
Universität Koblenz-Landau

Campus Koblenz

Universitätsstraße 1

56016 Koblenz

Concept Network Extraction from Text

Method and Tools for the Research into Extortion Racket Systems

Master Thesis

zur Erlangung des akademischen Grades Master of Science (M.Sc.)

an der Universität Koblenz-Landau, Campus Koblenz,

Fachbereich Informatik, Studiengang Informationsmanagement

Eingereicht von:

Oliver Krukow

Steinweg 7

46459 Rees

Erstkorrektor:

Dr. Michael Möhring

Zweitkorrektor:

Prof. Dr. Klaus G. Troitzsch

Abgabedatum: 15. Oktober 2013

Zusammenfassung

Große Mengen qualitativer Daten machen die Verwendung computergestützter

Verfahren bei deren Analyse unvermeidlich. In dieser Thesis werden Text Mi-

ning als disziplinübergreifender Ansatz, sowie die in den empirischen Sozialwis-

senschaften üblichen Methoden zur Analyse von schriftlichen Äußerungen vor-

gestellt. Auf Basis dessen wird ein Prozess der Extraktion von Konzeptnetzwer-

ken aus Texten skizziert, und die Möglichkeiten des Einsatzes von Verfahren zur

Verarbeitung natürlicher Sprachen aufgezeigt. Der Kern dieses Prozesses ist die

Textverarbeitung, zu deren Durchführung Softwarelösungen die sowohl manuel-

les als auch automatisiertes Arbeiten unterstützen notwendig sind. Die Anforde-

rungen an diese Werkzeuge werden unter Berücksichtigung des initiierenden Pro-

jektes GLODERS, welches sich der Erforschung von Schutzgelderpressung durch-

führenden Gruppierungen als Teil des globalen Finanzsystems widmet, beschrie-

ben, und deren Erfüllung durch die zwei hervorstechendstenKandidaten dargelegt.

Die Lücke zwischen Theorie und Praxis wird durch die prototypische Anwendung

der Methode unter Einbeziehung der beiden Lösungen an einem dem Projekt ent-

springenden Datensatz geschlossen.

Abstract

Large amounts of qualitativ data make the utilization of computer-assisted meth-

ods for their analysis inevitable. In this thesis Text Mining as an interdisciplinary

approach, as well as the methods established in the empirical social sciences for

analyzing written utterances are introduced. On this basis a process of extracting

concept networks from texts is outlined and the possibilities of utilitzing natural

language processing methods within are highlighted. The core of this process is

text processing, to whose execution software solutions supporting manual as well

as automated work are necessary. The requirements to be met by these solutions,

against the background of the initiating project GLODERS, which is devoted to

investigating extortion racket systems as part of the global �nancial system, are

presented, and their ful�lment by the two most preeminent candidates reviewed.

The gap between theory and pratical application is closed by a prototypical appli-

cation of the method to a data set of the research project utilizing the two given

software solutions.

Contents

List of Figures V

List of Abbreviations VI

1 Introduction 1

1.1 Motivation . 1
1.2 Objectives, Approach and Structure . 2

2 Foundations of Computational Text Analysis 3

2.1 Using Texts as Data . 3
2.2 Text Mining . 5

2.2.1 De�nition . 5
2.2.2 Related Fields . 6
2.2.3 Di�erentiation and Perspectives 7

2.3 Empirical Social Research . 9
2.3.1 The Need for Characterisation . 9
2.3.2 The Contrasts . 9
2.3.3 The Present State of Practice . 11

2.4 A Review of Computer-Assisted Text Analysis in the Social Sciences 12
2.4.1 Introduction . 12
2.4.2 CAQDAS . 14
2.4.3 Thematic Analysis . 15
2.4.4 Semantic Analysis . 17
2.4.5 Semantic Network Analysis . 18
2.4.6 Automation and Software Evolution 19

3 Extracting Networks of Concepts from Text 21

3.1 The Process of Analysis . 21
3.2 Concept Ontology Development . 23

3.2.1 Ontology Structure . 23
3.2.2 Development Process . 25

3.3 Concept Identi�cation . 27
3.3.1 Introduction and Result Conservation 27
3.3.2 Text-level Identi�cation . 28

3.4 Relationship Identi�cation . 32
3.5 Reference Reconciliation . 33
3.6 Concept Network Extraction and Analysis 35

4 Text Processing Solutions 37

4.1 Introduction . 37

III

4.2 Requirements . 38
4.2.1 Metadata Metastructure De�nition 38
4.2.2 Project Administration . 38
4.2.3 Further Metadata Functionality 39
4.2.4 Text Import . 39
4.2.5 Text and Metadata Visualization 40
4.2.6 Manual Metadata Handling . 40
4.2.7 Embedded Analysis Functionality 41
4.2.8 Analysis Component Development 43
4.2.9 Combined Analysis Usage . 44
4.2.10 Data Export . 44
4.2.11 Non-Functional Requirements . 45

4.3 Candidates . 46
4.4 Suitability . 47

4.4.1 Metadata Metastructure De�nition 47
4.4.2 Project Administration . 48
4.4.3 Further Metadata Functionality 48
4.4.4 Text Import . 49
4.4.5 Text and Metadata Visualization 49
4.4.6 Manual Metadata Handling . 51
4.4.7 Embedded Analysis Functionality 52
4.4.8 Analysis Component Development 54
4.4.9 Combined Analysis Usage . 55
4.4.10 Data Export . 56
4.4.11 Non-Functional Requirements . 57

5 Prototypical Application 59

5.1 Source Data and Concept Ontology . 59
5.2 Concept Identi�cation . 59
5.3 Relationship Identi�cation . 60
5.4 Reference Reconciliation . 60
5.5 Network Extraction and Analysis . 62
5.6 Assessment . 64

6 Outlook 67

7 Conclusion 69

References 71

IV

List of Figures

1 Text Mining and its connection to related areas 6
2 Schema of computer-assisted text analysis in the social sciences . . 14
3 Data model of concept network extraction 22
4 Recall and precision . 30
5 An example of the windowing technique 61
6 Centrality in the Person network . 63
7 O�ender subnet . 65

V

List of Abbreviations

ACE Automatic Content Extraction

AI Arti�cial Intelligence

CAS Content Analysis Software

CAQDAS Computer-Assisted Qualitative Data Analysis Software

CETA Computer-Assisted Evaluative Text Analysis

CSV Comma Seperated Values

DM Data Mining

ERSs Extortion Racket Systems

GI General Inquirer

IDE Integrated Development Environment

IR Information Retrieval

IE Information Extraction

KDD Knowledge Discovery in Databases

KDT Knowledge Discovery in Texts

KWIC Key-Word-in-Context

LCA Linguistic Content Analysis

MDS Multidimensional Scaling

MECA Map Extraction, Comparison, and Analysis

MUC Message Understanding Conference

NER Named Entity Recognition

NLP Natural Language Processing

NTA Network Text Analysis

PAUM Perceptron Algorithm with Uneven Margins

VI

PLCA Program for Linguistic Content Analysis

POS Part-Of-Speech

SVM Support Vector Machine

TM Text Mining

W3C World Wide Web Consortium

VII

1 Introduction

1.1 Motivation

Extortion Racket Systems (ERSs) are organized groups which try to get money

from someone using threat or force. The ma�as are the most well known of these

groupings, ahead of all the three big Italian ma�as Cosa Nostra, ’Ndrangheta, and

Camorra. Outside of Italy other ma�as exist, such as the Japanese Yakuza, the Chi-

nese Triads or the so called Russian Ma�a and Albanian Ma�a. Furthermore are

ERSs also formed by other types of organisations, e.g. in Germany the biker clubs

Hells Angels and Bandidos are said to pursue this scheme. All of these groups are

a dominant authority in their root location, but also a considerable economic and

�nancial force, �ourishing in the shadows of the legitimate state and meddling in

the population’s a�airs. These groups do not restrict their activities to the ter-

ritory they control though, but instead act like dynamic enterprises and reinvest

in transregional and international markets. Using the funds raised in their illegal

activities, ERSs become in�uential participants in the global �nancial system.

GlodalDynamics of ExtortionRacket Systems (GLODERS) is a research project,

funded by the European Union’s Seventh Framework Programme, which aims at

understanding these systems from a global point of view. The universities of Sur-

rey, Koblenz, and Palermo, and the National Research Council located in Rome

partnered to form a interdisciplinary team, with distinct competencies in the so-

cial and computer sciences. Essential part of the project is the exploration of a

considerable number of textual data, with the designated goal to establish theories

and hypotheses rooted in the empirical material gathered.

Our intent is to bring texts together with Natural Language Processing (NLP)

and Text Mining (TM), in a way that makes purposeful use of a data source that

is naturally very e�ortful to harness because of its inherent intricacy. We want

to demonstrate a user-guided and computationally-driven method that combines

network analysis, which is a recently blooming �eld not only in the social sciences,

with NLP. The desired result is an extraction and presentation of content from text,

which allows true insight into the social phenomenon under study and scales well

with the amount of data.

1

1.2 Objectives, Approach and Structure

The elaboration starts in section 2 with the foundations of text analysis as neces-

sary within the given project setting, whose elucidation is our �rst major objective.

We examine what text is, why we do not only want to, but also have to draw on

text as a data source, and what makes text as a data source so special. Then we will

introduce TM in the sense of Knowledge Discovery in Texts (KDT) and the closely

related �elds of NLP, Information Extraction (IE) and Information Retrieval (IR).

In order to demonstrate the development of technqiues and tools used fo text anal-

ysis in the social sciences, we will discuss the two basic paradigms of the empirical

social research, which leads us to the di�erent interpretations of content analysis

and the software solutions utilized in its execution throughout the years.

With this background we describe in section 3 how TM and network analysis

can be combined to form a method that uses texts to gain and analyze concept

networks, which is the second major objective. During this we will depict the

procedure, solution approaches for the di�erent phases of the procedure, and the

state of the art in the �elds of text processing we are bene�ting from.

Objective three is covered by section 4, where we state the requirements for soft-

ware solutions that the depicted process is necessitating against the background

of the given social scienti�c research project for the central phase of the analysis,

which is the processing of texts. Looking at two selected solutions from the NLP

area, we are subsequently assessing their level of ful�lment.

Using these two solutions, we are demonstrating how the proposed method can

be applied to a small-scale assignment under realistic conditions in section 5. This

depicts the method’s feasibility and gives the opportunity to assess the solutions’

capabilites in a practice-oriented analysis, which is objective number four.

In section 6we are describing our expectations on the evolution of themethod of

concept network extraction from text and the software solutions that are available

conducting this type of analysis, while section 7 tops the thesis o� with a review

of the major outcomes of the conducted work.

2

2 Foundations of Computational Text Analysis

2.1 Using Texts as Data

Although one typically has a notion of what the concept ’text’ implies, there is

no generally accepted de�nition of it, and data analysts and social scientists alike

barely bother to de�ne it. Lacking the sophistication of text linguists’ attempts, but

su�cient for the given purpose, a text can be characterised as a system of utter-

ances in one or more natural languages, created with a speci�c intention and writ-

ten down using the respective alphabet.1 The type of text is arbitrary. Moreover,

our sole interest pertains the informative content of a text, and not its outward ap-

pearance or physical form. Text is deemed to be semi-structured, in contrast to the

rigid and explicit structure of data contained in relational databases. A deceptive

but existing assumption is that texts are unstructured, although they are usually

rich in implicit structure [Sánchez et al. 2008, pp. 363–364].

The reasons for using texts as data for analysis purposes are many-faceted. One

is that the majority of information available to humanity is stored in texts, and that

the availability and accessibility of it has reached unprecedented dimensions with

modern information technology and the advent of the World Wide Web. Text’s

exact share in overall information is subject to discussions, and while unveri�ed

estimates range between 80 and 90 per cent a scienti�cally profound inquiry is still

missing [Grimes 2008]. A self-explanatory reason for the usage of texts as data in

the social sciences is the impossibility or impracticality of methods of primary data

collection, which potentially produce quantitative data, for certain research ques-

tions, and thereby the inevitability to rely on secondary data in form of texts. For

example are information demands about ERSs scarcely to be satis�ed conducting

interviewswith knownmembers of the illicit organisations, impeded by the nature

of the subject.

The disposability of large amounts of data presents the scientist with particular

problems concerning their relevancy and validity. Out of the entirety of potentially

available information a greater proportion will not �t the research question, and

the remainders are uncertain to provide a full coverage of the social phenomenon

1A highly respected characterisation of what constitutes a text from a linguist’s perspective can
be found in [Beaugrande and Dressler 1981]

3

under study. In addition textual data are prone to bias and error. As a result im-

mense importance is ascribed to data selection and cleansing prior to analysis.

Due to the sheer amount of information it is also imperative to strive for ma-

chine support in the process of analysis, since extensive manual work often is

prohibitively expensive [Nasukawa and Nagano 2001, p. 973]. But text is written

for people, and although there was boundless optimism inside the Arti�cial Intelli-

gence (AI) community at the end of the bygone century, machines will not be able

to understand natural language as humans do in the foreseeable future [Hearst

2003]. Understanding texts requires synchronous processing on di�erent levels of

language, namely morphology, lexical, syntactic, semantic, discourse, and prag-

matic, and incorporates meta-information as well as knowledge about the world

itself [Liddy 2007, pp. 2130–2134]. It is the countless ambiguities, similarities, and

dependencies resolved in this process, which make it heretofore impossible to en-

able machines to even remotely understand a natural language. So processing is

restricted to several subtasks, and an isolated task solved for one language may

form a massive obstacle in another.

On the other hand electronic texts and their processing have their own wealth

of variants and complexity: storage, access and exchange formats, character en-

codings, mark-up languages, embedded material, metadata and so forth. Those

impediments can be dealt with using information science’s state of knowledge,

but they exacerbate any application of machine-supported text analysis.

4

2.2 Text Mining

2.2.1 De�nition

Giving a precise de�nition and an elucidating description of Text Mining is an

arduous task. Plethoras of speci�cations di�erentiate themselves in respect to the

identi�ers used for the �eld and the perspectives on it, which shape its primary

goals and the role of related areas within.

The most common de�nition is grounded on interpreting TM from a Data Min-

ing (DM) perspective, as part of the process of KDT as proposed by Kodrato� [1999,

2001], who adopted the term from Feldman and Dagan [1995]. Based on the de�-

nition of Knowledge Discovery in Databases (KDD) by Fayyad, Piatetsky-Shapiro,

and Smyth [1996, p. 30], KDT can be de�ned as the nontrivial process of identifying

valid, novel, potentially useful, and ultimately understandable patterns in texts. TM

often succumbs to the same ambiguity as DM, where the term is confusingly used

for the process of KDD as well as for the modelling step within this process, aiming

at extracting patterns by application of algorithms [Hotho, Nürnberger, and Paaß

2005, p. 21]. The KDT process is nontrivial as it ”goes beyond computing closed-

form quantities” [Fayyad, Piatetsky-Shapiro, and Smyth 1996, p. 30]. The result

of the process is valid in the sense that it can be maintained when expanding the

underlying pool of data. It is novel, i.e. new in its form, at least to the system and

the analyst responsible for it. The information gained consists of patterns, stem-

ming from a plural of texts, denoting that they cannot be deduced from any single

piece of data within the collection, but only from their conjunction. Them be-

ing useful and understandable states, that the information resulting from TM can

be interpreted by a human in the given context of application and transformed

into knowledge quali�ed to alter action. Not explicitly stated in the de�nition by

Fayyad, Piatetsky-Shapiro, and Smyth [1996] is the indispensable machine sup-

port, since the amount of unstructured data to be analysed cannot be processed by

a human due to time and cost constraints, which is in turn the main criterion for

the application of TM.

5

2.2.2 Related Fields

KDT is an interdisciplinary �eld and in order to accomplish its objectives, it makes

use of methods and algorithms inherited from KDD and DM, most notably from

the �elds statistics and machine learning, and augments this fund with techniques

from the �eld of NLP and its twomain areas of application, IR and IE (�gure 1). The

distinctionmade between KDT and these �elds is often imprecise. It is functionally

sharp, the respective implementations though resort to a mutual body of methods

and algorithms, which can lead to a vast assortment of techniques, applications,

and systems being aggregated under TM as an umbrella term [see e.g. Gupta and

Lehal 2009].

Figure 1: Text Mining and its connection to related areas.

Based on the CRISP-DM framework [Chapman et al. 2000].

NLP is a sub�eld of AI and o�ers a range of computational techniques for pro-

cessing naturally occurring texts, i.e. human speech in oral or written form. Its

ultimate goal is the human-like understanding and generation of speech, which

would render TM redundant, but that goal is far from being accomplished. This

scienti�c �eld has its roots in linguistics and is also titled applied computational

linguistics [Liddy 2007; Stede 2008].

IR, also termed Information Access and Document Retrieval, is based on the

notion of providing users exactly with the information that satis�es their infor-

mation needs, which they state through natural language queries. The common

metaphor for this problem is to look for needles in a haystack [Koll 2000], where

it is known that the information exists, but does so by the side of many other

6

pieces of information [Hearst 1999, p. 3]. Solutions to this problem, as embedded

in library systems and web search engines, e�ectively do not provide answers, but

rather documents that correspond best to the key-words given by a user, based on

the assumption that they are likely to contain the answer [Kodrato� 1999, p. 20].

Although expected to increase performance, only few implementations make use

of deeper NLP [Liddy 2007]. IR technology can be utilized in the KDT process to

collect and select data.

IE is concerned with analysing natural language texts to map contained pieces

of information into a prede�ned, structured representation [Sánchez et al. 2008,

pp. 3–4]. The aspired elements, word compositions or other parts of text, such as

names, numbers, dates, and addresses, are extracted to meet a known information

need. IE techniques are seldom applied in isolation, but rather as part of a range of

applications where they are used to distil existent texts to tagged portions of the

original [Liddy 2007]. IE technology is utilized in the KDT process to identify and

extract key features of the data, which constitute the dimensions of analysis for

subsequent modelling [cf. Feldman et al. 1999; Ben-Dov and Feldman 2005].

The use of NLP in KDT is often limited to shallow techniques, since the amount

of texts to be processed constrains the complexity of algorithms, and semantic

resources are often not available for the speci�c �eld of application [Rajman and

Besançon 1997, p. 3].

2.2.3 Di�erentiation and Perspectives

Besides the presented perspective on TM from a DM standpoint, there are some

academics who consider it to be a form of advanced IR, as it ”leaps from old-

fashioned information retrieval to information and knowledge discovery” [Dörre,

Gerstl, and Sei�ert 1999, p. 398]. It is also interpreted as a form of IE for the pur-

pose of advanced IR [Göser 1997, p. 3; Sullivan 2003, p. 99; Ananiadou et al. 2009,

p. 1]. Drawing a distinction, the outcome of the IR process are documents to be

read, while the results of TM are patterns, connections, and trends to be interpreted

[Ben-Dov and Feldman 2005, p. 804]. IE is concerned with bringing structure to

isolated pieces of information contained in texts, but without deriving new knowl-

edge [Sánchez et al. 2008, p. 366], which by contrast is the stated aim of KDT.

