
Iterative Signing of RDF(S) Graphs,  

Named Graphs, and OWL Graphs: 

Formalization and Application 

 
Andreas Kasten 

Ansgar Scherp 

 

Nr. 3/2013 

Arbeitsberichte aus dem 

Fachbereich Informatik 



Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung 

vorläufiger Ergebnisse, die in der Regel noch für spätere Veröffentlichungen 

überarbeitet werden. Die Autoren sind deshalb für kritische Hinweise dankbar. Alle 

Rechte vorbehalten, insbesondere die der Übersetzung, des Nachdruckes, des 

Vortrags, der Entnahme von Abbildungen und Tabellen – auch bei nur 

auszugsweiser Verwertung. 

 

The “Arbeitsberichte aus dem Fachbereich Informatik“ comprise preliminary results 

which will usually be revised for subsequent publication. Critical comments are 

appreciated by the authors. All rights reserved. No part of this report may be 

reproduced by any means or translated. 

Arbeitsberichte des Fachbereichs Informatik 

ISSN (Print): 1864-0346 

ISSN (Online): 1864-0850 

Herausgeber / Edited by: 

Der Dekan: 

Prof. Dr. Grimm 

Die Professoren des Fachbereichs: 

Prof. Dr. Bátori, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr. Ebert, Prof. Dr. Frey,  

Prof. Dr. Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,  

jProf. Dr. Kilian, Prof. Dr. von Korflesch, Prof. Dr. Lämmel, Prof. Dr. Lautenbach,  

Prof. Dr. Müller, Prof. Dr. Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese,  

Prof. Dr. Rosendahl, Prof. Dr. Schubert, Prof. Dr. Sofronie-Stokkermans,  Prof. Dr. 

Staab, Prof. Dr. Steigner, Prof. Dr. Strohmaier, Prof. Dr. Sure, Prof. Dr. Troitzsch, 

Prof. Dr. Wimmer, Prof. Dr. Zöbel 

 

 

Kontaktdaten der Verfasser 
 
Andreas Kasten, Ansgar Scherp 
Institut für Wirtschafts- und Verwaltungsinformatik 

Fachbereich Informatik 

Universität Koblenz-Landau 

Universitätsstraße 1 

D-56070 Koblenz 

E-Mail: andreas.kasten@uni-koblenz.de, ansgar@informatik.uni-mannheim.de 

mailto:andreas.kasten@uni-koblenz.de


Iterative Signing of RDF(S) Graphs,
Named Graphs, and OWL Graphs:

Formalization and Application

Andreas Kasten1 and Ansgar Scherp2

1 University of Koblenz, 56070 Koblenz, Germany,
andreas.kasten@uni-koblenz.de,

2 University of Mannheim, 68131 Mannheim, Germany,
ansgar@informatik.uni-mannheim.de

Abstract. When publishing graph data on the web such as vocabularies
using RDF(S) or OWL, one has only limited means to verify the authen-
ticity and integrity of the graph data. Today’s approaches require a high
signature overhead and do not allow for an iterative signing of graph
data. This paper presents a formally defined framework for signing ar-
bitrary graph data provided in RDF(S), Named Graphs, or OWL. Our
framework supports signing graph data at different levels of granularity:
minimum self-contained graphs (MSG), sets of MSGs, and entire graphs.
It supports for an iterative signing of graph data, e. g., when different
parties provide different parts of a common graph, and allows for signing
multiple graphs. Both can be done with a constant, low overhead for the
signature graph, even when iteratively signing graph data.

1 Introduction

Exchanging trusted graph data on the Semantic Web is only possible to a lim-
ited extend today. On the contrary, the amount of graph data published and
shared has tremendously increased in the last years. Thus, it becomes inherently
necessary to be able to verify the authenticity and integrity of graph data pub-
lished on the web in order track its provenance and building trust networks for
knowledge-based systems using that data. Authenticity and integrity are basic
security requirements which ensure that graph data is really created by the party
who claims to be its creator and that any modifications on the data are only
carried out by authorized parties. Signing graph data allows for verifying the
provenance and trustworthiness of, e. g., assertional knowledge provided as RDF
graphs or terminological knowledge published in form of vocabularies defined in
RDFS or OWL. To the best of our knowledge, the only solution for signing graph
data so far is the work by Tummarello et al. [1]. It provides a simple graph sign-
ing function for so-called minimum self-contained graphs (MSGs). An MSG is
defined over statements. It is the smallest subgraph of the complete RDF graph
that contains a statement and the statements of all blank nodes associated ei-
ther directly or recursively with it. Statements without blank nodes are an MSG
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on their own. Tummarello et al. provide an important early step for signing
graph data. However, it has significant shortcomings regarding the functionality
provided and overhead required for representing the graph signature: First, the
signing function can be applied on MSGs only. To this end, the signature is
attached to the MSG by using the RDF Statement reification mechanism. This
requires significant overhead for representing the signature statements. Second,
it cannot be applied on, e. g., sets of statements like ontology design patterns
or graphs as a whole. The approach does not support the signing of Named
Graphs and cannot be used to sign multiple graphs at the same time. Finally,
the approach by Tummarello et al. does not allow for an iterative signing of
graph data. The signature statements created for each signing step become part
of the same MSG. There is no explicit relationship between the signature and
the signed statements. This makes it practically impossible to verify the integrity
and authenticity of the graph data.

In this work, we present a formal framework for signing arbitrary graph
data. The framework can be configured, e. g., to optimize the signing process
towards efficiency or minimizing the signature overhead. The resulting signature
graph is assembled with the signed graph and can be published on the web. As
input graph data, one can use RDF(S), Named Graph, or OWL. Our framework
supports different levels of granularity of signing graph data. It can be used to
sign a minimum self-contained graph (MSG), a set of MSGs, entire graphs, and
multiple graphs at once. In addition, the graphs can be distributed over the
web and can contain assertional knowledge as well as terminological knowledge.
Finally, we require only a low overhead for signing graphs, which is constant
even when iteratively signing graph data.

The following scenario motivates the need for iteratively signing different
types of graph data. The related work is presented in Section 3. In Section 4, we
derive the requirements for signing graph data from the scenario and the related
work. A formal definition of our graph signing framework is given in Section 5
and three different configurations are discussed in Section 6. Finally, we present
an example implementation of our framework in Section 7.

2 Scenario: Trust Network for Content Regulation

The ability to publish arbitrary content on the Internet also imposes the ethical
and legal obligation to regulate access to content that is, e. g., inappropriate to
minors or threatens public peace. In the scenario depicted in Fig. 1, we consider
building a trust network for Internet regulation in Germany. The information
about what kind of content is to be regulated is encoded as graph data, which is
provided by different authorities. An authority receives signed graph data from
another authority. It adds its own graph data to the received one, digitally signs
both, and publishes it again on the web.

