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E-Hyper Tableaux with Distinct Object Identifiers

Markus Bender

Universität Koblenz-Landau, Institut für Informatik, 56070 Koblenz, Germany
mbender@uni-koblenz.de

Abstract E-KRHyper is a versatile theorem prover and model generator for first-
order logic that natively supports equality. Inequality of constants, however, has
to be given by explicitly adding facts. As the amount of these facts grows quadrat-
ically in the number of these distinct constants, the knowledge base is blown up.
This makes it harder for a human reader to focus on the actual problem, and im-
pairs the reasoning process. We extend E-KRHyper’s underlying E-hyper tableau
calculus to avoid this blow-up by implementing a native handling for inequality
of constants. This is done by introducing the unique name assumption for a subset
of the constants (the so called distinct object identifiers). The obtained calculus
is shown to be sound and complete and is implemented into the E-KRHyper sys-
tem. Synthetic benchmarks, situated in the theory of arrays, are used to back up
the benefits of the new calculus.

1 Introduction

In (automated) theorem proving, there are some problems that need information on the
inequality of certain constants [1,3,14]. In most cases this information is provided by
adding facts of form false ← c0 = c1 to the knowledge base. Such a fact explicitly
states that the two constants c0 and c1 are unequal. As the amount of these facts grows
quadratically in the number of constants, they clutter the knowledge base and distract
human readers of the problem from its actual proposition. Additionally, it is safe to
assume that a larger knowledge base reduces the performance of a theorem prover in
many applications, which is another drawback of explicit inequality facts.

A possibility to avoid such a blow-up is the introduction of native handling of in-
equality of constants and thus remove the need for inequality facts in the knowledge
base. This can be done by using the unique name assumption in these reasoning tasks.
The unique name assumptions states that two constants are identical if and only if their
interpretation is identical. Instead of forcing the unique name assumption onto all con-
stants, we apply it on a subset of the constants, called the distinct object identifiers.
Implicit handling of non-identical constants makes the problems easier to comprehend
and reduces the execution time of reasoning.

Reasoning with the unique name assumption gained relevance as the possibility to
use the unique name assumption became part of the Thousands of Problems for The-
orem Provers library (TPTP) [26] in the form of distinct object identifiers. Moreover, a
version of the superposition calculus that treats distinct objects identifiers natively was
introduced in [23].
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s e l ( s t o (A, I , E ) , I )=E .
s e l ( s t o (A, I , E ) , J )= s e l (A, J ) : − not (X=Y ) .
A=B:− s e l (A, sk (A, B) )= s e l (B , sk (A, B ) ) .
s t o ( s t o ( s t o ( s t o ( s t o ( a , i0 , e0 ) , i1 , e1 ) , i3 , e3 ) , i4 , e4 ) , i2 , e2 )=
s t o ( s t o ( s t o ( s t o ( s t o ( a , i0 , e0 ) , i1 , e1 ) , i2 , e2 ) , i3 , e3 ) , i4 , e0 ) .
f a l s e :− i 0= i 1 . f a l s e :− e0=e1 .
f a l s e :− i 0= i 2 . f a l s e :− e0=e2 .
f a l s e :− i 0= i 3 . f a l s e :− e0=e3 .
f a l s e :− i 0= i 4 . f a l s e :− e0=e4 .
f a l s e :− i 1= i 2 . f a l s e :− e1=e2 .
f a l s e :− i 1= i 3 . f a l s e :− e1=e3 .
f a l s e :− i 1= i 4 . f a l s e :− e1=e4 .
f a l s e :− i 2= i 3 . f a l s e :− e2=e3 .
f a l s e :− i 2= i 4 . f a l s e :− e2=e4 .
f a l s e :− i 3= i 4 . f a l s e :− e3=e4 .

(a)

s e l ( s t o (A, I , E ) , I )=E .
s e l ( s t o (A, I , E ) , J )= s e l (A, J ) : − not (X=Y ) .
A=B:− s e l (A, sk (A, B) )= s e l (B , sk (A, B ) ) .
s t o ( s t o ( s t o ( s t o ( s t o ( a , i0 , e0 ) , i1 , e1 ) , i3 , e3 ) , i4 , e4 ) , i2 , e2 )=
s t o ( s t o ( s t o ( s t o ( s t o ( a , i0 , e0 ) , i1 , e1 ) , i2 , e2 ) , i3 , e3 ) , i4 , e0 ) .

(b)

Figure 1: A problem with explicit inequality (a) and implicit inequality (b) of constants.

As a motivational example, Figure 1 shows two sets of clauses, which formalize the
same problem. In Figure 1a the inequalities are explicitly stated and in Figure 1b im-
plicit knowledge of inequalities is used. This paper shows how to integrate the unique
name assumption into the E-hyper tableau calculus, which is an efficient model genera-
tion and proof procedure for first-order logic. We provide formal proofs that the adapted
calculus is sound and complete. Additionally we show how to incorporate extended cal-
culus into the E-KRHyper theorem prover which is an implementation of the original
E-hyper tableau calculus and is a well established theorem prover for first-order logic
with equality with many areas of use, including amongst others natural question an-
swering [13], e-learning [6,7] and ontology reasoning [10]. By empiric evaluation, we
show that the changed implementation, which is able to use the unique name assump-
tion natively, is superior to the traditional version of E-KRHyper.

2 Preliminaries

2.1 First-Order Logic

The language used is a common first-order logic consisting of the logical symbols
∀,∃,∨,∧,¬, the elements of the set of variables V, the set of function symbols F and
the set of predicate symbols P. It is denoted by L and determined by the fixed signature
Σ = (F,P).

V, F, P are possibly infinite, non-empty and mutually disjoint. The elements of F
and P have a fixed arity. Function symbols with arity zero are called constants, where
C ⊆ F is the set of constants.
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T is the set of terms of L and is inductively defined as follows:

1. All constants and variables are terms.
2. If f ∈ F has arity n and t1, . . . , tn are terms, then f (t1, . . . , tn) is a term.

The set of subterms of a term u are defined as follows:

1. u is a subterm of u.
2. if u = f (t1, . . . , tn) then all subterms of t1, . . . , tn are subterms of u.

A subterm of u that is not u itself is called proper subterm.
A position is a sequence of natural numbers that allows us to refer to a specific

subterm of a term in the following way: Let t be a term and p be a position then t|p
denotes the subterm of t at position p. Let ε be the empty sequence and t = f (t1, . . . , tn),
then t|ε = t and t|i.p = ti|p for 1 ≤ i ≤ n. We use the notation t[s]p instead of t|p = s.
t[p/s′] denotes the term obtained by replacing t|p with s′ at position p in t. If p is
obvious or unimportant within the context, then t[s] denotes the term t with the subterm
s, and t[s′] denotes the same term t except for its subterm s having been replaced by s′.

The set of variables of a term t is denoted by vars(t). A term t is called ground iff
vars(t) = ∅.

A mapping σ : V → T, with finite domain dom(σ) = {x | x , σx} and a finite
range ran(σ) = {xσ | x , σx}, x ∈ V is called substitution. A substitution γ with
vars(ran(γ)) = ∅ is called ground. A substitution ρ : V → V is called renaming. Iff
sσ = tσ for the terms s and t and the substitution σ, then σ is a unifier for s and t. σ is
a most general unifier (mgu) iff for any other unifier τ for s and t there is a substitution
ψ with σψ = τ A term s is an instance of a term t (written as s & t) iff there is a
substitution σ such that sσ = t. A term s is a variant of t (written as s ∼ t) iff there is a
renaming ρ such that sρ = t.

The set of formulæ of L and is inductively defined as follows:

1. If p ∈ P has arity n and t1, . . . , tn are terms, then p(t1, . . . , tn) is a formula.
2. If A, B are formulæ then ¬A, A ∧ B, A ∨ B are formulæ.
3. If A is a formula and x ∈ V then ∀xA,∃xA are formulæ.

A formula of form p(t1, . . . , tn) with p ∈ P and t1, . . . , tn ∈ T is called atomic formula
or atom.

As it eases the introduction of the calculus, we assume that the equality ' is the
only element in P. This does not restrict our approach, as a formula of form p(x) can
be rewritten as p(x) ' t, where t is a special term. Formally this entails that predicates
are functions with the signature T∗ → {true, f alse} but the notions of typed functions
and typed logic are not introduced in this paper. For the sake of brevity, we write p(x)
instead of p(x) ' t.

A literal is an atom or the negation of an atom. A literal K = L is called the com-
plement of L. A literal is ground iff its component terms are ground.

The notions of the set of variables, substitutions, renamings, unifiers, instances and
variants are extended to literals in the natural way.

A clause C = A1 ∨ . . . ∨ Am ∨ ¬B1 ∨ . . . ∨ ¬Bn of this language is a set of literals,
usually written as an implication A1, . . . , Am ← B1, . . . , Bn with m, n ≥ 0. The set
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A = {A1, . . . , Am} is called the head of the clause C while B = {B1, . . . ., Bn} is called
the body of C. Accordingly, A1, . . . , Am denote both the head atoms and the head literals
of C, while B1, . . . , Bn refer to the body atoms and ¬B1, . . . ,¬Bn to the body literals.
The notation A,A ← B,B refers to the clause with the head atoms {A}∪A and the body
atoms {B} ∪ B. A unit is a clause consisting of exactly one literal. A clause is empty if
both its head and its body are empty. The empty clause is denoted by �. A clause is
ground iff its literals are ground, i.e. do not contain variables. A clause is pure if none
of its distinct head literals share variables . A substitution π is a purifying substitution
for C iff Cπ is pure. A substitution σ is a unifier for the terms s and t if sσ = tσ. σ is a
most general unifier (mgu), if for any other unifier τ for s and t there is a substitution ψ
with σψ = τ .

All variables in a clause are taken to be universally quantified. A clause set is a
conjunction of clauses and is sometimes called a knowledge base. ΩΣ is the universal
set of clauses, which contains all possible clauses for a given signature Σ.

As we assume that ' is the only predicate symbol of the language L with signature
Σ, the Herbrand interpretation I is a set of ground Σ-equations that are considered true
in I. The notions of satisfiability and validity are defined as usual. I |= F denotes that I
satisfies F, with F being a ground Σ-literal, a ground Σ-clause or a set thereof.

An E-Interpretation is an interpretation that is also a congruence relation on the
Σ-terms. IE denotes the smallest congruence relation on the Σ-terms that includes I.
IE |= F denotes that IE-satisfies F; this will be written as I |=E F, though. If every E-
interpretation satisfying F also satisfies F′, then this means that F E-entails F′, written
as F |=E F′.

Creating equivalence classes by using Herbrand models and the properties of the
equality (symmetry, transitivity, reflexivity) leads to an easily understandable repres-
entation of a model. This is illustrated in Example 1.

Example 1 (E-Interpretation). Assume the set of literals {a ' b, c ' d, a ' d, f ' g, a '
g, h ' i, i ' j} is a Herbrand model for some formula. Then with the corresponding E-
Interpretation {{a, b, c, d, f , g}, {i, j, h}} it is easier to see that the formula is satisfied iff
the constants in the two equivalence classes are equal. �

2.2 Term Ordering

For efficient equality reasoning with the E-hyper tableau calculus a reduction ordering
� is needed. It has to be total on ground terms. A reduction ordering is

1. a strict partial ordering (irreflexive, antisymmetric and transitive),
2. well-founded,
3. closed under context - if s � s′ for s, s′ ∈ T, then t[p/s] � t[p/s′] for any t ∈ T and

any position p in t, and finally
4. liftable - if s � t for s, t ∈ T, then sσ � tσ for any substitution σ.

As the specific ordering is not of interest in the context of this work, we refer to [17]
for further information. � is lifted to atoms, literals and clauses in the natural way and
it induces the non-strict ordering �. The converse is denoted by ≺ and � respectively.
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2.3 Negligible Clauses

Another important part in efficient reasoning is to generate as few clauses as possible.
For this, it is necessary to define criteria by which clauses can be identified as not useful
for the reasoning process.

The first criterion is that of redundancy, which means that a clause is not helpful if
it follows from a set clauses that are smaller w.r.t. �. Before this informal description is
formalized in Definition 1 following [4] the notation SD is introduced.

Let S′ be the set of all ground instances of all clauses in a clause set S, then SD =

{C ∈ S′ | D � C} is the set of all ground instances of all clauses of S that are smaller
w.r.t. � thanD.

Definition 1 (Redundancy). LetD be a clause, S a set of clauses.

– A ground clauseD is redundant w.r.t. a clause set S iff SD |=E D.
– A non-ground clause D is redundant w.r.t. a clause set S iff every ground instance

ofD is redundant w.r.t. S.

�

The second criterion is that of non-proper subsumption. A clause is non-properly sub-
sumed by another clause iff it is an instance of this clause. A clause is non-properly
subsumed by a set of clauses iff it is an instance of a clause of this particular clause set.

Definition 2 (Non-proper Subsumption). LetD be a clause and S a set of clauses.

– A clause D is non-properly subsumed by a clause C iff there is a substitution σ
such thatD = Cσ.

– A clause D is non-properly subsumed w.r.t. a clause set S iff there is a C ∈ S that
non-properly subsumesD.

�

A clause is negligible w.r.t. a set of clauses iff it is redundant w.r.t. this set or non-
properly subsumed w.r.t. it.

