A are equisatisfiable. As a result, DL(K) = Ξ(K) ∪ Π(A) and
Ξ(K) ∪A are equisatisfiable as well. �

ABox assertion DL-clause
C(a) C(a)←
¬A(a) ← A(a)
R(a, b) R(a, b)←
a ' b a ' b←
a ; b ← a ' b

Table 3.3: Translating the ABox assertions of a normalizedALCHIQ KB into DL-clauses. C denotes an atomic
concept or a ≥-number restriction, A an atomic concept, R an atomic role, and a and b are individuals.

20



3.4.2 Example

As an illustration of the procedure described in the previous section, we will now translate the normalized
ALCHIQ KB ∆(K) from section 3.2.2 into a set of DL-clauses DL(∆(K)). The RBox and TBox were
defined as follows:

∆(K)R = {hasChild v relatedTo,

relatedTo v relatedTo−}

∆(K)T = {> v ¬HappyMother tC,

> v ¬C tWoman,

> v ¬C t (≥ 2 hasChild.>),

> v ¬C t (≤ 4 hasChild.>),

> v ¬C t ∀hasChild.HappyChild,

> v ¬Woman t (≤ 1 hasChild.>) t (≥ 5 hasChild.>) t

(≥ 1 hasChild.¬HappyChild) t HappyMother}

The resulting DL-clauses are shown below:

Ξ(∆(K)) = {relatedTo(x, y)← hasChild(x, y),

relatedTo(y, x)← relatedTo(x, y),

C(x)← HappyMother(x),

Woman(x)← C(x),

(≥ 2 hasChild.>)← C(x),

(≤ 4 hasChild.>)← C(x),

∀hasChild.HappyChild ← C(x),

y1 ' y2 ∨ (≥ 5 hasChild.>(x))

∨(≥ 1 hasChild.¬HappyChild(x))

∨HappyMother(x)← Woman(x) ∧ hasChild(x, y1) ∧ hasChild(x, y2)}

Most of the translations are straight-forward. The left-hand sides of the RBox axioms were moved to
the bodies, whereas the right-hand sides constitute the head atoms. As for the TBox axioms, the atomic
concepts and the ≥-number restrictions were moved to the heads of the clauses, whereas the negated
atomic concepts appear in the bodies. However, the number restriction (≤ 1 hasChild.>) caused atoms
to be added to both the head (y1 ' y2) and the body (hasChild(x, y1) and hasChild(x, y2)).

Now consider the ABox:

∆(K)A = {>(ι),

Woman(mary),

HappyChild(tim),

hasChild(mary, tim),

hasChild(mary, timothy),

tim ' timothy}
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Using the rules in Table 3.3, ∆(K)A is translated into the following set of DL-clauses:

Π(∆(K)A) = {>(ι)←,

Woman(mary)←,

HappyChild(tim)←,

hasChild(mary, tim)←,

hasChild(mary, timothy)←,

tim ' timothy←}

The complete set of DL-clauses for ∆(K) is then obtained by DL(∆(K)) = Ξ(∆(K)) ∪ Π(∆(K)A).

3.5 From DL-Clauses to DLE-Clauses

The translation from DL-clauses to DLE-clauses uses the range restriction method described in [5].
First, it introduces a fresh predicate dom. In the context of DLE-clauses, dom will be interpreted
as the universal concept, so we always have domI = ∆I . Next, given a clause C, the body atoms
dom(x1), . . . , dom(xn), where x1, . . . , xn are the variables that occur in C’s head but not in its body, are
added to C. In a clause set S that only contains function symbols of arity zero (constants or, as we will
call them in the context of DLE-clauses, individuals), all that remains to be done is to add the unit clause
(dom(a) ←) to S for every constant a in S . When a fresh constant b is introduced to a DLE-clause set
(as will be done by the DLE-Hyper Tableau calculus’s at-least rule [section 5.2]), the clause (dom(b)←)
will be added to the set as well. As dom is always interpreted as the universal concept, these clauses will
be trivially true.

Note that DL-clauses do not contain function symbols of non-zero arity. If they did, the range
restriction process would be slightly more complex, as described in [5].

As seen in Table 3.2, x is the only variable in a DL-clause set that may appear in a head atom without
also appearing in a body atom, so we need to add at most one dom atom to the body of a clause.

Definition 3.5.1. Given a set of DL-clauses DL(K) for a normalized ALCHIQ KB K , the non-
restricted set of DLE-clauses DLE′(K) is obtained by replacing all atoms of the form C(s) and R(s, t)
in DL(K) by C(s) ' t and R(s, t) ' t, respectively. Let dom denote a fresh concept not occurring in
DLE′(K). The final, range-restricted set of DLE-clauses DLE(K) is then obtained from DLE′(K) by
(1) adding the body atom dom(x) to every clause whose head contains the variable x and whose body
does not contain x, and (2) adding the unit clause (dom(a)←) for every individual a in DLE′(K).

Lemma 3.5.1. DLE(K) is satisfiable if and only if DL(K) is satisfiable.

Proof. The semantics of DL-clauses and DLE-clauses are essentially equivalent, so DLE′(K) and
DL(K) are clearly equisatisfiable. The range restriction method used to obtain DLE(K) was shown
to be sound and complete in [11]. While the DLE-Hyper Tableau calculus will introduce new constants
to the clause set, this is not a problem because it will always add the corresponding dom unit clauses and
interpret dom as the universal concept to preserve the soundness and completeness of range restriction.
As a result, DLE(K) and DLE′(K) must be equisatisfiable, which implies that DLE(K) and DL(K) are
equisatisfiable as well. �

Theorem 3.5.1. A SHIQ KB K is satisfiable if and only if the DLE-clause set DLE(∆(Ω(K))) is
satisfiable.

Proof. Lemma 3.1.1 states that K and Ω(K) are equisatisfiable. By Lemma 3.2.1, Ω(K) and ∆(Ω(K))
are equisatisfiable as well. Lemma 3.4.1 then proves that ∆(Ω(K)) and Ξ(∆(Ω(K))) ∪ A, where A
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denotes the ABox of ∆(Ω(K)), are equisatisfiable. Ξ(∆(Ω(K))) ∪ A and the corresponding set of
DL-clauses DL(∆(Ω(K))) are shown to be equisatisfiable in Lemma 3.4.2. Finally, by Lemma 3.5.1,
DL(∆(Ω(K))) and DLE(∆(Ω(K))) are also equisatisfiable. Since the input and the output of each step in
the transformation of K into DLE(∆(Ω(K))) are equisatisfiable, the Lemma’s statement must hold. �
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Chapter 4

The E-Hyper Tableau Calculus

The DLE-Hyper Tableau calculus is an extension of the E-Hyper Tableau calculus [7], a hypertableau-
based proof procedure for first-order logic that was developed by Peter Baumgartner, Ulrich Furbach and
Björn Pelzer at National ICT Australia and University of Koblenz. Unlike the standard Hyper Tableau
calculus [6] on which it was based, the E-Hyper Tableau calculus offers an efficient, superposition-based
handling of equality inspired by earlier work in saturation-based theorem proving [4]. The calculus is
currently implemented in E-KRHyper [16]. This thesis, however, focuses on its theoretical aspects as
they will be vital to understanding the next chapter, which will finally introduce the DLE-Hyper Tableau
calculus.

Note that this chapter is based almost entirely on [7] and [15], with most of the definitions in the
next section being almost verbatim copies of the corresponding definitions in [15]. In other words, most
of this is not original work, apart from the practical examples that I added to illustrate some important
concepts.

4.1 Preliminaries

4.1.1 Terms and Substitutions

Let Σ = (F ,P) denote a first-order signature consisting of a set of function symbols F and a set of
predicate symbols P, with F and P being infinite and disjoint. Each symbol has a fixed arity. A
constant is a function symbol with arity zero. Furthermore, let X be an infinite set of variables that is
disjoint from F and P. The set of Σ-terms is then defined inductively as follows:

1. Every constant c ∈ F and every variable x ∈ X is a term.

2. If t1, . . . , tn are terms and f ∈ F is a function symbol with arity n, then f (t1, . . . , tn) is also a term.

Given a term t = f (t1, . . . , tn), s is a subterm of t iff

• s = t, or

• s is a subterm of ti for some i with 1 ≤ i ≤ n

vars(t) denotes the set of variables occurring in the term t. t is ground iff vars(t) = ∅.
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A position p is a sequence of natural numbers. Given a term t, t|p denotes the subterm of t at position
p. Let t = f (t1, . . . , tn). If ε is an empty sequence, then t|ε = t. For 1 ≤ i ≤ n, t|i.p is defined as ti|p. The
example below uses the term t to illustrate which subterms certain positions refer to:

t = f (a, g(a, b, h(c)), h(d))

t|3 = h(d)

t|2.2 = b

t|2.3.1 = c

The notation t[s]p means that t contains the subterm s at position p, i.e., t|p = s. t[p/s′] stands for
the term obtained from t by replacing the subterm t|p by s′ at position p. In the above example we have
t[2/b] = f (a, b, h(d)). If the position is obvious from the context, t[s] states that t contains a subterm s at
a certain position, while t[s′] then denotes the term obtained from t by replacing s by s′ at that position.

A substitution σ maps variables in X to terms in T . Its domain is defined as dom(σ) = {x ∈ X |
xσ , x} while ran(σ) = {xσ ∈ X | xσ , x} denotes its range (both sets are finite). If vars(ran(σ)) = ∅,
then σ is called a ground substitution. If σ is a bijection of X onto itself, it is also called a renaming.
Furthermore, σ is a unifier for two terms s and t if sσ = tσ. It is the most general unifier (mgu) if every
other unifier θ of s and t is an instance of σ, meaning that for each unifier θ there exists a substitution δ
such that σδ = θ. In the context of terms, s is an instance of t if sσ = t for some substitution σ. If there
exists a renaming ρ with sρ = t, then s is called a variant of t.

4.1.2 Term Rewriting

This section covers the basics of term rewrite systems. Unlike the rest of this chapter, it is based on [4]
(section 5.1.1).

A rewrite rule l⇒ r is an ordered pair of terms. A rewrite relation⇒ is a binary relation that is

• closed under substitution (s⇒ t implies sσ⇒ tσ for any substitution σ), and

• closed under context application (s⇒ t implies u[s]⇒ u[t] for any term u)

Given a set of rewrite rules R, the induced rewrite relation⇒R denotes the smallest rewrite relation
that includes R. The converse relation is denoted by ⇐R, while ⇔R and ⇔∗R denote the symmetric
closure and the equivalence closure, respectively. R rewrites a term u to another term v if there exists a
rule s ⇒ t ∈ R such that u = u[sσ] and v = u[tσ] for some substitution σ. If a term cannot be rewritten
by R, it is called irreducible w.r.t. R. If the term t′ is irreducible w.r.t. R and t ⇒∗R t′ for some term t,
then t′ is called a normal form of t.

A reduction relation is a well-founded rewrite relation, which means that every term has a normal
form and there are no infinite sequences of rewrite steps. A rewrite system is called terminating if it
induces a well-founded rewrite relation. It is said to be confluent if s ⇒∗ t and s ⇒∗ u implies t ⇒∗ v
and u⇒∗ v for some v. This means that whenever a term s can be rewritten to two different terms t and
u, it must be possible to rewrite both t and u to the same term v (the equation t ≈ u converges).

A rewrite system that is both terminating and confluent is called convergent. In a convergent rewrite
system R, two terms s and t are considered equivalent (s⇔∗R t) iff they have the same normal form, i.e.,
iff s ≈ t converges.

Finally, a rewrite system R is lhs-irreducible if no left-hand side of any rule in it can be rewritten by
another rule. More formally, s ⇒ t ∈ R implies that there is no rule u[s] ⇒ v ∈ R for any terms u and v
with u , s.
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4.1.3 Atoms, Literals and Clauses

An atom is an expression of the form p(t1, . . . , tn) for p an n-ary predicate symbol and t1, . . . , tn terms.
A literal is an atom or a negated atom. Given a literal L, L denotes the complement of L. A literal is
ground iff all terms occurring in it are ground.

The E-Hyper Tableau calculus assumes that the only predicate symbol in Σ is the equality symbol '.
An arbitrary first-order atom A that is not an equation can simply be turned into the equation A ' t, where
t denotes a special constant that does not appear anywhere else. (However, for the sake of simplicity,
atoms such as P(x) ' t will still be written as P(x).) This means that from now on, an atom will always
be assumed to be an equation of the form s ' t, for s and t Σ-terms, whereas a literal may also be a
negative equation, in which case it is written as s ; t. Note that the atom s ' t will also be used to
denote its symmetric variant t ' s. In other words, s ' t always stands for ’s ' t or t ' s’.

A clause is a finite multiset of literals. In this thesis, clauses will usually be written as implications
of the form A1, . . . , Am ← B1, . . . , Bn, where A1, . . . , Am (m ≥ 0) denote the head atoms or head literals
and B1, . . . , Bn (n ≥ 0) are the body atoms or body literals. The head of a clause is the multiset of
its head literals, while the body is the multiset of the body literals. Hence, a clause may be written as
A ← B, where A and B denote the head and the body, respectively. The notation A,A ← B,B is
used to denote the clause with head A ∪ {A} and body B ∪ {B}. All variables in a clause are implicitly
universally quantified.

A unit clause contains exactly one literal, with positive unit clauses containing a head literal and
negative unit clauses containing a body literal. � denotes the empty clause, which does not contain any
literals. It can also be written as ←. A clause is ground if all of its literals are ground. It is pure if
no variable occurs in more than one distinct head literal. The clause A1, . . . , Am ← B1, . . . , Bn would
be pure iff vars(Ai) ∩ vars(A j) = ∅ for all i, j ∈ {0, . . . ,m} with i , j. A substitution π is a purifying
substitution for a clause C iff Cπ is pure.

4.1.4 Orderings

The E-Hyper Tableau calculus requires a reduction ordering ≺ that is total on the set of ground Σ-terms.
A reduction ordering ≺ on a set of terms T is defined as a strict partial ordering that is

1. well-founded (i.e., every subset of T has a minimal element),

2. stable under context (i.e., s ≺ s′ implies t[p/s] ≺ t[p/s′] for any terms s, s′ and t and any position
p in t), and

3. stable under substitution (i.e., s ≺ t implies sσ ≺ tσ for all terms s and t any substitution σ)

� denotes the non-strict ordering induced by ≺, with � and � denoting the converse of ≺ and �, respec-
tively. In order to compare atoms and clauses, the multiset extension ≺mul of ≺ is used. It is defined as
follows for M and N multisets of terms:

M ≺mul N iff M , N and for all m ∈ M\N there exists an n ∈ N\M with n � m

Each head atom s ' t in a clause is assigned the multiset {s, t} whereas each body atom u ' v is
assigned the multiset {u, u, v, v}. As we will see in a moment, this ensures that body atoms are bigger
than identical head atoms. Two ground atoms A and B, each consisting of two terms (the two sides of
the equation), are then compared using ≺mul (from now on, we will simply use ≺ to denote ≺mul as well)
as follows: first, the bigger term in A is compared with the bigger term in B, with the atom containing
the biggest term being bigger in ≺; if the terms are identical, the signs of the atoms are compared, with
body atoms being bigger than head atoms; if the signs are identical as well, then the smaller terms in A
and B are compared to determine the bigger of the two atoms.
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The two-fold multiset extension of ≺ (which will also be denoted by ≺) is used to compare clauses.
This means that comparing two clauses C and D is similar to comparing atoms: first, the biggest atoms
in C and D are compared; if they are identical and occur the same number of times in both C and D, the
next smallest atoms in the two clauses are considered and so on.