7

In acknowledgement of the di�erent perspectives, Mehler and Wol� [2005] dif-

ferentiate two extremes which span the range of perspectives in terms of novelty

of the knowledge gained. On the lower end of the spectrum are method-oriented

perspectives, which see TM as a bundle of methods dealing with texts in order to

enhance or substitute IE or IR, enabling humans to explore the information con-

tained. On the upper end of the spectrum are knowledge-oriented perspectives,

which demand knowledge creation and the direct discovery of ”new trends and

facts about the world itself” [Hearst 1999, p. 8] with only minimal human interfer-

ence. The later extreme is also termed Intelligent Text Mining [Kroeze, Matthee,

and Bothma 2003] or Text Knowledge Mining [Sánchez et al. 2008].

8

2.3 Empirical Social Research

2.3.1 The Need for Characterisation

Empirical social research is the systematic ascertainment and interpretation of so-

cial phenomenons, based on experience and data gained through observation or

experiment. This science is dominated by two paradigms: quantitative and qual-

itative research. An adequate characterisation of the paradigms is a prerequisite

for the work in hand, not only because empirical social research is the breeding

ground for at least part of the methods and tools covered here. But also because

someone entering the �eld of social scienti�c research from a text analysis per-

spective will constantly be confronted with the terms quantitative and qualitative.

Unfortunately these terms are used ambiguously in the literature and among prac-

titioners in the domain, referring not only to the paradigms underpinning empiri-

cal social research, but also to various components of a scienti�c endeavour, such

as complete research plans, methodologies, methods, data, and tools.

The quantitative approach to empirical social research tries to equal the natural

sciences and de�nes itself in this sense, while the qualitative approach is primarily

de�ned in distinction from the former [Garz and Kraimer 1991, p. 1]. Attempts

to de�ne both approaches on basis of their methodology are insu�cient up to

this point [Wolf 2008, p. 7]. More often the distinctions of the approaches are

established on di�erent levels, with inclusion of both paradigms’ extremes into

the di�erentiation [Flick 2009, p. 24].

2.3.2 The Contrasts

The quantitative approach starts from the premise that the characteristics of so-

cial phenomenons can be measured or counted and analysed statistically. It is

deductive and aims to generate generalisable declarations about causal relation-

ships within the population [Seipel and Rieker 2003, p. 13], which is its declared

strength. The main quality criteria of quantitative research are objectivity, reli-

ability, and validity [Brühl and Bruch 2006]. Therefore the process of research

is linear, standardized and constructed in an attempt to control the conditions of

the research and eliminate confounding factors [Kromrey 2007], to which also the

in�uence of the researcher itself belongs.

9

Until the 1960s the quantitative approach dominated, but then the critique of

it increasingly helped establish qualitative research as an equal practice [Steger

2003, pp. 6–7]. Critics argue that the characteristics and categories used in quanti-

tative research do not live up to social reality, since they only deliver data within

the predetermined scheme [Heinze 2001, p. 65]. Abstraction and abbreviation dis-

tort the created representations of the objects of study. Kromrey [2007, p. 540]

even claims, that the practice of quantitative research shows, that reliable results

can only be obtained if the research question is narrowed down so heavily, that it

becomes meaningless.

Qualitative research covers a variety of approaches and methods [Steger 2003,

p. 1], and attempts to structure and classify them are numerous [Creswell 2006,

pp. 6–9]. They all share the tradition of inductive reasoning tracing back to Aris-

totle [Rost 2003, p. 9], aiming to develop new theory through research [Heinze

2001, p. 16].

While quantitative research tries to measure the known, qualitative approaches

explore social reality and reveal connections [Kleining 1982, p. 227], claiming to

do so less biased and more thoroughly [Heinze 2001, p. 65]. Guided by a wider re-

search question, smaller samples are covered holistically and in detail [Wolf 2008,

p. 7]. The research process is open, �exible, and circular, allowing the researcher

both interaction with the object of study and subjective interpretations of the col-

lected data.

A consistent and universally accepted conception of quality criteria of qualita-

tive research is non-existent [Seipel and Rieker 2003, p. 131]. Steger [2003, p. 16]

divides the advocated variants into four categories. Worth mentioning are the pos-

itivism point of view, whose representatives apply the same criteria as in quanti-

tative research, and the post-positivsm point of view, which strictly denies the

applicability of the very same criteria. The main critique of qualitative research is,

that its �ndings are not generalizable, which is a basic requirement for scienti�c re-

search. Qualitative researchers though would disagree, although not claiming that

the investigated population or the situation of the examination are representative

but rather concentrating on the speci�c case [Heinze 2001, pp. 44–45].

10

2.3.3 The Present State of Practice

The controversy between the two paradigms exceeded its culmination, and in

the newer literature the contradiction is rebutted [Steger 2003, p. 3]. Forcing all

endeavours in the empirical social sciences into a dichotomy does not meet the

requirements of its practical application, and disregards existing commonalities

[Heinze 2001, p. 28]. With the researcher’s aim to orchestrate a selection of meth-

ods most adequate to the research object and question [Flick 2009, p. 33], a com-

bination of qualitative and quantitative methods may do the task best [Flyvbjerg

2006, p. 242]. Theoretical approaches of this character are by nowmanifold as well,

covered by umbrella terms such as triangulation ormixedmethod approaches. The

maturity of this endeavour though is seen critically, as Flick [2009, p. 30] states that

the development of ”really integrated qualitative/quantitative methods of data col-

lection or data analysis remains an unsolved problem”. However one may decide

to orchestrate the methods for his research, his maxim should be to execute his

endeavour in adherence to the most basic principles of relevancy and rigor.

11

2.4 A Review of Computer-Assisted Text Analysis in the

Social Sciences

2.4.1 Introduction

The objectives of text analysis applied for research within the social sciences are to

describe, understand, and explain social behaviour, values, structures and norms

[Alexa 1997, p. 4]. The forms of, andmethodologies surrounding these analyses are

numerous and hard to comprehend. Since there is no single approach which suits

all kinds of text analysis, they all gained their right to exist within their original

domain.

Content analysis is one of these approaches, suited not only for the analysis of

primary but also secondary data [Harris 2001, p. 201]. The origin of content anal-

ysis as a method is accredited to Max Weber, who proclaimed its usage for the

analysis of the content of communication in press [Mayring and Brunner 2009,

p. 672]. Although content analysis is essentially just one of a multitude of method-

ologies, it became the prevailing method of text analysis within the social sciences

throughout the years [Carley 1993, p. 77], and so in this domain the term is of-

ten used interchangeably with quantitative text analysis [Alexa 1997, p. 4]. At

the same time content analysis has become a fuzzy area, incorporating manifold

methods and techniques [Alexa 1997, p. 11]. This is re�ected in the de�nitions

of it: while Berelson [1952, p. 18] sharply de�nes content analysis as ”a research

technique for the objective, systematic and quantitative description of the mani-

fest content of communication”, Shapiro and Marko� [1997, p. 14], in a review of

existing de�nitions 45 years later, propose a minimal de�nition of content analysis

as ”any methodical measurement applied to text (or other symbolic material) for

social science purposes”, thereby including qualitative approaches.

It is obvious that the quantitative-qualitative controversy, as introduced in the

previous chapter, also impacted the shaping of content analysis. There are posi-

tions which claim that content analysis is strictly quantitative [see Silverman 1993,

p. 59], those that make use of content analysis as a qualitative method [Mayring

2000], and those that acknowledge that the distinctions are blurring, so that ”the

content analyst should use qualitative and quantitative methods to supplement

each other” [Holsti 1969, p. 11].

12

In accordance with the epistemological development, two categories of software

tools used to foster the analysis of texts can broadly be distinguished in the social

sciences, and content analysis heavily in�uenced both. Qualitative oriented tools

are referred to as Code-and-Retrieve Programs and Code-based Theory Builders

or Annotation Aids, and constitute the majority of the tools nowadays commonly

classi�ed as Computer-Assisted Qualitative Data Analysis Software (CAQDAS),

while quantitative oriented ones are referred to as Text Retrievers and Textbase

Managers, Dictionary-based Content Analysers or simply Content Analysis Soft-

ware (CAS) [Weitzman and Miles 1995; Evans 1996; Lowe 2003; Lewins and Silver

2009]. At the core of both categories’ tools lies the expectation to augment the

e�ciency of the analysis process, but while CAQDAS mainly assists the manual

work of the researcher, CAS seeks to automate at least part of the tasks [Alexa

1997, p. 8].

In order to reconstruct the development of text analysis software until the be-

ginning of the last decade, we refer to the scheme as outlined in �gure 2. Regarding

the three quantitative approaches, ”in a thematic text analysis one examines oc-

curences of themes (or concepts), in a semantic text analysis the examination is

of sentences (or clauses) in which themes are interrelated, and in a network text

analysis it is of themes’ and/or sentences’ locations within networks of interre-

lated themes” [Roberts 1997, p. 3]. Züll and Landmann [2002, p. 10] subsume three

areas of CAS, namely dictionary-based, co-occurence based, and network or re-

lationship approaches, while Klein [1997, p. 355] splits software for quantitative

content analysis into thematic and clause-based types, with a distinctionwithin the

later class between evaluative approaches and those that produce cognitive maps.

There are further attempts to systematize software for text analysis, e.g. Weitz-

man and Miles [1995], which also include a broader range of tools. We knowingly

disregard tools designed to partially automate the construction of dictionaries and

grammars [Lowe 2003, p. 1], tools that o�er features for textual exploration [Züll

and Landmann 2002, p. 10], and text retrieval tools and word processors at this

13

Figure 2: A schema of computer-assisted text analysis in the social sciences.

point. Compiling a comprehensive list of available software is beyond our ambi-

tion, so that reference is made only to outstanding examples2.

2.4.2 CAQDAS

CAQDAS is de�ned by Lewins and Silver [2009, p. 3] as an umbrella termwhich in-

cludes wide ranges of packages, whose ”general principles are concerned with tak-

ing a qualitative approach to qualitative data”. Data initially almost exclusively

was, and today still mostly is, texts, but increasingly other types, such as audio,

images, and video, are also supported, whichmakes the packages multimedia com-

patible [Kuckartz and Rädiker 2010, p. 745]. The development began in the 1980s,

with themost prominent representatives today being ATLAS.ti, NVivo, MAXQDA,

and NUD*IST. The packages help users to manage and explore their data, to cre-

ate hierarchic code schemes and to assign these codes to data segments. The user

can carry out searches in, and make amendments and assign meta-data to the text.

The process of interpretation is supported by supplying means to write memos

and comments, by visualizing the results of coding in manifold ways, and by cre-

ating visual links between memos, codes, and texts, all within one environment.

CAQDAS also aims to support the work of teams by mechanisms to export and

merge projects [Lewins 2001; Zhang and Wildemuth 2009, p. 8; Kuckartz 2010;

2Besides the works cited in this section, the writings of Mohler and Frehsen [1989], Weber [1990],
and Mehl [2006] provide further information on the large array of available software and their
applications.

14

Schutt 2011, pp. 350–353]. By now the support of analyses is so extensive, that a

discussion arose whether CAQDAS is still aligned to the principles of qualitative

methodologies or already turned into a methodology in its own right, limiting the

researchers’ interpretive e�orts when utilized without proper re�ection [Atherton

and Elsmore 2007; Kuckartz and Rädiker 2010, pp. 735–736].

2.4.3 Thematic Analysis

The development of software for quantitative content analysis began in the 1960s,

with the ’Content Analysis Conference’ hosted by The Annenberg School of Com-

munications of the University of Philadelphia in November 1967, as a catalyser for

many of the subsequent innovations. After a stagnation of the development in the

1970s and 1980s, it intensi�ed in the 1990s due to increasing availability of access

to computational facilities for researchers, caused by the spread of the personal

desktop [Züll and Landmann 2002, p. 9].

The General Inquirer (GI), created by Philip Stone [Stone 1966], is considered

to be forefather of CAS and prime example of the dictionary-based approaches.

Beyond merely creating list of word (co-)occurrences, it is capable of classifying

words, combinations of words (idioms), and sentences by means of a pre-de�ned

dictionary. The GI can be used with any dictionary, but its possibilities often were

equated with the utilisation of the Harvard III dictionary, which was part of the

software. It also provides su�x-chopping, which is a simple form of stemming, and

a routine based on hand-crafted rules to identify homographs and idioms before

assigning tags, and thereby a sort of context-sensitive disambiguation [Psathas

1969].

A helpful distinction between CAQDAS and the dictionary-based approach of

content analysis as a quantitative method can bemade when looking at the process

of coding or tagging, i.e. the creation of categories and the assignment of categories

to text segments. This process is agreed to be central to all systematic qualitative

approaches [Schutt 2011, p. 350; Kuckartz and Rädiker 2010, p. 739], and ”it is

acknowledged that content analysis stands or fails depending on the quality of its

categorization scheme” [Alexa 1997, p. 16]. Those CAS, that follow a dictionary-

based approach, support a linear process in which the �rst two steps, the a-priori

15

and deductive creation of categories, and the establishment of links between those

categories and the manifest target content by creating a dictionary, are carried

out manually, and the �nal step of assigning codes to content by means of the

dictionary is automated [Wood 1980, p. 276]. This approach, which is also called

a theory-driven or top-down approach, is also feasible using CAQDAS, but those

software applications do not take over the assignment of codes. The common

approach in using CAQDAS is to inductively derive categories from the manifest

and latent content, reversing that linear process and running through it circularly,

with all the tasks carried out by hand.

The dictionary-based approach still is well-liked, and over the years a range

of tools has been developed, within di�erent scienti�c �elds for speci�c research

questions, for numerous text types and with varying sophistication. Among them

are TEXTPACK [Olsen 1989], INTEXT [Klein 1991], and also TACT [Hawthorne

1994], DICTION [Hart 1985], and LIWC [Pennebaker, Francis, and Booth 2001;

Pennebaker et al. 2007]. Common features of these CAS packages are word lists or

indexes, category frequency counts represented by matrices and means for their

analysis and visualizations, calculation of vocabulary-based measures, export of

results for further processing with statistical tools, Key-Word-in-Context (KWIC)

lists, concordances, and internal dictionaries and thesaurus facilities [Evans 1996,

p. 6; Lowe 2003, pp. 1–4; Lewins 2001, p. 304; Diefenbach 2001].

WORDS [Iker and Klein 1974] is the �rst noteworthy CAS, or rather a collec-

tion of program routines, that makes use of word co-occurrences to describe texts

by clusters of associated words [Wood 1980, p. 277]. The approach is data-driven,

which means that all semantic units used to describe texts stem from the texts

themselves, so no prior construction of a dictionary is needed [Diefenbach 2001,

p. 25]. The procedure used basically divides an input text into segments, i.e. para-

graphs, sentences or a �xed number of words, determines the frequency of words

within each segment and then creates an intercorrelation matrix by calculating

the covariation between each and every word. Covariations range from -1 to 1,

whereby a high negative value indicates the presence of one word associated with

the absence of the other, whereas a high value positive value indicates the con-

junct occurence of the two words [Alexa 1997, pp. 21–22]. The intercorrelation

matrix ”is then reduced by multivariate procedures (factor analysis, cluster analy-

16

sis, etc.) to locate, in a systematic fashion, the presence of common word groups”

[Iker and Klein 1974, p. 430]. Visualization of the result is to be attained using

external programs.

VBPro in combination with VBMap, which form the implementation of concept

mapping [Miller and Riechert 1994], and CATPAC [Doerfel and Barnett 1996] have

the same approach as WORDS. In addition to �xed-size windows, CATPAC is able

to count co-occurrences in sliding windows, so that a word is associated to another

word if it occurs within X words to the left or right of it [Evans 1996, p. 273]. A

slight variation of VBPro is its use of the Chi-square statistic, and thereby relative

frequency of words among texts, to determine which words are included in subse-

quent analysis, and cosine similarity to produce an intercorrelation matrix [Alexa

1997, p. 24]. VBPro uses the largest three vectors from this matrix to project the

words into two-dimensional space, while CATPAC applies Multidimensional Scal-

ing (MDS) in two or three dimensions for output and external visualisation.

2.4.4 Semantic Analysis

The semantic analysis of texts encodes not only the concepts, but also the relation-

ships that link them, which are manifest in the grammatical relations of the natural

language expression [Roberts and Popping 1993, p. 659]. A relationship, just like

a concept, can be represented by a single word or a set of words. Coding these

relationships is often achieved by applying semantic grammars and converting

clauses into nuclear sentences or statements with an Subject-Verb-Valance-Object

(S-V-V-O) form. In most cases the valence information is part of the verb compo-

nent [Popping 2000, p. 29], so that the semantic grammar is reduced to a S-V-O

form. Approaches that make use of this encoding method are brought forward by

Franzosi [1990], who applies a semantic grammar consisting of subject/action/ob-

ject units (semantic triplets) to newspaper reports, and Roberts [1989], whose

Linguistic Content Analysis (LCA) codes the intended relations among words in

various socio-temporal contexts. His approach thus is representational as opposed

to instrumental analyses, where the researcher’s theory is systematically applied

to interpret the semantic of a text. Coding produced using LCA can be validated

with the use of the Program for Linguistic Content Analysis (PLCA), which re-

17

constructs the clauses as coded [Roberts and Popping 1993]. The parsing required

to apply semantic grammars can only be performed by humans [Franzosi 1990,

p. 232], a certain extent of reliable automated coding can only be achieved when

applied to texts with a very limited variety. Examples are a parser used for the

Gottschalk-Gleser Method of Content Analysis, reported to operate with 60% ac-

curacy [Wood 1980, p. 280], and a parser for the Kansas Event Data System (KEDS),

reported to have a 90% rate of accuracy.

2.4.5 Semantic Network Analysis

The semantic analysis of texts subsumes the thematic approach, since the identi-

�cation of themes is necessary before their relations can be established. Likewise

semantic network analysis subsumes semantic analysis, and thereby also thematic

analysis. A semantic network is assembled from statements extracted through

semantic analysis, so that equivalent themes or concepts form the nodes and rela-

tions are equal to arcs [Roberts and Popping 1996, p. 658]. The result of a thematic

analysis can be interpreted as a net without arcs, to which a semantic net can

be reduced if required [Diesner and Carley 2010, p. 580]. Thematic and semantic

analysis comprise necessary steps in semantic network analysis, but need not be

conducted separately. Research in the �eld of semantic network analysis is mainly

driven by the groups of Carley and van Cuilenburg [Popping 2003, p. 6].