Due to Germany’s history in the second World War, until today the access to
neo-Nazi material on the Internet is prohibited by German law (Criminal Code,
§86 [2]). The German Federal Criminal Police Office (Bundeskriminalamt, BKA)
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BKA

German Telecom

Primary School

ContentWatch

XXX

Pupil Computers

XXX

Fig. 1. Trust network for content regulation.

provides a set of formally defined ontologies (ii) making use of ontology design
patterns [3]. The patterns represent knowledge such as wanted persons, recent
crimes, and regulation information for Internet communication like it is required
by §86. In addition, the BKA provides a blacklist of web sites to be blocked
according to §86. It signs both the ontologies and the blacklist (iii) and pub-
lishes the ontologies on the web. Internet service providers (ISPs) such as the
German Telecom receive the regulating information from the BKA. By verifying
its authenticity (a) and integrity (b), the ISPs can trust the BKA’s regulation
data. This data only describes what is to be regulated and not how it is reg-
ulated. Thus, ISPs like the German Telecom interpret the data received from
the BKA and add concrete details such as the proxy servers and routers used
for blocking the web sites. As shown in Fig. 1, the ISP compiles its technical
regulation details as RDF graph which is based on the BKA’s ontology pat-
tern. It digitally signs the BKA’s blacklist (iv) together with its own regulation
graph (i) and sends it to its customers. The customers such as the primary
school depicted in Fig. 1 are able to verify the authenticity and integrity of the
regulating information. The school has to ensure that its pupils cannot access
illegal neo-Nazi content. The iterative signing of the regulation data allows the
school to check which party is responsible for which parts of the data. Thus, it
can track the provenance of the regulation’s creation. In addition, the school has
to ensure that adult content cannot be accessed by the pupils. To this end, it
receives regulation information for adult content from private authorities such as
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ContentWatch (http://www.contentwatch.com), which offers regulation data
as Named Graphs (ii) to protect children from Internet pornography and the
like. Thus, different regulation information (v) from multiple sources (vi) is
incorporated by the school. Finally, the primary school digitally signs the incor-
porated regulation information (iv) before providing it to the client computers
located in the school. This ensures that the pupils using these computers access
the Internet only after passing the predefined regulation mechanisms.

3 Related Work

The related work is structured along the process of signing data: First, the data
is normalized using a canonicalization function. This function rearranges the
data’s structure to a unique representation. Second, the canonicalized data is
transformed into a sequential representation by applying a serialization func-
tion. If the canonicalized data is already in a sequential form, this step can be
omitted. Third, a cryptographic hash value is computed on the serialized data.
A hash function transforms a sequential representation of arbitrary length to
one of fixed length [4]. Fourth, the actual signature value is computed using
a signature function. The signature is created by combining the hash value of
the serialized data with a signature key [4]. The signature key is the secret key
of an asymmetric key pair such as an RSA pair [5]. The combined results of all
aforementioned functions actually make up the graph signing function. Fifth, the
assembly function creates a signature graph which contains all data for verifying
the graph’s integrity and authenticity, which is the last step.

3.1 Canonicalization Functions for Graphs

A canonicalization function assures that the in principle arbitrary identifiers of
a graph’s blank nodes do not affect the graph’s signature. Some canonicalization
functions also ensure a unique ordering of the graph’s statements. A formal defi-
nition of canonicalization functions is given in Section 5.2. Carroll [6] presents a
canonicalization function for RDF graphs that replaces all blank node identifier
with a uniform place holder, sorts all statements of the graph based on their N-
Triples [7] representation, and renames the blank nodes according to the order
of their statements. If this results in two blank nodes having the same identifier,
additional statements are added for these blank nodes. Carroll’s canonicalization
function uses Unix’s sort algorithm that has a runtime complexity of O(n log n)
and a space complexity of O(n) with n as the number of statements in the
graph [6]. Fisteus et al. [8] provide a canonicalization function for datasets se-
rialized in N3 [9]. The function requires a hash value for each statement based
on a hash function of the same authors described in Section 3.3. The hash func-
tion assures that the blank nodes do not affect the statements’ hash values. The
canonicalization function sorts the statements according to their hash values.
Due to the sorting process, the runtime complexity of the canonicalization func-
tion is O(n log n) and its space complexity is O(n). Finally, Sayers and Karp [10]
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provide a canonicalization function for RDF graphs, which stores the identifier
of each blank node in an additional statement. If the identifier is changed, the
original one can be recreated using this statement. Since this does not require
sorting the statements, the runtime complexity of the function is O(n). In order
to detect already handled blank nodes, the function maintains a list of additional
statements created so far. This list contains at most b entries with b as the total
number of additional statements. Thus, the space complexity of the function is
O(b).

3.2 Serialization Functions for Graphs

A serialization function transforms an RDF graph into a sequential representa-
tion such as a bit string or a set of bit strings. This representation is encoded in a
specific format such as statement-based N-Triples [7] and N3 [9] or XML-based
RDF/XML [11] and OWL/XML [12]. TriG [13] is a statement-based format
built upon N3, which allows for expressing Named Graphs. HDT [14] is a binary
format for encoding RDF graphs in a compact form, which requires less storage
space than ASCII-based formats. When signing RDF graphs, statement-based
formats are often preferred to XML-based notations due to their simpler struc-
ture. Section 5.3 gives a formalization of serialization functions. If a serialization
function does not utilize the full expressiveness of its serialization format like
sorting the statements, it can be implemented with a runtime complexity of
O(n) and a space complexity of O(1).

3.3 Hash Functions for Graphs

Computing the hash value of a graph is often based on computing the hash
values of its statements and combining them into a single value. Computing a
statement’s hash value can be done by hash functions such as MD5 [15] or SHA-
2 [16]. Section 5.4 provides both a formalization of such hash functions and a
formal definition of hash functions for graphs. Melnik [17] uses a simple hash
function for RDF graphs. A statement’s hash value is computed by concatenating
the hash value of its subject, predicate, and object and hashing the result. The
hash values of all statements are sorted, concatenated, and hashed again to form
the hash value of the entire RDF graph. Due to the use of a sorting algorithm,
the function’s runtime complexity is O(n log n) and its space complexity is O(n).
Fisteus et al. [8] suggest a hash function for N3 datasets. First, all blank nodes
are associated with the same identifier. Secondly, the statements’ hash values
are computed like with Melnik’s approach [17]. If two statements have the same
hash value, new identifiers of the blank nodes are computed by combining the
hash values of the statements in which they occur. This process is repeated until
there are no collisions left. Finally, the hash value of a graph is computed by
combining the hash values of its statements. Colliding hash values are detected
by sorting them, which leads to a runtime complexity of O(n log n) and a space
complexity of O(n). In the worst case, the runtime complexity is O(n2) due to
multiple re-hashing processes. Carroll [6] uses a graph-hashing function which
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serializes all statements, sorts the serialized representations, concatenates the
result into a bit string, and hashes this bit string using a simple hash function
such as SHA-2 [16]. As the function uses Unix’s sort algorithm, it has a runtime
complexity of O(n log n) and a space complexity of O(n). Finally, Sayers and
Karp [10] compute a hash value of an RDF graph by incrementally multiplying
the hash values of the graph’s statements modulo a prime number. Since this
operation is commutative and associative, sorting the statements’ hash values is
not required. Thus, the runtime complexity of the hash function is O(n). Due
to the multiplication, the space complexity is O(1).

3.4 Signature Functions

A signature function computes the actual signature by combining the graph’s
hash value with a secret key. A formalization for signature functions is given
in Section 5.5. Possible signature functions are DSA [18], ElGamal [19], and
RSA [5]. Since the graph’s hash value is independent from the number of state-
ments, the signature is as well. Thus, the runtime complexity and the space
complexity of all signature functions are O(1).

3.5 Graph Signing Functions

A graph signing function creates a signature for a graph by combining all afore-
mentioned functions. A formal definition of graph signing functions is given in
Section 5.6. Tummarello et al. [1] present a graph signing function for fragments
of RDF graphs. These fragments are minimum self-contained graphs (MSGs) and
are defined over statements. An MSG of a statement is the smallest subgraph
of the entire RDF graph which contains this statement and the statements of
all blank nodes associated with it. Statements without blank nodes are an MSG
on their own. The graph signing function of Tummarello et al. is based on Car-
roll’s canonicalization function and hash function [6]. The resulting signature is
stored as a set of six statements, which are added to the signed MSG. These
signature statements are linked to the MSG via RDF Statement reification of
one of the MSG’s statements. The approach of Tummarello et al. is based on
signing one MSG at a time. Signing multiple MSGs requires multiple signatures.
Individually signing MSGs with only one statement creates a high overhead of
six signature statements. Furthermore, the approach by Tummarello et al. does
not allow for iterative signing of graph data. The signature statements created
for each signing step become part of the signed MSG. Signing this MSG again
also signs the included signature statements. This makes it impossible to relate
a set of signature statements to the corresponding signed graph data. Thus,
verifying the signature becomes practically impossible.

