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Abstract

This dissertation investigates the usage of theorem provers in auto-
mated question answering (QA). QA systems attempt to compute correct
answers for questions phrased in a natural language. Commonly they
utilize a multitude of methods from computational linguistics and knowl-
edge representation to process the questions and to obtain the answers
from extensive knowledge bases. These methods are often syntax-based,
and they cannot derive implicit knowledge. Automated theorem provers
(ATP) on the other hand can compute logical derivations with millions of
inference steps. By integrating a prover into a QA system this reasoning
strength could be harnessed to deduce new knowledge from the facts in
the knowledge base and thereby improve the QA capabilities. This in-
volves challenges in that the contrary approaches of QA and automated
reasoning must be combined: QA methods normally aim for speed and
robustness to obtain useful results even from incomplete of faulty data,
whereas ATP systems employ logical calculi to derive unambiguous and
rigorous proofs. The latter approach is difficult to reconcile with the
quantity and the quality of the knowledge bases in QA. The dissertation
describes modifications to ATP systems in order to overcome these ob-
stacles. The central example is the theorem prover E-KRHyper which
was developed by the author at the Universitat Koblenz-Landau. As part
of the research work for this dissertation E-KRHyper was embedded into
a framework of components for natural language processing, information
retrieval and knowledge representation, together forming the QA system
LogAnswer. Also presented are additional extensions to the prover im-
plementation and the underlying calculi which go beyond enhancing the
reasoning strength of QA systems by giving access to external knowledge
sources like web services. These allow the prover to fill gaps in the knowl-
edge during the derivation, or to use external ontologies in other ways,
for example for abductive reasoning. While the modifications and exten-
sions detailed in the dissertation are a direct result of adapting an ATP
system to QA, some of them can be useful for automated reasoning in gen-
eral. Evaluation results from experiments and competition participations
demonstrate the effectiveness of the methods under discussion.
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Zusammenfassung

Die vorliegende Dissertation behandelt den Einsatz von Theorembe-
weisern innerhalb der automatischen Fragebeantwortung (question answe-
ring - QA). QA-Systeme versuchen, natiirlichsprachliche Fragen korrekt
zu beantworten. Sie verwenden eine Vielzahl von Methoden aus der Com-
puterlinguistik und der Wissensrepréasentation, um menschliche Sprache
zu verarbeiten und die Antworten aus umfangreichen Wissensbasen zu
beziehen. Diese Methoden sind allerdings meist syntaxbasiert und kénnen
kein implizites Wissen herleiten. Die Theorembeweiser der automatischen
Deduktion dagegen kénnen Folgerungsketten mit Millionen von Inferenz-
schritten durchfiihren. Die Integration eines Beweisers in ein QA-System
eroffnet die Moglichkeit, aus den Fakten einer Wissensbasis neues Wissen
herzuleiten und somit die Fragebeantwortung zu verbessern. Herausfor-
derungen liegen in der Uberwindung der gegensiitzlichen Herangehens-
weisen von Fragebeantwortung und Deduktion: Wahrend QA-Methoden
normalerweise darauf abzielen, auch mit unvollstéindigen oder fehlerhaf-
ten Daten robust und schnell zu halbwegs annehmbaren Ergebnissen zu
kommen, verwenden Theorembeweiser logische Kalkiile zur Gewinnung
exakter und beweisbarer Resultate. Letzterer Ansatz erweist sich sich
aber als schwer vereinbar mit der Quantitit und der Qualitidt der im QA-
Bereich iiblichen Wissensbesténde. Die Dissertation beschreibt Anpassun-
gen von Theorembeweisern zur Uberwindung dieser Hiirden. Zentrales
Beispiel ist der an der Universitdt Koblenz-Landau entwickelte Beweiser
E-KRHyper, der im Rahmen dieser Dissertation in das QA-System Log-
Answer integriert worden ist. Aulerdem vorgestellt werden zusétzliche Er-
weiterungsmoglichkeiten auf der Implementierungs- und der Kalkiilebene,
die sich aus dem praktischen Einsatz bei der Fragebeantwortung ergeben
haben, dabei aber generell fiir Theorembeweiser von Nutzen sein kénnen.
Uber die reine Deduktionsverbesserung der QA hinausgehend beinhalten
diese Erweiterungen auch die Anbindung externer Wissensquellen wie et-
wa Webdienste, mit denen der Beweiser wahrend des Deduktionsvorgangs
gezielt Wissensliicken schlieflen kann. Zudem ermdoglicht dies die Nutzung
externer Ontologien beispielsweise zur Abduktion. Evaluationsergebnis-
se aus eigenen Versuchsreihen und aus Wettbewerben demonstrieren die
Effektivitdt der diskutierten Methoden.
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Preliminary Remarks

The work presented in this dissertation is part of the LogAnswer research project
which involved several scientists, see Section [5.4. For a proper consideration of
my own contributions a broader understanding of LogAnswer is required. As
some aspects of LogAnswer were dealt with in cooperative work while others
were the responsibility of individuals, generally the author’s “we” will be used
for the sake of consistency throughout the remainder of the dissertation. How-
ever, on some occasions I will refer to myself explicitly when clarifying which
parts are my own contributions.

Also, some sections of this dissertation describe work, some of it my own,
which was not conducted during my research for this thesis. These aspects are
therefore not new contributions, but they are nevertheless included for clar-
ity, as my dissertation builds upon them and would be difficult to understand
otherwise. This will be clearly mentioned when introducing these subjects.

References to my own publications have numeric labels ([1], [2], ... ), whereas
other references use mnemonic labels consisting of abbreviations of the authors’
names and the year of publication, for example [Wer03].

A collection of materials relevant for this dissertation, including theorem
prover implementations and evaluation logs, is available onlineB

Ihttp://userpages.uni-koblenz.de/~bpelzer/dissertation/materials.tar.gz

xi


http://userpages.uni-koblenz.de/~bpelzer/dissertation/materials.tar.gz

xii



Contents

2T [ Preliminarics

2.2 Equality] . . .. ... ...
22.1 Equations| . . . . . ... oo

2.2.2 Positions] . ... ... .. ... 00000
[2.2.3 Term Ordering| . . . . . . . . ... ... ... .......
[2.2.4 Rewrite Systems| . . . . . . ... oo oL

I3 Automated Reasoning]
8.1 Automated Theorem Proving| . . . . .. ... ... ... .. ...
8.2  Theorem Prover Implementation| . . . . .. ... ... ... ...

4 Question Answering]|
4.1 QA System Implementation| . . . . . .. .. ... 0oL
4.2 QA System Evaluation|. . . . . .. ..o o000

[5 Combining Question Answering and Automated Reasoning]
b.1  Advantages and Problems of Conventional QA Methods| . . . . .
9.2 Advantages and Problems of AR Methods| . . . . . . . ... ...

[5.2.1  Logical Knowledge Base Representation| . . . . . . .. ..
[5.2.2  Size of the Knowledge Base| . . . . . . ... .. ... ...
[5.2.3 Brittleness of Precision|. . . . . .. . ... ... ......

5.4 The LogAnswer Research Project|. . . . . . ... ... ... ...

6 The Deductive Basis - Hyper Tableaux]|
6.1 The Hyper Tableaux Calculus|. . . . . ... ... ... ... ...
[6.1. [rees and Tableaux] . . . . . .. .. .. ... ... ....
[6.1.2  Hyper Tableaux| . ... ... ... ... ... .. .....




6.1.3  Redundancy and Model Generation| . . .. ... ... ..
6.1.4  Hyper Tableaux Derivations|. . . . . . .. ... ... ...
6.1.5 Hyper Tableaux Derivation Examplef . . . . . . .. .. ..
6.2 'The E-Hyper Tableaux Calculus| . . . ... ... ... ......

16.2.5 Deletion and Simplification Rules|. . . . . ... ... ...
6.2.6  E-Hyper Tableaux Derivations| . . . ... ... ... ...
6.2.7 Model Generationl . . ... .. ... .. ... . ...
6.2.8  E-Hyper Tableaux Derivation Examples| . . . . .. .. ..
6.2.9  Hyper Extension in E-Hyper Tableaux|{. . . . .. ... ..

[7

The Theorem Prover E-KRHyper|

7.1 Background and Development History| . . . . .. ... ... ...
7.2 Usage Information| . . .. ... .. ... .. ... .. ......
[[3 Proof Procedurel . .. .. .. ... ... . ... ... ...
[7.3.1 Proot Procedure for Hyper Tableaux| . . . . . ... .. ..
[7.3.2  Proof Procedure for E-Hyper Tableaux|{. . . . . . ... ..

7.4 Implementation Details| . . . . . ... ... ... .. ... ....
A1 Indexing|. . ... Lo

[7.4.2  Disjunction Handling{. . . . . .. ... ... ... .....

The Question Answering System LogAnswer|

8.1 Background and Development History| . . . . .. ... ... ...
8.2  Usage Information| . . .. ... .. ... .. ... ... .. ...
8.3 Knowledge Representation in LogAnswer| . . .. ... ... ...

[9

Suitability of ATP Strategies|

9.1.1  Background and Development History| . . . . . . ... ..
9.1.2  Usage Information| . . . . . ... ... ... ... .....

67
67
68
70
71
74
78
79
84
85
86
87

91
91
92
93
94

103
103
103
104
104
107
107
108
112
116



[11 Technical Aspects of Handling Large Problems|

[TTStability] . . . . . . o o

[11.2 Reusing Input|. . . . . . . ... .. oo
[11.3 Continuous Operation| . . . . . . . ... ... ... ... ....

112 Logical Aspects of Handling Large Problems|

[12.1 Redundancy Reduction| . ... ... ... ... ........ ..
22 Axiom Selection] . . . . v v v v v

114 Evaluation of LogAnswer|
[14.1 The CLEF 2008 Competition - QAQCLEF| . . . . .. ... ...

[14.2 The CLEF 2009 Competition - ResPubliQA|

14.3 2010 Competition - ResP QA
14. e 2011 Competition - QAAMRE[ . . . . . ... ... ..
14.5 Conclusions . . . . . . . . . ...

[15 LogAnswer and QA Forums|

15.1 Evaluating Forum Questions|. . . . . . . . .. ... ... ... ..
115.2 Wrong Answer Avoidance] . . . . . . . . .. . ... ... .....
|115.3 Towards a Forum Integration| . . . . . . ... .. ... ... ...

116 LogAnswer and Web Services|
116.1 Web Services as External Sources in Hyper Tableaux| . . . . . . .
[16.1.1 External Sources in E-Hyper Tableaux|{. . . . . . . . . ..
[16.1.2 External Sources in Hyper Tableaux| . . . . ... ... ..

|16. 1.3 Incompleteness| . . . . .. ... ... ... ... ... ...
[16.2 Tmplementation] . . . . . . . . . . . . ..o

131
131
133
134
136
136

139
139
140
140
144
147

151
152
155
156

159
159
161
163
164
165

167
168
169
171

173
175
178
181
184
191
195

199

203

205

207

219






Chapter 1

Introduction

The field of question answering (QA) deals with the development of computer
systems which automatically compute correct and concise answers to questions
phrased in a natural language. For example, given the question “Which planet
is closest to the Sun?”, a QA system should respond with “Mercury”. QA has
the potential to complement or even replace conventional search engines like
Googleﬂ as these cannot handle questions in a satisfactory manner. Usually
they attempt no semantic analysis of an input question. Instead they regard it
as a series of search words and respond with a set of document references, which
the users then need to study on their own to see whether there is an answer.
In contrast, an ideal QA system is intuitive to use, it delivers exactly what the
user is actually looking for, and it is also well-suited to the small screens of
compact mobile devices where search engine results become unwieldy. QA has
been of interest to artificial intelligence (AI) research for a long time. However,
the progress from early QA beginnings in systems like Baseball [GWCL61] and
SHRDLU [Win71] has been slow. Even famous modern examples like the Wat-
son system [FBCCT10] that won a television quiz show or the QA features built
into some smartphonesﬂ do not yet have the combination of efficiency and reli-
able performance that would allow QA systems to gain widespread acceptance.

This is because QA system development is far more difficult than developing
search engines, and it draws from more fields of research. The analysis of the
questions requires methods from computational linguistics. The creation and
maintenance of the large knowledge bases typically employed by QA systems are
matters of knowledge representation and knowledge engineering. Answer facts
are obtained from these knowledge bases via information retrieval methods,
and further natural language processing may be necessary to turn such facts
into human readable answers. Many of these steps still involve open research
questions, and the difficulties in coping with the enormous quantities of data
cannot be ignored.

One problem are the gaps and flaws in the knowledge bases. Whether cre-
ated manually by knowledge engineers or automatically from textual sources,
knowledge bases for QA systems are so large that their contents cannot be scru-
tinized effectively. Human oversights as well as flaws in the sources or in the
automated translation result in a knowledge base that is imperfect and incom-

Thttp://www.google. com
%http://www.apple.com/iphone/features/siri.html
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plete. Not every answer will be stored explicitly. Therefore a good QA system
must be able to deduce implicit knowledge from the facts in its knowledge base.
For example, given the sentence “The Mont Blanc rises 4,810 meters above sea
level.”, human readers should have no problem answering the question “How
high is the Mont Blanc?”. Indeed, these people would likely even be unaware of
the inferences they made on the semantics of “rises” and “high”, allowing them
to link these notions and to identify the answer. Such inferences are not obvi-
ous to a QA system, and significantly more complex reasoning will be necessary
for a QA system to meet the expectations of the public. In spite of this, for
performance reasons QA systems usually eschew such deep inferencing. Instead
they rely on “shallow” methods that operate only on the syntactic level.

This is where the topic of this dissertation comes into play. Automated the-
orem provers (ATP) are the implementations of logical deduction calculi, the
subject of automated reasoning (AR). A prover applies the rules of its calculus
to a given logical input, and thereby it can deduce new facts and proofs in deep
derivations with millions of inference steps. By embedding an automated theo-
rem prover into a QA system this reasoning strength can be utilized for question
answering, with the prover deriving implicit answers from the knowledge base.
This embedding brings along a number of challenges, as the methodologies of
QA and AR are diametrically opposed in some of their goals. QA aims for
robustness and speed to obtain useful results from incomplete or faulty data.
AR on the other hand requires exact results which are rigorously proven, a
precision that renders it brittle towards imperfect data and which thus is hard
to reconcile with the massive, flawed knowledge bases of QA and the short re-
sponse times desired by human QA users. This dissertation will show how both
fields can be combined in a way that AR enhances the reasoning strength of QA
while preserving robustness. The results are improvements in QA performance
and also beneficial extensions to AR. The central example of the dissertation
is the automated theorem prover E-KRHyper which I developed at the Univer-
sitdt Koblenz-Landau based on earlier ATP systems, and which was embedded
into the QA system LogAnswer as part of my research work. LogAnswer is
intended for arbitrary questions in German language, and it uses a knowledge
base derived from the German Wikipediaf’| The overall development of Log-
Answer was joint WOI“kH between the AGKIP|of Professor Ulrich Furbach at the
Universitat Koblenz-Landau and the IICS®| of Professor Hermann Helbig at the
FernUniversitat in Hagen.

The idea of using automated deduction in QA is not new. An early attempt
was the system presented by Fischer Black in 1968 [Bla68]. This was severely re-
stricted by the limitations of its time, like the lack of parsers, electronic lexicons
and digital knowledge sources. It did not actually use natural language, instead
it operated on simple logical formulas which had an intuitive resemblance to En-
glish sentences, without any actual underlying representational formalism. Its

Shttp://de.wikipedia.org

4The cooperation project is funded by the DFG (Deutsche Forschungsgemeinschaft, Ger-
man Research Foundation) under the contracts FU 263/12-1, HE 2847/10-1, FU 263/12-2
and GL 682/1-2.

5 Arbeitsgruppe Kiinstliche Intelligenz (Artificial Intelligence Research Group):
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IFI/AGKI

®Intelligent Information and Communication Systems: http://pi7.fernuni-hagen.de
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knowledge base was tiny, and the whole system was basically a manually created
proof of concept unsuitable to handle much beyond the example questions.

DORIS [Bos01] from 2001 is more advanced in that it uses logic for the se-
mantic analysis of natural language. However, this system is aimed at discourse
regarding a limited domain, and it cannot answer arbitrary questions.

FALCON [HMM™00] is an actual QA system with deduction and intended
for arbitrary questions. As its knowledge base is derived from a lexical database,
it does not have the semantic depth to support complex inferences.

PowerAnswer [MCHMO03] is an English language QA system that is similar
to LogAnswer in that it also uses Wikipedia and deduction. However, for the
most part PowerAnswer operates directly on the textual sources instead of on
a formal representation in a knowledge base, again limiting the depth of its
reasoning.

A large formal knowledge base is utilized by the QA system MySentient
Answers [CMBO035], built from a subset of the Cyc ontology [Len95]. The system
is commercial and not intended for arbitrary questions. Instead customers have
to provide formally encoded knowledge about their specific application domains.

The Portuguese language system Senso [SQO07] is even closer to LogAnswer
in its use of a large formal knowledge base and deduction. It employs Prolog
[CR93al for its reasoning, not a full theorem prover, and it is only intended for
competitions with generous time limits, not for the short response times allowed
for a QA system on the web.

Using a theorem prover is rare in QA. In the QA competition tracks of
CLEFﬂ from 2008 to 2011 [FPAT08, [PFST09, [PFR™10, PHE"11], LogAnswer
was the only competitor to employ a full ATP system. Nevertheless some
other QA systems have been built around provers. For example, the ATP
system SNARK [SWCO0| is used in a QA component of Amphion and BioD-
educta [WS08]. These are intended as research tools within limited domains.
Questions cannot be entered freely, instead a query composition interface en-
sures that only valid questions are formed. Another example is SPASS-XDB
[SSWT09, ISSTT10], a system that connects a number of online knowledge
sources, ontologies and databases to a modified version of the theorem prover
SPASS |[WSH™07]. The system has an experimental interface using Attempto
Controlled English [FSS99], a subset of English intended for knowledge represen-
tation. This restriction of the input language requires an experienced user. The
overall system is very ATP-centric, without robust natural language processing.

In contrast to the listed systems, the goal of LogAnswer is to use a full
automated theorem prover within a QA system with comprehensive natural
language processing and robustness. Also, LogAnswer is intended to be scalable
to different use cases, from a search engine replacement with response times of at
most a few seconds to a research tool which can allow several minutes to process
one question. Integrating E-KRHyper in a way that supports this operation has
required numerous changes to the prover. Some of these adaptations may be
useful for ATP in general. Apart from improving the reasoning capabilities of
its host QA system, an embedded theorem prover also adds new possibilities to
answering questions, for example by accessing web services during the derivation
or by using abduction. All these modifications and extensions will be discussed
and when possible evaluated.

7Cross-Language Evaluation Forum: http://www.clef-campaign.org
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After this cursory introduction the dissertation is structured into the follow-
ing chapters, which will elaborate upon many of the notions mentioned so far
only in passing. FEach chapter summary here is accompanied by references to
relevant own publications when applicable. Naturally these references are also
found later on in the actual chapters themselves.

Chapter [2)introduces the formal preliminaries for this dissertation in the form
of several basic concepts and notations related to first-order logic. While these
are required for an understanding of the later chapters, their usage throughout
the dissertation generally conforms to the standards in the field, so readers
familiar with this matter may choose to skip ahead to the next chapter.

Chapter [3] provides an overview of automated reasoning with an emphasis on
automated theorem proving. Theorem prover implementations will be discussed,
as will their evaluation with problem libraries and in competitions.

Chapter [4] is the analogue overview for question answering, a field that still
faces many open problems and challenges, but which has already led to nu-
merous experimental implementations and a community which evaluates such
systems.

Chapter [5] then details the motivation for the dissertation by discussing the
combination of question answering and automated reasoning, identifying re-
spective problems and how each field can contribute to the other. The main
challenges are identified, and the LogAnswer project is presented, forming the
background of this research work.

Chapter|6]is a precursor to the subsequent system description of E-KRHyper.
It summarizes the two hyper tableaux calculi implemented by this prover. Note
that these are not new contributions, and a similar summary was part of my
diploma thesis [I4], but the information and terminology presented in this chap-
ter are essential to an understanding of this dissertation. [T} 2]

Chapter [7] provides an overview of the theorem prover E-KRHyper. Some
aspects are described in detail, when they are relevant for adaptations or experi-
ments in later chapters. Note that the implementation of the initial E-KRHyper
prototype was the subject of my diploma thesis [14]. However, since then the
prover has been reworked extensively as part of my research for this dissertation,
including the basic operation. Hence this chapter describes the current matured
version of E-KRHyper that is employed in LogAnswer. It supersedes any earlier
system descriptions of the prototype E-KRHyper, since those no longer apply
to the prover as used in this project. [16]

Chapter [§] is a system description of LogAnswer. The processing chain is
explained step by step, from the question of the user to the presentation of
the answers. The basic integration of E-KRHyper and its interaction with the
overarching systems are described as well. Details of this integration are the
focus of subsequent chapters. [6l [7 [I5]

Chapter [9]explores fundamental properties which may make automated theo-
rem provers more or less suitable for embedding in a QA system like LogAnswer.
The chapter includes a brief system description of the prover E-Darwin. E-
KRHyper and E-Darwin then serve as an example of two closely related provers
which nevertheless show significant performance differences on reasoning tasks
occurring in LogAnswer. We investigate reasons for this and also evaluate other
theorem provers. [3, [§]



In Chapter[10| we detail the way E-KRHyper handles indexing and subsump-
tion of clauses with multiple literals. Our method is unique to the best of our
knowledge and can be useful for general theorem proving outside QA.

The following Chapter becomes more specific to QA in that it investi-
gates technical adaptations of a theorem prover to the embedding inside a QA
system. This includes hardening the implementation against large clause sets
and supporting special modes of operations that are useful in the context of
QA. [15]

Chapter [12] deals with logic-based means of handling large reasoning prob-
lems as encountered in QA. These are primarily axiom selection methods, and
we describe both complete and incomplete approaches as implemented in E-
KRHyper. [§]

In Chapter we detail the relaxation method used by LogAnswer and
E-KRHyper. This adds a degree of robustness to our usage of automated rea-
soning, enabling LogAnswer to cope with the flaws that are inevitable in a large,
automatically generated knowledge base. [8, [I0] [15]

While many of the previous chapters contained their own evaluations of
particular aspects of E-KRHyper, a comparative evaluation of full QA systems
is difficult to achieve internally within a research group, as such systems are
hardly portable. Instead QA competitions form the common evaluation venue,
and Chapter [I4] describes the participation of LogAnswer in the CLEF QA
tracks over the years. [9] [IT], 12, [13]

As QA competitions have a number of limitations due to their need to pro-
vide equal conditions for all participants, they are not very representative for
a real-world application of QA. Chapter therefore describes our own addi-
tional evaluation of LogAnswer on a large set of questions from an online QA
forum. Such questions are more difficult to handle, and in the forum use case
it is preferable not to answer at all rather than posting a wrong answer. We
explore improved filtering methods for this purpose. [4, [5]

In Chapter we go beyond encyclopedic, static knowledge bases and de-
scribe an experimental extension of E-KRHyper by web services which can
provide current data. Such a connection introduces technical difficulties like
network latency, and an effective integration requires asynchronous communi-
cation and reasoning. We develop a sound formal basis for this by extending the
hyper tableaux calculi underlying E-KRHyper, and we address the incomplete-
ness inherent to such a connection. While we argue that this problem cannot
be solved, we consider different approaches to alleviating it. We also describe
the implementation of this extension in E-KRHyper, and we discuss using this
connection to access concept hierarchies of externally stored ontologies for the
purpose of relaxation by abduction.

In the final Chapter [17] we summarize the findings of this dissertation and
explore possibilities for future work.
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Chapter 2

Formal Preliminaries

This short chapter introduces the formal preliminaries required for an under-
standing of the calculi and examples in this thesis. The first part explains basic
classical first-order logic (FOL), while the second part describes the addition
of equality and several associated concepts. The chapter primarily serves to
lay down the terminology as it is used in this thesis, and the definitions and
notations generally conform to the standard usage in the field.

2.1 First-Order Logic

The first part summarizes the fundamental concepts of first-order logic, in par-
ticular in its clausal form. A basic understanding of FOL is assumed, and as
such there will be no detailed explanations and proofs here. The focus is on
defining the terminology and the relations between the concepts.

2.1.1 Terms and Substitutions

The first-order language used in the following is built upon a fixed signature
Y = (F,P), with F being a set of function symbols and P a set of predicate
symbols. Both sets are infinite and disjoint. Each symbol has a fixed arity. A
function symbol with arity zero is called a constant. A third set X is the set of
variables, which is infinite and disjoint from F and P. This allows the definition
of the set of terms T (F, X):

1. Every constant ¢ € F and every variable x € X is a term.

2. If t1,...t, are terms and f € F is a function symbol with arity n, then
flt1,...t,) is a term.

A term s is a subterm of a term ¢t with ¢t = f(¢1,...t,) for some function symbol
f with arity n, if s =t or if s = ¢; or if s is a subterm of ¢;, for some 1 < ¢ < n.
s is a proper subterm of ¢ if s is a subterm of ¢ and s # ¢. vars(t) denotes the
set of variables of a term ¢. A term ¢ is called ground if vars(t) = 0.

A substitution o is a mapping from X to T, with a finite domain dom(o) =
{z | zo # z} and a finite range ran(c) = {xo | xo # z}, x € X. A ground
substitution v is a substitution with vars(ran(y)) = 0. A renaming p is a
substitution which is a bijection of X onto itself. Given two terms s and ¢,
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a substitution o is a unifier for s and t if so = to. The composition of two
substitutions o and X is written as o\. o is a most general unifier (mgu), if for
any other unifier 7 for s and ¢ there is a substitution A with oA = 7.

A term s is an instance of a term ¢ (written as s 2 ¢) if there is a substitution
o such that soc = ¢, and t is then called a generalization of s, and we also write
that ¢ subsumes s, and s is subsumed by t. s is a variant of t (written as s ~ t)
if there is a renaming p such that sp = t.

If t1,...t, are terms and p € P is a predicate symbol with arity n, then
p(t1,...t,) is an atom. A literal is an atom or the negation (=) of an atom. A
literal is ground if its component terms are ground. L denotes the complement
of L. The notions of substitutions, renamings, instances, generalizations and
variants as well as subsumption are extended to atoms and literals in the obvious
way.

2.1.2 Formulas

The set of (well-formed) formulas has the following inductive definition:
1. An atom A is a formula.
2. If F is a formula, then its negation —F is a formula.

3. If F and G are formulas, then the conjunction F' A G and the disjunction
FV G are formulas.

4. If F is a formula and z is a variable, then 3z F and VzF are formulas.

The binary connectives <—, — and <> are also used as the common shorthand
notations for implications and the biconditional. The truth constants T (true)
and L (false) may be used as well (see Section [2.1.3).

A set of formulas may sometimes be referred to as a theoryﬂ The formulas
of a theory are referred to as axioms.

2.1.3 Satisfiability

A (Herbrand) interpretation I is the set of ground atoms that are true in I. I is
a model for a formula F' (I = F) if F is true in I following the usual semantics
of FOL. F is satisfiable if it has a model, and it is valid (or a tautology) if it is
true in any interpretation, also written as = F. T represents an unconditionally
true atomic formula. Conversely, F' is unsatisfiable if it has no model (= F),
and F' is inwvalid if it is not valid, i.e. some interpretation I is not a model for
F (I £ F). L represents an unconditionally false atomic formula. A formula G
is a logical consequence of F' if I |= G for every I with I = F. Two formulas F'
and G are equisatisfiable if either both are satisfiable or both are unsatisfiable.

LSome authors, see for example [Sch95], require that a theory also includes all of its logical
consequences (see Section . However, this view is impractical for the purposes of this
dissertation, where often a clear distinction between axioms and consequences must be made.
Also, while technically any random set of formulas could be called a theory using the less
strict definition in this dissertation, usage of the term will be reserved for sets that attempt to
formalize theories in the scientific sense, for example mathematical theories or abstractions of
empirical observations. As such the term “theory” is here a somewhat informal way of taking
into account a semantic component.

12



All these notions are extended to sets of formulas (and hence to theories)
in the obvious way. A set of formulas is implicitly regarded as a conjunction of
these formulas. A formula F' is a theorem of a theory T if T = F. A theory
that is satisfiable is sometimes called consistent, and it is inconsistent if it is
unsatisfiable.

2.1.4 Multisets

A multiset is a function M from a set A to N, the set of natural numbers. An
element a € A is an element of M if M(a) > 0. Loosely speaking, a multiset is
similar to a set, but it may contain multiple occurrences of the same element,
and M (a) gives the number of occurrences of a in M. Given two multisets M;
and Mo, the following functions on multisets are defined:

union: (M; U Ms)(x) = Mi(z) + Ma(z),
intersection: (M; N Ms)(z) = min(M;(x), Ma(x)),
difference: (M;\Ms)(x) = max(0, Mi(x) — Ma(x)),

subset: My C My < Vo € My : My(x) < Ma(x).

2.1.5 Clauses

A clause C in clause normal form (CNF) is a multiset of literals. A clause
is usually written as a disjunction A; V...V A,, V -By V ...V =B, with
m,n > 0, or in the equivalent multiset notation {A4,..., Ay, "By,...,7By}.
It can also be written as an implication A+, ..., A,, < B1,..., By, or the equiv-
alent By,...,B, = A1,..., Apn. The multiset A = {A1,..., A} is called the
head of the clause C' while B = {By,..., B,} is called the body of C. Accord-
ingly, Aj,..., A, denote both the head atoms and the head literals of C, while
By, ..., B, refer to the body atoms and - By, ...,~B, to the body literals. The
notation A, A < B, B refers to the clause with the head atoms {A} U.A and
the body atoms {B} U B. The notions of substitutions, renamings, instances,
generalizations, variants and satisfiability are extended to clauses in the obvious
way. A formula F' can be transformed into an equisatisfiable clause C' and vice
versa. A clause C subsumes a clause D if Co C D for some substitution o. If
Co C D, then this is also referred to as proper subsumption.

A Horn clause is a clause with at most one head literal. A unit is a clause
consisting of exactly one literal. A clause is empty if both its head and its body
are empty. The empty clause will be written as [J, it cannot be satisfied. A
clause is ground if its literals are ground. Any variables in a clause are taken to
be universally quantified. A clause is range-restricted if all of its head variables
also occur in the body, i.e. if vars(A) C vars(B). A clause is called pure if none
of its distinct head literals share variables, i.e. if vars(A;) N vars(A;) = 0 for
1<4i,j <mandi# j. A substitution 7 is a purifying substitution for C if Cr
is pure.

A clause set is a conjunction of clauses, analogous to sets of formulas. Like-
wise, a set of clauses may sometimes also be referred to as a theory.
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2.1.6 Calculi

A calculus for first-order logic is a set of inference rules that syntactically trans-
form formulas or clauses into other formulas or clauses. F' = G denotes that
formula F' (the premise) can be transformed into formula G (the conclusion)
using the inference rule R of a given calculus. G will also be referred to as
having been derived from F. Generally a derivation is a sequence of inference
applications where all premises are taken from the initial input or have been
derived in a previous step. However, note that the concept of the derivation
must be defined specifically for each calculus. F + G denotes that G results
from a derivation starting with F', i.e. G is provable from F, and the derivation
is a proof for F. These notions are extended to clauses as well as to sets of
formulas or clauses.

A derivation resulting in F F L for a set of formulas F (or C F O for a set
of clauses C) is called a refutation. A calculus is sound if it only derives logical
consequences, i.e. F  F implies F = F. This also means that a refutation is
only derived for unsatisfiable input, a property sometimes referred to as refuta-
tional soundness. A calculus is complete if it derives all logical consequences,
i.e. F |= F implies F F F. This also means that unsatisfiable input will result
in a refutation, a property sometimes referred to as refutational completeness.
A calculus is proof confluent if it is always possible to derive a refutation for
unsatisfiable input, regardless of the order of inference applications.

2.2 Equality

Equality is an extension to first-order logic. When formulating theories it is often
desirable to express the semantic equality between two terms, thereby establish-
ing their common identity, such that both terms can be used interchangeably, or
one can replace the other entirely. Basic FOL certainly allows using the equality
symbol as a binary predicate on two terms. To avoid confusion with the ubig-
uitous symbol “=", the symbol for the equality predicate will be “~”. Unlike
other predicates it will use infix notation, for example a ~ b. Unfortunately,
simply introducing this predicate does not automatically capture the intended
semantics. Technically this can be achieved without extending FOL, by using
the workaround of adding the equality azioms to a given theory:

1. reflexivity: Vo (x = ),
2. symmetry: VaVy(z ~y — y ~ x),
3. transitivity: YaVyVz(r 2~y ANy >~z — x = 2),

4. function substitutions: VaVy(zx ~y — f(...,z,...) ~ f(...,y,...)), for
every function symbol f,

5. predicate substitutions: VaVy(x ~ y Ap(...,x,...) = p(...,y,...)), for
every predicate symbol p.

While this solution has the advantage of allowing even basic FOL systems to
reason with equality, it easily leads to an explosive growth in the number of
formulas, making this method inefficient for many reasoning problems.
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A better way is to embed the handling of equations on the calculus level by
using special inference rules which take the semantics of equations into account
when encountering the equality predicate. For the purpose of defining such
calculi a number of general concepts has become established in the field; these
will be introduced in the following sections.

2.2.1 Equations

The (semantic) equality of two terms s and ¢ is denoted by s ~ ¢, where ~ is a
special predicate symbol with binary arity. An atom s ~ t is called an equation.
Equations are symmetric; if s ~ ¢ holds, then so does t ~ s. The negation of an
equation, i.e. —(s ~ t), can also be written as s 2 ¢. An equation of the form
t~torttis called trivial.

When describing a calculus for FOL with equality it is common to regard the
equality symbol as the only predicate symbol, while the other predicate symbols
are treated like function symbols. This has the advantage of greatly simplifying
the specification of the inference rules and the proving of their soundness and
completeness. For this purpose a special constant t is introduced, and any nor-
mal atom p(t1,...,t,) is then treated as an equational atom p(ty,...,t,) ~ t.
Despite this convention, when giving examples the transformed atoms are usu-
ally written in the standard way, not as equations, in order to enhance legibility.
Since all atoms are equations and there are no non-equational predicates, the
Herbrand interpretation is a set of ground equations. The semantics of the equa-
tional symbol is covered by extending the notion of interpretations to that of
an FE-interpretation, which is both an interpretation and a congruence relation
on its ground terms. Accordingly, the notions of satisfiability are extended to
those of E-satisfiability, and the logical consequence with equality is written as
EE, although when it is clear from the context, the normal designations will be
used.

2.2.2 Positions

As of Section a term may be composed of multiple subterms. When using
equations in reasoning it is often necessary to refer to a specific subterm within
a term. This is accomplished by the concept of positions. A position is a
sequence of natural numbers. If ¢ is a term and p is a position, then ¢|, denotes
the subterm of ¢ at position p. In particular, if € is the empty sequence and
t = f(t1,...,tn), then t|. = ¢ and t|;, = t;|, for 1 < i < n. If p is a position
in ¢, then the notation ¢[s], will be used for ¢, = s, and t[p/s’] represents
the term obtained by replacing ¢|, with s’ at position p in ¢t. If p is obvious or
unimportant within the context, it can be omitted, so that ¢ [s] denotes the term
t with the subterm s, and t[s'] denotes the same term ¢ except for its subterm
s having been replaced by s’.
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2.2.3 Term Ordering

First-order logic reasoning with equality also often needs to compare terms using
a reduction ordering >, i.e. an ordering meeting the following conditions:

1. > is a strict partial ordering (irreflexive, antisymmetric and transitive),
2. > is well-founded,

3. = is closed under context; if s = s’ for two terms s and §’, then t[s] |, >
t[s'] |, for any term ¢ and any position p in ¢,

4. > is liftable; if s > ¢ for two terms s and ¢, then so > to for any substi-
tution o, and finally

5. > is total on ground terms.

> induces the non-strict ordering >=. The negated forms are s At and s A ¢,
respectively. Two terms s and ¢ will be called incomparable, if s At and t £ s.
Furthermore, > is lifted to atoms, literals and clauses.

Several different reduction orderings exist. The specific definition of an or-
dering is not important when formalizing inference rules, as long as it is a
reduction ordering. However, different reduction orderings may have different
advantages and drawbacks for an implementation.

One example of a reduction ordering is the recursive path ordering (RPO)
[Der82]. Its definition requires a few preceding concepts. First, let =" he the
multiset extension of =: M =™ N holds if N # M and for all n € N\M there
exists an m € M\N with m > n. Also necessary is a precedence ordering >,
which is a strict order on the set of signature symbols ¥ = (F,P).

Now the RPO >, can be defined. s >, t holds for two terms s and ¢, if

1. t € vars(s) and s # t, or
2. s=f(s1,...,8m) and t = g(t1,...,t,) with

(a) si >ppo t for some 1 <4 < m, or
(b) f>gand s>t foralll <j<mn,or

(¢) f=gand {s1,...,8m} >;7;;;l {t1,...,tn}.

Reduction orderings can be extended to atoms, literals and clauses.

An equation [ ~ r is oriented equation if | > r, and it is orientable equation
if [ and r are not incomparable. The special symbol t introduced for the equa-
tional notation of non-equational atoms in Section [2.2.1] is usually assumed to
be the smallest symbol in the precedence ordering, and therefore the t constant
is also the smallest term in the term ordering. This ensures that these nota-
tional equations based on non-equational atoms are always orientable, and the
term representing the original atom will always form the left, larger side of the
equation.
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2.2.4 Rewrite Systems

Reasoning with equality introduces the possibility to replace terms and subterms
with other terms, going beyond substitutions which only affect variables. A
helpful notion in this context is that of a rewrite rule, which takes the form
Il — r for two terms [ and r. Unlike an equation a rewrite rule expresses a
direction for its term replacement. A set R of rewrite rules is a rewrite system.
—* is the transitive closure of —, and (I —* r) € R denotes that (I — r) € R
or {(I = t1),(t1 = t2),...,(tn, = r)} C R for some terms ¢1,...,t, with n > 1.
A rewrite system R is ground if [ and r are ground for every (I — r) € R.
R is ordered by the reduction ordering = if | = r for every (I — r) € R.
This dissertation will always assume rewrite systems to be ground and ordered.
A term t is reducible by | — r if I > r and t|, = [ for some position p. t
is reducible with respect to R if it is reducible by some rule in R, and t is
irreducible with respect to R if it is not reducible by any rule in R. A rewrite
system R is left-reduced if [ is irreducible with respect to R\ {l — r} for every
rule (I = r) € R. R is fully reduced if it is left-reduced and r is irreducible
with respect to R\ {l — r} for every rule (I — r) € R. R is confluent if for
every pair (I —* ¢1) € R and (I —* t2) € R there is also ({; —»* r) € R and
(ta =* r) € R. R is terminating if there is no infinite chain of rewrite rules
(lh = r1), (l2[r1] = r2), (I3 [r2] = 73),... In R. R is convergent if it is confluent
and terminating.
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Chapter 3

Automated Reasoning

Automated reasoning (AR) is the field of artificial intelligence (AI) research
which explores methods of reasoning, in particular the formalization of such
methods with the objective of making them applicable by computer systems.
A driving motivation behind research in AR has been the wish to find math-
ematical proofs automatically. As a result the development of classical logical
and mathematical calculi has taken centre stage within AR, but other aspects
of reasoning also receive attention, for example abductive reasoning, default
reasoning, probabilistic reasoning, and qualitative and quantitative spatial and
temporal reasoning. The many facets of AR are covered by various implemen-
tations of automated reasoners, ranging from task-specific algorithms within
larger applications to stand-alone reasoners operating on formal problem spec-
ifications.

3.1 Automated Theorem Proving

Automated theorem proving (ATP) is the subfield of AR which deals with the
implementation and application of automated systems dedicated to reasoning
tasks. Throughout this dissertation the concrete reasoning tasks will be referred

to as (reasoning) problems. Regarding AR in general, a reasoning problem may
be defined like this:

Definition 3.1 (Reasoning Problem and Solving). Given a logic system S con-
sisting of a formal system F = (X, L, A, R) (composed of an alphabet X, a formal
language L, an axiom set A and the inference rules R) and associated seman-
tics, a (reasoning) problem P is a set of statements in L. Solving P means
deciding whether P follows from A under R.

Problems can have many different forms, in particular considering that
provers exist for many different logics. As this dissertation primarily deals
with first-order logic, we will define the notion of a reasoning problem within
the context of FOL (see Chapter [2):

Definition 3.2 (First-Order Logic Reasoning Problem and Solving). A (FOL
reasoning) problem P = (Ax, Con) consists of two possibly empty sets of clauses
or formulas, the axiom set (or theory) Az and the conjecture set Con. Solving
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P means determining whether Con is a theorem of Az (Az = Con) or not

(Az [~ Con).

Testing an axiom set Ax for consistency can be seen as trying to solve the
reasoning problem P = (Az, {}) as even a vacuous conjecture will trivially follow
from an inconsistent theory.

The problem concept is used to further define the notion of the systems
researched in ATP, the automated theorem provers:

Definition 3.3 (Automated Theorem Prover). An automated theorem prover
s an algom'thrrﬂ which implements a sound calculus and applies it to reasoning
problems in order to solve them, without requiring interaction with a human
user.

Note that while the calculus is required to be sound, it does not necessarily
have to be complete. If a calculus is unsound, the results of the prover can never
be trusted. On the other hand, an incomplete yet sound system still delivers
reliable results. Forgoing or preserving completeness is a design decision: For
example, an incomplete system may have to give up more frequently than a
complete one, but at the same time it may be significantly faster on the problems
it can solve, to the degree that it can solve more problems within a given time
limit than if it were complete. The ability to operate without human guidance
distinguishes ATP systems from the related interactive theorem provers, though
in practice a given theorem prover may offer both interactive and fully automatic
modes.

The distinction between the axioms and the conjecture is not strictly neces-
sary, but it reflects how reasoning problems are usually presented and handled in
practice. Ultimately FOL problems can be expressed as problems of satisfiabil-
ity: A conjecture Con is a theorem of Az (Az = Con) if the negated conjecture
is unsatisfiable in combination with the axioms (Az A =Con). With an empty
conjecture the theory Az is consistent if it is satisfiable, and it is inconsistent
if it is unsatisfiable. Given the refutational nature of many FOL calculi like
resolution [Rob65a] and superposition [NR95], it is common practice for provers
to turn a given problem P = (Az, Con) into an equivalent satisfiability problem
Pt = (Az°™ {}) with A2°"* = Az U-Con. The distinction between axioms and
conjecture becomes irrelevant at this point, and following common usage in the
ATP community we identify P with its combined “axiom” set Az**, which
allows us to call P*% satisfiable or unsatisfiable. The prover then attempts to
prove P** unsatisfiable by means of a refutational proof.

Some provers may also be able to recognize if a problem turns out to be
satisfiable, and they can try to produce a model in such cases. This means that
some ATP systems are effectively trying to decide the satisfiability of problems,
a task that is not guaranteed to yield a definitive result given the general unde-
cidability of many logics. In the sequel, when it is not necessary to distinguish
between different problem types and results, a prover will simply be referred
to as having solved a (reasoning) problem P once it has correctly decided the
satisfiability of P*. Such a decision will be called a result, and it is sufficient
for a result to consist of a compact statement regarding the satisfiability of the
given problem (for example “satisfiable” or “unsatisfiable”). A proof is not part

1Note that we use the notion of algorithm common in the ATP field, which means that it
is a procedure which is not necessarily terminating.
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of the result, and a prover is not required to be able to produce proofs. However,
the ability to provide proofs certainly makes a prover more useful, and for most
modern FOL provers (see below) a proof will accompany the result.

Despite their limitations, automated theorem provers successfully solve dif-
ficult reasoning problems on a regular basis. An early such case which brought
ATP into the public limelight was the prover EQP finding a proof for the Rob-
bins Conjecture in 1996 [McC97], a problem that had been eluding mathemati-
cians since 1933. With their logic-based operation ATP systems lend themselves
to mathematical problems and tasks like verification and model checking, but
their application domains can be expanded by suitable translations into formal
logic.

Several classes of automated theorem provers can be identified. Those
provers restricted to propositional logic are referred to as SAT solvers. Usu-
ally they implement the DPLL (Davis-Putnam-Logemann-Lovelace) algorithm
IDP60] in some manner. MiniSat [ES03] is an example of a SAT solver.

There is a larger variety of calculi among ATP systems for first-order logic.
Resolution-based provers include Otter [McC03], SPASS [WSH™ 07| and Vam-
pire [RV02]. Others work with instance-based methods, for example iProver
[Kor08] and Darwin [BET06], or they operate on various forms of tableaux, like
SETHEO IMIL"97| and KRHyper [Wer(3]. Many of these also integrate some
form of equality handling, often by superposition [BG9S], or they have a specific
equational prover variant for this purpose, keeping the purely first-order version
unburdened by the overhead required for equational reasoning. On the converse
there are also purely equational provers, for example the superposition-based
E [Sch02], and also Waldmeister [Hil03], which specializes in unit equational
problems. First-order logic introduces a number of implementational require-
ments which increase the complexity of such theorem provers compared to SAT
solvers: efficient term indexing is needed for the storage of compound terms
with variables, inference operations like subsumption and unification necessi-
tate variable substitution algorithms, and redundancy criteria using concepts
like term weight and term ordering help making the often infinite Herbrand
universe manageable.

SMT solvers (Satisfiability Modulo Theories) are first-order automated the-
orem provers which extend logic with other theories, for example numerical or
set theories, expanding the expressivity of their problem specification languages
with special evaluable symbols. SMT solvers find use in hardware and soft-
ware verification due to their ability to reason about data structures. One such
prover is Yices [DAMOG], which is used in the higher-order logic (HOL) prover
and verification tool Isabelle [EMOS].

HOL provers implement predicate variables and lambda notation to rea-
son about functions and predicates. They are rarely fully automatic, and as
such most of them must be regarded as interactive theorem provers rather than
ATP systems. However, automated HOL provers do exist, for example LEO-IT
[BPTOS].

The lines between the different types of ATP systems can be blurred. Some
FOL theorem provers have logic extensions similar to those of SMT solvers, but
they tend to be afterthoughts rather than being based on fully fledged back-
ground theories. Meta provers employ other provers for specific problem types.
An example of this is the aforementioned LEO-II, which breaks down HOL
problems into FOL subproblems that can then be solved by the ATP systems
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E and SPASS. FOL provers may use a similar approach, like the iProver sys-
tem mentioned above, which employs the SAT solver MiniSat for propositional
problems.

First-order system development achieved a dominating position in ATP re-
search early on, and while other branches are catching up, FOL proving remains
one of the best developed areas in ATP. This is no surprise: On the one hand
propositional logic is subsumed by FOL, and its expressivity can be too lim-
ited for practical applications when used on its own. SMT and higher-order
logic on the other hand build upon FOL methods, but their many different
manifestations and semantics mean that there is little common ground for their
implementations, although in recent years there has been some success at stan-
dardization in SMT (see Section [3.3). In contrast, first-order ATP systems can
all operate on the same logical problems (modulo minor parser or syntax adap-
tations). This allows the creation of benchmark suites which greatly simplify
performance comparisons between systems. Also, implementation techniques
and problem transformations can be adopted by many theorem provers, leading
to a general improvement of the field.

Given this prominence of first-order theorem provers within ATP and owing
to the fact that systems of this type were developed and used within the Log-
Answer project, the remainder of this dissertation will focus on FOL systems
when referring to theorem provers and ATP research.

3.2 Theorem Prover Implementation

Later chapters will discuss several theorem prover implementations in detail, so
this introduction will only provide a very cursory overview.

The development of automated theorem provers is characterized by the un-
decidability of first-order logic. Any naive approach at automatically solving
logic problems will quickly become entangled in a combinatorial explosion of
inference possibilities. A first step towards handling this issue lies in using a
clause normal form (CNF) representation of the problems. This standardized
form lends itself to the specification and implementation of machine-oriented
reasoning calculi, and it is used in most calculi and provers with few exceptions
(see below).

It is also found in the programming language Prolog [CR93b|, which can
be seen as a very basic form of automated deduction, as it offers functional-
ity somewhat comparable to theorem provers. Its mostly declarative language
constructs allow theory specifications which are close to first-order logic, with
Prolog programs being written in the form of clauses. Features like arithmetic
evaluation and default negation even enable Prolog to approximate SMT-solving
to a degree. However, Prolog is effectively limited to Horn-logic, which poses a
significant restriction to its expressiveness. Also, an internal database maintains
the clauses in Prolog, and while this relieves the programmer of constructing
data structures for clause storage and search methods for inference partners, it
is effectively a ’black box’ and thus not very adaptable to optimizations. Despite
the relation to logic, Prolog constructs are not entirely declarative; for exam-
ple, the ordering of the clauses in a Prolog program can have an effect on the
result of its execution, and imperative database operations like assert/1 and
retract/1 allow side effects within Prolog. The standard unification algorithm
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used throughout Prolog has no occurs check, meaning that a variable x may
unify with a term containing x, leading to a cyclic substitution and possibly un-
soundnessﬂ The unbounded depth-first search method of Prolog can run into
cycles even for problems that should be trivial to prove. For example, consider
the following simple Prolog program:

1: p(X):-p(X).
2: p(a).

Given this program and the query p(X)., Prolog will loop by cyclically
chaining backward over the clause in line 1, never finding the answer in line 2
as the search order always prefers the first clause.

Although there are limitations, Prolog is nevertheless an important tool in
automated deduction. The PTTP (Prolog Technology Theorem Prover) [Sti87]
system modifies a Prolog compiler to allow sound reasoning on full first-order
logic. PROTEIN [BFK94] and the aforementioned SETHEOQ are provers based
on PTTP. SATCHMO |MBS88] takes a different approach from PTTP: It is
based on a model-generating calculus which is not affected by the weaknesses
of Prolog, and thus a compact high-level implementation in Prolog is sufficient
for SATCHMO, avoiding the need for compiler modifications. leanTaP [BP95]
and leanCoP [OBO03], the former based on semantic tableaux and the latter on
the connection calculus [Bib&1], are even more compact Prolog-based theorem
provers. Due to their small size (one version of leanCoP has only eight lines
of code) they can be seen as attempts at extending Prolog to full FOL with
minimal means. This illustrates the usefulness of Prolog as a language for
prototype systems, as new ideas can be tested with little implementation work.

The reasoning method of Prolog is notable for operating in a “top-down”
fashion, starting with a query (equivalent to the conjecture in ATP) and then
reducing it to the axioms. While this goal-oriented approach has the potential
to avoid some irrelevant inferences (see Section 7 most modern theorem
provers, including systems based on Prolog, have adopted the opposite direc-
tion. They are saturation-based theorem provers, which start with the axioms
and continuously derive new clauses, until they derive the conjecture, which in
combination with the negated conjecture (see Section leads to a refutational
proof. This “bottom-up” approach, while less goal-oriented, has the advantage
of allowing powerful redundancy criteria that can remove clauses or prevent their
derivation without affecting soundness and completeness. Saturation-based the-
orem proving has thereby gained a sufficient edge that it is used by the vast ma-
jority of state-of-the-art ATP systems, including the most successful provers.

Besides going for this generally more successful strategy, most modern the-
orem provers are highly optimized, with all aspects of their implementations
tightly integrated. Modularization is a hindrance at the desired level of per-
formance, and typically a compiled ATP system is a compact, monolithic exe-
cutable. In the calculus the inferences and the redundancy criteria are expressed
as neatly delineated rules, but inside the impementation they are often difficult
to recognize, sometimes being interlocked and sometimes broken down into scat-
tered substeps, all with the goal of saving some amount of work and processing
time. The disadvantage to this is that it is difficult to maintain a theorem

2Prolog has a remedy in the form of the unify with_occurs_check/2 predicate, but the
programmer has to be aware of the problem and explicitly use this sound yet less efficient
operator whenever there is a risk of unsound unifications.
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ATP calculus KLOC lang. E P M NF
Ayane 2 [Wal| sup. 2 C# v v - v
Darwin 1.4.5 [BET04] inst. 55 OCaml - v V -
E 1.1 [Scho02] sup. 178 C v o v v
E-Darwin 1.3 [3] inst. 70 OCaml v v v Vv
E-KRHyper 1.1.4 [16] tab. 48 OCaml v v Vv V
Geo 2010C [INMOG] res. 31 C++ v v VY
iProver 0.7 [Kor0g] inst. 30 OCaml - v Vv -
iProver-Eq 0.6 [KS10] inst. 94 OCaml v v v -
leanCoP 2.2 [OBO03] con. 1 Prolog - v - V
Metis 2.2 [Hur(03] res. 25 SML v v v v
Muscadet 4.0 [Pas01] n.d. 3 Prolog v v - V
omkbTT 1.0 [WM10] comp. 19 OCaml v v - n/a
Otter 3.3 [McC03] res. 43 C v o v v
Paradox 3.0 [Cla03] inst. 13 Haskel v - Vv V
Vampire 10.0 [RV02] res. 130 C++ v v - Y
Vampire 11.0 [RV02] res. 61 C++ v v Y
Vampire 0.6 [RV02] res. 94 C++ v v/
Waldmeister C09a [Hil03] comp. 9 C v v - n/a
Waldmeister 710 [Hil03] comp. M C v. v - n/a
Zenon 0.6.2 [BDDQ7] tab. 21 OCaml v v v V

Table 3.1: First-order ATP systems participating in CASC 2010. Column
explanations: ATP - prover name and version; calculus - general calculus
type; KLOC - lines of code measure (in thousands); lang. - programming
language; F - built-in equality handling; P - capable of proof output; M
- capable of model output; NF - built-in normal form transformation.
Calculus abbreviations: comp. - completion; con. - connection calculus;
inst. - instance-based; n.d. - natural deduction; res. - resolution; sup. -
superposition; tab. - tableaux. See the text for further explanation.

prover and to introduce new features. The operation of the entire system must
be kept in mind during any modification, and as a result the work on a theorem
prover is often the responsibility of a lone developer who has to keep a complete
and detailed overview of the implementation. Therefore it is not uncommon
that planned extensions to a prover or personnel changes in its developer group
lead to the reimplementation from scratch. This may be simpler than adapting
the original code to use cases it was not intended for, respectively having new
developers familiarizing themselves with the complex original. Basic ideas and
the underlying calculus then form the only common basis between major release
versions of the same prover.