Definition 3 (Negligible Clauses (prelim.)). LetD be a clause and S a set of clauses.
A clauseD is negligible w.r.t. a clause set S iff at least one of the following holds:

– D is redundant w.r.t. S.
– D is non-properly subsumed w.r.t. S.

�

To avoid confusion with the names of definitions, (prelim.) is appended to the names
of these definitions that are extended later on to indicate that these are preliminary
definitions.

In most cases it is obvious what set of clauses S is meant and therefore the addition
w.r.t. to a clause set S might be omitted for the sake of brevity.
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2.4 Trees and Tableaux

A tree is a directed, acyclic graph denoted by a pair (N,E) consisting of a set of nodes
N and a set of edges E ⊂ (N × N). A node that has no incoming edges is called root. A
node with not outgoing edges is called leaf.

A branch B in T is a sequence N0, . . . ,Nn of nodes in T, with N0 being the root
node of T, each Ni being the immediate predecessor of Ni+1(0 ≤ i < n), and Nn being a
leaf of T.

A initial segment B j of a branch B = (Ni)0≤i<ν is defined as a sequence of nodes of
B starting with N0 and ending with N j, i.e. B j = (Ni)0≤i≤ j.

3 E-Hyper Tableau Calculus

3.1 Introduction

The E-hyper tableau calculus [9] was developed in 2007 as an extension of the hyper
tableau calculus [8]. The latter was developed in 1996 as an efficient model generation
and proof-procedure for first-order theories. It combines the benefits of tableau calculi,
i.e. rich structure for the derivation process, partial models as by-product, and the ad-
vantages of the hyper resolution, i.e. the hyper property for resolving negative literals
of a clause in a single inference step, universally quantified variables and subsumption
as pruning technique [8].

As the hyper tableau calculus lacked the native treatment of equalities, which is
mandatory in most proving applications, it was extended by new rules that introduced
the superposition calculus’ [4] ideas for equality handling to the hyper tableau calculus.
This extensions lead to the E-hyper tableau calculus, which is introduced in this section.
We only give a brief introduction and refer to [17] and [9] for further information.

An E-hyper tableau T over a signature Σ is a pair (t, λ), where t is a finite, ordered
tree and λ is a labelling function assigning an Σ-clause to each node of t.

A branch B in T is a sequence N0, . . . ,Nn of nodes in T, with N0 being the root
node of T, each Ni being the immediate predecessor of Ni+1(0 ≤ i < n), and Nn being a
leaf of T.

λ(B) = {λ(N0), . . . , λ(Nn)} is the set of clauses in B, called the tableau clauses. The
notation C ∈ B is used iff C ∈ λ(B).

The notation B · C represents the tableau branch obtained from attaching a node
labelled with C to the leaf of B, where B · B′ represents the tableau obtained from
concatenating B and the node sequence B′.

A branch in an E-hyper tableau is closed iff it contains the empty clause � otherwise
it is open. An E-hyper tableau is closed iff all of its branches are closed, and it is open
otherwise.

3.2 E-Hyper Tableaux Rules

The E-hyper tableau calculus uses the eight rules shown in Figure 2, which can be
classified into two different types of rules. The first group consists of the four inference
rules sup-left, unit-sup-right, ref, split, which create new clauses. The second group
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A ← s[u′] ' t,B u ' r ←
sup-left(σ) if (1-4) holds

(A ← s[r] ' t,B)σ

s[u′] ' t ← u ' r ←
unit-sup-right(σ) if (1-5) holds

(s[r] ' t ←)σ

A ← s ' t,B
ref(σ) if (6) holds

(A ← B)σ

A1, . . . , An ←split(π) if (7,8) holds
A1π← . . . Anπ←Conditions:

1. u′ is not a variable
2. σ is a mgu of u and u′

3. uσ � rσ

4. sσ � tσ
5. (s ' t)σ � (u ' r)σ
6. σ is a mgu of s and t

7. n ≥ 2
8. π is a purifying substitution for

A1, . . . , An ←

BEquality if (1-4) holds
B · E

BSplit if (1,5,6) holds
B · A1 ←

d . . . B · An ←
d

B · C(d) · B1 · B2Del if (7,8) holds
B · t ' t(d) · B1 · B2

B · C(d) · B1 · B2Simp if (8-10) holds
B · D(d) · B1 · B2

Conditions:
1. there is a C ∈ B
2. there is a fresh variantD of a positive unit clause in B
3. there is a σ such that C,D ⇒R(σ) E with R ∈

{sup-left, unit-sup-right} or C ⇒ref(σ) E
4. B contains no variant of E
5. there is a π such that C ⇒split(π) A1 ←, . . . , An ←

6. B contains no variant of Ai, i ∈ {1, . . . , n}
7. C is negligible w.r.t. B · B1

8. B1 does not contain a decision clause
9. B · C · B1 |=E D

10. C is redundant w.r.t. B · D · B1

Figure 2: Rules for the E-hyper tableau calculus and their required conditions

consists of the tableaux rules Equality, Split, Del, Simp, which allow the modification
or extension an E-hyper tableau.

The first three of the inference rules sup-left, unit-sup-right, ref are adapted from
the superposition calculus to deal with equality. If they are applicable, each of the rules
takes a set of clauses as input and derives a new clause. The fourth so-called split rule
is used to to create a branch split from a disjunctive clause head.

The sup-left rule (superposition left) applies a positive unit equation D to a body
literal of another clause C. This inference instance will be denoted by C,D ⇒sup-left(σ)
E, where E is the resulting clause and σ is a mgu.

The unit-sup-right rule (unit superposition right) applies a positive unit equation
D to another positive unit equation C. This inference instance will be denoted by
C,D ⇒unit-sup-right(σ) E, where E is the resulting clause and σ is a mgu.

9
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The ref rule (reflexivity) works on a single clause C and removes an equational
body literal whose both sides can be unified. This inference instance will be denoted by
C ⇒ref(σ) E, where E is the resulting clause and σ is a mgu.

The split rule (split) works on a positive disjunction C. This inference instance will
be denoted by C ⇒split(π) A1π ←, . . . , Amπ ←, where A1π ←, . . . , Amπ ← are the
resulting clauses and π is a purifying substitution.

As these inference rules work only on clauses, the extension rules Equality and Split
are introduced to work on tableaux. If T is an E-hyper tableau with a branch B, then T
can be extended by application of these two rules. The Equality rule defines how sup-
left, unit-sup-right and ref can be applied on an open branch of a tableau, and the Split
rule defines how the split rule can be used to create an branch split.

There are the two additional tableaux rules, Del and Simp, which allow the modi-
fication of existing nodes’ labelling. The Del rule (deletion) eliminates redundant or
non-properly subsumed clauses (or more specifically, it overwrites such a clause with a
trivially true unit clause, thus preserving the node while changing its label). The Simp
rule (simplification) overwrites a clause with one that is smaller according to the term
ordering.

The annotation d marks the derived clauses as decision clauses. A node labelled with
a decision clause will be referred to as a decision node. The notation (d) indicates that a
decision node remains to be a decision node after the application of the Del or Simp rule
on the node. The concept of a decision node is needed to restrict the application of the
Del and Simp rule in such a way, that the redundancy or the non-proper subsumption
of a node is only considered w.r.t. all the clauses in the branch that appear between the
target node and the next branch split. This restriction is crucial for the soundness and
the completeness of the calculus. ( see [9] for details).

Several notions are now extended to the inference rules sup-left, unit-sup-right, ref
and split, as well as to their instances:

– An inference is ground iff its constituent clauses (premisses and conclusions) are
ground. For ground inferences the substitution σ and the purifying substitution π
can both be assumed to be the empty substitution ε.

– If C,D ⇒sup-left(σ) E is a sup-left inference and
γ is a substitution such that Cσγ,Dσγ ⇒sup-left(ε) Eγ is ground,
then the latter is called a ground instance of C,D ⇒sup-left(σ) E.

– If C,D ⇒unit-sup-right(σ) E is a unit-sup-right inference and
γ is a substitution such that Cσγ,Dσγ ⇒unit-sup-right(ε) Eγ is ground,
then the latter is called a ground instance of C,D ⇒unit-sup-right(σ) E.

– If C ⇒ref(σ) E is a ref inference and
γ is a substitution such that Cσγ ⇒ref(ε) Eγ is ground,
then the latter is called a ground instance of C ⇒ref(σ) E.

– If C ⇒split(π) A1 ←, . . . , Am ← is a split inference and
γ is a substitution such that Cπ⇒split(ε) A1γ ←, . . . , Amγ ← is ground,
then the latter inference is a ground instance of the former.

– Let S be a set of not necessarily ground clauses:
• A ground inference C,D ⇒sup-left(ε) E is redundant w.r.t. S

iff E is redundant w.r.t. SC ∪ {D}.
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• A ground inference C,D ⇒unit-sup-right(ε) E is redundant w.r.t. S
iff E is redundant w.r.t. SC ∪ {D}.

• A ground inference C ⇒ref(ε) E is redundant w.r.t. S
iff E is redundant w.r.t. SC.

• A ground inference C ⇒split(ε) A1 ←, . . . , Am ← is redundant w.r.t. S
iff there is an i with 1 ≤ i ≤ m such that Ai ← is redundant w.r.t. SC.

– For all inference rules sup-left, unit-sup-right, ref and split, a (possibly non-ground)
inference is redundant w.r.t. S iff each of its ground instances is redundant w.r.t. S.

Now it is possible to define the notion of a clause set being saturated up to redundancy,
which is an important part for the completeness of the calculus.

Definition 4 (Saturation up to Redundancy (prelim.)). A clause set S is saturated up
to redundancy iff for all clauses C ∈ S such that C is not redundant w.r.t. S all of the
following hold:

1. Every inference C,D ⇒sup-left(σ) E,
whereD is a fresh variant of a positive unit clause from S,
such that neither Cσ norDσ is redundant w.r.t. S, is redundant w.r.t. S.

2. Every inference C,D ⇒unit-sup-right(σ) E,
whereD is a fresh variant of a positive unit clause from S,
such that neither Cσ norDσ is redundant w.r.t. S, is redundant w.r.t. S.

3. Every inference C ⇒ref(σ) E,
such that Cσ is not redundant w.r.t. S, is redundant w.r.t. S.

4. Every inference C ⇒split(σ) A1 ←, . . . , Am ←,
such that Cπ is not redundant w.r.t. S, is redundant w.r.t. S.

�

With the notion of an E-hyper tableau and rules to modify E-hyper tableaux, the
concept of a derivation can now be introduced. A derivation is a series of tableaux that
starts with the initial tableau. For all tableaux in this series holds that they are either
the initial tableau or they have been derived by applying one of the introduced rules to
a tableau of the series. A more formal definition is now given in Definition 5 and then
shown in Example 2.

Definition 5 (E-hyper Tableau Derivation (prelim.)). An E-hyper tableau derivation
of a set {C1, . . . ,Cn} of Σ-clauses is a possibly infinite sequence of tableaux D =

(Ti)0≤i<κ such that

1. T0 is the clausal tableau over Σ that consists of a single branch of length n with the
tableau clauses C1, . . . ,Cn, and

2. for all i > 0, Ti is obtained from Ti−1 by a single application of the Equality, Split,
Del or Simp rule to an open branch in Ti .

�
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f (x) ' x←

f (c) ' c←

p( f (a)) ' t←

q( f (x)) ' t, r(x) ' t← p(a) ' t

f (x) ' x←

t ' t←

p( f (a)) ' t←

q( f (x)) ' t, r(x) ' t← p(a) ' t

p(a) ' t←

q( f (x)) ' t, r(x) ' t← t ' t

q( f (x)) ' t, r(x) ' t←

q( f (a)) ' t←

q(a) ' t←

r(a) ' t←

T0 T6

Figure 3: The tableaux T0 and T6 of an E-hyper tableau derivation.

Example 2 (E-Hyper Tableau Derivation). Figure 3 shows the tableaux T0 and T6 of
an E-hyper tableau derivation. The intermediate tableaux T1 to T5 are not shown in the
figure but are introduced textually.

T0 is the initial tableau of the derivation and contains four clauses. As it is easy to
see there is a σ such that ( f (x) ' x ←)σ = f (c) ' c ← holds, namely σ = {x/c} and
therefore f (c) ' c ← is non-properly subsumed by f (x) ' x ← and can be rewritten
to t ' t by an application of the Del rule. This leads to the tableau T1. By applying
the Equality rule with underlying inference p( f (a)) ' t ←, f (x) ' x ←⇒unit-sup-right(σ)
p(a) ' t← and σ = {x/a} on T1, T2 is derived. For the sake of simplicity, the following
steps are given as a list of underlying inference rules.

1. C,D ⇒sup-left(σ) E, with
C = q( f (x)) ' t, r(x) ' t← p(a) ' t
D = p(a) ' t←
σ = {}

E = q( f (x)) ' t, r(x) ' t← t ' t
2. C ⇒ref(σ) E, with
C = q( f (x)) ' t, r(x) ' t← t ' t
σ = {}

E = q( f (x)) ' t, r(x) ' t←

3. C ⇒split(π) A1π←, A2π←, with
C = q( f (x)) ' t, r(x) ' t←
π = {x/a}
A1π = q( f (a)) ' t
A2π = r(a) ' t

4. C,D ⇒unit-sup-right(σ) E, with
C = q( f (a)) ' t←
D = f (x) ' x←
σ = {}

E = q(a) ' t←

These four steps lead from T2 to T6. The application of the Del rule is independent
and must not have happened as the first step but could have been somewhere between
T1 and T6. The ordering of the other extension steps is fixed, as they need to be applied
consecutively. �
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For using the E-hyper tableaux calculus to calculate a model for a formula or to
show that a formula is unsatisfiable, we need to define some criterion that states how
many derivation steps are necessary to make such a statement. To do so, we need some
notations and concepts that are introduced now.

