
Fachbereich 4: Informatik

Distributed Natural Language

Search Using Graph-Based

Parsing

Masterarbeit

zur Erlangung des Grades

Master of Science

im Studiengang Informatik

vorgelegt von

Nadine Sina Kurz

Betreuer: Dipl.-Inform. Markus Maron. Betreuer, Arbeitsgruppe
Künstliche Intelligenz, Institut für Informatik, Fachbereich Informatik,
Universität Koblenz-Landau
Erstgutachter: Dipl.-Inform. Markus Maron. Betreuer, Arbeitsgruppe
Künstliche Intelligenz, Institut für Informatik, Fachbereich Informatik,
Universität Koblenz-Landau
Zweitgutachter: Prof. Dr.-Ing. Ulrich Furbach, Arbeitsgruppe Künstliche
Intelligenz, Institut für Informatik, Fachbereich Informatik, Universität
Koblenz-Landau

Koblenz, im Mai 2013

Kurzfassung

Wir präsentieren die konzeptuellen und technologischen Grundlagen einer verteil-
ten natürlichsprachlichen Suchmaschine, die einen graph-basierten Ansatz zum
Parsen einer Anfrage verwendet. Das Parsing-Modell, das in dieser Arbeit entwick-
elt wird, generiert eine semantische Repräsentation einer natürlichsprachlichen An-
frage in einem 3-stu�gen, übergangsbasierten Verfahren, das auf probabilistischen
Patterns basiert. Die semantische Repräsentation einer natürlichsprachlichen An-
frage wird in Form eines Graphen dargestellt, der Entitäten als Knoten und deren
Relationen als Kanten repräsentiert. Die präsentierte Systemarchitektur stellt das
Konzept einer natürlichsprachlichen Suchmaschine vor, die sowohl in Bezug auf
die einbezogenen Vokabulare, die zum Parsen der Syntax und der Semantik einer
eingegebenen Anfrage verwendet werden, als auch in Bezug auf die Wissensquellen,
die zur Gewinnung von Suchergebnissen konsultiert werden, unabhängig ist. Diese
Funktionalität wird durch die Modularisierung der Systemkomponenten erreicht,
die externe Daten durch �exible Module anspricht, welche zur Laufzeit modi-
�ziert werden können. Wir evaluieren die Leistung des Systems indem wir die
Genauigkeit des syntaktischen Parsers, die Präzision der gewonnenen Suchergeb-
nisse sowie die Geschwindigkeit des Prototyps testen.

Abstract

We present the conceptual and technological foundations of a distributed natural
language interface employing a graph-based parsing approach. The parsing model
developed in this thesis generates a semantic representation of a natural language
query in a 3-staged, transition-based process using probabilistic patterns. The se-
mantic representation of a natural language query is modeled in terms of a graph,
which represents entities as nodes connected by edges representing relations be-
tween entities. The presented system architecture provides the concept of a natural
language interface that is both independent in terms of the included vocabularies
for parsing the syntax and semantics of the input query, as well as the knowl-
edge sources that are consulted for retrieving search results. This functionality
is achieved by modularizing the system's components, addressing external data
sources by �exible modules which can be modi�ed at runtime. We evaluate the
system's performance by testing the accuracy of the syntactic parser, the precision
of the retrieved search results as well as the speed of the prototype.

5

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe und dass die Ar-
beit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgele-
gen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle
Ausführungen, die wörtlich oder sinngemäÿ übernommen wurden, sind als solche
gekennzeichnet.

Die Vereinbarung der Arbeitsgruppe für Studien- und Abschlussarbeiten habe
ich gelesen und anerkannt, insbesondere die Regelung des Nutzungsrechts.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einver-
standen.

ja � nein �

Der Verö�entlichung dieser Arbeit im Internet stimme ich zu. ja � nein �

Koblenz, den 31. Mai 2013

Nadine Sina Kurz

Contents

1 Introduction 21
1.1 Motivation . 21
1.2 Structure . 22

2 Related Work 25
2.1 Deep Parsing . 26
2.2 Shallow Parsing . 30

2.2.1 Part-Of-Speech Tagging . 30
2.2.2 Chunking . 33
2.2.3 Named Entity Recognition 34
2.2.4 Semantic Role Labeling . 35

2.3 Data Retrieval . 36
2.3.1 Natural Language Interfaces to Databases 36
2.3.2 Natural Language Interfaces to RDF 38
2.3.3 Distributed Natural Language Interfaces 40

2.4 Result Processing . 42

3 Requirements 45
3.1 Functional Requirements . 45

3.1.1 Syntactic Parsing . 45
3.1.2 Data Retrieval . 49
3.1.3 Result Processing . 51
3.1.4 User Interfaces . 52

3.2 Non-functional Requirements . 52
3.2.1 System Design . 53
3.2.2 Data Sources . 54
3.2.3 Interfaces . 55

4 The Model 59
4.1 Tokenization . 59

4.1.1 Segmentation . 60

7

8 CONTENTS

4.1.2 Token Retrieval . 61
4.2 Semantic Interpretation . 65

4.2.1 Node Generation . 69
4.2.2 Relation Generation . 71
4.2.3 Focus Identi�cation . 73

5 Architecture 79
5.1 Components . 79

5.1.1 Syntactic Parser . 81
5.1.2 Query Performer . 83
5.1.3 Result Processor . 85

5.2 Interfaces . 86
5.2.1 Data Structures . 86
5.2.2 Procedural Interfaces . 87

6 Prototype 93
6.1 Vocabulary Modules . 93
6.2 Data Modules . 96

6.2.1 SPARQL Endpoints . 97
6.2.2 Application Programming Interfaces 101

6.3 User Interfaces . 105
6.3.1 Mobile Interface - Integration in the NAPA Pedestrian Nav-

igation System . 105
6.3.2 Web Interface . 106

7 Evaluation 111
7.1 Goals . 111
7.2 Methodology . 112

7.2.1 Evaluation Metrics . 112
7.2.2 Test Cases . 114

7.3 Results . 116
7.3.1 System Accuracy . 116
7.3.2 System Scope . 118
7.3.3 Processing Time . 119

7.4 Discussion . 122

8 Conclusion 125

A Document Type De�nitions (DTD)s of System Interfaces 127
A.1 DTD of Vocabulary Module Responses 127
A.2 DTD of Data Module Responses . 127

CONTENTS 9

A.2.1 DTD of System Responses 128

B Con�guration 129
B.1 Vocabulary Module Con�guration 129
B.2 Data Module Con�guration . 129

C Semantic Graph Computation 131

List of Tables

2.1 Example of a set of rules comprising a simple grammar (1) 27
2.2 Lexical disambiguation by Part-of-Speech (POS) tagging (2) 31

5.1 Vocabulary Module request parameters 88
5.2 Data Module request parameters 89
5.3 System request parameters . 91

6.1 Lexicon extract of entities extracted from the DBpedia corpus . . . 95
6.2 Extract from the regular expression set for date recognition 95
6.3 Excerpt of the mapping between DBpedia categories and categories

of the Eventful Application Programming Interface (API) 102

7.1 Examples of test case queries of di�erent question types 115
7.2 Average accuracies of the parser's components 118
7.3 Average harmonic mean of the system's search results 119
7.4 Average share of the system's components of the overall processing

time in percent . 120

11

List of Listings

2.1 Sample rule of a JAPE grammar (3) 39
5.1 Vocabulary Module token request 88
5.2 Vocabulary Module token response 88
5.3 Data Module search request . 89
5.4 Data Module search response . 90
5.5 Search response of the Natural Language Interface (NLI) 91
6.1 con�g.txt for the data module accessing the Eventful API 97
6.2 SPARQL entity search . 97
6.3 SPARQL entity meta search for the query of Listing 6.2 98
6.4 SPARQL fact search . 99
6.5 Location-based SPARQL entity search 100
6.6 IQR triples generated for the query "concerts in january" 101
6.7 Search request sent by the NAPA system 106
7.1 Sample SPARQL query to retrieve entities for test cases 115
A.1 Token response of a Vocabulary Module 127
A.2 Search response of a Data Module 127
A.3 Search response of the system . 128
B.1 Vocabulary Module con�guration �le (con�g.txt) 129
B.2 Data Module con�guration �le (con�g.txt) 129

13

List of Figures

2.1 Sample parse tree with the grammar presented in Table 2.1 (1) . . . 28

2.2 Sample architecture of a NLI to databases presented by (4) 37

4.1 Term Sequence Set of the input query "birds of new zealand" 61

4.2 Token Sequence Set generated from the term sequences of Figure 4.1 63

4.3 3-staged graph generation from a token sequence 67

4.4 Simple pattern indicating the generation of a graph branch from a
token . 68

4.5 Node Pattern employment on a token sequence (c,i) 72

4.6 Relation Pattern Employment . 74

4.7 Focus Pattern Employment . 77

5.1 System Architecture consisting of the three main components Syn-
tactic Parser, Query Performer and Result Processor 80

5.2 Architecture of the Syntactic Parser with modularized access to
system vocabularies . 82

5.3 Architecture of the Query Performer with modularized access to the
system's knowledge sources . 83

5.4 System interfaces . 87

6.1 Architecture and data sources of the prototypical parser and vocab-
ulary modules . 94

6.2 Data modules of the prototype with remote access to SPARQL end-
points and APIs . 96

6.3 Search response of a fact search within the Web frontend 100

6.4 Search response of a search using speci�ed parameters within the
Web frontend . 103

6.5 Search response of a location-based search within the Web frontend 104

6.6 Display of search results within the NAPA mobile application (5) . 107

6.7 Display of search result meta data in NAPA (5) 107

6.8 Search results of a general entity search displayed in the Web frontend108

15

16 LIST OF FIGURES

7.1 Average parsing accuracies of the prototype's query types 117
7.2 Average precision and recall of system results 119
7.3 Average processing times of di�erent query types 120
7.4 Average processing times of the systems components of di�erent

query types . 121

C.1 Query speci�cation comprising of a text form and the vocabulary
selection as well as the tokenization of the query 131

C.2 Semantic interpretation of the query 132
C.3 Visualization of the semantic graph realized by employing the JavaScript

InfoVis Toolkit . 132
C.4 Retrieval of related location-based concepts for a query's focus type 133

List of Abbreviations

API Application Programming Interface

CFG Context-Free Grammar

DBMS Database Management System

DM Data Module

DTD Document Type De�nition

FOL First-Order Logic

HMM Hidden Markov Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDF Inverse Document Frequency

IP Internet Protocol

IQR Intermediate Query Representation

JAPE Java Annotation Patterns Engine

LGD LinkedGeoData

LOD Linked Open Data

ML Maximum Likelihood

NAPA Navigationsempfänger Chipsatz für Personennavigation mit
Anwendungen bei erhöhter Genauigkeit

NER Named Entity Recognition

17

18 LIST OF FIGURES

NL Natural Language

NLI Natural Language Interface

NP Noun Phrase

OWL Web Ontology Language

POS Part-of-Speech

PCFG Probabilistic Context-Free Grammar

QA Question Answering

RAM Random Access Memory

RDF Resource Description Framework

REST Representational State Transfer

SGML Standard Generalized Markup Language

SPARQL SPARQL Protocol And RDF Query Language

SQL Structured Query Language

SRL Semantic Role Labeling

TAG Tree-Adjoining Grammar

URI Uniform Resource Identi�er

URL Uniform Resource Locator

VM Vocabulary Module

XML Extensible Markup Language

Chapter 1

Introduction

1.1 Motivation

The World Wide Web provides an enormous supply of data that allows to publish
and access documents as part of a global information space (6). The development of
Semantic Web Technologies has additionally provided a broad variety of methods
to store and query knowledge using Web standards and a common data model
(7). The availability of structured data increases the necessity for tools bridging
the gap between formalized database query languages and the informal natural
language of human users (8) (9). To retrieve information from a structured data
source, users have to acquire knowledge about the formal query language and the
internal organization of its underlying database management system.

Natural Language Interfaces (NLI)s provide a simple and intuitive way for users
to enter an informal query and to shift the task of processing the query to the server
side in an automated fashion. NLIs facilitate users the access to structured data
by taking over the task of generating a database query from a natural language
sentence, retrieving query results from the database and presenting the search
results to the user in a human-readable form.

A signi�cant bene�t of NLIs is their large spectrum of possible areas of appli-
cation, reaching from general-purpose search engines to highly speci�ed interfaces
optimized for speci�c tasks. With the increasing adoption of web and mobile
services o�ering personalized and location-based services, the possible areas of
application for natural language systems has expanded further: NLIs could be
employed for querying personal applications such as calendars, contact lists or
location-based services. However, the access to customized applications generally
requires the employment of highly speci�ed search functionalities, resulting in a
high number of possible interfaces. A preferable way of employing a NLI would
thus be the integration of multiple data sources in one NLI, providing a simple

21

22 CHAPTER 1. INTRODUCTION

interface to users while grounding on a large variety of knowledge. Ideally, a dis-
tributed NLI would accept any kind of question, automatically recognize what the
user is searching for and consult the relevant data source to retrieve an answer.

This thesis presents a framework for a distributed natural language search
system, comprising of a novel approach for processing natural language queries
with a graph-based parsing model as well as a modularized system architecture
that is both independent in terms of the system's vocabularies and knowledge
sources. The presented parsing model combines methods of shallow and deep
natural language parsing, consisting of a tokenization as well as a 3-staged semantic
interpretation of a natural language query using speci�ed patterns.

We develop a modularized system architecture which enables the system to be
based on multiple vocabularies for parsing natural language as well as multiple,
possibly heterogeneous knowledge sources for information retrieval. Our goal is
to develop a natural language interface which integrates both the employment of
multiple vocabularies to dynamically adapt the domain of possible queries the sys-
tem is able to parse, as well as the employment of multiple knowledge sources for
extending the scope of possible search results. The system prototype is able to
answer general knowledge-based questions as well as location-based questions con-
sidering user-speci�c meta data included in the query parameters. We demonstrate
the system's utilization as an integrated module within the mobile application of
the pedestrian navigation system NAPA1 as well as with a web-based interface.

1.2 Structure

This thesis is structured as follows: Chapter 2 provides an overview about the
related work of the presented thesis, which consists of the major approaches con-
sidering deep and shallow natural language parsing as well as NLI architectures
for query generation and possibly distributed information retrieval. We will dis-
cuss the concepts of deep parsing as well as challenges of approaches using lexi-
calized grammars and probabilistic methods. Then we will introduce the major
approaches of shallow parsing such as Part-of-Speech Tagging, Chunking, Named
Entity Recognition and Semantic Role Labeling. We will then discuss the issue
of how to generate database queries for various database management systems
from the syntactic parse as well as the issue of how to query multiple, possibly
heterogeneous databases. Finally, we will show some approaches considering how
to merge and rank search results retrieved from di�erent data sources. In chap-
ter 3 we will de�ne the requirements of our system. The functional requirements
address the issue of query parsing and search results retrieval as well as the issue

1http://projekt-napa.de

1.2. STRUCTURE 23

of user interaction. The non-functional requirements focus on the issues of system
design, deployment and system interfaces. The developed parsing model will be
introduced in chapter 4. It consists of the tasks of identifying semantic tokens
within the natural language query (tokenization) as well as the generation of a
graph-based logical intermediate representation by employing speci�ed patterns
(semantic interpretation). In chapter 5 we will present the architecture for a dis-
tributed natural language search system. The system will be independent both
in terms of the underlying vocabulary for parsing natural language as well as for
the data sources consulted for �nding search results. A prototype of the system
will be presented in chapter 6. We will demonstrate the implementation of the
foundations presented in chapter 4 and 5, its vocabularies and knowledge sources.
The employment of the prototype for users will be demonstrated by integrating
the system in the mobile application of the pedestrian navigation system NAPA
as well as a browser-based web interface. An evaluation of the system prototype
is presented in chapter 7, comprising of the testing of the system accuracy, the
system scope in terms of precision and recall of the system, as well as a measure-
ment of the prototype's query processing time. We will then discuss the strengths
and weaknesses of the system's components and give an outlook for further devel-
opment of the system. A summary of the presented approach is given in chapter
8.

Chapter 2

Related Work

This chapter provides an introduction about the theoretical and conceptual foun-
dations of the methods employed by a natural language interface. Based on the
architectural designs of a NLI presented by (10) and (4), we divide the scope of a
distributed NLI's applied concepts into three stages: 1) The parsing of a natural
language query, 2) the knowledge retrieval of various data sources, and 3) the ag-
gregation of the distributed results to a �nal search response. Within this context,
the purpose of syntactic parsing is the analysis of a natural language sentence and
the generation of an intermediate representation depicting the natural language's
semantics in a logical form able to be processed further by succeeding system com-
ponents. Though the broad variety of processing approaches, (11) divides natural
language parsing into approaches performing a detailed linguistic analyis based
on a formal grammar theory (Deep Parsing), and approaches intending to pro-
vide lighter, more �exible approaches that often focus on solving a particular task
rather than performing a full parse (Shallow Parsing). Section 2.1 will outline the
main de�nitions of Deep Parsing and the concepts of lexicalized and probabilistic
parsing. The concept of shallow parsing techniques as well as the main methods
Part-of-Speech Tagging, Text Chunking, Named Entity Recognition and Seman-
tic Role Labeling are introduced in Section 2.2. The second aspect considering
the concepts of a Question Answering (QA) system is the process of information
retrieval from knowledge sources in order to generate answers. We will present ap-
proaches to retrieve data from varying data formats such as relational databases
and semantic triplestores. Further we will introduce approaches considering dis-
tributed data retrieval from multiple knowledge sources. The third aspect is the
generation of a distributed system's �nal result set. Section 2.4 addresses the issue
of merging and ranking results from di�erent data sources.

25

26 CHAPTER 2. RELATED WORK

2.1 Deep Parsing

Deep natural language parsing as de�ned by (11) is characterized by the ambition
to apply as much linguistic knowledge as possible to analyze natural language
utterances, realizing a detailed syntactic analysis based on a linguistic grammar
theory. A distinctive feature of deep parsing methods is the declarative encoding
of linguistic knowledge in formal grammars, separating the syntax and semantics
of a language from the parsing algorithms (12). The generally rule-based systems
describe a language's linguistics abstract from concrete words (11).

Grammars A grammar can be interpreted as a set of transformation rules for
generating a language (13), i.e. a set of rules that manipulate symbols (1). A
grammar rule consists of terminal symbols that constitute elements of the target
language, and non-terminal symbols (or variables (14)), which can be interpreted
as auxiliary symbols (1). A grammar rule is employed by substituting the left-
hand side by the right-hand side of the rule (13), the sequence of substitutions to
obtain a string is called a derivation (14). The beginning of the transformation
is denoted with a non-terminal S called the start symbol, which is substituted
by a word according to the grammar rules (13). As terminals are generally not
substituted further, the transformation �nishes as soon as a word consists only
of terminal symbols (13). A special case of a formal grammar is a set of rules
containing a non-terminal symbol V on the left-side of a substitution rule, and
an arbitrary sequence of non-terminal and terminal symbols w on the right side.
The set of substitution rules thus is of the form V → w, referred to as a context-
free grammar (13). The de�nition of a grammar (13), in particular a context-free
grammar (1) (14) (12), is read as follows:

De�nition 1 (Context-Free Grammar)
A context-free grammar is a four-tuple G = (V,Σ, P, S), where

• V is a �nite set of non-terminal symbols

• Σ is an alphabet of terminal symbols

• P ⊆ V × (V ∪ Σ)∗ is a set of rules

• S ∈ V is the start symbol

The language generated by a grammar can be de�ned as the set of all termi-
nal words that can be generated from the start symbol S by employment of the
grammar's substitution rules (13) (14):

L(G) := {w ∈ Σ∗ | S =⇒∗G w} (2.1)

2.1. DEEP PARSING 27

As it may be possible to apply multiple rules on a word, the generation of a
word w′ from a word w is an indetermined procedure (13). The employment of a
context-free grammar for generating each string of a language is described by (14)
as follows:

1. Write down the start variable. It is the variable on the left-hand side of the
top rule, unless speci�ed otherwise.

2. Find a variable that is written down and a rule that starts with that variable.
Replace the written down variable with the right-hand side of that rule.

3. Repeat step 2 until no variables remain

The sequence of substitutions to obtain a string, called the derivation, is for-
mally de�ned by (1) as follows:

De�nition 2 (Derivation)
Let G = (V,Σ, P, S) be a grammar. The set of forms induced by G is (V ∪Σ)∗. A
form α immediately derives a form β, denoted by α⇒ β, if and only if there exist
γl, γr ∈ (V ∪Σ)∗ such that α = γlAγr and β = γlγcγr, and A→ γc is a rule in P .
A is called the selected symbol.

A sample set of grammar rules is presented by (1), including a set of terminals
{the,cat,in,hat} and a set of non-terminals {D,N,P,NP,PP}:

D → the NP → D N
N → cat PP → P NP
N → hat NP → NP PP
P → in

Table 2.1: Example of a set of rules comprising a simple grammar (1)

(1) provides an intuitive description of a grammar rule interpretation: If we
interpret NP as the syntactic category noun phrase, D as determiner, and N as
noun, then what the rule NP → D N informally means is that one possible way
to construct a noun phrase is by concatening a determiner with a noun. More
generally, a rule speci�es one possible way to construct a "phrase" of the category
indicated by its head: this way is by concatening phrases of the categories indicated
by the elements in the body of the rule (1). A derivation can be visualized by a
parse tree consisting of a �nite set of vertices connected by a �nite set of branches
(1). (13) de�nes the following criteria for a parse tree B = (W,E, v0) for a context-
free grammar:

• Each node v ∈ W is denoted with a symbol from V ∪ T ∪ {ε}

28 CHAPTER 2. RELATED WORK

• The root v0 is denoted with S

• Each inner node is denoted with a variable of V

• Each leaf ist denoted with a symbol of T ∪ {ε}

• If v ∈ W is an inner node with the child nodes v1, ..., vk, and v is denoted
with A and vi is denoted with Ai, then A→ A1...Ak ∈ R

• A leaf denoted with ε has no neighboured leaves

A sample parse tree provided by (1) from the grammar shown above is depicted
in Figure 2.1.

Figure 2.1: Sample parse tree with the grammar presented in Table 2.1 (1)

Lexicalization A major aspect of natural language parsing using grammars is
whether a parse is based on individual words rather than on a word's part of speech.
A lexicalized grammar realizes syntactic structures that are sensitive to terminal
symbols, also called lexical elements (12). A common solution is to incorporate
a lexical element as a so-called head in each non-terminal of the Context-Free
Grammar (CFG) (12). (15) de�nes a grammar formalism as lexicalized if it consists
of

• a �nite set of structures to be associated with lexical items, which usually
will be heads of these structures

2.1. DEEP PARSING 29

• an operation or operations for composing the structures. The �nite set of
structures de�ne the domain of locality over which constraints are speci�ed
and these are local with respect to their lexical heads

(12) describes a model called bilexical context-free grammars, which is a CFG
with non-terminal symbols of the form A[a], where a is a terminal symbol and A
is a delexicalized non-terminal. Every rule in a bilexical context-free grammar has
one of the following forms (12):

A[a]→ B[b] C[a]

A[a]→ B[a] C[c]

A[a]→ B[a]

A[a]→ a

A general parsing strategy for Tree-Adjoining Grammar (TAG)s based on lex-
icalized grammars is presented by (15). (16) proposes a statistical parsing model
using lexicalized context-free grammars. A general parsing strategy with lecialized
grammars applied to TAGs is presented by (15). The bene�ts of lexicalization
have been discussed in various works. An approach of an unlexicalized parser
that shows a signi�cantly well performance is presented by (17). (17) points out
that unlexicalized Probabilistic Context-Free Grammar (PCFG) parsers are much
simpler to build and optimize. On the other hand, (2) argues that lexicalized
parsers achieve signi�cantly higher precision-recall accuracies up to 87-percent to
88-percent precision-recall. However, (2) also points out the sparse data problems
occuring when gathering statistics on individual words, such as the occurrence of
new words or new word combinations where no data is collected yet.

Probabilistic Parsing A common problem in natural language processing is the
syntactic ambiguity of terms, i.e. words or sentences with two or more possible
meanings. A natural language parser thus is required to be able to compute the
most adequate parse with respect to the term's context. A possible solution to
ambiguity is the introduction of probabilistic methods in natural language parsing.
Calculating a probabilistic value for each possibility, a probabilistic parser may
choose the most likely parse on the base of a heuristic.

