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Abstract

The following thesis analyses the functionality and programming capabili-
ties of compute shaders. For this purpose, chapter 2 gives an introduction
to compute shaders by showing how they work and how they can be pro-
grammed. In addition, the interaction of compute shaders and OpenGL 4.3
is shown through two introductory examples. Chapter 3 describes an N-
Body simulation that has been implemented in order to show the computa-
tional power of compute shaders and the use of shared memory. Then it is
shown in chapter 4 how compute shaders can be used for physical simula-
tions and where problems may arise. In chapter 5 a specially conceived and
implemented algorithm for detecting lines in images is described and then
compared with the Hough transform. Lastly, a final conclusion is drawn in
chapter 6.

Zusammenfassung

Die folgende Arbeit analysiert die Funktionsweise und Programmiermög-
lichkeiten von Compute Shadern. Dafür wird zunächst in Kapitel 2 eine
Einführung in Compute Shader gegeben, in der gezeigt wird, wie diese
funktionieren und wie sie programmiert werden können. Zusätzlich wird
das Zusammenspiel von Compute Shadern und OpenGL 4.3 anhand zweier
einführender Beispiele gezeigt. Kapitel 3 beschreibt dann eine N-Körper
Simulation, welche implementiert wurde um die Rechenleistung von Com-
pute Shadern und den Einsatz von gemeinsamen Speicher zu zeigen. Da-
nach wird in Kapitel 4 gezeigt, inwiefern sich Compute Shader für physika-
lische Simulationen eignen und wo Probleme auftauchen können. In Kapi-
tel 5 wird ein eigens konzipierter und entwickelter Algorithmus zur Erken-
nung von Linien in Bildern beschrieben und anschließend mit der Hough
Transformation verglichen. Zuletzt wird in Kapitel 6 ein abschließendes
Fazit gezogen.
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1 Introduction

Graphics processing units (GPUs) are many-core processors with a high
data and computation throughput. Former GPUs were designed and op-
timized for computer graphics. That means it was a challenge to use a
GPU for general purposes. Todays GPUs are general-purpose parallel pro-
cessors with support for various programming interfaces such as Nvidia’s
CUDA, Khronos Group’s OpenCL, Microsoft’s C++ Accelerated Massive
Parallelism (C++ AMP) or DirectCompute with DirectX 11. On August
6th, 2012 the Khronos Group announced and immediately released the
OpenGL1 4.3 specification which brings, among other things, the OpenGL
adaption of DirectCompute: The OpenGL compute shaders. [26]. The
compute shader stage is separated from the graphics pipeline and shares
many of the same data types with the graphics stages (cf. appendix A.1).
Like the other programmable shaders, compute shaders are written in the
OpenGL Shading Language (GLSL), allowing GLSL developers to start us-
ing the graphics hardware for general-purpose computation on graphics
processing units (GPGPU) without the need to learn one of the additional
APIs mentioned before. Compute shaders provide high-speed general-
purpose computing due to the large number of parallel processors on mod-
ern graphics hardware [15]. Further, they provide memory sharing and
thread synchronization techniques and they can be dispatched completely
independently from the rest of the OpenGL pipeline. All in all, compute
shaders can be used for several applications like particle physics, fluid be-
havior, crowd simulation, ray tracing, global illumination [33] or for image
processing.

This thesis presents an analysis of the functionality of compute shaders
and their possibilities and limitations. First, chapter 2 shows how com-
pute shaders work and how they can be programmed. Second, chapter 3
provides an implementation of an N-Body simulation which demonstrates
the performance of compute shaders. Next, chapter 4 compares the usage
of compute shaders and the CPU for physical simulations, especially fab-
ric simulations. After this, chapter 5 shows the use of compute shaders
for image processing purposes by detecting lines in images. Lastly, a final
conclusion is drawn in chapter 6.

1Abbreviation for Open Graphics Library.
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2 OpenGL Compute Shaders

This chapter gives a detailed overview how compute shaders work and
how they can be programmed. For this, the modern GPU architecture is
outlined and the compute shader specific OpenGL and GLSL language fea-
tures are described. Furthermore, the usage of supportive OpenGL features
with compute shaders are shown through two introductory examples.

2.1 Modern GPU Architecture

The Fermi™ architecture [18] continues and improves the idea of an uni-
fied shader model of the G80 architecture introduced with the GeForce 8800
in 2006. The basis for all GPU computing with Fermi and following gen-
erations of GPU architectures is CUDA. CUDA is the hardware (and soft-
ware) architecture enabling the execution of programs on the GPU written
in various languages. The language of interest for this thesis is the OpenGL
Shading Language (GLSL). By using GLSL, several shader types can be re-
alized and executed on the GPU using the CUDA architecture: vertex, frag-
ment, geometry, tessellation, and compute shaders, which are considered
in more detail through the chapters of this thesis. A compute shader is com-
piled and linked to a compute program. Such a compute program gets ex-
ecuted by a set of parallel threads on the GPU. These threads are organized
in local work groups and grids of local work groups (also called the global
work group), whereby every thread is executed concurrently. These threads
within a work group can communicate among themselves through barrier
synchronizations and a shared memory L1 cache. Every local work group has
its own shared memory with a size of 64 KB. The execution of the threads
is done by the CUDA cores. A CUDA core features a fully pipelined integer
arithmetic logic unit and a floating point unit. Furthermore, a GPU, based
on the Fermi architecture, is constructed from up to 16 streaming multipro-
cessors (SM), containing 32 CUDA cores each. See figure 1 for an illustra-
tion of an SM. Altogether, a GeForce GTX 580 consists of 16 SMs having 32
CUDA cores each, resulting in 512 CUDA cores in total. One SM executes
one or more work groups, whereby threads are executed by the CUDA
cores. Thereby, the threads are arranged in groups of 32 threads, called
a warp. Each warp is executed in lock-step [21]. The warp scheduler units
of the SM allow two warps to be executed concurrently. Regarding figure
1: A SM has also access to 16 load and store units (LD/ST) whose task is to
calculate source and destination addresses within the cache or the dynamic
random access memory. Furthermore, a SM has access to four special function
units (SFU). Each SFU executes transcendental instructions such as sine, co-
sine, reciprocal, and square root. See appendix A.2 for an illustration of the
Fermi architecture.
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The next generation of CUDA GPUs is based on the Kepler™ [19] compute
architecture introduced in 2012. The new key feature of the Kepler gen-
eration is the new streaming multiprocessor architecture called SMX. The
newest Kepler architecture is the Kepler GK110. A GK110 is constructed
from up to 15 SMXs. Each SMX consists of 192 CUDA cores, 64 double-
precision units, 32 SFUs and 32 load and store units. The size of the shared
memory is also 64 KB. In contrast to the Fermi architecture, the new ar-
chitecture provides four warp schedulers, therefore allowing four warps to
run concurrently, whereby one warp is still formed out of 32 threads. See
appendix A.3 for an illustration of the Kepler architecture and A.4 for an
illustration of one SMX.
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Figure 1: Fermi streaming multiprocessor (SM). A SM consists of 32 CUDA cores,
16 load and store units (LD/ST) and four special function units (SFU).
Threads within a local work group ,executed by one SM, can cooperate
among themselves through barrier synchronizations and a shared mem-
ory L1 64 KB cache. [18, p. 8]

3



2.2 Compute Shader Usage

This section provides an introduction to the use of compute shaders in
OpenGL programs. It will show how to create, write and dispatch a com-
pute shader using new language features. The dispatch of a compute shader
can be fully configured to run on the GPU as effectively as possible. This
means, the compute shader gets dispatched as one global work group. The
global work group is a three dimensional space of local work groups. Each
local work goup itself forms a three dimensional space of threads and gets
executed on one streaming multiprocessor of the GPU as described in sec-
tion 2.1. How to define the compute shader’s dispatch is described in detail
in section 2.2.2.

2.2.1 Creation

Creating a compute shader is similar to the established workflow of creat-
ing other shader types. Therefore

GLuint glCreateShader(GL_COMPUTE_SHADER)

creates a shader object, glShaderSource(GLuint shader, GLsizei count, const
GLchar **string, const GLint *length) loads the shader code and glCompile-
Shader(GLuint shader) compiles the shader.
In contrast to other shader programs, a compute program can only hold
compute shaders and can not be mixed with other types. To create a com-
pute program, glCreateProgram() is called. Afterwards the shader object is
attached by glAttachShader(GLuint program, GLuint shader) and linked by
glLinkProgram(GLuint program) which makes the shader object discardable
using glDeleteShader(GLuint shader).

Listing 1 at section 2.6 provides example source code.

2.2.2 Dispatch

To dispatch a compute shader, the compute program gets bound using
glUseProgram(GLuint program) at first, whereby subsequent commands get
applied to this program. Thereafter the shader is dispatchable at any point
in the program using

void glDispatchCompute(GLuint num_groups_x,
GLuint num_groups_y,
GLuint num_groups_z ).

The three parameters num_groups_x, num_groups_y and num_groups_z de-
fine the three dimensional space of the global work group as seen in figure
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2. Consequently a call of glDispatchCompute(6,4,4) dispatches a three di-
mensional global work group having 6 ∗ 4 ∗ 4 = 96 local work groups.
Another way to define the space of the global work group is using

void glDispatchComputeIndirect(GLintptr indirect),

where the parameter indirect is the byte-offset to the buffer currently bound
to the GL_DISPATCH_INDIRECT_BUFFER target. This buffer object must
contain a set of parameters which could be passed to glDispatchCompute(),
otherwise unintended things can happen, for example program termina-
tion.
The maximum number of dispatchable local work groups for the x,y and z
dimensions can be queried calling

void glGetIntergeri_v(GLenum pname,
GLuint index,
GLint* params )

with pname set to GL_MAX_COMPUTE_WORK_GROUP_COUNT. The min-
imum value for each dimension is 65535. [43]

Figure 2: Global work group split into local work groups in three dimensions. [3]
This global work group could be split using glDispatchCompute(6,4,4).

