
Ekaterina Pek

Corpus-based
Empirical Research
in Software Engineering

Dissertation

Koblenz, October 2013

Department of Computer Science
Universität Koblenz-Landau

Ekaterina Pek

Corpus-based Empirical Research in Software Engineering

When someone is seeking, it happens quite easily that he only sees the
thing that he is seeking; that he is unable to find anything, unable to absorb
anything, because he is only thinking of the thing he is seeking, because
he has a goal, because he is obsessed with his goal. Seeking means: to
have a goal; but finding means: to be free, to be receptive, to have no goal.

Herman Hesse, Siddhartha1

1 Translation by Hilda Rosner

Acknowledgments

First of all, I am very grateful to my supervisor, Prof. Dr. Ralf Lämmel, for his guid-
ance, support, and patience during these years. I am very glad that I had a chance
to work with Ralf, learn from his experience and wisdom, and grow professionally
under his supervision, as well as appreciate his friendly personality.

I am grateful to my co-authors: Jean-Marie Favre, Dragan Gašević, Rufus Linke,
Jürgen Starek, and Andrei Varanovich, working with whom was a great intellectual
pleasure.

No man is an island: I would like to thank my ex-boyfriend, Vladimir, for his
great help and support during my PhD; my then-colleagues at the University of
Koblenz for their company, thoughts, and time: my gratitude goes especially to An-
drei Varanovich, Claudia Schon, and Sabine Hülstrunk.

I gratefully acknowledge the support of my work by the Rhineland Palatinate’s
Research Initiative 2008-2011, the ADAPT research focus, and the University of
Koblenz-Landau.

August 2013 Ekaterina Pek

Abstract

In the recent years, Software Engineering research has shown the rise of interest
in the empirical studies. Such studies are often based on empirical evidence derived
from corpora—collections of software artifacts. While there are established forms of
carrying out empirical research (experiments, case studies, surveys, etc.), the com-
mon task of preparing the underlying collection of software artifacts is typically ad-
dressed in ad hoc manner.

In this thesis, by means of a literature survey we show how frequently Software
Engineering research employs software corpora and using a developed classification
scheme we discuss their characteristics. Addressing the lack of methodology, we
suggest a method of corpus (re-)engineering and apply it to an existing collection of
Java projects.

We report two extensive empirical studies, where we perform a broad and di-
verse range of analyses on the language for privacy preferences (P3P) and on object-
oriented application programming interfaces (APIs). In both cases, we are driven by
the data at hand—by the corpus itself—discovering the actual usage of the languages.

Zusammenfassung

In den letzten Jahren gibt es im Bereich Software Engineering ein steigendes
Interesse an empirischen Studien. Solche Studien stützen sich häufig auf empirische
Daten aus Corpora—Sammlungen von Software-Artefakten. Während es etablierte
Formen der Durchführung solcher Studien gibt, wie z.B. Experimente, Fallstudien
und Umfragen, geschieht die Vorbereitung der zugrunde liegenden Sammlung von
Software-Artefakten in der Regel ad hoc.

In der vorliegenden Arbeit wird mittels einer Literaturrecherche gezeigt, wie
häufig die Forschung im Bereich Software Engineering Software Corpora benutzt.
Es wird ein Klassifikationsschema entwickelt, um Eigenschaften von Corpora zu
beschreiben und zu diskutieren. Es wird auch erstmals eine Methode des Corpus
(Re-)Engineering entwickelt und auf eine bestehende Sammlung von Java-Projekten
angewendet.

Die Arbeit legt zwei umfassende empirische Studien vor, in denen eine umfang-
reiche und breit angelegte Analysenreihe zu den Sprachen Privacy Preferences (P3P)
und objektorientierte Programmierschnittstellen (APIs) durchgeführt wird. Beide
Studien stützen sich allein auf die vorliegenden Daten der Corpora und decken da-
durch die tatsächliche Nutzung der Sprachen auf.

Contents

1 Introduction . 1
1.1 Research Context . 1
1.2 Problem Statement . 3
1.3 Outline of the Thesis . 5
1.4 Contributions of the Thesis . 8
1.5 Supporting Publications . 9

Part I Prerequisites

2 Essential Background . 13
2.1 Software Linguistics . 14

2.1.1 Stances in Software Language Engineering 14
2.1.2 Examples of Linguistic Sub-disciplines 15

2.2 Actual Usage of Language . 16
2.2.1 Prescriptive and Descriptive Linguistics 16
2.2.2 Measuring Actual Usage . 17

2.3 Languages Under Study . 21
2.3.1 Platform for Privacy Preferences . 21
2.3.2 Application Programming Interfaces . 22

2.4 Corpus Engineering . 24
2.4.1 Corpora in Natural Linguistics . 24
2.4.2 Corpora in Software Linguistics . 25
2.4.3 Corpora versus Software Repositories 28

2.5 Literature Surveys . 29
2.5.1 Systematic Literature Reviews . 29
2.5.2 Content and Meta-analysis . 30
2.5.3 Grounded Theory . 30
2.5.4 Survey Process . 31

XIV Contents

Part II Language Usage

3 A Study of P3P Language . 35
3.1 Introduction . 36
3.2 Methodology of the Study . 36

3.2.1 Research Questions . 36
3.2.2 Corpus under Study . 38
3.2.3 Leveraged Analyses . 40

3.3 The Essence of P3P . 41
3.3.1 Language versus Platform . 42
3.3.2 Syntax of P3P . 42
3.3.3 A Normal Form . 46
3.3.4 Degree of Exposure . 50

3.4 Analyses of the Study . 52
3.4.1 Analysis of Vocabulary . 52
3.4.2 Analysis of Constraints . 57
3.4.3 Analysis of Metrics . 63
3.4.4 Analysis of Cloning . 73
3.4.5 Analysis of Extensions . 81

3.5 Threats to Validity . 85
3.6 Related Work . 86
3.7 Conclusion . 89

4 A Study of APIs . 91
4.1 Introduction . 92
4.2 Java APIs . 92

4.2.1 Overview of the Approach . 93
4.2.2 A Study of SourceForge . 94
4.2.3 Examples of API-usage Analysis . 97

4.3 .NET framework . 105
4.3.1 Methodology . 106
4.3.2 Reuse-related Metrics for Frameworks 108
4.3.3 Classification of Frameworks . 112
4.3.4 Comparison of Potential and Actual Reuse 116

4.4 Multi-dimensional Exploration . 119
4.4.1 An Exploration Story . 120
4.4.2 Basic Concepts . 121
4.4.3 Exploration Insights . 124
4.4.4 Exploration Views . 130
4.4.5 The EXAPUS Exploration Platform . 134

4.5 Threats to Validity . 135
4.6 Related Work . 136
4.7 Conclusion . 139

Contents XV

Part III Corpus Engineering

5 Literature Survey of Empirical Software Engineering 143
5.1 Introduction . 144
5.2 Pilot Studies . 144

5.2.1 Survey on Empirical Language Analysis 145
5.2.2 Survey on Corpora Usage . 149

5.3 A Survey on Empirical Software Engineering 153
5.3.1 Methodology . 153
5.3.2 Results . 154

5.4 Threats to Validity . 168
5.5 Related Work . 169
5.6 Conclusion . 172

6 Corpus (Re-)Engineering . 175
6.1 Introduction . 176

6.1.1 Benefits of Using an Established Corpus 176
6.1.2 Obstacles to Corpus Adoption . 177

6.2 A Method for Corpus (Re-)Engineering . 177
6.2.1 Underlying Concepts . 177
6.2.2 Method . 178

6.3 Reengineering Qualitas . 179
6.3.1 Details of Qualitas Content . 179
6.3.2 Exploratory Builds . 180
6.3.3 Identifying Core Files and Types . 181
6.3.4 Identifying System Namespaces . 183
6.3.5 Builds . 185
6.3.6 Validation . 187
6.3.7 Automated Fact Extraction . 188

6.4 Threats to Validity . 188
6.5 Related Work . 188
6.6 Conclusion . 190

Part IV Conclusion

7 Conclusion . 195
7.1 Summary . 196
7.2 Future Work . 197

Own Publications . 199

References . 201

Curriculum Vitae . 213

XVI Contents

Appendix . 217
A.1 Appendix for Chapter 3 . 217

A.1.1 Additional Information on P3P Corpus 217
A.1.2 Additional Information on P3P Semantics 222

A.2 Appendix for Chapter 4 . 227
A.2.1 Additional Information on Java APIs . 227
A.2.2 Additional Information on .NET Framework 232

1

Introduction

In this chapter, with the means of a motivating example, we identify research areas
of interest, briefly discuss their challenges, formulate research goals, devise the plan
of attack, and, finally, outline the structure of the thesis.

1.1 Research Context

1.1.1 Motivating example

To motivate our research, we use an early example of an empirical study of FOR-
TRAN programs [115] done by Knuth and his team in 1971. Knuth studied a sample
of applications “in an attempt to discover quantitatively ‘what programmers really
do’.” In other words, Knuth’s study discovers the actual usage of the language (as
is) in contrast to the recommended usage of the language (as should be). The goal of
the study was to provide food for thought for compiler writers.

To collect a sample of FORTRAN applications, different strategies were used:

• “rummage in the waste-baskets and the recycling bins” (to obtain punched cards
with programs);

• “probe randomly among the semi-protected files stored on disks looking for
source text”;

• finally, post a man by the card reader asking users for a copy of their decks.

Each of the methods was reported to be unsatisfactory in its own way: waste-baskets
contained undebugged programs, asking users for a copy involved a full explanation
of the research objectives to each of the users. Nonetheless, a collection emerged, to
which Knuth and his team added some classical benchmarks, well-known libraries,
and programs of their own group. They then proceeded to statistically analyze the
collected 250,000 cards (representing 440 programs) in order to get “a fairly clear
conception of how FORTRAN is being used, and what compilers can do about it.”

For that, Knuth and his team used a combination of static and dynamic analyses.
For instance, they statically calculated how often different types of statements occur

2 Introduction

and what are the specifics of their usage (how deep loops are, what is the nature of
assignments, what is the format of ‘if’ statements, etc.). The results showed that most
of the time, “compilers do surprisingly simple things.” Knuth and his team have also
profiled running programs by counting how many times statements were executed:
thus, they have refined information on statement usage (e.g., that assignments in the
replacement style, i.e., A = B, occur more often in the initialization sections and not
in the loops). Then, for a small subset of 17 random programs, Knuth and his team
have closely analyzed the most time-consuming parts of the programs and have man-
ually translated them into machine language using a collection of optimizations—to
find that in comparison to the original compiled version, they have gained a four- or
five-fold increase in speed.

Altogether, Knuth makes a point that compiler writers should be aware not only
of the best and the worst cases, but also of an average case of programs. He ar-
gues that complimentary to the common point of view—programmers should be
influenced by what their compilers do—there should be an alternative point of view
stating that the design of compilers (and therefore of languages that they represent)
should be strongly influenced by what programmers do.

Generalized, we find this stance logically and practically appealing: the actual
usage of a software language should be taken into account when developing it. Pre-
scriptive approach (how the language should be used—e.g., documentation and tuto-
rials) should go hand in hand with descriptive approach (how the language is actually
used—e.g., Knuth’s study). Such feedback loop allows language engineers to make
informed decisions about future course of the language.

In our work, we follow the same motivation when understanding usage of dif-
ferent software languages. We identify challenges of such research and the ways to
overcome them.

1.1.2 Research areas

Using Knuth’s study as a representative example of the kind of research we report in
our thesis, we identify the research areas that our work falls into.

Software Language Engineering

The focus of Knuth’s study is on a programming language, FORTRAN, and its
users (programmers) as well as engineers (compiler writers). In that, the study be-
longs to the research area of Software Language Engineering, which is concerned
with the software languages—artificial languages used in software development. The
definition of a software language that we consider in our thesis is intentionally broad:
it includes general-purpose programming languages along with domain-specific lan-
guages, modeling and metamodeling languages, as well as implicit approaches to
language definition such as application programming interfaces (APIs).1

1 Cf. the description of the scope of the International Software Language Engineering con-
ference at http://planet-sl.org/sleconf/

http://planet-sl.org/sleconf/

1.2 Problem Statement 3

Software Language Engineering is considered to be about the systematic de-
sign, implementation, deployment, and evolution of software languages [113]—i.e.,
generally, the prescriptive approach dominates in the research area. Such studies as
Knuth’s complement the typical approach by providing data about the actual usage
of software languages—information essential for insights and reasoning about the
current state of affairs.

Empirical Research

Empirical research is usually perceived as taking one of the established forms with
well-defined protocol of the study and applied techniques: controlled and quasi-
experiments, exploratory and confirmatory case studies, survey, ethnography, and ac-
tion research [167, 170]. In a broader sense, which we consider in our thesis, empir-
ical research includes any research based on collected evidence (quoted from [167],
emphasis ours): “Empirical research seeks to explore, describe, predict, and explain
natural, social, or cognitive phenomena by using evidence based on observation or
experience. It involves obtaining and interpreting evidence by, e.g., experimentation,
systematic observation, interviews or surveys, or by the careful examination of doc-
uments or artifacts.”

Knuth’s study falls within such broadly understood, de facto empirical research:
it uses collected software artifacts to derive and analyze empirical evidence with the
purpose of exploring and describing the typical use of the FORTRAN language so
that to predict the input for compilers.

1.2 Problem Statement

As Knuth’s example shows, empirical study of a software language involves two
distinct phases: collecting the evidence2 (punch cards) and analyzing it to answer the
questions at hand (how FORTRAN is being used). Below, we discuss each phase,
identify its intrinsic challenges, and connect each phase with its research area(s)
(see Fig. 1.1).

1.2.1 Phase I – Collecting the evidence

Knuth’s study has a software language as its object of interest and in order to
draw conclusions about the language, Knuth analyzes the language instances—
programs—obtained via various ways from the programmers. The obstacles that
Knuth had to overcome when collecting the evidence are not exceptional: the more
sophisticated and demanding the applied analysis is, the more time the researcher
spends preparing the collection of empirical evidence for it. The lack of common

2 The term ‘evidence’ can take one of the two meanings: i) in a stricter sense, data derived
analytically from the collected artifacts; ii) in a broader sense, it means collected software
artifacts, too. Throughout the thesis, we imply the second, broader, definition.

4 Introduction

Empirical
Research Software

Engineering

Software
Language

Engineering

I. Collecting evidence

II. Analysis of actual
language usage

Phases of
Knuth’s study

Research areas

A

B

Figure 1.1. Phases of the motivating study and their correspondence to research areas

methodology covering this basic step makes researchers to possibly repeat the same
actions collecting possibly the same evidence. Based on the level of existing demand,
having public shared collections might be an option.

In Knuth’s study, the phase of collecting the evidence serves the purpose of ana-
lyzing actual usage of a programming language. In other words, the evidence is col-
lected for an empirical task of Software Language Engineering (area B on Fig. 1.1).
Nonetheless, collecting the evidence is often required for empirical tasks of Software
Engineering as such (area A on Fig. 1.1), especially when those are of practical kind,
explicitly using software in their analyses: program comprehension, maintenance,
reverse engineering, and re-engineering.

1.2.2 Phase II – Analyzing the evidence

We have identified Knuth’s study as an empirical task of software language engineer-
ing (area B on Fig. 1.1) with the aim to discover the actual usage of the language.
Software Language Engineering typically treats languages as software and for that
adopts concepts and techniques from Software Engineering. For the actual usage
analysis, these might not be fully suitable and sufficient as there are intrinsic charac-
teristics of a language that are different from that of software. Indeed, in his study,
Knuth applied Software Engineering techniques such as statical and dynamic analy-
ses to collect the raw data (by parsing, profiling, debugging) but the applied analyses
providing the insights were defined by the structure of the language.

1.3 Outline of the Thesis 5

1.2.3 Research goals of the thesis

Using Knuth’s example, we have shown how generalized phases of such study relate
to the research areas. Namely, we have identified collecting empirical evidence as
a common task for empirical research in both Software Engineering and Software
Language Engineering. We have also established that empirical analysis of the actual
language usage belongs to Software Language Engineering. Based on the observed
challenges in the identified phases, we pose two main research goals of the thesis
that can be linked back to the phases of the motivating example of Knuth’s study,
though in the reversed order:

1. Develop and apply techniques to empirically analyze actual usage of languages.

2. Understand the usage of empirical evidence in Software Engineering research.

Below we break down the goals into the plan of attack.

• To address the first goal, we perform empirical studies on actual language usage
so that to understand the necessities of such research and gain hands-on expe-
rience. For that, we analyze actual usage of several software languages. In each
case, the research tasks vary depending on the application domain of the lan-
guage. During these studies, we develop and apply different kinds of analyses
that are tailored to the software languages as such.

• To address the second goal, we need to understand how common is the task
of collecting empirical evidence in Software Engineering research and what are
the characteristics of the collected evidence. For that, we analyze the existing
research by performing literature surveys of published papers.

• To bring the two research goals together, based on our experience gained in the
empirical studies of actual language usage, we identify obstacles in the process of
collecting empirical evidence and ways to overcome them. Namely, we identify
requirements and obstacles we have encountered during the empirical studies
on API usage analysis3 and summarize our knowledge in a method of corpus
(re-)engineering.

1.3 Outline of the Thesis

Figure 1.2 shows the structure of the thesis and connections between its components.
The main two parts, Part II and Part III, correspond to the research goals of the thesis.
Each part consists of two chapters. Arrows between chapters and parts show flow of
knowledge. For instance, the experience gained during studies on actual language
usage influenced our stance on corpus engineering. The developed methodology of
corpus engineering and its result (a corpus)—in its turn—were used in the advanced
study of API usage.

3 On the definition of APIs as domain-specific languages see Section 2.3.2.

Part I: Prerequisites

Part II: Language UsagePart III: Corpus Engineering

Part IV: Conclusion

Chapter 2
Essential background

Chapter 5
Literature surveys

Chapter 3
Study of P3P language

Chapter 4
Study of APIs

Chapter 6
Corpus engineering

Chapter 7
Conclusion

Figure 1.2. Connections between the chapters of the thesis

1.3 Outline of the Thesis 7

The detailed break-down of the thesis structure is as follows:

Part I, Prerequisites
Chapter 2 provides essential background for the rest of the thesis. We discuss

Software Linguistics and the actual usage of a language. We provide an overview of
the languages studied in the thesis. We introduce terminology for corpus engineering.
We identify and compare possible ways of conducting a literature survey.

Part II, Language Use
This part presents the results of our research on language use. The studies coming

from different application domains and having different motivations demonstrate the
same language-centric approach to a problem.

Chapter 3 presents an empirical study of the P3P language, a domain-specific
language for privacy policies. We selected this language because there is growing
recognition that users of web-based systems want to understand, if not to control,
which of their data is stored, by whom, for what purpose, for what duration, and with
whom it is shared. We devise and apply methods to study usage profiles, correctness
of policies, metrics, cloning, and language extensions.

Chapter 4 presents an empirical study of API usage. We begin with an initial ex-
ploration of the topic in the context of open-source Java projects, where we demon-
strate examples of large-scale API usage analysis and detect different styles of us-
age (framework-like vs. library-like). We investigate further framework usage by
developing a framework profile—a range of reuse-related metrics to measure the as-
implemented design and its usage—and applying it to the Microsoft .NET Frame-
work. Finally, based on the developed analyses, we introduce a catalogue of explo-
ration activities to capture API usage accompanied by a tool.

Part III, Corpus Engineering
This part describes our study on existing use of software artifacts in empirical

Software Engineering and our method for corpus (re-)engineering. The literature
surveys assess the existing demand for corpora in contemporary research—which
motivates our efforts in providing matching supply in the area of our expertise.

Chapter 5 describes literature surveys that we carry out in order to understand
the existing usage of empirical evidence in Software Engineering. We collect and
analyze published papers, extracting signs and characteristics of used empirical evi-
dence. We discover that more than 80% of papers in Software Engineering research
use software projects as empirical evidence.

Chapter 6 describes our effort on corpus (re-)engineering. The discovered de-
mand for corpora motivates us to provide matching supply. In this chapter, we iden-
tify obstacles to corpus adoption based on our own experience (see Chapter 4) and
develop a method for comprehending and improving corpus content, producing a
complete, automatically buildable corpus, with extended metadata. We apply the
method to the Qualitas corpus [175], whose adoption is thereby simplified.

Part IV, Conclusion
Chapter 7 concludes the thesis.

8 Introduction

1.4 Contributions of the Thesis

We list the contributions of the thesis breaking them down into concepts, application,
and tangible deliverables.

1.4.1 Literature surveys on usage of empirical evidence

Concepts: we adopt and adapt Grounded Theory in a literature survey.
Application: we perform three literature surveys on usage of empirical evidence.
Tangible deliverables: the collection of coded papers.

1.4.2 Corpus engineering

Concepts: we develop a method for corpus (re-)engineering.
Application: we demonstrate our method on a popular existing corpus.
Tangible deliverables: an improved version of the corpus.

1.4.3 Language studies

Concepts: we develop analyses from the perspective of Software Linguistics.
Application: we perform three empirical studies applying the developed analyses.

Furthermore, contributions to the application domains of the researched languages:

P3P privacy policies

Application: we
• analyze validation levels and constraints of the language;
• analyze common, dominating policies;
• develop and apply a range of metrics to capture different aspects of policies.
Tangible deliverables: a corpus of P3P policies.

APIs

Application: we
• develop and apply fact extraction for APIs that operates on resolved types;
• develop and apply a range of metrics to capture reuse characteristics of APIs;
• identify and describe explorational insights for API usage analysis.
Tangible deliverables: a tool for API-/project-centric code inspections.

1.5 Supporting Publications 9

1.5 Supporting Publications

The thesis is supported by the following publications, listed in the chronological
order:

1 Ralf Lämmel and Ekaterina Pek. Vivisection of a non-executable, domain-specific
language - Understanding (the usage of) the P3P language. In Proceedings of the
18th International Conference on Program Comprehension (ICPC), pages 104–
113. IEEE Computer Society, 2010.

2 Jean-Marie Favre, Dragan Gašević, Ralf Lämmel, and Ekaterina Pek. Empirical
language analysis in software linguistics. In Brian A. Malloy, Steffen Staab, and
Mark van den Brand, editors, Proceedings of the 3rd International Conference on
Software Language Engineering (SLE), volume 6563 of Lecture Notes in Com-
puter Science, pages 316–326. Springer, 2011.

3 Ralf Lämmel, Rufus Linke, Ekaterina Pek, and Andrei Varanovich. A framework
profile of .NET. In Martin Pinzger, Denys Poshyvanyk, and Jim Buckley, editors,
Proceedings of the 18th Working Conference on Reverse Engineering (WCRE),
pages 141–150. IEEE Computer Society, 2011.

4 Ralf Lämmel, Ekaterina Pek, and Jürgen Starek. Large-scale, AST-based API-
usage analysis of open-source Java projects. In William C. Chu, W. Eric Wong,
Mathew J. Palakal, and Chih-Cheng Hung, editors, Proceedings of the 26th Sym-
posium on Applied Computing (SAC), pages 1317–1324. ACM, 2011.

5 Ralf Lämmel and Ekaterina Pek. Understanding privacy policies - A study in em-
pirical analysis of language usage. Empirical Software Engineering, 18(2):310–
374, 2013.

6 Coen De Roover, Ralf Lämmel and Ekaterina Pek. Multi-dimensional exploration
of API usage. In Proceedings of the 18th International Conference on Program
Comprehension (ICPC), 2013. 10 pages. To appear.

The following work being under submission:

7 Ekaterina Pek and Ralf Lämmel. A literature survey on empirical software engi-
neering research. 10 pages.

The relation between publications and chapters is as follows:

• Chapter 3 is supported by publications [1, 5].
• Chapter 4 is supported by publications [3, 4, 6].
• Chapter 5 is supported by publication [2]. Main part of the chapter (the final

survey) is the work under submission [7].
• Chapter 6 is supported by publication [6].

Part I

Prerequisites

2

Essential Background

In this chapter, we provide essential background for the rest of the thesis. We discuss
Software Linguistics and the actual usage of a language. We provide an overview of
the languages studied in the thesis. We introduce terminology for corpus engineering.
We identify and compare possible ways of conducting a literature survey.

Road-map of the chapter

• Section 2.1 discusses Software Linguistics.
• Section 2.2 provides terminology for actual usage of languages.
• Section 2.3 introduces software languages being analyzed.
• Section 2.4 discusses corpus engineering.
• Section 2.5 gives an overview of survey methodology.

14 Essential Background

2.1 Software Linguistics

In this section, we discuss Software Linguistics, a research stance complementary to
the one adopted in the community of Software Language Engineering. We discuss
how existing science of Natural Linguistics can be inspirational for Software Lin-
guistics: we consider examples of sub-disciplines not necessarily exercised in this
thesis but helpful for understanding the spirit in which it is done.

2.1.1 Stances in Software Language Engineering1

Software Language Engineering, or “Software Languages are Software too”

Software language descriptions and processors are pieces of software. Hence, all
kinds of Software Engineering concepts and techniques can be adopted to software
languages. Software Language Engineering is about the systematic design, imple-
mentation, deployment, and evolution of software languages [113]. Clearly, software
language descriptions have particular properties, when compared to other kinds of ar-
tifacts in software engineering. Hence, traditional software engineering life-cycles,
methods, set of qualities and constraints must be genuinely adapted. If we think about
the distinction of software languages vs. natural languages, then Software Language
Engineering can be compared to the established field of Natural Language Engineer-
ing [46, 68].

Software Linguistics, or “Software Languages are Languages too”

Software Language Engineering practices should be informed by scientific knowl-
edge. In the case of natural languages, linguistics is the science of languages [45].
Hence, it is worth to see which concepts, research methods, perhaps even techniques
or results from the field of linguistics could be adopted to the study of software
languages. In this manner, we obtain “Software Linguistics”. The term Software Lin-
guistics was introduced by Misek-Falkoff in 1982 [140]. This term and the whole
concept of adopting linguistics for software (programming) languages has not seen
much interest. We note that Software Linguistics should not be confused with Com-
putational Linguistics—the former is “linguistics for software languages”; the latter
is (simply speaking) “computing for linguistics” (for natural languages).

Below, we give examples of the broader understanding and definition of Soft-
ware Linguistics—through references to Natural Linguistics. We have found that
the mature, scientific framework provided by linguistics can be reused for software
languages—even though many techniques related to natural languages may not be
(directly) applicable. In fact, one can systematically mine Software Linguistics from
resources such as “The Cambridge encyclopedia of language” [45].

1 This subsection is based on own publication [2].

2.1 Software Linguistics 15

2.1.2 Examples of Linguistic Sub-disciplines2

Comparative linguistics

Comparative linguistics studies, compares and classifies languages according to their
features using either a quantitative or qualitative approach. It aims at identifying pat-
terns that are recurrent in different languages, but also differences and relationships
between languages. Comparative linguistics may also be applied to software lan-
guages. For instance, “Programming Linguistics” [50] compares programming lan-
guages in terms of commonalities, relationships, and differences while discussing
basic matters of syntax, semantics, and styles. “The comparison of programming
languages: A linguistic approach” [79] goes deeper into linguistic aspects.

444 • B. G. Ryder et al.

Fig. 1. Time line for data abstraction.

layer of semantic checking of a program. Development of strong typing in
programming languages happened cotemporally with software engineering re-
search on reliability and later, software reuse. It seems clear that the concepts
of strong typing and software reliability reinforced each other, especially since
the early pioneers in imperative language design were also active in software
engineering research. Further, as type systems for programming languages de-
veloped notions of genericity and polymorphism, these were directly related to
issues of software reuse.

The main imperative languages designed in the 1960s and 1970s—Algol 60,
Pascal, and PL/I—were designed at a time when the software engineering com-
munity was worried about the reliability of code. In the mid-1970s, Barry Boehm
defined software engineering to be “the practical application of scientific knowl-
edge in the design and construction of computer programs and the associated
documentation required to develop, operate and maintain them” [Boehm 1976].
Peter Wegner [1984] talked of the 1950s as a time of stand-alone programs
and the 1960s as a time of development of operating systems and databases.
He stated that the 1970s saw the birth of software engineering, referring to
similarities in the construction of large software systems and large physical
structures such as bridges. The 1980s, in Wegner’s view, saw the development
of interface technologies and the personal computer revolution. The 1990s was
a time of knowledge engineering, the use of intelligent components to build sys-
tems (e.g., adaptation). In this temporal framework, the 1970s—the era of Algol
60 and Pascal—was a key time for software engineering, so that the design of
strongly typed languages, which were type safe, coincided with the beginning
of the discipline of engineering software.

C.A.R. Hoare, a member of the IFIP Working Group in Algol (WG 2.1) active
in the original design of Algol 68 [Bergin and Gibson 1996], was the keynote

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Figure 2.1. Historical linguistics: Time line for data abstraction as presented by Ryder et al.
in [19]

Historical linguistics

Historical linguistics studies the history and evolution of languages—often with the
goal of identifying language families, that is, languages that derive from a common
ancestor. Part of this research compensates for the lost origin of natural languages.

2 This subsection is based on own publication [2].

16 Essential Background

In the case of software languages, history is often well documented. Consider, for
example, the History of Programming Languages (HOPL) conference series. HOPL
focuses on programming languages rather than software languages in general. Also,
HOPL does not stipulate systematic linguistics studies; a typical paper relies on his-
torical accounts by the primary language designers. Some reports, though, provide a
large set of qualitative information regarding the evolution of dialects of languages,
e.g., see Figure 2.1 showing the time line for data abstraction as presented by Ry-
der et al. in [19]. The impact of the evolution of software languages on software
evolution, though real, is not well understood [62], and deserves more research in-
spired by linguistics.

Geo-linguistics

Geo-linguistics studies the intersection of geography and linguistics. Studies can,
for example, take into account the distribution of languages or dialects over coun-
tries, continents, and regions. In work of Steele and Gabriel [169], for instance, the
emergence of dialects of Lisp are considered in terms of geographical zones.

Socio-linguistics

Socio-linguistics studies languages as social and societal phenomena. The design
of software languages and dialects is often directly linked to such phenomena, too.
For instance, in [169] Steele and Gabriel conclude “Overall, the evolution of Lisp
has been guided more by institutional rivalry, one-upsmanship, and the glee born of
technical cleverness that is characteristic of the hacker culture than by sober assess-
ments of technical requirements”. The field of socio-linguistics for software remains
largely unexplored, but see [27] for a related account.

2.2 Actual Usage of Language

In this section, we explore the part of Natural Linguistics related to the actual usage
of a language, identify what we can borrow for Software Linguistics, and root the
identified terms and ideas in the research area of our interest.

2.2.1 Prescriptive and Descriptive Linguistics

A part of Natural Linguistics is concerned with developing models of linguistic
knowledge; it looks for formalisms that are suited to represent the phenomena of
the language. The points of view, though, could differ: represent the phenomena as
they are or as they should be. The latter line of practice, called prescriptive linguis-
tics, aims to establish a standard language, e.g., for education and mass media. The
former line of practice, called descriptive linguistics, aims to reveal the actual usage
of the language [147].

2.2 Actual Usage of Language 17

While prescriptive linguistics follows deductive reasoning, descriptive linguis-
tics follows inductive reasoning. The approaches complement each other, because
observing data allows to infer theory (inductive reasoning), but the resulted theory
cannot be tested by the same method and it requires deductive reasoning. Deductive
reasoning acts in the opposite direction: assuming the theory to be true, it predicts
the data to be observed. By comparing predictions with the actual data, one can as-
sess the validity of the theory. Methods used in each reasoning process adhere to
the nature of reasoning: inductive methods operate on large amounts of data, they
are descriptive and hard to harvest for coherent explanation; deductive methods use
logics to draw conclusions from assumed premises [67].

The descriptive approach, which follows inductive reasoning, therefore, is often
quantitative. Empirical, data-driven methods allow answering questions how much
(the degree to which) and how often (the frequency with which) data has certain
characteristics. The prescriptive approach, which follows deductive reasoning, is of-
ten qualitative. Phenomenological, theory-driven methods allow answering questions
how and why data has those characteristics. Usually, qualitative research follows-up
quantitative: in order to understand how or why a particular phenomenon occurs,
researchers first need to register its existence [88].

2.2.2 Measuring Actual Usage

In Natural Linguistics, prescriptive linguistics needs to have data about the language
before distilling it to the rules of the language, since they do not exist originally.
With artificial languages, such as software languages, prescriptive linguistics comes
first, in the form of grammar, syntax, documentation, etc. Understanding actual us-
age of software languages is therefore important because it provides feedback to the
language designers, developers of language-processing software (e.g., of compilers),
users of the language. The descriptive approach in Software Linguistics has more
weight compared to Natural Linguistics, because evidence provided by it (when sub-
stantial enough) can change the standards of the language—which can be enforced
in a stricter way than with natural languages.

Capturing the actual usage of a language implies working with real-world quan-
titative data, which can be overwhelming, and—without appropriate methods—it is
hard to understand what the data shows.

Frequency count

Frequency count is the most basic statistical measure, showing how many times a
word occurs in a text. Frequency counts can be used as an absolute number or as
percentage. Absolute numbers are often used to describe one dataset on its own: fre-
quency lists allow, for instance, finding the least common terms so that to replace
them with synonyms. Also, using absolute numbers, one can observe statistical reg-
ularities in the usage of the language. Percentage, on the other hand, allows gener-
alizations and comparisons [84]. Speaking about the data in relative terms facilitates
better comprehension. Cf., for instance, “The word ‘of’ occurs in the text 122 times”

18 Essential Background

Rank Frequency Word

1 2944 the
2 2632 of
3 1130 to
4 1043 a
5 1036 in
6 833 and
7 741 for
8 731 is
9 631 that

10 566 are

Top 10 most frequent words Zipf’s law

Figure 2.2. Frequency of word occurrences in the current thesis

versus “The top 100 of the most common words account for half of this text.” Per-
centages are also helpful when comparing different datasets or subgroups of the same
dataset—of different sizes.

Frequency counts are important for practical reasons. For instance, as it was men-
tioned, to detect rarely used words for possible replacement. It was also noted that
distribution of how frequently words occur follows certain laws, the most famous law
being Zipf’s law, which states a constant relationship between the rank of a word in
the frequency list and the frequency with which it is used in the text.

Fig. 2.2 illustrates the law: it shows top 10 most frequent words from the current
thesis along with the plot of frequency against rank on double logarithmic scale.
Knowing how frequencies are distributed may help adjusting the way the data is
handled: e.g., Breslau et al. [31] developed a simple model where probability of
hyperlinks on a webpage follows a Zipf-like distribution; based on that model, they
adjusted the web cache replacement algorithm and showed that it performs best on
the real trace data. However, establishing if the data follows power-law distribution
(which, effectively, Zipf’s law is), is a difficult task [36]3 and, therefore, can be error-
prone.

Coverage

The task of descriptive linguistics in the area of software languages differs from that
in natural languages. For instance, vocabulary of a software language may be finite

3 See also a blog post by one of the same authors: http://vserver1.cscs.lsa.
umich.edu/~crshalizi/weblog/491.html

http://vserver1.cscs.lsa.umich.edu/~crshalizi/weblog/491.html
http://vserver1.cscs.lsa.umich.edu/~crshalizi/weblog/491.html

2.2 Actual Usage of Language 19

while that of a natural language is countable. In practice, that means it is possible
to calculate the coverage of a software language by the given instances of its usage.
It may be useful in tasks of re-designing the language: understanding which parts
are never or rarely used and planning language adjustments accounting for it. For
instance, one of the findings in the empirical study of Java binary code made by
Collberg et al. [38]. was that finally clause of Java exception handlers is rarely
used, while processing of this construct is sophisticated and hinders verification of
Java programs.

Statement

Purpose Recipient Retention DataRef Identifiable

required required Category Optional

Figure 2.3. Frequency of usage for P3P’s syntactical domains (early appearance of Fig. 3.11)

Fig. 2.3 shows an example of coverage for the P3P language (see Section 3.4.1 for
detailed discussion). Without any prior knowledge about the language, its domain,
syntax, and structure, we still can make a few observations based on the obvious fact
that elements of the language are used unevenly. First, we see from the presented
coverage that the P3P language is mostly used to express knowledge about data,
its categories, and some purpose (even without proper understanding what purpose
means, we still can see that it is important). Second, we observe that there are few
language elements that are rarely used (in fact, even hardly visible on the figure).
From that, we can provide the following high-level conclusions: i) any changes in
the language related to representation of data, categories, and purposes will have a
high impact on the existing P3P adopters; ii) a qualitative study may explain, whether
design of the language was over-protective (providing options that are not demanded
in reality) or dissemination of the language was not successful (meaning that the
users do not understand/know about these options).

Footprint

In everyday speech or writing, borrowing words or even mixing languages is a com-
mon affair. Sometimes, after an extended period of use, borrowed words become of-
ficially assimilated into the language and are included into the dictionaries—as hap-
pened, for instance, with the words “taco” and “sushi” that originated from Spanish
and Japanese languages, but now appear in the English dictionaries such as Merriam-
Webster4. Sometimes, though, use of another language in the native tongue (or vice

4 http://www.merriam-webster.com/

http://www.merriam-webster.com/

20 Essential Background

versa) leads to creation of macaronic languages, where words and syntax of different
languages are intertwined. This often happens in the context of immigration: for in-
stance, a flow of immigrants from Post-Soviet countries to Germany in early 1990s
led to creation of Deutschrussisch, or Nemrus. Such languages exist only due to their
use; they do not have textbooks or grammar rules.

In contrast to natural languages, software languages have clear and strong bound-
aries; it is not possible to casually blend one software language into another. Still,
software language can be embedded—often, the host language is a general-purpose
programming language and the embedded language is a domain-specific one. In such
cases, a useful measure as footprint comes to help: measuring “contamination” of
programs written in the host language—with the embedded language.

Figure 2.4. Footprint of APIs in ANTLR project

For instance, when programming with APIs (application programming inter-
faces)5, it is useful to be able to assess API usage within a project. An example
of footprint with respect to API usage is presented on Fig. 2.4. The figure represents
a project-centric view provided by the tool Exapus (see Section 4.4). The view shows
“contamination” of the source code of a project with references to APIs. We see the
package tree of the source code of an example Java project, ANTLR6. Packages that
do not contain any types are marked with the dotted line, otherwise the width of the
border is based on the total number of references to various APIs found in the pack-
age. Such view allows quick assessment of the status of a project, when updating
versions of the used libraries or migrating between APIs. For instance, we observe
that there are a few packages with small number of references to APIs. As a more spe-
cific and more interesting observation, we notice that subpackages of the same parent
package reference APIs differently. Within runtime package, subpackage misc

5 On the definition of APIs as domain-specific languages see Section 2.3.2.
6 http://www.antlr.org/

http://www.antlr.org/

2.3 Languages Under Study 21

references various APIs less than subpackages tree and debug: a possible expla-
nation (based only on the names of the packages) is that utility for runtime-related
tasks that misc subpackage contains is most probably internal, project-related func-
tionality (therefore, no references to APIs). More intriguing is the situation with
grammar package: its subpackages v2 and v3 (apparently, representing versions)
vary significantly in API consumption based on references. Without further inves-
tigation, it is hard to suggest an explanation for this phenomenon: it might be, for
instance, that types in the next version of grammar derive from the previous version,
therefore, hiding the API consumption via references.