An overview of ATP systems is given in Table [3.I} which provides informa-
tion about the 20 unique FOL theorem provers that participated in the ATP-
competition CASC [PSS02, [SS06] of 201qf| (for more details on the CASC, see
the following Section. Not listed are the participating higher-order systems,
nor systems which are only minor variants of a listed prover. The table lists the

3The 2010 competition was chosen for this comparison, because the 2011 competition had
considerably less participants, essentially featuring a subset of the listed provers.
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calculi implemented by the systems. Only the general calculus family is indi-
cated, and there may still be significant differences between two calculi of the
same family. For example, while both Zenon and E-KRHyper are tableaux sys-
tems, the Zenon system implements an analytic tableaux calculus with free vari-
ables, whereas E-KRHyper uses the hyper tableaux calculus [BEN9G][I] without
free variables. Instance-based methods are implemented by several systems, for
example the Inst-Gen calculus in iProver and the Model Evolution calculus
[BT03] in Darwin. Muscadet is the only system that is not clearly saturation-
based, it is based on natural deduction [Ble71]. Provers can also use aspects
of multiple calculi: For example, several systems enhance their calculus with
inference rules adapted from superposition in order to handle equality; in such
cases only the basic calculus is stated in the table.

The KLOC-column shows how many thousand lines of code comprise each
system. These numbers were determined from the source code files in the crud-
est fashion, without consideration for actual complexity, coding conventions,
comment lines and whitespace. While this measure is highly inexact, it does
provide a general idea of the scale of the implementations, which amount to
approximately 53,000 lines of code on average.

The fourth column shows which programming language is used for the bulk
of each system. Many provers also have a few scripts for installation or testing
purposes, written in some scripting language like Perl or Python, but this is
not listed here. There is no clear favorite language. C [KR78| and its deriva-
tives C++ [Str86] and C# [HWGO3] are used for nine systems (some of which
are closely related), which is not too surprising, as these languages have gained
widespread adoption due to their efficiency and maturity. More noteworthy is
that no less than seven provers are written in OCamEI, a language that does
not enjoy the general prevalence of the C-family. However, as a strongly typed
functional-imperative language with capable compilers for most operating sys-
tems and many architectures, OCaml has found acceptance in the automated
reasoning community since shortly after its inception in 1996: The interactive
prover Cog was written in OCaml as of version 5.10 [FHBT97| in 1997. Damien
Doligez, a principal developer of the OCaml language, is also one of the devel-
opers of the Zenon system in Table

The E-column marks the provers which have built-in equality handling. This
refers to specific equality rules within the implemented calculus. Technically
all provers are capable of handling equations by adding equality axioms to a
given problem; that way the equality symbol is treated as a normal predicate
symbol, and the axioms express the semantics intended for equations (see Sec-
tion . However, this method provides no means to control the generation of
new terms. This can lead to an explosion of the search space, making axioma-
tization less effective than dedicated equality rules. On the other hand a prover
with built-in equality handling is likely to be more complex than one without
(note the KLOC-differences between Darwin and E-Darwin, or between iProver
and iProver-Eq, in both cases the latter being an equality-enhanced version
of the former), resulting in more implementation work and also in more com-
putational overhead which can reduce the performance on problems without
equations. The addition or omission of built-in equality handling is therefore a
design choice to be considered with care.

4http://www.ocaml.org
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The P and M columns indicate whether a prover is capable of providing a
proof or a model respectively for the problems it solves. The ability to present
proofs might be taken for granted at first when dealing with theorem provers.
However, automatically derived proofs may consist of millions of inference steps,
and the actual proofs may be too unwieldy to be of interest compared to a com-
pact yes/no result regarding the satisfiability. This means a prover does not
necessarily have to provide proofs in order to be useful within an application
scenario. Nevertheless, most of the listed provers have the ability to present
proofs, with the exception of Paradox, which is primarily a model generator.
One could further distinguish between systems which present proofs in the form
of a listing of the inference steps performed, and those provers which provide a
condensed proof. The former is relatively simple to implement, as the prover can
print these inference steps on the fly during the derivation process. A disadvan-
tage is that such a trace is likely to contain steps which are formally not required
to prove the result. The ability to provide a condensed proof consisting only of
the essential inference steps is thus more desirable. Its implementation comes
with its own difficulties, though: The necessity of an inference is only known in
hindsight, so the condensed proof cannot be printed during the reasoning like a
trace. Instead the prover must keep a log of the inferences it performs through-
out the derivation process and then extract the essential steps once the problem
has been solved. This extraction is non-trivial, and the accumulation of the log
can require substantial system resources. For example, when a tracing prover
backtracks during a derivation, it can free memory immediately by discarding
all invalidated clauses, whereas a prover with condensed proofs must preserve a
representation of some of these clauses in the inference log.

The ability to provide models is less common and mostly dependent on the
calculus. Tableaux and instance-based methods have an advantage here in that
their proof search is based on the construction of models. Geo is the only
listed resolution-based system with the ability to generate models, its geometric
resolution calculus is a heavily modified variant of classic resolution.

The final column (NF') shows whether the prover comes with its own nor-
mal form converter or not. As mentioned before, virtually all ATP systems
perform their inferences on some clausal form representation of the original
problem. Commonly this is CNF, but there are exceptions like Geo, which uses
so-called geometric formulae. As logical problems are often expressed in full
FOL syntax including quantifiers, implications and other symbols, they have to
be converted into a form compatible with the calculus of the respective prover.
This non-trivial task is referred to as clausification, and the implementation of a
clausification algorithm is a clausifier. Not every prover includes its own built-
in clausifier, so some have to rely on external solutions. Stand-alone clausifiers
exist, for example FLOTTER [NRW98]. It is also possible for theorem provers
to employ other theorem provers solely for their clausification features. A third
group of provers in the table requires no clausification (marked as “n/a”), be-
cause these systems process only problems consisting of unit equations. The
Muscadet system is unusual in that it operates on the full FOL syntax instead
of on a clausal form; its earliest version was actually incapable of handling CNF
problems. As the current version does not have this limitation, it counts as a
prover with built-in NF-transformation for the purposes of this overview.

This listing has provided a glimpse of the plethora of attempts to tackle
the undecidability of first-order logic. However, eventually any prover will be
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confronted with problems it cannot solve in reasonable time or within reasonable
memory limits. Reasoning within limits is thus a reality of ATP, and some
systems are more successful at this than others, making it necessary to evaluate
and compare automated theorem provers.

3.3 Theorem Prover Evaluation

Theorem provers were originally devised as a means to find solutions to mathe-
matical problems. However, as their designs progressed and diversified, and as
their implementation techniques and their underlying calculi grew more refined,
forming the research subfield ATP, the need arose to collect and even create
logical problems specifically for the purpose of evaluating and comparing the-
orem prover implementations. There are several reasons for this: Primarily a
problem library allows benchmarking different provers against each other. Some
provers may be better than others in general, or some provers may be especially
suited to certain types of problems. The results of such comparisons enable the
prospective user to make an informed choice regarding which ATP system to
employ.

A problem library is also helpful for internal use during the development of
a theorem prover, in particular when evaluating modifications to the system.
An automated theorem prover must make its own decisions on how to handle a
given problem. Modifications to the calculus or implementation optimizations
may not be as beneficial as intended when applied to all problems in general,
and a large scale evaluation can reveal the problem classes which suffer or profit
from the prover changes. Modifications may also turn out to be a trade-off,
for example allowing a prover to solve more problems in a shorter time while
requiring more memory, which may be acceptable or not depending on the
application scenario.

Finally, a problem library is an indispensable tool for debugging. Theorem
provers evolve continuously and increase in complexity as they are optimized to
increase their capabilities. This also increases the risk for incurring unsoundness
of the system due to programming oversights. As machine-generated proofs
can be both very unwieldy and have little significance within the context of
an application, it is not unlikely that a prover’s compact result regarding the
satisfiability of a problem will be taken at face value, while the underlying proof
is discarded, even though it might contain evidence of flawed reasoning. ATP
systems must therefore be tested thoroughly in order to warrant this trust.

For first-order logic systems the largest benchmarking library of this type
is the TPTP (Thousands of Problems for Theorem Provers) [SS9§|, developed
and maintained by Geoff Sutcliffe and available for downloadEI This collec-
tion deserves a closer inspection due to its significance in the ATP community.
Beginning in 1993, the TPTP has at the time of this writing reached the re-
lease version 5.3.0, and currently it contains 15,550 FOL problems. These have
diverse origins, for example mathematical problems, logical puzzles, logically
formalized tasks from real-world applications, and also test cases specifically
tailored to expose common oversights in prover implementations. The problems
are specified in TPTP-syntax, basically a machine readable notation of first-
order logic and some extensions. Using this syntax the problems are defined in

Shttp://www.tptp.org
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clause normal form (CNF) or as first-order formulas (FOF), the latter allowing
quantifiers and logical operators. To illustrate this, we consider the following
logical formula:

VaVy(p(z,y) — Fz(q(f(z,y), 2)))

As it is a fully-fledged formula, the FOF-notation of the TPTP-syntax is used
to obtain this expression:

fof (name, axiom, (![X,Y]:(p(X,Y) => (?[Z]:(q(£(X,Y),Z))N)).

The same formula has the following clause normal form (note the introduction
of the Skolem-function g):

{=p(z,9), a(f(z.y), 9(x,y))}
The TPTP-expression in CNF-notation for this is:

cnf (name, axiom, (~p(X,Y) | q(f(X,Y), g(X,Y)))).

A problem can have an arbitrary number of expressions. The TPTP problems
range between having a single clause or formula and those consisting of millions.
Most expressions tend to be axioms like in the examples above (indicated by the
second argument). However, other expression types are possible, for example
conjectural formulas, which a theorem prover must treat appropriately during
a proof atempt.

As the problems are intended for prover testing, each problem is annotated
by its correct result - as far as it is known, because a number of the problems
have not yet been solvedﬂ Each problem also has a difficulty rating between
0.0 and 1.0. This rating is established in cooperation with the ATP community.
The TPTP-maintainers test the TPTP under standardized conditions using var-
ious theorem provers. Some of these have the SOTAC status (state-of-the-art
contributor), meaning that each of them solves some hard problems that few
other provers (preferably none) can solve. The SOTAC provers determine the
difficulty rating: The more provers can solve a given problem, the lower its
rating becomes. Hence, a problem with a rating of 0.0 has been solved by all
SOTAC provers, and a 1.0-rated problem by none. As of TPTP v5.3.0 there are
3,405 FOL problems that cannot be solved by any of the SOTAC provers. The
ratings can fluctuate between TPTP releases: As provers improve, more and
more systems may be able to prove a problem. On the other hand it is also pos-
sible for provers to lose the ability to solve a problem, for example because some
modification which offers an improvement to the overall performance happens
to have an adverse effect on the processing of some particular problem. There-
fore the ratings can also increase, and the TPTP may contain problems which
cannot be solved by any current prover, yet for which correct results and proofs
are known from earlier testing. Currently the testing is performed using 62 dif-
ferent theorem provers, not all of them SOTAC proversm The most successful
system is Vampire, which solves 53% of the whole TPTP library, whereas the
average system solves 14%. These numbers illustrate that ATP testing can be

6This result annotation merely indicates whether a problem is a theorem, satisfiable, un-
satisfiable etc. It does not provide a proof, which would be prohibitively large.

"Most recent result listing: http://www.cs.miami.edu/~tptp/TPTP/Results.html
Our data is based on the results retrieved on 1 May 2012.
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an expensive endeavour: Granting a per-problem time limit of 300 seconds (the
minimum used in the official TPTP tests), even the best provers may require
several weeks for a full pass through the TPTP when using a single CPU core.

Nevertheless, constant testing is critical to ensure the soundness of ATP
systems. In our work on the theorem provers E-KRHyper and E-Darwin we
experienced that even minor changes could lead to unforeseen soundness errors.
Sometimes performance improvements would also reveal old soundness bugs
that had not become apparent in earlier tests, because the older prover version
had been too slow to reach the breaking point within the time limit. Typically
a soundness bug would manifest itself in less than 10 TPTP problems out of
approximately 15,000. An early version of E-Darwin even passed a full TPTP
test run with excellent results, despite a glaring soundness bug which was only
discovered because the performance was suspiciously good. On one occasion
Geoff Sutcliffe reported to us coming across a soundness bug in E-KRHyper on a
single problem; it turned out that the error had existed since the earliest version
of the prover (the non-equality KRHyper), but it had remained dormant because
it would only lead to an incorrect result on a variant of that particular TPTP
problem obtained by changing the clauses into a different order. Therefore
more diversity in test problems is helpful for the ATP developer, and the TPTP
remains open to the submission of new problems.

The TPTP and its syntax have found widespread acceptance in the ATP
community. The TPTP-maintainers provide an online interfaceﬂ to 64 theorem
provers, only 11 of which provide no native ability to read the problems without
conversion.

Closely linked to the TPTP is the annual ATP competition CASCﬂ [PSS02,
SS06], which has been held at the CADHE or IJCARE conferences since 1996.
The participating systems run on computers provided by the organizers and have
to solve TPTP problems within a time limit, usually 240 seconds per problem.
The problems are grouped into divisions according to problem features (for
example problems in CNF or FOF, satisfiable or unsatisfiable problems, with
or without equality, and so on), and participants can choose in which divisions
to compete. All competition problems are randomized versions of the official
benchmark problems (predicate and function symbols have been renamed, and
the order of axioms and clauses has been changed), and the divisions also contain
problems which have not yet been released in any version of the TPTP. These
measures ensure that the participating provers cannot win by simply matching
the competition problems against a database of known TPTP problems and
their solutions. As of 2008 the CASC has included a special division for very
large problems, the LTB category (Large Theory Batches). Here provers have
to solve a series of problems which share a large axiom set. This setup offers
opportunities for strategies that have no relevance in the regular divisions. For
example, provers can save time by only reading the axioms once and reusing
them for all problems, instead of starting anew for each problem. As of 2009
the CASC has begun branching out by including a category for HOL provers.

Other AR projects similar to the TPTP and the CASC exist, usually spe-
cializing in other logics or other types of reasoning. The SATLIB [HS00] was

8http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP

9CADE ATP System Competition: http://www.cs.miami.edu/~tptp/CASC/
10Conference on Automated Deduction: http://www.cadeinc.org
Hnternational Joint Conference on Automated Reasoning: http://www.ijcar.org
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founded in 1998 and is a problem collection for SAT solvers. This library has
nearly 50,000 problems, all of which are generated variants of 97 base problems,
though. Development of the SATLIB appears to have ceased in 2003. However,
the annual SAT conferencd'? continues to hold a competition for SAT solvers
with a number of participants comparable to the CASC. The SMT-LIB [BST10],
founded in 2003, is a benchmark library for SMT solvers. It contains almost
100,000 problems divided into 22 logics, the largest rivalling the TPTP with
14,335 problems. The SMT-LIB was inspired by the TPTP, and it has estab-
lished a standardized problem and theory specification language. It also has a
similar associated competition for SMT solvers, the SMT- C’OMPH QS TRLz'b|E|
is a collection of problems in qualitative spatial and temporal reasoning. The
project is a recent development, at the time of this writing the library contains
126 problems.

12SAT - International Conference on Theory and Applications of Satisfiability Testing:
http://www.lri.fr/SAT2011

‘http://www.smtcomp.org

Mhttp://qstrlib.org
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Chapter 4

Question Answering

The second major research field forming the foundation of this dissertation is
question answering (QA), which concerns itself with the development of methods
for the automatic derivation of answers to questions phrased in a natural lan-
guage. For example, given the question “Which planet is closest to the Sun?”, a
QA system should respond with “Mercury”. QA aims at making vast quantities
of knowledge easily accessible in an intuitive way, and it can therefore be re-
garded as the next step beyond conventional search engines. Research in QA is
wide in scope and sets no particular conditions on how the answers are to be pro-
cured, though the mainstream approaches tend to combine aspects from natural
language processing (NLP), information retrieval (IR) and knowledge represen-
tation (KR), as well as assorted AI techniques like machine learning (ML). One
should distinguish between closed-domain and open-domain question answer-
ing. A closed-domain system can only answer questions regarding a specific,
demarcated topic. This type of expert system can obtain its answers from a
knowledge base constructed by knowledge engineers. Open-domain systems on
the other hand try to answer questions about arbitrary topics. This means that
extensive amounts of knowledge must be available to the QA system. At this
scale a manually engineered, all-encompassing ontology is unfeasible. Instead
the knowledge has to be drawn from existing textual sources like encyclopedias,
processed in a manner that makes their contents accessible to a machine.

The goals of QA are ambitious: An ideal QA system would have a textual
understanding comparable to that of a human being, yet operate at considerably
higher speed and with a much larger and more reliable storage of knowledge. QA
therefore represents an advanced application of Al, and many of its problems
are not yet well understood. The development of QA systems is very much at
an early stage, and none of the existing systems achieve a performance that
would allow a ubiquitous usage similar to search engines.

The desire to make vast quantities of knowledge readily accessible can be
traced back to antiquity, to the collection of books in the first libraries and
then the further compilation of knowledge into encyclopedias, the first possi-
bly being the Naturalis Historiae by Pliny the Elder in 77 CE. These still very
common solutions offer knowledge in a locally concentrated form which shortens
the search process for a particular piece of information, a process that never-
theless must be carried out by a human reader. This task has become more and
more daunting with the ever increasing accumulation of knowledge, as the tra-
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ditional storage methods have not scaled well. For example, the current edition
of the Encyclopedia Britannica [Hoil0] consists of 32 volumes, with the index
alone taking up two of the books, and one volume (the Propedia) serving as
guidance for the rest by providing an outline of knowledge. Their considerable
physical dimensions render these knowledge stores impractical for portable use
or as quick reference tools. Manual searching is hampered by coarse indexing,
and connections between related facts may not be apparent due to the linearity
of books. The cost of such volumes prevents widespread distribution, and er-
rors and obsolete knowledge cannot be easily corrected, necessitating frequent
replacement of the entire encyclopedia.

A first attempt to improve upon this state was the Repertoire Bibliographique
Universel [Ray94], designed by Paul Otlet and Henri La Fontaine in 1895. This
database catalogued knowledge on index cards containing bibliographic refer-
ences, dossiers and images. The cards and their contents were sorted according
to a fine-grained decimal classification system which attempted to map all hu-
man knowledge. Over the following decades this collection was housed in various
institutions in Brussels, and it grew to a size exceeding 15 million cards. Cross-
references between the cards anticipated the hyperlinks of today. A commercial
search service allowed remote users to send queries by mail or telegraph, with
copies of cards being sent back as results. The project met its end in 1939 when
most of the collection was destroyed during the German invasion of Belgium, so
this database always remained confined to the pre-digital technology of its time.
However, its organization pioneered new ways of storing knowledge, separating
facts from the linear structure of books and linking them in a web of semantic
references.

Going further, Otlet predicted more advanced methods for the future, cul-
minating in a global network of screen-equipped workplaces that could be used
to access a central electro-mechanical archive. His death in 1944 precluded him
from seeing such visions become reality, and his work was largely forgotten,
to be rediscovered only later when others had begun implementing compara-
ble approaches. Thus it may have been Vannevar Bush who influenced the
coming developments more directly with his seminal essay As We May Think
[Bus45] in 1945. Here he identified the problems of the traditional techniques of
knowledge storage, and he proposed the memex device which would store large
quantities of data, augmented by hidden link annotations that would allow quick
access to related facts within the databaseﬂ These speculations inspired Dou-
glas Engelbart, who in 1962 proposed using computers to store knowledge in an
associatively linked form resembling human memory and thinking [Eng62]. He
also stressed the importance of natural language and vaguely referred to possible
question answering capabilities of future systems. In 1968 Engelbart’s research
group demonstrated the implementation of many of the ideas in what is today
sometimes called the “Mother of all Demos”, as the innovations presented there
have since become commonplace in human-computer interaction. This includes
the linking of knowledge as hypertext, but not question answering - indeed, the
accompanying conference paper specifically mentions the missing QA: “A third
type of service operation that will undoubtedly be of significant aid to studying
is question answering. We do not have this type of service.” |[EEGS].

!ncidentally, among other technologies this essay also predicted theorem provers. Bush’s
proposed symbolic logic machine would have required turning a hand crank, though, so one
could argue whether to call it an automated or an interactive theorem prover.
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However, QA had already been in development in computational linguis-
tics. The Baseball system [GWCL6GI] of 1961 could answer English questions
about a database of baseball matches. In the SHRDLU project [Win71] of 1968
the computer reasoned about a simulated world of blocks, the aptly named
BLOCKS world, and answered simple English questions about the state of the
blocks. As mentioned in the introduction (Chapter , the QA system of Black
[Bla68] in 1968 even used deduction. These and other systems of subsequent
years operated on very small, closed domains, usually specified by handwritten
ontologies. The difficulty of encoding large quantities of knowledge limited the
practical usage of the early QA systems even within their closed domain.

This situation has started to change in recent years. Advances in compu-
tational linguistics have lead to improved parsers which offer better automatic
processing of natural language texts. Ever larger collections of knowledge are
available in digital form, and the progress in hardware development allows more
complex operations on more data within still reasonable time limits. Instead
of specifying ontologies by hand, it has become increasingly feasible to derive
knowledge bases automatically by parsing and encoding text collections. Such
collections have become easily available with the widespread adoption of com-
puters and the internet, for example in the form of electronically published
articles and books, text corpora and online sources like Wikipediaﬂ DBpedz'aﬂ
IBLK™09] and WolfmmAlphaﬂ There are also ambitious ontology projects like
Cyc [Len9d], SUMO [NP01] and YAGO [SKWO08] which offer extensive curated
knowledge bases. Formally prepared information about natural languages is
available in databases like WordNet [Fel98] and GermaNet [HEOT]. The mod-
ern QA researcher can thus draw from significant resources and is no longer
required to start from scratch when developing a QA system.

FALCON [HMMT™00] from the year 2000 is an example of a QA system
which combines existing resources like WordNet with various methods from NLP
and information retrieval in order to achieve open-domain capabilities. A more
recent example is True Knowledge [TP10], an English language open-domain
QA system accessible on the Webﬂ Its knowledge base consists of a proprietary
core ontology augmented both by structured knowledge drawn from Wikipedia
and by information supplied by its users.

QA gained prominence when the Watson system [FBCCT10] of IBMH suc-
cessfully participated in the American television quiz show Jeopardy.’m in Febru-
ary 2011, winning the game by defeating two human former champions. Watson
is notable for its scale; the system employs numerous different strategies in par-
allel on a dedicated computer cluster equipped with nearly 3,000 processors. It
may be the first open-domain QA system to achieve the answering speed and
accuracy that would be expected from an alternative to search engines, although
its prohibitive hardware requirements will likely prevent widespread usage for
the time being.

%http://www.wikipedia.org
Shttp://dbpedia.org
“http://www.wolframalpha.com
Shttp://www.trueknowledge.com
Shttp://wuw.ibm.com
“http://www.jeopardy.com
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Figure 4.1: Generic core architecture for a QA system

2011 also saw the electronics company Appleﬁ incorporating QA featuretﬂ
into its popular iPhone line of mobile phones. An internet connection is re-
quired, as most of the QA processing is done on Apple’s servers. For the time
being Apple still advertises this as an experimental “beta” software feature.

Research in QA is ongoing and garnering more interest as working systems
are becoming more feasible. Languages other than English are considered as
well, for example by the French FIDJI system [TMI0], the Romanian RACAI
system [ISCT09|, and the Spanish MIRACLE [MGdPSPBT09|, among many
others. LogAnswer is a German language QA system.

4.1 QA System Implementation

The ambitious goals of question answering hold many challenges for QA system
implementations, and there is great variety in how developers attempt to over-
come these obstacles. Nevertheless it is possible and useful to identify a generic
core architecture (see Figure based on [HGOI]), as it helps in obtaining
an overview of the problems and their relations to each other. A fundamental
component is the knowledge base, from which the answers will be extracted.
The knowledge base may simply be a corpus of natural language documents,
although for the sake of efficiency it is likely to be an easily searchable database
of knowledge expressed in some machine-readable knowledge representation for-
malism. Accumulating the knowledge base is a major challenge, as its magnitude

8http://wuw.apple.com
9http://www.apple.com/iphone/features/siri.html
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prohibits a manual formalization, requiring sophisticated parsers, lexicons and
translators instead. Nevertheless it is an almost indispensable requirement for
a useful QA system: In a good knowledge base the knowledge is separated from
the original textual sources and compounded into essential facts, which are more
easily accessible and which also allow a significant reduction of redundancy. For
example, the two sentences

“China has a population of 1.3 billion.”
and
“1.8 billion people live in China.”

contain the samﬂ knowledge, which could be expressed and condensed as a
logical fact population(china, 1.8billion), a notation that lends itself to database
storage and queries. As mentioned in the introduction to this chapter, existing
efforts at ontologies and knowledge databases can allow developers to save some
work when building a QA system, but the integration of a third party knowledge
source into a language and knowledge processing framework comes with its own
challenges.

Apart from the knowledge base the generic QA system has four major com-
ponents, which correspond to four phases of processing a question:

1. Question analysis: The natural language question entered by the user is
analysed and turned into internal representations suitable for the subse-
quent processing. It is common to determine the type of the question - for
example, it may be easily recognizable whether the question is asking for a
person ( “Who. .. ?”), a date ( “When. .. ?”), or a location ( “Where. .. ?”),
and this can be important information during the search for an answer.
Some syntactic and semantic information may be gleaned from the ques-
tion, like whether it contains any proper names and what these refer to.
This phase may also deal with spelling errors and ambiguities, and it can
enter into a dialogue with the user in order to resolve such problems.

Typical issues in this phase involve question parsing, simple semantic anal-
ysis and translation of the natural language question into a formal repre-
sentation.

2. Candidate selection: A question representation compiled by the previous
phase serves to retrieve the so-called candidates from the knowledge base.
Depending on the system, a candidate may for example be a document, a
sentence, a phrase, or a semantic network fragment, and it has some likeli-
hood of containing an answer to the question. Candidates are found using
fast, shallow information retrieval methods, and the candidate selection is
thus a filtering that narrows down the vast knowledge base into manage-
able fragments which are small enough to be handled by more elaborate
methods in the next phase.

The major challenge here is the fast yet accurate retrieval of the candi-
dates. This requires the identification of suitable recognition criteria, a
knowledge base organization which facilitates finding candidates according

10Some might argue that the sentences are not equivalent due to differences in emphasis,
but such subtleties are beyond the scope of QA for now.
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to such criteria, and often the creation of an evaluation method that en-
ables a ranking of candidates, allowing the dismissal of a weaker candidate
in favour of a more promising one.

3. Answer extraction: Matching a question representation from the first
phase (not necessarily identical to the one used for the candidate selection)
against the candidates, deeper analysis methods attempt to find actual an-
swers. Different candidates may yield multiple different answers, and the
system may have varying confidence in these answers. Also, if the system
uses a formal knowledge representation, then the answers may not be in
a form suitable for a human user. Ranked by their confidence values, the
answers are forwarded to the final phase.

The typical problems in this phase concern the answer identification, as
simple information retrieval is usually insufficient at this stage. Instead
the semantics must be taken into account, while still remaining within the
time constraints of the usage model. The answer ranking again requires
an identification of criteria and a quick computation of these for the given
answers.

4. Answer generation: The best answer or the best answers found during
the answer extraction are translated into a natural language suitable for
the user. Depending on the nature of the knowledge base this can simply
mean handing over the respective candidate phrase (if the knowledge base
is basically a corpus), or it may require a more involved translation from
a formally represented answer into natural language.

This phase is likely the least challenging, although the natural language
answer formulation may be complex. A system may also be designed to
enter a dialogue with the user at this point, in order to justify its answers
or to adjust the answer presentation based on user feedback.

The generic architecture is a rough guide to QA systems, and actual systems
may vary greatly in how the phases are implemented, or even use an entirely
different architecture. It should be obvious, though, that QA system imple-
mentations are generally grander in scale than the tightly focussed automated
theorem provers. QA systems consist of many components and subcomponents
which may have different developers and which can be switched during the de-
velopment of the system or even at runtime. Unlike the typical automated
theorem prover, the common QA system is not easily portable, as its significant
resource requirements tie it to a certain hardware infrastructure.

4.2 QA System Evaluation

It is difficult to conduct a systematic evaluation of QA systems. In principle

a number of criteria for the usefulness of a real-world QA system have been
identified [BCCT03]:

Accuracy: The answers must be correct, and giving no answer is preferable to
giving a wrong answer.

Completeness: The answers must be complete regarding the questions. For
example, given the question “Who was Nikola Tesla?”, the answer “A
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man.” would be accurate, yet hardly satisfying to the user. To achieve
completeness a QA system may have to gather facts from different sources
and merge them into an answer.

Relevance: The answers must be relevant within the context of the respective
user. For example, a QA system should be able to correctly interpret the
question “What did the president talk about in his address to the nation?”
based on the user’s location or nationality, interests, and data about cur-
rent events.

Timeliness: The QA system must respond immediately, and it must include
current knowledge.

Usability: The QA system must be able to obtain knowledge from any source,
and it must provide answers in any format desired by the user. This
includes textual, audio and video sources as answers.

At the current state of the art QA systems would score lowly in all categories,
and indeed research is at such an early stage that accuracy and completeness
still have to receive the lion’s share of attention in order to achieve a system
that is at least remotely useful. In practice an answer that is both accurate and
complete is usually simply referred to as being correct or right, and any answer
that is not correct is called incorrect, wrong or false. We adopt this usage in
the sequel.

However, even when neglecting the other criteria in favour of accuracy and
completeness it remains problematic to judge QA systems objectively, as the
perception and acceptance of the answers may vary from user to user. For
example, a user might ask an ambiguous question like “How large is China?”,
and then reject an answer despite it being correct for a different interpretation
(in this case, “large” could refer both to the area and to the population, among
other things). A user might also disagree when there is no universal consensus
regarding an answer and the QA system picks a position not matching the user’s,
for example when answering “How many continents exist on Earth?” (where
some cultures consider Asia and Europe to be separate continents while others
do not). The criterion of completeness is also difficult to assess, since one user
might be satisfied with the comprehensiveness of an answer while another might
want more detail. For example, when asking “When did John F. Kennedy die?”,
some users would be content to learn the year, some would prefer the exact
date, and someone interested in the criminal case might even want to know the
precise time of day. For other questions (like “What is a black hole?”) a detailed
scientific answer can be necessary to satisfy some users while being rejected as
incomprehensible by laymen.

Large scale studies with numerous human participants can nevertheless pro-
vide insights into the performance of a QA system, but such experiments do not
lend themselves to the everyday evaluation that is common in ATP development
where automated testing is available. An effort to introduce automatic testing
of QA systems is hampered not only by the aforementioned lack of objective
criteria, but also by the fact that the systems so far are simply not very good at
phrasing natural language answers, often taking them from the textual sources
where they were found, for example when responding to the singular “What is a
dog?” with the plural “mammals related to wolves”. A human user may easily
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ignore such minor mismatches, but for an automatic evaluator this is more dif-
ficult. Paraphrasing is generally problematic, as any answers beyond the most
simple factoidﬁ can be phrased in different ways, which requires an automatic
evaluator to have its own deep semantic understanding of answers.

For these reasons the evaluation of QA systems is still mostly manual work.
However, despite these difficulties there are competitions for QA systems. The
TRECE [Har95] provided a QA competition track mostly for English language
systems from 1999 to 2007, and the CLEEE has been holding similar competi-
tions since 2003, offering more choices of language. Since CLEF is the current
major competition venue for QA and LogAnswer participated in CLEF for sev-
eral years, it will be the focus of this dissertation when it comes to competitive
evaluations of QA systems. As there is no obvious ideal evaluation method,
the specifics of the competitions have varied greatly over the years. Gener-
ally though it can be said that the participating QA systems have to answer
a number of questions referring to a set of documents. These documents are
made available in advance, and they contain enough knowledge to answer the
questions. The participants have ample time to preprocess the documents and
to incorporate them into their respective knowledge bases. At the start of the
actual competition the participants receive the questions, and then they have
a limited amount of time to produce the answers. These answers are assessed
by a panel of human judges. The evaluation criteria are usually limited to ac-
curacy and completeness (subsumed under the notion of the correctness of an
answer). The questions are phrased in such manner that relevance is not much
of an issue, and the time limits are generous compared to real-world usage, often
approximately 10 minutes per question. Answers are only accepted in textual
form, so the criterion of usability is not applied.

The complexity of QA system design means a steep entry threshold for par-
ticipants, so the number has usually been low - for example, 12 systems took
part in the QA track of CLEF 2011 [PHEFT11]. To accommodate systems for
different languages, the base documents and questions are provided in transla-
tions. Also, as QA systems are not easily portable, the participants use their
own hardware infrastructures and send the answers online. These factors im-
pede the arrangement of equal conditions for all participants, and hence CLEF
is less competitive in nature than ATP competitions like CASC, which features
clear winners. Instead, CLEF is very much a competition for a field that is
still in early development, and each year’s subsequent analysis by the organiz-
ers tends to emphasize not only individual results, but also general research
directions, promising approaches and overall results like the total number of
questions answered correctly by any system. A more detailed account of vari-
ous CLEF competitions, including the performance of LogAnswer, will be given

in Chapter

11'We use the term factoid in the sense it has acquired in the QA community, referring to
very short answers, often a single word or number. A factoid question is a question that can
be answered by a factoid.

12Text Retrieval Conference: http://trec.nist.gov

13Cross-Language Evaluation Forum: http://www.clef-campaign.org
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Chapter 5

Combining Question
Answering and Automated
Reasoning

At their core, QA systems and automated theorem provers have similar goals:
Both attempt to glean some piece of information out of a set of data - QA
searches a knowledge base for facts which answer a question, a prover searches a
set of formulas for a subset that proves a theorem. However, their approaches are
fundamentally different. A theorem prover uses a sound and preferably complete
calculus, because automated reasoning is interested in irrefutable results to its
investigations. Question answering on the other hand is willing to accept results
that are “good enough”, provided that they can be achieved within reasonable
time and resource limits. Arguably this acceptance of imperfection is a necessity,
borne out of the wish to create usable systems despite the many open challenges
in QA research. However, this mindset has also led to developments regarding
how to deal with the imperfections, developments that are valuable in their own
right. In a modern QA system the components are finely tuned to each other in
order to overcome their respective weaknesses and to attain a general robustness
of the total system.

5.1 Advantages and Problems of Conventional
QA Methods

QA methods usually aim for robustness, the ability to produce useful results
despite flawed input data and imperfect analysis techniques. This robustness
enables the rapid extraction of answers from vast knowledge bases, but the cor-
rectness of these answers is very much hit-or-miss - the average accuracy in the
QA competition of CLEF 200§ was 23.6% [EPAT08] - because the robustness
comes at the cost of depth. The methods employed in QA operate mostly on the

LAs of CLEF 2009 the QA track has been exploring new directions and undergoing sig-
nificant organizational changes, which means a great variation in the results in recent years.
2008 was the final year of the original competition approach, so we consider its results more
representative of the state of the art than the experimental later tracks.
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syntactic level of language, which prevents them from uncovering and utilizing
deeper semantic relations in the search for an answer. This is sufficiently fast to
extract, evaluate and rank hundreds of answer candidates for a given question,
but the individual evaluations are semantically shallow: The approach effec-
tively relies on sheer quantity to find a candidate that both contains an answer
and is simple enough to be grasped by the limited “understanding” of the QA
system.

A restriction to shallow methods may be acceptable during the candidate
selection phase (see Section , which has to perform the preliminary filtering
on the entire knowledge base. In the subsequent answer extraction it becomes
a real hindrance, however, as it is easy to identify situations in which syntax
alone is insufficient.

For a beginning, consider this pair of question ) and answer candidate C1:

Q: “Which mountain range did Hannibal cross?”
Ci: “Hannibal crossed the Alps.”

With the knowledge of C it is possible to produce “the Alps” as an answer to Q.
This is not too difficult even for shallow methods, as the sentence structures are
simple and many words match between question and candidate. Nevertheless
some semantic background knowledge would be helpful to validate the answer,
because otherwise a sentence like “Hannibal crossed the Rhone.” could also
appear to contain an answer.

The purely syntactic approach can be derailed using synonyms:

Q: “Which mountain range did Hannibal cross?”
Cs: “Hannibal overcame the Alps.”

For this a QA system has to resolve the synonymous usage of the verbs “to
cross” and “to overcome”. Fortunately this is no major hurdle, and synonyms
are even handled by some conventional search engines.

It turns more troublesome when paraphrases are used:

Q: “Which mountain range did Hannibal cross?”
Cs: “The Carthaginian general led his army over the Alps.”

Here background knowledge about Hannibal is required to identify his reference
in Cs. It is also necessary to recognize that “x leads y over z” implies “r crosses
2”, at least in this particular case.

A different kind of difficulty results from information spread over multiple
sentences.

Q: “Which mountain range did Hannibal cross?”
Cy: “Hannibal led his army against Rome. They crossed the Alps in 218 BCE.”

While this simple example is likely compact enough to be managed by some
shallow methods (a coreference resolution algorithm would have to handle the
anaphoric “they”), the information required to answer a given question may
be scattered throughout several sentences further apart than here, or even in
multiple documents.
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The examples above justify the involvement of semantics in question an-
swering, but their solution does not require much in the way of reasoning, as
in theory most cases could be resolved by shallow methods bolstered with an
extensive lexicon that allows looking up words that are semantically equivalent
to those in the question and the candidate. This is not sufficient when the
candidate implies the answer in a less direct manner, for example:

Q: “Which mountain range did Hannibal cross?”

Ces: “Hannibal invaded the Roman homeland from the North, marching his army
all the way from Iberia to Gaul and then turning towards Italy.”

Here the answer “the Alps” does not occur in the candidate at all, but it could be
deduced by a system that has access to geographical background knowledge that
would allow it to map the path described in Cg and discover which mountain
range forms a natural barrier to be overcome. This example is extreme in
the amount of background knowledge required, and it likely goes beyond the
capabilities of most QA systems. But reasoning can be necessary for much
simpler examples:

Q: “How many moons does Mars have?”
C: “The moons of Mars are called Phobos and Deimos.”

Here the answer “two” can be derived by counting the names in C' and consid-
ering that the usage of the verb “to call” ties each name to one entity.
Reasoning can be useful in dealing with ontological class hierarchies:

Q: “What is the largest mammal?”
C: “The Blue Whale is the largest animal.”

In this case “mammal” must be recognized as a subclass of “animal” such that
“largest” holds for both, resulting in the answer “Blue Whale”.

The examples given here are not meant to be an exhaustive listing of phe-
nomena that can be handled by deduction, as this would require a focus on
the mechanics of natural language that is outside the scope of this dissertation.
Numerous other examples could be given where it is necessary to resolve or
utilize spatial and temporal relations, concatenations of relations, conjunctive,
disjunctive or negated phrasings, and more. Suffice it to say that shallow syn-
tactic methods can quickly reach their limits, and at that point a firmer grasp
of semantics is required to arrive at an answer. This leads us back to automated
reasoning.
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5.2 Advantages and Problems of AR Methods

By representing knowledge in a formal language like first-order logic and apply-
ing an automated theorem prover, the issues listed in the previous section can
be addressed in order to achieve a deeper reasoning on the semantics. Suitably
selected predicates and function symbols can represent attributes, actions and
relations between concepts and entities. For example, the sentence

S1: “The Venus is a planet circling the Sun.”
could be translated into this formula:
F5: planet(venus) A circles(venus, sun)

Given that a knowledge base tries to separate the knowledge from the original
text, it is not necessary to try to preserve the structure from the textual source
by using one formula per sentence. Hence a knowledge base would rather store
the representation of S; as separate FOL facts:

F5: planet(venus)
F2S1 s circles(venus, sun)

Carefully chosen symbols then allow a theorem prover to draw conclusions based
on the semantics. For example, let us assume that the knowledge base also
contains a representation of the sentence

Sa: “Planets circle around stars.”
in the form of:
F52: Yoy (planet(z) A circles(y) — star(y))

Then a theorem prover would be able to deduce that the Sun is a star. Such
deductions may involve many steps - the whole raison d’étre of ATP systems is
to find proofs that are too large and complex to be derived by human logicians,
and preferably to do so in short time. Theorem provers are therefore optimized
to handle large numbers of inferences and long derivation chains.

In addition to the reasoning strength of theorem provers, the usage of logic
and AR offers further advantages, addressing the aforementioned weaknesses of
conventional QA methods. Synonyms can be dealt with during the translation
into FOL, where they are all mapped to one canonical form. For example, the
two sentences

Ss: “The Evening Star is a planet.”

Syt “The Morning Star is a planet.”
could each be translated into the FOL fact
F9:51; planet(venus)

which would be subsumed by the knowledge base above.

FOL is a declarative language, which is why ordering of formulas should have
no bearing on the derivation of a proof. As such the spatial proximity of facts
within a set of formulas has no relevance for the calculus, and ideally neither for
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the prover. Hypothetically the difficulty of shallow methods to utilize dispersed
facts from different sources does not apply to automated reasoning, as all facts
can be stored in one knowledge base, separated from the syntactic structure of
the text. We will see that in practice a formal QA knowledge base can grow
so large as to exceed the capabilities of ATP systems, which reintroduces the
proximity problem as the prover has to focus its efforts on a more or less well-
chosen fragment that may have omitted crucial knowledge found elsewhere in
the knowledge base. However, the methods of automated reasoning are intended
from the outset to handle declarative representations. Therefore they are at least
at an advantage regarding dispersed information when compared to syntactic
methods that cannot ignore the syntactic structure.

Unfortunately it is not a trivial proposition to use a theorem prover for
question answering. Three problem areas can be identified: Representing the
knowledge base in first-order logic, dealing with the size of the knowledge base,
and overcoming the brittleness of deduction. These three areas will be examined
in more detail.

5.2.1 Logical Knowledge Base Representation

The knowledge base of the QA system must be available in a first-order logic
format for the theorem prover. The translation of natural language into FOL is
problematic for several reasons. First of all, there is no single way of representing
knowledge with the means of FOL. For example, the sentence

S1: “Betelgeuse is a star.”

can be translated into

Fov: star(betelgeuse)

or into

Eyv: is(betelgeuse, star)

or into

F3': being_action(ar) A present(ay) A subject(betelgeuse, ay) A object(ay, star)

among countless other variations, in increasing order of reification. The simple
Fls ! has the advantage of being compact, but it leads to a high number of predi-
cate symbols when translating a large knowledge base. This is impractical when
formulating reasoning rules. These are preferably kept as general as possible in
order to minimize their number, and since FOL does not allow predicates as
variable arguments, the applicable predicates must be stated explicitly, increas-
ing the amount of rules in order to cover all variations. The approach also lacks
expressivity, for example in how to express the tense, which leads to confusion
when a sentence like

So: “Betelgeuse will become a black hole.”
is added to the knowledge base in the form of this formula:

F%2: black_hole(betelgeuse)
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A workaround would be to have different variants of each predicate symbol for
every combination of tense, modality and so on, but this would lead to an even
more excessive amount of predicates.

The more complex FQS ! and FSS ! lessen these problems by moving more and
more information into the atoms, away from the predicates. F; ! in particular,
by treating an action as a constant, allows specifying the tense as a predicate.
This approach can achieve a high level of expressivity while maintaining a low
number of predicates, provided they are chosen carefully. There is a risk that
oversights during the early stages of this ontology design leave some aspect
uncovered, making later additions necessary that can have repercussions for the
existing knowledge base. The automatic translation from natural language is
also more difficult, as more intricacies have to be captured.

Even the most detailed translation faces the problem that pure first-order
logic has difficulties in dealing with all aspects of natural language and human
reasoning due to a lack of expressivity. Modality, default reasoning and arith-
metics are just some examples for this. Certain intricacies of natural language
can cause surprising problems: For example, it may appear intuitive to simply
translate adjectives as predicates, yet a sentence like

S3: “John is a fast runner, but not a fast cyclist.”
should not result in this contradictory translation:
F53: fast(john)

Fy3: runner(john)

F35: —fast(john)

F3: eyelist(john)

Extensions to first-order logic can provide some solutions to expressivity prob-
lems, but few theorem provers are capable of processing more than pure FOL.

When using very detailed knowledge representations the amount of literals
obtained from a sentence is notably higher than with the simpler translations.
This increases the size of the knowledge base, which leads us to the next problem
area.

5.2.2 Size of the Knowledge Base

Automated theorem provers were originally intended to solve mathematical
problems, and the specifications of such problems tend to be compact. The
TPTP aims at collecting a representative sample of problems of ATP usage,
and Table [5.I] attempts to illustrate the size range with different measures. The
sizes are generally not very large. Almost half of the problems have at most
50 clauses or formulas; indeed, the median amount is 52. Over 85% of the
problems have no more than 1,000 clauses or formulas, and only a few outliers
exceed 100,000 or even a million. Measuring by the number of atoms results
in a similar distribution, with about 77% of the problems having no more than
1,000. The median number of atoms is 184. Generally, the average difficulty
the problems pose to a theorem prover increases along with their size. The
average difficulty rating of the FOL problems in the TPTP is 0.56, indicating
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clauses/formulas per problem problems average rating
at most 10 3,109 (20.0%) 0.32
11 - 50 4,561 (29.33%) 0.49
51 - 100 2,139 (13.76%) 0.51
101 - 1,000 3,511 (22.58%) 0.70
1,001 - 10,000 1,141 (7.34%) 0.78
10,001 - 100,000 889 (5.72%) 0.87
100,001 - 1,000,000 145 (0.93%) 0.96
over 1,000,000 55 (0.35%) 0.96
atoms per problem problems average rating
at most 10 1,702 (10.95%) 0.34
11 - 50 2,708 (17.41%) 0.42
51 - 100 1,785 (11.48%) 0.46
101 - 1,000 5,713 (36.74%) 0.59
1,001 - 10,000 2,083 (13.4%) 0.67
10,001 - 100,000 991 (6.37%) 0.81
100,001 - 1,000,000 513 (3.3%) 0.96
over 1,000,000 55 (0.35%) 0.96

Table 5.1: Statistics about problem sizes in TPTP v5.3.0: Only first-order
logic problems were considered. Both subtables quantify the sizes of typ-
ical ATP problems by partitioning the TPTP set according to different
measures. Column explanations: clauses/formulas per problem (upper
table) and atoms per problem (lower table) - the number of clauses, for-
mulas or atoms of each problem in the respective group; number of prob-
lems - the number of problems in each of the partitions (percentage with
respect to the total number in parentheses); average rating - the average
TPTP difficulty rating of the problems in each partition, ranging from
0.0 for the easiest to 1.0 for the most difficult.

that the average problem can be solved by slightly less than half of the current
state-of-the-art provers. The problems with more than 1,000 clauses or formulas
have an average rating of 0.83, which means that on average, each of them can
be solved by less than one fifth of the provers. The largest problems (beyond
1,000,000 clauses or formulas) are rarely solved, and only by specialized systems
that employ incomplete selection algorithms (see Section .

On the one hand, such large problems are clearly atypical for ATP usage,
and they are contained in the TPTP mostly as a challenge specifically due to
their abnormal size. The TPTP usually also includes smaller sized versions
of the same problems, allowing ATP developers to incrementally work their
way up towards the full problems, in order to test how much their systems can
handle. On the other hand, the largest problems are exactly those originating in
knowledge representation, and they include FOL versions of ontologies like Cyc
and SUMO. They are more typical for the problems that a QA system will face,
yet they do not even contain the massive amounts of world knowledge required
for true open-domain question answering. Hence it is clear that a theorem
prover within a QA system will have to handle logic problems that exceed the
size the ATP system is intended for by several orders of magnitude. Under
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these circumstances a normal theorem prover cannot maintain a performance
suitable for real-world usage, as its data structures and algorithms will not scale
sufficiently well.

There are two major ways in which excessive problem size will adversely
affect an ATP system. Firstly there are effects on the implementational level.
At the minimum one must expect relatively benign problems of this type in the
form of an approximately linear increase of processing time and memory usage,
caused simply by creating, processing and storing millions instead of hundreds
of clauses. In practice these increases will likely be more severe and have more
complex reasons, like certain design choices that do not scale to larger amounts
of data. For example, in the clause indexing trees of the original KRHyper the
child nodes of any given node are stored in a list structure, and accesses and
searches are handled by simple list iterating operations. This is a compact and
very efficient implementation as long as these nodes rarely have more than ten
children, as is the case when processing normally sized logic problems. The same
approach breaks down when nodes have thousands of children, as traversing
these enormous lists repeatedly results in a dramatic increase of processing time
for what should be simple and common-place indexing operations. Hash tables
are preferable to lists in these cases, although their overhead is less efficient
when dealing with normal-sized problems, where each table often only has to
store a few elements.

Even more critical are situations when large problems exceed hard imple-
mentation limits. For example, the SPASS system has a limit on the amount of
logical symbols it can store at runtime, and it will refuse to process a reasoning
problem that crosses this boundary. This is a graceful way of coping with such
problems, but it is only possible when the hard limit is known, for example when
it has been explicitly implemented as a design choice, like KRHyper’s inability
to process clauses with more than 100 different variables. However, systems
may also have unknown hard limits which go unnoticed due to the rarity of
very large reasoning problems, and an attempt to process such a problem will
then cause the prover to crash. An example of this are certain list functions in
OCaml (like List.map) which have undocumented limits that can cause them
to terminate a program when dealing with long lists of several ten thousand
elements. Limitations like this are not obvious in a prover, and they may be
difficult to diagnose and circumvent when encountered.

The second area where excessive size of reasoning problems causes difficulties
is the level of reasoning strategy. Theorem provers tend to work in a saturation-
based fashion where they begin with the axioms and then derive clauses bottom-
up until they can refute the negated conjecture. The lack of goal-orientation in
this approach is no severe obstacle when dealing with normal-sized reasoning
problems, as heuristics can aid in the search for a refutation and all axioms are
likely to be relevant for the proof. The latter is not the case with reasoning
problems based on open-domain question answering. Here the axioms form the
knowledge base, and as the knowledge base aims at providing knowledge to
answer any question, the axioms have to cover a wide range of facts, and only a
fraction of them will be necessary to answer any given question. Using the full
knowledge base with all its axioms in the bottom-up manner will therefore bog
down the reasoning in irrelevant conclusions. While it is trivial to determine the
relevance of an axiom once a proof has been found, the same may be impossible
to do beforehand. Axiom selection methods are therefore often heuristics which
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do not guarantee completeness. Nevertheless it is essential for a theorem prover
to use some form of axiom selection in order to cope with the size of QA-oriented
knowledge bases.

5.2.3 Brittleness of Precision

The vast knowledge bases of open-domain QA systems are bound to have nu-
merous omissions and errors due to the way they are created. Such flaws are
carried over into the FOL representation for a theorem prover. However, unlike
natural language processing systems a theorem prover is not robust against flaws
in the data. Indeed, the opposite is the case: ATP design places great value
on the soundness of the calculus and the implementation, so that the system
can deliver reliable proofs with millions of inference steps. Granting the prover
some leeway when drawing conclusions would break the strict soundness stan-
dard, and the usefulness of the proofs would be diminished. In a QA situation
on the other hand some latitude may be required to achieve robustness. For
example, consider the following question and answer candidate:

Q: “How high is the highest mountain?”

C: “The Mount Fverest is the highest mountain in the world. It is a part of the
Himalaya mountain range. It is 8,848m tall.”

For a human reader the question should be easy to answer given the knowledge in
C. However, let us assume that the parser of a knowledge base creation system
has trouble resolving the anaphoric “t” in the third sentence of C, since it
can refer to “Mount Fverest” and “Himalaya mountain range” (and technically
even to “mountain”, “world” and the first “/t” in the second sentence, which
is also ambiguous). The system decides to err on the side of caution when
creating a FOL representation and assigns a fresh constant to this pronoun
occurrence, thus generating a new entity rather than establishing a potentially
false association between existing entities. A simplified excerpt of the resulting
FOL knowledge base could look like this:

FE: mountain(mount_everest)
F§': highest(mount_everest)
F§': is_part_of(mount_everest, himalaya)

FE: has_height(cy, 8,848m)

Likewise, the question @ can be represented in logic form:
F®: 3x3y(mountain(z) A highest(x) A has_height(z, y))

Ideally a proof would instantiate the question variable y with 8,848m, but this
proof is impossible, as the variable x cannot be unified both with mount_everest
and c¢;. Also note that the transformation already assumes a successful canon-
ization of “high” and “tall” into the predicate has_height. If this were not the
case, the mismatch of predicates would add another obstacle to the proof.
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Such difficulties must be expected when processing FOL representations of
knowledge bases derived from textual sources. As the precision of logic calculi
renders ATP systems too brittle to handle the flawed data, a theorem prover
within a QA system must feature robustness enhancements that allow a more
“flexible” reasoning while still preserving a degree of control over the soundness.

5.3 Issues and Goals of the Combination

The previous sections listed advantages and drawbacks of both conventional
shallow question answering methods and the automated reasoning approaches
in theorem provers. An integration of AR into QA should provide benefits in
the form of increased reasoning strength, allowing the QA system to obtain
non-obvious answers that are only contained in the knowledge base in implicit
form, and which are out of reach for the conventional shallow retrieval methods
of QA. At the same time the brittle precision of automated deduction must
be augmented by the robustness of QA. Thereby both AR and QA use their
respective strengths to ameliorate their mutual weaknesses. The integration
must address the following major areas:

e a first-order logic representation of the knowledge base and the questions,

e enabling the theorem prover to cope with the large size of the knowledge
base via prover optimizations and axiom selection methods,

e achieving robustness of the logical processing against flaws in the FOL
knowledge base,

e usage of ATP proofs for answer generation.

Furthermore, the usage model of the QA system must be taken into account
when integrating and adapting the theorem prover. If the QA system is sup-
posed to operate in a fashion similar to conventional search engines, then it
should achieve comparable response times, leaving little time for deduction. On
the other hand, a QA system employed as a scientific investigation tool, for ex-
ample, can have more generous time restrictions, because its users may accept
longer reponse times as a trade-off for higher quality answers. The LogAnswer
project, which forms the background of this dissertation work, has involved the
creation of a research prototype for QA system with an integrated theorem
prover, intended for the development and exploration of deductive QA methods
in different usage scenarios.