Using glDispatchCompute() or glDispatchComputeIndirect() requires the
fixed definition of the local work group size in x,y and z dimension us-
ing an input layout qualifier in the shader code (see 2.2.3). OpenGL 4.4
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introduced the extension ARB_compute_variable_group_size [10] which of-
fers the ability to write generic compute shaders that operate on arbitrarily
dimensioned local work groups. To dispatch such a compute shader, the
extension implements the function

void glDispatchComputeGroupSizeARB(GLuint num_groups_x,
GLuint num_groups_y,
GLuint num_groups_z,
GLuint group_size_x,
GLuint group_size_y,
GLuint group_size_z ),

where group_size_x, group_size_y and group_size_z are define the local work
group size in x, y and z dimensions (cf. figure 4).

According to section 2.1 and to [18, 19, 38], a few heuristics for the com-
position of the global work group can be stated:

• The size of the local work groups should be a multiple of the warp
size, which is 32 for the Fermi™and Kepler™architecture.

• The number of local work groups should be at least the number of
available streaming multiprocessors, which depends on the GPU itself.
That is because one local work group is executed on one streaming
multiprocessor. A number of local work groups less than the number
of streaming multiprocessors would lead to idle streaming multipro-
cessors.

2.2.3 Inputs

The only necessary input of a compute shader is the definition of its local
work group size, using a special layout input declaration:

layout(local_size_x = X, local_size_y = Y, local_size_z = Z) in;

X, Y and Z are the local sizes for the specific dimension. Their default value
is 1, thus

layout(local_size_x = 4, local_size_y = 3) in;

describes a two dimensional local work group having 4 ∗ 3 ∗ 1 = 12 threads
(cf. figure 3). The defined local work group size is determinable by calling
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void glGetProgramiv(GLuint program,
GLenum pname,
GLint *params )

with pname set to GL_COMPUTE_WORKGROUP_SIZE and *params is filled
with three integers giving the size of the work groups. Using the OpenGL
4.4. extension ARB_compute_variable_group_size (see 2.2.2) allows the dis-
patch of a compute shader that operates on arbitrarily dimensioned local
work groups. A compute shader using this extension gets its local size as-
signed by the program and must hold its own layout input declaration as:

layout (local_size_variable) in;

The local work group size is also limited and can be queried calling
glGetIntegeri_v() with pname set to GL_MAX_COMPUTE_WORK_GROUP_
SIZE (cf. 2.2.2). The minimum values are 1024 for the x and y dimension,
and 64 for the z dimension. Furthermore, the product of the x, y and z di-
mensions must be less than GL_MAX_COMPUTE_WORK_GROUP_
INVOCATIONS, whose minimum value is 1024. [43]

GLSL offers a set of built-in variables (also cf. figure 3 & 4). Thereby the
uvec3 gl_WorkGroupID represents the three dimensional index of the local
work group within the global work group and uvec3 gl_NumWorkGroups
stores the total number of work groups. Therefore it always holds:

0 ≤ gl_WorkGroupID ≤ gl_NumWorkGroups− 1

The built-in variable gl_NumWorkGroups is a compute shader constant, thus
its use requires a fixed local group size. With the OpenGL 4.4 extension
ARB_compute_variable_group_size the possibility of using variable local group
sizes was introduced. For this the new built-in variable
gl_LocalGroupSizeARB must be used instead of gl_NumWorkGroups to pre-
vent a compile-time error. The uvec3 gl_LocalInvocationID serves as the in-
dex of the shader invocation within the work group. Furthermore, uvec3
gl_WorkGroupSize stores the size of the local work group, and consequently
the total amount of invocations or threads within one work group. The
range of uvec3 gl_LocalInvocationID can thus be limited to:

0 ≤ gl_LocalInvocationID ≤ gl_WorkGroupSize− 1
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A global index of the invocation can be determined using the built-in uvec3
gl_GlobalInvocationID which is computed by:

gl_GlobalInvocationID = gl_WorkGroupID ∗ gl_WorkGroupSize +
gl_LocalInvocationID

The last built-in type uint gl_LocalInvocationIndex is a one dimensional rep-
resentation of the gl_LocalInvocationID. This unsigned integer can be used
to access group shared memory (see section 2.3). It is computed as follows:

gl_LocalInvocationIndex =
gl_LocalInvocationID.z ∗ gl_WorkGroupSize.y ∗ gl_WorkGroupSize.x +
gl_LocalInvocationID.y ∗ gl_WorkGroupSize.x +
gl_LocalInvocationID.x

gl_LocalInvocationID.x

gl_LocalInvocationIndex

Figure 3: Two dimensional local work group, annotated with GLSL built-in vari-
ables. Each ellipse represents one single thread. This work group could
be defined by using a layout input declaration as:
layout(local_size_x = 4, local_size_y = 3) in

2.2.4 Outputs

Compute shaders do not have any built-in outputs, nor any user-definable
outputs which are automatically passed from one shader to another. Nev-
ertheless a compute shader can write information back to buffers, texture
images or atomic counters. For a more detailed consideration of using these
features in compute shaders, consider the descriptions provided in section
2.5.
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gl_WorkGroupID.x

gl_GlobalInvocationID

Figure 4: Three dimensional global work group having a two dimensional local
work group size, annotated with GLSL built-in variables. This global
work group could be dispatched using
glDispatchComputeGroupSizeARB(3,3,11,4,3,1).

2.3 Group Shared Memory

Group shared memory is a L1 cache, which is available for every local work
group. Compute shader invocations within one local work group can com-
municate with each other using one or more shared memory variables. To
declare a shared variable the shared storage qualifier is used. Access to a
shared variable is generally much faster than access to images or storage
blocks [47, p. 445]. Accessing shared memory instead of global memory is
about a hundred times faster [38]. Therefore, they provide a good platform
for shader code optimization, especially when multiple invocations of the
shader access the same data. Shared variables are coherent, thus writes
to shared variables from one invocation will eventually be seen by other
invocations within the same local work group. They may not have initial-
izers and there is no defined order of execution with regards to reads and
writes. To achieve such an ordering, memory barriers must be employed
(see section 2.4). The total storage size for all shared variables in a compute
shader is limited and can be queried using glGetIntegerv() with pname set
to GL_MAX_COMPUTE_SHARED_MEMORY_SIZE. The value obtained is
in bytes and its minimum size is 32 KB= 32 ∗ 103 B. [43]
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2.3.1 Atomic Memory Functions

Atomic memory functions perform atomic operations on a signed or un-
signed integer which is stored in a buffer or shared variable. Every oper-
ation reads a value from memory, computes a new value, writes it back to
memory and returns the original read value. Thereby the function guaran-
tees no access of any other shader invocation between the time the original
value is read and the time the new value is written. A list of available
atomic memory functions can be found in appendix A.5.

2.4 Synchronization

As described in section 2.1, one local work group is divided into a number
of smaller chunks, while all invocations within one chunk are executed in
lockstep. The time-sliced chunks may be assigned to the graphics proces-
sor’s computational resources in any order. Therefore, a chunk of invoca-
tions could be completed before any more chunks from the same local work
group begin. If, for example, invocations within a local work group want
to communicate with each other using shared variables or a shader must
ensure a particular order of execution, the code must perform synchroniza-
tions.
The function barrier() executes a flow control barrier. That means, one invo-
cation will be blocked until all other invocations have reached this barrier.
In addition, the memoryBarrier() function orders memory reads and writes
for all kinds of variables. In contrast to this, the function groupMemory-
Barrier() provides this barrier for the current work group only. In addi-
tion, memoryBarrierShared() controls the ordering of memory transactions
to shared variables.
Beyond these ways of synchronization, OpenGL offers additional barriers
for specific types of variables. The functions memoryBarrierImage(), memory-
BarrierBuffer() and memoryBarrierAtomicCounter() provide barriers for their
assigned features as described in section 2.5.

2.5 Supportive OpenGL Features

OpenGL offers several features to support compute shaders. This section
provides an overview over the supportive features and extensions of OpenGL
4.

2.5.1 Image Load Store

This extension offers the ability to shaders to read from and write to a single
level of a texture object from any shader stage. Determining the size of an
image can be achieved using the GLSL built-in function

10



ivec imageSize(gimage image )

where the dimensions of the returned type ivec are depending on the image
type.

To load from a texture object, the extension provides the function

gvec4 imageLoad(gimage image, image_coord )

where the returning value gvec4 is the data from the image depending on
which format is specified using a format layout qualifier. The type of the pa-
rameter image depends on the declared image type. The second parameter
image_coord is the image texel coordinate which is n dimensional according
to the dimensions of the image type. Accessing a texel outside the bound-
aries of the image will return zero.

The counterpart of imageLoad is the built-in GLSL function

void imageStore(gimage image, image_coord, gvec4 data )

where data is the data written to the image at the given coordinates im-
age_coord. Any store operation outside the boundaries of the image will be
ignored. The format of data is based on its defined format given to glBindIm-
ageTexture.

void glBindImageTexture(GLuint unit, GLuint texture,
GLint level, GLboolean layered,
GLint layer, GLenum access,
GLenum format )

binds an image from texture using the given image unit. The access param-
eter restricts how the shader accesses the image. The value of access can be
GL_READ_ONLY, GL_WRITE_ONLY and GL_READ_WRITE.

Please consider the OpenGL ARB_shader_image_load_store specification
in [7] for an overview of the image types, format qualifiers or the memory
qualifiers available. Section 2.6.1 provides a usage example of image load
store and OpenGL compute shaders.

2.5.2 Shader Storage Buffer Object

A shader can perform random access reads, writes and atomic memory
functions to data stored in a shader storage buffer object (SSBO). In contrast
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to uniform buffer objects (UBO), SSBOs can be larger than UBOs. Conse-
quently, a UBO has to be at least 16KB in size, whereas the minimum size of
a SSBO has to be at least 16MB. To determine the maximum size of a SSBO,
MAX_SHADER_STORAGE_BLOCK_SIZE is queried with GetInteger64v().
The storage of a SSBO is unbounded, this means it can have an array of ar-
bitrary length. As opposed to this, an UBO must have a specific and fixed
storage size. The size of an array used with a SSBO can be queried using its
length function. The workflow of creating, binding and mapping the buffer
with data is similar to UBOs.