Such footprint of API usage is the simplest (yet powerful) measure. We can fur-
ther vary the scope so that to investigate a particular API or even its part. More
sophisticated forms of footprint can be done by considering API types implemented
or extended by the project.

2.3 Languages Under Study

In this section we briefly describe the languages that will be the subject of empirical
studies presented in Part II of the thesis (Chapters 3 and 4).

2.3.1 Platform for Privacy Preferences7

There is growing recognition that users of web-based systems want to understand,
if not to control, which of their data is stored, by whom, for what purpose, for what
duration, and with whom it is shared. W3C’s standardization effort on the Platform
for Privacy Preferences (P3P) specifically produced the P3P language [189, 42] for
privacy policies, which can be viewed as a simple, domain-specific language for
privacy concerns of the users.

The P3P effort was started in 1996 and closed in 2006. P3P’s impact in the wild
has been limited [164, 43]: browser developers were slow to support the negotia-
tion protocol of P3P so that it was even dropped from the standard; lack of industry
participation resulted in the discontinuation of the standardization effort for the sec-
ond, more matured version of P3P; these days, even major websites have invalid or
essentially useless policies and some policies are removed.

There may be several reasons for such limited impact [194, 136]. One may spec-
ulate about lack of stable knowledge of the web-privacy domain or lack of incentive
for the industry to support web privacy. (See [164, 43] for the discussion of such
causes.) We adopt a language engineer’s point of view to better inform the discussion
of limited impact of P3P and future language-based developments in the web-privacy
domain. For that, we perform a vivisection of P3P.

7 This subsection is based on own publication [5].

22 Essential Background

P3P samples

Let us quickly introduce P3P by means of samples. The following two samples,
except for minor variations, are very common in practice.

<POLICY>
<STATEMENT>
<NON-IDENTIFIABLE/>

</STATEMENT>
</POLICY>

Figure 2.5. P3P sample ‘full privacy’

The policy in Fig. 2.5 applies to a website with ‘full privacy’. This policy, without
any data references and with the special NON-IDENTIFIABLE element, signifies
that the underlying web-based system does not collect any data.8

Usually a P3P policy consists of any number of statements—each of which sig-
nifies data references for the collected data, purposes of collecting data, recipients
that receive the data, a retention level, which defines how long data is stored, and a
few other directives.

The policy in Fig. 2.6 applies to a website which performs ‘logging’ but collects
no other data. More in detail, the specific data reference #dynamic.clickstream sig-
nifies that the website collects and stores information for Web-server access logs, and
#dynamic.http is about information carried by the HTTP protocol which is not cov-
ered by #dynamic.clickstream. User data, in the more narrow sense, is not collected
and stored. The purposes admin and develop mean that (weblog data) is collected
for the website’s benefit—the user will not be contacted or affected in any way. The
purpose current is whatever user and system consider the more specific purpose of
the system—be it filling in and sending out birthday cards. The only recipient of the
data is ’ours’, which essentially corresponds to the website. The data may be stored
indefinitely.

2.3.2 Application Programming Interfaces

The term API stands for “application programming interface” and in the broadest
sense means bundled code intended for reuse. Code reuse is the way of taking ben-
efit of existing solutions: in its primitive form, it manifests itself as copy-and-paste;
in its thought-through form, it exists as APIs. APIs are designed to be conveniently
reusable, for that code is grouped into methods, classes, packages —i.e., given a
structure that encompasses functionality, part of which is exposed for external con-
suming.

8 Please note that the NON-IDENTIFIABLE element can also be used in a statement in
combination with data references. In such case, the element signifies that “all of the data
referenced by that STATEMENT will be anonymized upon collection" [189].

2.3 Languages Under Study 23

<POLICY>
<STATEMENT>
<PURPOSE><admin/><current/><develop/></PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><indefinitely/></RETENTION>
<DATA-GROUP>
<DATA ref="#dynamic.clickstream"/>
<DATA ref="#dynamic.http"/>

</DATA-GROUP>
</STATEMENT>

</POLICY>

Figure 2.6. P3P sample ‘logging only’

What we collectively call APIs in this thesis, differ in their style and purpose of
bundling the code for reuse (examples are taken from [171]): they might be libraries
(as “standard” library in C), frameworks (as .NET), software development kits (as
Android SDK), APIs (as Google Map API), to name a few. Libraries can be seen as
the simplest style of reusable code consumption: plain instantiation of appropriate
objects and invocation of the methods. Frameworks leverage inheritance as means
of control and achievement of user’s goals: implementing an interface or extending
a class gives the user opportunity to build-in into the existing frame of functionality.
Software development kits provide more than just reuse of functionality, they pro-
vide a set of development tools, a platform for creation of the software. APIs in the
strictest sense are the public interfaces of existing software, which allow using the
software programmatically.

Typically, the user of an API sees and interacts only with the public part of an
API, not knowing (or caring) what happens in the hidden implementation or how it
is arranged. From this point of view, APIs can be seen as embedded (or internal—
according to Fowler’s classification9) domain-specific languages: there is a general
purpose programming language (a “host” language), like Java or C#, which provides
generic language constructs (iteration, conditionals, functions, etc.), and there is an
API, which provides domain-specific primitives. This combination allows software
engineers to write code in the familiar context, with the language they know, using
API primitives to work with the domain that the API represents on a higher level of
abstraction.

There are two complementary points of view on APIs. In the first place, an API
can be seen as a finite set of public types and public methods exposed for the benefit
of the API user. This basic point of view gives an idea of the API structure, its size,
and available functionality; it allows understanding what is there to use in the API—
i.e., it represents a grammar of the API as a language. Secondly, an API can be seen
continuously, as a sequence of actions: implement or extend an interface or a type,
instantiate an object, call a method. This point of view facilitates correct consumption

9 http://martinfowler.com/articles/languageWorkbench.html#
InternalDsl

http://martinfowler.com/articles/languageWorkbench.html#InternalDsl
http://martinfowler.com/articles/languageWorkbench.html#InternalDsl

24 Essential Background

of the API; it allows understanding how to use the API—i.e., it represents a protocol
of the API as a process.

The first, grammar-like, view on APIs is usually facilitated by public documen-
tation, as, for instance, Javadoc generates, where all the types and methods, return
types and parameters are listed and explained. The second, protocol-like, view on
APIs is usually facilitated by examples, tutorials, or demos provided by the API de-
velopers. Research-wise, the first view gives rise to studies on how to reflect the
information about the usage in the grammar-like representation of APIs (e.g., apply
font scaling in the documentation with respect to popularity of types and methods).
The second view gives rise to research that seeks to mine the information about pro-
tocol aspect of APIs from their usage (e.g., detect usage patterns).

In our thesis, we are taking the first point of view: we treat APIs as domain-
specific languages and we are interested in their usage with respect to their grammar.

2.4 Corpus Engineering

In this section, we introduce terminology necessary to discuss the phase of collecting
empirical evidence—once again, referring and borrowing from Natural Linguistics
as we see fit and beneficial for Software Linguistics.

2.4.1 Corpora in Natural Linguistics

In Natural Linguistics, samples of the language under the study are often organized
into collections that are called corpora. A branch of Natural Linguistics, corpus lin-
guistics, deals with all aspects of designing, producing, annotating, analyzing, and
sharing corpora. Producing a useful, natural linguistics corpus could be an effort that
goes far beyond what individual researchers or teams can do. There are international
associations who support sharing, e.g., the European Language Resources Associa-
tion (ELRA)10. Some of these organizations charge a sum of money for providing
their corpora.

Using corpora is beneficial for different reasons. From the technical point of
view, it saves time and effort for individual researchers, it increases the quality of
research, it makes replication of studies easier. From the research point of view, the
contents of corpora provide evidence that has not been biased by the researcher.
Corpora may also make possible discovery of phenomena that otherwise are not
observable [94].

Corpora are usually collected in a systematic way, following certain extra-
linguistic principles (certain time span, certain type of texts, etc.). Corpora are also
often contain metadata that makes it easier to work with the texts: annotations, mark-
up, tagging parts of the speech, statistical information.

10 http://www.elra.info/

http://www.elra.info/

2.4 Corpus Engineering 25

Types of corpora

Corpora in Natural Linguistics can contain texts written in one or many languages,
i.e., be mono- or multilingual. The basic type of a corpus is a sample corpus (other
types can be seen as the sample type with additional features). A sample corpus is
supposed to show the general usage of a language: represent the usage of language
features and elements proportionally to what can actually be found in reality. A ref-
erence corpus is supposed to reliably represent all the features of a language (i.e.,
reference corpora tend to be quite large). Usually, corpora do not include time dimen-
sion into their design explicitly, they are ‘snapshots’ even if they cover a substantial
period. There are two types of corpora that are designed with time dimension taken
into account: diachronic and monitor corpora. The former contain several snapshots
at different intervals of time (covering altogether a considerably long period); the
latter are continuous and growing with the time. There are also special corpora that
are not intended to represent the general usage of a language, rather to facilitate some
knowledge acquisition about a particular phenomenon. Often, corpora are intended
to capture the normal usage of the language, meaning that only accomplished native
speakers are to be taken into account when gathering the data, in order to represent a
standard of the language. Such corpora are called normative. There are further clas-
sifications of corpora in Natural Linguistics (see [30]), but we omit them here as they
are outside of the context of our study.

Since it is hard to operate on large collections of plain text, in order to facilitate
research corpora are marked-up, annotated, or tagged, with additional metadata, as,
for instance, part of the speech—verb, noun, etc.—which are hard to detect auto-
matically. While having metadata leads to machine-readable corpora and extensible
research, queries based on annotations can reveal only the facts that are capturable
by the metadata that was identified earlier.

2.4.2 Corpora in Software Linguistics

Software Language Engineering is not the only area of Software Engineering that
makes use of collections of software artifacts. Often, practical studies concerned
with such topics as program comprehension, maintenance, reverse engineering and
re-engineering use collections of software artifacts. Figure 2.7 presents a schematic
depiction of such research.

The process of collecting software artifacts, though frequent in research, does
not have an explicit methodology. The steps involved are nonetheless easy to distin-
guish. The process starts with identifying a set of software artifacts to be collected
and pre-processed; the obtained corpus is then subject to fact extraction; facts are
usually extracted once or on a regular basis and stored in a relational database; the
extracted facts are then analyzed and the results are interpreted. The specifics of re-
search questions influence each step of the process—choice of the type and instances
of software artifacts, extracted data, applied analyses—and it is probably impractical
to generalize the whole process. However, the phase of collection and pre-processing
artifacts should be possible to standardize either methodologically or by using estab-
lished collections for fact extraction.

26 Essential Background

Software artifacts

.

Corpus

Corpus engineering

.

.

.

.

Data
 Fact extraction

Results
 Analyses

Figure 2.7. Simplified depiction of corpus-based Software Engineering research

Terminology

Let us introduce terminology that we will use further throughout the thesis. A corpus
is a collection of software artifacts that, generally speaking, can be of any nature.
We name corpus engineering the tasks related to the phase of collecting and pre-
processing the artifacts. Unit of the corpus captures the term in which contents of the
corpus are described: images, XML files, software projects. Our assumption (that
we confirm by the literature surveys) is that Software Engineering research often
makes use of corpora that consist of software projects (programs, systems). We refer
to such collections as project-based corpora and will focus on them particularly
in this thesis. Project-based corpora can be mono- or multilingual, when the units
(i.e., projects) written accordingly in one or more languages. These corpora contain
projects in one of the code forms—source code, binary code, or both. In project-
based corpora, projects can be the high-level units, in the context of which research
is concerned with some additional units (terms): tests, bugs, defects, features, etc.

Following the existing classification of corpora in Natural Linguistics, let us call
the project-based corpora that were created to be a diverse representation of projects
written in a specific language—sample corpora. Often, though, the corpora users are
interested in only well-established, real-world projects—we will call such corpora
normative. Those corpora that were created with an additional requirement (e.g.,
to cover a specific application domain), we will call special corpora. Corpora that
contain several versions of the same project(s) we will call evolutional (not distin-
guishing between diachronic and monitor corpora for now, as the state of corpus
engineering in Software Engineering is not sufficiently developed for finer terminol-
ogy).

Historically, corpus engineering is an expensive, time-consuming effort, neither
appreciated nor rewarded by the community. The existing established corpora are

2.4 Corpus Engineering 27

typically a side-effect of research where a corpus was needed to solve the task at
hand; afterwards the combination of altruism and pragmatism motivated additional
effort for sharing.

We believe that recently there appeared a growing need for sample normative
corpora, when researchers became interested in large-scale corpus-based or corpus-
driven studies. For instance, Baxter et al. analyzed statistically structure of 56 Java
projects [24] in the corpus-driven style. That study gave rise to the effort of Quali-
tas Corpus [175]11, a curated collection of Java code—a sample normative corpus,
the first of its kind in our opinion (see other corpus engineering efforts discussed in
Section 6.5).

Corpus engineering tasks

There are several corpus engineering tasks that general in their nature when a project-
based corpus is concerned, regardless of what other characteristics it should have. We
outline these tasks and some guidelines how to address them below.
Collecting the data. The following are examples of requirements to be considered
before identifying appropriate projects:

• What language projects should be written in?
• Which code form is needed: source code or binary code?
• Should the corpus be diverse along the following characteristics or specific: size,

application domain, maturity, etc.
• Are there any additional requirements to the corpus: e.g., should projects be

buildable, runnable, have unit tests, etc.
• Is evolution aspect needed?

– if yes: What kind of evolution measure is needed (releases, versions, com-
mits, etc.)?

– if no: Which snapshot of projects to consider (latest version, specific date,
etc.)?

Providing additional contents. Physically obtaining the needed data can be a multi-
step process. In the most simple case, projects in their source or binary code form
are downloaded from their repository or homepage. Such distributions may be in-
complete with respect to used libraries, identifying and acquiring which is a separate
process. Initially identified requirements to the contents of the corpus may include
broader context than only code form: e.g., a corpus might also include data about
bugs, defects, commits, emails, and other artifacts of the project’s ecosystem. Ob-
taining such contents is a separate process that includes identifying sources for the
additional contents and ways to collect them (e.g., crawling online sources).
Sanitizing the data. While in Natural Linguistics, “actual usage of language” means
“as is” (including possible errors and deviations), in Software Linguistics, the defini-
tion of a software language is an operational one (involving compilers, interpreters,

11 http://qualitascorpus.com/

http://qualitascorpus.com/

28 Essential Background

and other language-processing software), and except for certain instances of re-
search, studies mostly are based on the correct usage of the language. Therefore,
either the corpus should be filtered to contain only valid samples or there should be
means of distinguishing different levels of validity.

It is also important for the corpus to be aware of the contents of the projects.
For instance, source code form may additionally contain files of non-programmatic
nature: documentation, images, and so on. It may contain files directly used in
the project but non-executable or written in other languages: configurations, XML
schemas, etc. Both source and binary code forms usually depend on libraries, i.e.,
binary files containing reusable code exercised in the project, which maybe included
into the project’s distribution or were added on the previous step of corpus engineer-
ing. Finally, source code itself may be heterogeneous and contain auxiliary code, for
testing, demo, or other purposes, as well as partial clones of different size from other
projects (copy-and-paste approach in functionality reuse).
Providing metadata. Having metadata in a corpus facilitates fact extraction. Like-
wise in Natural Linguistics, using corpus metadata in research has benefit (easier
processing, delegation of quality, comparability) and drawbacks (restriction of the
possible research questions, lack of details)—i.e., corpus-based versus corpus-driven
approach.

One example of metadata useful for Software Linguistics can be marking up
parts of the projects during the sanitizing phase. Tagging parts of the projects may
include any custom needs: identifying and labeling API usage, design-specific parts
of the system, etc. A corpus can also provide statistical information: values of dif-
ferent metrics for the code (size, complexity, etc.) Metadata also can be fine-grained
(specified on the level of individual types or methods) or aggregated (on the level of
packages, directories).

2.4.3 Corpora versus Software Repositories

One might argue that there is no need to introduce the new terminology as collections
of software artifacts already exist in different forms, one of which—frequently used
in Software Engineering research—is software repositories.

The main difference that we see between such collections of software artifacts
and corpora is their target group, the stakeholders involved. While the software
repositories are tailored towards the developers, the corpora are designed for the
researchers—both may contain the same projects but serve completely different
goals (developing the code vs. investigating the code) which influences greatly the
way of representing and maintaining the respective collections. If to use an analogy
from the field of Natural Linguistics, libraries represent vast collections of books
written in natural languages—yet they are not corpora, only the possible raw mate-
rial for them. The same is true for software repositories: the contain software artifacts
for the primary use, while corpora contain them for the secondary, meta-use.

In Software Engineering research, software repositories are often the main source
for producing throw-away corpora that are used only for the needs of the current

2.5 Literature Surveys 29

publication in the pipeline. This is the tendency that we believe is possible and im-
portant to eliminate for the sake of quality and reproducibility of reasearch (if not for
the mere comfort of the researchers).

2.5 Literature Surveys

As discussed in Introduction, Section 1.2.3, we aim to assess the usage of empiri-
cal evidence in Software Engineering by discovering the signs of it in the existing
research—namely, in the published papers, via a literature survey. In this section, we
describe the possible methods to conduct a literature survey and comment on their
applicability to our research. In the end, we outline the resulting method that we use
in the thesis.

2.5.1 Systematic Literature Reviews

It is often said that science is “standing on the shoulders of giants,” meaning that one
should be aware of the previous work and use it when possible for further expansion
of knowledge. Practical areas of science, such as Software Engineering, have specific
challenges related to this desired continuous flow of research. In order to be able to
assess and integrate results obtained by other researchers, one needs to be able to
identify research context, applied methods, used empirical evidence, and so on. This
necessity is addressed by the evidence-based paradigm, which provides guidelines
for systematic collection and analysis of available empirical data w.r.t. some specific
phenomenon. Such approach allows getting a broader and deeper knowledge about
the phenomenon in question than an individual study. The main method of evidence-
based practice is a systematic literature review. It is a literature survey that allows
gathering, extracting, and integrating results existing in the research area in focus.

The evidence-based paradigm originated in medicine, where studies are often
done in a rigorous statistical manner (experiments, quasi-experiments, etc.). The ap-
proach was adopted for Software Engineering by Kitchenham et al. in 2004 [112,
109].

Systematic literature reviews usually have a specific research question in focus
that allows to distinguish relevant studies. The search strategy of a systematic re-
view usually consists of i) identifying one or more digital libraries along with an
appropriate set of keywords/keyphrases; ii) identifying conferences and/or journals
and a time span for the published papers; iii) combination of both. The search strat-
egy allows collecting studies—as many as possible—so that to further assess them
w.r.t. previously developed inclusion and exclusion criteria. The papers identified as
relevant are then subject to data extraction: collecting the required information to
be synthesized at the final stage. Each step of the review is previously documented
in a review protocol: the research question(s), the search strategy, the inclusion and
exclusion criteria, data extraction strategy, and so on. The review is to follow the
guidelines of the protocol at all times—such strictness is to reduce the possibility of
researcher bias.

30 Essential Background

Applicability

The major reason why systematic literature review is not a suitable choice for our
survey is its rigorousness. The goal of our survey is to discover the existing phe-
nomenon of which we yet do not know much. Therefore, it is hard if not impossible
to prepare beforehand an appropriate data extraction strategy that would cover all
existing characteristics of empirical evidence used in Software Engineering.

Nonetheless, we borrow from the method of systematic review the most impor-
tant idea of systematically documenting the made decisions for better reproducibili-
ty/assessment of the quality of the survey: e.g., used search strategy, applied methods,
etc.

2.5.2 Content and Meta-analysis

We also consider two research methods commonly used in social and health sciences,
namely, content analysis [117] and meta-analysis [75]. Content analysis is a quali-
tative research method commonly used for systematically studying large amounts
of communication content such as news, articles, books, videos, or blogs. The key
characteristic is that the analyzed content is categorized by researchers. Systematic
literature surveys [41] often leverage content analysis.

Meta-analysis is another research method used for a systematic analysis of re-
search literature. Unlike content analysis, meta-analysis is a quantitative method,
and it is focused on research studies that have highly related research hypotheses.
The main goal of a meta-analysis is to aggregate and statistically analyze findings
of several research studies. Meta-analysis uses stricter inclusion criteria than con-
tent analysis: measured outcomes, and sufficient data to calculate effect sizes. These
specifics of meta-analysis challenge its application to empirical software engineer-
ing [110].

Applicability

The subject of our survey is not exclusively of qualitative or quantitative nature: we
both need to be able to detect the categories, in which to speak about used empirical
evidence, and to be able to extract their related structural and countable characteris-
tics.

From content and meta-analysis, we borrow the essential idea of coding the pa-
pers w.r.t. a coding schema and performing basic statistical measurements on discov-
ered quantities.

2.5.3 Grounded Theory

Grounded theory was developed by Glaser and Strauss in their study of death in
the context of patient caring [73]. Their methodology [74], nowadays often used in
social sciences, was primarily tailored towards qualitative studies working on the
large amounts of data collected from various sources: reports, formal and informal

2.5 Literature Surveys 31

interviews, observations, etc. The data is reviewed and (extensively) coded by the re-
searchers; codes are grouped into concepts; concepts are united within categories; the
latter are the basis for a theory—a reverse-engineered hypothesis. This approach is
bottom-up, as opposed to a typically used top-down scientific perspective that starts
with a hypothesis to be checked. Later, Glaser and Strauss split in their understanding
to what extent the coding should be open (on the differences between Glaserian and
Straussarian grounded theory see [12]). Following his understanding of openness,
Glaser also suggested that grounded theory can be used in quantitative studies [72].

Applicability

Grounded theory is more suited to our needs as in our research task we do not have
exact definitions for the phenomenon that we intend to capture. Grounded theory may
be seen as inexact method, allowing too much freedom, but the general mechanism
in its basis—bottom-up direction of the processing of the data that facilitates the
emergence of theory—essentially is the same process that leads to an insight and
formulation of a research hypothesis “behind the stages” of research.

We use the core idea of grounded theory: we let the coding schema to emerge
from the data. We use our pre-existing knowledge about the domain to form an idea
of the coding scheme for the survey. During the coding phase, we accumulate new
knowledge and allow it to influence the development of the schema.

2.5.4 Survey Process12

We describe the main steps in our survey process integrating all borrowings from
discussed methodologies (the literature survey itself is reported in Section 5.3). We
also discuss deviations of the pilot studies that we performed when looking for the
right methodology (the pilot studies are reported in Section 5.2). There are two main
reasons to the adjustment followed after the pilot studies. First, we have realized
that empirical evidence in the form of projects, programs, software is not specific to
the area of Software Language Engineering research; that Software Engineering as
such often makes use of it. Second, we have come to the conclusion that the most
complete scheme that we are able to devise can come only after having considered
all the papers; neither theoretical considerations nor expertise can help covering all
possible characteristics—only the data itself can.
1. Research questions. Initially, our research goal was to characterize research in
Software Language Engineering with an objective of streamlining future research by
identifying common characteristics. After the pilot studies we refined our goal to the
following: discover and understand the use of empirical evidence in Software Engi-
neering with the same objective. More specifically, we seek to understand how often
it is used and what are the common characteristics. (The refined research questions
are posed in Section 5.3.1)

12 This subsection is based on own publication [2].

32 Essential Background

2. Search strategy. Initially, we used a selection of papers that were gathered via
bibliographical references, starting with a seed—a set of hand-picked papers that we
have identified as “appropriate.” For the second pilot study, we decided to collect
papers from the proceedings of certain conferences. We identified the list of the con-
ferences from our experience, including those conferences whose topic implies (to
our experience) use of empirical evidence. We also decided to take into account only
the most recent research, because it became apparent that empirical research became
stronger in the community over the years. For the final survey, we adjusted the list to
contain only conferences with proceedings of comparable sizes.
3. Inclusion criteria. In both pilot studies, we used inclusion criteria. We started
with two requirements: i) the paper discusses usage of a software language, and ii)
the paper reports empirical results on such usage based on a corpus. After being ex-
posed to the papers and after distilling own experience, we decided to remove the
first requirement, taking into account only the fact of some empirical research (un-
derstood broadly) reported in the papers. We did so, because we observed that many
papers in Software Engineering research in general make use of empirical evidence,
such as projects, programs, etc. After the second pilot study, it became apparent that
almost all of the papers make use of empirical evidence. This observation led to the
decision to restrain from using any inclusion criteria, taking all the collected papers
into account.
4. Data evaluation. Initially, we were interested in characterizing not only the used
empirical evidence, but also the research—focusing only on Software Language En-
gineering. After we made our scope broader, including Software Engineering in gen-
eral, it became an overwhelming task, to characterize the research as such, therefore,
we have restricted our interest only to the characteristics of the used empirical evi-
dence. In the pilot studies, we have followed a pre-defined coding schema that came
from our experience.
5. Data analysis. We use basic statistical methods to represent the results: frequency
counts, percentages, percentiles. The frequencies describe the level of presence of
certain types of empirical evidence and their characteristics. The quantitative descrip-
tion of the current situation in Software Engineering w.r.t. use of empirical evidence
helps to discover common ground. Such analysis can also lead to new insights and
allows posing new research questions for possible follow-up quantitative as well as
qualitative research.
6. Dissemination. The approach to the literature survey, its topic, the developed
scheme, and the results—we see our effort as the first of its kind. We strongly be-
lieve in the bottom-up approach of discovering the methodology for use of empirical
evidence in Software Engineering.

Part II

Language Usage

3

A Study of P3P Language

In this chapter, we present an empirical study of the P3P language, a domain-specific
language for privacy policies. We selected this language because there is growing
recognition that users of web-based systems want to understand, if not to control,
which of their data is stored, by whom, for what purpose, for what duration, and with
whom it is shared. We devise and apply methods to study usage profiles, correctness
of policies, metrics, cloning, and language extensions.

Road-map of the chapter

• Section 3.1 briefly introduces P3P language and motivates the study.
• Section 3.2 describes the methodology: research questions, corpus, analyses.
• Section 3.3 presents the essential language definition of P3P.
• Section 3.4 prepares, executes, and interprets analyses on the corpus.
• Section 3.5 discusses threats to validity for this empirical study.
• Section 3.6 discusses related work.
• Section 3.7 concludes the chapter.

Reproducibility

The reported study relies on a P3P corpus obtained from the Internet. The corpus and
various artifacts related to the performed analyses are available online on a supple-
mentary website for reproducibility’s sake and for the benefit of anyone who needs
an organized corpus of P3P policies1.

Related publications

Research presented in this chapter underwent the peer-reviewing procedure and was
published in the proceedings of International Conference on Program Comprehen-
sion in 2010 [1] and subsequently in the special issue of Empirical Software Engi-
neering journal in 2013 [5].

1 http://softlang.uni-koblenz.de/p3p

http://softlang.uni-koblenz.de/p3p

36 A Study of P3P Language

3.1 Introduction

(A brief introduction to the language is provided in Part I, Prerequisites, Sec-
tion 2.3.1.)

Let us clarify here our general background as well as the reasons for interest in
P3P and language usage thereof. Such background provides context for the research
questions to follow.

That is, initially, we were interested in privacy awareness of web-based systems
or, in fact, enforcement of privacy policies for such systems [105, 17, 13, 86, 142,
161, 64, 104, 119, 129, 155]. It quickly became clear that P3P is the most advanced
language for privacy policies—most advanced in terms of standardization and adop-
tion. Hence, we started to study P3P in a conservative manner—by consulting the
specification, additional documentation, and available examples. We also quickly
learned about empirical studies of P3P [57, 153, 44, 154], which turned out to be
focused on language adoption, and, to a lesser degree, syntactical validity of policies
as well as compliance of policies with legislation or human-readable policy descrip-
tions.

Not even the combination of all the aforementioned resources helped us to under-
stand P3P sufficiently from the perspectives of language design as well as language
and system engineering; neither could we sufficiently grasp the domain of web pri-
vacy in this manner. As a result, we embarked on a different kind of empirical study
based on the following research questions: What part of the vocabulary is used? Is
the language correctly used? What is a significant policy? What are common poli-
cies? What language extensions circulate?

3.2 Methodology of the Study

The empirical study of P3P language usage is centered around a number of research
questions that we describe first. The study relies on a corpus of P3P policies in the
wild; the corpus’ compilation is described next. The study leverages a number of
analyses to gather data towards answering the research questions; these analyses are
briefly introduced last. (§3.4 covers all analyses in detail.)

3.2.1 Research Questions

The following questions were designed to help understand P3P from the perspectives
of language design as well as language engineering; better understanding of the web-
privacy domain was an objective, too.

What part of the vocabulary is used?

P3P provides a rich vocabulary for the privacy domain. Basic understanding of the
domain may benefit from insight into the coverage of the vocabulary in the wild.

3.2 Methodology of the Study 37

Uncovered vocabulary may be superfluous or misunderstood. Frequently used vo-
cabulary suggests a common profile of P3P usage. This research question directly
relates to an open challenge with privacy policies according to [164] (see “Recom-
mendations for the Future”; “Keep it simple”).

Is the language correctly used?

Like for most other software languages, correct use of the P3P language is not suf-
ficiently constrained by a context-free grammar or an XML schema. There are ad-
ditional constraints that can be checked for policies. To give a simple example, ‘no
retention’ (say, no storage) arguably cannot be combined with ‘public’ as recipient.
It is common that the definition of a software language (specifically, when it is a
programming language) also provides a type system or a static semantics, possibly
extended by rules of pragmatics to describe constraints for correct use. In the case
of P3P, there is no comprehensive specification of such constraints available, but
some proposals can be found in different sources. The question arises whether pol-
icy authors make correct use of the language in terms of obeying these additional
constraints.

What is a significant policy?

We assume that a correct and precise policy gives insight into the system (the web-
site) to which it is attached. In some limited sense, the policy may be regarded as
model of the system. Here, we adopt a reverse engineer’s point of view. For instance,
a policy may provide some degree of insight into the data model of the system, the
internal or external components or services making up the system, and, of course, the
system’s ability to provide its services in the view of specific data that is optionally
or mandatorily provided by the website’s user and possibly stored by the system.
Accordingly, the question arises what significant policies look like in the wild—
significant in terms of serving as an interesting or complex model in the aforemen-
tioned sense. Clearly, such complexity may be diametral to privacy, but we are not
interested here in the policies promising the most privacy, rather, we are interested
in the policies promising the most insight into the attached systems. This question
guides us specifically in studying software metrics [63] for P3P.

What are common policies?

There are indicators that some policies may be common. In particular, policy author-
ing tools provide templates that may be used, perhaps even “as is”, except for resolv-
ing entity/identity information. These templates are meant to cover simple privacy
scenarios for websites; think of the introductory P3P examples. Also, the online dis-
coverability of policies implies that policy authors may easily reuse existing policies,
if they see fit. Further, the P3P syntax is so simple, when compared to programming
language standards, that one may expect that policy authors naturally end up with
equivalent or similar policies. This question guides us specifically to perform clone
detection [116] for P3P.

38 A Study of P3P Language

What language extensions circulate?

A remarkable feature of the P3P design is that it anticipates the need of extending the
P3P language and supports language extension with a designated language mecha-
nism. In different terms, P3P is hence prepared for ‘growing a language’ [100]. The
principal feasibility of such an extension mechanism follows from the simplicity of
P3P with its emphasis on a vocabulary as opposed to the rich language constructs of
programming languages. By studying the usage of said mechanism we gain insight
into language extensions that are proposed in the wild, thereby suggesting potential
improvements for future policy languages.

3.2.2 Corpus under Study

We carried out our empirical language analysis of P3P on a corpus that was obtained
from the Internet. In the following, we identify the source of the corpus, we describe
the process of corpus retrieval and list size measures for the corpus and subordinated
artifacts. Please note that we made the corpus readily available online in an open-
source project.2

Open Directory Project

We used the Open Directory Project (ODP) as the source for finding websites with
policies. ODP is a global, openly available, community-moderated, actively main-
tained directory of companies, consortia, and other entities with a web presence
that may be reasonably expected to potentially declare a privacy policy.3 For conve-
nience’s sake, Appendix A.1.1 provides additional information about ODP’s charac-
teristics. We downloaded the ODP as of 7 August 2010. To the best of our knowledge,
ODP is the most comprehensive website catalog of its kind, and hence, it suggests
itself as an obvious source for an empirical study like ours. We refer to the threats to
validity discussion in §3.5 for reflections on the choice of the ODP source.

We extracted all website URLs from (the downloaded) ODP files. Some URLs
occurred more than once. Most URLs used distinct domains; this can be viewed as a
simple indicator of diversity. The corresponding numbers are listed in Table 3.1.

Website URLs 4,009,337
Distinct website URLs 3,860,709
Distinct domains 2,957,657

Table 3.1. Results of URL scraping

2 http://slps.svn.sourceforge.net/viewvc/slps/topics/privacy/
p3p/

3 ODP website: http://www.dmoz.org/

http://slps.svn.sourceforge.net/viewvc/slps/topics/privacy/p3p/
http://slps.svn.sourceforge.net/viewvc/slps/topics/privacy/p3p/
http://www.dmoz.org/

3.2 Methodology of the Study 39

Locating and downloading policies

We followed all URLs from ODP to locate policies on the corresponding websites
and to download the located policies. These efforts were performed over Aug–Sep
2010 (categories Regional and World), and Dec 2009–Jan 2010 (all other categories
except ‘Kids and Teens’, which is not included in our corpus due to a lately discov-
ered omission).

The mechanism of finding out whether a site uses P3P and locating the actual
policy commences as follows. The site is checked whether a policy reference file
exists. If so, the policy reference file is processed, and all referenced policies are
fetched. In fact, the reference file may use URIs to refer to policies (say, policy files),
or policies may be embedded into the reference file. All those policies were retrieved
by us.4 The corresponding numbers are summarized in Table 3.2. Again, numbers of
reference files and policies are annotated with the number of distinct domains; this
can be viewed as a simple indicator of diversity.

Files # Distinct domains

Located policy reference files 50,776 43,195
Referenced policy files 13,536 8,736
Downloaded policies 8,768 7,746

Table 3.2. Results of policy location and downloading

We note that reference files may directly contain policies; in these cases, we
extracted the policies. One can observe that only few entries of ODP have an associ-
ated policy reference file: 3,860,709 website URLs vs. 50,776 policy reference files.
Numbers are further decreasing as follows. We could not retrieve policy files for each
reference file due to unresolvable references, i.e., failing downloads. Also, there is
aliasing involved, i.e., several policy reference files point to the same policy.

Schema-based validation

The extracted policies are still subject to validation. Each policy file is supposed to
contain one or more policies. However, not all policy files contain XML. That is, files
may happen to be empty or contain non-XML text. Further, not all policy files with
XML content are well-formed XML, and not all well-formed XML content from
policy files are valid with regard to P3P’s XML schema. Counts of files on vary-
ing levels of validity are shown in Table 3.3. Again, numbers of files are annotated

4 According to W3C’s P3P specification [189], the policy reference file may be located by
either of the following options. The file may be located in a predefined “well-known” loca-
tion, which is essentially [WebSiteURL]/w3c/p3p.xml. Also, the website may contain
the HTML/XHTML tag <link> indicating the location of the file. Finally, an HTTP re-
sponse from the server may contain the reference.

40 A Study of P3P Language

with the number of distinct domains in an attempt to provide a simple indicator of
diversity.

Criterion # Files # Policies # Distinct domains

All downloads 8,768 — 7,746
XML 7,899 — 7,554
Well-formed XML 7,675 — 7,371
Schema-validated XML 5,905 6,182 5,673

Table 3.3. Stages towards syntactical validity

We define our P3P corpus to consist only of those 6,182 policies that are valid
with regard to P3P’s XML schema. For completeness’ sake, we mention that some
P3P tools tolerate ill-formed or schema-invalid XML to some extent. Such tolerance
is tool-specific though, and we do not try to use obviously incorrect policies in this
study.

For convenience’s sake, Appendix A.1.1 provides additional information about
the diversity of the corpus in terms of top-level domains and ODP’s website cate-
gories. These considerations are inspired by studies of P3P adoption both geographi-
cally and in terms of website categories [57, 153, 44, 154]. Adoption and geographic
or categorical diversity are not directly of interest in our study, but we do provide
such extra diversity data so that others can assess the generality of our results.

3.2.3 Leveraged Analyses

Driven by the research questions and our overall background in software language
engineering, we leverage several analyses. These are all original analyses as far as
P3P is concerned. Except for the analysis of language extensions, these analyses are
generally useful in studying language usage in an empirical manner. That is, other
domain-specific languages may also be subjected to this scheme.

Analysis of vocabulary

We use simple coverage and frequency analysis to determine unused, used, and fre-
quently used vocabulary, thereby addressing the research question of §3.2.1. This
analysis is applied to the basic enumeration types of P3P, i.e., purposes, recipients,
and retention, but also to P3P’s Base Data Schema (BDS).

Analysis of constraints

Various resources, including the (latest but provisional) P3P specification, stipulate
different additional constraints. We collect and implement these constraints so that

3.3 The Essence of P3P 41

we can determine violations by the corpus, thereby providing data for the research
question on correct use of P3P; see §3.2.1. We select some of these constraints for
the notion of semantical validity, which we require for some of the other analyses in
the study.

Analysis of metrics

We provide different metrics that measure the size of a policy. One metric directly
measures the size of a suitable syntactical representation. Another metric abstracts
from the representation, and measures instead the size of a normal form that views
a policy as the extensional set of facts that it declares. Yet another metric focuses
on the size of the data model that is referenced by a policy. Finally, there is met-
ric focused on P3P’s finite domains for purposes, recipients, and categories. These
different metrics help us to identify significant policies according to the research
question of §3.2.1.

Analysis of cloning

Clones of complete policies are found using different detection techniques. Textual
clones are literally identical policy files, and they are necessarily the result of copy-
and-paste behavior because of the entity/identity information that is included into
each policy. Syntactical clones are policies equal in terms of their essential (say,
abstract) syntactical structure. Semantical clones are policies equal in terms of the
extensional set of facts that they declare. These clone types help us studying diversity
of policies according to the research question of §3.2.1.

Analysis of extensions

We use a simple form of grammar inference to aggregate extensions from the policies
in the corpus. We also study the diversity of the websites that host policies with
extensions.

3.3 The Essence of P3P

This section describes the essence of P3P as far as the study is concerned. (We use the
term ‘essence’ here in reference to a common style used elsewhere in programming
language research [190, 166, 184, 28].) Some of the details are subjective in that
they do not directly follow from W3C’s specification. We point out such subjective
elements clearly when we encounter them.

First, we give a brief summary of P3P’s platform idea as it clarifies the potential
roles of website policies, user preferences, and the process to integrate them. Second,
we define an abstract syntax for P3P, which captures the “semantically relevant”
part of P3P in a certain sense. This abstract syntax is the foundation for a simple

42 A Study of P3P Language

notion of syntactical equality. Third, we define a normal form for P3P based on
previous work [197]. The normal form of a policy corresponds to the extensional set
of facts implied by the policy, thereby giving rise to the notion of semantical equality.
Finally, we suggest a partial order on normally formed policies so that policies cannot
just be tested for equality, but, in fact, they can be compared with regard to the degree
of exposure (in the sense of privacy). This is helpful, for example, when we study
common policies later on.