A simple way to add probability to a formal grammar is to associate each
grammar rule with a probability (12). A de�nition of a PCFG is presented by
(12):

De�nition 3 (Probabilistic Context-Free Grammar)
A probabilistic context-free grammar is of the form G = (V,Σ, P, S, p), where

30 CHAPTER 2. RELATED WORK

(V,Σ, P, S) is a context-free grammar and p is a mapping from rules in P to be
real numbers between 0 and 1.

(12) de�nes a PCFG as proper if for every non-terminal A, p de�nes a proba-
bility distribution over the rules with left-hand side A, i.e.∑

A→α

p(A→ α) = 1 (2.2)

(18) describes the statistical parsing model as follows: The model de�nes a
conditional probability P (T |S) for each candidate parse tree T for a sentence S.
The parser itself is an algorithm which searches for the tree Tbest, that maximises
P (T |S). The probability of a parse is calculated as the product of the probabilities
for each of the rules used therein (2) (12). If s is the entire sentence, π is a particular
parse of s, c ranges over the constituents of π, and r(c) is the rule used to expand
c, then

p(s, π) =
∏
c

p(r(c)). (2.3)

Probabilistic approaches have been presented by a variety of works (19) (20).

2.2 Shallow Parsing

Other than deep parsing, shallow parsing techniques as described by (11) (21)
intend to produce a more lightweight, �exible representation of a natural language
input and often focus on performing a particular task rather than a full parse.
Shallow parsing techniques generally segment a text into logical semantic units
and retrieve their semantic roles within the sentence's context.

This section will provide an overview of the most important techniques of
shallow natural language parsing. First we will introduce Part-of-Speech tagging,
which describes the disambiguation of words within a sentence (22). This anal-
ysis is extended by text chunking, which focuses on the identi�cation of logical,
non-overlapping groups of words in a text (chunks) (23). A more di�erentiated
recognition is provided by Named Entity Recognition (NER), which recognizes
speci�c instances within a text. A de�ned role of a logical unit is identi�ed by
semantic role labeling.

2.2.1 Part-Of-Speech Tagging

Part-of-Speech (POS) tagging describes the identi�cation of a word's syntactic
category within the context of its sentence such as noun, pronoun, verb, adjective
or adverb (24) (11). A POS tagger separates a natural language sentence into

2.2. SHALLOW PARSING 31

segments and enriches the corpus by the semantic roles of each word. A major
challenge of POS tagging is lexical disambiguation: (25) points out that, depending
on the context, e.g. the word "store" can be either a noun, a �nite verb or an
in�nitive. An example of the possible parts of speech of the words in a sentence is
presented by (2):

The can will rust
det modal-verb modal-verb noun

noun noun verb
verb verb

Table 2.2: Lexical disambiguation by POS tagging (2)

The problem of tagging has been described by (26) as follows: Consider a
sentence consisting of a set of words W = w1w2...wn, and a sequence of tags
T = t1t2...tn, of the same length. The pair (W ,T) constitutes an alignment,
where a word wi has been assigned the tag ti. Therefore, a tagging procedure is
a procedure φ which selects a sequence of tags (and so de�nes an alignment) for
each sentence.

φ : W → T = φ(W) (2.4)

POS tagging has been the �eld of research of various works. An introduc-
tion to POS tagging and partial parsing is given by (22). An approach to apply
transformation-based error-driven learning to POS tagging is presented by (27).
POS tagging approaches can generally be divided into rule-based and statistical
systems.

Rule-based POS tagging According to (24), rule-based POS approaches as-
sign tags to words based on a lexicon and a set of hand-crafted or learned rules.
Early approaches employing taggers with hand-constructed rules were presented
by (28) (29). To facilitate the process of acquiring rules for POS tagging, various
techniques for acquiring rules automatically have been developed. (30) presents a
procedure for automatically acquiring a set of disambiguation rules for an existing
deterministic parser on the basis of tagged text. A simple disambiguation rule
presented by (30) looks like this:

[PREP + TNS] = TNS [N + V]

indicating that a word that can be a preposition or a tense marker (i.e. the word
to) followed by a word which can be a noun or a verb is a tense marker followed
by a verb (30).

32 CHAPTER 2. RELATED WORK

(31) presents an approach which automatically acquires its rules and tags. As
advantages of rule-based over stochastic POS taggers (31) names a vast reduction
in stored information and a better portability. An approach inspired by (31) that
implements a �nite-state tagger is presented by (32). On the other hand, (22)
points out the amount of e�ort necessary to write the disambiguation rules of
rule-based POS taggers.

Statistical POS tagging Statistical tagging approaches use a variety of prob-
abilistic techniques in order to assign POS tags to unseen text. (26) describes
a probabilistic formulation of the tagging problem as alignments generated by a
probabilistic model according to a probability distribution:

p(W,T) (2.5)

Depending on the criterion chosed for evaluation, (26) formulates the optimal
tagging procedure:

• for evaluation at sentence level: Choose the most probable sequence of tags
for the sentence (Viterbi tagging)

φ(W) = arg max
T

p(T/W) = arg max
T

p(W,T)

• for evaluation at word level: Choose the most probable tag for each word in
the sentence (Maximum Likelihood (ML) tagging)

φ(W)i = arg max
t
p(ti = t/W) = arg max

t

∑
T :ti=t

p(W,T)

(2) describes a statistical model of POS tagging as follows: The most common
tag t for the ith word of a sentence wi, is the one that maximizes the probability
p(t|wi), that is, by �nding the t that maximizes the probability of a tag given the
word.

arg max
t
p(t|wi) (2.6)

Extended to an entire text, (2) describes that the parser looks for the sequence
of n tags t1,n that maximizes the product of the individual word probabilities

arg max
t1,n

n∏
i=1

p(ti|wi) (2.7)

2.2. SHALLOW PARSING 33

Although (2) points out the signi�cant accuracy of this algorithm, it does not
consider a word's context yet. A possible approach for context-speci�c probabilistic
tagging is proposed by (2) by collecting statistics on the probability of tag ti−1

arg max
t1,n

∏
i

p(ti|ti±1)p(wi|ti) (2.8)

In this method (2) takes into account two probabilities: 1) the probability p(ti|ti−1)
of a tag ti given the previous tag ti−1 as context and 2) the probability of a word's
possible tags p(wi|ti).

Probabilistic approaches using Markov models have been presented by (26)
(33). A probabilistic POS tagging approach using decision trees is proposed by
(25). (34) introduces a memory-based approach to POS tagging, where the POS
tag of a word in a particular context is extrapolated from the most similar cases
held in memory. A statistical model using a maximum entropy model for POS
tagging is presented by (35).

An evaluation of various POS tagging approaches is performed by (36). POS
tagging provides a �rst classi�cation of a sentence's words and is thus implemented
as a preceding step of an extensive analysis by various works (37).

2.2.2 Chunking

Text chunking as de�ned by (23) describes the dividing of text into syntactically
related non-overlapping groups of words. (38) describes that a typical chunk con-
sists of a single content word sourrounded by a constellation of function words,
matching a �xed template. In this context, (38) de�nes chunks in terms of major
heads, that is, all content words except those that appear between a function word
f and the content word that f selects. As an illustrative example, (38) points
out that the sentence a man proud of his son contains proud as a major head,
while it is not a major head in the proud man. As most chunks consist of multiple
words, (38) points out that lexical ambiguity is often resolvable within chunks. In
this context, text chunking provides a wider spectrum than POS tagging. Vari-
ous works consider POS tagging as a part of chunking (39), if it is assumed each
character as a token.

An example of a non-overlapping sentence segmentation is presented by (23),
where chunks are represented as groups of words between square brackets and a
tag next to the open bracket denoting the type of the chunk:

[NP He] [V P reckons] [NP the current account de�cit] [V P will narrow]
[PP to] [NP only £ 1.8 billion] [PP in] [NP September] .

34 CHAPTER 2. RELATED WORK

Considering the types of chunks, (40) distinguishes between noun phrases(NP),
verb phrases(VP), adverbs (ADVP) and adjectives (ADJP), prepositions (PP) and
clauses introduced by a subordinating conjunction (SBAR) as well as conjunctions
(CONJP), verb particles (PRT), interjection phrases (INTJ), list markers (LST)
and unlike coordinated phrases (UCP).

Machine learning has been applied to chunking by (41), who show that it
becomes possible to easily apply transformation-based learning by representing
text chunking as a kind of tagging problem. They employ a chunk tag set I, O,B,
where words marked I are inside some non-recursive base noun phrase, those
marked O are outside, and the B tag is used to mark the left most item of a base
noun phrase which immediately follows another baseNP.

(42) presents an approach for memory-based shallow parsing techniques to
�nd labeled chunks and grammatical relations in a sentence. An approach for
memory-based learning to fast Noun Phrase (NP) chunking is presented by (43).
(39) introduces a framework for chunking based on Support Vector Machines.

2.2.3 Named Entity Recognition

NER is the task of classifying nouns in a document in one of a de�ned set of pos-
sible categories, where (44) names persons, organizations and locations as possible
categories. Other than other shallow techniques and deep parsing techniques an-
alyzing the input sentence's structure, NER concentrates on concrete words and
the association of nouns with speci�c entities. While POS tagging and chunking
are focused on identifying the syntactic role of one or multiple words, NER con-
centrates on identifying the concrete role of a noun. For example, (45) uses the
following categories: person, location, organization, date, time,percentage, mon-
etary value, and "none-of-the-above". NER is generally performed by marking a
sentence with Standard Generalized Markup Language (SGML) tags. According
to (45) (46), the sample sentence "X is an analyst who has been in Koblenz since
2010" would therefore be marked with SGML tags as follows:

<ENAMEX TYPE='PERSON '>X</ENAMEX >

is an analyst who has been in

<ENAMEX TYPE='LOCATION '>Koblenz </ENAMEX > since

<TIMEX TYPE='DATE '>2010</TIMEX >.

While the intuition of POS tagging is to de�ne the role of each word in the
input string in terms of its syntactic role within the sentence's context, NER
identi�es single instances and the categories they belong to. Statistical NERs are
described by (47) as �nding the sequence of tags that maximizes the probability
p(N |S), where S is the sequence of words in a sentence, and N is the sequence
of named-entity tags assigned to the words in S. Several techniques have been

2.2. SHALLOW PARSING 35

applied to NER, such as Maximum Entropy (47) (45), Hidden Markov models
(48) and Conditional Random Fields (49).

To retrieve the type of a noun, most NER systems employ large lists of names of
people, organizations, locations etc. However, (46) presents an approach for NER
with relatively small gazetteers combining rule-based grammars with statistical
models that achieves good performance. (50) present a NER recognition system
using an Hidden Markov Model (HMM)-based chunk tagger. An approach using
the Wikipedia1 corpus for NER is presented by (51). A detailed analysis of existing
NER approaches is found in (52).

2.2.4 Semantic Role Labeling

Semantic Role Labeling (SRL) as de�ned by (53) describes the task of analyzing
a sentence's target verbs and its constituents in the sentence which �ll a semantic
role. Semantic roles are a set of de�ned syntactic roles, which can range from the
very speci�c to the very general (54). (53) de�nes the structure of the arguments
in a proposition as non-overlapping and sequentially organized. (53) explains how
an utterance argument (A1) can be split into two phrases by the following example:

"[A1The apple], said John, [C−A1is on the table]"

Other than NER, semantic role labeling does not focus on nouns, but rather
seeks to identify coherent syntactic structures within a sentence and label them
with possibly customized roles. A variety of works using di�erent techniques has
been focused on SRL, such as probabilistic models (54), generative models (55) or
Support Vector Machines (56).

Section 2.1 and 2.2 presented an introduction of the main approaches of deep
linguistic systems as well as methods of shallow syntactic analyses. An analysis of
the e�ciency of shallow parsing has been performed by (21), whose experiments
have shown that a shallow parser trained on speci�c tasks may perform more ac-
curately and more robustly than a full parser, in particular in handling ill-formed
real-world sentences. The distinction between deep and shallow parsing does not
mean that both approaches have to be implemented separately. For example, shal-
low methods can be employed as a preceding step for providing �rst approximate
results for a subsequent detailed syntactic analysis. (11) points out that that the
integration of both approaches is also economically motivated, mainly driven by
the expensive, time-consuming grammar development of deep systems. Therefore,
(11) proposes the following task sharing: Domain-speci�c extensions could be con-

1http://wikipedia.org

36 CHAPTER 2. RELATED WORK

tributed by shallow systems, while the core linguistic and grammar theory-based
knowledge system is performed by deep parsing. A logic-based question answering
system employing an automated theorem prover to infer correct replies is presented
by (57). Beside an analysis of a natural language sentence based on deep question
parsing, the approach also employs shallow feature extraction and reranking. The
semantic representation of a natural language sentence is transformed into a logical
query comprising of a conjunctive list of query literals. The approach has further
been expanded by a machine learning solution for avoiding wrong answers (58).

2.3 Data Retrieval

After parsing a natural language query and generating an intermediate query rep-
resentation, a natural language interface retrieves a search response by computing
one or multiple queries for consulting the system's knowledge base. This section
will address the issue of data retrieval for computing search responses for natural
language interfaces. In order to consult a knowledge base, NLIs have to generate a
query from the semantic representation of the natural language input and process
the results retrieved by the knowledge base. NLIs thus require knowledge about
the database's internal organization as well as a formalism to map the logical repre-
sentation of a natural language input into a valid database query. This section will
introduce the challenges and the main approaches for generating database queries
from natural language. We will address the issue of generating queries by systems
relying on relational databases as well as Resource Description Framework (RDF)
triplestores. We will further outline the concept of distributed NLIs, which retrieve
data from multiple, possibly heterogeneous knowledge sources.

2.3.1 Natural Language Interfaces to Databases

As (4) outlines, most early approaches to NLIs have been based on relational
databases generating Structured Query Language (SQL) queries from a natural
language sentence, with the �rst NLIs developed in the late sixties and early sev-
enties. NLIs consulting knowledge sources based on relational databases need to
transform the syntactic parse into an appropriate SQL query. For this purpose the
system requires to have information about the databases's internal schema as well
as a mechanism how to map elements from the Intermediate Query Representation
(IQR) into a valid database query. An overview of NLI approaches relying on
databases is presented by (4), including the proposal of a possible architecture
of a NLI to databases, depicted in Figure 2.2. As a NLIs main components, (4)
proposes a parser and a semantic interpreter for generating an intermediate repre-

2.3. DATA RETRIEVAL 37

sentation of the query, a database query generator for consulting a database and
a response generator.

Figure 2.2: Sample architecture of a NLI to databases presented by (4)

One of the major challenges of the automated generation of valid SQL queries
is the correct association of fragments of the natural language query with elements
of the database schema. (37) points out the SELECT, FROM and WHERE clause as
a SQL query's main constituents, which have to be associated with elements of
the natural language query. For generating the conditions of the WHERE statement,
(37) proposes a shortest path approach that associates elements of the natural
language query with relations or �elds of the database structure.

(59) introduces a NLI to databases with de�ning a notion of semantically
tractable questions the system is able to parse. The approach employs a lexicon
mapping stemmed natural language terms to database elements such as database
tables, attributes and concrete values. The problem of mapping between words

38 CHAPTER 2. RELATED WORK

and tokens such that attributes are connected to their values is formulated in terms
of an attribute-value graph.

(60) presents a NLI to relational databases adopting a phrasal approach, i.e.
uses a phrasal lexicon rather than a general purpose grammar for syntactic analy-
sis. (61) proposes natural language annotations as a mechanism by which questions
are matched to candidate answers. A NLI to relational databases that works by
obtaining knowledge automatically from a database and training corpus is pre-
sented by (37). NLIs consulting Extensible Markup Language (XML) databases
were presented by (62) (63), which translate a parse tree into XQuery expressions.
Approches using �les of frequently asked questions as its knowledge base have been
proposed by (64) (65).

2.3.2 Natural Language Interfaces to RDF

The development of Semantic Web Technologies has enhanced the possibilities
of natural language interfaces signi�cantly in terms of domain independency and
knowledge retrieval. The terminological knowledge stored in ontologies provides
the possibility to publish conceptual data about knowledge domains in a struc-
tured way that can be parsed automatically. RDF 2 (66) provides a framework
to express data in triples following a subject-predicate-object model that uses the
XML encoding as its interchange syntax as well as the XML namespace facility
(66). By storing data in the RDF triple format, clients of triplestores do not
require additional knowledge about the database's internal organization in order
to generate valid queries. Various works have thus employed triple-based data
models as the base for the intermediate representation of natural language parses
(67) (68). A query language for RDF repositories has been developed with the
SPARQL Protocol And RDF Query Language (SPARQL)3 (69), which allows to
formulate graph-based queries.

The emergence of Linked Data, described by (6) as a set of best practices for
publishing and interlinking structured data on the Web, has further supported the
distribution of Semantic Web Technologies. As many Linked Open Data (LOD)
providers have made their data publicly available by providing SPARQL endpoints,
the scope of possible applications of RDF-based NLIs has increased signi�cantly.

Various approaches have presented solutions for generating SPARQL queries
from natural language. (68) presents an approach of translating parse trees to
SPARQL queries by mapping nominal-phrase pairs connected by prepositions or
verb phrases to triples of the form <subject, predicate, object>. The approach
uses a lexicon containing ontology entities including classes (concepts), properties

2http://www.w3.org/RDF
3http://www.w3.org/TR/rdf-sparql-query

2.3. DATA RETRIEVAL 39

(relations) and instances (individuals) to map words in natural language queries to
entities in the ontology. As (68) assumes a triple to represent a semantic relation-
ship between two nominal phrases, a triple is generated by mapping two nominal
phrases to a triple in the ontology.

A modular QA system with respect to the input ontology is proposed by (67).
The system is based on shallow parsing techniques and handcrafted grammars
to identify terms and relations using the GATE4 (70) framework including the
Java Annotation Patterns Engine (JAPE) (3). The employed JAPE grammars of
GATE consist of a set of phases, each of which consists of a set of pattern rules,
which act on annotations assigned in earlier phases. A JAPE grammar consists
of a left-hand side performing pattern matching, and a right-hand side describing
the annotation to be assigned (3). A sample JAPE rule identifying an Internet
Protocol (IP) address presented by (3) is shown in Listing 2.1.

Rule: IPAddress

{

(

{Token.kind == number}

{Token.string == "."}

{Token.kind == number}

{Token.string == "."}

{Token.kind == number}

{Token.string == "."}

{Token.kind == number}

)

:ipAddress -->

:ipAddress.Address = {kind = "ipAddress "}

}

Listing 2.1: Sample rule of a JAPE grammar (3)

(71) points out that most approaches using triple-based schemas capture simple
relationships very well, yet the generation of SPARQL �lters such as numeric con-
straints (e.g. "Which city has more than three universities?"), quanti�ers ("How
many.. ?") or aggregation functions often depict a crucial issue. (71) thus presents
an approach that relies on a parse of the question to produce a SPARQL template
that directly mirrors the internal structure of the question. An ontology-driven
approach that is able to resolve quanti�ers and number restrictions is further pre-
sented by (72). (73) presents a domain-independent approach generating an inter-
mediate representation in First-Order Logic (FOL), which can be translated into
F-Logic and SPARQL queries. Further approaches generating SPARQL queries
from natural language have been presented by (74) (75) (76) (77) (78).

4http://gate.ac.uk

40 CHAPTER 2. RELATED WORK

2.3.3 Distributed Natural Language Interfaces

A promising development for new NLIs is the consultation of multiple knowl-
edge sources for providing domain-independency. Systems querying multiple data
sources provide a wide variety of knowledge and could easily be recon�gured to
query new knowledge bases. On the other hand, a system relying on multiple data
sources requires a mechanism to generate multiple queries from a natural language
parse. While early NLIs were mainly designed to parse natural language with a
prede�ned domain and a particular Database Management System (DBMS), the
issue of system portability has increasingly gained attention (4). An increased
system �exibility enables the system to work with di�erent knowledge domains or
di�erent knowledge sources for information retrieval. (4) distinguishes four kinds
of portability:

• Knowledge-domain portability: Domain-independent systems are able
to be easily adapted to new knowledge domains, enabling to understand new
words and concepts

• DBMS portability: NLIs that can be modi�ed to be used with di�erent
database managements systems have a broad range of possible knowledge
retrieval for the generation of search responses

• Natural language portability: Most NLIs developed so far assume Nat-
ural Language (NL) requests to be written in English (4). The adaptation
of NLIs to a variety of di�erent languages increases the possible areas of
applications. However, (4) points out that this step also typically requires
the consideration of di�erent lexica, syntax and semantic rules.

• Hardware and programming language portability: The vast change
of hardware and software features increases the need for the ability to adapt
a NLI to new systems

A promising approach for natural language interfaces is the gathering of data
from multiple, possibly heterogeneous, data sources. A system that is able to
consult a variety of databases provides a wider spectrum of knowledge and �ex-
ibility. However, this approach also requires a more complex architecture: Since
the system needs to generate several queries from a natural language parse, the
NL parse needs to be stored in a logical intermediate representation, which allows
the generation of multiple database queries in the corresponding database query
languages as well as an integration of the results retrieved by various database
management systems.

An extension of the system presented by (67) towards aggregating information
derived from multiple heterogeneous data sources is presented by (79). The system
proposed by (80) integrates heterogeneous data sources using an object-property-

2.3. DATA RETRIEVAL 41

value-model. An architecture for a collaborative QA system that enables users to
contribute to the knowledge base is proposed by (81). The system uses natural
language annotations, which are machine-parsable sentences or phrases that de-
scribe the content of various information segments. (82) present an approach for a
transportable NLI that can be easily adapted to new domains or databases. Most
NLI approaches assume data to be stored locally, which ensures data availability
and the absence of the necessity to adapt the system to external changes. How-
ever, an approach with locally stored data also implies the system's domain to be
limited to the available data in the database. The increasing availability of struc-
tured data on the World Wide Web such as the provision of SPARQL endpoints
has driven new approaches of gathering data on the web at runtime. In this way a
NLI's available knowledge base can be signi�cantly increased, further (83) points
out that the data will constantly be kept up to date with the web itself. On the
other hand, consulting data sources on the web for question answering bears new
issues to deal with. (83) names some speci�c challenges of collecting data on the
web:

• Forming the right queries: A query has eventually be adapted to the
remote data source. Furthermore, the scope of a query has to be considered:
If the query is formulated too general, too many results that are unrelated
to the query are found. If it is too speci�c, very few or no results may be
retrieved.

• Noise: With a growing amount of available data, the number of results that
deal with something else increases as well

• Factoids: Data on the web often contains invalid data the NLI has to deal
with

• Resource limitations: (83) points out that the user's willingness to wait
a long time for an answer is very limited. A NLI therefore has to be able to
answer user queries in an appropriate time

(83) presents a QA system consulting search engines for data retrieval by con-
verting the question into a set of keyword queries that are sent to various search
engines for parallel evaluation.

Controlled Natural Language To ensure that a natural language system is
able to generate a database query from a natural language sentence, some ap-
proaches have restricted the possible input sentences and require the queries to
have a speci�c syntax in order to be parsed by the system. (84) presents an
approach using controlled natural language which has a restricted grammar and
lexicon. A guided input NLI presenting possible completions of what the user

42 CHAPTER 2. RELATED WORK

enters and presenting the user with a choice popup box is presented by (85). By
restricting the user input sentences, controlled natural language systems make sure
to be able to produce a valid parse for the query. However, (4) points out that
the limits of the natural language subset are usually not obvious to the user, caus-
ing many questions never tried because users think the questions are outside the
subset of natural language supported by the NLI.

Dialog Systems NLIs commmonly face the issue of how to process queries that
cannot be parsed unambigously. To solve the common problem of choosing one
of multiple possible NL query interpretations, a variety of NLIs have implemented
user clari�cation dialogs in order to ask the user to choose the most appropriate
interpretation (76) (78) (60) (59).

This section has provided an introduction to various approaches of NLIs to ac-
cess knowledge sources. For further reading, (10) as well as (86) present overviews
of existing approaches to question answering.

2.4 Result Processing

After retrieving data from one or multiple knowledge sources, NLIs process the
retrieved results in order to generate a response that is returned to the client. The
issues of result processing involve the tasks of merging result sets from di�erent
data sources as well as the ranking generation for result lists.

Instance Matching Applications retrieving data from multiple knowledge sources
commonly face the problem of identifying redundant results. If we compare the
analysis of result instances to the task of ontology matching, we can identify par-
allels in terms of identifying similar or identical elements within structured data.
Various works that have addressed the issue of ontology matching have developed
solutions for identifying similarities between ontology classes: An approach for
automated ontology merging and alignment is presented by (87). (88) proposes an
architecture for discovering ontological concepts and relations, which includes an
association rule algorithm detecting relations between concepts.