Carley [1986, 1988, 1993] developed her map analysis approach to analyse the

cognitive maps of participants in a sociological study at MIT. Within a semantic

network as de�ned by her, concepts can be hierarchically classi�ed or typed, but

carry no meaning, except that they are connected to other concepts. According

to Carley, relationships can have strength, directionality, sign and meaning. The

approach is supported by the Map Extraction, Comparison, and Analysis (MECA)

toolkit, which includes programs to assist in the de�nition of the network’s char-

acteristics and the coding of statements by means of dialogues tailored to the given

de�nition of the network, to amend and complement compiled networks based on

expert knowledge codi�ed, and to calculate intersections, di�erences and unions

of networks for comparison.

18

Cuilenburg, Kleinnijenhuis, and Ridder [1986, 1988] applied their approach, which

is a generalization of Charles Osgood’s Evaluation Assertion Analysis, to evalua-

tive texts in communication science, i.e. journalistic articles. The relationships

they use are simpler than Carley’s, as they are all of one type or share one mean-

ing, are always unidirectional, and use a combined indicator for sign and strength.

Mathematical graph theory is used to reduce a sequence of statements to a single

relation between two concepts, which transforms implicit into explicit links. Their

Computer-Assisted Evaluative Text Analysis (CETA) 2 toolkit shows remarkable

similarities to MECA, since it also assists the coding process in a dialogue-style,

uses an inference engine to amend the compiled network, and supports analysis

by calculating indices concerning the relationship between concepts.

Popping [2003] discusses some issues in the conception of semantic networks

when used as knowledge graphs, namely implicit and exclusive knowledge, strength

of relations, and unraveling of broad concepts. Diesner and Carley [2010, p. 512]

state that relationships can be enhanced with further attributes, such as time or

place of validity, and Popping [2003, p. 100] suggests to augment networks with

inclusion or exclusion criteria for the sake of validly joining them.

The drawback of the semantic and semantic network approaches is that the

coding of relationships is even harder to automate than the coding of concepts, and

thus relies heavily on time-consumingmanual coding [Cuilenburg, Kleinnijenhuis,

and Ridder 1986, p. 90; Carley 1993, p. 102]. Facilitation of automatic coding can

be achieved when relations are not semantically coded as described above, but

with employing a proximal, or a temporal or sequential approach [Carley 1993,

pp. 105–108]. The downside would be a loss of information on, or the coding of

non-existent or even contradistinct relations.

2.4.6 Automation and Software Evolution

In general, quantitative methods are less elaborate than qualitative ones, and since

they are automatable to a greater extent, they are potentially more useful for big

amounts of texts. Perfect intercoder reliability is achieved if the coding is fully au-

tomated, but this is seldom the case for more sophisticated semantic and semantic

19

network approaches. And if so, the programs are restricted to one particular type

of text and score below human capabilities in terms of accuracy.

The distinctions made between software packages supporting a certain method-

ology are rather arti�cial nowadays. Not only are the distinctions between the

demonstrated types of quantitative analysis programs blurring since the sophisti-

cated ones can bene�t from their predecessors. The increasingly popular CAQDAS

tools also blur the distinctions between the quantitative and qualitative oriented

packages [Schutt 2011, p. 312]. Basic quantitative functionalities, such as word and

category counts, co-occurrence matrices, and export of quanti�able results for sta-

tistical analysis, are incorporated by CAQDAS developers since they are wanted

by the users for exploratory purposes [Kuckartz 2010, p. 250; Kuckartz and Rädiker

2010]. At the same time, the graphical depiction of semantic networks allows for a

fairly qualitative interpretation of results initially designed for quantitative anal-

ysis.

20

3 Extracting Networks of Concepts from Text

3.1 The Process of Analysis

The outlined approach aims at extracting mentions of concepts and their relations

from text, in order to enable a social scientist to investigate the phenomenon of

ERSs by analysing those concepts and relations and the networks formed by them.

It brings together network analysis, which, as depicted earlier, is the latest move-

ment of text analysis in the social sciences, with NLP methods and tools, forming

an approach which can be labeled KDT, since it aims to generate new knowledge

from texts, making use of core IE techniques. In the remainder of this thesis, a

concept is an abstract entity that is manifest in a text as a linguistic item of arbitrary

extent, being the author’s expression of a single piece of the reality under investiga-

tion. Examples of concept expressions in text, i. e. text-level concepts, are ”Luciano

Varese”, ”restaurant Da Bruno” or ”demand a pizzo”.

The approach is a form of Network Text Analysis (NTA), but does not result in a

purely semantic network, since the concepts can carry meaning beyond their con-

nections to other concepts, which is contrary to the traits of a semantic network

[Sowa 1992]. A �ve-phase procedure outlines the approach followed hereafter,

designed to �ll a data model as depicted in �gure 3. The later sections concen-

trate on the three central phases of text processing, namely concept identi�cation,

relationship identi�cation and reference reconciliation.

The �ve phases are:

1. Concept Ontology Development

De�ne an ontology that captures the structure of knowledge as deemed rel-

evant for the intended analysis. Describe the elements of the ontology and

specify rules for mapping text-level apparitions to these elements.

2. Concept Identi�cation

Identify all text-level concepts assignable to one of the de�ned concept classes

or attributes.

21

3. Relationship Identi�cation

Identify all relationships between text-level concept assignable to one of the

de�ned concept class or attribute relationships.

4. Reference Reconciliation

Consolidate identi�ed concepts and assign a canonical representation for

each set.

5. Concept Network Extraction and Analysis

Extract all consolidated concepts and relationships and merge them to form

a network. Analyse the network using visual depiction, statistical or graph-

based measures.

Figure 3: A data model of concept network extraction from text and the processing
phases working on its segments.

22

Note that this outline assumes that both the research questions, and thereby the

goals of the analysis, and the data are present in advance. Moreover the process

is not strictly linear, but will rather involve iterating through it and falling back

to previous phases until satisfactory results are achievable. All phases generate

results which are valuable beyond being input to the succeeding phases. The main

challenge is to e�ciently and reliably extract the network while dealing with the

shortage of appropriate ground truth to validate the extracted network [Diesner

2012, p. 7] and the knowledge gained form its analysis. Under these circumstances

we try to shed a light on how to make use of computer support and automation in

the given phases.

3.2 Concept Ontology Development

3.2.1 Ontology Structure

The �rst step in extracting and analysing networks of concepts from texts is to

determine what exactly is to be extracted, dependent on the insights striven for.

This implies creating an ontology, which is an explicit and formal de�nition of a

set of representational primitives, typically classes, attributes, and relationships, with

which to model a domain of knowledge [Gruber 2009]. To be more precise, we want

to create a theoretical framework for a chunk of the total knowledge of a domain,

built according to a current problem [Even and Enguehard 2003, p. 3], primarily as

input for the later phases but also for the purpose of reaching consensus within a

group about the task at hand.

Creation of an ontology might seem a trivial task, the decisions made in the pro-

cess though are not to be treated lightly. The model of language resulting from the

application of an ontology is inherently incorrect, but nevertheless an ontology

must trade o� expressive power against e�ort to spend for its application. Ex-

pressive power induces complexity, which can be broadly divided into two kinds:

structural and contentual complexity.

Structural complexity is determined by the number of component types and

components in modelling the ontology. Concept classes and the relationships be-

tween them are the essential basis of an ontology and correspond to nodes and

edges in out �nal network. In order to reduce structural complexity, all relations

23

are to be de�ned on a pair of concept classes 〈a, b 〉. Text-level concepts can be as-

signed to more than one concept class, but the conception of the ontology should

aim to prevent such cross-classi�cations.

Hierarchical classi�cation of concept classes increases complexity. Conceptu-

ally there is no limit to the number of levels that could be added to the hierarchies

of concept classes for �ner levels of analysis [Diesner and Carley 2005], due to the

unlimited number of possible dimensions along which to develop subcategories

[Chandrasekaran, Josephson, and Benjamins 1999, pp. 22–23]. Concept class hi-

erarchies imply taxonomical relations between concept classes, such as is-a and

part-of, in addition to the basic associative relationships that connect concepts

across the tree structures [Stevens, Goble, and Bechhofer 2000, p. 400]. Note that

the relations used here do not only describe the static condition of the domain, but

also their dynamics, the possible interactions of concept classes, which is contrary

to many perceptions of ontologies.

An attribute is another component type often used in ontologies, consisting of

an attribute-value pair attached to concept classes, or infrequently also to relation-

ships, adding factual detail to the respective component. Attributes and associative

relationships are inherited by the subclass in a taxonomical relation, i. e. by the hy-

ponym from its hypernym. Attributes are only useful for our purpose in so far, as

they can be used to �lter concepts and relationships when only a subset of the

whole network identi�ed is to be extracted for analysis.

There are further component types which can be used to design an ontology,

such as axioms and cardinality of relations [cf. Stevens, Goble, and Bechhofer 2000,

pp. 400–401], which are not elaborated here. For the given purpose structural

complexity would needlessly increase by using additional component types.

While some decisions in modelling seem natural, some are ambiguous and o�er

a greater freedom of choice. For example, the fact |Person born-in Nation| could

be modelled as a subclass of the concept class Person having the designated na-

tionality, a directed relationship between the concept classes Person and Nation

with the semantic born-in, or an attribute bornIn:Nation attached to the concept

class Person. Those choices solely depend on the domain and the analysis one in-

tends to use the extracted concept network for [Noy and McGuinness 2001]. For

example, if we would want to calculate a graph-based measure, the second option

24

is preferable, but only if the relation born-in is useful for establishing a connec-

tion between a node representing the instance of the concept class Person and

another node linked to the node representing the instance of the concept class

Nation [Barthélemy, Chow, and Eliassi-Rad 2005]. Let us illustrate this with the

following example: When Guiseppe and Toni are both born in Italy and this fact

is quali�ed to establish a connection between them, then the relationship is suit-

able for a graph-based approach to analysis and the second option is a good �t,

in contrast to the other two options with whom the connection would remain un-

detected. This is a reason why attributes are generally to be employed carefully

when constructing an ontology for the purpose of extracting a concept network.

Contentual complexity is determined by the components’ coverage of text. For

each representational primitive, it �nds expression in the number of lexical items

making up its linguistic realisations, the variety of these items, and their coherence.

It in�uences the clarity of identifyingmatches and determining their boundaries in

text. Choosing a �tting granularity is key to establish an ontology which is expres-

sive enough for the task at hand without evoking too much contentual complexity.

While both structural and contentual complexity in�uence the cost of application,

it is mainly the latter which determines what degree of automation is achievable in

identifying the ontology’s corresponding text-level instances. Some components

might just be too general to be treated by an IE component or identi�ed in any

other automated manner.

3.2.2 Development Process

There are numerous methodologies used in ontology development studied in the

�eld of ontology engineering [Fernández-López 1999; Dahlem and Hahn 2009].

Among the more mature ones are METHONTOLOGY [Fernández-López, Gómez-

Pérez, and Juristo 1997] and the Uni�ed Process for Ontology (UPON) [De Nicola,

Missiko�, and Navigli 2009], but at the same time the more mature ones are rather

rich in policy. Since we are presumably geared towards small-scale ontologies, an

appropriate development process is to be established, avoiding any overbearing

speci�cations. A suitable methodology can be derived from the guidelines by Noy

and McGuinness [2001] and the skeletal methodology by Uschold and Gruninger

25

[1996]. The goals and the usage scenario of the ontology are prescribed by the

research and the purpose of extracting a network of concepts from text.

The �rst step in the development therefore is the de�nition of the scope of the on-

tology, which is the major factor of in�uence on its complexity. It speci�es what

is to be included and what not, minimizing the amount of concepts to be analysed

[Brusa, Caliusco, and Chiotti 2006, p. 8]. A set of informal competency questions,

capturing requirements in natural language questions that the ontology must be

able to answer, are a useful tool to assist in setting the right scope [Grüninger and

Fox 1995].

The second step is re-use of ontologies. Existing ontologies can be re�ned, en-

hanced and integrated as a whole or partially to form the targeted ontology. It does

not matter in which formalism an ontology exists, since translating an ontology

from one formalism to another is usually not a di�cult task [Noy and McGuinness

2001, p. 6]. However, with growing size of ontologies their re-use becomes a costly

endeavour. Besides self produced ontologies for previous extraction tasks, ontol-

ogy libraries accessible via the world wide web can provide utilisable material.

The third step is capturing the components, describing these elements unambigu-

ously and specifying which text-level concepts qualify as instances of these com-

ponents. Determining the necessary components can go from most abstract to

concrete (top-down), frommost concrete to abstract (bottom-up), or frommost im-

portant to more abstract and more concrete (middle-out) [Uschold and Gruninger

1996, pp. 20–22]. It is advisable to follow the latter and start by listing key terms,

then derive the concept classes and their hierarchy from it, and afterwards estab-

lish the attributes and relations and their respective properties. Determining the

key components can follow a theory-driven, a data-driven, or a hybrid approach,

which is the most apt variant and includes alternating between formulated ontol-

ogy, theoretic demands and a set of texts. Description of the components are to be

precise and comprehensible, which includes giving examples where appropriate,

particularly of relatable text-level concepts. For the use of text analysis one may

also incorporate synonyms and Part-Of-Speech (POS) tags or other NLP related

information [Noy and McGuinness 2001, p. 6] already available at this phase in

order to accelerate the identi�cation process.

26

In the fourth step the ontology is to be coded, that is using a formal language

to de�ne what has been captured in a non-formal or semi-formal manner in step

three. Two intertwined decisions must be made: on the primitives used to repre-

sent the ontology, also called meta-ontology [Uschold and Gruninger 1996], and

on a representation language capable of supporting these primitives. We have al-

ready elaborated on the former in section 3.2.1. Considering the latter one can

choose from a range of ontology languages, the most prominent at the time of

writing being OWL 2, endorsed by the World Wide Web Consortium (W3C) for

the semantic web and primarily exchanged in the format RDF/XML [W3C 2012].

All ontology representation languages are based on the formal system of a logic

such as �rst-order logic or description logic [Yildiz 2007, p. 11]. Capturing and

coding of the ontology can be carried out concurrently, especially for the given

purpose and against the background of contemporary ontology editors, which al-

low de�nition and modi�cation with the aid of visual representations. Thereby an

intermediate representation is skipped in favour of a swifter development process.

The whole process goes along with a documentation of all the decisions and

results and their rationale. Further common steps in ontology engineering would

be to populate the ontology with instances and evaluate it by means of application.

Both activities are postponed to later phases of concept network extraction and are

thus not part of the ontology development phase.

3.3 Concept Identi�cation

3.3.1 Introduction and Result Conservation

In the phase of concept identi�cation the text-level concepts that refer to the de-

�ned concept classes and attributes are identi�ed. In a strict sense, all of these on-

tology components must be mapped to the linguistic phrasings of their instances,

but some components, especially concept superclasses, might initially only have

been added for the sake of comprehension or reaching consensus. These are to

be omitted in the identi�cation phase, which makes the ontology used for iden-

ti�cation a subpart of the prior de�ned structure. The result of identi�cation can

best be understood as mapping between the two types of ontology components

and text-level concepts. Applied storage of this mapping can broadly be divided

27

into two categories: on the one hand detached from the texts (stand-o� annota-

tion), making reference to the positions within a text by means of an index, which

allows exact identi�cation of every character the text is made of. An example of

this option is the pioneering TIPSTER format [Grishman et al. 1998]. And on the

other hand by inserting inline markup (inline annotation), often using an XML

or XML-like format which exactly encloses the expressions, such as the format

de�ned in the TEI guidelines [Consortium 2013]. Since XML is a widespread stan-

dard format, this option has the advantage that the respective texts can be utilized

by many software tools, and also text and annotations can be visualized with ease.

However, XML essentially is a tree-based model, and thus tag cross-overs fail to

adhere the standard [Cunningham, Maynard, Bontcheva, et al. 2013]. For example,

the annotation

<Person>Bruno <Place>Perone’s</Person> Palace</Place>

would constitute invalid XML. Moreover, if annotated elements are numerous,

lengthy or multi-part, inline annotations are hard to keep track of, at least for

human viewers. The more information is stored in combination with an anno-

tation, e. g. related to the annotator or the annotation process, the heavier this

observation weighs.

3.3.2 Text-level Identi�cation

The approaches to concept identi�cation range from fully manual to fully auto-

matic, though realistic scenarios will be hybrid approaches, located somewhere

in between the two extremes of the spectrum. The reasons for not solely utiliz-

ing fully automatic identi�cation are simple: for some tasks the present state of

technology is not capable of reaching acceptable performance, whilst for others

the e�ort needed to reach acceptable performance is too big to be justi�able in

consideration of the bene�ts derivable from the automation.

Proper improvement of the most rudimentary method of manual identi�cation,

that is using paper and pencil, can be achieved by utilizing ontology-based anno-

tation tools [Vargas-Vera et al. 2001]. They provide uniform access to and storage

of all the documents in the corpus, and help creating the annotations through

knowledge of the underlying ontology and keeping them in a uniform format by

28

adhering to a given standard. They allow quick navigation through the corpus and

o�er re�ned search mechanisms.

Automation of needed identi�cation is the core of a sub�eld of IE termed ontology-

based or ontology-driven IE, in which ontologies are used to guide the process of

identi�cation, also called extraction, from semi-structured or unstructured natural

language texts and to present the output of that process [Wimalasuriya and Dou

2010]. It is argued that the automated extractors used within this approach become

part of the ontology [Wimalasuriya and Dou 2010, pp. 308–309]. We refrain from

that idea to strictly separate status from process, although in some cases the step

from precisely de�ning which text-level concepts match an ontology component

to building an extractor is quite small.

In order to attain one or a composition of extractors for a given component of

an ontology, one can either re-use existing extractors or build them by utilizing

an adequate development tool. Finding an unalteredly reuseable extractor for any

but the most general concept classes is unlikely and exacerbated by a possible

mismatch between the original and the intended genre of text to be analysed. Since

Named Entity Recognition (NER) is the most advanced form of IE, bene�ting from

the Message Understanding Conference (MUC) and Automatic Content Extraction

(ACE) competitions, components which at least partially match these text-level

concepts are most likely to be obtainable with existing extractors.