5.4 The LogAnswer Research Project

The LogAnswer project - full German title “Logische Antwortfindung tber se-
mantisch strukturierten Wissensbasen’]- is a research cooperation between the
AGK]E| of the Universitiat Koblenz-Landau, Germany and the HCSﬂ of the Fern-

2 “Logical Question Answering on Semantically Structured Knowledge Bases”:
http://wuw.loganswer.de

3 Arbeitsgruppe Kiinstliche Intelligenz (Artificial Intelligence Research Group):
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IFI/AGKI

“Intelligent Information and Communication Systems: http://pi7.fernuni-hagen.de
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AGKI (Koblenz)

IICS (Hagen)

group/project leader

Ulrich Furbach

Hermann Helbig

researchers

Bjorn Pelzer

Tiansi Dong
Ingo Glockner

student assistants

Markus Bender
Timo Eifler

Anna Kampchen
Julia Kramme

Sarah Grebing

Table 5.2: Research personnel of the LogAnswer project

Universitdt in Hagen, Germany. The project is funded by the DFGE| under the
contracts FU 263/12-1, HE 2847/10-1, FU 263/12-2 and GL 682/1-2, running
from 2007 to 2012. Table gives an overview of the project personnel.

The IICS of Hermann Helbig is experienced in computational linguistics and
knowledge engineering. Previous to LogAnswer the group developed the Multi-
Net (Multilayered Extended Semantic Networks) formalism [Hel06] for know-
ledge representation. The IICS also implemented a number of natural language
processing tools and resources related to MultiNet. This includes the knowledge
engineering tool MWR (MultiNet Wissensreprésentatior@ [Gnd00] which en-
ables the knowledge engineer to build and maintain MultiNet knowledge bases,
and which supports the development of MultiNet applications. MultiNet repre-
sentations can be generated automatically with WOCADI (Word Class based
Disambiguation) [Har03|, a parser and semantic interpreter for the German
language. The WOCADI parser translates textual sources into MultiNet, uti-
lizing the IICS-developed HaGenLex (Hagen German Lexicon) [HHOO03|] in
the process. The latter is a semantic digital lexicon covering about 23,000 con-
cepts and 220,000 proper nouns. Using such resources the IICS also already
developed one conventional QA system: InSicht [Har04], features a knowledge
base automatically derived from 2.5 million sentences; the system participated
in several CLEF competitions. With this wealth of experience and assets the
TICS took the responsibility for the natural language and knowledge engineering
aspects of LogAnswer.

The AGKI of Ulrich Furbach covers a wide range of Al topics, but one
focus is on automated reasoning. Noteworthy is the development of the hyper
tableaux calculus and its implementation in the KRHyper series of automated
theorem provers. Besides working on the pure basics of automated reasoning
research, the AGKI has always emphasized the practical usage of deduction,
and the KRHyper provers have been embedded in a number of applications, for
example in e-learning and in a mobile phone information system. Hence in the
LogAnswer project the AR aspects are the responsibility of the AGKI.

Apart from developing and improving the LogAnswer prototype, the re-
search groups have also performed continuous evaluations of the QA system
and its components, both internally and in competitions. The progress of the
project and notable developments and results have been presented on numerous
conferences and workshops and published in several journal articles and other
papers.

5Deutsche Forschungsgemeinschaft (German Research Foundation): http://www.dfg.de
6 MultiNet Knowledge Representation
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Chapter 6

The Deductive Basis -
Hyper Tableaux

As discussed in Section the implementation of a question answering system
faces many hurdles due to the diversity of tasks involved and the multitude of
open research problems. Starting this kind of work from scratch is a daunting
proposition. The LogAnswer QA system therefore consists of several subsys-
tems, many of which have a history starting long before LogAnswer, originally
being developed as stand-alone systems or as components of other applications.
The focus of this dissertation is on the deductive component, the automated
theorem prover E-KRHyper. The work on this prover within LogAnswer was
my responsibility. This chapter will introduce the formal basis, consisting of
the hyper tableaux calculus and its equational extension, the E-hyper tableaux
calculus. The prover itself will then be the described in the next chapter.

6.1 The Hyper Tableaux Calculus

The hyper tableaux calculus was developed by Peter Baumgartner, Ulrich Fur-
bach and Tlkka Niemel4 at the Universitat Koblenz-Landau in 1996 [BEN9G]. It
combines features of analytic tableaux with positive hyper resolution [Rob65b],
resulting in an efficient model generation and proof procedure for first-order
theories. The ability to generate models is an advantage of tableaux over more
purely resolution-based calculi. Traditionally tableaux methods have a problem
in how to deal with variables shared between branches, leading to the concept of
rigid variables and the necessity to apply substitutions across several branches
simultaneously. This is not the case with hyper tableaux, where such variables
are avoided by the means of ground substitutions, as will be explained below.
The main benefits of this approach are the ability to use strong redundancy
criteria, as all variables within a branch are universally quantified, and the fact
that an implementation only has to work on one branch at a time, thereby sav-
ing memory. The calculus also has the desirable feature of proof confluence,
eliminating the need for backtracking on the calculus level. As mentioned be-
fore, the following calculus summary will provide an overview and only focus on
those details relevant for its implementation. For a more thorough description
of the calculus and its completeness proof, see [BFN96].
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6.1.1 Trees and Tableaux

Some preliminary notions specific to tableaux are required for an understanding
of the calculus description.

A tree is a pair (N, E) consisting of a set of nodes N and a set of edges E.
A labeled tree over a set M is a pair (t, A), where t is a finite, ordered tree, and
where A is a labeling function assigning an element of M to each non-root node
of t. The successor sequence of a node N in an ordered tree t is the sequence of
nodes with immediate predecessor N, in the order given by t. A literal tree is
a labeled tree over the set of literals. Given a clause set C, the clausal tableau
T of C is a literal tree (t, ), in which, for each successor sequence Ny,..., N,
in t labeled with the literals K1, ..., K,, there is a substitution ¢ and a clause
{L1,...,L,} € C with K; = L;o for every 1 < i < n. [LMG94, BFN96]

A branch B of a tableau T is a sequence Ny, ...,N,, of nodes in T, with
Ny being the root node of T, each N; being the immediate predecessor of
N;+1(0 < i < n), and N,, being a leaf of T. The notation B - K represents
the tableau obtained from attaching a node labeled with K to the leaf of B,
while B- B’ represents the tableau obtained from concatenating B and the node
sequence B’. The set A(B) = {A(N1),..., A(N,)} represents the branch literals
of B. For the sake of convenience, we usually identify a branch B with its literals
A(B), and hence use the notation L € B if L € A(B). A branch containing a
contradiction is called closed, otherwise it is called open. If all branches of a
tableau T are closed, then T is closed, otherwise T is open. Branches and
tableaux are always finite.

Finally, to formalize the semantics of branches, we introduce the following
notations. Given a formula F', let VF denote its universal closure, i.e. all free
variables in F' are universally quantified. If A is a set of atoms, then A" denotes
the unit clause set of A, with AY = {VA|A € A}. Furthermore, let [A] denote
the minimal Herbrand model of A". These notions are extended to literals and
sets of literals. Thus a branch B is unsatisfiable if there is no model for (A(B))".
Also, [A(B)] = F denotes the minimal Herbrand model of (A\(B))" satisfying
a formula F'. As usual this notion is extended to clauses as well as to sets of
formulas and clauses. Analogous to previous abbreviations, [B] will usually
serve as a shorthand notation for [A(B)].

6.1.2 Hyper Tableaux

Let C be a finite clause set. Hyper tableaux for C are inductively defined as
follows:

Initialization step: A one node literal tree is a hyper tableau for C. Its single
branch is labeled as open.
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Hyper extension step: If

1. B is an open branch with leaf node N in the hyper tableau T, and

2. C=Ay,...,Ap + By,...,By(m,n > 0) is a clause from C (referred
to as the extending clause, and

3. o is a most general substitution such that [B] EV(B1 A... A By)o
(referred to as the hyper condition), and

4. m is a purifying substitution for C'o,

then the literal tree T’ is a hyper tableau for C, where T" is obtained from
T by attaching m 4+ n child nodes M;,..., M,,, N1,..., N, to B with
respective labels

Aiom, ..., Apom,Byon,...,B,om

and labeling every new branch (B - M;),..., (B - M,,) with positive leaf
as open and every new branch (B-Ni),...,(B-N,) with negative leaf as
closed.

The substitution ¢ being ”most general” in this context means that whenever
[B] | V(B1A...ABy)d for some substitution 8, then o < 6 [vars(By A ... A By)].
The existence of a most general substitution for a given clause C' and a branch
can be decided by a finite number (|C]) of SLD resolution steps.

The application of the purifying substitution = is called purification. If a
clause AV B is pure, then V(A V B) = (VA VVB). Thus the purification process
ensures the soundness of the calculus when splitting a hyper tableau branch into
several branches by using an extending clause with multiple head literals.

6.1.3 Redundancy and Model Generation

A common problem in any type of reasoning is the size of the search space, which
can grow significantly even when dealing only with Horn clauses, and more so
when non-Horn induced branching is necessary. While the issue of excessive
derivations is not quite as pronounced as long as equality is not involved, even
a calculus primarily intended for logic problems without equations, such as the
hyper tableaux calculus, is served well by taking measures against unnecessary
inferences.

Additionally this becomes particularly urgent when considering that the
calculus does not prescribe any order in which to carry out the hyper tableaux
inferences, since it aims for proof confluence. As a consequence there is also
no prohibition against making the same inference more than once, possibly
becoming hung up in a cycle. Fortunately this is easily avoided using the notion
of reqularity:

Definition 6.1 (Regularity). A hyper tableau T is regular if none of its branches
contains two nodes N1 and Ny with A(N1) = A(Na).

Ensuring regularity is a common method in tableaux calculi, and it justifies
avoiding certain inferences, including repetitions of earlier extensions. However,
in the hyper tableaux calculus an even stronger pruning method is possible,
based on a criterion of redundancy, and this will lead directly to the model
generation capability of the calculus.
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Definition 6.2 (Redundancy in Hyper Tableaux). A clause C is redundant
with respect to a set of atoms A if [A] = C' for all ground instances C' of C.

A redundancy test may be applied to the label of each new node that is
about to extend a tableau in a hyper extension step. For example, this criterion
allows rejecting inferred literals that are subsumed by earlier branch literals, and
hence redundancy subsumes regularity. Let B be an open branch in the hyper
tableau T for the clause set C. If every clause from C is redundant in B, then B
is finished, and the branch literals form a model for C as per Section [6.1.1] i.e.
[B] = C. By computing multiple finished branches the hyper tableaux calculus
can be used to enumerate models.

6.1.4 Hyper Tableaux Derivations

If a hyper tableau T’ can be obtained from a hyper tableau T by applying clause
C in a hyper extension step to branch B in T with a most general substitution
o and a purifying substitution =, then this will be written as T Fp c,.» T'. Let
C be a finite clause set called the input clauses, then a possibly infinite sequence
Ty,..., Ty, ... of hyper tableaux for C is called a hyper tableaux derivation from
C if Ty is obtained by an initialization step, and Ti—_1 FB;_,,c;_1,0;_1,m_, Ti for
1 > 1, some clause C;_; and some substitutions o;_1 and 7;_1. A hyper tableaux
derivation which contains a closed tableau is called a hyper tableauz refutation.
The hyper tableaux calculus is sound and complete [BFN96], a hyper tableaux
refutation for an input clause set C is derived if and only if C is unsatisfiable. If
a hyper tableaux derivation for C contains a tableau with a finished branch B,
then A(B) represents a model for C, and hence C is satisfiable.

6.1.5 Hyper Tableaux Derivation Example

Figure shows the final hyper tableau in a derivation for the clause set C
consisting of the following three clauses:

(1) pla) «
(2) q(z,y),r(y,b) < p(z)
(3) < q(x,x)

Starting from the root node, the unit clause (1) is used to extend the initial
branch in a trivial hyper extension step that requires an empty substitution
o. Then clause (2) is used in a hyper extension step with ¢ = {z + a}, the
most general substitution such that [p(a)] E V(p(z))o. This causes a split
which requires a purifying substitution 7 = {y < a} to avoid the variable y
being shared between branches. From left to right, the first split branch is the
one extended by —p(a), the substituted body literal of (2). This contradicts the
earlier node labeled with p(a), and the branch is closed immediately. The second
split branch has g(a,a) as its split node label, the purified first head literal of
clause (2). This branch can be extended with the negative unit clause (3), a
step resulting in a single new node labeled with —¢(a, a), and which is therefore
closed. The final split branch caused by the earlier hyper extension with clause
(2) has r(a,b) as its split node label. Here another hyper extension using (1)
and (2) is possible, with the difference that this time the purifying substitution
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m = {y + b} is chosen instead. This results in three split branches, the first one
with —p(a) being closed immediately as above. The other two branches remain
open, since they contain neither any contradiction, nor is it possible to extend
them any further in a non-redundant way - a third hyper extension with (1) and
(2) would only produce new literals if a new purifying substitution was applied,
but the previous two applications have already made use of the entire Herbrand
universe H = {a,b}. Both branches are therefore finished, and each of them
represents a model for the input clause set, i.e. {p(a),r(a,b),q(a,d)} E C and

{p(a),r(a,b),r(b,b)} = C respectively.

™
p(a)
c={z« a}
z={y < df
_‘p( a) ‘I( a, a) ’l“( a, b)
closed
_'Q(aaa) _‘p(a) q(avb) T(bvb)
closed closed finished finished

Figure 6.1: Example: hyper tableau for input clauses (1), (2) and (3)

6.2 The E-Hyper Tableaux Calculus

The hyper tableaux calculus has no native handling of equality, so theories
with equations can only be treated by adding an axiomatization of equality (see
Section . This solution is often highly inefficient due to the large number
of generated axioms. The E-hyper tableaux calculus remedies this shortcoming
by adding equality reasoning to hyper tableaux, using new inference rules that
are in part adapted from the superposition calculus. The E-hyper tableaux
calculus was developed by Peter Baumgartner, Ulrich Furbach and myself [1].
This development preceded LogAnswer and the work on this dissertation, but
it is required for an understanding of E-KRHyper. The following summary of
E-hyper tableaux will therefore focus on the essentials, similar to the foregoing
description of the hyper tableaux calculus. For an in-depth exposition with
proofs we refer to our aforementioned publication, or to its more comprehensive
follow-up [2].

The calculi for hyper tableaux and E-hyper tableaux share many general
ideas, but the changes are nevertheless significant. The addition of equality
to the reasoning process allows replacing semantically equal terms occurring in
clauses with each other, effectively creating new clauses. This is in contrast
to hyper tableaux, where only new literals (or unit clauses) can be derived. A

%)



major problem to overcome here is that the number of generated clauses can
grow excessively (and indeed infinitely), in particular when a naive handling of
equality is utilized. The presence of equations within reasoning problems thus
further compounds the issues discussed in Section so there is a pressing
need to curtail the clause count. Obviously, an ideal method would only gen-
erate those clauses that are necessary for the derivation of a proof. In practice
this ideal is out of reach, but there are indeed methods to limit the inference
results. A core concept used for this purpose in equational reasoning is that of
a term ordering (see Section , which serves to restrict the creation of new
clauses to those cases where the result is “simpler”, loosely speaking, or at least
not more complex than the original clause. But not only can new clauses be
prevented, the creation of a new clause may also make existing clauses unnec-
essary. Redundancy criteria are defined based on the term ordering, allowing
the identification and elimination of dispensable clauses. This is another major
difference to the original hyper tableaux calculus, where anything that has been
derived persists for the remainder of the derivation.

In contrast to the hyper tableaux calculus with its single inference rule, the
E-hyper tableaux calculus makes use of four rules. Three of these deal with
equations, hence taken as a group they will be referred to as the equality rules;
they have been adapted from the superposition calculus. Each equality rule
takes a set of clauses as input and in turn derives a new clause, provided certain
conditions are met. The fourth so-called split rule serves to create a branch split
from a disjunctive clause head. These four inference rules operate on clauses;
they will then be lifted to tableaux in corresponding extension rules.

Further on two additional rules will be introduced which can remove un-
necessary clauses from the tableau. These rules are optional; unlike the four
inference rules they are not required for the soundness and completeness of the
calculus, although their usage is recommended for the sake of efficiency.

As mentioned in Section 2:2.] when describing the equational E-hyper
tableaux calculus in the following, all atoms are assumed to have equational
form.

6.2.1 Inference Rules

The sup-left rule (superposition left) selects a positive unit equation and applies
it to a body literal of another clause.

I’ is not a variable,

sup-left(c) A s[l'l| ~t,B I~ " o is a mgu of [ and I/,
P (A <+ s[r] ~t,B)o lo A ro, and
so Ato

If the sup-left rule is applied with clause C as left premise, D as right premise,
the mgu o and the conclusion F, then this inference instance will be denoted
by Ca D = sup-left(o) E.

56



The unit-sup-right rule (unit superposition right) applies a positive unit equa-
tion to another positive unit equation.

I’ is not a variable,

o is a mgu of [ and I,
if¢ (s~t)o A (I ~r)o,

lo A ro, and

so Ato

unit-sup-right(o)

If the unit-sup-right rule is applied with clause C' as left premise, D as right
premise, the mgu o and the conclusion F, then this inference instance will be
denoted by C, D = nit-sup-right(c’) -

The third equality rule is the ref rule (reflexivity), which is an inference on
a single clause. The ref rule removes a body literal whose both sides can be

unified.
A+—s~t B

(A<« B)o

If the ref rule is applied to clause C' with the mgu ¢ and the conclusion F, then
this inference instance will be denoted by C' = (eq(s) E.

The split rule takes a clause with an empty body and, after the application
of a purifying substitution, it creates a new unit clause for each head literal.

ref(o) if 0 is a mgu of s and ¢

. Ay A e pmEB e
split() Yo T & 7 is a purifying substitution for
! o om Ajy o Ay

If the split rule is applied to clause C with the purifying substitution 7w and the
conclusions Ay +,...,A,, +, then this inference instance will be denoted by
C = split(r) Aq —, ... ,Am .

6.2.2 E-Hyper Tableaux

The aforementioned inference rules derive clauses from clauses. These rules will
now be integrated into extension rules which apply the inferences in order to
extend an E-hyper tableau. However, the tableaux used in the original hyper
tableaux calculus are based on literal trees, where each non-root node is labeled
with a unit clause. This is sufficient for the original calculus, as the set of
non-unit clauses remains fixed throughout the derivation process; there is no
inference method which creates a new non-unit clause. For the new equality
rules this no longer holds true. A hyper tableaux calculus with equality must
be able to store non-unit clauses in its data structures.

Thus, an E-hyper tableau T over a signature ¥ is a labeled tree over the set
of ¥-clauses. The notions introduced in [6.1.1] are extended to E-hyper tableaux
appropriately: A branch B in T is a sequence of nodes Ny,..., N, (n > 0),
and A(B) = {A\(Ny),...,A(IN,,)} is the multiset of clauses in B. The shorthand
C € B will be used for C € A(B). The notation B - C' represents the tableau
obtained from attaching a node labeled with C to the leaf of B, while B - B’
represents the tableau obtained from concatenating B and the node sequence B’.
An initial E-hyper tableau T for a finite clause set C with n clauses Cy,...,C,
(n > 0) consists of a single branch B of length n with A(B) = C.
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6.2.3 Extension Rules

If T is an E-hyper tableau with branch B, then T can be extended by application
of the following extension rules. The Equality-extension consolidates the three
equality inferences:

there is a clause C € B,
a fresh variant D of a positive unit clause in B, and
Equality B £ a substitution o such that
B.-E C,D =gy E with R € {sup-left, unit-sup-right} or
C = ref(o) FE, and
B contains no variant of F

The Split-extension applies the split rule to a branch:

there is a clause C € B, and
B a substitution 7 such that
Split if C = Ay .. A, —
. d . d split(m) 411 ) s {dm )
B4« o Brdm and B contains no variant of
A;+ foranyi=1,....,m

The annotation ¢ marks the derived clauses as decision clauses.

6.2.4 Redundant and Subsumed Clauses

As mentioned above, a major problem to overcome in equality treatment is
to keep down the number of generated clauses. For this it is necessary to
define criteria by which clauses can be identified as not useful for the reasoning
process. The first criterion is that of redundancy, a notion already introduced in
Section but which here requires a definition specific to E-hyper tableaux:

Definition 6.3 (Redundancy in E-Hyper Tableaux). Let D be a ground clause
and C a set of clauses. Then C' denotes the set of all ground instances of
all clauses in C. The subset of clauses smaller than D in C is identified by
Cp={C el | D> C}. A ground clause D is redundant with respect to a
clause set C if Cp = D. If D is a non-ground clause then D is redundant with
respect to C if every ground instance of D is redundant with respect to C.

Technically the criterion of redundancy can offer a justification for the elim-
ination of numerous clauses within a derivation. However, in practice this is
difficult to exploit to its full potential, since testing a clause for redundancy
essentially requires proving it to be a theorem of some set of clauses - which
is exactly the generally undecidable task that theorem provers struggle with
in the first place. Therefore redundancy is often only determined and utilized
in certain favourable circumstances, like the premise clause of some inference
being made redundant by the conclusion clause. A general redundancy check
for all derived clauses is not feasible, and thus redundancy will often remain
undetected.

Another criterion for the irrelevance of a clause that is often simpler to test
is that of nmon-proper subsumption.

Definition 6.4 (Non-Proper Subsumption). A clause C' non-properly subsumes
a clause D if there is a substitution o such that Co = D, and conversely, D is
non-properly subsumed by C.
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In the description of the E-hyper tableaux calculus there will be an explicit
distinction between redundancy as defined for E-hyper tableaux and non-proper
subsumption. In a wider sense, when discussing different calculi and theorem
provers, the general notion of redundancy and its elimination covers all such
criteria and methods that deal with detecting and then simplifying or removing
unnecessary clauses.

The criteria introduced in this section are utilized by he following rules which
can change or remove clauses that have already been added to the tableau.

6.2.5 Deletion and Simplification Rules

Unlike the hyper tableaux calculus, the calculus explicitly provides methods
that destructively modify the E-hyper tableaux in order to remove unwanted
clauses. The Del rule (deletion) eliminates redundant or non-properly subsumed
clauses (or more specifically, it overwrites such a clause with a trivially true unit
clause).

(1) C is redundant with respect to B - By,
B-C@.B, B, .p ) or some clause in B - By non-properly
B t~td.B; B, ! subsumes C, and
(2) By does not contain a decision clause.

Del

The notation (9 indicates that if the clause in the premise is a decision clause,
then the resulting overwritten clause remains a decision clause.

The Simp rule (simplification) overwrites a clause with one that is smaller
according to the term ordering.

B-C-By gD,
if ¢ C is redundant with respect to B- D - By,
and B; does not contain a decision clause.

B-C@.B; B,
B-DW.B; B,

Simp

In both rules, the scope of clauses that may subsume the premise clause C' or
make it redundant is limited to those above C' in the branch B and those below
until the first decision clause. This preserves the soundness of the calculus. A
decision clause occurs after a branch split. If there is a decision clause below C,
then C is a member of at least two branches resulting from concatenation to B
in a Split extension. Only those clauses occurring above the first decision clause
below C' are guaranteed to be members of all branches resulting from splits
below C, and if any of these clauses make C redundant (or subsume C' non-
properly), then C' must be redundant (or non-properly subsumed) in all lower
split branches. On the other hand, if a clause exclusively belonging to a lower
split branch were used to overwrite C, then C' would have been destructively
modified or removed from all the other lower split branches as well, even though
C may not have been redundant (or non-properly subsumed) in any of these.

6.2.6 E-Hyper Tableaux Derivations

A branch in an E-hyper tableau T is closed if it contains the empty clause .
A branch is open if it is not closed. An E-hyper tableau is closed if all of its
branches are closed, and it is open if at least one of its branches is open.
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An E-hyper tableaux derivation of a clause set C = {CY, ..., Cy,} of X-clauses
is a possibly infinite sequence of tableaux D = (T;)o<i<, such that

1. Ty is the clausal tableau over X that consists of a single branch of length
n labeled by the clauses C,...,C,, and

2. for all ¢ > 0, T,y is obtained from T; by a single application of the
Equality, Split, Del or Simp rule to an open branch in T;.

A finite E-hyper tableaux derivation which contains a closed tableau is called
an E-hyper tableaur refutation. The E-hyper tableaux calculus is sound and
complete [I, 2], an E-hyper tableaux refutation for an input clause set C is
derived if and only if C is unsatisfiable.

If an E-hyper tableaux derivation for C contains a tableau with an open
branch B, then a model may be obtained from this branch. However, here
this is more complex than the model generation in the original hyper tableaux
calculus, so it warrants its own section.

6.2.7 Model Generation

Let B be an open branch in the E-hyper tableau T for the clause set C. If the
conclusion of every inference applied to the clauses of B contains at least one
clause that is redundant with respect to B or non-properly subsumed by clauses
in B, then B is ezhausted. In that case the set of positive unit clauses in A(B)
represents a model for C, and C is satisfiable.

Note that compared to the full calculus description in [I], this definition
of an exhausted branch is a severely simplified version which pertains to the
implementation only.

A matter of further explanation is the choice of a purifying substitution =
in the Split rule. So far no requirements have been posited apart from 7 being
a ground substitution. If the set of function symbols in the signature of a given
clause set contains at least one non-constant symbol, then the respective Her-
brand universe is infinite. This means that there will often be an infinite number
of purifying substitutions available, which is obviously a problem regarding the
size of the search space, and especially when attempting to exhaust a branch.
Therefore the eligible purifying substitutions will be limited to those that are
irreducible. A substitution o is reducible with respect to a clause set C if there
is a term ¢ € ran(o), a unit clause | ~ r <€ C and a substitution « such that
t[ly] and Iy > rv. Accordingly, a substitution is irreducible if it is not reducible.

6.2.8 E-Hyper Tableaux Derivation Examples

Figure shows an E-hyper tableau that has been derived from the input
clauses (1)-(6), which form the initial branch segment. The right branch of the
tableau is open, and no further extension steps can be applied. Clause (14)
cannot be split, as the resulting decision clause r(b) ~ t + is already an element
of the branch. Del steps can be used to further overwrite clauses (7) (redundant
with respect to clause (8)) and (13) (redundant with respect to clause (14)).

A different example is found in Figure [6.3] which illustrates the usage of the
Del and Simp rules. Starting with the input clauses (1)-(6), Equality extensions
are used to construct the tableau consisting of clauses (1)-(14). Clause (10) is
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(1) 2=a, r{z)=t — ¢(a,z)=t
|
@) ﬂx.:cl;)’—'g(x) «

(3) p(f(lasI)Jzt q(z,y)=t « r(y)=t

@) r{le'—“t —

(5) « Jlo(g(x))'—*t

6) «— qla)=t

Equality (sup-left) (3), (4)

@ p(fla,x)=t, q(z,b)=t — t=t

Equality (ref) (7)

) p(fla.z))=t, g(z.b)=t <

Split (8)
m={x < a}

d d

©) p(fla, a))=t <
Equality (unit-sup-right) (2), (9)

(10) g(a,b)=t
Equality (sup-left) (1), (10)

(1) p(g(a))=t « (13) b=a, r(b)=t « t=t
Equality (sup-left) (5), (11) Equality (ref) (13)

(12) « t=t (14) b=a, r(b)=t «
Equality (ref) (12) open
O
closed

Figure 6.2: Example: E-hyper tableau for input clauses (1) - (6)

non-properly subsumed by clause (14) and can thus be deleted, replacing it with
(10’) =t ~ ¢ <. Clause (9) is redundant with respect to clause (12) and the
simpler clause (3). The Simp rule replaces clause (9) with (9’) = g(a) ~ ¢ +.
As (97) itself is non-properly subsumed by (3), it can be deleted in a further
step. Note that clause (1) cannot be deleted by clause (14), because there is a
decision clause between the two clauses in the branch.
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©) q(g(a))=t. r(g(a))=t — p(f(b)]=t

Equality (sup-left) (2), (6)
™ qlgla))=t, r(gla))=t — t=t

Equality (ref) (7)
® glgla))=t, r{gla))=t <

Equality (sup-left) (5), (9) Equality (sup-left) (4), (10)

(11) g(z)=z — t=t (13) r{z)=t « t=t

| Equality (ref) (11)
(12) g(x)=x — (14) r{@)=t <

Del (10), (14)
Simp (3), (9), (12)

Equality (ref) (12)

T

©
=
=
2
=

1l

o

T

1

(@) qla)=t « (10 t=t « ¢

| |
(11) g(z)=z — t=¢t (13) r{z)=t — t=t
| |
(12) g(z)=z « (1) T(z)=t —
open open

Figure 6.3: Example: E-hyper tableau for input clauses (1) - (6)
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6.2.9 Hyper Extension in E-Hyper Tableaux

The E-hyper tableaux calculus takes its name from the original hyper tableaux
it is based on. While it adds an efficient handling of equality, a critical ob-
server might argue that it has lost the “hyper property” of the original calculus.
In hyper tableaux the hyper extension inference (see Section unifies all
negative literals of the selected clause with branch labels, thereby emulating
hyper resolution in its manner of processing multiple clause literals in a single
inference step. Obviously this can be advantageous, as it allows deriving some
crucial conclusion in less steps. For example, consider the clause set C which
contains at least these clauses:

Ur: q+
Un: gn
C: P qi,---54n
D: <+»p

The units Uy, ..., U, can be added to the tableau immediately, and the resulting
branch can be used in a hyper extension with the clause C' to derive p, which
leads to a refutation with the clause D. The hyper extension on C' combines n
unification operations into one inference. An altered calculus without the “hyper
property” might break this down into separate steps, but that would require the
storage of intermediate results. Worse, as the set C may contain further clauses
and since calculi generally do not prescribe in which order to apply inferences, a
derivation might become sidetracked by other inference possibilities after a few
intermediate results.

Fortunately this is not a limitation for E-hyper tableaux. When specifying a
calculus there is a motivation to restrict the number of different inference rules
to the essentials, in order to simplify the proofs of soundness and completeness,
and also as a matter of elegance. During actual usage of E-hyper tableaux a
rule like the hyper extension could be very practical, and indeed this original
rule can still be used, because it can be regarded as a shortcut that combines
multiple applications of the E-hyper tableaux rules defined in Section [6.2.1

Proposition 6.1. The hyper extension step from the hyper tableaux calculus is
applicable to E-hyper tableaux, as it is subsumed by the inference rules of the
E-hyper tableauz calculus.

Proof. Let T = (t,\) be an E-hyper tableau for a clause set C with an open
branch B with leaf node N. Let U C A(B) be the set of positive unit clauses
labeling B. Let C € C be a clause with C' = Ay,..., Ay, + By,..., By, (myn >
0). Let o be a most general unifier such that [U] = V(BiA...ABy,)o (and hence
[B] E V(Bi A...ABy)o), analogous to the hyper condition (see Section [6.1.2)),
and let m be a purifying substitution for Ajo,..., A,,o. We show that with
the inference rules of the E-hyper tableaux calculus it is possible to derive the
tableau T' which differs from T only in that branch B is appended by the
branch segment B’ which contains no decision clause, and that the split rule
is applied to B - B’ (when m > 2) with the purifying substitution 7 and the
conclusions Ayom <,...,A,om <. These conclusions are equivalent to the
nodes resulting from an application of the hyper extension step to a hyper
tableau branch labeled with U and the extending clause C'.
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Since [U] = V(B1 A ... A By)o, the branch B must contain a positive unit
clause U; of the form L; + with B;o 2 L; for each 1 <1 < n (although it may
be the case that Uy = U; for distinct body literals By, B; of C with k # ).
This allows for a sup-left inference with C' as left and U; as right premise and
an mgu oy, for each B; in C, with B} being the rewritten atom of that body
literal in the resulting clause. Starting with the first body literal, there is then
the inference C, U1 =gypiefe(oy) C1 = A101, ..., Ano1 < Bio1, Baoy, ..., Byoy.
C; is attached to the leaf of B by the Equality-extension rule. Recall that
B;o 2 L; for each 1 < i < n. This means that B; and L; unify, and therefore
the rewritten B has the form of a trivial equation t ~ t. The resulting clause
(' is thus available for a ref inference on its literal B oy, using the empty mgu
€, and resulting in the clause C] = Ajoie,..., Apoie < Bsoie, ..., Byoie.
This clause C] is again eligible for a sup-left inference and so on, meaning that
a sequence of alternating sup-left and ref inferences can be carried out, each
double inference of the form:

C; = Aioie...0i6,..., An01€...0;€ +—
Biyi01€...04€,...,Byo1€...04€
D;
:>sup—|eft(a'i+1)
Cﬁ,l = A10'16...Ui60i+1,‘..,Am0'16.‘.0i60'7;+1 —
/
Bi, 01€...0i€0:41,...,Bpo1€...0i€0:11
= ref(e)
i
i1 = A10‘16...0'i+16,...,14m0'16...0’i+16(—
Bi+201€~--Ui+1€7~-~7Bn016~-~0i+1€

Each conclusion clause is attached to the node created in the previous step
of the sequence, finally resulting in the branch B -B’, with the leaf node labeled
with the final clause

Cl = Ajo1€...006,...,Apoi€...0pn€

Since the most general substitution ¢ allowing [U] = V(B1A...AB,,)o exists
by definition, the most general unifiers o; (and the trivially empty €) must exist
as well for all steps of the inference sequence, and o0 = oi€e...o0,¢e. The last
clause C/, can therefore also be written as

Cl = Ao,...,Apo +

We now compare this result to a hyper extension step performed on C' and
a branch that includes U.

If m = 0, then C/ is the empty clause (C/, = ), and B - B’ is closed. The
corresponding hyper extension would only add the negative leaves based on
the body literals, and these resulting branches are closed immediately, thereby
closing the branch that includes U.

If m = 1, then C, is a unit clause. The corresponding hyper extension would
add a single positively labeled node (Aj0). No purification is required, hence
7 is empty, and the negative leaves are closed immediately, so they are of no
concern for this proof. The single positive leaf is equivalent to the leaf of B -B'.
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If m > 2, then the corresponding hyper extension step uses the purifying
substitution 7 to append m positive leaves labeled with Aiomw, ..., Ajom, while
the negative leaf branches again are closed immediately, so they can be disre-
garded. In this case a split inference is applicable to C/, with the same purifying
substitution 7. The Split-extension rule attaches m nodes to the leaf of B - B,
labeled with the positive unit clauses Ajom <, ..., A, om <. Again, these
nodes are obviously equivalent to the nodes derived by the hyper extension.

In summary, for every node derived by hyper extension on a clause C' and a
set of literals/unit clauses U an equivalent node can be derived by the means
of the E-hyper tableaux calculus, and if the hyper extension closes a branch,
then so do the rules of the E-hyper tableaux calculus. The hyper extension step
is therefore subsumed by the E-hyper tableaux calculus, and it can be used on
E-hyper tableaux without deriving any results that would be unavailable using
only the inference rules of the E-hyper tableaux calculus. O

The above justifies the use of a hyper extension-like step within an imple-
mentation of the E-hyper tableaux calculus. This adapted hyper extension may
not summarily replace its constituent inference steps, as the intermediate results
may be necessary for the soundness and completeness of the calculus. However,
it can serve as a shortcut, for example when a heuristic inference selection has
estimated that the result can lead to a quick refutation. It is also possible that
the result of this shortcut inference makes its selected clause redundant, and in
that case the intermediate results are redundant as well, and the constituent
inferences no longer have to be carried out one by one. As such this adapted
hyper extension is an optimization with regard to an efficient operation, and
theorem provers often contain many such shortcuts beyond the basic calculus
implementation.
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Chapter 7

The Theorem Prover
E-KRHyper

This chapter will introduce the automated theorem prover E-KRHyper, the im-
plementation of the calculi described in Chapter [6] E-KRHyper forms the de-
duction component of LogAnswer, and the work on this prover has been the main
area of my research. Later chapters will detail the embedding of E-KRHyper
into the QA framework of LogAnswer and the specific adaptations that became
necessary, whereas the scope of this initial system description remains confined
to the prover itself and its operation on first-order logic reasoning problems in
general.

7.1 Background and Development History

E-KRHyper [16] (Knowledge Representation Hyper Tableaux with Equality) is a
theorem proving and model generation system for first-order logic with equality.
It implements both the hyper tableaux calculus (see Section and the E-hyper
tableaux calculus (see Section . E-KRHyper is geared towards embedding
in knowledge representation applications, and it features an assortment of logic
extensions to support such usage, for example stratified negation as failure,
arithmetic evaluation and Prolog-like operators for lists and sets.

The prover is built upon the code of KRHyper [Wer03], which was developed
at the Universitat Koblenz-Landau as a first-order logic theorem prover and
model generator based on the original hyper tableau calculus. After the creation
of this calculus KRHyper passed through several prototype generations written
in Prolog. This language offered the initial advantage of built-in unification and
indexing operations. At the same time these operations were not as efficient as
tailor-made solutions would have been, and this became increasingly important
regarding an integration of KRHyper into real-world applications. This has
led to the current version, written in the functional programming language
OCamlE] Inofficially referred to as KRHyper3, the system was first released in
2003. It was implemented and subsequently maintained by Christoph Wernhard.
KRHyper has been used as an embedded knowledge processing engine in several

LObjective Caml: http://www.ocaml.org
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applications including content composition for e-learning [BEGHS04, [BF05],
document management [BEGHT03|, database schema processing [BEGHK04],
semantic information retrieval [BB04], ontology reasoning [BS06] and planning
[BMO04]. An excerpt of KRHyper has been ported to Java MEE| and is employed
for user profile matching on mobile devices [SK05].

I began development of E-KRHyper as part of my diploma thesis [I4] and
based it on KRHyper version 5.4.6, which is the most current version at the time
of this writing, and which likely must be seen as the final version of the original
KRHyper. Originally intended as an experimental fork of KRHyper for the
testing of the E-hyper tableaux calculus, E-KRHyper has gone beyond the initial
introduction of the equality rules and remained in continuous development since
2007. By now it subsumes and extends the functionality of its parent system
while remaining backwards compatible and offering equal or better performance,
including the correction of some flaws. Apart from its embedding in LogAnswer,
E-KRHyper is used in the controlled natural language processor PENG Light
[Sch09], and it is part of the HETSE| framework for formal methods integration
and proof management.

7.2 Usage Information

E-KRHyper is available under the GNU General Public License at the E-
KRHyper websiteﬁ Its compilation requires an installation of OCaml 3.09.3
or a more recent version. Some supporting scripts coming with E-KRHyper dis-
tribution are written in Prolog and thus require a Prolog-installation, but none
of them are necessary for the basic operation of E-KRHyper. The prover is
intended for installation under POSIX-compliant operating systems like Linux
and Mac OS and an installation within the Unix-like Cygwirﬂ environment on
Windows-based systems is supported as well. E-KRHyper has also been com-
piled on Windows without Cygwin, but this is experimental and unsupported.
For reasons of backwards compatibility to the original KRHyper, E-KRHyper
can read input files in the Prolog-like PROTFEIN syntax [BFK94], but unlike its
predecessor it can do so natively in both prefix and infix notation, without re-
quiring external input conversion scripts. E-KRHyper also accepts input in the
TPTP syntax for first-order logic, both in the CNF-notation for clause normal
form input and in the FOF-notation for formula expressions. A built-in clausifier
(see Section automatically converts formula expressions into the internally
used clausal representation. This function can also be used without any proof
derivation, allowing E-KRHyper to operate as a clausifier for other provers.
The system can handle the include-command of the TPTP syntax by which
shared axiom sets from the TPTP can be loaded automatically. E-KRHyper
also supports loading multiple files with different notational standards.
Derivation results can be printed in the native tableaux-oriented syntax or
in the TPTP and CASC-compliant SZS result status notation. In the case of
a refutation E-KRHyper can print a proof for the closed tableau, and in the

%http://wuw.oracle.com/technetwork/java/javame

3Heterogenous Tool Set:
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets

“http://userpages.uni-koblenz.de/~bpelzer/ekrhyper

Shttp://cygwin.com
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Figure 7.1: Proof visualization with E-KRHyper and Graphviz

case of an exhausted branch it can print the model for that branch, and it can
print proofs for the literals of that model. The system can enumerate models,
i.e. continue with other branches once one model has been found. Proofs are
printed in a Prolog-compatible tree representation which is primarily intended
to be machine-readable. These proofs contain only the relevant inference steps.
The E-KRHyper distribution includes support scripts that can convert proof
output into a human-readable inference sequence or into a graph specification
that can be visualized using Graphvizﬂ Figure shows such a graphical proof
representation for the refutation of this clause set:

(1) < p(a),q(a)

(2) < r(z)

(3) a(z),r(b) + p(x)
(4) p(f(a))

(5) flax) ~z <

As E-KRHyper is geared towards embedding, it features an interactive mode
in which it can communicate with applications or the user over STDIN and
STDOUT or other user-specified channels. Numerous flags and parameters
allow the user to control the proof derivation, including the specification of
memory and time limits.

Shttp://www.graphviz.org

69


http://www.graphviz.org

7.3 Proof Procedure

A calculus usually does not prescribe the order in which its inference rules
should be applied, and for proof-confluent calculi like the hyper tableaux and
the E-hyper tableaux calculus this order should not matter regarding soundness
and completeness. However, an implementation that is intended as an effective
tool must take matters of efficiency and fairness into account in choosing when
to apply which inference rules to which premises. An unfair strategy can miss
even simple refutations. Consider this example clause set:

(1) p(f(z)) + p(=)
(2) pla)
(3) « p(f(a))

Clause (1) can be applied in a hyper extension step to the literal created by
the unit (2), resulting in a new tableau literal p(f(a)). Now (1) can be applied
again to that new literal, and then to the result of that inference, and so on.
This cycle can go on indefinitely, while a single application of (3) to p(f(a))
could have closed the tableau.

Actually, this example already assumes some consideration for efficiency. An
even cruder strategy could keep applying clause (1) to p(a) over and over again.
A regularity check would recognize that the result is already found in the branch
and thus prevent it from extending the tableau indefinitely, but this check would
not prevent the repeated futile attempts at applying (1) to p(a).

Many design choices in the original KRHyper were inspired by deductive
databases, both due to the intended usage of the system and to the background
of its developer. The overarching strategy is based on semi-naive evaluation
[U1188], a technique that seeks to minimize the repetition of inferences with the
same premises while ensuring fairness. The pseudo-code Algorithm shows
the basic semi-naive evaluation strategy, slightly adapted to the terminology of
theorem provers.

Algorithm 7.1 The semi-naive evaluation strategy has its roots in deductive
databases, and it is shown here using ATP terminology.

facts := unit clauses from input reasoning problem:;
rules := input reasoning problem \ facts;
conclusions := all inferences with rules and facts;
while (conclusions # {}) A (contradiction not found) do
newFacts := conclusions;
conclusions := all inferences with newFuacts,
using other premises from rules U facts;
facts := facts U newFucts;
end while
if contradiction found then
return contradiction
else
return fixed-point
end if
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The algorithm maintains two principal sets, the facts and the rules, with
the former being the unit clauses and the latter being all other clauses. The
rules should not be confused with the inference rules. Generally the rules are
applied to the facts in order to produce new facts. Initially all hyper extension
inference possibilities with premises from facts and rules are exhausted, and the
results end up in conclusions a temporary storage. Then a loop begins. The
conclusions are saved in newFacts. All inference possibilities that use at least
one of the recently derived result in newFacts as a premise are exhausted, with
the new results being stored in conclusions. At the end of the loop iteration
the saved inference results in newFacts are appended to the facts. The loop
restarts, unless a contradiction has been found, or there were no new inference
results in the last iteration, indicating that a fixed-point has been reached.

7.3.1 Proof Procedure for Hyper Tableaux

The original hyper tableaux calculus uses a literal tree, and the hyper extension
rule derives only literals. For the original implementation in KRHyper this
means that that the semi-naive evaluation could be applied to hyper tableaux
in a straightforward manner, with facts storing the literals and rules being the
fixed set of clauses. The only major difference is the treatment of splitting:
When selecting a non-Horn clause for hyper extension, the resulting positive
literals are disjunct, so only one of them can be added to the conclusions, while
the others must be stored separately. When a branch is closed or exhausted, the
prover backtracks to the most recent split and selects one of the other stored
disjunct literals instead. The implementation can thus be seen as having two
levels: The upper level is a branching control algorithm that handles splitting
and backtracking in the hyper tableau, while the embedded lower level is a
semi-naive evaluation loop that computes the linear branch sections between
splits.

Both levels also cooperate to ensure fairness by incorporating iterative deep-
ening. All inference results have their weight compared against a weight limit,
and if a result exceeds this limit, then it is discarded and the node of the first
such transgression is marked. KRHyper and E-KRHyper offer two ways of
measuring the weight. One is to use the term depth and one is to use the term
size.

Definition 7.1 (Term Depth). The term depth is a mapping of terms to the
natural numbers. Given a term t, the term depth of t is recursively defined as

follows:

e Ift is a constant or a variable, then the term depth of t is 1.

o Ift = f(s1,...,8n) for a function symbol [ with arity n and subterms
81,...,8n, then the term depth of t is 1 + the maxzimum term depth of
S1y-+-4,8n-

The literal depth of a literal is determined by treating its atom as a term (i.e.
the predicate symbol as a function symbol) and measuring the term depth. The
clause depth of a clause is equal to the maximum literal depth of its literals.
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The term size on the other hand counts the number of symbol occurrences.

Definition 7.2 (Term Size). The term size is a mapping of terms to the natural
numbers. Given a term t, the term size of t is recursively defined as follows:

e Ift is a constant or a variable, then the term size of t is 1.

o Ift = f(s1,...,8n) for a function symbol [ with arity n and subterms
S1,---,8n, then the term size of t is 1 + the sum of the term sizes of
S81y---4,8n-

The literal size of a literal is determined by treating its atom as a term
(i.e. the predicate symbol as a function symbol) and measuring the term size.
The clause size of a clause is equal to the maximum literal size of its literalsm
Generally the size is the preferred weight measure, rather than the depth. The
size corresponds more closely to the number of rewritable positions in a term
and is therefore a more reliable indicator of the amount of subsequent inferences
a result can trigger, an important estimate in equational reasoning. However,
when dealing with non-equational problems there is no clear advantage to either
method.

Using the weight measure to discard results ensures that the semi-naive eval-
uation loop terminates when combined with a hyper tableau regularity check,
because that way no result can be added more than once, nor can the results
grow indefinitely. In other words, the lower level will always compute a finite
linear branch segment, and thus it is guaranteed that the upper level takes
over eventually. Naturally, discarding results affects the completeness, so if no
contradiction is found, branches may have to be recomputed with an increased
weight limit, hence the iterative deepening aspect. The details will be explained
below.

The algorithm in KRHyper forms the basis for the strategy in E-KRHyper,
and to ensure backwards compatibility E-KRHyper can fall back to this original
strategy. Thus it remains an integral part of the current prover and is worth a
detailed description. Algorithm[7.2]depicts the lower level of the original KRHy-
per strategy in pseudo-code. The similarities to the basic semi-naive evaluation
should be obvious, and the only significant difference is an initial distinction
between the root node and split nodes further down in the hyper tableau. In
the former case the facts and rules are initialized by the input problem and
all inference possibilities between these sets and within the weightLimit are ex-
hausted, while for a split node the facts and rules are already non-empty, and
only the split literal labeling the node is used for the initial inferencing. After
that the KRHyper loop closely follows the semi-naive evaluation loop. A differ-
ence is that non-unit results are stored separately in disjunctions. These do not
participate in the reasoning right away, they will rather be used for splitting in
the upper level algorithm, as shown in Algorithm

Given a node, first an attempt is made to extend the hyper tableau at this
node in a linear manner without splitting, by calling up the lower level semi-
naive evaluation. If this terminates, then with one of two possible results, stored
in branchResult. If the branch has been closed, there may still be unprocessed

TIntuitively it might make more sense to compute the clause size as the sum of its literal
sizes, but in practice this has proven less useful, as it tends to lead to excessive clause size
measures.
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Algorithm 7.2 The lower level in KRHyper uses semi-naive evaluation to
compute the linear branch segments between splits.

function EVALUATE_BRANCH_AT_NODE(node)

if node = rootNode then
facts := unit clauses from input reasoning problem:;
rules := input reasoning problem \ facts;
conclusions := all inferences with rules and facts;

else
conclusions := {split literal labeling node}

end if

while (conclusions # {}) A (contradiction not found) do
newFacts := unit clauses from conclusions;
disjunctions := disjunctions U (disjunctions from conclusions);
conclusions := all inferences with newFacts,

using other premises from rules U facts;

conclusions := conclusions \ results above weightLimit;
facts := facts U newFacts

end while

if contradiction found then
return closed

else
return erhausted

end if

end function

branches that resulted from splitting. If this is the case, the first such split node
is taken from the unprocessedSplitStack, facts and disjunctions are backtracked
to their appropriate state for the split node, and the computation of the new
branch begins by a recursive call to the upper level algorithm. If on the other
hand no unprocessed split branches remain, then the hyper tableau is closed,
and KRHyper finishes the computation with a closed result.

If the lower level semi-naive evaluation indicates an ezxhausted branch in
branchResult, then there are again different cases determining how to proceed.
There may still be unused splitting opportunities that have accumulated in
disjunctions, and in this case the branch is not yet truly exhausted. Instead one
of the disjunctions is selected and used for splitting: the disjunctive literals are
transferred to the unprocessedSplitStack where they represent the unprocessed
split branches attached to the leaf of the current branch. The first of these is
selected and its computation begins. If on the other hand no open disjunctions
are left, then the branch may indeed be exhausted. If no inference result was
discarded due to exceeding the weight limit, then a true fixed-point has been
reached, the branch being exhausted and representing a model. However, if
even one result was discarded, then the algorithm may have missed important
inferences that could have closed the branch. In that case the weight limit is
increased, and the branch is recomputed starting from the node where the first
overweight result occurred.
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Algorithm 7.3 At the upper level the KRHyper branching control loop handles
splitting and backtracking.

function EXTEND_TABLEAU_AT_NODE(node)
branchResult == EVALUATE_BRANCH_AT_NODE(node);
if branchResult = closed then
if unprocessedSplitStack # {} then
nextNode := pop(unprocessedSplitStack);
facts := backtrack(facts, nextNode);
disjunctions := backtrack(disjunctions, nextNode);
EXTEND_TABLEAU_AT_NODE(nextNode)
else
return closed
end if
else
if disjunctions # {} then
disjunction := take a disjunction from disjunctions;
push(literals of disjunction, unprocessedSplitStack);
nextNode := pop(unprocessedSplitStack);
EXTEND_TABLEAU_AT_NODE(nextNode)
else
if weightLimit has been exceeded then
increase(weightLimit);
nextNode := node of first weightLimit transgression;
facts := backtrack(clauses, nextNode);
disjunctions := backtrack(disjunctions, nextNode);
EXTEND_TABLEAU_AT_NODE(neztNode)
else
return ezhausted
end if
end if
end if
end function

7.3.2 Proof Procedure for E-Hyper Tableaux

As mentioned above, the aforementioned algorithm also exists in E-KRHyper
and can be used for non-equational reasoning problems. However, for the full
implementation and usage of the equational E-hyper tableaux calculus some
changes are necessary. The basic two-level structure remains, though.

The pseudo-code in Algorithm [7.4] summarizes the lower level evaluation.
As the equational calculus can derive new non-unit clauses, the clear distinction
between the dynamic facts and fixed rules no longer applies, and instead one
dynamic set of clauses is used. Naturally, the inference phases here consist of
the rules of the E-hyper tableaux calculus, though as per Proposition the
hyper extension step is also included as a shortcut inference. Another difference
is that inference results exceeding the weightLimit are not discarded outright,
rather they are saved in the overweight set. Finally, reduction phases serve to
reduce the amount of clauses in the system by exploiting various redundancy
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Algorithm 7.4 The lower level in E-KRHyper uses semi-naive evaluation to
compute the linear branch segments between splits.

function EVALUATE_BRANCH_AT_NODE(node)

if node = rootNode then
clauses := input reasoning problem;
clauses := reduce clauses by clauses;
conclusions := all inferences with clauses;
overweight := inference results above weightLimit;
conclusions := conclusions \ overweight

else
conclusions := {split literal labeling node}

end if

conclusions := reduce conclusions by clauses;

while (conclusions # {}) A (contradiction not found) do
clauses := reduce clauses by conclusions;
disjunctions := disjunctions U (disjunctions from conclusions);
newClauses := conclusions \ disjunctions;
conclusions := all inferences with newClauses,

using other premises from clauses;

overweight := overweight U (inference results above weightLimit);
conclusions := conclusions \ overweight;
clauses := clauses U newClauses;

end while

if contradiction found then
return closed

else
return ezhausted

end if

end function

criteria. A reduction phase performs numerous operations on each clause of the
set to be reduced, most of which are covered by the Del and Simp rules, but
which also include special cases of the Equality rules.
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Let C be a clause to be reduced and let S be a set of clauses that can
be used to reduce C, then the following reduction operations are attempted
exhaustively:

e climination of every positive literal A € C for which there is a negative
unit < D € S with A 2 D,

e climination of every negative literal =B € C for which there is a unit
D +€ S with B 2 D,

e rewriting every subterm s € C with ro if there is a positive unit equation
l~r+eS withl>rand s 2 [ (demodulation),

e climination of negative literals with trivial equational atoms of the form
t~t,

e climination of negative literals with equational atoms that have one vari-
able side: if C = A < B,z ~ t, then replace C with ¢/ = Ao < Bo
where 0 = {z « t},

e limiting multiple occurrences of the same literal to one,
e discarding C' if it is non-properly subsumed by some clause D € S,

o discarding C if it contains a positive literal with a trivial equational atom
of the form ¢ ~ ¢,

e discarding C if it contains the same atom both in a positive and in a
negative literal.

The reduction of a clause C' thus either results in its minimal canonical form
C™™"_ or in the abandonment of C. As C™™ may turn out to be the empty
clause, exception handlers monitor the reduction phases and close the current
branch immediately if a reduction to a contradiction is possible.

The E-hyper tableaux calculus only specifies non-proper subsumption, as
proper subsumption could negatively affect the model enumeration capabilities.
For example, while the clause C' = ¢(x) < properly subsumes D = ¢(a), d(b) <,
a tableau for C alone would only lead to the model {¢(x)}, whereas for C' and
D together we obtain two models, {c(z)} and {c(x),d(b)}. As it is often more
important to solve a reasoning problem (i.e. find one model or one refutation)
rather than to enumerate its models, E-KRHyper can optionally also use proper
subsumption. Formally this is easily justified by non-proper subsumption and
the law of absorption: Recall that a clause C' properly subsumes a clause D
if Co C D for some substitution o (see Section 2.1.5). Let us decompose D
into D = Co U R, such that R is the set of the other literals in D that are not
necessarily instances of literals in C. By the law of absorption lifted to FOL, C
is equivalent to the formula C' A (C'V R'), where R’ is a universally quantified
generalization of R that shares no variables with C. C'A(C'V R’) can be divided
into the two clauses C and C'U R, and the latter non-properly subsumes D.
Thus if C properly subsumes D, then C is equivalent to a clause set that non-
properly subsumes D. In practice proper subsumption is difficult to compute,
and E-KRHyper usually only tests for proper subsumption when C' is a unit,
staying with non-proper subsumption for all other cases. See Chapter for
more details on the difficulties of clause indexing and subsumption.
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The applications of Del and Simp are limited to certain segments of the cur-
rent branch, specifically to the nodes below the most recent split. E-KRHyper
may observe this limitation, but this is optional. The calculus specification con-
siders tableaux as relatively static objects where clauses in a split branch should
not make changes higher up that could affect other branches. The backtracking
operations in the implementation are capable of undoing such changes, though,
so E-KRHyper can eliminate redundant clauses all over the branch.