Ranking Search interfaces that return a list of results require algorithms for
sorting the retrieved items in an approriate way. In order to present the most rel-
evant results of a query to the user, a search interface orders the results according
to a heuristic and selects the most important results to the user. Ranking algo-
rithms in hyperlinked environments have been presented by (89) (90), considering
the links included in web documents as quality indicators. (89) developed a global

2.4. RESULT PROCESSING 43

ranking system for documents on the Web based on their link structures. (90) has
proposes the concept of hubs and authorities of web pages and the discovery of
authoritative information sources.

An approach for ranking results retrieved from search engines is presented
by (83): The approach prefers summaries that contain more important keywords
which are close to each other. As a measure for the importance of a keyword they
use the Inverse Document Frequency (IDF), which is de�ned by N

df
, where N is the

size of a document collection and df is the number of documents containing the
word. For calculating the square-root-mean of the distances between keywords,
(83) calculate the distance between the distances d1, ..., dn−1 and n keywords in
summary s as

D(s) =

√
d1 + ...+ dn−1

(n− 1)
(2.9)

If s has n keywords, each with weight wi, then (83) calculates its score as
follows:

S(s) =

n∑
i=1

wi

D(s)
(2.10)

Chapter 3

Requirements

The development of a software-based system requires the speci�cation of its func-
tionality as well as its conceptual and technological essentials. Based on the soft-
ware requirements analysis presented by (91), we will divide the system's funda-
mentals into functional and non-functional requirements.

3.1 Functional Requirements

This section will de�ne the functional requirements for the query processing of a
natural language sentence. The steps performed by the QA system from receiv-
ing a natural language query to retrieving a list of search results can be divided
into three parts: The �rst is the syntactic parsing of the natural language input
and the generation of an intermediate data structure of the parse. The second is
the retrieval of data from the system's knowledge sources in order to generate a
response. Finally, the results retrieved from the di�erent data sources are merged
and ranked according to a speci�ed heuristic and a list of search results is gen-
erated. Each requirement will be marked with R, where a plus sign indicates a
necessary requirement and a minus sign indicates an optional requirement.

3.1.1 Syntactic Parsing

The syntactic parser receives a natural language request from the client, processes
the natural language input and generates a logical intermediate representation.

R+ 1 The syntactic parser receives a natural language query from the system's
interface

R+ 2 In order to parse a natural language query, the syntactic parser proceeds the
following steps:

45

46 CHAPTER 3. REQUIREMENTS

• Structure the query into logical units (tokens)

• Generate a graph-based representation of the natural language query
depicting relations between entities as nodes connected by edges (se-
mantic interpretation)

• Transform the graph into a logical intermediate query representation

Tokenization The �rst step of the parsing model is the identi�cation of semantic
logical units within the natural language sentence. It consists of several syntactical
preparations, the segmentation of the query into words or sets of words as well as
the identi�cation of uniquely identi�ed resources within these segmentations. In
natural language processing, words are often received in di�erent forms, such as
plurals of nouns or verbs' tenses. The parser therefore has to compute the base
forms of nouns and verbs.

R+ 3 Prepare the natural language sentence for the tokenization

R+ 3.1 Remove punctuation marks from the sentence

R+ 3.2 Turn the sentence to lower case

R+ 3.3 Remove stopwords (on,a,the,etc.) from the sentence

R− 3.4 Remove plurals from nouns

R− 3.5 Generate the present form of verbs

We assume a natural language sentence contains references to semantic entities
which can be identi�ed by associating words or sets of words with them. In order
to identify coherent words refering to an entity, we will segment the sentence into
all possible word combinations. The next step is the identi�cation of semantic
entities within the query. As a reference to an entity can possibly consist of mul-
tiple words (e.g. "New Zealand"), the system has to consider all possible word
combinations of the query.

R+ 4 Compute all possible segmentations of the input sentence

R+ 4.1 Divide the sentence per whitespaces into words

R+ 4.2 Compute all possible word combinations representing how the sentence
can be logically segmented

R+ 5 Identify semantic tokens in the computed segmentations

R+ 5.1 Identify resources by looking up each word or word combination in a
lexicon that associates words with resources on the Web

R+ 5.2 A term can be associated with

• a class of an ontology

• a property of an ontology

3.1. FUNCTIONAL REQUIREMENTS 47

• an instance of a class

• a query constraint

R− 6 A query constraint can be

R− 6.1 a numeric restriction

R− 6.2 a geospatial restriction indicating a certain area for a location-based
search

R− 6.3 a date or a timeframe

R+ 7 If one or multiple associations for a word or a word combination have been
found, select the most probable association

R− 8 Identify query constraints using regular expressions

R+ 9 Identify the most probable segmentation of a natural language query into
semantic tokens

R+ 9.1 Select the segmentation that associates the highest fraction of the input
sentence with semantic entities

R+ 9.2 If multiple segmentations associate the same fraction of the sentence
with semantic entities, choose the segmentation that realizes the asso-
ciation with fewer entities, i.e. provides the simpler solution

An additional feature is the recognition of the geospatial coordinates of enti-
ties contained in a natural language query. For example, the query "universities
in Koblenz" searches for entities located in a speci�c area. A location-based nat-
ural language search thus could identify the geographic coordinates of the point
of interest contained in the query and restrict the query to the requested area.
Furthermore, an interesting feature of natural language search in location-based
applications is the retrieval of location-based related terms with respect to the in-
put query. Search engines could suggest similar points of interest the users might
be interested in. In case of product searches the search engine could provide sug-
gestions of locations where the required item could be acquired.

R− 10 Identify geospatial coordinates of tokens contained in the natural language
query

R− 11 If geospatial coordinates have been identi�ed for a token contained in the
natural language query and no geospatial coordinates have been transmitted
representing the query's geographic origin within the query's meta parame-
ters, set the token coordinates as the query's geographic origin

R+ 12 Associate products or real-world entities with local businesses where the
requested entity can be acquired

48 CHAPTER 3. REQUIREMENTS

Semantic Interpretation The major part of the parsing procedure is the gen-
eration of a logical representation of the natural language query, which is achieved
by employing a transition-based model using probabilistic patterns. The goal of
the parsing model developed in this thesis is the representation of a natural lan-
guage query in terms of a graph-based representation.

R+ 13 Employ hand-crafted graph patterns to identify entities and relationships
within the semantic tokens identi�ed in the previous step

R+ 14 Employ graph patterns by computing the pattern that is most similar to
the current stage of the intermediate representation of the natural language
parse and apply the pattern's transformation rule

R+ 15 Generate the nodes of the graph, representing the query's entities

R+ 15.1 Identify classes, properties, instances and query constraints as nodes

R+ 15.2 Identify each node with a Uniform Resource Identi�er (URI)

R+ 15.3 Identify each node with a probability

R+ 15.4 Identify sets of unde�ned entities described by its linkage within the
graph as non-terminal nodes

R+ 16 Generate the relations of the graph, representing query constraints of query
entities or relationships between entities

R+ 16.1 A relation connects two nodes with a labeled edge

R+ 16.2 Identify a relation with a URI

R+ 16.3 Identify a relation with a probability

R+ 16.4 Identify an unde�ned relation between two nodes as a non-terminal
branch

R+ 17 Identify the focus of the graph, representing the query's main information
request

R+ 17.1 Identify a node or a branch of the generated semantic graph as the
graph's focus

R+ 17.2 Each semantic graph has exactly one focus

Query Scope An important aspect of NLIs is the speci�cation of the possible
queries the system shall be able to answer. We will consider the broad variety
of possible questions in terms of a RDF graph consisting of nodes and edges,
which describes a resource with a set of edges connecting it with other resources
or literals. Thus we can divide the set of possible natural language queries into
searches for nodes, i.e. for a set of resources (entities), or into searches for edges,
i.e. the value of a property of a speci�c resource (fact). For example, an input
query "Name all mountains above 4000 m" would search for resources (mountains)

3.1. FUNCTIONAL REQUIREMENTS 49

with a speci�c constraint (> 4000m), embodying an entity search. On the other
hand, the question "How high is the Matterhorn?" would search for a property
(height) of a speci�c resource (fact search).

Another issue is the parsing of noisy queries. NLIs are generally designed for
parsing complex, yet well-structured and grammatically correct sentences. How-
ever, as NLIs are increasingly included into frequently used web and mobile ap-
plications, users are less willing to enter full sentences and rather expect NLIs to
understand informal input such as keywords or short phrases. We thus design our
system to be able to cope with both formal sentences as well as informal, possibly
noisy queries.

R+ 18 The system classi�es a natural language query according to the intended
type of the response

R+ 18.1 Users can search for general entities related to a resource

R+ 18.2 Users can search for general facts of an entity

R+ 18.3 Users can search for location-based entities in their close proximity

R+ 18.4 Users can search for points of interests or local businesses where a cer-
tain product or entity can be found or acquired

R+ 18.5 Users can search for location-based entities described by constraints or
time intervals

R+ 19 The system is able to parse natural language queries in multiple languages

R+ 19.1 Users can ask queries to the system in German

R+ 19.2 Users can ask queries to the system in English

R+ 20 The system is able to parse informal or grammatically incorrect questions

R+ 20.1 The system is able to parse sentences with incorrect word order

R+ 20.2 The system can parse keywords, i.e. a list of nouns

3.1.2 Data Retrieval

After parsing the natural language query into an intermediate representation, the
system consults various knowledge sources in order to retrieve search results. One
of the major aspects of the system developed in this thesis is the ability to gather
data from multiple data sources with possibly di�erent underlying database man-
agement systems. The system has one or multiple modules at its disposal that are
able to consult a knowledge source each. Knowledge sources may be activated and
deactivated dynamically. A crucial aspect of any search interface is furthermore
the time the system needs to produce an answer. As users are generally unwillingly
to wait a long time for a response, the system should ideally provide an answer
within few seconds. This aspect is especially important for NLIs collecting data

50 CHAPTER 3. REQUIREMENTS

on the web from di�erent sources, as they have no control about the time the
consulted web data source requires to produce an answer.

R+ 21 The system is coupled with one or multiple knowledge sources

R+ 22 The active knowledge sources are loaded at system startup

R+ 22.1 Load a list of available knowledge sources from a con�guration

R+ 22.2 Activate the knowledge sources as de�ned in the con�guration

R+ 22.3 Knowledge sources may be activated or deactivated dynamically

R+ 22.4 If the client request includes one or multiple parameters specifying
knowledge sources that should be employed for the query, consult the
knowledge sources speci�ed in the client request

R+ 23 Identify the relevant knowledge sources with respect to the query

R+ 23.1 Identify knowledge sources based on the same vocabulary as the request

R+ 23.2 Identify knowledge sources retrieving the same type of entities the re-
quest searches for

R+ 24 Knowledge can be retrieved from locally stored data as well as from the Web
at runtime

R+ 24.1 The system can retrieve data from relational databases

R+ 24.2 The system can retrieve data from RDF repositories

R+ 24.3 The system can retrieve data from SPARQL endpoints

R+ 24.4 The system can retrieve data from Application Programming Interfaces
(API)s

R+ 24.5 Generate SPARQL queries for RDF repositories

R+ 24.6 Generate Hypertext Transfer Protocol (HTTP) requests for accessing
APIs of external applications

R− 24.7 Generate SQL queries for relational databases

R+ 25 Adapt the generated knowledge base queries to additional parameters in-
cluded in the client request

R+ 25.1 If the client request contains parameters de�ning the client's location,
perform a location-based search for entities in the client's close proxim-
ity

R+ 25.2 If the client request contains parameters de�ning the client's location
and the query radius, perform a location-based search within the de�ned
radius

R+ 26 If the query's focus is associated with a product and related location-based
concepts have been found, search for them as well

R+ 27 If the system does not receive a response from a data source within a given
time span, abort the request to the data source

3.1. FUNCTIONAL REQUIREMENTS 51

In order to provide additional information about the retrieved results and to
present them in an appropriate way, the system performs additional searches for
meta data about the found entities. The following data should be provided for
entity searches:

R+ 28 Retrieve diverse meta data about result entities
R+ 28.1 Retrieve a title for each entity
R+ 28.2 Retrieve a URI for each entity
R− 28.3 Retrieve a description (ca. 10-20 words) for each entity if available
R− 28.4 Retrieve a thumbnail for each entity if available
R+ 28.5 Retrieve geospatial data for entities if available

R+ 29 In case of fact searches, the system presents the related entity with the
requested fact.

R+ 29.1 Retrieve a title for the related entity
R+ 29.2 Retrieve a title for the requested property
R+ 29.3 Retrieve a title for the requested property value
R− 29.4 Retrieve a thumbnail for the related entity if available

3.1.3 Result Processing

The procedure of result processing consists of two phases: First the system needs
to merge results from di�erent data sources, then the results are ranked according
to an underlying heuristic. A major aspect of the result merging procedure is the
identi�cation of redundant results (instance matching). We will identify search
results by their label as well as geographic results by their location. To rank a
set of search results, the system needs a heuristic to compute the relevance of the
results towards the natural language query.

R+ 30 Merge the set of search results from di�erent data sources to one result set

R+ 31 Identify redundant search results
R+ 31.1 Identify a main label identifying a search result
R+ 31.2 Compare the search results' labels with a string comparison algorithm

and merge them if their similarity exceeds a certain threshold
R+ 31.3 Compare location-based search results on the base of their geospatial

data

R− 32 If a result list's data source provides ranking data, include the ranking in-
formation in the ranking process

R+ 33 If geospatial data is available for one or more results and the user provides
geospatial data for the query entry point, rank all results based on geospatial
data according to their distance to the query entry point

52 CHAPTER 3. REQUIREMENTS

3.1.4 User Interfaces

User interfaces provide the possibility to specify natural language queries and
present retrieved search results to the user in a human-readable form. Users may
enter a natural language query as well as various meta parameters to specify the
request. Furthermore, user interfaces may transmit the client's location in order
to proceed location-based searches. This feature may especially be of interest for
mobile usage of the system. The way the retrieved data is presented to the user
depends on whether the search retrieved a list of general or location-based entities
or the fact of a speci�c entity.

R+ 34 Users can specify a natural language query as well as further optional meta
parameters of the query

R+ 34.1 Users can enter a natural language query in a text form

R− 34.2 Users can de�ne the maximum number of results

R− 34.3 Users can select whether the retrieved search results are displayed in
German or English

R− 34.4 The user interface can transmit the client location's latitude

R− 34.5 The user interface can transmit the client location's longitude

R− 34.6 The user interface can specify a list of knowledge sources the system
shall consult for the retrieval of a search response

R+ 35 Present the retrieved search response to the user

R+ 35.1 Entities are presented to the user as a list of results enriched with the
meta data title, description and an image

R+ 35.2 If geospatial coordinates have been retrieved for one or more entities,
display all location-based entities of the result set on a map which is
shown additionally to the result list

R− 35.3 Facts of entities are displayed with the title and a thumbnail of the
corresponding entity as well as the retrieved fact name and value

R− 35.4 Present search results to the user in the language speci�ed in the client
request

R− 35.5 If no language has been selected in the client request, select a default
language de�ned by the system con�guration

3.2 Non-functional Requirements

This section de�nes the non-functional requirements of the question answering sys-
tem, which includes the foundations of the system's architecture, its vocabularies

3.2. NON-FUNCTIONAL REQUIREMENTS 53

and knowledge sources as well as the speci�cation of system interfaces. A ma-
jor aspect of the system design is the independence towards the underlying data
sources. For this purpose, the systemimplements a fully modualrized architecture.
A major aspect of the presented approach is the independency with respect to the
underlying vocabularies and the knowledge sources for information retrieval. This
implies that new lexica can be added or removed dynamically, further vocabularies
can be included independently from their underlying data format. For this pur-
pose we propose a modularized architecture that separates components querying
external data sources from the main system.

3.2.1 System Design

R+ 36 The system consists of a main system for processing a natural query as well
as a set of modules for querying external data sources

R+ 36.1 The main system consists of three components

• a syntactic parser processing the natural language query

• a query performer consulting knowledge sources

• a result processor generating a result set

R+ 36.2 External data sources are accessed by small modules separated from
the main system

R+ 36.3 The system components are realized as reusable software modules

R+ 36.4 The system can be accessed by web applications

R+ 36.5 The system can be accessed by mobile applications

R+ 36.6 Interactions with external data sources are proceeded by separated
modules

R+ 36.7 The system's data sources can be modi�ed by adding or removing data
sources

R+ 37 Two kinds of external data are included by the system:

R+ 37.1 Vocabularies: Terminological and assertional knowledge included in
order to parse the syntax and semantics of a natural language query
into a logical intermediate representation

R+ 37.2 Knowledge Sources: Assertional knowledge queried in order to retrieve
one or multiple search results with considering the client request

R+ 38 All components are implemented in the Java programming language1

R+ 39 The system's lexica are implemented as MySQL2 databases

1http://oracle.com/technetwork/java
2http://www.mysql.com

54 CHAPTER 3. REQUIREMENTS

3.2.2 Data Sources

In order to process a client request, the system relies on two kinds of data retrieved
from external sources: The �rst is the terminological knowledge required for the
syntactic parser to correctly parse the syntax and semantics of a natural language
sentence, i.e. the vocabulary. The vocabulary determines the possible input of the
parser and therefore embodies the domain of the system. The second input of the
system is the knowledge source consulted to retrieve answers for the input query.
This data represents the possible responses of the system, i.e. the range of the
system.

Vocabulary Sources In order to parse a natual language sentence, a syntactic
parser requires knowledge about the meaning of the words contained in the sen-
tence. Our goal is to use the conceptual world model described by ontologies to
compute a logical representation of the information included in a natural language
sentence.

R+ 40 The system consults one or multiple lexica in order to recognize the meaning
of segments within a natural language sentence

R+ 40.1 A lexicon represents the knowledge about classes, properties and con-
crete instances of a speci�c domain

R+ 40.2 A lexicon associates words or word combinations with semantic entities
(tokens)

R+ 40.3 Semantic tokens are identi�ed with a unique identi�er

R+ 40.4 The conceptual data contained in a lexicon has been extracted from an
ontology

R+ 40.5 The data corpus of a lexicon consists of the classes and properties of
an ontology as well as a set of instances described by the vocabulary

R+ 41 Lexicons are consulted by small components separated from the main system
(vocabulary modules)

R+ 41.1 The main system is coupled with at least one vocabulary module

R+ 41.2 The main system consults vocabulary modules in order to receive data
about the meaning of words contained in the client query

R+ 41.3 The main system can add or remove vocabulary modules dynamically
at runtime

Location-based NLIs often provide users the possibility to search for various
points of interest. An additional valuable feature is the retrieval of locations where
a speci�c entity can be found, e.g. local businesses where a speci�c product can
be acquired. For this purpose the system is able to retrieve data about local
businesses for product searches.

3.2. NON-FUNCTIONAL REQUIREMENTS 55

R+ 42 Provide a lexicon for retrieving location-based related terms

R+ 42.1 The lexicon provides a mapping between real-world objects and certain
location-based classes indicating where the respective object can be
acquired

Knowledge Sources A major aspect of the system is to enable multiple knowl-
edge sources that are consulted for retrieving answers. Additionally, the system
shall be able to include data sources independently from their DBMS, i.e. it should
be possible to include data from relational databases as well as LOD sources and
APIs. The modularized architecture delegates the query generation to the mod-
ules querying the data sources. In this way the system can access a data source
independently from its database's internal organization.

R+ 43 The system is based on one or more data sources in order to retrieve results
for a query

R+ 43.1 The process of querying knowledge sources is performed by modules
separated from the main system (data modules)

R+ 43.2 Each data module is coupled with one particular knowledge source

R+ 43.3 Each data module is based on one of the registered vocabularies

R+ 43.4 The system can add or remove knowledge sources dynamically at run-
time

R+ 43.5 The main system is coupled with at least one data module

3.2.3 Interfaces

The process of computing a search request includes the interaction of di�erent
components which require well-de�ned interfaces. The main components interact
within the system by transferring data structures representing the result of the
previous component's computation. The system's internal communication with
data structures takes place between the main components Syntactic Parser, Query
Performer, Result Processor and the HTTP interface receiving client requests. The
communication will be based on the Representational State Transfer (REST) ar-
chitectural style introduced by (92).

R+ 44 The communication between components of the main systems proceeds by
transmitting data structures

R+ 44.1 The Syntactic Parser transmits an intermediate representation of the
natural language parse to the Query Performer

56 CHAPTER 3. REQUIREMENTS

R+ 44.2 The Query Performer transmits a set of retrieved search results to the
Result Processor

R+ 44.3 The Result Processor transmits a list of search results to the system's
main interface

R+ 45 The intermediate representation depicts the graph-based logical representa-
tion generated by the Parser

R+ 45.1 The IQR expresses information in a subject-predicate-object triple for-
mat

R+ 45.2 The IQR contains the request type of a client query (entity, fact)
R+ 45.3 The IQR indicates the type of entities the client query searches for
R+ 45.4 In order to represent a valid query, the IQR must contain at least one

non-terminal node or branch, i.e. a variable

Other than the components within the main system, the communication be-
tween the main system and vocabulary and data modules proceeds by employing
well-de�ned interfaces. In this way, the components accessing external data sources
can be modi�ed easily without the need to modify or interrupt the main system.
The communication between the main system and user interfaces proceeds by the
employment of a well-de�ned interface as well. This solution enables the inte-
gration of the system within multiple user interfaces independently of the client's
platform and operating system.

R+ 46 The communication between the main system and its vocabulary and data
modules proceeds by using well-de�ned interfaces

R+ 46.1 Vocabulary modules are accessed via RESTful web services
R+ 46.2 A request to a vocabulary module is a HTTP request containing a word

or a list of words of the client query as parameters
R+ 46.3 The response returned by vocabulary modules is an XML encoded

string describing a list of semantic tokens associated with the query
terms

R+ 46.4 Data modules are accessed via RESTful web services
R+ 46.5 A request to a data module is a HTTP request containing a list of

triples representing the semantic graph generated by the Syntactic
Parser as parameters

R+ 46.6 The response returned by data modules is an XML encoded string
describing a list of search results that have been retrieved as a response

R+ 46.7 The system's main interface is available as a RESTful web service
R+ 46.8 A request to the system is a HTTP request containing the natural lan-

guage query as well as various optional meta parameters for specifying
the client request

R+ 46.9 The response returned by the system is an XML encoded string de-
scribing a list of search results that have been retrieved as a response

Chapter 4

The Model

This section presents the syntactic parsing model for generating a semantic rep-
resentation of a natural language sentence. The parsing process consists of two
phases: First, the natural language input is analyzed and separated into logi-
cal semantic units (tokenization). This process will be based on the structured
contextual data provided by ontologies, recognizing textual entities refering to ter-
minological knowledge as well as concrete instances. The second parsing stage
is the semantic linkage of the identi�ed entities and the generation of a logical
representation of a query to one or more of the system's knowledge bases (seman-
tic interpretation). For this purpose, we will present an approach for generating
an intermediate representation of a natural language query in terms of a labeled
directed graph in 3 stages with the employment of speci�ed patterns.

4.1 Tokenization

The �rst step of the presented analysis of a natural language sentence is the iden-
ti�cation of the words' meaning contained in the client request. For this purpose,
the system will structure the natural language query into smaller units referring
to semantic entities such as concepts or real-world entities. Procedures for iden-
tifying entities within a natural language query as a preceding step of a deeper
analysis have been employed by various works (59) (68). The presented approach
will combine the identi�cation of semantic entities in a natural language query
with a full computation of possible segmentations of the query. Based on the data
corpora provided by ontologies, the Tokenizer identi�es elements referring to enti-
ties of the terminological model such as classes and properties as well as concrete
instances. The tokenization of a natural language sentence is thus the �rst of two

59

60 CHAPTER 4. THE MODEL

phases of the parsing model1. Its purpose is to analyze the input string and to
identify logical semantic units (tokens) included in the natural language query.
Within this context, the Tokenizer has to compute a segmentation of the query
where ideally each segment represents a semantic token. For identifying the most
probable segmentation, the system has to consider that a natural language refer-
ence to an entity may consist of multiple words. Furthermore, the system has to
resolve disambiguities and select the most probable tokens for a given query. The
tokenization process thus comprises of the computation of all possible segmenta-
tions of a natural language query, as well as the association of semantic tokens and
the computation of the most probable tokenization.