Furthermore, the extension offers the new packing layout qualifier
std430 for SSBOs, which provides a tighter packing of arrays and struc-
tures. With the existing std140 qualifier, a multiple of a 16B of memory will
be allocated for every array or structure of scalars and vectors. So every
element in an array of float, int or uint will take up the size of a vec4 (16B)
instead of 4B. In contrast to that, such elements will take up 4B using the
std430 qualifier. An exception is an array of vec3, which still requires 16B.

Section 2.6.2 provides a usage example of SSBOs and OpenGL compute
shaders.

2.5.3 Atomic Counter

Atomic counters [31] are GLSL unsigned integers which can only be manip-
ulated using built-in atomic memory operations. The storage of an atomic
counter comes from a buffer object, therefore they are created, mapped and
bound, just like other buffer objects, by using GL_ATOMIC_COUNTER_
BUFFER as the target. As a buffer object will store atomic counters, the
buffer binding index and the offset within the buffer object are specified by
the binding and offset layout qualifiers. Therefore

layout (binding = 2, offset = 16) uniform atomic_uint counter;

declares an atomic counter counter, bounded to binding point 2 and placed
at offset 16 within the buffer object.

uint atomicCounter(atomic_uint c )

performs an atomic read of the specific atomic counter c, which must be of
type atomic_uint.

uint atomicCounterIncrement(atomic_uint c )
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adds one to the value of the atomic counter c, atomicly. The functions re-
turns the original value of c. The analog counterpart is

uint atomicCounterDecrement(atomic_uint c )

which performs an atomic subtraction of one to the value of c. This function
also returns the original value of c.

2.6 Introductory Examples

This section provides two introductory examples of the use of compute
shaders. For this, many code snippets are shown, which prevent a step by
step guide.

Listing 1 shows the workflow to create a dispatchable compute program
as decribed in section 2.2.1:

Listing 1: Creation of a compute program
1 // Create a shader o b j e c t of type GL_COMPUTE_SHADER.
2 GLuint shader = glCreateShader (GL_COMPUTE_SHADER ) ;
3
4 // Set the source of the shader , where shader_source of type GLchar *
5 // holds the source code .
6 glShaderSource (shader , 1 , &shader_source , 0 ) ;
7
8 // Compile the shader code .
9 glCompileShader (shader ) ;

10
11 // Create a shader program .
12 GLuint program = glCreateProgram ( ) ;
13
14 // Attach the compiled shader to the shader program .
15 glAttachShader (program , shader ) ;
16
17 // Link the program . A compute program can only hold compute shaders !
18 glLinkProgram (program ) ;
19
20 // Delete the shader , i t i s no longer needed .
21 glDeleteShader (shader ) ;

2.6.1 Inverting an Image

This example is about inverting an image, which shows the usage of image
load store (see 2.5.1) in combination with compute shaders. The compute
shader will get two images as an input. The texture input_texture is the
original texture and output_texture stores the inverted values of the original
texture. Listing 2 creates the empty OpenGL texture object output_texture,
which is bound to the specified image unit 1:
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Listing 2: Creation of an empty texture object and binding it to the image unit 1
1 // Unsigned i n t e g e r which w i l l r e f e r to the t e x t u r e o b j e c t .
2 GLuint output_texture ;
3
4 // Generate one t e x t u r e o b j e c t .
5 glGenTextures(1 ,&output_texture ) ;
6
7 // Bind the generated t e x t u r e o b j e c t to the GL_TEXTURE_2D t a r g e t .
8 glBindTexture (GL_TEXTURE_2D , output_texture ) ;
9

10 // Spec i fy s torage f o r one , two−dimensional t e x t u r e l e v e l .
11 glTexStorage2D ( GL_TEXTURE_2D , // Target
12 1 , // Amount of t e x t u r e l e v e l s
13 GL_RGBA32F , // I n t e r n a l format of data
14 texture_width , // Width of the t e x t u r e
15 texture_height // Height of the t e x t u r e
16 ) ;
17
18 // Bind the t e x t u r e to the image uni t 1 .
19 glBindImageTexture ( 1 , // Image uni t
20 texture , // Texture to bind
21 0 , // Level of the t e x t u r e
22 GL_FALSE , // I s layered ?
23 0 , // Layer
24 GL_WRITE_ONLY , // Access r e s t r i c t i o n s
25 GL_RGBA32F // Format of data
26 ) ;

Line 11 of listing 2 uses

void glTexStorage2D(GLenum target, GLsizei levels,
GLenum internalformat,
Glsizei width, GLsizei height )

which specifies storage for a two-dimensional texture. This is done simul-
taneously for all levels of the texture. The internalformat specifies the size of
the stored data, which must be defined in the compute shader as well.

Line 19 binds the texture to the image unit 1, as described in section
2.5.1. The format is the same as used in glTexStorage2D() in line 11 and the
image will be GL_WRITE_ONLY, as the compute shader will only write the
inverted data to it. In contrast to this, the input texture will be loaded from
a file and generated using glTexImage2D(). Afterwards it will be bound to
the image unit 0 and specified as GL_READ_ONLY, as the compute shader
will not write to it.
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Listing 3: Compute shader source code to invert an image using the image load
store extension (cf. 2.5.1)

1 # vers ion 440
2
3 // Spec i fy the l o c a l work group s i z e using OpenGL 4 . 4 .
4 layout (local_size_variable ) in ;
5
6 // Or s p e c i f y the l o c a l work group s i z e using OpenGL 4 . 3 .
7 // layout ( l o c a l _ s i z e _ x = 32 , l o c a l _ s i z e _ y = 32) in ;
8
9 // The images bound to the s p e c i f i c image uni t of

10 // type image2D stored in the rgba32f format .
11 layout (binding = 0 , rgba32f ) readonly uniform image2D input_image ;
12 layout (binding = 1) wri teonly uniform image2D output_image ;
13
14 void main ( )
15 {
16 // Use the x and y index of the g loba l invocat ion as the index
17 // to read from or wri te to the images .
18 // Every invocat ion works a t a unique t e x e l p o s i t i o n of the image .
19 ivec2 index = gl_Global Invocat ionID .xy ;
20
21 // Use image load s t o r e to load from the input image
22 // at the s p e c i f i c index .
23 // Therefore , every invocat ion reads a unique t e x e l of the image .
24 vec4 texel_color = imageLoad (input_image , index ) ;
25
26 // I n v e r t the read t e x e l c o l o r
27 vec4 result_color = vec4 ( 1 . 0 − texel_color .rgb , texel_color .a ) ;
28
29 // Store the inver ted c o l o r in the output image using image load s t o r e .
30 imageStore (output_image , index , result_color ) ;
31 }

Listing 3 provides the source code of a compute shader usable to invert
an image. Line 4 specifies the local work group size of the shader using
the OpenGL 4.4 feature ARB_compute_variable_group_size as described in
section 2.2.2. The OpenGL 4.3 method is shown in line 7 in which a two
dimensional local work group size is defined. Line 11 and 12 declare the
input and output images, which are of type image2D. They are bound to
the image unit specified by glBindImageTexture in line 16 of listing 2. The
readonly and writeonly qualifiers are not necessary but by using them, access
violations become determinable at compile-time. An access violation at
run-time leads to undefined behavior, including program termination. If an
image is declared as writeonly, the format qualifier is not necessary because
it only specifies the format for read operations. [7]

To dispatch the compute shader of listing 3, the compute program is set
to active at line 2 in listing 4 first. Afterwards the shader is dispatched at
line 5 using the the OpenGL 4.4 feature ARB_compute_variable_group_size.
The command glDispatchComputeGroupSizeARB() dispatches a global work
group split in two-dimensions. Each of the resulting local work groups will
be two-dimensional having 32 ∗ 32 ∗ 1 = 1024 threads, which is the defined
minimum value of GL_MAX_COMPUTE_WORK_GROUP_INVOCATIONS
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as described in section 2.2.3. The global work group consists of
(texture_width /32) ∗ (texture_height/32) ∗ 1 local work groups. If the image
to invert is 1920 ∗ 1080 pixels in size, for instance, the global work group
will consist of (1920/32)∗(1080/32)∗1 = 2025 local work groups. Since one
local work group consists of 1024 threads, 2025 ∗ 1024 = 2073600 threads
will be executed in total. This means one thread per pixel is executed as
1920 ∗ 1080 pixels = 2073600 pixels and therefore the whole image gets
inverted. If OpenGL 4.4 is not available, the commented-out code line 16
shows the OpenGL 4.3 method for dispatching such an amount of local
work groups. This line is in keeping with line 7 of listing 3. Finally, line 17
provides a memory barrier to ensure synchronization of the output image
between the compute shader dispatch and the rendering of it.

Listing 4: Dispatching and synchronization of a compute shader which uses image
load store

1 // Act iva te the compute program .
2 glUseProgram (program ) ;
3
4 // Dispatch the compute shader using OpenGL 4 . 4 .
5 glDispatchComputeGroupSizeARB (
6 texture_width / 32 , // Global work group s i z e X dimension
7 texture_height / 32 , // Y dimension
8 1 , // Z dimension
9

10 32 , // Local work group s i z e X dimension
11 32 , // Y dimension
12 1 // Z dimension
13 ) ;
14
15 // Or dispatch the compute shader using OpenGL 4 . 3 .
16 // glDispatchCompute ( texture_width / 32 , t e x t u r e _ h e i g h t / 3 2 , 1 ) ;
17
18 // Do a memory b a r r i e r .
19 glMemoryBarrier (GL_SHADER_IMAGE_ACCESS_BARRIER_BIT ) ;
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2.6.2 Moving Particles

This example illustrates the usage of SSBOs (see section 2.5.2), in combina-
tion with compute shaders, by computing particle movements under the
influence of the gravitational forces as seen in figure 5.

Figure 5: Particles influenced by gravitational forces, simulated at different
timesteps, colliding with a sphere. Thereby, the sphere is moving from
left to right and vice versa.