The first one is the concept of a limit tree. It represents the overall tree structure of
the derivation. Its set of nodes is the union of all nodes of all of the derivations tableaux
and its set of edges is the union of all edges of all of the derivations tableaux. If a
derivation is finite, the limit tree matches the tree of the last tableau in the derivation.
A limit tree is not a tableau, as it has no associated labelling function. A more formal
definition of limit tree is given now in Definition 6.

Definition 6 (Limit Tree). Let T = (t, λ) be an E-hyper tableau with t = (N,E) a tree
consisting of the set of nodes N and the set of edges E. Furthermore let the derivation
D = ((Ni,Ei) , λi)0≤i<κ. Then the limit tree t∞ of the derivation D is defined as:

t∞ =

 ⋃
0≤i<κ

Ni,
⋃

0≤i<κ

Ei


�

With the concept of a limit tree the set of persistent clauses can now be defined. It
is the set of clauses that contains the labels of all the nodes that have not been rewritten
by the Del or Simp rule. These clauses are used to generate a model for a given set of
formulæ or to show that the set is unsatisfiable. To construct the set of persistent clauses
the λ′-function is needed that is defined as follows:

If N is a node and λ is the labelling function then λ′(N) :=

{λ(N)} if N ∈ dom(λ)
ΩΣ otherwise

Informally, it can be seen as a wrapper for λ that creates a set containing the result
of λ. If λ is undefined for an input the universal set for the language is returned. This
behaviour is needed, as we want to build the intersection of all labellings for a node
throughout the whole derivation process and it might happen that a λ for a node is not
yet defined in a specific derivation step. The set of persistent clauses is then created by
joining these intersections for all nodes of a branch.

The definition of persistent clauses is given in Definition 7 and illustrated in Ex-
ample 3.

Definition 7 (Persistent Clauses). Let t∞ =
(⋃

0≤i<κ Ni,
⋃

0≤i<κ Ei
)

be the limit tree of
the derivation D = ((Ni,Ei), λi)0≤i<κ and B = (N j)0≤ j<ν be a (possibly infinite) branch
in t∞.

Then the set of persistent clauses (of B) is defined as

B∞ =
⋃

0≤i<ν

 ⋂
0≤ j<κ

λ′j(Ni)


�
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C0

C1

C2

C0

C1

D0

C0

C1

D0

C3

C0

C1

D0

C3

C4 C5

C0

C1

D0

C3

C4

C6

C5

C0

C1

D0

C3

C4

C6

C5

C7

T0 T1 T2 T3 T4 T5

(a)

N0

N1

N2

N3

N4

N6

N5

N7

t∞

(b)

N0

N1

N2

N3

N4

N6

B

(c)

Figure 4: The derivation D, starting with the initial tableau T0 (a), its limit tree t∞ (b)
and a single branch of t∞(c).

λ′0(N0) ∩ λ′1(N0) ∩ λ′2(N0) ∩ λ′3(N0) ∩ λ′4(N0) ∩ λ′5(N0)
⋃

λ′0(N1) ∩ λ′1(N1) ∩ λ′2(N1) ∩ λ′3(N1) ∩ λ′4(N1) ∩ λ′5(N1)
⋃

λ′0(N2) ∩ λ′1(N2) ∩ λ′2(N2) ∩ λ′3(N2) ∩ λ′4(N2) ∩ λ′5(N2)
⋃

λ′0(N3) ∩ λ′1(N3) ∩ λ′2(N3) ∩ λ′3(N3) ∩ λ′4(N3) ∩ λ′5(N3)
⋃

λ′0(N4) ∩ λ′1(N4) ∩ λ′2(N4) ∩ λ′3(N4) ∩ λ′4(N4) ∩ λ′5(N4)
⋃

λ′0(N6) ∩ λ′1(N6) ∩ λ′2(N6) ∩ λ′3(N6) ∩ λ′4(N6) ∩ λ′5(N6)

(a)

{C0} ∩ {C0} ∩ {C0} ∩ {C0} ∩ {C0} ∩ {C0}
⋃

{C1} ∩ {C1} ∩ {C1} ∩ {C1} ∩ {C1} ∩ {C1}
⋃

{C2} ∩ {D0} ∩ {D0} ∩ {D0} ∩ {D0} ∩ {D0}
⋃

ΩΣ ∩ ΩΣ ∩ {C3} ∩ {C3} ∩ {C3} ∩ {C3}
⋃

ΩΣ ∩ ΩΣ ∩ ΩΣ ∩ {C4} ∩ {C4} ∩ {C4}
⋃

ΩΣ ∩ ΩΣ ∩ ΩΣ ∩ ΩΣ ∩ {C6} ∩ {C6}

(b)
Table 1: Abstract (a) and concrete (b) calculation of the set of persistent clauses for the
derivation shown in Figure 4.

Example 3 (Limit Trees and Persistent Clauses). In Figure 4a a derivation with five
tableaux is given. For the sake of brevity neither concrete clauses nor concrete extension
rules are given, but it is easy to see that such a derivation is possible.

This derivation has the limit tree t∞ shown in Figure 4b. As the shown derivation is
finite, the limit tree equals the tree of the last tableau of the derivation T5. In Figure 4c
the leftmost branch of t∞ is given as the branch B.
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Table 1 shows how the set of the persistent clauses is constructed for the branch B.
In Table 1a the definition of the set of persistent clauses is shown without evaluating
the labelling functions. In Table 1b λ has been evaluated and the appropriate clauses are
used in the formula.

This formula shows that it is possible that some nodes might not have a labelling at
a certain derivation step as the tree has not been enough extended yet. For example N3
is introduced in T2 and therefore λ′0(N3) = λ′1(N3) = ΩΣ .

The set of persistent clauses for this example is then:

B∞ = {C0} ∪ {C1} ∪ ∅ ∪ {C3} ∪ {C4} ∪ {C6} = {C0,C1,C3,C4,C6}

Neither C2 nor D0 are members of t∞, which conforms our intention. C2 has been
rewritten, and therefore it was either redundant or non-properly subsumed and thus is
not needed to construct a model or to show the unsatisfiability of the set of clauses. If
C2 was rewritten by the Del rule D0 = t ' t ←, it is easy to see that this clause is not
of relevance. If the Simp rule caused the rewrite of C2, it has been rewritten to a clause
D0 that is smaller w.r.t. � and already in the branch and thusD0 is already in t∞.

�

With the concepts of limit trees and persistent clauses defined, the notion of an
exhausted branch can now be introduced. When a branch is exhausted, all the useful
rule applications are done and all following rule applications would not contribute to
creating a model. The formal definition is given in Definition 8.

Definition 8 (Exhausted Branch (prelim.)). Let t∞ be a limit tree, B = (Nk)0≤k<ν be a
branch in t∞ and Bi and B j initial segments of B . The branch B is exhausted iff it does
not contain the empty clause, and for every clause C ∈ B∞ and every fresh variantD of
every positive unit clause in B∞ such that neither C norD is redundant w.r.t. B∞ all of
the following hold, for all i < ν such that C ∈ Bi andD is a variant of a clause in Bi:

1. if Equality is applicable to Bi with underlying inference
C,D ⇒sup-left(σ) E,
and neither Cσ norDσ is redundant w.r.t. Bi,
then there is a j < ν such that the inference
C,D ⇒sup-left(σ) E is redundant w.r.t. B j.

2. if Equality is applicable to Bi with underlying inference
C,D ⇒unit-sup-right(σ) E,
and neither Cσ norDσ is redundant w.r.t. Bi,
then there is a j < ν such that the inference
C,D ⇒unit-sup-right(σ) E is redundant w.r.t. B j.

3. if Equality is applicable to Bi with underlying inference
C ⇒ref(σ) E

and Cσ is not redundant w.r.t. Bi,
then there is a j < ν such that the inference
C ⇒ref(σ) E is redundant w.r.t. B j.

4. if Split is applicable to Bi with underlying inference
C ⇒split(π) A1 ←, . . . , Am ←
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and Cπ is not redundant w.r.t. Bi,
then there is a j < ν such that the inference
C ⇒split(π) A1 ←, . . . , Am ← is redundant w.r.t. B j.

�

We are now able to state which kind of derivation is of interest for deriving a model
for a set of clauses S or showing that S is unsatisfiable, namely a fair derivation. A
derivation is fair iff it contains a closed tableau or its limit tree has an exhausted branch.

A finite E-hyper tableau derivation of a clause set S that contains a closed tableau
is called E-hyper tableau refutation of S.

The concrete connection between an exhausted branch and a model for a clause set
is given in section 5.

The E-hyper tableau calculus shown in this section is complete and sound. Proofs
for this properties can be found in [9].

4 Distinct Objects in E-Hyper Tableaux

4.1 The Unique Name Assumption

The unique name assumption (UNA) is a convention on how to handle equality of ob-
jects in knowledge bases. It defines that two constants denote the same object if and
only if the constants are identical [20].

To be more flexible and to conform the TPTP’s way of dealing with the unique
name assumption [26,25], the unique name assumption is not applied to the whole set
of constants, but for a possibly infinite subset of it, called the set of distinct object
identifiers (DOI) D ⊆ C. Elements of D are denoted by i or j.

We can now introduce the UNA more formally: For any interpretation I, the UNA
holds for D iff i ' j⇔ I(i) = I( j) for all i, j ∈ D.

With the introduction of D, the language’s signature has to be changed to Σ =

(D,F,P). From D ⊆ C follows that D is disjoint to V and P. Additionally, the term
ordering must fulfil the requirement that all distinct object identifiers are smaller w.r.t.
the term ordering than any other non-variable term, i.e. ∀t ∈ (T\(V∪D)),∀i ∈ D : i ≺ t.

The introduction of the unique name assumption calls for changes of the calculus to
cope with the following two new types of formulæ:

1. A ← i ' j,B , called object tautology clause,
2. i ' j← , called unit contradiction,

for i, j ∈ D, i , j and A a possibly empty set of head literals and B a possibly empty
set of body literals. These to types of formulæ are defined in Definitions 9 and 10.

Definition 9 (Object Tautology Clause). Let A be a possibly empty set of head liter-
als, B be a possibly empty set of body literals and i, j ∈ D with i , j. A clause D is an
object tautology clause iff it is of formA ← i ' j,B. �

Definition 10 (Unit Contradiction). Let i, j ∈ D with i , j. A clause D is a unit
contradiction iff it is of form i ' j←. �
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X ' Y ←unit-cont-right(σ) if (1,2) holds�

BInc if (3,4) holds
B · �

Conditions:
1. X,Y ∈ V ∪ D
2. (X ' Y ←)σ = i ' j←, where i, j ∈ D and i , j

3. there is a C ∈ B
4. there is a σ such that C ⇒unit-cont-right(σ) �

Figure 5: The unit-cont-right rule and the corresponding Inc extension rule for handling
unit contradictions.

As the first type of formulæ, object tautology clauses, are trivially true, they can-
not contribute in deriving a contradiction. For the sake of efficiency, we do not want to
interact with these formulæ, i.e. we want to ignore them. The second type, unit contra-
dictions, are inconsistent by definition. Thus a rule is needed to close a branch if one of
its nodes is labelled with a unit contradiction. All the other type of formulæ that involve
distinct object identifiers, are dealt with by the unmodified version of the calculus.

4.2 Extending the Calculus

The extension of the E-hyper tableau calculus being introduced in this section is an
adaptation of the work by Schulz and Bonacina, who introduced a way of handling
distinct object identifiers in the superposition calculus in [23].

The first change concerns the handling of unit contradiction clauses. As they are a
sign of an inconsistency in the clause set, a new inference and a new extension rule are
needed to close a branch if it contains a unit contradiction. Figure 5 shows the newly in-
troduced unit-cont-right (unit contradiction right) inference rule and the corresponding
extension rule Inc (Inconsistency).

In the second step, a way of dealing with object tautology clauses introduced. As
an object tautology clause cannot contribute in closing a branch, it is useless for the
refutation attempt and should not be used as a constituent clause for any of the calculus’
extension rules. This behaviour can be achieved by extending the concept of negligible
clauses to contain object tautology clauses. Therefore Definition 3 is now extended to
Definition 11.

Definition 11 (Negligible Clauses). LetD be a clause and S a set of clauses. A clause
D is negligible (w.r.t. a clause set S) iff at least one of the following holds:

– D is redundant (w.r.t. S).
– D is non-properly subsumed (w.r.t. S).
– D is an object tautology clause.

�

With this step, it is properly taken care of the object tautology clauses, as they are
rewritten by the Del rule and therefore inefficient reasoning steps are prevented.
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With these changes, some definitions need to be adapted. We start by extending
Definition 4 on page 9 (saturation up to redundancy) to Definition 12 by adding that a
set S is not saturated up to redundancy if the unit-cont-right is applicable to any clause
in S. Additionally it is amended that object tautology clauses are not considered as
constituent clauses for inference rules.

Definition 12 (Saturation up to Redundancy). A clause set S is saturated up to re-
dundancy iff for all clauses C ∈ S such that C is neither an object tautology nor re-
dundant w.r.t. S all of the following hold:

1. Every inference C,D ⇒sup-left(σ) E,
whereD is a fresh variant of a positive unit clause from S,
such that neither Cσ nor Dσ is an object tautology or redundant w.r.t. S, is re-
dundant w.r.t. S.