IE methods and systems can be categorized along two dimensions: hand-coded

or learning-based creation, and rule-based or statistical extraction. Hand-coded

systems require a human to de�ne and code the rules used for extraction, while for

learning-based systems the human labour consists of annotating the text in a way

that an algorithm can infer the correct solution of the extraction task from those

labels. Hand-coded methods require skills in linguistics, programming and the do-

main of the extractor’s application combined within one step. With learning-based

methods these competences can be more easily separated, and the most laborious

part of annotating the text can be done by less skilled individuals, which enables a

more e�cient scaling. For complex identi�cation tasks still hundreds or thousands

of examples are necessary [McCallum 2005, p. 53]. ”Rule-based extractionmethods

are driven by hard predicates, whereas statistical methodsmake decisions based on

a weighted sum of predicate �rings” [Sarawagi 2008, p. 278]. In comparison to sta-

29

tistical methods rule-based methods form the approach with the longer tradition,

they are easier to interpret and adapt and are proven to perform very well on cer-

tain tasks, e.g. dates can be recognised robustly as regular expressions. Statistical

methods though work better on noisy data [Sarawagi 2008, pp. 278–279].

The basic decision, concerning the construction of an extractor, is to either man-

ually code a rule-based system, or to annotate a set of texts to subsequently use

them as training material for a rule-based or statistical system, dependant on the

nature of the extraction problem and the data. However the choice, human work

still is the bottleneck to creating performant IE systems. Performance usually is

measured in terms of precision and recall (as de�ned in �gure 4), althoughWimala-

suriya and Dou [2010] point out that these measures are debatable and thus refer-

ence alternatives.

Figure 4: De�nition of recall and precision for IE tasks.

There basically is a trade-o� between precision and recall. With a very large

corpus, such as the web, a system can be trimmed to reach high precision at the

expense of recall, because the data likely contains duplicates and a single correct

extraction is su�cient. However, given the nature of our sources we are unlikely

to bene�t from this circumstance.

Automated identi�cation makes use of shallow NLP techniques, either as pre-

processing techniques, analyzing and enriching the whole text, or during the ex-

traction process, in which case only the contexts of the trigger items are treated

[Nédellec and Nazarenko 2006, p. 5]. Among the usual routines are:

30

• chunking, which partitions texts into semantic units, such as sentences or

paragraphs;

• tokenization, which splits the stream of characters into words;

• �ltering, using a task-dependent stop-word list or token statistics;

• part-of-speech tagging;

• syntactic parsing, determining the syntatic structure of a sentence;

• morphological analysis, determining the root form of a word via lemmatiz-

ing or stemming.

The performance of these routines varies and impacts the performance of the

eventual identi�cation. Sources of knowledge or knowledge repositories are aid-

ing the identi�cation. Aids of this type are WordNet, handling the semantic of

terms, gazetteer lists, containing instances matching speci�ed parts of the ontol-

ogy, or even the web, which can be queried for various reasons in the process of

identi�cation.

Hybrid solutions use automated methods to either identify some parts of the on-

tology independently, while other parts are subject to manual identi�cation only,

or to suggest solutions for the identi�cation tasks which are then revised by a hu-

man expert. The second approach is also termed information highlighting and is

the preferential solution to achieve optimal results. An ideal software environment

does not only enable the human expert to interactively work on the identi�cation,

but also learns dynamically from the adjustments made for a continuous improve-

ment of the automation. To our knowledge no such solution yet exists, due to

the e�ort needed for an extractor to learn even small adjustments, especially with

statistical approaches. A hybrid solution enables greater reuse of existing extrac-

tors, since slight missmatches can be corrected manually. The result of a given

extractor can be re�ned and narrowed down to �t the de�nition of the ontology

component, or multiple results can be combined. Admittedly it is hardly possible

to determine the performance of a third party extractor on a particular set of data

beforehand, just as to estimate the necessary level of performance needed to save

e�ort by manually correcting an extractor’s output instead of sole manual coding.

31

3.4 Relationship Identi�cation

Relationship identi�cation aims to discover the relationships existent between the

established concepts as de�ned in the ontology, that is relations between the in-

stances of classes and between those of classes and attributes. In terms of the

concept network it is the linking of nodes to form edges.

A quite common approach to establish relations, due to the fact that it is easy to

automate, is to use windowing, which connects concepts based on their proximity

in text: they are linked if they co-occur within a set span of tokens, usually only

within the borders of given chunks of text, e. g. sentences or paragraphs. This

approach though does not only fail to satisfy the need for di�erentiated types of

relationships, since it can only capture existent and non-existent. It has also been

proven to generate non-acceptable rates of false positives, i. e. relations are estab-

lished which are not existent according to a human understanding of text. Diesner

[2012, pp. 63–83] demonstrates that with a window size of at least seven, meaning

seven space separated tokens between the heads of the concepts to be related, an

acceptable recall of more than 90 per cent is reached, but at the cost of a precision

of only 10 per cent and less.

In IE relationship identi�cation is considered an even harder problem than entity

identi�cation. Conceptually though the problem of deciding on a binary relation

between given entities is the simplest relation identi�cation task, and simpler than

concept identi�cation as it only requires a scalar prediction [Sarawagi 2008, p. 317].

Most relation extraction systems address this type of task [Bach and Badaskar

2007, p. 2]. Precisely we want to �gure out, if in a chunk of text with two marked

entities any of the relationships in a given set exists. State-of-the-art systems doing

this type of supervised relation identi�cation unsurprisingly use learning-based

approaches [Bach and Badaskar 2007, p. 13].

These systems though are usually designed to identify relations only within

sentences and not across them, despite a considerable share of all relations being of

this type, as an analysis of Swampillai and Stevenson [2010] reveals. The di�culty

of identifying inter-sentential relations is higher than in the case of intra-sentential

relations, since syntactic parse trees constitute a weaker feature for the task of

learning and a smaller fraction of positive examples are available for it [Swampillai

32

and Stevenson 2011]. The features used for relation identi�cation are basically the

same as for the previous mentioned NLP tasks.

In the latest evaluation of semantic relation identi�cation in SemEval-2010, the

best system reached a combined F1 score, which is a measure combining precision

and recall as de�ned in formula 1 to asses an identi�cation result, of 82 per cent on

nine di�erent relations, which can be deemed more than satisfactory for practical

application [Hendrickx et al. 2009]. Swampillai and Stevenson [2011] show that,

dependant on the type of relation, inter-sentential relation detection can achieve

comparable results, but generally is more likely to deviate downwards. Just like

the the task of concept identi�cation, relationship identi�cation will most likely

need the assistance of human experts to achieve useable results.

F1 = 2 ∗
p r ec i s i on ∗ r ecal l

p r ec i s i on+ r ecal l
(1)

3.5 Reference Reconciliation

During reference reconciliation the exactmapping between text-level concepts and

concept class instances is determined by identifying all text-level concepts that

are manifestations of the same instance and consistently associating them to their

unique identi�er and canonical representation [Diesner 2012, p. 26]. The process

is also termed reference resolution – amongst others, depeding on the application

context [McCallum 2005, pp. 50–51] – and commonly said to consist of two sepa-

rate tasks, coreference resolution and anaphora resolution [cf. Diesner 2012, p. 26].

The theoretical separation between these tasks though is only vague and they are

increasingly carried out jointly in resolution systems, and so the terms have be-

come virtually synonymous [Poesio, Ponzetto, and Versley 2010, pp. 4, 16–17].

Reference reconciliation comprises three core tasks, namely resolving the coref-

erence of mentions of proper nouns, noun phrases and pronouns, but other types

of expressions can also be included, such as date mentions which are to be canon-

icalized. Just like the previous text processing tasks it is inherently complex, so

that even humans reached an agreement of only F1 ≈ 0.8 for the corpus of MUC

6 [Poesio, Ponzetto, and Versley 2010, p. 41]. For the given purpose reference rec-

onciliation has not only to be carried out within, but possibly also across texts.

33

The common case is to have various di�erent linguistic phrasings for one in-

stance which must be identi�ed, but a single linguistic expression can also be an

expression of several di�erent instances, which is a special di�culty of IE and sel-

domly considered by linguists concerned with reference reconciliation. It is to be

carried out for all the previously identi�ed concepts, and when refering expres-

sions which are to be incorporated are not already identi�ed, this has then to be

completed in a separate step. This step is usually termed mention detection and

basically another concept identi�cation phase, which should be avoided in favor

of identifying all relevant concepts in the �rst place. The result is intended to be

sets or chains of corefering expressions which can be linked to one instance of the

ontology’s concept classes in each case.

The importance of reference reconciliation is highlighted in studies by Diesner

and Carley [2009] and Diesner [2012], demonstrating that 60 per cent and more

of the entities in their data are subject to the procedure. Therefore it is a crucial

step in the extraction of concept networks, potentially increasing the amount of

information available on truly distinct concepts.

The simplest automated solution for coreference resolution is a system based

on string matching, the results to be expected though can clearly be judged as not

reliable enough [Diesner 2012, pp. 48, 54; Nédellec and Nazarenko 2006, p. 10]. As

a technique in NLP, reference reconciliation underwent the same shift from hand-

coded to learning-based systems as other NLP tasks, relying on preprocessing tech-

niques capable of reliably extracting features, external sources of knowledge and

hand-annotated corpora [Poesio, Ponzetto, and Versley 2010, pp. 49–50].

The latest evaluation of coreference resolution systems in SemEval-2010 [Re-

casens et al. 2010] highlights the insu�cient state-of-the-art in the �eld, since only

six participants were able to deliver valid results and the two baselines – each en-

tity in its own set and all entities in one set – turned out to be hart to beat by the

systems. In the most realistic setting of this closed scenario a maximum of 73.9 per

cent in F1 could be reached. It also demonstrated that the lack of proper evalua-

tion metrics and corpora annotated with coreference information hinders progress

in the �eld. Most of the work has focused on news corpora, so it is unclear how

the systems would behave in others domains, including the one we intend to tar-

get [Clark and González-Brenes 2008, p. 16]. Reference reconciliation is a topic of

34

ongoing research in NLP which is far from being solved, and at the moment suit-

able results cannot be achieved without human intervention [Diesner 2012, p. 186].

Common sense knowledge as used by humans seems to be the key to success.

3.6 Concept Network Extraction and Analysis

Technically speaking the extraction of networks is just transforming the data gath-

ered in the previous steps into formats that are interpretable as networks, be it a

set of matrixes or lists of nodes, edges and attributes. The theoretical decisions

to be made are more profound though, re�ecting the implications of the inter-

weavement of research questions, ontology development, network extraction and

network analysis.

Depending on the circumstances, di�erent networks can be extracted, ranging

from a simple uni-modal and uni-relational network to complex multi-modal and

multi-relational networks. Nodes and edges can be valued, depicting their weight

or probability, or not, which implies for edges to be reduced to binary edges. Uni-

directional edges can be changed to bi- or non-directional edges, nodes and edges

can be merged, and only a subset of the full network can be selected for analysis.

There are two major types of analysis which complement each other: (1) inter-

active visual analysis and (2) measurement-based analysis. During both types the

analyst may adapt the extracted network again, which includes merging nodes and

edges, removing isolated nodes and edges below a determined value treshold, �l-

tering nodes dependant on attributes, and so forth. Turning attributes into nodes

is also an option to be considered, but careful planing during the ontology devel-

opment phase renders this unnecessary, as was explicitly discussed in subsection

3.2.

Interactive visual analysis is most useful with small networks. It uses color,

shape and size of nodes and edges in combination with text to visualize informa-

tion in two- or three-dimensional spaces and allows the user to manipulate the

graph and its visualization in manifold ways. Essential for the visualization are

high-quality graph drawing algorithms, which arrange the components in the Eu-

clidean space so that certain conspicuities, such as subgroups and hubs, are easily

detectable using this type of analysis.

35

Within measurement-based analysis statistical and graph-based measurements

are computed and interpreted. Measurements are either calculated on the node

level, such as Betweenness Centrality, Degree Centrality, and Clique Count, or

on the network level, such as Density, Fragmentation, and Hierarchy [Hanneman

and Riddle 2005]. Which measurements are calulatable depends on the network

characteristics, and only for some cases existingmeasures and their interpretations

are available. For most though, existing measures are to be reinterpreted, and

for some even new measures have to be invented. Even for the comparatively

well explored social network analysis, which exhibits over a hundred established

measurements [Carley and Pfe�er 2012, p. 3], there are areas which are not well

represented, such as multi-relational networks. For some networks there might

be no statistical or graph-based measures which are meaningful, so that analyzing

their visual representation is the only option.

36

4 Text Processing Solutions

4.1 Introduction

Carrying out the analysis process as described in the previous section requires the

support of software tools in all phases, to enable users with varying capabilities in

the processing of natural language texts to e�ciently extract a concept network.

A holistic solution, covering all phases and their diverse requirements, would be

preferable but cannot be supplied by the market at present. More realistic is a seg-

mentation into the three spheres of (1) ontology construction, (2) text processing,

and (3) network analysis, each having their own set of tools with a narrower focus

and specialised capabilities. Splitting the text processing part up further may be

able to better leverage the native capabilities of tools in a focused area, but comes

at the cost of dealing with additional data exchanges.

Following the requirements to be met by a text processing system against the

background of the GLODERS research project are covered. The phase of ontol-

ogy construction can be supported with a wide range of available tools, whose

requirements are mainly driven by the expected complexity of the ontology, as

outlined in section 3.2, and the integration with adjoining text processing sys-

tems. Since the project’s requirements in terms of complexity are low, and none of

the �ndable software systems displays capabilities to integrate with an applicable

text processing system, a resulting catalogue of requirements would be too shal-

low to truly steer a selection process and is therefore omitted. Integration at this

point of intersection is mainly determined by the text processing system’s exten-

sibility, to enable it to process common ontology serialisation formats as input in

order to create the metadata metastructure, or its general capability of importing

a metadata metastructure in a transparent format which can be generated from an

ontology serialisation format using a custom converter in an intermediate step.

37

4.2 Requirements

4.2.1 Metadata Metastructure De�nition

The process of analysis intends to extract a network from texts, but doing so ini-

tially requires enriching the texts with metadata from which the network then

can be constructed in consecutive steps. The most basic requirement therefore is,

that a software must provide a structure capable of mapping this metadata of a

text. This includes metadata on a) successive parts, i.e. spans, of a text, which

implicates means to unambiguously locate them, b) on relations between two pre-

determined spans, i.e. binary relations, within a text, and c) on sets of multiple

corefering predetermined spans, i.e. coreference sets, within a text. And for the

sake of processing texts metadata on a text as a whole, so-called document-level

metadata, should be mappable as well.

The metadata objects must be associated with classes, which are relatable in

a taxonomy. Classes must be able to carry primitive attributes, i.e. designators

for which objects carry values of boolean, numerical, or nominal nature. Further-

more they should also be able to carry complex attributes, whose values consist of

collections of primitive attributes, a single metadata object, or even collections of

these. This is important since the metadata structure is not only used to map data

as previously de�ned in the ontology, i.e. the outcome of the text processing step,

but also for data that serves as in- and output for one of the intermediate steps of

text processing.

Means to de�ne and adapt the metadata metastructure according to the identi-

�ed needs are of course a necessity.

4.2.2 Project Administration

For each analysis all associated data should be accessible in one central project

container. The most important pieces of this data are the corpus, which is a dis-

tinct collection of all texts used in the project, and the metadata attached to it. The

corpus should be organizable in a �le tree or similar structure, easing the man-

agement of concurrent and extensive analysis projects. It would be favorable if

the user could inspect any actions taken throughout a project’s existence in detail,

allowing him to explain and reproduce any analysis he has conducted, which is

38

important to adhere to the standards of scienti�c rigor. Other functionality should

automatically store and restore any con�gurational change made to the software

environment.

4.2.3 Further Metadata Functionality

For each piece of metadata information on its creation should be accessible, e.g.

when it was created, if it was created manually or by an automated component,

and, if applicable further, details on the processing step it was created by. This

possibility further improves replicability. It should also be possible to organize

metadata in sets, i.e. collections which exist separated in parallel, for the whole

corpus or a subset of it. That would enable isolated analysis attempts and is impor-

tant for the development and testing of automated analysis components. Besides

creating and deleting these sets, it should be possible to merge them by creating

the union, intersection, or di�erence of sets.

4.2.4 Text Import

The minimum requirement is the processability of text �les residing in a local �le

system in plain text format. Character encodings to be acceptedmust include UTF-

8 and UTF-16, and beyond that should include common western encodings, such

as Windows-1252, ISO-8859-1 (latin1) or ISO-8859-15 (latin9). The correct charac-

ter encoding of a �le should be recognised and the �le treated accordingly. Apart

from a local �le system, texts may also be fetchable from remote URLs via HTTP,

HTTPS, FTP, and SFTP network protocols. Further storage formats for textual

data, such as Rich Text Format, OpenDocument Format, Microsoft Word Binary

File Format, O�ce Open XML, Hypertext Markup Language, and Extensible Hy-

pertext Markup Language, should be supported by automatically converting them

to plain text format. In that process existent formatting and structural and se-

mantic markup should be transformed into metadata, accessible in the same way

as the metadata created during analysis, as far as possible. Further preprocessing

routines should remove redundant whitespaces and non-printing characters. This

ensures, that for a wide range of sources any processing induced by a user is based

39

on a uniform representation, i.e. re�ned plain text plus a set of accessible metadata,

independent of the type of the source.

4.2.5 Text and Metadata Visualization

Texts and their metadata must be visualizable and navigable in a graphical form.

This implies that a text is inspectable in a continuous form, and optionally one

page at a time. It must be possible to move from metadata to corresponding text

passage by selecting pieces of metadata, and to graphically display the correspond-

ing text span in the case of concepts, or spans and their connections in the case of

binary relationships and coreference sets. The visualization should be applicable

to a single metadata object, selected from a list or equivalent, to all objects belong-

ing to a selected class, and to all objects belonging to a class and being subject to

attribute restrictions as indicated by the user. Each metadata class may have its

distinct, con�gurable style of visual display. At the same time moving from text

to metadata should also be possible by selecting a point or span in the text and

displaying all metadata objects that relate to that selection, plus their attributes.

These visualization capabilities enable the user to intuitively inspect the current

status of enrichment and the outcomes of previous processing steps.

4.2.6 Manual Metadata Handling

Another mandatory functionality is the support of manual creation of metadata

by means of the graphical visualization of a text. This implies that a span in a text

can be marked and then a piece of metadata, related to that span, can be created or

an existing one deleted or adapted. For binary relations and coreferences within

and across texts as well as for document-level metadata, similar simple capabili-

ties to create, adapt, and delete them manually should exist. Deletion and adap-

tion should not only be possible for single pieces of metadata, but also for groups

according to class membership or attribute value. If the concept of a metadata

set is implemented, they should also be creatable and deletable manually. These

functionalities allow the user to enhance and re�ne his ontology and metadata

metastructure by exercising it on the data, to develop ground truth data for the

development of automated analysis components, to correct the outcome of auto-

40

mated analysis component, and to take over analyses which are not su�ciently or

e�ciently automatable.