Algorithm 7.5 At the upper level the E-KRHyper branching control loop
handles splitting and backtracking.

function EXTEND_TABLEAU_AT_NODE(node)
branchResult :== EVALUATE_BRANCH_AT _NODE(node);
if branchResult = closed then
if unprocessedSplitStack # {} then
nextNode := pop(unprocessedSplitStack);
clauses := backtrack(clauses, nextNode);
disjunctions := backtrack(disjunctions, nextNode);
overweight := backtrack(overweight, nextNode);
EXTEND_TABLEAU_AT_NODE(neztNode)
else
return closed
end if
else
if disjunctions # {} then
disjunction := take a disjunction from disjunctions;
push(literals of disjunction, unprocessedSplitStack);
nextNode := pop(unprocessedSplitStack);
EXTEND_TABLEAU_AT_NODE(nextNode)
else
if weightLimit has been exceeded then
overweight := reduce overweight by clauses;
if overweight = {} then
return ezhausted
else
increase(weightLimit);
nextNode := node of first weightLimit transgression;
clauses := backtrack(clauses, nextNode);
disjunctions := backtrack(disjunctions, nextNode);
overweight := {};
EXTEND_TABLEAU_AT_NODE(nextNode)
end if
else
return erhausted
end if
end if
end if

end function
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The changes required by equational reasoning carry over to the upper level
algorithm as well, shown in Algorithm This remains very similar to its non-
equational counterpart, but again it uses a dynamic set of clauses instead of the
facts and a fixed set of rules. Another difference lies in the way the overweight
set affects the computation. When a branch has been exhausted and the weight
limit has been exceeded, the algorithm does not immediately backtrack to the
node where the first weight limit transgression occurred. Instead the overweight
clauses undergo a reduction phase. If all of them can be simplified to a point
where they are redundant or (non-properly) subsumed by the other clauses in
the branch, then omitting them from the tableau has not affected completeness.
In that case the branch is truly exhausted, and a model can be returned. If on
the other hand not all overweight results can be rendered redundant, then the
weight limit is increased and the tableau is recomputed as usual.

Technically the original KRHyper could have incorporated this treatment of
overweight results as well, instead of always simply discarding them and then
recomputing the tableau if necessary. One reason against this is that the non-
equational hyper tableaux calculus offers no means of rewriting, thus limiting
the amount of simplification operations that could reduce the overweight set to
redundancy. Another one is that both the original calculus and its implemen-
tation consider the notion of redundancy only in a rudimentary fashion, as it is
not quite such a pressing issue within non-equational FOL. On the other hand
the equational reasoning with E-hyper tableaux requires a much more thorough
treatment of redundancy, leading to ubiquitous detection and elimination meth-
ods throughout E-KRHyper. Finally, one needs to weigh the advantages and
disadvantages. Saving and testing overweight results instead of discarding them
allows finding more models and thus proving more satisfiable reasoning prob-
lems, but at the cost of a higher usage of memory. This trade-off could be called
into question depending on the application of the ATP. For example, among the
15,550 FOL problems of the TPTP v5.3.0 there are 12,570 problems known to be
unsatisfiable, while only 1,970 are known to be satisfiable. When using a prover
in such an environment, the ability to find more models is of dubious value
if it is detrimental to the ability to find refutations. In our experiments with
the TPTP E-KRHyper solves 4% more problems when not retaining overweight
results. Especially in a competitive situation like the CASC with a strong em-
phasis on unsatisfiable problems it thus makes sense not to burden an ATP with
enhancements for model generation. The algorithms shown here therefore rep-
resent the default behaviours, and optionally E-KRHyper can be set to discard
overweight results like KRHyper. Also, in a similar manner E-KRHyper will try
to exploit redundancy even when working with non-equational problems, but it
can be configured to behave like KRHyper if this is desired.

7.4 Implementation Details

This section will describe some aspects of the implementation in more detail,
either because they may be of general interest for the understanding of E-
KRHyper, or because they are relevant for the adaptations to LogAnswer that
will be presented in later chapters.
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7.4.1 Indexing

A theorem prover has to maintain thousands or possibly millions of clauses
during its work on a reasoning problem. The naive solution of simply storing
them in a list quickly becomes inefficient when inferences need to search for
clauses or terms matching specific criteria. This is a frequent occurrence in the
processing of a problem. Given a query ) which may be a term, an atom, a
literal or a clause, the different searches can be categorized into four groups:

Generalization searching: search for those A that are generalizations of )
(Q 2 A) - used during:

e forward subsumption: is @ (non-properly) subsumed by some exist-
ing A7

e forward demodulation: is there an oriented equation A ~ r with
some term r < A that can demodulate Q7

Instance searching: search for those A that are instances of Q (A 2 Q) -
used during:

e back subsumption: does @ (non-properly) subsume existing A?

e back demodulation: if @ is the left side of an oriented equation A ~ r
with some term r < , can this equation be used to demodulate
existing A7

Unification searching: search for those A that unify with @ (i.e. there is a
o with Ao = Qo) - used for:

e hyper extension: are there branch literals A that unify with the se-
lected clause atom Q7

e superposition (unit-sup-right and sup-left): if @ is one side of an equa-
tion, can this equation ) be used for superposition on existing A?

Variant searching: search for those A that are variants of @ (Q ~ A) - this
is rarely necessary, but it can be useful to find out whether some @) has
already been stored.

Given the frequency of situations where searching is necessary, and given the
possibly large size of the clause sets to search, any list based algorithm like
sequential or binary search would be far too inefficient. There are several known
methods to solve (or at least alleviate) this problem, and the common solution
in ATP systems is to use some form of indexing that allows a significantly faster
retrieval of stored data. E-KRHyper is no exception, and it stores the clauses
in discrimination tree indexes [McC92].

A discrimination tree is a tree whose root node bears the empty label, whose
non-root nodes are labeled with signature symbols and a special symbol X, and
whose leaves are used to store the indexed data. Let 7 be a set of terms to
be indexed in a discrimination tree D. Let ¢ be a term, then fX is defined as
a mapping such that fX(¢) is a copy of ¢+ where every occurrence of a variable
symbol is replaced by X, and the flattened term flai(t) is defined as the sequence
of symbols derived by a preorder traversal of ¢. Then each term ¢ € T is stored
in D at the leaf node of the branch whose sequence of node labels from root to
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(4)

Figure 7.2: Discrimination tree indexing the terms (1) - (6) (the labels
carry symbol arity information for clarity)

leaf corresponds to fX(flat(t)). Note that this may entail storing multiple terms
at one leaf due to them only differing in their variables. Figure [7.2] illustrates
the concept with an example.

When searching for terms in the discrimination tree index, the query term
is flattened and the resulting symbol sequence guides the search from the root
to a number of leaves, always selecting the node whose label matches the next
symbol in the sequence. Whenever the search reaches a leaf, all the terms stored
there are returned as results. The search then continues to seek for the next leaf
until all matching possibilities have been exhausted. As different variables are
not distinguished in the tree labeling, they require special treatment depending
on the specific search category.

Let g be a query term and let s be the current symbol in ¢ that has to be
matched in a discrimination tree D. Let ¢® be the subterm in ¢ headed by s.
Let ¢* be the subterm following ¢° in ¢ with ¢ being the symbol heading ¢*.

Generalization searching:

e If s is a variable it matches the node label X, and
e otherwise s matches the node labels
— s, and
— X, and in this case the remaining symbols of ¢° also match, so
the symbol arities are used to skip ahead in g to t.

Instance searching:

e If s is a variable it matches any node label [, and if the arity of [
is larger than zero, then the search skips ahead in the tree to those
nodes that are the appropriate arity-determined skipping distance
away, and

e otherwise s matches the node label s.
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Unification searching:

e If s is a variable it matches any node label [, and if the arity of [
is larger than zero, then the search skips ahead in the tree to those
nodes that are the appropriate arity-determined skipping distance
away, and

e otherwise s matches the node labels

— s, and
— X, and in this case the remaining symbols of ¢° also match, so
the symbol arities are used to skip ahead in ¢ to t.

Variant searching:

e If s is a variable it matches the node label X, and

e otherwise s matches the node label s.

These search algorithms do not actually test whether the variable bindings are
free of clashes, so the retrieved terms are not certain to meet all the desired cri-
teria with respect to the query term. They can merely be viewed as candidates,
and an additional test (unification, variant, or subsumption in the respective
direction) is required to filter out the final results.

(1) p(f().0) p/l 2 g2
(2) g0) 1/ !\/1
(3) p(fla),b) %()J }/\ T\ g\
(4) q(g(a.a),c)
(5) glw,z) r  a/0 t oy a0
(6) p(o) |l e e
a/0 b/0 a/0
SN |
¢/0

Figure 7.3: Perfect discrimination tree indexing the terms (1) - (6)

This does not have to be the case. A variant of this indexing is known as per-
fect discrimination trees (and in contrast the ordinary discrimination trees are
sometimes referred to as imperfect discrimination trees). Perfect discrimination
trees differ from the imperfect ones in that they do not use the special label X to
represent all variables. They forgo using the fX function and instead form the
flattened term flat(t) directly based on ¢. The result is that distinct variables
are represented by distinct labels, as shown in the example in Figure|7.3

While this has a disadvantage in that the index may grow considerably larger,
its advantage lies in that the search algorithms can attempt to compute the
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appropriate substitutions on the fly and detect a clash before a leaf is reached.
Once a leaf is reached, the retrieved results are guaranteed to match the search
criterion, so unlike the imperfect candidates they do not require further testing.
While the original KRHyper only needed imperfect discrimination trees to store
the branch literals, the use of indexing has greatly expanded in E-KRHyper, and
both imperfect and perfect discrimination trees are employed depending on their
specific usage.

Several aspects of the indexing in E-KRHyper will now be described in more
detail.

Subterm Indexing

The indexing in the original KRHyper is only used to store atoms and literals,
and the flattened terms, which determine the positions within the index trees
and the search paths, are always based on atoms. The first symbol in the
symbol sequences is therefore always a predicate symbol, and the leaves always
store atoms or literals. In E-KRHyper this is not necessarily the case. The
superposition-based inferences need to access the subterms of clauses, and given
an equation [ ~ r E-KRHyper must then find clauses containing a subterm s
that unifies with [. This means that E-KRHyper needs to index clauses by
their subterms. Every non-variable subterm in a positive unit clause and every
non-variable subterm in a body literal is open for rewriting, so the respective
clauses must be accessible in the index by these subterms. If the optional
demodulation is in use, the subterms of head literals in non-unit clauses are also
made accessible in a separate index. Due to the large overall number of subterm
positions, the subterm indexes are implemented as imperfect discrimination
trees in order to avoid excessive branching.

Let A be the atom of an indexable literal in a clause C'. Then A = p(t1,...,tn)
for some predicate symbol p with arity n and subterms ¢4, ...,t,, with n > 0.
Then the subterm index discrimination tree contains an entry for each non-
variable t € {t,...,t,}, with the indexing branch determined by flat(f*(t))
and C stored at its leaf. The indexing is recursive to cover all non-variable
subterms, so if t = f(¢},...,t],) for some function symbol f with arity m > 0,
then the discrimination tree also contains entries storing C' at the leaves of the
pathes determined by flat(fX(t})) for all 1 <4 < m, and so on.

Figure demonstrates the principle with an example. The unit clause
(1) = p(f(a,z)) + is indexed by the subterms f(a,z) and a, while clause
(2) = q(b,c) + q(a,g(x)), h(y) ~a is indexed by a, g(z), h(y) and once more
a. With a occurring twice in clause (2) there are also two index entries for that
clause at the end of the path determined by a.

As the example shows, a clause may be stored multiple times at the same
leaf. This is not redundant, as the subterm index does not actually store just
the clauses at the leaves. Rather, each leaf entry is a data tuple containing
the indexed clause and additional information, including a pointer to the exact
position of the indexing subterm in the clause. When a superposition inference
has retrieved a clause for rewriting, it can use the pointer to directly access
the potentially rewritable subterm. It does not have to search the clause itself
again to find the indexed position. The double entries in the example would
thus differ in their subterm pointers. Of course all index entries of a clause also
share the clause itself, so while the indexing can result in a large number of
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(1) p(fla,z))

(2) q(b.c) « /\
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h(y)=a

Figure 7.4: Discrimination tree indexing by subterms for clauses (1) and

2)

entries for a single clause, these mostly consist of references to the clause, which
itself is stored only once in the memory.

Equation Indexing

The discrimination trees as described always index by a uniquely determined
sequential flattened term, regardless of whether it is based on an atom or a term
or subterm. This poses a problem when equational literals are to be indexed by
their atoms, as the equality symbol is commutative and it is not clear whether
an equation [ ~ r should be indexed by flat(l ~ r) or by flat(r ~1). The term
ordering could be used to prefer a canonical form in some cases, but [ and r
may be incomparable and the equation thus not orientable. The solution in
E-KRHyper is therefore to index equations twice, covering both orientations.
While this indexing method obviously results in double entries and two index
insertion operations per equation, the alternative would have been to index only
by one orientation and then to do all searches in double, for both orientation
possibilities. As searches are more frequent than insertions, the current solution
seems preferable.

Indexing Clauses with Multiple Literals

The indexing cases so far index by a flattened term based on a single atom or
term, which is sufficient for most of the inference rules of the hyper tableaux
calculi: The hyper extension needs to search for literals, and the superposition-
based rules search for subterms. However, to determine non-proper subsumption
for more than just unit clauses it is necessary to search for clause pairs that
match in multiple literals simultaneously. This is a hard problem, because the
associativity and commutativity of the disjunction V and the commutativity
of equations combine to allow up to n!- 2" permutations of every clause with
n literals, and it is not feasible to index all of these. The method we devised
for E-KRHyper is intended to handle both forward and backward non-proper
subsumption on large clause sets as encountered in the context of QA. To the
best of our knowledge our solution is unique, and as such it warrants the detailed
description that forms Chapter

83



Layered Indexing

When a prover backtracks to an earlier choice point within a derivation, any
terms, literals and clauses indexed during the computation of the backtracked
part of the derivation become invalid, and they must be removed from the index.
The E-hyper tableaux calculus and E-KRHyper are no exception to this, and
whenever a branch is closed and E-KRHyper moves on to a different split branch,
the clauses of the closed branch up to the parent node of the new branch must
be discarded. A common solution would be to backtrack the index as well, by
seeking out the respective index entries and deleting them from the leaves, and
ideally also deleting subtrees if they no longer contain any entries.

E-KRHyper on the other hand uses a different method that was already
employed by the original KRHyper: Each index is arranged as a layered index.
This means that it does not use a single discrimination tree to store all entries
for a branch. Instead, whenever a tableau branch is split, another discrimination
tree is added, forming a new layer. A branch with n decision nodes is therefore
represented by the n+1 discrimination trees 717, ..., T, +1. New inference results
are stored in the most recent layer 7,,41. Index searches on the other hand are
performed sequentially on all layers. This is implemented in such a way that
the layering aspect is hidden from the inference level: A search only has to be
started once, and it will automatically visit all layers and gather the results,
returning them in a single list.

When backtracking to the i-th choice point in the branch, the references to
the layers T;y1,...,T,+1 are simply dropped, thereby making them inaccessible
to insertion and retrieval operations and leaving their memory to the OCaml
garbage collector.

Whether this behaviour is generally preferable is not clear. While backtrack-
ing is greatly simplified, the complexity of search operations is multiplied by n.
Hence layered indexing is likely to be more efficient on shallow tableaux with
a high branching factor, thus keeping the multiplier n low while making ample
use of the cheap backtracking. On deep tableaux though the reduced search
speed may offset any gains from the enhanced backtracking. However, layered
indexing will become highly advantageous in an adaptation to QA that will be
described in Section 1.2

7.4.2 Disjunction Handling

The algorithms in Section show how the proof procedure of E-KRHyper
attempts to postpone splitting by collecting splitting opportunities in a set of
disjunctions, and only applies a disjunction in a Split inference when no linear
branch extension is possible.

There is an exception to this. If a branch contains negative unit clauses that
contradict all literals of a purified disjunction D, then splitting with D would
only result in split branches that could be closed immediately. Postponing
such a split is therefore not optimal. In the original KRHyper the disjunctions
remain largely removed from inferencing until splitting becomes unavoidable,
which means that considerable time can pass even though splitting and closing
would be possible. In E-KRHyper however the disjunctions use a special index,
and whenever a negative unit clause N is derived, the index tests whether it
contradicts any hitherto uncontradicted literals of any disjunctions. If this is the
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case, then N is stored with those literals, and the algorithm examines whether
any affected disjunction D now has contradicting units stored for all its literals.
If so, then D is immediately selected for splitting and closing the branch.

Even if there are not sufficient negative units to completely negate a saved
disjunction, the contradiction index is still useful when picking a disjunction for
splitting, as it provides a quick way to determine which disjunctions will result
in the least number of new branches.

When disjunctions need to be purified, the purifying terms are obtained from
the Herbrand universe that is enumerated using domain clauses added to the
reasoning problem if necessary:

e dom(a) +
for every constant a in the input (add a if there is none),

o dom(f(x1,...,xy,)) < dom(z1),...dom(xy,)
for every n-ary function symbol f.

The enumeration of the Herbrand universe is postponed as long as possible. It
is only started when E-KRHyper has no other choice than to split on an impure
disjunction. This is an advantage over KRHyper which requires all non-Horn
input to be range-restricted [MB88] and which always begins enumerating the
Herbrand universe immediately for such reasoning problems, just in case this
is needed later on. This can lead to en explosive generation of domain units,
which is a wasted effort if the reasoning problem can be solved without actually
splitting on any of its impure disjunctions.

7.4.3 Redundancy Handling

The Del and Simp rules allow destructive tableau modifications by replacing or
deleting clauses that meet some redundancyﬁ criterion. For practical purposes
even replacing involves deletion: While the Simp rule is depicted to replace a
node label, the structures representing clauses and nodes are so complex that it
is inefficient to relabel a node, and it is better to add the replacing clause as a
new leaf node and to delete the old clause.

Technically E-KRHyper could remove redundant clauses from its indexing
structure, but we found this to be impractical. Rather, such clauses will be
marked as redundant, which prevents them from participating in most infer-
ences. This is preferable for three reasons.

Firstly, given the subterm indexing a clause may be found at a large number
of leaves in the discrimination trees, and the time spent retracting all those
entries when actually deleting a redundant clause can offset the gains from
no longer having to consider the clause during reasoning. In this regard a
deleting solution also appeared to go against the spirit of the layered indexing,
which specifically serves to avoid retracting separate discrimination tree entries.
However, this particular concern may be more about a break in style than about
real efficiency.

Secondly, the introduction of a marking mechanism makes it easy to reintro-
duce formerly redundant clauses by unmarking them. While this is not necessary

8Keep in mind that we use the notion of redundancy in a general sense here, which includes
both the explicitly defined redundancy of the E-hyper tableaux calculus (see Definition [6.3))
and non-proper subsumption (see Definition [6.4])).
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in an exact implementation of the E-hyper tableaux calculus which restricts de-
structive tableau modifications to the branch segment below the lowest split, it
gives E-KRHyper the optional ability to exploit redundancy across the entire
branch, as any modifications above the lowest split can simply be undone during
backtracking by unmarking the respective clauses again.

Finally, as redundancy is often difficult to detect, keeping a redundant clause
in the system prevents it from reappearing in a seemingly non-redundant form
by other means. For example, consider these clauses:

C: p(f(a))
D: f(x)~x+
E: p(f(z)) < p(z)

Here D can derive p(a) + from C using unit-sup-right, making C' redundant
in the process. Now with p(a) < and E it is again possible to derive C' =
p(f(a)) <, the same clause as C. Had C been deleted due to redundancy, then
C" = C would be introduced again as non-redundant, and in this particular
example this would even lead to a cycle. If on the other hand C remains in the
system and is simply marked as redundant, then its presence blocks C’ during
a check for regularity or non-proper subsumption. This assumes of course that
the implementation allows marked clauses to subsume others, even though they
are otherwise forbidden to act as inference premises.

7.4.4 Clausification

The clausifier which transforms input formulas into clause normal form uses the
following basic steps in the order established by the Otter ATP system:

1. eliminate the shorthand notations for implications (—, <) and equiva-
lences (=),

2. move negations in so that the symbol — only occurs above atoms (negation
normal form (NNF)),

3. universally quantify free variables,
4. rename variables so that no variable name is quantified more than once,
5. eliminate existential quantifiers via Skolemization,

6. distribute conjunctions and disjunctions so that each formula is a conjunc-
tion of disjunctions (conjunctive normal form),

7. turn every conjunct into a clause.

A straightforward implementation of step 6 can result in an exponential increase
in the number of generated clauses that renders the clausification of deeply
nested formulas unfeasible. E-KRHyper prevents this by using formula renam-
ing [NWOI], a satisfiability preserving technique that replaces a subformula by
a literal “pointing” to the replaced subformula in a new formula.
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Generally given a Skolemized NNF formula F' of the form G VvV H, the
subformula H can be renamed by replacing F’ with the formulas

Fi: GV P(z1,...,2y,)
Fy: =P(x1,...,2,)VH

where P is a new predicate symbol and z,...,z, are the variables of H. If G
and H are conjunctions with m and r literal conjuncts respectively, then fully
distributing F' will result in m - r clauses, while distributing the replacement
formulas F; and F, merely generates m + r clauses. The decision when to
use formula renaming can have a significant effect on the number of generated
clauses and the manageability of the resulting clause set by a given calculus.
Excessive renaming can be detrimental. The original definition [NWO0I] proposes
a scheme based on formula polarity and a coefficient based estimate of the
number of generated clauses. This is implemented in the prover E, which can
be used as a stand-alone clausifier. We experimented with this and found that
a simpler scheme gave slightly better results in E-KRHyper. For this we again
regard Skolemized NNF formulas, which we keep fully flattened in that there are
no conjunctions (disjunctions) immediately below conjunctions (disjunctions);
for example, instead of A A (B A C) we write AA B A C. Also, if a formula
is a conjunction at its top level, then we split it into its conjuncts, regarding
each as a separate formula. Thus every formula is either a literal or it is a
disjunction whose disjuncts are literals or conjunctions of subformulas, and it
can be written as Ly V---V L,, VCy V ---V C,, where Lq,..., L, are literals
and where C,...,C, are conjunctions with at least two conjuncts each. Given
such a formula we distribute C; and apply formula renaming to Cs,...,C,.
The resulting formulas are again flattened, split by their conjuncts and then
distributed and renamed in the same manner, until all are in CNF.

Overall this simpler uniform method results in a comparable number of
clauses while being faster to compute. For example, E-KRHyper can clausify the
TPTP version of Cyc in 97.6 seconds, resulting in 3,341,985 clauses, whereas
E needs 233.2 seconds to generate 3,341,962 clauses. Over the entire TPTP
E-KRHyper solves about 5% more problems when using its own clausifier com-
pared to employing E. However, note that such differences are also dependent on
the calculus, since the slightly differing clause sets may be more or less ideal for
a given calculus - the prover E-Darwin (see Section solves more problems
with E than with its own clausifier, which is identical to the one in E-KRHyper.

7.5 Evaluation

For a general evaluation we tested the current E-KRHyper 1.3 on the 15,550
FOL problems of the TPTP v5.3.0. The test system featured an Intel Q9950
CPU with four cores running at 2.83 GHz. E-KRHyper always uses a single
CPU core to process one problem, thus allowing four instances of E-KRHyper
to work on four problems simultaneously. Every such instance was limited to 1
GB of RAM, and the time per problem was limited to 300 seconds. This setup
is comparable to the official TPTP tests. E-KRHyper solved 5,986 problems,
corresponding to 38.5% of the test set, or 30.8% of the total TPTP with 19,446
problems. The hardest problem solved was SET990+1 with a rating of 0.96.
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In the official TPTP test result listingﬂ E-KRHyper is listed in its 1.2 release
from 2011. This version solved 33% of the tested 15,550 FOL problems or 27%
of the total TPTP, which means it was the 12th best system out of 62, or the
10th best when accounting for systems sharing positions due to having the same
performance. All else remaining equal the current E-KRHyper 1.3 could expect
to reach the 9th position, or the 8th when accounting for shared rankings. Note
though that the majority of the systems is specialized, and while all of them have
their total solving rate with respect to the TPTP listed, they are usually only
tested on subsets smaller than the FOL problems. Only the top 20 systems have
been tested on more than 15,000 problems and can thus be seen as generalists,
so E-KRHyper occupies a middle position among these.

As E-KRHyper is intended to supplant the original KRHyper, we also tested
the final KRHyper 5.4.6 under the same conditions as above. KRHyper has no
native equality handling, so when necessary we added the required equality
axioms to problems with equality. The prover solved 3,756 problems, which is
24.2% of the FOL test set or 19.3% of the total TPTP. The hardest problem
solved was PUZ050-1 with a rating of 0.94.

Comparing the systems in more detail, E-KRHyper solved 3,490 of the 11,626
problems with equality, corresponding to 30%, while KRHyper only solved 1,548
of these problems, or 13.3%. This difference is easily explained by the lack of
native equality handling on the calculus level in KRHyper. More interesting is
the difference regarding the 3,924 problems without equality. Here E-KRHyper
solved 2,496 problems, or 63.6%, while KRHyper solved 2,208 problems, or
56.3%. Since E-KRHyper essentially falls back to the basic hyper tableaux
calculus when dealing with problems without equations, this performance gap
must be attributed to general implementation improvements in E-KRHyper
and the adaptation of redundancy detection routines to the processing without
equality.

E-KRHyper has participated in CASC since 2007, the first in the KRHyper
family of provers to do so. The competition performance over the years reflects
the general improvements to E-KRHyper. In 2007 E-KRHyper had not yet
been tested extensively. The system could only process input in the PROTEIN
syntax and lacked a clausifier. Therefore it only took part in the CNF-based
categories, with the problems having been converted into PROTEIN. We do
not wish to repeat the extensive result tables found at the Websitﬂ for the
CASC of 2007 [Sut08], so suffice it to say that the early E-KRHyper performed
quite poorly. The Otter system always participates in CASC as a benchmark
due to its long history, stability and decent performance. E-KRHyper mostly
remained below Otter in 2007. Its best performance was in the HNE category
(Horn problems without equality) where it reached the sixth position out of ten.

In 200@ [Sut09] E-KRHyper participated in more categories, because now it
had gained support for TPTP syntax and a clausifier. The prover still remained
below Otter in the generalist CNF and FOF divisions. Its best positions were
fifth out of eight in EPS (effectively propositional satisfiable problems) and sixth
out of 11 in NNE (non-Horn without equality).

9Most recent result listing: http://www.cs.miami.edu/~tptp/TPTP/Results.html
Our data is based on the results retrieved on 1 May 2012.
Ohttp://www.cs.miami.edu/~tptp/CASC/21/
HUhttp://www.cs.miami.edu/~tptp/CASC/J4/
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In 200@ [Sutl(] the teething troubles of integrating E-KRHyper into Log-
Answer had been solved, so now more effort had been put into a general per-
formance improvement. Thus for the first time E-KRHyper exceeded the Otter
benchmark in the categories CNF and FOF. The prover reached the fifth po-
sition in several divisions and categories, including EPS and SAT (satisfiable
clause sets), as well as the FNT division (first-order form non-propositional
non-theorems) The participation in the LTB division was effectively futile, as
E-KRHyper did not yet have any axiom selection algorithms suitable for the
size of these problems.

In 201@ [Sutld] the performance of E-KRHyper remained roughly the same
among a larger field of participants. The best position was sixth out of 13 in
HNE (Horn without equality). In this category E-KRHyper reached the highest
SOTAC score of all participants, meaning it solved more hard problems than
the others. E-KRHyper did not participate in LTB due to the experiences of
the previous year and the lack of improvements specifically for this division.

In 2011|E| [Sutl2] E-KRHyper featured additional performance improve-
ments. In the FOF division it outclassed the LEO-II and Metis systems which
had been superior to E-KRHyper in the previous year. It is also noteworthy
that E-KRHyper performed better than our own E-Darwin in several categories,
despite E-Darwin normally solving more problems, although this is likely in part
to blame on a troublesome experimental change to E-Darwin at the time. The
best performance of E-KRHyper was in the FNQ category (first-order form non-
propositional non-theorems with equality), where it reached the fourth position
out of eight and the highest SOTAC score of all participants. This time E-
KRHyper participated in the LTB division, as it had been equipped both with
appropriate axiom selection algorithms (see Section [12.2.2)) and a control script
to process series of problems with shared axiom sets. Unfortunately, despite ex-
tensive testing before CASC the participation was marred by technical failures,
the reason for which could only be identified afterwards: The CASC problems
were taken from the TPTP v5.3.0, at the time still unreleased, and some of
the axiom sets in this version had been revised to include very large numerical
constants. As E-KRHyper features arithmetic evaluation, it tries to represent
such constant names not merely as strings, but as floats or integers respectively.
However, the new numerical constants were so large that they exceeded the
system limits for these numbering formats, causing E-KRHyper to crash. This
flaw has since been remedied.

Overall the history of CASC participations shows E-KRHyper moving from
a bottom-ranked system to a middle position. There is still room for future
improvements. Eventually though some fundamental properties of E-KRHyper
form a performance ceiling which will prevent it from becoming a top-ranked
prover, see Section Changing these properties would go against the original
purpose of E-KRHyper, so for reasons of backwards compatibility to existing
applications this is unlikely to happen.

This closes the system description of E-KRHyper. The next chapter will
give an overview of the QA system LogAnswer, in which I have embedded E-
KRHyper. Subsequent chapters are then dedicated to particular modifications
and adaptations of E-KRHyper to LogAnswer.

2http://www.cs.miami.edu/~tptp/CASC/22/
13http://www.cs.miami.edu/~tptp/CASC/J5/
http://www.cs.miami.edu/~tptp/CASC/23/
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Chapter 8

The Question Answering
System LogAnswer

This chapter provides an overview of the QA system LogAnswer [7]. It will not
be as detailed as the previous system description of E-KRHyper, since unlike
the prover the specifics of the various other subsystems were neither part of my
work, nor are they in the focus of this dissertation. The intention is to achieve
a general understanding of the framework in which E-KRHyper is embedded,
so that the adaptations of the prover make sense to the reader.

8.1 Background and Development History

The basic LogAnswer system prototype was quickly assembled during the early
stages of the project in 2007 [6]. This was only possible because many of its
components were already well established, like the earlier mentioned WOCADI
parser, the IRSAW information retrieval system and the HaGenLex compu-
tational lexicon. LogAnswer was therefore able to participate already in the
CLEF QA competition of 2008 [9]. Throughout the course of the project the
system has been constantly refined as our understanding of the pertinent issues
increased, and over the years we have extended LogAnswer with new capabilities
in order to explore the possibilites of logic-based QA.

The main purpose of LogAnswer is to support research in the combination
of automated reasoning and question answering. This is reflected in the design,
which allows scaling and adapting the system to different use cases. These range
from the usage as a search engine replacement, requiring minimal response times,
to scenarios with generous time limits which allow deep reasoning, for example in
research tools for scientists, or in the competition situation at CLEF, the latter
being the primary opportunity for an independent evaluation of LogAnswer.

The system is intended for open-domain question answering. This means
it is not specialized in any particular topic, and instead it aims at answering
arbitrary questions. Obviously this means that LogAnswer needs access to a
vast amount of knowledge, and this is ensured by a knowledge base derived
from the German WikipediaE] With gradual improvements in the automatic

Ihttp://de.wikipedia.org
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Fragebeantwortung
|Wer effand Coca-Cola?

Ergebnisse aus der Wikipedia:

Das Getrank wurde von John Stith Pembertan, dem Erfinder van
Coca-Cola, kopiert.
LogAnswer (Quelie: hitp:/de wikipedia .orgiwikitvin_ariani.215)

Fragebheantwortung

Erfunden wurde das urspriingliche Getrank Coca-Cola van demn
US-Amerikaner John Stith Pemberton (1831-1888).
(Quelie: http:Ade wikipedia.orgiwiki/The _Coca-Cola_Carpary . 892)

16. August 1888) war ein US-amerikanischer Drogist und der
Erfinder von Coca-Cola.

(Quelie: hitp de wikipedia orgiwikitlohn_Permberton. 78)

Figure 8.1: Screenshot of the LogAnswer web interface

translation, the knowledge base has almost tripled in size over the years, and
it contains data extracted from about 29 million sentences at the time of this
writing.

Currently LogAnswer is restricted to German language questions. This is
because some of the NLP tools involved in LogAnswer were developed specifi-
cally for German. However, in general our approach could be extended to other
languages as well. For consistency with the rest of the dissertation examples
will thus usually be given in English, or in some cases in the original German
together with English translations.

8.2 Usage Information

Like most QA systems LogAnswer requires an extensive hardware infrastructure,
and thus the system is not easily portable. It can be accessed by different means,
though, of which the browser-based web interfaceﬂ is the most elaborate and
mature. Figure shows a screenshot of the QA screen as presented in the
browser. The user can enter a question or choose an example question. After
a few seconds LogAnswer will show up to five answers, sorted by a quality
estimate. A bar indicates LogAnswer’s confidence in each answer. The exact
answers are highlighted in green within their source sentences. In cases of low
confidence an answer may only consist of such a sentence. This is the case when
no exact answer could be extracted, yet heuristics considered the sentence as a
whole to be relevant.

Apart from the website there is also an application for the iPhontﬂ and an
experimental SMS-based service. Both are essentially user interfaces to the main
LogAnswer server, providing an access alternative to the LogAnswer website,
and they demonstrate the usage possibilities on small mobile devices. For com-

%http://www.loganswer.de
3http://itunes.apple.com/app/loganswer/id383308349
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petitions LogAnswer does not rely on any user-oriented interface, instead the
questions are provided in files directly on the LogAnswer hardware, to interfaces
that are for internal use only.

8.3 Knowledge Representation in LogAnswer

The knowledge base of LogAnswer represents knowledge using the MultiNet
formalism, an extended form of semantic networks that was designed to capture
the meaning of natural language. MultiNet features a stable and relatively
compact inventory of relations that label the network edges. Its expressivity
goes beyond traditional semantic networks due to the use of layer attributes that
handle quantification and other aspects of natural language that are difficult to
express with relational means. A set of inference rules formalizes the semantics
of words and the logical properties of the MultiNet relations; these rules allow
reasoning on MultiNet networks.

For the processing with the embedded E-KRHyper the MultiNet knowledge
must be further translated into first-order logic, specifically the TPTP format.
The MultiNet nodes and attributed arcs can be translated in a fairly straight-
forward manner into constants and predicates respectively, and the same holds
for the logical MultiNet inference rules.

sub(erfinder.1.1, mensch.1.1)
A subs(c40, erfinden.1.1)
mensch.1.1 pemberton.0  familienname.1.1 A ()hj((:/,(), 37)

A agt(c40, c31)

SUB VAL A temp(c39, past.0)
name.l.l erfinden.l.1  erfinder.l.1 ‘]?,1}11'0 A subs(e39, kopieren.1.1)
*TUPL A agt(c39, ¢31)
stith.0 A obj(e39, ¢27)

A sub(¢38, name.1.1)

A val(¢38, coca-cola.0)

A sub(e37, erzeugnis.1.1)

A attr(c37, ¢38)

A val( ¢34, pemberton.0)

A sub(e34, familienname.1.1)

coca-cola.0 vorname. 1.1 A *tupl(e33, john.0, stith.0)
A sub(¢32, vorname.1.1)
SUB SU SUBS A val(e32, ¢53)
A sub(e31, erfinder.1.1)
erzeugnis.1.1 getraenk. 1.1 past.0  kopieren.1.1 A attr(c31, ¢34)

A attr(c1, c32)
A sub(c27, getraenk.1.1)

(a) MultiNet (b) First-order logic
Figure 8.2: Example for the translation from natural language over Multi-
Net to first-order logic, for the NL-sentence “Das Getrdnk wurde von John

Stith Pemberton, dem Erfinder von Coca-Cola, kopiert.” ( “The beverage
was copied by John Stith Pemberton, the inventor of Coca-Cola.”)

Figure B.2] shows an example of the translation of a natural language sen-
tence into MultiNet and then into FOL. The German sentence is “Das Getrdnk
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wurde von John Stith Pemberton, dem Erfinder von Coca-Cola, kopiert.” ( “The
beverage was copied by John Stith Pemberton, the inventor of Coca-Cola.”) The
figure is simplified to improve legibility. It contains only the fragment of the
representation which models the relational structure of the network. The integer
suffixes of the word-based constants are used for disambiguation. They identify
the particular word sense represented by the word within the current context,
distinguishing for example between nouns and verbs that happen to have the
same word form. A subnet of the network may illustrate the MultiNet approach:
The node labeled ¢31 represents the person John Stith Pemberton. As such it is
subordinate to the concept erfinder (inventor), expressed by a SUB arc to the
node erfinder.1.1, which in turn is subordinate to mensch (human being). c31
also has attributes represented by the nodes ¢32 and ¢34 (connected by ATTR
arcs). The latter is subordinate to familienname (surname) and has the value
pemberton - it represents the surname Pemberton. ¢32 is the analogous for the
given names John and Stith. The special *TUPL arc states that the two given
names form the value of node ¢32 in that particular order; i.e. it expresses that
the person’s name is John Stith Pemberton, not Stith John Pemberton.
The logical background knowledge contains axioms like the following:

VHYPVYT : ((hsit(H, P) A temp(H,T)) — temp(P,T))

This example expresses the transitivity of the temporal relation: If the situation
H takes place within the temporal frame T (temp(H,T)) and if H is a hypersi-
tuation with respect to situation P (hsit(H, P), i.e. P is a part of H), then P
also takes place within T' (temp(P,T)).

Not all aspects of MultiNet are as easily translated into FOL. Some of the
representational means exceed the expressivity of pure first-order logic. As E-
KRHyper features logic extensions like arithmetics and list expressions, some
of the more difficult MultiNet expressions can be translated into extended FOL
representations with equivalent semantics by using the special predicates com-
patible with the prover. Others, for example generalized quantifiers like “most”
or “almost all” are lost in the translation to logical expressions.

8.4 Answer Derivation Procedure and Architec-
ture

LogAnswer consists of a multitude of interacting subsystems, see Figure [8.3]
The easiest way to obtain a general understanding is by following the processing
cycle starting with a question and ending with the answers.

Web-Based User Interface: The user enters a question into the LogAnswer
user interface in the browser. Ideally this should be a properly formulated
question with correct spelling and capitalization, terminated by a question mark,
although LogAnswer has some robustness toward syntactic mistakes.

Deep Question Parsing: The WOCADI parser analyzes the question and
creates its semantic representation in the MultiNet formalism. This processing
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Web-Based User Interface
Linguistic Analysis and / Answer Generation
Retrieval i
Deep Question Parsing (WOCADI) Presentation/Formatting
v / L)
Question Classification Answer Selection
v Support L)
»| Passage Retrieval Passage Answer Integration
v Integration 7
Shallow Feature Extraction \ Sanity Checks
v X
Shallow Feature-Based Reranking
‘ Logic-Based Reranking
Y
Logical Query Logic-Based Feature Extraction
Construction 3 L)
| Answer Extraction ‘
A L)
Pre- ] ] Robust Logic-Based Processing
Lexical Logical
Analyzed . .
Semantic Background
Documents ) i E-KRHyper
Relations Knowledge :
Background Knowledge TPTP Interface
Knowledge Base
[ T Deduction

Figure 8.3: The architecture of LogAnswer

phase also involves a word sense disambiguation step using the HaGenLex lexi-
con. WOCADI also features a coreference resolution module which can handle
follow-up questions involving pronouns and nominal anaphora.

Question Classification: The category of the question is determined: For
example factoid questions (like “What is the capital of Australia?”) can be
answered by logical means alone, whereas definition questions (like “What is
Australia?”) necessitate filtering criteria that find knowledge which actually
is defining, so that the answer will meet the requirement of completeness (see
Section . Other categories cover questions regarding opinions, procedures,
purposes and reasons. Another result of this phase is the expected answer type,
distinguishing between questions asking for names of persons, locations, num-
bers and so on.

Passage Retrieval: This is an important preprocessing phase before the the-
orem prover can be employed. As mentioned before, the knowledge base is too
large to be handled by an ATP system directly. It is based on 29 million sen-
tences of a snapshot of the German Wikipedia. This data is stored locally for
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faster access, and the snapshot is replaced periodically. Further source docu-
ments like the CLEF competition corpora can be added as well. The knowledge
sources are not parsed anew for every question, instead all documents have
been pre-analyzed by WOCADI, and their resulting MultiNet representations
are indexed by their terms and and made accessible to the retrieval modules.
Two such modules are available to LogAnswer, the aforementioned IRSAW and
an alternative [9] based on Luceneﬁ Both operate with with sentence-sized
passages, although the latter also uses descriptors resulting from coreference
resolution of previous sentences. Up to 200 passages with MultiNet represen-
tations, the answer candidates, are retrieved from the knowledge base for each
question. Apart from the processed documents the knowledge base also contains
the background knowledge, consisting of a set of about 10,600 lexical-semantic
facts which establish associations for example between certain nouns and verbs,
and the logical background knowledge comprising nearly 200 logical rules based
on the MultiNet formalism. No passages are extracted from the background
knowledge, rather these general rules are used at different points during the
processing.

Shallow Feature Extraction: The answer candidates may vary in quality
and relevance, and in order to assess their importance a number of shallow
linguistic features is computed for each passage, based on the earlier analysis of
the question and the passage:

failedMatch: the number of lexical concepts and numerals in the question
which cannot be matched with the passage,

matchRatio: the relative proportion of lexical concepts and numerals in the
question which find a match in the passage,

failedNames: the proper names occurring in the question, but not in the pas-
sage,

containsBrackets: a boolean feature indicating whether the passage contains
a pair of parenthesesﬂ

eatFound: a boolean feature indicating that the passage contains words of the
expected answer type,

defLevel: a numeral feature indicating how useful the passage may be for def-
inition questions, based on the presence of certain words and sentence
structures,

irScore: the passage score determined by the retrieval module in the previous
phase.

Shallow Feature-Based Reranking: The passages are then ranked by their
shallow features. This is handled by machine learning-based decision trees which
aggregate the feature values into a probability for each passage, so that the
deduction component can process the most promising answer candidates first,

4http ://lucene.apache.org
5Parentheses often contain valuable factoid information, for example as in “Canberra (Aus-
tralia)”.
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a critical necessity given the short time limits and the fact that the passage
retrieval only has a precision of about 3%.

Logical Query Construction: The question is translated into first-order
logic, where it takes the form of a conjunction of positive literals with existen-
tially quantified variables. These literals represent a MultiNet fragment where
variables take the place of node identifiers. If the question asks for specific in-
formation, then this is represented by a special FOCUS variable. For example,
“Wer erfand Coca- C’ola?’ﬂ translates into the following logical query, with the
FOCUS variable representing the person of interest:

3X13X23X33FOCUS Obj(X17X2) AN subs(Xl, erﬁnden.].])
A agt(X1, FOCUS) A attr(Xs, X3)
A sub(X3, name.1.1) A val(X3, coca-cola.0)

This translation phase also normalizes all synonyms by replacing them with
canonical representations specified by the set of lexical-semantic relations in the
knowledge base.

To answer a query, its fragment must be matched against the MultiNet
knowledge base, thereby instantiating the variables with concrete nodes. A
proof attempt by the prover can then be regarded as the logical representation
of this matching process: The proof is done by refutation, the query is treated
as a negated conjecture, and a successful refutation means that the variables of
the logical query have been instantiated by constants representing nodes in the
MultiNet knowledge base. The clausal representation of the example question
as used by E-KRHyper thus has the following form:

{—0bj(X1, X3), ~subs(Xy, erfinden.1.1), nagt(Xy, FOCUS),
-attr(Xs, X3), 7sub(Xs, name. 1.1), ~val(X3, coca-cola.0)}

The prover keeps track of the FOCUS variable throughout all clause trans-
formations and inference steps, so that its binding can be extracted from a proof
even if it has been renamed during the process.

An exception to the creation of purely conjunctive logical query representa-
tions occurs during the handling of disjunctive questions. The logical represen-
tation of a disjunctive question will contain disjunctive literals. An example of
this is the following modification of the previous query: “Wer erfand Coca-Cola
oder Pepsi—Cola?’ﬂ

This results in the following disjunctive logical query:

3X,3X,3X33FOCUS  obj(Xy, X2) A subs(Xy, erfinden.1.1)
A agt(Xq, FOCUS) A attr(Xs, X3)
A sub(X3, name.1.1)
A (val(Xs, coca-cola.0) V val(Xs, pepsi-cola.0))

8 “Who invented Coca-Cola?”
7 “Who invented Coca-Cola or Pepsi-Cola?”
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After negation of this conjecture and the subsequent transformation into
CNF, the logical query representation for E-KRHyper consists of multiple clauses
as shown below:

{—0bj(X1, X2), nsubs(Xy, erfinden.1.1), ~agt(Xy, FOCUS),
—attr(Xsa, X3), 7sub(Xs, name.1.1), ~val(X3, coca-cola.0)}

{—0bj(X1, X3), ~subs(Xy, erfinden.1.1), magt(Xy, FOCUS),
—attr(Xsa, X3), 7sub(Xs, name. 1.1), ~val( X3, pepsi-cola.0) }

Such clauses are handled simultaneously in a single proof attempt, and dis-
proving one of them is sufficient for an answer. Without loss of generality we
assume a single query clause in the sequel.

Robust Logic-Based Processing: For each of the ranked answer candi-
dates the FOL representations of the query, the passage and the background
knowledge are sent to the robust logic-based processing module which interacts
with E-KRHyper. With the average translated passage consisting of 230 unit
clauses and the background knowledge adding its 10,600 lexical-semantic rela-
tions and 200 logical rules, the prover has to operate on about 11,000 clauses
in total for every answer candidate. This input size has remained fairly stable
since the early version of LogAnswer [15], as the largest growth has been in the
Wikipedia-based part of the knowledge base, resulting in more stored passages,
whereas the background knowledge does not change much.

E-KRHyper constructs a tableau for this input set. In the current form the
input clauses are always Horn clauses, so the tableau consists of a single branch.
When the branch is closed, then E-KRHyper attempts to extract answer data
from the proof, specifically from the final inference step. The term bound to the
FOCUS variable in the final unifying substitution then represents the queried
information.

Normally the query clause is the only negative clause and thus the only
clause that can close a branch. However, E-KRHyper explicitly makes sure to
accept only those proofs for answer extraction which finish with the query clause.
This is because future knowledge base extensions may add negative clauses as
constraints or contain other internal contradictions, and a branch that closes
without instantiating the query clause does not yield an answer.

There is also the possibility of multiple query clauses. This can be due to a
disjunctive query as described above, or because the sup-left or ref rules derive
new query clauses from a query clause. In such cases it is sufficient for one of
these clauses to close the branch, and only one answer will be extracted from
this. Again E-KRHyper keeps track of the FOCUS variable throughout clause
transformations and inference applications, so that an exact answer can also be
extracted from derived query clauses.

A less clear situation can arise due to the presence of non-Horn clauses
which cause branching in the hyper tableau. While this is impossible with the
current knowledge base, further extensions could add such clauses. The recently
proposed QA syntax addition to the TPTP allows this as well, although the issue
of disjunctive answers is regarded as problematicﬂ The treatment of answers

8http://www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html
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in a tableau with branching largely depends on the intended semantics of the
non-Horn clauses that cause the branching.

For example, consider the following pair of a question @) and a candidate
passage C":

Q: “Which airports serve Tokyo?”

C: “Visitors to Tokyo will land at Haneda Airport or at Narita Airport.”

Here the “or” could lead to two branches that each close with one of the air-
ports as an answer, and together they could form a conjunctive answer “Haneda
Airport and Narita Airport”. This does not work when the “or” is exclusive:

Q: “What happens if I catch the bubonic plague?”
C: “Victims of the bubonic plague die within four days or survive disfigured.”

Again two answers are possible, but a combined conjunctive answer would be
nonsensical ( “You die within four days and you survive disfigured.”). Instead
the system should either present only one of the outcomes, or preferably show
both as a combined disjunctive answer ( “You die within four days or you survive
disfigured.”). The current behaviour of E-KRHyper is therefore to extract one
answer from each branch that is closed by a query clause. It is then up to
the overarching system to decide how to deal with multiple answers for one
passage, by treating them as conjunctive or as disjunctive. Technically this
makes it possible to obtain answers from incomplete proofs by considering only
the branches closed so far.

The logic-based processing occurs under strict time limits, so it is possible
that not all candidates for a question will be tested by the prover. This extends
to individual proof attempts which are limited to a slice of the overall deduction
time limit. These time slices play a role in ensuring robustness, which is done by
relaxzation: If E-KRHyper cannot find a proof for a passage within a specified
time limit, then query literals are skipped until the remaining query can be
proven. Relaxation is described in detail in Chapter If no proof succeeds at
all, E-KRHyper can also provide any partial proof substitutions which managed
to instantiate some of the query literals.

Answer Extraction: If E-KRHyper manages to prove a question with re-
spect to a candidate passage, then the answer binding from the proof is handed
over to the main LogAnswer system. This data is used to extract the actual
answer string from the original passage, a step that is necessary because the
MultiNet node identifiers are often ill-suited as natural language responses, and
an answer may require words associated with several nodes. Returning to the
example in Figure [8.2] a successful proof for the query about the inventor of
Coca-Cola would instantiate the FOCUS-variable with the node identifier c31.
This node represents the person John Stith Pemberton. Based on this node the
answer extraction will identify those nodes which store the given names and the
surname and thereby construct the answer “John Stith Pemberton” from the
passage.
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Logic-Based Feature Extraction: Similar to the answer candidates the
proofs may be of different quality, thanks to the relaxation which can skip
literals and thereby make the query less specific. To determine the best proofs
a number of features is extracted:

skippedLitsLb: the number of literals skipped by relaxation,

skippedLitsUb: the number of skipped literals plus the number of literals that
remained unproven (partial proof),

litRatioLb: the relative proportion of proved literals compared to all query
literals,

litRatioUb: the relative proportion of unskipped literals compared to all query
literals,

boundFocus: a boolean feature indicating whether the FOCUS variable was
bound,

npFocus: aboolean feature indicating whether the FOCUS variable was bound
to a node corresponding to a nominal phrase,

focusEatMatch: a boolean feature indicating whether expected answer type
matches the answer type found in the passage,

focusDefLevel: analogous to the shallow defLevel feature, this feature indi-
cates the relevance of the answer binding for definition questions.

Logic-Based Reranking: Analogous to the shallow feature-based reranking,
the passages and the answers are ranked by a confidence score computed by
decision trees which now utilize both the shallow and the logic-based features.
Depending on the use case it is possible to apply a filter here by introducing
an answer acceptance threshold 6, so that any answer with a score below 6 is
discarded for being too uncertain. This is useful in situations when incorrect
answers will be perceived as disturbing. As the logical proof has a great influence
on the score of an answer, the proof quality can become a deciding factor in
the decision whether to keep or reject an answer. The optimum value for this
threshold is highly dependent on the complexity of the questions, their syntactic
correctness, the subject matter and so on, so if a 6 is to be used, it must be
computed for the specific scenario by machine learning on ample training data.

Support Passage Selection: Depending on the precise use case, LogAnswer
may only have to produce passages instead of exact answers; this has been the
case in some CLEF competitions. In such circumstances the (usually five) top-
ranked passages are selected for presentation. The shallow retrieval methods
in combination with the large knowledge base normally ensure that there are
indeed at least five such passages at this stage, even if their confidence scores
may be very low. In rare cases though it can happen that there are less passages.
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Sanity Checks: For exact answers on the other hand there is some additional
filtering. This prevents presenting the same answer twice (although multiple oc-
currences of the same answer do increase its relevance ranking). Trivial answers
which merely repeat question terms are discarded as well, for example: “What
18 a computer?” - “a computer”. The best five answers are selected for presen-
tation to the user. Again this number can be less if not enough answers were
found or passed the filtering stages.

Apart from answering questions, one goal of the described arrangement of
components and their interaction in the processing cycle is that LogAnswer
can function as an anytime algorithm. The more time LogAnswer is allowed
for the processing of a question, the more answer candidates can be tested in
E-KRHyper, and the more inferences can be computed in each proof attempt.
Even short time limits are sufficient for finding some answers, and the number
and quality of the answers improve when the limits are increased. This means
that LogAnswer can be scaled up and down to different usage scenarios with-
out having to implement major changes to the inner workings of the system,
making it flexible enough to serve both as a quickly responding search engine
replacement on the web and as a QA system with thorough and deep reasoning,
for example as a research tool or in QA competitions.

This concludes the high-level description of LogAnswer. The following chapters
will address specific issues in adapting the theorem prover E-KRHyper to this
QA system.
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Chapter 9

Suitability of ATP
Strategies

Before delving into detailed adaptations of an automated theorem prover to
specific QA issues it makes sense to consider whether there are some general
features that make one prover more suitable to question answering than another.
Obviously some provers may have advantages towards embedding by having
more open interfaces, supporting more input syntaxes and so on, but that is not
the concern of this chapter. Rather, we want to investigate whether there are
design decisions in the development of a prover’s proof procedure that provide
a benefit when processing reasoning problems stemming from QA tasks.

The chapter is structured as follows. The first section gives a high-level sys-
tem description of the theorem prover E-Darwin which I developed and used dur-
ing the LogAnswer project. This includes a short excursus about ATP debug-
ging, which gives reasons for having a second theorem prover within the project.
The third section then explains how the differences between E-KRHyper and
E-Darwin lead to significant differences in their performance on LogAnswer rea-
soning problems, and a short evaluation shows that this applies to automated
theorem provers in general.

9.1 The Theorem Prover E-Darwin

E-Darwin [3] is an automated theorem prover implementing the model evolution
calculus [BT03|] and several of its variations. Within the LogAnswer project it
served as a secondary prover that helped during the debugging and benchmark-
ing of E-KRHyper. It has not been embedded in LogAnswer, and therefore its
operation will only be discussed in the broadest strokes, as any deeper level of
detail is not necessary for the purpose of this chapter.