4.1.1 Segmentation

The segmentation of a natural language sentence is a preparation for the token
retrieval procedure and consists of the computation of the set of possible word
combinations that coherently refer to a logical entity. The model's intuition is as
follows: For parsing a natural language input, the Tokenizer identi�es semantic
logical units contained in the input sentence. A token is identi�ed by a label which
is associated with the token and consists of one or more words which we will call
a term identi�er. For example, in a lexicon employing the DBpedia ontology(93)
(94), the term "university" is likely to refer to the class dbpedia-owl:University,
which may indicate a request searching for universities in a speci�ed region or other
speci�cations. However, the term "university of Koblenz" refers to a concrete in-
stance, which is probable to indicate a request referring to information about the
institution or persons or organizations related to the university. As a term identi-
fying a token can consist of one or multiple words, the purpose of the segmentation
is to compute all possible combinations of words with respect to the word order.

We de�ne the segmentation of a natural language sentence as follows: We
assume a system receives an input string q consisting of a set of words {w0, ..., wk}
separated by white spaces. One or more words representing a token ti constitute
a term identi�er titi . All terms of an input string form the term sequence ts.

De�nition 4 (Term Sequence)
A term sequence ts (t0, ..., tn) is the separation of an input string q(wo, ..., wk) in
n terms (t0, t1, ..., tn). A term ti consists of m words (w0, ..., wm).

1The term tokenization is used frequently in various works and often refers only to the task of
separating words in an input query (11). For the scope of this thesis, we use the term tokenization

for the whole process of identifying logical entities in a natural language query. The term token

refers analogously not just to a set of words but to a logical unit representing a semantic entity.

4.1. TOKENIZATION 61

In this way, the phrase "hockey team" could be segmented in the term sequences
(hockey team) and (hockey,team). As a term can consist of one or multiple words,
there are multiple possibilities to separate an input string into a term sequence.
The set of all possible term sequences is called the term sequence set.

De�nition 5 (Term Sequence Set)
The term sequence set tss (ts0, ..., tsm) is the set of all possible term sequences
ts0, ..., tsn of an input string q.

The sentence "birds of New Zealand" could be divided per white spaces into 4
terms (birds,of,new,zealand). Alternatively, the input string could also represent
a single term (birds of new zealand). The purpose of the tokenization stage is to
identify the most probable term segmentation of the input string and the logical
entities they refer to. The full term sequence set of the input string "birds of new
zealand" is depicted in Figure 4.1.

Figure 4.1: Term Sequence Set of the input query "birds of new zealand"

4.1.2 Token Retrieval

After all possible term combinations have been computed, the parser computes
semantic tokens from the term sequences. That is, the parser searches for logical
units corresponding to the terms of each term sequence and generates a sequence
of semantic tokens. To associate words with semantic entities, the Tokenizer con-
sults one or more lexica that map natural language terms to semantic units with
a certain probability. The identi�cation of semantic entities based on the data of

62 CHAPTER 4. THE MODEL

ontologies has been proposed by (68). We will apply the concept of associating
ontological elements with natural language terms to the concept of computing a set
of possible sentence segmentations and expand the associations by mapping prob-
abilities. Additionally, we will enable the identi�cation of vocabulary-independent
query constraints. For modeling the information contained in a natural language
query, we will employ the data model provided by ontologies, which describes
knowledge in terms of terminological knowledge (TBox) as well as assertional
knowledge providing facts about those instances (95). Tokens can thus be termino-
logical entities described by an ontology such as classes (e.g. "City") or properties
(e.g. "population") as well as conrete instances (e.g. "Koblenz") of a class. Fur-
thermore, segments of a NL query may refer to vocabulary-independent elements
indicating query constraints such as numeric delimiters, date intervals or curren-
cies (e.g. "with more than 3 ..", "in january", "tomorrow"). Query constraints
will be identi�ed as an own tokens which we will call base tokens. Formally, we
de�ne a semantic token as follows: A token t(ti, π, u, r) is a quadruple consisting
of a term identi�er tit, a token type π, a unique identi�er u and a relevance r. A
token represents a mapping of the form

tit → (π, u, r)

between a term identi�er tit and a resource identi�ed by a URI u, the token type π
and the relevance r. The URI u indicates a unique identi�cation of the resource on
the Web. The token type π [c, r, i, b] represents the semantic role of the token and
can either be class(c), role(r), instance(i) or base(b). The term identi�er titi depicts
the natural language identi�er of the token. The relevance r is a decimal value
of the interval [0; 1] indicating the probability that the given mapping is correct.
The token type of a token indicates whether a token is part of the terminological
vocabulary (classes and roles), an instance or a speci�c value(base). Base tokens
tb are tokens indicating a query constraint, e.g. a speci�c quantity, minimum or
maximum values of property or a time interval. In case of base tokens, the URI
additionally contains a value indicating the query constraint of the token, e.g.
">3","january". For retrieving tokens associated with the given term sequences,
a lexicon is consulted that contains mappings between terms and semantic tokens.
The lexicon contains term mappings about all known resources of the knowledge
base of the form

ti→ T (π, u, r)∗ (4.1)

where a term identi�er ti is associated with one or multiple tokens. The mappings
contained in the database represent references to entities of an ontology and have
been extracted in advance. The Tokenizer retrieves the most probable token Tmax
of a term ti by selecting the mapping

t(ti)max = arg max r(ti, T) (4.2)

4.1. TOKENIZATION 63

, i.e. the mapping that maximizes the relevance r of a given term ti and a
token T .

We assume a lexicon contains term mappings refering to the class Bird and
the instance New Zealand of the form "bird"→(c,dbpedia-owl:Bird,0.99), "new
zealand"→(i,dbpedia:New_Zealand,0.99). The term sequence set computed be-
fore produces the token sequences shown in Figure 4.2. Generated tokens are
depicted with their token type (here: class(cls) or instance(inst)), their URI and
their relevance values.

Figure 4.2: Token Sequence Set generated from the term sequences of Figure 4.1

Tokenization Computation After generating tokens for all available term se-
quences, the Tokenizer selects the token sequence which represents the most prob-
able parse for the input query. For this purpose, the probability of each token
sequence which has at least one token is computed. We will call a token sequence
associated with a probability a tokenization.

64 CHAPTER 4. THE MODEL

De�nition 6 (Tokenization)
A tokenization T of a term sequence ts is a token sequence (t0, ..., tn) with a
probability p. The most probable tokenization Tmax for ts is the most probable
tokenization of a term sequence set tss.

After computing all possible tokenizations T0, ..., Tn of the term sequence set
ts0, ..., tsn, the Tokenizer selects the most probable tokenization T (q)max as the
tokenization of the input string q. The most probable tokenization is selected
according to the follow criteria:

1. Select the tokenization which associates the highest fraction of the input
string to semantic tokens

2. Select the tokenization with the least tokens

Intuitively, the parser computes the tokenization that is able to interpret the
whole NL query with as few tokens as possible. For example, the tokenizations
computed for the term sequences (hockey team) as well as (hockey, team) would
both result in valid tokenizations. If the same probability has been computed
for both tokenizations, the Tokenizer selects the one which identi�es the sentence
with fewer tokens. Since the tokenization for the �rst term sequence realizes an
interpretation of the full phrase with only one token, the �rst tokenization would
be preferred. The named criteria can be realized in a formula that 1) computes the
sum of the weighted retrieved tokens and 2) in case of equal probabilities selects
the tokenization with the fewer tokens, i.e. choses the tokenization providing
the simpler solution for retrieving the same result. We assume a token is an
interpretation of a term, which consists of a set of words. Let ti be a token, TIti
the set of words its term identi�er contains and W be the set of words included in
the input sentence. We say the weight wti of a token ti is

wti =
|TI|
|W |

(4.3)

the number of words the term identi�er contains divided by the number of words
of the whole input sentence, i.e. the fraction of the input sentence the token
represents. In this way, parses that take into account all words of the input string
receive higher weights. In case of the sample sentence "birds of new zealand",
the weight of the semantic token identi�ed for the term "birds" would thus be
computed as follows: wt1 = TIt1

Wq
= 1

4
= 0.25. The probability pti of a tokenization

ti is computed as the sum of the weighted token probabilities:

pti =
l∑

i=0

wtipti (4.4)

4.2. SEMANTIC INTERPRETATION 65

Finally, the most probable tokenization Tmax(q) of a natural language sequence
q is the one which maximizes the probability p(T, q)

p(T, q)max = arg max p(T, q) (4.5)

If the maximal probability p(t, q)max is reached by multiple tokenizations, the
association featuring the fewest tokens is selected. The result of the token retrieval
procedure Tmax(q) is the most probable tokenization tmax.

The probabilities of the token sequences generated before are calculated as fol-
lows:
T0 : pT0 = 1.0 · 0.00 = 0
T1 : pT1 = 0.25 · 0.99 + 0.75 · 0.00 = 0.2475
T2 : pT2 = 0.5 · 0.00 + 0.5 · 0.99 = 0.495
T3 : pT3 = 0.75 · 0.00 + 0.25 · 0.99 = 0.2475
T4 : pT4 = 0.25 · 0.99 + 0.25 · 0.00 + 0.5 · 0.99 = 0.7425
T5 : pT5 = 0.25 · 0.99 + 0.5 · 0.00 + 0.25 · 0.99 = 0.495
T6 : pT6 = 0.25 · 0.99 + 0.25 · 0.00 + 0.25 · 0.00 + 0.25 · 0.99 = 0.495

The highest probability is reached by pT4(0.7425), the tokenization Tmax(q) is
therefore T4.

4.2 Semantic Interpretation

The major procedure of the parsing model is the transformation of the retrieved
tokens into a semantic representation of the query. In this section we will present a
3-staged approach to generate a graph-based representation of a natural language
query using speci�ed patterns. The presented approach will apply the concept of
graph-matching employed by the SPARQL query language (69) to the interpreta-
tion of a natural language sentence in a novel way. The base for storing natural
language information in a logical form is a graph-based representation ful�lling
the requirements de�ned in section 3.2, which we will refer to as a semantic graph.

An undirected graph as de�ned in (14) is a set of points (nodes) with lines
(edges) connecting some of the points. Applied to natural language processing, we
de�ne nodes to represent entities of terminological or assertional knowledge (such
as classes, properties, instances or query constraints), while the edges represent
verbs or prepositions indicating relationships between nodes (roles). A semantic
graph G is a directed labeled graph consisting of a set of nodes n0, .., nm con-
nected with a set of branches b0, ..., bk. Each node is connected with at least one
branch to the graph. The intuition of a graph-based representation of a natural
language sentence is the representation of information in terms of nodes connected

66 CHAPTER 4. THE MODEL

by labeled, possibly weighted edges: For example, the query "movies directed by
Alice" could be modeled as a set of entities represented by a non-terminal node
(?x) connected with a class node movie and an instance node Alice. The edge
labels represent the relations between the nodes, in this case typeOf and direct-
edBy. The analogous triple-based representation employing a sample ontology can
be formulated as follows:

?x rdf:type sample:ontology/Movie .
?x sample:property/directedBy sample:resource/Alice

The semantic interpretation model developed in this thesis is a �nite-state-
based mechanism that transforms a token sequence into a semantic graph in 3
stages. After receiving a token sequence as described in section 4.1, the Semantic
Interpreter generates a graph presenting relations between entities as connected
nodes of a graph. The semantic interpretation proceeds as follows: The interpre-
tation begins by identifying semantic entities included in the NL query. Then,
relations between the computed entities are identi�ed in terms of an information
request. Finally, the query's main information request (focus) is identi�ed. For
the sample query mentioned above, the semantic interpretation �rst identi�es the
semantic entities Alice and Movie contained in the query. To model the query in
terms of a graph representing an information request, the system interlinks the
identi�ed entities by creating an element representing a list of unknown entities
which are of type Movie and are directed by Alice. As the lexicon identi�es the
term directed by in the query as a verb, the system associates directed by with
the entity Alice, resulting in a directed edge interlinked with the unknown enti-
ties ?x. Finally, these entities are marked as the graph focus to determine what
the graph searches for. Applied to the graph-based intermediate representation,
the steps performed by the Semantic Interpreter can be described as the stepwise
generation of the elements of a graph:

• Generation of the graph nodes

• Generation of the graph's relations

• Identi�cation of the graph's focus

Figure 4.3 shows the 3-staged concept with the stepwise generation of the graph
structures nodes, relations and the graph's focus. The major technique to generate
each stage of the semantic graph is the employment of speci�ed patterns. Patterns
represent transformation rules similar to formal grammars as introduced in section
2.1, that are speci�ed for receiving a sequence of tokens and generating a graph-
based semantic interpretation. Formally, we de�ne a pattern as a mapping p of
the form

4.2. SEMANTIC INTERPRETATION 67

Figure 4.3: 3-staged graph generation from a token sequence

p : E− > A (σ) (4.6)

where E is an input sequence of elements called the expression, A is the output
token sequence indicating the expression's transformation called the annotation.
σ is a decimal value indicating the probability the given pattern is correct, called
the pattern's truth value.

The expression e (t0, ..., tn) is a sequence of one or multiple entities (t0, ..., tn)
identi�ed with an entity type π and an identi�er u. The annotation a (t0, ..., tm)
contains a sequence of elements (t0, ..., tm) identi�ed with an identi�er u. The
annotation may contain elements occurring in the expression or add new elements,
indicating the transformation of the expression's tokens into another stage. Tokens
transformed from the expression are denoted with the same identi�er u as the

68 CHAPTER 4. THE MODEL

corresponding identi�er of the expression. The annotation contains at least one
element from the expression. The truth value θ (0; 1) indicates the probability that
the given correlation is correct. The presented concept of patterns is similar to the
concept of probabilistic context-free grammars introduced by (13) (1) (14) (12)
in section 2.1 in terms of representing transition rules. The patterns presented in
this thesis are speci�ed for transitions between the semantic graph generated by
the model in 3 stages.

The expression of a pattern embodies a token structure which is compared to
an input token sequence, whereupon the annotation de�nes the expression tokens'
transformation. Intuitively, a pattern's expression could be described as the struc-
ture for identifying a speci�c part of an input token structure, the annotation as
the description of how to parse it into a semantic graph.

Figure 4.4: Simple pattern indicating the generation of a graph branch from a token

Figure 4.4 shows a simple pattern transforming a token into a branch including
two unspeci�ed tokens. A token identi�er (a) is employed to map elements from
the expression to the annotation. The output of the pattern employment is a
branch of the form (a - ?y - ?z), where the �rst element has been mapped into
a new structure and two new elements have been added. In order to transfer an
input sequence into the next stage, the parser identi�es the most probable pattern
and maps the input sequence's elements to entities of the pattern's expression.
The most probable pattern p(ts)max for a token sequence ts is the one whose
expression resembles the token sequence the most, that is, the pattern pi which
maximizes the similarity function p(ts, epi) of a token input sequence t and the
pattern's expression epi

p(t, e)max = arg max pi(t, e) (4.7)

The similarity between a token sequence and an expression is computed in
terms of a string similarity function. Adapted to the concept of comparing token
sequences, we de�ne to compare tokens by their token types πi. A token is consid-
ered di�erent from another token if its token type di�ers from the other one. We
de�ne that the token comparison is the token similarity γ as follows:

4.2. SEMANTIC INTERPRETATION 69

γ(t0, t1) =

{
1 if π0 = π1

0 otherwise
(4.8)

After the most probable pattern has been computed, the system generates a
mapping between the token sequence and the expression sequence

m := ts→ e (4.9)

which assigns input tokens to expression tokens. The output sequence is in-
dicated by the pattern's annotation by generating an output sequence from the
expression. If the annotation contains an element of the expression for which
no element of the input sequence could be found, the parser generates a non-
terminal node. Each phase of the parsing model employs patterns with specialized
structures. Analogously to the phases of the parsing model, we distinguish node
patterns, focus patterns and relation patterns.

4.2.1 Node Generation

The �rst step in the graph generation process is the identi�cation of nodes. Nodes
are the base elements of a graph and represent one or multiple entities. A node can
be a class (e.g. "University"), an instance (e.g. "Koblenz") or a value constraint
such as a speci�c amount or a time interval (e.g. "2","50-100","june","2010-
2012"). Additionally to these terminal nodes we include nodes of an unde�ned
kind representing one or multiple unspeci�ed entities. These non-terminal nodes
represent variables in the query, i.e. a set of entities which are described by the re-
lations to other nodes within the semantic graph. Intuitively, non-terminal nodes
represent a set of unknown entities in the query indicating what the natural lan-
guage query of the client searches for. Formally, we describe graph nodes as follows:
A graph node ni (θ, π, u, p) is a quadruple representing one or multiple entities with
the node indicator θ, the identi�er u, the node type π and the position p. The
boolean variable θ indicates whether ni represents a terminal or a non-terminal
node. A terminal node represents a single resource, the value for the identi�er
u is the resource's URI. The node type πn represents the entity's semantic role
(class, role, instance, constraint). Non-terminal nodes represent a set of entities
and are called variables. They receive a unique alphanumeric value for u, their
node type π is unde�ned. The position p indicates the node's original position in
the natural language query.

Analogously to the token types presented in section 4.1, graph nodes are
equipped with node types indicating whether the resource is a class(c), a property
or role(p), an instance(i) or a base node(b). To generate a set of graph nodes of

70 CHAPTER 4. THE MODEL

the token sequence produced in the tokenization stage, the parser employs a set
of patterns transforming tokens into graph structures called Node Patterns.

De�nition 7 (Node Pattern)
A node pattern pn is a pattern indicating how a token is transformed into a graph
node. A node pattern consists of an expression en(t) consisting of a single token
t, an annotation a(n[, np, ni]) indicating at least one node that is generated from
the expression token, , and a truth value θ. The annotation may also generate a
triple statement, i.e. a branch, from a single token.

The node type and the URI are analogous to the token type and the URI
of semantic tokens of the Tokenization. Node Patterns constitute an intermediate
stage in the graph generation process, representing nodes or simple branches which
can be derived from single semantic tokens. In the simplest case, a node pattern
transforms a semantic token into a single node. This may be the case for instances
(e.g. "Koblenz", "Alice"), which are represented by instance nodes. Analogously,
a role token can be interpreted as a labeled branch; for example, a phrase "pop-
ulation of" can be interpreted as a labeled branch connecting two non-terminal
nodes (?x - p(populationOf) - ?y). Followingly, the query "population of Koblenz"
would result in the generation of an instance node i(Koblenz) and a labeled branch
p(populationOf) in the �rst stage of the semantic interpretation procedure. In case
of class tokens, the system may already proceed a more advanced interpretation:
As a class token such as university may indicate a query searching for entities of the
type university, a node pattern could de�ne a non-terminal node ?x connected
with a class node university with a labeled edge typeOf. A branch is also de�ned in
case of base tokens: A query "Name all cities with more than 100.000 inhabitants"
containing a restriction of the population size could be transformed into a labeled
branch p(populationSize) and a base token constituting a numeric restriction b(>
100.000). The following listing shows a set of possible node patterns:

p0 := c[a] → ?x p(rdf : type) c[a] (0.95)

p1 := i[b] → i[b] (0.9)

p2 := p[c] → ?x p[c] ?y (0.85)

p3 := b{v}[d] → ?x p[d] b{v}[d] (0.95)

p0 indicates the interpretation of a class token, which corresponds to a non-terminal
node (?x) of the corresponding class (c). The identi�er indicating how the token
is included in the pattern annotation is depicted in brackets ([a]). A class token
university would thus be transformed into a labeled branch of the form (?x -
rdf:type - university). p1 produces a direct transition from an instance token into

4.2. SEMANTIC INTERPRETATION 71

an instance node (i), while p2 generates a labeled branch p with unde�ned nodes
from a role token. p3 describes the processing of a base token, which corresponds to
the generation of a branch with the token's label as the branch's label and its value
as the branch's object node. A phrase ".. in january" would thus be interpreted
as a branch of the form (?x - date - january). The employment of node patterns
on a token sequence is depicted in Figure 4.5, while the curved arrows imply the
association of tokens with pattern elements. The transformation that computes
the annotation (a) from the expression (e) results in the �rst graph stage G0.

The query "universities in Koblenz" has produced the tokens (t0(c), t1(i)) rep-
resenting a class token (c:University) and an instance token (i:Koblenz) employing
a lexicon based on the DBpedia ontology. If we employ the node patterns listed
above on the generated tokens, the parser associates the node patterns p0 and p1
with the corresponding tokens, thus creates a mapping of the form

c : University → a(p0)

i : Koblenz → b(p1)

The employment of the node patterns p0 and p1 on the token sequence is shown
in Figure 4.5. The generated graph contains a branch indicating a non-terminal of
the requested class ("university") as well as a single instance node ("Koblenz"):

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#type
c: http://dbpedia.org/ontology/
i: http://dbpedia.org/resource/

b : {?x − rdf : type − c : University}

n : {i : Koblenz}

4.2.2 Relation Generation

The second stage of the semantic interpretation approach is the generation of the
graph's edges, i.e. the identi�cation of the nodes' relations. The purpose of the
relation generation is the identi�cation of connections between the available nodes,
which we will call the graph branches. A branch is characterized as a labeled edge
between two nodes, with its label representing the predicate expressing the nodes'
relation. Analogously to graph nodes, branches can represent a speci�c prop-
erty (terminal branch) or an unde�ned relation between two nodes (non-terminal
branch). We will de�ne a graph branch b(n0, n1, θ, p) of a graph g as a quadru-
ple connecting two graph nodes n0, n1 with a property p. The boolean value θ

72 CHAPTER 4. THE MODEL

Figure 4.5: Node Pattern employment on a token sequence (c,i)

indicates whether the property speci�es a speci�c or an arbitrary property. Anal-
ogously to graph nodes, we distinguish between terminal branches representing a
speci�c property where p is the property's URI, and non-terminal branches repre-
senting an unde�ned relationship, where p is identi�ed with a unique alphanumeric
id. The base for identifying relations between nodes are relation patterns, which
indicate how graph nodes can be connected by branches. Other than node pat-
terns, relation patterns receive multiple elements as their input parameters and
map them to a pattern's expression.

De�nition 8 (Relation Pattern)
A relation pattern p(e, a, v) consists of an expression e, an annotation a and a
truth value v. The expression e(n∗) is a node sequence consisting of at least one
node. Each node is identi�ed by a unique id and a node type. The annotation
a((ns, np, no)∗) is a set of branches indicating the transformation of the expression
into one or more branches. The annotation must contain at least one node from
the expression. The truth value v(0; 1) indicates the probability that the given
correlation is correct.

The annotation indicates how a set of nodes generated in the �rst semantic
interpretation stage is transformed into a set of branches. As each token in the
expression is identi�ed with an ID, nodes of the expression are identi�ed with the

4.2. SEMANTIC INTERPRETATION 73

same ID in the annotation. While the node generation stage identi�ed single to-
kens, the relation generation stage identi�es cohesive node structures which require
a precise procedure to map the elements into the next phase. For this purpose,
the parser generates a mapping between graph nodes and elements of a pattern's
expression. If an element of the pattern's expression could not be mapped to a
graph node and is transformed within the annotation, the parser generates a non-
terminal element. The similarity computation between the nodes of the �rst graph
stage G0 and the pattern expression proceeds by computing the number of match-
ing nodes. By employing the relation pattern whose expression is most similar to
the graph nodes, the Semantic Interpreter generates the semantic relations that
are most likely to represent the information request included in the client request.

A simple relation pattern indicating the transformation of a non-terminal node,
a role token and an instance token (?x,p,i) into a cohesive branch with a truth
value of 0.95 could be realized as follows:

pr := (?(x) . i[b])→ (x − ?p − b) , (0.95)

The pattern is employed on the graph ([?x− rdf : type− c : University] , [i :
Koblenz]) as follows: The parser maps the non-terminal node (?x) and the instance
node (i : Koblenz) tokens to elements of the pattern's expression:

(?x→ x , i : Koblenz → b)

The generated branch indicates an unspeci�ed relation between the non-terminal
node and the instance node of the form (?x ?y i). The mapping process from the
graph G to the pattern's expression e and the employment within the annotation
a is depicted in Figure 4.6.