3.3.1 Language versus Platform

P3P, as a language, is a non-executable, domain-specific, XML-based language for
privacy policies to be declared by websites for the benefit of website users [189, 42].
P3P, as a platform, “enables Web sites to express their privacy practices in a standard
format that can be retrieved automatically and interpreted easily by user agents. P3P
user agents will allow users to be informed of site practices (in both machine- and
human-readable formats) and to automate decision-making.” [189].

Let us provide additional details here. The entity of a website is supposed to
define and publish a privacy policy for the website. The P3P platform suggests that
privacy policies adhere to the P3P language, and there is the option of generating
human-readable descriptions from P3P policies. The basic scenario is that the user is
responsible for consulting a website’s privacy policy in order to understand whether
to use the site and what data to expose. The more advanced scenario is that the
user actually documents privacy preferences in a designated language so that user
preferences and website policy can be checked for compliance by a tool. This process
can be automated and integrated into the browsers experience [90]. The process may
also involve additional elements of negotiation or dispute resolution, but we skip this
aspect here because not even the basic use of a language for user preferences and
the integration of compliance checking into a browser has seen much adoption in
practice [43].

The P3P specification does not commit to a specific language for user prefer-
ences, but W3C’s APPEL [188] is explicitly mentioned as an option; other options
have been proposed [14, 15]. Fundamentally, languages for policies versus prefer-
ences differ as follows. A policy language is assumed to make statements about data
being optionally or mandatorily required by the website for certain purposes, to be
stored for a certain duration, and to be shared with certain recipients. In contrast,
preferences can be thought of as constraints or rules to be applied to policies which
are hence to be accepted or rejected.

3.3.2 Syntax of P3P

In our study, we are only concerned with the formal statements about data collection,
use, storage, and sharing. We are usually not concerned with the entity that issues the
policy or a policy’s consequences, which are given in natural language. The remain-
ing P3P syntax is described in Fig. 3.1; it can be seen as an abstract syntax derived

3.3 The Essence of P3P 43

Figure 3.1. The study’s abstract syntax of P3P

from comprehensive, concrete syntax definitions.5 It is important to note that this ab-
stract syntax has no counter part in the P3P specification. Instead, we have designed
this abstract syntax to precisely include those language elements that are of interest
for our purposes.

According to the figure, a P3P policy consists of any number of statements,
each of which signifies data references for the collected data, purposes of collect-
ing data, recipients that receive the data, a retention level, which defines how long
data is stored, and a few other directives. The figure clarifies that the major syntacti-

5 Comprehensive, concrete syntax definitions of P3P are available in different forms:

• XSD: http://www.w3.org/2002/01/P3Pv1.xsd
• Relax NG: http://yupotan.sppd.ne.jp/relax-ng/p3pv1.rng
• RDF: http://www.w3.org/TR/p3p-rdfschema/

http://www.w3.org/2002/01/P3Pv1.xsd
http://yupotan.sppd.ne.jp/relax-ng/p3pv1.rng
http://www.w3.org/TR/p3p-rdfschema/

44 A Study of P3P Language

user
|-name
| |-prefix
| |-given
| |-middle
| |-family
| |-suffix
| |-nickname
|-bdate
| |-ymd.year
| ...
|-login
| |-id
| |-password
...

The hierarchy on the left shows part of the Base
Data Schema (BDS) of P3P—as it is part of the
P3P specification. The shown snippet deals with
user data in a narrow sense. Policies typically suf-
fice with data items from the BDS, but policies can
also define a Custom Data Schema (CDS) with
data items that are specific to the policy. Such
schemas are defined in XSD (XML Schema) with
extensions for P3P. BDS and CDS only define
names and hierarchical organization but no types
are assigned to the data items.

Figure 3.2. P3P data schema hierarchy (sample from Base Data Schema)

<DATA ref="#dynamic.miscdata">
<CATEGORIES>
<political/>

</CATEGORIES>
</DATA>

The P3P snippet on the left looks like a regular data
reference, but the specific data item in question,
i.e., ‘#dynamic.miscdata, is a ‘variable-category
data element’. The category ‘political’ is assigned
to it, which proxies for “Membership in or af-
filiation with groups such as religious organiza-
tions, trade unions, professional associations, po-
litical parties, etc.” [189].

Figure 3.3. Variable-category data elements in P3P

cal domains are finite (i.e., enumeration types) and there is no recursion involved. We
should add that P3P is somewhat prepared to deal with unforeseen concepts. There
is, for example, a purpose called ‘other-purpose’, and there is a general extension
mechanism that we discuss in §3.4.5.

Data references either refer to the Base Data Schema (BDS) of P3P or a Custom
Data Schema (CDS), which is provided with the policy. The BDS, which is part of
the P3P specification6,7, organizes user data, business data, third-party data, and so-
called dynamic data (with diverse roles) in a hierarchical manner; see Fig. 3.2 for an
illustration.

Data references can be annotated with categories such as ‘purchase’ or ‘health’.
In fact, most data references in the BDS are implicitly associated with one or more
categories. For instance, user.name is implicitly associated with category ‘physi-
cal’, i.e., physical contact information. Some data elements of the BDS are variable
though—specifically in the #dynamic branch. References to such ‘variable-category

6 http://www.w3.org/TR/P3P11/#base_data_structure
7 http://www.w3.org/TR/P3P11/#schema_detail

http://www.w3.org/TR/P3P11/#base_data_structure
http://www.w3.org/TR/P3P11/#schema_detail

3.3 The Essence of P3P 45

data elements’ [189] must be explicitly associated with one or more categories when
they are used in a policy; see Fig. 3.3 for an illustration. The specification further
motivates this mechanism as follows7: “In some cases, there is a need to specify data
elements that do not have fixed values that a user might type in or store in a repos-
itory. In the P3P base data schema, all such elements are grouped under the class
of dynamic data. Sites may refer to the types of data they collect using the dynamic
data set only, rather than enumerating all of the specific data elements.” This means
that the hierarchical refinement of the data element is not specified which implies
that ‘variable-category data elements’ are fundamentally different from regular data
items.

A retention level can be anywhere from ‘no retention’ to ‘indefinite retention’.
Let us explain a few values for recipients. The entity in charge of the system

is referred to as the recipient ‘ours’. (We simplify here the meaning of ‘ours’, when
compared to the P3P specification.8) Recipients with equal privacy practices as ‘ours’
are referred to as ‘same’. The recipient ‘public’ essentially models the fact that col-
lected data may be released to a public forum such as a bulletin board or a public
directory.

Let us also explain a few values for purposes. The value ‘admin’ signifies that
data is collected for the purpose of the technical support of the website and its com-
puter system. The value ‘telemarketing’ signifies that the collected information may
be used to contact the individual via a voice telephone call for promotion of a product
or service.

Purposes and recipients may be qualified by an attribute required which regulates
whether associated data can be used for a given purpose or shared with a given recip-
ient. These are the possible values for required: ‘always’, ‘opt-in’ and ‘opt-out’. For
instance, a purpose with ‘opt-out’ for a certain data reference means that “data may
be used for this purpose unless the user requests that it not be used in this way” [189].
The concrete syntax assumes ‘always’ as default.

Data references are qualified by an attribute optional; the values are ‘yes’ versus
‘no’—the user of the website may or may not omit the data, respectively. The con-
crete syntax assumes ‘no’ (i.e., non-optional) as default. Finally, statements are qual-
ified by an attribute identifiable; the values are ‘yes’ versus ‘no’. The concrete syntax
uses as an extra element <NON-IDENTIFIABLE/> to signify non-identifiability;
hence, all data is identifiable by default. When the statement is labeled with identifi-
able=‘no’, then this means either that “there is no data collected under this STATE-
MENT, or that all of the data referenced by that STATEMENT will be anonymized
upon collection.”9

8 “Ourselves and/or entities acting as our agents or entities for whom we are acting as an
agent: An agent in this instance is defined as a third party that processes data only on
behalf of the service provider for the completion of the stated purposes. (e.g., the service
provider and its printing bureau which prints address labels and does nothing further with
the information.)” [189]

9 http://www.w3.org/TR/P3P11/#NON-IDENTIFIABLE

http://www.w3.org/TR/P3P11/#NON-IDENTIFIABLE

46 A Study of P3P Language

Data-centric style

<POLICY>
<STATEMENT>
<PURPOSE><admin/><current/><develop/></PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><indefinitely/></RETENTION>
<DATA-GROUP>
<DATA ref="#dynamic.clickstream"/>

</DATA-GROUP>
</STATEMENT>
<STATEMENT>
<PURPOSE><admin/><current/><develop/></PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><indefinitely/></RETENTION>
<DATA-GROUP>
<DATA ref="#dynamic.http"/>
</DATA-GROUP>

</STATEMENT>
</POLICY>

Purpose-centric style

<POLICY>
<STATEMENT>
<PURPOSE><admin/></PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><indefinitely/></RETENTION>
<DATA-GROUP>
<DATA ref="#dynamic.clickstream"/>
<DATA ref="#dynamic.http"/>

</DATA-GROUP>
</STATEMENT>
<STATEMENT>
<PURPOSE><current/></PURPOSE>
... continue as with the previous statement ...

</STATEMENT>
<STATEMENT>
<PURPOSE><develop/></PURPOSE>
... continue as with the previous statement ...

</STATEMENT>
</POLICY>

Figure 3.4. Additional representations of the sample ‘logging only’ (refer to Fig. 2.6)

3.3.3 A Normal Form

When we study policies in terms of metrics, cloning, and others, we prefer to use a
normal form that neutralizes syntactical diversity. That is, the normal form of a policy
corresponds to the extensional set of facts implied by the policy, thereby giving rise
to the notion of semantical equality.

Semantical equality

Consider again the ’logging only’ policy in Fig. 2.6. Now consider the two variations
of the same policy in Fig. 3.4. The original formulation used a single statement; the
two variations use multiple statements. One can consider the original formulation as

3.3 The Essence of P3P 47

• r-purpose(data,purpose,required)
• r-recipient(data,recipient,required)
• r-retention(data,retention)
• r-data(data,optional,identifiable)
• r-category(data,category)

Figure 3.5. Relational schema for P3P—adopted from YuLA04

a factored formulation in that two data references and three purposes are grouped
together in a single statement whereas the first variation maintains the grouping of
purposes while it splits up the group of data references into multiple statements—
likewise for the second variation. We assume that all these three formulations are
semantically equivalent in that they declare the same extensional set of facts; the
policies admit the same data to be collected, for the same purposes, to be shared
with the same recipients, and subject to the same retention. The P3P specification
does not directly describe such semantical equality, but previous research on the
formal semantics of P3P [197] formalizes such an equality based on an appropriate
normal form.

Following [197], the extensional set of facts can actually be represented in P3P
syntax itself. We say that a policy is in normal form, if all statements are restricted to
single data references, purposes, recipients, and categories; see the “*” cardinalities
in Fig. 3.1. All the variations on ‘logging only’ are not in normal form because
some grouping is used; the normal form requires six statements. Normalization (i.e.,
derivation of the normal form) is achieved by replacing each statement with one or
more groups by a number of statements exercising all combinations of elements from
the groups; see [197] for the trivial normalization algorithm.

A relational schema for the normal form

Further following [197], we use a relational schema to specify extensional sets of
facts more concisely and to precisely capture key constraints; see Fig. 3.5 for the
schema. There are different relations to describe—in a point-wise manner—what
purposes, recipients, retention levels, and other properties are associated with the
individual data references.

Our schema deviates from the one in [197] only in so far that we take into account
the possibility of non-identifiable data. Hence, we added a column to r-data that
tracks whether a data-reference is identifiable.

The primary keys are underlined in the figure. The key constraints model con-
sistency constraints for a policy. We say that a policy is semantically valid if it has
a normal form such that the key constraints are maintained. For instance, within a
given policy, a data reference cannot be both optional and non-optional. That is, op-
tionality is a property associated with a data reference; it cannot be specialized per
purpose or recipient.

The P3P specification is not fully conclusive on the appropriateness of key con-
straints. On the issue of optionality, we can read, for example: “optional indicates

48 A Study of P3P Language

r-purpose

(#dynamic.clickstream, admin, always)
(#dynamic.clickstream, current, always)
(#dynamic.clickstream, develop, always)
(#dynamic.http, admin, always)
(#dynamic.http, current, always)
(#dynamic.http, develop, always)

r-recipient (#dynamic.clickstream, ours, always)
(#dynamic.http, ours, always)

r-retention (#dynamic.clickstream, indefinitely)
(#dynamic.http, indefinitely)

r-data (#dynamic.clickstream, no, yes)
(#dynamic.http, no, yes)

r-category —

Figure 3.6. The ’logging only’ policy in normal form according to Fig. 3.5

whether or not the site requires visitors to submit this data element to access a re-
source or complete a transaction”.10 This explantation may be interpreted as general
requirement as opposed to a purpose/recipient-specific requirement.

It is important to note that the normal form of [197] with its key constraint was
never confirmed by W3C. Other options of semantics are discussed in [197]. For
instance, one can think of a semantics such that optionality of a data item is specific to
purpose. We stick here to the semantics that is fully developed and ultimately favored
in [197]. This may lead to an under-approximation of the set of all semantically valid
policies, which means that perhaps more policies than necessary are excluded from
some analysis.

As an illustration, Fig. 3.6 shows the normalized ‘logging only’ sample policy
as an instance of the schema—as opposed to using concrete P3P syntax. We relate
each data item to corresponding values of purpose, recipient, retention, etc. For each
purpose and recipient we restored the default value of attribute required (which is
“always”), and for each data item we restored the default value of attribute optional
(which is “no”); we also encode whether a data item is identifiable, which it is (be-
cause the NON-IDENTIFIABLE element is not used in the concrete syntax).

Folding and subsumption

The notion of normal form, which we have described so far by adoption of [197], can
be conservatively improved. That is, there are policies that are semantically equiv-
alent in an intuitive sense, but their normal forms are not (yet) the same. Compli-
cations arise from the fact that the P3P schemas (both BDS and any CDS) organize
data items in a hierarchical manner. Accordingly, we advance normalization to apply
the two following rules whenever possible.
10 http://www.w3.org/TR/P3P11/#DATA

http://www.w3.org/TR/P3P11/#DATA

3.3 The Essence of P3P 49

Before folding After folding

r-purpose (#user.login.id, current, always) (#user.login, current, always)
(#user.login.password, current, always)

r-recipient (#user.login.id, ours, always) (#user.login, ours, always)
(#user.login.password, ours, always)

r-retention (#user.login.id, indefinitely) (#user.login, indefinitely)
(#user.login.password, indefinitely)

r-data (#user.login.id, no, yes) (#user.login, no, yes)
(#user.login.password, no, yes)

r-category — —

Figure 3.7. Example of folding in normal form

Before subsumption After subsumption

r-purpose (#user.name, current, always) (#user.name, current, always)(#user.name.given, current, always)

r-recipient (#user.name, ours, always) (#user.name, ours, always)(#user.name.given, ours, always)

r-retention (#user.name, indefinitely) (#user.name, indefinitely)(#user.name.given, indefinitely)

r-data (#user.name, no, yes) (#user.name, no, yes)(#user.name.given, no, yes)

r-category — —

Figure 3.8. Example of subsumption in normal form

We apply folding so that a set of data references with a common parent (in the
sense of the hierarchical organization) and the same properties for purposes, recipi-
ents, retention, and categories is replaced by a data reference to the parent, if the set
is complete, i.e., it contains all children of the given ancestor. Likewise, we apply
subsumption so that a data reference is omitted if there is already a data reference to
the ancestor with the same properties.

For instance, in Fig. 3.7, data references user.login.id and user.login.password
have the same values in all tuples; furthermore, these two references are the only
leaves of the node user.login in the BDS. Thus, we can apply folding and reduce the
number of tuples, introducing the grouping node instead of its leaves. In Fig. 3.8, data
reference user.name.given is a leaf of the node user.name in the BDS; furthermore,
it has the same properties as the parent node. Thus, we can apply subsumption and
reduce the number of tuples by removing redundant ones.

50 A Study of P3P Language

<POLICY>
<STATEMENT>
<PURPOSE><admin/><current/><develop/></PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><legal-requirement/></RETENTION>
<DATA-GROUP>
<DATA ref="#dynamic.clickstream"/>

</DATA-GROUP>
</STATEMENT>

</POLICY>

Figure 3.9. A variation on “logging only” with less exposure

3.3.4 Degree of Exposure

By now, we are able to test for semantical equality by checking that the given policies
have the same normal form. If we represent the normal form as relations, then the
test for semantical equality essentially is a test for equality of relations (i.e., sets of
tuples). Conceptually, these relations declare exposure in the sense of privacy—what
data can be collected, for what purposes, with whom can it be shared, and what level
of retention must be provided.

Interestingly, we can compare policies by leveraging (a special variation on) the
subset partial order on the normal-form relations. We refer to this partial order as
degree of exposure. Such a partial order is helpful in comparing similar policies and
understanding diversity within the corpus; see §3.4.4 in particular.

Consider the policy in Fig. 3.9. It lacks the data reference #dynamic.http; hence,
data collection is limited to information typically stored in Web-server access logs
without the additional information from the http protocol as it is specifically covered
by #dynamic.http. The variation also differs with regard to the retention level: it
specifies ‘legal-requirement’ instead of ’indefinitely’; hence, data storage is more
limited. Both differences, by themselves and in combination imply that there is ‘less
exposure’.

The example with the different retention levels gives rise to a more general idea:
a partial order can be imposed on the various enumeration types of P3P. The idea
is that the different values are partially ordered in terms of degree of exposure. See
Fig. 3.10 for our proposal; exposure increases as one climbs up the Hasse diagrams.
We overload the symbol ’≤sem’ to denote these partial orders.

Consider, for example, optionality: if a user is not obliged to provide certain data,
then there is less exposure (say, more privacy is maintained), compared to the case
when such data is required.

The P3P specification does not describe a partial order like ours. The proposal is
meant to be relatively conservative in that we do not impose an order on specific val-
ues unless the specification suggests it. In some cases, we pragmatically declare that
some values imply the same degree of exposure since we could not see that they must
be incomparable. Some of the specific decisions in our proposal are presumably self-
evident; others are more tedious; see Appendix A.1.2 for a more detailed motivation.
The impact of our particular definition is very limited in so far that we only use it in

3.3 The Essence of P3P 51

Purpose Recipient

Ret ent ion

Requiredness

Opt ionalit y

Ident if iabilit y

current

admin, develop

tailoring

pseudo-analysis

pseudo-decisionindividual-analysis

individual-decision

contact, historical, telemarketing

ours, same

delivery,
 other-recipient,

 unrelated

public

no-retention

stated-purpose,
 legal-requirement,
 business-practices

indefinitely

always

yes

opt-out

opt-in

no

non-identifiable

identifiable

Figure 3.10. Partial orders for the degree of exposure per enumeration type of P3P

our informal discussion of (relationships between) common policies (see §3.4.4 in
particular) and a short summary on remaining diversity among semantically distinct
policies in Appendix A.1.2.

We define a binary relation ‘≤sem’ on instances of the relational schema for the
normal form. Informally, given two instances i and i′, i.e., two extensional sets of
facts, we say that i≤sem i′ if i is a subset of i′ modulo replacing equality of individual
facts by component-wise application of ‘≤sem’ as defined by Fig. 3.10. Clearly, we
compare facts from the same relation (say, table) and with equal data items.

Formally, ‘≤sem’ is defined to be the smallest relation closed under the following
rules. Let i, i′, i′′ range over instances of the relational schema.

[Reflexivity] If i =sem i′, then i≤sem i′.
[Transitivity] If i≤sem i′ and i′ ≤sem i′′, then i≤sem i′′.
[Subset] If all relations of i are subsets of the corresponding relations of i′, then

i≤sem i′.
[Value] If all relations of i are equal to the corresponding relations of i′ except for

tuples t and t ′ (from corresponding relations) of i and i′, respectively such that
t and t ′ differ in values v and v′ for purpose, recipient, retention, identifiability,

52 A Study of P3P Language

DataRef 40979
Purpose 31254
Category 20896
Recipient 12496
Optional 10823
Retention 10623
Statement 10623
Required (purpose) 4171
Identifiable 1718
Required (recipient) 1155

Statement

Purpose Recipient Retention DataRef Identifiable

required required Category Optional

Figure 3.11. Frequency of use for P3P’s syntactical domains

optionality, or requiredness such that v ≤sem v′ (according to Fig. 3.10), then
i≤sem i′.

It should be noted that Fig. 3.10 makes some values equal. The definition omits
tedious issues of folding and subsumption.

3.4 Analyses of the Study

In this section, we address the research questions of the study (§3.2.1) by analyses
of vocabulary, language constraints, metrics, clones, and language extensions. Each
subsection is dedicated to one of these analyses and its underlying research question.
Analyses may break down into sub-analyses. All (sub-) analyses are subject to the
following scheme: we motivate the analysis and describe technicalities, we list output
data, and we discuss the results while referring to the research question again.

3.4.1 Analysis of Vocabulary

The underlying research question is “What part of the vocabulary is used?”; see
§3.2.1. The main goal is to help with profiling P3P such that the core language is
identified and simplifications or designated support for the profile may be possibly
inferred.

3.4 Analyses of the Study 53

Frequency of use for P3P’s syntactical domains

In Fig. 3.11, we list frequency of use for the syntactical domains according to the
abstract syntax of Fig. 3.1. We do not count any defaults (such as non-optional data
items), even if they are specified explicitly. We also visualize these numbers where
we exploit the fact that P3P has a very simple syntactical structure. There is no
recursion. Hence, we can show the compositional structure of policies with a tree
and frequencies are translated into node size by using tag cloud-like scaling tech-
niques [106].

We observe that most statements do not use a NON-IDENTIFIABLE element.
We also observe “popularity” for optionality and opt-in/out. That is, data is said to
be optional in a significant number of cases; purposes are available for opt-in/out in
a significant number of cases, but recipients are hardly available for opt-in/out.

Frequency of use for values of P3P’s enumeration types

Given P3P’s reliance on a privacy vocabulary in the form of several finite domains
(say, enumeration types), we can get insight into the P3P profile by studying fre-
quency of use of the values of those domains; frequencies of usage are summarized
in Fig. 3.12.

We observe that the unspecific purpose ‘current’ is highly frequent and purposes
reminiscent of web logging are highly frequent as well. ‘Ours’ dominates the domain
of recipients; other purposes are at least a factor two less frequent. The dominance
of ‘ours’ was to be expected because each logically consistent policy must involve
‘ours’. There is substantial use of the nonspecific purpose ’other-purpose’, which
suggests that a richer set of purposes or author-defined purposes may be needed. We
also observe that indefinite retention is the most popular—which may be explain-
able, in part, through the popularity of weblogs, which typically assume indefinite
retention. The retention level ‘business-practices’ is also relatively popular—these
practices are not specified though in P3P, which suggests that extra language support
could be useful.

Frequency of use for data items from the BDS

P3P’s Base Data Schema (BDS) expresses the assumptions of the P3P designers as to
what private data website users and policy authors may possibly care about. Fig. 3.13
lists frequency of use for popular data references. Fig. 3.14 shows the distribution of
numbers of references in a double-logarithmic graph.

Discussion

Fig 3.14 confirms that few data items from the BDS account for most of the data ref-
erences. The dynamic branch assumes the five most frequent positions in Fig. 3.13.

54 A Study of P3P Language

Purposes Recipients Retentions

develop 6277
current 6121
admin 5140
tailoring 3028
pseudo-analysis 2059
contact 1779
pseudo-decision 1562
individual-analysis 1465
individual-decision 1405
historical 979
other-purpose 762
telemarketing 677

ours 9635
delivery 1571
same 583
other-recipient 346
public 214
unrelated 147

indefinitely 4336
business-practices 2617
stated-purpose 1742
no-retention 669
legal-requirement 467

Implicitly declared categories Explicitly declared categories

navigation 10247
computer 9048
demographic 8787
physical 8164
online 4240
interactive 3466
uniqueid 594

uniqueid 3675
navigation 2328
online 2222
state 2022
physical 1989
purchase 1411
computer 1396
demographic 1289
preference 1268
interactive 1144
content 853
other-category 428
location 415
financial 253
government 94
health 58
political 51

Figure 3.12. Frequency of use for values of P3P’s enumeration types

After 15 positions, frequency is a factor ten reduced. There are several data refer-
ences to the dynamic and user branches, and one data reference to the thirdparty
branch among those top 15. The business branch does not show up in Fig. 3.13.

The particular dynamic data references imply that policies in the corpus declare
collection of data such that the highest frequency is about web navigation and inter-
action whereas the second and third are about variable-category data elements cook-
ies and miscdata. Hence, we see that policies use variable-category data elements
heavily. As a result, policies switch constantly between regular data references with

3.4 Analyses of the Study 55

dynamic.cookies 3351
dynamic.clickstream 3204
dynamic.http 3058
dynamic.miscdata 2753
dynamic.searchtext 1816
user.name 995
dynamic.clientevents 726
dynamic.interactionrecord 579
user.home-info 510
user.home-info.online.email 476
user.name.given 418
user.name.family 418
user.business-info.online.email 387
user.business-info 364
thirdparty.name 361
dynamic.http.useragent 333
user.home-info.telecom.telephone 280
user.bdate 277
user.home-info.postal 262
thirdparty.business-info 237
user.gender 210
user.login.password 149
user.login.id 141
user.home-info.telecom.mobile 140
dynamic.clickstream.clientip 131
dynamic.http.referer 122
thirdparty.home-info 114
user.business-info.telecom.telephone 90
user.business-info.postal.name 72
dynamic.clickstream.timestamp 72
user.jobtitle 71
dynamic.clickstream.other.httpmethod 69
dynamic.clickstream.uri 68
dynamic.clickstream.clientip.fullip 66
user.home-info.postal.postalcode 53
dynamic.clickstream.other.statuscode 50
user.home-info.postal.stateprov 49
dynamic.clickstream.other.bytes 49
user.login 42
user.home-info.postal.city 41
user.home-info.postal.country 41
...

Figure 3.13. Frequency of use for data items from the BDS

implicitly associated categories and references to variable-category data elements
with explicitly associated categories.

56 A Study of P3P Language

1 2 5 10 20 50 100

1
5

10
50

10
0

50
0

Data item

R
ef

er
en

ce
s

Figure 3.14. Distribution of frequencies for BDS data references

Coverage of P3P’s Base Data Schema

The BDS has 324 nodes. Overall, 250 (i.e., 77.16 %) of all nodes from the schema
are referenced at least once. Fig. 3.16 shows how coverage of the BDS (quickly)
drops if coverage of a node requires an increasing number of syntactically distinct
policies to use it.

P3P’s BDS expresses the assumptions of the P3P designers as to what hierarchi-
cal decomposition of private data both website users and policy authors may possibly
care about. Fig. 3.15 shows the complete hierarchical structure of the BDS where the
thickness of the edges represents the frequency of referring to the target node of the
edge. (Again, we use tag cloud-like scaling techniques.) Hence, the most frequent
data references of Fig. 3.14 correspond to the nodes (inner nodes or leaves) with
thickest, incoming edges.

Discussion

Fig. 3.16 shows that the coverage of the BDS only appears to be high. A relatively
small number of policies is responsible for most of the coverage. Hence, it could be
possible to refactor the BDS of a future policy language to be much simpler.

Many nodes are not referenced at all; see the dotted edges. The unreferenced
nodes are typically leaf nodes—as the visualization shows. Hence, one may argue

3.4 Analyses of the Study 57

user

dynamic

business

thirdparty

Figure 3.15. Coverage of P3P’s Base Data Schema

that the BDS could have been kept simpler so that it only focuses on the essential
ontology of private data without breaking down all data into ‘primitive’ items.

3.4.2 Analysis of Constraints

The underlying research question is “Is the language correctly used?”; see §3.2.1.
The main goal is to understand what correctness issues, if any, exist in the wild, and
to find plausible explanations or even to make recommendations for future policy
languages. We investigate correctness here on the grounds of language constraints
for P3P as they are available from different sources.

We were interested in constraints that add to the basic XML schema-based vali-
dation for P3P. We identified two kinds of constraints in the P3P specification. First,
each data reference must be resolvable to a data item in a P3P data schema. Second,
the (latest and provisional) specification stipulates sanity checking rules11 (say, co-

11 http://www.w3.org/TR/P3P11/#ua_sanity

http://www.w3.org/TR/P3P11/#ua_sanity

58 A Study of P3P Language

!

!

!

!

!

!

!

!
!!
!

!!
!
!
!!!
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!

0 500 1000 1500 2000

0
2

0
4

0
6

0
8

0
1

0
0

Threshold (# syntactically distinct policies)

C
o
ve

ra
g

e
 o

f
B

D
S

 (
%

)

Threshold BDS coverage

1 77.16 %
2 63.88 %
3 59.56 %
4 50.30 %
5 44.44 %
6 38.88 %
7 35.80 %
8 31.79 %
9 30.24 %

10 29.93 %

Figure 3.16. Coverage of BDS with a threshold on the number of syntactically distinct policies

herence constraints). We obtained further coherence constraints as well as the key
constraints of §3.3.3 from Yu et al. article on the ’relational semantics’ of P3P [197].

Key constraints

The key constraints of the relational schema for P3P’s normal form, as of §3.3.3,
immediately constrain the abstract syntax of §3.3.2. We check these constraints nat-
urally as we normalize policies by deriving relations from the P3P statements. When-
ever we insert tuples into the relations, we admit identical tuples, but we do not admit
tuples that violate key constraints. (This is part of the normalization algorithm [197].)
We refer to Table 3.4 for violation counts for the different key constraints. We note
again that the key constraints are potentially debatable; see the discussion in §3.3.3.

Relation # Policies # Syn. distinct policies

r-data 448 248
r-retention 139 104
r-purpose 50 33
r-recipient 7 7

Any of them 544 (of 6,182) 312 (of 2,304)

Table 3.4. Key-constraint violations

3.4 Analyses of the Study 59

Discussion

Table 3.4 shows that key constraints are violated frequently. For instance, a violation
of the key constraint for r-retention would mean that a policy makes different reten-
tion promises (such as ‘no retention’ versus ‘indefinite retention’) for the same data,
which could be sensible if different purposes or recipients are allowed to provide in-
dividual retention. Given the non-standardized status of the normal form, we cannot
conclusively rule these violations as definite instances of incorrect use of P3P, but
they definitely indicate a problem with the status of P3P formalization and valida-
tion.

Consider also the high number of violations of r-data’s key constraint. Users
seem to assume that a data reference may be used with different optionality val-
ues for varying purposes. As we discussed in §3.3.3, the specification may suggest
otherwise. This observation suggests that either fine-grained optionality should be
explicitly provided by future policy languages or the specification should be clarified
and validation should effectively enforce the restriction.

More generally, the lifecycle for P3P policies is too weakly supported. Basic
schema-based validation is insufficient to find more subtle issues like the key con-
straints at hand or any other key constraints for that matter. The fact that key con-
straints are not systematically listed in the specification does not help. Future policy
language should leverage stronger specifications and a lifecycle with effective vali-
dation.

We must say that we are undecided as to whether the r-data key constraint is ever
to be enforced for variable-category data elements such as #dynamic.miscdata;
see §3.3.2. The challenge is here that the same data element could be used multi-
ple times in the same policy with different categories for different parts of the data
model, thereby giving support to the idea that optionality may differ per occasion.
This mechanism may need to be reconsidered and more strongly specified in future
policy languages.

Hierarchy constraints

There is a natural extension of r-data’s key constraint that takes into account the
hierarchical organization of a data schema (typically the BDS), as suggested in [197].
That is, given two data references r and r′ such that r is a prefix of r′, then explicit
declarations of optionality for r and r′ must agree. For example, if a policy declares
user.name as being non-optional, then user.name.given cannot be declared as being
optional.

We refer to Table 3.5 for violation counts for the hierarchy constraint. We also
show counts for applying the normalization rules for folding and subsumption as of
§3.3.3 as these rules are clearly concerned with the hierarchy in a data schema.

Discussion

Hierarchical inconsistency appears to be a small problem. There are considerably
more applications though of the rules for folding and subsumption. While we do not

60 A Study of P3P Language

Issue # Policies # Syn. distinct policies

Inconsistency 17 15

Folding 48 32
Subsumption 167 105

Table 3.5. Hierarchy-constraint violations and applications of normalization rules

count these applications as constraint violations, they indicate problems nevertheless
because they may proxy for redundant or unnecessarily verbose policies, thereby
suggesting again reconsideration of the data model as well as the degree of validation
so that such verbosity or redundancy may be reduced.

Data-schema constraints

Data references may basically be inconsistent with regard to data schemas (BDS or
CDS, if present). This is comparable to ‘undeclared variable’ issues in type checking
for programming languages. We classify the issues in more detail; see Table 3.6
for an itemization. We systematically discovered these issues in developing a name
resolver for P3P. Here we note that resolved P3P policies are needed, for example, to
check hierarchy constraints (see §3.4.2) and to compute a data-schema-related metric
(see §3.4.3).

Issue # Policies # Syn. distinct policies

BDS legacy 580 358
Unresolvable data reference 115 85
Missing CDS 11 7
CDS legacy 203 157

Any of them 848 (of 6,182) 579 (of 2,304)

Table 3.6. Data-schema constraint violations

The ‘BDS legacy’ issue refers to the problem that policies use the obsolete BDS
of P3P 1.0 where they are supposed to use BDS of P3P 1.1 instead: “User agents
are only required to validate P3P 1.1 policy data elements according to a P3P 1.1
data schema.” 12 The ‘Unresolvable data reference’ issue refers to the problem that
policies refer to data references that are simply not declared by the BDS. The ‘Miss-
ing CDS’ issue refers to the problem that a linked CDS is non-resolvable, and ‘CDS
legacy’ issue refers to the problem that policies use an obsolete format for CDS
where they are supposed to XSD: “Web sites using custom data schemas MUST
publish these schemas in P3P1.1 format only.” 12

12 http://www.w3.org/TR/P3P11/#Data_Schemas_back

http://www.w3.org/TR/P3P11/#Data_Schemas_back

3.4 Analyses of the Study 61

Discussion

Again, the practice of P3P validation is clearly shown to be insufficient. In partic-
ular, the attempt to reduce P3P validation to straightforward XML schema-based
validation is shown to be ineffective. For example, because P3P schemas define a
hierarchical namespace for data items and XML schema-based validation cannot be
directly used to fully enforce correct use of data references. Further, the policies in
the corpus do not use XML Schema (XSD) for their Custom Data Schemas. One
reason for this common violation may be that many policies have been on the web
before the revised P3P specification started to require XSD, and no update was ap-
plied to the policies.

Coherence constraints

It is relatively easy to see that there exist certain coherence constraints for combining
purposes, recipients, data references and others in a given policy. For instance, a pol-
icy would give a vacuous sense of privacy if it combined recipient ‘public’ with any
retention other than ‘indefinitely’ because retention cannot be effectively terminated
for data that has been released to the public. We extracted coherence constraints from
the P3P specification, and our key resource [197] on the relational schema for P3P
suggest several coherence constraints as well. We implemented the constraints and
checked the corpus. The findings are listed in Table 3.7.

Source Constraint # Policies # Syn. distinct policies

[197] ‘ours ...’ 77 45
[197] ‘public ...’ 40 24
[197] ‘historical ...’ 6 6
[189] ‘contact’ 71 47
[189] ‘telemarketing’ 353 107
[189] ‘individual-analysis’ 451 94
[189] ‘individual-decision’ 432 82

Any of them 898 (of 6,182) 264 (of 2,304)

Table 3.7. Coherence-constraint violations

For brevity, we explain only a few constraints here. Overall, constraints from
[197] impose a common-sense coherence between the elements of a P3P statement.
For example, there is a constraint ‘public recipient ⇒ indefinite retention’ which
proxies for the problem that we described above: a policy that associates the public
recipient with a data reference should accordingly admit indefinite retention for this
data reference. The sanity checks from the specification [189] focus on common-
sense coherence between stated purposes and categories of the mentioned data. That

62 A Study of P3P Language

is, the constraints express that data of a certain category is needed for a given pur-
pose. For example, the ‘contact’ constraint says that a P3P statement with purpose
‘contact’ should contain at least one data element from the categories ‘physical’ or
‘online’. (Otherwise, it may just be impossible to actually contact the person.)

Discussion

Again, the practice of P3P validation is clearly shown to be insufficient. However, it
must be noted that the P3P specification does not even attempt a comprehensive suite
of coherence constraints. Such constraints would not only be useful for validation;
they would also be helpful in understanding the P3P vocabulary as such.

Constraint category # Policies # Syn. distinct policies

Key 544 312
Hierarchy 17 15
Data-schema 848 579
Coherence 898 264

Any of them 2,193 (of 6,182) 1,083 (of 2,304)

Table 3.8. Summary of constraint violations

Summary of constraint violations

All kinds of violations are summarized in Table 3.8. Some of the subsequent analy-
ses operate on the normal form. Hence, they can only deal with policies that do not
violate the key constraints of the normal form. We refer to those policies as being se-
mantically valid. All the other violations do not limit any of our subsequent analyses.
For clarity, we summarize:

• # Syntactically valid policies: 6,182 (i.e., all policies in the corpus)
– Syntactically distinct policies thereof: 2,304

• # Semantically valid policies: 4,869 (i.e., all policies with a normal form)
– Semantically distinct policies thereof: 1,38513

13 For precision’s sake, this number is based on the semantical equality as introduced in §3.3.3
without taking into account extra equations due to ‘≤sem’ as of §3.3.4. However, the differ-
ence is insignificant. That is, there is 1 policy that is unequal to any other policy at the level
of normal forms while it is equal to another policy when taking into account Fig. 3.10.

3.4 Analyses of the Study 63

3.4.3 Analysis of Metrics

The underlying research question is “What is a significant policy?”; see §3.2.1. The
main goal is to identify significant policies, that is, policies which provide insight
into the underlying web-based system. We are going to try different, straightforward
metrics to this end. Ultimately, we consider those metrics to be useful, if they point
to policies that we can manually validate to be significant. We do not use metrics in
any sophisticated manner of the kind that we plan to validate hypotheses of corre-
lation between metrics and other properties of policies or the underlying web-based
systems.

Syntactical size

An obvious starting point is a metric for the syntactical size, denoted as SYN(·),
which is based on the abstract syntax of P3P as defined in §3.3.2. We compare
this metric with the Lines-of-Code metric (LOC) or its variation without comments
(NCLOC) that is a popular, basic size metric for programs. LOC/NCLOC are not di-
rectly applicable to P3P because P3P is primarily an XML language. Hence, SYN(·)
is defined as a tree-based node count.

Given a policy P, we define SYN(P) as the node count of its tree-based repre-
sentation according to P3P’s abstract syntax of Fig. 3.1. That is, we count nodes
for statements, purposes, recipients, retention levels, data references, (explicitly de-
clared) values for requiredness, optionality, non-identifiability, and categories. In par-
ticular, we do not count the description of the entity and the policy’s consequences
in any way.