A particle p consists of a current position r, velocity v and mass m,
whereby m is assumed to be always 1 in this example. Every r and v is
stored in a SSBO to deliver the compute shader with data. Listing 5 illus-
trates the generation, initialization and binding to an indexed buffer target of
the SSBO which stores the positions r. Thereby, line 12 allocates empty
storage for every particle’s position. One position r is stored as a vec4
which take up 16B of memory storage. As m is negligible, because it is
always 1 in this example, one might assume using vec3 is more appropriate
to store each r. Nevertheless it makes no difference whether vec3 or vec4 is
used as they will always take 16B of storage (cf section 2.5.2). At line 19
et seq. the complete buffer is mapped to a pointer of vec4. The access flag
GL_MAP_WRITE_BIT indicates that the returned pointer is used to write to
the buffer data. Using the access flag GL_MAP_INVALIDATE_BUFFER_BIT
indicates that the previous content of the entire buffer is discardable, which
speeds up the mapping of the buffer. After filling the pointer with some
data, line 34 unmaps the buffer and uploads the data to the GPU’s video
memory. Line 37 et seq. binds the SSBO to the buffer index 0.
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Listing 5: Generation, initialization and binding of a shader storage buffer object
1 // Unsigned i n t e g e r which w i l l r e f e r to the b u f f e r o b j e c t .
2 GLuint positionBuffer ;
3
4 // Generate one b u f f e r o b j e c t .
5 glGenBuffers(1 ,&positionBuffer ) ;
6
7 // Bind the generated b u f f e r o b j e c t to
8 // the GL_SHADER_STORAGE_BUFFER t a r g e t .
9 glBindBuffer (GL_SHADER_STORAGE_BUFFER ,positionBuffer ) ;

10
11 // Spec i fy empty s torage f o r the b u f f e r o b j e c t
12 glBufferData ( GL_SHADER_STORAGE_BUFFER , // Target b u f f e r type .
13 maxParticles* s i z e o f (vec4 ) , // Storage f o r a l l p a r t i c l e s
14 NULL , // Empty data
15 GL_STATIC_DRAW // Usage of the b u f f e r
16 ) ;
17
18 // Map the Buf fer to f i l l i t with data
19 vec4* positions =
20 (vec4 * ) glMapBufferRange ( GL_SHADER_STORAGE_BUFFER , // Target
21 0 , // O f f s e t
22 maxParticles* s i z e o f (vec4 ) , // Length
23 GL_MAP_WRITE_BIT | // Access f l a g s
24 GL_MAP_INVALIDATE_BUFFER_BIT
25 ) ;
26
27 // I n i t i a l i z e the b u f f e r o b j e c t with data to s t o r e
28 f o r ( GLint i = 0 ; i < maxParticles ; i++ )
29 {
30 positions [i ] = vec4 ( 0 , 0 , 0 , 1 ) ;
31 }
32
33 // Unmap the b u f f e r and upload i t to the GPU
34 glUnmapBuffer (GL_SHADER_STORAGE_BUFFER ) ;
35
36 // Bind the b u f f e r to the indexed b u f f e r t a r g e t 0
37 glBindBufferBase ( GL_SHADER_STORAGE_BUFFER , // Target b u f f e r type
38 0 , // Indexed b u f f e r t a r g e t
39 positionBuffer // Buffer to bind
40 ) ;

The SSBO to store the velocities v for every particle p is created in a
similar way. The only difference is that the velocity buffer is bound to the
buffer index 1 and that the initial velocities are chosen in such a way that
the particles are scattered.

Listing 6 shows the basic source code necessary to compute particle
movements under the influence of G using a compute shader and SSBOS.
Line 6 declare the buffer object for the positions using the interface block
semantic of OpenGL 3.1. Its binding point was defined using the glBind-
BufferBase() command of listing 5.
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Listing 6: Compute shader source code which interacts with shader storage buffer
objects.

1 # vers ion 440
2
3 // GLSL 3 . 1 i n t e r f a c e blocks which d ef ines the p o s i t i o n and
4 // the v e l o c i t y b u f f e r as a shader s torage block .
5 // Therefore , the b u f f e r are i n t e r p r e t e d as arrays of vec4 .
6 layout ( std140 , binding=0 ) buffer Pos {
7 vec4 Positions [ ] ;
8 } ;
9

10 layout ( std140 , binding=1 ) buffer Vel {
11 vec4 Velocities [ ] ;
12 } ;
13
14 // Spec i fy the l o c a l work group s i z e using OpenGL 4 . 4 .
15 layout (local_size_variable ) in ;
16
17 // G r a v i t a t i o n a l constant .
18 const vec3 G = vec3 ( 0 . 0 , −9.8 , 0 . 0 ) ;
19
20 // Delta time
21 const f l o a t DT = 0 . 0 0 1 ;
22
23 void main ( ) {
24 // Use the x index of the g loba l invocat ion as the index
25 // to read from or wri te to the SSBOs . Every invocat ion works
26 // at a unique p o s i t i o n of the b u f f e r s .
27 uint index = gl_Global Invocat ionID .x ;
28
29 // Read the p o s i t i o n and v e l o c i t y from the SSBOs .
30 vec3 r = Positions [index ] . xyz ;
31 vec3 v = Velocities [index ] . xyz ;
32
33 // Compute a c c e l e r a t i o n
34 vec3 acceleration = computeAccleration (r ,v ,G ) ;
35
36 // I n t e g r a t i o n using some numerical i n t e g r a t i o n method
37 v = integrateVelocity (v ,acceleration ,DT ) ;
38 r = integratePosition (r ,v ,DT ) ;
39
40 // Store the i n t e g r a t e d p o s i t i o n and v e l o c i t y .
41 Positions [index ] . xyz = r ;
42 Velocities [index ] . xyz = v ;
43 }

The data of the buffer is interpreted as an array of vec4, which is read- and
writable through the shader. Line 10 declares the velocity buffer respec-
tively. In line 27 the global invocations x-index of this dispatch is queried
using the built-in variable gl_GlobalInvocationID. This index allows every
single invocation to work on an unique particle inside the buffer objects. To
access a buffer object, its declared array is used in line 30 or 31. Afterwards
the shader calculates the acceleration acting on the particle and integrates
it’s position and velocity through a numerical integration method like the
Euler or the fourth-order Runge-Kutta method [40, p. 490 et seq.]. Lastly, the
shader writes the integrated position and velocity back to the buffers.
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3 N-Body Simulation

An N-Body simulation represents an evolution of a system of bodies where
each body interacts with every other body. For instance, each body could
represent a single star in an astrophysical simulation which attracts each
other star of the system through a gravitational force as in figure 6. Other
scientific fields using N-Body simulations are molecular dynamics, plasma
physics or fluid flow simulations [39]. This chapter discusses an N-Body
simulation in an astrophysical context which demonstrates the computa-
tional power of OpenGL compute shaders and the effective usage of group
shared memory. In order to demonstrate the capabilities of compute shaders,
forces are computed using a brute-force technique, evaluating all interac-
tions pair-wise among N bodies which leads to an O(N2) computational
complexity. Other and faster approaches to solve the N-Body problem are
the Barnes-Hut algorithm [4], the fast multipole method [25] or the paral-
lel multipole tree algorithm [6]. A good overview is given by Blelloch and
Narlikar. [5]

Figure 6: N-Body system with N = 16.384,m = 1.0, ε2 = 0.01
simulated at different timesteps running on a compute shader.

3.1 Problem Definition

Newton’s law of universal gravitation calculates the force of gravity
#»

f be-
tween two masses m1 and m2, which are a distance r apart. This law can
be written as follows: [40, p. 480]

#»

f = G ∗ m1m2

r2
(1)

Based on equation 1, the force
# »

fij acting on particle i of mass mi, caused by
its gravitational attraction to body j of mass mj , is given by the following
formula (cf. [44, 39]):

# »

fij = G
mimj

| #»ri − #»rj |2
∗

#»ri − #»rj
| #»ri − #»rj |

− ∇φext( #»ri)

= G
mimj(

#»ri − #»rj)

| #»ri − #»rj |3
−∇φext( #»ri)

(2)
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G is the gravitational constant and φext is the external potential. The left
factor of the product is the magnitude of the force which is given by the
product of the masses mi ∗ mj and reduced by the square of the distance
| #»ri − #»rj |2 of the body i and j (cf. equation 1). The right factor is the normal-
ized direction of the force

# »

fij .
The summation of all forces

# »

fij acting on body i, without taking external
potentials into consideration results in the total force

#»

Fi on body i:
#»

Fi =
∑
i 6=j

# »

fij

=
∑
i 6=j

G
mimj ∗ ( #»ri − #»rj)

| #»ri − #»rj |3

= Gmi

∑
i 6=j

mj ∗ ( #»ri − #»rj)

| #»ri − #»rj |3

(3)

The massmi of body i and the gravitational forceG are numerical constants
during the equation and thereforemi andG can be extracted from the sum-
mation. The force

#»

Fi grows without any limitations as bodies approach
each other. This is especially critical when the distance of two bodies ap-
proaches zero and the fraction becomes undefined through a denominator
of zero. A constant timestep numerical integration, like the Euler method,
the fourth-order Runge-Kutta method [40, p. 490 et seq.] or the Verlet inte-
gration [45], can not guarantee enough accuracy when two bodies collides
and therefore leads to physically unrealistic accelerations [44]. To solve this
issue, [44] introduces a softening factor ε2 > 0, whereby equation 3 can be
rewritten as:

#»

Fi = Gmi

∑ mj(
#»ri − #»rj)

(| #»ri − #»rj |2 + ε2)3/2
(4)

The condition i 6= j of equation 3 is not necessary anymore, because the
denominator is always greater than zero and thus well defined. This results
in a force fii = 0 when ε2 > 0. To integrate equation 4 over time, Newton’s
second law yields the acceleration #»ai =

#»

Fi/mi through:

#»ai = G ∗
∑ mj(

#»ri − #»rj)

(| #»ri − #»rj |2 + ε2)3/2
(5)

3.2 Implementation

The implementation, which underlies this thesis, uses an OpenGL shader
storage buffer object (see 2.5.2) to store the N bodies and velocities of the
system2. This buffer object allows the compute shader to read the positions

2In literature, like [24, p. 367], the Verlet integration is preferably used for particle sim-
ulations in contrast to the Euler integration method. Therefore, one could store the old
body’s position instead of storing its velocity.