2. Every inference C,D ⇒unit-sup-right(σ) E,
whereD is a fresh variant of a positive unit clause from S,
such that neither Cσ nor Dσ is an object tautology or redundant w.r.t. S, is re-
dundant w.r.t. S.

3. Every inference C ⇒ref(σ) E,
such that Cσ is neither an object tautology nor redundant w.r.t. S, is redundant
w.r.t. S.

4. Every inference C ⇒split(σ) A1 ←, . . . , Am ←,
such that Cπ is neither an object tautology nor redundant w.r.t. S, is redundant
w.r.t. S.

5. No inference C ⇒unit-cont-right(σ) � is applicable.

�

In the next step, Definition 5 on page 9 E-hyper tableau derivation is extended to
Definition 13 by including that the Inc rule can be used on an open branch of a tableau
T to extend it.

Definition 13 (E-Hyper Tableau Derivation). An E-hyper tableau derivation of a set
{C1, . . . ,Cn} of Σ-clauses is a possibly infinite sequence of tableaux D = (Ti)0≤i<κ such
that

1. T0 is the clausal tableau over Σ that consists of a single branch of length n with the
tableau clauses C1, . . . ,Cn, and

2. for all i > 0, Ti is obtained from Ti−1 by a single application of the Equality, Split,
Del, Simp or Inc rule to an open branch in Ti .

�

The last definition that needs to be extended is the Definition 8 on page 13 (ex-
hausted branch), which is extended to Definition 14 by adding that a branch is not
exhausted if the Inc rule can be applied to a clause in this branch. Additionally, it is
amended that object tautology clauses are not considered as constituent clauses for in-
ference rules.
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Definition 14 (Exhausted Branch). Let t∞ be a limit tree, B = (Nk)0≤k<ν be a branch
in t∞ and Bi and B j initial segments of B . The branch B is exhausted iff it does not
contain the empty clause, and for every clause C ∈ B∞ and every fresh variant D of
every positive unit clause in B∞ such that neither C nor D is an object tautology or
redundant w.r.t. B∞ all of the following hold, for all i < ν such that C ∈ Bi and D is a
variant of a clause in Bi:

1. if Equality is applicable to Bi with underlying inference
C,D ⇒sup-left(σ) E,
and neither Cσ norDσ is an object tautology or redundant w.r.t. Bi,
then there is a j < ν such that the inference
C,D ⇒sup-left(σ) E is redundant w.r.t. B j.

2. if Equality is applicable to Bi with underlying inference
C,D ⇒unit-sup-right(σ) E,
and neither Cσ norDσ is an object tautology or redundant w.r.t. Bi,
then there is a j < ν such that the inference
C,D ⇒unit-sup-right(σ) E is redundant w.r.t. B j.

3. if Equality is applicable to Bi with underlying inference
C ⇒ref(σ) E

and Cσ is neither an object tautology nor redundant w.r.t. Bi,
then there is a j < ν such that the inference
C ⇒ref(σ) E is redundant w.r.t. B j.

4. if Split is applicable to Bi with underlying inference
C ⇒split(π) A1 ←, . . . , Am ←

and Cπ is neither an object tautology nor redundant w.r.t. Bi,
then there is a j < ν such that the inference
C ⇒split(π) A1 ←, . . . , Am ← is redundant w.r.t. B j.

5. Inc is not applicable to Bi with underlying inference
C ⇒unit-cont-right(σ) �.

�

These introduced changes allow the E-hyper tableau calculus to deal with distinct
object identifiers in a complete and sound way. Before the completeness and soundness
are formally proven in section 5 a derivation example is given to illustrate the introduced
changes and their function.

Example 4 (Derivation with the modified E-hyper tableau calculus). Figure 6 shows the
tableaux T0 and T5 of an E-hyper tableau derivation with distinct object identifiers. The
intermediate tableaux T1 to T4 are not shown in the figure but are introduced textually.

T0 is the initial tableau of the derivation and contains three clauses. As there are
two distinct objects identifiers i, j as terms in the set of clauses, it makes sense to use
the modified version of the calculus. It is easy to see that p(x) ' t, q( f (x)) ' t ← i '
j, r(g(a)) ' t is an object tautology clause, as it contains i ' j on the right side and thus
the clause can be rewritten to t ' t by an application of the Del rule. This leads to the
tableau T1.

For the sake of simplicity the following steps are given as a list of underlying infer-
ence rules instead of showing all the tableaux.
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f (a) ' i←

p(x) ' t, q( f (x)) ' t← i ' j, r(g(a)) ' t

i ' j, r( f (x)) ' t ← f (x) ' i

f (a) ' i←

t ' t←

i ' j, r( f (x)) ' t← f (x) ' i

i ' j, r( f (a)) ' t← i ' i

i ' j, r( f (a)) ' t←

i ' j←

�

r( f (a)) ' t←

T0 T5

Figure 6: The tableaux T0 and T5 of an E-hyper tableau derivation with DOI.

1. C,D ⇒sup-left(σ) E, with
C = i ' j, r( f (x)) ' t ← f (x) ' i
D = f (a) ' i←
σ = {x/a}
E = i ' j, r( f (a)) ' t← i ' i

2. C ⇒ref(σ) E, with
C = i ' j, r( f (a)) ' t← i ' i
σ = {}

E = i ' j, r( f (a)) ' t←

3. C ⇒split(π) A1π←, A2π←, with
C = i ' j, r( f (a)) ' t←
π = {}

A1π = i ' j←
A2π = r( f (a)) ' t←

4. C ⇒unit-cont-right(σ) �, with
C = i ' j←
σ = {}

These four steps lead from T1 to T5. The application of the Del rule is independent
and must not have happened as the first step but could have been somewhere between
T1 and T5. The ordering of the other extension steps is fixed, as they need to be applied
consecutively.

�

This two changes enable the E-hyper tableau calculus to natively handle distinct ob-
ject identifiers. The extended calculus is sound and complete, which is proven in the
following Section 5.

5 Properties

5.1 Overview

This section shows that the modified E-hyper tableau calculus is still sound and com-
plete. The basis for the proofs is taken from [9] and adapted accordingly.

There are four main parts in this section. In the first part the concept of term rewrit-
ing systems is introduced, which are used as a means to construct a model for a set of
clauses.
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The details how to construct a model for a given set of clauses are given in the
second part (Proposition 1). It leads to the result that the shown procedure is complete,
i.e. if a clause set has a model the method can derive it (Theorem 1).

So far, the actual E-hyper tableau calculus has not been involved, as only sets of
clauses were considered. In part three, we show that if the set of persistent clauses has
a model, the set of clauses of the initial tableau is satisfiable, i.e. the E-hyper tableau
calculus is complete (Theorem 2). This is done by showing that the set of persistent
clauses for an exhausted branch is saturated up to redundancy (Proposition 2). This
enables us to use the result of the previous part, i.e. a rewriting system can be a model
for a set of clauses.

The fourth and last part is a straight forward proof of the calculus’ soundness (The-
orem 3).

5.2 Rewrite Systems

This section gives a rough introduction on rewrite systems, as only concepts needed
for the following proofs are mentioned. More details on term rewriting can be found in
[4,16,12].

Given is a logic L with the signature Σ. A rewrite system is a possibly infinite set
of rewrite rules, where a rewrite rule is an expression of the form l  r with l and r
Σ-terms. If a rewrite system only works on ground terms it is called a ground rewrite
system. A ground rewrite system R with l � r, for every rule l r ∈ R is called ordered
rewrite system. We assume � to be the term ordering introduced in section 2.2.

If the rewrite system does not contain two different rules of the forms l  r and
s[l]  t, i.e. no left hand side of a rule can be rewritten by another rule, it is lhs-
irreducible.

A term rewriting system is called confluent iff all of its terms are confluent. A term s
is confluent iff the following holds: If there are rewriting rules s ∗ u and s ∗ v then
there are rules such that u  ∗ t and v  ∗ t, i.e. different ways of rewriting s finally
yield the same result. This property is also called Church-Rosser.

If an ordered ground rewrite system is lhs-irreducible it is a convergent ground
rewrite system, i.e. it is confluent and does terminate. For two given Σ-terms s and
t and a convergent rewrite system R, R |=E s ' t holds iff there is exactly one Σ-
term u such that s  ∗R u and t  ∗R u, where R |=E S denotes that the interpretation
{l ' r | l r ∈ R} satisfies S.

If s ∗R u and t ∗R u, s and t are joinable by R.
If s ∗R t and there is no rewrite rule with left hand side t, t is called the (R-)normal

form of s.
R and its variations will always denote a ground lhs-irreducible rewrite system in

the following section.
One way of proving that is often used in this section is well-founded induction on

the ordering of the terms. As the base cases are obvious in the most cases, they are not
shown.
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5.3 Model Construction

This section shows how a given set of clausesS induces a ground lhs-irreducible rewrite
system RS and how the rewrite system can be used to show the satisfiability of S. We
assume that S does not contain unit contradictions. It is safe to make this assumption
for our purpose, as later on the set of persistent clauses will be the set we are examining
and by definition of an exhausted branch, this set must not contain unit contradictions.
The main idea is to interpret a ground positive unit clause as a rewrite rule, i.e. l ' r
and r ' l can be seen as the rewrite rule l r if l � r or as r l if r � l.

The first step is to define how the rewrite system and thus the potential model is
constructed (see Definition 15). Then we introduce and prove Lemma 1 to show that
if a rewrite system is a model for a clause then the extension of this rewrite system is
still a model for this clause. Lemma 2 then claims the fact that the rewrite system for a
clause is an extension of the rewrite system for a smaller (w.r.t. �) clause. Proposition
1 claims the model construction abilities of the introduced method. It is needed in the
proof of Theorem 1, which states that if a clause set is saturated up to redundancy and
does not contain the empty clause, this clause set is satisfiable.

The rewrite system RS for S can be developed by using induction on the term order-
ing to create the rewrite rules for all clauses of S starting with the smallest one. Each
clause C ∈ S has two sets of rewrite rules associated with it, where RC contains the
rewrite rules of all clauses that are smaller than C and εC contains the rewrite rule for
C itself if it is a positive unit or is empty otherwise. Therefore RS can be derived by
joining all RC for all ground Σ-clauses C of S.

Before a more formal definition is given in Definition 15, the notion
⋃
C�D εD is

introduced that denotes the union of εD for all clausesD such that C � D holds.

Definition 15 (Rewrite System Construction). Let S be a set of clauses and C ∈ S a
clause.

– εC =


{l r} if C = l ' r ← is a ground instance of a positive unit in S,

l � r, and l is irreducible w.r.t. RC
∅ otherwise

– RC =
⋃
C�D εD.

– RS =
⋃
C∈S εC

�

For future use, it is useful to know that a superset of a rewrite system satisfies at
least all the clauses that are satisfied by the original rewrite system. This property is
formalized in Lemma 1 and its validity is shown by the following proof.

Lemma 1. Let S be a clause set, C = A ← B ∈ S a ground clause and R and R′

rewrite systems such that RC ⊆ R ⊆ R′ ⊆ RS holds. If R |=E C then R′ |=E C. �

Proof. Suppose R |=E C holds. Let A be a head literal ofA.
We now prove that if R |=E A ← B holds R′ |=E A ← B holds, as well. The main

idea is to examine two different cases, where in the first we assume R |=E B and in the
second R 6|=E B.
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Case 1 (R |=E B) Suppose R |=E B. With R |=E B and R |=E A ← B, R |=E A must
hold. As first-order logic with equality is monotonous and R ⊆ R′, R′ |=E A holds and
thus R′ |=E A ← B.

Case 2 (R 6|=E B) Suppose R 6|=E B. This case is proven by contradiction. Therefore
we assume R′ |=E B and R′ 6|=E A for any A in A, which leads to R′ 6|=E A ← B. For
R′ |=E B and R 6|=E B there must be a B = s ' t in B such that R′ |=E B but R 6|=E B. In
other words s ' t is joinable by R′ but not by R, i.e. there are rewrite rules in (R′ \ R) to
rewrite s and t to a common normal form u.

Every rule l  r ∈ RS is obtained from a ground instance of l ' r ←∈ S. As
we assume l  r ∈ (R′ \ R) and RC ⊆ R it follows l  r < RC. By definition of RC
(see Definition 15) for all clauses D that are not in RS, D � C holds. As C looks like
A1, . . . , An ← s ' t, B1, . . . , Bm, it entails C , l ' r ← and thus l ' r ←� C holds.

By the definition of the reduction ordering (see Definition 2.2) it follows that l r
cannot be used for rewriting s or t. As no rule in (R′ \ R) can be used to rewrite s and
t the R′- and R-normal forms of s and t are the same and therefore R′ |=E s ' t and
R |=E s ' t holds.

As this is a contradiction to our assumption that R′ |=E B holds but R′ |=E A does
not, this entails R′ 6|=E B or R′ |=E A. Thus R′ |=E A ← B. �

At this point it is useful to state that the rewrite rules of a clause D are a subset
of the rewrite rules for a clause C that is larger than D according to the term ordering.
This property is formalized in Lemma 2 and its validity is shown by the following
proof, which is basically the application of the rewrite system construction rules (see
Definition 15).