Signing a full graph can also be accomplished by signing a document contain-
ing a serialization of the graph [20]. For example, a graph can be serialized using
an XML-based format such as RDF/XML [11] or OWL/XML [12]. This results in
an XML document which can be signed using the XML signature standard [21].
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If the graph is serialized using a plain text-based format such as the statement-
based serializations N-Triples [7] or N3 [9], also standard text document signing
approaches may be used [22]. However, signing the graphs on the granularity
levels of single MSGs or sets of MSGs is not possible by these approaches. Itera-
tive signing of the documents is also not supported. Most significant drawback,
however, is that the signature is inextricably linked with the concrete document
containing the graph [20]. This means that the created signature can only be
verified with the very specific serialization of the graph contained in the docu-
ment. For example, if the serialized graph data is transferred from the signed
document into a triple store and then retrieved back, it is not possible anymore
to verify the authenticity and integrity of the graph data with the document’s
signature.

Finally, another option for ensuring the authenticity and integrity of the
graph data would be to use secure communication channels like an SSL con-
nection [23]. Indeed, when transmitting the graph data over a secure channel
like SSL the recipient of the data can verify for the graph’s authenticity and
integrity. However, once the communication channel is closed after all data is
transmitted, there is no chance to verify the graph data again without retrieving
it once more from the provider. Verifying the authenticity and integrity of the
graph data again might be necessary when the data is stored on not fully-trusted
services like cloud computing or when it is transmitted further to other parties
(which like to check the authenticity and integrity themselves).

3.6 Assembly Function

An assembly function creates a detailed description of how a graph’s signature
can be verified. This description may then be added to the signed graph data
or be stored at a separate location. Section 5.7 provides a formal definition of
assembly functions. Tummarello et al. [1] present a simple assembly function
which adds additional statements to a signed MSG. These statements contain
the signature value and a URL to the signature key used to compute the value.
Information about the graph signing function and its subfunctions is not pro-
vided. Once the URL to the signature key is broken, i. e., the signature key is
not available anymore at this URL, the signature can no longer be verified. Even
if a copy of the signature key is still available at a different location, the verifier
finally cannot check the true authenticity of the signature key as the issuer is
only implicitly encoded in the key itself.

In order to describe a signing function, the XML signature standard [21] pro-
vides an XML schema containing all details of an XML signature. These details
comprise the names of the used canonicalization function, the hash function, and
the signature function used for computing the signature value. Furthermore, the
XML schema also allows for describing a distinguished name of the signature
key issuer, the key’s serial number, and further information.
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4 Requirements

Based on the scenario in Section 2 and the related work discussed in Section 3,
we derive the following functional requirements for a generic solution for signing
graph data:

REQ-1: Signing at different levels of granularity: Allow a party to
sign graph data at different levels of granularity starting from single statements
and MSGs, respectively, sets of statements (like ontology design patterns), and
entire graphs. This allows for a most flexible use of the graph signing approach.
In the scenario, the BKA signs ontology patterns and the German Telecom signs
its entire regulation graph (see (i)).

REQ-2: Signing different kinds of graph data: Allow a party to sign
graph data provided in RDF(S), OWL, and Named Graphs. This allows for the
graph signing approach to be used in Linked Open Data3 contexts as well as
for signing, e. g., foundational ontologies like DOLCE+DnS Ultralite [24]. In the
scenario, the BKA provides OWL ontology patterns and ContentWatch provides
Named Graphs (see (ii)).

REQ-3: Signing T-box and A-box knowledge: Allow a party to sign
both assertional (A-box) knowledge and terminological (T-box) knowledge. This
allows the graph signing approach to be used for signing vocabularies issued by,
e. g., standardization bodies. In addition, parties publishing their own instance
data using those vocabularies can sign their assertional knowledge as well. In the
scenario, the BKA signs both its ontologies and its regulation data (see (iii)).

REQ-4: Iterative signing of graph data: Allow a party to sign graph
data which is already signed. This allows for provenance tracking as each party
signs its own data together with the provided data and its attached signatures.
In the scenario, the German Telecom signs the BKA’s regulation data, which is
already signed by the BKA itself (see (iv)).

REQ-5: Signing multiple, distributed graphs: Allow a party to sign
multiple graphs at the same time which are distributed over different locations.
In the scenario, the primary school retrieves and signs two different graphs from
the German Telecom and ContentWatch at once (see (v)).

In addition to these functional requirements, a generic framework for signing
graph data shall allow for verifying the authenticity and integrity of the pro-
vided data. This allows for establishing a trust network between the involved
communication parties. Thus, the following general security requirements must
be fulfilled:

REQ-A: Verifying the authenticity of the graph data: Allow a party
to check if a received graph was really created by the party who claims to be
its creator [25]. In the scenario, the German Telecom can verify that the graph
received from the BKA was really created by the BKA and not by a third party
(see (a)).

REQ-B: Verifying the integrity of the graph data: Allow a party
to check whether or not a received graph was modified by an unauthorized

3 http://www.w3.org/DesignIssues/LinkedData, last accessed: 4/9/2013
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party [25]. Thus, a party can identify any changes on the graph by verifying
its integrity. In the scenario, the German Telecom can ensure that the graphs
received from the BKA were not modified by a third party (see (b)).

5 Graph Signing Formalization

This section first defines RDF graphs as they are the basic data structure to
be signed. This definition is then extended to Named Graphs. Subsequently, all
functions of the signing process introduced in Section 3 are formally defined.
These are the canonicalization function κN , the serialization function νN , the
hash function λN , and the signature function ε. Using these functions, the graph
signing function σN for Named Graphs is defined, followed by a definition of the
signature graph S and the assembly function ςN . The section is concluded with
a description of the signature verification procedure. Fig. 2 depicts the process
of signing graph data. The graph signing function is basically a combination of
the functions used in the first four steps.

Graph signing

Canonicalization

Step 1

Serialization

Step 2

Hash

Step 3

Signature

Step 4

Assembly

Step 5

Verification

Step 6

Fig. 2. The process of signing and verifying graph data. The graph signing function
corresponds to the first four steps. In the fifth step, the signature graph is created.
Finally, the sixth step is applied to verify the authenticity and integrity of the graph
data.

5.1 Definition of Graphs

An RDF graph G is a finite set of RDF triples t. The set of all RDF triples is
defined as T = (R ∪ B) × P × (R ∪ B ∪ L) with the pairwise disjoint sets of
resources R, blank nodes B, predicates P, and literals L. Thus, it is t = (s, p, o)
with s ∈ R ∪ B being the subject of the triple, p ∈ P being the predicate,
and o ∈ R ∪ B ∪ L being the object [26, 27]. An OWL graph can be mapped
to an RDF graph [28]. Thus, in the following we will only denote RDF graphs
and include OWL graphs mapped to RDF graphs. The set of all possible RDF
graphs is G = 2T.

A Named Graph extends this notion of RDF graphs and associates a unique
name in form of a URI to a single RDF graph [29] or set of RDF graphs. This
URI can be described by further statements, which form the so-called annotation
graph of the RDF graph. The RDF graph is also called the content graph. A
Named Graph NG ∈ GN is defined as NG = (a,A, {C1, C2, . . . , Cl}) with a ∈
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R ∪ {ε} being the name of the graph, A ∈ G being the annotation graph, and
Ci ∈ GN being the content graphs with i = 1 . . . l. If a Named Graph does
not explicitly specify an identifier, ε is used as its name. This corresponds to
associating the graph with a blank node. In this case, the graph A is empty, i. e.,
A = ∅. Any RDF graph G ∈ G can be defined as Named Graph C using the
notation above as C = (ε, ∅, G). The set of all Named Graphs GN is recursively
defined as GN = (R×G× 2GN ) ∪ {(ε, ∅, G)} with G ∈ G.