4.1.5 Interpretations

A Herbrand interpretation I is a set of ground Σ-equations, namely those equations that are considered
true in I. Let F denote a ground Σ-literal, a Σ-clause or a set of Σ-clauses; then, I |= F denotes that I
satisfies F.

An E-interpretation is an interpretation that is also a congruence relation on the set of Σ-terms. IE

denotes the E-interpretation induced by I, i.e., the smallest congruence relation on Σ-terms that includes
I. I |=E F denotes the fact that I E-satisfies F, which means IE |= F. F |=E F′ holds iff every E-
interpretation that satisfies F also satisfies F′, in which case we say that F E-entails F′.

4.1.6 Redundant Clauses

If D is a ground clause and S is a set of clauses, then S D denotes the set of ground clauses or ground
instances of clauses in S that are smaller than D. A ground clause D is redundant w.r.t. a set of clauses
S iff S D |=E D (more intuitively: iff D follows from smaller clauses in S ). A non-ground clause D is
redundant w.r.t. S iff S D′ |=E D′ for every ground instance D′ of D.

For example, given the clause D = (A(b) ←), the clause set S = {(A(a) ←), (a ' b ←)} and a
reduction ordering ≺ such that a ≺ b, we have S D = S . Since S clearly E-entails A(b), D is redundant
w.r.t. S . If b was smaller than a in ≺, D would still follow from S , but it would be bigger than (A(a)←).
As a result, we would have S D = {(a ' b ←)}, which clearly does not E-entail D, so D would not be
redundant w.r.t. S .

As another example, consider the case where D = (b ' c ←), S = {(a ' b ←), (a ' c ←)}, and
a ≺ b ≺ c. Here we once again have S D = S and S |=E D, so D is redundant w.r.t. S .

4.2 Inference Rules

The E-Hyper Tableau calculus has four inference rules, with the first three presented here being based
on the superposition calculus in [4]. Again, it is important to remember that the atom s ' t also stands
for t ' s.

The first inference rule is sup-left (superposition-left), which applies superposition to a body literal.

sup-left(σ)
A ← s[l′] ' t,B l ' r ←

(A ← s[r] ' t,B)σ
if


l′ is not a variable,
σ is a mgu of l and l′,
lσ � rσ, and
sσ � tσ

The upper left clause is called the rule’s left premise, with the upper right clause denoting the right
premise. The resulting clause is called the conclusion. A sup-left inference with left premise C, right
premise D, substitution σ, and conclusion E is represented by C,D ⇒sup-left(σ) E. Examples of sup-left
inferences are shown below. Note that, in contrast to the rest of this thesis, all atoms were written as
equations this time.

(P(x) ' t← Q(x, f (y)) ' t), (Q(a, f (b)) ' t←)⇒sup-left({x/a, y/b}) (P(a) ' t← t ' t)
(← Q(x) ' t), (Q(y) ' t←)⇒sup-left({x/y}) (← t ' t)
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Next up is the unit-sup-right rule (unit superposition right). Unlike sup-left, it applies superposition
to a positive unit clause.

unit-sup-right(σ)
s[l′] ' t ← l ' r ←

(s[r] ' t ←)σ
if



l′ is not a variable,
σ is a mgu of l and l′,
(s[l′] ' t)σ � (l ' r)σ,
lσ � rσ, and
sσ � tσ

Similar to sup-left inferences, unit-sup-right inferences are represented by C,D ⇒unit-sup-right(σ) E.
Below are some examples, with the second one assuming a ≺ b ≺ c.

(P( f (x)) ' t←), ( f (a) ' a←)⇒unit-sup-right({x/a}) (P(a) ' t←)

(b ' c←), (a ' c←)⇒unit-sup-right(ε) (a ' b←)

Note that, in the second inference, the left premise and the right premise could not have been ex-
changed because a ≺ b ≺ c implies that the right premise is smaller than the left premise. Also, the
left premise needs to be interpreted as its symmetric variant (c ' b ←) for the side conditions of the
unit-sup-right rule to hold.

The ref rule (reflexivity) removes a body literal if its two sides can be unified.

ref(σ)
A← s ' t, B
(A← B)σ

if σ is a mgu of s and t

In the case of ref, there is no right premise, so the inferences are written as C ⇒ref(σ) E. Some
examples are

(← g( f (x), f (b)) ' g( f (a), y))⇒ref({x/a, y/ f (b)}) (←)

(← t ' t)⇒ref(ε) (←)

The split rule is applied to non-unit clauses with empty bodies. First, it applies a purifying substitu-
tion π to ensure that no variable is shared among head literals. The resulting instantiated head atoms are
then returned as positive unit clauses.

split(π)
A1, ..., Am ←

A1π← ... Amπ←
if

m ≥ 2 and
π is a purifying substitution for A1, ..., Am ←

split inferences are denoted by C ⇒split(π) A1 ←, . . . , Am ←, where each Ai ← represents one
conclusion. Note that, in the following example, only x needs to be instantiated because y only occurs
in one head literal.

(P(x),Q(x, y)←)⇒split({x/a}) (P(a)←), (Q(a, y)←)

4.3 Redundant Inferences and Saturation

An inference is ground iff all of its premises and all of its conclusions are ground. The substitution
σ (or π, in the case of split) in a ground inference may be assumed to be the empty substitution ε.
Given an inference C,D ⇒sup-left(σ) E and a substitution γ such that Cσγ,Dσγ ⇒sup-left(ε) Eγ is a
ground inference, we say that the latter inference is a ground instance of the former one. For unit-
sup-right and ref inferences, the definitions are analogous, except that the right premises D and Dσγ
are missing in the case of ref. As for split, if C ⇒split(π) A1 ←, . . . , Am ← is a split inference and
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Cπγ ⇒split(ε) A1γ ←, . . . , Amγ ← is a ground inference, then it is a ground instance of the former
inference.

Given a clause set S , a ground inference C,D⇒sup-left(ε) E or C,D⇒unit-sup-right(ε) E, or C ⇒ref(ε) E
is redundant w.r.t. S iff E follows from S C ∪ {D} (formally, S C ∪ {D} |=E E), where {D} is the empty
set in the case of ref. A ground inference C ⇒split(ε) A1 ←, . . . , Am ← is redundant w.r.t. S iff there is
some i with 1 ≤ i ≤ m such that (Ai ←) follows from S C (S C |=E (Ai ←)). A non-ground inference is
redundant w.r.t. S iff each of its ground instances is redundant w.r.t. S .

As mentioned in [7], all inferences work in a strictly order-decreasing way. As a result, when the
conclusion of an inference applied to clauses from S is added to S , the inference will be redundant w.r.t.
S afterwards. For example, consider the clause set S = {(P(b) ←), (a ' b ←)} with a ≺ b. Using unit-
sup-right with left premise C = (P(b) ←) and right premise D = (a ' b ←), the clause E = (P(a) ←)
will be inferred and added to S . E ∈ S as well as the fact that E is smaller than C due to a ≺ b imply
E ∈ S C . Hence, we now have S C ∪ {D} |=E E, so the above unit-sup-right inference will be redundant
after being applied once.

The following definition is of crucial importance in proving the completeness of the E-Hyper Tableau
calculus (see [7] for the proof). When the DLE-Hyper Tableau calculus is introduced in chapter 5, it will
be extended.

Definition 4.3.1 (Saturation up to Redundancy [7]). A clause set S is saturated up to redundancy iff
for all clauses C ∈ S , such that C is not redundant w.r.t. S , all of the following hold:

• Every inference C ⇒split(π) A1 ←, ..., Am ←, such that Cπ is not redundant w.r.t. S , is redundant
w.r.t. S .

• Every inference C,D ⇒R(σ) E, where R ∈ { sup-left, sup-unit-right } and D is a fresh variant of a
positive unit clause from S , such that neither Cσ nor Dσ is redundant w.r.t. S , is redundant w.r.t.
S .

• Every inference C ⇒ref(σ) E, such that Cσ is not redundant w.r.t. S , is redundant w.r.t. S .

The fact that some clause set S is saturated up to redundancy basically means that it would not make
sense to apply any more inferences because all relevant clauses have been derived. If S does not contain
the empty clause, it will not be derived by further inferences either.

4.4 E-Hyper Tableaux

As defined in [7], a tableau T over a signature Σ is a labeled tree over the set of Σ-clauses. More precisely,
T = (t, λ), where t denotes a finite, ordered tree and λ denotes a labeling function that maps each node
of t to some Σ-clause.

A branch B of length n in a tableau T is a sequence of nodes (N1, . . . ,Nn) (for n ≥ 0), where N1 is
the root and Nn is the leaf of B. The clauses λ(Ni) (for 1 ≤ i ≤ n) are called clauses of B. The set of B’s
clauses, λ(B), is then defined as λ(B) =

⋃
1≤i≤n λ(Ni). For the sake of simplicity, we will also interpret

B as the set of the clauses it contains and use C ∈ B rather than the more cumbersome C ∈ λ(B) to refer
to a clause C with which some node in B is labeled.

Given a tableau T containing a branch B, the tableau obtained by adding an edge from the old leaf
node of B to a new node labeled with a clause C is simply written as B·C. If B′ is a sequence of nodes,
we will write the tableau obtained by adding an edge from the leaf of B to the root of B′ as B·B′. The
same notation will be used if B′ denotes a set of n clauses, in which case it will be interpreted as a
sequence of n nodes, each of which is labeled with a distinct clause from the clause set B′. The order of
the nodes in the sequence is irrelevant.
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A branch is closed iff it contains the empty clause �, and it is open iff it is not closed. Similarly, A
tableau is closed iff each of its branches is closed, and it is open iff it is not closed.

4.5 Extension Rules

The E-Hyper Tableau calculus uses two derivation rules to extend branches in a tableau. The Split
rule essentially encapsulates the split inference rule. The label d indicates that the resulting clauses are
’decision clauses’. In the next section, we will see why these labels are necessary.

Split
B

B· A1 ←d . . . B· Am ←
d if



there is a clause C ∈ B and
a substitution π such that
C ⇒split(π) A1 ←, ..., Am ← and
B contains no variant of Ai ←

for any 1 ≤ i ≤ m

The Equality rule is used for applying sup-left, unit-sup-right or ref to clauses in a branch.

Equality
B

B· E
if



there is a clause C ∈ B,
a fresh variant D of a positive unit clause in B, and
a substitution σ such that
C,D⇒R(σ) E with R ∈ { sup-left, unit-sup-right } or
C ⇒ref(σ) E, and
B contains no variant of E

Note that an application of an inference rule to clauses from a branch B is redundant iff its conclusion
(or, in the case of split, at least one of its conclusions) is redundant w.r.t. B.

4.6 Deletion and Simplification Rules

The regular Hyper Tableau calculus [6] was non-destructive, meaning that the set of clauses in a branch
could only be extended. In practice, however, it may be necessary to delete redundant clauses or replace
them by smaller, simpler clauses, which is why the E-Hyper Tableau calculus has two rules for doing
just that. The first rule, Del (deletion), replaces a clause by the trivial clause (t ' t ←) if it is redundant
or non-properly subsumed by another clause in the same branch. Note that a clause C non-properly
subsumes a clause D if there exists a substitution σ such that Cσ = D.

Del
B·C(d)·B1·B2

B· t ' t←(d)·B1·B2
if


(1) C is redundant w.r.t. B·B1, or some
clause in B·B1 non-properly subsumes C, and
(2) B1 does not contain a decision clause

The superscript (d) indicates that if the clause is labeled as a decision clause, the label will be pre-
served even though the actual clause is replaced. Note that the second constraint in the above definition
is necessary to obtain a complete calculus. Without it, it would be possible to remove clauses that are
shared by several branches but do not necessarily follow from clauses in all of these branches. Hence,
removing such a clause may, in the worst case, prevent a contradiction from being uncovered in another
branch.

The Simp rule (simplification) replaces a clause by another, smaller clause such that the removed
clause is redundant w.r.t. the resulting branch.
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Simp
B·C(d)·B1·B2

B·D(d)·B1·B2
if


B·C·B1 |=E D,
C is redundant w.r.t. B·D·B1, and
B1 does not contain a decision clause

Once again, it necessary to check whether B1 contains a decision clause. In this case, both the
soundness and the completeness of the calculus would be affected otherwise.

4.7 Derivations

Before the notion of a derivation is defined, note that we will refer to Split, Equality, Del, and Simp as
the derivation rules of the E-Hyper Tableau calculus. The inference rules introduced in section 4.2 are
not considered derivation rules but will always be called inference rules.

An E-Hyper Tableau derivation of a set {C1, . . . ,Cn} of Σ-clauses is a possibly infinite sequence of
tableaux D = (Ti)0≤i≤κ such that

1. T0 = (t0, λ0) is the clausal tableau over Σ that consists of a single branch (N0, . . . ,Nn) with
λ0(N j) = C j for all 1 ≤ j ≤ n

2. for all i > 0, Ti is obtained from Ti−1 by applying one of the E-Hyper Tableau calculus’s derivation
rules to some open branch of Ti−1

As defined in section 4.4, a tableau T is a tuple (t, λ), where the tree t denotes a tuple (N,E) consist-
ing of a set of nodes N and a set of edges E. The limit tree of a derivation D = ((Ni,Ei), λi)i<κ is then
defined as (

⋃
i<κ Ni,

⋃
i<κ Ei).

Now let B = (Ni)i<κ denote a possibly infinite branch with κ nodes in the limit tree t of some
derivation. Also, let Bi = (N1, . . . ,Ni) denote the sequence of the first i nodes in B for all i < κ. The set
of persistent clauses B∞ of B is then defined as follows:

B∞ =
⋃
i<κ

⋂
i≤ j<κ

λ j(B j)

Basically, B∞ is the set of all those clauses in B that were not replaced by Del or Simp. We can then
define the notion of an exhausted branch. Informally, a branch is called exhausted if applying further
derivation rules would not help in finding a contradiction because all relevant clauses have been derived.

Definition 4.7.1 (Exhausted Branch [7]). Let t be a limit tree, and let B = (Ni)i<κ be a branch in t with
κ nodes. The branch B is exhausted iff it does not contain the empty clause, and for every clause C ∈ B∞
and every fresh variant D of every positive unit clause in B∞ such that neither C nor D is redundant w.r.t.
B∞ all of the following hold, for all i < κ such that C ∈ Bi and D is a variant of a clause in Bi:

• if Split is applicable to Bi with underlying inference C ⇒split(π) A1 ←, . . . , Am ← and Cπ is not
redundant w.r.t. Bi, then there is a j < κ such that the inference C ⇒split(π) A1 ←, . . . , Am ← is
redundant w.r.t. B j.