21



and velocities of each body at time t and to write back the resulting posi-
tions and velocities at time t + ∆t. Therefore, all positions ri, followed by
the velocity vi, of each spherical, random ordered body i are mapped to the
buffer and uploaded to the GPUs video ram. After the dispatch of the com-
pute shader, and therefore after the computation of one simulation step,
the shader storage buffer object needs to get synchronized using a glMem-
oryBarrier to ensure that every data is written. Afterwards it is used as an
array buffer to fill the vertex shader with data to render the scene. Using
this technique the data of the simulation does not have to be copied back
to the system memory and thereby expensive copy operations between the
system memory and the video memory are prevented.

3.2.1 Compute Shader

A first approach of a CPU implementation would compute the force Fi

for each body i sequentially, resulting in an O(n2) computational com-
plexity. Using a compute shader, therefore computing the forces for ev-
ery body i on the GPU in parallel, enhances the performance of the pro-
gram. The global work group dispatch of the shader is one dimensional
and every work group has a local one dimensional size. The code ensures
a dispatch of N = gl_NumWorkGroups.x ∗ gl_WorkGroupSize.x invocations,
where N is the total number of bodies in the simulation. As a consequence
gl_GlobalInvocationID.x is suitable as the index of the shader storage buffer
object. This guarantees that every shader invocation works on one unique
body of the simulation and makes the body’s position and velocity acces-
sible. After the computation of the acceleration ai, the shader integrates
the new position and velocity of the body. Before writing back the results,
the shader needs a synchronization using barrier() in order to prevent pre-
mature overriding of the buffers data. This avoids the interference in cal-
culations of other shader invocations during one dispatch. Figure 6 shows
the visualized bodies of a simulation with 16.384 bodies, where every body
attracts each other body.

3.2.2 Using Group Shared Memory

The implementation described in the previous section 3.2.1 accesses the
shader storage buffer object N2 times for every body i. This section states
an approach described by Lars Nyland et al. [39] which uses the group
shared memory of the GPU in an effective way to reduce the accesses to the
buffer object while reusing data. Therefore, the shader splits the position-
data into N/p tiles, whereas p is the size of the dispatched work groups.
These tiles are stored into the group shared memory of the GPU. Within
each tile, the shader computes the acceleration ai and proceeds with the
next tile afterwards as shown in listing 7:
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Listing 7: Compute shader using group shared memory to solve the n-body prob-
lem

1 // S p l i t the b u f f e r data i n t o $N / p$ t i l e s
2 f o r ( u int tile = 0 ; tile < N / p ; tile++) {
3 // Load the intended p o s i t i o n f o r t h i s t i l e and t h i s invocat ion
4 // i n t o the shared memory
5 sharedMemory [invocationID ] = Positions [tile * p + invocationID ] ;
6
7 // Synchronize the shared memory
8 memoryBarrierShared ( ) ;
9

10 // Compute the a c c e l e r a t i o n f o r the body i to every body j
11 // within the t i l e
12 f o r ( u int j = 0 ; j < p ; j++) {
13 acceleration += interaction_i_to_j (i ,sharedMemory [j ] ) ;
14 }
15
16 // Synchronize the i nvoc a t i ons
17 b a r r i e r ( ) ;
18 }

Line 8 of listing 7 synchronizes the shared memory and the invocations,
ensuring that the information for this tile is loaded completely. Line 13
computes the total acceleration which interacts between the body i and all
bodies j within one tile using the previously filled shared memory. After-
wards barrier() guarantees that every invocation has done its computations
to continue to the next tile. Without this last synchronization some data of
the shared memory could get overridden before every invocation has used
the data for its computation.

3.3 Evaluation

This section discusses the evaluation of the two implementations, which
are described in the previous sections. For this, the computation time of the
outlined compute shaders was measured using OpenGL Timer Queries [42,
p. 45 et seq.], which gives the time a set of OpenGL commands needed, in
nanoseconds. In addition, the efficiency of the compute shaders was mea-
sured by estimating the giga floating point operations per second (GFLOPS)
the GPU performed. The approach to estimate the GFLOPS is based on the
code of Nyland et al. [39], which assumes 20 FLOPS per shader invoca-
tion. Various configurations (N,m) were used. The amount of bodies N
ranges from 1024 to 32768 and the size of the workgroups m ranges from 4
to 1024. This implies that a configuration (16384, 64) has a total amount of
N/m = 16384/64 = 256 workgroups. For evaluation purposes, a GeForce
GTX 580 graphics card by NVIDIA is used. The GeForce GTX 580 is based
on the Fermi architecture3 running at 1544 MHz and featuring 512 CUDA
cores [17]. These 512 CUDA cores are arranged in 16 streaming multiproces-
sors. Therefore, each streaming multiprocessor contains 32 CUDA cores [16].

3compare section 2.1
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The maximum achievable floating point operations per second are 1581. [1]
Figure 7 exhibits performance graphs for the two implementations de-

scribed in the previous section. Thereby the x-axis maps the size of the
workgroup and the y-axis maps the GFLOPS performed by the GeForce
GTX 580. Every curve represents a simulation with N bodies. Figure 7a
presents the estimated GFLOPS for several numbers of N without the uti-
lization of shared memory (SM) and figure 7b demonstrates the implemen-
tation which uses SM, respectively. In general it can be stated that the use
of SM provides a large increase in the performed GFLOPS. Given a con-
figuration (N,m) = (32768, 1024), 529.68 GFLOPS were measured with
no SM in use, taking an average of 40, 79 ms per frame (≈ 24 FPS4) . Us-
ing SM instead leads to 927.61 GFLOPS taking an average of 22.94 ms per
frame (≈ 43 FPS). This yields an increase of 175.12% GFLOPS when using
SM in this configuration. Considering a configuration (32768, 4), it can be
measured that the use of SM increases the performed GFLOPS from 14.59
GFLOPS, taking an average of 1461.09 ms per frame, to 30.60 GFLOPS, tak-
ing an average of 701.248 ms per frame. This is a percentage increase in
GFLOPS of 209.66%. In addition, the results demonstrate that the perfor-
mance of a compute shader depends on the chosen compute shader dis-
patch and the GPU architecture. Using a workgroup size of 1024, instead
of 4, is up to 36 times more efficient when simulatingN = 32768 bodies. As
said before, the GeForce GTX 580 GPU consists of 512 CUDA cores arranged
in 16 streaming multiprocessors. As a compute shader local workgroup runs
on a single streaming multiprocessor, it leads to a performance decline if less
than 16 workgroups are dispatched. This explains the declining number of
GFLOPS performed by the GPU in the configurations (8192,m > 512) and
(4096,m > 256). Here the dispatched workgroups are less than 16 which
leads to streaming multiprocessors being idle and therefore a worse perfor-
mance.

4FPS is abbreviation for frames per second.
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(a) Without using shared memory.

mm

(b) Using shared memory.

Figure 7: Estimated GFLOPS with (b) and without (a) the use of shared memory per-
formed by a GeForce GTX 580 by simulating the system with N bodies.
The x-axis maps the size of the used workgroups, therefore the number
of threads per workgroup. The y-axis maps the performed GFLOPS.
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4 Fabric Simulation

This section covers the topic of fabrics behavior simulation under the assis-
tance of compute shaders. For this, an overview of the structure of fabric
and how fabric can be represented and simulated is given. With respect to
the topic of this thesis, the main focus leis on the compute shaders, their
dispatch, optimization and the advantages and disadvantages of their use
in physical simulations, especially fabric simulations. Advanced aspects of
fabric simulation, like self-collision detection or the photo-realistic render-
ing of fabric, are not treated.

4.1 Structure of Fabric

The behavior of fabric is based on the nature and molecular structure of the
fiber material constructing the fabric and the arrangement of these fibers
within the fabric [46, p. 15]. Volino and Magnenat-Thalmann differentiate
between three ways how fabric fibers can be organized:

• "Woven Fabrics: Threads are orthogonally aligned and interlaced al-
ternately using different patterns" [46, p. 15]. They are stiff and thin,
therefore used for garments. (cf. figure 8)

• "Knitted Fabrics: Threads are curled along a given pattern, and the
curls are interlaced on successive rows" [46, p. 15]. They are loose
and elastic, thereby often used by wool and underwear. (cf. figure 9)

• "Non-woven Fabrics: There are no threads, and the fibers are arranged
in an unstructured way, such as paper fibers." [46, p. 15]

Figure 8: Woven fabric patterns: Plain, Twirl, Basket, Satin. [46, p. 16]

Figure 9: Knitted fabric patterns [46, p. 16]

26



4.2 Simulation

Woven fabrics can be simulated using a particle system which discretizes
the fabric material as a set of mass points. These mass points interact with
forces which are computed using a mass-spring system (see section 4.2.1).
By this, the setting of the springs define the stiffness and behavior of the
fabric. Figure 10 shows a simulated fabric, which collides with a sphere
and a plane, at different time steps. The fabric consists out of 64× 64 mass
points, which are connected with 47.562 springs, and is simulated by a com-
pute shader. Implementation specific details are described in the following
sections.

Figure 10: Fabric discretized through 64 × 64 mass points, which are connected
with 47.562 springs. The spring constant c is 180.000 and a damping
factor d of 8 is considered.

4.2.1 Mass-Spring Systems

Mass-spring systems are widely used to compute spring forces within a
simulation of deformable bodies such as hair, cloth, water, or gelatin [23].
Therefore, a system of point masses is connected by springs. A spring is
stretched between a fixed point and a free one. An unstretched spring, as
shown in figure 11a, has a resting length L. If the end of the spring gets
pulled away or pushed towards to the fixed one, the spring exerts a force
#»

F . If the end of the spring is pulled away from the fixed point, the direction
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of the force
#»

F is toward its fixed point (cf. figure 11b). Should the end of
the spring gets pushed towards its fixed point, the direction of the force
#»

F is toward its end (cf. figure 11c). The described law for spring forces is

Figure 11: (a) Unstretched spring. (b) Force due to stretching the spring. (c) Force
due to compressing the spring. [23, p. 35]

known as Hooke’s law, which can be expressed as follows: (cf. [23, p. 34])

#»

F = −c∆ #»

U (6)

where the spring constant c > 0 is the constant of proportionality. The spring
constant specifies the stiffness of a spring, this is, a large c yields a stiff
spring and vice versa.