Lemma 2. Let S be a clause set and C,D ∈ S be ground. If C � D then RD∪ εD ⊆ RC.
�

Proof. Suppose C,D ∈ S be ground and C � D. By definition of the construction
procedure for the rewrite system (see Definition 15) RC =

⋃
C�E εE and RD =

⋃
D�E εE.

With C � D it follows εD ⊆ RC and RD ⊆ RC, which in combination entails RD ∪
εD ⊆ RC. �

The following proposition (see Proposition 1) is the core element of this part. It
states that RC ∪ εC |=E C. Additionally, it states that a clause C is either redundant to
a set of clauses S and RC already satisfies C or else when C is not redundant w.r.t. S,
extension of RC by εC will satisfy C.

Before we can introduce the proposition we need to introduce the notion SC that is
defined as follows: For a clause set S, a clause C ∈ S and a grounding substitution γ,
SC is the set of all ground clauses that are smaller than C, i.e. SC = {D ∈ S | C � Dγ}.

As the proposition has two cases, the proof is done in two cases. The first one is
just a straight forward approach by using induction on the ordering of the clauses. The
second case takes different forms of clauses into account and either shows by contra-
diction that this kind of clause cannot appear, or that the property holds.
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Proposition 1 (Model Construction). Let S be a clause set that is saturated up to
redundancy and � < S. Then for every ground instance C of every clause from S the
following holds:

1. If SC |=E C then εC = ∅ and RC |=E C

2. If SC 6|=E C then RC ∪ εC |=E C

�

Proof. The proposition’s two cases are proven separately by combining well-founded
induction on the ground instances of S and contradiction. For the induction we choose
a ground clause C ∈ S and assume the proposition holds for all ground instancesD ∈ S
with C � D.

Case 1 (SC |=E C) Suppose SC |=E C. By combining the conclusions of both of the
proposition’s cases and using well-founded induction on the term ordering RD ∪ εD |=E

D can be concluded for every clauseD ∈ SC with C � D. With Lemma 2 RD∪εD ⊆ RC
holds, which leads to RC |=E D by using Lemma 1. As RC |=E D holds for all D ∈ SC,
RC |=E SC holds and with the premisses of this case SC |=E C, RC |=E C holds as desired.

As it is proven that SC |=E C holds, it remains to be shown that εC = ∅. This is
done by trying to derive a contradiction. Therefore we assume εC = {l  r} with
C = l ' r ←. For l and r to be equal in the E-interpretation induced by the convergent
rewrite system RC both terms must be joinable, i.e. they must have the same normal
form w.r.t. RC. Therefore there must be a rewrite rule in RC that rewrites l. If l can be
rewritten it is not irreducible, which is a contradiction to the definition for εC , ∅ (see
Definition 15).

Case 2 (SC 6|=E C) Suppose SC 6|=E C. This entails that C is not redundant w.r.t.
SC and therefore not redundant w.r.t. S, and C a ground instance of a clause E ∈ S,
i.e. Eγ = C for a grounding substitution γ, E cannot be redundant w.r.t. S. The proof
of the proposition’s second case is now done by analysing different structures for the
clause C and then trying to show that this kind of clause cannot appear or to show
that RC ∪ εC |=E C holds. For trying to derive a contradiction we use S 6|=E E and the
definition of saturated up to redundancy (see Definition 12)

1. C = (E[x])γ and xγ is reducible w.r.t. . RC.
Suppose C = Eγ, for some clause E ∈ S and some (grounding) substitution γ and
E contains a variable x, i.e. E[x]. Suppose, as well that xγ is reducible w.r.t. RC. We
show by contradiction that this case cannot appear.
If xγ is reducible, there must be a rule l r ∈ RC and l must occur in xγ, i.e. xγ[l].
We now assume a (grounding) substitution γ′ that is similar to γ in such a way that
both substitution are identical with the exception that where γ has l, γ′ has r, i.e.
the rewrite rule l  r has been applied. Thus xγ′ = xγ[r]. As only larger terms
are rewritten, l � r holds and therefore Eγ � Eγ′, which in combination with the
induction hypothesis leads to REγ′ ∪ εEγ′ |=E REγ. From Eγ � Eγ′ and Lemma 2
follows REγ′ ∪ εEγ′ ⊆ REγ, which with Lemma 1 leads to REγ |=E Eγ

′.
Because of l r ∈ RC, Eγ = C and by definition of γ′ conclude with congruence
RC |=E C, which is a contradiction to SC 6|=E C.
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2. C = (A ← s ' t,B)γ and sγ = tγ.
Suppose C = (A ← s ' t,B)γ for some clause A ← s ' t,B ∈ S and some
grounding substitution γ and sγ = tγ holds. We show by contradiction that this
case cannot appear.
If sγ = tγ there is an inference A ← s ' t,B ⇒ref(σ) (A ← B)σ with σ being
the mgu of s and t and part of the grounding substitution γ, i.e. γ = σδ for a
substitution δ. By the definition of saturation up to redundancy (see Definition 12)
and the proposition’s premiss thatS is saturated up to redundancy such an inference
is redundant. Therefore the clause (A ← B)σ is redundant w.r.t. SC, i.e. SC |=E

(A ← B)σ, which trivially entails SC |=E A ← s ' t,B. As C = A ← s ' t,B
this is a contradiction to SC 6|=E C.

3. C = (A ← s ' t,B)γ with (s ' t)γ = i ' j, with i, j ∈ D and i , j.
Suppose C = (A ← s ' t,B)γ for some clause A ← s ' t,B ∈ S and some
grounding substitution γ and (s ' t)γ = i ' j holds with i and j are two non-
identical distinct object identifiers. We show by contradiction that this case cannot
appear.
As i and j are two non-identical members of D and the unique name assumption
applies to D the equation i ' j can never be true. With the false literal i ' j in the
body of the clause the whole clause becomes true. From this follows that C can be
written as t ' t←, i.e. C = t ' t←.
As SC |=E t ' t← holds trivially it is a contradiction to SC 6|=E C.

4. C = (A ← s ' t,B)γ and sγ � tγ and sγ is irreducible w.r.t. RC.
Suppose C = (A ← s ' t,B)γ for some clause A ← s ' t,B ∈ S and some
grounding substitution γ and sγ , tγ holds. Furthermore assume that sγ is the
larger side of the equation (s ' t)γ, i.e. sγ � tγ and that sγ is irreducible w.r.t. RC.
As sγ is irreducible w.r.t. RC and therefore sγ and tγ are not joinable w.r.t. RC,
RC 6|=E sγ ' tγ holds. With sγ ' tγ in the body of the clause C this trivially entails
RC |=E C, which is one part that was to be shown.
The second part of the first cases’ conclusion holds trivially, as C is not a positive
unit and by definition of the rewrite system (see Definition 15) εC = ∅ holds.

5. C = (s ' t ←)γ with (s ' t ←)γ = i ' j←, i, j ∈ D and i , j.
Suppose C = (s ' t ←)γ for some positive unit clause (s ' t ←) ∈ S and some
grounding substitution γ and (s ' t)γ = i ' j holds, where i and j are two non-
identical distinct object identifiers. We show by contradiction that this case cannot
appear.
If such a C exists the inference C ⇒unit-cont-right(γ) � is applicable. This is clearly
a contradiction to the preconditions of the model construction in Proposition 1,
as S is required to be saturated up to redundancy and by case 4 of the definition
of saturation up to redundancy 12 a set where unit-cont-right is applicable is not
saturated up to redundancy.

6. C = (s ' t ←)γ and sγ � tγ and sγ is irreducible w.r.t. RC.
Suppose C = (s ' t ←)γ for some positive unit clause (s ' t ←) ∈ S and some
grounding substitution γ and sγ , tγ. Furthermore assume that sγ is the larger side
of the equation (s ' t)γ, i.e. sγ � tγ and that sγ is irreducible w.r.t. RC.
Thus, by definition of the rewrite system (see Definition 15) εC = {s  t}, which
trivially entails RC ∪ εC |=E C
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7. C = (A1, . . . , Am ←)γ and m ≥ 2.
Suppose C = Eγ for some positive non-unit clause E = (A1, . . . , Am ←) ∈ S
and some grounding substitution γ and m ≥ 2. Furthermore assume γ = πδ for
a purifying substitution π and some (possibly empty) substitution δ. We show by
contradiction that this case cannot appear.
From the assumption of case 2 follows that C is not redundant w.r.t. S, which en-
tails that E is not redundant w.r.t.S. By the definition of saturation up to redundancy
(see Definition 12) and the requirement that S is saturated up to redundancy con-
clude that E ⇒split(π) A1π ←, . . . , Amπ ← is redundant w.r.t. S. This entails that in
particular its ground instance C ⇒split(ε) A1γ ←, . . . , Amγ ← is redundant w.r.t. S.
By definition of redundancy (see Definition 1) SC |=E Aiγ holds for some i with
1 ≤ i ≤ m, which entails SC |=E C.

8. C = (E[s])γ and sγ is reducible at a non-variable position.
In this case we need to consider the clauses that do not fall into any of the previous
cases. Therefore we analyse which kinds of formulæ are not yet treated, which
leads to two cases:
(a) E = A ← s ' t,B with sγ � tγ, sγ is reducible w.r.t. RC and γ is a grounding

substitution.
(b) E = s ' t ← with sγ � tγ, sγ is reducible w.r.t. RC and γ is a grounding

substitution.
As both cases can be treated in a similar way, we use a shared approach to show by
contradiction that both kinds of clauses cannot appear.
As sγ is reducible by RC there must be a rule l r ∈ RC that rewrites sγ. As case
2.1. already deals with the application of rewrite rules at a variable position we now
assume that sγ is not rewritten at or below a variable position. More formally sγ[l]p

is a non-variable position of s for any p.
By construction of the rewrite rules (see Definition 15), the rule l r is obtained
from the ground instance of a positive unit clause in S. Let F = l′ ' r′ ← be a
fresh variant of the appropriate unit clause and assume that γ is extended in such
way that l′γ = l and r′γ = r.
As l r ∈ RC and thus l′γ r′γ ∈ RC C � F γ must hold. As C � F γ and by the
induction hypothesis the proposition holds for all clauses smaller (w.r.t. �) than C,
it has to hold for F .
Considering the first case of the proposition, i.e. SF γ |=E F γ, which requires εF γ =

∅ and thus lγ rγ < RS. Therefore this case is not possible and the second case of
the proposition, i.e. SF γ 6|=E F γ, stating that F γ is redundant w.r.t. S, must hold.
We now need to treat the two different kinds of formulæ separately for one step as
follows:
(a) For E = A ← s ' t,B consider the ground sup-left rule

(Aγ ← sγ[l′γ]p ' tγ,Bγ),F γ ⇒sup-left(ε) Aγ ← sγ[r′γ]p ' tγ,Bγ (1)

Because p is a position of a non-variable term in s, say, l′′, the sup-left infer-
ence

(A ← s[l′′]p ' t,B),F ⇒sup-left(σ) (A ← s[r′]p ' t,B)σ (2)
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exists, where σ is a mgu of l′ and l′′ and γ = σδ for some substitution δ.
The ground sup-left inference (1) then is a ground inference of the sup-left
inference (2).

(b) For E = s ' t ← consider the ground unit-sup-right rule

(sγ[l′γ]p ' tγ ←),F γ ⇒unit-sup-right(ε) sγ[r′γ]p ' tγ ← (3)

Because p is a position of a non-variable term in s, say, l′′, the unit-sup-right
inference

(s[l′′]p ' t ←),F ⇒unit-sup-right(σ) (s[r′]p ' t ←)σ (4)

exists, where σ is a mgu of l′ and l′′ and γ = σδ for some substitution δ. The
ground unit-sup-right inference (3) then is a ground inference of the unit-sup-
right inference (4).

As we concluded that F γ is not redundant w.r.t. S, the more general clause Fσ can
neither be redundant w.r.t. S.
By case 2 of the definition of saturation up to redundancy (see Definition 12) the
inferences (2) and (4) are redundant w.r.t. S and thus their ground instances (1) and
(3) are redundant w.r.t. S, as well.
For the sake of brevity and to treat both cases a) and b) at once we introduce the new
clauseG, which we assume to be the conclusion of the inference (1) or the inference
(2). For the following it makes no difference if G = Aγ ← sγ[r′γ]p ' tγ,Bγ or
G = sγ[r′γ]p ' tγ ←, as it holds for both cases.
By definition of redundancy SC ∪ {F }γ |=E G. By induction over the ordering of
the clauses and the combination of both conclusions of the proposition we derive
RH ∪ reH |=E H for every H ∈ SC. In combination with lemma 2 this leads to
RH ∪ εH ⊆ RC, which with lemma 1 leads to RC |=E H , for every clause H ∈ SC.
This is equivalent with RC |=E SC.
As F = (l′ ' r′)γ is present as a rewrite rule l′γ  r′γ ∈ RC thus l  r ∈ RC, it
follows trivially that RC |=E F γ. In combination with RC |=E SC and SC ∪ {F }γ |=E

G conclude RC |=E G.
From l  r ∈ RC conclude by congruence RC |=E C, which in combination with
RC |=E SC is a contradiction to SC 6|=E C.

�

The last step of this part concerns the static completeness (see Theorem 1), which
claims that a clause set that is saturated up to redundancy and does not contain the empty
clause, is E-satisfiable. To show this the set is E-satisfiable it suffices to prove that there
is a model for this set. This is basically done straight forward by using Proposition 1 to
show that there is a model for such a set.