For instance, let us determine the syntactical size for different variations on ‘log-
ging only’ policy. We have that SYN(Fig. 2.6) equals 8; there is one statement, three
purposes, one recipient, one retention, and two data references. Further:

• SYN(Data-centric style in Fig. 3.4) equals 14.
• SYN(Purpose-centric style in Fig. 3.4) equals 18.

Min 1st Q Median Mean 3rd Q Max

2 11 20 25.28 36 245

Table 3.9. The SYN(·) scale

Table 3.9 shows that the distribution of SYN(·) is shifted to small node counts; see
median and quartiles. We contend that P3P policies are of trivial size, when compared
to program sizes of general purpose or domain-specific programming languages.

64 A Study of P3P Language

Semantical size

Since the abstract syntax is known to enable much representational diversity for se-
mantically equivalent policies, we may attempt a metric that abstracts from such
diversity. Thus, let us consider semantical size, denoted as SEM(·) as follows. Given
a policy P with the normal form value P′ (i.e., a set of tuples that populate the rela-
tional schema of §3.3.3), we compute the semantical size of P as the straight sum of
the numbers of tuples in the various relations r-purpose, r-recipient, r-retention,
r-data, and r-category.

Conceptually, there is a deeper argument for considering such a metric. That is,
we can view the normal form as the most discrete representation of all the privacy
statements in a policy (modulo folding and subsumption). Intuitively, we can com-
pare such a metric—very roughly—with McCabe’s cyclomatic complexity for pro-
gramming languages [132] in so far that both metrics are concerned with counting
decisions.

Let us revisit the ‘logging only’ policy. SEM(Fig. 3.6) equals 12, i.e., there are 12
tuples in the tables for the normal form. All syntactical variations on ‘logging only’
have the same normal form and hence the same semantical size.

Min 1st Q Median Mean 3rd Q Max

0 10 24 31.75 41 352

Table 3.10. The SEM(·) scale

Table 3.10 shows that the distribution of SEM(·) is equally shifted to small sizes,
when compared to SYN(·). However, it is easy to confirm that syntactical and seman-
tical sizes of policies do not correlate. The distributions of the two size metrics are
shown in Fig. 3.17. Policies are ordered by syntactical size. Both metrics are nor-
malized to the [0,1] range. The policies at the tail with low syntactical size have a
semantical size of 0. Semantical size is only computed for semantically valid poli-
cies. (The invalid policies have scattered syntactical sizes, and hence, their absence
cannot be ‘spotted’ in Fig. 3.17.) Such non-correlation should not be surprising; we
merely show it here for illustration.

If we group all policies with the same syntactical size and compare the different
semantical sizes per syntactical size, then we find that a maximum ratio of 22.08
between the smallest and the largest semantical size in the corpus. Hence, syntacti-
cal size can translate into very different semantical sizes. This status suggests that
we should not pay too much attention to syntactical size when we try to determine
significant policies. Instead, we favor greater semantical sizes.

3.4 Analyses of the Study 65

●●●
●

●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●

●●
●●●

●●
●●●

●●●
●●

●●●
●●●

●●
●●●

●●●

●●●●

●●●●●●

●●●

0 1000 2000 3000 4000 5000 6000

0.
01

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

Policy

N
or

m
al

iz
ed

 s
iz

e

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●●
●

●

●

●●

●●●

●

●

●●

●

●●●

●

●

●

●●

●

●●●●

●●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●
●
●

●

●●●●●●●●

●

●●●●

●

●

●

●●

●

●●●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●●

●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●
●●

●

●

●●

●

●

●

●
●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●●●

●

●●

●●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●●●●

●

●

●

●

●

●●
●●●●

●

●●

●

●●●●●●

●●●

●

●

●

●●●
●
●●●●

●

●●

●

●●

●

●

●

●

●

●
●
●●
●
●

●●●●

●

●

●●●●●

●●●

●

●●

●

●

●●

●●

●

●

●●●●●●

●

●●●

●

●●●

●

●
●
●

●

●●
●●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●●●

●
●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●●

●
●
●●

●

●

●

●

●●●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●●
●●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●●●●●●

●

●●●

●

●●●●
●
●●●
●
●●●●

●

●●●●●

●●

●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●
●
●●●

●

●●

●

●●●●●●

●

●●

●

●

●

●

●●●●

●

●●●●●●●

●

●●●●●

●

●

●

●●●●●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●●●●

●

●

●●●

●

●

●

●●●●●●●●●●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●

●

●
●
●●●

●

●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●

●●●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●

●

●●

●

●

●

●●

●

●●●●●●

●

●●

●●

●●

●

●●●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●●
●
●

●

●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●●●●●

●

●●

●

●●●●●●●●●

●

●●

●

●●●●●●●●●
●
●●●●●●●●

●

●
●
●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●

●

●●●●●●●

●

●●●●

●

●●
●
●

●●

●●

●

●●●

●

●●●●●●●●

●●

●

●●●

●

●●●●

●

●●●●●

●

●●●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●●●

●

●

●

●●

●●●●●
●
●●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●
●
●●

●

●
●
●●

●

●
●
●

●

●

●●

●●●

●

●

●

●

●●●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●●

●
●

●

●

●●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●●●

●

●

●●

●●

●

●
●

●

●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●●●

●

●
●

●●

●

●

●●●●

●

●●

●

●●

●

●

●

●●

●●●

●

●●●●

●

●

●

●●●

●

●

●●

●

●

●●

●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●●●●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●
●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●
●

●●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●●

●

●

●●
●
●

●

●

●

●●●

●
●

●

●
●
●

●

●●

●

●
●
●

●

●

●

●

●

●
●
●●●
●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●●

●

●●●

●

●

●●●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●
●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●

●

●●

●

●

●●
●
●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●
●

●

●

●
●
●

●

●

●
●●

●●

●

●
●

●

●

●
●

●●
●
●●

●

●

●

●●●

●

●
●●

●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●●

●

●

●

●

●

●●
●

●

●
●●●
●●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●●●●●

●

●●●●

●●

●
●
●

●●

●

●

●●

●

●

●

●●●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●●

●

●●

●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●●
●

●

●●●●

●

●

●
●
●●●

●

●

●●●●

●

●

●

●

●

●●●
●

●

●●

●

●●●
●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●●
●
●

●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●●

●

●
●
●●●●●●

●

●

●
●●●●

●

●

●

●●
●
●

●●

●

●

●

●●●●

●●

●

●

●

●
●

●

●

●●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●●●

●

●

●

●

●●●●●●●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●●

●●

●●●

●

●

●●

●

●●

●●●●●

●●

●●●

●●●●

●●●●

●

Figure 3.17. Syntactical versus semantical size (red and green colors respectively)

Vocabulary size

Returning to the view that ‘policies are models’, we may be specifically interested in
indicators for different components or services in a web-based systems. To this end,
we think of the following correspondence: each purpose could correspond to one
component of the web-based system; each recipient could correspond to one service
port of the web-based system; each category for data in the policy could correspond
to a domain or a concern that the system has to cover. A poorly architected system
may of course not directly reveal those components, services, concerns, and domains,
but they are modeling entities anyway.

Fig. 3.18 shows the distribution of these numbers for the policies in the corpus.
We can fairly combine the different numbers into one metric as follows. Given a pol-
icy P with numbers of distinct purposes #p(P), distinct recipients #r(P) and distinct
categories #c(P), we compute the vocabulary size of P on a [0,1] scale as follows:

VOCA(P) = (#p(P)/12+#r(P)/6+#c(P)/17)/3

Here, 12, 6 and 17 are the numbers of all purposes, recipients and categories in
the vocabulary of P3P. Hence, we measure the degree of coverage of the relevant part
of the vocabulary, and we give equal weight to purposes, recipients and categories.
Policies with only the NON-IDENTIFIABLE element may have a value of 0.0 for
VOCA(·). Otherwise, the minimum value is approximately 0.10—in the case of one
purpose, one recipient, and one category.

66 A Study of P3P Language

0 1000 2000 3000 4000 5000 6000

0
5

10
15

Policy

D
is

tin
ct

 e
le

m
en

ts

Purposes
Recipients
Categories

Figure 3.18. Distribution of vocabulary counts

For example, all three different representations of the sample policy ‘logging
only’ (Fig. 2.6 on p. 23 and Fig. 3.4 on p. 46) have the same value for VOCA(·),
namely, it is 0.139: all policies have three distinct purposes and one distinct recipient.

Min 1st Q Median Mean 3rd Q Max

0 0.137 0.19 0.232 0.347 1

Table 3.11. The VOCA(·) scale

Table 3.11 shows that the [0,1] scale of the VOCA(·) metric is fully exercised
by the corpus. When compared to the SYN(·) and SEM(·) metrics, the distribution
of VOCA(·) is considerably less shifted to the lower end; compare the ratios of
maximum to 3rd quartile for the metrics. Hence, even syntactically or semantically
smaller policies exercise the vocabulary substantially.

Data size

Finally, we introduce the metric data size, denoted as DATA(·). With the data size
we expect to measure a policy’s footprint in terms of its use of the data schema. In

3.4 Analyses of the Study 67

dynamic
clickstream

uri
authority
stem
querystring

timestamp
ymd.year
ymd.month
ymd.day
hms.hour
hms.minute
hms.second
fractionsecond
timezone

clientip
hostname
partialhostname
fullip
partialip

other.httpmethod
other.bytes
other.statuscode

dynamic
http

referer
authority
stem
querystring

useragent

Figure 3.19. #dynamic.clickstream and #dynamic.http

this way, we measure degree of exposure quantitatively—while just focusing on data
items, abstracting from purposes, recipients, and retention level.

Given a policy P, we compute the data size of P as follows. We begin by resolving
any given data reference that is listed in a policy to a subtree in the hierarchical def-
inition of the relevant data schema (BDS or CDS). We count all nodes, i.e., leaf and
group nodes as well as the root node, for the referenced subtree. We equate DATA(P)
with the cumulative count of all distinct nodes that we count for the various data
references in a policy. We should note that variable-category data elements escape
a fair counting scheme because their hierarchical breakdown is not specified—by
definition. Additionally, it is not guaranteed that multiple uses of the same variable-
category data reference throughout a policy designate the same type of data. To the
best of our knowledge, there is no automatic way of treating variable-category data
elements more fairly. The applied counting scheme is useful in so far that it provides
a lower bound for used data items.

Let us revisit the ‘logging only’ policy. All three different representations use the
same two data references, which do not overlap within P3P base data schema. The
referenced subtrees of the BDS are shown in Fig. 3.19. The data size is the direct
sum of nodes in these two subtrees: 28.

68 A Study of P3P Language

Min 1st Q Median Mean 3rd Q Max

0 2 30 36.57 33 286

Table 3.12. The DATA(·) scale

Table 3.12 shows the DATA(·) scale. As a point of reference, we mention that
P3P’s BDS contains a total of 324 nodes. (Additional data items could be referenced
in principle because of the CDS in a policy.) Hence, the DATA(·) scale in Table 3.12
suggests that there are policies with a data-model size close to the size of the com-
plete BDS. The distribution of DATA(·) is shifted though to small node counts, as the
quartiles show. (The coverage of P3P’s BDS by the corpus is analyzed in §3.4.1.)

Significant policies

Table 3.13 lists the top-10 policies for all the four metrics in the order of syntactical,
semantical, vocabulary, and data sizes. For vocabulary size, we also show the num-
bers of purposes, recipients, categories with the (X ;Y ;Z) notation. We only show
semantically valid (and then only semantically distinct) policies because it is other-
wise difficult to compare them across metrics (with semantical size being included).
Policies are highlighted in bold face, if they are among the top 10 in at least two of
the four lists. In this manner, we prioritize policies that are ‘large’ in several respects.
It turns out that large data size never meets large semantics or large vocabulary (when
focusing on top 10). Also, we recall that we proposed to de-prioritize syntactical size.
The following bold policies remain hence:14

• 50cent.com
• kerntrophies.com

By our simple rules, we consider these two policies as most significant and we will
review them below. Let us also add astrodata.ch, which leads the table for VOCA(·);
it exposes the maximum vocabulary size. Given that we consider vocabulary size as a
proxy for an interesting model, we view maximum size of this kind to be an indicator
of significance, by itself.

Review of http://www.astrodata.ch

The entity of this website is Swiss ASTRODATA AG. The website provides different
kinds of personal horoscopes and diagrams: partnership, health, cosmograms, etc.
The site also sells books, CDs, and software. The site has a log-in system. The policy

14 During the lifetime of the effort, some of the policies disappeared from the Internet
(see Appendix A.1.1). This is also the case for the bold policies at hand. All policies
are preserved in our online corpus at the http://slps.svn.sourceforge.net/
viewvc/slps/topics/privacy/p3p/

http://www.astrodata.ch
http://slps.svn.sourceforge.net/viewvc/slps/topics/privacy/p3p/
http://slps.svn.sourceforge.net/viewvc/slps/topics/privacy/p3p/

3.4 Analyses of the Study 69

Site SYN(·) SEM(·) VOCA(·) DATA(·)

1 taxcollector.com 95 78 0.287 (5; 1; 5) 42
2 allpar.com 85 109 0.607 (11; 2; 10) 71
3 strictlyrockymountain.com 78 91 0.553 (9; 3; 7) 67
4 raleys.com 76 242 0.667 (11; 2; 13) 92
5 thevacuumcenter.com 76 275 0.613 (9; 2; 13) 131
6 4tourist.net 73 80 0.413 (6; 1; 10) 41
7 ncl.com 72 30 0.610 (11; 1; 13) 2
8 sigmaaldrich.com 72 29 0.420 (7; 2; 6) 30
9 atlasdirect.net 69 87 0.363 (7; 1; 6) 111

10 fool.co.uk 69 198 0.610 (11; 1; 13) 137

Site SYN(·) SEM(·) VOCA(·) DATA(·)

1 keepaustinweird5k.com 61 352 0.533 (9; 2; 9) 70
2 nrc.gov 63 308 0.420 (5; 2; 9) 72
3 thevacuumcenter.com 76 275 0.613 (9; 2; 13) 131
4 medcompnet.com 59 274 0.397 (9; 2; 2) 60
5 taylorresearch.com 65 274 0.363 (5; 1; 9) 131
6 countryfinancial.com 50 265 0.390 (8; 1; 6) 57
7 atletix.net 52 260 0.250 (3; 2; 3) 111
8 50cent.com 57 253 0.843 (10; 6; 12) 158
9 raleys.com 76 242 0.667 (11; 2; 13) 92

10 kerntrophies.com 59 240 0.767 (10; 5; 11) 197

Site SYN(·) SEM(·) VOCA(·) DATA(·)

1 astrodata.ch 57 42 1.000 (12; 6; 17) 2
2 barmans.co.uk 50 20 0.930 (11; 6; 15) 1
3 kidzworld.com 65 19 0.923 (10; 6; 16) 1
4 foreclosurenet.net 53 182 0.880 (12; 6; 11) 133
5 test.quizz.biz 36 18 0.867 (10; 5; 16) 1
6 spraci.com 45 19 0.863 (10; 6; 13) 1
7 50cent.com 57 253 0.843 (10; 6; 12) 158
8 kerntrophies.com 59 240 0.767 (10; 5; 11) 197
9 argos.co.uk 57 162 0.743 (11; 3; 14) 95

10 ia.rediff.com 38 18 0.717 (11; 4; 10) 1

Site SYN(·) SEM(·) VOCA(·) DATA(·)

1 ASPXSoftware.com 27 92 0.200 (2; 2; 2) 286
2 eharmony.com 36 121 0.600 (10; 3; 8) 270
3 cashnetusa.com 45 52 0.343 (5; 2; 5) 268
4 auto-europe.co.uk 33 97 0.237 (4; 2; 1) 250
5 kawasaki.com 46 169 0.497 (8; 4; 3) 250
6 bevmo.com 55 170 0.497 (9; 1; 10) 244
7 petitesophisticate.com 40 170 0.380 (9; 1; 4) 244
8 crutchfield.com 58 197 0.703 (9; 4; 12) 235
9 internest.com 39 155 0.400 (7; 2; 5) 236

10 lampsplus.com 47 156 0.447 (8; 1; 9) 236

Table 3.13. Top 10 semantically distinct policies ordered by four different metrics; see the
bold column.

is shown in Fig. 3.20.15 The policy enumerates most purposes; further it uses two
variable-category data elements (see §3.3.2) and associates them with all possible

15 http://www.astrodata.ch/w3c/policy-general.xml

http://www.astrodata.ch/w3c/policy-general.xml

70 A Study of P3P Language

<POLICY name = "anything-policy"
discuri = "http://www.example.com/privacy/policy.html">
...
<ENTITY>
<DATA-GROUP>
<DATA ref="#business.name">Example Corp.</DATA>
<DATA ref="#business.contact-info.online.email">privacy@example.com</DATA>
...

</DATA-GROUP>
</ENTITY>
...
<STATEMENT>
<PURPOSE>
<current/><admin/><develop/><tailoring/>
<pseudo-analysis/><pseudo-decision/><individual-analysis/>
<individual-decision/><contact/><historical/><telemarketing/>
<other-purpose>Any other purpose we want</other-purpose>

</PURPOSE>
<RECIPIENT>
<ours/><delivery/><same/><other-recipient/><unrelated/><public/>

</RECIPIENT>
<RETENTION><indefinitely/></RETENTION>
<DATA-GROUP>
<DATA ref="#dynamic.miscdata">
<CATEGORIES>
<physical/><online/><uniqueid/><purchase/><financial/>
<computer/><navigation/><interactive/><demographic/>
<content/><state/><political/><health/><preference/>
<location/><government/>
<other-category>Any other type of data</other-category>

</CATEGORIES>
</DATA>
<DATA ref="#dynamic.cookies">
<CATEGORIES>
<physical/><online/><uniqueid/><purchase/><financial/>
<computer/><navigation/><interactive/><demographic/>
<content/><state/><political/><health/><preference/>
<location/><government/>
<other-category>Any other type of data</other-category>

</CATEGORIES>
</DATA>

</DATA-GROUP>
</STATEMENT>

</POLICY>

Figure 3.20. The privacy policy of astrodata.com

categories. Hence, the policy declares substantial exposure (in terms of privacy).
In some sense, the policy declares universal exposure, but this claim cannot easily
be formalized due to the difficult nature of variable-category data elements. Please
observe the name of the policy: “anything policy”.16

Two deficiencies of the policy are worth reporting though. The entity description
uses ‘sample data’ rather than genuine data about ASTRODATA AG; see Fig. 3.20.
Further, the policy fails in making good use of the BDS in places where it obviously
could. (That is, a horoscope service is likely to require a birthday date, which is

16 It was suggested by a reviewer during the review phase of this effort to use a new domain
term to cover this sort of policy: ‘NoRightsReserved’ in legal language.

3.4 Analyses of the Study 71

<POLICY name="WebsitePolicy"
discuri="http://privacypolicy.umusic.com" opturi="...">
...
<ENTITY>
<DATA-GROUP>
<DATA ref="#business.name">Universal Music Group</DATA>
...

</DATA-GROUP>
</ENTITY>
...
<STATEMENT>
<PURPOSE>
<current/>
<admin/>
<develop/>
<tailoring/>
<pseudo-analysis/>
<pseudo-decision/>
<individual-analysis required="opt-in"/>
<individual-decision required="opt-in"/>
<contact required="opt-in"/>
<historical/>

</PURPOSE>
<RECIPIENT>
<ours/>
<delivery/>
<same required="opt-in"/>
<other-recipient required="opt-in"/>
<unrelated required="opt-in"/>
<public required="opt-in"/>

</RECIPIENT>
<RETENTION><indefinitely/></RETENTION>
<DATA-GROUP>
<DATA ref="#user.name"/>
<DATA ref="#user.bdate"/>
<DATA ref="#user.gender" optional="yes"/>
<DATA ref="#user.home-info"/>
<DATA ref="#thirdparty.name" optional="yes"/>
<DATA ref="#thirdparty.bdate" optional="yes"/>
<DATA ref="#thirdparty.gender" optional="yes"/>
<DATA ref="#thirdparty.home-info" optional="yes"/>
<DATA ref="#dynamic.clickstream"/>
<DATA ref="#dynamic.http"/>
<DATA ref="#dynamic.clientevents"/>
<DATA ref="#dynamic.searchtext"/>
<DATA ref="#dynamic.interactionrecord"/>
<DATA ref="#dynamic.cookies">
<CATEGORIES>
<physical/><online/><uniqueid/><purchase/><financial/>
<computer/><navigation/><interactive/><demographic/>
<content/><state/><preference/>

</CATEGORIES>
</DATA-GROUP>

</STATEMENT>
</POLICY>

Figure 3.21. The privacy policy from the site 50cent.com

72 A Study of P3P Language

<POLICY name="WebsitePolicy"
discuri="http://www.pdu-wc.com/policy.html" opturi="...">
...
<ENTITY>
<DATA-GROUP>
<DATA ref="#business.name">Steve Schreiner</DATA>
<DATA ref="#business.contact-info.online.email">...@trophytoolbox.com</DATA>
...

</DATA-GROUP>
</ENTITY>
...
<STATEMENT>
<PURPOSE>
<current/><admin/><develop/><pseudo-analysis/>
<pseudo-decision/><individual-analysis/><individual-decision/>
<contact required="opt-out"/><historical/>
<telemarketing required="opt-out"/>

</PURPOSE>
<RECIPIENT>
<ours>
<recipient-description>
Information is only shared with our partners
who share our privacy policy.

</recipient-description>
</ours>
<delivery/><same/><other-recipient/><unrelated/>

</RECIPIENT>
<RETENTION><indefinitely/></RETENTION>
<DATA-GROUP>
<DATA ref="#user.name"/>
<DATA ref="#user.bdate" optional="yes"/>
<DATA ref="#user.gender" optional="yes"/>
<DATA ref="#user.home-info"/>
<DATA ref="#user.business-info" optional="yes"/>
<DATA ref="#thirdparty.name"/>
<DATA ref="#thirdparty.home-info"/>
<DATA ref="#dynamic.clickstream"/>
<DATA ref="#dynamic.http"/>
<DATA ref="#dynamic.clientevents"/>
<DATA ref="#dynamic.searchtext"/>
<DATA ref="#dynamic.interactionrecord"/>
<DATA ref="#dynamic.cookies">
<CATEGORIES>
<physical/><online/><uniqueid/><purchase/>
<computer/><navigation/><interactive/>
<content/><state/><preference/><location/>

</CATEGORIES>
</DATA>
<DATA ref="#dynamic.miscdata">
<CATEGORIES>
<physical/><online/><uniqueid/><purchase/>
<computer/><navigation/><interactive/>
<content/><state/><preference/><location/>

</CATEGORIES>
</DATA>

</DATA-GROUP>
</STATEMENT>

</POLICY>

Figure 3.22. The privacy policy from the site kerntrophies.com

3.4 Analyses of the Study 73

available through BDS; variable-category data elements should not be used in such
a case.)

Review of http://www.50cent.com

The website is dedicated to the American rapper and actor Curtis James Jackson III.
The site provides information related to the artist: news, videos, music, photos, and
events. The site has a log-in system and a message board (forum). The log-in sys-
tem allows users to sign-in using an account from other social networks (Facebook,
Myspace, Twitter, Windows LiveID, etc). The policy is shown in Fig. 3.21.

The entity description does not directly refer to Jackson or 50cent.com, but it
identifies the Universal Music Group17 as the primary entity.

Most purposes are listed, but the less private ones (such as ‘contact’) admit opt-in
on the side of the user. Also, several recipients are listed, but again, the less private
ones (such as ‘public’) admit opt-in. Detailed data references from three of the four
BDS branches are provided. The use of cookies is specified in detail with regard
to the categories that apply. Hence, the policy is really significant in terms of the
number of included purposes and recipients, subject to opt-in, in several cases, and
in terms of the number of data references.

Review of http://kerntrophies.com/

The website is an online shop for trophies, plaques, medals, and awards. The site
allows customizing of the item’s design (including engraving). The site has a log-
in system. The policy is shown in Fig. 3.22. The policy is close to the one shown
in Fig. 3.21: they declare the same recipients, they cover about the same purposes;
see ‘tailoring’ vs. ‘telemarketing’. The site 50cent.com provides more privacy be-
cause it declares ‘opt in’ for several purposes and recipients, whereas the site kern-
trophies.com uses ‘opt out’ for a few purposes. The sites are likewise close in terms
of amounts of collected data, but kerntrophies.com uses the variable-category data
elements #dynamic.misc.

It is striking to observe that nearly the same list of purposes is given in the same
order in Fig. 3.21 and Fig. 3.22. Common sense may suggest that this cannot be an
accident, and one policy has been derived from the other. More likely, both policies
have been created with a P3P editor. That is, the shown order of purposes agrees with
the order in the P3P specification. Also, only three purposes were omitted—one of
them being the special purpose ‘other-purpose’. All the omitted purposes happen to
be the least popular ones in the corpus; see §3.4.1.

3.4.4 Analysis of Cloning

The underlying research question is “What are common policies?”; see §3.2.1. Clone
detection is effective in identifying common policies. We will then determine the

17 http://www.universalmusic.com/

http://www.50cent.com
http://kerntrophies.com/
http://www.universalmusic.com/

74 A Study of P3P Language

characteristics of the most common policies and the relationships between them. An
appreciated side effect is that we discover some authoring and publishing habits of
website entities.

If we compare clone detection for P3P with regular programming languages,
then we can emphasize that trying to find ‘common’ Java or C++ programs would
be of limited use. Trying to find common P3P policies makes sense for the following
reasons. First, one can expect that policy authors may sometimes reuse entire policies
from other websites. Second, P3P tools provide templates which may also stipulate
the use of common policies. Third, the simplicity of the P3P language and ‘typical’
policies is such that we may assume to encounter common policies just by accident.

Types of clones

Since we are interested in common policies, our focus is on clone detection across
different files [103] (i.e., across different policy files). Our research question is not
concerned with cloned policy text within the same policy, but this may be an orthog-
onal topic for future work.

Let us consider the classification for types of clones [116]: “Type 1 is an ex-
act copy without modifications (except for whitespace and comments). Type 2 is a
syntactically identical copy; only variable, type, or function identifiers have been
changed. Type 3 is a copy with further modifications; statements have been changed,
added, or removed.” In some cases, type 4 is considered as well [159]: “Two or more
code fragments that perform the same computation but are implemented by differ-
ent syntactic variants.” These types are of limited use when classifying inter-file P3P
clones as we discuss now.

In our study, we are interested in textual, syntactical, and semantical clones. We
use the term textual clones (abbreviated as ‘txt’) for policy files that are identical
when comparing the text-encoded XML content of the files. Arguably, textual clones
are type-1 clones. In order to find textual clones, we compare XML files for their
precise textual content. If we find textual clones, then we have not just found com-
mon policies, but we also face an interesting form of copy and paste behavior. Here
we note again that policies are supposed to identify the entity of the website. Hence,
type-1 clones are policies from different websites with the same alleged entity. Our
analysis will investigate this scenario in more detail by also taking into account do-
mains of websites and entity URIs.

We use the term syntactical clones (abbreviated as ‘syn’) for policies that are
identical in terms of the abstract syntax of §3.3.2. Hence, all formatting differences
are neutralized, the entity name is eliminated, other text parts are eliminated, order of
elements in collections become invariant. Arguably, syntactical clones are type-2 or
type-3 clones depending on the mapping of programming language-centric terms in
the above-mentioned definitions to P3P terms. The clone detection at hand is AST-
based [26]. If we find syntactical clones, then we have indeed found common policies
that are obviously used across different websites. Syntactical clones could be the
result of i) using a template of a P3P authoring tool; ii) copy-paste-and-customize;
iii) accident—especially in the case of simple policies.

3.4 Analyses of the Study 75

Type #
C

lo
ne

gr
ou

ps

#
A

dd
ed

cl
on

e
gr

ou
ps

#
A

dd
ed

cl
on

ed
po

lic
ie

s

#
E

nl
ar

ge
d

cl
on

e
gr

ou
ps

#
M

er
ge

d
cl

on
e

gr
ou

ps

%
C

lo
ne

s

txt 296 296 1,941 – – 31.40
syn 496 280 1,857 46 114 30.04
sem 351 20 69 0 32 1.12

Total – – 3,867 – – 62.55

Table 3.14. Numbers of clones and clone groups

We use the term semantical clones (abbreviated as ‘sem’) for policies that are
identical in terms of the normal form of §3.3.3. The obvious value of the normal form
is that we abstract from the representational diversity for policies. If we find semanti-
cal clones, then there is evidence that authors exercise the representational diversity.
Arguably, semantical clones are type-4 clones—if we accept the relational seman-
tics of our normal form as a proper semantics. Here, we note that type-4 clones are
very hard to detect for common programming languages. The relational semantics
of P3P is straightforward though. Our normalization approach can be compared with
the cloning classification of [18] where refactorings are used to detect and possibly
remove clones.

A note on implementation

Overall, it is simple to accommodate clone detection for the chosen clone types be-
cause the P3P syntax is trivial, no parameterized clones are considered, policies are
trivially small (compared to programs in mainstream languages), all reported and
conceivable P3P corpora are small (compared to, for example, the numbers of pro-
grams in mainstream languages that are obtainable from open-source repositories).
Hence, implementation of clone detection for textual, syntactical, and semantical
clones is relatively straightforward, and no scalability challenge has to be tackled. It
is hard to detect semantical clones for programming languages, but it is straightfor-
ward for P3P’s finite domain-based semantics.

Results of the analysis

Consider Table 3.14 with numbers of clones and clone groups. Column # Clone
groups shows the number of detected clone groups of each type. Column # Added
cloned policies shows the number of newly detected cloned policies for each type,
when compared to cloned policies for the prior type. For clarity, we count the repre-
sentative of a clone group as being a cloned policy. Hence, % Clones describes the
percentages of all policies of the corpus that are not distinct in the cloning sense.
Column # Added clone groups shows the number of new clone groups for each type,

76 A Study of P3P Language

where we do not count groups that are only enlarged or merged. Column # Enlarged
clone groups shows the number of clone groups that were obtained solely by adding
newly detected cloned policies of the given type to a clone group of the prior type.
Column # Merged clone groups shows the number of clone groups from the prior
type that were merged in clone groups of the given type.

It should be noted that the number of clone groups drops from syntactical to
semantical type: this is because some of the syntactically cloned policies are seman-
tically invalid. Namely, 143 syntactical clone groups contain semantically invalid
policies (that is, 28.83 % of all syntactical clone groups). The rest of the difference
is because of groups being merged under the clone type.

We also compared all policies with the 6 templates of IBM’s policy editor be-
cause we realized at some point that many policies were obviously edited with this
prominent P3P tool. We found that all but 1 of the templates have an associated
clone group. We encounter and discuss some of these clone groups when we inspect
selected clone groups below.

Textual and syntactical clone detection clearly identify a substantial amount of
clones. The contribution of semantic clone detection is small. In Appendix A.1.2,
we consider the remaining diversity among the semantically distinct policies on the
grounds of the partial order for degree of exposure as of §3.3.4.

1 2 5 10 20 50 100 200 500

1
2

5
10

20
50

10
0

20
0

50
0

Clone group

C
ar

di
na

lit
y

Textual cloning
Syntactical cloning

Figure 3.23. Distribution of clone group cardinalities

The distribution of textual and syntactical clone groups in terms of cardinality is
shown in Fig. 3.23 and Table 3.15. There are a few huge clone groups; most clone

3.4 Analyses of the Study 77

Type Min 1st Q Median Mean 3rd Q Max

txt 2 2 2 7.609 4 175
syn 2 2 2 8.819 4 690

Table 3.15. Cardinalities of textual and syntactical clone groups

groups are of trivial size. More precisely, there are 36 textual clone groups with
cardinality > 10. These groups make up 12.16 % of all textual clone groups. There
are 59 syntactical clone groups with cardinality > 10. These groups make up 11.90 %
of all syntactical clone groups. Semantical clone detection is left out here because it
adds very little.

Type Min 1st Q Median Mean 3rd Q Max

txt 2 9 16 22.19 37 147
syn 2 9 19 23.23 36 245
sem 2 9 17 18.78 28 99

Table 3.16. Distribution of SYN(·) over clones

Type Min 1st Q Median Mean 3rd Q Max

txt 0 0 13 28.35 29 253
syn 0 0 16 25.78 29 275
sem 0 6 20 29.76 34.25 275

Table 3.17. Distribution of SEM(·) over clones

Tables 3.16 and 3.17 summarize the distribution of syntactical and semantical
sizes over clones for all types. (We consider only distinct sizes for clones at a given
type.) Consider Table 3.16. The maximum for SYN(·) first increases from txt to syn,
which means that syntactical clone detection finds clones with syntactical size near
the maximum in the corpus. The maximum for SYN(·) subsequently drops from syn
to sem, which is implied by the substantial amount of semantically invalid policies,
which escape semantical clone detection. In fact, we lose the (syntactically) greater
policies in this manner. Median and third quartile co-drop. Now consider Table 3.17.
The maximum for SEM(·) first increases slightly from txt to syn, but then it remains
at the same value for type sem, which means that semantical clone detection does
not make any contribution in terms of finding clones of greater size than those found
by textual or syntactical clone detection.

78 A Study of P3P Language

Discussion of textual cloning

We would like to understand the nature of textual cloning. Therefore we examine
the top-10 clone groups (in terms of cardinality); see Table 3.18. We list the issuing
entity, cardinality, values for the metrics of §3.4.3 as well as the ‘average URI dis-
tance’, which we explain in a second. A semantical size of 0 indicates representatives
of the ‘full privacy’ from the introduction. (This policy has syntactical size 2 because
it consists of a statement node and a non-identifiable node underneath.) It turns out
that there is one semantically invalid clone group among the top 10: No. 5 uses a
reference from BDS v.1.0. It also happens to have the largest syntactical size along
with the group No. 1.

Entity Card. Avg. dist. SYN(·) SEM(·) VOCA(·) DATA(·)

1 John Hensley 175 1.000 42 156 0.650 (9; 3; 12) 188
2 CybrHost 139 1.000 2 0 0.000 (0; 0; 0) 0
3 PhotoBiz 137 1.000 2 0 0.000 (0; 0; 0) 0
4 Boatventures 96 1.000 15 16 0.163 (2; 1; 3) 3
5 Real Estate 69 1.000 42 – 0.363 (7; 1; 6) –
6 Hilton Hotels 68 0.779 9 6 0.123 (2; 1; 1) 1
7 NASA 54 0.000 13 29 0.180 (4; 1; 1) 30
8 Rezidor SAS 51 0.000 12 16 0.163 (2; 1; 3) 29
9 Bravenet 46 0.000 17 16 0.123 (2; 1; 1) 29

10 Wetpaint 38 0.237 19 24 0.180 (4; 1; 1) 30

Average – 0.602 17.30 26.30 – –

Table 3.18. Top 10 textual clone groups

Intra- versus inter-domain cloning

We would like to understand systematically whether cloning happens within a given
domain (say, an organization) or across domains. These different scenarios corre-
spond to different kinds of potential copy-and-paste-like authoring behaviors. We in-
troduce the measure of URI distance for a policy; this is the ‘distance’ between site
URI and the entity URI (the so-called discuri). We set this distance to 0 if both URIs
appear to be about the same entity—subject to advanced matching of domain names
(such as in the case of www.microsoft.com and server1.microsoft.de),
and to 1 otherwise. Given a clone group, we can also determine its average URI dis-
tance; this is simply the average of the URL distances for the members of the clone
group; this measure is on a [0,1] scale. Please note that the entity URI would be the
same for all members of a textual clone group; only the site URIs could differ.

Let us illustrate the subtle point of URI distance with a particularly clear example
not included in the top 10 list. The site p3pedit.com presents a software product,

www.microsoft.com
server1.microsoft.de
p3pedit.com

3.4 Analyses of the Study 79

P3PEdit, of the company codeinfusion.com. Incidentally, P3PEdit is a P3P
tool. The site of the product has a P3P policy embedded into the reference file http:
//p3pedit.com/w3c/p3p.xml, but the "discuri" attribute points to the site
of the company. This is not against the P3P specification, but demonstrates cross-
domain copy and paste.

We have inspected the top 10 clone groups and member websites, and charac-
terize them as follows. No. 1 textual clone group is similar to the policies shown
in Fig. 3.22 and Fig. 3.21: non-trivial composition of purposes, recipients, and data.
According to the website mentioned in the policy, the site offers real estate soft-
ware, technology services, and websites for agents, brokers, and realtor associations,
which probably explains such high cardinality of the group. It also happens to have
the largest SYN(·) along with the group No. 5.

No. 2 is the ‘full privacy’ policy of a web-site hosting service. An average URI
distance of 1 indicates that all clones appear on domains apparently unrelated to the
hosting service. We hypothesize that many hosted web sites reuse (perhaps implic-
itly) a default policy without customizing it for their own domains. Several of the
other top 10 are about web hosting, too—with similar URI distances. In contrast,
No. 7, i.e., the NASA policy, is never cloned outside NASA’s web space.

To summarize, it is common practice to copy and paste policies from elsewhere,
as is, without even customizing website-specific information. Copy and paste within
the same domain or across different domains owned by the same entity makes sense,
of course. Only 3 from the top 10 clone groups are clear-cut cases of websites on
domains that can be associated with a single entity.

Discussion of syntactical cloning

We determine the top 10 syntactical clone groups as those with the greatest cardinal-
ity after removing all textual clones; see Table 3.19. Thereby we compensate for the
effect that several syntactical clone groups are extensions of textual clone groups. It
turns out that there are two semantically invalid clone groups among the top 10: No. 6
has conflicting optionality attributes for one data reference, No. 9 uses a reference
from BDS v.1.0.

No. 1 describes data collection of these forms: access logs, search strings, cook-
ies, and user-related information (name and business email address). This appears to
be an important e-commerce scenario that does not involve online purchasing. It also
has the biggest SEM(·) amongst these top 10 groups. Hence, our cloning study may
have detected a domain concept that does not have an explicit domain term. How-
ever, it is possible that the policy derives from a template that we are not aware of. It
is also possible that heavy cross-website reuse has happened.

No. 2 shows us that there are even more instances of the ‘full privacy’ policy in
the corpus. If we combine textual and syntactical cloning, then there are 690 occur-
rences of this policy in the corpus. This is 11.16 % of all policies. Incidentally, the
policy is not in the suite of online samples of the primary textbook on P3P [42].18

18 http://p3pbook.com/examples.html

codeinfusion.com
http://p3pedit.com/w3c/p3p.xml
http://p3pedit.com/w3c/p3p.xml
http://p3pbook.com/examples.html

80 A Study of P3P Language

Sample entity Card. Avg. dist. SYN(·) SEM(·) VOCA(·) DATA(·)

1 Accountancy 331 0.000 36 44 0.367 (8; 2; 2) 33
2 CybrHost 284 0.109 2 0 0.000 (0; 0; 0) 0
3 IBM tracking 218 0.124 19 24 0.180 (4; 1; 1) 30
4 Johnston Press 116 0.586 20 24 0.220 (4; 1; 3) 30
5 IBM logging 102 0.098 9 12 0.137 (3; 1; 0) 28
6 IBM purchase 67 0.104 51 – 0.363 (5; 2; 6) –
7 Beach Suites 64 0.125 31 29 0.353 (6; 2; 4) 30
8 1066 Pools Ltd 30 0.000 24 10 0.377 (6; 1; 8) 1
9 Art of War 24 0.083 12 17 0.117 (1; 1; 2) 30

10 WebSolutions 20 0.000 31 – 0.283 (7; 1; 2) –

Average – 0.123 23.50 16.00 – –

Table 3.19. Top 10 syntactical clone groups

IBM’s P3P Policy Editor19 provides 6 templates for P3P authors. The idea is that
these policies may cover some typical cases, and they could be customized if needed.
We use these templates as markers in our clone detection process. We found that all
but 1 of the templates have an associated clone group. Some of them occur in the
discussed table, and hence we discuss them here.