4.2.7 Embedded Analysis Functionality

Exclusion

Parts of texts should be excludable from analysis, which means that no piece of

metadata should be allowed to relate to them and automated analysis compo-

nents should ignore them during their processing. This allows the user to exclude

parts which may distorte or needlessly exacerbate the analysis without altering

the text, allowing for a better comprehensibility than deletion would and preserv-

ing the original context. This exclusion should be enforceable by selecting the

corresponding parts in the graphical visualization of texts and through callable

routines. These routines should allow for an exclusion of lines containing less

than a determinable threshold of characters, and lines which only consist of non-

alphabetic and non-alphanumeric characters. In o�cial documents, parts which

exhibit these traits are frequently bearing content of administrative or bureaucratic

function and are thus not relevant for the analysis.

Regular Processing

As the language of a text obviously in�uences its analysis and should be taken into

account by most if not all automated analysis components, the system should have

a functionality to detect a text’s language for all the presumably western languages

which might be used in one of the sources of GLODERS. Texts complying to these

languages’ writing systems should also be enrichable with metadata on spans in-

dicating their composing elements, which are tokens, sentences and paragraphs.

In the case of tokens several di�erent types should also be di�erentiated, for ex-

ample space tokens, punctuation tokens, and numeric or alphabetic tokens. The

delimiters, which are used to identify separate tokens, should be con�gurable, for

instance a hyphen may or may not used as a delimiter. These are important func-

tionalities due to many analysis techniques presupposing the correct identi�cation

of the mentioned building blocks of language.

41

Advanced Processing

Metadata for spans in text should be creatable using regular expressions. Regular

expressions trace back to Kleene [1951], are now widely used in programming,

whereby among the many derivatives some slightly varying syntaxes exist, and

are very e�cient at identifying patterns such as dates, amounts of money or li-

cense plate numbers. Supplying metadata classes, optionally in conjunction with

attribute values to assign, and regular expressions, one metadata object is created

for every pattern matched. Another functionality required to create metadata for

spans is the application of dictionaries. Dictionaries are basically lists of terms, and

for every expression in a text that matches one of these terms, a piece of metadata

for its span is created, with class and attributes to assign to be con�gured using

the dictionary applicator. Single and multi word dictionaries should be supported,

providable in plain text or comma-separated value format, stored using one of the

common encodings mentioned in subsection 4.2.4. Preferrable application strate-

gies to be supported are with or without considering capitalization, and matching

all entries or only the longest one to a given span. And for multi word dictionaries

also with allowing strictly full or also partial matches, and with strict or arbitrary

order of words. Further should dictionaries not only be applicable to the tokens of

text, but also to the values of string attributes of a metadata class, e.g. to match a

tokens’ stem which is given by such an attribute. Embedded may also be function-

ality to create metadata for spans determining the tokens’ part of speech and stem

or root word, and metadata for spans indicating common named entities, such as

persons, organisations and locations, in the expected languages.

Dictionaries and metadata determining the tokens’ part of speech should also

be utilizable as negative �lters, i.e. as exclusion mechanisms.

Concerning metadata creation for relationships a windowing functionality is

desirable, which establishes relationships between spans based on their proxim-

ity in text. What should be con�gurable are the metadata classes of spans which

are allowed to relate, the maximum number of tokens between two spans to be

related, and the type of context unit in which the two spans must coexist, for ex-

ample a sentence, a paragraph or none. Metadata for coreference sets are desirably

42

creatable by using string and substring matching, string edit distance, also termed

Levenshtein distance 3, and the proximity of spans in text.

These advanced processing capabilities would lay the groundwork for an e�-

cient extraction of concept networks from texts.

4.2.8 Analysis Component Development

The possibility to develop custom analysis components is imperative for a solu-

tion, since the embedded analysis functionality is unlikely to cover all e�ciently

automatable processing steps arising in the course of a project. These compo-

nents should be able to operate on a single or a set of texts and their metadata, in

order to add, change or delete metadata or to produce some form of result from

it. Supporting this development in a high-level programming language, desirably

incorporating object orientation, would allow a user to extensively manipulate

metadata and produce results in the framework provided by the software. Since

text processing solutions in their original state are unlikely to produce a result for-

mat that is readable by any network analysis software, providing this functionality

is arguably the only way to avoid developing and utilizing customized converters

in another intermediate step. For the manipulation of metadata a rule-based script

language would be the preferred means of knowledge-based analysis component

development. Providing this option enables a faster creation of analysis compo-

nents in comparison with high-level programming, due to a steeper learning curve

and substantially less lines of code needed, and is a feasible option even for an

inexpert user. As a third possibility the development of rule-based or statistical

analyzers using machine-learning may be supported, whose advantages and dis-

advantages have been examined in brief in section 3.3.2. The features utilisable by

the machine-learning functionality should be allowed to be of boolean, numerical

and nominal type, and of �at or tree-structured form. Such a function should allow

the selection of features to incorporate from a basic list of features, which re�ect

the text and its metadata available in the predetermined ground truth data. The

selection process should then be supported by capabilities to analyse the features’

contribution to prediction quality and its caused processing e�ort. Analysis com-

3Tracing back to Vladimir Levenshtein’s work on correcting transmission failures of binarywords
[Levenshtein 1966].

43

ponents should be testable and evaluable on texts or samples of them, both through

a manual inspection of the outcomes and through comparing them against a given

benchmark in form of ground truth data. The benchmark test should, dependent

on the type of metadata, allow an evaluation of the component in terms of pre-

cision, recall and F1 score, and supply feedback on the respective full and partial

matches. The previously mentioned metadata sets are an important function for

this test, since they allow the metadata manipulation carried out in a testrun to not

a�ect the current status of the analysis by creating a separate testset. Moreover

should analysis components be assemblable to compound components, by whom

they are applied consecutively, in order to be able to break down more complex

analysis problems into smaller steps and to reuse partial solutions already avail-

able.

4.2.9 Combined Analysis Usage

The embedded analysis functionalities should be includable into compound com-

ponents just like the self-developed ones. Applying the functionality of an analysis

component or compound component to a corpus, or a subset of it, and its meta-

data, should then require only determining potential con�guration parameters. It

should also be possible to apply the same component with di�erent con�gurations

within a project, and to access con�gurations previously de�ned in that context.

4.2.10 Data Export

Project containers should be exportable and importable to exchange them between

users and to transfer them between systems. This involves the corpus and its meta-

data, and may also include data such as the metadata metastructure, the software

environment con�guration and the recording of actions taken within the project.

The same should also be possible for any self-developed components, and there-

with their con�gurations used within a project should become part of the trans-

ferable project container. Texts with visualizations of metadata on spans denoting

the respective classes should be exportable in a common textual format or as XML

documents with inline annotations, in order to be viewable with widely preexist-

44

ing software such as a text editor or a browser. This allows a major part of the text

processing result to be disseminated to and evaluation by a wider audience.

4.2.11 Non-Functional Requirements

Besides the requirements stated, a suitable software solution shall also ful�l some

non-functional ones, which are less in�uenced by the general process of extract-

ing networks of concepts from text, and more by the conditions under which the

GLODERS project has to operate. These have implications on several areas.

Performance

The number of texts which can be analysed in a project should be arbitrary, but

rather than their total number the length of any single document is of impor-

tance to the performance aspect of the system. Since documents with hundreds

of pages in length are expectable, memory e�ciency is to be favored over run-

time e�ciency. A common desktop PC, with between three and seven gigabyte of

memory available to the software tool, must be able to handle the whole text and

thousands of pieces of metadata simultaneously in order to conduct an analysis.

The runtime in contrast is non-critical, as the total number of documents and the

deadlines to be met leave su�cient time for analysis. If there are unused hardware

resources available, texts should nevertheless be analyseable in parallel to make

the most of these.

Usability

All functionality that the text processing solution has to o�er should be accessible

through a graphical user interface, that allows giving commands with a mouse and

hotkeys, which are especially valueable for swiftly creating metadata through the

graphical visualisation of texts. Further should there be one single point of access

for all the functionality, so the user is not forced to switch between di�erent parts

of the system while working. The system should allow the user to choose the

language of the graphical user interface: while English is mandatory, German and

Italian would be favorable.

Besides accessing the functionality, learning how to use it for the goals of the

analysis is the most important part of usability. Learning how to set up the system

45

from scratch, and how to use all the contained functionality, with the exception of

the one o�ered for the development of custom analysis components, are the two

major steps on theway to getting acquaintedwith the system. The e�ort spendable

to acquire the knowledge needed to make use of the functionality for the devel-

opment of analysis components mary vary hugely, since previous knowledge on

the part of the user and the spectrum of functionality o�ered greatly a�ect this

measure. In�uence on the learnability is wielded by any refering documentation,

guidelines, examples and similar material, as well as support provided by the o�-

cial support system of the supplier or independent sources. High availability and

quality of these resources are obviously bene�cial.

Further Non-functional Requirements

It is of utmost importance that no data is transfered to a third party, neither for

processing nor for storage, and so any component of the system that is accessible

outside of the local machine, and therefore potentially by a third party, must be

secured accordingly. Moreover should no unexpected or erroneous user behaviour

result in a software or a system crash, and itmust not result in any form of data loss.

Platform wise the system must support Microsoft Windows XP and upward, and

should support Mac OS X and themajor Linux distributions for personal machines,

in each case both for 32-bit and 64-bit architectures. Concerning the licensing and

the connected pricing of the system, a software that is free for academic purposes

is preferred to not burden the available �nancial budget.

4.3 Candidates

From the huge variety of solutions promising to deliver text mining or text anal-

ysis, only those that can be labeled as NLP development workbenches o�er the

possiblity to create customized, automated text processing components with the

necessary complexity. Therefore this is the spectrum examined to identify the

most quali�ed candidates. The subsequent section is looking at how two software

solutions, which are estimated to be most suitable for the task, meet the stated

requirements. It has to be noted that only functionality that is either contained

within the supplied installation or available as a plugin from the developer’s web-

46

site has been considered for the review. One major advantage of the two reviewed

solutions over others though is that there is quite some functionality o�ered by

third parties which can be utilized as well.

The solutions assessed here are the Apache UIMA framework and its available

set of tools, henceforth referred to as UIMA, as well as at the GATE framework

and GATE Developer, the main graphical tool for utilising it, henceforth referred

to as GATE 4.

GATE is chosen since it is the earliest member of the range of solutions exam-

ined, developed as a research tool for the NLP community to enable the develop-

ment, testing and sharing of analysis components. It is widely adopted in this �eld

and still constantly augmented. UIMA has a stronger focus on being deployed in

productive environments to embed NLP tasks within a wider application. It has at-

tracted our interest due to it being utilized in one of the most impressive computer

systems doing natural language processing: IBM Watson.

4.4 Suitability

4.4.1 Metadata Metastructure De�nition

UIMA possesses the concept of type systems, which are explicit metadata class

de�nitions. Only metadata corresponding to these de�nitions can be added to a

text. The type systems enable hierarchical ordering on the metadata classes, and

the de�nition of concept classes, as subclasses of the standard class Annotation,

which has pointers to a text span, and relationships and coreference sets, as sub-

classes of the rootclass TOP. It is possible to de�ne the wanted simple and complex

attributes on these classes, which allows one to de�ne binary relations, as a class

with two attributes each holding an Annotation object, and coreference chains, as

a class with an attribute holding a list of type Annotation.

GATE by default does not enforce explicit metadata class de�nitions and does

not support hierarchical ordering on the classes. Just like UIMA it has a built-in

class Annotation, which can map concept classes by providing pointers into the

4More precisely, we are assessing the Apache UIMA Java framework version 2.4.0 and its
tools, and GATE Developer version 7.1. as available in May 2013. Attainable from
http://uima.apache.org, respectively http://gate.ac.uk.

47

text, and allows to de�ne simple and complex attributes on its classes. Beyond that

GATE also has a built-in construct tomap coreference chains, which is a document-

level attribute namedmatchesAnnot carrying a list, in which all coreference chains

are contained as lists of metadata objects. Relationships must be mapped in the

same way as with UIMA, as classes with two complex attributes.

None of the two solutions has a prede�ned metadata class for relations, while

both provide tools to create a metadata metastructure and support document-level

metadata. The value range of simple attributes for both solutions corresponds to

the set of primitive Java data types.

4.4.2 Project Administration

UIMA does not have project container. It also does not o�er anything which com-

pares to the concept of a corpus, the user rather is expected to provide the data to

be analyzed from the exterior every time an analysis is conducted. Any tool work-

ing within the framework is responsible for storing and restoring its con�guration,

the ones shipped with the framework partially do so.

GATE Developer does not have the concept of a project container as well, but

it o�ers corpora to collect the texts for an analysis and the metadata attached to

them within the software. These corpora don’t o�er any way to structure their

content, all texts are managed in one list. The software automatically stores its

con�guration on exiting, and restores it on starting.

Both solutions o�er only rudimentary capabilities to inspect the actions taken

during analysis, as they only log errors arising from automatic components. Mak-

ing sure that the results are reproduceable solely lies within the users responsibil-

ity, leaving it up to him to document the process and save any material used.

4.4.3 Further Metadata Functionality

Both solutions do not supply any data on the creation of metadata objects on their

own. A user has to make sure that he adds any information on the creation wanted

as attributes to the object, and that their values are �lled in at the time of creation,

either by the human annotator or the automated processing component.

48

Both solutions enable the user to organize his metadata in sets, or views as it

is named in UIMA. For GATE though this is limited to metadata for concepts, all

other metadata, i.e. metadata for relationships and coreference sets, are rooted at

the document level and cannot be managed in sets.

Neither the UIMA tools nor GATE Developer o�er capabilities to merge meta-

data sets.

4.4.4 Text Import

UIMA has the concept of �le readers, which enables users to create their own text

import components from scratch, and also expects them to do so. This explains

why only a reader able to handle plain text �les residing in the local �le system

is delivered with the system, as part of its examples package and its Document

Analyzer tool.

GATE takes over the task of importing text and therefore supports a variety

of formats. Besides plain text, also HTML and XML, some email, PDF, Microsoft

O�ce and Open O�ce formats are supported. Unfortunately the creators don’t

specify which ones of the later exactly are supported, which leaves the user to the

principle of trial and error. Files can only be imported from the �le system, not

from remote URLs. During importing, existing inline markup is transformed into

the internal representation, further preprocessing to achieve a clean text is not

executed.

Encodings supported by both GATE and UIMA are those supported by Java,

which include UTF-8 and UTF-16 and a wide range of other encodings, covering

virtually all character sets of the present.

4.4.5 Text and Metadata Visualization

UIMA possesses three text and metadata viewers, each with rather limited capa-

bilites: CAS Editor, which is a plugin for the Eclipse IDE, and Annotation Viewer

and CAS Visual Debugger, which are lean stand-alone tools.

The CAS Editor is capable of displaying text and all related concepts. It is pos-

sible to highlight all text spans belonging to concepts of selected certain concept

classes, while the style of the display is customizable. One can select a concept

49

from a list and move to the corresponding text span and display its attributes, and

also move from text span to the respective concept. There is no support for dis-

playing or visualising metadata on relationships, coreference sets or the document

as a whole.

The Annotation Viewer enables the visualization of text and metadata within a

Java tool, or as HTML or XML output which can then be inspected via a browser.

The Java tool subsumes the capabilities of the other two more static options. It

o�ers capabilities to inspect concepts by selecting a point in text for which all

related concepts are displayed with their attributes, and by highlighting all text

spans which belong to selectable concept classes. The style of highlighting is cus-

tomizable.

The CAS Visual Debugger enables a user to inspect a structured list of all meta-

data objects attached to a text and their attributes ordered by metadata classes. For

all concepts the user can move to the respective text span. In a separate window

all text spans belonging to one single concept class can be highlighted. The style

of the highlighting can be customized.

GATE has an integrated text and metadata viewer, which makes it possible to

inspect a concept and its attributes by selecting the corresponding text span, and

also to go from concept to the respective text span by selecting the metadata ob-

ject in a list, which results in the viewer jumping to the span. It is also possible to

highlight all text spans belonging to a certain concept class by selecting the classes

from a list. The style of displaying is customizable. However, it is not possible to

only display the text span of a single concept or of all concepts belonging to a class

and being subject to attribute restrictions. One can inspect to which coreference

set a concept belongs by selecting the respective span in the text, and display all

the text spans of concepts belonging to a selected coreference set. Document-level

metadata is also being displayed. Displaying to which relationships a concept be-

longs, or enabling the user to navigate from a relationship to the involved concepts

is not part of GATE’s skillset, just like showing attribute values for relationships

and coreference sets is not.

All bespoken viewers are not capable of displaying texts pagewise, but only as

continuous text.

50

The majority of the text and metadata viewers are not capable of displaying and

visualizing relationships, but there is a workaround to this worth remarking. Cre-

ating relationships as metadata objects of the class Annotation or a subclass of

it, allows for both solutions to abuse the respective viewers’ capabilities to visu-

alize concepts in text to also visualize relationships, as spans stretching from the

beginning of the �rst to the end of the second relationship. This is an imprecise

technique and does not truly re�ect the semantic of a relationship, but relaxes the

lack of capabilities in this area to a certain degree.

4.4.6 Manual Metadata Handling

Manually creating, altering or deletingmetadatawithin UIMA is only possiblewith

CAS Editor. It o�ers capabilities to create, alter and delete concepts by marking or

selecting text spans or selecting concepts from a list. Deleting concepts does not

work for whole classes or groups determined by attribute restrictions. It is also

not possible to manually create, alter or delete metadata sets, relationships and

coreference chains. Document-level metadata though can be handled manually.

Using the previously mentioned workaround for displaying relationships, they can

at least be deleted by selecting the respective text span or list entry.

GATE’s integrated text and metadata viewer enables a user to manually create

concepts bymarking text spans, and to alter or delete themusing the same dialogue

window popping up after text selection, or by selecting a concept from a list. It is

possible to delete metadata sets and also all concepts belonging to a class. Deleting

a group of concepts determined by attribute restrictions on the other hand is not

possible. Coreference chains can be created by assigning a concept to a new chain

and deleted using a list of them, and existing concepts can be added to or removed

from a coreference chain by selecting the respective text span. Document-level

metadata can be created using two text input lines for designator and value. It is

not possible to manually create, alter or delete relationships in a proper way with

GATE. Just like with UIMA’s CAS Editor, the workaround for relationships allows

a user to delete them.

51

4.4.7 Embedded Analysis Functionality

Exclusion

Neither UIMA nor GATE have capabilities to exclude parts of a text from an anal-

ysis. With GATE parts can altered or deleted, either by automatic components or

using the embedded text viewer. With UIMA this not envisaged as well, which is

a consequence of not having integrated corpora to store texts.