Theorem 1 (Static Completeness). Let S be a clause set saturated up to redundancy.
If � < S then S is E-satisfiable. �

Proof. Suppose � < S. For S to be E-satisfiable there must be an E-Model. We there-
fore show that RS is an E-model for S by showing that RS |=E Cγ for an arbitrary chosen
clause C ∈ S and an arbitrary chosen grounding substitution γ. Proposition 1 leads to
RCγ ∪ εCγ |=E Cγ, which with Lemma 1 leads to RS |=E Cγ, what was to be shown. �
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This concludes the second part of this section. So far we have only dealt with of sets
of clauses and the E-hyper tableau calculus was not involved. In the following chapter
we use the properties gathered so far in relation with the E-hyper tableau calculus rules
and properties to prove its completeness.

5.4 Completeness

We can now use the results about static completeness to prove Theorem 2, which is the
main contribution of this part and states that the modified version of the E-hyper tableau
calculus is complete, i.e. if a fair derivation of a set of clauses is not a refutation, then
the set of clauses is E-satisfiable.

To prove Theorem 2 by using Theorem 1 we need to have a set of clauses that is
saturated up to redundancy. Thus Proposition 2 is introduced and proven, which states
that the set of persistent clauses of an exhausted branch of a fair derivation is saturated
up to redundancy.

Additionally, a couple of lemmas that are introduced now, are needed for the proves.
The first one is Lemma 3, which states that if a clause C is satisfied by the union of the
set of clauses of an initial segment of a branch and the set of clausesS, then C is satisfied
by the union of S and the set of persistent clauses of this branch, as well.

Lemma 3. Let C1 and C2 be ground clauses, S a set of ground clauses, D a derivation,
t∞ the limit tree of D and B a branch of t∞. Furthermore let B j be the initial segment of
B and B∞ the set of persistent clauses for B. If (B j)C1 ∪ S |=E C2 for some j < ν then
(B∞)C1 ∪ S |=E C2. �

Proof. To prove that (B∞)C1 ∪ S |=E C2 holds we use well-founded induction and
assume that the lemma holds for all clauses C′1 with C1 � C

′
1.

If (B j)C1 ⊆ (B∞)C1 then the result follows from the monotonicity of first-order logic
with equality. If (B j)C1 * (B∞)C1 we can use the compactness of first-order logic with
equality to remove the clauses that are in (B∞)C1 but not in (B j)C1 . Thus we define
(B j)C1 to be a finite subset of (B j)C1 for which the entailment in the lemma’s premiss
((B j)C1 ∪ S |=E C2) holds.

Let B′ = (B j)C1 \ (B∞)C1 be these clauses from (B j)C1 that are not an instance of any
persisting clause in (B∞)C1 . We now choose a C′ ∈ B′ that by construction is a ground
clause of (B j)C1 that is not in (B∞)C1 , i.e. C′ ∈ (B j)C1 and C′ < (B∞)C1 .

If C′ ∈ (B j)C1 but C′ < (B∞)C1 the clause C′ was removed from the clause set Bk

by the application of the Del or Simp rule at a certain step k < κ. Therefore C′must be
an object tautology clause, or non-properly subsumed or redundant. We now consider
each possibility.

1. C is an object tautology clause
Suppose C was removed from Bk because it was an object tautology clause, i.e. Cσ
is likeA,← i1 ' i2,B with i1, i2 ∈ D and i1 , i2.
As i1 and i2 are two non-identical members of D and the unique name assumption
applies to D the equation i1 ' i2 can never be true. With the false literal i1 ' i2 in
the body of the clause the whole clause becomes true.
As there can be no non-tautological clauses D such that true |=E D the lemma
holds trivially.
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2. C is non-properly subsumed
Suppose Cwas removed from Bk because it was non-properly subsumed by a clause
D ∈ Bk. C must be a proper instance of D, as by the derivation rules Equality and
Split no derived clause set Bi can contain a clause and a variant of it. The converse
relation to proper instantiation, called proper generalisation, is well founded. Thus,
by induction on this ordering, there is a clauseD′ in B∞ that non-properly subsumes
C. As C′ is an instance of C and C is an instance ofD′, C′ is an instance ofD′. With
D′ ∈ B∞, C′ is an instance of a persisting clause in B∞, which is a contradiction to
the construction of B′, as B′ contains these clauses of (B j)C1 that are not an instance
of any persisting clause in B∞. Therefore this case is impossible.

3. C is redundant
Suppose C was removed from Bk because it and its instance C′ was redundant w.r.t.
a specific subset B′′ of the derived branch Bk+1, where B′′ is the branch specified in
the definition of the Del and Simp derivation rules. Because B′′ ⊆ Bk+1 it follows
that C′ is redundant w.r.t. Bk+1, i.e. (Bk+1)C′ |=E C

′. By monotonicity of first-order
logic with equality (Bk+1)C′ ∪ S |=E C

′ holds.
As C′ ∈ B′ and B′ ⊆ (B j)C1 it follows that C′ ≺ C1. By induction then

(B∞)C′ ∪ S |=E C
′. (5)

C′ ≺ C1 leads to (B∞)C′ ⊆ (B∞)C1 , which in combination with (5) and the mono-
tonicity of first-order logic with equality entails

(B∞)C1 ∪ S |=E C
′. (6)

This entailment allows us to replace the clause C′ in the premiss (B j)C1 by the
stronger set (B∞)C1 ∪ S. That is from (B j)C1 ∪ S |=E C2 and (6) follows

(
(B∞)C1 ∪ S

)
∪

(
(B j)C1 \ {C

′}
)
∪ S |=E C2. (7)

As this has to hold for all members of B′, (7) can be extended to

(
(B∞)C1 ∪ S

)
∪

(
(B j)C1 \ B′

)
∪ S |=E C2. (8)

With the definition of B′ = (B j)C1 \ (B∞)C1 , which implies (B j)C1 \B′ ⊆ (B∞)C1 and
(8) (B∞)C1 ∪ S |=E C2 follows immediately.

�

The result of Lemma 3 allows a straight forward proof of Lemma 4, which states
that if a clause is redundant to the set of clauses for an initial segment of a branch it is
redundant to the set of persistent clauses of this branch, as well.

Lemma 4. Let C be a clause, D a derivation, t∞ the limit tree of D and B a branch of
t∞. Furthermore let B j be the initial segment of B and B∞ the set of persistent clauses
for B. If C is redundant w.r.t. B j for some j < ν then C is redundant w.r.t. B∞. �
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Proof. Suppose C is redundant w.r.t. B j for some j < ν. To show that C is redundant
w.r.t. B∞ it suffices to show that an arbitrary ground clause of C is redundant w.r.t. B∞.
Therefore let D = Cγ for a grounding substitution γ. As C is redundant w.r.t. B j its
instance D is redundant w.r.t. B j, i.e. (B j)D |=E D. Lemma 3 leads to the conclusion
(B∞)D |=E D, i.e.D is redundant w.r.t. B∞. �

For the proof of Proposition 2 four more lemmas are needed. The first three claim
that if an application of the sup-left, unit-sup-right, ref and split rule is redundant w.r.t.
the set of clauses of an initial segment of a branch, the application of these rules is
redundant w.r.t. the set of persistent clauses for this branch.

The fourth lemma claims that if the unit-cont-right is not applicable to the set of
clauses of an initial segment of a branch, it is not applicable to the set of persistent
clauses.

Lemma 5 formalizes this statement for the sup-left and unit-sup-right inference
rules. The according proof is straight forward by applying definitions and Lemma 3.

Lemma 5. Let C be a clause, D be a positive unit clause, D a derivation, t∞ the
limit tree of D and B a branch of t∞. Furthermore let B j be the initial segment of
B and B∞ the set of persistent clauses for B. Any inference C,D ⇒R(σ) E, where
R ∈ {sup-left, unit-sup-right} that is redundant w.r.t. B j, for some j < ν, is redund-
ant w.r.t. B∞. �

Proof. Suppose an inference C,D ⇒R(σ) E, where R ∈ {sup-left, unit-sup-right} is
redundant w.r.t. B j, for some j < ν. To show that C,D ⇒R(σ) E is redundant w.r.t. to B∞
it suffices to show that an arbitrary ground instance of the inference is redundant w.r.t.
B∞. Let γ be an arbitrary grounding substitution such that γ = σδ and Cγ,Dγ ⇒R(ε) Eδ
is a ground instance of C,D ⇒R(σ) E, we show that Cγ,Dγ ⇒R(ε) Eδ is redundant w.r.t.
B∞.

As C,D ⇒R(σ) E is redundant w.r.t. B j it follows trivially that Cγ,Dγ ⇒R(ε) Eδ is
redundant w.r.t. B j, i.e. (B j)Cγ ∪ {Dγ} |=E Eγ, which with Lemma 3 leads to (Bi)Cγ ∪
{Dγ} |=E Eγ, i.e. Cγ,Dγ ⇒R(ε) Eδ is redundant w.r.t. B∞, which was to be shown. �

Lemma 6 formalizes this statement for the ref inference rules. The according proof
is similar to that of Lemma 5.

Lemma 6. Let C be a clause, D be a positive unit clause, D a derivation, t∞ the limit
tree of D and B a branch of t∞. Furthermore let B j be the initial segment of B and B∞
the set of persistent clauses for B. Any inference C ⇒ref(σ) E that is redundant w.r.t. B j,
for some j < ν, is redundant w.r.t. B∞. �

Proof. Suppose an inference C ⇒ref(σ) E is redundant w.r.t. B j, for some j < ν. To
show that C ⇒ref(σ) E is redundant w.r.t. to B∞ it suffices to show that an arbitrary
ground instance of the inference is redundant w.r.t. B∞. Let γ be an arbitrary grounding
substitution such that γ = σδ and Cγ ⇒ref(ε) Eδ is a ground instance of C ⇒ref(σ) E we
show that Cγ ⇒ref(ε) Eδ is redundant w.r.t. B∞.

As C ⇒ref(σ) E is redundant w.r.t. B j it follows trivially that Cγ ⇒ref(ε) Eδ is redund-
ant w.r.t. B j, i.e. (B j)Cγ ∪∅ |=E Eγ, which with Lemma 3 leads to (Bi)Cγ ∪∅ |=E Eγ, i.e.
Cγ ⇒ref(ε) Eδ is redundant w.r.t. B∞, which was to be shown. �
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Lemma 7 takes care of the remaining rule of the original calculus, namely split.
Again the proof is a straight forward application of definitions but this time in combin-
ation with Lemma 4.

Lemma 7. Let C be a positive clause, π a purifying substitution for C, D a derivation,
t∞ the limit tree of D and B a branch of t∞. Furthermore let B j be the initial segment of
B and B∞ the set of persistent clauses for B. If the inference C ⇒split(π) A1 ←, . . . , Am ←

is redundant w.r.t. B j, for some j < ν, then it is redundant w.r.t. B∞. �

Proof. Suppose an inference C ⇒split(π) A1 ←, . . . , Am ← is redundant w.r.t. B j, for
some j < ν. To show that C ⇒split(π) A1 ←, . . . , Am ← is redundant w.r.t. to B∞ it
suffices to show that an arbitrary ground instance of the inference is redundant w.r.t.
B∞. Let γ be an arbitrary grounding substitution such that γ = πδ and Cγ ⇒split(ε)
A1δ ←, . . . , Amδ ← is a ground instance of C ⇒split(π) A1 ←, . . . , Am ← we show that
Cγ ⇒split(ε) A1δ←, . . . , Amδ← δ is redundant w.r.t. B∞.

As C ⇒split(π) A1 ←, . . . , Am ← is redundant w.r.t. B j it follows trivially that
Cγ ⇒split(ε) A1δ ←, . . . , Amδ ← is redundant w.r.t. B j, i.e. Aiδ ← for some i with
1 ≤ i ≤ m is redundant w.r.t. B j. With Lemma 4 Aiδ ← is redundant w.r.t. B∞, which
entails that Cγ ⇒split(ε) A1δ←, . . . , Amδ← δ is redundant w.r.t. to B∞. �

The last lemma needed to prove Proposition 2 is Lemma 8. The proof is done by
contradiction and application of the appropriate definitions.

Lemma 8. Let C be a positive unit, D a derivation, t∞ the limit tree of D and B a branch
of t∞. Furthermore let B j be the initial segment of B and B∞ the set of persistent clauses
for B. If an inference C ⇒unit-cont-right(σ) � is not applicable to B j, for some j < ν and
some substitution σ, then it is not applicable to B∞. �

Proof. Suppose an inference C ⇒unit-cont-right(σ) � is not applicable to B j, for some
j < ν. To show that C ⇒unit-cont-right(σ) � is not applicable to B∞ if it is not applicable to
B j, we show by way of contradiction that it is not possible for C ⇒unit-cont-right(σ) � to
be applicable to B∞ but to be not applicable to B j.

For C ⇒unit-cont-right(σ) � to be applicable in B∞ there must be a clause C ∈ B∞ and
a grounding substitution σ such that Cσ = i1 ' i2 ← with i1, i2 ∈ D and i1 , i2.

From the definition of the set of persistent clauses (see Definition 7) follows that
B j = B∞ ] B, where B is the set of clauses that have been rewritten in the derivation.
By contradiction assume that C ∈ B. That is C has been rewritten by the Del or Simp
rule. It is easy to see that there is no possibility that C can be rewritten and thus C < B.
Thus C ∈ B j must hold.