5.2 Canonicalization Function

The canonicalization function κ transforms a graph G ∈ G into its canonical
form Ĝ ∈ Ĝ with Ĝ ⊂ G being the set of all canonical graphs. Example canoni-
calization functions for RDF graphs are given in [6, 8, 10] and further described
in Section 3.1.

κ : G→ Ĝ, κ(G) := Ĝ (1)

For Named Graphs, the canonicalization function κN is recursively defined. It
computes a canonical representation of a Named GraphNG = (a,A, {C1, . . . , Cl})
by computing the canonical representations Â and Ĉi of its annotation graph A
and its content graphs Ci. The result is a canonical representation N̂G ∈ ĜN

with ĜN ⊂ GN being the set of all canonical Named Graphs.

κN : GN → ĜN , κN (NG) := N̂G (2)

κN (NG) :=

{
(ε, ∅, Ĝ) if NG = (ε, ∅, G), G ∈ G
(a, Â, {Ĉ1, . . . , Ĉl}) if NG = (a,A, {C1, . . . , Cl})

5.3 Serialization Function

The serialization function ν transforms a graphG ∈ G into a set of bit stringsG ∈
2{0,1}

∗
. A bit string represents a statement in the graph G. The concrete charac-

teristics of the bit strings in G as well as its length depend on the used serializa-
tion format. As outlined in Section 3.2, possible serializations for RDF graphs
include Turtle [30] and RDF/XML [11].

ν : G→ 2{0,1}
∗
, ν(G) := G (3)

The serialization function ν can be extended to the function νN for Named
Graphs NG ∈ GN . The result of νN is a set of o bit strings NG ∈ 2{0,1}

∗
with

NG = {b1, b2, . . . , bo}. The function is recursively defined as follows:

νN : GN → 2{0,1}
∗
, νN (NG) := NG (4)

νN (NG) :=

{
G if NG = (ε, ∅, G), G ∈ G
{a} ∪A ∪ C1 ∪ . . . ∪ Cl if NG = (a,A, {C1, . . . , Cl})
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5.4 Hash Function

The hash function λ computes a hash value h of arbitrary bit strings b ∈ {0, 1}∗.
The resulting hash value h has a fixed length d ∈ N, i. e., h ∈ {0, 1}d. Example
hash functions are MD5 [15] and SHA-2 [16].

λ : {0, 1}∗ → {0, 1}d, λ(b) := h (5)

The hash function λN computes a hash value hN of a serialized Named GraphNG ∈
2{0,1}

∗
with NG = {b1, b2, . . . , bo} and is build upon the function λ. The func-

tion λN computes a hash value of each bit string bi ∈ NG with b = 1 . . . o
and combines the results into a new bit string hN ∈ {0, 1}d using a combining
function %. The function % is defined as follows:

% : 2{0,1}
d

→ {0, 1}d, %({h1, h2, . . . , ho}) := hN (6)

Using the functions λ and %, the hash function λN for Named Graphs is defined
as follows:

λN : 2{0,1}
∗
→ {0, 1}d, λN (NG) := hN (7)

λN (NG) := %({λ(b1), λ(b2), . . . , λ(bo)})
Example hash functions λN are presented in [17, 8, 6, 10] and further described
in Section 3.3. Example combining functions % are discussed in [10].

5.5 Signature Function

A signature function ε computes the signature value of a graph based on the
graph’s hash value. It requires a bit string b ∈ {0, 1}d and a cryptographic key
as input. The keyspace, i. e., the set of all asymmetric, cryptographic keys is
defined as K = Kp ×Ks with Kp being the set of public keys and Ks being the
set of secret keys. For computing signatures, a secret key ks ∈ Ks is used. As
outlined in Section 3.4, example signature functions are DSA [18], ElGamal [19],
and RSA [5]. Using b̃ ∈ {0, 1}d′ as an identifier for the resulting bit string, the
signature function is defined as follows:

ε : Ks × {0, 1}d → {0, 1}d
′
, ε(ks, b) := b̃ (8)

5.6 Graph Signing Function

The graph signing function σN for Named Graphs is defined by using the different
functions introduced above. The function σN allows for signing multiple graphs
at once. It requires a secret key ks and a set of m Named Graphs NGi as input
with NGi = (ai, Ai, {C1i , . . . , Cli}) and i = 1, . . . ,m. The resulting signature is
the bit string s ∈ {0, 1}d′ . An example for a graph signing function is Tummarello
et al. [1], which is described in Section 3.5.

σN : Ks × 2GN → {0, 1}d
′
, σN (ks, {NG1, . . . , NGm}) := s (9)

σN (ks, {NG1, . . . , NGm}) := ε(ks, λN (νN (κN (NG1)) ∪ . . . ∪ νN (κN (NGm))))
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5.7 Assembly Function

An assembly function ςN creates the signature graph S ∈ G and includes it in
another Named Graph NGS . The specific contents and structure of S depend on
the implementation of the function ςN . The signature graph contains information
about how a graph’s signature was created and how it can be verified. This
includes the used canonicalization function κN , the serialization function νN ,
the hash function λN , the signature function ε, the corresponding public key kp
of the used secret key ks, the identifiers ai of the signed Named Graphs, and
the signature value s. A possible structure of a signature graph is shown in the
example in Section 7. The graph NGS contains the signature graph S as its
annotation graph and the signed Named Graphs NGi as its content graphs.
In order to allow for an iterative signing of Named Graphs, the result of the
assembly function ςN is also a Named Graph.

ςN : Ks × 2GN → GN (10)

ςN (ks, {NG1, . . . , NGm}) := (aS , S, {NG1, . . . , NGm})

An example signature graph for signed RDF graphs is used in [1] and an XML
fragment for signed XML documents is defined in [21].

5.8 Verification Function

The verification of a signature is similar to its creation. A verification function γN
also requires a canonicalization function κN , a serialization function νN , and a
hash function λN . Furthermore, it requires a signature verification function δ,
which is inverse to the signature function ε. The signature verification function δ
requires a bit string b̃ ∈ {0, 1}d′ and a public key kp ∈ Kp as input. δ is defined
as follows with b ∈ {0, 1}d being the identifier of the resulting bit string. It holds
δ(kp, ε(ks, b)) = b with the secret key ks.

δ : Kp × {0, 1}d
′
→ {0, 1}d, δ(kp, b̃) := b (11)

The verification function γN checks whether or not a given signature is a valid
signature of a set of Named Graphs. The function requires a public key kp, a
signature value s, and the set of signed Named Graphs {NG1, . . . , NGm}. All
values can be taken from the signature graph S. The key kp is the public coun-
terpart of the secret key ks, which was used for creating the signature value s.
The function γN combines the signature value s with the public key kp and com-
putes the hash value h′ of the Named Graphs NGi. The signature is valid iff both
computed values are equal. It is h′ = λN (νN (κN (NG1))∪ . . .∪ νN (κN (NGm))).

γN : Kp × 2GN × {0, 1}∗ → {TRUE,FALSE} (12)

γN (kp, {NG1, . . . , NGm}, s) :=

{
TRUE if δ(kp, s) = h′

FALSE otherwise
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6 Three Graph Signing Functions

The complexity of a signature solely depends on the graph signing function σN
and its subfunctions. The signature overhead depends on the additional state-
ments created by these functions and on the size of the signature graph created
by the assembly function ςN . Table 1 summarizes the complexity of different
implementations of κN , νN , λN , and ε as described in Section 3. In the table, n
refers to the number of statements to be signed and b is the number of statements
added by the canonicalization function. Thus, b corresponds to the number of
blank nodes in the graph.