Regular Processing

UIMA o�ers language detection only through a wrapper for the web service of the

provider Alchemy, which is a very comprehensive solution but in con�ict with the

data security requirements. Three tokenizers are available for UIMA: Whitespace

Tokenizer, which always uses whitespace and punctuation to separate words, O�-

set Tokenizer, which is part of the Concept Mapper addon and can be con�gured in

terms of the delimiters used, and JFlex Lexer which is part of the UIMA Ruta addon

and distinguishes a variety of di�erent token types arranged in a tree which spe-

cializes downward. These tokenizers are not specialised on any language, which

makes them useable on all western languages at the cost of inaccuracies. Sen-

tences can be detected using Whitespace Tokenizer, and paragraphs using UIMA

Ruta Plain Text Annotator.

GATE comes with two components for language identi�cation: the plugins Lan-

guage Identi�cation and LingPipe Language Identi�er. Both are able to distinguish

15 european languages, the two language sets are not congruent though. The stan-

dard tokenizer within GATE is the Unicode Tokenizer, which produces multiple

token types and is not specialized on any language. A specialisation of it for En-

glish is part of the ANNIE plugin. Furthermore there are OpenNLP Tokenizer,

which di�erentiates between tokens and spaces, and LingPipe Tokeniser, which

only detects words, both are not customizable. For splitting sentences there are

four options available for general western texts: ANNIE Sentence Splitter, RegEx

Sentence Splitter, LingPipe Sentence Splitter, and OpenNLP Sentence Splitter. A

possibility to detect paragraphs seems to be missing though.

Advanced Processing

Within UIMA utilizing regular expressions to create concepts is possible using the

52

Regular Expression Annotator addon, for which rules for matching regular ex-

pressions to concept classes can be supplied as XML �les. For the application of

dictionaries two options exist: Dictionary Annotator and Concept Mapper. Dictio-

nary Annotator works with dictionaries in a custom XML format, but this can be

generated from plain text �les containing one entry per line. It allows for single

and multi word dictionaries, can apply them case sensitive or not, and besides text

also to string attributes of concepts. Concept Mapper also requires its dicionaries

in a custom XML format, but there is no possibility to transform simple plain text

�les to this format. In addition to the functionality of the Dictionary Annotator it

can be used to add attributes to the concepts, and it can be con�gured to match all

entries or only the longest one, strictly full or also partial occurrences, and with

strict or arbitrary order of words. Part of speech tagging for English and German

is possible with the Hidden Markov Model Tagger. With the Snowball Annota-

tor one can produce stems for currently twenty European languages, inlcuding

English, German, Dutch and Italian. Named entity identi�cation is possible only

by using wrappers for the web services of Calais or Alchemy, and windowing or

coreference functionality is not part of the package.

Within GATE regular expressions can be used to create concepts by utilizing the

integrated text and metadata viewer, supplying one expression and subsequently

annotating all matching text spans. Moreover they can be created by using Simple

Regexp Annotator, for which regular expression can be applied via rules supplied

in a custom format �le. For dictionary application an abundance of tools exists.

The standard GATE gazetteer can handle single or multi word entries supplied as

plain text �les, and does partial or full matching and applies only the longest or all

matching entries to a given span. Its drawback is, that it always creates the same

concept class with two string attributes which are intended to re�ect its mean-

ing. The Hash Gazetteer is a reimplementation of the standard one for extensive

dictionaries and can also be con�gured to match its entries case sensitive or not.

The Flexible Gazetter allows all dictionaries complying to the GATE interface to

be applied to string attributes of concepts. The BWP Gazetter extends the stan-

dard gazetteer with the ability to match using Levenshtein’s Distance to handle

noise and error in text. The Extended Gazetteer 2 extends the standard gazetteer

so that the concept classes created can be determined and matching can be ad-

53

justed more detailed. The Feature Gazetteer can solely match string attributes of

concepts, but in return is capable of also adapting or removing existing concepts

relating to a matched span. Furthermore there are dictionary tools which trans-

form parts of ontologies into dictionaries and apply them: the Gazetteer LKB does

this for the names of instances, the Onto Root Gazetteer for the names of classes

and instances, and for string properties, and the Apolda Ontology Annotator for

two speci�ed annotation properties of classes and instances. For part of speech

tagging a user can utilize the LingPipe POS Tagger for English and Bulgarian, the

RASP2 POS Tagger for English, and the Tree Tagger for English, German, Spanish,

French, Italian and Bulgarian. The GATE Morphological Analyzer and the RASP2

Morphological Analyzer both produce lemmas for English, while the Durm Lem-

matizer does the same for German. The Snowball stemmer is also part of GATE,

with twelve of the currently twenty languages supported being available in the in-

stallation. Named entity identi�cation is done for English by OPEN NLP NER and

LingPipe NER, and by the respective language speci�c NER plugins for German

and French. There is no component for windowing within GATE, and coreference

matching is restricted to the ANNIE OrthoMatcher, which handles only speci�c

named entities, preferable in English.

4.4.8 Analysis Component Development

Analysis components which operate on a single or a set of texts can be developed

using the Java programming language within the framework provided by UIMA.

Another option is to utilize the Bean Scripting Framework Annotator and write

components in one of its supported scripting languages, including JavaScript and

Phython, to create small scale components. UIMA Ruta is a rule-based script lan-

guage which works on the text and its existing concepts to create, adapt or delete

concepts. An integral part of it is the usage of regular expressions on the condi-

tion part, and in order to enhance the built-in functionality on the action part it is

also possible to execute Java code with it. There is no machine learning package

included which would allow a user to train its custom components. Inspection of

the outcomes of an analysis component is possible only manually via the text and

54

metadata viewers already described, there is no option to benchmark it against a

given ground truth and recieve standardized measures.

Within GATE analysis components can operate solely on a single text, and the

development is restricted to Java as a high-level programming language. Other

languages can only be used if a connector to the resulting component is supplied

as a Java archive. As a rule-based script language GATE o�ers JAPE, which is very

similar to UIMA Ruta and also o�ers the usage of Java on the action part. How-

ever, it is less powerful on the condition part and, leaving the option of Java code

aside, also on the action part. Machine learning can be utilized with the Learning

plugin, which supports the learning of chunks for concept classes, and relations as

needed for relationships and coreference resolution, although the later two require

more extensive post-processing to bring the metadata into the desired form. Al-

gorithms available are a Support Vector Machine (SVM), a Perceptron Algorithm

with Uneven Margins (PAUM), and the Naive Bayes, K nearest neighbour and C4.5

decision tree as implemented in the Weka toolkit5. The includable features may

only be of nominal type and �at structure, and their determination cannot be done

within the GATE environment but must be done fully manually by creating a cus-

tom XML con�guration �le. Feedback on the features’ contribution to prediction

quality is only available for the SVM with a linear kernel, the respective impact

on processing time is not made evident. A manual inspection of the outcome of

a component is possible using GATE’s integrated text and metadata viewer, and

the Annotation Di� tool enables an assessment of analysis components which cre-

ate concepts against a ground truth. Precision, recall and F1 score are displayable,

with partial matches included or excluded, and all full and partial matches, misses

and false positives are inspectable.

4.4.9 Combined Analysis Usage

With UIMA analysis components can be aggregated to compound components,

and those again can make up more aggregated components, so that an aggregated

component may consist of a component tree with arbitray depth. This is true for

both existing and self-developed components, and one component can be used

5Weka is a collection of algorithms and tools for machine learning and data mining developed by
the University of Waikato, www.cs.waikato.ac.nz/ml/weka/

55

within an application multiple times with distinct con�gurations. The current

con�guration is stored, previous ones though are not accessible if not saved by

the user.

GATE enables a user to combine existing and self-developed components into

applications, whereby a component can be utilized multiple times with distinct

con�gurations as well. But it o�ers only one level of aggregation, so a compound

cannot be part of a compound itself, and the user has to decide at the time of the

creation of the compound if he is going to apply it to a single text or a whole

corpus. Application to a subset of a corpus is not possible. Con�guration details

are only stored for the current setup, in order to have a history a user has to export

the con�gurations manually.

4.4.10 Data Export

Both solutions do not have a project container which could be exported, and UIMA

also does not have corpora. Within GATE datastores, which contain texts plus

their metadata, can be serialized and then exchange as folders. Within UIMA the

metadatametastructure, i.e. the type system, is exchangeable. Both are not capable

of exporting any con�guration of the environment or recordings of action, which

both don’t posess.

With UIMA components and applications composed from them can be packaged

to form a PEAR (Processing engine archive) �le using the PEAR Generation Wiz-

ard, which is an Eclipse plugin. These archives can then in turn be imported using

the PEAR Installer. With the Annotation Viewer tool the results of an analysis can

be exportet as XML �le.

With GATE developed components cannot be exported, they can only be ex-

changed in form of the raw �lesmaking them up. Complete applications composed

from components though can easily be exported and imported with one click, and

the same is true for con�guration details of such an application. Texts can be ex-

ported as XML �les with inline annotations, so that concepts can be visualized.

56

4.4.11 Non-Functional Requirements

Performance

Performance can only be compared on the task level, and our limited experiences

are by no means a comprehensive assessment. In our tests, both solutions were

able to handle an analysis with components of moderate complexity, applied to a

text of 600.000 characters, which corresponds to rougly 200.000 words or 450 DIN

A4 pages, producing more than 100.000 pieces of metadata, with 3 gigabyte RAM.

Judging the speed of processing GATE seems to be ahead because of the more

e�cient execution of its rule-based script language. However, depending on the

task and the components used this can vary hugely, with both solutions taking only

seconds up to hours depending on the scenario. While both frameworks possess

the ability to handle parallel processing, the bespoken tools, delivered to work

with them, always apply serial processing and therefore do not make the most of

multiprocessor machines.

Usability

With UIMA the universal, single point of access is the Eclipse platform, while with

GATE a user has to switch from GATE Developer to an Integrated Development

Environment (IDE) of his choice to develop components using the Java program-

ming language. Eclipse as the point of access though is far less comfortable than

GATE Developer since it is a multi-purpose environment. not tailored to the task

and far more complicated for any user who is not acquainted with it. GATE De-

veloper is slim and the functions are neatly arranged. Both are operatable using a

mouse and without command line, except when developing custom components of

course, and both solutions’ manual metadata editors support hotkeys to accelerate

manual work. Both solutions’ interfaces are solely available in English.

GATE is easy to setup, as it only requires executing the supplied installer. Setting

up UIMA within Eclipse is more complicated, since it requires installing Eclipse,

the UIMAEclipse plugins, and the EclipseModeling Framework, and importing the

UIMA examples to register the available tools. The supplied manuals are su�cient

in both cases. Using the embedded analysis functionality is easy to learn for GATE,

since the amount of con�guration to be done by a user is low and the components’

57

documentations are extensive. UIMA ismore demanding at this point, but in return

custom component development using Java is easier to learn with it than with

GATE, due to the examples provided by the developers. All things considered,

both solutions are accompanied by enough material to independently learn how to

make use of them. Since both solutions are available free of charge the developers’

support is limited and users mostly have to rely on the independant communities

for assistance, where GATE seems to have rallied the larger one.

Further Non-functional Requirements

The data security requirements render it impossible to use components which are

provided by third parties as a web service, and therefore limit especially UIMA’s

capabilities. Besides that all analyses of the two solutions run on the local machine,

and since both are implemented in Java they run on any OS that is supported by

Java 6 or later, including Windows, Mac OS X and Linux. While UIMA operated

stable, GATE has the shown the tendency to crash after a couple of consecutive

analyses without restarting the application. This behaviour points towards amem-

ory leak, the speci�c cause though could not be detected. Both solutions are free

of charge for academic usage.

58

5 Prototypical Application

5.1 Source Data and Concept Ontology

The method is prototypically applied to a data set provided by the Dutch law en-

forcement agencies, covering their investigation into a criminal group carrying

out extortion, among other criminal activities, in the wider area of Amsterdam

during the 1990s and early 2000s. It is a collection comprising records of intero-

gations, o�cers’ �eld reports and commentaries, and reports on economic activi-

ties of the group members and associated businesses, which amount to a total of

193.000 words written mainly in Dutch.

One part of the scienti�c interest in this case concerns the involved actors. That

is, how many persons are involved, who are they key players in the scheme, and

what kind of structure does the criminal group in itself adopt? Coming closer to

answers to these questions is the goal of the analysis, and the scope is narrowly

set on persons as the concepts of interest. The ontology de�ned for our analysis

is simple and does only model a fraction of the subject under investigation, since

developing and applying a full-�edged one would go far beyong the scope of our

experiment. So it consists of a concrete concept class Person and a bi-directional

relationship links-with from Person to Person. Looking at the data source, we can

identify two types of text-level concepts that clearly qualify as manifestation of

the concept class Person, that is people’s full names and forms which are at least

partially anonymized, which �ow into the de�nition of the concept class. The

relationship �nds its textual manifestations wherever an interaction between two

text-level concepts of class Person is ascertained.

5.2 Concept Identi�cation

Both text processing solutions utilized do not have ready-made capabilities to

identify person entities for Dutch, so the automated component has to be self-

developed. Due to the lack of annotated training material and the demonstrably

good capabilities of hand-coded IE analyzers for this purpose, this approach is

the one chosen. The identi�cation proceeds in three steps: �rst identify all spans

equating forenames by applying a dictionary composed from World Wide Web

59

sources, second identify all spans equating to shorthands that match the pattern

used for anonymization, and third apply a set of rules that extends the identi�ed

spans to the full person mentions if applicable.

Evaluating the quality of concept identi�cation using a manually annotated

sample and the tools provided by the solutions proves, that the approach works

reasonably well. Both solutions’ dictionary components and their rule-based script

languages in combination with regular expressions are up to the task, but due to

the di�erences in these languages the results are only approximately identical. It is

to be noted that in the given example the execution of GATE’s rule-based language

was considerably faster, by a factor of �ve.

5.3 Relationship Identi�cation

The de�ned type of relationship is rather vague, so that even human annotators

are likely to show relatively little inter-annotator agreement. Due to the known

inadequacies of NLP techniques at this point, the only available option for au-

tomation is to use the windowing approach as discussed in section 3, despite of its

shortcomings. We follow the recommendation by Diesner [2012] of a maximum

of six tokens between two concepts to relate them, but since there is no agree-

ment on what exactly constitutes a token, the result of this approach varies with

the implemented conception. Figure 5 depicts how relationships are formed using

windowing on a sentence in which tokens and concepts are already identi�ed. As

there is no built-in component for the task in either of the solutions, we are forced

to develop this component as well, which necessitates programming using Java

within the respective framework. The tokenizing though is done beforehand by

an existing component, and here UIMA’s con�gurable tokenizers o�er an advan-

tage over GATE’s less accessible and transparent tokenizers.

5.4 Reference Reconciliation

Automatically matching concepts of the class Person to identify those that are

manifestations of the same instance can be done using the ANNIE OrthoMatcher

component within GATE, while for UIMA the component has to be self-developed.

The OrthoMatcher possesses a feature that seeks tomatch nicknames to forenames

60

Figure 5: An example of the windowing technique.

steered by a dictionary, and beyond that uses string matching. Its exact inner

workings though are not transparent due to its scarce documentation.

Evaluating the reference reconciliation shows, that theOrthoMatcher frequently

erroneously identi�es persons which share the same surename to be matches. For

example, with the included dictionary ’Christine Simmons’ and ’Chris Simmons’

arematched, even though a human reader would notice that these concepts refer to

di�erent entities with di�erent sexes. Since splitting coreference sets manually is

far more e�ortful than joining them, an approach that favors precision over recall

is preferable. This is the reason for the custom component developed for UIMA,

which does automatic reference reconciliation, to follow a minimalist approach.

It aims to only match Person concepts whose strings are equivalent when com-

pared to each other case insensitive, so that ’PETER PARKER’ and ’Peter Parker’

are matched, errors as described above by contrast are avoided.

Reference reconciliation is further hampered by a special type of noise in the

data in the given example, which is false anonymization conducted by the author-

ity handing over the data, assigning the same shorthand to person mentions which

are obviously distinct. These interferences stress that reference reconciliation in

particular has to be done very carefully with a mixture of automatic and manual

labour, even though anaphoric resolution, which further complicates the task, is

not considered in this prototype.

61

5.5 Network Extraction and Analysis

Extracting the network is conducted by a custom Java component for both solu-

tions, which transform the generated metadata into a further processable format.

Since *ORA6 is the target application, the produced format is a table in a Comma

Seperated Values (CSV) format, with the canonical identi�ers of the coreference

sets as the designators of both lines and columns, and the numbers of occurrences

of the relationship between the indicated instances, interpreted as its strength, as

the values of the table elements.

Before the network can be analyzed it has to be correctect by adapting the result-

ing matrix since the integrated text and metadata viewer and editor functionality

of the text processing solutions do not allow for an e�cient manual correction.

Since the processing done using UIMA is more transparent and produces less false

positives in the task of reference reconciliation than its counterpart, we are lim-

iting our subsequent description to the network gained from it. After automatic

processing the source data contains metadata on 11.000 concepts, 666 coreference

sets, and 6.455 relationships. The network consists of 666 nodes and 1.456 links

after removing the symmetric ones.

207 nodes have to be removed, mainly due to incorrectly identi�ed forenames

that correspond to common dutch words such as dan or den, because of spelling

errors, or names of persons that are part of a street or company name. After this

procedure 459 nodes and 772 links remain. Then nodes have to be merged due to

the minimalist approach during automatic reference reconciliation, �nally result-

ing in a network of 246 nodes and 246 links.

The visualization of the full network is di�cult to approach for analysis, but

using a spring layout and the possibities of interactive analysis some instances are

revealed which are highly connected and therefore likely to play a key role in the

scheme. These nodes can also be identi�ed using measures of centrality (�gure

6). The results of the analysis correspond with the analyst’s impression based on

reading the material.

6*ORA is a network analysis tool developed by the Center for Computational
Analysis of Social and Organizational Systems at Carnegie Mellon University,
http://www.casos.cs.cmu.edu/projects/ora/.

62

Figure 6: The 15 most central Person instances in terms of betweenness. Names
are anonymized according to the following scheme: B = Contact, O =
O�ender, V = Victim, N = Not speci�ed.

63

In order to examine the structure of the criminal group the respective subset of

the extracted network is singled out. The given instances can hardly be allocated to

the necessary subclasses of the concept class Person, which are Contact, O�ender,

Victim, and Not speci�ed, using automatic text processing techniques, so this a

task carried out manually on the instance level as well. The subnetwork (�gure

7) consists of only 9 nodes and 13 links, but is more than 21 times denser than

the full network (subnet: 0.3611, full: 0.0168), although it has two isolates. Here

visual analysis reveals that the structure of the subnet highly relies on the instance

O1, who is connected to all but the two isolates and is part of the strongest links,

while all other links are weaker. Therefore we are intepreting the social group as

reliant on one central �gure, who is likely to be the person in authority, while all

others are on an equal level with only little interaction. A veri�cation of this claim

remains yet to come.