9.1.1 Background and Development History

The model evolution calculus was originally implemented by Alexander Fuchs in
the theorem prover Darwin [BETQ6]. Later versions of this calculus added dif-
ferent ways of equality reasoning [BTO05][3]. E-Darwin is intended as a testbed
for these variants of model evolution, and I implemented E-Darwin as a fork of
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Darwin. The development of E-Darwin and its relation to Darwin thus mirror
that of E-KRHyper and KRHyper. However, while the KRHyper-provers em-
phasize embedding in knowledge representation applications and use techniques
from deductive databases, the Darwin-systems are rather intended as stand-
alone provers, and they rely more strongly on standard ATP design principles.

9.1.2 Usage Information

E-Darwin is implemented in OCaml, the first of many similarities to E-KRHyper.
Likewise, E-Darwin supports input in TPTP and PROTEIN syntax. The system
operates on clauses in clause normal form. The Darwin-provers have tradition-
ally clausified input formulas using the prover E [Sch02], although as of version
1.4 E-Darwin has adopted the clausification module developed for E-KRHyper,
and it allows the user to select which clausifier to apply. Results can be returned
in various forms, including the SZS-compliant result status. For satisfiable input
E-Darwin can return a model if it terminates. Proofs are provided as traces,
i.e. in the form of listings of the derivation steps taken, with the level of detail
being selectable. The current E-Darwin 1.5 is available under the GNU General
Public License at the E-Darwin website[]]

9.1.3 Proof Procedure

The model evolution calculus with equality operates on sequents, and a sequent
consists of a set of clauses and a context, the latter being a set of literals that can
be regarded as a model under construction. Each inference rule derives a new
sequent with a modified clause set or context. Rules based on superposition can
use equations for rewriting. A splitting rule derives two disjunctive sequents
which must be considered one by one. Simplification and subsumption rules
allow the calculus to exploit a range of redundancy criteria. If a sequent is
free of contradictions yet has no non-redundant inference possibilities, then its
context represents a model. If only contradictory contexts are derived, then the
input is unsatisfiable.

From an implementational point of view a sequent is roughly analogous to
a branch in an E-hyper tableau. Similar to E-KRHyper, the proof procedure of
E-Darwin can be divided into an upper level and a lower level algorithm, see the
pseudo-code Algorithms[0.1]and[9.2] The upper level algorithm handles splitting
and backtracking, while the lower level evaluates sequents in a linear manner
between splits. The upper level is almost identical to the one in E-KRHyper (see
Algorithm [7.5)): Both systems postpone splitting as long as possible, both can
output a model when a branch (sequent) in the derivation tree is exhausted, and
both backtrack when a branch (sequent) is closed. The only significant difference
here is that E-Darwin has no option to retain results above the weight limit.

The lower level sets the systems apart, as E-Darwin does not use semi-
naive evaluation. In order to minimize clutter in the pseudo-code the sequent
is always represented just as the sequent variable, and when adding elements
to the sequent or using the sequent in some other way, it is assumed that the
proper subset of the sequent is used, i.e. either the set of clauses or the context.
The function EVALUATE_SEQUENT takes as its argument new a set of clauses and

Thttp://userpages.uni-koblenz.de/~bpelzer/edarwin
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Algorithm 9.1 At the upper level the E-Darwin split control loop handles
splitting and backtracking.

function EVALUATE_CHOICE_POINT( choicePoint)
if choicePoint = root then
sequentResult := EVALUATE_SEQUENT(input reasoning problem)
else
sequentResult := EVALUATE_SEQUENT({split literal of choicePoint})
end if
if sequentResult = closed then
if unprocessedSplitStack # {} then
nextChoicePoint := pop(unprocessedSplitStack);
sequent := backtrack(sequent, nextChoicePoint);
candidates := backtrack(candidates, nextChoicePoint);
splitCandidates :=
backtrack(splitCandidates, nextChoicePoint);
EVALUATE_CHOICE_POINT (nextChoicePoint)
else
return closed
end if
else
if splitCandidates # {} then
split := take a split from splitCandidates;
push(literals of split, unprocessedSplitStack);
nextChoicePoint := pop(unprocessedSplitStack);
EVALUATE_CHOICE_POINT(nextChoicePoint)
else
if weightLimit has been exceeded then
increase(weightLimit);
nextChoicePoint := choice point of first
weightLimit transgression;
sequent := backtrack(sequent, nextChoicePoint);
candidates := backtrack(candidates, nextChoicePoint);
splitCandidates :=
backtrack(splitCandidates, nextChoicePoint);
EVALUATE_CHOICE_POINT(neztChoice Point)
else
return echausted
end if
end if
end if
end function

literals. In the initial call new is the clause set formed by the input reasoning
problem. Later on this function is called after each split, and new then only
consists of the respective split literal. new is simplified by the sequent in a
reduction phase, then added to the sequent, and finally used to simplify the
sequent as well. In the initial call this means for example that input clauses
may subsume each other. After that the actual reasoning begins. E-Darwin
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Algorithm 9.2 The lower level in E-Darwin evaluates sequents between splits.

function EVALUATE_SEQUENT(new)
// In the first call, new is the input clause set.
// In subsequent calls it is a selected split literal.
new := reduce new by sequent;
sequent := sequent U new;
sequent := reduce sequent by new;
conclusions := all inferences with new,
using other premises from sequent;
candidates := candidates U (non-splits from conclusions);
splitCandidates := splitCandidates U (splits from conclusions);
while (candidates # {}) A (contradiction not found) do
selected := select one from candidates;
candidates := candidates \ selected;
selected := reduce selected by sequent;
sequent := sequent U {selected};
sequent = reduce sequent by selected;
conclusions := all inferences with selected,
using other premises from sequent;
candidates := candidates U (non-splits from conclusions);
splitCandidates := splitCandidates U (splits from conclusions)
end while
if contradiction found then
return closed
else
return ezhausted
end if
end function

exhausts all inference possibilities that involve at least one element of new as
a premise, taking other premises from the sequent. The results that remain
within the weightLimit, temporarily stored in conclusions, are then put either
into candidates, or into splitCandidates in the case of disjunctive results.

A loop then proceeds as follows: In each iteration one of the candidates is
selected heuristically. Factors influencing this selection are size and weight mea-
sures, age, and an estimate of the likelihood that the selected candidate can lead
to a contradiction. Naturally, the latter criterion is so important that numerous
lookahead functions continuously monitor the candidates in case changes to the
sequent make a candidate contradictory. Once a candidate has become selected,
its processing mirrors that of new. It is simplified by the sequent, added to the
sequent and then in turn may simplify the sequent. All inference possibilities
with the selected candidate are exhausted, and the results are stored in the
respective candidate sets. The loop continues until there are no non-splitting
candidates or a contradiction has been found. At that point the upper level
algorithm takes over again.
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9.1.4 Implementation Details

E-Darwin and E-KRHyper have many things in common due to their heritage.
The original Darwin used discrimination tree indexing code adapted from the
original KRHyper. The indexing of multi-literal clauses in E-KRHyper (see
Chapter builds upon this, and we first implemented and tested it in E-
Darwin before porting it to E-KRHyper. Darwin came with a parser for clause
normal form input in TPTP syntax; we ported this to E-KRHyper, where we
extended it with the ability to process TPTP input in formula form by equipping
it with a dedicated clausifier, and then this enhanced parser was ported back to
E-Darwin.

However, some differences should be mentioned. E-Darwin has no layered
indexing. When backtracking to a different derivation branch, invalidated index
entries must be removed from the discrimination trees one by one, and branches
left without entries are pruned.

Another difference lies in the internal representation of terms. Unlike E-
KRHyper, terms in E-Darwin are shared as much as possible. This means that
all occurrences of a given term or subterm within a set of clauses are actually
represented by pointers to a single term. This is advantageous in that memory
is saved, and tests for syntactic term equality, a frequent operation in indexing,
unification and so on, can often be done just by verifying pointer identity, rather
than having to compare terms subterm by subterm. There are also drawbacks:
To ensure that no term is stored more than once, whenever a new term is
formed, for example through the application of a substitution, it has to be
matched against a term database to find a possible earlier representation of
that term. During this initial lookup the term comparison cannot yet rely on
pointer identity, so every such term creation requires one costly database index
search. Shared terms also mean problems for rewriting: If a subterm s of a term
t within a literal of a clause is to be rewritten by a term r (i.e. ¢[s] is about
to become t[r]), then care must be taken to ensure that other occurrences of
t, whether within the same clause or in others, are not accidentally rewritten
through a destructive modification of the one canonical representation of ¢. This
can be solved by creating and using temporary copies of terms that are about
to be rewritten, but this adds a substantial overhead to operations that occur
very frequently during the runtime of a proverE|

The usage of term sharing is a fundamental design decision with pervasive
consequences for the implementation of a prover, so it is not easy to convert a
prover from shared to non-shared terms or vice versa. As the benefit situation
is unclear and experiments with partial term sharing in E-KRHyper were incon-
clusive, we left both E-Darwin and E-KRHyper with their respective originally
chosen term representation method.

9.1.5 Evaluation

E-Darwin generally outperforms E-KRHyper. We tested E-Darwin on the 15,550
FOL problems of the TPTP v5.3.0. An Intel Q9950 CPU with 2.83 GHz was
used, and the memory usage was limited to 1 GB of RAM, while the time limit
per problem was set to 300 seconds. Under these conditions E-Darwin solved

2Harald Ganzinger and Robert Nieuwenhuis estimate that theorem provers spend about
90% of the time on demodulation [Nie99], in other words on rewrite operations.
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6,467 problems, corresponding to 41.6% of the test set, or 33.3% of the total
TPTP with 19,446 problems. The hardest problem solved was LAT298+1 with
a rating of 1.0, indicating that no other current SOTAC prover solves this prob-
lem. When E-Darwin was introduced [3], it was tested on the TPTP v4.0.1 and
solved six problems with a 1.0 rating at that time, namely ALG035+1, GRP197-
1, NUM378+1.020.015, PRO016+1, SWV527-1.040 and SWV527-1.050. The
current E-Darwin still solves these problems, although they have since been
downrated in their difficulty.

In the official TPTP test result listingsﬂ E-Darwin is listed in its 1.4 version
from 2011, in which it solved 36% of the tested 15,550 FOL problems or 28%
of the total TPTP. This version featured an inefficient experimental inference
implementation which has since been improved, explaining the difference to our
own results with the current E-Darwin 1.5. Nevertheless within these official
listings E-Darwin is the 11th best prover out of the 62 tested on the TPTP
v5.3.0, or the 9th best when accounting for some provers sharing positions due
to showing the same performance. All else remaining equal E-Darwin 1.5 could
expect to rise to the 7th position in this listing.

E-Darwin has participated in CASC since 2008. As it serves as a testbed
for the model evolution calculus, the implementation changes from year to year
are not so much performance improvements as they are experiments for calcu-
lus modifications. Therefore it is inappropriate to identify a general trend in
E-Darwin’s performance over the years. However, usually E-Darwin has out-
performed E-KRHyper in most categories, with the exception of 2011 where the
aforementioned troublesome 1.4 version participated. E-Darwin is more of a
generalist than the original Darwin. Darwin won the EPR division (effectively
propositional problems) both in 2006 and 2007, yet at the same time failed the
Otter benchmark in numerous categories. E-Darwin cannot quite match the
EPR performance of Darwin, but on the other hand, in the less problematic
2010 participation E-Darwin surpassed Otter in several divisions and categories
where Darwin used to be inferior, including CNF, FNE (first-order formula
problems without equality), HNE (Horn without equality), NEQ (non-Horn
with equality) and PEQ (purely equational problems).

9.1.6 Excursus: ATP Debugging

One might question the value of maintaining a second ATP system, in particular
one as intricate as E-Darwin. There are two answers to this. Firstly, the effort
is not as large as it may seem, because as mentioned in Section E-Darwin
and E-KRHyper share several complex modules. Also, as E-Darwin focuses on
traditional FOL theorem proving, its implementation neither has to deal with
logic extensions beyond equality nor with features for embedding. Secondly,
an alternative prover with a readily available, accessible and well understood
source code is highly useful during debugging.

Very little is written about the debugging of automated theorem provers,
which is surprising given the amount of time an ATP developer has to spend
testing and debugging a prover. Bugs in ATP systems can be grouped into
soundness bugs and miscellaneous bugs. The latter cover a wide range of pro-
gramming errors that manifest in the form of crashes, error messages or other

3Most recent result listing: http://www.cs.miami.edu/~tptp/TPTP/Results.html
Our data is based on the results retrieved on 1 May 2012.
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faulty output; their repair is usually straightforward and such bugs are thus
just a minor nuisance of little interest. Soundness bugs on the other hand are
vastly more difficult to handle. They reveal themselves through testing, when
the prover decides a problem with a result contrary to the known correct re-
sult. That is, the prover claims a satisfiable problem to be unsatisfiable or an
unsatisfiable problem to be satisfiable. Technically it might be a misnomer to
refer to the latter case as a soundness bug rather than a completeness bug, but
this loose usage of “soundness” when referring to bugs is commonplace in the
ATP community and CASC. Besides, the very same bug often destroys both
soundness and completeness. For example, if a faulty inference implementation
derives a non-consequence clause C’ instead of C, then the system is unsound
because it derives a non-consequence, and it is incomplete because it omits de-
riving the consequence C. Thus one bug can cause both false satisfiability and
false unsatisfiability results, so in the following we will use these two notions, as
they are the starting points of discovering and debugging a soundness bug and
for each of them there are methods that are more effective.

Regardless of whether we are dealing with false satisfiability or false un-
satisfiability, there is often the problem that the undesired result occurs after
several minutes of computation, during which thousands, maybe even millions
of inferences may have taken place. Therefore it is often not obvious where
exactly the prover made a mistake. Intuitively it may then make sense to verify
the erroneous proof or model, but this is difficult in practice. Proof output of
provers often has a proprietary syntax, and of course the proofs use the inference
rules of the specific implemented calculus, so they are unlikely to be compatible
with existing automated proof checking programs. When producing condensed
proofs (without unnecessary inference steps) like E-KRHyper does, then there
is also the motivation to compress the information about inferences as much as
possible, as the prover has to keep and accumulate this data throughout the
derivation in order to show only the relevant inference steps at the end. This
means that individual derivation steps in the proof output can be difficult to
verify. For example, E-KRHyper compounds multiple consecutive simplification
operations on a clause into a single step in the proof, listing only the starting
clause, the final clause, and the equation units involved. Listing the interme-
diate results and the exact rewrite positions could clarify such steps, but this
would make a memory-hungry prover consume even more memory. False models
are even less helpful: Not only do they have the same problem of compatibility
to third party tools, but also even if some automated tool could confirm that a
false model truly is no model, then this would not tell where the prover went
wrong or what inference step is missing.

Fault Condensation:

A helpful first step is to condense the reasoning problem to the smallest subset
of its clauses that still induces the faulty behaviour in the prover. The idea is to
shorten the derivation time until the erroneous result occurs, thus speeding up
the subsequent debugging process, because having to wait for several minutes
between each minor adjustment and test run is tedious. For false unsatisfiability
results this is easily achieved by deleting one clause after another while testing
to ensure that the shrinking subset remains “unsatisfiable”. E-KRHyper has a
function specifically for this purpose which lists the input clauses involved in
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an unsatisfiability proof in a machine-readable form. That way a false proof
can be turned into a shortened input set without having to reduce and test
the original reasoning problem iteratively. When applying condensation to an
unsatisfiable problem with a false satisfiability result there is the impediment
that the subset of an unsatisifable clause set may actually be satisfiable, so
by simply deleting clauses one may end up turning a false satisfiability into a
true satisfiability result, which is not helpful. Here a second prover is useful:
Whenever the reasoning problem has been reduced by deleting clauses, both the
faulty prover and the second prover test the reduced set. If the second prover
finds this input to be unsatisfiable and the faulty prover still produces the false
satisfiability result, then the reduction was successful, and further condensing
may be possible. On the other hand, once both provers show satisfiability, then
the condensing has gone too far and it is no longer certain that the reduced
input still triggers the bug in the faulty prover.

Branching Reduction

The next step is to further condense the faulty derivation by a reduction of
branching. In the case of a false satisfiability result the final open branch is
likely to be involved in the bug, since all branches should have been closed. Any
previously closed branches are less interesting. To speed up debugging it can
thus be useful to skip these earlier branches by forcing the faulty prover onto
the erroneously open branch right away. This can be achieved by obtaining
the “model” M represented by the branch and adding the units to the input
problem one by one, effectively turning them into input axioms. Of particular
interest here are those units which were derived by splitting, since their presence
will then prevent the prover from exploring the other branches resulting from
those splits.

For a false unsatisfiability result a reduction of branching faces the problem
that even satisfiable input may lead to many closed branches, and often it is not
known which particular branch was closed in error. In the rare cases where this
branch is known, the faulty proof provides information about which splittings
led to the specific branch, and the respective units can then be added to the
input problem in order to force the prover onto that branch as explained above.
When the faulty branch is not known, eliminating branches at random bears
the risk of accidentally eliminating the faulty branch, thereby actually rendering
the clause set truly unsatisfiable. Here it can be helpful to proceed iteratively:
From the faulty proof one split unit is selected and added to the input problem
in order to eliminate one splitting. Then the modified input is tested both
with the faulty prover and the second prover. If the faulty prover repeats the
unsatisfiability result while the second prover claims the opposite, then the
reduction was useful, as the condensed problem still triggers the bug. However,
if both provers agree on the input being unsatisfiable, then the reduction turned
the input truly unsatisfiable. Likewise, if both provers agree on the modified
input being satisfiable, then it probably is satisfiable, but it no longer triggers
the bug in the faulty prover. Thus, whenever both provers agree, then that
particular branch reduction should be reversed, as it is useless for debugging.

When there is a large number of splittings in a faulty refutation, then elim-
inating them one by one may become tedious. A more drastic measure then
is to delete positive literals from non-Horn clauses, i.e. by selecting a clause
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C = A, A + B and replacing it with ¢/ = A < B. That way multiple splittings
can be prevented by one modification. As above, the modified input must be
tested by a second prover to ensure that the satisfiability status has not been
affected.

It is not always possible to reduce a faulty derivation to one branch. For
example, the erroneously open branch of a false satisfiability result may become
closed when computed on its own. In such cases the bug is often found in the
splitting or backtracking implementations, in such manner that clauses from
previously closed branches are carried over into the faulty branch by accident,
or clauses made redundant in an earlier branch are not reintroduced properly
during backtracking.

Inference Sequence Testing:

When a flawed branch has been isolated successfully, the derivation is often
so short that the error becomes obvious. However, when the branch is long,
it may be useful to verify the derivation automatically, which is easier now
that no branching is involved. A faulty refutational proof can be broken down
into a sequence of inference steps, each of the form C = D with premises C
and conclusions D. FEach such inference step can be turned into a compact
reasoning problem C A =D. These individual problems are usually sufficiently
simple to be almost instantly proven by a second prover, even if they involve
multiple simplification operations as mentioned above. E-KRHyper is equipped
with functions and scripts that can automatically test a branch like this using
E-Darwin.

When dealing with a false satisfiability result, then there is no refutation to
sequentialize. In such cases the proofs for individual units of the faulty model
may be scrutinized in a similar manner. Often though the bug is then found
in the redundancy handling, with non-redundant clauses being deactivated by
accident. Switching off the redundancy handling, either entirely or for exam-
ple by iteratively disabling the first or last n clause deactivations, can help in
discovering which clause should not have been removed from the reasoning.

Example Bug:

For an example of a typical bug, consider this set of clauses:
Cy: < cA(x), cB(x)

Cy: ¢B(x) < cB(y),x ~y

Cs: ia >~ ib«+

Cy: cA(ia) <

Cs: ¢B(ib) <

The clauses were extracted from the TPTP problem KRS163+1, normally an
unsatisfiable problem with 19 clauses in the CNF representation, some of them
non-Horn. E-KRHyper claimed to find a model for the original problem after
approximately 70 seconds of computation. The problem could be condensed
to the five clauses above; together they remain unsatisfiable, yet E-KRHyper
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claimed to find a model almost instantly. It should be possible to derive a
refutation in two steps:

1. Derive Cg = ¢B(ia) + from C3 and C5 using unit-sup-right.
2. Close the branch using C,Cy and Cg.

Notably, Cs is absent from the proof, and technically the clause is tautological,
but it was critical for the bug. Recall that E-KRHyper operates in rounds,
performing several inferences in each round and temporarily storing the results
in a set of conclusions, from where they will be moved to the tableau after the
round. In the first round E-KRHyper initially derived Cg, but it did so using
hyper extension with the selected clause Cy and the units/literals C5 and Cs.
In the same round the prover then also derived C7 = ¢B(ia) + from C5 and Cj
using unit-sup-right, in other words the expected first step above. This inference
made Cy redundant, so it was deactivated. As C7 was being entered into the
conclusions, it was recognized to be subsumed by the already present Cg and
therefore discarded. At the end of the round Cg should then be inserted into
the tableau, but a final check recognized that one of its premises, namely Cj,
had become redundant due to another inference during the course of the same
round. This made the whole inference deriving Cg redundant as well, so Cg
was likewise discarded. With both instances of ¢B(ia) < discarded, the closing
inference was then no longer possible.

The problem here was that the conclusions set utilized two optimizations
which together destroyed the completeness. By both testing for subsumption
between new conclusions and also rejecting inference results whose premises
had become redundant by other inferences during the same round, it effectively
allowed two instances of the same clause to discard each other, leaving none of
them. As the internal subsumption test between fresh conclusions was only a
minor optimization, we chose to disable it in order to restore the completeness
of the implementation.

Debugging an automated theorem prover can involve a considerable amount of
work, with single faults sometimes requiring several days of constant testing and
investigation. A second prover is a valuable tool for verification during this work,
and if it is as closely related to the main prover as E-Darwin is to E-KRHyper,
then it can sometimes be employed as a test-bed for specific components of the
main prover by integrating them temporarily.

9.2 ATP Strategies and LogAnswer Problems

The evaluation in Section shows that E-Darwin outperforms E-KRHyper
when it comes to theorem proving in general, on reasoning problems from the
TPTP. With both provers at our disposal, it is reasonable to consider embedding
E-Darwin into LogAnswer instead of E-KRHyper. However, early testing with
several provers showed that good general performance does not necessarily carry
over to the reasoning problems expected in LogAnswer [8]. We used a test setﬂ

4The set is available online:
http://www.loganswer.de/resources/loganswer_tptp_problems.tar.gz
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obtained from the participation of a predecessor system to LogAnswer in the
German language category of the CLEF 2007 competition track for QA systems
(QAQCLEF 2007) |GFHT07]. The set consists of 1,805 problems, all of which
are Horn problems without equality, but with an infinite Herbrand universe due
to function symbols. The problems are very similar in size and structure to the
expected LogAnswer problems (see Section , as they have been generated
by the same methods, only from slightly older knowledge bases. On average the
problems have 10,590 clauses, ranging from the smallest problem with 10,360
to the largest with 12,077. Most clauses are unit clauses, with an average of
300 multi-literal clauses per problem. While all of the problems are solvable in
their original MultiNet form, the incomplete translation method into FOL does
not guarantee that all problems in our test set are theorems, although most of
them have been shown to be solvable by now.

We did not include the E-Darwin test results in [§] because of soundness
problems with the system at the time, but the testing indicated that compared
to E-KRHyper, E-Darwin would require several times as much time on average
to solve a problem, and it would solve less problems than E-KRHyper even under
generous time limits. For this dissertation we have tested the same problem set
with current ATP versions including a corrected E-Darwin.

However, let us first consider the reasons for the discrepance in performance
between E-KRHyper and E-Darwin, since this difference caused us to investi-
gate the matter in the first place. Both provers are strongly related and share
several components, including the clausifier and the indexing. Both use very
similar upper level algorithms, see Algorithms [7.5] and [0.I] Even their calculi
are in some ways related. On problems like those in the test set, E-KRHyper
operates almost exclusively with the hyper extension rule, while E-Darwin does
the same with its Assert-rule - both are effectively identical when it comes to
Horn clauses. They do have a major difference in their lower level algorithms,
though: While E-KRHyper uses the strategy based on semi-naive evaluation,
the corresponding loop in E-Darwin is a variant of the given-clause algorithm.
This algorithm was originally devised as an implementation of the set of sup-
port strategy [WOLB84] and introduced by the prover Otter [McC03|, which
is why it is often simply referred to as the Otter-loop. In a similar vein the
specific variant of the given-clause algorithm in E-Darwin is normally called a
DISCOUNT-loop due to its introduction by the DISCOUNT prover [DKS96].
The Otter-loop differs from the DISCOUNT-loop only in that the former also
involves the set of candidates (usually referred to as the set of support) in sim-
plification and subsumption operations. This is often regarded as causing more
effort than gains, and the DISCOUNT-loop seeks to remedy this by keeping the
set of support more passive.

These differences do not matter in the context of this chapter, and for our
purposes we here omit all reduction phases to obtain the basic given-clause
algorithm as shown in the pseudo-code of Algorithm For a comparison
Algorithm shows a similarly distilled and simplified representation of the
strategy in E-KRHyper based on semi-naive evaluation. To highlight their dif-
ferences and commonalities, both representations adopt the standard terminol-
ogy of usable for the set of clauses that can participate in inferences and set

A selection of these problems has since become part of the TPTP, where they are filed as
CSR112+1 to CSR116+47.

113



Algorithm 9.3 The basic given-clause algorithm

set of support := input reasoning problem;

usable := {};

while (set of support # {})A(refutation not found) do
given clause := select and remove clause from set of support;
usable := usable U {given clause};
conclusions := all inferences with given clause,

using other premises from usable;

set of support := set of support U conclusions;

end while

if refutation found then
return refutation

else
give up

end if

Algorithm 9.4 The core E-KRHyper strategy based on semi-naive evaluation

usable := input reasoning problem;

conclusions := all inferences with usable;

while (conclusions # {})A(refutation not found) do
previous conclusions := conclusions;
conclusions := all inferences with previous conclusions,

using other premises from usable;

usable := usable U previous conclusions;

end while

if refutation found then
return refutation

else
return model

end if

of support for the more passive candidate clauses in the given-clause algorithm.
Both also omit any references to splitting, as this is mostly handled outside of
these algorithms.

The critical difference between the loops lies in the amount of clauses used
for inferences during each loop iteration. The given-clause algorithm selects
only one clause from the set of support, computes all inferences involving that
clause, and then adds the conclusions to the set of support. In the semi-naive
loop the set of conclusions has a function similar to the set of support in the
way it stores the inference results. However, here all these conclusion clauses
are selected for inferencing in the next loop iteration.

The given-clause algorithm is the predominant strategy in FOL theorem
proving. Of the FOL provers participating in the CASC of 2010 [Sutll] and
2011 [Suti2], at least 80‘7@ use some variation of the given-clause algorithm.
This includes top-performing systems like Vampire and E.

5The percentage is a conservative estimate, and some of the more exotic systems could be
generalized as also using the given-clause algorithm, but doing so might be an oversimplifica-
tion that does not do justice to these implementations.
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However, when dealing with reasoning problems as they occur in LogAnswer
the given-clause algorithm may be at a disadvantage compared to the strategy
implemented in E-KRHyper. This can be explained via the notion of proof
depth:

Definition 9.1 (Proof Depth). As a preliminary notion, let the inference depth
be a mapping of clauses to natural numbers. Given a clause set C and a set of
inference rules (a calculus) R, the inference depth of a clause C' is determined
recursively:

o IfC is an input clause (C € C), then its inference depth is 0.

e If C is derived by applying an inference rule R € R to a set of premise
clauses P (P =g C), then the inference depth of C is equal to 1+ the
mazimum inference depth of any clause in P.

Assume C to be unsatisfiable and let P be a proof for this unsatisfiability using
the calculus R, then the proof depth of P is the maximum inference depth of
any clause used in P.

Regarding the inference depth, note that we are dealing with specific clause
occurrences in a derivation, so it is possible to have multiple clauses C,C’, ...
which are variants and which each have their own (possibly different) inference
depth, depending on how that particular variant was derived.

As the proof depth is determined by a particular proof using a specific cal-
culus, a given problem may have many different associated proof depths. Also,
when a proof requires branching, then this measure alone is insufficient to ob-
tain any good idea of the complexity of a proof, as even a shallow proof may
contain excessive branching. Despite these limits the proof depth should be a
useful measure in our particular case of evaluating provers for LogAnswer. The
test set is Horn, which is generally favorable towards avoiding disjunctive split-
ting. Indeed, our primary test candidates E-KRHyper and E-Darwin both do
not need to split on these problems. In such a non-branching proof the proof
depth is identical to the proof length, i.e. the total number of inference steps,
while in a branching proof it is equal to the length of the longest branch.

Now let us assume some calculus R both in an implementation R““4 using
the given-clause algorithm and an implementation RSV using the algorithm
based on semi-naive evaluation. If a Horn-problem C can be solved with a proof
depth n, then R4 can find the proof in at least n loop iterations, while RSN
is guaranteed to find it in n loop iterations. This is not necessarily an advantage
for semi-naive evaluation, as each iteration has to perform more inference work.
Assuming that the average selected premise clause (i.e. the given clause in
REYA and one of the clauses in previous conclusions in R¥NF) results in m new
conclusion clauses, R3VF sees an exponential growth in derived clauses, with
Z?Zl m? clauses having been derived by the n-th round, whereas R¢“4 will
only derive m - n clauses. In an ideal situation where only minimal inferencing
is possible and the proof is linear, both algorithms will find the proof after the
same amount of inference applications. In practice, though, RV is often likely
to become overwhelmed by excessive clauses in later iterations.

However, this does not apply to QA-related reasoning problems as they oc-
cur in LogAnswer. Drawing from the upcoming evaluation of the QA problem
set with E-KRHyper, there are proofs for at least 1,728 of the 1,805 problems
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(95.7%). Among these the average hyper tableaux proof depth is 2.125, rang-
ing from 1 for the most shallow proofs to 5 for the deepest ones. The average
proof is based on 10.8 input clauses, ranging from 2 to 35. This means that the
average solved problem can be proven using less than 0.1% of its clauses, and
on average over 99.9% of the input clauses turn out to have been essentially
useless baggage for the theorem prover. An ATP system working on such prob-
lems must therefore be able to find a relatively compact proof among mostly
irrelevant inference possibilities. This irrelevance is not detected by the usual
redundancy criteria employed by reasoning calculi, such as subsumption and
tautology elimination.

When dealing with LogAnswer problems the behaviour of the semi-naive
evaluation-based R5NF gives it an advantage over the given clause algorithm
RECA due to the properties of the search space with respect to finding a proof.
Let us represent this search space by arranging the clauses of a derivation in
a directed graph G = (N, A), where the nodes N are labeled with the clauses,
and A is the set of arcs with (C,D) € A if and only if P =g D with C € P
and R € R. As such the distance of a clause node C' to the closest input clause
node corresponds to the inference depth of C'. RSN¥ explores this search space
in breadth, deriving all clauses at a given depth ¢ in the i-th loop iteration.
RECA on the other hand relies much more on heuristics, allowing it to derive
clauses at a depth d while there are still underived clauses at some depth d’ <
d. On typical reasoning problems this enables the given-clause algorithm to
find a proof fast due to not having to bother with irrelevant inferences. On
QA problems however there is a large amount of irrelevant input clauses and
inferences compared to the small unsatisfiable subset required for a proof. This
decreases the probability that the heuristic clause selection picks the correct
clauses, which in turn increases the risk that the given-clause algorithm wastes
time exploring parts of the search space that are deeper than the unsatisfiable
subset.

If a problem requires splitting, for example, when the hyper tableaux calculus
or the model evolution calculus have to deal with non-Horn clauses, then this
adds the complication of having branches in the derivation. Treating multiple
branches simultaneously causes implementational difficulties, so both R“¢4 and
RSVE (as in the case of E-Darwin and E-KRHyper) will likely pick branches
heuristically and consider them case by case. The presence of non-Horn clauses is
therefore unlikely to give an advantage to one strategy over the other. However,
as calculi show great variety in how they split, if at all, this remains speculative
with respect to provers in general.

We expect the semi-naive evaluation to be superior on problems as they
occur in LogAnswer, Horn problems that are large enough to distract heuristic
clause selection methods, yet with proofs that are sufficiently shallow so that
the prover does not have to explore the deeper search space levels where the
amount of derived clauses becomes unmanageable.

9.3 Evaluation
Our evaluation is an updated version of the testing we did in [§], this time

including E-Darwin, as the main purpose is to compare it to E-KRHyper. The
other provers are included mainly to provide an overview of the performance of

116



ATP solved t TPTP
E14 1,685 (93.4%) 1.64s 19%
E-Darwin 1.4 1,511 (83.7%) 11.67s 28%
E-KRHyper 1.3 1,728 (95.7%) 1.53s 27%
E-KRHyper 1.3 (opt) 1,728 (95.7%) 1.15s 27%
iProver v0.8.1 1,537 (85.2%) 7.19s 38%
Metis 2.3 347 (19.2%) 6.48s 26%
Otter 3.3f 1,728 (95.7%) 9.28s 23%
SInE 0.4 1,587 (87.9%) 7.965 19%
Vampire 0.6 1,695 (93.9%) 3.45s 53%

Table 9.1: Evaluation results for ATP systems on LogAnswer problem
test set

ATP systems on LogAnswer problems in general, although this way we can also
evaluate whether their results are consistent with our analysis of the differences
between the given-clause algorithm and semi-naive evaluation. We chose all
FOL theorem provers that had participated in both the CNF (clause normal
form problems) and the FOF (first-order formula problems) divisions of the
CASC 2011, indicating that they are suitable for FOL problems in general.
Also, only unique stand-alone provers were chosen, not meta-provers or variants
of already chosen provers. All provers were the most recent versions available
from their official sources at the time of this writing. Of these, E-KRHyper is
the only one based on semi-naive evaluation, while all the others use some form
of the given-clause algorithm.

In addition to the above we also included a special case in the test line-up,
the SInE [HVI1I] system, a preprocessor that heuristically selects a subset of
a given input problem and then tests only this subset with the E prover. Its
modus operandi is different from that of a typical ATP system, and it is included
here mostly because it was part of our original test series [8]. Heuristic clause
selection and SInE will be in the focus later on, see Section

The systems were tested on our standard test computer with an Intel Q9950
CPU with 2.83 GHz. FEach system used one CPU core to process one test
problem. The time limit per problem was set at 60 seconds and the memory
limit at 1GB of RAM. Some ATP systems adapt their strategies and heuristics
based on resource limits, so where applicable, the systems were informed of
these limits via parameters. The usage of these resources was monitored by
the TreeLimitedRun progranﬁ that was developed for TPTP testing and the
CASC. Otherwise all systems ran in their default configurations. An exception
was a second test run we conducted for E-KRHyper, where the starting weight
for the iterative deepening was increased to 12, a value we know to be more
suitable for LogAnswer problems. Neither E-KRHyper run used any of the
upcoming improvements specifically for the embedding as a reasoning server in
LogAnswer, as their effect will be evaluated separately.

Table[0.1] summarizes the results. The leftmost column ATP gives the name
and version number of the respective prover. The second column solved states
the number of problems solved by that prover, also giving this as a percentage

Shttp://www.cs.miami.edu/~tptp/CASC/J4/TreeLimitedRun.c
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of the total of 1,805 problems. The third column ¢ states the average time the
respective prover required for a proof. The final column TPTP is not a result of
our testing, rather it states what percentage of the full TPTP the given system
solves according to the official listingsﬂ It serves to provide an idea of how the
provers perform in general.

As can be seen, most provers solved a substantial number of the problems,
with Otter and E-KRHyper tied at a maximal 95.7% of the set. The differences
are more significant regarding the time. E-KRHyper required 1.53 seconds on
average in its default configuration and 1.15 seconds with the optimized weight.
Both settings were faster than any of the other systems, although the runner-up
E comes close with 1.64 seconds. E-KRHyper clearly outperforms E-Darwin,
both by solving more problems and by doing it faster, on average solving a
problem in 13.1% and 9.9% of the time E-Darwin required. Given the similarities
between the systems, it is clear that the search heuristics in E-Darwin have
difficulties making the relevant choices in the face of the large number of clauses,
while the relatively rigid breadth-first approach in E-KRHyper finds the proof
earlier.

All tested given-clause systems are slower than the semi-naive E-KRHyper,
which is consistent with our analysis. However, the average times vary greatly,
and some of the given-clause systems come much closer to E-KRHyper than
others. Obviously the given-clause algorithm can be adapted to such problems
reasonably well. Indeed, with ideal heuristics the given-clause algorithm could
potentially pick the shortest inference sequence leading to the proof, and thereby
outperform the semi-naive approach which always evaluates the search space in
breadth, most of which is irrelevant for the proof.

A curious observation is that SInE, which in this version employs E, showed
a worse performance than E alone, both regarding the speed and the number of
solutions. The SInE algorithm is generally a very promising approach to deal-
ing with large problems. Section [12.2.2] investigates the difficulties apparently
encountered on the LogAnswer problems.

While it is interesting that the semi-naive prover outperformed all given-
clause provers on the test set, in particular given that on general TPTP testing
the ranking of the systems is quite different, and while these results are con-
sistent with our theoretical considerations, it would nevertheless be premature
to attribute the performance differences solely to the choice of basic strategy.
Prover performance depends on more factors than this, for example the individ-
ual calculus, redundancy handling, the programming language and the quality
of the implementation. Only in the case of E-Darwin and E-KRHyper is there
enough similarity between the systems to draw this conclusion with some cer-
tainty. Regarding the other provers more in-depth analysis would be required.
Also, it should be noted that our evaluation used a set of fairly homogeneous
problems. Naturally this choice was made as the test served to evaluate provers
for LogAnswer, but this restriction limits the validity of conclusions for reason-
ing problems in general.

Nevertheless it was the speed differences, both as shown here and of course
in the earlier testing which had similar results, which convinced us that E-

"The official TPTP numbers were obtained on 1 May 2012 from:
http://www.cs.miami.edu/~tptp/TPTP/Results.html
These numbers may have been produced using different system versions, but the performance
usually does not change drastically between versions.

118


http://www.cs.miami.edu/~tptp/TPTP/Results.html

KRHyper was the correct choice for LogAnswer. These differences between the
provers may appear trivial considering that most systems solved around 90% of
the problems and that the official TPTP testing and CASC allow considerably
more generous limits. However, the usage scenarios of QA systems are often
restricted in their response times. A web-based QA system that competes with
conventional search engines should ideally offer almost instantaneous replies,
though we generally hold five seconds to be acceptable. In a QA competition
like CLEF there is more time, usually around 10 minutes per question. While
this may appear to be ample time, for a full logical processing of a question a
prover has to carry out proof attempts for hundreds of answer candidates, and
several per candidate when using robustness enhancements, see Section [13.1
This means up to 600 attempted proofs per question, in extreme cases more.
It becomes clear that even small differences in the proof time quickly add up
under these circumstances to such a degree that a slightly slower prover may
become completely unsuitable. When minimal response times are required,
as in the web-based scenario, then a full logical processing of all candidates
is rarely possible. Here LogAnswer relies more on the ML-based ranking of
candidates so that at least the most promising ones can be tested by the prover.
In this situation small variances in the proof times of provers decide how many
candidates can be tested with each prover, thus again the differences are not as
insignificant as they may appear.

Regarding the comparison of the semi-naive evaluation in E-KRHyper and
the given-clause algorithm in E-Darwin, the former appears to gain an advan-
tage with its strategy on the QA tasks as encountered in LogAnswer, which is
consistent with the theoretical considerations. The semi-naive strategy also pre-
serves refutational completeness, an advantage over incomplete selection heuris-
tics like SInE - which may nevertheless have a place in QA, as will be discussed
in Section [[2.2.21 At the same time the semi-naive evaluation faces difficulties
regarding complex proofs due to its exponential generation of clauses, a problem
that will likely prevent E-KRHyper from achieving the same general theorem
proving capabilities as the best given-clause provers. As such the semi-naive
evaluation can be seen as an aid when dealing with certain problem classes. In
theory a given-clause algorithm prover could employ the semi-naive evaluation
with little implementational effort. A simple approximation would consist of
adjusting the clause selection heuristics in such a way that the set of support
becomes a simple queue operating by the First In, First Out principle. A closer
imitation would add a temporary set for the immediate storage of inference
conclusions, before they reach the set of support: As soon as the set of support
is empty, all stored inference conclusions are moved to the set of support. Like-
wise, a prover like E-KRHyper could use an approximation of the given-clause
algorithm by not emptying its entire set of inference conclusions in every round,
instead using selection heuristics to pick only one clause. However, in practice
most ATP implementations are so intricate that even minor changes are rarely
simple. For LogAnswer we therefore chose to integrate the ATP system that
was better suited in the first place.
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Chapter 10

Indexing and Subsumption
of Multi-Literal Clauses

This chapter deals with the problem of indexing clauses with multiple literals.
Most inferences only need to find single literals or subterms within such clauses,
and thus they can use normal term-indexing by only considering the terms of
interest. However, when (non-proper) subsumption between such clauses is to
be computed, then the issues of both indexing and searching multiple literals
that belong together cannot be avoided any more.

The first section describes the problems posed by multi-literal clauses. The
second section then describes how indexing and subsumption of such clauses
is handled in E-KRHyper. The final section is an evaluation of the indexing
described here.

10.1 The Problem of Multi-Literal Clauses

As mentioned in Section indexing techniques like discrimination trees in-
dex by terms and literals, and it is not trivial to extend this to clauses. Yet
automated theorem provers have to index entire clauses in order to compute
(non-proper) subsumption, which is an important countermeasure against ex-
cessive clause generation. In the case of unit clauses E-KRHyper uses the regular
indexing as described before, with the predicate symbol treated as a function
symbol for the purpose of forming a flattened term by which to determine the
position in the discriminiation-tree, and equational atoms being indexed in both
orientations. This method fails for clauses with multiple literals. Technically
a flattened term could be computed for a clause by considering all of its sym-
bols (including the negation — and the disjunction V) as function symbols, then
treating the entire clause as a “term” and flattening it. As there is no fixed or-
dering of literals due to the associativity and commutativity of the disjunction
V, this results in a problem similar to the commutativity of equations in that
different flattened terms are possible for a single clause. However, carrying over
the solution of simply indexing all permutations is unfeasible, since in the worst
case of a clause consisting of n non-orientable equational literals there would be
n! - 2" variations to index. Picking only one constellation for indexing and then
performing multiple searches for all permutations instead is equally prohibitive.
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Generally no ideal solution exists, since determining subsumption between
clauses is an NP-complete decision problem [KN86]. In practice most clauses
are not as unwieldy as the worst case, and by using additional filtering methods,
and in the case of E-hyper tableaux further restricting the subsumption testing
to non-proper subsumption, the problem can be rendered more benign. The
earliest version of E-KRHyper was developed under time constraints and hence
employed a relatively crude solution where simple matching of predicate symbol
occurrences was used to determine a set of subsumption candidates, which then
were compared to the search clause one by one, literal by literal [14]. This needed
to be replaced by a better solution, both for a general performance improvement,
but also in particular with regards to the large clause sets common in QA.

Modern ATP systems usually employ a method that is basically similar to
the provisional two-phase approach of the E-KRHyper prototype, yet signifi-
cantly more refined. First subsumption candidates are retrieved using a series
of filtering criteria, for example a comparison of size and weight measures of
clauses, symbol occurrences, and literal depths. Such criteria can be arranged
and searched in tree-like indexing structures [Sch04]. Discrimination trees have
also been used as a filtering criterion in the form of finding candidates which have
at least one literal that is an instance or generalization (backward or forward
subsumption) of the search clause [Tam98|. In the second phase the candidates
are compared to the search clause one by one in full subsumption tests. This
is often done with a variation of the Stillman-algorithm [Sti73] which extends a
substitution while comparing the clauses literal by literal, and which backtracks
in the case of a substitution clash.

The complexity of multi-literal clause subsumption has led to attempts to
balance its cost against the savings due to omitted clauses. The DISCOUNT-
loop algorithm mentioned in Section [9.2] was introduced as a refinement of the
given-clause algorithm; its main improvement consists of excluding the set of
support from subsumption operations. Backward subsumption in particular is
sometimes seen as having dubious value [Tam98]. The Vampire ATP system
used to employ a unique approach [RV03] where each literal of the subsuming
clause was translated into an SQL-query to an index database, the results of
which were then joined. However, in his tutorial “First-order theorem proving
and Vampire” at CADE 2011, Andrei Voronkov revealed that the most recent
version of Vampire no longer uses any backward subsumption, as experiments
showed it was not worth the computational effort.

10.2 The Solution in E-KRHyper

For E-KRHyper we have devised the following method as a replacement for the
provisional solution in the prototype. To the best of our knowledge our approach
is unique, although implementation details like this are rarely published. The
E-KRHyper method is closer to the aforementioned Vampire approach than to
the conventional two-phase method, since we directly retrieve subsumed clauses
rather than retrieving candidates which require another clause-to-clause sub-
sumption test. However, unlike the Vampire approach we do not use an SQL-
database with join operations, instead we perform sequential searches in perfect
discrimination trees while extending substitutions. The development of our so-
lution was motivated by several considerations.
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Firstly, the clause sets for QA-related reasoning problems are abnormally
large, and any way to reduce the number of clauses must be considered, which
includes the subsumption between multi-literal clauses. Also, normal reasoning
problems start with relatively small sets of clauses and then result in more
and more clauses during the derivation. Under such circumstances it may be
acceptable to focus only on forward subsumption, which prevents the addition of
new clauses, while omitting backward subsumption, which would delete clauses
already in the system. The hope then is that forward subsumption prevents
the originally manageable set of clauses from growing too large. QA-related
clause sets on the other hand are (too) large right from the start, and therefore
it is also necessary to consider backward subsumption as a means of discarding
existing clauses.

Secondly, the semi-naive evaluation strategy of E-KRHyper, while effective
on problems with QA-characteristics, features no passive set of support that
could be excluded from costly subsumption computations, in the manner of the
DISCOUNT-loop. To adopt the terminology from the given-clause algorithm,
all clauses in E-KRHyper are usable, so the indexing and subsumption of multi-
literal clauses must remain effective while covering all clauses in the system.

Finally, unlike most theorem provers E-KRHyper attempts to decide reason-
ing problems by producing a model for satisfiable input. For this to succeed the
prover must terminate on satisfiable input by finding a derivational fixed-point.
Unlike a prover which only cares about finding contradictions, E-KRHyper must
therefore also aggressively prune the search space by removing as many clauses
as possible. While this is less of an issue with QQA-related problems where we
are only interested in refutations, it provides a motivation for an indexing and
subsumption method that is effective for theorem proving in general.

The idea behind our solution is to integrate the computation of substitutions
into the search for subsumption candidates, both in order to avoid the subse-
quent individual clause-to-clause subsumption tests, and to avoid completely
recomputing similar substitutions for different clauses by sharing parts of the
computation. The method mainly supports non-proper subsumption, because
this is what the E-hyper tableaux calculus prescribes. With minor adjustments
the same algorithm is used both for forward and backward non-proper subsump-
tion. It can also be adapted to proper backward subsumption reasonably well,
but not to proper forward subsumption. To determine whether a given clause
C' can be used for forward or backward subsumption with respect to indexed
clauses, instead of first filtering and then testing candidates, our approach uses
perfect discrimination trees to search by all literals of C' while integrating the
filtering and testing into this search.

Every clause is indexed once by each of its non-equational literals and twice
by each of its equational literals, covering both orientations as described above.
Also, every clause is equipped with a boolean search flag, which is used in
several steps of the algorithm. As default the search flags are turned off (set to
false). Each index node keeps a list of pointers to the search flags of the clauses
stored in the subtree below it. Perfect discrimination trees were chosen so that
the substitutions can be computed and checked during the search in the trees.
That way a search can be stopped as soon as a conflict arises while trying to
extend a substitution. Also, all clauses found at one particular leaf during a
search are immediately known to have been found by one specific substitution.
This greatly simplifies further searches, as will be seen below.
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Figure 10.1: Perfect discrimination tree subsumption index for multi-
literal clauses: an italic number ¢ at a node indicates that the node carries
the search flag of clause C;.

As an example, consider the index in Figure for the following set of
clauses:

1: {p(a,b),q(a, f(b)), -r(a)}
Cy: {p(a,b),p(a,a),r(b)}
Cz: {f(x) =~ z,p(a,b), ~p(b,a)}

Cu: {p(a,0),q(a, f(a)), r(a)}

Cs: {p(a,a),q(a,a),-r(a)}
The basic algorithm for non-proper back subsumption in E-KRHyper is shown
in the pseudo-code of Algorithm however, some explanatory words are
likely necessary.

Given is a clause C consisting of literals Lq,...,L,, and the algorithm
searches for all indexed clauses non-properly subsumed by C. The function
SEARCH recursively iterates over the non-properly subsumed clauses and col-
lects them. In every iteration it takes one literal L; € C, a substitution ¢ and
a set of clauses previousClauses, and then it searches the index for clauses that
contain an instance of L;o. In the initial call to SEARCH, which searches for
the first literal L, the substitution ¢ and the set previousClauses are empty,
and all clauses found for L; will be accepted as preliminary candidates. In later
calls o is the substitution under which the previousClauses have been found to
contain Lo, ..., L;_10 in previous iterations for the previous literals of C.

Initially the SEARCH function accesses the index to retrieve clauses containing
an instance of L, saving them in the set of candidates. Before and after this
actual index search, the search flags of the previousClauses are turned on and
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Algorithm 10.1 E-KRHyper uses multiple searches in perfect discrimination
trees for backward non-proper subsumption.

C := the query clause;

/] C={Ly,...,L,}
// The task is to find all indexed clauses non-properly subsumed by C.

function SEARCH(, o, previousClauses)
// previousClauses are the previously found clauses
// containing Lio,...,L;_j0.
// The task is to find every indexed clause D
// containing an instance of L;o,
// with D € previousClauses if i > 1,
// and then recursively continue with L; 1.

turn on search flags of previousClauses;

candidates := search the index by L;o;

turn off search flags of previousClauses;

// candidates = {resulty, ..., resulty,}

// with every result; = (0, clauses;) so that

// 1. Lijoé; = L for some literal L shared by all clauses;, and
// 2. clauses; C previousClauses if i > 1

if 1 =1 then
candidates := filter(candidates)
end if
if i = n then
return candidates
else
subsumed = {};
for all result; = (0;, clauses;) do
subsumed; := SEARCH(% + 1, 00}, clauses;);
subsumed := subsumed U subsumed;;
end for
return subsumed
end if
end function

subsumed := SEARCH(1, empty substitution, {})
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then off again. While in this search for the first literal the previousClauses are
empty and the index search ignores these search flags entirely, the search flag
optimization ensures that in subsequent calls the index search will only access
index subtrees which have at least one activated search flag, indicating that they
contain clauses which have already been found for the previous literals. Along
the same lines, when reaching a leaf only those clauses with an activated search
flag will be gathered as candidates. As there may be different instantiating
substitutions if L; is not ground, the resulting set of candidates consists of
several result-groups. Each of these is comprised of a substitution and those
clauses that have a literal instance of L; when using that particular substitution.

For example, let C' = {p(x,y),q(z, f(z)),-r(a)}, then an initial search in
the index of Figure by p(z,y) returns:

candidates (for Ly = p(z,y)) =

result;: o1 = {x < a,y < b}
Dy = Cr = {p(a,b),q(a, f(b)),r(a)}
D12 = Cy = {p(a,d),p(a,a),r(b)}
Dy3=Cs = {f(x) = a:,p(a7 b)7 —p(b, a)}
D14 = Cy = {p(a,b),q(a, f(a)), r(a)}

resulty: 09 = {x + a,y < a}
D2,1 =Cy = {p(a,b),p(a, a),r(b)}
Dy = Cs5 = {p(a,a),q(a,a),-r(a)}

Note that the clause C; is found twice, as D; 2 and as Ds 1, because o1 and o3
cause L; to instantiate to two different literals of Cs.

In this initial iteration for the first literal a quick filtering phase now prunes
the results using various criteria, most of which have already been precomputed
to some degree during the creation of each clause:

Clause depth: A clause cannot non-properly subsume a clause of lesser clause
depth.

Literal signs: A clause with positive literals cannot non-properly subsume a
clause without positive literals, and a clause with negative literals cannot
non-properly subsume a clause without negative literals.

Symbol count: A clause cannot non-properly subsume a clause with fewer
unique symbols.

Predicate symbols: A clause cannot non-properly subsume a clause with dif-
ferent predicate symbols.

There is also an optional criterion of clause length. In its strictest form it
requires the subsumer and the subsumee to have the same number of literals. It
can be weakened or omitted depending on whether clauses are seen as sets or as
multisets, and also to allow (proper) subsumption. This works in conjunction
with a final filtering at the end of the algorithm, and the matter will be discussed
further at the end of this section.

In the example, D o is discarded due to its insufficient clause depth. D; o =
D, 1 has only positive literals and both its occurrences are discarded due to
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the criterion of literal signs. D; 3 is removed as it fails both the symbol count
criterion and the predicate symbols. Any result substitution o; left without
clauses is discarded as well, which leaves these pruned results:

candidates (for Ly = p(z,y)) =

result;: o1 = {z + a,y «+ b}
Dy = Cy = {p(a,b),q(a, f(b)), —r(a)}
D14 = Cy = {p(a,b),q(a, f(a)),~r(a)}

The SEARCH function then recursively invokes itself on the pruned results, which
effectively means that it descends depth-first in the tree of extending substitu-
tions. For each result-group result; the search flags of the found clauses are
activated, and then SEARCH is called for the next literal and the extended sub-
stitution ¢d;, trying to compute that subset of the clauses; in result; which
also instantiate the next literal of C' under a common substitution that is an
extension of 0d;.

In the example SEARCH is thus called for the second literal of C' with the
substitution o1 = {z < a,y < b}, i.e. q(z, f(a)), and the clauses; = {C1,Cy}.
The search flags of these clauses are activated. Only one clause is retrieved, Cy:

candidates (for Lyo; = q(z, f(a))) =

result;: 0101 = {x < a,y + b,z < a}
Dl,l - C14 = {p(a7 b)a Q(a7 f(a’))7 _\T(a)}

The clause C fails to instantiate the search literal and thus no longer appears.
The search flags are turned off again and the function SEARCH is now called a
last time for the third literal of C' and the extended substitution o141, hence
with the search literal —r(a), and clauses; = {C4}. Only the search flag of Cy is
activated, and therefore only Cj is retrieved. While both C; and C5 would also
have instantiated the search literal, their search flags are not active, and thus
they are not valid candidates, having failed to instantiate some earlier search
literal.