But if C ∈ B j, then C ⇒unit-cont-right(σ) � is applicable, which clearly is a contradic-
tion. �

Now Proposition 2, which states that with a fair derivation the set of persistent
clauses of an exhausted branch is saturated up to redundancy, is introduced and proven.
The main idea of the proof is to show that all the requirements of the definition of
saturation up to redundancy (see Definition 12) are fulfilled.
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Proposition 2 (Exhausted branches are saturated up to redundancy). If B is an
exhausted branch of a limit tree of some fair derivation then B∞ is saturated up to
redundancy. �

Proof. Suppose B is an exhausted branch of a limit tree of some fair derivation. To show
that B∞ is saturated up to redundancy it suffices to choose an arbitrary clause C ∈ B∞
that is not redundant w.r.t. and prove that the properties for saturation up to redundancy
(see Definition 12) hold for C.

Before we take care of the four properties of saturation up to redundancy, notice
that if there is branch B j with j < ν and C is redundant w.r.t. B j it follows from lemma
4 that C is redundant w.r.t. B∞ and nothing remains to be shown.

Therefore suppose that C is not redundant w.r.t. B j, for all j < ν.

1. C ⇒unit-cont-right(σ) �
By Definition 14 a branch B, where Inc is applicable with underlying inference
C ⇒unit-cont-right(σ) � is not exhausted. Therefore there must be no C ∈ B such that
Cσ is like i1 ' i2 ← with i1, i2 ∈ D and i1 , i2.
From Lemma 8 it follows that if unit-cont-right is not applicable to B it is neither
applicable to B∞.
Thus there is no clause in B∞ such that the inference rule unit-cont-right is applic-
able, which concludes the fourth case of the definition of saturation up to redund-
ancy (see Definition 12).

2. C,D ⇒R(σ) E, where R ∈ {sup-left, unit-sup-right}
Suppose there is an inference C,D ⇒R(σ) E, where R ∈ {sup-left, unit-sup-right},
σ is a substitution andD is a fresh variant of a positive unit clause from B∞.
To show that B∞ is saturated up to redundancy it suffices to show one of the follow-
ing: Cσ is redundant w.r.t. B∞, Dσ is redundant w.r.t. C,D ⇒R(σ) E is redundant
w.r.t. B∞.
If there is a j < ν such that Cσ is redundant w.r.t. B j, then by Lemma 4 Cσ is
redundant w.r.t. B∞, which concludes this case. The same holds forDσ.
Hence we assume that neither Cσ norDσ is redundant w.r.t. B j for all j < ν.
To show that C,D ⇒R(σ) E is redundant w.r.t. B∞ it suffices to show that an ar-
bitrary ground instance Cγ,Dγ ⇒R(ε) Eδ of the inference C,D ⇒R(σ) E with the
grounding substitution γ = σδ and some substitution δ is redundant w.r.t. to B∞.
As C ∈ B∞ there must be an i < ν such that for all j with i ≤ j < ν, C ∈ B j.
And, asD is a variant of a clause in B∞, there must be an i′ such that for all j′ with
i′ ≤ j′ < ν,D is a variant of a clause in B j′ . Without loss of generality assume that
i ≥ i′ and thusD is a variant of a clause in B j for all i ≤ j < ν.
Under these conditions, the derivation rule Equality is applicable to Bi with under-
lying inference C,D ⇒R(σ) E unless E is a variant of a clause in Bi, which would
entail that the inference is redundant w.r.t. Bi and conclude this proof.
By assumption Cσ and Dσ are not redundant w.r.t. B j for every j < ν. As B is
an exhausted branch and the definition of exhausted branches (see Definition 14)
states there is a k < ν such that the inference C,D ⇒R(σ) E is redundant w.r.t. Bk

by Lemma 5 follows that this inference is redundant w.r.t. B∞.
This holds for its ground inference Cγ,Dγ ⇒R(ε) Eδ, as well.
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3. C ⇒ref(σ) E

Suppose there is an inference C ⇒ref(σ) E, where σ is a substitution.
To show that B∞ is saturated up to redundancy it suffices to show that Cσ is re-
dundant w.r.t. B∞ or C ⇒ref(σ) E is redundant w.r.t. B∞.
If there is a j < ν such that Cσ is redundant w.r.t. B j, then by Lemma 4 Cσ is
redundant w.r.t. B∞, which concludes this case.
Hence we assume that Cσ is not redundant w.r.t. B j for all j < ν.
To show that C ⇒ref(σ) E is redundant w.r.t. B∞ it suffices to show that an arbitrary
ground instance Cγ ⇒ref(ε) Eδ of the inference C ⇒ref(σ) E with the grounding
substitution γ = σδ and some substitution δ is redundant w.r.t. to B∞.
As C ∈ B∞ there must be an i < ν such that for all j with i ≤ j < ν, C ∈ B j.
Under these conditions, the derivation rule Equality is applicable to Bi with under-
lying inference C ⇒ref(σ) E unless E is a variant of a clause in Bi, which would
entail that the inference is redundant w.r.t. Bi and conclude this proof.
By assumption Cσ is not redundant w.r.t. B j for every j < ν. As B is an exhausted
branch and the definition of exhausted branches (see Definition 14) states there is a
k < ν such that the inference C ⇒ref(σ) E is redundant w.r.t. Bk by Lemma 6 follows
that this inference is redundant w.r.t. B∞.
This holds for its ground inference Cγ ⇒ref(ε) Eδ, as well.

4. C ⇒split(π) A1 ← . . . . , Am ←

Suppose there is an inference C ⇒split(π) A1 ←, . . . , Am ←, where π is a purifying
substitution.
To show that B∞ is saturated up to redundancy it suffices to show that Cπ is redund-
ant w.r.t. B∞ or C ⇒split(π) A1 ← . . . . , Am ← is redundant w.r.t. B∞.
If there is a j < ν such that Cσ is redundant w.r.t. B j then by Lemma 4 Cσ is
redundant w.r.t. B∞, which concludes this case.
Hence we assume that Cσ is not redundant w.r.t. B j for all j < ν.
To show that C ⇒split(π) A1 ← . . . . , Am ← is redundant w.r.t. B∞ it suffices to show
that an arbitrary ground instance Cγ ⇒split(ε) A1δ ← . . . . , Amδ ← of the inference
C ⇒split(π) A1 ← . . . . , Am ← with the grounding substitution γ = πδ and some
substitution δ is redundant w.r.t. to B∞.
As C ∈ B∞ there must be an i < ν such that for all j with i ≤ j < ν, C ∈ B j.
Under these conditions, the derivation rule Split is applicable to Bi with underlying
inference C ⇒split(π) A1 ← . . . . , Am ← unless Ah ← for some 1 ≤ h ≤ m is a variant
of a clause in Bi, which would entail that the inference is redundant w.r.t. Bi and
conclude this proof.
By assumption Cσ is not redundant w.r.t. B j for every j < ν. As B is an exhausted
branch and the definition of exhausted branches (see Definition 14) states there is a
k < ν such that the inference C ⇒split(π) A1 ← . . . . , Am ← is redundant w.r.t. Bk by
Lemma 7 follows that this inference is redundant w.r.t. B∞.
This holds for its ground inference Cγ ⇒split(ε) A1δ← . . . . , Amδ←, as well.

�

For the proof of the following theorem an additional lemma is needed. Lemma 9
states that if a rewrite system entails a clause set and a clause is redundant w.r.t. this
clause set, the rewrite system entails the clause. The proof is done straight forward.
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Lemma 9. If R |=E S and C is redundant w.r.t. S then R |=E C. �

Proof. Suppose R |=E S and C is redundant w.r.t. S. To show R |=E C it suffices to show
that for an arbitrary ground clause D of C, i.e. D = Cγ for a grounding substitution γ,
R |=E D holds. As C is redundant w.r.t. S it follows trivially that D is redundant w.r.t.
S, i.e. SD |=E D. With the assumption R |=E S and SD ⊂ S we can conclude R |=E D.
�

Theorem 2 states the completeness of the modified E-hyper tableau calculus, i.e. if
a fair derivation for a clause set is not a refutation, this clause set is satisfiable.

The proof is straight forward and mainly relies on the theorem of static complete-
ness (see Theorem 1) and the proposition that exhausted branches are saturated up to
redundancy.

Theorem 2 (Completeness of E-Hyper Tableaux). Let S be a clause set and D a fair
derivation of S. If D is not a refutation the set S is satisfiable. �

Proof. By definition D’s limit tree has an exhausted branch B.
As B is an exhausted branch, by definition it does not contain the empty clause.

Furthermore by proposition 2 B∞ is saturated up to redundancy and because of � < B
it follows � < B∞.

By theorem 1 B∞ is satisfiable, as there is a rewrite system RB∞ that is an E-model
for B∞, i.e. RB∞ |=E B∞.

To prove the theorem, it suffices to show that RB∞ |=E S, which can be done by
showing that for any clause C ∈ S RB∞ |=E C holds.

By definition of derivation B0 is the single branch of the initial tableau of the deriv-
ation D and thus equivalent with S. Therefore assume C ∈ B0.

If C ∈ B∞, RB∞ |=E C follows immediately from RB∞ |=E B∞. Therefore suppose
C < B∞.

If C ∈ B0 but C < B∞ the clause Cwas removed from the clause set Bk by the applic-
ation of the Del or Simp rule at a certain step. Therefore C must be an object tautology
clause, or non-properly subsumed or redundant. We now consider each possibility.

1. C is an object tautology clause
Suppose C was removed from Bk because it was an object tautology clause, i.e. Cσ
is likeA,← i1 ' i2,B with i1, i2 ∈ D and i1 , i2.
As i1 and i2 are two non-identical members of D and the unique name assumption
applies to D the equation i1 ' i2 can never be true. With the false literal i1 ' i2
in the body of the clause the whole clause becomes true. Thus RB∞ |=E C follows
trivially.

2. C is non-properly subsumed
Suppose Cwas removed from Bk because it was non-properly subsumed by a clause
D ∈ Bk. C must be a proper instance of D, as by the derivation rules Equality and
Split no derived clause set Bi can contain a clause and a variant of it. The converse
relation to non-proper subsumption, called proper generalisation, is well founded.
Thus, by induction on this ordering, there is a clause D′ in B∞ that non-properly
subsumes C. AsD′ ∈ B∞ applies and Rbbi |=E D

′ holds, RB∞ |=E C holds, as well.
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3. C is redundant
Suppose C was removed from Bk because it was redundant w.r.t. a specific subset
B′ of the derived branch Bk+1, where B′ is specified in the definition of the Del and
Simp derivation rules. Because B′ ⊆ Bk+1 it follows trivially that C is redundant
w.r.t. Bk+1. By Lemma 4 C is redundant w.r.t. B∞, which with Lemma 9 leads to
RB∞ |=E C.

�

With the completeness of the modified E-hyper tableau calculus shown and proven,
the third part of the properties is concluded. The following and final part now takes care
of the soundness.

5.5 Soundness

Now the soundness of the extended E-hyper tableau calculus is introduced and proven.
In contrast to the completeness this part is rather straight forward and compact. It starts
with Lemma 10, which states that if a premiss of a derivation rule Equality, Split, Del or
Simp is E-satisfiable, one conclusion is E-satisfiable, as well. The proof is done straight
forward by showing this statement for each of the four derivation rules.

Lemma 10. For each of the derivation rules Equality, Split, Del and Simp holds, if the
premiss of the rule is E-satisfiable, then one of its conclusions is E-satisfiable, as well.

�

Proof. The claim is proven be examining each rule on its own.
For the Equality rule we take a look at the sup-left and unit-sup-right rule. If the

premiss of such a rule is E-satisfiable then there is an E-model I. With the axioms of
congruence it follows immediately that I is an E-model for the conclusion, as well. For
ref the claims follows immediately from the reflexivity. With sup-left, unit-sup-right
and ref being the underlying inference rules for the Equality rule, it can be concluded
that the claim holds for Equality.

For Split, assume an E-model I for the premiss B. With A1, . . . , Am ←∈ B and
the purifying substitution π, I is an E-model for (A1, . . . , Am ←)π. As all variables are
implicitly universally quantified I has to be an E-model for ∀(A1, . . . , Am ←) Due to
purification the set of variables of each Ai is disjunct, which allows writing ∀A1π ∨
. . . ∨ ∀Amπ instead of ∀(A1π ∨ . . . ∨ Amπ). Thus I is an E-model for one of B · A1π←

d

, . . . , B · Amπ←
d.

For Del the claim holds directly from its definition.
For Simp assume an E-model I for the premiss. From the definition of the Simp

rule(see Fig. 2) (B · C · B1) |=E D for clauses C, D and branches B, B1 follows that D
holds in I. �

The next step is Lemma 11, which states that if the derivation rule Inc is applicable,
its premiss is E-unsatisfiable. The proof is straight forward and uses the definition of
the Inc derivation rule.

Lemma 11. If the derivation rule Inc is applicable, its premiss is E-unsatisfiable. �
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Proof. For Inc to be applicable, there must be a C ∈ B and a substitution σ such that
the inference C ⇒unit-cont-right(σ) � can be applied. Therefore C and σ must be of such a
form that Cσ = i1 ' i2 ← with i1, i2 ∈ D and i1 , i2.

As i1 and i2 are two non-identical distinct object identifiers and the unique name
assumption applies to the set of distinct object identifiers this equation can never be
true. Therefore there is no E-model for i1 ' i2 ← and as C is clause of B, the branch B
is E-unsatisfiable. �

Finally both just introduced lemmas are used to prove Theorem 3, which states the
soundness of the extended E-hyper tableau calculus, i.e. if a clause set has an E-hyper
tableau refutation it is E-unsatisfiable.