5.6 Assessment

The prototypical application reveales that both UIMA and GATE have their ad-

vantages and drawbacks and eventually complement each other instead of being

substitutes. Nevertheless GATE seems to be more �tting for the purpose, as it is

more suited for manual work on the text, which is a key part of the process of

concept network extraction from text, due to its superior annotation usability and

functionality. This is of importance since the automated methods of text process-

ing, especially if not up to the state of the art in NLP, which is likely for almost

all self-developed components, leave a lot of room for deviations, and therefore

necessitate manual input and human assessment in every phase. Still both text

processing solutions unveil de�cits in this particular area beyond the handling of

spans in text. The other two major advantages of GATE, its considerably greater

number of ready-made components o�ered and its built-in machine learning ca-

pabilities, do not play a central role in this application, but will likely impact a lot

of other concept network extraction analyses.

For the conducted analysis, source data authored in a language more popular in

the realm ofs NLP and IE, and which does not su�er from additional noise added

through partial and incorrect anonymizations, would allow for higher quality text

64

Figure 7: The O�ender subnet without isolate nodes, link width corresponds to
link value.

65

processing. To really bene�t from automation the amount of data to be processed

must be considerably higher than in this example. Especially for more complex

concepts and relationships, reaching the point where the e�ort needed for auto-

mated and manual analysis are comparable will likely need millions of words as

data.

In consideration of the amount of data processed though, the resulting o�ender

subnetwork, which is at the heart of the research question the analysis was ini-

tially conducted for, is based on a relatively small amount of observations. It could

be enhanced by incorporating anaphora resolution, but this is a very challenging

task for both humans and NLP and far from being adequately solvable by a novice

in computational linguistics. This result raises the question if there is a �t between

research question, source material and analysis method. In other words, if the text

does contain information on the desired topic, and if so, if the described method

is capable of extracting it adequately. These questions can not be answered ulti-

mately, but are rather subject to constant veri�cation by the researcher bringing

the pieces together for his research at hand.

66

6 Outlook

When accepting the premise that texts can be understood and analyzed as net-

works of concepts or terms, utilizing advances in TM and NLP technologies and

methods to extract such networks in order to gain knowledge about the world it-

self, that is re�ected in the authors’ written expressions of their point of view on

it, seems a natural and promising attempt. Research in NLP though is split up into

several sub�elds, and in none of them a considerable advance could be achieved

during the last decade, so that the possibilities are still far behind the expectations

raised when the �eld emerged.

In order to bene�t from computational approaches to textual analysis a common

ground, which allows to tie automated and manual analysis together into a seam-

less process, is necessary. Manual work is inevitable to adequately process texts,

which are so complex that the established opinion is, that we will not be able to

fully delegate their creation and reception to machines until we are able to un-

derstand and mimic the entire human brain, for the purpose of concept network

extraction. So one prospect is the enhancement of the standard NLP platforms

with facilities that feature improved integration of manual analysis. The Argo

platform7 is a promising step into the direction of merging computer-driven and

human analysis for high-quality text processing. But even though it is still in beta

status at the time of this writing, it fails to acknowledge that there is a need for

functionality to add metadata to more than just a whole text or spans in it, that

is such constructs as relationships and coreference sets. Comprehensive and user-

friendly functionalities in these areas are needed to roll out a process of concept

network extraction on a larger scale.

If a common ground for a computer-driven processing of texts can be established

or further interoperability between existing solutions reached, more researchers,

companies, and governmental institutions may be induced to share their achieve-

ments in the myriads of possible NLP tasks. This would be especially bene�cial

for languages other than english, which is the language primarily focused by NLP

researchers and software framework developers, and therefore has the greatest

7The Argo workbench is developed by the National Centre for Text Mining at the University of
Manchester, http://argo.nactem.ac.uk

67

number of applicable tools. In the current state the individual strengths of the

dozens of text processing solutions available, be it commercial or free software,

are of limited value due to their existence in isolation and lack of interchangeabil-

ity of results.

An increased availability of components dealing with the tasks of complex rela-

tionship detection and coreference resolution for di�erent concept classes, which

both occupy considerable interest in the NLP research but are yet underrepre-

sented in the available software solutions, would greatly bene�t the method, but

are less likely to be pursued due to their limited applicability. The enormous e�ort

needed for even small achievements in NLP will ultimately prevent a lot of useful

analyses.

Apart from that, the soundness of the described method of concept network

extraction from texts has to be tested in further analysis projects, with di�erent

research questions involving more complex ontologies and various types of texts

in various languages, requiring additional network analysis methods and mea-

sures, to evaluate if and what insights can be gained in di�erent settings. Only

this way the considerable e�ort of the method can be justi�ed within the context

of scienti�c projects.

68

7 Conclusion

When textual data is an important source of knowledge about a social scienti�c

phenomenon, and the amount of the data to process is too enormous to be han-

dled by humans reading the material, automated methods are inevitable. The es-

tablished methods of computer-assisted text analysis in the social sciences though

have severe limitations in their applicability, and so the enrichment of the semantic

network approach with achievements from NLP is a natural attempt to go beyond

these boundaries. That incorporating these techniques have impacts on �exibility,

validity, reliability and transparency in favor of pragmatism is unavoidable but to

be limited by a well-structured approach, a thorough analyst, and proper software

support.

Building on the existing work on semantic network analysis as introduced, we

have outlined a process of concept network extraction from text that quali�es as a

KDT method under the given de�nition, and is applicable to knowledge demands

beyond social scienti�c research. In the course of this we have shown how to make

use of computer-support in the various phases, and to what extend state-of-the-art

NLP techniques might substitute manual work in text processing.

To approach implementation we have examined the requirements of text pro-

cessing solutions to ful�l the described tasks at the core of the process, and how

the two solutions, which we consider to be currently preeminent, are meeting

these. In combination with the prototypical analysis conducted, these insights are

demonstrating how to close the gap between the theoretic construct and its practi-

cal application, mixing computer-driven with manual analysis to acquire relevant

results.

There are still general doubts about whether a text can be distilled to networks of

concept representing the mental map of the author, and how the analysis of these

networks can reveal truth about the reality the text is a witness of. All models of

language applied by automated content analysis are inherently incorrect. Again,

answering the general question of if the networks extracted and the information

gained from them are valid is a task for other scienti�c endeavours, which may

bene�t from the advances into automation pursued in this work. In any case, the

69

method will neither eliminate the need for careful thought by researchers, nor

remove the necessity of reading texts to fully absorb the information wanted.

70

References

Alexa, Melina. 1997. Computer-assisted text analysis methodology in the social sci-

ences. ZUMA-Arbeitsbericht 97/07. Zentrum für Umfragen, Methoden und
Analysen (ZUMA).

Ananiadou, S. et al. 2009. „Supporting Frame Analysis using Text Mining“. In:
Proceedings of the 5th International Conference on e-Social Science.

Atherton, Andrew and Peter Elsmore. 2007. „Structuring qualitative enquiry in
management and organization research : A dialogue on the merits of using
software for qualitative data analysis“. In: Qualitative Research in Organiza-

tions and Management: An International Journal 2 [1], pp. 62–77.

Bach, Nguyen and Sameer Badaskar. 2007. „A Review of Relation Extraction“. In:
Literature review for Language and Statistics II. url: http://www.cs.cmu.edu/
~nbach/papers/A-survey-on-Relation-Extraction.pdf [visited on 05/22/2013].

Barthélemy, Marc, Edmond Chow, and Tina Eliassi-Rad. 2005. „Knowledge rep-
resentation issues in semantic graphs for relationship detection“. In: AAAI
Spring Symposium, p. 91.

Beaugrande, Robert-Alain de and Wolfgang Ulrich Dressler. 1981. Einführung in

die Textlinguistik (Konzepte der Sprach- und Literaturwissenschaft). de Gruyter.

Ben-Dov, Moty and Ronen Feldman. 2005. „Text Mining and Information Extrac-
tion“. In: The Data Mining and Knowledge Discovery Handbook. Ed. by Oded
Maimon and Lior Rokach. Springer. Chap. 38, pp. 801–831.

Berelson, Bernard. 1952. Content Analysis in Communication Research. 1st edition.
Free Press.

Brühl, Ro� and Sabrina Bruch. 2006. Einheitliche Gütekriterien in der empirischen

Forschung? Objektivität, Reliabilität und Validität in der Diskussion. ESCP-EAP
Working Paper 20. ESCP-EAP Europäische Wirtschaftshochschule Berlin.

Brusa, Graciela, Ma Laura Caliusco, and Omar Chiotti. 2006. „A process for build-
ing a domain ontology: an experience in developing a government budgetary
ontology“. In: Proceedings of the second Australasian workshop on Advances in
ontologies. Vol. 72. Australian Computer Society, Inc., pp. 7–15.

71

http://www.cs.cmu.edu/~nbach/papers/A-survey-on-Relation-Extraction.pdf
http://www.cs.cmu.edu/~nbach/papers/A-survey-on-Relation-Extraction.pdf

Carley, Kathleen M. 1986. „An approach for relating social structure to cognitive
structure“. In: The Journal of Mathematical Sociology 12.2, pp. 137–189.

— 1988. „Formalizing the Social Expert’s Knowledge“. In: Sociological Methods

& Research 17.2, pp. 165–232.

— 1993. „Coding Choices for Textual Analysis: A Comparison of Content Anal-
ysis and Map Analysis“. In: Sociological Methodology Volume 23, pp. 75–126.

Carley, Kathleen M. and Jürgen Pfe�er. 2012. „Dynamic Network Analysis (DNA)
andORA“. In: Proceedings of the 2nd International Conference on Cross-Cultural
Decision Making: Focus 2012. San Francisco, California.

Chandrasekaran, Balakrishnan, John R Josephson, and V Richard Benjamins. 1999.
„What are ontologies, and why do we need them?“ In: Intelligent Systems and

Their Applications, IEEE 14.1, pp. 20–26.

Chapman, Pete et al. 2000. CRISP-DM 1.0. Step-by-step data mining guide. Tech.
rep. SPSS. url: http://www.the-modeling-agency.com/crisp-dm.pdf [visited
on 01/21/2013].

Clark, Jonathan H. and José P. González-Brenes. 2008. Coreference Resolution: Cur-
rent Trends and Future Directions. url: http://www.cs.cmu.edu/~jhclark/pubs/
clark_gonzalez_coreference.pdf [visited on 05/20/2013].

Consortium, TEI. 2013. TEI P5: Guidelines for Electronic Text Encoding and Inter-

change. Technical report. Charlottesville, Virginia: Text Encoding Initiative
Consortium. url: http://www.tei-c.org/Guidelines/P5/ [visited on 04/17/2013].

Creswell, John W. 2006. Qualitative Inquiry and Research Design: Choosing Among

Five Approaches. 2nd edition. Sage Publications, Inc.

Cuilenburg, Jan J. van, Jan Kleinnijenhuis, and Jan A. de Ridder. 1986. „A Theory
of Evaluative Discourse: Towards a Graph Theory of Journalistic Texts“. In:
European Journal of Communication 1.1, pp. 65–96.

— 1988. „Arti�cial intelligence and content analysis“. In: Quality and Quantity

22 [1], pp. 65–97.

Cunningham, Hamish, Diana Maynard, Kalina Bontcheva, et al. 2013. Developing
Language Processing Components with GATE Version 7. User Guide. The Uni-

72

http://www.the-modeling-agency.com/crisp-dm.pdf
http://www.cs.cmu.edu/~jhclark/pubs/clark_gonzalez_coreference.pdf
http://www.cs.cmu.edu/~jhclark/pubs/clark_gonzalez_coreference.pdf
http://www.tei-c.org/Guidelines/P5/

versity of She�eld, Department of Computer Science. url: http://gate.ac.uk/
userguide [visited on 04/15/2013].

Dahlem, Nikolai and Axel Hahn. 2009. „User-Friendly Ontology Creation Method-
ologies - A Survey“. In: Proceedings of the Fifteenth Americas Conference on

Information Systems. AMCIS.

De Nicola, Antonio, Michele Missiko�, and Roberto Navigli. 2009. „A software
engineering approach to ontology building“. In: Information Systems 34 [2],
pp. 258–275.

Diefenbach, Donald L. 2001. „Historical Foundations of Computer-Assisted Con-
tent Analysis“. In: Theory, Method, and Practice in Computer Content Analysis.
Ed. by Mark D. West. Vol. 16. Progress in Communication Science Series.
Greenwood Publishing Group.

Diesner, Jana. 2012. „Uncovering and Managing the Impact of Methodological
Choices for the Computational Construction of Socio-Technical Networks
from Texts“. Paper 194. dissertation. Carnegie Mellon University. url: http://
repository.cmu.edu/dissertations.

Diesner, Jana and Kathleen M Carley. 2005. „Revealing social structure from texts:
meta-matrix text analysis as a novel method for network text analysis“. In:
Causal mapping for information systems and technology research: Approaches,

advances, and illustrations, pp. 81–108.

Diesner, Jana and Kathleen M. Carley. 2009. „He says, she says. Pat says, Tricia
says. How much reference resolution matters for entity extraction, relation
extraction, and social network analysis“. In: IEEE Symposium on Computa-

tional Intelligence in Security and Defense Applications.

Diesner, Jana and Kathleen M. Carley. 2010. „Extraktion relationaler Daten aus
Texten“. In: Handbuch Netzwerkforschung. Ed. by Christian Stegbauer and
Roger Häußling. VS Verlag für Sozialwissenschaften, pp. 507–521. isbn: 978-
3-531-15808-2.

Doerfel, Marya L. and George A. Barnett. 1996. „The Use of CATPAC for Text
Analysis“. In: Field Methods 8 [2], pp. 4–7.

Dörre, Jochen, Peter Gerstl, and Roland Sei�ert. 1999. „Textmining: �nding nuggets
in mountains of textual data“. In: Proceedings of the �fth ACM SIGKDD inter-

73

http://gate.ac.uk/userguide
http://gate.ac.uk/userguide
http://repository.cmu.edu/dissertations
http://repository.cmu.edu/dissertations

national conference on knowledge discovery and data mining. KDD ’99. ACM,
pp. 398–401.

Evans, W. 1996. „Computer-Supported Content Analysis: Trends, Tools, and Tech-
niques“. In: Social Science Computer Review 14 [3], pp. 269–279.

Even, Fabrice and Chantal Enguehard. 2003. „Speci�c Domain Model Building for
Information Extraction from poor quality corpus“. In: Ontologies and Infor-

mation Extraction. Ed. by Amalia Todirascu and Vincenzo Pallotta. Bucarest:
EUROLAN 2003, pp. 3–9.

Fayyad, Usama M., Gregory Piatetsky-Shapiro, and Padhraic Smyth. 1996. „The
KDD process for extracting useful knowledge from volumes of data“. In:Com-

munications of The ACM 39 [11], pp. 27–34.

Feldman, Ronen and Ido Dagan. 1995. „Knowledge Discovery in Textual Databases
(KDT)“. In: Knowledge Discovery and Data Mining, pp. 112–117.

Feldman, Ronen et al. 1999. „Text Mining via Information Extraction“. In: Prin-
ciples of Data Mining and Knowledge Discovery. Vol. 1704. Lecture Notes in
Computer Science, pp. 165–173.

Fernández-López, Mariano. 1999. „Overview of Methodologies for Building On-
tologies“. In: Proceedings of the IJCAI-99 workshop on Ontologies and Problem-

Solving Methods (KRR5). CEUR Publications, pp. 4.1–4.13.

Fernández-López,Mariano, AsunciónGómez-Pérez, andNatalia Juristo. 1997.Methon-

tology: from ontological art towards ontological engineering. Technical Report.
American Asociation for Arti�cial Intelligence.

Flick, Uwe. 2009. An Introduction to Qualitative Research. Fourth Edition. SAGE
Publications Ltd.

Flyvbjerg, Bent. 2006. „Five misunderstandings about case-study research“. In:
Qualitative Inquiry 34.2, pp. 219–245.

Franzosi, R. 1990. „Computer-Assisted Coding of Textual Data: An Application to
Semantic Grammars“. In: Sociological Methods & Research 19 [2], pp. 225–257.

Garz, Detlef and Klaus Kraimer. 1991. „Qualitativ-empirische Sozialforschung im
Aufbruch“. In: Garz, Detlef. Qualitativ-empirische Sozialforschung. Ed. by
Klaus Kraimer. Westdeutscher Verlag.

74

Grimes, Seth. 2008. Unstructured Data and the 80 Percent Rule. url: http://www.
clarabridge.com/default.aspx?tabid=137&ModuleID=635&ArticleID=551 [vis-
ited on 01/29/2013].

Grishman, Ralph et al. 1998. TIPSTER Text Architecture Design Version 3.1. Tech-
nical report. National Institute of Standards and Technology (NIST). url:
http://www-nlpir.nist.gov/related_projects/tipster/download.htm [visited on
04/15/2013].

Grüninger, Michael and Mark S. Fox. 1995. „Methodology for the Design and Eval-
uation of Ontologies“. In: Workshop on Basic Ontological Issues in Knowledge

Sharing at the International Joint Conference on Arti�cial Intelligence (IJCAI95).

Gruber, Tom. 2009. „Ontology“. In: Encyclopedia of Database Systems. Ed. by Ling
Liu and M. Tamer Özsu. Springer-Verlag. url: http://tomgruber.org/writing/
ontology-de�nition-2007.htm.

Göser, Sebastian. 1997. „Inhaltsbasiertes Information Retrieval: Die TextMining-
Technologie“. In: LDV Forum 14.1, pp. 48–52.

Gupta, Vishal and Gurpreet Lehal. 2009. „A Survey of Text Mining Techniques
and Applications“. In: Journal of Emerging Technologies in Web Intelligence

1.1, pp. 60–76.

Hanneman, Robert A. and Mark Riddle. 2005. Introduction to social network meth-

ods. University of California, Riverside. url: http://faculty.ucr.edu/~hanneman/.

Harris, Howard. 2001. „Content Analysis of Secondary Data: A Study of Courage in
Managerial Decision Making“. In: Journal of Business Ethics 34 [3-4], pp. 191–
208.

Hart, Ronald P. 1985. „Systematic analysis of political discourse: The develop-
ment of DICTION“. In: Political communication yearbook 1984. Ed. by Keith
R. Sanders, Lynda Lee Kaid, and Dan Nimmo, pp. 97–134.