With the last literal of C instantiated, Cy is now known to be an instance
of C, so Cy and the instantiating substitution are returned in subsumed. In E-
KRHyper these clauses are immediately marked as redundant, although techni-
cally the algorithm also allows a mere retrieval of instances for other purposes.
Further calls to SEARCH may now add more non-properly subsumed clauses by
testing other substitutions for earlier literals in previous iterations, although in
our example this is not necessary.

The algorithm for non-proper forward subsumption is analogous, except that
generalizations are searched instead of instances. The substitutions that are ex-
tended over the calls to SEARCH are the ones that may instantiate the indexed
generalization candidates to become equal to C. This means that the search
literals remain in their original form as taken from C, and instead the index
search within the perfect discrimination trees uses the growing substitutions to
instantiate variable nodes on the fly. That way substitution clashes can be de-
tected during the search for a particular combination of literal and substitution
in the respective branch.
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10.3 Modifications

When a clause has been found for all literals of C' with one common substitu-
tion, then it may be subject to further tests, depending on the specific notions
of clauses and subsumption in use. Optional filters can adjust the algorithm to
regard the clauses as sets or as multisets. When considered as sets, a clause
like {p(a, z),p(y,b)} can non-properly subsume {p(a,b)}, a behaviour that may
be undesirable, given that the subsuming clause is arguably more complex. On
the other hand, {p(z,y)} may non-properly subsume {p(a, x), p(y, b)} when seen
as sets, which may be advantageous. The set treatment necessitates loosening
the clause length criterion (see above), because a requirement of strict length
equality allows neither of the special subsumption examples. Overall our ex-
perimenting with the TPTP shows no significant advantage to any of these
settings.

On a related note it should be remarked that the algorithm as given may in
some cases result in proper set subsumption, even when strict length equality is
required. In the backwards direction this is the case when multiple literals of the
search clause C subsume a single literal of an indexed clause D. For example,
let C = {p(a,z),p(y,b)} and D = {p(a,b),p(c,d)}. The clauses fulfill all filter-
ing criteria, and after two iterations both literals of C' will have been found to
subsume the first literal of D, leaving the second D-literal p(c, d) unsubsumed.
Usually this poses no problem when the goal is to discard as many clauses as
possible, since D as a whole is subsumed by C'. When strict non-proper sub-
sumption is desired, though, then a final check is necessary in which the instan-
tiating substitution is applied to C and both clauses are tested for equality. The
substitution ensures that if C' truly non-properly subsumes D, then Co is equal
to D modulo the order of literals and the orientation of equations. This makes it
trivial to sort the clause literals of both clauses using a special term ordering that
treats variable names like constant names, and which is thus total even on non-
ground termsEI If Co non-properly subsumes D, then the sorted clauses Co’ and
D’ are equal even regarding the literal ordering and the equation orientations,
which allows a linear comparison of the clauses literal by literal. In the example
we obtain Co = {p(a,b), p(a,b)}, which is quickly determined to differ from D.
On the other hand, if C = {p(z,y), f(z) 2y} and D = {z ~ f(u),p(u,a)},
then by substituting and sorting we obtain Co’ = {p(u,a), f(u) ~ 2z} and
D' ={p(u,a), f(u) = z}, whose equality is easily determined.

The algorithm for non-proper backward subsumption can be adapted rea-
sonably well to proper backward subsumption, i.e. given a clause C, find all
clauses D with Co C D. In that case we are essentially searching for any clause
D which has a subset that is non-properly subsumed by C. The algorithm can
achieve this by loosening the filtering criteria of clause length and predicate
symbols, and by adjusting the set/multiset-setting, thereby allowing a clause
C to subsume a clause D once every literal in C' has found an instance in D,
regardless of whether there are still other unsubsumed literals in D. The same

INaturally such an ordering is of limited use in most cases, such as comparisons between
arbitrary clauses, as variables can be renamed and hence their treatment as constant names
depends on the current naming. However, for any given variable naming of a clause this
modified ordering will result in an unambiguous canonical ordering of literals and orientation
of equations. Thus, when two clauses have the same variable names due to a unifying substi-
tution, as is the case here, then if they are variants after the substitution they can be ordered
into the identical form, making their comparison trivial.
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test type problems solved
default settings 5,986 (38.5%/30.8%)
no multi-literal subsumption 4,578 (29.4%/23.5%)
no multi-literal back subsumption 5,770 (37.1%/29.7%)
proper back subsumption 5,976 (38.4%/30.7%)

Table 10.1: Test results for E-KRHyper with various subsumption set-
tings on the TPTP; percentages refer to the FOL test set and to the total
TPTP respectively.

does not hold true for proper forward subsumption, because in that case the
algorithm cannot simply attempt to match the literals of C' one by one, since
the intention is to find a subset of C' that is non-properly subsumed by some
clause. This could be done by forming the subsets of C' and searching for a
non-proper subsumer for each, but this is impractical for larger clauses. The
reduction phases in E-KRHyper (see Section already include unit clauses
properly subsuming both unit and multi-literal clauses in the forward as well as
in the backward direction, and in combination with the non-proper subsump-
tion between multi-literal clauses these relatively efficient operations cover so
many cases of subsumption that a complex search for the remaining cases is not
worth the computational effort.

When using proper backward-subsumption, the optional clause length crite-
rion after the initial search by the first literal L; is set to allow subsumees with
more literals than the subsumer, whereas the default setting in E-KRHyper is
to use non-proper subsumption and to require subsumer and subsumee to have
exactly the same number of literals. In practice the stricter setting is more
effective, as it prunes the candidate set to a greater degree, whereas the addi-
tional candidates allowed by proper subsumption make the search more costly,
yet they rarely actually pass the full test to be subsumed.

10.4 Evaluation

We evaluated E-KRHyper on the TPTP v5.3.0 with various subsumption set-
tings. The results are summarized in Table[I0.1} Our standard TPTP test setup
(see Section was used. For a comparison the first test is a repetition of the
initial results from Chapter [7] which had E-KRHyper running under default
settings, with non-proper subsumption enabled for clauses of any length. 5,986
problems (38.5%) of the test set were solved, or 30.8% of the total TPTP. For
the next test the multi-literal indexing and subsumption described in this chap-
ter was disabled. Under these conditions E-KRHyper solved 4,578 of the 15,550
FOL-problems of the TPTP v5.3.0, which is 29.4% of the test set or 23.5%
of the total TPTP with 19,446 problems. As even the restricted E-KRHyper
still exploited subsumption and simplification when it involved unit clauses,
the performance difference can be attributed solely to the lack of indexing and
subsumption between clauses with at least two literals.

In the next test we evaluated the impact of forward versus backward multi-
literal subsumption. The settings are very similar to the previous test, except
that (non-proper) forward multi-literal subsumption remained enabled. 5,770
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problems were solved, corresponding to 37.1% of the test set and 29.7% of the
total TPTP. The difference to the default settings which used non-proper multi-
literal subsumption in both directions is minor, forgoing non-proper multi-literal
back subsumption resulted in only 216 problems fewer solved. The forward
direction is thus responsible for the majority of the perfomance gain exhibited
by the comparison between the first two test results. Nevertheless even the
backward direction has a positive effect, albeit small, so we cannot confirm the
negative views on back subsumption mentioned in Section [10.1

The fourth test had E-KRHyper using proper back subsumption, while for-
ward subsumption remained at the default non-proper setting. The result shows
a minor decrease in solutions compared to the full default settings, which solved
10 additional problems, or 30.8% versus 30.7% of the total TPTP. This difference
is too small to conclude a definitive advantage for either setting to backward
subsumption. Differences in this range can occur even between repeated runs
under the same settings, as minor fluctuations in the CPU load can slow down
the derivation seemingly at random, resulting in problems with solution times
close to the time limit sometimes being solved and sometimes not. Considering
that the default settings allow both non-proper subsumption between clauses
of any length and also units properly subsuming clauses of any length, it seems
safe to say that this default covers such a large amount of subsumptions that
the additional processing for proper subsumption between multi-literal clauses
does not offer any noteworthy performance gains. The forward direction con-
stitutes an analogous combination of non-proper subsumption between clauses
of any length and proper subsumption of clauses of any length by units. As
mentioned, the computation of proper multi-literal forward subsumption is sig-
nificantly more complex than in the backward direction, so we feel justified in
staying with the default here as well.
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Chapter 11

Technical Aspects of
Handling Large Problems

The information retrieval phase in LogAnswer (see Section ensures that the
individual reasoning problems presented to E-KRHyper consist of thousands of
clauses, rather than the millions that make up the full knowledge base. While
this places the problems in a range in which ATP systems can operate, their size
is still orders of magnitude above the problems provers are intended for. With
approximately 11,000 clauses a LogAnswer problem is around 200 times larger
than the common TPTP problem with a median of 52 clauses (see Section[5.2.2)).
Furthermore, in many QA use cases the prover has little time to find a proof.
Hundreds of reasoning problems must be processed within seconds to achieve a
response time that is acceptable for a casual user, who is used to nearly instant
results from conventional search engines.

A prover like E-KRHyper must therefore be adapted to handle the size of
QA-related problems. These modifications of the prover can be divided into two
groups. One side consists of technical optimizations of the implementation which
harden the prover against the difficulties caused by oversized problems and
which streamline the operation to ensure an efficient handling of such problems.
Modifications of this first type are directly applied to the implementation of a
specific prover. The other group are changes on the logical level, predominantly
consisting of methods which attempt to reduce the clause sets even further, for
example through a heuristic question-based clause selection. Modifications of
the second type can be independent of a specific prover - for example, they can
be implemented in a preprocessor - although for the sake of efficiency it often
makes sense to integrate them into the ATP system.

This chapter will deal with modifications of the first type, i.e. the technical
level, while the next chapter is dedicated to the logic level optimizations. Each of
the following sections will detail one aspect of these adaptations as implemented
in E-KRHyper.

11.1 Stability

As mentioned in Section large reasoning problems can take a theorem
prover to its limits and break its operation. Therefore one of the first measures
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to take when adapting a theorem prover to QA is to ensure that the prover
remains stable when handling such problems, irrespective of whether it can
actually solve them.

In the case of an OCaml-based prover like E-KRHyper this means that
special attention must be paid to all list-based operations. The functions in
the List-module of OCaml are not tail-recursive. This is to make them more
efficient on short and medium-sized lists, at the cost of using stack space pro-
portional to the length of their list argument. On lists with several thousand
elements the resulting stack space usage can exceed the system limits, causing
the prover to crash without any error message. The cut-off point for safe usage
is difficult to predict, as there is no exact documentation on this issue. There-
fore the prover should be stress-tested with very large reasoning problems, for
example the Cyc-related TPTP problems CSR025+1 to CSR074+6. While no
ATP can actually reason effectively on the largest of these problems without ap-
plying some form of clause selection, simply attempting to load such a problem
and to start a derivation can already show whether the prover remains stable or
is overwhelmed by the sheer amount of clauses. Wherever List-based functions
fail, they should be replaced by bespoke tail-recursive functions.

Other limitations can be found this way as well, like data structures with a
fixed limit on the number of elements they can store, for example symbol tables
with a maximum size, or arrays for the computation of substitutions which
assume at most n variables.

Another point to consider is that as the reasoning problems grow, the com-
putational burden does not increase in a similar degree for all parts of the prover.
Rather, some data structures may see an explosive growth in the number of el-
ements to store while others are barely affected. For example, when developing
the ontology underlying a knowledge base it can make sense to keep the number
of relations low, resulting in a small number of predicates. This simplifies the
formulation of reasoning rules. The current FOL knowledge base of LogAnswer
uses a fixed number of only 86 different predicate symbols for its 11,000 atoms,
about 128 atoms per predicate. Compare this to the predicate inventory of
Cyc that has grown in an ad-hoc fashion: In its largest TPTP version Cyc has
204,678 predicates for 5,328,208 atoms, 26 atoms per predicate. This means
that depending on the ontology, the indexing trees may scale more or less well
as the reasoning problems grow. As Cyc-based reasoning problems grow, for
example by taking subsets of increasing size, the number of indexing trees (one
per predicate) will grow at a similar rate, while the storage requirements for the
individual indexing trees do not change much. The smallest TPTP subset of
Cyc has 269 predicates for 1,964 atoms, 7.3 atoms per predicate. Thus, while
the full TPTP version of Cyc above is approximately 2,700 times larger than the
smallest subset, the number of atoms per predicate has not even quadrupled.
The implementation of an individual indexing tree may therefore not require
any changes to cope with larger Cyc problems. Instead it is the number of trees
that increases. With LogAnswer problems on the other hand all atoms, no mat-
ter how large the problem, have to be stored in the indexing trees of the same
86 predicates. Increasing the problem size by n atoms will therefore increase the
storage requirement of the average tree by g, with a corresponding increase in
branching. In practice the problem is even more severe as some predicates are
significantly more common than others, causing a select few indexing trees to
store the bulk of the atoms. If child nodes are implemented in a manner that
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does not scale well to these increases, for example by being stored in lists as in
the early E-KRHyper instead of in hash tables, then indexing operations can
become a bottleneck.

11.2 Reusing Input

The normal modus operandi of an automated theorem prover is to be started
anew for each reasoning problem, and then the prover terminates once it has
arrived at some result or reached some resource limit. The prover is therefore
oblivious of any problems encountered earlier, and if problems share some set of
axioms or a knowledge base, then these shared parts have to pass through any
preprocessing and indexing repeatedly.

This is inefficient, and particularly so in LogAnswer, where the background
knowledge is shared between all reasoning problems, forming about 98% of each
problem. Starting E-KRHyper and loading only the background knowledge base
takes 0.6 seconds on our test system. Recall that the prover on average requires
1.15 seconds to solve one of our LogAnswer test problems (see Section ,
and it becomes clear that here is an opportunity to reduce the processing time
significantly. By keeping E-KRHyper operational between problems, the back-
ground knowledge has to be loaded and indexed only once. When this is done,
loading a problem can be reduced to loading the FOL representations of the
query and the answer candidate. After the proof attempt the problem-specific
clauses must be retracted again to clear the prover for the next problem.

To support this operation the layered indexing (see Section of E-
KRHyper has been converted into allowing the saving and loading of clause
set states. Recall that the index layering was originally intended to speed up
backtracking in tableaux with multiple branches: Internally every index may
consist of multiple trees, the layers, and at every choice point a layer is added.
Index searching accesses all layers, while index insertion only writes into the
most recent tree, the top layer. During backtracking the invalid layers are
simply dropped by dereferencing. This layering structure has been utilized
for state handling in the following way: Let Z be a layered index with layers
Lq,...,L,, where L, is the most recent layer. An index state of I is a set of
layers S = {L1,...,L;} with & < n. E-KRHyper implements an indez state
stack S of index states S1,...,S,, and two operations:

save state: Given Z = Lq,...,L, and § = S1,...,S5,,, save the current in-
dex state by pushing S;,+1 = {L1,...,L,} onto the index state stack
S so that § = S1,...,5m, Sm+1, and add a layer L,4; to Z so that
T=1IL1,...,Ln, Lot

load previous state: Given Z = Lq,...,L, and § = S1,..., S, pop S, =
{L1,...,L;} from S so that S = S4,...,Sm-1, and remove Lyy1,..., L,
from Z so that Z = L4, ..., Lg.

The states and the index use references to share the same layer structures, so
there is no need to store copies of index trees. The stack-based state system is
fairly simplistic in that a saved state can only be reloaded once. Also, if we wish
to load a saved state S; that is not the most recently saved state Sy, then the
states Sy, Sm—1, ..., 9+1 must first be loaded in this backwards chronological

133



order until S; is the most recent state on S, and the states Sy, Sm—1,...,5+1
are lost after this. However, this is sufficient for our purposes and the imple-
mentation is efficient.

The operation of E-KRHyper when having to solve a series of LogAnswer-
related reasoning problems Pj, P», ... thus has the following steps:

—

start E-KRHyper and load the background knowledge base,
2. save state,

load and process P,

Ll o

load previous state,

o

save state,
load and process Ps,

load previous state,

S

save state,

Once a previous state has been loaded, it must be saved again (steps 5 and 8) if it
is necessary to return to that state again later on. This is because the save state
operation adds a layer to the index, and if we skipped step 5, then the clauses of
P, would be written into the same layers as the background knowledge, making
it impossible to retract these problem-specific clauses after the processing of Ps.
As the retracting is done by dereferencing, it requires only negligible time.

11.3 Continuous Operation

The previous section already introduced the notion of keeping a prover opera-
tional while processing multiple reasoning problems sequentially. Disregarding
the aspect of reusing data, adapting a prover to continuous operation comes
with its own set of requirements. The long-term stability must be ensured. A
prover that was originally intended to terminate after one problem is likely to
contain many single-use data structures. This is the case with configuration set-
tings which normally do not change throughout the runtime once determined
at start-up. Other structures may only be able to grow, for example symbol
tables and term databases which are built as the input problem is parsed. Such
structures are not necessarily designed in a way that they can be easily cleared
of data that is no longer required for the next reasoning problem. Yet this is
necessary: For example, when domain clauses are created for the enumeration
of the Herbrand universe, the constants and function symbols are obtained from
the symbol table, so any such symbols left-over from an earlier problem can have
unpredictable consequences on the derivation for the current problem. The code
of the prover must be thoroughly inspected and tested to make sure that the
system can be reset into a clean state once one problem has been processed, and
this resetting must be sufficiently efficient not to offset the time savings gained
from not restarting the prover.
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In the same vein the theorem prover must be examined for memory leaks.
A prover can quickly consume large quantities of memory, which is why most
modern provers allow the user to specify a memory limit so that the prover
terminates as soon as it exceeds the limit, thus protecting the overarching com-
puter system. A single-use prover can rely on the operating system to clear
its memory after termination, but a continuously operating prover has to keep
a tight control on its memory usage and explicitly free up unused resources.
When a single-use prover is adapted to continuous use, efficient decisions made
during the original design phase may result in memory leaks once the prover
is embedded. The early version of E-KRHyper in LogAnswer was plagued by
such memory leaks which required the prover to be restarted after every two
hours of intense usage, like during the CLEF competition, in order to prevent
it from having to use slow disk-based virtual memory via swapping. Thorough
memory profiling was used to uncover problematic areas in the processing, and
subsequently the code for the tableaux derivation was more cleanly encapsu-
lated from the higher level routines that handle the processing of input, output
and commands. The result is a prover that can fully reset its memory usage
and thus remain operational indefinitely.

User-specified limits for memory and processing times are usually imple-
mented in the form of a terminating interruption of the prover. During contin-
uous operation this behaviour is likely undesirable, because a prover should not
halt the processing of an entire series of problems just because one of them can-
not be handled within the limits. E-KRHyper allows the user to specify in what
manner to handle limit transgressions: The prover can terminate completely in
the conventional way, or it can halt the current derivation while keeping the
intermediate results computed so far, or it can stop the current derivation com-
pletely and discard any results. There is also an overriding interrupt method
that will always terminate the prover, as this is required by CASC. This enables
E-KRHyper to handle time and memory limits internally, for example by mov-
ing on to the next problem, while an overarching system like LogAnswer or the
CASC framework can still halt the prover.

The capability for bidirectional communication with another system or the
user becomes important when a prover is not merely supposed to process a
predetermined series of problems and hand over the results, but when problems
are selected outside of the prover during its runtime, for example by the user
of a QA system, or when the results for one problem have some bearing on
how to process the next one. This may be the case if some time limit of n
seconds is considered acceptable for each of a series of m problems and one
particular problem is solved in considerably less time. Then the limit for the
next problem could be increased beyond n, or a problem that could not be
solved within n seconds could be restarted if at the end of the problem series the
overall limit of m -n has not yet been reached. A continuously operating prover
should therefore offer the means to communicate over standard input and output
streams, to accept commands at runtime and also to stand by in phases when
it does not have to process any commands. Fortunately the original KRHyper
was already equipped with bidirectional communication, and in E-KRHyper we
extended this by adding support for different syntaxes, as the original’s exclusive
reliance on a prefix PROTEIN notation (similar to canonical Prolog) was very
cumbersome, in particular for novice users.
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11.4 Parallel Tableaux and Serialization

As a side effect of the encapsulation required for memory stability it became sim-
ple to allow E-KRHyper to maintain multiple clause sets and tableaux deriva-
tions in parallel. With the change_clause_set command the prover can create
different proof environments with distinct clause sets and derivations, and it
can switch between these. This makes it possible to keep different task-specific
knowledge bases in the memory, so that the prover can adapt to queries. For
example, this feature would be helpful in an adaptation of LogAnswer to multi-
lingual usage: The prover could store background knowledge bases for different
natural languages and then change between them as required by the incoming
questions. It is also an important step towards parallel processing, although at
the moment the OCaml support for this is rudimentary. The parallel tableaux
feature is therefore still experimental and not used in practice by LogAnswer,
although it may become important in the future.

Another related capability introduced in E-KRHyper is the serialization of
indexed clause sets. This means that the prover can save a fully indexed know-
ledge base into a binary file. At any later time this file can be loaded to restore
the knowledge base together with its index, without having to perform the
lengthy indexing again. This can drastically cut the time for reloading. For ex-
ample, the TPTP axiom set CSR002+35.ax (a subset of Cyc) takes 15 seconds
to load and index conventionally, whereas its binary version can be loaded in
circa one second. Ontologies like Cyc which include many multi-literal clauses
result in large binary files when serialized: The size roughly quadruples com-
pared to the original text-based specification in the TPTP, in this particular
example expanding from 6 MB to 25 MB. The size increase is less severe for
simpler ontologies. For example, the TPTP axiom set MED002+0.ax, a FOL
version of the MeSH ontologyﬂ consists of over 500,000 unit clauses. Loading
and indexing this 49 MB file takes 45 seconds, while the serialized version weighs
in at 109 MB and takes less than two seconds to load.

The savings may appear considerable, but in practice this feature has yet to
find a good application in LogAnswer. Serialization optimizes the reloading of
knowledge bases, whereas input reuse under continuous operation avoids reload-
ing altogether and thus offers superior time savings. However, serialization has
a potential usage as a memory saving alternative to parallel tableaux. Rather
than keeping multiple knowledge bases in the memory, all knowledge bases may
be stored in binary files on non-volatile media and then loaded and discarded as
required, disburdening the RAM when they are not needed for the question at
hand. As the memory usage of fully indexed complex ontologies tends to exceed
the size of their original specifications by a factor of ten or more, the value of
such considerations cannot be denied.

11.5 Evaluation

Much of what is described in this chapter relates to the stability of the prover
during QA operation, and as such it is not easily quantifiable in an evaluation.
However, the effects of reusing a knowledge base can be tested. For this purpose
we again evaluated E-KRHyper on the test set of LogAnswer problems used in

IMedical Subject Headings: http://www.nlm.nih.gov/mesh
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Section[0.3] but this time the prover was not restarted for each problem. Instead
the background knowledge base was loaded into E-KRHyper once, and then the
prover remained in continuous operation while processing all 1,805 problems.
As usual the evaluation was performed on one of our standard test computers
with an Intel Q9950 CPU with 2.83 GHz. A time limit of 60 seconds was used
for each problem. This was handled internally by E-KRHyper, which aborted
the processing of a problem as soon as the limit was reached, and which then
restarted the clock and moved on to the next problem. The prover used the
weight setting optimized for LogAnswer problems, see Section [0.3] Under these
conditions E-KRHyper again solved 1,728 problems, 95.7% of the 1,805 prob-
lems. On average the prover required 0.99 seconds to solve a problem. Compare
this to the evaluation with full restarting in Section [9.3] where E-KRHyper re-
quired 1.15 seconds on average. This corresponds to a speed-up by 13.9%.
While this may appear disappointing considering that loading the knowledge
base takes approximately 0.6 seconds, one has to keep in mind that there is
still some overhead due to resetting E-KRHyper to the previous state between
problems. Also, the average processing time is affected by outlier problems that
require more than 20 seconds. If we consider the median solving time instead,
then continuous operation with knowledge base reuse reduces the time from 0.7
seconds to 0.4 seconds, a speed-up by over 40%.
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Chapter 12

Logical Aspects of Handling
Large Problems

In the previous chapter we discussed methods to optimize the implementation of
an automated theorem prover with respect to handling large reasoning problems.
Now we will consider logic-based techniques with the same goal of improving
prover performance on large input. They are applied to the logical input, and
as such they are not strictly tied to a specific prover implementation, instead
they can be placed in a separate preprocessor.

12.1 Redundancy Reduction

In the light of earlier chapters this is likely trivial, but one first step to consider
is to reduce the input as much as possible before starting the derivation or
even before handing it to the prover. This involves the exhaustive application
of simplification and (non-proper) subsumption operations on the input, see
Section[7.3.2] for a list of such operations. The goal is to remove tautologies and
redundant or subsumed clauses from the input before they can participate in
the reasoning. This is particularly useful when a large knowledge base is reused
for many problems, as normally prohibitively expensive simplifications have to
be applied to the knowledge base only once, and then they improve all future
proof attempts with that reduced knowledge base.

However, in practice such redundancy elimination is unfeasible for the largest
knowledge bases. Consider the Cyc ontology, which in its largest TPTP version
(CSR002+5.azx) contains approximately 3.5 million clauses when transformed
into CNF. Just loading this set into E-KRHyper will require about 20 minutes
and close to 8 GB of memory, and that is with the special indexes for rewrit-
ing and multi-literal clause subsumption disabled, meaning that most reduction
operations are not even available. Applying such operations on this scale would
necessitate excessive hardware resources, rendering the proposition impractica-
ble for the time being.
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12.2 Axiom Selection

A different approach to reduce a large reasoning problem is to select a subset
of its axioms or clauses in the hope that by using only this subset the reasoning
can achieve the desired result in less time. Recall that a reasoning problem
P = (Az, Con) consists of an axiom set Az and a conjecture set Con (see Def-
inition . The method used to perform a selection on P is called a selection
function:

Definition 12.1 (Selection Function). A selection function sel is a mapping
between axiom sets such that sel( Ax) C Az for any given problem P = (Ax, Con).
We extend this function to reasoning problems such that sel(P) = (sel(Ax), Con)
for any given problem P = (Ax, Con).

A selection function sel is called complete if Az = Con < sel(Ax) = Con
for any problem P = (Az, Con). With respect to the equivalent satisfiability
problem P%% a complete selection function ensures that P and sel( P*?!) are
equisatisfiable.

E-KRHyper features both complete and incomplete selection functions.

12.2.1 Complete Selection

A complete selection function may only remove axioms which are irrelevant
for a proof of the conjecture. Regarding the equivalent satisfiability problems a
complete selection would ideally select only the smallest unsatisfiable subset of a
given problem. For the LogAnswer test problems there is an enormous potential
for savings here - recall that the test set problems are usually solved with less
than 0.1% of their clauses (see Section [9.2). However, in most circumstances
this subset is only known after the proof.

This has not stopped attempts to achieve the ideal: In the CASC of 2008 the
Vampire prover featured a curious two-phase solution in which it first converted
the problem into Prolog and let Prolog try to find a proof within some time limit.
If Prolog succeeded, then the clauses involved in the proof were handed over to
the actual Vampire prover, which derived a bottom-up proof for the reduced
clause set. The solution was ideal in that the unsatisfiable subset got selected,
but naturally this first required a proof just for the selection. The hope likely
was that the goal-directed top-down approach of Prolog could be advantageous
for large problems, while the second proof by Vampire was merely required for
a valid competition result. This method was dropped in later years.

In practice such a proof-based approach is undesirable, in particular in the
LogAnswer use case which does not allow the generous CASC time limits. The
selection must be quick, there is no time to allow it to perform much reason-
ing. E-KRHyper implements one complete axiom selection scheme, internally
referred to as partitioning. As selecting the unsatisfiable subset is unattainable
in practice, our approach instead deselects clauses which are guaranteed not
to be in the unsatisfiable subset. This approach is considerably weaker, but
much faster. The partitioning operates on a set of clauses C and extracts a sub-
set sel(C) that is equisatisfiable to C. It is primarily intended for equality-free
problems under the hyper tableaux calculus, although with modifications it can
be used with the E-hyper tableaux calculus and problems with equality. The
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selection function utilizes the fact that the predicate symbols of the negative lit-
erals of a clause selected in a hyper extension step also occur in positive branch
literals, a direct corollary of the hyper condition. We introduce two notions
about predicate symbols, relevance and derivability. First, let neg(C) denote
the set of predicate symbols of the negative literals of a clause C and let pos(C)
analogously denote the predicate symbols of the positive literals.

Definition 12.2 (Relevance). Given a clause set C and two predicate symbols
P and Q. P is relevant for Q if

1. P € neg(C) and Q € pos(C) for some clause C € C, or

2. P € neg(C) and R € pos(C) for some clause C € C and R is relevant for
Q.

Then P is relevant if
1. P € neg(C) for some negative clause C € C, or
2. P is relevant for some relevant predicate symbol Q.

Intuitively P is relevant for @ since @ depends on P in as much that positive
branch literals with P may become involved in a hyper extension step that leads
(directly or indirectly) to the derivation of positive branch literals with . The
more general notion of P being relevant indicates that literals with P may
become involved in closing a branch, directly or indirectly.

Definition 12.3 (Derivability). A predicate symbol P is derivable if P € pos(C)
for some clause C' € C and every Q € neg(C) is derivable.

Note that this recursive definition implies that all predicate symbols of posi-
tive clauses are immediately derivable. Intuitively the derivability of P signifies
that positive branch literals with P may occur during a derivation for C.

Then a clause C € C is selected (C € sel(C)) if

1. every P € neg(C) is derivable, and

2. (a) C is negative, or

(b) some Q € pos(C) is relevant.

As an example consider the following clause set C:
(1) < p(z),q(y)

(2) plz)
(8) r(z) «
(4) q(z) «
(5) t(x) < p(z
(6) pla) <
(7) s(b) «
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Here the relevant predicate symbols are {p/1,q/1,7/1,s/1,u/1} and the
derivable predicate symbols are {p/1,q/1,s/1,t/1,v/1}. The set of selected
clauses then is sel(C) = {(1),(4),(6),(7)}. (2) is not selected because r/1 is
not derivable and (3) is not selected because /1 is not derivable. (5) fails the
selection criteria in that ¢/1 is not relevant.

Proposition 12.1. The selection function sel used by the partitioning in FE-
KRHyper is complete.

Proof. Let C be any reasoning problem, and assume without loss of generality
that C is represented as a satisfiability problem in clause normal form. We show
that P is equisatisfiable to sel(C). This requires to show that:

1) if C is satisfiable, then sel(C) is satisfiable,
2) if C is unsatisfiable, then sel(C) is unsatisfiable,
3) if sel(C) is satisfiable, then C is satisfiable,

4) if sel(C) is unsatisfiable, then C is unsatisfiable.

1) follows from sel(C) C C and the compactness of first-order logic. 2) is
proven by refutation. Assume C to be unsatisfiable and sel(C) to be satisfiable.
Then there is hyper tableaux refutation and a closed hyper tableau for C. From
the refutation we can extract for each branch a minimal finite sequence Z =
I,..., I, of hyper extension step inferences, where every I; = (B;,C;, D;) for
1 < i < n is represented as a tuple consisting of the extending clause C;, the
set B; of the positive branch literals serving as premises and the set D; of
the resulting positive branch literals, and where for every L € B; there is an
I; = (B;,C;,D;) with 1 < j <iand L € Dj, and where D; either is empty or
for some K € D; there is an I, = (By,Ck, D) with ¢ < k < n and K € By.
That is, every premise literal must have been a result literal of an earlier hyper
extension step, and every result literal set either closes the branch or contains
a literal that serves as a premise in a later hyper extension step.

Also, the following properties hold:

Rely: Every result set D; is either empty or contains at least one relevant
predicate symbol.

Rely: Every premise set B; contains only relevant predicate symbols.

This is easily shown: If i = n, then D, is empty and Rel; holds. C; is a
negative clause and all literals in B; unify with the atoms of this negative clause,
which makes the predicate symbols in B; relevant, thus Rel, holds. For i < n
we prove the properties by contradiction. Assume I, = (B,,C,, D,) with o < n
to be the last inference tuple in Z for which Rel; or Rel; does not hold, i.e. for
all later I, in Z with o < r < n both properties hold. D, is not empty, because
otherwise C, would be a negative clause and I, would already have closed the
branch, so Z would not be minimal. This means that some literal L. € D, must
also occur in some later premise set B, with o < r < n. But then L has a
relevant predicate, as property Rely holds for B, and I, and thus Rel; holds
for D, and I,. Since L is an instance of a positive literal of C,, its relevant
predicate symbol is contained in pos(C,), and hence all neg(C,) are relevant as
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well. As all literals in B, unify with the atoms of the negative literals of C,,
all predicate symbols in B, are relevant, so Rel, holds for B, and I,. Therefore
Rel; and Rely both hold for I, a clear contradiction.

Furthermore this property holds:

Der;: Every premise set B; contains only derivable predicate symbols.

This is shown in a similar manner as for Rel; and Rely. Assume I, =
(Bo, Cy, D,) to be the first inference tuple in Z for which Der; does not hold,
i.e. for all earlier I,. in Z with r < o the property Der; holds. If C, is a positive
clause, then B, is empty and Der; trivially holds. Assume therefore that C,
contains negative literals and thus B, is not empty. Then each literal L € B,
must also occur in some earlier result set D, with r < o. As Der; holds for
B, and I, it follows that all predicate symbols in neg(C,.) are derivable, since
the atoms of all the negative literals of C, must unify with the literals in B,..
Then also all predicate symbols in pos(C,.) are derivable, and so are all predicate
symbols in D,., since all literals in D,. are instances of positive literals of C;.. But
then the predicate symbol of L must be derivable as well. As this is the case
for each L € B,, the property Der; holds for B, and I,, a clear contradiction.

Now, since sel(C) is satisfiable, there must be some branch in the closed
hyper tableau for C that cannot be closed when using only the clauses from
sel(C). The inference sequence Z of that branch must then contain some earliest
failing inference Iy = (Bs, Cs, Ds) where 1 < s <n and C; € C and C;s ¢ sel(C),
such that there is no earlier failing inference Iy = (B, Cy, Dy) with 1 < ¢ < s
and C; € C and C; ¢ sel(C). Since every P in B; is derivable as per Der
and all atoms of the negative literals of C; unify with literals from B, every
Q € neg(Cs) is derivable, so Cs meets the first selection criterion. As per Rel,
either Dy is empty and then C is negative and thus meeting selection criterion
2.(a), or Dy contains a relevant predicate symbol, which means that pos(Cs)
contains this relevant symbol as well, thus meeting selection criterion 2.(b).
Thus C; € sel(C), a clear contradiction to Cs ¢ sel(C).

For 3) assume sel(C) to be satisfiable and C to be unsatisfiable. Then again
there is a hyper tableaux refutation for C, leading to a contradiction analogous

to 2).
Finally, 4) like 1) follows from sel(C) C C and the compactness of first-order
logic. O

Due to its completeness this selection method can be used for theorem prov-
ing in general, although one has to be aware that it is only refutationally com-
plete: A model found for a satisfiable sel(C) may not be sufficient as a model
for C. E-KRHyper employs the partitioning for all reasoning problems in Log-
Answer. Here it has the advantage of the compact MultiNet predicate symbol
inventory. As multi-literal clauses only occur in the background knowledge base
shared between all problems, the dependencies between the predicate symbols
can be computed in advance as soon as this shared background knowledge base
has been loaded. A dependency graph is used for this. Once a specific question
has been loaded together with an answer candidate, the FOL query as the only
negative clause determines which predicate symbols are relevant, while predi-
cate symbols occurring in positive clauses determine derivability. Since there
are only 86 different predicates and the predicate representations are shared be-
tween clause data structures, the clauses not matching the selection criteria are
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quickly deactivated. On average the partitioning removes 20% of the clauses
from a LogAnswer reasoning problem, which reduces the proof time by 10%.
This is a minor saving, but it is achieved with minimal computational effort
and preserves refutational completeness.

Our approach has some similarity to the selection method based on fully
matched sets [PY03], which links two clauses if they have a pair of complemen-
tary literals with unifiable atoms. As that method uses actual unification instead
of correspondence between predicate symbols, it is more difficult to compute and
not easily adapted to LogAnswer. Unlike our partitioning this approach cannot
profit much from a static shared knowledge base and a stable predicate symbol
inventory. For each question and answer candidate it would instead have to
test hundreds of passage-representing literals for unification with the knowledge
base, just to perform the selection. Also, it does not use any notion of derivabil-
ity to remove clauses that, while relevant for the query, will nevertheless never
become involved in a bottom-up proof.

The disadvantages of our partitioning should be mentioned. With a grow-
ing number of predicate symbols the computation of dependencies becomes in-
creasingly difficult. Even on smaller TPTP subsets of Cyc the computation
of the dependency graph is impracticable. Also, the method as described is
not complete for problems with equality. For equality-free problems the rea-
soning is predicate-driven in that there is always some matching of predicate
symbols between inference premises. However, in problems with equality the
superposition-based inferences do not have this limit, as equations can rewrite
other literals regardless of their predicates. This can be remedied by always
regarding the equality predicate as relevant and by modifying the aspect of
derivability so that clauses also count as positive if all their negative literals are
equations. However, given that even the stricter original partitioning selection
function only deselects a modest number of clauses, such an adaptation leads to
virtually no savings when dealing with equational problems. When equations
enter the game, it seems preferable to forgo completeness, which leads us to
incomplete selection methods.

12.2.2 Incomplete Selection

Incomplete selection functions select a subset of a given problem, but since
they do not guarantee to preserve completeness, they can use heuristics to pick
much smaller axiom sets. The lack of completeness means that the results
must be handled with care: While an unsatisfiable set sel(P) also proves the
original problem P unsatisfiable via compactness, a satisfiable sel(P) allows no
conclusions regarding the satisfiability of P; it may indeed be satisfiable, or
it is unsatisfiable and the selection function just missed picking some axiom
critical for the contradiction. Incomplete methods lend themselves to iterative
approaches. They can severely reduce a large problem to a comparatively tiny
set of axioms, and doing so increases the chances that the prover finishes its
derivation fast - it usually succeeds fast or it fails fast, rather than computing
indefinitely. After an early failure a new attempt can be started with a different
selection method, a process that is repeated with increasingly larger selections
until a proof is found or the full problem set is used.

E-KRHyper implements two incomplete selection methods, the SInE algo-
rithm and an approach we devised to address some weaknesses of SInE.
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The SInE Selection

The SInE (SUMO Inference Engine) algorithm [HV11] was developed as an ax-
iom selection method for very large reasoning problems. Originally implemented
as a preprocessor, it has since become integrated in a number of theorem provers.
The advantages of SInE are a consequence of its selection criteria which are very
simple to compute, yet which result in very small subsets that are frequently
unsatisfiable.

We give a short overview of the SInE selection algorithm. Let sym(F’) de-
note the set of function and predicate symbols (except equality) occurring in a
formula (or clause) F'. Given a set of axioms A, let occ(s) denote the number
of axioms in A which contain the symbol s. For any axiom A € A, let r(A)
denote the set of the rarest symbols in A. That is, r(A) C sym(A) and for any
s €r(A), oce(s) < oce(s’) for any symbol s’ € sym(A).

The SInE-algorithm is goal-oriented, thus we assume some goal G, usually
in the form of a conjectural formula or clause. Then first select every A € A
with 3s € r(A) such that s € sym(G). After that, select every unselected A € A
with 3s € r(A4) such that s € sym(A’) for some already selected A’ € A. The
second step is repeated until a fixed-point is reached.

The algorithm can be parameterized, for example by restricting the repe-
titions of the second step to n iterations, or by introducing a tolerance factor
that allows the selection of an axiom A by a symbol that is not quite the rarest
within A.

The basic idea behind the algorithm is that if a symbol s is rare, then
it is more important within an axiom than the other symbols of that axiom,
and an axiom containing s is important for defining s. The algorithm thus
tries to capture semantic aspects purely by syntactical and numerical means,
with surprisingly successful results - we refer to [HV11] for an evaluation of the
algorithm, but suffice it to write that in CASC the SInE algorithm has become
the dominant axiom selection method, with all participants in the LTB division
of 2011 using some form of SInE.

The E-KRHyper Selection

An advantage of SInE is that it can operate on axioms that have been sub-
jected to hardly any processing yet. It does not need to transform formulas into
clauses, and comparatively simple data structures are enough for the computa-
tion. Within a theorem prover a clause is usually a fairly heavyweight structure;
apart from the literals it typically contains pointers to indexing trees and infor-
mation about clause features like whether it is ground, Horn, and so on. For
SInE it is not necessary to provide these structures, it can operate on axiom
representations that are little more than the strings read from the problem spec-
ification. Therefore it can perform selections on massive knowledge bases like
Cyc, since the selection can be computed before the prover starts to construct
clause representations and to store them in indexing trees.

However, the lack of any logical processing leads to a flaw that can result in
obviously satisfiable and hence useless selections. We encountered this when we
tested the early SInE 0.3 system in an initial experiment with the LogAnswer
problem test set [8]. Here SInE 0.3, consisting of a SInE algorithm preprocessor
and the prover E, solved 72.6% of the problems, whereas E on its own solved
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92.2%. The updated testing in this dissertation (see Section shows a similar
discrepancy for the current SInE 0.4, which now solved more problems than
before, but still less than E and E-KRHyper, and it was markedly slower than
SInE 0.3, E and E—KRHyperB Our investigation showed that the difficulties of
SInE with the LogAnswer problems are mostly a result of the following situation
which frequently occurs in some knowledge bases: Large numbers of facts are
stored as ground units with a common predicate, and a query that requires one
of these facts triggers a search via a non-ground literal of the same predicate.
The predicate is very common in the knowledge base, which means that SInE
avoids selecting any of its units, thereby failing to select an unsatisfiable subset.

For example, consider the following query ) and the small knowledge base
consisting of the unit clauses Cq,...,C7:

Q: < predator(z), mammal(z)

Cy: predator(wolf)

(

Cy: predator(eagle)
C3: mammal(wolf)
Cy: mammal(cow)

Cs: mammal(sheep) <

Ce: bird(eagle) <

C7: bird(hummingbird) <

The SInE algorithm will select axioms via the query predicate symbols
predator/1 and mammal/1. For predator/1 it selects Cy and Cs, as predator/1
is among the rarest symbols there - it occurs twice in the entire knowledge base.
However, for mammal/1 no axioms are selected, as the mammal/1 symbol occurs
three times in the knowledge base and is thus more common than the animal
names in the unit clauses. Instead the selection of Cy triggers the selection of
Cs via eagle, as both eagle and bird/1 are equally rare. Without any of C3, Cy
and Cj it is obviously impossible to prove the goal Q.

A tolerance factor would help in this case, but in real-world knowledge bases
the same predicate may be used to store thousands of facts, making their predi-
cate so common as to render these facts inaccessible to SInE, unless the tolerance
is increased so far that nearly the entire knowledge base is selected.

E-KRHyper therefore features another incomplete selection method that we
based on SInE in an attempt to remedy this shortcoming. Using the fast clausi-
fier of E-KRHyper (see Section our method is intended to operate on
clauses in CNF. Let smef(C) denote the set of function symbols occurring in
positive literals of a clause C, and let sym;(C) be the predicate symbols (except
equality) occurring in the positive literals. Let sym (C) and sym,, (C) be the
analogous sets for the symbols from negative literals. Given a set of clauses C,
let occe(s) denote the number of clauses in C which contain the symbol s. For
any clause C' € C, let T}F(C) denote the set of the rarest positively occurring

1The slowdown between SInE 0.3 and SInE 0.4 can be explained by differences in their
iterative approach, with the 0.4 version allowing larger subsets by higher tolerance settings,
thus succeeding more often, but requiring more time.
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function symbols in C. That is, r?(C) C symlf(C) and for any s € T’}F(C),
oce(s) < oce(s') for any symbol s € symj{(C). Analogously we define r, (C)
for the rarest positive predicate symbols and r; (C) and r, (C) for the rarest
symbols in negative literals.

Then given a goal clause G, first select:

e every C € C with 3s € r?(C) such that s € sym (G),

e every C' € C with 3s € r; (C) such that s € sym;{(G),

e every C € C with 3s € 7} (C) such that s € sym, (G),

e every C € C with 3s € r, (C) such that s € sym} (G).
After that select:

e every C € C with 3s € TJJ{(C) such that s € sym, (C’) for some already
selected C" € C,

e every C € C with 3s € 7 (C) such that s € sym}'(C’) for some already
selected C” € C,

e every C' € C with 3s € 7,7 (C) such that s € sym,, (C") for some already
selected C’ € C,

e every C' € C with 3s € 7, (C) such that s € sym} (C") for some already
selected C” € C.

The second step is repeated until a fixed-point is reached.

By distinguishing between function and predicate symbols, a clause can be
selected by a predicate symbol that is more common than its function symbols or
vice versa. In the example above the E-KRHyper axiom selection method would
thus first select C; and Cy for predator/1 and C3, C4 and C5 for mammal/1.
Unlike with SInE there is no selection of Cg triggered by Cs via eagle, because
this symbol occurs only in positive literals in both clauses, while our selection
method requires complementary occurrences. With the selection of C; and Cj
the query @ can now be proven.

In general our method selects more clauses than SInE does, even though
the distinction between positive and negative occurrences helps to avoid some
unnecessary selections made by SInE.

12.3 Evaluation

In this section we evaluate the different selection methods presented in this
chapter. In the first test series we compare the complete partitioning selection
from Section[12:2.1] with the incomplete methods from Section[12.2:2 on our test
set of 1,805 LogAnswer problems. As usual the test hardware features an Intel
Q9950 CPU with 2.83 GHz. The time limit per problem is set to 60 seconds,
and the memory was limited to 1 GB. To make proper use of the axiom selection
algorithms, the prover was kept in continuous operation while processing the
1,805 problems with one selection method; it was restarted only for the next
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selection type solved t t

no selection 1,728 (95.7%) 0.99s 0.4s
partitioning 1,728 (95.7%) 0.89s 0.3s
SInE 745 (41.3%) 0.01s 0.01s
E-KRHyper 861 (46.6%)  0.06s  0.05s

Table 12.1: Evaluation results for E-KRHyper with selection methods on
LogAnswer problem test set

run with the next selection method. The weight setting in E-KRhyper was
optimized for LogAnswer problems as in Section [9.3

The results are summarized in Table The first column specifies the se-
lection method for the particular run, and the second column states the number
of problems solved. The columns  and ¢ indicate the average and the median
solving time respectively. As a baseline the result of the evaluation of contin-
uous operation with input reuse (see Section is included, because it used
the same test conditions, but without any selection algorithm. Compared to
this, usage of the complete partitioning algorithm reduced the average solving
time by 10.1% and the median solving time by 25%. The number of problems
solved remained the same at 1,728, which is 95.7% of the total test set.

The SInE selection achieved by far the best solving times, with 0.01 seconds
both on average and as a median. However, only 41.3% of the problems were
solved, and these are a subset of the problems solved with complete partitioning.
If we regard only this subset, then the complete selection method achieved an
average solving time of 0.76 seconds and a median solving time of 0.1 seconds.
Moreover, in practice we cannot disregard the unsolved problems. Of the 1,060
problems not solved after the SInE selection, 425 problems (23.5% of the total
test set) resulted in a false satisfiability result. These were relatively benign,
as on average these results were found after 0.01 seconds. The 635 problems
remaining unsolved after SInE (35.2% of the total set) however kept the prover
occupied until some limit (time, memory or term size) was reached. In practice
all these failed problems would then require a second evaluation by a more
complete method.

Also, one has to keep in mind that the test set consists of problems that
were solvable in their original form, and which usually are solvable in their FOL
representation as well - the intention behind this set is to test how well a system
does in solving the problems. In actual LogAnswer usage on the other hand
only a minority of the problems presented to the prover can be solved even
within a more generous time limit: In the CLEF competition of 2010 only 7%
of the proof attempts resulted in a proof, and this was with E-KRHyper using
the complete partitioning and a time limit of several seconds. Thus if SInE
with its 41.3% success rate on solvable problems were to be used as the primary
selection method in all proof attempts, then the system would succeed only in
about 3% of all attempted proofs, requiring a fallback to the complete method
in all other cases. With the complete method therefore being used eventually in
97% of the proof attempts and the additional overhead involved in resetting the
prover after a failed SInE-attempt, it is preferable to use the complete method
right away.
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selection type solved exclusive
no selection 226 (15%) 10 (0.6%)
partitioning 199 (13.2%) 7 (0.5%)
SInE 240 (15.9%) 114 (7.6%)
E-KRHyper 172 (11.4%) 13 (0.9%)

Table 12.2: Evaluation results for E-KRHyper with selection methods on
LTB problem test set

This changes when a QA system utilizes parallel computing: By employing
two prover instances, one can process a problem with a complete selection while
the other uses an incomplete method. If the incomplete method succeeds, the
complete attempt can be aborted. The current LogAnswer does not support
parallel computing, so this must be regarded as future work.

The evaluation result for our alternative SInE-based incomplete selection
method in E-KRHyper shows an increase both in the number of problems solved
and in the solving time. While it thus shows some success in addressing the
aforementioned flaw of SInE (see Section , for the LogAnswer problems
it can merely be seen as a compromise between SInE and the complete selection,
the solving rate still being too low to justify the usage in a non-parallel Log-
Answer.

Incomplete selection methods show their advantage when dealing with very
large ontologies. We tested the complete partitioning and both incomplete meth-
ods with E-KRHyper on the 1,509 TPTP problems eligible for the LTB division
in the CASC of 2011. These are very large problems derived from work with
the Cyc and SUMO ontologies, as well as large mathematical problems from
the projects Isabelleﬂ [Paug9] and Mizmﬂ INKQ09]. As these are problems from
the TPTP, we used the standard TPTP testing time limit of 300 seconds. The
memory remained limited to 1 GB, and the hardware was our standard system
as above.

The results are summarized in Table[I2.2] The E-KRHyper results for these
problems when using no selection algorithm are extracted from the normal
TPTP testing, see Section Some interesting observations can be made.
When E-KRHyper used the complete partitioning, it actually solved fewer prob-
lems than when working with the full problems. This is because the computa-
tion of the dependencies takes considerable time on large problems while offering
only small reductions, and thus the prover ends up having less time to perform
almost the same amount of reasoning work. Another observation is that none
of the four sets of solved problems is fully subsumed by one of the others, as
can be seen in the exclusive column stating the number of problems that were
only solved with the respective method. 7.6% of the test set were only solved by
employing the SInE selection, a significant edge in this criterion, and obviously
there is much greater overlap between the problem sets solved by the other three
methods.

The four approaches combined solved 388 problems, representing the maxi-
mum E-KRHyper can achieve on this problem set. Due to the overlap between

%http://www.cl.cam.ac.uk/research/hvg/Isabelle
Shttp://mizar.org
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the sets of problems solved by the different approaches, combining fewer of the
selection methods can approximate the maximum result with less processing.
When combining the two with the most solutions, SInE and the full prob-
lems without selection, 368 problems were solved, 94.8% of the maximum. The
two incomplete methods together solved 304 problems, 78.4% of the maximum.
While solving less than the previous combination, substituting the E-KRHyper
selection for the full problem usage has advantages regarding the processing
time. Without selection the average solution took 14.8 seconds, while the in-
complete E-KRHyper selection required 5.2 seconds. Considering the 133 prob-
lems only that both approaches solved, then without selection it took on average
8.4 seconds for each solved problem whereas with the E-KRHyper selection it
took 2.8 seconds. Under stringent time constraints it is therefore appropriate
to combine the incomplete selection methods, by first applying one, and then
using the other if the first one fails. Under more generous time limits it makes
sense to first use SInE and then fall back upon the full problems in a similar
manner.
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Chapter 13

Robustness

By the time the logical representations of the question, the text passage and
the background knowledge are loaded into the theorem prover E-KRHyper, the
data has passed through multiple stages and translations, each of which can
introduce errors:

1. The textual sources, in our case Wikipedia, may contain incorrect infor-
mation.

2. The parser which reads the textual sources can fail at correctly resolving
ambiguous or complex statements, and it may become derailed by syn-
tactic problems like spelling mistakes or peculiarities in the layout, for
example embedded figures and tables.

3. The tools for the automatic translation into semantic networks do not yet
cover all aspects of MultiNet, so some information from the text may not
make it into the MultiNet representation despite correct parsing.

4. Each network fragment and candidate passage obtained by the information
retrieval phase of LogAnswer is based on a single sentence from the textual
sources. Important information from the original context in the textual
sources may hence be missing in the answer candidate.

5. The expressivity of MultiNet exceeds the means of first-order logic, so
information from the semantic network representation may not make it
into the FOL representation.

Thus the logical representation of a text passage is bound to have omissions.
Combined with the wealth of synonyms and paraphrases it is therefore unlikely
that a passage representation matches a query so exactly that a proof is possi-
ble - its precision makes deduction too brittle, see Section Indeed, of the
question and candidate passage representations evaluated in CLEF 2010, only
0.7% were immediately provable with E-KRHyper. The 7% proof rate men-
tioned in Section [12.3| could only be achieved with the robustness enhancement
of relazation, as described in this chapter.

151



13.1 Relaxation

Generally relaxation refers to a loosening of constraints in an attempt to simplify
a problem, in the hope of finding a solution to the simpler problem that also
applies to the original. In the case of LogAnswer relaxation refers to a technique
that simplifies a given question, making it less specific. The simpler question
may then be easier to answer, and the answer may still be relevant for the
original question. For example, consider this pair of question and candidate
passage:

Q: “What is the tallest mountain in the world?”
C: “Mount FEverest is the tallest mountain.”

Technically the candidate passage does not contain enough information to an-
swer the question, as it contains no reference to “the world”. A strict QA
system would have to give up here. With relaxation we can make the question
less specific:

Q™ “What is the tallest mountain?”

The passage contains sufficient information to answer this question. In this
particular case the answer “Mount Everest” is also the correct answer to the
original question. Naturally relaxation contains some risk that the simplified
question becomes too unspecific, making the answer irrelevant for the original
question. For example, the question “What is a mountain in the world?’ is
also a relaxed version of @, yet it would be mere coincidence if an answer were
relevant for Q.