#»

U is a unit-length vector pointing in the direction of
the spring and ∆ is the amount by which the spring was displaced from its
resting length L. This means, if the spring gets stretched, ∆ is positive and
any compression of the spring produces a negative value for ∆.

According to [47, p.270], all real spring systems have some loss due to
friction. Adding a damping factor d can model this loss and also improves
the simulation’s stability:

#»

F = −c∆ #»

U − d #»v (7)

where #»v is the current velocity of the free end of the spring. While
#»

F acts
on the free end of the spring, the opposing force − #»

F acts on the fixed point
of the spring through Newton’s third law. [37, p. 82]

4.2.2 Surface Representation

As described before, the fabric gets discretized through a set of mass points.
The mass points are ordered in a uniform grid and are connected with
springs as in figure 12. Thereby, each mass point is connected with springs
to 12 mass points in its neighborhood, if possible. Three types of springs
can be distinguished [29]. Structural springs (green in figure 12) uphold
the basic structure of the set of mass points. Shearing springs (blue) are
used to model the shearing elasticity [46, p. 53]. The shearing elasticity can
be described using the Kawabata Shearing Test which involves the extension
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of a rectangle of cloth material at a constant speed of extension, whereby
the movement is performed transversally [46, p. 20]. Similar to shearing
springs, bending springs (red) are used to model the bending elasticity which
can be described using the Kawabata Bending Test.

Structural Spring

Shearing Spring

Bending Spring

Figure 12: Set of mass points, ordered in a uniform grid to discretize a fabric. Each
mass point is connected to 12 neighbors using structural, shearing and
bending springs. (cf. [24, p. 366])

4.3 Compute Shader Implementation

The fabric gets discretized through a set of mass points. One mass point is
represented by one four-dimensional vector by which the first three com-
ponents store the position of one mass point and the fourth component its
inverse mass. These four dimensional vectors are stored in an SSBO (cf.
section 2.5.2). In addition, the mass points’ velocities (for numerical inte-
gration purposes5) and the normals of the mass points’ vertices (for lighting
purposes) are also stored using SSBOs.

On basis of the initial positions of the mass points, the resting length for
each type of spring can be computed. If the mass points are ordered in a
uniform grid, a bending spring has a greater resting length than a shearing
spring which again has a greater resting length than a structural spring.
The three different resting lengths, the spring constant c and damping fac-
tor d are passed as uniform variables to the compute shader. The dispatch
of the compute shader is chosen in a way that a compute shader invocation
is running for every mass point i. The shader itself computes the total force
#»

F i for mass point i by computing and summing up all forces − #»

F ij which
are exerted by the springs the mass point i is connected to6. Thereby, the

5Instead of using the mass points’ velocities for numerical integration, one could use
and store the mass points’ old positions to do Verlet integration.

6As described in section 4.2.1,
#»
F acts on the free end of the spring. The compute shader

is dispatched for every mass point i, whereby i is considered as the fixed point of the spring.
This means, the opposing force − #»

F ij acts on the mass point i due to Newton’s third law.
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force− #»

F ij is exerted by the spring which connects the mass point i and the
mass point j by which i is the fixed point of the spring and j is the free one.
Additionally, the gravitational constant G and external forces, like wind,
can be added to

#»

F i. Afterwards,
#»

F i is multiplied by the inverse mass of the
mass point to receive an acceleration force. With this information, the new
position of the considered mass point can be computed due to some nu-
merical integration method. Consequently, if the inverse mass of the mass
point is zero, no forces will act on the mass point. By this, the mass point
will be fixed to its initial position. Before the shader can write back the
new position, a flow control barrier, using the barrier() function, must be
applied. This is necessary, because otherwise it comes to a race condition.

For lighting purposes, the compute shader can also compute one nor-
mal for one mass point’s vertex by calculating the cross product of the vec-
tors from i to two adjacent mass points. The sequence of the cross product
depends on whether the coordinate system is a left-handed or right-handed
system.

4.3.1 Problems

Newton’s third law says that the force
#»

F ij can be applied to the mass point
j and the opposite force − #»

F ij can be applied to the mass point i. How-
ever, the described implementation does not apply the force

#»

F ij to the mass
point j, therefore equivalent forces are computed. This problem can not be
trivially circumvented. A problematic approach would be as follows. The
total force

#»

F i for every mass point i is stored in a separate SSBO7. Each
compute shader would calculate up to 12 forces

#»

F ij . After this, the oppo-
site force − #»

F ij would be add to the gathered force
#»

F i and
#»

F ij would be
add to the gathered force

#»

F j for each of the up to 12 mass points j in the
SSBO. For this, the gathered force must be read from the SSBO, modified,
and be written back. As various shader invocations would do this simul-
taneously for the same mass point j, data hazards can occur, which leads to
undefined behavior.

Nevertheless, [29] presents a technique to circumvent the computation
of equivalent forces. Thus, they create independent subsets of spring-links
trough graph coloring.

4.4 Evaluation

For evaluation purposes, a CPU implementation is compared with the com-
pute shader implementation in terms of the computational performance. In
order to keep both implementations comparable, the CPU implementation

7A separate compute shader integrate the mass points’ positions and velocities after-
wards.
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also does not add the force
#»

F ij to the mass point j. The computation of
the CPU implementation is performed by an Intel Core i7 920 processor and
the compute shader is dispatched to a GeForce GTX 580. Figure 13 pro-
vides a column chart which shows the measured time in milliseconds that
the compute shader and the CPU implementation need to compute differ-
ent numbers of mass points. For the compute shader, the partitioning of
the global work group is adjusted to the number of mass points. For in-
stance, the global work group consists of four local work groups in the x
and y dimension which again consists of two threads in each of their x and
y dimension if the fabric is discretized through 82 = 64 mass points. As
a result, a total of 4 ∗ 4 = 16 local work groups are dispatched to prevent
that streaming multiprocessors are idle (compare section 2.1). In contrast
to this, the global work group consists of 8 local work groups in the x and
y dimension which again consists of 16 threads in each of their x and y
dimension if 1282 = 16384 mass points are used. However, free space for
adjustments is there. All together, the compute shader offers great perfor-
mance. A dispatch for 82 mass points (connected with 578 springs) needs
0.18 milliseconds in average and a dispatch for 1282 mass points (connected
with 193.418 springs) needs 0.20 milliseconds in average for the computa-
tion. This shows that a compute shader - or a modern GPU in general - is
optimized for large amount of data. For smaller amounts of data like 82

mass points, the CPU implementation is more than three times faster than
the compute shader. Nevertheless, for larger amounts of data like 1282

mass points, the compute shader is more than 35 times faster than the CPU
implementation. If the amount of data increases further, the performance
difference is even greater. That means for 2562 mass points (connected with
780.042 springs), the compute shader is more than 90 times faster than the
CPU implementation.

Figure 13: The measured time in milliseconds that the compute shader and the
CPU implementation need to compute various numbers of mass points.
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5 Line Detection

This chapter describes two different approaches to detect lines in images.
Lines are typical image features which computer vision is interested in. The
basis for the line detection algorithms of this chapter is some preprocessing
step. Thereby an input image gets transformed to an edge image, where
every pixel (xi, yj) of an edge has a pixel value v(xi, yi) = 1 and every other
pixel has a pixel value v(xi, yj) = 0. One algorithm for this purpose is the
Canny edge detector, which was developed by John F. Canny in 1986 [13].
Figure 14 shows a photograph of a building and its corresponding edge
image computed by the Canny edge detector. One established method to
detect lines in an edge image is the Hough transform, which is described in
section 5.2 in detail.

Figure 14: A building, 384 × 384 in size, and its corresponding edge image pro-
duced by the Canny edge detector.
Please note: the edge image is displayed in inverted colors.

During the work on this thesis, we conceived another approach to de-
tecting lines. The goal was to develop a prototype and to compare this
prototype to the results the Hough transform provides. Due to the large
computing power of modern GPUs and the versatile ability of compute
shaders, all possible lines in an image could be scanned. A Canny edge
image serves as the input image. The outer points of the input image are
numbered as in figure 15. Thus, a Canny input image of size nc × nc has
4nc − 4 = k outer points. If some line rasterization algorithm, like the bre-
senham line algorithm [8], computes a line from every point ki to all the
points kj , all possible lines in the image are considered pixel-wise. For this
purpose, a compute shader was developed which considers all possible
lines in the input image. So each shader invocation rasterizes one line and
counts all pixels of the edge input image having a value v(xi, yj) = 1.

The line in figure 15 starts at k12, ends at k43 and fills 16 pixels on its
way. Hence, the invocation, rasterizing the line from k12 to k43, counts 16
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corresponding pixels in the image. In contrast to this the invocation, which
rasterizes the line from k11 to k44, counts less. All gathered information is
stored in a separate texture, called the line space.

Figure 15: An input image for the line rasterization shader. The outer points k of
the image are numbered from 0 to 4nc − 5, so that the compute shader
can rasterize a line from every point ki to all the points kj . This image
consists of one line which starts at k12 and ends at k43.
Please note: this image is displayed in inverted colors.

5.1 Line Space

The line space is a separate texture which stores the computed informa-
tion of the line rasterization shader. If a 2D coordinate system is defined in
the upper left corner of the line space, then the x-axis represents the start-
ing point ki and the y-axis represents the ending point kj of the k outer
points of the input image. Figure 16 shows the computed line space pro-
duced by the rasterization shader running on figure 15. Each position in
the line space represents one possible line of figure 15. The stored values
are three dimensional vectors, whereas the first coordinate stores the num-
ber of matched line pixels and the second and third coordinates store the
startpoint ki and endpoint kj of the considered line. Storing the startpoint
and endpoint is necessary due to some postprocessing texture filtering.