Theorem 3 (Soundness of E-Hyper Tableaux). Let S be a clause set that has a refut-
ation. Then S is E-unsatisfiable. �

Proof. Assume a refutation leads to the closed tableau T. From Lemma 11 and the
contrapositive of Lemma 10 we conclude that if a tableau Ti of a derivation contains
only E-unsatisfiable branches, this holds for its predecessor Ti−1, as well. Following the
definition of a refutation, the final tableau T only consists of E-unsatisfiable branches.

By induction on the length of the refutation we can conclude that the initial tableau
T0, consisting of one branch with the tableau clauses from S is E-unsatisfiable. �

6 Implementation and Evaluation

6.1 E-KRHyper

To evaluate the modified calculus, it was incorporated into the E-KRHyper system.
The E-KRHyper system [19,18] is an automated theorem prover that implements the
E-hyper tableau calculus. It is based on the KRHyper system [27,28], which is an im-
plementation of the original hyper tableau calculus, which had no native handling of
equalities. Both systems are well established and used in different areas. The areas of
use include amongst others natural question answering [13], e-learning [6,7] and onto-
logy reasoning [10].

E-KRHyper is written in the OCaml programming language[15]. It is a strongly
and statically typed functional language that allows the usage of other programming
paradigms, as well, and offers the possibility to create high performance programs.

The changes to the prover can be grouped into three parts:

1. The parser and lexer have been adapted to conform to the TPTP syntax for distinct
objects, i.e. constants in double quotes, like "con",are treated as distinct object
identifiers.

2. The Inc and unit-cont-right() rules have been incorporated into the code.
3. Changes that allow us to handle object tautology clauses as being negligible have

been done.

To avoid confusion, the code of the unchanged version of the E-KRHyper is called
traditional code. Some more details on the implementation can be found in [11]. With a
suitable implementation at hand, we are now able to evaluate the impact of the changed
calculus.
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6.2 Test Conditions

All of the following benchmarks have been executed on the same machine with the
following specifications: CPU: Intel Core 2 Quad (Q9550) @ 2.83GHz, Memory: 4GB
PC2-6400, Operating System: openSUSE 11.3, Kernel Version: 2.6.34.10-0.2-desktop,
OCaml Version: 3.12.0.

For showing that the introduced changes improve E-KRHyper’s behaviour if distinct
object identifiers are used in problems, appropriate examples are needed. Unfortunately
the TPTP contains only eight problems that utilise distinct object identifiers where five
cannot be used with E-KRHyper due to technical issues. This leaves three usable ex-
amples for evaluating our approach, which is hardly suitable. Thus a variation of the
synthetic benchmarks STORECOMM (SC) and STORECOMM-INVALID (SCI) [2,1]
was chosen for evaluating our approach.

Both problem classes are situated in the theory of arrays.
A test case from SC is the task to show that two given permutations of unique store

operations on an array result in the same array. A test case from SCI is the task to show
that two given sequences of unique store operations that differ in at least one stored
element at an index do not result in the same array. This definition of SCI differs from
the original definition [1], where SCI is the task to show that two given sequences of
unique store operations that differ in at least one unique store operation do not result in
the same. We have chosen our version of SCI for technical reasons and continue to call
it STORECOMM-INVALID or SCI in the context of this work. The term unique store
operation states, that each index of an array is written to exactly one time.

As the theory of arrays is not natively supported by E-KRHyper, we need axioms
to describe the theory of arrays. We start by introducing the function sel : ARRAY ×
INDEX → ELEMENT , which returns the element that is stored at the given index of
the given array, and the function sto : ARRAY × INDEX × ELEMENT → ARRAY ,
which returns an array that is constructed by storing a given element at the given index
of a given array. Additionally we need the skolem function sk : ARRAY × ARRAY →
INDEX as a helper function, as neither the E-hyper tableau nor E-KRHyper is able to
handle existentially quantified variables. These three operations are sufficient for our
purpose and allow us to introduce the following axioms of the theory of arrays to E-
KRHyper.

sel(sto(A, I, E), I) = E (9)
sel(sto(A, I, E), J) = sel(A, J)⇐ I , J (10)

A = B⇐ sel(A, sk(A, B)) = sel(B, sk(A, B)) (11)

Due to some technicalities, Axiom 10 cannot be used in this form. Thus we rewrite
it to the semantically equivalent formula 12.

I = J, sel(sto(A, I, E), J) = sel(A, J) (12)

This formula contains I and J in both subformulæ of the disjunctive head, i.e. it is
not pure. Thus E-KRHyper looks for an appropriate purifying substitution when this
clause is used in the proving process, which does not terminate for this case. Hence

37

E-Hyper Tableaux with Distinct Object Identifiers, Fachbereich Informatik 1/2013



the formula must be adopted to prevent the infinite search for a purifying substitution,
which we achieve by adding the domain predicates index(I) and index(J) to the body of
the clause. This guarantees a pure head, when the split-rule is applied and thus prevents
the not regularly terminating search for a purifying substitution. This modification leads
to the formula 13.

I = J, sel(sto(A, I, E), J) = sel(A, J)⇐ index(I), index(J) (13)

Thus equations 9, 11 and 13 form the axioms for the theory of arrays, which are
used in the test cases.

For evaluation we need four different kinds of test cases: SC without native hand-
ling of distinct object identifiers, SC with native handling of DOI, SCI without native
handling of DOI, and SCI with native handling of DOI.

To create a test case, four parameters are needed: A list p = 0, . . . , n − 1, a permuta-
tion of this list, called q, a flag v that indicates if we want to generate a test case for SC
or SCI and a flag d that indicates if this test case uses distinct object identifiers or not.

Independent of the chosen parameters every test case contains the three axioms
that describe the theory of arrays. Additionally every test contains n unique predicates
of form index(ix) with 0 ≤ x < n introducing the constants that represent the arrays
indices. If distinct object identifiers are used, these predicates look like index(”ix”).

If no distinct object identifiers are used, we need to express that all indices are
distinct, which is done by introducing

(
n
2

)
unique predicates of form f alse :- ix = iy

with (x, y) ∈ Cn
2, where Cn

2 is the set of 2-combinations over {0, . . . , n− 1}. Additionally
we need to express that all elements are distinct, which is done by introducing

(
n
2

)
unique

predicates of form f alse :- ex = ey with (x, y) ∈ Cn
2.

The actual property to be proven is then added by the equality predicate Tn,v,d(q) =

Tn,v,d(p), where Tk,v,d(l) is defined as follows:

Tk,v,d(l) =



a if k = 0
sto(Tk−1,v,d(l), il(k), e0) if k = 1 and v = 0 and d = 0
sto(Tk−1,v,d(l), ”il(k)”, ”e0”) if k = 1 and v = 0 and d = 1
sto(Tk−1,v,d(l), il(k), el(k)) if 0 ≤ k < n and v = 1 and d = 0
sto(Tk−1,v,d(l), ”il(k)”, ”el(k)”) if 0 ≤ k < n and v = 1 and d = 1

For illustration, Figure 7 shows four files for the four different type of test cases for
an array with length two. For a better overview, the axioms are shown once and then
referred to by the meta symbol «AXIOMS» in the specific examples.

For evaluation, we created test cases for array length from 5 to 95 elements with 20
different samples for each length, which results in 10 ∗ 20 ∗ 4 = 400 files. The problems
are then flattened, i.e. nested function calls are eliminated by introducing new constants.
This step is sound and can always be executed and preliminary tests have shown that it
leads to shorter execution times. We split the 400 files into four lists, depending on the
fact if they involve distinct objects or not and if they cover SC or SCI. Four instances
of the E-KRHyper are started where each works on one list. The execution time and
outcome of each problem is saved.
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s e l ( s t o (A, I , E ) , I ) = E .

I = J ; s e l ( s t o (A, I , E ) , J ) = s e l (A, J ) :−
index ( I ) ,
index ( J ) .

A = B :− s e l (A, sk (A, B ) ) = s e l (B , sk (A, B ) ) .

(a) The AXIOMS.

<<AXIOMS>>

index ( i 0 ) .
index ( i 1 ) .

f a l s e :− i 0 = i 1 .
f a l s e :− e0 = e1 .

s t o ( s t o ( a , i1 , e1 ) , i0 , e0 ) = s t o ( s t o ( a , i0 , e0 ) , i1 , e1 ) .

(b) SC without distinct object identifiers.

<<AXIOMS>>

index ( " i 0 " ) .
index ( " i 1 " ) .

s t o ( s t o ( a , " i 1 " , " e1 " ) , " i 0 " , " e0 " ) = s t o ( s t o ( a , " i 0 " , " e0 " ) , " i 1 " , " e1 " ) .

(c) SC with distinct object identifiers.

<<AXIOMS>>

index ( i 0 ) .
index ( i 1 ) .

f a l s e :− i 0 = i 1 .
f a l s e :− e0 = e1 .

s t o ( s t o ( a , i1 , e1 ) , i0 , e0 ) = s t o ( s t o ( a , i0 , e0 ) , i1 , e0 ) .

(d) SCI without distinct object identifiers.

<<AXIOMS>>

index ( " i 0 " ) .
index ( " i 1 " ) .

s t o ( s t o ( a , " i 1 " , " e1 " ) , " i 0 " , " e0 " ) = s t o ( s t o ( a , " i 0 " , " e0 " ) , " i 1 " , " e0 " ) .

(e) SCI with distinct object identifiers.

Figure 7: Examples for SC and SCI files with size two.
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Figure 8: Relative execution times for S-COMM and S-COMM-INV.

6.3 Analysis

The outcome of all test cases was as expected, i.e. for cases that are valid (all cases for
SC), the prover derived that they are valid, and for cases that are invalid (all cases for
SCI), the prover derived that they are invalid.

For an easier comparison of the results with and without DOI, they were set into
relation by dividing the runtimes with DOI by the according runtimes without DOI. The
result of this operation can be seen in Fig 8a for SC and Fig.8b for SCI, where the graph
shows the average, minimal and maximal runtime, for each size. It is easy to see that the
version with DOI outperforms the one without DOI and that the difference grows with
the size of the arrays. We assume that the specific structure of the problems influences
the runtime, which might lead to the visible fluctuations in the graphs. This has not
yet been investigated. We compared the results of the DOI version of E-KRHyper with
the results of the prover E, which is also able to handle DOI [23]. E solved the 200
problems for SC with an average runtime of 0.09second and the 200 problems for SCI
in an average runtime of 0.08 seconds, where E-KRHyper needed 1.5 respectively 1.27
seconds. Fig. 8c shows that for E-KRHyper with DOI the runtime in relation to the
array size is exponential.

7 Related Work

As the topic of reasoning with the unique name assumption or distinct object identifiers
has not yet gotten a lot of attention in the field of automated reasoning, there is only one
paper known to us that is strongly related to our work.

In [23], Schulz and Bonacina show a way to handle distinct object identifiers in the
superposition calculus. The authors introduced four new rules that correspond two the
two rules we introduced and deal with exactly the same two types of formulæ.

To evaluate their approach they extended a version of the E-prover [21,22] and used
instances of the STORECOMM and the original version of STORECOMM-INVALID
benchmark classes [2,1]. To rate the performance, they compared four different systems:
CVC [24], which is a validity checker where the axioms for the theory of arrays is part
of the actual system, CVC-Lite [5], which is the successor of CVC and has native
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support for the theory of arrays, as well, a version of the E-prover with support for
distinct objects identifiers and a version of the E-prover that does not support DOI and
thus needs additional facts to define the inequality of distinct array indices.

The results of these tests indicate a significant improvement. The execution times
of the version of E that supports DOI for the valid cases are identical with the runtime
of CVC and with the invalid cases they are even lower. The version of E that does
not support DOI and therefore relies on additional facts for the reasoning process is
considerably slower, which supports the claim, that native handling of the unique name
assumption can be beneficial for certain reasoning tasks.

As E’s superiority in this test scenario was easy to see in the preliminary tests we
did, no thorough comparison of E and our approach was done

Another field, known to us, that implicitly uses the unique name assumption, is the
reasoning in many valued logics [3,14].

8 Conclusion

Using the unique name assumption instead of facts to define inequalities of constants
reduces the number of clauses in knowledge bases and thus allows the reader to focus
on the parts that are of actual importance for a problem. A smaller set of clauses allows
faster reasoning, as well.

We have introduced a sound and complete extension of the E-hyper tableau calculus
with native handling of the unique name assumption and we implemented the calculus
in the E-KRHyper system.

This implementation was then used for evaluating whether the use of distinct ob-
ject identifiers has an impact on the outcome or needed time for proving a problem.
The evaluation shows that the implemented changes significantly improve the execu-
tion times for problems with distinct object identifiers.

Another observation made in the evaluation process was the scattering of the execu-
tion times for some samples. We suppose that the structure of the problem, i.e. the order
of the store operations, has an impact on the execution time and the difference of the
execution times between the traditional and modified version of the E-KRHyper. Thus
future work is needed to perform a thorough study on the correlation of array size, order
of store operations and execution time for a single sample to elaborate and support this
assumption.

Independent of the actual execution time and the speed-up of the execution time by
using distinct object identifiers, we learned that we cannot compete with other systems,
like the E prover, in this class of benchmarks.
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