4.2.3 Focus Identi�cation

After generating the graph's nodes and edges, the focus identi�cation marks the
crucial step in realizing the representation of a search request within a graph. Other
than the representation of a general set of relations within a graph, the realization
of a search request requires an element identi�ed as the query's major element
indicating the requested element, called the graph's focus. The focus determines
the major request entities or facts that are described by the graph, that is, the
elements the query searches for. We de�ne the focus f of a semantic graph G as
an entity of the graph representing the elements that are to be retrieved. A focus
can either be a node nf or a branch bf . Each graph can have only one focus.
Though the various possibilities what a natural language query can search for, we
can distinguish from a graph-based view two base forms of query types: A natural
language query can search for resources (persons, cities, etc.), i.e. nodes, or the

74 CHAPTER 4. THE MODEL

Figure 4.6: Relation Pattern Employment

query searches for a relation of an entity, such as the value of a speci�c property or
the relationship between two nodes (birthday of a person, a city's population size,
etc.), i.e. a branch. Thus we will distinguish between two types of information our
system can search for, called the request type rq of a query q:

• Entities: A set of resources described by the properties of the NL query
(e.g. "universities in Koblenz")

• Facts: Properties of a speci�c resource (e.g. "weight of an apple","population
of Munich")

Whether a query searches for entities or facts, is determined by the focus element,
which may either be a node or a branch. A focus node represents the entities that
are to be retrieved. The semantic graph represents an entity request. A relation
between two nodes identi�ed as the focus represents a query for a certain property
of a node. The semantic graph represents a fact request. For example, a query
searching for universities would result in a semantic graph comprising of a non-
terminal node (?x) connected by a branch (typeOf) and a class node (University).
The information request of the graph is depicted by the non-terminal node (?x),
the query represents an entity request. However, a query "age of Bob" would

4.2. SEMANTIC INTERPRETATION 75

result in an instance Bob connected with a branch age. Identifying the branch
age as the graph's focus, the query represent a fact request. The focus of a token
sequence is identi�ed with focus patterns, which identify a graph's focus as well as
its request type.

De�nition 9 (Focus Pattern)
A focus pattern pf is a pattern identifying the focus of a graph G. It consists of an
expression ef consisting of a token sequence ts, an annotation af,r (f), indicating
an element of the expression as the graph's focus and a truth value θ.

An additional feature is added with the concept of focus types : If the focus
node is connected with a class node specifying the type of the focus node, the
class node's URI is called the focus type of the parse. The focus type of a graph
identi�es the type of the requested entities, i.e. what the query searches for (e.g.
persons, stores). In this way, the syntactic parser's succeeding components will be
able to compute whether a knowledge source of the system is likely to contain an
answer to the query. By consulting only knowledge sources that are considered
relevant for the client query, the system's e�ciency will be increased signi�cantly.

Let pf be a focus pattern of the form

pf := ?x[a] rdf : type[b] c[c] → f = a

identifying a non-terminal node (?x) speci�ed as a class as the graph's focus. The
parser employs the focus pattern on the graph computed above by generating the
following node mapping:

(?x→ a , rdf : type→ b , c : University → c)

The expression maps token ?x to the annotation's focus, identifying the non-
terminal ?x[a] as the graph's focus and c:University as the graph's focus type:

f =?x

The focus pattern employment is shown in Figure 4.7. After generating the
semantic graph, the syntactic parser transforms the graph into an intermediate
query representation that full�lls the requirements speci�ed in chapter 3. Anal-
ogously to the RDF triple format, the IQR represents query arguments in the
subject-predicate-object format. Additionally, it contains parameters speci�ying
whether the request searches for entities or facts (request type (r)) and the focus
type (f) of the query. The graph generated before is transformed into an IQR as
follows:

76 CHAPTER 4. THE MODEL

q:= {
r: e,
f: c:University,
{
?x rdf:type c:University .
?x ?y i:Koblenz

}
}

Classi�cation of the approach The presented approach for parsing a natural
language sentence into a graph-based intermediate representation has combined
techniques of shallow and deep parsing in a novel way. Other than the transition
rules expressed by formal grammars introduced in section 2.1, graph patterns
are speci�ed for transforming intermediate graph stages in a full semantic graph
identi�ed by a set of nodes, branches and a graph focus. Additionally, the presented
approach is able to identify the request type as well as the type of entities the query
searches for.

4.2. SEMANTIC INTERPRETATION 77

Figure 4.7: Focus Pattern Employment

Chapter 5

Architecture

This chapter presents the system's architecture, consisting of the main compo-
nents, a set of modularized components for accessing external data sources as
well as the interface speci�cations for the system components' communication.
The system consists of three main components: The syntactic parser generating
a logical representation of the natural language query, the query performer con-
sulting the system's knowledge sources, and the result processor for computing a
request's result set. To realize a system with �exible vocabulary and knowledge
sources, we propose a modularized system architecture that proceeds interactions
with external data sources by customized modules. An overview of the architec-
ture's components is depicted in Figure 5.1. A client query is processed as follows:
As soon as a request comes in, the input is parsed and transformed into a logical
semantic representation. For this purpose the syntactic parser employs several
lexica storing data about the meaning of terms. The generated logical represen-
tation of the query is transferred to the Query Performer, which identi�es and
consults the appropriate knowledge sources with respect to the query's focus in
order to retrieve results for the query. Finally the di�erent result sets from the
knowledge sources are merged and ranked by the Result Processor. Section 5.2 will
describe the system's interfaces, including the internal communication with data
structures and the procedural communication with separated modules, as well as
the communication with external applications.

5.1 Components

The system's main system consists of the components Syntactic Parser, Query
Performer and Result Processor. These components of the main system re�ect
the three major tasks proceeded by the distributed QA system: 1) The processing
of the natural language query and the generation of an intermediate logical rep-

79

80 CHAPTER 5. ARCHITECTURE

Figure 5.1: System Architecture consisting of the three main components Syntactic

Parser, Query Performer and Result Processor

resentation, 2) the retrieval of knowledge from di�erent data sources, and 3) the
mergence of the retrieved responses and the computation of a heuristic-based re-
sponse ranking. The main components thus correspond to the main components of
a question answering system proposed by (10) (4) in terms of the major processes
proceeded by a NLI. As de�ned in section 3.2, a major goal of the system design is
the system's independency towards its vocabularies and knowledge sources. This
goal is achieved by separating processes consulting external data sources from the
main system and proceeding them by small, �exible modules. Two of the system's
components bring to bear the concept of separated components for querying ex-
ternal data sources: The syntactic parser consults modules for retrieving tokens
from natural language (vocabulary modules), the query performer retrieves search
results from modules querying the system's knowledge sources (data modules).

5.1. COMPONENTS 81

5.1.1 Syntactic Parser

The syntactic parser of the system performs the semantic processing of the natural
language and implements the model presented in chapter 4. It receives a natural
language query as well as diverse meta parameters from the user interface, parses
the query and generates an intermediate query representation of the query. The
parser consists of two modules, one for generating a token sequence from the nat-
ural language input (Tokenizer) and a module generating a semantic intermediate
representation of the query in the form of a labeled graph (Semantic Interpreter).
The parser architecture is depicted in Figure 5.2: The main component comprises
of the Tokenizer and Semantic Interpreter. From the most probable tokenizations
T∗ computed by the Tokenizer, the Semantic Interpreter generates a set of se-
mantic graphs and transmits it to the Query Performer in an appropriate data
structure, the intermediate query representations IQR∗.

Tokenization The natural language segmentation and token retrieval procedure
are computed as described in chapter 4. For retrieving tokens from the term se-
quences, the Tokenizer needs to consult lexica associating terms with semantic
entities. As de�ned in section 3.3, the goal of a domain-independent NLI requires
the possibility to include one or multiple vocabularies in the system. To identify
semantic tokens within a natural language query, the Tokenizer is coupled with
one or multiple components accessing lexica of di�erent vocabularies which we will
refer to as Vocabulary Module (VM)s. The component receives a natural language
query q, whereupon the Tokenizer computes the term sequence set and transmits
them to its registered vocabulary modules. The Tokenizer generates a tokeniza-
tion for each vocabulary, i.e. transmits the term sequence set to each vocabulary
module separately. VMs are specialized to access their corresponding lexicon and
are accessed via HTTP requests using a well-de�ned interface, thus VMs can con-
tribute to the token retrieval process independently from their underlying database
management system.

Vocabulary Modules The separation of the process of consulting external data
sources enables the system to employ multiple vocabularies which can be added or
removed dynamically. In order to manage the system's vocabularies, the Tokenizer
consults a con�guration listing the system's available vocabulary modules and
specifying which VMs are activated. VMs are employed by the parser for retrieving
tokens associated with the term sequences computed in the sentence segmentation
process. A VM receives a term sequence from the Tokenizer, whereupon the most
probable tokenization is computed as described in section 4.1. Each VM consults a
lexicon, i.e. a database associating terms with resources on the Web. To accelerate

82 CHAPTER 5. ARCHITECTURE

Figure 5.2: Architecture of the Syntactic Parser with modularized access to system

vocabularies

the query processing speed, the vocabulary's term mappings have been extracted
in advance by the VM and can be queried e�ciently.

A resource is identi�ed by its token type such as class, property or instance.
Additionally, we will add the URI of the resource to clearly identify the token
associated with the term. Thus a database tuple of the lexicon consists of a term,
a token type (class, property, instance, base), a URI and a relevance indicating
the correlation between a term and a semantic token. The construction of a VM's
data corpus of term mappings requires the identi�cation of terms associated with
entities contained in the employed ontologies, such as the extraction of labels
of classes and properties.The vocabulary database is queried and updated by its
corresponding vocabulary module and is completely independent from the main
parsing system. In this way the organization of the database is �exible and can
easily be modi�ed by updating the corresponding vocabulary module without the
need to interrupt the main system.

Semantic Interpretation For generating a graph representation of the natural
language query, the parser employs graph patterns in a 3-staged, transition-based
parsing model as described in section 4.2. The Semantic Interpreter receives a set
of tokenizations T∗ from the Tokenizer, where each tokenization represents the
interpretation of the NL query on the base of its corresponding vocabulary. The

5.1. COMPONENTS 83

semantic interpreter generates a request for each received tokenization. In this way,
the system is able to be coupled with multiple vocabularies, which signi�cantly
increases the scope of possible client queries. The result of the syntactic parsing
process is a set of duples (vi, ri) consisting of a request ri for each vocabulary vi.

5.1.2 Query Performer

The information retrieval procedure of the system takes place by selecting relevant
data sources with respect to the query, the generation of valid database queries and
the consultation of the underlying databases. The system's data retrieval compo-
nent consists of a set of modules interacting with the system's knowledge sources
as well as a module managing the separated modules and identifying the relevant
data sources for a query. Analogously to the vocabulary modules of the syntactic
parser, data sources are accessed as separated modules by the main component.
We will refer to components accessing data for retrieving search responses as Data
Module (DM)s.

Figure 5.3: Architecture of the Query Performer with modularized access to the sys-

tem's knowledge sources

Data Source Identi�cation The purpose of the Query Performer integrated in
the main system is to identify the relevant knowledge sources for a query, transmit

84 CHAPTER 5. ARCHITECTURE

the IQR requests to them and gather the received responses. To manage the
available data modules, the system loads the con�guration of each data module
at startup and stores the speci�cations in an appropriate data structure. The
query performer receives a set of intermediate representations of the semantic
graphs generated by the parser, where each IQR is based on one of the registered
vocabularies. The task of identifying relevant knowledge sources with respect to a
query is based on two considerations:

1. Identify knowledge sources based on the request's vocabulary

2. Identify knowledge sources that are considered likely to retrieve accurate
results with regard to the request

From these two assessments, 1) depicts a necessary and 2) a su�cient condition
for the presented question answering system. The �rst statement refers to the fact
that resources of the IQR are denoted with URIs. In order to generate valid
database queries, data modules therefore have to be able to parse the request
correctly. For this purpose, each data module is required to be speci�ed for at least
one vocabulary. The second statement aims at the goal of system e�ectiveness: A
common problem in distributed information systems is the high computing time
once the number of possible data source becomes large. In many cases not all
of the available knowledge sources contain data that is relevant with respect to
the given query, if the system consults each data source yet high latencies result.
Additionally, if some of the knowledge sources are domain-dependent, it would
be preferable only to query those that contain data relevant to the given query.
To address the issue of the consideration of a knowledge source's emphasis, each
data module of the system is con�gured with one or multiple focus types. A
data module's focus types are a set of URIs representing the possible entities the
data module can retrieve. Data module focus types correspond to the focus type
identi�ed for semantic graphs as outlined in section 4.2. A focus type represents the
kind of entities the query searches for. If a data module's focus type is the empty
set θ, the data module is considered domain-independent; the query performer
consults the data module for each request regardless of the semantic graph's focus
type. Formally, a data module di is employed for a request rv of the vocabulary v
if

• di is based on the vocabulary v

• its focus type set is the empty set θ or if

• it includes the semantic graph's focus type.

For example, a data module consulting an event data source would only be
consulted if a client query searches for events, i.e. if the semantic graph's focus
type is an event type such as concert or festival.

5.1. COMPONENTS 85

Data Modules Data Modules are components for retrieving search results from
a speci�c data source by generating valid database queries from an IQR and trans-
forming the result into a list of search results. In this way knowledge sources can
be added independently from the database's internal organization and the storage
location of the data source. Knowledge can either be stored locally on relational
databases or retrieved from the web at runtime from SPARQL endpoints or APIs.
They receive the IQR of the syntactic parse and retrieve a list of search results
enriched with meta data. A data module generates a query for its knowledge base
from the IQR received from the Query Performer. As outlined in chapter 2, de-
pending on the knowledge base's data format a query could be a SQL query for
relational databases, a SPARQL query for RDF triplestores, or an HTTP request
for APIs of external applications.

5.1.3 Result Processor

The purpose of the Result Processor is to merge the result sets retrieved by the data
modules to a �nal result set that is returned to the user interface. As the system
may consult multiple data sources, the system needs to recognize results from
di�erent data sources referring to the same entity (Instance Matching). In order
to present the most relevant search results to the client, the system �nally generates
a ranked result list by ordering results according to their relevance towards the
user query.

To merge the result set retrieved by the employed data modules, the Result
Processor iterates each result set and compares its results to results that have
already been found. Redundant search results are identi�ed if a speci�c set of
meta data shows the same or similar values. Strong redundancy indicators are
results' titles and geospatial coordinates for location-based entities. However, it is
crucial only to identify two entities as congruent if all redundancy indicators are
identi�ed: For example, an event that lasts for a couple of days could be stored
as a separated entity for each day, while the entries only di�er in the date. A
redundancy recognition would only then be correct if all indicators (title, location,
date) show the same values. A local business entry, on the other hand, would be
su�ciently recognized by its title and location. For this purpose, the Result Pro-
cessor holds a list of redundancy indicators and compares search results according
to the set of their meta data. While a general search result that has no geospatial
coordinates contained in its meta data would be compared according to its title,
a local business entry would be compared by its title and location.

The ranking of retrieved search results is of particular importance, as the sys-
tem has to balance between the factors relevance of the search result and closeness
to the client for location-based queries: On the one hand it is desirable to empha-
size entities that match the client request the best. On the other hand, entities

86 CHAPTER 5. ARCHITECTURE

that are relevant to the query but too far away from the client's location may be
considered unrelevant by the user as well. The Result Processor thus implements
a stepwise model that considers both aspects: Depending on the complexity of
the request underlying the retrieved results, search results are ranked according
to their relevance. Within the priority computed for each request, the retrieved
results are ranked according to their distance to the client location. If the num-
ber of results contained in the result set exceeds the maximum number of results
requested by the client, the system only returns the most relevant results.

5.2 Interfaces

The system's modularized architecture requires the speci�cation of various in-
terfaces for de�ning the components' communication. Beside the communication
between the system and external applications, the system realizes di�erent types of
communication within the internal processing of a natural language query. Based
on the classi�cation of (91), we distinguish the following types of interfaces of the
system:

• Data Structures are transmitted between subsystems, in case of the NLI
between the system's main components

• Procedural Interfaces de�ne the provision of services by accessing well-
de�ned interfaces.

Figure 5.4 depicts the realization of interfaces within the system. Data struc-
tures are employed by the main system to transmit the current stage of the query
parse to the next component. Procedural interfaces are applied for two use cases:
On the one hand, the system accepts requests from clients through a HTTP inter-
face using the REST architectural style, on the other hand the system interacts
through procedural interfaces with modules separated from the main system, such
as vocabulary and data modules.

5.2.1 Data Structures

The following data structures are passed through the main system in the course
of a request handling: The client transmits a natural language query as well as
various optional meta parameters to the system's REST-compliant web service.
The natural language query is then sent to the Syntactic Parser, which realizes
the model presented in chapter 4 to generate a graph-based logical intermediate
representation depicting the client's information request. This IQR is transmitted
to the Query Performer, which generates a set of requests to the system's activated

5.2. INTERFACES 87

Figure 5.4: System interfaces

data modules and receives a set of search responses. The data structure passed
on by the Query Performer is a set of all retrieved search results from a variable
number of data modules. After merging and ranking the retrieved result sets,
the Result Processor transfers the generated �nal result set to the web service
interface.

5.2.2 Procedural Interfaces

Internally, the system communicates with two kinds of modules that are uncoupled
from the main system and require well-de�ned interfaces: The �rst is the commu-
nication with the vocabulary modules to retrieve tokens from an input string. The
second is the retrieval of search results from data modules.

Communication with Vocabulary Modules

The purpose of the communication of the main system and the registered vocabu-
lary modules is the domain-independent retrieval of semantic tokens from a term
sequence computed from a natural language sentence. The syntactic parser trans-
mits the term sequence sets to all activated VMs, which compute the most probable
token sequence for the given vocabulary and return the generated tokenizations.
The VMs are deployed as independent components and are accessed with HTTP

88 CHAPTER 5. ARCHITECTURE

requests employing the REST architectural style. A HTTP VM request by the
main system encodes the term sequence as a consecutively numbered list of pa-
rameters, where the parameter key is an automatically incremented number and
the corresponding value is a term of the term sequence as outlined in Table 5.1.

Parameter Value Description
{0,1,...n} string,max 250 Term

Table 5.1: Vocabulary Module request parameters

Listing 5.1 shows a vocabulary module request of the Tokenizer for the sample
query "universities in Koblenz".

http :// espresso.uni -koblenz.de :8080/VM -DBpedia/webresources/tokens

?0= universities &1=in&2= koblenz

Listing 5.1: Vocabulary Module token request

After computing the most probable tokenization, the vocabulary modules re-
spond the result as an XML encoded string. The tokenization consists of a prob-
ability and a list of tokens described by their unique identi�er, their token type,
the relevance and the underlying term. If the token type is a base token, the token
is further described by a value indicating a query constraint. A VM encodes a
tokenization as a list of result-elements representing semantic tokens, enriched
with meta data such as the URI, the token type, the relevance and the query term
of the particular token. Listing 5.2 presents the response of a vocabulary module.

<?xml version ="1.0" encoding ="8859 -1" ?>

<resultset >

<result >

<id >http :// dbpedia.org/ontology/University </id >

<tokentype >c</tokentype >

<relevance >0.99 </ relevance >

<term >university </term >

</result >

<result >

<id >http :// dbpedia.org/resource/Koblenz </id >

<tokentype >i</tokentype >

<relevance >0.99 </ relevance >

<term >koblenz </term >

</result >

</resultset >

Listing 5.2: Vocabulary Module token response

5.2. INTERFACES 89

The root element resultset includes a list of result structures representing a
token each. The token's attributes are realized as sub-elements of the result tag.

Communication with Data Modules

The Query Performer receives an intermediate representation of the natural lan-
guage query, identi�es the relevant data sources according to their focus types and
consults them in order to retrieve the query's search results. As described in sec-
tion 4.2, the IQR consists of the request type, the focus type and a set of triples
describing the query in a subject-predicate-object model. As HTTP parameters
are based on a predicate-argument model, the IQR's triples have to be transmitted
as values of parameters. The parameter key of each triple is, analogously to the
communication with vocabulary modules, encoded as an ascending digit. Each
branch of the IQR is encoded as a parameter value, whereby the triple elements
are separated by commata and URIs are marked with tags. Additionally, the re-
sults' language as well as the radius for location-based requests can be speci�ed.
The request parameters are depicted in Table 5.2.

Parameter Value Description
e string,max 1,[e|f] Request type
f string,max 250 Focus type
lang string,max5 Language
r int,max 50000 Radius (m)

{0,1,...n} string Query triples

Table 5.2: Data Module request parameters

A sample HTTP request to a data module from the query performer based on
the semantic graph of the query "universities in Koblenz" is depicted in Listing
5.3.

http :// espresso.uni -koblenz.de :8080/DM -SPARQL -DBpedia/webresources

/searcher?e=e

&f=http :// dbpedia.org/ontology/University

&0=?x,<http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type >

,<http :// dbpedia.org/ontology/University >

&1=?x,?y,<http :// wwww.dbpedia.org/resource/Koblenz >

Listing 5.3: Data Module search request

The query generation and the consultation of the databases is performed by
the data modules. Each data module returns an XML response containing a list

90 CHAPTER 5. ARCHITECTURE

of search results described with an ID indicating the rank of the result and diverse
meta data such as title, description, URI, images, latitude and longitude. A sample
data module response is shown in Listing 5.4.

<?xml version ="1.0" encoding ="ISO -8859 -1" ?>

<resultset >

<result >

<id >1</id >

<meta >

<title >Universität Koblenz -Landau </title >

<description >Die Universität Koblenz -Landau wurde 1990 gegrü

ndet und ist eine der jüngsten Universitäten in Deutschland.

An ihr sind insgesamt 12.915 Studierende (Stand WS 2012/11)

eingeschrieben , davon 6.577 in Koblenz und 6.338 in Landau

in der Pfalz.</description >

<uri >http :// dbpedia.org/page/University_of_Koblenz_and_Landau </

uri >

<images >http :// upload.wikimedia.org/wikipedia/commons/thumb /4/4

b/Uni -Logo -Black -Blue.svg /200px -Uni -Logo -Black -Blue.svg.png

</images >

<latitude >49.204445 </ latitude >

<longitude >8.108611 </ longitude >

</meta >

</result >

<result >... </result >

</resultset >

Listing 5.4: Data Module search response

Communication with External Applications

External applications communicate with the system's main interface in order to
provide the search functionality for user interfaces. The search interface is access-
able via HTTP requests as a RESTful web service. A client request from user
interfaces contains the natural language query as well as optional query-speci�c
options, including the maximum number of results (n), the language of the title
and description of search results (lang) and the client's geospatial coordinates
(lat,lng). Additionally, the client may de�ne one or multiple knowledge sources
that should be consulted for a particular request (locationtype). For this pur-
pose, each knowledge source is identi�ed with an integer value used as the pa-
rameter's value for selecting a knowledge source for retrieving search results. If
no locationtype parameter has been speci�ed, the system consults all knowledge
sources activated as de�ned in the system con�guration. The provided parameters
of the system's main interface are listed in Table 5.3.

The system's response is a list of search results that have been found for the
query. It lists an identi�er and various meta data for each search result such as

5.2. INTERFACES 91

Parameter Value Description
q string, max 250 Natural language query
n integer: default 10, max 100 The number of results to return
lang string, max 10: default en Language in which the search

results are displayed
lat �oat: -90 to 90 Latitude of the client's location
lng �oat: -180 to 180 Longitude of the client's location
locationtype int ID of a knowledge source

Table 5.3: System request parameters

title, description, thumbnail and the name of the result's data source. Listing 5.5
shows a possible response of the system.

<resultset >

<result >

<id >1</id >

<meta >

<title >Universität Koblenz -Landau </title >

<description >Die Universität Koblenz -Landau wurde 1990 gegrü

ndet und ist eine der jüngsten Universitäten in Deutschland.

An ihr sind insgesamt 12.915 Studierende (Stand WS 2012/11)

eingeschrieben , davon 6.577 in Koblenz und 6.338 in Landau

in der Pfalz.</description >

<uri >http :// dbpedia.org/page/University_of_Koblenz_and_Landau </

uri >

<images >http :// upload.wikimedia.org/wikipedia/commons/thumb /4/4

b/Uni -Logo -Black -Blue.svg /200px -Uni -Logo -Black -Blue.svg.png

</images >

<latitude >49.204445 </ latitude >

<longitude >8.108611 </ longitude >

</meta >

</result >

<result >..</result >

..

</resultset >

Listing 5.5: Search response of the NLI

Chapter 6

Prototype

This chapter will present the system prototype, which implements the parsing
model described in chapter 4 and the architecture presented in chapter 5, while
ful�lling the requirements presented in chapter 3. All components of the prototype
are implemented in the Java programming language1, the lexica of the vocabulary
modules have been developed based on MySQL databases2. Multiple data mod-
ules have been developed, gathering data on the web from SPARQL endpoints
as well as APIs provided by public data providers. The communication between
external applications and the natural language search system as well as the inter-
nal communication with vocabulary and data modules is based on Web services
implementing the REST architectural style. On the front-end side we present the
integration of the system within a mobile application as well as a web-based user
interface.