Table 1. Complexity of the functions used by the graph signing function σN . n is the
number of statements and b is the number of blank nodes in the statements.

Function Example Runtime Space

Canonicalization κN

Carroll [6] O(n logn) O(n)

Fisteus et al. [8] O(n logn) O(n)

Blank Node Labeling [10] O(n) O(b)

Serialization νN

N-Triples [7] O(n) O(1)

N3 [9] O(n) O(1)

TriG [13] O(n) O(1)

RDF/XML [11] O(n) O(1)

OWL/XML [12] O(n) O(1)

Hash λN

Melnik [17] O(n logn) O(n)

Fisteus et al. [8] O(n logn) O(n)

Carroll [6] O(n logn) O(n)

Incremental digest [10] O(n) O(1)

Signature ε

DSA [18] O(1) O(1)

ElGamal [19] O(1) O(1)

RSA [5] O(1) O(1)

Table 2. Possible configurations of a signing function σN .

Configuration Canonicalization Hash

A) Tummarello et al. [1] Carroll [6] Carroll [6]

B) Min. Signature Overhead Fisteus et al. [8] Fisteus et al. [8]

C) Min. Runtime Complexity Blank Node Labeling [10] Incremental Hash [10]
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Table 3. Complexity and signature overhead of different signing functions σN .

Configuration
Complexity of σN Signature overhead

runtime space of σN and ςN

A) Tummarello et al. [1] O(n logn) O(n)
bh + 6r statements,

bh ≤ b, r ≤ n
B) Min. Signature Overhead O(n logn) O(n) 0 + 19 statements

C) Min. Runtime Complexity O(n) O(n) b+ 19 statements

Table 2 shows three possible configurations of the signing process applied
on a single graph. Table 3 depicts their complexity and signature overhead.
Following the properties of the O-notation, the complexity of a graph signing
function σN is defined by the highest complexity of all its subfunctions. To
ease comparability, each configuration uses N-Triples for serialization and RSA
as signature function ε. The configurations differ only in the canonicalization
function κN and hash function λN . In the following, we discuss the configurations
in more detail.

A) Tummarello et al [1] use the canonicalization function and hash function of
Carroll [6]. Due to the complexity of these functions, the runtime complexity
of the graph signing function is O(n log n) and its space complexity is O(n).
Carroll’s canonicalization function handles blank node identifiers by sorting all
of a graph’s statements. If different blank nodes share the same identifier, an
additional statement is created for each node. With bh ≤ b being the number of
such statements, the canonicalized graph contains bh more statements than the
original graph. The approach by Tummarello et al. only allows for signing a single
MSG at a time. The signature is stored using six additional statements. Signing
a graph with r MSGs requires r different signatures. The overhead created by
the assembly functions is then 6r statements. The total overhead is thus bh + 6r
statements. Since each MSG contains at least one statement, it is r ≤ n. In
the worst case, each MSG contains exactly one statement and it is r = n. The
signature overhead is then 6n.

B) Minimum Signature Overhead Using the canonicalization function and the
hash function of Fisteus et al. [8] leads to a signing process with a minimum
signature overhead. Both functions have a runtime complexity of O(n log n) and
a space complexity of O(n). The runtime complexity of the singing function σN
is thus O(n log n) and the space complexity is O(n). Since neither the canoni-
calization function nor the hash function create any additional statements, the
signature overhead is solely determined by the signature graph S. The structure
and size of the graph are defined by the ontology used for modeling it. Using
a signature graph S as in the example depicted in Fig. 4 results in a signature
overhead of 19 statements. When m graphs are signed at the same time, the m
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graphs are arranged using RDF bag. This results in a signature graph of 19+2m
statements.

C) Minimum Runtime Complexity Using the blank node labeling approach and
incremental hash function of Sayers and Karp [10] leads to a minimum runtime
complexity. Since both functions have a runtime complexity of O(n), the runtime
complexity of the graph signing function is also O(n). Each statement of a graph
can contain no, one, or two blank nodes. A blank node is part of at least one
statement. Thus, the graph can contain at most twice as many blank nodes as
statements. Thus, it is b ≤ 2n. This leads to a space complexity of O(n) of
the graph signing function. The total overhead of the signing process consists
of b statements added by the blank node labeling algorithm and 19 statements
created by the assembly function for the signature graph S.

7 Implementation and Use of the Signing Framework

This section describes how the previously defined graph signing function σN
and assembly function ςN are applied. The description is structured along the
scenario given in Section 2. The implementation of our signing framework is
conducted in Java and uses as output format an extension of the TriG syntax
for named graphs [13].

In Section 7.1, we present the application of the mathematical functions de-
fined in Section 5. Subsequently, we present extensive examples based on TriG
for signing graph data. The examples are presented along the functional require-
ments defined in Section 4: The signing of OWL graphs is shown in Section 7.2.
The section also demonstrates signing graph data at different levels of granular-
ity (REQ-1) and signing A-box and T-box statements (REQ-3). In Section 7.3,
the signing of Named Graphs is shown (REQ-2) and Section 7.4 describes iter-
ative signing of graph data (REQ-4). The signing of multiple and distributed
graphs (REQ-5) is demonstrated in Section 7.5. Overall, the examples show
that our approach fulfills all functional requirements stated in Section 4. The
support for the two non-functional security requirements on the authenticity
of the graph data (REQ-A) and the integrity of the graph data (REQ-B) is
argued in Section 7.6.

7.1 Using the Signing Function σN and Assembly Function ςN

In order to sign an OWL graph such as Gbka-1 ∈ G from the BKA, it has to be
interpreted as a Named Graph NGbka-1 = (ε, (∅, ∅), Gbka-1) with NGbka-1 ∈ GN .
Signing the graph Gbka-1 with the graph signing function σN and the secret
key ksbka is σN (ksbka , {NGbka-1}) = σN (ksbka , {(ε, (∅, ∅), Gbka-1)}) = sbka-1. The
signature value sbka-1 is added to a signature graph Sbka-1 ∈ G by apply-
ing the assembly function ςN on the key ksbka and the graph NGbka-1. It is
ςN (ksbka , {NGbka-1}) = (sg-bka-1, Sbka-1, {NGbka-1}) = NGsg-bka-1 with Sbka-1 =
(VSbka-1

, ESbka-1
) and sbka-1 ∈ VSbka-1

. The resulting Named Graph NGsg-bka-1 ∈

17

Iterative Signing of RDF(S) Graphs, Named Graphs, and OWL Graphs: Formalization and Application, Fachbereich Informatik Nr. 3/2013



cw:cw-sg-3

_:bka-pattern-1

bka:bka-sg-1

gt:gt-sg-2

cw:cw-rules-3

ps:ps-sg-4

_:gt-data-2

_:bka-rules-1

_:ps-data-4

Fig. 3. Examples of iteratively signed graphs.

GN is identified by sg-bka-1. It has the signature graph Sbka-1 as annotation
graph and NGbka-1 = (ε, (∅, ∅), Gbka-1) as content graph. Signing a Named Graph
like NGcw-1 ∈ GN from ContentWatch with the key kscw results in the signa-
ture value scw-1 = σN (kscw , {NGcw-1}). Again, scw-1 is included in a signature
graph Scw-1, which is part of a new Named Graph NGsg-cw-1. Using ςN , it is
ςN (kscw , {NGcw-1}) = (sg-cw-1, Scw-1, {NGcw-1}) = NGsg-cw-1.