• if Equality is applicable to Bi with underlying inference C,D ⇒R(σ) E, for some R ∈ { sup-left,
unit-sup-right }, and neither Cσ nor Dσ is redundant w.r.t. Bi, then there is a j < κ such that the
inference C,D⇒R(σ) E is redundant w.r.t. B j.

• if Equality is applicable to Bi with underlying inference C ⇒ref(σ) E and Cσ is not redundant
w.r.t. Bi, then there is a j < κ such that the inference C ⇒ref(σ) E is redundant w.r.t. B j.

A refutation of a clause set S is a finite derivation of S that ends in a closed tableau. A derivation is fair
iff it is a refutation or iff its limit tree has an exhausted branch.

Figure 4.1 contains an example E-Hyper Tableau.
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A(a)← (1)

← C(b) (2)

a ' b← (3)

C(x), B(x)← A(x) (4)

← C(a) (5)

C(a), B(a)← t ' t (6)

C(a), B(a)← (7)

C(a)←d (8)

← t ' t (9)

←

Equality [ ref (9) ]

Equality [ sup-left (5) (8) ]

Split [ split (7) ]

B(a)←d (10)

Equality [ ref (6) ]

Equality [ sup-left (4) (1) ]

Equality [ sup-left (2) (3) ]

Figure 4.1: Example of an E-Hyper Tableau. The initial clause set consisted of clauses (1)-(4), with a ≺ b. The
labels next to the edges indicate which derivation and inference rules were applied to which clauses
to derive the clause of the next node. The left branch is closed whereas the right one is open and
exhausted. Note that clause (2) is redundant w.r.t. (3) and (5), so Del could replace it by the trivially
true clause (t ' t←).

4.8 Soundness and Completeness

The E-Hyper Tableau calculus was proven to be sound and complete in [7]. The statements of the most
important theorems and propositions are repeated here so they can be referred to later on. Note that
some of the identifiers were changed.

Theorem 4.8.1 (Static Completeness [7]). Let S be a clause set that is saturated up to redundancy. If
� < S , then S is satisfiable.

Theorem 4.8.2 (Correctness of E-Hyper Tableaux [7]). Let S be a clause set that has a refutation.
Then S is E-unsatisfiable.

Proposition 4.8.1 (Exhausted branches are saturated up to redundancy [7]). If B is an exhausted
branch of a limit tree of some fair derivation, then B∞ is saturated up to redundancy.

Theorem 4.8.3 (Completeness of E-Hyper Tableaux [7]). Let S be a clause set and t be the limit tree
of a fair derivation D of S . If D is not a refutation, then S is satisfiable.
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4.9 Model Construction

While this section will not cover the details of the completeness proof in [7], the model construction
method used there is helpful in proving the completeness of the DLE-Hyper Tableau calculus, so it will
briefly be introduced here.

Let S denote a possibly infinite clause set. By induction on the term ordering ≺, sets of rewrite rules
εC and RC are defined for each positive Σ-clause C. Suppose that εD has been defined for all ground
Σ-clauses D with D ≺ C. Let RC =

⋃
D≺C εD. εC is then defined as follows:

εC =


{l⇒ r} if C = (l ' r ←) is a ground instance of a positive unit clause in S , l � r,

and l is irreducible w.r.t. RC

∅ otherwise

The rewrite system induced by S is defined as RS =
⋃

C εC , where C ranges over all ground Σ-
clauses. As shown in [7], RS must be a convergent rewrite system. An atom s ' t is true in RS (written
as RS |=E s ' t) iff s and t reduce to the same normal form in RS . Given a clause C = (A ← B),
RS |=E C iff RS |=E A for some A ∈ A or RS 6|=E B for some B ∈ B. Finally, RS |=E S ′ for some clause
set S ′ iff RS |=E C for every clause C ∈ S ′. As shown in the completeness proof in [7], the rewrite
system induced by the set of persistent clauses B∞ of an exhausted branch B is a model of B’s clause set
(i.e., RB∞ |=E B).
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Chapter 5

The DLE-Hyper Tableau Calculus

As the regular E-Hyper Tableau calculus has no means of correctly handling the ≥-number restrictions
occurring in DLE-clauses, it was equipped with a new inference rule (at-least) and a corresponding
extension rule (At-Least) to remedy this shortcoming. The resulting calculus is called the DLE-Hyper
Tableau calculus. This chapter describes the changes that had to be made to the E-Hyper Tableau cal-
culus in order to obtain the new calculus, which is capable of processing DLE-clauses derived from
SHIQ knowledge bases. In the next chapter, we will then prove that the DLE-Hyper Tableau calculus
is in fact a decision procedure for SHIQ.

Unlike the previous chapter, the contents of this chapter are entirely original work. Note, however,
that Björn Pelzer, who already implemented the E-Hyper Tableau calculus in E-KRHyper [16], took
care of the actual implementation of the theoretical concepts presented here.

5.1 Preliminaries

All of the inference and derivation rules of the E-Hyper Tableau calculus are still defined the same
way. The definitions of branches, tableaux and derivations also remain unchanged except for the fact
that DLE-Hyper Tableau branches and derivations are finite since the calculus terminates (as will be
shown in section 6.2). Furthermore, since DLE-clauses are equational clauses, they can be handled by
the E-Hyper Tableau calculus’s inference rules without a problem, although the additional rules of the
DLE-Hyper Tableau calculus are needed due to the ≥-number restrictions. The concepts and individuals
in DLE-clauses will be represented by first-order predicates and constants, respectively. (Note that,
technically, ' is still the only true predicate symbol.) Since this thesis focuses on the theoretical aspects
of the DLE-Hyper Tableau calculus, ≥-number restrictions will simply be written in the form ≥ n R.C,
as in the chapters about Description Logics. In practice, they may be represented by predicates such
atleast_n_R_C.

Given a DLE-clause set S , we assume that each ≥-number restriction is assigned a distinct label
l before the derivation begins. When an inference rule is applied to a clause containing a ≥-number
restriction, the label is preserved (e.g., (≥ 1 R.Cl(a) ←), (a ' b ←) ⇒unit-sup-right(ε) (≥ 1 R.Cl(b) ←),
where the subscript l indicates the label). As we shall see in a moment, the labels are necessary for the
new at-least rule to work correctly.

Let NS denote the set of individuals occurring in S . The set of all individuals NX is then defined
inductively:

1. NI ⊆ NX

2. if a ∈ NX and ≥ n R.Cl is a ≥-number restriction occurring in S , then a.l.1, . . . , a.l.n ∈ NX
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If the name of any individual added in the second step clashes with the name of an individual,
concept or role in S , then the problematic identifier in S must be renamed appropriately before the
DLE-Hyper Tableau calculus can be applied. Since the DLE-Hyper Tableau calculus, like the E-Hyper
Tableau calculus, uses a signature Σ with a set of function symbols F , and since individuals in DLE-
clauses are represented by first-order constants, we assume that NX is a subset of F . In fact, we even
assume F = NX , as DLE-clauses do not contain function symbols of non-zero arity.

5.2 The at-least Inference Rule

The DLE-Hyper Tableau calculus handles ≥-number restrictions with the help of a new inference rule
called at-least. In order to be able to treat atomic roles and inverse roles R the same way when describing
the rule, we will use the ar function as defined in Table 3.2:

ar(R, s, t) =

R(s, t) if R is an atomic role
S (t, s) if R is an inverse role and R = S −

Also, to simplify things, we will define a function cc (’concept clause’) that expects a literal concept
B and an individual a as arguments and generates a positive or negative concept clause. Let A denote an
atomic concept; then

cc(B, a) =

A(a)← if B = A
← A(a) if B = ¬A

The at-least inference rule is defined as follows, for a and a.l.i (with 1 ≤ i ≤ n) individuals, R an
atomic or inverse role and B a literal concept:

at-least
(≥ n R.Bl(a)←)⋃

1≤i≤n{ar(R, a, a.l.i)←,

cc(B, a.l.i),

dom(a.l.i)←}∪⋃
1≤i< j≤n{ ← a.l.i ' a.l. j}

at-least inferences with premise C and conclusion E, where E denotes a set of clauses, are rep-
resented by C ⇒at-least E. The rule basically ’expands’ the number restriction by generating n fresh,
pairwise distinct R-successors of a that must satisfy the concept B, as implied by the clauses in the con-
clusion. The dom clauses are needed because, as described in section 3.5, a range-restricted clause set S
must contain the clause (dom(a) ←) for every constant a in S in order for range restriction to be sound
and complete.

The reasoning behind the use of the labels should become clear now: without them, at-least would
generate the same successors a.1, . . . , a.n for both (≥ n R.A(a) ←) and (≥ n R.¬A(a) ←), for example,
which would lead to a contradiction even though the two clauses are not inherently contradictory. In
the rest of this thesis, the labels both in at-least clauses and in the names of successors will sometimes
be omitted since the full notation can become cumbersome at times. For example, when dealing with a
case where at-least is applied to (≥ 1 R.B(a)←) (implicitly labeled with l), the resulting successor may
simply be denoted by a′ even though its actual name would be a.l.1.

36



An example of an application of at-least is shown below, where R is an atomic role, A an atomic
concept, and the premise is labeled with l.

≥ 3 R.Al(a)⇒at-least {R(a, a.l.1)←,

R(a, a.l.2)←,

R(a, a.l.3)←,

A(a.l.1)←,

A(a.l.2)←,

A(a.l.3)←,

dom(a.l.1)←,

dom(a.l.2)←,

dom(a.l.3)←,

← a.l.1 ' a.l.2,

← a.l.1 ' a.l.3,

← a.l.2 ' a.l.3}

The following example illustrates the effects of applying at-least to an at-least clause containing an
inverse role as well as a negated atomic concept:

≥ 2 R−.¬Al(a)⇒at-least {R(a.l.1, a)←,

R(a.l.2, a)←,

← A(a.l.1),

← A(a.l.2),

dom(a.l.1)←,

dom(a.l.2)←,

← a.l.1 ' a.l.2

This time, only two successors were generated, so only one inequality clause had to be added. Note
that when one successor is generated, no inequality clauses are added. In general, n pairwise distinct
successors require

(
n
2

)
inequality clauses.

5.3 The At-Least Extension Rule

Now that the at-least inference rule has been introduced, we will take a look at the At-Least extension
rule, which encapsulates the at-least rule and works on actual branches in a tableau. This is analogous
to the way Split and Equality encapsulate their respective inference rules, as described in section 4.5.
The rule’s definition is straight-forward:

At-Least
B

B· E
if

there is an at-least clause C ∈ B such that
C ⇒at-least E is not redundant

Unlike Equality and Split, At-Least does not append a single node but an entire sequence of nodes
to B.

An at-least inference C ⇒at-least E is redundant w.r.t. a clause set S iff all clauses in E follow from
S C or iff the individual in C is blocked in S . (Blocking will be covered in the next section.) Note that the
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clauses in E can only follow from S C if at-least has already been applied to C because the individuals in
E cannot have been introduced to S in any other way (remember that their names are based on the unique
label of the number restriction in C). Also, for this check to work correctly, all ≥-number restrictions
must be bigger in ≺ than the biggest term that will be generated by applying at-least to them. Otherwise,
S C would not contain all clauses in E, in which case some clauses in E would not follow from S C .
Hence, the inference would not be redundant and could be applied again.

5.4 Pairwise Anywhere Blocking

In order to obtain a terminating calculus, it is sometimes necessary to block an application of the at-
least rule, i.e., to prevent it from generating successors for a given individual. Consider the SHIQ KB
K = (R,T ,A) with

R = ∅,

T = {A v ≥ 1 R.A},

A = {A(a)}

Clearly,K is satisfiable by setting ∆I = {a}, aI = a, AI = {a}, and RI = {(a, a)}. However, translating
K into DLE-clauses would yield the following clause set:

{>(ι)←,

dom(ι)←,

≥ 1 R.Al(x)← A(x),

A(a)←,

dom(a)←}

(Note that the ≥-number restriction in the first clause was labeled with l.) Without blocking, the
DLE-Hyper Tableau calculus would not terminate when applied to the above set because at-least would
simply keep on generating successors, as shown in Figure 5.1.

As a remedy to this problem, we use a slightly modified version of the pairwise anywhere blocking
technique defined in [13]. Before presenting it, however, a couple of definitions are required.

Definition 5.4.1 (Named and Unnamed individuals). Given a branch B in a DLE-Hyper Tableau
derivation from DLE(K), those individuals in B that already appeared in DLE(K) are called named
individuals. In contrast, the individuals in B that were introduced by at-least are called unnamed indi-
viduals. NB denotes the set of all (named and unnamed) individuals in B.

Note that at-least adds new individuals to the set NB. Next, we formally define the notions of
successor and predecessor.

Definition 5.4.2 (Successors and Predecessors). An individual b is called a successor of a, with a
being the predecessor of b, if and only if b was generated by applying the at-least rule to an at-least
clause containing a. The relations descendant and ancestor are the transitive closures of the successor
and predecessor relations, respectively.

Every unnamed individual has exactly one predecessor, whereas named individuals do not have any
predecessor since they are not generated by at-least. Note that even if two named individuals a and b
occur in a role clause of the form (R(a, b)←), b is not considered a successor of a. An individual (named
or unnamed) may have multiple successors. As mentioned in chapter 4, the E-Hyper Tableau calculus
uses a reduction ordering ≺ that is total on ground terms. Apart from ≺ being a reduction ordering, the

38



DLE-Hyper Tableau calculus also requires that for all individuals a, a′ ∈ NB in a branch B, a′ ≺ a if a′

is the predecessor of a. (As a result, a′ ≺ a also holds if a′ is an ancestor of a.) Furthermore, all named
individuals must be smaller in ≺ than any unnamed individual.

Definition 5.4.3 (Equality Sequence). An equality sequence is a sequence of equality clauses of the
form ((a1 ' a2 ←), (a2 ' a3 ←), . . . , (am−2 ' am−1 ←), (am−1 ' am ←)), for a1, . . . , am individuals and
m ≥ 2.

In the above case, we say that the sequence connects a1 to am and that the equality clauses in the
sequence are its links. Furthermore, we say that a DLE-clause set S contains an equality sequence ES if
ES consists entirely of (symmetric variants of) equality clauses in S . Note that if S contains an equality
sequence ES connecting a to b, it also contains a sequence connecting b to a since one could simply
reverse the order of the links in ES and replace them by their symmetric variants to obtain that sequence.
Also, if one equality sequence in S connects a to b and another connects a to c, for a, b and c pairwise
distinct individuals, then there obviously exists a sequence connecting a to c. This is important in the
following definition.