Relaxation in LogAnswer is carried out as a cooperation between the the-
orem prover E-KRHyper and the robust logic-based processing module (see
Section [8.4)) [15]. When E-KRHyper fails to find a proof within a specified time
limit, then the FOL question representation is shortened by one literal and the
prover is restarted with this relaxed query. As a FOL query is a negative clause
Q, the relaxed query Q" is a subset of Q. With fewer query literals to refute,
finding a refutation should be easier. As shown by the example above, some
thought must be put into the choice of which literal to skip. Obviously the
best choice is a literal that is not provable, but a query clause may have several
provable subsets - indeed every literal may be provable, but not all of them
simultaneously under a common substitution. We wish to relax the query as
little as possible, so it is desirable to preserve the largest provable subset and
to skip only literals from the remainder of the query clause. As a query clause
of length n has 2™ — 2 proper non-empty subsets, it is unfeasible to test all of
them in addition to the full query, but as described below we do test several
subsets to achieve an approximate result that is better than randomly skipping
some literal.

Towards this purpose E-KRHyper gathers information about its progress
in proving the query clause during the derivation. If the time limit is reached
without a proof, then this information is used by the robust logic-based process-
ing module to select an appropriate literal for skipping, and then E-KRHyper
is restarted with the relaxed query. This information is obtained whenever E-
KRHyper tries to apply a hyper extension step to a query clause QQ = =Q1 V

-V 2Q,. In such an attempt the prover tries to unify the query atoms with
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fresh variants By, ..., By, of positive literal nodes (unit clauses) from the current
hyper tableau branch. It iterates over @) from left to right, starting with —Q1,
and extends a unifying substitution in every step such that starting with the
empty substitution oy, for any k with 1 < k < n there is a substitution o} with
Qior = B; (1 <1i < k). If one query atom @, fails to find a matching partner
in the branch which would allow an extension of the current substitution o;_1
to oy, then the remaining literals —Qy1,..., 7@, are not tested under o;_;.
Instead E-KRHyper stores a partial result, which is a triple of the form:

({Q17 . . ‘7@1*1}701*17 {Ql7 .. 7Qn})

It consists of the list of successfully unified query atoms, their unifying substitu-
tion, and the list of query atoms that were not unified, the first of which being
the one that failed, whereas the remaining were not tested at all.

The linear left to right evaluation could lead to an early failing literal pre-
venting a large subset of @) from ever being tested. To avoid this, E-KRHyper
performs the same evaluation for the following permutations of Q:

Q2 VQ3V - VaQ, V@

Q3V Qs V-V QyVoQ1V Q2

“QnV Q1 V-V Qo

While this will not cover all subsets, it ensures that every literal is tested at
least once, thereby allowing the detection of complete failures where no query
literals can be proven within the time limit.

The default setting of E-KRHyper in LogAnswer has been to gather all
partial results during the derivation. This method has been used in the CLEF
competition participations of LogAnswer. An experimental setting enables E-
KRHyper to discard partial results which become obsolete due to better partial
results. This is the case when the set of proven literals in a partial result R is
a subset of the proven literals of a partial result R’, a situation that can occur
when some unproven literal in R is proven later by some newly derived fact.
However, this “subsumption” of partial results is merely an optimization, as
the robust logic-based processing module still needs to rank and evaluate the
partial results according to criteria that are beyond the means of E-KRHyper.
Here the literal to skip is determined by the partial result with the most proven
literals, and when several partial results are tied, preference is given to those
that bind the FOCUS variable to a constant term that represents a MultiNet
node which is likely to be a suitable answer.

As an example consider the following question and candidate passage:

Q: “Rudy Giuliani war Birgermeister welcher US—Stadt?’ﬂ

C: “Hinter der Anklage stand der spdtere Biirgermeister von New York, Rudolph
Giuliani. #

L “Rudy Giuliani was the mayor of which city in the USA?2”
2 “Responsible for the charges was the future mayor of New York, Rudolph Giuliani.”
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The question is represented as the following negative clause:

©= —attr(Xq, X2) V —attr( Xy, X3) V —sub(Xa, nachname.1.1)

V —wal(Xa, giuliani.0) V —sub(Xs, vorname.1.1)
V —wal( X3, rudy.0) V —sub( Xy, buergermeister.1.1)
V —attch( FOCUS, X1) V —sub(FOCUS, usstadt. 1.1)

The candidate passage has this FOL representation (simplified for legibility):

hinter(c221, ¢210) A sub(c220, nachname.1.1) A val(c220, giuliani.0)
A sub(c219, vorname.1.1) A val(c219, rudolph.0) A prop(c218, spaet.1.1)
A attr(c218, ¢220) A attr(c218, c219) A sub(c218, buergermeister.1.1)
A val(c216, new-york.0) A sub(c216, name.1.1) A sub(c215, stadt.1.1)
A atteh(c215, c218) N attr(c215, c216) N subs(c211, stehen.1.1)
A loc(c211, c221) A scar(c211, c218) A sub(c210, anklage.1.1)

The initial proof attempt does not succeed. The best partial result instantiates
the first five query literals, but E-KRHyper fails at —wal(X3, rudy.0), because
the knowledge base contains no information that “Rudy” is a short form of
“Rudolph”:

({ attr(X1, X2), attr(X1, X3), sub(Xa, nachname.1.1), val( Xo, giuliani.0),
sub(X3, vorname.1.1) },
o ={X1 + ¢218 Xy + ¢220, X3 + ¢219},
{ val(X3, rudy.0), sub( X1, buergermeister.1.1), attch(FOCUS, X1),
sub(FOCUS, usstadt.1.1) })

Thus the failing literal is skipped, resulting in the relaxed query:

rel __
@ —attr( Xy, Xo) V —attr( Xy, X3) V —sub(Xa, nachname.1.1)

V —wal( X2, giuliani.0) V —sub(Xs, vorname.1.1)
V —sub( Xy, buergermeister.1.1) V —attch(FOCUS, X1)
V =sub(FOCUS, usstadt.1.1)
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Accordingly E-KRHyper starts a new proof attempt with Q™. Most of the
remaining literals can now be proven, apart from the last one, yielding this
partial result:

({ attr(X1, X2), attr(X1, X3), sub(X2, nachname.1.1), val( X2, giuliani.0),
sub(Xs, vorname.1.1), sub( Xy, buergermeister.1.1), attch( FOCUS, X1) },
o={X1 + c218 X5 < 220, X5 + ¢219, FOCUS + c215},
{ sub(FOCUS, usstadt.1.1) })

While the knowledge base contains data about New York being a city, the
crucial fact that it is a city in the USA (usstadt.1.1) is missing. The literal is
skipped as well, but since there are no further query literals to prove, no further
proof attempt must be started. The FOCUS variable has been bound to the
constant ¢215, and from the passage representation the answer “New York” can
be determined.

13.2 Reusing Derivation Results

A proof attempt with a relaxed query differs from the previous attempt only in
that the relaxed query clause is a subset of the previous query clause. The FOL
representations of the candidate passage and the background knowledge remain
unchanged, and thus they have the same logical consequences in both proof
attempts. It may therefore seem obvious to reuse the derivation results from
the previous proof attempt in the derivation with the relaxed query. E-KRHyper
thus offers the functionality to reuse derived consequences in subsequent proof
attempts. From an implementational point of view this means preserving the
initial hyper tableau branch segment before the first split.

Nevertheless, and perhaps somewhat surprisingly, it turns out that this fea-
ture does not offer any clear advantage when processing LogAnswer problems.
The reason for this can be found in the characteristics of these problems, which
feature a large number of clauses, most of which are irrelevant to a proof. Re-
call that a proof attempt in LogAnswer starts with an input of about 11,000
clauses. Ideally the query is proven directly by clauses from this initial input,
without having to derive any additional clauses. After all, the information re-
trieval phase of LogAnswer specifically aims at finding candidates that match
the query well. In order to find such ideal proofs fast, E-KRHyper always begins
the derivation by trying to evaluate the query clauseﬂ in a hyper extension step
on the initial input.

However, when the prover fails to find a proof within the time limit, then it is
likely to have derived thousands of new clauses. Indeed, even on the LogAnswer
problem test set E-KRHyper on average derives about 8,000 new clauses per
problem, despite solving 22.7% of the problems straight from the input. In the
relaxation step these derived clauses are added to the original 11,000, effectively
becoming new input. Then E-KRHyper begins its derivation by attempting to
apply the relaxed query clause to the extended input in a hyper extension step.

3Generally the negative clauses are evaluated first, but in the LogAnswer scenario the
query clause is the only negative clause.
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test type precision recall F-score
information retrieval baseline 0.291 0.098 0.147
shallow feature baseline 0.433 0.421 0.427
no relaxation, logical features 0.702 0.130 0.219
no relaxation, all features 0.449 0.449 0.449
no relaxation, partial results 0.462 0.429 0.445
max. 1 relaxation 0.490 0.390 0.434
max. 2 relaxations 0.565 0.378 0.453
max. 3 relaxations 0.533 0.386 0.447
max. 4 relaxations 0.518 0.402 0.452

Table 13.1: Evaluation results for E-KRHyper in LogAnswer on CLEF
2007 questions

By relaxing the query we have increased its chances of matching the original
input, but at the same time we have greatly increased the search space for the
computation of the critical first hyper extension step by adding the previous
derivation results to the original input. In cases where the relaxed query could
have been proven by the original input, the previous derivation results therefore
become a distraction that slows down the refutation.

Similar concerns still apply even in the case when a relaxed query actually
requires some derived clauses, yet the previous derivation resulted in vastly more
than these clauses. All these additions to the input increase the search space,
and they can act as a brake when trying to find the proof.

Although the capability to reuse derivation results was built into E-KRHyper
specifically for LogAnswer, in the long run we have therefore decided to forgo
its usage in LogAnswer. It may still prove advantageous when dealing with
large ontologies outside of LogAnswer, where we cannot rely on filtering based
on information retrieval. As such it takes part in ongoing experimentation with
Cyc and YAGO.

13.3 Evaluation

With relaxation we have reached the aspects of E-KRHyper and LogAnswer
that are difficult to evaluate automatically. Relaxation certainly increases the
number of proofs the prover finds for a given set of QA problems - as men-
tioned, without relaxation only 0.7% of the problems occurring during CLEF
2010 would have been solved, while with relaxation this increased tenfold to 7%.
However, a proof for a relaxed query may be irrelevant for the original query,
and this relevance can only be evaluated outside the prover. Ultimately it is the
resulting natural language answer that must be judged, which still necessitates
a human assessment.

For this reason we refer to a relaxation-specific evaluation [I0] we performed
with LogAnswer on questions taken from the CLEF 2007 QA competition. Af-
ter accounting for unsuitable question types and incomplete parses, in total
12,377 answer candidates were retrieved for 93 questions and subjected to log-
ical processing. According to manual assessment and annotation only 254 of
the candidates (2%) actually contain an answer. We measured the precision
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(ratio of correct answers found to total answers found), the recall (ratio of
correct answers found to correct answers among the candidates) and the F-
score (harmonic mean of precision and recall). Several different configurations
of LogAnswer were used, and the results are summarized in Table Two
settings serve as baselines where no logical processing was used: The informa-
tion retrieval baseline only evaluated candidates according to their irScore (see
Section and the shallow feature baseline considered all shallow features of
the candidates. Using IR only yields poor results, but the shallow baseline is
remarkably good in comparison. When using the logical processing we distin-
guish different settings. In the first we accepted only full proofs, and we ranked
the proofs according to the logic-based features (again see Section . This
achieved the highest precision, meaning that few false candidates will result in
a full proof, but unfortunately the recall was low, indicating that most correct
candidates also did not result in a full proof. The next test run was similar to
the previous one, but now we also used the shallow features. This lowered the
precision less than it increased the recall, so in practice this setting would be
preferable, with an F-score more than twice as large as the previous one.

The remaining runs make use of the relaxation mechanism, allowing an in-
creasing number of relaxation iterations per answer candidate. The first of these
test runs ( “no relazation, partial results”) may need some explanation: While
no actual reasoning with a relaxed query was carried out, this run made use of
the partial results and could extract FOCUS variable bindings from these. The
subsequent runs show that allowing up to two relaxations gives the best results
overall. While the ideal maximum of relaxations can vary depending on the
specifics of a given question set and changing knowledge sources, in general we
have kept LogAnswer at using two, sometimes up to three relaxations. Beyond
this the results become too unreliable.
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Chapter 14

Evaluation of LogAnswer

As mentioned in Section it is difficult to evaluate a QA system due to the
need to understand an answer in order to assess its accuracy and complete-
ness regarding the question. Technically the developers of a QA system can do
this themselves, but this entails issues of possible bias in that answers may be
judged too kindly, or even too strictly in an attempt to avoid the former. An
external evaluation is therefore preferable. To evaluate our progress with the
development of LogAnswer, the system participated in various QA competitions
at CLEF, beginning in 2008. The conditions of these competitions vary a lot
from year to year, so each will be described in detail, together with the results
LogAnswer achieved. However, most of these competitions have some points in
common. Each participant receives a collection of knowledge sources, typically
corpora in the appropriate language, and a set of usually 200 questions that
can be answered with the knowledge from the sources. The participants then
have about five days to produce the answers. The QA systems remain and run
on their respective home hardware infrastructure. The competition posits no
limits on the hardware specifications, so unlike CASC the performance and the
results may be influenced by differences in the computer equipment of the par-
ticipants. Multiple answers per question may be allowed, reflecting the fact that
QA systems normally produce several ranked answers for a question. Sometimes
questions may be included which cannot be answered with the provided know-
ledge sources; the systems have to recognize such questions as unanswerable
and give an empty answer. The answers are sent to the organizers via email.
They are then reviewed by a panel of judges. Participants are usually allowed to
submit two independent answer sets (two “runs”), each typically representing a
different configuration of their QA system. These runs are evaluated separately.

14.1 The CLEF 2008 Competition - QAQCLEF

2008 marked the first participation of LogAnswer in CLEF, more specifically in
the multilingual question answering competition track QA@QCLEF |[FPAT08|.
Participants got access to newspaper corpora, and they were allowed to use a
static Wikipedia dump in their respective language as well. 200 questions had
to be answered, including factoid questions, questions asking for definitions and
questions requiring list answers. An answer set for the 200 questions could con-
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tain up to three answers for each question. Every question had to be answered
with at least one answer, though this could be the empty answer if the sys-
tem determined the question to be unanswerable with respect to the knowledge
sources. Ideally each answer had to be accurate, complete and concise, and it
had to be supported by the source passages it was derived from. Deviations
from this ideal were penalized in the assessment by the judges.

There were 21 participants in 11 languages, three systems participated in
German. Among the 200 German questions, 86 targeted the provided newspaper
corpora and 114 related to Wikipedia. Several performance measures were used
in the evaluation of each run:

Accuracy: Following the normal understanding of accuracy, this is the ratio
of correct answers to the total number of answers. Only the first out of
the three answers to each question was considered for this.

Confidence Weighted Score (CWS): This measure takes the n (up to three)
different answers for a question into account and is calculated as follows
[Voo01]:

1 Zn: number of correct answers among first ¢ answers

n = )
This measure awards systems which rank correct answers highly. The
CWS for a run is then the average CWS of its answer tuples for the 200
questions.

Mean Reciprocal Rank (MRR): This is a different measure to account for
multiple answers. For each question a score is computed as 1/r, where r
is the rank of the most highly ranked correct answer. If there is no correct
answer, the score is zero. The MRR for a run is then the average score
for the 200 questions.

Regarding the accuracy, LogAnswer derived 27 correct first answers, while 163
were judged as wrong, and the remaining first answers were not properly sup-
ported by sources or they were not sufficiently exact. This resulted in an ac-
curacy of 0.135, i.e. 13.5%. The CWS was 0.029 and the MRR was 0.179.
While this performance was unimpressive given the average accuracy of 23,6%
in the competition, it was nevertheless promising, considering that the partic-
ipating LogAnswer prototype had been assembled in a short amount of time.
Our evaluation [9] of these results revealed that one weakness of this prototype
had had significant impact: The logical evaluation was only used on candidates
with perfectly parsed text passages, while incompletely parsed passages were
not included in the knowledge base at all. Thus only 60% of the corpora were
available to LogAnswer, and any questions that referred to knowledge in the
other 40% were impossible to answer. Other weaknesses were found in the ML
techniques for the evaluation of shallow and logical features. Also problematic
was the answer extraction from certain grammatical constructions like apposi-
tions. Recall that while a successful proof binds a MultiNet node identifier to
the FOCUS variable, the final natural language answer still has to be extracted
from the network and the source passage by identifying a suitable word, name or
phrase. Thus even a successful proof does not always lead to a correct answer.
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14.2 The CLEF 2009 Competition - ResPubliQA

2009 saw significant changes in the organization of the QA competition track of
CLEF. The new track ResPubliQA [PFST09] sought to address the variance in
the competition conditions between the different languages. While in previous
years the organizers had done their best to ensure equal conditions, the fact
that each language had its own unique corpora and its own distinct questions
made comparisons between QA systems for different languages difficult. For
this reason ResPubliQA moved away from newspaper articles and Wikipedia
as knowledge sources, and instead the competition was based on a subset of
the JRC—AcquiSEI corpus, a collection of legislation documents of the European
Union (EU). These documents are available in parallel translations in 22 lan-
guages of EU member states. 500 questions pertaining these documents were
devised, and the participants received the questions and the document collection
in their respective languages. The intention was that all participants answer the
same questions with the same knowledge, regardless of language.

Answers were no longer required to be as exact as in the previous years.
In fact each answer was to be given in the form of a full paragraph from the
corpus, not as a compact phrase. Unlike in the previous years only one an-
swer per question was allowed in each run. All questions could be answered
from the knowledge in the supplied corpus, hence the empty answer was never
the correct choice. However, systems were allowed to abstain from answering
questions while still showing their rejected answer candidates. This served to
provide insights into the quality of the internal answer evaluation and validation
techniques of the systems, and it rewarded systems that remained quiet and ab-
stained from giving uncertain answers over competitors which always answered,
even if poorly.

The main evaluation criteria were:

c@1: This score was the primary measure of the competition, calculated as:
1 n
c@] = — (nc + nu—c)
n n

with
n: the total number of questions,

ne: the number of questions answered correctly,

14 the number of unanswered questions.

Accuracy: This measure was modified so that rejected correct answers for
unanswered questions were counted as correct answers:

n. + number of unanswered questions with rejected correct answers

n

Different languages may lend themselves to automated processing with varying
ease. The competition organizers attempted to lessen the impact of this “lan-
guage variable” by establishing an IR baseline c@1 result for all languages, using
a standardized information retrieval system. This allowed the computation of a

Thttp://langtech. jrc.ec.europa.eu/JRC-Acquis.html
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corrected c¢@1 score for each system, by dividing the c@1 score by the baseline
score for the respective language.

11 QA systems participated in eight languages. LogAnswer was the only
German system. We submitted two different runs; each achieved a c@1 score of
0.44 and an accuracy of 0.4. This was slightly above the competition average of
0.41 for c@1 and 0.39 for accuracy, and as such it represents a marked improve-
ment in the performance of LogAnswer over the previous year. Going by its
corrected c@1 score of 1.158, LogAnswer was even the third best QA system in
the competition. The organizers highlighted LogAnswer’s good ability to avoid
wrong answers [PEST09]: In the first run LogAnswer abstained from answering
93 out of the 500 questions, and in 73% of these cases our system was right
to do so, as its best answer would have been wrong. In the second run this
ratio was even better, as LogAnswer chose not to answer 83 questions, 75% of
which would indeed have resulted in a wrong answer otherwise. Only one QA
system was better than LogAnswer in this regard with 77% correct rejections.
LogAnswer achieved this good rejection rate by using its optional answer ac-
ceptance threshold 6 (see Section [8.4)), adjusted to a value (0.08) determined by
machine learning on training data provided by the organizers.

Our evaluation of the results revealed some potential improvements for the
future [11]. While the parsing capabilities had been improved over the previous
version of LogAnswer, the complex legal language of the sources formed a major
obstacle for the parser. Only 26.2% of the competition corpus could be fully
parsed, while partial parses covered another 27.8%. Partially parsed passages
entered the knowledge base and they enabled some additional shallow validation,
an improvement over the earlier LogAnswer which outright discarded passages
that were not fully parsed. However, the logical processing remained restricted
to fully parsed candidates. Thus the overall employment of logic was actually
significantly lower than in the year before. For testing purposes the second
submitted run of LogAnswer used no logical processing at all, and it achieved
almost as many correct answers as the run with the full system (199 versus 202),
which after rounding meant identical ¢@1 and accuracy for both runs.

Note of course that this similarity was largely due to the competition requir-
ing only paragraphs as answers, not the exact answers LogAnswer is intended
for. While the full LogAnswer run computed the exact answers in the normal
way, only the containing paragraphs were then used for the competition results.
The logic-less run could not compute exact answers, and had these been a re-
quirement, then this run would not have been an option for the competition.
While we were satisfied with the overall performance of LogAnswer, it can be
said that the situation cast some doubt on the suitability of CLEF as an eval-
uation of LogAnswer when used as intended. This view was reinforced by a
closer inspection of the questions and the corpus. Often it was clear that the
question had been constructed by minor changes to a corpus passage. Compare
the following pair of a competition question and a passage from the competition
corpus:

Q: “Which additives may be used in the manufacture of peeled tomatoes?”

P: “As additives in the manufacture of peeled tomatoes only citric acid (E 330)
and calcium chloride (E 509) may be used.”
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Apart from “which”, all words from the question also occur in the passage. In
fact, the phrases “may be used” and “in the manufacture of peeled tomatoes”
even occur word by word both in @ and P. With data like this the shal-
low information retrieval can do most of the work by identifying the matching
passage. As ResPubliQA required only the paragraph containing the passage
instead of an exact answer, the logical processing only provided a nearly su-
perfluous validation of the passage, as there was hardly any reasoning to do.
Under such circumstances adding or omitting logical processing cannot make
much of a difference, which calls into question the relevance of ResPubliQA for
a deduction-based QA system.

14.3 The CLEF 2010 Competition - ResPubliQA

The ResPubliQA competition of CLEF 2010 [PFR*10] remained largely un-
changed. The knowledge sources were still based on the JRC-Acquis, now aug-
mented by the EUROPARL collection of protocol documents from the European
Parliamentﬂ These are available in a similar format with parallel translations,
but their language style is less formal, so it was hoped this would decrease the
difficulties the systems encountered when dealing with the legal texts of the
JRC-Acquis in 2009. 200 questions were prepared for the participants, and they
were to be answered and evaluated in almost the same way as in 2009, except
for the accuracy measure being dropped.

13 QA systems participated in eight languages. There was also an exper-
imental competition track for deriving exact answers instead of paragraphs.
However, this track saw only three participants and the results were very poor
with an average c@1 of 0.09, due to the complexity both of the questions and the
sources. As our testing showed these difficulties in advance, we had LogAnswer
only participate in the regular paragraph answering track, as one of two German
language systems in the competition. We submitted two different runs, both
using the full LogAnswer system including the logical processing, with one run
featuring an improvement in the IR phase regarding the answering of definition
questions. LogAnswer achieved a ¢@1 score of 0.59 in the normal run and 0.62
in the improved version run. This was better than the German competitor that
achieved 0.49 and 0.44 in its runs. The average c@1 score of the competition
was 0.52. Unfortunately the organizers did not compute an independent baseline
for all languages, so no language-independent corrected c@1 score is available.
Again LogAnswer showed good performance when it came to avoiding wrong
answers, as 80.6% of the 34 rejected answers in the regular LogAnswer run and
79.4% of the 36 rejected answers in the improved version run were indeed in-
correct. The #-threshold had been further optimized by taking into account the
results from the previous year. Some systems achieved even higher ratios in this
regard, but none of those rejected nearly as many answers, indicating that they
only detected and rejected the most obviously wrong answers, and most even
had lower ¢@1 scores than LogAnswer.

Our evaluation of the results [12] showed that parsing improvements enabled
full parses and hence a logical evaluation for 37.0% of the retrieved candidates.
The new EUROPARL portion of the corpus did not contribute to this, as only
34.2% of it could be fully parsed, versus 35.1% of the JRC-Acquis portion. Note

2http://www.europarl.europa.eu
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that these numbers are lower than the aforementioned 37.0%, as they refer to
the full corpora, not just to the number of retrieved candidate passages. Internal
testing revealed that once again the logical processing made little difference. A
test run with the logical processing disabled also resulted in a 0.62 c@1 score.
The full and the restricted versions of LogAnswer produced different answers
in only 14% of the cases. This confirmed our doubts in CLEF as an evaluation
venue suitable for a logic-based system, and this was in part responsible for the
experiments that will be described in the upcoming Chapter

14.4 The CLEF 2011 Competition - QA4MRE

In 2011 the QA competition track was again subject to major changes. The new
competition QA4MRE (Question Answering for Machine Reading Fvaluation)
[PHE™11] was built around a task so different from the previous years that it is
difficult to regard QA4MRE as a continuation of the earlier QA competitions,
or even as a QA competition at all. The participants had to perform a series of
tests. In each test a text was supplied, together with 10 questions relating to
the text. For each question five possible answers were given by the organizers,
only one of them correct, and the task for the QA systems was to identify the
correct answer. If a system failed to pick any of the five answers, it was allowed
not to answer. Every system had to pass throuch 12 such tests, i.e. it had to
analyse 12 texts and 120 questions in total, as well as a total of 600 answer
options.

LogAnswer as described in this dissertation was unsuitable for QA4AMRE, so
a modified version was used instead [I3]. The competition made it unnecessary
to search for candidate answers. However, the answers provided by the orga-
nizers were exact answers, they were not the answer candidates with full text
passages that LogAnswer is built to evaluate. This example gives a QA4AMRE
question and one of the provided answers:

Q: “What is Bono’s attitude with respect to the digital age?”
A: “enthusiasm”

In order to perform a logical evaluation of such answers, LogAnswer combined
each answer with the question to form a hypothesis:

H: “Bono’s attitude with respect to the digital age is enthusiasm.”

Each hypothesis then had to be evaluated against the respective test text. The
text was transformed into FOL by the usual translation tools in LogAnswer,
and then it was attempted to find a proof for the combination of the FOL
representations of the hypothesis, the text and the usual background knowledge.
Compared to the normal LogAnswer procedure this basically means that the
hypothesis had the role of the question and the text served as a candidate
passage. A proof showed consistency between text and hypothesis. Relaxation
and the evaluation of proofs remained largely as normal, though due to the lack
of an IR phase the usage of shallow features was very restricted.

The competition rules allowed the usage of other knowledge sources, but it
is unclear how to integrate such sources as the Wikipedia knowledge base of
LogAnswer into the hypothesis testing described above. Thus we chose not to
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use this option, and instead we augmented the background knowledge by about
20,000 concept subsumption relationships obtained from the free Cyc-fragment
OpenC’ch| This expanded background knowledge is still experimental and not
used in the regular LogAnswer.

12 systems participated in three languages, English, German and Romanian.
The evaluation measures were c@I and accuracy as defined in Section In
both submitted runs LogAnswer achieved a ¢@1 score of 0.22 and an accuracy of
0.18. The average c@1 in the competition was 0.21. Thus both the general per-
formance and that of LogAnswer were poor, given that random guessing would
result in an expected c@1 score of 0.2. There are several explanations for this.
The new competition rules meant that the participants faced a situation that
their matured systems were generally not designed for, so for the competition
the systems had to be heavily modified, or prototypes were developed. This
was aggravated by the lack of training data in the form of results from previous
competitions, so methods based on machine learning could not be adequately
adapted. Earlier competitions had a focus on factoid questions, whereas the
QA4MRE questions were often more complex, and testing the provided correct
answers against the texts often required a coherent semantical representation of
the full text instead of passages or separate sentences. This was arguably more
difficult, and it put more emphasis on coreference resolution than previous com-
petitions. The inadequacy of the systems is therefore in part responsible for
the poor overall performance, but some blame must also be placed on the poor
quality of the supplied test documents, which contained numerous formatting
errors like headlines merged with the subsequent text or even words merged due
to missing blanks.

14.5 Conclusions

Apart from the atypical 2011 competition QA4MRE, the participation of Log-
Answer at CLEF shows an increase in its performance over the years, with the
caveat that a year-by-year comparison is difficult due to differences between
the competitions. Nevertheless the results show LogAnswer moving from a
below-average performance in its initial 2008 participation to well above the
average in 2010. A strength of the system noted by the organizers is its good
ability to identify wrong answer candidates and reject them [PFST09, [PFR10].
Unfortunately this strength could not be used to its potential in 2011 due to
the circumstances listed in Section [4.41

While CLEF remains the main venue for a competitive comparison of QA
systems in languages other than English, it is questionable how useful the re-
sults are for the evaluation of a logic-based QA system on the web like Log-
Answer. The response times in the competitions are much longer than a web
usage comparable to a search engine would allow. In the attempt to create
equal conditions for systems of all languages, the questions and documents in
2009 and 2010 became so technical in their legal jargon that they are not rep-
resentative for the NL input a real-world QA system is likely to face. Therefore
we began to explore other evaluation methods. The LogAnswer application for
the iPhone (see Section , apart from demonstrating the possible usage of
QA on compact mobile devices, was an early attempt to attract external users,

3http://sw.opencyc.org
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so that they would supply us with real-world questions. However, this failed
to gain popularity, likely in part due to the admittedly poor performance. We
have therefore investigated a different usage scenario and evaluation venue, the
internet-based QA forums, and this will be the subject of Chapter

Overall it must be said that while LogAnswer performs well compared to
other QA systems as evidenced by CLEF, the performance of QA systems is
generally below what would be acceptable for actual usage. The CLEF orga-
nizers note that there appears to be an upper bound of 60% accuracy for QA
systems [PHET11], and this is under generous competition time limits. In real-
world usage these systems are more likely to give a wrong answer than a correct
one, obviously an impediment to widespread adoption.

One aspect that receives little attention in CLEF are the hardware differ-
ences, likely because complex QA systems are hardly portable. The competition
organizers leave it to the system developers to provide the hardware they deem
adequate, which of course in practice is restricted by what the respective groups
can actually afford. Thus CLEF has a tendency to downplay or even avoid
mentioning hardware, despite the influence of equipment differences potentially
outweighing that of other design choices by a sizable margin. This is illustrated
by the Watson system (see Chapter , which makes extensive use of paral-
lelization on a computer cluster with nearly 3,000 processors. Few QA research
groups are likely to have access to this amount of equipment. LogAnswer for
example uses hardly any parallelization. Its logical processing is restricted to
a single processor, which means that all proof attempts must be carried out in
sequence. Watson as used in its victorious Jeopardy! participation was capable
of answering 85% of questions in at most 5 seconds, yet when using only one
CPU it required 2 hours to answer a single question [FBCC™10]. If LogAnswer
were to use a comparable computer cluster, then all 200 answer candidates for
a question could be processed in parallel. In fact, there would be enough pro-
cessors to even attempt different axiom selection methods (see Section in
parallel and to test some relaxed queries in advance. The competition perfor-
mance of LogAnswer could then be achieved with response times suitable for
the web-based use case. With sufficient hardware it could also become unnec-
essary to reuse input while keeping the parallel provers in continuous operation
(see Sections and . Instead the provers could terminate after each
proof attempt and then restart to the point where they have indexed the back-
ground knowledge. The overarching system would then distribute proof tasks
(queries and candidates) to those provers which happen to be done reading the
background knowledge.

The Watson system has brought welcome publicity to QA. An unfortunate
side effect is that its performance may come to be taken for granted by the
public which is unaware of the required hardware infrastructure. Much work
remains to be done until QA systems with this level of performance can reach
widespread usage.
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Chapter 15

LogAnswer and QA Forums

In the previous chapter we mentioned our growing dissatisfaction with CLEF
as an evaluation venue for LogAnswer: The test questions are often created by
simply transforming an answer-containing sentence from the source documents
into question form, so that the question and the passage match in all but a few
words. In such cases the shallow retrieval methods do virtually all the work,
and the subsequent reasoning is trivial, see Section Also, the legal topics
favored in CLEF are not representative for a real-world application of a QA
system on the web, where it interacts with actual human users.

We have therefore considered combining LogAnswer with QA forums. Such
online forums allow their visitors to ask arbitrary questions and to provide an-
swers to each other. Questions are often sorted into browsable categories, and
new unanswered questions are listed prominently. A search engine typically
allows users to find older questions and answers via keywords. Sometimes mul-
tiple answers are allowed for a question, and users can grade and discuss the
answers. QA forums exist in many languages, and examples for German forums
are Frag Wikia!ﬂ COSMZ'QEL WikiAnswersﬂ and JustAnswerﬂ A problem with
such forums is that a questioner may have to wait an indefinite time for an
answer. Difficult questions may never be answered, and so may even simple
factoid questions, for example when other users do not find it worth their time
to provide an answer that the questioner could have found with little research
in Wikipedia.

A QA system could help here by providing answers almost immediately. Al-
ternatively, since forum visitors do not expect instant answers, the QA system
could allow several minutes for a thorough answer derivation and still process
every new question being posted on the forum. Even if a QA system may only
be able to answer the simplest factoid questions, doing so would nevertheless
disburden helpful human participants, allowing them to focus on the more com-
plex and interesting questions. At the same time the development of LogAnswer
would profit from a large scale evaluation on questions asked by users who are
genuinely interested in the answers. Using automated QA techniques in QA
forums is a fairly novel idea. Something similar has been considered before only

Thttp://frag.wikia.com
2http://www.cosmiq.de
3http://de.answers.com
4http://www. justanswer.de
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by Mihai Surdeanu et al. [SCZII], but their system does not derive answers
like LogAnswer, instead it uses shallow retrieval techniques to identify possibly
matching archived answers already phrased by other forum users. While such
an approach certainly has its uses, a full QA system that can contribute its
own answers without having to rely on the work of human users could become
a most valuable contribution to QA forums.

However, we need to pay special attention to potential pitfalls, in particular
the problem of wrong answers. In a competition situation like CLEF wrong
answers given by a QA system are merely problematic in that they affect the
score. In a QA forum with real users on the other hand there is the risk that a
QA system will be regarded as a nuisance if a substantial portion of its answers
is wrong, as it is common at the current state of the art in QA. As questions
are usually marked as answered once they have received their first answer, a
QA system could effectively prevent a large number of questions from receiving
the attention of other users, despite not helping the original questioner with a
correct answer. This kind of QA system integration could devalue a QA forum
and drive away its visitors, a situation that should be avoided.

Due to such concerns we have not yet actually connected LogAnswer to a
forum at this time. Rather we felt it prudent to perform an extensive evaluation
of LogAnswer on the questions already stored in a QA forum, so that we could
learn how our system would have to be adjusted to this kind of integration.

15.1 Evaluating Forum Questions

For our first experiments [5] we turned to the German Frag Wikia! forum due
to its permissive Creative Commons license for its over 100,000 questions. Ini-
tially we tested LogAnswer on a random sample of 200 questions taken from
this forumﬂ 41% of these contain syntactic mistakes like spelling errors and
wrong capitalization. This emphasizes the need for robust NLP components in
a QA system, as otherwise the poor orthography will often prevent the pars-
ing of the question, making the strengths of the subsequent processing chain
irrelevant in many cases. Fortunately the WOCADI parser of LogAnswer is
sufficiently robust to form a FOL representation of 81% of the questions. A
manual examination of the sample showed that 61% of the questions have an
answer in Wikipedia, despite the policy of Frag Wikia! to discourage such ques-
tions. For our evaluation this widespread policy violation is positive, as it means
that a majority of the Frag Wikia! questions can potentially be answered by
LogAnswer. When allowing LogAnswer to show up to three answers for each
question, then according to our manual assessment of the results our system
found at least one correct answer for 30% of the Wikipedia-related questions,
or 18% of the full sample.

For a more thorough evaluation [4] we tested LogAnswer on 3,996 hitherto
unanswered questions from the Frag Wikia! forum. This set contains many dif-
ficult and sometimes unclear questions that have accumulated over time without
eliciting an answer from human visitors. The idea behind this was to present
LogAnswer with the worst-case to be expected in a forum integration, and to
judge whether our QA system could be useful immediately by processing a large
portion of the backlog of open questions. We used a time limit of 15 seconds

Shttp://www.loganswer.de/resources/icaart2011.xml
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per question. While this is more than the five seconds applied in the normal
web use case of LogAnswer, it is considerably less than the time that could be
allowed in an actual forum integration, where even a processing time of several
minutes would be acceptable. However, with the large test set this generous
limit would have been prohibitively time-consuming, so we chose 15 seconds as
a compromise.

The forum questions proved to be difficult to handle. Even after loosening
the constraints to count a question as answered correctly if at least one out of
four results was correct, LogAnswer achieved an answer rate of only 8.9% for the
total test set according to our manual assessment. This corresponds to 21.5% for
the questions that can be answered with Wikipedia, which make up about 41%
of the test set and thus form a smaller portion among the unanswered questions
than in the previous random sample. These numbers may appear disappointing,
but one should keep in mind that no human user comes close to answering 8.9%
of the questions, much less 18% when considering the forum questions in general
as represented by the random sample, not only the unanswered set. Nevertheless
the problem remains how to handle the remaining 91.1% or 82% respectively for
which LogAnswer could not provide any correct answer. Obviously with these
numbers the common QA method of presenting the “best” answer in such cases
would be gravely detrimental to the forum experience. While the capability
of LogAnswer to derive correct answers may thus already be sufficient for the
system to be useful in a QA forum situation, we need to prevent it from posting
wrong answers before a forum integration can be considered. Of course the
ideal solution would be to improve the answer derivation capability so that more
correct answers are posted instead. This is bounded by the general limitations of
state-of-the-art QA, though. Apart from that we will see in the following section
that there are many forum questions that would be difficult or impossible to
answer even for a theoretical ideal QA system. For the time being the more
promising approach is to give no answer at all when no correct answer can be
derived. We call this wrong answer avoidance (WAA).

15.2 Wrong Answer Avoidance

LogAnswer has shown a good capability to reject wrong answers in the CLEF
competitions, see Sections and[I4.3] This was achieved by using the answer
acceptance threshold 6 (see Section with a value computed specifically for
the question types and the topics in these competitions, using training data
supplied by the organizers. Unfortunately this option was not available when
dealing with QA forum questions. While there is a large amount of questions
available, the number of correct answers is very low compared to the wrong
answers. With only 355 questions receiving at least one correct answer out of
four versus 3,641 questions with none, there are not enough positive cases that
would enable machine learning to establish a threshold for measuring hundreds
of candidates for each question. This would require a clear correlation between
the correctness of an answer regarding the question and the shallow and logic-
based features of its underlying derivation and proof, something that cannot be
ascertained when using our results as training data.

However, although this usual method of establishing a filter does not work
as is, we can refine it by adding features specific to the QA forum scenario, pri-
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marily features of the questions. This combination of features from the shallow
retrieval phase, the logic-based proof and the forum aspects can result in a filter
that avoids most wrong answers while minimizing false positives by affecting few
of the correct answers. The new question features can be grouped into different
classes:

Question Type: The classification of questions into types like factoid ques-
tions and definition questions is a standard method in LogAnswer for
determining what kind of answer the system should be looking for, see
Section However, here we can use it to identify questions that are
unlikely to be answered correctly, for example questions about opinions.
Such questions like “What is the best compact car”? are easily recognized
by certain keywords or by the use of superlatives, and they clearly go
beyond the current scope of QA systems.

Linguistic Problems: There are numerous linguistic problems that can occur
in a question, like spelling mistakes, grammatical errors, colloquial lan-
guage, missing quotation marks or complex questions consisting of mul-
tiple sentences. Such problems occur in 50.7% of our test set, and all of
them reduce the likelihood of finding a correct answer.

Question Age: The longer a question has remained unanswered in the QA
forum, the more likely it is that the question is difficult to answer, and
that any answer derived automatically is wrong.

Forum Category: Questioners may place their questions in a category per-
taining to the subject matter of the question. Certain categories are noto-
rious for questions that cannot be answered, for example categories about
celebrities, where most questioners ask for personal information like phone
numbers of pop stars. Another example are software and video game cate-
gories, where questions usually are about very specific technical problems
that have no answer in Wikipedia. Manually identifying such categories
and then simply blocking their questions has been very successful; of 534
questions blocked this way, only 8 were false positives, a rejection precision
of 97.8% for this particular feature.

User Features: Some users tend to ask more unanswerable questions than
others. Thus a question coming from a user with a high number of unan-
swered questions is likely to be difficult to answer.

The final WAA filter is a classifier consisting of decision trees that evaluate
questions and answers according to these new features and the original shallow
and logic-based features. It has been trained on the test set of unanswered
questions. Currently it achieves a 90.6% reduction of the false answers, while
the number of correct answers is reduced by 58.6%, thus resulting in 3.7% correct
answers for the test set of unanswered questions. This corresponds to a precision
of 30%, that is, 30% of the answers given are correct, or 147 correct answers are
found versus 343 wrong ones. On the one hand this means that the performance
is still insufficient for an actual QA forum integration of LogAnswer, as for every
correct answer there are more than two wrong ones. On the other hand this
is a marked improvement over the unfiltered ratio, where 356 correct answers
were offset by 3,640 wrong answers, ten false answers for each correct one. This
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shows that we are on the right track. Also, even though giving correct answers
to 3.7% of the questions may seem low, it is still better than any single human
user, and in a larger QA forum with thousands of new questions every dayﬂ
this nevertheless means a large number of correct answers. Finally one needs
to keep in mind that the test set consists of the questions no human user would
answer, and many of these are more difficult than the average forum question.

15.3 Towards a Forum Integration

For the time being LogAnswer is not sufficiently reliable to participate in a QA
forum without disturbing the users. The WAA filter substantially improves the
ratio between correct and wrong answers, but more work is necessary before a
forum integration can be considered. The discrepancy between the CLEF com-
petition performance and the performance on QA forum questions highlights the
need for real-world evaluations of QA. While it is easy to blame the haphazard
writing style and the illusory expectations of many forum visitors for making
their questions difficult to handle, a QA system must be prepared to deal with
this reality if it is supposed to gain widespread acceptance.

Looking further ahead one can envision another way to use a QA system in
a QA forum. As a QA forum is frequented by a multitude of users, the same
questions are bound to be asked several times by different people. Most forums
try to avoid repeatedly listing such questions as unanswered each time they are
posted. Instead an attempt is made to redirect the respective user to an earlier
instance of the question, so that old answers can be reused. This requires the
forum software to compare the current question with the older questions in the
forum archive. Typically this is done by a search based on keywords from the
current question. As a result QA forums may not find a semantically equivalent
question if it is a paraphrasing of the current question. For example, Frag
Wikia! contains the question

Q1: “What was the name of the first German Chancellor?”

and asking the same question again will produce this archived question together
with an answer. However, rephrasing ) into

Q2: “Who was the first Chancellor of Germany?”

will not lead to the archived @} and its answer, as Q5 is treated as unique in-
steadEI The QA forum WikiAnswers shows a similar behaviour: here the para-
phrased question is in the archive and will be found when the identical wording
is used. The original question is not found, though. Instead the forum search
engine suggests other archived questions containing keywords like “German” or
“Chancellor”, but none of them are relevant for the original question.
LogAnswer could offer an improvement by going beyond keywords and in-
stead perform a semantic comparison between questions. The intended re-
sult would be similar to that of the aforementioned system by Surdeanu et
al. [SCZ11] in that the user could be redirected to existing answers, with the
difference that LogAnswer would not rely only on shallow retrieval methods.

6 Prag Wikia!, our forum of choice, only has between 50 and 100 new questions daily.
"Note that our rephrased question Q2 has since been answered by a different user.
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This proposed function of LogAnswer would operate as follows. First, a re-
quirement is a new knowledge base derived from the archived questions. For
this purpose the questions must be treated like the Wikipedia text passages for
the original knowledge base: The questions are parsed and then translated into
their MultiNet and FOL representations. The translation largely corresponds to
the way LogAnswer would normally translate a question for question answering,
with the exception that constants are used instead of variables. Effectively an
archived question is treated like a statement in this phase, for example with @
being translated as if it actually read “Something exists that was the name of
the first German Chancellor.”

When a user then asks a new question, LogAnswer can locate potentially
matching archived questions using the same information retrieval methods as
for the answer candidate passages. E-KRHyper then tests the filtered questions
for equivalence to the user question, Q1 <> Q2. This means that two proofs
must be found, one with the user question as a negated conjecture refuted by
the archived question and the general background knowledge, and one proof
vice versa which refutes the archived question. This is because testing only one
direction would not ensure semantic equivalence. For example, while the FOL
representation of “What is a herbivore fish living in the Pacific Ocean?” could
be used to prove “What is a fish living in the Pacific Ocean?”, the questions are
clearly not equivalent, as the predatory great white shark would be a correct
answer to the latter question, but not to the former. Successful proofs in both
directions indicate the semantic equivalence of user question and archived ques-
tion. Relaxation may be used, possibly weakening the probability of the proofs
accurately representing equivalence. When several archived questions have been
tested this way for one user question, then the ML-based reranking sorts the
proof pairs to determine the archived questions with the highest relevance for
the questioner. This process is similar to the currently used reranking of proofs
and answer candidates, except that only a subset of the criteria can be used
since a comparison of questions does not produce an exact answer. Finally Log-
Answer presents the best matching questions from the archive, and the user can
examine these and any existing answers.
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Chapter 16

LogAnswer and Web
Services

In its current form LogAnswer is restricted to answering encyclopedic questions,
as the answers have to be retrieved from a static knowledge base derived from
Wikipedia. This precludes answering questions which do not have permanent
answers, like

Q1: “What is the weather in Stockholm today?”
Q2: “How much is €2.99 in US-Dollars?”
Qs: “When does the next train to the CeBIT leave?”

Answering ()1 requires access to weather data by time and location. For Q5 a QA
system would need current currency exchange rates and arithmetics. Answering
@3 needs not only time tables, but also the location of the CeBIT trade fair
and some method to determine the current location of the user, who probably
is only interested in trains that leave from a station nearby. Such information
cannot be found in a static knowledge base, and the ability to handle questions
of this type would greatly broaden the scope of a QA system, and also likely its
appeal. For this reason we have experimented with connecting LogAnswer to
web services that can provide such data. According to the W3C,

“A Web service is a software system designed to support interoper-
able machine-to-machine interaction over a network.{l

While the W3C suggests uniform standards for this interaction, arbitrary ser-
vices with their own particular operations are acknowledged. For our purposes
we therefore use the term for all data resources which provide web-based ac-
cess in a form that allows automated retrieval. This covers both the REST-
compliant web services [Fie00] in the strictest sense and other less standardized
sources, including web pages that can be accessed and parsed with a reliability
that is sufficient to allow obtaining specific data automatically. At the same
time we are primarily interested in “factoid” web services that provide their
respective data in an almost atomic form which requires little parsing and sub-
sequent processing. For example, while search engines (and even QA systems

Thttp://www.w3.org/TR/ws-arch

173


http://www.w3.org/TR/ws-arch

like LogAnswer itself) could be used as web services, their output is too com-
plex and unstructured for the purposes of this chapter. Instead a web service
for LogAnswer should provide data that can be represented in short strings, like
“cloudy” in response to @)1, or in numeric form like “3.74” for Q2. The goal is
to fill very specific gaps in the knowledge of LogAnswer that become apparent
while processing a question, not to supplant the knowledge base or the reasoning
in LogAnswer.

A fundamental problem of using web services in QA is their response time.
A web service requires an arbitrary amount of time to process a query, and
network latency causes additional delays. It is therefore important to avoid
unnecessary web service requests, and to use an asynchronous communication
with the web services so that the QA system can use the delay phases for other
tasks. With the first goal in mind it becomes clear that web services should
not be accessed early on in the processing of a question, before its semantics
have been analysed. Before this point most web service requests would only
amount to pre-emptive guesswork. For example, the question @) could be used
to trigger queries containing the word “Stockholm” to all sorts of connected web
services, even where this makes no sense at all, like a service for measurement
unit conversion. Some basic data about the words in the question could reduce
obviously futile requests, so that only meaningful requests are sent to services
which can actually handle this particular input. However, this still would not
avoid requests that have no relevance for the question at hand, like asking a
time zone web service for the local time in Stockholm, which is of no interest to
someone asking Q.

Once the semantics of the full question are known it becomes possible to send
requests which could lead to an answer. This may not be enough, though, as
questions can still require the knowledge base. For example, to answer Q3 a QA
system could access its own encyclopedic knowledge to determine Hanover as the
location and railway station of the CeBIT trade fair, while the current location
of the user and the time tables would have to be obtained from suitable web
services. The knowledge base is thus still relevant, and the answer candidates
may and should have an effect on which requests to send to web services. This
means that within the question processing of LogAnswer the web service access
should occur only when the semantics of both the question and the candidates
are known, for example during the logical processing in E-KRHyper. This way
inference conclusions can trigger web service requests, which then may enable
new inferences and so on. The result would be a seamless combination of explicit
and inferred knowledge from the knowledge base with the knowledge retrieved
from web services.

E-KRHyper has been equipped with support for web services. For the time
being this support remains on the level of the prover, and the full LogAnswer
system does not yet make use of web services. This would require modifications
to the knowledge base, which is the work of a knowledge engineer and beyond
the scope of this dissertation, and must thus be regarded as future work. In Sec-
tion [I6.1] we describe the formal integration of web services in hyper tableaux.
Section then explains the implementation of this feature in E-KRHyper.
The final Section describes an experimental usage of web services for ab-
ductive relaxation; this has also been implemented in E-KRHyper.
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16.1 Web Services as External Sources in Hyper
Tableaux

The integration of web services in E-KRHyper and both the hyper tableaux cal-
culus and the E-hyper tableaux calculus bears similarities to the approach used
in the SPASS-XDB system [SSWT09, SST"10], which integrates a number of
web services and other sources into the SPASS prover and hence the superposi-
tion calculus. We adopt the authors’ expression of external sources (of axioms)
to refer to sources such as web services in a more abstract manner. This allows
us to use the same techniques both for web services and for any other sources
with comparable characteristics, even if they are not web-based, for example a
large local database.

We assume that the systems underlying external sources operate on a princi-
ple of request and response, i.e. they are accessed by requests, and each request
is answered by a response. To formalize this we introduce a new binary pred-
icate symbol ext/2 that is used to represent the relation between request and
response in the form of an atom ext(q,a), where ¢ is a term representing the
request and a is a term representing the associated response. We refer to such
atoms as ext-atoms, to literals with ext-atoms as ext-literals, and to unit clauses
with ezt-literals as ext-units. An external source like a web service can then be
represented as a possibly infinite set of positive ext-units which list the requests
and the associated responses as provided by the service. There may be multi-
ple different responses a1, as,... for a given request ¢, represented as multiple
ezt-units:

ext(q,a1)

ext(q,az)

Likewise, the same response a may be associated with multiple different requests
q1,q2 and so on.

The terms g and a can be constructed arbitrarily to properly encode the
functionality of the represented source. For example, a meteorological web
service suitable for answering the introductory question @)1 might offer different
types of weather data, and it could be represented like this:

ext(weather(’Stockholm’, 27-06-2012), 'cloudy’) +

ext(temperature( ‘Stockholm’, 27-06-2012), '15 ° C’) +
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Indeed, it may make sense to represent the identity of the underlying web
service as well. This allows representing multiple resources as one external
source, for example:

ext(weather_service(weather(’Stockholm’, 27-06-2012)), ’cloudy’) +
ext(weather_service(temperature( ’Stockholm’, 27-06-2012)), '15 ° C’) +

ext(currency_exchange_service( eur, usd, 2.99, 27-06-2012), '$3.74") +

We assume external sources to consist only of ground positive ext-units. This
is because the web services we are interested in typically only accept specific
requests and thus do not feature a more complex query language that would
allow requests with variables. Also, we typically want to avoid variable requests
anyway, as we only want to access web services to fill very specific gaps in the
knowledge of our QA system. Finally, if it is unavoidable to include a web service
which accepts variable requests, then this can be represented by ground positive
ert-units where fresh constants take the place of the web service variables. For
example, the following could be a representation of a variation of the currency
exchanger above, where now we allow to leave the target currency unspecified,
so that results in different currencies can be returned:

ext( currency_exchange_service( eur, vary, 2.99, 27-06-2012), '$3.74") +

ext( currency_exchange_service( eur, vary, 2.99, 27-06-2012), '£2.89°) +

It is then up to the knowledge engineer to design the knowledge base in such
manner that variable requests use such constants when accessing an external
source.

It must be stressed that the representation of external sources as a set of
units is highly idealized, and its purpose is to make such sources accessible
within a logical calculus. In practice the full extent of the data that can be
provided by a web service is usually not available to a reasoner, as we can only
send requests for specific items.

If a web service has no response to some request ¢, then this is represented
by not having any instances of ext(q,z) in the external source. In an imple-
mentation such requests will result in some error message by the respective web
service, which must then be treated as a non-match by the interface between
web service and proverE|

2In certain circumstances though one might opt to represent some error responses as special
FOL terms, as it sometimes might be useful to distinguish between requests that are refused
by a web service (for example due to syntax errors) and requests that cannot be answered (for
example because the web service is missing data about the particular requested item).
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We assume further our extended hyper tableaux calculi to remain time-
agnostic. All ext-units of external sources are always true. Where this is a
problem, a time stamp encoding as in the examples above may help. The QA
system can then use its internal time or some other temporal data to time stamp
its requests, thereby ensuring that only valid responses are returned. Of course
time remains a problematic issue, as external sources may gain new ext-units
and lose old ones over time. For example, the currency exchange service will
not contain the exchange rates of tomorrow before tomorrow, and it might not
keep an archive of past exchange rates. This means that the same request may
sometimes result in a response and sometimes not. For the formalization we
therefore assume an external source to be constant. If in reality it changes over
time, then from the formal point of view its changed representation must be
regarded as a different external source. In practice it is also possible that a web
service changes its inventory of replies during the time of a proof attempt. While
this is unlikely with the short time slices given to reasoning in LogAnswer, it
cannot be ruled out entirely. We do not account for this in our formalization,
as any attempt to deal with this remote possibility on the formal level is likely
to overcomplicate the calculus extension beyond its benefits.

An external source can be accessed during the derivation by instantiating
the atom of a negative ext-literal in a selected clause by a positive ezt-unit
from the external source, provided that both atoms in question have the same
ground request term ¢. The requirement of ground requests is due to web
services normally not allowing underspecified requests with variables. We also
want to avoid grounding a variable request term with arbitrary terms from the
Herbrand universe in a manner similar to purification, see Sections and
[6:2.1] Otherwise this could trigger an excessive amount of time-consuming web
service accesses, and it would go against our intention to fill only specific gaps
in the knowledge base. The response term o’ in the negative ezt-literal may be
a variable, a ground term, or a complex term containing an arbitrary number
of variables. As the response term a in the external source must instantiate
a’, careful construction of the response terms can be used to restrict which
responses are acceptable for a given request.