No. 3 is described by IBM’s tool as following: “This template is designed for
sites which track users on a non-identifiable basis through use of cookies. It also
assumes standard server access logs will be collected.” No. 3 is similar to No. 1.
More precisely, we have that No. 3 ≤sem No. 1 (see §3.3.4) because No. 1 collects
additional user data and cookies are admitted in a more general way.

No. 4 is a minor variation on No. 3; both policies differ in terms of categories for
cookies. Neither policy is ‘less or equal’ (in terms of ‘≤sem’) than the other policy.

No. 5 is described by IBM’s tool as follows: “A template privacy policy for sites
which only collect standard server access logs for site operation purposes.” No. 5
is similar to No. 3. More precisely, we have that No. 5 ≤sem No. 3 because No. 5
describes only data collection for access logs and declares even less data to be col-
lected. In §2.3.1, we coined the name ‘logging only’ for this policy.

No. 6 is described by IBM’s tool as following: “This template captures the
data typical sites collect as part of an on-line shopping experience.” This group
has the biggest SYN(·) among top 10. We count this policy as semantically in-
valid because of conflicting optionality attributes for different occurrences of #dy-
namic.miscdata; see §3.4.2. No. 6 adds facts about purchase-related data based on
#dynamic.miscdata on top of No. 5. (We cannot apply ‘≤sem’ though, since No. 6
has no normal form.)

To summarize, there is an extra of 30.04 % of the corpus that is cloned in syntac-
tical but not textual sense. We assume that this percentages corresponds to common
needs of websites combined with the relative simplicity of P3P and the relatively

19 http://www.alphaworks.ibm.com/tech/p3peditor

http://www.alphaworks.ibm.com/tech/p3peditor

3.4 Analyses of the Study 81

small size of policies as well as the availability of reusable templates. This kind of
cloning gives hope that a relatively small number of standardized policies could be
potentially sufficient. In the top 10 of Table 3.19, 3 templates of IBM’s Policy Editor
appear.

3.4.5 Analysis of Extensions

The underlying research question is “What language extensions circulate?”; see
§3.2.1. The main goal is to analyze the use of P3P’s extension mechanism and to
infer candidate language extensions to be considered by future languages for privacy
policies.

<RETENTION>
<legal-requirement/>
<EXTENSION optional="no">
<use-duration>
<one-year/>

</use-duration>
<retention-basis>
<internal-company-regulation> [Text] </internal-company-regulation>

</retention-basis>
</EXTENSION>

</RETENTION>

Figure 3.24. Example of EXTENSION usage

The essence of extensions

P3P’s extension mechanism allows P3P tool providers and policy authors to add and
use extra constructs. For instance, one might want to add a more detailed specifica-
tion of retention, say in terms of a specific duration for storage of data; see Fig. 3.24
for such an example.

Technically, P3P admits extension elements immediately below P3P elements for
statements, purposes, recipient, retention levels (as in the example), and data refer-
ences (in fact, data groups). Extensions are effectively named—through designated
XML tags; see legal-requirement in the example. Also, the further structure
of each extension element is an XML tree. All XML elements can be qualified by
policy-specific XML namespaces.

Procedurally, the use of the extension mechanisms is challenging since policy
tools and website users may need (want) to understand the extensions, and there is
no obvious technical solution to that problem. P3P admits this challenge with its
classification for optional versus mandatory extensions: “A mandatory extension to
the P3P syntax means that applications that do not understand this extension cannot
understand the meaning of the whole policy (or policy reference file, or data schema)

82 A Study of P3P Language

delivery 1364
cert 440
complaint 414
content 400
statement 346
age 232
proxy-agreement 138
payback 88
statement-group 3

Figure 3.25. Frequency of top-level primitive extensions (w/o group-info)

delivery 341
ppurpose 253
collection-method 244
destruction-method 244
retention-basis 244
use-duration 243
recipient-description 236
recipient-name 236
recipient-duration 62
same 62
data-group 11
jurisdiction 1
purpose 1
retension-duration 1

Figure 3.26. Frequency of top-level structured extensions

containing it.” 20 This classification focuses on the tool view. However, even an op-
tional extension would need to be specified for the benefit of website users, and the
specification may need to be rigorous enough to be used in the context of policy
enforcement. We assume that such requirements may partially discourage the use of
P3P’s extension mechanism. This is a challenge for future approaches to language-
based privacy.

Frequency analysis

Let us analyse usage of the extension mechanism. We begin by analyzing the fre-
quency of top-level tags found in the corpus. Fig. 3.25 lists all primitive extensions
by which we mean extensions of the form <tag/> (possibly including attributes
but no child elements). Fig. 3.26 lists all structured extensions by which we mean
extensions of the form <tag>...</tag>. (In fact, we omit one dominant tag, as

20 http://www.w3.org/TR/P3P11/#extension

http://www.w3.org/TR/P3P11/#extension

3.4 Analyses of the Study 83

we discuss below.) Table 3.20 summarizes some global numbers on the usage of the
extension mechanism.

Discussion

The P3P standard illustrates a few proposals for extensions. It turns out that one of
these proposals, ‘group-info’, accounts for most extension usage in the corpus. The
group-info tag lives in an XML namespace by IBM, and it provides a comment fa-
cility. There are only 162 policies (of them 151 syntactically distinct) that use exten-
sions other than group-info. We suggest that further scrutiny should focus on those
162 policies.

Extensions 7631
Distinct extension tags 23
Policies with extensions 3076 (of all syntactically valid 6,182 policies)
Syntactically distinct policies with extensions 1199 (of all syntactically distinct 2,304 policies)

Table 3.20. Basic numbers about extension usage

Grammar inference

Fig. 3.27 shows an inferred grammar for all the extensions in the corpus. We use
EBNF-like notation (as opposed XML-centric XSD notation) for conciseness’ sake.
The extensions are grouped by the rooting element (statement, purpose, recipient, re-
tention, and data-group); see the first rule in each block in the figure. Grammar rules
for top-level tags of extensions are collected as iterated choices over extra extension
elements, which are defined by extra productions in each block. Many extensions
use the standard XML namespace of P3P—as illustrated in Fig. 3.27 with the appro-
priate font. (This is a debatable practice because the extending entity does not have
control over the namespace.)

Discussion

We observe that the complexity of the inferred grammar suggests that there are more
proposed extensions than baseline language elements. That is, there are 87 different
XML tags introduced by extension elements in the corpus. In contrast, there are
only 50 different XML tags for P3P statements according to its XSD-based syntax
definition. Hence, we obtain a ratio of extension : baseline of 1.74.

Several of the proposed extensions extend P3P’s privacy vocabulary in an obvi-
ous manner, e.g.:

• How long exactly is information stored?

84 A Study of P3P Language

statement : (collection-method | destruction-method | group-info | statement-group)∗

collection-method = (other-method |delivery |document |purnish |qnaboard | subscription | ...)∗
destruction-method = (other-method | format | shatter)∗
other-method .

= ε

purpose : (ppurpose | purpose | age | cert | complaint | content |payback |proxy-agreement | statement)∗

ppurpose .
= (ACCOUNT | BROWSING |delivery | FEEDBACK |finmgt | government | login |marketing | ...)∗

purpose = (FEEDBACK | government)∗

recipient : (delivery | jurisdiction | recipient-description | recipient-duration | recipient-name | same |delivery)∗

delivery .
= ε

jurisdiction = (long-description)∗
long-description .

= ε

other-duration .
= ε

other-purpose .
= ε

recipient-description = (other-purpose | admin | age | agency | cert | complaint | content |delivery | ...)∗
recipient-duration = (other-duration |five-year | instance | one-year | six-month)∗

recipient-name .
= ε

same .
= ε

retention : (retension-duration | retention-basis |use-duration)∗

credit-privacy-law = (one-year)∗

e-trade-law = (five-year)∗

internal-company-regulation .
= ε

other-basis .
= ε

other-duration .
= ε

retension-duration = (other-duration)∗
retention-basis .

= (credit-privacy-law | e-trade-law | internal-company-regulation | ...)∗
use-duration = (other-duration |five-year | instance | one-month | one-year | ...)∗

data-group : (data-group)∗

categories = (COMPUTER | UNIQUEID)∗
category = (COMPUTER | demographic | navigation | purchase | state | UNIQUEID)∗
data-group = (datatype)∗
datatype = (dynamic | user)∗
dynamic = (miscdata)∗
home-info = (telecom)∗
miscdata = (category)∗
telecom = (TELEPHONE)∗
user = (home-info)∗

(Some productions had to be cut off for scalability of presentation.) Underlined tags corre-
spond to elements without content. For brevity, attributes of extensions are not shown in the
grammar. When ‘ .=’ is used as a rule separator, then text content instead of structured con-
tent was encountered for the element in question. All tags that use consistently P3P’s XML
namespace are shown in boldface. All tags that are used with different XML namespaces are
shown in capitals and boldface. All the other tags use a unique XML namespace (different
from P3P’s).

Figure 3.27. The (truncated) extension grammar for the corpus

3.5 Threats to Validity 85

• How is information destroyed after the retention period expired?
• How to describe recipients in detail?

Appendix A.1.2 provides additional information about the diversity of extensions
with regard to the domains of the policies. Thereby, we have found that most ex-
tensions can be traced to Korea. We can only hypothesize about this finding. One
possible reason could be a particular, national legislation. We mention this finding
again in the threats to validity discussion in §3.5.

3.5 Threats to Validity

Let us discuss several limitations of the trustworthiness of the results of our study.
We discuss limitations by their possible origin.

The Corpus

There are several possible approaches to collecting the initial set of websites to be
checked for P3P policies. One way is to aim for most visited or most mentioned
websites and to collect them from sources such as top-lists and rankings [57, 153].
Another option is to obtain “typical” search terms (via logs of search engines) and
to collect websites showing up in the results of searching with such terms [44]. Yet
another option is to collect a random sample of websites by Web crawling, starting
with some seed (a list of URLs) and then visiting in a recursive manner all hyperlinks
occurring on retrieved pages. In all cases the idea is to get a somehow characteris-
tic set of websites: most visited, typical, or random—later this allows to generalize
results for that group of websites.

We wanted to collect as many P3P policies as possible, from a single trustworthy
source. The Open Directory Project positions itself as “the largest, most comprehen-
sive human-edited directory of the Web.”21 We consider this effort to be sufficient
for filtering out abandoned or insignificant websites and also for providing diversity.
As language engineers, we do not care if an observed language phenomenon arises
from websites that might be not frequently visited or do not show up in top searches.
We are curious to investigate any phenomenon if it appears through a reasonable
resource like ODP.

Due to a lately discovered omission, we did not retrieve websites and therefore
policies from ODP’s category ‘Kids and Teens’.

The Tools

We use homegrown tools to run all analyses in the study. While some of the actions
are quite simple (e.g., calculation of a metric based on a provided formula), others
need an empirical evaluation. Clone detection is probably the most important exam-
ple. To address this problem, we manually checked 2 % of cloned policies of each

21 http://www.dmoz.org/docs/en/about.html

http://www.dmoz.org/docs/en/about.html

86 A Study of P3P Language

type. In that, we followed the procedure of empirical evaluation described by Falke
et al. [61]: a human oracle validates a number of clones selected randomly in an
automated fashion. We did not find any false positives in our check.

Reliability of the Results

Aside the aforementioned technical aspects that might threaten the validity of our
results, the major threats are in the decisions that we had to make during the process
of taming the P3P language. While we argue in favor of our decisions when intro-
ducing them, we would like to mention some of them here, without repeating the
pro-reasons.

Normal form. According to the assumed normal form, 21.24 % of our corpus
is semantically invalid. With a different normal form, we may be able to reduce the
number of semantically invalid policies, and thereby exclude less policies from some
of the analyses. We assume though that we picked the most established normal form,
as we discussed in §3.3.3.

Variable-category data elements. In all our analyses, we treat data references
with variable categories the same way we treat data references with fixed categories.
That is, we count them as single references to specific data items. This may be sub-
optimal, as pointed out, for example, in §3.4.3. Hence, the reliability of our results
for policies with variable-category data elements is threatened.

Privacy order. We aligned elements of P3P language by their meaning that we
discovered from the specification of the language. While we did our best during this
judgement, it might be that we failed to understand the nuances of definitions. For
instance, in a recent work by Ghazinour and Barker, they apply lattice-based struc-
ture to P3P elements [70], and, e.g., the resulting chain for retention differs from
our. Ghazinour and Barker start with “legal-requirement” as the bottom element,
then place “no-retention”, “stated-purpose”, “business-practices”, and “indefinitely”
as the top element. The impact of ill-conceived partial order is very limited because
we leverage the specific definition only informally when we discuss relationships
between significant and common policies and in the auxiliary discussion of the di-
versity of semantically distinct policies in Appendix A.1.2.

Extensions. Most of the found extensions can be traced to Korea. Without an
explanation of this situation, it may be that the observed, substantial use of extensions
is not representative for P3P authoring generally.

3.6 Related Work

We relate our P3P effort to the general area of empirical program analysis. We also
explain how our work differs from other P3P studies that are essentially studies on
P3P adoption. We briefly mention other literature that critically discusses P3P, and
we comment on the situation in the web-privacy domain more broadly.

3.6 Related Work 87

Empirical Program Analysis

There is early work on simple static and dynamic program analysis for FORTRAN,
Cobol, and Pascal with the objective of informing compiler implementors and possi-
bly language designers [115, 157, 34, 40]. Static analysis is typically based on simple
structural program properties. Dynamic analysis may examine aspects such as depth
of recursion. We also measure structural properties. Dynamic analysis is not directly
relevant for P3P. We pick up the extra opportunity of semantics-based measurements.
Our work may be of interest for P3P tool providers and language designers, and we
provide insights into P3P’s use cases.

In [160], the use of APL language features is found to obey an 80-20 rule. We
have checked that the use of P3P’s base data schema obeys such a rule, too. That is,
about 80 % of all P3P policies in the corpus (in fact, 84.15 %, i.e., 5,202 policies)
use only 20 % of all data references.

In recent years, Java programs (or byte-code programs) have been empirically
analyzed [71, 24, 38]. The work of [24] makes a laudable effort to deeply study the
mathematical distribution of simple structural properties. In contrast, our research
questions are not concerned with the discovery of distributions.

The idea to empirically analyze policies (as opposed to programs) was also in-
spired by our earlier work on understanding the usage of XML schemas [120]. In
this context, we also had to come up with non-classical forms of metrics and usage
analyses for language elements.

Studies of P3P Adoption

Several studies have analyzed P3P’s adoption; we consider the following list as rep-
resentative of this line of work: [57, 153, 44, 154]. The studies differ in objective,
the method of obtaining a corpus, and analytical techniques. Table 3.21 provides a
summary.

In three out of four cases, these earlier studies involved multiple sources such
as ranking lists for websites, and they also used search engines, e.g., by locating
websites through ranked lists of search terms. Our reliance on a single source is a
threat to validity, but given the size of the corpus and the reputation of ODP, we
should have covered many important websites. Still our distributions may be biased
in that we may look at more unpopular sites than earlier studies.

Previous work, as listed above, has not analyzed metrics, cloning, semantics-
based properties, P3P extensions, and language coverage (except for some basic
considerations in [44]). This is largely a consequence of a focus on adoption as op-
posed to our focus on language-usage analysis as well as our background in software-
language engineering.

Critical Discussion of P3P

All above-mentioned work on P3P adoption regularly involves simple forms of valid-
ity checking, and the reported degrees of invalidity also along evolution of websites

88 A Study of P3P Language

Property [57] [153] [44] [154]

Time stamp 12/2006? 11/2005 12/2006 11/2006
Size of corpus 3846? 1482? 3846? 3282
Number of sources 11 6 5 1
Syntax error rates ◦ ◦ • ◦
Boundary breakdown – • – •
Website evolution – • • –
P3P language coverage – – ◦ –
Privacy classification • – ◦ –
Legislation – – – •
HRPP interpretation – – • –

Question marks in the cells mean that we are not confident that the available descriptions could
be unambiguously interpreted; ‘•’ means that the study focuses on this issue; ‘◦’ means that
the study touches upon the issue, but does not focus on it.

Legend of properties:

• ‘Time stamp’—the date when the corpus was determined.
• ‘Size of corpus’—number of policies considered by the study.
• ‘Number of sources’—number of directories, rankings, etc.
• ‘Syntax error rates’—analysis of syntactical validity.
• ‘Boundary breakdown’—analysis of geographical or linguistic distribution.
• ‘Website evolution’—analysis of changed, corrected, added, and removed policies.
• ‘P3P language coverage’—analysis of vocabulary usage as in §3.2.1.
• ‘Privacy classification’—analysis of privacy profiles.
• ‘Legislation’—analysis of compliance of policy with applicable
• ‘HRPP interpretation’—analysis of HRPP (Human Readable Privacy Policy)

Table 3.21. Related work on P3P adoption

can be regarded as one theme of critical discussion of P3P. It may just be necessary
that the deployment process for policies would involve mandatory validation.

From a language engineer’s point of view, a major issue with P3P is the lack
of a standardized, sufficiently formal, and comprehensive semantics. One critically
relies on such a semantics for complete validation of policies and, even more so, for
policy enforcement. For instance, W3C’s APPEL language [188] targets the prob-
lem of user preferences on top of P3P. Because of the weak specification of P3P,
APPEL also ends up querying P3P in an ‘unstable’ manner: Query results differ for
‘obviously’ meaning-preserving variations of policies. APPEL’s definition has been
criticized widely [90, 14, 15, 197] and alternative languages for preferences have
been proposed [14, 15], but ultimately it is P3P that needs to be more strongly de-
fined.

3.7 Conclusion 89

Web-privacy Domain

P3P is a machine-readable language allowing to express data collection practices of
websites. P3P was designed to make it easier for customers to become aware of and
understand websites’ policies.

An alternative approach to expressing privacy policies in a human-friendly for-
mat uses seals (say, badges or pictograms) placed on pages of websites. These seal
programs, e.g., TRUSTe [183], are meant to guarantee trustworthiness of the website
which have to meet certain requirements for different types of seals subject to a certi-
fication mechanism. It should be interesting to compare the types of seals considered
by these approaches with our findings of common policies.

The idea of expressing privacy practices of a website with a concise visual form
such as a pictogram is appealing and inspired other attempts. For example, within
the community of Mozilla’s users, there is an initiative of reducing the complexity
of privacy policies and having visual aids for quick indication. (Likewise, Creative
Commons licenses provide simple, standardized alternatives to the paradigm of tradi-
tional copyright [143].) There is also an effort by the law firm Hunton & Williams—
layered privacy notices that provide users with a high-level summary of a privacy
policy [178, 179]. Another effort on information design that improves comprehensi-
bility of privacy policies exploits the idea of nutrition label that lists facts about the
product. The authors suggest to present information in a form of a colored grid [107].

3.7 Conclusion

With the possible exception of P3P, there is no widely adopted, language-based ap-
proach to privacy in web-based systems. It is very common that web-based systems
address privacy essentially by means of human-readable policies, settings dialogs,
and perhaps seal programs such as TRUSTe. Nevertheless, language-based solutions
may be needed to enable flexible, transparent, and enforceable privacy policies for
web-based systems.

Recent communications by P3P advocates and experts [164, 43] made a number
of observations about the adoption issues with P3P as well as design or lifecycle
problems with the language; these communications also made a few proposals on
how the web-privacy domain should proceed and what lessons to learn from P3P. To
some extent, the communications also take advantage of empirical research, but our
study in empirical analysis of language usage for P3P is the first that analyzes the
language from a software language engineer’s point of view.

Our analysis of correct use for standardized and provisional language constraints
suggests that future language-based solutions must be more rigorous in specifying
the language and enforcing correct use effectively. Our analysis of circulating P3P
extensions based on P3P’s extension mechanism has revealed that the mechanism
has not been broadly adopted. However, the available examples of extensions clearly
hint at the need of additional details to be covered by privacy policies. We propose

90 A Study of P3P Language

that future language-based solutions must provide a more effective extension mech-
anism. Further analyses led to results that identified common policies and suggested
simplifications of the vocabulary.

Future empirical research should deliver a comparison of P3P’s vocabulary with
vocabulary used elsewhere for web privacy such as in approaches that use human-
readable policies, settings dialogues, or other approaches that rely on certification
and seals, as discussed in §3.6. It is easy to find data points that show misalignment
between P3P’s vocabulary and the needs of major websites. Consider, for example,
Facebook’s privacy settings of sharing user information: everyone, or only friends,
or friends of friends, or sets of certain people—these categories and their relation-
ships are not modeled by P3P. Empirical research may help here in deriving a more
comprehensive or more extensible vocabulary.

In the present effort, the issues of language adoption or perhaps even decline
were not of central interest. It may be interesting though to further study the causes
for P3P’s decline. For instance, our clone detection results showed that there seem to
exist many websites that do not even customize policies to their entity. We also refer
to Appendix A.1.1, where we provide some data on the disappearance of policies
over time (in terms of online availability) for the corpus. Can we further expand on
these and other symptoms in ultimately concluding that many policies were never
considered ‘actionable’ or they were designed to be extremely ‘permissive’ without
usefully promising privacy?

We hope that Software Language Engineering, as a discipline, will continue to
respond to the need for improved, possibly language-based solutions for the web-
privacy domain. As our study revealed, there are interesting challenges regarding,
for example, the specification and usability of policy languages, the procedural val-
idation of policies within their lifecycle, and the effective provision of an extension
mechanism.

4

A Study of APIs

In this chapter, we present an empirical study of API usage. We begin with an ini-
tial exploration of the topic in the context of open-source Java projects, where we
demonstrate examples of large-scale API usage analysis and detect different styles
of usage (framework-like vs. library-like). We investigate further framework usage
by developing a framework profile—a range of reuse-related metrics to measure the
as-implemented design and its usage—and applying it to the Microsoft .NET Frame-
work. Finally, based on the developed analyses, we introduce a catalogue of explo-
ration activities to capture API usage accompanied by a tool.

Road-map of the chapter

• Section 4.1 provides brief motivation for the study.
• Section 4.2 analyzes API usage in Java context.
• Section 4.3 analyzes API usage on the example of .NET framework.
• Section 4.4 illustrates the developed intuitions as exploratory activities.
• Section 4.5 discusses threats to validity for this empirical study.
• Section 4.6 discusses related work.
• Section 4.7 concludes the chapter.

Reproducibility

We provide additional data (details of implementation, source code of the tool, etc.)
on the supplementary websites1,2,3.

Related publications

Research presented in this chapter underwent the peer-reviewing procedure and was
published in the proceedings of Symposium on Applied Computing in 2011 [4],
Working Conference on Reverse Engineering in 2011 [3], and International Confer-
ence on Program Comprehension in 2013 [6].

1 http://softlang.uni-koblenz.de/sourceforge
2 http://softlang.uni-koblenz.de/dotnet/
3 http://softlang.uni-koblenz.de/explore-API-usage/

http://softlang.uni-koblenz.de/sourceforge
http://softlang.uni-koblenz.de/dotnet/
http://softlang.uni-koblenz.de/explore-API-usage/

92 A Study of APIs

4.1 Introduction

(A brief introduction to APIs is provided in Part I, Prerequisites, Section 2.3.2.)
The use (and the design) of APIs is an integral part of software development.

Projects are littered with usage of easily a dozen APIs; perhaps every third line of
code references some API [4]. Accordingly, understanding APIs or their usage must
be an important objective. Much of the existing work focuses on some form of docu-
mentation or discovery of API-usage scenarios perhaps by code completion or code
search [98, 199, 172, 58]. A contrary approach is an exploration-based approach to
understanding API usage in a systematic manner.

We develop this approach by examining API usage from two complementary
angles of view. Application programming interfaces, APIs4, are intended to expose
specifications for routines, data structures, object classes, variables, and so on. From
the point of view of the usage, APIs are essentially languages within languages.
From the point of view of the intention, APIs provide reusable pieces of functional-
ity. These considerations give rise to the following research directions when investi-
gating API usage in the wild:

• Are all “language elements” of an API used? I.e., what is the coverage of the API
by projects. And dually, what are the different “language elements” of APIs that
a project makes use of? I.e., what is the footprint of APIs in the project.

• What are the ways of providing reusability? I.e., what is a classification (a profile)
of potential reuse of an API. And dually, are those ways used equally in projects?
I.e., what is the profile of the actual reuse of the API.

Having followed these two complementary research directions, we develop a cat-
alogue of exploratory activities (accompanied by a tool), which can be helpful both
to API developers and API users (i.e., project developers).

4.2 Java APIs

In this study, we follow the first research direction identified in the Section 4.1,
namely:

• Are all “language elements” of an API used? I.e., what is the coverage of the API
by projects. And dually, what are the different “language elements” of APIs that
a project makes use of? I.e., what is the footprint of APIs in the project.

We place our research in the context of API migration. Given a programming
domain, and given a couple of different APIs for that domain, it can be challeng-
ing to devise transformations or wrappers for migration from one API to the other.
The APIs may differ with regard to types, methods, contracts, and protocols so that

4 We use the term API to refer both to a public programming interface and its actual imple-
mentation as a software library for reuse.

4.2 Java APIs 93

actual API migration efforts must compromise with regard to automation and cor-
rectness [22, 20].

Several researchers, including ourselves, are working towards general techniques
for reliable and scalable API migration. Because of the complexity of transforma-
tions and wrappers for migration as well as the difficulty of proving them correct, it
is also advisable to leverage diverse knowledge about actual API usage.

In the current section, we describe an approach to large-scale API-usage anal-
ysis for the analysis of open-source Java projects. Our approach covers checkout,
building, tagging with metadata, fact extraction, analysis, and synthesis with a large
degree of automation. We describe a few examples of API-usage analysis; they are
motivated by API migration. Overall, API-usage analysis helps with designing and
defending mapping rules for API migration in terms of relevance and applicability.

4.2.1 Overview of the Approach

We rely on methods and techniques that are commonly used in reverse engineering
and program understanding. In particular, we need to set up a corpus of software
projects to be used for data mining; we also need to provide a fact-extraction ma-
chinery to build a database of program facts. Additionally, we need to add metadata
about APIs—as we operate in the domain of the programming domains and their
APIs. Any specific form of API-usage analysis is then to be implemented through
queries on the fact base (database) that is obtained in this manner.

Setting up the corpus

The objectives of a specific effort on API-usage analysis should obviously affect the
provision of a corpus. In this study, we are mainly interested in extracting evidence
(facts) about API usage from as many projects as possible. While corpora of dozens
of well chosen projects (such as the one of [24]) are well suited for many data min-
ing purposes (e.g., for the analysis of simple structural properties (metrics) of Java
software), they are potentially limited with regard to API features that they exercise.
For this reason, we are interested in large-scale efforts where API-usage data is sys-
tematically mined from open-source repositories. In principle, one could still include
specific ‘well-known’ projects manually into the resulting corpus, if this is desired.

Provision of a fact extractor

We need to be able to reliably link facts of API usage to the actual APIs and their
types, methods, etc. Hence, fact extraction must be syntax- and type-aware. (For
instance, the receiver type in a method call must be known in order to associated
calls with API methods.) We use fact extraction based on resolved ASTs. However,
this choice basically implies that we only consider built (‘buildable’) projects, which
may result in a bias. Therefore, we also incorporate an additional token-based (as
opposed to AST-based) fact extractor into the architecture so that some more basic
analyses are still feasible.

94 A Study of APIs

Addition of API metadata

Along with building many projects, one encounters many APIs. In the case of the
Java platform, there are Core Java APIs and third-party APIs. Based on package and
types names, one can identify these APIs, and assign names. For instance, certain
types in the package java.util account for the ‘Core Java API for collections’.
One can also associate programming domains with APIs: GUI, XML, Testing, etc.

Third-party APIs reveal themselves in the process in two principle ways. First,
projects may fail to build with ‘class not found’ errors, which are to be manually
resolved by supplying (and tagging) the corresponding APIs through web search
and download. Second, the corpus can also be analyzed for cross-project reuse. That
is, one can automatically identify API candidates by querying for packages whose
methods were called (and potentially declared and compiled) in at least two projects.

4.2.2 A Study of SourceForge

We will now describe the instantiation of the above approach for the study of Java
libraries. As a source for Java projects—with the goal of collecting a large-scale
corpus—we have selected SourceForge online repository5, a web-based source code
repository, existing since 1999.

Project selection

Based on available metadata for all SourceForge projects, we determined the list
of potential Java projects. In the present study, as a concession to scalability and
simplicity of our implementation, we only downloaded projects with a SourceForge-
hosted SVN source repository, and we only considered Java projects with Ant-based
build management. We used a homegrown architecture for parallel checkout and
building. The selected SourceForge projects were fetched in October 2008.

Resolution of missing API packages

Obviously, SourceForge projects may fail to build for diverse reasons: wrong plat-
form, missing configuration, missing JARs, etc. We wanted to bring up the number
of buildable projects with little effort. We addressed one particular reason: ‘class not
found’ compilation errors. To this end, our build machinery compiles a summary of
unresolved class names (package names) for a full build sweep over all projects. This
summary ranks package names by frequency of causing ‘class not found’ errors so
that the manual effort for supplying missing APIs can be prioritized accordingly. We
searched the web for API JARs using unresolved package names as search strings.
We downloaded these JARs, added them to the build path, and ran the automated
build again. We repeated this step until the top of the list of missing packages would
contain packages referenced only by 1-2 projects. This process provided us with

5 http://sourceforge.net/

http://sourceforge.net/

4.2 Java APIs 95

1,476 built projects, where approx. 15 % of these projects were made buildable by
our resolution efforts. In the end, we were able to build 90.05 % of all downloaded
SourceForge projects that satisfied our initial criteria (Java, SVN, ANT). The process
resulted in an API pool of 69 non-Core Java APIs.

Fact extraction

We carried out resolved AST-based fact extraction by means of a compiler plug-in
for javac, which is activated transparently as projects are built. In this study, we ex-
tracted facts about method declarations, method calls, and subtype relationships. We
interpret the term method to include instance methods, static methods and construc-
tors. All facts were stored in a relational database using a trivial relational schema.

We only used AST-based facts from projects with successful builds. For all
projects, we performed token-based fact extraction to count NCLOC (non-comment
lines of code) for Java sources and to determine all package names from imports. The
importing facts give an indication of, for example, the APIs that are used in projects
that do not build.

Reference projects

We made an effort to identify a control group of (buildable) reference projects that
could be said to represent well thought-out, actively developed and usable software.
Such a control group allows us to check all trends of the analyses for the full corpus
by comparison with the more trusted reference projects. Several charts in this study
show all projects vs. reference projects for comparison. We automatically identified
the reference projects by means of SourceForge’s metadata about maturity status of
the project, number of commits, and dates of first and last commits. That is, we se-
lected projects that rate themselves as ‘mature’ or ‘stable’, have a repository created
more than two years ago, and have more than 100 commits to the repository. This
selection resulted in 60 reference projects out of all the 1,476 built projects.

Size metrics for the corpus

Numbers of projects and their NCLOC sizes, and other metrics are summarized in
Table 4.1 and Table 4.2. We use the metric MC for the number of method calls.

Figure 4.1 presents the distribution of size metrics (NCLOC, MC) for the corpus
(y-axis is normalized w.r.t. the maximum of the metric in each group). As one can
see, both metrics correlate reasonably. The maximum of NCLOC in the whole corpus
(incl. unbuilt projects) is 25,515,312, the maximum of NCLOC among built projects
is 1,985,977, which implies a factor 12.85 difference. Hence, we are missing the
biggest projects currently. The maximum of MC among built projects is 228,242.

96 A Study of APIs

Metric Value

Projects 6,286
Source files 2,121,688
LOC 377,640,164
NCLOC 264,536,500
Import statements 14,335,066

Table 4.1. Summary of token-based analysis (with all automatically identified Java/SVN
projects on SourceForge)

Metric Value

Projects with attempted builds 1,639
Built projects 1,476
Packages 46,145
Classes 198,948
Methods 1,397,099
Method calls 8,163,083

Table 4.2. Summary of AST-based analysis

API Domain Core # projects # calls

total distinct

Java Collections Collections yes 1,374 392,639 406
AWT GUI yes 754 360,903 1,607
Swing GUI yes 716 581,363 3,369
Reflection Other yes 560 15,611 154
Core XML XML yes 413 90,415 537
DOM XML yes 324 52,593 180
SAX XML no 310 13,725 156
log4j Logging no 254 43,533 187
JUnit Testing no 233 71,481 1,011
Comm.Logging Logging no 151 21,996 88

Table 4.3. Top 10 of the known APIs (sorted by the number of projects using an API)

Provision of API metadata

Both Core Java APIs and manually downloaded JARs were processed by us to assign
metadata: name of the API, the name of a programming domain, one or more package
prefixes, and potentially a white-list of API types. Table 4.3 lists the top 10 of all
the 77 manually tagged APIs together with some metadata and metrics (full list of
known APIs is available in Appendix A.2.1). We used a special reflection-based
fact extractor for the visible types and members of the API JARs. (Alternatively,

4.2 Java APIs 97

Figure 4.1. Size metrics (NCLOC, MC) for built and unbuilt projects (thinned out). The
projects are ordered by the values for the NCLOC metric

one could also attempt to leverage API documentation, but such documentation may
not be available for some of the APIs, and it would take extra effort to establish
consistency between JARs and documentation.) These facts are also stored in the
database, and they are leveraged by some forms of API-usage analysis.

4.2.3 Examples of API-usage Analysis

We will introduce a few examples of API-usage analysis. In each case, we will pro-
vide a motivation related to API migration and language conversion—before we ap-
ply the analysis to our SourceForge corpus.

Admittedly, the statistical analysis of a corpus does not directly help with any
specific migration project. However, the reported analyses as such are meaningful
for single projects, too (perhaps subject to refinements). For instance, we will discuss
API coverage below, and such information, when obtained for a specific project,
directly helps prioritizing migration efforts. In this study, we take a statistical view
on the corpus to indicate the de-facto range for some of the measures of interest.

98 A Study of APIs

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000 10000 1e+05 1e+06 1e+07

N
u

m
b

e
r

o
f

u
s
e

d
 k

n
o
w

n
 A

P
Is

Project Size (in NCLOC)

Unbuilt projects
Built projects

Reference projects

Projects Min 1st Q Median Mean 3rd Q Max

Unbuilt 1 2 4 4.4 6 27
Built 1 3 4 4.7 6 23
Reference 1 4 6 6.9 8 20

Figure 4.2. Numbers of known APIs used in the projects (reference projects are plotted on top
of built projects which in turn are plotted on top of unbuilt projects)

API footprint per project

We begin with a very simple, nevertheless informative API-usage analysis for the
footprint of API usage. There are different dimensions of footprint. Below, we con-
sider the numbers of used APIs and used (distinct) API methods. In the online ap-
pendix, we also consider the ratio of API calls to all calls. In extension of these
numbers, we could also be interested in the ‘reference projects × API pool’ matrix
(showing for each project the combination of APIs that it uses).

The APIs or API methods used in a project provide insight into the API-related
complexity of the project. In fact, such footprint-like data serves as a proxy for the
API dependence or platform dependence of a project. In [114], we mention such
API dependence as a form of software asbestos. In the following, we simply count
the number of APIs used in a project as a proxy for the difficulty of API migration.
Ultimately, a more refined analysis is needed such that specific (known to be difficult)

4.2 Java APIs 99

API combinations are counted, and attention is payed to the status of whether these
API combos are really exercised in one program scope or only separately.

In this context, we need to define what constitutes usage of an API. One option
would be to count each method call with an API’s type as static receiver type (in the
case of an instance call), or as the hosting scope (in the case of a static call), or as
the constructed type (in the case of a constructor call). Another option is to count
any sort of reference to an API’s types (including the aforementioned positions of
API types in method calls, but counting additionally local variable declarations or
argument positions of method declarations and method calls). Yet another option
is to consider simply imports in a project. The latter option has the advantage that
we can measure such imports very easily—even for unbuilt projects. Indeed, the
following numbers were obtained by counting imports that were obtained with the
token-based fact extractor.

Figure 4.2 shows the number of known APIs (y-axis) that are used in the projects
ordered by NCLOC-based project size (x-axis). Unbuilt, built, and reference projects
are distinguished. The listed maxima and quartiles give a sense of the API footprint in
projects in the wild. The set of unbuilt projects exercises a higher maximum of used
APIs than the set of built projects—potentially because of a correlation between the
complexity of projects in terms of the number of involved APIs and the difficulty to
build those projects.

We also need to clarify how to measure usage of API methods. That is, how
to precisely distinguish distinct methods so that counting uses is well defined. Par-
ticularly, in the case of instance method calls, the situation is complicated due to
inheritance, overriding, and polymorphism. As a starting point, we may distinguish
methods by possible receiver type—no matter whether the method is overridden or
inherited at a given subtype. Then, a method call is counted towards the static re-
ceiver type in a call. Additionally, we may also count the call towards subtypes (sub-
ject to a polymorphism-based argument: the runtime receiver type may be a subtype)
and supertypes (subject to an inheritance-based argument: the inherited implementa-
tion may be used, if not inherited). Such inclusion could also be made more precise
by a global program analysis.

Fig. A.6 shows the usage of known API methods relative to all methods in a
project—both in terms of calls. The smaller the ratio (the closer to zero), the lower
the contribution of API calls. The quartiles show that in most projects, about each
second method call is an API call. As far as instance-method calls are concerned, the
figure distinguishes API vs. project-based method calls solely on the grounds of the
static receiver type of methods.

Figure 4.4 shows the numbers of distinct API methods used in the built projects
of the corpus; reference projects are highlighted. Methods on sub- and supertypes
of static receiver types were not included. For simplification, we also considered
overloaded methods as basically one method.

There is a trend of increasing API footprint with project size. Both axes are loga-
rithmic, but project size grows more quickly than the count of distinct API methods.
Most projects, even most of the largest ones, use less than 1,000 distinct API meth-
ods. As the table with maxima and quartiles shows, there are a few projects with

100 A Study of APIs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 1e+05 1e+06

R
a
ti
o

Project Size (in MC)

Projects Min 1st Q Median Mean 3rd Q Max

All 0.02 0.45 0.56 0.56 0.67 1
Reference 0.11 0.43 0.5 0.5 0.57 0.99

Figure 4.3. Ratio of API method calls to all method calls

exceptionally high counts. We have verified for these projects that they essentially
implement or test large frameworks (such as ofbiz.apache.org). That is, these
outliers embody large numbers of ‘self-calls’ for a large number of API methods.