Given a DLE-Hyper Tableau branch B, with NB denoting the set of individuals in B, we define an
equivalence relation EQB on NB as follows:

EQB = {(a, b) ∈ NB × NB | a = b or B contains an equality sequence connecting a to b}

Note that, due to the properties of equality sequences mentioned above, EQB is indeed a reflexive,
transitive relation.

Definition 5.4.4 (Equivalence Class). The equivalence class [a]B of an individual a in a branch B is
the set

[a]B = {b | (a, b) ∈ EQB}

When it is clear which branch is being referred to, the subscript will usually be omitted and [a] will
be used to denote the equivalence class of the individual a in the branch in question. For example, when
the statement of a Lemma refers to a branch B and no other branch is mentioned, [a] stands for [a]B.

For an individual a and a set of individuals N, we write a � N if a � b for all b ∈ N. The minimum
of N is then defined as min N = a if a ∈ N and a � N. Note that the statement a = min[a]B for an
individual a ∈ NB is equivalent to a � [a]B. In this case, we say that a is the minimum of its equivalence
class or that it is minimal in its class.

Definition 5.4.5 (Blocking-relevant Concepts [13]). A blocking-relevant concept is a concept of the
form A, ≥ n R.A, or ≥ n R.¬A for A an atomic concept and R an atomic or inverse role.

Now we can finally introduce the notion of pairwise anywhere blocking. While the labeling method
presented in the following definition is slightly different from the one used by Motik et al. [13], the rest
of the definition was essentially copied from [13].

Definition 5.4.6 (Pairwise Anywhere Blocking). The label of an individual a and a pair of individuals
(a, b) in a branch B is computed as follows:

LB(a) = {C | (C(a′)←) ∈ B for some a′ ∈ [a]B, where C is a blocking-relevant concept}

LB(a, b) = {R | (R(a′, b′)←) ∈ B for some a′ ∈ [a]B and b′ ∈ [b]B, where R is an atomic role}

By induction on the term-ordering ≺, each individual a in B is then assigned a status as follows:
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• a is directly blocked by an individual b iff both a and b are unnamed, b is not blocked, b ≺ a,
LB(a) = LB(b), LB(apre) = LB(bpre), LB(apre, a) = LB(bpre, b), and LB(a, apre) = LB(b, bpre),
where apre and bpre are the predecessors of a and b, respectively.

• a is indirectly blocked iff its predecessor is blocked

• a is blocked iff it is either directly or indirectly blocked

The intuition behind this definition is that the pair of individuals apre, a is basically equivalent to
the pair bpre, b. If no contradiction was discovered after generating the successors of a, then generating
successors of b will not result in a contradiction being found either.

In the example in Figure 5.1, the equivalence class of each individual only contains the individual
itself. As a result, the following labels would have been computed (the branch identifier was omitted
here):

L(a) = {≥ 1 R.A}

L(a.l.1) = {≥ 1 R.A}

L(a.l.1.l.1) = {≥ 1 R.A}

L(a, a.l.1) = {R}

L(a.l.1, a) = ∅

L(a.l.1, a.l.1.l.1) = {R}

L(a.l.1.l.1, a.l.1) = ∅

Note that we haveL(a) = L(a.l.1), L(a.l.1) = L(a.l.1.l.1) (i.e., the predecessors of a.l.1 and a.l.1.l.1
have identical labels) as well as L(a, a.l.1) = L(a.l.1, a.l.1.l.1) and L(a.l.1, a) = L(a.l.1.l.1, a.l.1). As
a result, a.l.1.l.1 would have been directly blocked by a.l.1, which means that at-least would not have
been applied to (≥ 1 R.Al(a.l.1.l.1)←) and the calculus would have terminated after deriving that clause.

5.5 Redundancy and Exhausted Branches

The following is an extended version of Definition 4.3.1, which introduced the notion of saturation up to
redundancy for regular E-Hyper Tableaux. Due to the new inference rule, a minor change was necessary
to adapt it to DLE-Hyper Tableaux.

Definition 5.5.1 (Saturation up to Redundancy). A DLE-clause set S is saturated up to redundancy
iff for all clauses C ∈ S , such that C is not redundant w.r.t. S , all of the following hold:

• Every inference C ⇒split(π) A1 ←, ..., Am ←, such that Cπ is not redundant w.r.t. S , is redundant
w.r.t. S .

• Every inference C,D ⇒R(σ) E, where R ∈ { sup-left, sup-unit-right } and D is a fresh variant of a
positive unit clause from S , such that neither Cσ nor Dσ is redundant w.r.t. S , is redundant w.r.t.
S .

• Every inference C ⇒ref(σ) E, such that Cσ is not redundant w.r.t. S , is redundant w.r.t. S .

• Every inference C ⇒at-least E, such that C is not redundant w.r.t. S , is redundant w.r.t. S .
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The use of blocking leads to the following (theoretical) problem: given a clause set S that is saturated
up to redundancy, suppose that the conclusion of the inference C,D⇒unit-sup-right(σ) E, where E is a unit
clause not containing a ≥-number restriction, follows from S C ∪ {D}, which means that the inference is
redundant. Furthermore, suppose that S C ∪ {D} contains an at-least clause F = (≥ n R.B(a)←) that was
not expanded by at-least because a is blocked. We will assume that F actually contributes to rendering
E redundant, i.e., S C ∪ {D} |=E E but S C ∪ {D}\{F} 6|=E E. (Note that, since the number of constants in
the signature Σ is infinite, checking whether S C ∪ {D} |=E E holds is undecidable because every subset
of n constants may be used as the set of a’s successors.) This means that E is not added to S because
it follows from the fact that a has n R-successors that satisfy B; however, this is not indicated by the
corresponding role, concept and inequality clauses that would have been added by at-least because a is
blocked. As a result, no unit clause in S indicates that E holds, which is why it is impossible to construct
a model of S from the unit clauses contained in it.

As a result, the calculus needs to treat ≥-number restrictions as regular predicates without special
semantics when performing redundancy checks. As mentioned above, this restriction is insignificant in
practice because the redundancy checks it affects are undecidable anyway. We will refer to this simplified
treatment of ≥-number restrictions as naive semantics. For example, (≥ n R.Cl(a) ←) and (a ' b ←)
E-entail (≥ n R.Cl(b)←) under naive semantics, but the former at-least clause does not imply that a has
n distinct R-successors because it is interpreted as just another predicate with no special meaning. The
fact that these successors exist will only be E-entailed by the clause set once at-least has generated the
corresponding unit clauses. If a is blocked in the saturated set, it will never be E-entailed under naive
semantics. It is easy to see that any clause or inference that is redundant under naive semantics is also
redundant under proper semantics.

In order to fully understand the implications of this restriction, let S denote a clause set that is satu-
rated up to redundancy and does not contain the empty clause. In particular, this implies that the conclu-
sion of every sup-left, unit-sup-right, ref, or split inference with non-redundant premises is E-entailed
by smaller clauses in S under naive semantics. Since the original E-Hyper Tableau calculus, which only
has these four inference rules, is complete, this means that it is possible to construct a rewrite system IS

from S that is a model of S under naive semantics using the model construction technique from section
4.9. Note that IS will be naive in the sense that at-least clauses of the form (≥ n R.C(a) ←) will simply
be interpreted as true, as would a unit clause containing a regular predicate such as (P(a)←). If at-least
was applied to the clause in question, then this would be correct in so far as the unit clauses generated
by at-least would ensure that a actually has n distinct R-successors that satisfy C in IS . However, if a
is blocked, then IS is not a proper model of S because the required successors of a do not exist in IS .
Hence, what remains to be shown in order to prove that the DLE-Hyper Tableau calculus is complete
is that a saturated clause set that has a naive model also a proper model. We may, however, assume
that the calculus will discover any contradiction in a given clause set that would have been found by the
(complete) E-Hyper Tableau calculus. After all, the use of naive semantics when performing redundancy
checks ensures that blocked at-least clauses cannot contribute to rendering applicable E-Hyper Tableau
inferences redundant in DLE-Hyper Tableaux.

Since the DLE-Hyper Tableau calculus terminates (as will be shown in section 6.2), a DLE-Hyper
Tableau branch can only consist of finitely many nodes. As a result, Definition 4.7.1 (Exhausted Branch)
can simply be adapted as follows.

Definition 5.5.2 (Exhausted Branch). A DLE-Hyper Tableau branch B is exhausted iff it does not
contain the empty clause and the set of its clauses is saturated up to redundancy.

It is obvious that Proposition 4.8.1 (Exhausted branches are saturated up to redundancy) carries over
to DLE-Hyper Tableau branches.
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>(ι)← (1)

dom(ι)← (2)

≥ 1 R.Al(x)← A(x) (3)

A(a)← (4)

dom(a)← (5)

≥ 1 R.Al(a)← t ' t (6)

≥ 1 R.Al(a)← (7)

R(a, a.l.1)← (8)

A(a.l.1)← (9)

dom(a.l.1)← (10)

≥ 1 R.Al(a.l.1)← t ' t (11)

≥ 1 R.Al(a.l.1)← (12)

R(a.l.1, a.l.1.l.1)← (13)

A(a.l.1.l.1)← (14)

dom(a.l.1.l.1)← (15)

≥ 1 R.Al(a.l.1.l.1)← t ' t (16)

≥ 1 R.Al(a.l.1.l.1)← (17)

...

At-Least [ at-least (17) ]

Equality [ ref (16) ]

Equality [ sup-left (3) (14) ]

At-Least [ at-least (12) ]

Equality [ ref (11) ]

Equality [ sup-left (3) (9) ]

At-Least [ at-least (7) ]

Equality [ ref (6) ]

Equality [ sup-left (3) (4) ]

Figure 5.1: Example of how applying at-least without blocking leads to infinite derivations.
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Chapter 6

Proofs

Now that the DLE-Hyper Tableau calculus has been introduced, we will show that it is a decision pro-
cedure for SHIQ by proving that the calculus is sound, terminating and complete.

6.1 Soundness

Theorem 6.1.1 (Soundness). The DLE-Hyper Tableau is sound.

Proof. The E-Hyper Tableau calculus was already shown to be sound in [7]. Since the DLE-Hyper
Tableau calculus is identical to the E-Hyper Tableau calculus except for the newly introduced at-least
inference rule and the corresponding At-Least extension rule, it is sufficient to show that the at-least rule
is sound in order to prove that the entire DLE-Hyper Tableau calculus is sound.

Suppose there is a branch B and a DLE-interpretation I such that I |= B. Let B′ denote the branch
obtained by applying At-Least to B with underlying inference C ⇒at-least E, where C is of the form
(≥ n R.Bl(a) ←), for R a role, B a literal concept and a an individual. This means that E consists of the
clauses (ar(R, a, a.l.i)←), cc(B, a.l.i) and (dom(a.l.i)←) for all 1 ≤ i ≤ n as well as (← a.l.i ' a.l. j) for
all 1 ≤ i < j ≤ n, where a.l.1, . . . , a.l.n are fresh individuals that do not occur in B. I |= B implies that
there exist elements t1, . . . , tn ∈ ∆I such that (aI , ti) ∈ RI and ti ∈ BI for all 1 ≤ i ≤ n as well as ti , t j for
all 1 ≤ i < j ≤ n. Now let I′ be the interpretation obtained from I by setting a.l.iI′ = ti for all 1 ≤ i ≤ n.
dom is always interpreted as the universal concept, so those clauses are trivially true in both I and I′.
Clearly, I′ is a model of B′ = B· E. Hence, the at-least rule preserves satisfiability, which implies that
the DLE-Hyper Tableau calculus is sound. �

6.2 Termination

Theorem 6.2.1 (Termination). The DLE-Hyper Tableau calculus terminates.

Proof. (Note that due to the lack of function symbols of non-zero arity in DLE-clauses, the DLE-Hyper
Tableau calculus does not need to deal with inherently problematic clauses such as P( f (x))← P(x))).

As shown in [7], adding the conclusion of a Split or Equality inference to a branch renders that
inference redundant. The same holds true for At-Least, as described in section 5.3. Simp replaces a
clause C in a branch B by a clause D such that C is redundant w.r.t. B\{C} ∪ {D}. However, if C
contributed to rendering an inference redundant, that inference will still be redundant after applying
Simp because D is even smaller than C, so any inference that was redundant w.r.t. B will also be
redundant w.r.t. B\{C} ∪ {D}. Consequently, the calculus cannot get stuck in an infinite loop where
the same inferences are applied time and again after being rendered non-redundant by Simp inferences.
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Also, the Simp rule can only be applied a finite number of times to a finite branch because the clause
ordering ≺ is well-founded by definition.

For the same reasons, applications of the Del rule that replace redundant clauses do not render re-
dundant inferences non-redundant, but we still need to show that the same holds true for Del applications
that remove non-properly subsumed clauses. Given a branch B, a clause C is redundant w.r.t. B if each
ground instance Cγ of C follows from the set BCγ of those ground instances of clauses in B that are
smaller than Cγ. If a clause D ∈ B non-properly subsumes a clause E ∈ B (i.e., Dσ = E for some sub-
stitution σ), then the set of E’s ground instances obviously is a subset of the set of D’s ground instances.
As a consequence, we have BCγ = (B\{E})Cγ, so any inference that was redundant w.r.t. B will still be
redundant after E was removed from B by Del.

What remains to be shown is that the generation of new individuals and clauses by at-least does not
lead to infinite derivations. at-least can only be applied once to any ground at-least clause; afterwards,
the same inference will be redundant. Furthermore, it can only be applied to individuals that are not
blocked. As the number of roles and concepts in a DLE-clause set is finite, there is only a finite number
of tuples (LB(apre),LB(a),LB(apre, a),LB(a, apre)) for an unnamed individual a and its predecessor apre

in a branch B. Hence, after a finite number of derivation steps, for any newly generated individual b and
its predecessor bpre there will be an unnamed, non-blocked individual a with predecessor apre such that
LB(a) = LB(b), LB(apre) = LB(bpre), LB(apre, a) = LB(bpre, b), and LB(a, apre) = LB(b, bpre). This
means that b will be directly blocked by a, i.e., if b occurs in an at-least clause, the at-least rule will not
generate successors for b.

Hence, after a finite number of applications of derivation rules, no derivation rule can be applied
anymore, so the DLE-Hyper Tableau calculus terminates. �

6.3 Completeness

6.3.1 Preliminaries

Definition 6.3.1 (Ground Variant). Given a ground clause C containing individuals a1, ..., am, the
clause obtained by replacing all occurrences of ai with an individual a′i ∈ [ai] (for all 1 ≤ i ≤ m) is
a ground variant of C. The minimal ground variant of C is obtained by replacing all individuals in C by
the minimums of their respective equivalence classes.

We will sometimes refer to the smallest ground variant D of some ground clause C in a branch B.
This simply means that B does not contain a ground variant of C that is smaller in ≺ than D. However,
D is not necessarily the minimal ground variant. For example, if B only contained the clauses (A(b)←)
and (a ' b ←), with a ≺ b, then (A(b) ←) would be the smallest ground variant of itself in B whereas
(A(a)←), which has not been derived yet, would be the minimal ground variant. (With that said, we will
later see that the smallest ground variant of a clause in an exhausted branch is also the minimal ground
variant.)