6.1 Vocabulary Modules

The system's vocabularies are the major data source for associating elements of
a natural language sentence with resources on the Web. Vocabulary Modules
have been developed based on the DBpedia3 (93) (94) and the LinkedGeoData4

(96) projects, which both provide comprehensive data sets described by ontologies
according to the Semantic Web standards. The data corpus employed by the
DBpedia VM has been obtained from the DBpedia ontology, the DBpedia article
set as well as the DBpedia category graph. The lexicon of the LinkedGeoData
(LGD) VM has been generated employing the LinkedGeoData ontology as well as

1http://www.oracle.com/technetwork/java
2http://www.mysql.com
3http://dbpedia.org
4http://linkedgeodata.org

93

94 CHAPTER 6. PROTOTYPE

the LinkedGeoData nodes. An overview of the vocabulary modules employed by
the prototype as well as their data sources is depicted in Figure 6.1.

Figure 6.1: Architecture and data sources of the prototypical parser and vocabulary

modules

In a �rst preparation, the Tokenizer employs a vocabulary-independent syntac-
tic formatter and a base lexicon to remove punctuation marks, compute the base
forms of nouns in English and German and identify base tokens. To extract classes
and properties from ontologies available in Web Ontology Language (OWL), we
employed the Apache Jena Framework5 for building Semantic Web applications.
For retrieving term mappings considering terminological knowledge, the labels of
classes and properties of ontologies have been extracted and stored in a database
associating the retrieved labels with the appropriate resources. For the prototype,
class and property labels of the DBpedia and the LinkedGeoData ontologies were
extracted in English and German. As the data source's instance set we employed
the set of articles of the DBpedia corpus to represent instances, the article titles
represent the instances' labels. Term mappings were generated as follows: Labels
were separated by white spaces and added to the lexicon with the relevance ac-
cording to the fraction of the label on the full entity's title. An excerpt from the
lexicon mapping terms to DBpedia classes is depicted in Table 6.1.

5http://jena.apache.org

6.1. VOCABULARY MODULES 95

term π URI r
sports team c http://dbpedia.org/ontology/SportsTeam 0.99
astronaut c http://dbpedia.org/ontology/Astronaut 0.99
hockey i http://dbpedia.org/resource/Hockey 0.99
operating system p http://dbpedia.org/property/operatingSystem 0.99

Table 6.1: Lexicon extract of entities extracted from the DBpedia corpus

An analogous approach has been employed for extracting term mappings from
the LinkedGeoData ontology. The labels of classes and properties of the LGD
ontology have been employed as term identi�ers for the corresponding tokens.
LGD nodes, which represent a set of points of interest described by the LGD
ontology, were extracted as a set of instances. Apart from the recognition of
semantic tokens within a natural language sentence based on term mappings, the
recognition of base tokens is of particular importance. Base tokens represent query
constraints such as speci�c dates or time intervals, which can be expressed in a
variety of formats. Other than the association of class, role and instance tokens
identi�ed by term mappings, the recognition of base tokens is thus implemented
using regular expressions. Table 6.2 shows an extract of the regular expression set
for identifying a date within a German natural language query.

Format Reg. Exp. Example
month (januar)|(februar)|... "januar"
day-month ([1-3][0-9]|[1-9])(\.)

((januar) |(februar)|...)

"1. januar"

year ([1-2][0-9][0-9][0-9]) "2013"
day-month-year ([1-3][0-9]|[1-9])(\.)

((januar)|(februar)|...)

([1-2][0-9][0-9][0-9])

"1. januar 2013"

Table 6.2: Extract from the regular expression set for date recognition

When querying the lexicon for a term mapping, the vocabulary modules re-
trieves a list of possible tokens with varying relevances. The system additionally
computes the base forms of German and English nouns and retrieves associations
for them as well. If tokens of di�erent token types feature the same relevances,
the token preferences have been implemented as follows:

tb > tc > ti > tp (6.1)

96 CHAPTER 6. PROTOTYPE

6.2 Data Modules

The system's DMs provide the data corpus for querying knowledge sources and
retrieving search results. The modularized architecture allows data modules to
be independent from the underlying DBMS as well as the data's storage loca-
tion. Two types of data modules employing remote access have been developed:
Data modules for knowledge sources based on SPARQL endpoints as well as data
accessed through APIs. To enable the consultation of knowledge sources indepen-
dently from the underlying database management system, the task of generating
the database query is performed by the system's data modules. Depending on
the data format, the DMs employ various methods to generate an appropriate
database query from the IQR. An overview of the employed data modules is pre-
sented in Figure 6.2. Whenever a data module is added, the system generates a
new directory and stores the data module's con�guration in a separate �le.

Figure 6.2: Data modules of the prototype with remote access to SPARQL endpoints

and APIs

6.2. DATA MODULES 97

The �le con�g.txt stores the Uniform Resource Locator (URL) for consulting
the corresponding data module, enabling data modules to be accessed from remote
as well. A sample con�guration is depicted in Listing 6.1.

base -uri=http :// espresso.uni -koblenz.de :8080/DM -API -Eventful/

webresources

path=searcher

vocabulary=dbpedia -concept

name=Eventful

focus -type=http :// dbpedia.org/resource/Category:Events (...)

Listing 6.1: con�g.txt for the data module accessing the Eventful API

6.2.1 SPARQL Endpoints

SPARQL6 provides a graph-matching query language for RDF data and has be-
come an o�cial recommendation of the W3C in 2008 (69). As a public interface for
the structured querying of data is one of the most practicable and most adopted
ways to make data available, many LOD providers have published SPARQL end-
points7,8 which can be accessed by external applications. By the employment of
a triple-based representation of the parse and the usage of URIs for representing
resources, the IQR shares many characteristics with a SPARQL query for accessing
RDF repositories. In case of queries containing no �lters, the IQR already repre-
sents the body of the SPARQL query. An entity request as described in chapter
4 is characterized as a query for a set of resources described by one or more con-
straints (e.g. "name all universities in Koblenz"). The SPARQL entity search
includes a single variable (?x) in the SELECT clause and includes the IQR triples
as the query body. In case of query constraints, an additional FILTER clause is
added to the query. Listing 6.2 shows a sample SPARQL query generated for an
entity search.

PREFIX rdf:<http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX db -owl:<http :// dbpedia.org/ontology/>

PREFIX dbres:<http :// dbpedia.org/resource/>

SELECT ?x WHERE {

?x rdf:type db-owl:University .

?x ?y dbres:Koblenz

}

Listing 6.2: SPARQL entity search

6http://www.w3.org/TR/rdf-sparql-query/
7http://dbpedia.org/sparql
8http://linkedgeodata.org/sparql

98 CHAPTER 6. PROTOTYPE

The presented SPARQL query retrieves a list of URIs that match the de�ned
criteria. For providing additional data and presenting the results in a human-
readable way, we de�ned the meta data for search result that should be provided
in chapter 3. In case of SPARQL-based DMs, an additional search is necessary in
order to retrieve meta data about the URIs retrieved in the �rst place. The query
contains variables for the meta parameters title, description, thumbnail as well as
latitude and longitude as optional parameters for location-based results. The query
is a join of meta parameter queries for each of the retrieved search results. To limit
the query's computing time, the data module limits the number of search results
at this point of the query processing. The variables [b, c, d, e, f] are employed for
SPARQL meta searches. For the example query from Listing 6.2, we assume the
data module querying the DBpedia SPARQL endpoint retrieved the identi�ers for
the University of Koblenz-Landau and the University of Applied Sciences Koblenz.
Listing 6.3 shows the SPARQL meta query for the retrieved URIs.

PREFIX dbres:<http :// dbpedia.org/resource/>

PREFIX rdfs:<http ://www.w3.org /2000/01/rdf -schema#>

PREFIX xmlns:<http :// xmlns.com/foaf /0.1/>

PREFIX geo:<http ://www.w3.org /2003/01/ geo/wgs84_pos#>

SELECT ?b ?c ?d ?e ?f WHERE { {

dbres:University_of_Koblenz_and_Landau rdfs:label ?b .

FILTER(langMatches(lang(?b) ,"EN"))

. OPTIONAL {

dbres:University_of_Koblenz_and_Landau rdfs:comment ?c .

FILTER(langMatches(lang(?c) ,"EN")) .

dbres:University_of_Koblenz_and_Landau xmlns:depiction ?d .

dbres:University_of_Koblenz_and_Landau geo:lat ?e .

dbres:University_of_Koblenz_and_Landau geo:long ?f

}

} UNION {

dbres:University_of_Applied_Sciences_Koblenz rdfs:label ?b .

FILTER(langMatches(lang(?b) ,"EN"))

. OPTIONAL {

dbres:University_of_Applied_Sciences_Koblenz rdfs:comment ?c .

FILTER(langMatches(lang(?c) ,"EN")) .

dbres:University_of_Applied_Sciences_Koblenz

xmlns:depiction ?d .

dbres:University_of_Applied_Sciences_Koblenz geo:lat ?e .

dbres:University_of_Applied_Sciences_Koblenz geo:long ?f

}

}

}

Listing 6.3: SPARQL entity meta search for the query of Listing 6.2

6.2. DATA MODULES 99

A necessary meta parameter for search results within the SPARQL query is
the retrieval of a label to display search results in a human-readable form. A
description, a thumbnail image as well as geospatial coordinates are added as
optional parameters. The retrieved meta data are merged with the URis retrieved
in the �rst query and returned to the Query Performer.

In case of fact searches, the parameters for retrieving meta data are already
included in the main query as additional optional parameters. A fact search re-
trieving the area code of Munich if shown in Listing 6.4.

PREFIX rdf:<http ://www.w3.org /2000/01/rdf -schema#>

PREFIX xmlns:<http :// xmlns.com/foaf /0.1/>

PREFIX dbprop:<http :// dbpedia.org/property/>

PREFIX dbres:<http :// dbpedia.org/resource/>

SELECT ?x ?b ?d ?f WHERE {

dbres:Munich dbprop:vorwahl ?x .

OPTIONAL {

dbres:Munich rdf:label ?b .

dbres:Munich xmlns:depiction ?d .

dbprop:vorwahl rdf:label ?f

FILTER(langMatches(lang(?b) ,"DE")) .

}

}

Listing 6.4: SPARQL fact search

The SPARQL query returns the value of the requested property, the property's
label as well as a label and an image of the related entity as optional parameters.
For example, a client transmitting a German query requesting the area code of
Munich ("vorwahl von münchen") would receive the property label ("Vorwahl"),
the property value ("89"), as well as the label ("München") and an image of
Munich. The response of a fact search in the web frontend is depicted in Figure
6.3. The frontend displays the title and a thumbnail of the particular entity as
well as the fact label and the requested value.

If a client search is focused on a speci�c area (e.g. "universities in Koblenz")
or if geospatial coordinates indicating the client's location are transmitted with
the request, the SPARQL query is speci�ed by de�ning a query around a circular
area. If the request additionally contains a radius parameter, the SPARQL query is
speci�ed to search within an area of the de�ned radius. Listing 6.5 shows a circular
search around a point of interest for a NL query "bakeries" in Koblenz with a radius
of 2 kilometres employing the LinkedGeoData vocabulary. Geospatial coordinates
of points of interest such as city names are identi�ed by an additional location-
based lexicon containing the geospatial coordinates of location-based entities such
as cities and points of interests. The geospatial coordinates have been extracted

100 CHAPTER 6. PROTOTYPE

Figure 6.3: Search response of a fact search within the Web frontend

from the LinkedGeoData data corpus. In this way, phrases refering to location-
based entities (e.g. "Koblenz") are associated with their geospatial coordinates and
employed as the geographic basis for the query processing. In this way, a query
"universities in Munich" would identify the coordinates of Munich and perform a
circular search for universities with the Munich city centre as the query's central
location.

PREFIX rdf:<http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX pos:<http ://www.w3.org /2003/01/ geo/wgs84_pos#>

PREFIX lgd:<http :// linkedgeodata.org/ontology/>

SELECT ?x WHERE {

?x rdf:type lgd:Bakery .

?x pos:geometry ?xgeo .

FILTER (<bif:st_intersects > (?xgeo , <bif:st_point >

(7.5951959 ,50.3511528) ,2.0))

}

LIMIT 15

Listing 6.5: Location-based SPARQL entity search

6.2. DATA MODULES 101

6.2.2 Application Programming Interfaces

The employment of data sources consulted by application programming interfaces
as knowledge sources di�ers signi�cantly from data modules based on relational
databases or RDF repositories. APIs are often consulted with parameters in a
predicate-argument format and generally have their own parameters which are
not based on vocabularies published in a structured way. We therefore can neither
address resources with URIs nor use the triple format of the IQR directly for the
query. However, we can employ APIs by creating a mapping between elements of
a registered vocabulary and API parameters. If we assume a request's parameters
to be of a predicate-argument form, a parameter mapping associates elements of
a vocabulary such as a property or a class with parameters included in an API
request. In order to map an IQR triple to a predicate-argument structure of an
API request, we can make the following implications for triples of IQR: 1) a triple
may only contain 1 variable, which is as well the focus variable, 2) a triple must
be of the following form: [?variable]-predicate-argument. A parameter mapping
pm(e, p) maps an element of a vocabulary to a parameter of an API request,
which may be interpreted as follows: If a triple of an IQR contains a URI u as its
predicate and there exists a mapping (u→ p) that assigns u to an API parameter
p, the parameter p and the triple's object value form a query assignment. If there
exists a mapping (up → p) and a mapping (uo → v) that assigns a URI of a triple
predicate to an API parameter and a URI of a triple object to an API parameter
value, the duple (p, v) is generated as a query assignment.

An example of a mapping between the intermediate representation of a natural
language query and the API of an external application is read as follows: The local
events discovery and demand service Eventful9 provides an API with various pa-
rameters for searching events, including the speci�cation of the location and date
of an event. Additionally, clients can specify a category of the requested events
(music,performing arts, etc.). The sample input query "concerts in january" re-
sults in the IQR query triples shown in Listing 6.6.

PREFIX db -category:<http :// dbpedia.org/Category:>

PREFIX nlsearch:<espresso.uni -koblenz.de#>

{

?x nlsearch:category db-category:Concerts .

?x nlsearch:date "2013010100 -2013013100"

}

Listing 6.6: IQR triples generated for the query "concerts in january"

A mapping between a base token and the Eventful API assigns a base token date to
the Eventful parameter date speci�ng a time interval for an event search. A query

9http://www.eventful.com

102 CHAPTER 6. PROTOTYPE

"concerts in january" would thus result in a triple specifying the time interval as
a triple of the form (?x - date - 2013010100-2013013100). If the system applies
the mapping, the event search would include the parameter (date=2013010100-
2013013100) as a parameter within the HTTP request. A mapping between the
DBpedia ontology and the Eventful API assigns DBpedia categories to the category
parameter of the Eventful API. As the Eventful API has a custom list of available
categories, the parameter values have to be identi�ed with a mapping as well. An
excerpt of a corresponding value mapping is shown in Table 6.3. A search response

DBpedia category Eventful category
db-cat:Concerts event:music
db-cat:Information_technology event:technology

Table 6.3: Excerpt of the mapping between DBpedia categories and categories of the

Eventful API

of a query using speci�ed parameters displayed in the web frontend is depicted in
Figure 6.4.

An additional feature that was implemented for retrieving precise location-
based search results is the identi�cation and search for location-based related terms
such as related local businesses or points of interest. A common problem of search-
ing for a particular product is the speci�cation of appropriate search terms: If a
product may be denoted in several ways or the user searches for a group of prod-
ucts with a speci�c feature (e.g. products of a speci�c manufacturer), the user may
have to perform multiple searches. Especially if products may be available in stores
of various kinds, the precise formulation of a query may be di�cult. For example,
a user that searches places to buy smartphones could search for the term "phone
shop". However, it may also be possible that computer stores or electronics store
may o�er the product the user searches for. A more comfortable way for users
would be if they could simply enter the product they are searching for and receive
proposals of possible locations where the appropriate product can be acquired. For
this purpose, the system needs to know where to �nd the products the users search
for, i.e. requires a mapping of entities to related location-based terms. Within the
scope of the prototypical implementation, two layers of location-based mappings
have been generated: The �rst is a hand-crafted, precise mapping that de�nes
points of interest related to a particular term (e.g. spaghetti → italian restau-
rant). This mapping ensures a high degree of precision and consistency of the
retrieved associations. However, since the generation of hand-crafted assignments
is an expensive and time-consuming task, a second, more farreaching mapping has
been generated additionally. The second mapping is an automatically generated
extensive mapping that associates real-world entities with related location-based

6.2. DATA MODULES 103

Figure 6.4: Search response of a search using speci�ed parameters within the Web

frontend

points of interest. Formally, a location-based mapping m(wa → wl) is a map-
ping that recursively assigns concepts of a hierarchical world model wa to a set of
location-based concepts wl. A popular representation of a small-world hierarchical
structure is the Wikipedia Category Graph, which was employed to extract the
sets of possible products. As the base for location-based terms the classes of the
LinkedGeoData ontology were employed. The developed location-based mapping
recursively maps Wikipedia categories including all their particular sub-categories
to LinkedGeoData classes. A sample location-based mapping could be realized as
follows: We assume there is a Wikipedia category Electronics that has the sub-
categories "Mobile device" and "Hardware", and there exists a class within the
LinkedGeoData ontology "electronics store". A location-based mapping could be
of the following form:

dbcat : Electronics→ lgd : electronics_store

As the method recursively associates all subcategories of dbcat:Electronics with
lgd:Electronics_store, the mapping generated would thus be of the form

dbcat : Electronics→ lgd : Electronics_store

104 CHAPTER 6. PROTOTYPE

dbcat : Mobile_devices→ lgd : Electronics_store
dbcat : Hardware→ lgd : Electronics_store

The mapping assigns the Wikipedia category and all of its subcategories to a
LinkedGeoData class. Additionally, instances that belong to the particular cat-
egories have been extracted and included in the mapping as well. In this way
the system is able to parse queries for speci�c products or points of interest. If
the system receives a client request including the natural language query "mo-
bile device" or a speci�c device, the system automatically will also search for the
related location-based concept. Figure C.4 shows a set of location-based related
LGD classes as well as a location-based related term retrieved for the generated
focus type of the query. If the client transmits geospatial coordinates as meta
parameters in the request, the system performs additional location-based searches
for each additional location-based term. Since results of additional searches based
on the hand-crafted mapping are likely to be very precise, they receive the highest
ranks from the Result Processor when generating the query result set. A possible
location-based search within the Web frontend and the display of the retrieved
results is depicted in Figure 6.5.

Figure 6.5: Search response of a location-based search within the Web frontend

6.3. USER INTERFACES 105

6.3 User Interfaces

As the NLI communicates with external applications through a well-de�ned inter-
face, it is not attached to one particular system and can be accessed by multiple
applications independently from the client's location and system. The user in-
terface provides users an input form for entering a natural language query and
presents the retrieved search response in a customized way. For the scope of the
system's prototype, there have been developed a mobile interface accessing the
system from within a mobile application as well as a browser-based web interface.

6.3.1 Mobile Interface - Integration in the NAPA Pedes-

trian Navigation System

A mobile access to the system has been realized by integrating a query module
within a mobile application, enriching an existing application by a natural lan-
guage search functionality. The base of the mobile system is the research project
NAPA10 (Navigationsempfänger Chipsatz für Personennavigation mit Anwendun-
gen bei erhöhter Genauigkeit)(97), which has developed the technical foundations
for precise pedestrian navigation. For this purpose, NAPA provides a high de-
gree of precision in the �elds of location determination and navigation, taking into
account pedestrian crossings, tra�c lights, subways and crossovers (98). The tech-
nologies developed in the project have provided the foundations for a variety of
possible areas of application, such as pedestrian navigation, navigation solutions
for wheelchair users or visually impaired persons, driving assistance and automated
emergency call systems (97). A variety of institutions such as industrial compa-
nies, small and medium-sized businesses, research facilities and universities have
contributed to the development of NAPA, including IMST, NAVIGON, NAVTEQ,
Fraunhofer-IIS, NavCert, RWTH Aachen as well as the University of Koblenz and
Landau (97). The provision of a precise functionality for specialized search and
discovery of points of interest is of particular importance for a navigation system.
By coupling the NLI with the pedestrian navigation system, the existing search
functionality of NAPA is enriched by the ability to parse complex queries as well
as full natural language sentences. The NLI is able to parse questions includ-
ing speci�ed parameters as well as to associate the query with local businesses or
institutions.

Within the scope of this thesis, the functionality for accessing the NLI and
processing the result list returned by the system has been provided. The mergence
of search results of the NLI and the existing search functionality, the display of
search results as well as the enrichment of search results with further meta data

10http://projekt-napa.de

106 CHAPTER 6. PROTOTYPE

has been realized by the NAPA development team. The communication between
the mobile interface and the NLI proceeds as de�ned in section 5.2. The mobile
interface consults the system via HTTP request, transmitting a natural language
query and diverse meta parameters such as the query's radius and the client's
location. The precise location determination by mobile devices enables the auto-
mated transmission of the client's location and a precise pedestrian navigation to
location-based results retrieved by the system. Users may additionally de�ne the
radius and the knowledge sources that are consulted for retrieving points of inter-
est in the client's close proximity within the graphical user interface of the mobile
application. The employed IDs for identifying knowledge sources by the NAPA
system and the NLI system have been synchronized: When consulting the NLI
system, the IDs of activated knowledge sources are added additionally as request
parameters by the NAPA system. In this way, the NLI system as well as the exist-
ing search functionality retrieve search results from the knowledge sources de�ned
by the client. A sample request of the NAPA system that searches for universities
within a radius of 2 kilometres consulting 2 speci�ed knowledge sources is shown
in Listing 6.7.

http :// espresso.uni -koblenz.de :8080/ NaturalLanguageSearch/

webresources/search?q=universities+in+koblenz

&r=2000& lat =50.3511528& lng =7.5951959

&locationtype =0& locationtype =2

Listing 6.7: Search request sent by the NAPA system

The response retrieved by the NLI corresponds to the sample response Listing
5.5. The presentation of search results retrieved by the NLI within the mobile
application is shown in Figure 6.6 and 6.7 provided by the NAPA development
team. Figure 6.6 depicts the map-based display of entities that have been retrieved
for a circular search around the client's current location. Search results retrieved
by the NLI are displayed with speci�ed markers to distinguish them from results
retrieved by the existing search functionality. Each result may be selected by the
user, followed by a detailed presentation of the particular result as shown in Figure
6.7. Search results are enriched with further meta data by the NAPA system: In
Figure 6.7, the search result is enriched with data concerning the address and
phone number of the point of interest.

6.3.2 Web Interface

The web interface for accessing the system prototype presents the natural language
search system functionality within a web browser by o�ering a Hypertext Markup
Language (HTML) input form to the user and presenting the retrieved response

6.3. USER INTERFACES 107

Figure 6.6: Display of search results

within the NAPA mobile application (5)

Figure 6.7: Display of search result meta

data in NAPA (5)

from the server as de�ned in section 3.1. It provides the possibility to search
both for general and local information by optionally activating the transmission
of geospatial coordinates. If the NLI receives geospatial coordinates included in
the query parameters, the system computes a location-based search for points of
interest located near the client's location. The input form further provides the
ability to de�ne the radius of the search, the maximum number of results as well
as the language of the retrieved results. Entities are displayed as a list providing
the title, a description, an image and the data source of each resource. As entities
are identi�ed by their URI, users can retrieve more information about the resource
by following the title's hyperlink. The knowledge source of each search result is
mentioned as well; if a thumbnail of the knowledge source's logo is available, the
knowledge source is represented as an image. Additionally the system can provide a
map-based display for location-based retrieved entities. To display items described
by geospatial coordinates on a map, the Google Maps JavaScript API Version 311

11https://developers.google.com/maps/documentation/javascript/
last visited on: May 31th, 2013.

108 CHAPTER 6. PROTOTYPE

has been employed for integrating a customized map displaying the results of the
client request within the web interface. If meta data about latitude and longitude
of a resource are found in one or more search results, the system provides a map
display presenting all geospatial results. To associate an element displayed on
the map with an entry included in the result list next to the map, the rank of
each result has been added as the result's title for each marker on the map. Next
to the map, the result list is displayed to provide additional information about
the resources. A search for general entities using the Web frontend displaying
the retrieved results on a map as well as a list is shown in Figure 6.8. Facts
of a speci�c entity are displayed together with the entity they belong to. The
system presents the title and a thumbnail of the entity and places the retrieved
property and its value beneath. For the purpose of analyzing and testing the
semantic graph computation, a user interface consulting the Syntactic Parser has
been developed. It provides the possibility to enter a natural language query and
to de�ne a vocabulary module, the system then computes the tokenization and
the semantic graph of the query for the de�ned VM as shown in the Figures C.1
C.2 C.3.