Iteratively signing a Named Graph corresponds to signing the result of the as-
sembly function ςN . Signing both the Named Graph NGsg-bka-1 from above and
the RDF graph Ggt-1 ∈ G from the German Telecom with the secret key ksgt re-
sults in the signature value sgt-1 = σN (ksgt , {NGsg-bka-1, (ε, (∅, ∅), Ggt-1)}). Ap-
plying ςN leads to a new Named GraphNGsg-gt-1 = (sg-gt-1, Sgt-1, {NGsg-bka-1,
(ε, (∅, ∅), Ggt-1)}) with Sgt-1 ∈ G being the signature graph of the signature
value sgt-1. Signing multiple Named Graphs at once is done by applying the
signature function on a set of Named Graphs. Signing both the Named Graphs
NGsg-gt-1 and NGsg-cw-1 with the secret key ksps leads to σN (ksps , {NGsg-gt-1,
NGsg-cw-1}) = sps-1. Applying the assembly function leads to a new Named
Graph NGsg-ps-1 which contains both the graphs NGsg-gt-1 and NGsg-cw-1 as
its content graphs and a new signature graph Sps-1 ∈ G as its annotation graph.
It is NGsg-ps-1 = (sg-ps-1, Sps-1, {NGsg-gt-1, NGsg-cw-1}).

The following examples are based on an extension of TriG [13] that supports
nested Named Graphs. This allows for directly mapping the recursive definition
of Named Graphs given in Section 5.1 to an intuitive format. An alternative for
using TriG would be storing each signed graph in a separate file and referring to
it by its URL. However, this would complicate the signature’s verification. Fig. 3
shows the graph created in the scenario of Section 2. The graph has different
parts signed by different parties. Each part is created by applying the graph
signing function and the assembly function. In the following, we demonstrate the
signing process for each party. Since the complete graph forms a nested structure,
the examples are based on each other. The result after each signing iteration is
shown using an excerpt of their representation in TriG. The complete example
is available from our homepage referenced in the conclusion. The examples are
based on configuration B) from Section 6, which results in a minimum signature
overhead.
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bka:bka-gsm-1

"TmV2ZXIgR29ubmEgR2l2ZSBZb3UgVXA="

sig:hasSignatureMethod

sig:hasSignatureValue

sig:Signaturerdf:type

sig:GraphSigningMethodrdf:type

sig:gcm-fisteus-2010

sig:dm-md5

sig:sm-rsa rdf:type

rdf:type

rdf:type

rdf:type

sig:hasSignatureMethod

sig:hasGraphSerializationMethod

sig:hasDigestMethod

sig:hasGraphCanonicalizationMethod sig:GraphCanonicalizationMethod

sig:DigestMethod

sig:SignatureMethod

sig:GraphSerializationMethodsig:gsm-n-triples

sig:gdm-fisteus-2010 rdf:type sig:GraphDigestMethodsig:hasGraphDigestMethod

bka:bka-sig-1

bka:bka-pck-1 sig:X509Certificaterdf:type

"12:E5:D0:01:D8:13:C8"sig:hasSerialNumber

"C=DE,O=Zentrum fuer
Informationsverarbeitung und
Informationstechnik, OU=Betrieb,
CN=ZIVIT CA - G01, E=ca@zivit.de"

bka:zivit-1

sig:hasDistinguishedName

DUL:Organizationrdf:typesig:hasIssuer

hasCertificate

Fig. 4. Example signature graph following the XML signature standard [21].

7.2 Example 1: Signing an OWL Graph

In the first step of the scenario, the BKA creates an ontology design pat-
tern (REQ-1) for describing web sites to be blocked according to §86 of the
German Criminal Code. Using this pattern, the BKA compiles a list of partic-
ular web sites and encodes it as an OWL graph (REQ-2). It then signs the
list along with the used regulation ontology design pattern. Listing 1 depicts
a fragment of the resulting graph. The graph contains the regulation ontology
design pattern, the list of blocked web sites, and a signature graph. The regu-
lation ontology design pattern covers T-box knowledge of the BKA (REQ-3).
It is modeled as a separate graph :bka-pattern-1 and shown in lines 27 to
49. On the other hand, the list of blocked web sites covers the A-box knowl-
edge of the BKA. It is also modeled as a separate graph :bka-rules-1 and
shown in lines 51 to 71. Signing both :bka-pattern-1 and :bka-rules-1 re-
sults in the Named Graph bka:bka-sg-1 and a signature graph. bka:bka-sg-1
contains the graphs :bka-pattern-1 and :bka-rules-1 as its content graphs
and the signature graph as its annotation graph. The graph bka:bka-sg-1 is
shown in lines 10 to 72 and the signature statements are shown in lines 12 to 25.
bka:bka-sg-1 and its two content graphs :bka-pattern-1 and :bka-rules-1

are also shown in Fig. 3 as part of the graph ps:ps-sg-4.
The complete signature graph created by the assembly function ςN is depicted

in Fig. 4. The signature is defined in a vocabulary following the XML signature
standard [21]. The vocabulary is available from our homepage, referenced in the
conclusion. The signature graph stores the computed signature bka:bka-sig-1

and its signature value. Furthermore, the signature graph also stores all pa-
rameters of the graph signing function σN required for verifying this value. In
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the signature graph, the function σN is identified as bka:bka-gsm-1 and linked
to all its subfunctions. As explained in Section 5.8, this includes the names of
the used graph canonicalization function sig:gcm-fisteus-2010, the graph se-
rialization function sig:gsm-n-triples, the hash function (also called digest
function) sig:dm-md5, the graph hashing function sig:gdm-fisteus-2010, and
the signature function sig:sm-rsa. In order to be able to verify the signature,
the signature graph contains a reference to the BKA’s public key certificate.
The certificate contains the corresponding public key of the secret key ks, which
was used as the signature key. The certificate is represented as bka:bka-pck-1

and corresponds to an X.509 certificate [31]. It was issued by an organization
identified as bka:zivit-1. X.509 certificates are uniquely identified by their se-
rial number and the distinguished name [32] of their issuer. Thus, the signature
graph contains these identifiers of the BKA’s certificate.

1 @prefix bka: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/bka-graph#> .
2 @prefix DUL: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#> .
3 @prefix flow: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/flow_control.owl#> .
4 @prefix owl: <http://www.w3.org/2002/07/owl#> .
5 @prefix proxy: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/proxy_flow_control.owl#> .
6 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
7 @prefix sig: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/signature.owl#> .
8 @prefix tec: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/technical_regulation.owl#> .

10 bka:bka-sg-1 {

12 bka:bka-sig-1
13 sig:hasGraphSigningMethod bka:bka-gsm-1 ;
14 sig:hasSignatureValue "TmV2ZXIgR29ubmEgR2l2ZSBZb3UgVXA=" ;
15 sig:hasVerificationCertificate bka:bka-pck-1 ;
16 a sig:Signature .

18 bka:bka-gsm-1
19 sig:hasDigestMethod sig:dm-md5 ;
20 sig:hasGraphCanonicalizationMethod sig:gcm-fisteus-2010 ;
21 sig:hasGraphDigestMethod sig:gdm-fisteus-2010 ;
22 sig:hasGraphSerializationMethod sig:gsm-n-triples ;
23 sig:hasSignatureMethod sig:sm-rsa ;
24 a sig:GraphSigningMethod .
25 ...