Next, the notions of successor and predecessor are lifted to equivalence classes.

Definition 6.3.2 (Successors and Predecessors [Equivalence Classes]). [b] is a successor of [a] if
every individual in [b] is a descendant of an individual in [a] and [a] contains the predecessor of min[b].
[a] is the predecessor of [b] if [b] is a successor of [a]. As with individuals, descendant and ancestor
denote the transitive closures of successor and predecessor, respectively.

Note that if both [a] and [a′] are predecessors of [b], they must both contain the predecessor of
min[b], which implies [a] = [a′]. Also, recall that an unnamed individual is always bigger in ≺ than its
predecessor. This means that no equivalence class can be a successor of itself, as it would have to contain
the predecessor of its own minimum, which must be even smaller than the minimum itself. Finally, since
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named individuals have no predecessor, an equivalence class [a] cannot be a successor of any class if
min[a] is a named individual.

Definition 6.3.3 (Paths [13]). A path is a finite sequence of pairs of individuals p = [ a0
a′0
, ..., an

a′n
], with

tail(p) = an and tail′(p) = a′n. q = [p | an+1
a′n+1

] denotes the path obtained by appending an+1
a′n+1

to p.

6.3.2 Model Construction

Definition 6.3.4 (Paths in a Branch). Given a DLE-Hyper Tableau branch B, the set of paths in B, PB,
is defined as follows, where a and a′ denote individuals in NB:

1. [ a
a ] ∈ PB if a is named and a � [a]B

2. [p | a′
a′ ] ∈ PB if p ∈ PB, a′ � [a′]B, a′ is not blocked, and [a′]B is a successor of [tail(p)]B

3. [p | a
a′ ] ∈ PB if p ∈ PB, a′ � [a′]B, a � [a]B, a′ is directly blocked by a, and [a′]B is a successor

of [tail(p)]B

Definition 6.3.5 (Induced Interpretation). Given an exhausted DLE-Hyper Tableau branch B, the
interpretation I that is induced by B is defined as follows:

∆I = PB

aI =

[ a
a ] if a is a named individual with a � [a]B

(min[a]B)I if a is a named individual with a � [a]B

AI = {p ∈ ∆I | (A(tail(p))←) ∈ B}

RI = {(aI , bI) | (R(a, b)←) ∈ B and a and b are both named}

∪ {(p, [p | a
a′ ]) ∈ ∆I × ∆I | (R(tail(p), a′)←) ∈ B}

∪ {([p | a
a′ ], p) ∈ ∆I × ∆I | (R(a′, tail(p))←) ∈ B}

a, a′ and b are individuals, with A and R denoting atomic concepts and roles, respectively. Note that
aI is defined by induction on the term ordering ≺, starting with the smallest (named) individual.

Definition 6.3.5 introduces the model construction method that will be used to prove that the DLE-
Hyper Tableau calculus is complete. In order to get a better understanding of the kinds of interpretations
constructed this way, consider the following two examples. Note that, for both examples, we will assume
that A and C are atomic concepts and R is an atomic role.

First, assume we have a normalized ALCHIQ knowledge base K consisting of the ABox A =

{A(a), a ' b}, an empty RBox and the TBox T = {A v ≥ 1 R.C}. The following set of DLE-clauses will
be constructed from K and added to the initial branch of the tableau:

DLE(K) = {>(ι)←, (1)

dom(ι)←, (2)

dom(a)←, (3)

dom(b)←, (4)

A(a)←, (5)

a ' b←, (6)

≥ 1 R.Cl(x)← A(x)} (7)
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Assuming that a is smaller than b in the term ordering, the exhausted branch B will contain the above
clauses as well as

{ ≥ 1 R.Cl(a)← t ' t, (8)

≥ 1 R.Cl(a)←, (9)

R(a, a.l.1)←, (10)

C(a.l.1)← (11)

dom(a.l.1)←} (12)

Clause (8) was derived by sup-left with premises (7) and (5), ref then derived (9) from (8), and the
clauses (10)-(12) were generated by applying at-least to (9). Since both ι and a are named and minimal
in their respective equivalence classes (note that [a] also contains b) and because [a.l.1] is a successor
of [a], the set of all paths in B is

PB = {[ ιι ], [
a
a ], [ a

a ,
a.l.1
a.l.1 ]}

The interpretations of the named individuals are defined as follows:

ιI = [ ιι ]

aI = [ a
a ]

bI = [ a
a ]

bI is also set to [ a
a ] since that is the interpretation of the minimal element in [b], namely a. As for the

concept interpretations, we have

AI = {[ a
a ]}

CI = {[ a
a ,

a.l.1
a.l.1 ]}

domI = PB

>I = ∆I = PB

The elements in AI and CI were added because of clauses (5) and (11), respectively. Furthermore,
domI = PB because (dom(tail(p)) ←) ∈ B for every path p ∈ PB. >I = ∆I = PB is implied by the
definition of > as the universal concept.

Due to clause (10) and the second part of the definition of role interpretations, R will be interpreted
as

RI = {([ a
a ], [ a

a ,
a.l.1
a.l.1 ])}

Clauses (1)-(4) are true in I because domI and >I contain the interpretations of the respective named
individuals. aI ∈ AI makes (5) true in I, and aI = bI implies that (6) also holds. Finally, due to
([ a

a ], [ a
a ,

a.l.1
a.l.1 ]) ∈ RI and [ a

a ,
a.1.1
a.1.1 ] ∈ CI , we have (≥ 1 R.C)I = {[ a

a ]}. This implies AI ⊆ (≥ 1 R.C)I holds,
which means that I satisfies clause (7). Hence, I is a model of DLE(K).

Next, consider again the DLE-clause set from section 5.4, which served to illustrate why blocking is
necessary:

{>(ι)←, (1)

dom(ι)←, (2)

≥ 1 R.Al(x)← A(x), (3)

A(a)←, (4)

dom(a)←} (5)
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The corresponding exhausted branch B will contain the following additional clauses:

{ ≥ 1 R.Al(a)← t ' t, (6)

≥ 1 R.Al(a)←, (7)

R(a, a.l.1)←, (8)

A(a.l.1)←, (9)

dom(a.l.1)←, (10)

≥ 1 R.A1(a.l.1)← t ' t, (11)

≥ 1 R.A1(a.l.1)←, (12)

R(a.l.1, a.l.1.l.1)←, (13)

A(a.l.1.l.1)←, (14)

dom(a.l.1.l.1)←, (15)

≥ 1 R.Al(a.l.1.l.1)← t ' t, (16)

≥ 1 R.Al(a.l.1.l.1)←} (17)

The only difference compared to Figure 5.1 is that, this time, pairwise anywhere blocking was used
and the derivation terminated after clause (17) was derived.

As in the previous example, the paths [ ιι ] and [ a
a ] will be added to PB. Next, [ a

a ,
a.l.1
a.l.1 ] will be added

because [a.l.1] is a successor of [a]. Now consider the individual a.l.1.l.1. As shown in section 5.4, it
is directly blocked by a.l.1. Since [a.l.1.l.1] is also a successor of [a.l.1], part three of the definition of
paths applies and the path [ a

a ,
a.l.1
a.l.1 ,

a.l.1
a.l.1.l.1 ] will be added to PB. The next paths to be added will then

be [ a
a ,

a.l.1
a.l.1 ,

a.l.1
a.l.1.l.1 ,

a.l.1
a.l.1.l.1 ], [ a

a ,
a.l.1
a.l.1 ,

a.l.1
a.l.1.l.1 ,

a.l.1
a.l.1.l.1 ,

a.l.1
a.l.1.l.1 ] and so on. I.e., the paths will grow indefinitely

and the set of paths will be infinite:

PB = {[ ιι ],

[ a
a ],

[ a
a ,

a.l.1
a.l.1 ],

[ a
a ,

a.l.1
a.l.1 ,

a.l.1
a.l.1.l.1 ],

[ a
a ,

a.l.1
a.l.1 ,

a.l.1
a.l.1.l.1 ,

a.l.1
a.l.1.l.1 ],

. . . }

Remember that a path p will be added to the interpretation of an atomic concept B if the branch
contains (B(tail(p)) ←). In this case, we have (dom(tail(p)) ←) ∈ B for all p ∈ PB, which implies
domI = PB. As for A, (A(tail(p))←) ∈ B holds for all p ∈ PB except ιI , which implies AI = PB\{[ ιι ]}.

A tuple of paths (p, [p | b
b′ ]) will be added to RI (the interpretation of the atomic role R) if (R(tail(p), b′)←

) is contained in the branch. In our example, this yields the infinite set

RI = {([ a
a ], [ a

a ,
a.l.1
a.l.1 ]),

([ a
a ,

a.l.1
a.l.1 ], [ a

a ,
a.l.1
a.l.1 ,

a.l.1
a.l.1.l.1 ]),

([ a
a ,

a.l.1
a.l.1 ,

a.l.1
a.l.1.l.1 ], [ a

a ,
a.l.1
a.l.1 ,

a.l.1
a.l.1.l.1 ,

a.l.1
a.l.1.l.1 ,

a.l.1
a.l.1.l.1 ]),

. . . }

Now consider the clauses in DLE(K). (>(ι) ←) is trivially true in I because, as always, >I = ∆I =

PB. Similarly, the two dom concept clauses both hold in I due to domI = PB. aI ∈ AI implies that I
satisfies (A(a)←) as well. As for (≥ 1 R.A1(x)← A(x)), this clause is true in I because for every p ∈ AI

there exists a path p′ ∈ PB such that (p, p′) ∈ RI and p′ ∈ AI , as implied by the definitions of AI and RI

in this example. Thus, I is a model of DLE(K).
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6.3.3 Proof

From now on, we will assume that Bn is an exhausted branch in a tableau Tn, which is the final tableau
in the fair DLE-Hyper Tableau derivation D = (T0, . . . ,Tn). Also, we will assume that D is a derivation
from DLE(∆(Ω(K))), the set of DLE-clauses constructed from the SHIQ knowledge base K . Bi (for
all 0 ≤ i < n) denotes the branch in Ti from which Bi+1 in Ti+1 was derived. If Ti+1 was obtained from
Ti by applying an extension or simplification rule to Bi, then Bi+1 denotes the resulting branch (or one of
the resulting branches, if Split was applied). However, if an extension or simplification rule was applied
to a different branch in Ti, then Bi and Bi+1 are identical.

Remember that the fact that Bn is exhausted implies that the clause set Bn (as always, we also
interpret a branch as the set of its clauses) is saturated up to redundancy and does not contain the empty
clause �. In order to show that the DLE-Hyper Tableau calculus is complete, we will prove that the
interpretation I that is induced by Bn is a model of DLE(∆(Ω(K))). The satisfiability of the original
SHIQ KB K then follows from Theorem 3.5.1, which states DLE(∆(Ω(K))) is satisfiable if and only
if K is satisfiable.

One final word before the actual proof begins: for the sake of simplicity, but without loss of gener-
ality, we will assume that the special constant t is the smallest term in the term ordering ≺.

Lemma 6.3.1. All clauses in a DLE-Hyper Tableau branch that have empty bodies, or bodies containing
only trivial t ' t literals, are ground.

Proof. All non-ground clauses in DLE(K) are range-restricted as described in section 3.5. As a result,
all positive unit clauses in DLE(K) are ground. In order to remove non-trivial body literals from non-
ground clauses using sup-left, the body literals must be unified with the head literal of a positive unit
clause. By successively unifying all body literals in a non-ground, range-restricted DLE-clause C with
head literals of ground positive unit clauses (and thus instantiating all body variables), all of C’s head
literals will have been grounded by the time the body is empty or contains only trivial t ' t literals that
were left by sup-left. �

Lemma 6.3.2. If a clause C is redundant w.r.t. Bi for some 1 ≤ i ≤ n, then C is redundant w.r.t. Bn.

Proof. This Lemma is equivalent to Lemma A.8 in [7], which formally proves the above property for
E-Hyper Tableaux. The proof easily carries over to DLE-Hyper Tableaux, though. The basic idea is the
following: let B denote a branch w.r.t which C is redundant, and let B′ denote the branch obtained from
B by applying some derivation rule. If Equality, Split or At-Least were applied, then by monotonicity of
first-order logic with equality, C must also be redundant w.r.t. B′ because we have B ⊆ B′ (the clause
set of B was extended). If Del or Simp were applied, then, by the definitions of the two rules, the clause
that was replaced must still follow from smaller clauses in B′ or it must be a ground instance of a clause
in B′. As a result, any clause that was redundant w.r.t. B will still be redundant w.r.t. B′. Hence, by
induction, the clause C in the Lemma’s statement must be redundant w.r.t. Bn. �

As mentioned in section 5.5, it is possible to construct a naive model of an exhausted DLE-Hyper
Tableau branch by generating a term rewrite system from the positive unit clauses in the branch using
the model construction method presented in section 4.9. (Note, however, that we have yet to prove that
any exhausted branch also has a proper model.) We will denote the rewrite system constructed from Bn

by TRS Bn .
Remember that DLE-atoms can only take on three forms: D(s) ' t, R(s, t) ' t and s ' t for s and

t individuals or variables, D a blocking-relevant concept and R an atomic role. Since all positive unit
DLE-clauses are ground by Lemma 6.3.1, they must be of the form (D(a) ' t ←), (R(a, b) ' t ←)
or (a ' b ←) for a and b individuals. As a result, all rules in TRS Bn must be of the form D(a) ⇒ t,
R(a, b)⇒ t or a⇒ b.
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Recall that an equational clause C follows from TRS Bn (TRS Bn |=E C) iff both sides of the equation
have the same normal form in TRS Bn .

Lemma 6.3.3. If (a ' b←) was redundant w.r.t. Bi for some 1 ≤ i < n and a and b individuals, then Bn

contains an equality sequence that connects a and b.

Proof. Lemma 6.3.2 implies that (a ' b ←) must still be E-entailed by Bn under naive semantics. As
a result, a and b must have the same normal form in TRS Bn . The only positive unit clauses that can
be turned into rewrite rules that rewrite individuals are equality clauses. Hence, Bn must contain two
equality sequences ES a and ES b, with ES a connecting a to its normal form and ES b connecting b to
the same normal form as a. Note that said normal form must also be an individual. Since ES a and ES b

indirectly connect a and b via their common normal form, the two sequences can easily be turned into a
sequence that connects a and b (e.g., by reversing the order of the links in ES b and swapping their left-
hand and right-hand sides before appending ES b to ES a; with ES a = (a ' c←) and ES b = (b ' c←),
where c is the normal form of a and b, we would thus obtain (a ' c←, c ' b←)). �

Lemma 6.3.4. If C was redundant w.r.t. Bi for some 1 ≤ i < n and a concept clause or role clause C,
then Bn contains a ground variant of C.