Figure 6.8: Search results of a general entity search displayed in the Web frontend

Chapter 7

Evaluation

The drawing of profound conclusions considering the performance of the approach
developed in this thesis requires an evaluation of the system. This chapter presents
the evaluation that has been performed on the system prototype presented in
chapter 6 in order to validate the system's performance. First we will outline
the goals of the evaluation, followed by a description of the evaluation metrics
and the test cases generated for the evaluation. The evaluation comprises of the
measurement of the syntactic parser's accuracy as well as the computation of the
precision and recall of the search results retrieved by the system. Additionally,
the processing speed of the system as well as each component has been measured.
Finally, we will discuss the strengths and weaknesses of the system's components
and give an outlook for further development of the system.

7.1 Goals

In order to verify the system, the evaluation focuses on two aspects of the system:
1) Whether the system is able to parse natural language queries correctly into a
logical intermediate form, and 2) whether the retrieved search results are relevant
with respect to the query and if all available relevant items have been found. Addi-
tionally, the required processing time of the system as well as the time required by
each system component in order to compute a query is of interest. The evaluation
is thus comprised of 3 phases: The analysis of the system performance in terms of
accuracy and scope of the search engine as well as the measurement of the system's
processing time. The performance measurement of the system aims at analyzing
the system's components to make conclusions about the accuracy of each module
of the prototype as well as the relevance of the retrieved data. The performance
measurement comprises of the measurement of the following aspects:

111

112 CHAPTER 7. EVALUATION

1. Accuracy: Measurement of the correctly parsed queries of the syntactic
parser as well as each parsing component

2. Scope: Evaluation of precision and recall of the retrieved search results

The �rst part of the performance evaluation will supply data about the correct-
ness and precision of the system in terms of its capability to model the information
request of the client. The evaluation of the scope of the system concentrates on
analyzing the responses retrieved by the prototype, in particular precision and
recall of the result set. In this way we will gather data about the relevance of
the retrieved responses and the performance of the Result Processor constructing
the result set. Within this context, we will be able to draw conclusions whether
the queries generated by the data modules may have been formulated too narrow
or too general. The second goal of the evaluation is the measurement of the pro-
cessing time of the search system and each component. The required time of the
syntactic parsing procedure will provide information about the internal processing
of di�erent test case questions. By measuring the time required by the system's
vocabulary modules, we will be able to estimate the correlation between the size
of the queried databases and the time required for retrieving a query's tokeniza-
tion. Furthermore, the processing time of the system's data modules will provide
data about the time required by components based on APIs as well as SPARQL
endpoints as knowledge sources.

7.2 Methodology

The evaluation metrics employed for the prototype testing depend on the purpose
of the particular test unit and the output produced by the component. This
chapter will provide an overview of the evaluation metrics employed for the system
evaluation as well as the design of the test cases.

7.2.1 Evaluation Metrics

The performance testing of the prototype consists of an accuracy measurement of
the syntactic parser as well as an evaluation of the system's scope. An introduction
to various aspects of the evaluation of NL systems is presented by (99), such as
the distinction of intrinsic and extrinsic evaluation methods as well as component
and end-to-end tests. In this context, the system evaluation provides both per-
spectives: While the accuracy measurement is designed as an intrinsic component
test evaluating each system component's performance separately, the system scope
evaluation is based on an extrinsic end-to-end evaluation, providing a randomly
selected input query to the system and analyzing the system's response from an

7.2. METHODOLOGY 113

external view. Our �rst goal is the measurement of the system's accuracy. To
evaluate the performance of a system that generates one output per input, (99)
proposes to employ the percentage of agreement with the output produced by the
system and a set of human-annotated 'ground truth' sense labels, i.e. the accuracy,
as the primary evaluation metric:

A =

∑
i=1..n agri
n

=
number correct

n
(7.1)

where agri is 1 if the system output corresponds with the intended test case
output and 0 otherwise (99) (100). Applied to the task of generating a natural
language query tokenization, the component's accuracy can be measured by com-
puting the percentage of correctly retrieved tokens. The system scope evaluation
consists of the analysis of the completeness of the system response as well as the
relevance of the retrieved search results. Other than the accuracy measurement of
the system components, the evaluation of the search results retrieved by the system
often cannot be measured by comparing the output to a single correct response. In
case of multiple outputs per input, (99) makes the following assumptions: Either
an entity is retrieved by the system or it is not, and either it is relevant to the
information requested or it is not. This abstraction makes it possible to de�ne the
quality of a system's output with the concepts precision and recall. (99) de�nes
Precision as the fraction of system output that is relevant, i.e.

P =
r

r + n
(7.2)

where r counts the number of documents that are relevant and retrieved by
the system, and (r + n) is the total number of documents (99). Recall as de�ned
by (99) (101) is the fraction of relevant documents that is retrieved in relation to
all possible relevant documents, i.e.

R =
r

r + T
(7.3)

where T represents the relevant documents that have not been retrieved by the
system, that is, (r + T) is the total number of documents that should have been
retrieved (99) (101). The retrieval of a high precision rate often comes at the cost
of recall, e.g. when a system returns only a few results with a high relevance rate
(99). A metric that balances both precision and recall depending on the size of
the result set r is obtained with the harmonic mean HM(r) (101):

HM(r) =
2

1
R(r)

+ 1
P (r)

(7.4)

114 CHAPTER 7. EVALUATION

7.2.2 Test Cases

(91) identi�es four steps in the process of software testing: 1) Designing of the test
cases, 2) the generation of a test corpus, 3) execution of the program with test
data and 4) the comparison of the results with test cases. We applied this concept
to measure the accuracy of the prototype's syntactic parser by generating a set of
possible natural language queries as well as their intended parses. The evaluation
of the system accuracy is based on the comparison between the semantic graph
generated by the syntactic parser and an exemplary graph provided by a test case,
representing the intended intermediate query representation of a natural language
request. The procedure is designed as an automated process, randomly selecting
a test case from a corpus, parsing the query and comparing the results generated
by the system with the exemplary result provided by the test case. Each test
case consists of a natural language query and the intended correct graph-based
intermediate representation, comprising of the query's tokenization as well as the
correct relation and focus pattern employed for parsing the query. The test cases
generated for the system evaluation represent a set of exemplary requests to the
system, providing both a sample query as well as the output the system should
ideally provide. Analogously to the various types of questions the prototype may
answer presented in chapter 6, the test corpus consists of 5 di�erent query types
providing location-based and general questions:

• Entity requests (local) (LE)

• Local business requests (local) (LB)

• Speci�c parameter requests (local) (LSP)

• Entity requests with a resource constraint (general) (GE)

• Fact requests of an entity (general) (GF)

For the purpose of accuracy measurement of the syntactic parser, each test case
has been generated with an exemplary intermediate stage providing the favoured
parsing of the query, consisting of the retrieved tokens as well as the relation and
focus patterns employed for generating the semantic graph. A set of sample test
cases as well as the intended tokenizations is displayed in Table 7.1, where the
tokens are depicted as token types [c,p,i,b] as introduced in section 4.1. Requests
searching for location-based entities have been modeled as test cases comprising
of the labels of location-based concepts as queries and geospatial coordinates rep-
resenting the geographical basis for the query. Test cases implementing queries
including speci�ed parameters have been generated for a customized event search
including a speci�c event type and a date interval. The retrieval of local busi-
nesses for products or other real-world entities is based on the mappings between

7.2. METHODOLOGY 115

Type NL query Tokenization
GE "universities in Koblenz" c,i
GF "location of Burg Eltz" p,i
LE "bakeries" c
LB "pretzels" i
LSP "festivals in may" c,b

Table 7.1: Examples of test case queries of di�erent question types

real-world concepts and location-based concepts as described in section 6.2. To
evaluate the correct retrieval of location-based classes, test cases for local business
requests have been extended with a location-based concept that is intended to be
associated with the actual entity. For the purpose of identifying real-world entities
that are likely to be acquirable in close proximity, instances of DBpedia categories
which have been associated with LinkedGeoData classes have been retrieved. The
instances labels of the retrieved instances have been employed as possible keywords
for test case queries. For generating test cases for general-purpose requests, a set
of classes from the DBpedia ontology has been selected and entities belonging to
these classes have been retrieved via querying the DBpedia SPARQL endpoint.
General questions have then been generated by combining certain classes of the
DBpedia ontology with randomly selected entities of another selected class. For
example, a possible general entitiy query would be to search for universities in a
particular city, i.e. a test case query of the form class(dbpedia:university) + in-
stance(dbpedia:city). A possible query would thus be "Universities in Koblenz".
A sample SPARQL query to retrieve a list of directors from the DBpedia corpus
is displayed in Listing 7.1.

PREFIX rdf:<http ://www.w3.org /1999/02/22 -rdf -syntax -ns>

PREFIX rdf -schema:<http ://www.w3.org /2000/01/rdf -schema#>

PREFIX dbpedia -owl:<http :// dbpedia.org/ontology/>

PREFIX dbres:<http :// dbpedia.org/resource/>

SELECT DISTINCT ?x ?y WHERE {

?x rdf:type dbpedia -owl:Person .

?y ?z dbres:Film_director .

?x rdf -schema:label ?y .

FILTER (langMatches(lang(?y) ,"DE"))

}

Listing 7.1: Sample SPARQL query to retrieve entities for test cases

For the purpose of generating a set of test cases including fact queries, a set
of class-speci�c properties has been retrieved and combined with instances of the
particular class (e.g. fact search for class dbpedia:Automobile: "manufacturer

116 CHAPTER 7. EVALUATION

of VW Golf"). To measure the recall of the system responses, exemplary results
have been retrieved from the publicly available interfaces of the employed data
sources.

7.3 Results

The evaluation has been performed with a machine employing an AMD Athlon 64
X2 Dual Core Processor 3800+ with approx. 3262 MB of Random Access Memory
(RAM). For each of the possible 5 request types listed in section 7.2, the prototype
has processed a set of test cases and evaluated the results. Additionally, tests
were performed for test cases in German and English. The evaluation has been
performed with 3 active vocabulary modules, namely VMs accessing the DBpedia
(dbpedia) and LinkedGeoData (linkedgeodata) ontologies, as well as a VM accessing
the DBpedia ontology including the DBpedia category graph as an additional
resource pool (dbpedia-concept). On the knowledge retrieval side, the following
data modules have been activated: Two DMs querying the SPARQL endpoints of
the DBpedia (sparql-dbpedia) and LinkedGeoData (sparql-linkedgeodata) corpora,
as well as three DMs accessing the APIs of GooglePlaces (api-googleplaces) and
the event platforms Eventful (api-eventful) and Upcoming (api-upcoming).

7.3.1 System Accuracy

The system accuracy has been measured as the percentage of test cases that have
been parsed correctly by the Tokenizer and the Semantic Interpreter. The tok-
enization accuracy has been measured as the fraction of correctly identi�ed tokens,
the semantic interpretation has been marked as correct if the parser employed the
correct relation pattern as well as the correct focus pattern for the semantic graph
generation. An accuracy test was performed by an algorithm randomly selecting
a test case of a speci�c request type from the database, processing the query like a
client request and evaluating the retrieved results. For each of the question types
presented in section 7.2, the algorithm has randomly selected 40 test cases in Ger-
man and English and compared the result with the semantic graph de�ned by the
test case. Altogether, the parser accuracy has thus been tested on 400 test cases.
Fig. 7.1 shows the average accuracies computed by the syntactic parser.

All tokenization and semantic interpretation accuracies have ranged between
an accuracy of 70-100 percent. The retrieved results show that the parser tends
to compute with a higher accuracy for requests for location-based entities, which
may be attributed to a higher complexity of natural language queries concerning
general information requests in the test corpus. Especially in case of test cases
including fact searches, the identi�cation of instances described by a plurality of

7.3. RESULTS 117

Figure 7.1: Average parsing accuracies of the prototype's query types

words has turned out as a challenge. The average accuracies of the system's com-
ponents parsing German (DE) and English (EN) test cases are listed in Table 7.21,
consisting of the fractions of correctly parsed tokens, graph relations and the focus.
Queries including location-based references have generally reached higher accuracy
values than general questions, which may indicate ambiguities in general queries
as one of the major challenges of the parsing process. Remarkable is the employ-
ment of correct relation and focus patterns in case of test cases including local
speci�ed parameters. All query results have shown a remarkably high consistency
of the focus discovery: In 99.75% of all cases where the relations have been com-
puted correctly, the Semantic Interpreter also employed the correct focus pattern.
Considering that the semantic interpretation procedure is based on probabilistic
algorithms, this implies a remarkable accuracy of the Semantic Interpreter.

1The tokenization accuracy for local business test cases is based on the correct identi�cation
of an entity and related location-based concepts. As the local business discovery is based on an
additional feature recognizing location-based entities that is performed after a semantic graph
has been computed, there is no relation and focus pattern employed for the local business test
cases.

118 CHAPTER 7. EVALUATION

cor. Tokens cor. Relations cor. Focus
General Entities (EN) 0.925 0.8 0.8
General Entities (DE) 0.9 0.85 0.825
General Facts (EN) 0.8 0.75 0.75
General Facts (DE) 0.7125 0.675 0.675
Local Entities (EN) 0.975 1.000 1.000
Local Entities (DE) 0.925 0.95 0.95
Local Speci�ed Parameters (EN) 0.9 1.000 1.000
Local Speci�ed Parameters (DE) 0.925 1.000 1.000
Local Business (EN) 0.85 - -
Local Business (DE) 0.975 - -

Table 7.2: Average accuracies of the parser's components

7.3.2 System Scope

The system scope evaluation analyzed the quantity of retrieved search results as
well as their relevance with respect to the underlying natural language query.
For the scope analysis, the retrieved results of queries searching for local entities,
local speci�ed parameters and general entities have been analyzed. For evaluating
the retrieved search results, 5 relevant test cases have been selected for each query
type, processed by the system and compared to the results retrieved by the publicly
available interfaces of the knowledge bases. All test queries have been performed
with a maximum number of results of 50. The precision and recall values of the
retrieved results were computed as described in section 7.2. The precision values
of the retrieved results has been calculated as the number of relevant documents
compared to the number of all results. For estimating the number of relevant
search results that have not been found by the system, i.e. the recall of the
system, manual queries have been performed by accessing the publicly available
interfaces of the system's knowledge sources. The recall value has been computed
as the number of relevant documents retrieved by the system, compared to the
number of documents retrieved by the manual search with the publicly available
user interfaces of the knowledge sources. Fig. 7.2 shows the average precision and
recall values of the retrieved results, the average harmonic mean considering both
precision and recall of the retrieved results is listed in Table 7.3.

All results show a high recall value, which indicates that data modules were
able to retrieve a majority of the relevant documents available in the knowledge
bases. As the recall values tend to be higher than the precision in all request
classes, the results indicate that database queries have rather been formulated too
general than too narrow. This conclusion is especially applicable to data modules

7.3. RESULTS 119

Type HM
General Entities (EN) 0.85
General Entities (DE) 0.84
Local Entities (EN) 0.90
Local Entities (DE) 0.85
Local Speci�ed Parameters (EN) 1.00
Local Speci�ed Parameters (DE) 0.96

Table 7.3: Average harmonic mean of the system's search results

Figure 7.2: Average precision and recall of system results

accessing SPARQL endpoints, where queries including relations to resources have
generally been modeled with non-terminal relationships. The high precision and
recall values for queries focusing on customized event searches indicate that the
concept of graph-based parsing including base token recognition is an e�ective
concept for generating precise database queries.

7.3.3 Processing Time

For the purpose of identifying the e�orts of processing client requests by the sys-
tem, the processing time of the overall system as well as each component has been
measured. The processing time evaluation was structured into the speed mea-
surement of the tokenization and semantic interpretation, knowledge retrieval and
the processing of the retrieved results. Furthermore, the processing time of each
vocabulary and data module has been recorded. The average processing time re-

120 CHAPTER 7. EVALUATION

quired by the system for the query types presented in section 7.2 is depicted in
Figure 7.3.

Figure 7.3: Average processing times of di�erent query types

The test results show that queries for general knowledge have tended to require
more processing time, with a signi�cantly high processing time for queries searching
for general facts. A remarkably fast processing speed has been reached by the
test case searching for local entities. Especially local business queries have been
computed signi�cantly faster than other request types.

Tokenization Semantic Interpretation Query Processing Result Processing
92.02% 0.065% 7.73% 0.12%

Table 7.4: Average share of the system's components of the overall processing time in

percent

The average processing time required by each system component for the pro-
totype's query types are displayed in Figure 7.4, displaying the average processing
times of the Tokenizer, the Semantic Interpreter, the Query Performer and the
Result Processor. The system speed evaluation revealed that a signi�cantly high
fraction of the measured processing time is accounted for the tokenization as well
as the knowledge retrieval procedure. Since both components access data from
external data sources and are accessed via web services, the processing times may

7.3. RESULTS 121

Figure 7.4: Average processing times of the systems components of di�erent query types

partially be explained by the time required for data transmission. However, with
a share of 92.02% the greatest share of the processing time is accounted for the
tokenization procedure, indicating that the time required for database queries is a
crucial factor for the system speed. Since the tokenization time required for com-
puting queries for general facts has reached the highest value, it is likely that the
time required by the Tokenizer correlates with the complexity of the natural lan-
guage question. The small time intervals required by the semantic interpretation
and result processing procedures thus indicate that the time required for internal
data processing is relatively less signi�cant. While queries for events with speci�ed
parameters have been parsed within an area comparable to local entity and local
business questions, their required knowledge retrieval and result processing times
were signi�cantly higher.

122 CHAPTER 7. EVALUATION

7.4 Discussion

The evaluation has shown promising results for the model and architecture of
a natural language search system presented in this thesis. The system is able
to identify logical resources within an unstructured natural language query and
translate it into a logical intermediate representation, which is then processed into
a variety of knowledge base queries. The system is able to process precise location-
based questions as well as general-knowledge queries and questions for speci�c
facts about particular resources. Additionally, the prototypical implementation
enables the concept of identifying and employing speci�c parameters contained
in natural language within a customized event search. The retrieved results are
merged, ranked and displayed in a human-readable form as de�ned in chapter
3. The system accuracy has shown a high consistency for all question types of
the system. The proposed combination between shallow parsing techniques and
a 3-staged graph-based model has ful�lled the requirements de�ned in chapter 3
and performed remarkably well. Room for improvement lies in the speed of the
segmentation procedure of the tokenization algorithm, which has reached high
values for complex natural language queries.

Outlook Finally, we will brie�y discuss some approaches for further develop-
ment of the system. The results retrieved by the speed measurement revealed how
a signi�cant portion of the processing time required by the system is accounted
for the tokenization process. To improve the system speed, one would thus have
to focus on the optimization of the database query process. As the prototype is
based on web services for internal module interaction, the system could further be
accelerated by switching to faster technologies. An important result of the speed
evaluation is the observation that the majority of the required processing time is
taken by the tokenization procedure, which even exceeds the processing time of
the knowledge retrieval process on an average. Attempts to accelerate the query
processing time thus have to aim at the time required by the vocabulary modules
to query the system's databases in order to logically interpret natural language.
As the Tokenizer computes all possible tokenizations for all possible term sets, the
computing time increases largely with the length of the natural language input sen-
tence. One possibility to simplify the tokenization is to discard unlikely term sets
at an early stage. For example, the parser could start with the term set with the
highest probability and accept a tokenization as soon as it exceeds a certain thresh-
old. As the process of identifying tokens is one of the most computation-intensive
tasks, the reduction of tokenization computations could increase the system's e�-
ciency signi�cantly. On the other hand, to discard possible parses carries the risk
of discarding the relevant parses for a query.

7.4. DISCUSSION 123

Disambiguation Patterns The accuracy evaluation has shown a remarkable
consistency of the Semantic Interpreter: If a query is structured correctly into
semantic tokens, it is likely that the system also is able to compute the correct
corresponding semantic graph. The highest potential to further improve the sys-
tem accuracy is thus to extend the functionality for token disambiguation, i.e.
the correct association of words with logical entities. One way to enrich the tok-
enization procedure would be the involvement of the query's context in the token
disambiguation process, resulting in disambiguation patterns for token assignment
employed analogously to node, relation and focus patterns employed by the Seman-
tic Interpreter. Another issue that has arisen especially with the DBpedia ontology
is redundancy within the terminological data corpus. For example, for identifying
a populated place the DBpedia ontology knows the class dbpedia-owl:City as well
as dbpedia-owl:PopulatedPlace. To improve the recall of the system's search re-
sults, it could be e�cient to retrieve related classes or resources of query entities
and to include them into the search process.

Lexicalization Considering the scope of the generated knowledge base queries,
the queries generated for location-based requests have proved to be quite �tting.
In case of queries generated for requests concerning general entities, the evalua-
tion showed that the queries tend to be rather too general. Patterns consist so far
of non-terminal symbols referring to token types such as classes, properties and
instances. The approach of unlexicalized patterns, however, implies that termi-
nal branches can only be generated if properties are included within the natural
language query. For example, a query including only classes and instances such
as "cities in spain" could only be parsed with a non-terminal relationship be-
tween the focus variable ?x and the instance "Spain". While the natural language
query implies the search for cities geographically located in Spain, the generated
SPARQL query would search for all cities with an unde�ned relationship to the
country of Spain, which may result in unrelevant search results. A possible solu-
tion to this issue may be the employment of lexicalized graph patterns, i.e. the
involvement of terminal symbols in patterns' expressions and annotations. This
step would correspond to the existing approach of lexicalized PCFG introduced in
section 2.2, which have achieved signi�cantly high accuracy results and therefore
be a promising outlook for further development of the system. On the other hand,
as noticed in section 2.2 the development of lexicalized rules is a comprehensive,
time-consuming task.

Multiple pattern employment The system's prototype employs so far only
one relation pattern per token sequence parse. However, in case of complex queries

124 CHAPTER 7. EVALUATION

it would be useful to enable the employment of several relation patterns to increase
the probability to identify all node relations of the graph correctly.

User Dialogs An approach frequently realized by various works to resolve dis-
ambiguations in natural language parsing is the employment of user dialogs, which
enables the users to choose the correct interpretation among a list of alternatives.
Since this solution provides feedback about the correct interpretation of natural
language queries, it is particularly interesting combined with machine learning
techniques in order to improve the parsing accuracy over time. On the other
hand, users may be interested in a fast and uncomplicated system and rather be
unwilling to undergo an additional step until they receive search results by the
system.

Machine Learning A promising extension of the system would be the employ-
ment of machine learning techniques on the semantic interpretation procedure. As
each pattern is equipped with a truth value, an e�cient mechanism to adapt the
patterns' values after each parse could improve the system over time. Beside the
correct parsing of natural language, machine learning techniques could further be
employed for evaluating the relevance of the search results and to improve the
ranking of the Result Processor. Another issue for optimizing the list of retrieved
search results is the ranking improvement for general entities. An attempt to em-
phasize important search results would be to identify certain properties which may
be consulted for instance rankings: For example, for a list of cities the property
population could be a factor for ranking computation, resulting in a list emphasiz-
ing the size of a city in the computed search result list.

Chapter 8

Conclusion

This work presented the foundations of a distributed, ontology-driven natural lan-
guage search system based on multiple, possibly heterogeneous data sources. We
developed a parsing model consisting of a tokenization and a semantic interpre-
tation generating a graph-based representation of a natural language query using
probabilistic patterns. The approach uses an ontology-driven data model, struc-
turing entities contained in the query in terms of classes, properties, instances and
query constraints. The logical representation generated in the process of seman-
tic interpretation depicts a natural language query in terms of a directed labeled
graph, where nodes represent entities connected by edges indicating the entities'
relationships. The semantic interpretation consists of three stages, constructing a
semantic graph by 1) the generation of the graph nodes, 2) the generation of the
graph relations and 3) the identi�cation of the graph focus.

We developed a framework for an architecture of a distributed search system
that is both independent with respect to the included vocabularies for parsing the
syntax and semantics of a natural language query, as well as with respect to the
employed knowledge sources, which deliver the base for retrieving search results.
This functionality is achieved by modularizing the system, addressing external data
sources by �exible modules that are speci�ed to their corresponding data source.
The main system communicates with the modules via well-de�ned interfaces and
uses a triple-based data model to represent natural language parses. The system
thus is able to parse a natural language query for multiple domains as well as
retrieve search results from multiple data sources. Finally, the retrieved results
are merged and ranked and presented enriched with additional meta data to the
client.