The following example illustrates the principle with a simplified set of clauses
pertaining to the introductory question @3:

Ce®t: ext(user_location_service, "Cologne’) <
Cg®: ext(next_train_finder_service(’Cologne’, "Hanover”), ’15:05") <
Cy: at(’CeBIT’, "Hanover’) <

Cy: next_train_to( Event, Time) <—
at( Event, ToCity),
ext(user_location_service, FromCity),
ext(next_train_finder_service( FromCity, ToCity), Time)
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Clauses above the dashed line represent the external source, clauses below are
the clauses fully available to the calculus and the prover. To determine the time
of the next train departure to the CeBIT by clause Cs, the knowledge base fact
(1 is used to find the city of Hanover as the target location, thus instantiating
the variable ToCity with ’Hanover’. The current location of the user, in this
case the city of Cologne, is obtained by accessing a web service which requires
no specific input parameters, represented by C£*, and instantiating FromCity
with ’Cologne’. With both the current location and the destination known the
next_train_finder_service can now be accessed to retrieve the departure time.
This is represented by C§*% and it instantiates the Time variable with ’15:05°.
Finally the new fact next_train_to(’CeBIT’, ’15:05’) is derived, which can be
used to produce the answer to Q3.

In the following we will extend both the hyper tableaux calculus and the
E-hyper tableaux calculus with inference rules allowing such derivations. We
show the soundness of both extensions. Unfortunately neither is complete, and
we will argue why true completeness is unattainable in any approach that seeks
to integrate external sources into reasoning, though we offer some approaches
to “approximate completeness”.

The extension for E-hyper tableaux is described first, as the design of this
calculus with its multitude of inference rules lends itself to an extension by
a single compact rule. In the generally simpler equality-free hyper tableaux
calculus we aim to stay with a single inference rule overall by describing a
modified hyper extension step. By necessity this more powerful rule will be
more complex to describe, as it effectively encompasses the entire calculus.

16.1.1 External Sources in E-Hyper Tableaux

The ext-sup-left rule (external superposition left) selects a negative ext-literal
to send a request to an external source, and then it applies the response as a
substitution to the selected clause. Recall that we use the equational notation
with the special constant t to write originally non-equational atoms as equations.

A« ext(q,a’) ~t,B ext(q,a) =~ t +
(A<« B)o

” ext(q, a) is ground, and
o is a substitution with a’o = a.

ext-sup-left(o)

If the ext-sup-left rule is applied with clause C' as left premise, D as right premise,
the substitution o and the conclusion E, then this inference instance will be
denoted by C, D = eytsup-left(o) E-

The new inference rule will be encapsulated in a corresponding tableau ex-
tension rule. Let C be a set of clauses, and let C¢** be an external source, a
set of positive ground ezt-units. If T is an E-hyper tableau for C with branch
B, then T can be extended by application of the following Ext-Access-extension
rule (external access):

there is a clause C' € B,
B a positive ground ezt-unit D € C***, and
Ext-Access B if ¢ a substitution o such that
C7 D = ext-sup-left(c) E, and
B contains no variant of E.
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(1) ext(user location service,'Cologne’)=t «

(2) eat(neat_train_finder_service('Cologne','Hanover'), '15:05) =t «
(3) at('CeBIT",'Hanover')=t «

(4) next_train_to( Event, Time)=t «
at( Bvent, ToCity)=t,
ext(user location service, FromCity)=t,
ext(next _train_finder _service( FromClity, ToCity), Time) =t
Equality (sup-left) (3). (4)
(5) next train_to('CeBIT', Time)=t «
t=t,
ext(user location service, FromCity)=t,
ext(next_train_finder_service( FromCity, 'Hanover'), Time) =t
Equality (ref) (5)
(6) next train_to( 'CeBIT', Time)=t «
ext(user location service, FromCity)=t,
ext(next_train_finder_service( FromCity, 'Hanover'), Time) =t
Ext-Access (ext-sup-left) (6), (1)
(7) next_train_to('CeBIT', Time)=t «
ext(next train_finder service('Cologne', Hanover"), Time)=t

Ext-Access (ext-sup-left) (8), (2)

(8) next train_to( 'CeBIT','15:05") =t «

Figure 16.1: Example E-hyper tableaux derivation, dashed box contains
external source

Figure shows an example of the usage of the new rules. The clauses
(1) to (4) are the equational representations of clauses pertaining to the intro-
ductory question @3, with the dashed box containing the external source. The
departure time of the next train to the CeBIT fair is derived in four steps. First
a conventional sup-left application with the clauses (3) and (4) instantiates the
variable Event with ’CeBIT’ while leaving the trivial equational atom t ~ t in
clause (5). This literal is dropped in an application of ref, resulting in clause (6).
Clause (7) is then derived by accessing the external source to find the current
location of the user, in this case 'Cologne’. With this the request term in the
final ext-literal is ground, so another query to the external source retrieves the
time ’15:05’, thus resulting in clause (8).

We now prove the soundness of the extended calculus. Let us first clarify the
relationship between a set of clauses C and an external source C®** with respect to
E-hyper tableaux. As C¢ is a set of positive ground ezt-units, C¢** is satisfiable
and so are all its elements. Technically we could therefore regard C®** as any
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other input clauses, and an E-hyper tableaux derivation for C that accesses C**
could be seen as an E-hyper tableaux derivation for C U C%*. However, recall
that the initial E-hyper tableau of any derivation consists of a single branch
of all input clauses. As C® may be infinite, this leads to a problem in that
even refutational tableaux could contain infinite branches, which is difficult to
reconcile with the basic E-hyper tableaux calculus. We therefore keep C and
C° separate even on the formal level. An E-hyper tableaux derivation for a
clause set C with an external source C* initializes the tableau only with C, and
if a branch B is unsatisfiable, then this may be because C itself is internally
inconsistent (i.e. it is unsatisfiable without accessing C¢**), or because B U C***
is unsatisfiable. This can be written as B or C being unsatisfiable with respect
to C°®, although when it is clear from the context that C°** may be involved,
then we will merely call B or C unsatisfiable.

Theorem 16.1 (Soundness of E-Hyper Tableaux with External Sources). Let
C be a finite clause set and let C°*t be an external source. If the E-hyper tableauz
calculus extended by the Ext-Access-rule derives a refutation for C with respect
to C¢*, then C is unsatisfiable with respect to C*.

Proof. We first show that the new rules ext-sup-left and Ext-Access preserve
satisfiability. Let C, D = extsuplefe(o) F With C = A < ext(q,a’) ~ t,B, the
ext-unit D = ext(q,a) ~ t +, and the conclusion F = A + B. Assume the
premises C and D to be satisfiable with a model I. From a’c = a it follows
that (ext(q,a’) =~ t)o = D. As I = D this means that I is not a model for the
selected negative ezt-literal of C, i.e. I [~ —ext(q,a’) ~ t. Instead I must be a
model for some of the other literals of C', meaning I = A < B. Therefore it
also holds that I = (A < B)o, and hence I is also a model for the conclusion
E. As an immediate consequence it follows that the extension rule Ext-Access
also preserves satisfiability. The contrapositive of this is that if the conclusions
of the new rules are unsatisfiable, then so are the premises.

Now, let T be the closed tableau of the refutation of C with respect to
C°. From the contrapositive above and the soundness of the basic E-hyper
tableaux calculus we conclude that if a tableau T; of a derivation contains only
branches that are unsatisfiable , then so does the predecessor T;_;. The closed
T contains only unsatisfiable branches, and by induction on the length of the
refutation we conclude that the initial tableau T which consists of one branch
with the clauses from C is unsatisfiable with respect to C¢%t. O

It may be remarked that ext-sup-left is essentially a special case of sup-
left, restricted to work only with ext-literals that meet the groundness condi-
tions regarding the request and response terms. This is easy to show: Let
C, D = ext-sup-lefi(s) I as above, and let us disregard the sources of these clauses,
for which the purely clause-based inference rules specify no requirements any-
way. Then it is also possible to carry out C, D =gpef(s) £’ with E' = (A
t ~ t, B)o, because all conditions of sup-left are met:

1. ext(q,a’) is not a variable,
2. the substitution ¢ is also a most general unifier of ext(q,a) and ext(q, a’),
3. ext(q,a)o A to as t is the smallest term in the term ordering,

4. ext(q,a’)o £ to as t is the smallest term in the term ordering.
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The equation t ~ t in B’ is trivial and can be dropped by reflexivity or simplifi-
cation, ultimately resulting in the same clause F as the conclusion of ext-sup-left
above. Thus, if the ezt-units from the external source were part of the normal
input, then the functionality of the new rules would be subsumed by the basic
E-hyper tableaux calculus.

On the converse this means that the external source can basically be regarded
as a special subset of the total input clauses, a subset that can only participate as
premises in special cases of sup-left, which is an indicator as to why this solution
is not complete. We will first extend the original hyper tableaux calculus in a
similar manner and then discuss the issue of incompleteness for both extensions.

16.1.2 External Sources in Hyper Tableaux

In order to deal with external sources in the hyper tableaux calculus without
equality we modify its only inference rule, the hyper extension step. Since
this rule can be seen, loosely speaking, as a combination of multiple sup-left
and ref applications followed by split (see Section , the modified hyper
extension can be regarded in a similar manner as now also incorporating the
new rules ext-sup-left and Ext-Access. Basically the new hyper extension step
with external access provides the option for the atoms of negative ext-literals
to unify not only with branch literals, but also with ezt-units from an external
source, provided the request terms are ground. As hyper extension computes one
simultaneous most general substitution for all negative literals of the extending
clause, originally non-ground request terms may become ground during this
computation. This adds some formal complication to the definition of this
inference rule, even though its operation is likely quite obvious.

The modified hyper extension works mostly like the original, except that
ert-atoms from body literals in the extending clause now have the option to
unify with units from the external source, provided the request terms in these
atoms are ground before their respective unification. This may be because they
were already ground in the first place in the extending clause, or because their
variables got instantiated during the substitution computation. A variable may
have become instantiated either because it also occurs in some other literal of
the extending clause, where it got instantiated by unification with a branch
literal, or because it also occurs in the response term of some other ext-literal
which instantiated them by accessing the external source with a ground request
term.

Let C be a finite clause set and let C*** be an external source of ground
ert-units. Hyper tableaux for C with respect to C*** are inductively defined as
follows:

Initialization step: A one node literal tree is a hyper tableau for C with re-
spect to C¢. Its single branch is labeled as open.

Hyper extension step with external access: This inference requires the fol-
lowing conditions:

1. B is an open branch with the leaf node N in the hyper tableau T.

2. C = A<+ Bis a clause from C (referred to as the extending clause)
with A ={A1,...,4,} (m>0) and B={B1,...,B,}(n>0).
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3. o is a most general substitution such that [B] UC® =V(By A... A
B,,)o; in particular, with every B; € B associate the specific literal
or unit clause L; that forms this model, i.e. L; | B;o and L; €
[B] ucCe.

4. Let V be the set of branch-instantiated variables, which is defined as:

(a) = € V if x occurs in some B; € B with L; € [B] such that there
is a most general substitution v with L; = B;y and 7y is ground
and there is a possibly empty substitution ¢ such that v§d = o (x
is directly branch-instantiated).

(b) If there is a B; = ext(q;,a;) € B with L; € C*** and for every x
occurring in g; it holds that = € V', then for every y occurring in
a; it holds that y € V (y is indirectly branch-instantiated).

Then for every B; = ext(q;,a;) € B with L; € C*' and for every
variable x occurring in ¢; it must hold that x € V.

5. m is a purifying substitution for Co.

If all the above conditions hold, then the literal tree T’ is a hyper tableau
for C with respect to C®**, where T’ is obtained from T by attaching
m + n child nodes My,...,M,,,N1,...,N, to B with respective labels
Ajom,..., Apon, Bior,...,Byor and labeling every new branch (B -
My),...,(B - M,,) with positive leaf as open and every new branch (B -
Ny),...,(B - N,) with negative leaf as closed.

As an example, recall this introductory clause set for question Q3:

Ce®t: ext(user_location_service, 'Cologne’) <

Cg®: ext(next_train_finder_service(’Cologne’, "Hanover’), '15:05") <

Cy: at(’CeBIT’, "Hanover’) <

Cy: next_train_to( Event, Time) <
at( Event, ToCity),
ext(user_location_service, FromCity),
ext(next_train_finder_service( From City, ToClity), Time)

The derivation is shown in Figure The unit Cy has been added as a literal
to the branch right away. Then C5 is selected as an extending clause. The atom
of its first negative literal unifies with the branch literal at(’CeBIT’, ’Hanover’).
This instantiates the variable Fvent with ’CeBIT’ as well as ToCity with
"Hanover’.

The second negative literal of Cy, —ext(user_location_service, FromCity), al-
ready has a ground request term, and this is used to retrieve ‘Cologne’ from the
external source, instantiating the variable FromCity.

Thus —ext(next_train_finder_service( FromCity, ToCity), Time), the third neg-
ative literal of Cy, can now be regarded as having a ground request term. This
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I

at('CeBIT','Hanover')

o = { Event < 'CeBIT",
ToCity < "Hanover’,

next__train__to('CeBIT','15:05")
finished

FromCity < "Cologne’,
Time < '15:05" }
m={}
—ext(user_location__service,'Cologne') —at('CeBIT',' Hanover')
closed closed

—ext(next_train_finder _service('Cologne’,"Hanover'),'15:05")
closed

Figure 16.2: Example hyper tableaux derivation

enables another request to the external source which instantiates the variable
Time with ’15:05°. All negative literals of Cy have now been refuted using the
common unifier . No purification is required, so 7 remains empty, and every
o-substituted literal is added as a new leaf, with the negative leaves closing
their branches immediately. Only the branch for next_train_to(’CeBIT", ’15:05")
remains open. In the presence of a query clause this branch could likely be used
for an answer.

Note that the modified hyper extension with external access does not require
negative ext-literals to be refuted by the external source. Rather, if the branch
contains positive ext-literals, then it is possible for them to refute literals of the
extending clause just as non-ezt-literals do. Similar to the extension of E-hyper
tableaux the modified hyper extension is therefore subsumed by the original
when the clauses from the external source are treated as ordinary input clauses.

We now prove the soundness of hyper tableaux with external sources.

Theorem 16.2 (Soundness of Hyper Tableaux with External Sources). Let C
be a finite clause set and let C®™ be an external source. If the modified hyper
tableaux calculus extended by the hyper extension step with external access de-
rives a refutation for C with respect to C¢*t, then C is unsatisfiable with respect
to Ce%t.

Proof. We first show that the hyper extension step with external access preserves
satisfiability. Let B be an open branch in a hyper tableau T for a finite clause set
C and an external source C** of positive ground ezt-units. Let C = A < B with
A={A1,...,An}(m >0) and B = {By,...,B,} (n > 0) be a clause from C
that serves as an extending clause in a hyper extension step with external access,
using a most general unifier o and a purifying substitution 7. Assume C to be
satisfiable with a model I. [B] U C®*® consists only of positive unit clauses and
is therefore satisfiable. Since [B] UC®! |=V(B1 A ... A By)o, on the converse it
must hold that =Bjo V... B, is unsatisfiable. Thus I }£ -B;V...—B,, and
instead it must hold that I = A; for some A; € A for I to satisfy C. Then it
also holds that I = A;om, and the new branch B - M, resulting from extending
B by the node M; labeled with A;o is satisfiable.
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The contrapositive of the above is that if a hyper extension step with ex-
ternal access extends a branch B with no satisfiable branches, then B and the
extending clause, the premises of this extension, are unsatisfiable with respect
to C°* too. Let therefore T be the closed tableau of the refutation of C with
respect to C¢t., From the contrapositive above we conclude that if a tableau
T, of a derivation contains only branches that are unsatisfiable , then so does
the predecessor T;_1. The closed T contains only unsatisfiable branches. By
induction on the length of the refutation we conclude that the premises of the
first hyper extension step, i.e. the first extending clause and the empty initial
branch, are unsatisfiable with respect to C¢**. Hence C is unsatisfiable, too. [J

As with the extended E-hyper tableaux this solution is not complete, an
issue that will be discussed in the next section.

16.1.3 Incompleteness

Neither of the calculus extensions is complete, and in general they cannot be
used for model generation, as they may end up with finite branches that are
not closed, despite the input clauses being unsatisfiable with respect to the
external source. We identify the reasons for this, arguing that completeness is
unattainable for external sources in general, regardless of the calculus. We also
discuss some workarounds and the trade-offs they involve.

There are two interrelated, fundamental obstacles to completeness:

unrequestable responses: External sources like web services typically only
respond to specific requests, which the calculus extensions reflect by the
need to ground request terms before accessing the external source. This
means that only those responses can enter the reasoning for which the
exact request can be formed beforehand. All others remain external, even
though they might contribute to a proof.

variable request terms: It is not always known before the reasoning what
requests should be sent to external sources, and for efficiency reasons we
want to avoid sending irrelevant requests, for example by exhaustively
forming requests beforehand, outside the reasoner. Thus in order to use
external sources in a flexible way, it must be possible to form requests
dynamically during the reasoning process, and this requires variables in
the clauses which can then be instantiated. However, this results in a con-
tradictory situation: Logically variables are more “powerful” than ground
terms - they can represent whole sets of terms, and they can subsume
terms. Yet when dealing with external sources a ground term is more
useful than a variable, because a ground term may be used as a request,
while a variable may not.

Neither of these can be circumvented due to the reality of web services. The
technical limitations to their accessibility prevent approaches for theory inte-
gration [Fur94] which require sources with faster and richer interfacing, making
them more suitable for local deductive databases. In comparison web services
only offer a keyhole access to their data, and any formal integration which ig-
nores this restriction is destined to be inapplicable in practice.
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We will use a series of examples to illustrate the problems involving com-
pletenessﬂ The first shows in a most compact form how the technical limitations
can prevent a refutation:

Example 16.1.

Cet: ext(q,a) +

Cy: « ext(x,y)

As before, the dashed line separates the external source above from the ordi-
nary input clauses below. ¢ and a are ground terms as is customary for external
sources. Obviously, without this separation the clauses C; and C¢* together
would be unsatisfiable, but since C7 has no ground request term, Cf** is inac-

cessible. Contrast this with:

Example 16.2.

Ce: ext(q,a) +

Cy: + ext(q,y)

Here C5 can access the external source and a refutation can be derived, which
makes the first failure all the more aggravating, given that C5 is an instance of
the more general C;. Worse, even the following example cannot be refuted:

Example 16.3.

Ce®t: ext(q,a) <+

Cy: «+ ext(z,y)

Cs: p(y) < ext(q,y)

Here only C5 can access the external source, using it to derive p(a), while the
refutation with C7 still fails due to its variable request term. This example
shows that we cannot simply disregard some web service data as unreachable
and thereby irrelevant, because clearly a is retrieved, just not wherever it is
needed.

3These examples are numbered individually due to their frequent cross-referencing, unlike
previous examples which were relevant mostly for their immediate context.
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Restricting Completeness

The authors of the aforementioned SPASS-XDB acknowledge the problem of
completeness [SSWT09, ISSTT10]. In their system the responses from external
sources are asserted as unit axioms, effectively treating them as ordinary in-
put clauses. Under these conditions the authors offer a notion of completeness
with respect to the delivered responses, in that their system performs the same
deductions as if the delivered responses were ordinary input axioms right from
the start [SSWT09]. We will refer to this kind of completeness as response-
completeness, and we can achieve it in hyper tableaux by a minor addition to
the external access rules in both calculus extensions: Whenever an ext-unit is
accessed in the external source, then it is also added as a positive literal (unit
clause) to all branches in the hyper tableau (E-hyper tableau). This can be done
either by appending it to all open branches, or by prepending it to the entire
tableau, essentially having it form a new root node. This way the ext-unit be-
comes indistinguishable from an input clause, and as both hyper tableaux calculi
are complete for input clauses, their response-completeness trivially follows.

However, there are drawbacks to this. By permitting an inference in one
branch to affect all branches, the hyper tableaux calculi no longer allow pro-
cessing one branch at a time. Consider the following exampleﬂ

Example 16.4.

Cet: ext(q, a) +

Cy: + ext(z,y),p(x)

Cs: p(x),p(q) +

Here C5 is used to split the tableau. Let us assume the first branch B; to
use p(x) as the split literal; this allows no ground instantiation of the request
term in Cy, and thus C{* cannot be used to close this branch immediately.
The other split branch By uses p(gq), by which the request term in Cy can be
instantiated, eventually resulting in a closing of that branch. By making C{*
available to all branches as ordinary input, the By can now be closed as well. In
an implementation B; would have to be postponed once its computation reaches
a point where it is not closed, yet its derivation cannot continue. It could only
be revisited once other branches have added potentially useful ext-units to all
branches. Clearly this is undesirable, as storing unfinished branches for later
computation can use large amounts of memory.

4Most provers would likely reduce clause C5 to the unit p(x) <, but we disregard such op-
timizations here to keep the example both simple and functional regarding the demonstration
of the problem. More elaborate examples could be constructed to exhibit the same problem
under optimizitations.
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Also, there is of course no guarantee that a later branch will add a useful
ert-unit, as shown in this modified example:

Example 16.5.

Ce: ext(q,a) +

04: — ext(m, y)ap(l‘)

Co: p(z),p(y) <

Here both split branches end up in the same situation with a non-ground re-
quest term. As the tableau has then reached a fixed-point, one might consider
both branches to represent models under the notion of response-completeness,
regarding C{** as irrelevant due to being unreachable. However, the computa-
tion of a tableau is not guaranteed to reach a fixed-point where no branches
can be extended, because it is possible to have branches that can be extended
to infinity. This means that branches with variable requests may be postponed
indefinitely, which limits the usefulness of response-completeness for model gen-
eration purposes. Also, response-completeness does not resolve the discrepancy
between the first two Examples and as the former cannot be refuted

while the latter can, despite the latter being an instance of the former.

Forming Requests by Domain Enumeration

An alternative method to lessen the problem of unrequestable responses is to
apply a modified range-restriction transformation to the input clause set C. This
is done by the following steps:

1. Add the domain clauses to enumerate the Herbrand-domain of C using the
special dom-predicate (see Section [7.4.2)).

2. For every clause C' € C with C = A < B, replace C' with C"" = A «+
B, dom(x1), ..., dom(x,) (n > 0), where for each z; (0 < i < n) one of the
following holds:

o z; € vars(A) and z; & vars(B), or

e x; € vars(q) for some ext(q,a) € B.
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We apply this transformation to the clauses from Example [I6.3] resulting
in this new example:

Example 16.6.

Cet: ext(q, a) +

Cim: «+ ext(x,y), dom(x)

C3: ply) < ext(q, y)
ciom: dom(q).

With O™ it is now possible to ground-instantiate the request-term x in CJ"
to g, thereby allowing this clause to access Cf** and to derive a refutation.
This transformation can also help in cases like Example [16.4] where the domain
enumeration makes symbols and terms from all branches available in every single
branch. This limits the need to postpone branches, because requests can be

formed from symbols normally occurring only in later branches.

There are two disadvantages to this approach. First, the Herbrand universe
may be very large, and when there are only few requests that can actually result
in responses, then a lot of time may be wasted processing futile requests from
the exhaustive domain enumeration. This is undesirable given the latency of
web service transactions, and it runs against our intention to only fill specific
gaps in the knowledge rather than guessing requests.

Second, the domain enumeration is restricted to symbols from the input
clauses, as the symbols from the external source are not known, and even if they
were, there might be an infinite number of them. This issue can be alleviated to
some degree by adding domain clauses for symbols that are returned in responses
from the external sources. This allows using symbols from the external source
to form new requests. However, the request terms and the response terms in an
external source may draw their symbols from separate sets, and it is not certain
that access to response symbols will eventually allow to form all valid requests.
Example [16.1] thus still cannot be refuted.

Problems of Redundancy

Two problems deserve further mentioning, as they can prevent successful re-
trieval from external sources even though all required clauses and terms are in
place. Both are caused by optimizations which serve to curtail the number of
clauses by detecting and eliminating those which have become redundant. The
first can occur due to rewriting, because the ezrt-units in the external source
cannot serve as targets for such operations like the unit-sup-right inference rule.
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The following example illustrates this problem:

Example 16.7.

Cl: <~ 6()3t(.%'7 y)7p($)

Ca: p(f(q))
Cs: f(z) ~z

With Cj it is possible to ground the request variable = in Cy to the term f(q),
triggering a successful access to Cf* and a subsequent refutation. However,
there is also this alternative derivation: First one may choose to apply Cs to
Cy in a unit-sup-right inference, deriving the new unit Cy = p(g). This unit
is smaller than its parent Cs and makes it redundant, so Cs is removed. This
means that now the request variable x in C; can no longer be instantiated
to f(q), only to ¢ by C4. Since ¢ is not an acceptable request term in the
external source, no access and no refutation are possible. If C'5 could be used
to similarly rewrite Cf® to ext(q,a), then the problem would be solved, but
the limited access to external sources prevents this. Thus we see that if a web
service only accepts a more complex input even though we know of an equivalent
less complex term, then we still have to provide the complex input to obtain a
response. There does not appear to be a good solution to this. The example
shows that forbidding destructive rewriting of ext-literals does not help, as it
was the rewriting of an ordinary literal which caused the problem. Preserving
the redundant Cs after the derivation of C; would help, but this calls our notion
of redundancy into question. A modified version of redundancy would have to
require that beyond the usual criteria the terms of a redundant clause must not
be able to take part in successful requests to external sources, a condition that
is practically impossible to test. Redundancy elimination is such a powerful
tool in ATP that any such restriction of redundancy would severely hamper
the performance of provers. The modified range-restriction from the previous
section can only provide a solution if rewriting of domain clauses is forbidden,
because otherwise an equation like C's can simplify even the domain enumerating
units, preventing the required complex request term from ever being derived.

An unpleasant aspect of this problem is the way the sequence of inference
applications affects the outcome, as we are clearly losing proof confluence here.
This lessens the usefulness of the notion of response-completeness, since even
a fair strategy may obtain more or less responses from the external source,
depending on the order of the inferences applied.

On a more positive note this situation may not be very common in actual
QA usage, as the input accepted by web services is unlikely to have a form that
could be simplified. Synonyms come to mind as a potential counter example,
but successful web services should be sufficiently robust to provide the same
response to synonymous requests.
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The other problem is caused by subsumption in its various forms. A non-
ground term may subsume a ground term and thereby prevent the ground term
from serving as a request to the external source. Consider this example:

Example 16.8.

Cet: ext(q, a)
CI: « emt(%y),p(x)
Ca: plq)

Cs: p(x)

Here Cs can instantiate the request variable z in C7, which in turn triggers a
successful request to C¢* and a subsequent refutation. If on the other hand
Cj is first used to subsume Cy, then we lose the ability to access C£**, and no
refutation is possible. Again we lose proof confluence, and again forbidding the
offending operation only for ext-literals is no remedy, as it is an ordinary literal
being subsumed. Instead subsumption would have to be forbidden entirely, a
drastic measure with a severe impact on prover performance. Our modified
range-restriction can solve this problem, as the ground request term ¢ can then
still be obtained from the domain clauses, even after the deletion of Cy. However,
the negative effects of this clause transformation must be kept in mind.

Conclusions regarding Incompleteness

Problems such as these described are probably unavoidable consequences of
the technical limitations of web services and the need to allow the dynamic
generation of requests during the reasoning via variables. These reasons are
independent of the calculus and the FOL representation of external sources. As
such the problems we identified can be found elsewhere. For instance, while
the SPASS-XDB system addresses some issues contributing to incompleteness
[SST™10], we have found its completeness and proof confluence can still be
negated by rewriting and subsumption, as in the Examples and Here
is an example demonstrating the rewriting problem on SPASS-XDB, using the
compatible TPTP syntax:

Fi: fof (f1,axiom, (m=’Moscow’)).

Fy: fof (£f2,conjecture,?[Lat,Long,Name,Country] :
latlong(’Moscow’,Lat,Long,Name,Country)).

The predicate latlong/5 is used to access an external source for data about
cities. Its first argument must be instantiated by a city name, and after a
successful request the responses instantiate the other variables. Without F}
SPASS-XDB finds a proof, but with F} the occurrence of ’Moscow’ in Fy is
rewritten to m; this prevents a successful retrieval, and the system gives upE|

5Note that the order of the formulas Fy and F» is important here to demonstrate the
problem, as it ensures that m counts as smaller than ’Moscow’ in the symbol precedence.
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An analogous example of the subsumption problem is:

Fy: fof(f1,conjecture,?[City,Lat,Long,Name,Country] :
(city(City) & latlong(City,Lat,Long,Name,Country))).

Fy: fof (£2,axiom, (city(’Moscow’))).
F3: fof (£3,axiom, (city(X))).

As Fj3 subsumes Fy, the proof becomes impossible, and the system gives up.

While it may not be possible to prevent such problems in the calculus, in
practice such situations can be avoided by careful construction of the clauses,
in particular those making use of external sources, and by choosing a suitable
encoding of the knowledge. For example, the axiom F3 above essentially states
that everything is a city - such all-subsuming axioms do not make much sense
in a real knowledge base. Likewise, rewriting request terms will in practice only
be done when the result is semantically equivalent. Replacing ’Moscow’ with
the abstract identifier m as above is hardly useful in the real world. Replacing
it with a synonym or translation (like the Russian ’Moskva’) can make sense,
for example when normalizing all synonyms to one canonical form, but then the
external source can likely handle the replacement as well (as is the case with
’Moskva’).

The modified range-restriction can make systems with external sources “more
complete”, as can the treatment of responses as input clauses. Both meth-
ods may have a negative impact on the performance, though. Finally, we
see no solution to problems such as Example although clauses like its
Cy = < ext(x,y) make little sense in practice. Completeness may be impossi-
ble when it comes to the integration of external sources, but we believe this is
not a severe problem in an actual application.

16.2 Implementation

Our implementation consists of two parts: the modifications to E-KRHyper
and a separate module that provides an interface between the prover and the
web services. The interface module was developed by Markus Bender according
to my specifications. It is responsible for the actual web service access, and
it enables an asynchronous delivery of the responses to E-KRHyper, allowing
the prover to reason concurrently while the interface carries out the slow web
service communication, collecting the responses from the external sources in a
cache. The interface module accepts request terms from E-KRHyper over a
socket. Each such request is immediately compared against the response cache
and then answered synchronouslyﬁ with one of the following three reply types:

wait: There is no response to this request in the cache yet. This may be due to
one of two possible reasons, the first of which is that this may be the first
time E-KRHyper has sent this request to the interface. In that case, after
sending the wait reply the interface transforms the respective request sub-
terms into a compatible query, taking into account capitalization, number

6Note that the communication between prover and interface is synchronous, but the deliv-
ery of a web service response is asynchronous to the initial request.
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format and so on. Then the interface determines the web service to be
addressed and forwards the compatible request over the web. The other
possible reason for sending the wait reply is that E-KRHyper may already
have sent this request to the interface module before, but the interface has
not yet received a response from the web service. Either way the wait re-
ply tells the prover that it can continue its reasoning with other inferences
for now, but also that it should check for a response later on, as the web
service communication is still in progress.

failed: The interface module has already concluded the web service communi-
cation regarding this particular request, but it received a failed response.
This may be because the web service is currently offline, or because it does
not have any information to answer that request. From a FOL point of
view this is treated as the external source not containing any instance of
ext(q, a) for the request ¢ and the possibly non-ground response term a.

< response>: The interface module has already concluded the web service
communication regarding this particular request. It has received a proper
response and it has converted this into a response term compatible with
E-KRHyper. This response term has been stored in the cache of the in-
terface module, and it is now sent to E-KRHyper as a reply.

E-KRHyper makes web service requests during the normal inferencing within
its lower level algorithm, highlighted in the pseudo-code Algorithm To
minimize access times the prover maintains its own additional cache of requests
and responses. When making a request, E-KRHyper first checks whether there
is already a response for this request in its own cache or the request has been
marked as failed, and only if neither holds does the prover send the request to the
interface module. The prover also keeps track of which requests are still waiting
for a response, indicated by the pending set. The default setting of E-KRHyper
is to keep looping in its lower level algorithm if there are no more inference
possibilities in the current branch, except for requests still waiting for responses.
As an alternative it is possible to have the prover postpone such branches.
In that case E-KRHyper will continue with a different branch. A postponed
branch is revisited when E-KRHyper has to select a new branch because the
current branch has been closed or exhausted, and either at least one of the
pending queries in the postponed branch has been answered, thereby opening
new inference possibilities, or all pending queries there have been marked as
failed, meaning the branch is truly exhausted.

The interface module is unaware of when E-KRHyper finishes a derivation
and when the prover starts a new proof attempt. As we assume external data
to be atemporal, the interface module preserves its cache between derivations
unless it is restarted, and E-KRHyper can use cached responses that were re-
quested during earlier proof attempts.
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Algorithm 16.1 The lower level algorithm in E-KRHyper with web service
access highlighted

function EVALUATE_BRANCH_AT_NODE(node)
if node = rootNode then
clauses := input reasoning problem;
clauses := reduce clauses by clauses;
conclusions := all inferences with clauses
and cached web service responses;
pending := (pending \ (newly answered or failed requests))
U (new requests while computing conclusions);
overweight := inference results above weightLimit;
conclusions := conclusions \ overweight
else
conclusions := {split literal labeling node}
end if
conclusions := reduce conclusions by clauses;
while (conclusions U pending # {}) A (contradiction not found) do
clauses := reduce clauses by conclusions;
disjunctions := disjunctions U (disjunctions from conclusions);
newClauses := conclusions \ disjunctions;
conclusions := all inferences with newClauses
and cached web service responses,
using other premises from clauses;
pending := (pending \ (newly answered or failed requests))
U (new requests while computing conclusions);
overweight := overweight U (inference results above weightLimit);
conclusions := conclusions \ overweight;
clauses := clauses U newClauses;
end while
if contradiction found then
return closed
else
return ezhausted
end if
end function

The web services currently supported are:

ECB Currency Exchange Rates: Currency exchange rates for major cur-
rencies can be retrieved from the European Central Bankﬂ where they
are updated daily.

Yahoo! GeoPlanet: The Yahoo! GeoPlanef] web service offers data related
to geographical place names. Given the name of a city, a country, a land-
mark or similar, our interface retrieves latitude, longitude, and a short
string indicating whether the name refers to a city, a country and so on.
It is also possible to retrieve information about the geographical hierar-
chies, for example to find out in which country a given city is located.

"http://www.ecb.int/stats/eurofxref/eurofxref-daily.xml
8http://developer.yahoo.com/geo/geoplanet

193


http://www.ecb.int/stats/eurofxref/eurofxref-daily.xml
http://developer.yahoo.com/geo/geoplanet

Multiple responses are possible, since the same name can be used for dif-
ferent geographical places.

LogAnswer Ontology Browser: An experimental online database developed
by the IICS to expand upon the MultiNet knowledge, the LogAnswer On-
tology Browseﬂ stores and links data from other ontologies. The initial
source was OpenCyc, and since then the browser has been expanded to in-
clude data from the German Wikipedia and the English DBpedia. For the
time being this data is mostly confined to concepts expressed by nouns,
and the hierarchy between these is represented mostly by same_as and sub-
class_of relations. By linking English and German nouns it will become
possible for the German LogAnswer to make use of English language con-
cept hierarchies. This integration of the Ontology Browser is still future
work, though. However, E-KRHyper and the web service interface module
support access to this online database, and the upcoming Section [16.3] will
describe a special usage of these ontologies for the purpose of relaxation.

System Q€A TPTP: This intermediate web servicﬂ provides access to the
external sources used by the SPASS-XDB system. By connecting to
this web service E-KRHyper can gain access to many of these sources,
too. However, this is highly experimental and unreliable, as System
Q&A TPTP requires requests in the form of formulas in TPTP syntax,
whereas E-KRHyper accesses web services over the request terms within
ext-literals. Therefore reasoning problems for E-KRHyper would have to
encode full TPTP formulas as terms within ext-literals, a cumbersome un-
dertaking that is prone to bugs due to it blurring the line between predicate
and function symbols. In the long run it would make more sense to access
the external sources directly, in particular since the current set-up is in-
efficient in that it puts two interfaces between the prover and the actual
web services.

Overall it can be said that the integration of web services in E-KRHyper is still
experimental. The range of accessible services is limited, and for an actual usage
within LogAnswer it would be necessary to expand the background knowledge
base by rules which make use of the external data and put it into the context
of the MultiNet ontology. This is future work for a knowledge engineer, and
it lies outside the scope of this AR-centric dissertation. However, the current
implementation is a proof of concept showing that the approach is feasible, and
it has a sound formal basis in the calculus extensions which take into account
the inherent technical limitations of external sources.

9http://wuw.loganswer.de/hop/loganswer-cyc
Onttp://www.cs.miami.edu/~tptp/cgi-bin/SystemQATPTP

194


http://www.loganswer.de/hop/loganswer-cyc
http://www.cs.miami.edu/~tptp/cgi-bin/SystemQATPTP

16.3 Abductive Relaxation

The relaxation method in LogAnswer relies on a dropping of literals from the
query clause, see Section Naturally, this is a relatively crude method.
The heuristics based on reasoning and semantics try to ensure that the literal
selection improves the provability of the query without distorting its meaning.
Nevertheless the approach also relies on the hope that the FOL representation
is sufficiently fine-grained so that each single literal is not overly important, and
its removal has little semantic impact. This can be risky. For example, asking
LogAnswer the question “What is the weight of the ‘Maus’ (‘Mouse’) tank?’ﬁ
will result in the gram weights of various species of mice, rather than the 188
tons of the German tank prototype from World War II. Obviously “tank” is a
critical piece of information here that should not have been skipped, though at
least LogAnswer states low confidence values for its answers, with none higher
than 14%.

Rather than completely dropping literals, it would be preferable to replace
them with semantically related, more general literals. The LogAnswer Ontol-
ogy Browser mentioned in the previous section provides access to a wealth of
hierarchical concept information. As mentioned, much of this is expressed as
subclass_of relationships between concept identifiers, where subclass_of(c, d) ex-
presses that any entity of concept ¢ also belongs to concept d, for example
subclass_of(tank, vehicle). In a simplistic FOL representation where predicates
are used as concepts, such a subclass relationship could be expressed as the
formula Vz(c(z) — d(x)). When concepts are represented as constant terms,
then a formula like Va(is_a(x, ¢) — is_a(x,d)) serves the same purpose. Given
an entity of concept c¢ it is then trivial to deduce that it also belongs to d. The
opposite direction is abduction: Given an entity of concept d, one can abduce
that it may also belong to ¢. Abduction is not sound, its result is a hypothesis,
an assumption. However, we may see now how it can help in relaxing a query.
Consider the question from above together with the candidate passage C":

Q: “What is the weight of the ‘Maus’ (‘Mouse’) tank?”
C: “At 188 tons the ‘Maus’ is the heaviest armoured fighting vehicle ever built.”

As tanks are a subclass of vehicles, given C' we can use abduction to form the
hypothesis that the vehicle ‘Maus’ is a tank and then answer the question.

We will now describe a clause set transformation which aims at using an
external source of axioms expressing a concept hierarchy for the purpose of
query relaxation guided by abduction. This transformation is implemented in E-
KRHyper, where it works in combination with the web service interface module
and the LogAnswer Ontology Browser. The specifics of this transformation are
influenced by the following considerations. In order to reuse as much input
between proof attempts as possible, we minimize the number of new clauses.
The abductive relaxation affects primarily the query clause, whereas clauses
from the knowledge base remain untouched. In the example above one could
imagine an approach where the FOL representation of the candidate passage
C is replaced by a more specific one, basically working with the passage “At
188 tons the ‘Maus’ is the heaviest armoured fighting tank ever built.” This
might be closer to actual abduction, but as it is impractical for our purposes,

11 “Wieviel wiegt der Panzer ‘Maus’?”
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instead we relax the query by using a more general term, i.e. “What is the
weight of the ‘Maus’ (‘Mouse’) vehicle?” The result is effectively the same,
and the query term replacement can also be seen as abductive because given an
answer to the relaxed query, an answer to the original query could be formed
by abduction. In other words, we hypothesize that an answer to the relaxed
query is relevant for the original as well. Another consideration is that due to
the inherent uncertainty of abduction, the user should receive not only answers,
but also hints as to what abductive assumptions LogAnswer made, so that the
user can judge whether the answer is applicable.

We first describe the basic transformation. A few possible modifications are
discussed afterwards. Let C be a set of clauses with a negative query clause @ =
— Q1,...,Q, with n > 0. Let C*** be an external source containing positive
ground ezt-units of the form ex#(subclass_of(c), d) <, which is the external source
conforming representation of the subclass relationship subclass_of(c, d) between
two concept identifiers ¢ and d. We obtain the abductive relaxation supporting
clause set C*" from C by adding two clauses as follows.

First, add Q" with

Q" relaxed_answer(rlz(cy, x1), ..., rlx(Cm, Tm)) <
3_; sy Q;u
ext(subclass_of(c1), x1), . .., ext(subclass_of(cm), Tm)
where ¢1,...,¢y, (m > 0) are the occurrences of constants in Q1,...,Q,, and

where @, ..., @), are obtained from @1, ..., Q, by replacing each ¢; (0 < i < m)
with a fresh variable x;. relaxed_answer is a new predicate symbol of arity m,
and rlz is a new binary function symbol.

Secondly, add a unit clause C™ expressing the trivial reflexive subclass re-
lationship of a concept with itself:

C™s: ext(subclass_of(x), x) +

As C C C%, any refutational proof and answer derivable for C can also be
derived for C*". The intention behind Q%" is as follows. By moving the concept
identifiers cq, ..., ¢, out of the original query literals @1, ..., Q, into the new
ext-literals and replacing their original occurrences with the response variables,
it becomes possible to request more general superclass concepts from the exter-
nal source and to insert these into the query. As only constants are treated this
way, all the new ezt-literals have ground request terms, making them valid for
accessing the external source. The trivial reflexive subclass unit ensures that
concepts do not have to be relaxed if they can already be proven without external
access. Finally, once all negative literals of Q" have been refuted with an overall
substitution o, the derived unit relazed-answer(rlz(cy,x1), . .., rla(cm, Tm))o
provides information about which concepts were relaxed by which more general
concepts. As Q" cannot be used to close a branch, any relaxed_answer units
derived from this clause function as a fallback in a QA situation: If E-KRHyper
does not find a refutational proof for () within the allotted time, it can return
the relazed_answer units found in the branch instead, leaving it to the overar-
ching LogAnswer system or the user to decide whether the generalizations are
acceptable.
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An example will illustrate the principle:

Ce®t: ext(subclass_of(tank), vehicle) +

Q: <+ is-a(’Maus’, tank), has_weight(’Maus’, x)
Cy: is_a(’Maus’, vehicle) <
Cy: has_weight(’Maus’, ’188t’) <

Q" relaxzed_answer(rle(’"Maus’, 1), rlz(tank, o), rie(’"Maus’, x3)) +
is_a(xy,T2),
has_weight(zs, x),
ext(subclass_of(’'Maus’), x1),
ext(subclass_of(tank), xs),
ext(subclass_of( ’Maus’), x3)

C™: ext(subclass_of(x), ) +

The original query @, specifically its first literal, cannot be proven in this set
of clauses. However, the relaxation query Q%" can: Its first body literal atom
is-a(x1,x2) unifies with Cy, instantiating x; with 'Maus’ and xo with vehi-
cle. The second body literal atom has_weight(x3, x) unifies with Cy, instantiat-
ing x3 with "Maus’ and = with ’188t’. Then there are the ext-literals to deal
with. While the external source in the example contains no subclass informa-
tion for ’Maus’, the first and the third ext-atom, both instantiated by the above
substitutions to ext(subclass_of(’Maus’), "Maus’), unify with the trivial subclass
unit C'™. The second ezt-atom on the other hand has been instantiated to
ext(subclass_of(tank), vehicle), which does not unify with C™. It is a valid re-
quest to the external source, though, and the response term wvehicle from C§*
matches the already instantiated response term in ", thus proving the final
body literal. We derive a positive literal or unit clause Cl:

Cs : relazed_answer(rlz(’"Maus’, "Maus’),
rlz(tank, vehicle),
riz("Maus’, "Maus’)) <

This indicates that a proof is possible if we accept generalizing tank to vehicle.

The other two “generalizations” are trivial, and we ignore them. In a QA system

like LogAnswer this information could be used to answer the question “What is

the weight of the ‘Maus’ tank?” with “188t, if by ’tank’ you mean vehicle”’.
Several modifications are thinkable:

e Instead of allowing the relaxation of all constants in ), it may make sense
to leave some of these terms in their literals instead of replacing them
with response variables from new ext-literals. This may be the case for
constants representing words which the shallow retrieval phase already
found to match between question and candidate passage, or if some word
is considered to be so critical that it should not be relaxed.
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e When using a FOCUS variable as in LogAnswer it may be helpful to use
relaxed_answer as a predicate with the arity m+1 instead of just m, and to
include FOCUS as an additional subterm. This makes it easier to extract
the specific answer from a relazed_answer unit.

e In principle there is no need to restrict the relaxations to generaliza-
tions determined by subclass_of relationships. The LogAnswer Ontology
Browser also stores many concept equivalences via the same_as relation,
and these could similarly relax a question by broadening its scope. Even
more specific concepts accessible via a superclass_of relation could help
this way; as long as the transformation allows the query to match more
terms, it can be regarded as a form of relaxation.

e If saving time is of paramount importance and any proof is good enough,
then a negative unit —relaxed_answer(zy,..., ) added to C* can en-
sure that even relaxed_answer units can close the current branch, thereby
terminating any further computation there.

e Our abductive relaxation can be combined with the currently implemented
skipping relaxation, as Q"®" can obviously also be formed for a convention-
ally relaxed query clause Q' obtained by dropping a literal from Q.

Query relaxation by abduction has been researched before by Terry Gaaster-
land et al. [GGM92], but their approach differs in that it assumes predicates to
express concepts and implications to express subclass relations. The method re-
quires top-down reasoning and is only intended for Horn-clauses. It assumes full
accessibility to the knowledge base by the reasoning system, which is unfeasible
in an open-domain QA system. It also results in a potentially large number of
additional clauses by transforming the entire knowledge base, adding for every
clause A < B, B its reciprocal clause B’ + A, B, effectively turning the implica-
tion around and marking the new head literal B’ as derived by abduction. Thus
it may be more flexible in that it allows a wider range of abductive relaxations
- when B above is not empty the clause can express more than just a relation
between two concepts - but such more complex steps will be difficult to explain
to the user, who should be the final judge over the acceptability of relaxation.
Finally, our approach will be more efficient at least in the LogAnswer setting in
that the original query and the relaxed query are treated in the same proof at-
tempt, whereas the method above is intended to be applied iteratively, starting
with the original query and then relaxing it in the case of failure.
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Chapter 17

Conclusions and Future
Work

In this dissertation we have explored the usage of automated reasoning, in par-
ticular automated theorem proving, in the context of question answering. Let
us briefly review the main points.

Starting out with the fundamental differences between ATP and the nat-
ural language processing methods of QA, namely precision versus robustness
and deep reasoning versus fast, shallow information retrieval, we have identi-
fied how an integration of an automated theorem prover into a QA system can
lead to an improvement of QA, but also which obstacles need to be overcome
for this. We have implemented such an integration by embedding the theorem
prover E-KRHyper into the QA system LogAnswer. Focusing on E-KRHyper
we have described the theoretical background and the implementation of the
prover. After a general overview of LogAnswer we have detailed the adaptation
of E-KRHyper to its embedding in this QA system. First we have shown how
the basic architecture and strategy of a prover can have an effect on QA per-
formance by comparing E-KRHyper with its relative E-Darwin on LogAnswer
reasoning problems. Then we have gone into the details of the implementation
which serve to further enhance the performance of E-KRHyper on the reasoning
tasks expected in LogAnswer. This includes the indexing of multi-literal clauses,
for which we have devised a method that remains effective for backward sub-
sumption. Several modifications turn E-KRHyper into a reasoning server that
remains in continuous operation while carrying out all proof attempts for Log-
Answer. Axiom selection is a useful approach to make large reasoning prob-
lems easier to solve, and we discuss complete and incomplete techniques and
their implementation in E-KRHyper. To overcome the brittleness of precise
ATP we have introduced relaxation support to enhance the robustness of E-
KRHyper. For most of the described implementational aspects we have done
separate evaluations to show their effectiveness, including a comparison with
the original KRHyper demonstrating that the general theorem proving capa-
bility of E-KRHyper has not been diminished - on the contrary, E-KRHyper
outperforms its parent by a significant margin. We have also summarized the
performance of E-KRHyper in the annual CASC competition. Not all modifi-
cations can be properly tested with reasoning problems like the TPTP, though,
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and instead they require the full LogAnswer system. For such evaluations we
have participated with LogAnswer in various CLEF QA competitions over the
years. We have analyzed the results of these, not only to compare the perfor-
mance of LogAnswer to other QA systems, but also to identify weaknesses of
our system in order to improve it.

Finally, we have considered two experimental ways to broaden the scope
and appeal of QA. The first is to participate with LogAnswer in online QA
forums, where our system could disburden human users from answering factoid
questions, and where the visitors in turn provide us with a wealth of questions,
resulting in a large scale real-world evaluation of LogAnswer. The second is
to connect LogAnswer to external sources like web services which provide cur-
rent data that goes beyond static encyclopedic knowledge bases. To put this
proposition on a sound formal basis we have extended the hyper tableaux cal-
culi underlying E-KRHyper and implemented these extensions in the prover. A
special application of this is to use the concept hierarchies of external ontolo-
gies to relax questions by abduction rather than by skipping of literals. We
have presented a special clause transformation for this purpose, which is also
implemented in E-KRHyper.

This dissertation has shown that automated reasoning can be a useful tool
in QA, provided that the theorem prover is embedded in a manner that takes
into account the brittleness resulting from the precision of logic and the short
time limits imposed by having to test a large amount of answer candidates
within an acceptable response time. To achieve this the prover must forgo
the conventional ATP approach of working only on one reasoning problem and
trying to fully solve it. Rather, partial results achieved in a short time may be
preferable to a full solution that takes longer to reach. For this the prover needs
the flexibility to restart a proof attempt with only minor changes to the input
without having to repeat much previous work, and its partial results should be
able to guide the overarching relaxation control.

In the CLEF competitions LogAnswer was atypical among the participants
for its use of automated reasoning, yet our system was competitive once the
initial teething troubles had been ironed out, achieving results above the average.
While unfortunately the competition design in later years prevented logic from
contributing much to the actual answers, the logic-based proof features have
shown to be a powerful criterion in deciding when to reject answers, and Log-
Answer’s good ability to recognize when not to answer has been remarked upon
by the CLEF organizers on several occasions. Our own evaluation on questions
from a QA forum has shown that this ability will be useful and essential in a real-
world application of QA. Further improvements are required for actual usage,
though, as questions by normal users have proven to be vastly more difficult to
handle automatically than the curated questions in the QA competitions.

Plenty of work remains to be done in QA research before such systems can
gather the widespread acceptance of search engines and become everyday tools.
For LogAnswer in particular, apart from general performance improvements,
the following specific areas must be addressed: The background knowledge base
should be extended to further exploit the reasoning capabilities of E-KRHyper,
for example by non-Horn clauses, more arithmetics and equality, and by making
use of the web services accessible by the prover. This would mean that the
rich concept hierarchies of external ontologies could be utilized for question
answering, rather than remaining limited to test examples for E-KRHyper on
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its own. With improvements to LogAnswer the system may eventually become
sufficiently reliable for an actual integration in a QA forum. This would finally
provide a most desirable large scale evaluation of LogAnswer by real users.

A fairly obvious way to broaden the scope of LogAnswer in practice would
be to support the English language. Many components of the system are
language-independent, but nevertheless such an extension would require sig-
nificant changes to the parser, the shallow retrieval phase and the answer gen-
eration. While no qualitative improvement in QA is to be expected as both
languages have a similar expressivity, an English LogAnswer could attract more
users than the current German version and allow a more widespread integration.

An improvement in QA quality can be expected from investments in the
hardware infrastructure. By exploiting parallelization (see Section Log-
Answer could perform deeper reasoning on more answer candidates in less time.
Unfortunately the costs of such an endeavour are difficult to handle in a re-
search project with the current size of LogAnswer, and they may confine such
improvements to commercial applications.

As for E-KRHyper, performance improvements to the prover may directly
benefit LogAnswer as well, although this must be approached with caution. The
basic strategy of E-KRHyper has proven to be very effective on LogAnswer rea-
soning problems, yet on general TPTP problems as encountered in CASC this
very same strategy poses a severe limitation that likely forms a performance
ceiling which will prevent the prover from reaching the higher ranks. The
strength of top-ranked systems like Vampire comes in part from their ability
to adapt their strategy to the class of the given problem. The semi-naive eval-
uation strategy of E-KRHyper is uniform for all problem classes, and its rigid
breadth-first method offers little room for class-specific adaptations. The popu-
lar given-clause algorithm allows heavy use of heuristics when selecting a clause
for inferencing, a point where adaptations can have a great effect. E-Darwin,
our own given-clause algorithm prover, has exhibited large performance differ-
ences on the same problem depending on experimental changes in its selection
heuristics. The side-project status of this prover has prevented it from receiving
the attention and evaluation necessary to turn its own uniform strategy into
an adaptive one. Hence for general theorem proving and CASC E-Darwin is a
more promising contender than E-KRHyper, as the former has the potential for
more flexibility in its strategy.

Both E-Darwin and E-KRHyper are involved in various areas of research
under investigation in the AGKI. Axiom selection strategies are a promising field
which can find more use in LogAnswer, and the AGKI is experimenting with
graph-based partitioning and with clustering methods in order to handle large
knowledge bases. Another such area is qualitative spatial-temporal reasoning,
which could help LogAnswer in evaluating prepositions and other means of
expressing spatial and temporal relationships. E-KRHyper has been used in
experiments with formalisms such as Allen’s interval algebra [AlI83], and the
TICS is researching an extension of MultiNet with such features. A third area of
major experimentation concerns description logics (DL), which commonly find
application in knowledge representation and semantic networks. The E-hyper
tableaux calculus has been modified to support reasoning on SHZQ, enabling
E-KRHyper to work on DL-ontologies like Galenﬂ

Thttp://wuw.opengalen.org
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As indicated by the breadth of the possible extensions we discussed, auto-
mated QA is a field that can merge a wide range of Al techniques in an applica-
tion with a single purpose, the answering of questions in natural language. We
hope that this dissertation contributes to the integration of automated theorem
proving into QA, and that it provides useful suggestions to further extensions.
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