The size of the line space depends on the input image and the consid-
eration of symmetry properties. Naively, k2 shader invocations are dis-
patched, whereby each invocation would rasterize a line from ki to kj and
stores the result in a line space of size 4nc×4nc. Doing this for figure 15, be-
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sides the line k0 to k1, the line from k0 to k2 is also computed. Both lines lie
in the same first column. Furthermore this technique would compute the
line k12 to k43 and the equivalent line k43 to k12, too. Computing and storing
this symmetrical information is neither efficient nor effective. Thus, it is ap-
propriate to consider the symmetry properties. One first approach would
be to only compute the lines from ki to kj for 0 ≤ i ≤ 3nc−3; i ≤ j ≤ 4nc−5.
Even this computes symmetrical lines. The approach used in the imple-
mentation for this thesis is illustrated in appendix A.6. Nevertheless, a line
space of size 3nc × 3nc can store the necessary information. The position
(12, 27) in figure 16 stores the three dimensional vector (16, 12, 43) conse-
quently. More precisely: it stores information of a 16 pixel long line starting
at position k12 and ending at position k43.

Appendix A.7 shows the line space for the edge image of figure 14.

0
nc

   3nc-1

   4nc-1

Figure 16: Line space which results from figure 15. The coordinate system’s origin
is in the upper left corner. The startpoint ki of a line is plotted on the
x-axis and its endpoint kj is plotted on the y-axis. Due to optimization
(see section 5.1), the x-axis goes from 0 to 3n − 1 and the y-axis goes
from nc to 4nc − 1 The line of figure 15 starts in k12 and ends in k43.
Therefore, the line is encoded in the line space at position (12, 27).
Please note: this image is displayed in inverted colors.
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5.2 Hough Transform

The Hough transform is a method for recognizing complex patterns such
as lines, circles or any analytical and non-analytical shapes in images. The
initial transform was developed and patented in 1962 by Paul V. C. Hough
[30]. Hough describes a geometrical construction of a transformed space by
mapping points to straight lines. In 1969 Azriel Rosenfeld published an
"interesting alternative scheme for detecting straight lines" [41]. Therefore,
Rosenfeld defines an algebraic approach based on the U.S. patent of Paul
V. C. Hough: A point (xi, yi), which has a value v(xi, yi) 6= 0, in the input
image is mapped to a line y = yix+xi in the transformed space, also called
the Hough accumulator. Thereby the slope x of a line and its y-axis section
serve as the axes of the Hough accumulator. Thus, for every v(xi, yi) 6= 0 in
the input image, the line parameters x and y are computed at discrete in-
tervals to cover a set of possible lines. Afterwards the Hough accumulator
gets incremented at each position (x, y). This results in a drawn line in the
Hough accumulator. Every point of that line represents a possible line in
the input image. If a colinear set of points with value v(xi, yi) 6= 0 in the
input image is transformed to lines in the Hough accumulator, all of these
lines will pass through a single point. This local maximum decodes a line,
given by the colinear set of points in the input image, or at least a similar
one. Its slope and y-axis section are given through the specific coordinates
of the Hough accumulator.

A line parallel to the y-axis can not be described using the slope-intersect
form, which is a disadvantage of this approach. In 1971 Duda and Hart re-
solved this problem by using an angle-radius normal form rather than the
slope-intersect form to describe a line [22]. The normal form of a line is
given by

x cosα+ y sinα = d, (8)

where d is the algebraic distance from its origin and α is the angle of its nor-
mal. By restricting α to the interval [0, π), all normal parameters are unique,
therefore every line in the input image corresponds to a unique point in the
Hough accumulator. If the coordinate system’s origin is the center of the
image, the maximum distance d to the origin isD :=

√
n2c + n2c/2. Thus, the

resolution of the Hough accumulator depends on the number of discretiza-
tions αstep of α and the input image of size nc × nc. This is, the resolution
of the Hough accumulator is given by (2D × αstep).

As before, transforming a set of colinear points from the input image
to sinusoidal curves in the Hough accumulator will result in one com-
mon point of intersection. Figure 17 shows a input image and its result-
ing Hough accumulator if the normal form of a line is used. Appendix A.8
shows the Hough accumulator for the edge image of figure 14.
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Figure 17: A line and its resulting Hough accumulator. Every point of the line gets
mapped to a sinusoidal curve in the accumulator. The common point
of intersection of all curves represents the line (d, α) of the input image
on the left.
Please note: these images are displayed in inverted colors.

5.2.1 Problems

The Hough transform has several disadvantages. Beside a large require-
ment of memory, the Hough transform detects many similar lines. This
behavior could lead to detected lines which do not exist in the input im-
age. Another problem is the detection of straight lines instead of line seg-
ments. Atiquzzaman et al. [2] presented a modified Hough transform to
compute line segments instead of straight lines. In addition, the input im-
age gets only subsampled by the Hough transform. This is because the
Hough transform computes the parameters in discrete interval steps. Con-
sequently, a detected line in the Hough accumulator does not have to be
the exact line of the input image but can vary in d and α. This can be too
inaccurate for some applications like real-time markerless tracking for aug-
mented reality.

5.3 Interpretation

Both results, the Hough accumulator as well as the line space (here after
both called result texture), of size nr × nr must be interpreted to use their
information8. A line in the input image produces a region in the result
texture. Thus, possible lines are gathered in the neighborhood of a detected
line. This means that a larger line in the input image produces a more
pronounced region than a short line will do. Pixels of such regions can
store greater values than pixels of regions produced by shorter lines. So, if

8In general, the Hough accumulator has no quadratic size. However, the algorithms
described in the next sections consider the Hough accumulator to be quadratic.
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a post-process computes the m-maxima of the result texture, non-existing
lines could suppress shorter existing lines.

This section discusses three approaches to interpret the result texture.
Thresholding simply filters the results by a threshold. The approaches de-
scribed in section 5.3.2 and section 5.3.3 search for the m-maxima in the
result texture, and therefore the m most distinct lines in the input image.

5.3.1 Thresholding

One approach to interpret the result texture is thresholding. For this, a
threshold t ∈ N is defined. Now, every pixel (xi, yi) is considered. If
v(xi, yi) ≥ t, the pixel is regarded as a detected line. The size of the thresh-
old t should depend on the size of the input image as well as on the size of
the lines which are expected. If t is chosen to small, this approach detects
too many lines. Conversely, an overlarge t would detect too few or, in the
worst case, even no lines in the image. Consequently, thresholding is not
a suitable technique to find the m most distinct lines in the input image.
Figure 18 shows the interpretation of the result texture due to threshold-
ing. Thereby an individual t is applied to filter out three lines from the
Hough accumulator and the line space, respectively. Another drawback of
thresholding is the suppression of shorter lines by longer ones.

(a) Thresholding with t = 230 ap-
plied to the line space.

(b) Thresholding with t = 160 ap-
plied to the Hough accumulator.

Figure 18: Thresholding applied to the line space (a) and the Hough accumulator
(b). A specific t was chosen to filter out three lines each.
Please note: these images are displayed in inverted colors.
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5.3.2 Image Reduction

The number of detected lines by using thresholding depends on the used
threshold t and the input image. A stable method, which detects exactly
m lines, is desirable. In general, one could search for the m-maxima by
going through the result texture sequentially. Nevertheless, a preferable
technique would be to search for the m-maxima on the GPU. For this, the
line space is divided into a grid using a compute shader. Each compute
shader invocation reduces the four entries of a grid cell to one entry, so
that only the largest entry remains (see figure 19). Repeating the image
reduction ld(nr) times will lead to the maximum value in the result texture,
and therefore to the most distinct line in the input image. As described in
section 5.1, each entry in the result texture9 additionally stores its position
(xi, yi). With this knowledge, the detected line can be deleted in the original
result texture by setting its value v(xi, yi) = (0, 0, 0). The next maximum in
the input image will be another distinct line, which is different from the first
one. Therefore, doing this procedure m times will deliver the m-maxima of
the result texture.

Figure 19: Image reduction of an nr × nr input image applied ld(nr) = 3 times to
find the global maximum. [12]

A line in the input image produces a region in the result texture, which
contains similar lines. Therefore, it can improve the results, if the neighbor-
hoods of the maxima gets deleted in the result texture. Figure 20 provides
the result of image reduction applied to the line space and to the Hough ac-
cumulator. Applying image reduction without deleting the neighborhood
provides better results for the Hough accumulator (figure 20c) than for the
line space (figure 20a) as some similar lines have been detected in figure
20a. In contrast to this, deleting the 10 × 10 neighborhoods of the maxima

9Section 5.1 describes that each entry of the line space is a three dimensional vector,
where the second and third value store the position. This technique can be transferred to
the Hough accumulator too.

38



in the line space improves the result as shown in figure 20b. Thus, ten dif-
ferent and actually existing lines are detected. Figure 20c and 20d shows
the slight inaccuracy of the Hough transform (marked with green rectan-
gles). This occurs because the Hough tranform samples the input image
in discrete intervals. Here, the angle α of the normal was sampled in 180
discrete steps, as described in section 5.2.1.

(a) Interpretation of the line
space without deleting the
neighborhood of the maxima.

(b) Interpretation of the line
space with deleting the 10 × 10
neighborhood of the maxima.

(c) Interpretation of the Hough
accumulator without deletion
of the neighborhood of the max-
ima.

(d) Interpretation of the Hough
accumulator with deletion of
the 5 × 5 neighborhood of the
maxima.