Additional results on API usage are provided in Appendix A.2.1

API coverage by the corpus

An important form of API-usage analysis concerns API coverage; see, for example,
the discussion of coverage in the API migration project of [22]. That is, coverage
information is helpful in API migration as means to prioritize efforts, and to leave
out mapping rules for obscure parts of the API. Coverage information is also helpful
in improving API usability [101, 96].

As it is the case with other forms of API-usage analysis, API coverage may be
considered for either a specific project, or, cumulatively, for all projects in a corpus.
For instance, for any given API, we may be interested in the API types (classes and
interfaces) that are exercised in projects by any means: extension, implementation,
variable declaration, all kinds of method calls, and other, less obvious idioms (e.g.,
instance-of tests). At a more fine-grained level, we may be interested in the exercised
members for each given API type. Hence, qualitative measurements focus on types

ofbiz.apache.org

4.2 Java APIs 101

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 1e+04 1e+05

N
u
m

b
e
r

o
f
d
is

ti
n
c
t
A

P
I
m

e
th

o
d
s

Project size (in MC)

Projects Min 1st Q Median Mean 3rd Q Max

All 1 94 199.5 370.7 423 10,850
Reference 20 305.8 611 866.2 948.8 5,351

Figure 4.4. Numbers of distinct API methods used in the projects (without distinguishing
APIs)

and members that are exercised at all, while quantitative measurements rank usage
by the number of occurrences of a type or a member or other weights.

Assuming a representative corpus, further assuming appropriate criteria for de-
tecting coverage, we may start with the naive expectation that a good API should
be covered more or less by the corpus. Otherwise, the API would contain de-facto
unnecessary types and methods—which is clearly not in the interest of the API de-
signer. However, it should not come as a surprise that, in practice, APIs are not cov-
ered very well—certainly not by single meaningful projects [22], but—as our results
show—not even by a substantial corpus; see below.

We have actually tried to determine two simple coverage metrics for all 77 known
APIs: i) a percentage-based metrics for the types; ii) another percentage-based met-
rics for all methods. However, we do not feel comfortable presenting a chart of those
metrics for all known APIs here. Unless considerable effort is spent on each API,
such a chart may be disputable. The challenge lies in the large number of projects and
APIs, the different characteristics of the APIs (e.g., in terms of their use of subtyp-
ing), aspects of cloning, and yet other problems. Some of the issues will be demon-
strated for selected APIs below.

102 A Study of APIs

Projects Min 1st Q Median Mean 3rd Q Max

All built 0.16 1.9 2.8 4.9 3.7 59.9
Reference 1.9 2.9 3.7 3.4 3.9 4.6

Figure 4.5. Usage of JDOM’s distinct methods

Let us investigate coverage for specific APIs. As our first target, we pick JDOM—
a DOM-like (i.e., tree-based, in-memory) API for XML processing. We know that
JDOM is a ‘true library’ as opposed to a framework. Regular client code should
simply construct objects of the JDOM classes and invoke methods directly. We men-
tion these characteristics because library-like APIs may be expected to show higher
API coverage than framework-like APIs—if we measure coverage in terms of called
methods, as we do here. In this study, in the case of a call to an instance method,
we only count the method on the immediate static receiver type as covered. We
have checked that the inclusion of super- and subtypes, as discussed earlier, does
not change much the charts described below.

Initially, we measured cumulative coverage for the methods of the JDOM API
to be 68.89 %. We decided to study the contribution of the different projects. There
are 86 projects with JDOM usage among the built projects of the corpus. Figure 4.5
shows the percentage-based coverage metrics for the methods of the JDOM API

4.2 Java APIs 103

for those JDOM-using projects. The table with maxima and quartiles gives a good
indication of the relatively low usage of the JDOM API.

Obviously, 3 projects stand out with their coverage. We found that these projects
should not be counted towards cumulative coverage because these projects contain
JDOM clones in source form. That is, it the API calls within the API’s implementa-
tion imply artificial coverage for more than half of all JDOM methods. Without those
outliers, the cumulative coverage is considerably lower, only 24.10 %.

Projects Min 1st Q Median Mean 3rd Q Max

All built 0.33 0.33 0.98 2.22 2.61 27.12
Reference 0.33 0.33 1.14 2.37 3.02 11.44

Figure 4.6. Usage of SAX’ distinct methods

Let us consider another specific API. We pick SAX—a push-based XML pars-
ing API. The push-based characteristics imply that client code typically extends
‘handler’ classes or implements handler interfaces with handler methods such as
startElement and endElement—to which XML-parsing events are pushed.

104 A Study of APIs

As a result, one should be prepared to find relatively low API coverage—if we mea-
sure coverage in terms of called methods.

We measured cumulative coverage for the methods of the SAX API to be
50.98 %. This relatively high coverage was surprising. There are 310 projects with
SAX usage among the built projects of the corpus. Figure 4.6 shows the percentage-
based coverage metrics for the methods of the SAX API for those SAX-using
projects. We found that three of the projects with the highest coverage were in fact
the previously discussed projects with JDOM clones in source form. Closer inspec-
tion revealed that the JDOM API implements, for example, a bridge from in-memory
XML trees to SAX events, and hence, it pushes itself as opposed to regular SAX-
based functionality that is pushed. This is an unexpected but correct use of the SAX
API within the DOM API which brings up coverage of the SAX API. Even if we re-
moved those 3 projects, the cumulative coverage only drops down a little to 49.34 %.

We also found other reasonable reasons for relatively high coverage. There are
projects that use inheritance and composition to define new handlers (e.g., http://
corpusreader.sourceforge.net/) so that API methods may get called through
‘super’ or delegation. As the quartiles show in the figure, most projects use a small
percentage of the SAX API. Most of the relevant methods are concerned with pro-
cessing the parameters of the handlers. Many of the SAX projects use (largely) pre-
defined handlers, e.g., for validation—thereby implying a very low coverage.

Framework-like API usage

Finally, we introduce an analysis for framework-like API usage: What API types are
typically implemented and extended, if any? Also, can we determine whether a given
API is presumably more framework-like (less class library-like) than another API?
What are the parts of an API that account for framework-like usage? In the context of
API migration, proper framework-like usage is very challenging because it implies
an ‘inversion of control’ in applications, which is very hard to come by with mapping
rules [20].

API # projects # methods # dist. methods # derived types # API types

impl ext any impl over impl over int cl int cl

Swing 173 381 391 2,512 11,150 305 645 443 1,859 39 92
AWT 194 75 225 4,201 756 593 176 651 120 31 24
Java Collections 120 0 120 986 0 16 0 208 0 3 0
SAX 28 21 42 428 90 85 21 37 29 12 3
JUnit 3 38 40 4 344 4 19 3 46 2 2
Core XML 11 5 14 89 13 17 4 14 5 9 3
SWT 5 8 10 37 86 4 13 25 11 3 3
log4j 1 8 8 25 87 7 9 2 9 2 3
Reflection 7 0 7 10 0 1 0 7 0 1 0
JMF 4 2 6 8 6 6 3 4 3 3 3

Table 4.4. Top 10 of the APIs with framework-like usage (sorted by the sum of numbers of
API-interface implementations and API-class extensions; see the first 3 columns)

http://corpusreader.sourceforge.net/
http://corpusreader.sourceforge.net/

4.3 .NET framework 105

More specifically, by framework-like usage, we mean any sort of idiomatic evi-
dence for refining, configuring, and implementing API types within client code. In
particular, we may measure i) extensions (i.e., client classes that extend API classes);
ii) implementations (i.e., client classes that implement API interfaces); iii) overrides
(i.e., client classes that subclass API classes and override inherited API methods).
Obviously, there are facets that may be harder to identify generically. For instance, if
a framework would involve plug-in or configuration support based on regular method
calls, then such framework-like usage would be missed by i)—iii). There is again a
way of defining framework-like usage in a cumulative way—very similar to cover-
age analysis. That is, for a given API, we may determine the set of API types that are
ever involved in framework-like usage.

In reality, many APIs allow for both—class library-like and framework-like us-
age. For instance, the Core Java API DOM is essentially interface-based so that new
providers can be implemented, but there are default implementations for the impor-
tant use case of DOM as an in-memory XML API. In contrast, there are other APIs
that are subject to framework-like usage more inevitably. For instance, the Core Java
API Swing is often used in a way that the JPanel class is overridden.

In our corpus, 35 out of all 77 known APIs exercise a measurable facet of
framework-like usage. Table 4.4 lists the top 10 of these APIs. In the table, we also
show the numbers of API methods that are implemented or overridden throughout
the corpus: we show both absolute numbers of implementations/overrides and the
numbers of distinct methods. Further, we show the number of derived types in client
code, and the number of API types ever exercised through framework-like usage.

Surprisingly, the table shows that there are only 7 APIs that are used in 10 or more
projects in a framework-like usage manner. This clearly suggests that our corpus (of
built projects) and our selection of APIs is trivial in terms of framework-like usage.
Many APIs do not show up at all in the table—despite heavy usage in the corpus.
For instance, DOM-like APIs like JDOM or XOM do not show up at all, which
means that they are only used in a class library-like manner. The DOM API itself is
subject to API-interface implementations in a number of projects. In Appendix A.2.1,
we also break down the numbers of the table to show the types that are commonly
involved in framework-like usage: just a hand full of GUI, XML and collection types
account for almost all the framework-like usage in the corpus.

4.3 .NET framework

In this study, we follow the second research direction identified in the Section 4.1,
namely:

• What are the ways of providing reusability? I.e., what is a classification (a profile)
of potential reuse of an API. And dually, are those ways used equally in projects?
I.e., what is the profile of the actual reuse of the API.

As we have discussed in Section 4.2.3 (pp. 102 and 104), there are two major
styles of APIs: library-like vs. framework-like. The former suggests simple construc-

106 A Study of APIs

tion of objects and direct invocation of methods, while the latter implies any sort
of refining, configuring, and implementing API types within client code. In other
words, library-like APIs use the basic form of reuse, while framework-like APIs ex-
ercise more sophisticated forms. Therefore, we focus specifically on frameworks in
our study.

We place our research in the domain of comprehension. Suppose you need to
(better) understand the architecture of a platform such as the Java Standard Edition6,
the Microsoft .NET Framework7, or another composite framework. There is no sil-
ver bullet for such framework comprehension, but a range of models may be useful
in this context. We suggest the notion of framework profile which incorporates char-
acteristics of potential and actual reuse of frameworks. The approach is applied to
the Microsoft .NET Framework and a corpus of .NET projects in an empirical study.

Framework comprehension supports reverse and re-engineering activities. In
quality assessment of designs [182], framework profiles help understanding frame-
works in a manner complementary to architectural smells, patterns, or anti-patterns.
Also, one can compare given projects with the framework profile. More specifically,
in framework re-modularization, framework profiles help summarizing the status of
modularization and motivating refactorings [54]. In API migration [21], framework
profiles help assessing API replacement options with regard to, for example, dif-
ferent extensibility characteristics. Finally, framework profiles help in teaching OO
architecture, design, and implementation [163].

4.3.1 Methodology

Research hypothesis

Platforms such as JSE or .NET leverage programming language concepts in a sys-
tematic manner to make those frameworks reusable (say, extensible, instantiatable,
or configurable). It is challenging to understand the reuse characteristics of frame-
works and actual reuse in projects at a high level of abstraction. Software metrics
on top of simple static and dynamic program analysis are useful to infer essential
high-level reuse characteristics.

Research questions

1. What are the interesting and helpful high-level characteristics of frameworks
with regard to their potential and actual reuse?

2. To what extend can those characteristics be computed with simple metrics sub-
ject to simple static and dynamic program analysis?

6 http://www.oracle.com/us/javase
7 http://www.microsoft.com/net/

http://www.oracle.com/us/javase
http://www.microsoft.com/net/

4.3 .NET framework 107

• N N N ∗ ∗ �

• – – � – – – –
• – – N – – – –
• � N

• ∗ ∗ ∗ ∗ N N ∗
• ∗ � N � � N ∗ � N N N � ∗ �

• ∗ � ∗ ∗ ∗ ∗ N ∗ ∗ � ∗ ∗
• ∗ ∗ ∗ ∗ ∗ ∗
• � � � � � N � � � � � � � � � N � �

• ∗ N ∗

Rows: top-10 .NET namespaces, in terms of number of types.
Middle block of columns: actual reuse by project of the corpus.
Leftmost column: potential reuse in terms of specializability.
Rightmost column: summary of actual reuse.

Figure 4.7. Infographics for an excerpt of a framework profile for .NET

.NET Project Repository LOC Description

3.5 Castle ActiveRecord GitHub 30,303 Object-relational mapper
4.0 Castle Core Library GitHub 36,659 Core library for the Castle framework
3.5 Castle MonoRail GitHub 58,121 MVC Web framework
4.0 Castle Windsor GitHub 50,032 Inversion of control container
4.0 Json.NET Codeplex 43,127 JSON framework
2.0 log4net Sourceforge 27,799 Logging framework
2.0 Lucene.Net Apache.org 158,519 Search engine
4.0 Managed Extensibility Framework Codeplex 149,303 Framework for extensible applications and components
4.0 Moq GoogleCode 17,430 Mocking library
2.0 NAnt Sourceforge 56,529 Build tool
3.5 NHibernate Sourceforge 330,374 Object-relational mapper
3.5 NUnit Launchpad 85,439 Unit testing framework
4.0 Patterns & Practices - Prism Codeplex 146,778 Library to build flexible WPF and Silverlight applications
3.5 RhinoMocks GitHub 23,459 Mocking framework
2.0 SharpZipLib Sourceforge 25,691 Compression library
2.0 Spring.NET GitHub 183,772 Framework for enterprise applications
2.0 xUnit.net Codeplex 23,366 Unit testing framework

Table 4.5. .NET projects in study’s corpus (versions as of 19 June 2011)

Research method

We applied an explorative approach such that a larger set of metrics of mainly struc-
tural properties was incrementally screened until a smaller set of key metrics and
derived classifiers emerged. We use infographics (such as Figure 4.7) to visualize
metrics, classifiers, and other characteristics of frameworks and projects that use
them. The resulting claims are subject to validation by domain experts for the frame-
work under study.

Study subject

The subject of study consists of the Microsoft .NET Framework and a corpus of
open-source .NET projects targeting different versions of .NET (2.0, 3.5, 4.0).

108 A Study of APIs

.NET (4.0) has 401 namespaces in total, but we group these namespaces reason-
ably, based on the tree-like organization of their compound names. For instance, all
namespaces in the System.Web branch provide web-related functionality and can be
viewed as a single namespace. In this manner, we obtained the manageable number
of 69 namespaces; see Table 4.6.8 In the rest of the chapter, we signify grouping
by “*” as in System.Web.*. Grouping is often used in discussions of .NET—also by
Microsoft.9

Table 4.5 collects metadata about the corpus of the study. The following text
summarizes the requirements for the corpus and the process of its accumulation;
more information is available from the supplementary website.

One requirement is that the corpus is made up from well-known, widely-used
and mature projects. We assume that such projects make good use of .NET.

Another requirement is that dynamic analysis must be feasible for the projects
of the corpus. This requirement implies practically that we need projects with good
available testsuites. The need for testsuites, in turn, implies practically that the cor-
pus is made up from frameworks or libraries as opposed to, e.g., interactive tools.
Admittedly, advanced test-data generation approaches could be used instead [181].

Yet another requirement is that the corpus is made up from open-source projects
so that our results are more easily reproducible. Also, the instrumentation for static
and dynamic analysis would be problematic for proprietary projects which usually
commit to signed assemblies.

We searched CodePlex, SourceForge, GitHub, and Google Code applying the
repository-provided ranking for popularity (preferably based on downloads). For the
topmost approx. 30 projects of each repository we checked all the requirements, and
in this manner we identified a diverse set of projects as shown in Table 4.5. These
projects all use C# as implementation language. (In principle, our approach is pre-
pared to deal with other .NET languages as well—since the analysis uses bytecode
engineering.)

4.3.2 Reuse-related Metrics for Frameworks

We consider the as-implemented design of a framework—without considering any
client code (i.e., ‘projects’). We define reuse-related metrics for frameworks and
screen them for .NET. We explain the metrics specifically in the form as they are
needed for a composite framework (such as .NET) which consists of many compo-
nent frameworks—to which we refer here as namespaces for better distinction. We
usually consider metrics per namespace. Some of the metrics are specific to .NET’s
type system.

8 We also excluded some namespaces that are fully marked as obsolete and an auxiliary
namespace, XamlGeneratedNamespace, used only by the workflow designer tool.

9 http://msdn.microsoft.com/en-us/library/gg145045.aspx

http://msdn.microsoft.com/en-us/library/gg145045.aspx

4.3 .NET framework 109

Definition of metrics

The ‘overall potential for reuse’ is described by the following metrics:10 # Types—
the number of (visible, say reusable) types declared by a namespace; # Methods—
the number of (visible, say reusable) methods declared by a namespace.

The types (say, type declarations) of a namespace break down into percentages
as follows: % Interfaces, % Classes, % Value types, and % Delegate types. If a
namespace has relatively few classes, then this may hint at intended, potential reuse
that is different from classic, class-oriented OO programming. In the sequel, we refer
to classes and interfaces as OO types. Further, % Generic types denotes the percent-
age of all types that are generic. Relatively many generic types hint at a framework
for generic programming. Further, the classes of a namespace break down into per-
centages as follows; likewise for methods: % Static classes, % Abstract classes,
and % Concrete classes.11 Clearly, abstract classes and methods hint at potential
reuse of the framework by specialization. Static classes hint at non-OO libraries and
associated, different forms of reuse.

There are metrics for ‘specializability and sealedness’ of namespaces: % Spe-
cializable classes—the percentage of all classes that are either abstract or concrete
but non-sealed, thereby excluding static and sealed classes; % Sealed classes—the
percentage of all concrete classes that are sealed (final). Sealing explicitly lim-
its reuse by specialization. The aforementioned metrics can also be taken to the
method level. Further, we can incorporate interfaces into a metric for specializabil-
ity: % Specializable types—the percentage of all OO types (i.e., all classes and
interfaces) that are either specializable classes or interfaces—the latter being all spe-
cializable by definition. There are OO types that must be specialized before they can
be reused in client code; we refer to them as orphan types subject to the following
metrics: % Orphan classes—the percentage of all abstract classes that are never
concretely implemented within the framework; % Orphan interfaces—the percent-
age of all interfaces that are never implemented within the framework; % Orphan
types—the percentage of all abstract classes and interfaces that are either orphan
classes or orphan interfaces.

‘Inter-namespace reuse’ is described by these metrics: # Referenced name-
spaces—the number of namespaces that are referenced by a given namespace;
Referring namespaces—the number of namespaces that are referring to a given

10 In the case of .NET, non-private, non-internal types and methods are considered. Properties
(in the .NET sense) are considered here as methods, which they are indeed at the byte-code
level. All (visible) method declarations are counted separately. For instance, the initial dec-
laration of a method as well as all overrides are counted separately. Overloads are counted
separately, too.

11 In .NET, value types include structs and enum types. Static classes are not considered con-
crete classes; neither are they considered abstract classes—regardless of encoding in MS
IL; they are counted separately here. A delegate type is essentially a method type; they are
counted separately here—regardless of the encoding in MS IL where delegate types derive
from class System.Delegate.

110 A Study of APIs

namespace. Obviously, one can also define metrics for ‘inter-namespace specializa-
tion’; this is omitted here.

The earlier breakdown of type declarations can be matched by a similar break-
down of type references. In particular, type references due to method arguments give
rise to % Interface arguments, % Class arguments, % Value type arguments,
and % Delegate arguments. These metrics hint at certain forms of reuse. In par-
ticular, interface arguments give rise to interface polymorphism whereas delegate
arguments give rise to closure-based parametrization.

Finally, there are metrics that relate to the degree of ‘specialization within a
namespace’: MAX size class tree and MAX size interface tree—the size of the
largest class or interface inheritance tree in terms of the node count only considering
nodes from the given namespace. (We view a class as a root of an inheritance tree in
the given namespace, if it derives from System.Object or a class in a different name-
space; likewise for interfaces.) These are reuse-related metrics because, for example,
they hint at polymorphism that can be leveraged for framework reuse in client code.

Measurements for .NET

Table 4.6 lists the various metrics for all the .NET namespaces while sorting name-
spaces by # Types. We use an infographics such that most data is not displayed as
numbers, but distribution-based visualization is used instead: ‘blank’ for zero values
and bullets of increasing size, i.e., ‘•’, ‘•’, ‘•’, ‘•’, for values in the percentage inter-
vals (0,25), [25,50), [50,75), [75,100) of the distribution. For each column, the cell(s)
corresponding to the maximum value for the column display(s) the value instead of
‘•’. Medians as well as 25th and 75th percentiles for all columns are displayed at
the bottom of the table.

4.3 .NET framework 111

Namespace #
Ty

pe
s

#
M

et
ho

ds

M
A

X
si

ze
cl

as
s

tr
ee

M
A

X
si

ze
in

te
rf

ac
e

tr
ee

#
R

ef
er

en
ce

d
na

m
es

pa
ce

s
#

R
ef

er
ri

ng
na

m
es

pa
ce

s

%
C

la
ss

es

%
In

te
rf

ac
es

%
V

al
ue

ty
pe

s

%
D

el
eg

at
e

ty
pe

s

%
G

en
er

ic
ty

pe
s

%
C

la
ss

ar
gu

m
en

ts
%

In
te

rf
ac

e
ar

gu
m

en
ts

%
V

al
ue

ty
pe

ar
gu

m
en

ts

%
D

el
eg

at
e

ar
gu

m
en

ts

%
Se

al
ed

cl
as

se
s

%
Sp

ec
ia

liz
ab

le
cl

as
se

s

%
Sp

ec
ia

liz
ab

le
ty

pe
s

%
O

rp
ha

n
cl

as
se

s

%
O

rp
ha

n
in

te
rf

ac
es

%
O

rp
ha

n
ty

pe
s

System.Web.* 2327 29315 • • 43 • • • • • • • • • • • • • • •

System.Windows.* • • • 82 • • • • • • • • • • • • • • • • •

System.ServiceModel.* • • • • 43 • • • • • • • • • • • • • • •
System.Windows.Forms.* •

System.Data.* •
System.Activities.* •
System.ComponentModel.* •
System.Workflow.* •
System.Xml.* •
System.Net.* •
System.DirectoryServices.* • • • • • • • • • • • • • • • •
System • • • • • 69 • • • • • • • • • • • • • • •

System.Security.Cryptography.* • • • • • • • • • • • • • • •
Microsoft.VisualBasic.* • • 38 • • • • • • • • • • • 48 • • • • • •
System.Runtime.InteropServices.* • • • • • • • • • • • • • • • • •
Microsoft.JScript.* • • • • • • • • • • • • • • • • • •
System.Drawing.* •

System.Runtime.Remoting.* • • • • • • • • • • • 23 • • • • • • • •
System.Configuration.* •
System.Diagnostics.* • • • • • • • • • • • • • • • • • • •
System.IO.* •

System.Reflection.* • • • • • • • • • • • • • • • • •

System.EnterpriseServices.* • • • • • • • • • • • • • • • •
System.CodeDom.* • • • • • • • • • • • • • • • • •

System.IdentityModel.* • • • • • • • • • • • • • • • • • • •
Microsoft.Build.* • • • • • • • • • • • • • • • • • •
System.Management.* • • • • • • • • • • • • • • • • • • •

System.Threading.* •

System.Runtime.Serialization.* • • • • • • • • • • • • • • • • • • •
System.Security.AccessControl • • • • • • • • • • • • • • •

System.Security.Permissions • • • • • • • • • • • • 86 • •

System.Runtime.CompilerServices •

System.Linq.* • • • • • • • • • • • 23 • • • • • • • •
System.AddIn.* • • • • • • • • • • • • • • • • •
System.Xaml.* • • • • • • • • • • • • • • • • • • •
System.Messaging.* • • • • • • • • • • • • • • • • •
Microsoft.Win32.* • • • • • • • • • • • • • • • • •
System.Security.Policy • • • • • • • • • • • • • • • • •

System.Globalization • • • • • • • • • • • •
Microsoft.VisualC.* • • • • • • • 100 • • • • 100 100 • •
System.Transactions.* • • • • • • • • • • • • • • • • • 100 •
System.Security • • • • • • • • • • • • • • •

System.Collections.Generic • • • • • • • • • • • • • • • • • •
System.Runtime.DurableInstancing • • • • • • • • • • • • • • • • •

System.Collections • • • • • • • • • • • • • •
System.Text • • • • • • • • • • • • • •
System.Deployment.* • • • • • • • • • • • • • • •
System.Runtime.Caching.* • • • • • • • • • • • • • • • • • 100 •
System.ServiceProcess.* • • • • • • • • • • • •
System.Resources.* • • • • • • • • • • • • • • •
System.Dynamic • • • • • • • • 91 • • • • • 72 • 70
System.Security.Principal • • • • • • • • • • • • • •
Microsoft.SqlServer.Server • • • • • • • • • • • • • 100 •
System.Security.Authentication.* • • • • • • • • • • • • • • •
System.Collections.Specialized • • • • • • • • • • • • • • 100 100
System.Device.Location • • • • • • • • • • • • • •
System.Text.RegularExpressions • • • • • • • • • • • • 100 100 • •
Accessibility • • • • • • 60 • • • • 100 100 • •
System.Collections.Concurrent • • • • • • • • • • • • 100 100 • •
System.Runtime.Versioning • • • • • • • • • • •

Microsoft.CSharp.* • • • • • • • • • • • •
System.Collections.ObjectModel • • • • 100 100 • • • • 100 100 • •
System.Runtime.ConstrainedExecution • • • • • • • • •

System.Runtime • • • • • • 100 • • •

System.Timers • • • • • 25 • • • • 100 100
System.Media • • • • 100 • • • • • •

System.Runtime.Hosting • • • • 100 • • • • •

System.Runtime.ExceptionServices • • • 100 • • •

System.Numerics • • • • 100 • • •
75% 190 1579 8 7 22 26 80 16 23 5 1 66 8 46 5 51 89 90 4 40 10
Median 60 543 3 2 17 9 72 6 13 0 0 54 4 34 2 33 67 69 1 0 4
25% 18 175 0 0 11 3 60 0 6 0 0 37 1 19 0 10 46 50 0 0 0

Table 4.6. Infographics for reuse-related metrics for .NET

112 A Study of APIs

We total some measurements over all .NET namespaces:

Types = 12611
OO types = 10103
Classes = 9215
Interfaces = 888
Specializable classes = 5750 (62.4 % of all classes)
Specializable types = 6638 (65.7 % of all OO types)

In accordance with our methodology we grew this set of metrics, and we used the
infographics of Table 4.6 and further views (available in Appendix A.2.2) to develop
intuitions about reuse-related characteristics of namespaces. The following classifi-
cation only uses some of the metrics directly, but the other metrics are useful for
understanding and validation.

4.3.3 Classification of Frameworks

In the following, we use the reuse-related metrics to define categories for reuse char-
acteristics of frameworks—in fact, namespaces. See Figure 4.8 for the concise defi-
nition of the categories. See Table 4.7 for the application of the classification to a few
.NET namespaces that serve as representatives in this section. The section is finished
with considerations of validation.

Derivation of the categories

Let us start with ‘inter-namespace reuse’. An application namespace is characterized
by the lack of other namespaces referring to it. That is, no reuse potential is realized
for the given namespace within the composite framework. Instead of namespaces
with zero referring namespaces, we may also consider namespaces with the most
referring namespaces. These are called core namespaces for obvious reasons.

As the medians and other percentiles at the bottom of Table 4.6 indicate, inter-
namespace usage is very common for .NET. (The appendix of the online version even
shows substantial mutual dependencies.) There are these application namespaces.
The System.AddIn.* namespace provides a generic framework for framework plug-
ins in the sense of client frameworks on top of .NET. The Microsoft.VisualC.* name-
space supports compilation and code generation for C++. The System.Device.Location
namespace allows application developers to access the computer’s location. The Sys-
tem.Runtime.ExceptionServices namespace supports advanced exception handling
for applications.

Perhaps the most obvious representative of a core namespace is System.Collections
as it provides collection types very much like a library for basic datatypes. Starting at
the top of Table 4.6, the largest core namespace is System.ComponentModel.* with
its fundamental support for implementing the run-time and design-time behavior of
components and controls. The next core namespace is System.Xml.* with various
APIs for XML processing.

Let us consider ‘specializability’. We speak of an open namespace when the
percentage of specializable types is ‘exceptional’. We speak of a closed namespace

4.3 .NET framework 113

Namespace categories with regard to ‘inter-namespace reuse’:

• application if # Referring namespaces = 0.
• core if # Referring namespaces is ‘exceptional’.

Namespace categories with regard to ‘specializability’:

• open if % Specializable types is ‘exceptional’.
• closed if % Sealed classes is ‘exceptional’.
• incomplete if % Orphan types is ‘exceptional’.

Namespace categories with regard to ‘class-inheritance trees’:

• branched if MAX size class tree is ‘exceptional’.
• flat if MAX size class tree = 0.

Namespace categories with regard to ‘intensiveness’:

• interface-intensive if % Interface arguments is ‘exceptional’.
• delegate-intensive if % Delegate arguments is ‘exceptional’.

A sub-category for delegate-intensive namespaces:

• event-based if % Delegate types is ‘exceptional’.

Occurrences of ‘exceptional’ are essentially configurable. We assume though that “x is ‘ex-
ceptional’ for a namespace” proxies for the statement that the metric x for the given name-
space is in the [75,100) percentage interval with regard to the distribution for metric x over
all namespaces.

Figure 4.8. Definition of (non-mutually exclusive) categories

when the percentage of sealed classes is ‘exceptional’. It will be interesting to see
whether open namespaces are subject to ‘more’ specialization in projects than non-
open (or even closed) namespaces. In any case, it is helpful to understand which
namespaces come wide open and which namespaces limit specialization explicitly.
In this context, another category emerges. We speak of an incomplete namespace,
when the percentage of orphan types is ‘exceptional’.

Starting at the top of Table 4.6, the largest open namespace is System.Directory-
Services.*; it models entities in a network (such as users and printers) and it supports
common tasks (such as adding users and setting permissions). The next open name-
space is System.CodeDom.*; it models an abstract syntax of .NET languages. These
namespaces provide rich inheritance hierarchies that are left open for specialization
by other frameworks or client code. We mention that System.DirectoryServices.* is
not specialized within the .NET Framework itself while System.CodeDom.* is spe-
cialized by several namespaces. Basic knowledge of .NET suggests that CodeDom is
specialized by namespaces that host ‘CodeDom providers’ and regular projects are
actually not very likely to contain additional providers.

The largest closed namespace is System.Data.*; it supports data access and man-
agement for diverse sources—relational databases specifically. One may expect this

114 A Study of APIs

Namespace A
pp

lic
at

io
n

C
or

e
O

pe
n

C
lo

se
d

In
co

m
pl

et
e

B
ra

nc
he

d
Fl

at
In

te
rf

ac
e-

in
te

ns
iv

e
D

el
eg

at
e-

in
te

ns
iv

e
E

ve
nt

-b
as

ed

System.Web.* X X X
System.Data.* X X
System.Activities.* X X X
System.ComponentModel.* X X X X X X
System.Xml.* X
System.DirectoryServices.* X X
System.EnterpriseServices.* X X
System.CodeDom.* X X
System.Linq.* X X X
System.AddIn.* X X X X X
Microsoft.VisualC.* X X X X X
System.Transactions.* X X X X
System.Collections X X X
System.Runtime.Caching.* X X X
System.Device.Location X X X X
System.Runtime.ExceptionServices X X

Table 4.7. Classification of selected .NET namespaces. Full list see in Appendix A.2.2

namespace to be open because of the need to define a rich provider interface for di-
verse sources. However, many of the classes for data access and management do not
depend on the data source, and hence they are sealed. Also, various providers, such
as SQL Server, Oracle, ODBC, and OleDB, are included into the namespace and
accordingly sealed. The next closed namespace is System.Activities.*; it supports ab-
stract syntax and presentation of activities in a workflow sense. One may expect this
namespace to be open because of the common design to provide extensibility of syn-
taxes by inheritance. However, the abstract syntax at hand is effectively constrained
to be non-extensible.

Orphan types are clearly very common in .NET; see again Table 4.6.12 The as-
sumption is here that the orphan types model domain-/application-centric concepts
that cannot be implemented in the framework. Let us review those incomplete .NET
namespaces with all their interfaces being orphans. The System.Transactions.* name-
space supports transaction and resource management; it is referenced by several other

12 (Third-party) framework design guidelines for .NET [47] discourage orphan types; a frame-
work designer is supposed to provide implementations (say, concrete classes) for all in-
terfaces and abstract classes. Still orphan types exist in .NET—presumably because corre-
sponding implementations would be illustrative rather than reusable and hence better suited
for samples than for inclusion into the framework assemblies.

4.3 .NET framework 115

.NET namespaces—without though implementing any of its interfaces. The Sys-
tem.Runtime.Caching.* namespace supports caching; this namespace is only used
in the System.Web.* namespace—without though implementing any of its interfaces.

Let us turn to categories related to ‘class-inheritance trees’. There are flat name-
spaces without intra-namespace class inheritance. There are branched namespaces
with ‘exceptional’ inheritance trees. Flat namespaces may be thought of as providing
a facade for (some of) the referenced namespaces in the broad sense of the design
pattern of that name. Branched namespaces stand out with a complex object model—
complex in terms of tree size.

Starting at the top of Table 4.6, the largest flat namespace is System.Enterprise-
Services.*; it supports component programming with COM+. In particular, .NET ob-
jects can be provided with access to resource and transaction management of COM+.
One can indeed think of System.EnterpriseServices.* as a facade. There are many
branched namespaces at the top of Table 4.6; the bigger a namespace, the more
likely it contains some sizable tree among its forest of classes. We previously en-
countered a ‘small’ branched namespace System.CodeDom.* with its object model
for .NET-language abstract syntax.

Let us finally consider what we call ‘intensiveness’. An interface-intensive
namespace makes much use of interfaces for method arguments, thereby support-
ing reusability in terms of interface polymorphism. (This may be seen as a symptom
of interface-oriented programming.) There are also delegate-intensive namespaces,
which make much use of delegates for method arguments. Basic knowledge of .NET
tells us that delegates are used in .NET for two major programming styles. That is,
delegates may be used for either functional (OO) programming or event-based sys-
tems. These two styles cannot be separated easily—certainly not by means of simple
metrics. There is a specific form of an event-based namespace that reveals itself
through the delegate types that it declares.

A clearcut example of a namespace that is, in fact, both interface- and delegate-
intensive is System.Linq.*; it supports functional (OO) programming specifically
for collections based on the IEnumerable interface and friends. We note that Sys-
tem.Linq.* does not declare any delegate type because the fundamental function
types are readily provided by the System namespace. There are several namespaces
with ‘exceptional’ percentages of both delegate arguments and delegate-type decla-
rations, thereby suggesting themselves as candidates of the aforementioned, specific
form of event-based namespaces; see, for example, System.Web.* right at the top
of Table 4.6—the namespace provides web-related functionality and uses an event-
based style, for example, to attach handlers to user-interface components.

Event-based programming does not necessarily involve designated delegate types.
Standard delegate types for functions or designated interface types may be used
as well. For instance, the System.Device.Location namespace uses special interface
types to process updates to the device’s location. Hence, more advanced static anal-
ysis would be needed to find evidence of event-based programming in the form of,
for example, subscription protocols or state-based behavior. Further, a strict sep-
aration between functional (OO) and event-based programming is not universally
meaningful. For instance, the use of asynchronous calls is arguably both functional

116 A Study of APIs

and event-based. This is an issue with classifying the System.Activities.* namespace,
for example.

Validation of categories

We performed validation to check that the computationally assigned categories
(based on Figure 4.8) match with the expectations of domain experts. We discussed
each assigned category in a manner that one researcher had to provide the confir-
mative argument for a category, and another researcher had to confirm—both re-
searchers (in fact, authors) being knowledgable in .NET.

In this process, we decided to focus on search for false positives and neglect
search for false negatives on the grounds of the argument that the metrics-based
category definitions are designed to find ‘striking’ true positives only. Neverthe-
less, we offer an example of a false negative for better understanding. The Sys-
tem.Data.* namespace should arguably be classified as a delegate-intensive name-
space. In fact, the namespace leverages functional (OO) programming in the way
that data providers are LINQ-enabled. However, the actual percentage of delegate
usage does not meet the threshold of the category’s definition.

4.3.4 Comparison of Potential and Actual Reuse

We consider the as-implemented usage of a framework. Our main interest is to infer
how projects ‘typically’ use the framework. We define corresponding metrics and
screen them for .NET and the corpus of .NET projects of this study.

Definition of metrics

The metric % Referenced OO types denotes the percentage of all OO types of a
given namespace (or the entire framework) that are actually referenced (say, reused)
in a given project (or the entire corpus). The following metrics are defined ‘relative’
to the referenced OO types as opposed to all types.

In §4.3.2, we considered specializable types; the corresponding relative metric
is % Specializable types (rel.)—the percentage of all referenced OO types that are
specializable. Likewise, the metric % Specialized types (rel.) denotes the percent-
age of specializable, referenced types that were actually specialized in projects. Fi-
nally, the metric % Late-bound types (rel.) denotes the percentage of specializable,
referenced types that were actually bound late in projects. We say that a framework
type is bound late in a project, if there is a method call with the framework type as
static receiver type and a project type as runtime receiver type. (Clearly, said project
type directly or indirectly specializes said framework type.)

Measurements for .NET

We summarize measurements for the corpus:

4.3 .NET framework 117

• 44 namespaces (out of 69) are referenced.
• 22 namespaces are specialized.
• 15 namespaces are bound late.
• 925 classes (10.0 % of all classes) are referenced.
• 105 interfaces (11.8 % of all interfaces) are referenced.
• 173 types (2.6 % of all specializable types) are specialized:

– 107 classes (1.9 % of all specializable classes)
– 66 interfaces (7.4 % of all interfaces)

· 30 interfaces are inherited.
· 66 interfaces are implemented.13

• 611 static receiver types are exercised.
• 142 types (2.1 % of all specializable types) are bound late:14

– 116 classes (2.0 % of all specializable classes)15

– 26 interfaces (2.9 % of all interfaces)

An infographics with details is shown in Table 4.8; the figure in the methodology
section was a sketch of this table. We order namespaces again by the number of
types and we include only those ever referenced by the corpus.

The middle block of columns displays actual reuse for all combinations of name-
space and project while using the following indicators: ‘–’ denotes infeasible reuse
(in the sense that the namespace is not available for the framework version of the
project); ‘blank’ denotes no reuse; ‘∗’ or ‘∗’ denotes less or more referencing (with-
out specialization); ‘N’ or ‘N’ denotes less or more specialization (without late bind-
ing); ‘�’ or ‘�’ denotes less or more late binding. Here, ‘less or more’ refers to be-
low versus above median non-zero percentages of referenced OO types, specialized
types (rel.), and late-bound types (rel.). Hence, those cells show whether referenc-
ing, specialization, and late binding happen at all, and if so, to what extent (at a
coarse-grained level: less versus more).

The columns on the left summarize potential reuse for each namespace in terms
of the metrics # Types and % Specializable types from Table 4.6.