Proof. Lemma 6.3.2 implies that C must still follow from Bn under naive semantics, so the two sides
of the equation must have the same normal form in TRS Bn . As t is the smallest term in ≺, it cannot be
rewritten by TRS Bn . In other words, it already is in normal form. Hence, TRS Bn can only rewrite the
left-hand side of C, which must be of the form D(a) or R(a, b) (we will assume that C is a concept clause
and focus on D(a) since the other case is analogous). If D(a) is rewritten directly into t, this means
that the corresponding rewrite rule was derived from (D(a) ' t ←) ∈ Bn, in which case the Lemma’s
statement would hold since each ground clause is a ground variant of itself. (Note that the rule cannot
have been derived from a clause of the form (D(x) ' t ←) since all positive unit clauses are ground
by Lemma 6.3.1.) The only other way to rewrite D(a) is to rewrite the individual a, in which case the
corresponding rewrite rules must have been derived from equality clauses in Bn. For D(a) to finally be
rewritten into t, however, TRS Bn must contain a rule of the form D(a′)⇒ t, with other rules rewriting a
into a′. This implies that Bn contains the clause (D(a′) ←) as well as an equality sequence connecting
a to a′. As a result, we have [a] = [a′], which means that (D(a′) ' t ←) is in fact a ground variant of
(D(a) ' t←). �

Lemma 6.3.5. For every individual a in Bn with a , min[a], there exists a non-redundant equality clause
(a ' a′ ←) ∈ Bn with a′ ≺ a.

Proof. Since a and min[a] are connected by an equality sequence in Bn, they must have the same normal
form in TRS Bn . Furthermore, the rules that rewrite them can only have been derived from equality
clauses in Bn. By construction, the left-hand side of any rule in TRS Bn is bigger than the right-hand
side. If min[a] could be rewritten, then it would have to appear on the left-hand side of some rule, with
a smaller individual b constituting the right-hand side. However, that would imply that Bn contains an
equality clauses with min[a] on one side and the even smaller individual b on the other side. Hence,
min[a] would not be the minimum of the equivalence class [a], a plain contradiction. As a result, min[a]
must be irreducible w.r.t. TRS Bn , which implies that it is the normal form of a. This means that TRS Bn

contains a rule of the form a⇒ c with a � c. The fact that the rule was added to TRS Bn implies that the
equality clause (a ' c ←) ∈ Bn from which a ⇒ c was derived is not redundant, which completes the
proof.

�

Lemma 6.3.6. For any concept clause (D(a)←) ∈ Bn or role clause (R(a, b)←) ∈ Bn, Bn also contains
(D(min[a])←) ∈ Bn or (R(min[a],min[b])←), respectively.
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Proof. Let C denote a concept or role clause in Bn, with Cmin denoting the smallest ground variant of
C in Bn. Then, Cmin cannot be redundant because no smaller ground variant of it exists in Bn. If every
individual in Cmin is minimal in its equivalence class, nothing remains to be shown. Otherwise, let a
denote an individual in Cmin that is not the minimum of its equivalence class. By Lemma 6.3.5, there
exists a non-redundant equality clause E = (a ' a′ ←) ∈ Bn with a′ ≺ a. It would then be possible
to apply unit-sup-right with left premise Cmin and right premise E, neither of which are redundant. The
resulting ground variant of Cmin would not be redundant because it would be even smaller than Cmin

and Bn contains no smaller ground variant of it. Since that would contradict the assumption that Bn

is saturated up to redundancy, all individuals in Cmin must already be the minimal elements of their
respective equivalence classes. �

Lemma 6.3.7. If the individual a is labeled with the blocking-relevant concept D in Bn (i.e., D ∈

LBn(a)), then Bn contains (D(min[a])←).

Proof. By the definition of blocking, D ∈ LBn(a) implies that there exists an individual a′ ∈ [a] such
that (D(a′)←) ∈ Bn. This implies (D(min[a])←) ∈ Bn by Lemma 6.3.6. �

Lemma 6.3.8. If the pair of individuals (a, b) is labeled with the atomic role R in Bn (i.e., R ∈ LBn(a, b)),
then Bn contains (R(min[a],min[b])←).

Proof. By the definition of blocking, R ∈ LBn(a, b) implies that there exist individuals a′ ∈ [a] and
b′ ∈ [b] such that (R(a′, b′)←) ∈ Bn. This implies (R(min[a],min[b])←) ∈ Bn by Lemma 6.3.6. �

Lemma 6.3.9. Every role clause (R(a, b) ←) in a DLE-Hyper Tableau branch B satisfies one of the
following properties:

1. min[a] and min[b] are named

2. [b] is a successor of [a]

3. [a] is a successor of [b]

Proof. The proof is by induction on the applications of the inference rules. Before any inference rule is
applied, a DLE-clause set contains only named individuals, so all role clauses must satisfy (1). In order
to prove the Lemma’s statement, we need to consider all inference rules that introduce new role clauses
or equality clauses. Note that the latter may affect the equivalence class of an individual occurring in a
role clause.

There are three ways new role clauses can be derived: (a) from an existing role clause, using unit-
sup-right, or (b) from an at-least clause using at-least, or (c) from a non-unit clause whose head contains
a role literal, using ref (we will later see that split need not be considered).

As for (a), while unit-sup-right may infer new role clauses if its left premise is a role clause and
its right premise is an equality clause (e.g., (R(b, c) ←), (b ' a ←) ⇒unit-sup-right(ε) (R(a, c) ←)), the
conclusion will simply be a ground variant of the left premise. Since the left premise must satisfy one
of the three role clause properties, the resulting ground variant must satisfy the same property. After all,
the equivalence classes of the individuals in the conclusion are the same as the ones of the individuals in
the left premise (e.g., in the above example (b ' a←) implies [a] = [b]).

Now consider case (b). The role clauses introduced by at-least are of the form (ar(R, a, a′) ←),
where a′ is a successor of a. Since a′ is a fresh constant that is the only individual in its equivalence
class right after being generated, [a′] is a successor of [a] (every individual in [a′] = {a′} is a descendant
of some individual in [a], and min[a′] = a′ is a direct successor of an individual in [a]). This means that
the above role clause satisfies property (2) or (3), depending on whether R is atomic or inverse.
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In case (c), a role clause is derived from a non-unit clause. As seen in Table 3.2, the only non-unit
DL(E)-clauses whose heads contain a role literal are the ones derived from RBox axioms. The original
clauses are of the form C = (ar(R, x, y) ← ar(S , x, y)) for R and S roles. In order to derive a role
clause from C, sup-left must first unify the body literal with the head literal of a role clause such as
D = (ar(S , a, b) ←). The conclusion will be of the form E1 = (ar(R, a, b) ← t ' t) if R and S are both
atomic or inverse or E2 = (ar(R, b, a) ← t ' t) if one of the roles is atomic while the other is inverse.
In the case of E1, the role clause that can be derived by removing the trivial body literal with the help of
ref will simply inherit the role clause property of D. A role clause derived from E2 will satisfy (1) if D
satisfies (1), whereas it will satisfy (2) if D satisfies (3) and vice versa.

As shown in the above case analysis, adding role clauses to a branch preserves the validity of the
Lemma’s statement. However, we still need to show that the same holds true for adding equality clauses,
which may affect the equivalence classes of individuals in role clauses.

New equality clauses can be derived in two ways: (a) from two existing equality clauses, using unit-
sup-right, or (b) from a clause whose head contains a literal of the form a ' b, using ref (if said literal
is the only head literal and the body only contains the trivial literal t ' t) or split (if there is more than
one head literal and the body is empty).

Case (a) is easy to deal with. unit-sup-right may introduce new equality clauses if both premises are
equality clauses (e.g., (c ' a ←), (c ' b ←) ⇒unit-sup-right(ε) (a ' b ←)), but all this does, essentially,
is directly ’connect’ two individuals that were already connected by an equality sequence and were thus
members of the same equivalence class. Hence, the equivalence classes are not affected at all by this
kind of inference and the validity of the Lemma’s statement is preserved.

Now consider case (b). Before any inference rules are applied, head literals of the form y1 ' y2,
for y1 and y2 variables, can only appear in the head of a DL(E)-clause derived from a TBox axiom, as
shown in Table 3.2. The clause’s body must contain two literals of the form ar(R, x, y1) and ar(R, x, y2)
in this case. This means that whenever an equality clause (b ' c←) is derived from such a DLE-clause,
the two corresponding role literals in the body must have been unified with role clauses of the form
(ar(R, a, b) ←) and (ar(R, a′, c) ←), where a and a′ are members of the same equivalence class. By
considering the properties these role clauses may satisfy, we will show that after adding (b ' c ←) to
the branch, all role clauses containing individuals from [b] or [c] (the two equivalence classes that are
merged by deriving (b ' c ←)) will still satisfy one of the three role clause properties. Consider the
following clauses:

1. ar(R, a, b)←

2. ar(R, a, c)←

3. ar(S , b, d)←

4. ar(S , c, d)←

We will assume that clauses 1 and 2 are ground variants of the role clauses with which the body literals in
the aforementioned DLE-clause were unified before (b ' c ←) was derived. We may assume [b] , [c],
for otherwise, adding (b ' c ←) would have no effect on any equivalence class. Clauses 3 and 4
represent arbitrary role clauses containing individuals from [b] and [c].

Let B denote the branch obtained from B′ by deriving (b ' c←) using Equality (with an underlying
ref inference) or Split. When referring to equivalence classes in B′, the branch identifier will be omitted
in the rest of this proof. E.g., [b] and [c] stand for [b]B′ and [c]B′ , respectively. We will, however, use
the identifier B whenever we talk about the (changed) equivalence classes in B. In order to emphasize
that [b] and [c] (in the old branch B′) were merged, we will use the notation [b + c]B to refer to the
resulting equivalence class in the new branch B. Note that [b + c]B = [b]B = [c]B. Also, to keep things
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shorter, we will write [a] succ [b] to express that [a] is a successor of [b]; likewise, ’desc’ is short for ’is
a descendant of’.

Remember that several useful properties were mentioned after the definition of successors and pre-
decessors in the context of equivalence classes in section 6.3.1:

• [a] succ [b] implies that min[a] is unnamed

• [a] succ [a] is a contradiction, so [a] succ [b] implies [a] , [b] and hence a , b

• [a] succ [b] and [a] succ [c] implies [b] = [c]

It is also worth noting that when two equivalence classes are merged and the minimum of at least
one of the classes was named, the minimum of the resulting class will be named, too, because named
individuals are always smaller than unnamed ones.

We will now consider every relevant combination of properties that clauses 1-4 may satisfy and
check which properties clauses 3 and 4 satisfy afterwards. We will see that in all possible cases, 3
and 4 must still satisfy property (1), (2) or (3) after the new equality clause was introduced, which will
complete the Lemma’s proof. The notation x.y means that we assume that clause x satisfies property y
in the current case.

First, we will consider the combination of cases 1.1 and 2.1.

1.1: (ar(R, a, b)←) satisfies (1), meaning that min[a] and min[b] are named

2.1: (ar(R, a, c)←) satisfies (1), meaning that min[a] and min[c] are named

Note that this implies that min[b + c]B must also be named. Now consider the various properties that
(ar(S , b, d) ←) may satisfy before [b] and [c] are merged. For each case, we will check which property
the clause satisfies afterwards:

1. This property implies that min[d]B is named; since min[b + c]B is also named, property (1) holds

2. This means that min[d] is unnamed, which implies [d] , [b] and [d] , [c] since min[b] and min[c]
are named; due to [d] , [b] and [d] , [c], the equivalence class [d] is not affected by the merging
of [b] and [c] (i.e., [d] = [d]B), so [d] succ [b] implies [d]B succ [b + c]B, which implies that
property (2) holds

3. Impossible: implies [b] succ [d], meaning [b] is unnamed, but it is actually named (as implied by
1.1)

As for (ar(S , b, d) ←), the cases are analogous to the above ones. This completes the treatment of the
combination of cases 1.1 and 2.1.

The next combination to consider is 1.1 and 1.2.

1.1: (ar(R, a, b)←) satisfies property (1), meaning that min[a] and min[b] are named

2.2: (ar(R, a, c)←) satisfies property (2), which implies [c] succ [a] and hence [c] , [a]

Now consider the properties that (ar(S , b, d)←) may satisfy:

1. Implies that min[b] and min[d] (and hence min[d]B) are named, so min[b + c]B must be named as
well⇒ property (1) holds

2. Implies [d] succ [b], meaning min[d] is unnamed ⇒ [d] , [b] (because min[b] is named); case
distinction:
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• [d] = [c]: since min[b] is named, min[b + c]B (= min[d]B) must be named, too⇒ property
(1) holds

• [d] , [c]: [d] succ [b]⇒ [d]B succ [b + c]B ⇒ property (2) holds

3. Impossible: implies [b] succ [d], but min[b] is named

As for (ar(S , c, d)←):

1. This means that min[d] (and hence min[d]B) is named; since min[b] is also named, min[b + c]B
must be named as well⇒ property (1) holds

2. Implies [d] succ [c], meaning that min[d] is unnamed ⇒ [d] , [b] (as min[b] is named); case
distinction:

• [d] = [c]: since min[b] is named, min[b + c]B (= min[d]B) is also named ⇒ property (1)
holds

• [d] , [c]: [d] succ [c]⇒ [d]B succ [b + c]B ⇒ property (2) holds

3. Here, we have [c] succ [d] and [c] succ [a] ⇒ [a] = [d]; as min[a] is named, min[d] (and hence
min[d]B) is also named; min[b] is named, too, so min[b + c]B must also be named⇒ property (1)
holds

Note that the combination 1.1 and 2.3 need not be considered because the former property implies
that min[a] is named whereas the latter implies that it is unnamed, a plain contradiction. Hence, the
combination of 1.2 and 2.2 is next.

1.2: (ar(R, a, b)←) satisfies property (2), which implies [b] succ [a] (⇒ min[b] is unnamed) and hence
[b] , [a]

2.2: (ar(R, a, c) ←) satisfies property (2), which implies [c] succ [a] (⇒ min[c] is unnamed) and hence
[c] , [a]

As for (ar(S , b, d)←):

1. Impossible: implies that min[b] is named, but it is actually unnamed

2. Implies [d] succ [b] (⇒ [d] , [b]); case distinction:

• [d] = [c]: with [d] succ [b], we get [c] succ [b]; [c] succ [a] (2.2) then implies [a] = [b],
which, together with [b] succ [a] (1.2), implies [a] succ [a]⇒ impossible

• [d] , [c]: [d] succ [b]⇒ [d]B succ [b + c]B ⇒ property (2) holds

3. Implies [b] succ [d] (⇒ [d] , [b]); with [b] succ [a] (1.2) we get [a] = [d]; case distinction:

• [d] = [c]: we have [c] succ [a] (2.2) and [a] = [d] = [c]⇒ [c] succ [c]⇒ impossible

• [d] , [c]: we have [b] succ [a] (1.2), [c] succ [a] (2.2) and [a] = [d]⇒ [b] succ [d] and [c]
succ [d], which together implies [b + c]B succ [d]B ⇒ property (3) holds

As for (ar(S , c, d)←), the three cases are analogous to the above ones.