The system evaluation consists of the testing of the system accuracy, the scope
of the retrieved search responses as well as a measurement of the processing time.
For the purpose of automatically asking natural language questions to the system, a
set of test cases of di�erent question types has been generated, in particular queries

125

126 CHAPTER 8. CONCLUSION

focusing on location-based resources (entities, businesses, events) as well as general
resources and facts. The analysis of the accuracy test results have shown a high
correctness of the syntactic parser. The scope evaluation revealed signi�cantly
high values for precision and recall of the retrieved search results, with the highest
values achieved by location-based queries including speci�ed parameters. This
result indicates that the approach of token recognition and pattern-based semantic
interpretation performs remarkably well and is able to improve the precision and
recall of a search engine.

Appendix A

Document Type De�nitions (DTD)s
of System Interfaces

A.1 DTD of Vocabulary Module Responses

<!ELEMENT resultset (result *)>

<!ELEMENT result (id ,tokentype ,value ,relevance ,term ,latitude?,

longitude?,geoterm*,geotoken *)>

<!ELEMENT id (# PCDATA)>

<!ELEMENT tokentype (# PCDATA)>

<!ELEMENT value (# PCDATA)>

<!ELEMENT relevance (# PCDATA)>

<!ELEMENT term (# PCDATA)>

<!ELEMENT latitude (# PCDATA)>

<!ELEMENT longitude (# PCDATA)>

<!ELEMENT geoterm (# PCDATA)>

<!ELEMENT geotoken (# PCDATA)>

Listing A.1: Token response of a Vocabulary Module

A.2 DTD of Data Module Responses

<!ELEMENT resultset (result *)>

<!ELEMENT result (id ,meta)>

<!ELEMENT id (# PCDATA)>

<!ELEMENT meta (title ,description?,uri?,image*,latitude?,

longitude ?)>

<!ELEMENT title (# PCDATA)>

<!ELEMENT description (# PCDATA)>

<!ELEMENT uri (# PCDATA)>

127

128APPENDIX A. DOCUMENT TYPE DEFINITIONS (DTD)S OF SYSTEM INTERFACES

<!ELEMENT image (# PCDATA)>

<!ELEMENT latitude (# PCDATA)>

<!ELEMENT longitude (# PCDATA)>

Listing A.2: Search response of a Data Module

A.2.1 DTD of System Responses

<!ELEMENT resultset (result *)>

<!ELEMENT result (id ,relevance ,category?,meta)>

<!ELEMENT id (# PCDATA)>

<!ELEMENT relevance (# PCDATA)>

<!ELEMENT category (# PCDATA)>

<!ELEMENT meta (title ,description?,uri?,image*,latitude?,

longitude ?)>

<!ELEMENT title (# PCDATA)>

<!ELEMENT description (# PCDATA)>

<!ELEMENT uri (# PCDATA)>

<!ELEMENT image (# PCDATA)>

<!ELEMENT latitude (# PCDATA)>

<!ELEMENT longitude (# PCDATA)>

Listing A.3: Search response of the system

Appendix B

Con�guration

B.1 Vocabulary Module Con�guration

uri=[uri]

path=[path]

[name=[vm_identifier]]

Listing B.1: Vocabulary Module con�guration �le (con�g.txt)

B.2 Data Module Con�guration

base -uri=[uri]

path=[path]

vocabulary =[vocabulary_id]

[name=[dm_identifier]]

[logo=[logo_url]]

[app -key=[app_key]]

[focus -type=[focus_type_uri_0] ... [focus_type_uri_n]]

Listing B.2: Data Module con�guration �le (con�g.txt)

129

Appendix C

Semantic Graph Computation

Figure C.1: Query speci�cation comprising of a text form and the vocabulary selection

as well as the tokenization of the query

131

132 APPENDIX C. SEMANTIC GRAPH COMPUTATION

Figure C.2: Semantic interpretation of the query

Figure C.3: Visualization of the semantic graph realized by employing the JavaScript

InfoVis Toolkita

ahttp://philogb.github.io/jit, last visited on: May 31th, 2013.

133

Figure C.4: Retrieval of related location-based concepts for a query's focus type

Bibliography

[1] Wintner, S. (2010) Formal language theory. The Handbook of Computational
Linguistics and Natural Language Processing , vol. 57, pp. 11�42, Wiley-
Blackwell.

[2] Charniak, E. (1997) Statistical techniques for natural language parsing. AI
Magazine, 18, 33�44.

[3] Cunningham, H., Maynard, D., and Tablan, V. (1999) JAPE: a Java Anno-
tation Patterns Engine. Research Memorandum CS�99�06, Department of
Computer Science, University of She�eld.

[4] Androutsopoulos, I., G.D., R., and P., T. (1995) Natural language interfaces
to databases - an introduction. Journal of Language Engineering , 1, 29�81.

[5] (2013) Navigationsempfänger Chipsatz für Personennavigation mit Anwen-
dungen bei erhöhter Genauigkeit (NAPA), URL: http://projekt-napa.de,
NAPA Development Team, data provided on: May 14th, 2013.

[6] Bizer, C., Heath, T., and Berners-Lee, T. (2009) Linked Data - The Story
So Far. International Journal on Semantic Web and Information Systems
(IJSWIS).

[7] Heath, T. and Bizer, C. (2011) Linked Data: Evolving the Web into a Global
Data Space. Morgan & Claypool, 1st edn.

[8] Zaihrayeu, I., Sun, L., Giunchiglia, F., Pan, W., Ju, Q., Chi, M., and Huang,
X. (2007) From web directories to ontologies: Natural language processing
challenges. Technical Report DIT-07-029, University of Trento.

[9] Kaufmann, E. (2007) Talking to the semantic web - natural language query
interfaces for casual end-users . Ph.D. thesis, Universität Zürich.

[10] Hirschman, L. and Gaizauskas, R. J. (2001) Natural language question an-
swering: the view from here. Natural Language Engineering , 7, 275�300.

135

136 BIBLIOGRAPHY

[11] Schaefer, U. (2007) Integrating deep and shallow natural language processing
components: representations and hybrid architectures.. Ph.D. thesis, Saar-
land University.

[12] Nederhof, M.-J. and Satta, G. (2010) Theory of parsing. The Handbook
of Computational Linguistics and Natural Language Processing , Wiley-
Blackwell.

[13] Erk, K. and Priese, L. (2008) Theoretische Informatik . Springer-Verlag, 3rd
edition edn.

[14] Sipser, M. (2006) Introduction to the Theory of Computation. Thomson
Course Technology, 2nd edition edn.

[15] Schabes, Y., Abeillé, A., and Joshi, A. K. (1988) Parsing strategies with
'lexicalized' grammars: Application to tree adjoining grammars. Proceedings
of the 12th Conference on Computational Linguistics-Volume 2 , pp. 578�583,
Association for Computational Linguistics.

[16] Collins, M. (2003) Head-driven statistical models for natural language pars-
ing. Computational Linguistics , 29, 589�637.

[17] Klein, D. and Manning, C. D. (2003) Accurate unlexicalized parsing. Pro-
ceedings of the 41st Annual Meeting of the Association for Computational
Linguistics (ACL-03), Sapporo, Japan, pp. 423�430.

[18] Collins, M. (1997) Three generative, lexicalised models for statistical parsing.
Proceedings of the eighth conference on European chapter of the Association
for Computational Linguistics , Stroudsburg, PA, USA, pp. 16�23, EACL
'97, Association for Computational Linguistics.

[19] Charniak, E. (1997) Statistical parsing with a context-free grammar and
word statistics. Proceedings of the National Conference on Arti�cial Intelli-
gence, pp. 598�603, JOHN WILEY & SONS LTD.

[20] Miller, S., Fox, H., Ramshaw, L. A., and Weischedel, R. M. (2000) A novel
use of statistical parsing to extract information from text. Proceedings of the
1st North American Chapter of the Association for Computational Linguis-
tics Conference, pp. 226�233, Association for Computational Linguistics.

[21] Li, X. and Roth, D. (2001) Exploring evidence for shallow parsing. Proceed-
ings of the 2001 workshop on Computational Natural Language Learning-
Volume 7 , p. 6, Association for Computational Linguistics.

BIBLIOGRAPHY 137

[22] Abney, S. (1997) Part-of-speech tagging and partial parsing. Corpus-Based
Methods in Language and Speech Processing , pp. 118�136.

[23] Sang, E. F. T. K. and Buchholz, S. (2000) Introduction to the conll-2000
shared task: Chunking. Proceedings of the 2nd workshop on Learning lan-
guage in logic and the 4th conference on Computational natural language
learning-Volume 7 , pp. 127�132, Association for Computational Linguistics.

[24] Daelemans, W., Buchholz, S., and Veenstra, J. (1999) Memory-based shallow
parsing. Proceedings of the Conference on Computational Natural Language
Learning , vol. 99, pp. 53�60.

[25] Schmid, H. (1994) Probabilistic part-of-speech tagging using decision trees.
Proceedings of International Conference on New Methods in Language Pro-
cessing , September.

[26] Merialdo, B. (1994) Tagging English text with a probabilistic model. Com-
putational Linguistics , 20, 155�172.

[27] Brill, E. (1995) Transformation-based error-driven learning and natural lan-
guage processing: A case study in part-of-speech tagging. Computational
Linguistics , 21, 543�565.

[28] Greene, B. B. and Rubin, G. M. (1971) Automatic Grammatical Tagging of
English. Department of Linguistics, Brown University.

[29] Klein, S. and Simmons, R. F. (1963) A computational approach to gram-
matical coding of english words. Jounral of the ACM (JACM), 10, 334�347.

[30] Hindle, D. (1989) Acquiring disambiguation rules from text. Hirschberg, J.
(ed.), Proceedings of the 27th Annual Meeting on Association for Computa-
tional Linguistics , pp. 118�125, Association for Computational Linguistics.

[31] Brill, E. (1992) A simple rule-based part of speech tagger. Proceedings of the
Workshop on Speech and Natural Language, pp. 112�116.

[32] Roche, E. and Schabes, Y. (1995) Deterministic part-of-speech tagging with
�nite-state transducers. Computational Linguistics , 21, 227�253.

[33] Cutting, D., Kupiec, J., Pedersen, J. O., and Sibun, P. (1992) A practical
part-of-speech tagger. Proceedings of the 3rd Conference on Applied Natural
Language Processing , pp. 133�140, Association for Computational Linguis-
tics.

138 BIBLIOGRAPHY

[34] Daelemans, W., Zavrel, J., Berck, P., and Gillis, S. (1996) Mbt: A memory-
based part of speech tagger generator. Proceedings of the Fourth Workshop
on Very Large Corpora, pp. 14�27.

[35] Ratnaparkhi, A. (1996) A maximum entropy model for part-of-speech tag-
ging. Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing , April 16, vol. 1, pp. 133�142.

[36] Christodoulopoulos, C., Goldwater, S., and Steedman, M. (2010) Two
decades of unsupervised pos induction: how far have we come? Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Pro-
cessing , Stroudsburg, PA, USA, pp. 575�584, EMNLP '10, Association for
Computational Linguistics.

[37] Chandra, Y. (2006) Natural Language Interfaces To Databases . Master's
thesis, University of North Texas.

[38] Abney, S. P. (1991) Parsing by chunks. Principle-Based Parsing: Computa-
tion and Psycholinguistics , pp. 257�278, Boston: Kluwer Academic Publish-
ers.

[39] Kudo, T. and Matsumoto, Y. (2001) Chunking with support vector ma-
chines. Proceedings of the Second Meeting of the North American Chapter
of the Association for Computational Linguistics on Language Technologies ,
pp. 1�8.

[40] Sang, E. F. T. K. (2000) Noun phrase recognition by system combination.
Proceedings of the 1st North American Chapter of the Association for Com-
putational Linguistics Conference, pp. 50�55, Association for Computational
Linguistics.

[41] Ramshaw, L. A. and Marcus, M. P. (1995) Text chunking using
transformation-based learning. Proceedings of the Third ACL Workshop on
Very Large Corpora, pp. 82�94, Cambridge MA, USA.

[42] Buchholz, W. D. S. (1999) Cascaded grammatical relation assignment. Pro-
ceedings of EMNLP/VLC-99 , pp. 239�246.

[43] Veenstra, J. and Buchholz, S. (1998) Fast np chunking using memory-based
learning techniques. Proceedings of BENELEARN'98 , pp. 71�78.

[44] Sang, E. F. T. K. and Meulder, F. D. (2003) Introduction to the CoNLL-2003
shared task: Language-Independent Named Entity Recognition. Daelemans,
W. and Osborne, M. (eds.), Proceedings of CoNLL-2003 and the 7th Con-
ference on Natural Language Learning , pp. 142�147.

BIBLIOGRAPHY 139

[45] Borthwick, A. (1999) A Maximum Entropy Approach to Named Entity Recog-
nition. Ph.D. thesis, New York University.

[46] Mikheev, A., Moens, M., and Grover, C. (1999) Named entity recognition
without gazetteers. Proceedings of the ninth conference on European chapter
of the Association for Computational Linguistics , pp. 1�8, Association for
Computational Linguistics.

[47] Chieu, H. L. and Ng, H. T. (2002) Named entity recognition: A maximum
entropy approach using global information. Proceedings of the 19th Inter-
national Conference on Computational Linguistics (COLING'02), Taipei,
Taiwan.

[48] Zhou, G. and Su, J. (2002) Named entity recognition using an hmm-based
chunk tagger. ACL '02: Proceedings of the 40th Annual Meeting on Asso-
ciation for Computational Linguistics , Morristown, NJ, USA, pp. 473�480,
Association for Computational Linguistics.

[49] McCallum, A. and Li, W. (2003) Early results for named entity recognition
with conditional random �elds, feature induction and web-enhanced lexi-
cons. Proceedings of the Seventh Conference on Natural Language Learning
at HLT-NAACL 2003-Volume 4 , pp. 188�191.

[50] Zhou, G. and Su, J. (2002) Named entity recognition using an HMM-based
chunk tagger. Proc. 40th Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2002).

[51] Kazama, J. and Torisawa, K. (2007) Exploiting wikipedia as external knowl-
edge for named entity recognition. Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learn-
ing , pp. 698�707.

[52] Nadeau, D. and Sekine, S. (2007) A survey of named entity recognition
and classi�cation. Linguisticae Investigationes , 30, 3�26, publisher: John
Benjamins Publishing Company.

[53] Carreras, X. and Màrquez, L. (2004) Introduction to the conll-2004 shared
task: Semantic role labeling. HLT-NAACL 2004 Workshop: Eight Confer-
ence on Computational Natural Language Learning (CoNLL-2004), Boston,
pp. 89�97.

[54] Gildea, D. and Jurafsky, D. (2002) Automatic labeling of semantic roles.
Computational Linguistics , 28, 245�288.

140 BIBLIOGRAPHY

[55] Thompson, C. A., Levy, R., and Manning, C. D. (2003) A generative model
for semantic role labeling. Lavrac, N., Gamberger, D., Todorovski, L., and
Blockeel, H. (eds.), ECML, vol. 2837 of Lecture Notes in Computer Science,
pp. 397�408, Springer.

[56] Pradhan, S. S., Hacioglu, K., Ward, W., Martin, J. H., and Jurafsky, D.
(2003) Semantic role parsing: Adding semantic structure to unstructured
text. ICDM , pp. 629�632, IEEE Computer Society.

[57] Furbach, U., Glöckner, I., and Pelzer, B. (2008) Loganswer - a deduction-
based question answering system. Proceedings of the 4th International Joint
Conference on Automated Reasoning (IJCAR-08), Sydney, Australia.

[58] Dong, T., Furbach, U., Glöckner, I., and Pelzer, B. (2011) A natural lan-
guage question answering system as a participant in human q&a portals.
Proceedings of the Twenty-Second International Joint Conference on Arti�-
cial Intelligence (IJCAI-2011), Barcelona, Spain, July 2011 , pp. 2430�2435.

[59] Popescu, A.-M., Etzioni, O., and Kautz, H. (2003) Towards a theory of
natural language interfaces to databases. Proceedings of the 8th International
Conference on Intelligent User Interfaces , pp. 149�157, ACM.

[60] Minock, M. (2005) A phrasal approach to natural language interfaces over
databases. Tech. rep., tR UMINF-05.09, University of Umea.

[61] Katz, B. (1988) Using english for indexing and retrieving. RIAO '88 Confer-
ence on User-oriented Content-based Text and Image Handling, Cambridge,
MA.

[62] Li, Y., Yang, H., and Jagadish, H. V. (2005) Nalix: an interactive natural
language interface for querying xml. Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, pp. 900�902, ACM.

[63] Li, Y., Yang, H., and Jagadish, H. V. (2006) Constructing a generic natural
language interface for an xml database. Advances in Database Technology-
EDBT 2006 , vol. 3896 of Lecture Notes in Computer Science, pp. 737�754,
Springer.

[64] Burke, R. D., Hammond, K. J., Kulyukin, V., Lytinen, S. L., Tomuro, N.,
and Schoenberg, S. (1997) Question answering from frequently-asked ques-
tion �les: Experiences with the faq �nder system. Tech. Rep. TR-97-05,
Departmenet of Computer Science, University of Chicago.

BIBLIOGRAPHY 141

[65] Jijkoun, V. and de Rijke, M. (2005) Retrieving answers from frequently asked
questions pages on the web. Herzog, O., Schek, H.-J., Fuhr, N., Chowdhury,
A., and Teiken, W. (eds.), CIKM , pp. 76�83, ACM.

[66] Lassila, O., Swick, R. R., Wide, W., and Consortium, W. (1998) Re-
source description framework (rdf) model and syntax speci�cation. URL:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222, last visited on:
May 30th, 2013.

[67] Lopez, V. and Motta, E. (2007) Aqualog: An ontology-driven question-
answering system for organizational semantic intranets.Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 5, 72�105.

[68] Wang, C., Xiong, M., Zhou, Q., and Yu, Y. (2007) Panto: A portable natural
language interface to ontologies. The Semantic Web: Research and Applica-
tions , pp. 473�487, Springer.

[69] Pérez, J., Arenas, M., and Gutierrez, C. (2006) Semantics and complexity
of sparql. The Semantic Web-ISWC 2006 , pp. 30�43.

[70] Cunningham, H., Maynard, D., Bontcheva, K., and Tablan, V. (2002) Gate:
an architecture for development of robust hlt applications. Proceedings of the
40th Anniversary Meeting of the Association for Computational Linguistics
(ACL), Philadelphia, USA.

[71] Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D.,
and Cimiano, P. (2012) Template-based question answering over rdf data.
Proceedings of the 21st International Conference on World Wide Web, Lyon,
France, April 16-20, pp. 639�648.

[72] Mithun, S., Kosseim, L., and Haarslev, V. (2007) Resolving quanti�er and
number restriction to question owl ontologies. Third International Confer-
ence on Semantics, Knowledge and Grid , pp. 218�223.

[73] Cimiano, P. (2004) Orakel: A natural language interface to an f-logic knowl-
edge base. Natural Language Processing and Information Systems , pp. 401�
406, Springer.

[74] Kaufmann, E., Bernstein, A., and Fischer, L. (2006) Nlp-reduce - a "naive"
but domain-independent natural language interface for querying ontologies.
ESWC.

[75] Tablan, V., Damljanovic, D., and Bontcheva, K. (2008) A natural language
query interface to structured information. The Semantic Web: Research and
Applications , pp. 361�375, Springer.

142 BIBLIOGRAPHY

[76] Damljanovic, D., Agatonovic, M., and Cunningham, H. (2010) Natural lan-
guage interfaces to ontologies: Combining syntactic analysis and ontology-
based lookup through the user interaction. The Semantic Web: Research and
Applications , pp. 106�120, Springer.

[77] Ran, A. and Lencevicius, R. (2007) Natural language query system for RDF
repositories. Proceedings of the Seventh International Symposium on Natural
Language Processing (SNLP).

[78] Kaufmann, E., Bernstein, A., and Zumstein, R. (2006) Querix: A natu-
ral language interface to query ontologies based on clari�cation dialogs. 5th
International Semantic Web Conference (ISWC 2006), pp. 980�981.

[79] Lopez, V., Motta, E., and Uren, V. S. (2006) Poweraqua: Fishing the se-
mantic web. The Semantic Web: Research and Applications , pp. 393�410,
Springer.

[80] Katz, B., Felshin, S., Yuret, D., Ibrahim, A., Lin, J. J., Marton, G., McFar-
land, A. J., and Temelkuran, B. (2002) Omnibase: Uniform access to het-
erogeneous data for question answering. Natural Language Processing and
Information Systems , pp. 230�234, Springer.

[81] Katz, B., Lin, J., and Felshin, S. (2001) Gathering knowledge for a question
answering system from heterogeneous information sources. Proceedings of
the Workshop on Human Language Technology and Knowledge Management-
Volume 2001 , p. 9, Association for Computational Linguistics.

[82] Grosz, B. J., Appelt, D. E., Martin, P. A., and Pereira, F. C. (1987) Team:
An experiment in the design of transportable natural-language interfaces.
Arti�cial Intelligence, 32, 173�243.

[83] Kwok, C. C., Etzioni, O., and Weld, D. S. (2001) Scaling question answering
to the web. ACM Transactions on Information Systems (TOIS), 19, 242�
262.

[84] Schwitter, R. and Tilbrook, M. (2004) Controlled natural language meets the
semantic web. Proceedings of the Australasian Language Technology Work-
shop, vol. 2, pp. 55�62.

[85] Bernstein, A., Kaufmann, E., and Kaiser, C. (2005) Querying the seman-
tic web with ginseng: A guided input natural language search engine. 15th
Workshop on Information Technologies and Systems, Las Vegas, NV , pp.
112�126.

BIBLIOGRAPHY 143

[86] Andrenucci, A. and Sneiders, E. (2005) Automated question answering: Re-
view of the main approaches. Third International Conference on Information
Technology and Applications, 2005. ICITA 2005 , vol. 1, pp. 514�519, IEEE
Computer Society.

[87] Noy, N. F. and Musen, M. A. (2000) Algorithm and tool for automated
ontology merging and alignment. Proceedings of the 17th National Confer-
ence on Arti�cial Intelligence (AAAI-00). Available as SMI Technical Repot
SMI-2000-0831 .

[88] Maedche, A. and Staab, S. (2000) Discovering conceptual relations from
text. Proceedings of the 14th European Conference on Arti�cial Intelligence
(ECAI), pp. 321�325, IOS Press.

[89] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999) The pagerank
citation ranking: Bringing order to the web. Tech. rep., Stanford InfoLab.

[90] Kleinberg, J. M. (1999) Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM), 46, 604�632.

[91] Sommerville, I. (2007) Software Engineering . Pearson Studium, 8th edn.

[92] Fielding, R. T. (2000) Architectural Styles and the Design of Network-based
Software Architectures . Ph.D. thesis, University of California, Irvine, Cali-
fornia.

[93] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z.
(2008) Dbpedia: A nucleus for a web of open data. The Semantic Web, pp.
722�735, Springer.

[94] Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,
and Hellmann, S. (2009) DBpedia - a crystallization point for the web of data.
Web Semantics: Science, Services and Agents on the World Wide Web, 7,
154�165.

[95] Frank, A., Krieger, H.-U., Xu, F., Uszkoreit, H., Crysmann, B., Jörg, B., and
Schäfer, U. (2007) Question answering from structured knowledge sources.
J. Applied Logic, 5, 20�48.

[96] Stadler, C., Lehmann, J., Hö�ner, K., and Auer, S. (2012) Linkedgeodata:
A core for a web of spatial open data. Semantic Web Journal , 3, 333�354.

[97] (2013) Navigationsempfänger Chipsatz für Personennavigation mit Anwen-
dungen bei erhöhter Genauigkeit (NAPA), Project Website (2013). URL:
http://projekt-napa.de, last visited on: May 19th, 2013.

144 BIBLIOGRAPHY

[98] (2013) Navigationsempfänger Chipsatz für Personennavigation mit Anwen-
dungen bei erhöhter Genauigkeit (NAPA), Local Project Website (2013).
URL: http://userpages.uni-koblenz.de/~napa/Web, last visited on:
May 31th, 2013.

[99] Resnik, P. and Lin, J. (2010) Evaluation of nlp systems. The Handbook of
Computational Linguistics and Natural Language Processing , 57, 271.

[100] Artstein, R. and Poesio, M. (2008) Inter-coder agreement for computational
linguistics. Computational Linguistics , 34, 555�596.

[101] Schmitt, I. (2005) Ähnlichkeitssuche in Multimedia-Datenbanken - Retrieval,
Suchalgorithmen und Anfragebehandlung . Oldenbourg Wissenschaftsverlag.