The columns on the right summarize actual reuse in terms of a ‘dominator’ (i.e.,
the dominating form of reuse) and the actual reuse metrics defined above. The domi-
nator is determined as follows—without taking into account extent of reuse (‘less or
more’). If a namespace is not reused by more than half of all projects, then the dom-
inator cell remains empty; see, e.g., System.CodeDom.*. Otherwise, if ‘referencing’
is more frequent than ‘specialization’ and ‘late binding’ combined, then the domi-
nator is ‘∗’; in the opposite case, the dominator is ‘N’ or ‘�’—whatever reuse form
is more frequent. For instance, namespace System is used with late binding in most
projects. Hence, actual reuse is summarized as ‘�’.
13 Hence, all .NET interfaces serving as base type in interface inheritance in the corpus are

also implemented in the corpus.
14 Our analysis cannot find all forms of late binding, since we observe late binding based

solely on the calls from client code to the framework, while it might also be the case that
the framework calls into the client code through callbacks.

15 The number of types bound late may indeed be greater than the number of specialized
types because late binding relates to static receiver types; one project type may have several
ancestors in the framework.

118 A Study of APIs

Namespace #
Ty

pe
s

%
Sp

ec
ia

liz
ab

le
ty

pe
s

A
ct

iv
eR

ec
or

d

C
as

tle
C

or
e

M
on

oR
ai

l

W
in

ds
or

Js
on

.N
E

T

lo
g4

ne
t

M
E

F

M
oq

N
A

nt

N
H

ib
er

na
te

N
U

ni
t

Pr
is

m

R
hi

no
.M

oc
ks

Sp
ri

ng
.N

E
T

xU
ni

t

Sh
ar

pZ
ip

L
ib

L
uc

en
e.

N
et

D
om

in
at

or
%

R
ef

er
en

ce
d

O
O

ty
pe

s

%
Sp

ec
ia

liz
ab

le
ty

pe
s

(r
el

.)

%
Sp

ec
ia

liz
ed

ty
pe

s
(r

el
.)

%
L

at
e-

bo
un

d
ty

pe
s

(r
el

.)

Framework 3.5 4.0 3.5 4.0 4.0 2.0 4.0 4.0 2.0 3.5 3.5 4.0 3.5 2.0 2.0 2.0 2.0
System.Web.* 2327 • N N N ∗ ∗ � • • • •
System.Windows.* • • – – � – – – – • • • •
System.ServiceModel.* • • – – N – – – – • • •
System.Windows.Forms.* • • � N • • • •
System.Data.* • • ∗ ∗ ∗ ∗ N N ∗ • • •
System.ComponentModel.* • • ∗ � N � � N ∗ � N N N � ∗ � • • • •
System.Xml.* • • ∗ � ∗ ∗ ∗ ∗ N ∗ ∗ � ∗ ∗ • • • •
System.Net.* • • ∗ ∗ ∗ ∗ ∗ ∗ • •
System • • � � � � � N � � � � � � � � � N � � • • • •
System.Security.Cryptography.* • • ∗ N ∗ • • •
System.Runtime.InteropServices.* • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • •

Microsoft.VisualBasic.* • • ∗ ∗ • •

System.Drawing.* • • ∗ ∗ ∗ • •

System.Runtime.Remoting.* • • ∗ ∗ ∗ ∗ ∗ � ∗ � ∗ N ∗ • • • •
System.Configuration.* • • N ∗ N N N N N ∗ � N N ∗ N • • • •
System.Diagnostics.* • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ N ∗ ∗ • • •
System.IO.* • • ∗ ∗ N ∗ ∗ � ∗ ∗ � ∗ � � ∗ ∗ ∗ � � ∗ • • • •
System.Reflection.* • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • •

System.EnterpriseServices.* • • ∗ • •

System.CodeDom.* • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ • •
Microsoft.Build.* • • N ∗ • • •
System.Threading.* • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ N ∗ ∗ ∗ ∗ • • •
System.Runtime.Serialization.* • • ∗ N ∗ N N N N ∗ N N ∗ ∗ ∗ N ∗ ∗ N N • • 75
System.Security.Permissions • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ •

System.Runtime.CompilerServices • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • •

System.Linq.* • • ∗ ∗ ∗ ∗ ∗ – ∗ � – � ∗ ∗ – – – – ∗ • • • •
System.Messaging.* • • ∗ • 100
Microsoft.Win32.* • • ∗ ∗ ∗ ∗ • •

System.Security.Policy • • ∗ ∗ ∗ ∗ ∗ •

System.Globalization • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • •

System.Transactions.* • • N ∗ ∗ • • •
System.Security • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • •

System.Collections.Generic • • � � ∗ � � ∗ � N ∗ � � � � N � � � • • • •
System.Text • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • •

System.Collections • • � N � N N � � N � � � N � � � N � � • • • •
System.ServiceProcess.* • • ∗ • 100
System.Resources.* • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ ∗ ∗ • • • •
System.Security.Principal • • ∗ ∗ ∗ ∗ • 100
System.Collections.Specialized • 100 N � � ∗ � ∗ ∗ N ∗ � ∗ � 86 100 • •
System.Text.RegularExpressions • 100 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • 100
System.Runtime.Versioning • • ∗ ∗ ∗ ∗ ∗ ∗ •

System.Collections.ObjectModel • 100 � � � � � ∗ � � ∗ ∗ ∗ � � • 100 • 50
Microsoft.CSharp.* • • ∗ ∗ ∗ • 100
System.Timers • 100 ∗ ∗ • 100
Referenced types 137 301 245 229 277 229 201 174 375 374 437 213 135 604 308 113 193
Specialized types 16 39 28 26 27 20 18 13 26 39 31 29 10 73 19 11 26
Late bound types 6 7 9 10 11 3 6 4 10 12 20 11 8 22 5 2 8

75 % 235 89 33 92 33 8
Median 80 73 20 75 6 0
25 % 36 54 12 50 0 0

Table 4.8. Infographics for comparing potential and actual reuse for .NET

4.4 Multi-dimensional Exploration 119

Discussion

The corpus misses several .NET namespaces totally—including all application name-
spaces (see Table 4.7) and various namespaces related to user interfaces—the latter
most likely due to our methodology; see §4.3.1.

The online version determines correlations between various metrics. We state
one interesting correlation here: the percentage of referenced OO types is inversely
correlated with the size of the namespace (in terms of the number of types). Hence,
it may be possible to identify an ‘essential core’ for each of the largest namespaces.

Let us study the metrics by reviewing all those namespaces that are referenced but
not specialized by the corpus. There are 21 namespaces like this and they are all spe-
cializable, in principle. Nine of these namespaces are in the upper half of the distribu-
tion for % Specializable types. (See, for example, namespaces System.Globalization
and System.Text.RegularExpressions with ‘exceptional’ specializability.) The refer-
enced OO types are only slightly less specializable. That is, eight namespaces are
in the upper half of the distribution for % Specializable types (rel.). Thus, low (high
resp.) specialization is not predicted by low (high resp.) specializability in any obvi-
ous sense.

Most namespaces are actually referenced by enough projects to get assigned an
actual reuse summary in the form of a dominator. This suggests that the projects of
the corpus indeed share a ‘profile’ in an informal sense.

Let us compare potential reuse in terms of specializability with actual reuse
in terms of the dominator. There are eight namespaces with dominator ‘N’ or
‘�’. Half of these namespaces contribute to the System.Collections.* hierarchy and
the associated specializability is ‘exceptional’. However, specializability is ‘non-
exceptional’ for the remaining cases; specializability is, in fact, in the percent-
age interval (0,25) for two cases; see namespaces System.Configuration.* and Sys-
tem.Runtime.Serialization.*. This observation further confirms that high specializa-
tion is not predicted by high specializability in any obvious sense.

4.4 Multi-dimensional Exploration

We have developed and applied various API usage analyses. In this section, we dis-
cuss who and how can benefit from them.

We identify abstract exploration insights as they are expected by API developers
and project developers with regard to their overall intention to understand API usage.
These expected insights rely on multiple dimensions of exploration, e.g., hierarchical
organization of scopes and project- versus API-centric perspectives. Existing meth-
ods such as code completion and searching API documentation do not serve these
insights.

We set up QUAATLAS (for QUALITAS API Atlas)—a Java-based corpus for API-
usage analysis that builds on top of the existing QUALITAS corpus while revising it
substantially such that fact extraction can be applied with the level of precision re-
quired for API-usage analysis, while also adding metadata that supports exploration

120 A Study of APIs

Figure 4.9. API usage in JHotDraw with scaling applied to numbers of API references

Slice of JHotDraw
with DOM usage

The view only shows packages
and types with API references to
DOM. Out of the 13 top-level
packages of JHotDraw, only 1
of them, the xml package and its
subpackage css reference DOM.
There is a total of 4 class types
that contain references. The com-
bined reference count is 94 where
19 unique API elements are refer-
enced, which is a relatively small
number of used API elements in
the view of hundreds of API ele-
ments declared by the DOM API.

public void applyStylesTo(Element elem) {
for (CSSRule rule : rules) {

if (rule.matches(elem)) {
rule.apply(elem);

}
}

}

Figure 4.10. The slice of JHotDraw with DOM usage

and records knowledge about APIs. Preparation of the QUAATLAS is described in
detail in Chapter 6.

We provide conceptual support for said exploration insights by means of an ab-
stract model of API-usage views, which we implemented in EXAPUS (for Explore
API usage)—an open-source, IDE-like, Web-enabled tool so that we also provide
tool support for exploration that can be used by others for exploration experiments.

4.4.1 An Exploration Story

Let us sketch a simple yet likely story that an API users (i.e., project developers) may
find themselves in. Joanna Programmer is a new hire in software development at the
fictional Acme Corporation. The company’s main product is JHotDraw and Joanna
was hired to respond to pending renovation plans.

JHotDraw has been heavily reverse-engineered in the past for the sake of incor-
porating crosscutting concerns such as logging, enabling refactoring (e.g., for design
patterns), or generally understanding its architecture at various levels. Such exist-
ing research does not directly apply to Joanna’s assignment. She is asked to reno-

4.4 Multi-dimensional Exploration 121

vate JHotDraw to use JSON instead of XML; to replace native GUI programming
by HTML5 compliance. Further, an Android SDK-based version is needed as well.
Joanna is not particularly familiar yet with JHotDraw, but she quickly realizes that
much of the challenge lies in the API usage of JHotDraw. This is when Joanna
encounters EXAPUS.

Figure 4.11. Minuscule view for DOM usage in JHotDraw: with leaves for methods, eggs for
types, and the remaining nodes for packages.

Fig. 4.9 summarizes API usage in JHotDraw as analyzed with EXAPUS. The tree
view shows all APIs as they are known to EXAPUS and exercised by JHotDraw. The
heavier the border, the more usage. Rectangles proxy for APIs that are packages.
Triangles proxy for APIs with a package subtree.

Let us focus on the requirement for replacing XML by JSON. In Fig. 4.9, two
XML APIs show up: DOM and SAX. Joanna begins with an exploration of DOM
usage. Fig. 4.11 summarizes DOM usage in JHotDraw as analyzed with EXAPUS.
Encouragingly, DOM’s footprint in JHotDraw only covers a few types and methods.

A logical option for continuation of exploration is to examine the distribution of
API usage across JHotDraw. In this manner, Joanna gets a sense of locality of API
usage. The corresponding view is shown in Fig. 4.10 and it strikingly reveals good
news in so far that DOM usage is limited to the JHotDraw package org.jhotdraw.xml,
which she shall explore further to prepare a possible XML-to-JSON migration.

4.4.2 Basic Concepts

We set up the basic concepts of this effort: APIs, API usage, and API-usage metrics.
We also augment the basic notion of API with extra dimensions of abstraction—
API domains and API facets—which are helpful in raising the level of abstraction in
exploration.

APIs

We use the term API to refer to the actual interface but also to the underlying imple-
mentation. We do not pay attention to any distinction between libraries and frame-
works. We simply view an API as a set of types (classes, interfaces, etc.) referable by

122 A Study of APIs

name and distributed together for use in software projects. Without loss of generality,
this effort invokes Java for most illustrations and intuitions.

Indeed, we assume that package names, package prefixes, and types within pack-
ages can be used to describe APIs. For instance, the package prefix javax.swing (and
possibly others) could be associated with the Swing API for GUI programming. It
is important that we view javax.swing as a package prefix because Swing is indeed
organized in a package tree. In contrast, the java.util API corresponds to all the types
in the package of ditto name. There are various subpackages of java.util, but they
are preferably considered separate APIs. In fact, the java.util API deserves further
breakdown, giving rise to the notion of sub-API because the package serves de facto
unrelated purposes, notably Java’s collections and Java’s event system, which can be
quantified as subsets of the types in java.util. (This is not an uncommon situation.)

Clearly, APIs may exist in different versions. If these are major versions (e.g.,
JUnit 3 and 4), then they may be treated effectively as different APIs. In the case of
minor versions (assuming qualified names of API elements have remained stable),
they may be treated as the same API.

API usage

We are concerned with API usage in given software projects. API usage is evidenced
from any sort of reference from projects to APIs. References are directly associated
with syntactical patterns in the code of the projects, e.g., a method call in a class of
a project that invokes a method of an API type, or a class declaration in a project
that explicitly extends a class of an API. The resulting patterns can hence be used
to classify API references and to control exploration with regard to the kinds of
references to present to users.

A reasonably precise analysis of API usage requires that the underlying projects
are ‘resolved’ in that each API reference in a project can be followed to the corre-
sponding declaration in the API. Further, since exploration of API usage relies on the
developer’s view on source code of projects, we effectively need compilable source
code of all projects.

API-usage metrics

For quantifying API usage, metrics are needed that can be used in exploration views
in different ways, e.g., for ordering (elements or scopes of APIs or projects) or for
scaling in the visualization of API usage. For the purpose of this effort, the following
metrics suffice:
#proj: Number of projects referencing APIs.
#api: Number of APIs being referenced.
#ref: Number of references from projects to APIs.
#elem: Number of API elements being referenced.
#derive: Number of project types derived from API types.
#super: Number of API types serving as supertype for derivations.
#sub: Number of project types serving as subtype for derivations.

4.4 Multi-dimensional Exploration 123

These metrics can be applied, of course, to different selections of projects or
APIs as well as specific packages, types, or methods thereof. For instance, we may
be interested in #api for a specific project. Also, we may be interested in #ref for
some part of an API.

Further, these metrics can be configured to count only specific patterns. It is easy
to see now that the given metrics are not even orthogonal because, for example,
#derive can be obtained from #ref by only counting patterns for ‘extends’ and ‘im-
plements’ relationships.

API domains

We assume that each API addresses some programming domain such as XML pro-
cessing or GUI programming. We are not aware of any general, widely adopted at-
tempt to associate APIs with domains, but the idea appears to merit further research.
We have begun collecting programming domains (or in fact, API domains) and tag-
ging APIs appropriately. Let us list a few API domains and associate them with
well-known Java APIs:
GUI: GUI programming, e.g., Swing and AWT.
XML: XML processing, e.g., DOM, JDOM, and SAX.
Data: Data structures incl. containers, e.g., java.util.
IO: File- and stream-based I/O, e.g., java.io and java.nio.
Component: Component-oriented programming, e.g., JavaBeans.
Meta: Meta-programming incl. reflection, e.g., java.lang.reflect.
Basics: Basic language support, e.g., java.lang.String.

API domains are helpful in reporting API usage and quantifying API usage of in-
terest in more abstract terms than the names of individual APIs, as will be illustrated
in §4.4.3.

API facets

An API may contain dozens or hundreds of types each of which has many method
members in turn. Some APIs use subpackages to organize such API complexity,
but those subpackages are typically concerned with advanced API usage whereas the
core facets of API usage are not distinguished in any operational manner. This makes
it hard to understand API usage at a somewhat abstract level.

Accordingly, we propose leveraging a notion of API facets. Each API enjoys a
manageable number of facets. In general, we may use arbitrary program analyses
to attest use of a facet. We limit ourselves to a simple form of facets, which can be
attested on the grounds of specific types or methods being used. Except for the notion
of API usage patterns, we are not aware of any general, widely adopted attempt to
break down APIs into facets, but the idea appears to merit further research. We have
begun identifying API facets and tagging APIs appropriately. As an illustration, we
briefly characterize a few API facets of the typical DOM-like API such as DOM
itself, JDOM, or dom4j:
Input / Output: De-/serialization for DOM trees.
Observation: Getter-like access and other ‘read only’ forms.

124 A Study of APIs

Figure 4.12. JDOM’s API Dispersion in QUAATLAS (project-centric table).

Addition: Addition of nodes et al. as part also of construction.
Removal: Removal of nodes et al. as a form of mutation.
Namespaces: XML namespace manipulation.
Nontrivial XML: Use of CDATA, PI, and other XML idiosyncrasies.

We may also designate a facet to ‘Nontrivial API’ usage when it involves ad-
vanced types and methods that are beyond normal API usage. For instance, XML
APIs may provide some framework for node factories or adapters for API integra-
tion. API facets are helpful in communicating API usage to the user at a more abstract
level than the level of individual types and methods, as will be illustrated in §4.4.3.

4.4.3 Exploration Insights

Overall, developers need to understand API usage, when APIs relate to or affect their
development efforts such as a specific maintenance, migration, or integration task.
We assume that an exploration effort can be decomposed into a series of primitive
exploration activities meant to increase understanding via some attainable insights.
In this section, we present a catalogue of such expected, abstract insights.

Format of insight descriptions

We use the following format. The Intent paragraph summarizes the insight. The
Stakeholder paragraph identifies whether the insight benefits the API developer, the
project developer, or both. The API usage paragraph quantifies API usage of interest,
e.g., whether one API is considered or all APIs. The View paragraph describes, in ab-
stract terms, how API-usage data is to be rendered. The Illustration paragraph applies
the abstract insight concretely to APIs and projects of QUAATLAS. We use different
forms of illustrations: tables, trees, and tag clouds. The Intelligence paragraph hints
at the ‘operational’ intelligence supported by the insight.

4.4 Multi-dimensional Exploration 125

The API Dispersion insight

Intent – Understand an API’s dispersion in a corpus by comparing API usage across
the projects in the corpus.
Stakeholder – API developer.
API usage – One API.
View – The listing of projects with associated API-usage metrics for quantitative
comparison and API facets for qualitative comparison.
Illustration – Fig. 4.12 summarizes JDOM’s dispersion quantitatively in QUAAT-
LAS. 6 projects in the corpus exercise JDOM. The projects are ordered by the #ref
metric with the other metrics not aligning. Only 2 projects (jspwiki and velocity)
exercise type derivation at the boundary of API and project.
Intelligence – The insight is about the significance of API usage across corpus. In
the figure, arguably, project jspwiki shows the most significant API usage because
it references the most API elements. Project jmeter shows the least significant API
usage. Observation of significance helps an API developer in picking hard and easy
projects for compliance testing along API evolution—an easy one to get started; a
hard one for a solid proof of concept. For instance, development of a wrapper-based
API re-implementation for API migration relies on suitable ‘test projects’ just like
that [22, 20].

The API Distribution insight

Intent – Understand API distribution across project scopes.
Stakeholder – Project developer.
API usage – One API.
View – The hierarchical breakdown of the project scopes with associated API-usage
metrics for quantitative comparison and API facets for qualitative comparison.
Illustration – Remember JHotDraw’s slice of DOM usage in Fig. 4.10 in §4.4.1.
This view was suitable for efficient exploration of project scopes that directly depend
DOM.
Intelligence – The insight may help a developer to decide on the feasibility of an API
migration, as we discussed in §4.4.1.

The API Footprint insight

Intent – Understand what API elements are used in a corpus or varying project
scopes.
Stakeholder – Project developer and API developer.
API usage – One API.
View – The listing of used API packages, types, and methods.
Illustration – Remember the tree-based representation of the API footprint for JHot-
Draw as shown in Fig. 4.11 in §4.4.1. In a similar manner, while using a table-based
representation, Fig. 4.13 summarizes JDOM usage across QUAATLAS. All JDOM
packages are listed. The core package is heavily used and thus the listing is further

126 A Study of APIs

Figure 4.13. JDOM’s API Footprint in QUAATLAS (api-centric table).

refined to show details per API type. Ordering relies on the #ref metric. Clearly, there
is little usage of API elements outside the core package.
Intelligence – Overall, the footprint describes the (smaller) ‘actual’ API that needs to
be understood as opposed to the full (‘official’) API. For instance, many APIs enable
nontrivial, framework-like usage [4, 3], but in the absence of actual framework-like
usage, the project developer may entertain a much simpler view on the API. In the
context of API evolution, an API developer consults an API’s footprint to minimize
changes that break actual usage or to make an impact analysis for changes. In the con-
text of wrapper-based API re-implementation for API migration, an API developer
or a project developer (who develops a project-specific wrapper) uses the footprint
to limit the effort [22, 20].

The Sub-API Footprint insight

Intent – Understand usage of a sub-API in a corpus or project.

4.4 Multi-dimensional Exploration 127

Nontrivial JDOM API usage in velocity
org.apache.velocity.anakia.AnakiaJDOMFactory

Scope Tags incl. facets #proj

...

Figure 4.14. ‘Non-trivial API’ usage for package org.jdom in QUAATLAS.

Swing!!java.lang!!JavaBeans!!java.io!!AWT!!java.util

Package org.jhotdraw.undo

AWT!!Swing!!java.io java.lang java.util

JavaBeans java.text java.lang.reflect!!DOM!!java.net
java.util.regex!!Java Print Service!!java.util.zip!!java.lang.annotation
java.math java.lang.ref java.util.concurrent Java security!!javax.imageio!!SAX

JHotDraw’s API Cocktail

Figure 4.15. The API Cocktail of JHotDraw (cloud of API tags).

Stakeholder – API developer and, possibly, project developer.
API usage – One API.
View – A list as in the case of the API Footprint insight, except that it is narrowed
down to a sub-API of interest.
Illustration – Fig. 4.14 illustrates ‘Non-trivial API’ usage for JDOM’s core package.
The selection is concerned with a project type which extends the API type Default-
JDOMFactory to introduce a project-specific factory for XML elements. Basic IDE
functionality could be used from here on to check where the API-derived type is
used.
Intelligence – In the example, we explored non-trivial API usage, such as type
derivation at the boundary of project and API—knowing that it challenges API evo-
lution and migration [20]. More generally, developers are interested in specific sub-
APIs, when they require detailed analysis for understanding. API developers (more
likely than project developers) may be more aware of sub-APIs; they may, in fact,
capture them, as part of the exploration. (This is what we did during this research.)
Such sub-API tagging, which is supported by the Sub-API Footprint insight may
ultimately improve API documentation in ways that are complementary to existing
approaches [172, 58].

The API Cocktail insight

Intent – Understand what APIs are used together in larger project scopes.
Stakeholder – Project developer.
API usage – All APIs.

128 A Study of APIs

GUI!!Data!!Basics!!
IO!!Format!!Component!!Meta!!
XML!!Distribution!!Parsing!!Control!!Math!!Output!!Security!!Concurrency

JHotDraw’s API Domain Cocktail

GUI!!Basics!!Component!!IO Package org.jhotdraw.undo

Project jhotdraw

Figure 4.16. Cocktail of domains for JHotDraw.

Basics!!Distribution!!GUI!!IO!!Component

java.lang!!java.net!!Swing!!JavaBeans!!java.io!!

APIs

API domains

Coupling in JHotDraw
for the interface org.jhotdraw.app.View

Figure 4.17. API Coupling for JHotDraw’s interface org.jhotdraw.app.View.

View – The listing of all APIs exercised in the project or a project package with API-
usage metrics applied to the APIs.
Illustration – Remember the tree-based representation of the API cocktail for JHot-
Draw as shown in Fig. 4.9 in §4.4.1. The same cocktail of 20 APIs is shown as a tag
cloud in Fig. 4.15. Scaling is based on the #ref metric.
Intelligence – The cocktail lists and ranks APIs that are used in the corresponding
project scope. Thus, the cocktail proxies as a measurement for system complexity,
required developer skills, and foreseeable design and implementation challenges.
API usage is part of the software architecture, in the sense of “what makes it hard
to change the software”. Chances are that API usage may cause some “software or
API asbestos” [114]. While a large cocktail may be acceptable and unavoidable for a
complex project, the cocktail should be smaller for individual packages in the interest
of a modularized, evolvable system.

APIs versus domains

We can always use API domains in place of APIs to raise the level of abstraction.
Thus, any insight that compares APIs may as well be applied to API domains. APIs
are concrete technologies while API domains are more abstract software concepts.
Consider Fig. 4.16 for illustration. It shows API domains for all of JHotDraw and
also for its undo package. Thus, it presents the API cocktails of Fig. 4.15 in a more
abstract manner.

4.4 Multi-dimensional Exploration 129

Observation!!Input!!Exception!!
Package de.nava.informa.parsers

Observation!!Input!!

Nontrivial XML!!Manipulation Exception!!Renaming

Addition Namespaces!!Nontrivial API!!Output!!

Project informa

JDOM’s API Profile for informa

Figure 4.18. JDOM’s API Profile in the informa project (cloud of facet tags).

The API Coupling insight

Intent – Understand what APIs or API domains are used together in smaller project
scopes.
Stakeholder – Project developer.
API usage – All APIs.
View – See §4.4.3 except APIs or domains are listed for smaller project scopes.
Illustration – Fig. 4.17 shows API Coupling for the interface org.jhotdraw.app.View
from the JHotDraw’s app package16. According to the documentation, the package
“defines a framework for document oriented applications and provides default imple-
mentations”. The View type “paints a document on a JComponent within an Applica-
tion”. (Application is the main type from the package which “handles the lifecycle of
views and provides windows to present them on screen”.) The coupled use of APIs
can be dissected in terms of the involved types as follows:
java.lang: trivial usage of strings.
java.net: types for the location to save the view.
JavaBeans: de-/registration of PropertyChangeListeners.
java.io: exception handling for reading/writing views.
Swing: usage of JComponent on which to paint a document; usage of ActionMap for actions
on the GUI component.

Intelligence – Simultaneous presence of several domains or APIs in a relatively small
project scope may indicate accidental complexity and poor separation of concerns.
Thus, such exploration may reveal a code smell [60, 149] that is worth addressing.
Alternatively, a dissection, as performed for the illustrative example, may help in
understanding the design and reasonable API dependencies.

The API Profile insight

Intent – Understand what API facets are used in varying project scopes.
16 The lifecycle of the interface as explained by its documentation: http:
//www.randelshofer.ch/oop/jhotdraw/JavaDoc/org/jhotdraw/
app/View.html

http://www.randelshofer.ch/oop/jhotdraw/JavaDoc/org/jhotdraw/app/View.html
http://www.randelshofer.ch/oop/jhotdraw/JavaDoc/org/jhotdraw/app/View.html
http://www.randelshofer.ch/oop/jhotdraw/JavaDoc/org/jhotdraw/app/View.html

130 A Study of APIs

Stakeholder – Project developer and, possibly, API developer.
API usage – One API with available facets.
View – The listing of all API facets exercised in the selected project scope with API-
usage metrics applied to the facets.
Illustration – Fig. 4.18 shows JDOM profiles for a project and one of its packages.
The project, as a whole, exercises most facets of the API. In contrast, the selected
package is more focused; it is concerned only with loading XML into memory, read-
ing access by getters and friends, and some inevitable exception handling. There is no
involvement of namespaces, non-trivial XML, or data access other than observation.
Intelligence – At the level of a complete project, the profile reveals the API facets
that the project depends on. As some of the facets are more idiosyncratic than others,
such exploration may, in fact, reveal “software or API asbestos” [114], as discussed
in §4.4.3. For instance, the JDOM facets ‘Non-trivial API’ and ‘Non-trivial XML’
and to a lesser extent also ‘Namespaces’ proxy for development challenges or id-
iosyncracies. At the level of smaller project scopes, an API’s profile may characterize
an actual usage scenario, as in the case of the profile at the bottom of Fig. 4.18. Such
a facet-based approach to understanding API-usage scenarios complements existing
more code pattern-based approaches [98, 199]. API profiles also provide feedback to
API developers with regard to ‘usage in the wild’, thereby guiding API evolution or
documentation.

4.4.4 Exploration Views

Let us systematically conceptualize attainable views in abstract terms. In this man-
ner, a more abstract model of exploration arises and a foundation for tool support is
provided.

We approach this task essentially as a data modeling problem in that we describe
the structure behind views and the underlying facts. We use Haskell for data model-
ing.17

Forests

We begin by modeling the (essential) facts about projects and APIs as well as API
usage. To this end, we think of two forests: one for all the projects in the corpus,
another for all the APIs used in the corpus.

−− Forests as collections of named trees
data Forest = Forest [(UqName,PackageTree)]

17 Products are formed with “(...)”. Lists are formed with “[...]”. We use Haskell’s data types
to group alternatives (as in a sum); they are separated by ‘|’. Each alternative groups com-
ponents (as in a product) and is labeled by a constructor name. Enums are degenerated
sums where the constructor name stands alone without any components. Other types may
suffice with type aliases on top of existing types.

4.4 Multi-dimensional Exploration 131

Each project or API gives rise to one tree (root) in the respective forest. Such
a tree breaks down recursively into package layers. If a package layer corresponds
to an actual package, then it may also contain types. Types further break down into
members. Thus:

−− Trees breaking down into packages, types, etc.
data PackageTree = PackageTree [PackageLayer]
data PackageLayer = PackageLayer UqName [PackageLayer] [Type]
data Type = Type UqName [Member] [Ref]
data Member = Member Element UqName [Type] [Ref]
data Element = Interface | Class | InstanceMethod | StaticMethod | ...

−− Different kinds of names
type RName = QName −− qualified names within forests
type QName = [UqName] −− qualified names within trees
type UqName = String −− unqualified names

In both forests, we associate types and members with API-usage references; see
the occurrences of Ref . Depending on the forest, the references may be ‘inbound’
(from project to API) or ‘outbound’ and each reference may be classified by the
(syntactic) pattern expressing it. Thus:

data Ref = Ref Direction Pattern Element RName
data Direction = Outbound | Inbound
data Pattern = InstanceMethodCall | ExtendsClass | ...

The components of a reference carry different meanings depending on the chosen
direction:

Outbound Inbound

Pattern Project pattern Project pattern
Element API element Project element
RName Name of API element Name of project element

The project forest is obtained by walking the primary representation of projects
and deriving the forest as a projection/abstraction at all levels. The API forest is ob-
tained by a (non-trivial) transposition of the project forest to account for the project-
specific jars and memory constraints on simultaneously open projects.

View descriptions

We continue with the descriptions of views. These are the executable models that are
interpreted on top of the forests of APIs and projects. Here is the overall structure of
these descriptions:

type View = (
Perspective , −− Project− versus API−centric
ApiSelection , −− APIs and parts thereof to consider
ProjectSelection , −− Projects and parts thereof to consider

132 A Study of APIs

Details , −− Details to retain
Metrics) −−Metrics to be applied

data Perspective = ApiCentric | ProjectCentric

The API-centric perspective uses the hierarchical organization of APIs (pack-
ages, subpackages, types, members) as the organizational principle of a view. Like-
wise, the project-centric perspective uses the hierarchical organization of projects as
the organizational principle of a view.

Selection of projects, APIs, or parts thereof is based on names of APIs and
projects as well as qualified names for the relevant scopes; we do not cover here
selection based on API domain tags and API facet tags, which would require only a
routine extension:

type ApiSelection = Selection
type ProjectSelection = Selection
data Selection
= UniversalSelection −− Select entire forest
| Selection [(UqName, Scope)] −− Select tree scopes

Scopes for selection are described as follows:

data Scope
= RootScope −− Select entire tree
| PrefixScope [UqName] −− Selection by package prefix
| PackageScope [UqName] −− Selection by package name
| TypeScope [UqName] −− Selection by type name
| MethodScope [UqName] Signature −− Selection by method signature

type Signature = ... −− details omitted

We left out some forms, e.g., scopes for fields or nested types. However, all of
the above forms have proven relevant in practice. For instance, we have used package
scopes and prefix scopes for API and API domain tagging respectively. Likewise, we
have used type scopes and method scopes for API facet tagging.

Each view description controls details for each selection:

type Details = (
[ProjectDetail], −− Project elements to retain
[ApiDetail]) −− API elements to retain

type ProjectDetail = (Element, Usage)
type ApiDetail = (Element, Usage)
type Usage = Bool −−Whether to retain only elements with usage

(See above for type Element.) The selection of details is important for usability of
exploration views. For instance, Fig. 4.11 shows only API elements that are actually
used to summarize an API foot print concisely. In contrast, Fig. 4.14 shows all API
types to better understand what API types possibly could exercise the the chosen API
facet.

4.4 Multi-dimensional Exploration 133

Finally, applicable API-usage metrics are to be identified for the view. The choice
of metrics serves multiple purposes. First, the final, actual view should only include
metrics of interest to limit the presented information. Second, metrics can be iden-
tified for ordering/ranking entries in the actual views, as we have seen throughout
§4.4.1 and §4.4.3. Third, metrics can be configured to only count certain aspects of
API-usage. Last but not least, selection of metrics lowers the computational com-
plexity of materializing views. Thus:

type Metrics = [(Metric, Maybe Order)]
data Metric = RefMetrics [Source] [Target]

| ElemMetric [Source] [Target]
| DeriveMetric [Derivation]
| ... −− Further metrics omitted

data Order = Ascending | Descending −−Whether to order by the metric

−−What API references to count
type Source = Pattern −− Usage patterns to count
type Target = Element −− API elements to count

−− Forms of derivation to count
data Derivation = ProjectClassExtendsApiClass

| ProjectClassImplementsApiInterface
| ProjectInterfaceExtendsApiInterface

For instance, the #ref metric can be configured to only count references to API
types as opposed to other API elements; the #derive metric can be configured to only
count class-to-class extension as opposed to other forms of derivation.

To summarize, means of selection, details, and metrics provide a rich domain-
specific query language to express what API usage should be included into an actual
view and how to rank API usage. Thereby, a foundation is provided for interactive
tool support.

Operations on views

Because of the hierarchical nature of forests, established means of ‘package explo-
ration’, as in an IDE are immediately feasible. That is, one can fold and unfold
scopes; references to API or project elements can be resolved to their declarations
and declarations can be associated with references to them. Beyond ‘package explo-
ration’, views can be defined to dissect API usage explicitly.

More interestingly, exploration can switch between API-centric and project-
centric perspectives. Fig. 4.19 shows a project-centric view which is fundamentally
dual to the API-centric view of Fig. 4.14 in that the selected outgoing reference cor-
responds to the originally incoming reference selected in Fig. 4.14. The hierarchical
exploration has been readily unfolded to expose the encompassing project scopes.
Such travel between perspectives may be very insightful. In the example at hand, an
API developer may have spotted the relevant API usage in the API-centric view, as

134 A Study of APIs

Nontrivial JDOM API usage in velocity
org.apache.velocity.anakia.AnakiaJDOMFactory

Figure 4.19. The dual view for Fig. 4.14 (project-centric table).

part of a systematic exploration of non-trivial API usage in the corpus. In an attempt
to better understand the broader context of the API reference, the developer needs to
consult the project-centric view for the culprit. Such context switches are laborious
when only using basic means of package exploration are available.

4.4.5 The EXAPUS Exploration Platform

The EXAPUS web server processes all Java projects in the Eclipse workspace it is
pointed to. Fact extraction proceeds through a recursive descent on the ASTs pro-
duced by the Eclipse JDT. Whether an AST node of a project references an API
member is determined on a case-by-case basis. In general, identifiers are resolved
to their corresponding declaration. Identifiers that resolve to a binary rather than a
source member are considered an API reference. Hence, we require the workspace
to have been prepared as described in Section 3.2.2. For each reference, EXAPUS
extracts the referenced element (e.g., a method declaration), the referencing pattern
(e.g., a super invocation) as well as the encompassing project scope in which the
reference resides (i.e., a path towards the root of the AST).

Exploration views (cf. Section 4.4.4) are computed by selecting references from
the resulting fact forest (e.g., only those to a particular sub-API) and superimposing
one of either two hierarchical organizations: a project-centric hierarchy of project
members and the outbound references within their scope; or an API-centric hierarchy
of API members and the inbound references within their scope.

The EXAPUS web interface enables exploring the computed exploration views
through trees (e.g., Fig. 4.9) and tables (e.g., Fig. 4.10). An exploration view can be

4.5 Threats to Validity 135

refined further on the kind of the referenced elements (e.g., a particular type) and
the referencing pattern (e.g., constructor invocation), as well as sorted by a particular
metric. Multiple views can be shown simultaneously and navigated between. The
interface owes its dynamic and IDE-like feel to the widgets of the Eclipse Rich Ajax
Platform.

4.5 Threats to Validity

There are several limitations to the performed API usage analyses.

External validity

We have analyzed a restricted set of projects. It means, the results of the studies might
not be generalizable, though we consider the used corpora to be representative.

In the study of Java APIs, we restricted ourselves in at least three ways, namely,
the source of picking the projects (SourceForge only), the version control system
(SVN only) and the build tool (Apache Ant only). These choices were concessions
to the primary goal of the present research milestone: to prove the feasibility of large-
scale, automated, resolved AST-based API-usage analysis.

In the study of .NET framework, on the contrary, we selected the projects of pre-
sumably the best quality from several different online repositories. The requirement
of sufficiently large test suits was induced by the chosen style of analysis—namely,
dynamical analysis.

Internal validity

In both studies, we use homegrown tools, which are though tested and manually
validated during the research, are still a subject to possible technical errors.

In the case of .NET, there are also more subtle threats, due to the modelunder-
lying our research. First, while investigating potential and actual .NETreuse, we fo-
cus on type specialization—even though frameworks might be alsoconfigured via
attributes (i.e., annotations) or XML files. This applies to a number of .NET name-
spaces. Second, we observe late binding based solely on the calls from client code to
the framework, while it might also be the case thatthe framework calls into the client
code through callbacks. Further, the analysis of late binding relies on the runtime
data gathered from the testsuite execution. Coverage of method-call sites is incom-
plete; the tests do not cover 38.96 % of the method-call sites in the projects of the
study.

In the study of Java APIs, we rely mostly on the results gained from the AST-
based fact extractor gathered through a default build. This means, for example, that
we miss sources that were not build in this manner. We also miss projects whose
builds fail (and hence fact extraction is not completed).

136 A Study of APIs

4.6 Related Work

We identify several categories of related work.

Analysis of Open-source Repositories

Our work relates to other work on analyzing open-source repositories. For in-
stance, there has been work on the analysis of download data, evolution data,
metadata (e.g., development status), or user data (e.g., the number of active de-
velopers), and simple metrics (e.g., LOC) for open source projects (e.g., on Source-
Forge) [95, 126, 83, 192]. In this context, we also refer to the project FLOSSmole
http://flossmole.org/ and the project FOSSology [77]. Usually, such large-
scale efforts do not involve dynamic analysis, which we use in our studies. For in-
stance, in [82], the adoption of design patterns is studied in open-source software, but
documentation (commit messages) as opposed to parse trees are analyzed. In [125],
a very large-scale code clone analysis is performed.