1.2: (ar(R, a, b)←) satisfies property (2), which implies [b] succ [a] (⇒ min[b] is unnamed) and hence
[b] , [a]
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2.3: (ar(R, a, c)←) satisfies property (3), which implies [a] succ [c] (⇒ min[a] is unnamed) and hence
[c] , [a]

Note that [b] succ [a] and [a] succ [c] imply [b] desc [c] (but not [b] succ [c]!).
As for (ar(S , b, d)←):

1. Impossible: implies that min[b] is named, but it is actually unnamed

2. Implies [d] succ [b] (⇒ [d] , [b]); case distinction:

• [d] = [c]: [d] succ [b] ⇒ [c] succ [b]; with [a] succ [c] (2.3), this implies [a] desc [b] ⇒
impossible (contradicts [b] succ [a] (1.2))

• [d] , [c]: [d] succ [b]⇒ [d]B succ [b + c]B ⇒ property (2) holds

3. Implies [b] succ [d] (⇒ [d] , [b]); with [b] succ [a] (1.2), we get [a] = [d]; [a] succ [c] (2.3) then
implies [d] succ [c] (⇒ [d] , [c])⇒ [d]B succ [b + c]B (note that this does not contradict [b] succ
[d])⇒ property (2) holds

As for (ar(S , c, d)←):

1. This means that min[c] and min[d] (and hence min[d]B) are named; hence, min[b + c]B must be
named, too⇒ property (1) holds

2. Implies [d] succ [c] (⇒ [d] , [c]); case distinction:

• [d] = [b]: [d] succ [c]⇒ [b] succ [c]; with [b] succ [a] (1.2), we get [a] = [c]; [a] succ [c]
(2.3) then implies [a] succ [a]⇒ impossible

• [d] , [b]: [d] succ [c]⇒ [d]B succ [b + c]B ⇒ property (2) holds

3. Implies [c] succ [d]; with [b] desc [c] (1.2 and 2.3), we can conclude min[c] ≺ min[b]⇒ min[b +

c]B = min[c] (∈ [d])⇒ [b+c]B succ [d]B (all individuals in [b+c]B are descendants of individuals
in [d]B and [d]B contains the predecessor of min[b + c]B)⇒ property (3) holds

While the combination of 1.3 and 2.3 is possible, it would imply [a] succ [b], [a] succ [c] and hence
[b] = [c]. As a result, the equivalence classes of b and c would not be affected by adding the clause
(b ' c←), so this case is guaranteed to preserve the properties of all role clauses. �

Lemma 6.3.10. If (≥ m R.C(a′) ←) ∈ Bn for an individual a′ with a′ � [a′], a role R and C = A or
C = ¬A for A an atomic concept, then pa ∈ (≥ m R.C)I for every path pa ∈ PBn with tail′(pa) = a′.

Proof. Let a = tail(pa). By the definitions of PBn (6.3.4) and blocking (5.4.6), a cannot be blocked. If
a′ is directly blocked by a, the two individuals must have identical labels, so (≥ m R.C(a′)←) ∈ Bn and
Lemma 6.3.7 imply (≥ m R.C(a)←) ∈ Bn. If a′ is not blocked, we have a = a′ by the definition of PBn ,
in which case (≥ m R.C(a)←) ∈ Bn follows trivially from (≥ m R.C(a′)←) ∈ Bn. Since Bn is saturated
up to redundancy and since a cannot be blocked, at-least must have generated m successors a1, . . . , am

of a. (Note that, in practice, the names would contain the number restriction’s label, but it was omitted
here to keep the notation simple.) Consider the clauses that must have been added by at-least and what
they imply about the clauses in the exhausted branch Bn:

• (ar(R, a, ai)←) for 1 ≤ i ≤ m: By Lemma 6.3.6, Bn must thus contain the role clauses (ar(R, a,min[ai])←
) for 1 ≤ i ≤ m. (Note that a = min[a] by the definition of PBn .)
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• cc(C, ai) for 1 ≤ i ≤ m: If C = A, then cc(C, ai) = (A(ai) ←) and we must have (A(min[ai]) ←
) ∈ Bn by Lemma 6.3.6. In the second case, C = ¬A, we have cc(C, ai) = (← A(ai)). Hence,
(← A(ai)) must be contained in Bn or, if it was removed by Del or Simp, it must at least follow
from Bn. This implies (A(min[ai])←) < Bn since no contradiction was derived.

• (← ai ' a j) for all i, j with 1 ≤ i < j ≤ m: These clauses imply [ai] , [a j] for all i, j with
1 ≤ i < j ≤ m.

(The dom-clauses generated by at-least are irrelevant in this context.)
We will now show that the above conclusions imply that there exist m different paths pi such that

(pa, pi) ∈ RI and pi ∈ CI for all 1 ≤ i ≤ m. According to Table 2.1 (semantics of SHIQ), this implies
pa ∈ (≥ m R.C)I , which is the statement we want to prove. By Lemma 6.3.9, each of the m role clauses
(ar(R, a,min[ai])←) must satisfy one of the following properties:

1. min[a] and min[ai] are named: Let pi =
[

min[ai]
min[ai]

]
denote the interpretation of the named individ-

ual min[ai]. In this case, (ar(R, a,min[ai]) ←) ∈ Bn implies that the tuple (pa, pi) must have
been added to RI by the first case of the definition of role interpretations. If we have C = A,
(A(min[ai]) ←) ∈ Bn implies pi ∈ AI by the definition of concept interpretations. If C = ¬A,
(A(min[ai])←) < Bn implies pi < AI . Either way, we have pi ∈ CI .

2. [ai] is a successor of [a]: Let pi =
[
pa |

b
min[ai]

]
, where b = min[ai] or b directly blocks min[ai].

Due to tail(pa) = a, pa ∈ PBn as well as the fact that [ai] is a successor of [a] imply pi ∈ PBn by
the definition of PBn . Then, as a result of (ar(R, a,min[ai]) ←) ∈ Bn, the tuple (pa, pi) must have
been added to RI by the second case of the definition of role interpretations.

By the definitions of PBn and blocking, the labels of b and min[ai] must be identical. If C = A,
(A(min[ai]) ←) ∈ Bn and Lemma 6.3.7 thus imply (A(b) ←) ∈ Bn and hence pi ∈ AI . If C = ¬A,
(A(min[ai]) ←) < Bn implies that neither min[ai] nor b can be labeled with A, so we must have
(A(b)←) < Bn and thus pi < AI . In either case, we have pi ∈ CI .

3. [a] is a successor of [ai]: If a′ is not blocked by a, we have a = a′. Let pa = [pi |
a
a ], with tail(pi) =

min[ai]. In this case, (ar(R, a,min[ai]) ←) ∈ Bn implies that the tuple (pa, pi) must have been
added to RI by the third case of the definition of role interpretations. If C = A, then (A(min[ai])←
) ∈ Bn and tail(pi) = min[ai] imply pi ∈ AI by the definition of concept interpretations. In the
case C = ¬A, (A(min[ai])←) < Bn implies pi < AI . Again, we have pi ∈ CI in either case.

Otherwise, if a′ is blocked by a, a′ must have some predecessor a′pre by the definition of blocking.
Let apre denote the predecessor of a; as a is minimal in [a] and since [a] is a successor of [ai],
we must have apre ∈ [ai]. By the definition of blocking, the labels of (apre, a) and (a′pre, a

′) as
well as those of (a, apre) and (a′, a′pre) are identical. Due to (ar(R, a,min[ai]) ←) ∈ Bn, we must
have R ∈ LBn(a, apre) = LBn(a′, a′pre) (if R is atomic) or S ∈ LBn(apre, a) = LBn(a′pre, a

′) (if R is
inverse and R− = S ). Lemma 6.3.8 then implies (ar(R, a′,min[a′pre]) ←) ∈ Bn. Let pa = [pi |

a
a′ ],

with tail(pi) = min[a′pre]. Hence, the tuple (pa, pi) must have been added to RI by the second or
third case of the definition of role interpretations (depending on whether R is atomic or inverse).

By the definition of blocking, the labels of apre and a′pre must also be identical. In the case C = A,
we have (A(min[ai]) ←) ∈ Bn; apre ∈ [ai] then implies that both apre and a′pre are labeled with
A. Hence, we must also have (A(min[a′pre]) ←) ∈ Bn by Lemma 6.3.7, which implies pi ∈ AI by
the definition of concept interpretations. Using the same reasoning, we can conclude pi < AI if
C = ¬A. In either case, we have pi ∈ CI .

In the above case distinction, we have shown that there are m distinct paths pi (for 1 ≤ i ≤ m) such
that (pa, pi) ∈ RI and pi ∈ CI . As a result, pa ∈ (≥ m R.C)I must hold. �
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For the following theorems, recall that I denotes the induced interpretation that was constructed
according to Definition 6.3.5 from the exhausted branch Bn in a derivation from DLE(∆(Ω(K))), the
set of DLE-clauses into which the SHIQ knowledge base K was translated. We will now prove that
I satisfies every clause in DLE(∆(Ω(K))), thus showing that the original knowledge base K must be
satisfiable, too.

Theorem 6.3.1. I satisfies the clauses in DLE(∆(Ω(K))) that were derived from the ABox ∆(Ω(K))A
as well as the dom clauses that were added for range restriction purposes.

Proof. Consider the different forms these clauses can take. Let a and b denote named individuals, A an
atomic concept (A = dom is possible), and R an atomic role. Remember that the initial branch B0 is
labeled with the clauses in DLE(∆(Ω(K))).

• A(a)←: (A(a)←) ∈ B0 implies (A(min[a])←) ∈ Bn by Lemma 6.3.6. Since a is named, we have
aI =

[
min[a]
min[a]

]
; the definition of concept interpretations then implies aI ∈ AI .

• ← A(a): If aI ∈ AI did hold, Bn would have to contain (A(min[a]) ←). This is impossible since
(← A(a)) must still follow from Bn (even if it was removed) and no contradiction was derived. As
a result, we must have aI < AI , which makes the clause true in I.

• a ' b ←: By Lemma 6.3.3 and the definition of I we have aI = bI , which makes the assertion
true.

• R(a, b) ←: By Lemma 6.3.6, we have (R(min[a],min[b]) ←) ∈ Bn. By the first part of the
definition of role interpretations, we must then have ((min[a])I , (min[b])I) ∈ RI . Due to aI =

(min[a])I and bI = (min[b])I by the definition of the interpretation of named individuals, the
clause must be true in I.

• ← a ' b: Since no contradiction was derived, Bn cannot contain an equality sequence that
connects a to b. As a result, we must have (a, b) < EQBn and thus [a] , [b], which implies
aI , bI .

• ≥ n R.C(a) ←: We have aI =
[

min[a]
min[a]

]
and, by Lemma 6.3.6, (≥ n R.C(min[a]) ←) ∈ Bn. Lemma

6.3.10 then implies aI ∈ (≥ n R.C)I , which makes the clause true in I.

�

Theorem 6.3.2. I satisfies the clauses in DLE(∆(Ω(K))) that were derived from the RBox ∆(Ω(K))R.

Proof. As shown in Table 3.2, DLE-clauses derived from RBox axioms can only take the form C =

(ar(R, x, y) ← ar(S , x, y)) for R and S atomic or inverse roles and x and y variables. (pa, pb) ∈ S I

implies D = (ar(S , tail(pa), tail′(pb)) ←) ∈ Bn by the definition of role interpretations. This means that
E = (ar(R, tail(pa), tail′(pb)) ←) must be contained in Bn, for otherwise it could be derived from C
and D. (Note that E cannot be redundant because it has no smaller ground variants.) E ∈ Bn and the
definition of role interpretations then imply (pa, pb) ∈ RI , which means that C is true in I. �

Theorem 6.3.3. I satisfies the clauses in DLE(∆(Ω(K))) that were derived from the TBox ∆(Ω(K))T .

Proof. (Note that large parts of this proof are analogous to Motik et al.’s proof of completeness in [13].)
As seen in Table 3.2, all DLE-clauses derived from TBox axioms must be of the form∨

i, j

yi ' y j ∨
∨

i

Di(x) ∨
∨

i

Ei(yi)←
∧

i

Ai(x) ∧
∧

i

ar(Ri, x, yi) ∧
∧

i

Ci(yi) (6.1)

56



for Ai, Ci and Ei atomic concepts, Ri roles and Di blocking-relevant concepts. Now consider any variable
mapping µ with µ(x) = px and µ(yi) = pyi such that px ∈ AI

i , pyi ∈ CI
i , and (px, pyi) ∈ RI

i . In other words,
px and pyi satisfy the body of the clause. We will first show that this implies that certain clauses must be
present in Bn. The next step will then be to prove that the presence of these clauses implies px ∈ DI

i for
at least one i, pyi ∈ EI

i for at least one i, or pyi = py j for some i , j, which would make the whole clause
true in I.

For each pair px and pyi , there are various cases we need to distinguish. In all of them, let s = tail(px)
and s′ = tail′(px). px ∈ AI

i implies (Ai(tail(px)) ←) ∈ Bn by the definition of I. If tail′(px) is not di-
rectly blocked by tail(px), we have tail(px) = tail′(px), which trivially implies (Ai(tail′(px)) ←) ∈ Bn.
If tail′(px) is directly blocked by tail(px), (Ai(tail′(px)) ←) ∈ Bn still follows from the definition of
blocking, according to which tail(px) and tail′(px) must have identical labels, and Lemma 6.3.7. As a
result, we have (Ai(s)←) ∈ Bn and (Ai(s′)←) ∈ Bn in all of the following cases. By the same reasoning,
we can conclude (Ci(tail(pyi)) ←) ∈ Bn and (Ci(tail′(pyi)) ←) ∈ Bn from pyi ∈ CI

i . To make further
statements about the clauses in Bn, we need to distinguish five cases. Each case represents a condition
that px and pyi must have satisfied in order to be added to RI according to the definition of I. In case 1,
the tuple must have been added to RI by the first line of the definition of role interpretations. In cases 2
and 3, it must have been added by the second line, whereas the third line must have applied in cases 4
and 5:

1. px and pyi are interpretations of named individuals.
Since pyi is the interpretation of a named individual, we have tail(pyi) = tail′(pyi). If we let

ti = tail′(pyi), this gives us (Ci(ti) ←) ∈ Bn. Finally, (px, pyi) ∈ RI
i together with the first line of

the definition of role interpretations implies (ar(Ri, s, ti)←) ∈ Bn.

2. s′ is not blocked and [tail′(pyi)] is a successor of [s].
By letting ti = tail′(pyi) as in the first case, we have (Ci(ti) ←) ∈ Bn. Furthermore, the fact that s′ is

not blocked implies s = s′ and, equivalently, tail(px) = tail′(px). Since we assumed that [tail′(pyi)] (=
[ti]) is a successor of [s′] (= [s]), (px, pyi) ∈ RI

i implies (ar(Ri, s, ti) ←) ∈ Bn by the second line of the
definition of role interpretations.