Hawthorne, Mark. 1994. „The computer in literary analysis: UsingTACT with stu-
dents“. In: Computers and the Humanities 28 [1], pp. 19–27.

Hearst, Marti A. 1999. „Untangling text data mining“. In: Proceedings of the 37th
annual meeting of the Association for Computational Linguistics on Computa-

tional Linguistics. ACL ’99. Association for Computational Linguistics, pp. 3–
10.

75

http://www.clarabridge.com/default.aspx?tabid=137&ModuleID=635&ArticleID=551
http://www.clarabridge.com/default.aspx?tabid=137&ModuleID=635&ArticleID=551
http://www-nlpir.nist.gov/related_projects/tipster/download.htm
http://tomgruber.org/writing/ontology-definition-2007.htm
http://tomgruber.org/writing/ontology-definition-2007.htm
http://faculty.ucr.edu/~hanneman/

Hearst, Marti A. 2003. What Is Text Mining? url: http://people.ischool.berkeley.
edu/~hearst/text-mining.html [visited on 01/30/2013].

Heinze, Thomas. 2001. Qualitative Sozialforschung. Einführung, Methodologie und

Forschungspraxis. Oldenbourg.

Hendrickx, Iris et al. 2009. „Semeval-2010 task 8: Multi-way classi�cation of se-
mantic relations between pairs of nominals“. In: Proceedings of the Workshop

on Semantic Evaluations: Recent Achievements and Future Directions. Associa-
tion for Computational Linguistics, pp. 94–99.

Holsti, Ole R. 1969. Content Analysis for the Social Sciences andHumanities. Addison-
Wesley.

Hotho, Andreas, Andreas Nürnberger, and Gerhard Paaß. 2005. „A Brief Survey of
Text Mining“. In: LDV Forum - GLDV Journal for Computational Linguistics

and Language Technology 20.1, pp. 19–62.

Iker, Howard P. and Robert H. Klein. 1974. „Words: A computer system for the
analysis of content“. In: Behavior Research Methods 6 [4], pp. 430–438.

Kleene, Stephen Cole. 1951. Representation of Events in Nerve Nets and Finite Au-

tomata. Tech. rep. Santa Monica, California: RAND Corporation.

Klein, Harald. 1991. „INTEXT/PC: A Program Package for the Analysis of Texts in
the Humanities and Social Sciences“. In: Literary and Linguistic Computing 6
[2], pp. 108–111.

— 1997. „Classi�cation of Text Analysis Software“. In: Classi�cation and Knowl-
edge Organization. Ed. by Rüdiger Klar and Otto Opitz. Studies in classi�ca-
tion, data analysis, and knowledge organization. Springer, pp. 355–362.

Kleining, Gerhard. 1982. „Umriss zu einerMethodologie qualitativer Sozialforschung“.
In: Kölner Zeitschrift für Soziologie und Sozialpsychologie 34.2, pp. 224–253.

Kodrato�, Yves. 1999. „Knowledge discovery in texts: A de�nition, and applica-
tions“. In: Foundations of Intelligent Systems. Ed. by Zbigniew W. Ra? And
Andrzej Skowron. Vol. 1609. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 16–29.

— 2001. „ComparingMachine Learning and Knowledge Discovery in DataBases:
An Application to Knowledge Discovery in Texts“. In: Machine Learning and

76

http://people.ischool.berkeley.edu/~hearst/text-mining.html
http://people.ischool.berkeley.edu/~hearst/text-mining.html

Its Applications. Ed. by Georgios Paliouras, Vangelis Karkaletsis, and Constan-
tine D. Spyropoulos. Vol. 2049. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 1–21.

Koll, Matthew. 2000. „Track 3: Information Retrieval“. In: Bulletin of the American

Society for Information Science and Technology 26.2, pp. 16–18.

Kroeze, Jan H., Machdel C. Matthee, and Theo J. D. Bothma. 2003. „Di�erentiat-
ing data- and text-mining terminology“. In: Proceedings of the 2003 annual

research conference of the South African institute of computer scientists and

information technologists on Enablement through technology. SAICSIT ’03.
South African Institute for Computer Scientists and Information Technolo-
gists, pp. 93–101.

Kromrey, Helmut. 2007. Empirische Sozialforschung: Modelle und Methoden der

Datenerhebung und Datenauswertung. 11. Au�age. Stuttgart: Lucius & Lucius.

Kuckartz, Udo. 2010. Einführung in die computergestützte Analyse qualitativer Daten.
3.Au�age. VS Verlag für Sozialwissenschaften.

Kuckartz, Udo and Stefan Rädiker. 2010. „Computergestützte Analyse (CAQDAS)“.
In:Handbuch Qualitative Forschung in der Psychologie. Ed. by Günter Mey and
Katja Mruck. VS Verlag für Sozialwissenschaften, pp. 734–750.

Levenshtein, Vladimir Iosifovich. 1966. „Binary codes capable of correcting dele-
tions, insertions, and reversals“. In: Soviet Physics-Doklady 10.8, pp. 707–710.

Lewins, Ann. 2001. „CAQDAS: Computer Assisted Qualitative Data Analysis“. In:
Researching social life. Ed. by Nigel Gilbert. Sage Publications Ltd, pp. 302–
323.

Lewins, Ann and Christina Silver. 2009. Choosing a CAQDAS Package. QUICWork-
ing Paper 1. CAQDAS Networking Project and Qualitative Innovations in
CAQDAS Project.

Liddy, Elizabeth D. 2007. „Natural Language Processing“. In: Encyclopedia of Li-

brary and Information Science, Second Edition. Taylor & Francis. Chap. 271,
pp. 2126–2136.

Lowe, Will. 2003. Content Analysis Software: A Review. Technical Report. Weath-
erhead Center for International A�airs, Harvard University.

77

Mayring, Philipp. 2000. „Qualitative Content Analysis“. In: Forum: Qualitative

Social Research 1.2.

Mayring, Philipp and Eva Brunner. 2009. „Qualitative Inhaltsanalyse“. In: Qual-
itative Marktforschung. Konzepte, Methoden, Analysen. Ed. by Hartmut H.
Holzmüller. Gabler, pp. 543–501.

McCallum, Andrew. 11/2005. „Information Extraction: Distilling Structured Data
from Unstructured Text“. In: Queue 3.9, pp. 48–57.

Mehl, Matthias R. 2006. „Quantitative text analysis“. In: Handbook of multimethod

measurement in psychology. Ed. by Michael Eid and Ed Diener. American
Psychological Association, pp. 141–156.

Mehler, Alexander and Christian Wol�. 2005. „Einleitung: Perspektiven und Posi-
tionen des Text Mining“. In: LDV Forum - GLDV Journal for Computational

Linguistics and Language Technology 20.1, pp. 1–18.

Miller, M. Mark and Bonnie P. Riechert. 1994. Identifying Themes Via Concept Map-

ping: A New Method of Content Analysis. Paper. Annual Meeting of the Asso-
ciation for Education in Journalism and Mass Communication, Atlanta.

Mohler, P.P. and K. Frehsen. 1989. Computerunterstützte Inhaltsanalyse: Grundzüge

und Auswahlbibliographie zu neueren Anwendungen. ZUMA-Arbeitsbericht
89/09. Zentrum für Umfragen, Methoden und Analysen (ZUMA).

Nasukawa, Tetsuya and TohruNagano. 2001. „Text analysis and knowledgemining
system“. In: IBM Systems Journal 40 [4], pp. 967–984.

Nédellec, Claire and Adeline Nazarenko. 2006. „Ontologies and information ex-
traction“. In: arXiv preprint cs/0609137.

Noy, Natalya F. and Deborah L. McGuinness. 2001. Ontology Development 101: A

Guide to Creating Your First Ontology.

Olsen, Mark. 1989. „TEXTPACK V: Text Analysis Utilities for the Personal Com-
puter“. In: Computers and the Humanities 23.

Pennebaker, James W., Martha E. Francis, and Roger J. Booth. 2001. Linguistic In-
quiry andWord Count (LIWC): LIWC2001. LIWCManual. url: http://homepage.
psy.utexas.edu/homepage/faculty/pennebaker/reprints/LIWC2001.pdf [visited
on 09/01/2013].

78

http://homepage.psy.utexas.edu/homepage/faculty/pennebaker/reprints/LIWC2001.pdf
http://homepage.psy.utexas.edu/homepage/faculty/pennebaker/reprints/LIWC2001.pdf

Pennebaker, James W. et al. 2007. The Development and Psychometric Properties of

LIWC2007. LIWC Manual. LIWC.net. url: http://homepage.psy.utexas.edu/
HomePage/Class/Psy301/Pennebaker/HRtraining/liwc2007_languagemanual.
pdf [visited on 09/01/2013].

Poesio, Massimo, Simone Paolo Ponzetto, and Yannick Versley. 2010. „Computa-
tional Models of Anaphora Resolution: A Survey“. url: http://wwwusers.di.
uniroma1.it/~ponzetto/pubs/poesio10a.pdf [visited on 05/16/2013].

Popping, Roel. 2000. Computer-Assisted Text Analysis (New Technologies for Social

Research series). SAGE Publications Ltd.

— 2003. „Knowledge Graphs and Network Text Analysis“. In: Social Science
Information 42.1, pp. 91–106.

Psathas, George. 1969. „The general inquirer: Useful or not?“ In: Computers and

the Humanities 3 [3], pp. 163–174.

Rajman, Martin and Romaric Besançon. 1997. „Text Mining: Natural Language
techniques and Text Mining applications“. In: IFIP Working Conference on

Database Semantics.

Recasens, Marta et al. 2010. „SemEval-2010 task 1: Coreference resolution in mul-
tiple languages“. In: Proceedings of the 5th International Workshop on Semantic

Evaluation. SemEval ’10. Los Angeles, California: Association for Computa-
tional Linguistics, pp. 1–8.

Roberts, Carl W. 1989. „Other Than Counting Words: A Linguistic Approach to
Content Analysis“. In: Social Forces 68.1, pp. 147–177.

— 1997. „Introduction“. In: Text Analysis for the Social Sciences: Methods for

Drawing Statistical Inferences fromTexts and Transcripts. Ed. byCarlW. Roberts.
Lawrence Erlbaum Associates, pp. 1–8.

Roberts, Carl W. and Roel Popping. 1993. „Computer-supported Content Analysis:
Some Recent Developments“. In: Social Science Computer Review 11.3, pp. 283–
291.

— 1996. „Themes, syntax and other necessary steps in the network analysis of
texts: a research paper“. In: Social Science Information 35.4, pp. 657–665.

79

http://homepage.psy.utexas.edu/HomePage/Class/Psy301/Pennebaker/HRtraining/liwc2007_languagemanual.pdf
http://homepage.psy.utexas.edu/HomePage/Class/Psy301/Pennebaker/HRtraining/liwc2007_languagemanual.pdf
http://homepage.psy.utexas.edu/HomePage/Class/Psy301/Pennebaker/HRtraining/liwc2007_languagemanual.pdf
http://wwwusers.di.uniroma1.it/~ponzetto/pubs/poesio10a.pdf
http://wwwusers.di.uniroma1.it/~ponzetto/pubs/poesio10a.pdf

Rost, Jürgen. 2003. „Zeitgeist und Moden empirischer Analysemethoden“. In:
Forum Qualitative Sozialforschung 4.2. url: http://www.qualitative-research.
net/index.php/fqs/article/view/723 [visited on 12/08/2012].

Sarawagi, Sunita. 2008. „Information extraction“. In: Foundations and trends in

databases 1.3, pp. 261–377.

Schutt, Russell K. 2011. Investigating the Social World: The Process and Practice of

Research. 7th edition. Sage Publications, Inc.

Seipel, Christian and Peter Rieker. 2003. Integrative Sozialforschung. Konzepte und
Methoden der qualitativen und quantitativen empirischen Forschung. 1. Au-
�age. Beltz Juventa.

Shapiro, Gilbert and JohnMarko�. 1997. „AMatter of De�nition“. In: Text Analysis
for the Social Sciences: Methods for Drawing Statistical Inferences from Texts and

Transcripts. Ed. by Carl W. Roberts. Lawrence Erlbaum Associates, pp. 9–31.

Silverman, David. 1993. Interpreting Qualitative Data. 1st edition. Sage.

Sánchez, Daniel et al. 2008. „Text Knowledge Mining: An Alternative to Text Data
Mining“. In: IEEE International Conference on Data Mining, pp. 664–672.

Sowa, John F. 1992. Semantic Networks. url: http://www.jfsowa.com/pubs/semnet.
htm.

Stede, Manfred. 2008. „Computerlinguistik und Textanalyse“. In: Textlinguistik: 15
Einführungen. Ed. by Nina Janich. Narr. Chap. 15, pp. 333–351.

Steger, Thomas. 2003. Einführung in die qualitative Sozialforschung. Schriften
zur Organisationswissenschaft 1. Professur für Organisation und Arbeitswis-
senschaft, TU Chemnitz.

Stevens, Robert, Carole AGoble, and Sean Bechhofer. 2000. „Ontology-based knowl-
edge representation for bioinformatics“. In: Brie�ngs in bioinformatics 1.4,
pp. 398–414.

Stone, Philip J. 1966. The general inquirer: a computer approach to content analysis.
M.I.T. Press.

Sullivan, Dan. 2003. „TextMining in Business intelligence“. In: Business Intelligence
in the Digital Economy: Opportunities, Limitations and Risks. Ed. by Mahesh
Raisinghani. Idea Group Publishing. Chap. VI, pp. 98–111.

80

http://www.qualitative-research.net/index.php/fqs/article/view/723
http://www.qualitative-research.net/index.php/fqs/article/view/723
http://www.jfsowa.com/pubs/semnet.htm
http://www.jfsowa.com/pubs/semnet.htm

Swampillai, Kumutha and Mark Stevenson. 2010. „Inter-sentential relations in in-
formation extraction corpora“. In: Proceedings of the 7th International Confer-
ence on Language Resources and Evaluation (LREC’10), pp. 2637–2641.

— 2011. „Extracting Relations Within and Across Sentences“. In: Proceedings of
the International Conference Recent Advances in Natural Language Processing

2011, pp. 25–32.

Uschold, Mike and Michael Gruninger. 1996. „Ontologies: Principles, Methods and
Applications“. In: Knowledge engineering review 11.2, pp. 93–136.

Vargas-Vera, Maria et al. 2001. „Knowledge Extraction by using an Ontology-based
Annotation Tool“. In: International Conference on Knowledge Capture.

W3C. 2012. OWL 2 Web Ontology Language Primer (Second Edition). url: http://
www.w3.org/TR/2012/REC-owl2-primer-20121211/ [visited on 04/08/2013].

Weber, Robert Philip. 1990. „Basic content analysis“. In: Sage University Paper

Series on Quantitative Applications in the Social Sciences 49.

Weitzman, E.A. and M.B. Miles. 1995. Computer programs for qualitative data anal-

ysis: a software sourcebook. A software sourcebook. Sage Publications.

Wimalasuriya, Daya C. and Dejing Dou. 2010. „Ontology-based information ex-
traction: An introduction and a survey of current approaches“. In: Journal of
Information Science 36 [3], pp. 306–323.

Wolf, Sabrina. 2008. „Quantitativ vs. qualitativ: der Methodenstreit in der em-
pirischen Sozialforschung“. Bachelor Thesis. Universität Augsburg. url: http://
websquare.imb-uni-augsburg.de/2007-08/2 [visited on 12/07/2012].

Wood, Michael. 1980. „Alternatives and Options in Computer Content Analysis“.
In: Social Science Research 9.3, pp. 273–286.

Yildiz, Burcu. 2007. „Ontology-Driven Information Extraction“. PhD thesis. Vienna
University of Technology, Faculty of Informatics.

Zhang, Yan and Barbara M.Wildemuth. 2009. „Qualitative analysis of content“. In:
Applications of Social ResearchMethods to Questions in Information and Library

Science. Ed. by Barbara M. Wildemuth. Libraries Unlimited, pp. 308–319.

81

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://websquare.imb-uni-augsburg.de/2007-08/2
http://websquare.imb-uni-augsburg.de/2007-08/2

Züll, Cornelia and Juliane Landmann. 2002. Computerunterstützte Inhaltsanalyse:

Literaturbericht zu neueren Anwendungen. ZUMA-Methodenbericht 20/02.
Zentrum für Umfragen, Methoden und Analysen (ZUMA).

82

Hiermit bestätige ich, dass die vorliegende Arbeit von mir selbständig verfasst

wurde und ich keine anderen als die angegebenen Hilfsmittel – insbesondere kei-

ne im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt habe und

die Arbeit von mir vorher nicht in einem anderen Prüfungsverfahren eingereicht

wurde. Die eingereichte schriftliche Fassung entspricht der auf dem elektronischen

Speichermedium (CD-Rom).

Mit der Einstellung der Arbeit in die

Bibliothek bin ich einverstanden.

Der Verö�entlichung dieser Arbeit im

Internet stimme ich zu.

Ja Nein

4 2

4 2

Rees, den 26. September 2013

Oliver Krukow

	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Objectives, Approach and Structure

	Foundations of Computational Text Analysis
	Using Texts as Data
	Text Mining
	Definition
	Related Fields
	Differentiation and Perspectives

	Empirical Social Research
	The Need for Characterisation
	The Contrasts
	The Present State of Practice

	A Review of Computer-Assisted Text Analysis in the Social Sciences
	Introduction
	CAQDAS
	Thematic Analysis
	Semantic Analysis
	Semantic Network Analysis
	Automation and Software Evolution

	Extracting Networks of Concepts from Text
	The Process of Analysis
	Concept Ontology Development
	Ontology Structure
	Development Process

	Concept Identification
	Introduction and Result Conservation
	Text-level Identification

	Relationship Identification
	Reference Reconciliation
	Concept Network Extraction and Analysis

	Text Processing Solutions
	Introduction
	Requirements
	Metadata Metastructure Definition
	Project Administration
	Further Metadata Functionality
	Text Import
	Text and Metadata Visualization
	Manual Metadata Handling
	Embedded Analysis Functionality
	Analysis Component Development
	Combined Analysis Usage
	Data Export
	Non-Functional Requirements

	Candidates
	Suitability
	Metadata Metastructure Definition
	Project Administration
	Further Metadata Functionality
	Text Import
	Text and Metadata Visualization
	Manual Metadata Handling
	Embedded Analysis Functionality
	Analysis Component Development
	Combined Analysis Usage
	Data Export
	Non-Functional Requirements

	Prototypical Application
	Source Data and Concept Ontology
	Concept Identification
	Relationship Identification
	Reference Reconciliation
	Network Extraction and Analysis
	Assessment

	Outlook
	Conclusion
	References