Figure 20: Ten detected lines in the input image, obtained through reducing the
line space (a,b) and the Hough accumulator (c,d) ld(nr) times per line.
A green rectangle indicates the inaccuracy of the Hough tranform.
Please note: all images are displayed in inverted colors.
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5.3.3 Sorting

Section 5.3.2 provides an algorithm to detect themmost distinct lines in the
input image. For this, them-maxima of the result texture are found through
reducing itm∗ ld(nr) times. Consequently, the computational performance
of the algorithm depends on m. This section provides an approach to de-
tect any number of lines with almost constant performance. For this, the
result texture gets sorted by using a sorting algorithm which is appropri-
ate for GPUs. There are two categories of sorting algorithms: data-driven
ones and data-independent ones. Thereby, data-independent sorting algo-
rithms are well suited to be implemented for multiple processors, therefore
to run on the GPU [34]. The most incisive algorithms in the literature are
the bitonic merge sort [34] and the radix sort [27]. The first m texel of the
sorted result texture are the m most distinct lines in the input image. Con-
sequently, if the unfiltered result texture is sorted, the detected lines are the
same as through reducing the result texture m ∗ ld(nr) times without delet-
ing the neighborhoods of the maxima. To improve the detected lines, the
result texture can be filtered in a preprocessing step. One approach is to use
the image reduction technique as in figure 19. Importantly, the result tex-
ture is not reduced ld(nr) times but less. This will reduce the regions a line
in the input image produces in the result texture and will suppress false
lines in such a region. Results of applying this approach to the result tex-
ture are shown in figure 21. Furthermore, appendix A.9 shows the effects
of different frequent image reduction on the line space with subsequent
sorting.

5.4 Evaluation

This section compares the line space, Hough accumulator and the three
different interpreting techniques in terms of their computational perfor-
mance. The computational performance of the line space was compared
with the performance of the Hough transform. The Hough transform,
used for the evaluation, is performed by OpenCV [14], hence running on
CUDA. Thereby, the Hough accumulator has a resolution of (2D×αstep) =
(
√
n2c + n2c × 180). Figure 22 provides a column chart which shows the

measured time in milliseconds. The Canny edge image of figure 14 acts as
the input image and the computation is performed by the GeForce GTX
580 GPU. The Hough transform is a lot faster than the line space com-
putation, especially for larger images. In detail, for an input image of
256× 256, the line space needs an average of 3.36 ms and the Hough accu-
mulator needs an average of 1.39 ms to be computed. For an input image
of size 768× 768, the Hough transform is up to 17 times faster than the line
space computation. Here, the input image consists of 768 ∗ 768 = 589.824
pixels, whereby 27.555 are pixels of possible lines. Thus, their value is

40



(a) Interpreted line space which has
been reduced five times and has
been sorted.

(b) Interpreted Hough accumulator
which has been reduced three times
and has been sorted.

Figure 21: Ten detected lines in the input image. The line space (figure a) and
the Hough accumulator (figure b) have been reduced several times and
have been sorted subsequently. A green rectangle indicates the inaccu-
racy of the Hough transform.
Please note: these images are displayed in inverted colors.

v(x, y) = 1. The Hough transform computes a set of possible lines for each
of these pixels by calculating their distance d to the origin based on an angle
αdegree ∈ [0, 180). As described before, the resolution of the Hough accu-
mulator is (2D×αstep) = (

√
n2c + n2c×180), resulting in 180 sampling steps

per pixel. Consequently, equation 8 is computed 27.555 ∗ 180 = 4.959.900
times. In contrast to this, the line space algorithm scans all possible lines in
the image as described in section 5.1, therefore 3.526.670 lines are scanned.
Taking into account that a line consists of many pixels, a huge number of
texture accesses are necessary. This can explain the large performance dif-
ferences in favor of the Hough transform.

Figure 23 compares two interpretation techniques applied to the line
space of an input image of size 384 × 384. The green line stands for m ∗
ld(nr) reductions of the line space, when the interpretation technique of
section 5.3.2 is applied. The cost increases linearly with the number of lines
m. In contrast to this, the four horizontal lines represent the technique of
section 5.3.3, running independently of the number of lines m at a constant
speed. It can be concluded that applying ld(nr) image reductions m times
to the line space provides good performance for small number of lines. If
multiple lines must be detected, the performance is better when the line
space is reduced only a few times and then gets sorted. However, one must
be careful that the reduction is not applied too often in order to not lose
important information about existing lines.
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Figure 22: Computational performance in milliseconds of the Hough transform
(blue) and the line space (orange) applied to the Canny edge image of
figure 14 in different sizes. The Hough accumulator has a resolution of
(2D × αstep)) = (

√
n2c + n2c × 180).

The evaluation of the quality of the detected lines is mostly a subjective
assessment. Nevertheless, some statements can be made:

• Thresholding does not prevent good results since it does not deal
with regions around an existing line in the result texture. Accord-
ingly, smaller lines are not detected in the presence of larger ones.
Furthermore, thresholding is not suitable when a defined number of
lines m have to be detected.

• Reducing the result texture m ∗ ld(nr) times provides the m most dis-
tinct lines in the image. Deleting the neighborhood of the maxima in
the result texture can improve the quality of the detected lines.

• Reducing the result texture only a few times and sorting it subse-
quently can provide good results if the number of reduction steps is
chosen carefully.

• The Hough transform does not only detect lines which are congruent
with the input image, due to its discretization. The line space instead
provides lines which are congruent with the input image.
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Figure 23: Comparison of two interpretation techniques applied to the line space
of an input image of size 384× 384.

5.5 Future Work

Beyond this thesis, the line space algorithm to detect lines in an edge image
can be extended. Section 3 has shown that the use of group shared memory
has a great influence on the compute shader’s performance. However, the
compute shader implementation of this thesis does not utilize group shared
memory. The size of the line space is larger than necessary. Appendix A.7
shows a lot of unused texture space. If some optimization can be found,
one third of the line space’s size can be saved.

Another interesting topic is the detection of line segments instead of
infinite lines. For this purpose, the bresenham line algorithm could be ex-
tended. Instead of storing the absolute number of pixels having a value
v(x, y) = 1, the algorithm could store every set of colinear pixels, found on
the way from ki to kj , in a separate texture layer.
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6 Conclusion

Compute shaders extend the OpenGL API with the possibility to use the
GPU for general-purpose computations. As compute shaders are written
in GLSL, their development is similar to the conception and implemen-
tation of other established shader types. Thus, a GLSL developer does
not have to learn any additional APIs to do general-purpose computation
on graphics processing units. In addition to graphics-based shader types,
compute shaders introduce high efficient group shared memory which al-
lows the communication of compute shader invocations within one local
work group. On the one hand, it can be difficult to find an effective way to
use shared memory. On the other hand, they extend the GLSL development
with great flexibility. Chapter 3 has shown that the use of shared memory
has a great influence on the program’s performance when data is reused.
Modern GPUs are general-purpose many-core processors with a very high
data and computation throughput. Consequently, one should always make
sure that a compute shader works on a large data set and that enough lo-
cal work groups are dispatched to prevent streaming multiprocessors from
idling. Hence, it can be stated that at least 16 local work groups should
be dispatched on a GeForce GTX 580 to keep its 16 streaming multiproces-
sors busy. Furthermore, the local work group size should be a multiple
of 32, which is the warp size. Chapter 4 has shown that compute shaders
are suitable for physical simulations - especially in a direct comparison to
a CPU implementation. Porting a CPU implementation to the GPU using
compute shaders is not a difficult task for a GLSL developer. Nevertheless,
the chapter has also shown that data hazards can occur quickly and that
their prevention can be difficult and time-consuming. In chapter 5, com-
pute shaders were used to conceive and develop a new approach to detect
lines in an image. Therefore, all possible lines in an image are scanned. For
evaluation purposes, the implemented prototype was compared with the
results of the Hough transform. The detected lines are good and, in terms of
accuracy, better than the detected lines by the Hough transform. However,
the implemented prototype is much slower than the Hough transform, and
more optimization is desirable.

In conclusion, it can be stated that compute shaders have not only a
right to exist, they complement OpenGL in a great way.
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A Additional Figures

A.1 OpenGL 4.4 Pipeline
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Figure 24: OpenGL 4.4 pipeline. Reddish blocks are fixed function stages, whereas
yellow blocks are programmable through shader programs. The com-
pute shader block is separated from the rest of the graphics pipeline.[42,
p. 32]
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A.2 Fermi Architecture

Figure 25: Fermi’s 16 streaming multiprocessors (SM) positioned around a L2
cache. Each SM consists of 32 CUDA cores. [18, p. 7]
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A.3 Kepler Architecture

Figure 26: Kepler’s 15 new streaming multiprocessors (SMX) positioned around a
L2 cache. Each SMX consists of 192 CUDA cores. [19, p. 6]
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A.4 Kepler Streaming Multiprocessor

Figure 27: Kepler’s Streaming Multiprocessor (SMX) consisting of 192 CUDA
cores, 64 double-precision units (DP Unit), 32 special function units
(SFU), and 32 load and store units (LD/ST). [19, p. 8]
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A.5 Atomic Memory Functions

Figure 28: Atomic memory functions [32, p. 169]
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A.6 Effective Consideration of all possible Lines in an Image

(a) (b) (c)

(d) (e) (f)

Figure 29: An effective way to consider all possible lines in an image, without con-
sidering equivalent lines. Startpoints are colored green, whereby the
endpoints are colored red. From each startpoint, lines are considered
to each endpoint. The corner points are considered separately (a-c) to
prevent the calculation of equivalents of the outermost horizontal and
vertical lines. The rest of the line space is covered by figures d-f.
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A.7 Line Space of a Building

Figure 30: A building, given as a Canny edge image, and its corresponding line
space. Unused texture space is conspicuous, therefore more optimiza-
tion is desirable.
Please note: all images are displayed in inverted colors.

A.8 Hough Accumulator of a Building

Figure 31: A building, given as a Canny edge image, and its corresponding Hough
accumulator.
Please note: all images are displayed in inverted colors.
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A.9 Effects of repeated Reduction on the Line Space with subse-
quent Sorting

(a) 1 Reduction (b) 2 Reductions

(c) 3 Reductions (d) 4 Reductions

(e) 5 Reductions (f) 6 Reductions

Figure 32: Ten detected lines in the input image obtained from the line space by
using the interpretation technique described in section 5.3.3
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16 Line space which results from figure 15. The coordinate sys-
tem’s origin is in the upper left corner. The startpoint ki of a
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goes from 0 to 3n − 1 and the y-axis goes from nc to 4nc − 1
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17 A line and its resulting Hough accumulator. Every point of
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