3. s′ is directly blocked by s and [tail′(pyi)] is a successor of [s].
Once more, let ti = tail′(pyi), which implies (Ci(ti) ←) ∈ Bn. (px, pyi) ∈ RI

i , with [tail′(pyi)] being
a successor of [tail(px)], implies (ar(Ri, tail(px), tail′(pyi)) ←) ∈ Bn by the second line of the definition
of role interpretations, and, equivalently, (ar(Ri, s, ti)←) ∈ Bn.

4. s′ is not blocked and [tail(pyi)] is the predecessor of [s′].
Since s′ is not blocked, we must have s = s′. By setting ti = tail(pyi) we thus have (Ci(ti) ←) ∈ Bn.

(ar(Ri, s, tail(pyi)) ←) ∈ Bn follows from (px, pyi) ∈ RI
i by the third line of the definition of role inter-

pretations, with ti = tail(pyi) implying (ar(Ri, s, ti)←) ∈ Bn.

5. s′ is directly blocked by s and [tail(pyi)] is the predecessor of [s′].
We must have (ar(Ri, s′, tail(pyi)) ←) ∈ Bn due to (px, pyi) ∈ RI

i by the third line of the definition of
role interpretations. According to the definition of blocking, s (the blocking individual) must have some
predecessor spre. Let ti = min[spre]. Remember that the definition of blocking implies that the label of
the predecessor (some u ∈ [tail(pyi)]) of a blocked individual (s′) must be identical to the label of the
predecessor (spre) of the blocking individual (s). (Ci(tail(pyi)) ←) ∈ Bn implies that u is labeled with
Ci, which entails that spre is labeled with Ci as well. By Lemma 6.3.7 and due to ti = min[spre], we thus
must have (Ci(ti)←) ∈ Bn.
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By the definition of blocking, the labels of (u, s′) and (s′, u) must be identical to the labels of (spre, s)
and (s, spre), respectively. Hence, we can conclude (ar(Ri, s, ti) ←) ∈ Bn from (ar(Ri, s′, tail(pyi)) ←) ∈
Bn and Lemma 6.3.6.

In summary, due to the different definitions of ti, we have always have (Ai(s)←) ∈ Bn, (Ci(ti)←) ∈
Bn as well as (ar(Ri, s, ti)←) ∈ Bn.

Let F denote the ground DL-clause obtained from clause 6.1 by instantiating x with s and each yi

with its respective ti. As shown above, all of F’s body literals also occur in the heads of positive unit
clauses in Bn, so the calculus must have derived a positive unit clause containing one of F’s head literals
from clause 6.1 unless at least one head literal already followed from other clauses in Bn. We will briefly
analyzes what that implies about the clauses in Bn.

If some Di(s) or Ei(ti) follows from other clauses in Bn, then Bn must contain a ground variant of
(Di(s) ←) or (Ei(ti) ←), respectively. But then, by Lemma 6.3.6, Bn would also contain (Di(s) ←) or
(Ei(ti)←), respectively.

First, we will assume that (Di(s) ←) ∈ Bn holds, which implies (Di(s′) ←) ∈ Bn by the definition
of blocking (if s′ is not blocked, this follows trivially from s = s′). If Di is an atomic concept, then
px ∈ DI

i is implied by the definition of I. Otherwise, if Di is a ≥-number restriction, px ∈ DI
i follows

from Lemma 6.3.10.
Now assume (Ei(ti) ←) ∈ Bn and recall that ti can take on three different values in the five cases we

distinguished:

• ti = tail′(pyi) (cases 1-3): (Ei(tail(pyi)) ←) then follows from (Ei(ti) ←) = (Ei(tail′(pyi)) ←) ∈
Bn by the definition of blocking (the blocker tail(pyi) and the blocked individual tail′(pyi) must
have identical labels; if tail′(pyi) is not blocked, the statement follows trivially from tail(pyi) =

tail′(pyi)).

• ti = tail(pyi) (case 4): (Ei(tail(pyi))←) follows trivially from (Ei(ti)←) ∈ Bn.

• ti = min[spre] (case 5): By the definition of blocking, ti and tail(pyi) must have identical labels
since an individual in [ti] is the predecessor of s and an individual in [tail(pyi)] is the predecessor
of s′, which is directly blocked by s. (Ei(ti) ←) ∈ Bn then implies Ei ∈ LBn(ti) = LBn(tail(pyi)).
Hence, by Lemma 6.3.7, we must have (Ei(tail(pyi))←) ∈ Bn.

Since we always have (Ei(tail(pyi)) ←) ∈ Bn and since Ei is an atomic concept, pyi ∈ EI
i must hold

according to the definition of concept interpretations in I.
If none of the concept atoms in the head of F follow from Bn, one of the equality atoms must be

E-entailed by Bn. As a result, the individuals on the left-hand and right-hand side must be connected by
an equality sequence, which means that they are members of the same equivalence class. Since all ti are
minimal in their respective equivalence class (as implied by the definitions in cases 1-5 above; remember
that all individuals in a path are minimal), this entails ti = t j for some i , j. In other words, the head
contains an obvious tautology and the clause is redundant, which means the trivial literal will not appear
in a unit clause in Bn. This difference compared to the concept atoms does not matter, though, as we
will now see that ti = t j implies pyi = py j , which still makes the axiom true in I. Once more, we will
distinguish various cases (more precisely: combinations of the five cases in which ti and t j may have
been defined) and show that pyi = py j must hold in all of them:

• ti = tail′(pyi) (cases 1-3) and t j = tail′(py j) (cases 1-3): If both pyi and py j are interpretations of

named individuals (i.e., both ti and t j were defined in case 1), we have pyi =
[

ti
ti

]
and py j =

[
t j
t j

]
,

in which case ti = t j implies pyi = py j . Otherwise, if [ti] (= [t j]) is a successor of [s] (i.e., ti and
t j were defined in case 2 or 3), we must have pyi = py j =

[
px |

ti
ti

]
according to the definition of
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role interpretations. It is impossible for either pyi or py j to denote the interpretation of a named
individual if [ti] is a successor of [s], as that would imply that the named individual ti has a
predecessor in [s]. Thus, the remaining combinations of cases cannot occur and need not be
considered.

• ti = tail′(pyi) (cases 1-3) and t j = tail(py j) (case 4): Since t j was defined in case 4, s′ cannot
be blocked (which rules out case 3 for ti) and [t j] must be the predecessor of [s′], so s′ cannot
be named. As px was assumed to be the interpretation of a named individual in case 1 (which
would imply that s′ is named), ti cannot have been assigned in that case. This leaves us with case
2 as the only case that can apply to ti. But then, [ti] must be a successor of [s] (= [s′]), which
is impossible since we already assumed that [t j] (= [ti]) is the predecessor of [s′]. Hence, all of
these combinations of cases are impossible.

• ti = tail′(pyi) (cases 1-3) and t j = min[spre], where spre is the predecessor of s (case 5): The fact
that s directly blocks s′ in case 5 rules out cases 1 and 2 for ti, so we only need to consider case 3.
Hence [ti] must be a successor of [s], which implies s ≺ ti = t j. However, since predecessors are
always smaller in ≺ than their successors, we can also conclude ti = t j = min[spre] � spre ≺ s, a
plain contradiction. Thus, this case is impossible.

• Both [tail(pyi)] and [tail(py j)] are predecessors of [s′] (cases 4-5): Note that case 4 and case 5
cannot have occurred together because s′ is blocked in 5 but not in 4. When either 4 or 5 applies
to both ti and t j, we must have px =

[
pyi |

s
s′
]

and px =
[
py j |

s
s′
]

(with s = s′ in case 4) since an
equivalence class can only have one predecessor, which implies pyi = py j .

Note that in all the cases that can actually occur, we have pyi = py j , which would make the whole
DL-clause 6.1 true in I. �

Theorem 6.3.4 (Completeness). Given a SHIQ knowledge base K , if there exists a fair DLE-Hyper
Tableau derivation from DLE(∆(Ω(K))) that contains an exhausted branch, then K is satisfiable.

Proof. By Theorem 3.5.1, K and DLE(∆(Ω(K))) are equisatisfiable. By Theorems 6.3.1, 6.3.2 and
6.3.3, a model of DLE(∆(Ω(K))) can be constructed from an exhausted branch in a DLE-Hyper Tableau
derivation from DLE(∆(Ω(K))). As a result, K must be satisfiable as well. �
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Chapter 7

Related Work and Ideas for Future
Extensions

This chapter serves to present related work and point out how some of the ideas found in it may be
adapted to extend the DLE-Hyper Tableau calculus in the future.

As indicated by the number of times [13] was cited in this thesis, the at-least inference rule as well
as the completeness proof in chapter 6 were heavily inspired by Motik et al.’s work on the original Her-
miT calculus. Hence, the following part mentions some of the commonalities and differences between
HermiT and the DLE-Hyper Tableau calculus.

Unlike the DLE-Hyper Tableau calculus, Motik et al.’s calculus works with hyper tableaux over
ABoxes, combined with a fixed set of DL-clauses. Using the assertions in an ABox, the body literals of
a DL-clause are resolved away and the resulting head atoms are added to new ABoxes (one per atom).
This hyper-resolution step basically corresponds to the E-Hyper Tableau calculus’s Split rule.

The way ≥-number restrictions are handled is similar to the at-least rule, but instead of blindly
generating successors for an individual a occurring in a number restriction of the form ≥ n R.C, Motik
et al.’s ≥-rule first checks whether a already has n distinct R-successors that satisfy C. If this is not
the case, n successors are generated. The DLE-Hyper Tableau calculus’s ’blind’ approach was chosen
because the

Another important difference lies in the way equality is handled. When encountering an assertion of
the form a ≈ b (for a , b), HermiT’s calculus replaces either a or b by the respective other individual
in every ABox assertion, and all assertions containing successors of the individual that was replaced are
deleted. This process is called merging. In contrast, the DLE-Hyper Tableau calculus, which inherited
the built-in equality handling of the E-Hyper Tableau calculus, would derive new clauses from a ' b
using its superposition-based inference rules. It would not delete existing clauses right away, although
this may later be done by Del or Simp. As a result, an exhausted DLE-Hyper Tableau branch may
contain different individuals that are to be interpreted as equivalent, which is why we needed to work
with equivalence classes and adapt the definition of pairwise anywhere blocking from [13] accordingly.

In 2009, Motik et al. [14] presented an extension of the calculus described above and proved that it is
a decision procedure for SHOIQ+, an even more expressive Description Logic than SHIQ. It remains
to be seen whether it will be possible to adapt the DLE-Hyper Tableau calculus in a similar manner.

While Bry and Torge’s work on finite satisfiability [10] focused on first-order logic rather than De-
scription Logic, their ’Extended Positive tableaux’ (EP tableaux) calculus - a decision procedure for
finite satisfiability - uses an interesting way of expanding existential quantifiers in PRQ formulas. PRQ
formulas are a fragment of first-order logic that has the same expressive power as full first-order logic.
Their heads, like the head of a DLE-clause, may also contain existential quantifiers, which is why Bry

61



and Torge’s calculus is relevant to our interests. In the following, we will briefly analyze how existential
quantifiers are treated in EP tableaux.

Let c1, . . . , ck denote the constants occurring in a given branch. When encountering an existen-
tially quantified formula of the form ∃xE(x), the calculus creates k + 1 new leaf nodes, with the first k
nodes containing the formulas E[x/c1], . . . , E[x/ck], respectively. The last node, however, will contain
E[x/cnew], where cnew represents a new constant not in {c1, . . . , ck}. The calculus will only start working
on this last branch when all preceding branches have been closed. This essentially means that it first
checks whether an existing constant can be used to instantiate x and construct a model of the given
clause set; if the search was not successful, the calculus checks whether the branch containing the fresh
constant cnew is satisfiable.

Remember that at-least simply generates n successors for a given non-blocked individual if it has
not generated them yet. In contrast, Motik et al.’s ≥-rule first checks whether an individual already has
n distinct successors before generating new ones. However, even if the individual already has n − 1
distinct successors, their calculus will generate n new successors instead of trying to use existing indi-
viduals as successors. Adapting Bry and Torge’s technique to ≥-number restrictions would mean that an
expansion rule for these number restrictions would first check whether any set of n existing individuals
can be used as successors. If this was impossible, the rule might add fresh successors one at a time and
check whether a model can be found for the k fresh successors it has already added and any set of n − k
existing individuals that might used as successors. As a less computationally complex alternative, it
could simply generate n fresh successors right away if no subset of the existing individuals can be used.
Future research will have to show whether it would make sense to add any of these techniques to the
DLE-Hyper Tableau calculus.

While this thesis was in the making, Markus Bender extended both the theoretical E-Hyper Tableau
calculus as well as its implementation in E-KRHyper by adding support for distinct object identifiers
(DOI) [8]. It is now possible to declare a set of DOIs (constants) for which the unique names assumption
holds; that is, two DOIs a and b are treated as different from one another simply because their names
differ. Hence, adding inequality clauses such as (← a ' b) would be unnecessary and new inference
rules are used to detect contradictions such as (a ' b ←) (this clause cannot hold in any model because
a and b must have different interpretations). Right now, however, the E-Hyper Tableau calculus can only
handle one single set of DOIs.

Remember that the at-least rule generates
(
n
2

)
inequality clauses every time it is applied to an at-least

clause of the form (≥ n R.Cl(a) ←). It would be nice to be able to declare a new class of DOIs that is
unique for a and l such that the successors a.l.1, . . . , a.l.n are recognized as distinct from one another
without the need to add the corresponding inequality clauses. The new inference rules would then take
care of handling contradictory atoms such as a.l.1 ' a.l.2. This would result in multiple classes of
DOIs being created on-the-fly. Of course, individuals from different classes may still be equivalent; they
would only be implicitly distinct from other members of their own class. Depending on the amount of ≥-
number restrictions in a clause set, this could significantly reduce the number of clauses being generated
and hopefully speed up the reasoning process.
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Chapter 8

Conclusion

In this thesis, I presented the DLE-Hyper Tableau calculus, an extension of the E-Hyper Tableau cal-
culus that is capable of deciding the satisfiability of SHIQ knowledge bases. After describing the
transformation of a SHIQ knowledge base into a set of DLE-clauses, most of which is based on Motik
et al.’s work [13], I covered both the existing E-Hyper Tableau calculus as well as the extensions that
were made to obtain the DLE-Hyper Tableau calculus. Afterwards, I proved that the calculus is indeed
sound, terminating and complete, which means that it is a decision procedure.

As mentioned in the previous chapter, there are various ideas floating around regarding how to further
extend the calculus and increase its deductive power and efficiency. In the short term, however, the focus
will be on refining the actual implementation in E-KRHyper. As a couple of changes were made to the
calculus shortly before this thesis was finished, the current implementation is still preliminary. Once
this has been taken care of, extensive tests should be performed to evaluate E-KRHyper’s performance
compared to other reasoners such as HermiT. The results will be presented in future articles and theses.
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