27 _:bka-pattern-1 {

29 proxy:URLBlockingRuleMethod
30 a owl:Class ;
31 rdfs:subClassOf flow:DenyingFlowControlRuleMethod, [
32 a owl:Restriction ;
33 owl:allValuesFrom proxy:URLBlockingRuleSituation ;
34 owl:onProperty DUL:isSatisfiedBy
35 ], [
36 a owl:Restriction ;
37 owl:onProperty DUL:defines ;
38 owl:someValuesFrom [
39 a owl:Class ;
40 owl:intersectionOf (tec:EnforcingSystem
41 [
42 a owl:Restriction ;
43 owl:onProperty DUL:classifies ;
44 owl:someValuesFrom tec:ProxyServer
45 ]
46 )
47 ]
48 ] .
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49 }

51 _:bka-rules-1 {

53 bka:naq-1
54 DUL:hasRegion bka:ipr-1 ;
55 a tec:NetworkAddressQuality .

57 bka:uq-1
58 DUL:hasRegion bka:ur-1 ;
59 a tec:URLQuality .

61 bka:ur-1
62 tec:hasURL "http://www.stormfront.org/" ;
63 DUL:hasSetting bka:ri-1 ;
64 a tec:URLRegion .

66 bka:wst-1
67 DUL:hasQuality bka:uq-1 ;
68 DUL:hasSetting bka:ri-1 ;
69 a tec:WebSite .
70 ...
71 }
72 }

Listing 1. Example of a signed RDF graph.

7.3 Example 2: Signing a Named Graph

In the scenario, ContentWatch compiles a blacklist of web sites providing adult
content. This list is used for regulating access to the web sites and encoded
as Named Graph (REQ-2). Signing a Named Graph is similar to signing an
RDF/OWL graph. Listing 2 depicts the signed Named Graph created by Con-
tentWatch. The blacklist of web sites is identified as cw:cw-rules-3 and shown
in lines 10 to 30. Signing cw:cw-rules-3 results in several signature statements
which are shown in lines 3 to 8. The statements cover the used graph signing
function cw:cw-gsm-3 (line 4), the created signature value (line 5), and Content-
Watch’s public key certificate cw:cw-pck-3 (line 6). The signature statements
and the Named Graph cw:cw-rules-3 are part of the newly created Named
Graph cw:cw-sg-3 shown in lines 1 to 31. cw:cw-sg-3 contains the signature
statements as its annotation graph and cw:cw-rules-3 as its content graph.

1 cw:cw-sg-3 {

3 cw:cw-sig-3
4 sig:hasGraphSigningMethod cw:cw-gsm-3 ;
5 sig:hasSignatureValue "SXQncyBibHVlIGxpZ2h0" ;
6 sig:hasVerificationCertificate cw:cw-pck-3 ;
7 a sig:Signature .
8 ...

10 cw:cw-rules-3 {

12 cw:naq-3
13 DUL:hasRegion cw:ipr-3 ;
14 a tec:NetworkAddressQuality .

16 cw:uq-3
17 DUL:hasRegion cw:ur-3 ;
18 a tec:URLQuality .
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20 cw:ur-3
21 tec:hasURL "http://www.youporn.com/" ;
22 DUL:hasSetting cw:ri-3 ;
23 a tec:URLRegion .

25 cw:wst-3
26 DUL:hasQuality cw:uq-3 ;
27 DUL:hasSetting cw:ri-3 ;
28 a tec:WebSite .
29 ...
30 }
31 }

Listing 2. Example of a signed Named Graph.

7.4 Example 3: Iteratively Signing of Graphs

The German Telecom receives the Named Graph bka:bka-sg-1, which is signed
by the BKA. bka:bka-sg-1 contains general regulation information but does not
describe how the regulations shall be implemented by the ISP. Thus, the German
Telecom adds its own RDF graph :gt-data-2 with detailed regulation informa-
tion including proxy servers and their IP addresses. It then signs the RDF graph
:gt-data-2 together with the received Named Graph bka:bka-sg-1 (REQ-
4). The resulting Named Graph gt:gt-sg-2 is depicted in Listing 3. It contains
the created signature statements (lines 3 to 8), the RDF graph created by the
German Telecom :gt-data-2 (lines 10 to 25), and the BKA’s Named Graph
bka:bka-sg-1 (lines 27 to 38). The signature statements cover the graph sign-
ing function gt:gt-gsm-2 used for signing the graph data (line 4), the result-
ing signature value (line 5), and the public key certificate gt:gt-pck-2 of the
German Telecom (line 6). The Named Graph gt:gt-sg-2 contains the signa-
ture statements as its annotation graph and the two graphs :gt-data-2 and
bka:bka-sg-1 as its content graphs.

1 gt:gt-sg-2 {

3 gt:gt-sig-2
4 sig:hasGraphSigningMethod gt:gt-gsm-2 ;
5 sig:hasSignatureValue "YXJlIGJlbG9uZyB0byB1cw==" ;
6 sig:hasVerificationCertificate gt:gt-pck-2 ;
7 a sig:Signature .
8 ...

10 _:gt-data-2 {

12 gt:ipr-2
13 tec:hasIPAddress "141.26.83.115" ;
14 tec:hasSubnetMask "255.255.0.0" ;
15 DUL:hasSetting bka:pi-1, bka:ri-1 ;
16 a tec:IPv4AddressRegion .

18 gt:naq-2
19 DUL:hasRegion gt:ipr-2 ;
20 a tec:NetworkAddressQuality .

22 bka:pr-1
23 DUL:hasQuality gt:naq-2 .
24 ...
25 }
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27 bka:bka-sg-1 {

29 bka:bka-gsm-1
30 sig:hasGraphSigningMethod bka:bka-gsm-1 ;
31 sig:hasSignatureValue "TmV2ZXIgR29ubmEgR2l2ZSBZb3UgVXA=" ;
32 sig:hasVerificationCertificate bka:bka-pck-1 ;
33 a sig:Signature .
34 ...

36 _:bka-pattern-1 { ... }
37 _:bka-rules-1 { ... }
38 }
39 }

Listing 3. Example of iteratively signed graphs.

7.5 Example 4: Signing Multiple, Distributed Graphs

The last party in the scenario of Section 2 is the primary school. It retrieves the
Named Graph gt:gt-sg-2 from the German Telecom and the Named Graph
cw:cw-sg-3 from ContentWatch. In order to enrich the generic information en-
coded in cw:cw-sg-3 with specific regulation details, the school adds its own
regulation data as RDF graph :ps-data-4. This includes proxy servers run
by the school. The school then signs the graph :ps-data-4 together with the
two graphs cw:cw-sg-3 and cw:cw-sg-3 (REQ-5). This results in the Named
Graph ps:ps-sg-4 which is depicted in Listing 4. ps:ps-sg-4 contains the
graphs :ps-data-4, gt:gt-sg-2, and cw:cw-sg-3 as its content graphs and the
school’s signature statements as its annotation graph. The graph :ps-data-4

is shown in lines 10 to 25, the German Telecom’s graph gt:gt-sg-2 is shown
in lines 27 to 50 and ContentWatch’s Named Graph cw:cw-sg-3 is shown in
lines 52 to 62. The school’s signature graph is shown in lines 3 to 8 and contains
the used graph signing function ps:ps-gsm-4 (line 4), the created signature
value (line 5), and the school’s public key certificate ps:ps-pck-4 (line 6).

1 ps:ps-sg-4 {

3 ps:ps-sig-4
4 sig:hasGraphSigningMethod ps:ps-gsm-4 ;
5 sig:hasSignatureValue "QWxsIHlvdXIgYmFzZSBhcmU=" ;
6 sig:hasVerificationCertificate ps:ps-pck-4 ;
7 a sig:Signature .
8 ...

10 _:ps-data-4 {

12 ps:ipr-4
13 tec:hasIPAddress "141.26.83.116" ;
14 tec:hasSubnetMask "255.255.0.0" ;
15 DUL:hasSetting cw:pi-3, cw:ri-3 ;
16 a tec:IPv4AddressRegion .

18 ps:naq-4
19 DUL:hasRegion ps:ipr-4 ;
20 a tec:NetworkAddressQuality .

22 cw:pr-3
23 DUL:hasQuality ps:naq-4 .

23

Iterative Signing of RDF(S) Graphs, Named Graphs, and OWL Graphs: Formalization and Application, Fachbereich Informatik Nr. 3/2013



24 ...
25 }

27 gt:gt-sg-2 {

29 gt:gt-sig-2
30 sig:hasGraphSigningMethod gt:gt-gsm-2 ;
31 sig:hasSignatureValue "YXJlIGJlbG9uZyB0byB1cw==" ;
32 sig:hasVerificationCertificate gt:gt-pck-2 ;
33 a sig:Signature .
34 ...

36 _:gt-data-2 { ... }

38 bka:bka-sg-1 {

40 bka:bka-sig-1
41 sig:hasGraphSigningMethod bka:bka-gsm-1 ;
42 sig:hasSignatureValue "TmV2ZXIgR29ubmEgR2l2ZSBZb3UgVXA=" ;
43 sig:hasVerificationCertificate bka:bka-pck-1 ;
44 a sig:Signature .
45 ...

47 _:bka-pattern-1 { ... }
48 _:bka-rules-1 { ... }
49 }
50 }

52 cw:cw-sg-3 {

54 cw:cw-sig-3
55 sig:hasGraphSigningMethod cw:cw-gsm-3 ;
56 sig:hasSignatureValue "SXQncyBibHVlIGxpZ2h0" ;
57 sig:hasVerificationCertificate cw:cw-pck-3 ;
58 a sig:Signature .
59 ...

61 cw:cw-rules-3 { ... }
62 }
63 }

Listing 4. Example of multiple signed graphs.

7.6 Fulfillment of Security Requirements

The previous sections have demonstrated the fulfillment of the functional re-
quirements given in Section 4 by the use of different examples. The fulfillment of
the security requirements regarding authenticity of graph data (REQ-A) and
integrity of graph data (REQ-B) depends on the configuration of the used graph
signing function σN . A comprehensive security analysis of the graph signing func-
tion must consider all of its possible configurations. However, the serialization
function νN , the basic hash function λ, and the signature function ε can gener-
ally be used in any configuration. Thus, a security analysis of these functions can
be directly transferred to any specific graph signing function and graph signing
configuration, respectively. Since the main difference between the configurations
presented in Section 6 are the canonicalization function κN and the hash func-
tion for graphs λN , only these functions must be further considered for a security
analysis of a specific configuration.
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The serialization function νN transforms a graph into a set of bit strings.
Since this transformation does not require any cryptographic operations, the se-
rialization function does not affect the security of the graph signing function. The
cryptographic strength of the basic hash function λ determines the difficulty of
modifying the signed graph data without being noticed by the verification mech-
anism. The more collision-resistant the chosen hash function is, the less likely
are unauthorized modifications on the graph data. The National Institute of
Standards and Technology (NIST) recommends the use of SHA 2 [16] with an
output length of 256 bits [33]. The signature function ε determines the difficulty
for an attacker masquerading as another party. A cryptographically strong sig-
nature function prohibits such attacks. NIST recommends the use of the RSA
algorithm [5] with a key length of 2048 bits.

Analysis of Canonicalization Functions for Graphs The canonicalization func-
tions by Carroll [6] and Sayers and Karp [10] as used in configurations A and C do
not use any cryptographic operations. These functions are based on sorting the
statements of the graph and/or inserting additional statements into the canon-
icalized graph. These operations only require the graph to be signed as input.
They neither require any secret input values such as private signature keys nor
must they fulfill any particular security requirements such as collision-resistance.
The canonicalization function by Fisteus et al. [8] used in configuration B is
based on a hash function for graphs by the same authors. The canonicalization
function sorts the hash values computed from the hash function in order to pro-
duce a canonicalized graph. As explained above, sorting does not rely on any
cryptographic functions. However, the hash function of Fisteus et al. is based
on cryptographic operations. Thus, the security of the canonicalization function
depends on the security of the hash function for graphs which is further analyzed
below.

Analysis of Hash Functions for Graphs The hash function for graphs by Car-
roll [6] as used in configuration A basically corresponds to sorting the serialized
statements of a graph with a basic hash function. Thus, the security of this
function solely relies on the security of the used basic hash function. As recom-
mended by NIST [33], SHA-2 [16] with an output length of 256 bits can be used
as basic hash function. The hash function for graphs by Sayers and Karp [10]
used in configuration C computes the hash values of each statement in the graph
separately from each other and combines them into a single value using a com-
bining function. Computing the hash value of a statement is done by using a
basic hash function. The overall security of the hash function for graphs thus
relies on the used basic hash function as well as on the combining function. For
the basic hash function, SHA-2 [16] with an output length of 256 bits can be
used as recommended by NIST [33]. For the combining function, Sayers and
Karp suggest two different alternatives which are AdHASH and MuHASH as
introduced by Bellare and Micciancio [34]. AdHASH adds all hash values to be
combined modulo a large number m and MuHASH multiplies the hash values
modulo a large prime p. As identified by Wagner [35], m must be chosen such
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that m � 21600 in order to ensure 80 bit security. Wagner also states that this
would reduce the performance of the combining function. On the other hand, the
security of MuHASH is based on the discrete logarithm problem which is proven
to be hard to solve [34]. The size of p generally depends on the application in
which the combining function is used. For signing graph data, one can choose a
prime p with a length of at least 1024 bits.

The hash function for graphs by Fisteus et al. [8] as used in configuration B
computes a graph’s hash value by combining the hash values of all its statements
using a combining function. Thus, the overall security of this function is based
on the used combining function as well as on the function for creating the state-
ment’s hash values. Fisteus et al. use MuHASH [34] as the combining function.
The hash value of each statement is computed in four steps. First, each part
of the statement is hashed separately from each other using a basic hash func-
tion λ. Second, the hash value of each part is multiplied with a different constant
modulo a large prime p. The constant defines the position of the hashed part
within the statement. Third, the results of the modulo operation are combined
using XOR. Finally, a modulo operation is performed again on the XOR results
using the same prime p. This computation can basically be considered a variant
of MuHASH. Using (subj, pred, obj) as the statement to be hashed, the hash
function h is defined as follows:

h((subj, pred, obj)) = (((λ(subj) · ksubj) mod p)⊕ ((λ(pred) · kpred) mod p)⊕
((λ(obj) · kobj) mod p)) mod p (13)

The pre-defined constants ksubj , kpred, and kobj mark the position of a state-
ment’s part. Although this computation can be considered secure for a large
prime p, it is too complicated to be used for large graphs to be signed. An easier
approach for computing the hash value of a statement is presented by Mel-
nik [17]. Melnik computes a statement’s hash value by concatenating the hash
value of its subject, predicate, and object and hashing the result. The security
of this hash value is solely based on the security of the used hash function. As
recommended by NIST [33], SHA-2 [16] with an output length of 256 bits can
be used as such a hash function.

8 Conclusion

In this paper, we have presented a formally defined framework for iteratively
signing different types of graph data such as RDF(S) graphs, OWL graphs,
and Named Graphs. The framework allows for signing multiple and distributed
graphs and supports signing A-box and T-box knowledge. It also allows for sign-
ing different kinds of granularity such as single triples, ontology design patterns,
and whole graphs. We have discussed three different possible configurations of
the signing process and shown its practical applicability based on an extension
of TriG [13].
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The complete examples as well as the ontology used for modeling the sig-
nature graphs are available online. They can be found at our homepage: http:
//icp.it-risk.iwvi.uni-koblenz.de/wiki/Signing_Graphs.
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