API-usage Analysis

There are efforts that we would like to collectively label with API-usage analysis.
The kinds of analysis in such related work are different from those considered in the
present effort.

One important direction is concerned with the analysis of API usage patterns.
In [137], data mining is used to determine API reuse patterns, and more specifically
classes and methods that are typically used in combination. We also refer to [130]
for a related approach. In [102], data mining is used, too, to determine frequently
appearing ordered sets of function-call usages, taking into account their proximal
control constructs (e.g., if-statements). In [196], data mining is used, too, to com-
pute lists of frequent API usage patterns based on results returned from code-search
engines; the underlying code does not need to be compilable. In [122], a machine
learning-based approach is used to infer protocol specifications for API; see [191]
for a related approach. In [10], inter-procedural, control-flow-sensitive static traces
for C programs are used to mine API-usage patterns as partial orders from source
code.

The closest related work to the study of Java APIs is [180]: API hotspots and
coldspots (say, frequently or rarely used classes and methods) are determined. This
work is again based on the analysis of data obtained from a code-search engine.
Such frequency analysis can be compared to our efforts on coverage analysis (c.f.,
Sect. 4.2.3)—except that we are using resolved ASTs. Also, we are specifically in-
terested in the large-scale, cumulative coverage. Further, we are interested in in-
terpreting analysis results in terms of API characteristics, and with a view on API
migration.

The closest related work to the study of .NET framework is [35, 158] insofar as
alignment of static and dynamic receiver types is concerned. In particular, the work

http://flossmole.org/

4.6 Related Work 137

of [35] deals with the dynamic measurement of polymorphism in Java and inter-
prets it from a reuse-oriented point of view. Bytecode is instrumented and runtime
receiver types are determined by accessing the virtual machine’s stack—similar to
our approach. This work is not focused though on reuse of a composite framework.

Type Specialization

In both studies (in the case of Java APIs we have identified the direction, and in the
study of .NET framework we have advanced it), we pay attention to type specializa-
tion, including class and interface inheritance, interface implementation, overriding.
Related work that studies related metrics does so without the objective of summariz-
ing reuse characteristics at a high of level of abstraction. The work of [38] studies
structural metrics of Java bytecode; some reuse-related measurements are covered,
too, e.g., the number of types that inherit from external framework types, or the
most implemented external interfaces. The work of [177, 176] focuses on metrics for
inheritance and overriding for Java, and it shows, for example, that programmers ex-
tend user-defined types more often than external library or framework types. In those
works, depth of inheritance trees is considered relevant whereas our metrics-based
approach favored size of inheritance trees since we are interested in the number of
types participating in specialization. The work of [162] analyzes instantiations of
frameworks (Eclipse UI, JHotDraw, Struts), though for a purpose of detecting usage
changes in the course of framework evolution. None of the aforementioned efforts
involve dynamic analysis.

Software Metrics

We define and apply metrics for exploring reuse characteristics and the alignment
between potential and actual reuse. Elsewhere, metrics are typically used to under-
stand maintainability [48] or quality of the code and design [131, 182, 185]. There
is also a trend to analyze the distribution characteristics for metrics and the correla-
tion between different metrics [39, 25]. In the context of OO programming, work on
metrics typically focuses on Java; the work of [123] targets .NET with a few basic
metrics without focus on reuse.

Exploration of Projects

There are several conceptual styles of project comprehension. An example of in-
teractive, human-involving effort can be found in work of Brühlmann et al. [33],
where experts annotate project parts to capture human knowledge. They further use
the emerged meta-model to analyze features, architecture, and design flaws of the
project.

Query-driven comprehension can proceed through user-defined queries that iden-
tify code of interest, as in the work of Mens and Kellens [135] or De Roover et
al. [53], where a comprehensive tool suite facilitates defining and exploring query

138 A Study of APIs

results. Alwis and Murphy in their work [51] identify and investigate pre-defined
queries for exploration of a software system, e.g., “What calls this method.”

Visual summary of projects usually involves some sort of scaling, color coding,
and hierarchical grouping, as discussed by Lanza and Ducasse [121]. Visualizations
can be more involved, as in the work of Wettel et al. [193], where a a city metaphor
is used to represent a 3D structure of projects based on the value of metrics.

Our tool, EXAPUS, combines these conceptual styles. We allow the user to accu-
mulate and refine knowledge about APIs, their facets, and domains. The exploration
activities explained in the paper are intuitive; flexibility in their combination en-
ables answering the typical questions like identified by Alwis and Murphy [51]. Tag
clouds, tables, and trees accompanied by metrics provide basic and familiar visual
aid in exploration.

Exploration of APIs

Measuring usage

Research on API usage often leverages usage frequency, or popularity, of APIs and
their parts. For instance, Mileva et al. use popularity to identify most commonly used
library versions [138] or to identify and predict API usage trends over time [139].
Holmes et al. appeal to popularity as the main indicator: for the API developer, to
be able to prioritize efforts and be informed about consumption of libraries; for the
API user, to be able to identify libraries of interest and be informed of ways of their
usage [91]. Eisenberg et al. use font scaling w.r.t. popularity of API elements to
help navigate through its structure [58, 59]. Ma et al. investigate coverage of Java
Standard API to identify which parts are ignored by the API users [128]. In our
work, we suggest more advanced metrics indicating API usage; their distribution is
integrated in the table and graph views of our tool, providing sorting and scaling.

Understanding usage

Robillard and DeLine discovered in their field study on API learning obstacles that
API users prefer to learn from patterns of related calls rather than illustrations of indi-
vidual methods [156]. And, indeed, many existing efforts are exercising information
about API usage to help developers use APIs. E.g., Nasehi and Maurer show that API
units tests can be used as usage examples [146]. Zhong et al. cluster API calls and
mine patterns to recommend useful code snippets to API users [199]. Bruch et al.
develop intelligent code completion that narrows down the possible suggestions to
those API elements that are actually relevant [32]. Our tool, EXAPUS, differs in that
it enables navigating both projects and APIs in the familiar IDE-like manner with
API usage in focus. We also identify a catalogue of possible exploration activities to
perform.

4.7 Conclusion 139

4.7 Conclusion

We have performed an exploratory study of API usage, assessing the aspects of API
usage in two different ways: from the point of view of a software language and from
the point of view of reuse characteristics.

In the study on Java APIs, we have demonstrated a scalable approach to AST-
based API-usage analysis for a large-scale corpus of open-source projects. Our im-
plementation allows us to answer questions about usage of many well-known Java
APIs. We have demonstrated this capability, for example, with specific aspects of
XML programming APIs and generic aspects of framework-like API usage.

In the study of .NET framework, we presented a new approach to understand-
ing reuse characteristics of composite frameworks. We applied the approach in an
empirical study to .NET and a suitable corpus of .NET projects. The reuse charac-
teristics include metrics of potential reuse (such as the percentage of specializable
types), categories related to reuse (such as open or closed namespaces), and metrics
of actual reuse (such as the percentage of specialized types). These metrics and the
classification add up to what we call a framework profile. Infographics can be used
to provide different views on framework profiles.

We summarized the developed intuitions into a catalogue of exploratory activi-
ties. We described these insights along with the abstract model of API views, iden-
tifying the possible exploratory scenarios and involved stakeholders. We have built
the tool, EXAPUS, enabling the mentioned explorations.

Part III

Corpus Engineering

5

Literature Survey of Empirical Software Engineering

In this chapter, we describe literature surveys that we carry out in order to under-
stand the existing usage of empirical evidence in Software Engineering. We collect
and analyze published papers, extracting signs and characteristics of used empirical
evidence. We discover that more than 80% of papers in Software Engineering re-
search use software projects as empirical evidence. The discovered existing demand
in the contemporary research motivates our subsequent effort (presented in the next
chapter) to provide matching supply in our area of expertise.

Road-map of the chapter

• Section 5.1 provides brief motivation for the study.
• Section 5.2 describes the two preceding pilot surveys.
• Section 5.3 contains methodology and results of the main survey.
• Section 5.4 discusses threats to validity for this empirical study.
• Section 5.5 discusses related work.
• Section 5.6 concludes the chapter.

Reproducibility

We provide additional data (lists of used papers, results of the coding, etc.) on the
supplementary websites1,2.

Related publications

Research presented in this chapter underwent the peer-reviewing procedure and was
published in the proceedings of International Conference on Software Language En-
gineering in 2011 [2]. The main part of the chapter (the final survey) is the work
under submission [7].

1 http://toknow.sourceforge.net/
2 http://softlang.uni-koblenz.de/empsurvey/

http://toknow.sourceforge.net/
http://softlang.uni-koblenz.de/empsurvey/

144 Literature Survey of Empirical Software Engineering

5.1 Introduction

Empirical research is usually perceived as taking one of the established forms with
well-defined protocol of the study and applied techniques: controlled and quasi-
experiments, exploratory and confirmatory case studies, survey, ethnography, and
action research [167, 170]. In a broader sense that we consider in our thesis, empir-
ical research includes any research based on collected evidence (quoted from [167],
emphasis ours): “Empirical research seeks to explore, describe, predict, and explain
natural, social, or cognitive phenomena by using evidence based on observation or
experience. It involves obtaining and interpreting evidence by, e.g., experimentation,
systematic observation, interviews or surveys, or by the careful examination of doc-
uments or artifacts.”

And, indeed, Software Engineering research often needs corpora (sets of project-
s/systems) to test a hypothesis, to validate a tool, or to illustrate an approach. Soft-
ware corpora have been, for instance, used to evaluate tools for design pattern detec-
tion [65], API method recommendation [87], and refactoring automation [141]—just
to mention a few areas and papers.

In general, since Software Engineering is a practical area, it is logical to expect
that most of the SE research is evidence-based, i.e., empirical de facto, and in the
present effort, we submit to show that. We believe that a bottom-up approach of
defining forms of research as well as discovering methodology by observing existing
research complements the prominent top-down approach, when a methodology is de-
rived from theoretical considerations or by borrowing from other sciences (medicine,
sociology, psychology).

To this end, we are interested in harvesting information from the published papers
in the Software Engineering area, driven by the general question

What is the nature of empirical evidence used in Software Engineering?

Our intention is to detect and assess the existing demand in corpora in the contem-
porary research. We refine our question through two pilots studies to the following
questions:

I How often do Software Engineering papers use corpora—collections of empir-
ical evidence?

II What is the nature and characteristics of the used corpora?
III Does common contents occur in the used corpora?

After a literature survey of the contemporary Software Engineering research, we
provide answers to these questions by developing and applying a coding scheme to
the collected papers.

5.2 Pilot Studies

In this section, we describe the two pilot studies which helped us to explore available
methods of literature surveys as well as the topic of our interest, the usage of empiri-
cal evidence in Software Engineering. (For the brief account of considered methods,

5.2 Pilot Studies 145

their suitability for our research, and evolution of our understanding of the topic,
see Part I, Prerequisites, Section 2.5.)

5.2.1 Survey on Empirical Language Analysis

Historically, we were interested in understanding usage of empirical evidence in
Software Language Engineering only. For that, we restricted ourselves to the area
of empirical language analysis and used a corresponding coding scheme à la content
analysis [117]. In this subsection, we introduce the paper collection, the research
questions of the study, and its results. The study is reported in the same manner as
it was originally reported: unaware of the follow-up studies and development of our
problem understanding.

Figure 5.1. Tag cloud for the language distribution for the underlying paper collection.

Paper collection

We have started with a hand-picked set of papers that we were aware of and consid-
ered to belong to Software Language Engineering. Following their appropriate refer-
ences, we have accumulated 52 papers on empirical analysis of software languages.
As an illustration, Fig. 5.1 shows the language distribution for the full collection. For
reasons of maturity of metadata, we have eventually used a selective collection of 17
papers.

Research questions

• Each paper in the collection involves a corpus of a chosen software language.
What are the characteristics of those corpora?

• Each empirical analysis can be expected to serve some objective. What are those
objectives for the collection of papers?

• Each empirical analysis can be expected to leverage some actual (typically au-
tomated) analyses on the corpus. What are those analyses for the collection of
papers?

146 Literature Survey of Empirical Software Engineering

Terminology

In this first pilot study, we were exploring the terminology and used the following
definitions. The term (software) corpus refers to a collection of items that are ex-
pressed in the language at hand. (These items may be valid or invalid elements of the
language in a formal sense.) Items originate from possibly several sources. The term
source refers to different kinds of physical or virtual sources that contribute items.
For instance, a corpus may leverage an open-source repository as a source to make
available, or to retrieve the items—based on an appropriate search strategy. A paper
may provide a corpus description that identifies sources and explains the derivation
of the actual corpus (say, item set) from the sources.

Corpus characteristics

Fig. 5.2 provides metadata that we inferred for the corpora of the selective paper
collection.3 We capture the following characteristics of the software corpora: the
software language of the corpus, numbers of sources and items (with a suitable unit),
the online accessibility of the sources (on a scale of none, partial, and full), and the
reproducibility of the corpus (on a scale of none, approximate, precise, and trivial).
We say that reproducibility is trivial, if the corpus is available online—in one piece;
reproducibility is precise, if the sources and the corpus description suffice to repro-
duce the corpus precisely by essentially executing the corpus description. Otherwise,
we apply a judgment call, and use the tags approximate or none. For instance, the
inability to reproduce a ranking list of a past web search may be compensated for
by a new web search, and hence, reproducibility can be retained at an approximate
level. In future work, we would like to go beyond the characteristics that we have
sketched here.

Objectives of the papers

Based on our analysis of the paper collection, we propose the following list of ob-
jectives for empirical language analysis; see Fig. 5.3 for corresponding metadata for
the selective paper collection.

Language adoption

The objective is to determine whether the language is used, and with what frequency.
Typically, some scope applies. For instance, we may limit the scope geographically,
or on the time-line.

Language habits

The objective is to understand the usage of the language in terms of syntactically
or semantically defined terms. For instance, we may study the coverage of the lan-
guage’s diverse constructs, or any other, well-defined metrics for that matter. This
objective may be addressed with substantial measurements and statistical analysis.

3 A cell with content “?” means that the relevant data could not be determined.

5.2 Pilot Studies 147

language sources items unit accessibility reproducibility

[16] SDF 8 27 grammars partial approximate
[24] Java 17 56 projects full precise
[34] COBOL 1 50 programs none none
[37] Java 1 1132 JAR files full approximate
[40] Pascal 1 264 programs none none
[44] P3P 3 ? policies full approximate
[71] Java 4 14 projects full precise
[81] Haskell 1 68000 compilations none approximate
[82] Java 1 988 projects full approximate
[85] Java ? 9 packages full approximate

[108] Java 2 2 programs full approximate
[115] Fortran 7 440 programs none none
[120] XSD 2 63 schemas partial none

[1] P3P 1 3227 policies full trivial
[154] P3P 1 2287 policies full approximate
[160] APL 6 32 workspaces none none
[187] XSD 9 9 schemas full approximate

Figure 5.2. Corpus characteristics for selective paper collection

Language taming

The objective is to impose extra structure on language usage so that habits can be
categorized in new ways. For instance, we may equip the language with patterns or
metrics that are newly introduced or adopted from other languages. In some cases,
the empirical effort towards addressing the objective of language taming may also
qualify as effort that attests to the objective of language habits.

User feedback

The objective is to compile data of any kind that helps the language user to better
understand or improve programs. For instance, we may carry out an analysis to sup-
port the proposal of a new pattern that should help with using the language more
effectively. This objective could be seen as a more specific kind of language taming.

Language evolution

The objective is to gather input for design work on the next version of the language.
For instance, we may try to detect indications for missing constructs. Or detect ob-
solete language features that could be deprecated in the future versions.

User behavior

The objective is to understand the usage of the language and its tools in a way that
involves users or user experiences directly—thereby going beyond the narrow notion

148 Literature Survey of Empirical Software Engineering

of corpus consisting only of “programs”. For instance, we may analyze instances of
compiler invocations with regard to problems of getting programs to compile even-
tually.

Implementor feedback

The objective is to understand parameters of language usage that help language im-
plementors to improve compilers and other language tools. For instance, we may
carry out an analysis to suggest compiler optimizations.

[1
6]

[2
4]

[3
4]

[3
7]

[4
0]

[4
4]

[7
1]

[8
1]

[8
2]

[8
5]

[1
08

]
[1

15
]

[1
20

]
[1

]
[1

54
]

[1
60

]
[1

87
]

language adoption • • •
language habits • • • • • • • •
language taming • • • • • •
user feedback •
language evolution • •
user behavior •
implementor feedback • • • •

Figure 5.3. Objectives of the selected publications

Without going into detail here, the available data caters for various observations.
For instance, we realize that research on language adoption is generally not exercised
for programming languages. It appears that online communications but not scientific
publications are concerned with such adoption.4,5,6

Analyses of the papers

Based on our (preliminary) analysis of the paper collection, we have come up with a
simple hierarchical classification of (typically automated) analyses that are leveraged
in the empirical research projects; see Fig. 5.4 for the classification; see Fig. 5.5 for
corresponding metadata for the selective paper collection.

The presented classification focuses on prominent forms of static and dynamic
analysis. In our paper collection, static analysis is considerably more common, and
there is a substantial variety of different analyses. We also indicate two additional
dimensions for analyses. An analysis is concerned with evolution, when different
versions of items, sources, or languages are considered. The dimension of clustering
implies grouping by geographical characteristics. By no means, our classification

4 The TIOBE Index of language popularity: http://www.tiobe.com/tpci.htm
5 Another web site on language popularity: http://langpop.com/
6 Language Popularity Index tool: http://lang-index.sourceforge.net/

http://www.tiobe.com/tpci.htm
http://langpop.com/
http://lang-index.sourceforge.net/

5.2 Pilot Studies 149

Static analysis Source code or other static entities are analyzed.
Validity The validity of items in terms of syntax or type system is analyzed.
Metrics Metrics are analyzed.

Size The size of items is analyzed, e.g., in terms of lines of code.
Complexity The complexity of items is analyzed, e.g., the McCabe complexity.
Structural properties Example: the depth of inheritance hierarchy in OO

programs.
Coverage The coverage of language constructs is analyzed.
Styles The usage of coding styles is analyzed.
Patterns The usage of patterns, e.g., design patterns, is analyzed.
Cloning Cloning across items of the corpus is analyzed.
Bugs The items are analyzed w.r.t. bugs that go beyond syntax and type errors.

Dynamic analysis Actual program runs are analyzed.
Profiles Execution frequencies of methods, for example, are analyzed.
Traces Execution traces of method calls, for example, are analyzed.

Dimensions of analysis Orthogonal dimensions applicable to analyses.
Evolution An analysis is carried out comparatively for multiple versions.
Clustering The corpus is clustered by metadata such as country, team size, or others.

Figure 5.4. Classification of analyses

[1
6]

[2
4]

[3
4]

[3
7]

[4
0]

[4
4]

[7
1]

[8
1]

[8
2]

[8
5]

[1
08

]
[1

15
]

[1
20

]
[1

]
[1

54
]

[1
60

]
[1

87
]

validity • • • •
metrics • • • • • • • • • • •
coverage • • • • • • • • •
styles • • • • •
patterns • •
cloning • •
bugs • • •
profiles • • •
traces
evolution • • •
clustering • • •

Figure 5.5. Analyses of the selected publications

scheme is complete. For instance, we currently miss characteristics regarding data
analysis (e.g., in terms of the involved statistical methods), and the presentation of
research results (e.g., in terms of the leveraged tables, charts, etc.).

5.2.2 Survey on Corpora Usage

During the first pilot study, we have realized that focusing only on Software Lan-
guage Engineering is an unnecessary restriction, that the usage of empirical evidence

150 Literature Survey of Empirical Software Engineering

is inherent to many areas of Software Engineering, especially those of practical kind,
explicitly using software in their analyses: program comprehension, maintenance, re-
verse engineering, and re-engineering. We also have developed a better understand-
ing of the classification scheme of the used empirical evidence. This led to the second
pilot study that is described in this subsection. The study is reported in the same man-
ner as it was originally reported: unaware of the follow-up study and development of
our problem understanding.

Table 5.1. Surveyed conferences

Year Conf. Papers “No” % “Yes” % “Gray”

(i) (ii)

2012 CSMR 30 9 30 17 56.7 3 1
2012 ICPC 23 11 47.8 8 34.8 1 3
2012 ICSE 87 25 28.7 39 44.8 6 17
2011 ICSM 36 6 16.7 25 69.4 1 4
2011 SCAM 16 4 25 6 37.5 4 2
2011 WCRE 47 10 21.3 21 44.7 5 11

Total 239 65 27.2 116 48.5 20 38

Overview

To understand the current demand in corpora among researchers in Software Engi-
neering, we undertook a survey of six relevant conferences: CSMR, ICPC, ICSE,
ICSM, SCAM, and WCRE. The survey basis was respectively the latest installment
of each conference available from the DBLP bibliography service7. We examined
the abstracts of the papers from the main research tracks8, looking for the following
signs of corpus usage:

• The unit of the corpus is clearly mentioned: system, project, program, etc.
• The number of units in the corpus is clearly mentioned. (We also accepted the

quantifier “several” in 5 cases.)

Based on this data, we assigned each paper to one of the following categories:

• “No”: There are no signs of corpus usage.
• “Yes”: There are clear signs of corpus usage, both unit and number of units are

mentioned. E.g., “We compared <metrics> [. . .] by applying them over six open
source software systems”

7 The DBLP Computer Science Bibliography, http://dblp.uni-trier.de/
8 Excluding from our survey industry and early research tracks, invited papers, keynotes, tool

descriptions, posters and suchlike.

http://dblp.uni-trier.de/

5.2 Pilot Studies 151

• “Gray area”, if either:
i. only the unit of the corpus is mentioned. E.g., “and evaluated it on large-scale

C/C++ programs”,
ii. or a (controlled) experiment, case study, empirical evaluation, assessment,

etc. is mentioned where a corpus has probably been used. E.g., “and further
validated with two case studies”.

The results of this classification are shown in Table 5.1: almost half of all papers
clearly indicate corpus usage; additionally, about one fifth of the papers are in the
grey area.

Software corpora

The following analysis was carried out on the papers with clear evidence of corpus
usage. Furthermore, we focus on the six most frequently used corpus units: sys-
tem, open-source project (or program), open-source software (or system), applica-
tion, project, and program. These represent the largest homogenous group and are
used in 82 papers, which is 70.7 % of the papers in the “Yes” category. Terminologi-
cally, we unify these units in the following under the umbrella term of a system.

We examined the full texts of those 82 papers, in order to understand the used
corpora in detail. In particular, we were looking for answers to the following ques-
tions:

• System code form: source code or binaries?
• What are the software languages of the corpus?
• Dependencies: are systems buildable/runnable?
• Has an established corpus been used?
• What is a typical size of a corpus?
• What systems are frequently used across publications?

The results were as follows.
Code form. Looking for an explicit mention of code form in the text of the pa-

pers, we discovered that in 63 cases corpora consisted of source code only; in 5 cases,
they consisted of bytecode/binaries. From the rest of the papers, we could not extract
a clear statement on this account.

Languages. We found that corpora are mostly monolingual, with Java and C/C++
being the most popular languages. In 52 cases, Java was mentioned as the only lan-
guage of the corpus; in 13 cases, C/C++ was mentioned as the only language of the
corpus; in 9 cases the corpus was said to contain both units written in Java and in
C-like languages (C, C++, C#).

Dependencies. We counted towards “resolved dependencies” those cases when
it was explicitly mentioned that: i) systems were run; ii) systems were built/com-
piled; iii) libraries were present; iv) the tool(s) used required resolved dependencies
(e.g., Eclipse TPTP). In 31 cases corpora were classified as containing needed code
dependencies.

Established corpora. In 8 papers, we found explicit mention of one of the fol-
lowing established corpora: DaCapo [29], Qualitas [175], SIR [56], Sourcerer [124],

152 Literature Survey of Empirical Software Engineering

SPEC CPU and SPEC JVM [9]. In 6 other papers, the following online repos-
itories were mentioned as the source of corpus units: Android Market, GitHub,
Google Code, SourceForge, ShareJar.9

Corpus size. Most corpora (57 cases) contain less than ten units. The median of
the size distribution is 4, and the most frequent size of a corpus is 2 units.

Frequently used systems. We collected the names of used systems as mentioned
by the papers and checked if they are provided by our illustrating established corpus,
Qualitas. In Table 5.2, we group systems by their frequency of usage (Freq): For
each group, we list how many systems belong to it (# Sys); how many of them are
found in Qualitas (# In Q.); names of the systems present in Qualitas; and names of
the systems not found in Qualitas. E.g., the systems lucene, rhino, and xalan are
used in four different corpora, but rhino is not present in the Qualitas corpus, while
lucene and xalan are included.

Table 5.2. Frequently used systems

Freq # Sys # In Q. In Qualitas Not in Qualitas

8 1 1 jedit —
7 2 2 argouml, eclipse —
5 3 3 ant, jhotdraw, pmd —
4 3 2 lucene, xalan rhino
3 8 4 aspectj, hibernate, hsqldb,

jfreechart
fop, jabref, jface, jython

2 20 10 antlr, htmlunit, itext, jmeter,
pooka, rssowl, tomcat, vuze, weka,
xerces

bloat, chart, compare, debug.core,
exvantage, freemind, jdt.core, lexi,
quickuml, zxing

Discussion

Our survey shows that corpus usage is popular in Software Engineering: half of the
papers contain clear signs of it. Most of the used corpora consist of systems in source
code form with Java as the most popular language. The survey also shows that es-
tablished corpora are not widely used, and that home-grown corpora usually are of
moderate size and consist of hand-picked systems. The available data suggests that
an established corpus (resp. its subset) could have theoretically been used in many
cases instead of a home-grown one. In particular, comparison shows that Qualitas,
for instance, contains the most popular systems.

Our hypothesis as to why researchers do not embrace established corpora is that
they consider engineering a home-grown corpus an easier task than adopting an es-
tablished one. This may be partly due to the small number of systems used in some

9 https://play.google.com/, https://github.com/, http://code.
google.com/, http://sourceforge.net/, http://www.sharejar.com/

https://play.google.com/
https://github.com/
http://code.google.com/
http://code.google.com/
http://sourceforge.net/
http://www.sharejar.com/

5.3 A Survey on Empirical Software Engineering 153

papers, and partly due to the authors’ requirements not being met by the established
corpora in their current form.

During our own attempts of adopting established corpora, the most prominent
unmet requirement was the absence of unresolved dependencies. The survey shows
that more than a third of potential corpus users also have such a requirement. Thus,
we believe that adoption of established corpora is significantly simplified by resolv-
ing dependencies.

5.3 A Survey on Empirical Software Engineering

After the two pilot studies, we have developed sufficient knowledge of the literature
survey methods as well as the topic of our interest, the usage of empirical evidence
in Software Engineering. This section presents the final and the main survey that was
carried out by slightly adjusting our methodology compared to the second pilot study
(adjusting the list of conferences, removing inclusion/exclusion criteria, expanding
the coding scheme).

5.3.1 Methodology

Table 5.3. Conferences used in the survey

Year Conference # papers

total long

2012 CSMR 30 30
2012 ESEM 43 24
2012 ICPC 23 21
2011 ICSM 36 36
2012 MSR 29 18
2011 SCAM 19 19
2011 WCRE 47 27

Total 227 175

This survey is particularly concerned with (collections of) empirical evidence.
Thus, the following questions guide the research:

I How often do Software Engineering papers use corpora—collections of empir-
ical evidence?

II What is the nature and characteristics of the used corpora?
III Does common contents occur in the used corpora?

154 Literature Survey of Empirical Software Engineering

For that, we collected the papers from the latest edition of seven SE conferences:
CSMR, ESEM, ICPC, ICSM, MSR, SCAM, and WCRE (see Table 5.3 for details).
We used DBLP10 pages of conferences to identify long papers and downloaded them
from digital libraries. We then proceeded to read the papers to perform coding. From
a previously done, smaller and more specific literature survey [2] and a pilot study
for the present survey, we had some basic understanding of the parts of the scheme
to emerge. During the first pass of coding, we started with the empty scheme and
completed it eventually to arrive at the current scheme, as described below. During
the second pass, we compared profiles of coded papers against the latest version of
the scheme, we went through the papers again and filled in the missing details.

We put the collected information in several groups:
Corpora. We captured what was used as study objects (e.g., projects), what were

their characteristics (e.g., language, open- vs. closed-source, code form), what were
the requirements to the study objects, did they come from a specific source (e.g., es-
tablished dataset or online repository), were they observed over a time (e.g., versions
or revisions), what was the nature of preparation of the corpus.

Forms of empirical research. During coding, several structural forms emerged
that we used for capturing information conveyed in papers: experiments, question-
naires, literature surveys, and comparisons.

Tools. We collected mentions of existing tools (e.g., Eclipse, R, Weka) that were
used as well as of introduced tools that were introduced in the papers.

Structural signs of rigorousness/quality. We paid attention to the following
aspects of the study presentation: Do authors use research questions? null hypothe-
ses? Is there a section on definitions and terms? Is validation mentioned? Is there a
“Threats to validity” section? Are threats addressed in any structured way?

Self-classification. For each paper we captured what words authors use to de-
scribe their effort: e.g., case study, experiment.

Reproducibility. We tried to understand in each case, if a study can be repro-
duced. We paid attention to the following signs: Are all details provided for a possi-
ble study replication (i.e., versions of used projects, time periods, etc.)? Do authors
provide any material used in the paper, e.g., on a supplementary website? Altogether,
would it be possible to reproduce the study?

Assessment. Finally, we characterized the process of coding: how easy it was to
extract information and how confident we are in the result.

We used Python and Bash scripts, Google Refine tool11, and R project12 to pro-
cess the data. We provide online the list of the papers and results of coding13.

5.3.2 Results

In this section, we present the results of our study. We group them similarly to the
description provided in Section 5.3.1: details about detected corpora, emerged forms
10 The DBLP Computer Science Bibliography, http://dblp.uni-trier.de/
11 http://code.google.com/p/google-refine/
12 http://www.r-project.org/
13 http://softlang.uni-koblenz.de/empsurvey

http://dblp.uni-trier.de/
http://code.google.com/p/google-refine/
http://www.r-project.org/
http://softlang.uni-koblenz.de/empsurvey

5.3 A Survey on Empirical Software Engineering 155

of empirical research, used or introduced tools, signs of rigorousness/quality of re-
search, reproducibility of the studies, and, finally, assessment of our effort. When we
use the phrase “on the average”, we imply the median of the appropriate distribution.

Next to the numbers, we provide framed highlights.
We use formula “X out of Y papers” to provide feeling for the numbers.

E.g., “one out of three papers” means that in every three surveyed papers there
is one that has the discussed characteristic.

We also provide conference-wise percentage of found characteristics. The
table below illustrates the format on an artificial example: conferences are listed
from left to right as the percentage increases. Percentage is always given relative
to the total number of the long papers in the conference.

Artificial example
CSMR ESEM ICPC ICSM MSR SCAM WCRE

1 % 2 % 3 % 4 % 5 % 6 % 7 %

Corpora

Usage
Altogether, we have found 198 corpora in 165 papers (28 papers contain more

than one corpus).
We decided that more than one corpus was used, when we met at least two of

the following motivations mentioned in the paper when describing the purpose of
collected empirical evidence: for benchmark or oracle (6 corpora), for training (6
corpora), for evaluation (5 corpora), for investigation (5 corpora), for testing (4 cor-
pora), for investigating quality like accuracy or scalability (4 corpora).

We have found that 168 corpora (used in 145 papers), consist of projects (sys-
tems, software); in other cases, corpora contain another kind of study object: image,
trace, feature, web log, etc. Till the end of the current subsection (5.3.2), we restrict
ourselves to the project-based corpora.

Almost all papers use a corpus of some sort. One out of six papers has more
than one corpus. Most of the corpora consist of projects.

Project-based corpora usage
ESEM ICPC WCRE SCAM CSMR MSR ICSM

58 % 81 % 81 % 84 % 87 % 89 % 94 %

Contents We identified the following common characteristics of project-based
corpora.

156 Literature Survey of Empirical Software Engineering

Size. Half of the corpora, 99 cases, have three or less projects (of them, 45 corpora
consist of only one project). There are 24 corpora that contain more than 10 projects.
We detected large corpora (with more than 100 projects) in 8 papers—one of them
introducing an established dataset itself.

Languages. Most of the corpora are monolingual (147 cases); most of the re-
maining ones are bilingual (19 cases). As for the software language, 106 corpora
contain projects written in Java, while C-like languages are used in 50 corpora (in
C-like languages we include C, C++, C#).

Code form. In 125 cases, corpora consist of source code; in 15 cases—of binaries.
In the rest of the cases, code of the projects is not used, something else is in focus
(developers, requirements, etc.)

Table 5.4. Used projects

Project # corp

JHotDraw 15
JEdit 12
Ant 11
ArgoUML 11
Eclipse 11
Firefox 10
Vuze/Azureus 8
Linux kernel 6
Lucene 6
Mozilla 6
Hibernate 5

Access. In 128 cases, corpora consist only of open-
source projects; in 12 cases, corpora consist only of
projects not available publicly (e.g., industrial software);
in 9 cases, corpora are self-written. The remaining cases
mix access forms.

Projects. We collected names of the used projects
as they are provided by the papers (modulo merging of
names like Vuze/Azureus14). Table 5.4 lists projects fre-
quently used in the corpora. Eclipse is a complex project,
and some corpora make use of its sub-parts, considering
them as projects on their own (e.g., JDT Search, PDE
Build)—counting such cases, there are altogether 22 pa-
pers making use of Eclipse.

Units. We captured when some unit related to the
project was in the focus of the study: a bug report or a
UML class diagram—namely, we would capture the fact
when such unit was used to give quantitative informa-
tion (e.g., in a table presenting number of bug reports in
the project under investigation). The most popular units

turned out to be bug reports, they are used in 21 corpora; defects (faults, failures) are
used in 16 corpora; tests—in 10; traces—in 5.

An average project-based corpus consists of source code of three open-
source projects, written in Java. Eclipse or its sub-parts is used in one out of
eight papers using project-based corpora. The projects used in at least five pa-
pers are JHotDraw, JEdit, Ant, ArgoUML, Firefox, Vuze/Azerus, Linux kernel,
Lucene, Mozilla, and Hibernate. Within the corpus, bug reports, defects, tests,
and traces can be in the focus of the study.

14 The project changed its name in 2008.

5.3 A Survey on Empirical Software Engineering 157

Popular projects
WCRE SCAM ESEM ICSM CSMR ICPC MSR
11 % 11 % 13 % 14 % 23 % 24 % 28 %

Eclipse Lynx Eclipse ArgoUML Eclipse JEdit Firefox
JEdit Minix Eclipse

Sources. Some papers clearly state the source of their corpora. Table 5.6 lists the
most popular types of sources and their distribution across conferences.

Table 5.5. Online repositories and established datasets

Repository # papers

SourceForge1 6
Apache.org2 3
GitHub3 3
Android Market4 2
CodePlex5 2

Ref Dataset # papers

[56] SIR 3
[144] MSR challenge 2

[80] P-MARt 2
[151] PROMISE 2
[175] Qualitas 2

1 http://sourceforge.net/
2 http://projects.apache.org/
3 https://github.com/
4 Now known as Google Play, https://play.google.com/store
5 http://www.codeplex.com/

Online repositories used in more than one paper are listed in Table 5.5. The rest
of detected online repositories are used in only one paper each: BlackBerry App
World15, Google Code16, Launchpad17, ShareJar18.

Established datasets used in more than one paper are listed in Table 5.5. Some of
the other datasets that used only in one paper each: Bug prediction dataset [49],
CHICKEN Scheme benchmarks 19, CoCoMe20, DaCapo [29], FLOSSMetrics21,
iBUGS22, SMG2000 benchmark23, SourcererDB [124], TEFSE challenge24.

15 http://appworld.blackberry.com/webstore
16 http://code.google.com/
17 https://launchpad.net/
18 http://www.sharejar.com/
19 https://github.com/mario-goulart/chicken-benchmarks
20 http://agrausch.informatik.uni-kl.de/CoCoME
21 http://libresoft.es/research/projects/flossmetrics
22 http://www.st.cs.uni-saarland.de/ibugs/
23 https://asc.llnl.gov/computing_resources/purple/archive/
benchmarks/smg/

24 http://www.cs.wm.edu/semeru/tefse2011/Challenge.htm

http://sourceforge.net/
http://projects.apache.org/
https://github.com/
https://play.google.com/store
http://www.codeplex.com/
http://appworld.blackberry.com/webstore
http://code.google.com/
https://launchpad.net/
http://www.sharejar.com/
https://github.com/mario-goulart/chicken-benchmarks
http://agrausch.informatik.uni-kl.de/CoCoME
http://libresoft.es/research/projects/flossmetrics
http://www.st.cs.uni-saarland.de/ibugs/
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/
http://www.cs.wm.edu/semeru/tefse2011/Challenge.htm

158 Literature Survey of Empirical Software Engineering

Table 5.6. Sources of corpora

Type # papers

Total CSMR ESEM ICPC ICSM MSR SCAM WCRE

Established dataset 20 5 0 2 6 5 0 2
Previous work 13 2 3 2 1 1 2 2
Online repository 12 3 0 1 2 2 1 3

Total 43 9 3 5 9 7 3 7
Percentage 25 30 13 24 25 39 16 26

One out of four project-based corpora uses an established dataset, previ-
ous work, or online repository as a source of the projects. There is no common
frequently used dataset or repository. Only SourceForge shows moderately fre-
quent usage.

Usage of corpora sources
ESEM SCAM ICPC ICSM WCRE CSMR MSR

13 % 16 % 24 % 25 % 26 % 30 % 39 %

Evolution
We encountered 52 papers that use evolution of the projects in their research,

meaning that they operate on several versions, releases, etc. To describe the evolu-
tion measure, the following terms were used: “version” (21 times), “revision” (11),
“commit” (10), “release” (11).

On the average, papers mentioning commits use 3,292 commits; papers with
revisions—18,870 revisions; with versions—10 versions; with releases—10 releases.

There are 46 papers that mention a time span of their study. In 36 cases, the unit
of the time span is a year and on the average such papers are concerned with a 8-year
span.

We found 23 papers to mention what version control system was involved in the
study. CVS is mentioned 11 times, SVN—11 times, Git and Mercurial—4 and 2
times respectively.

One out of three papers with project-based corpora uses evolution aspect in
its research. In half of the cases, large-scale evolution is involved: several thou-
sands commits/revisions or ten versions/releases of projects—often spanning
several years of a project’s lifetime.

5.3 A Survey on Empirical Software Engineering 159

Evolution usage
ICPC SCAM ESEM CSMR ICSM WCRE MSR
14 % 16 % 21 % 33 % 33 % 33 % 56 %

Requirements
Papers often mention requirements to the used empirical evidence, usually dic-

tated by the research goals,—we collected these requirements to the corpora, explicit
as well as implicit. For instance, an implicit requirement for a bug tracking system
is inferred if the paper uses bug reports of the projects under investigation. The most
popular direction of requirements is the presence of some ‘ecosystem’ (found in 37
papers): existence of bug tracking systems, mailing lists, documentation (e.g., user
manuals). Another popular requirement, found in 25 papers, has to do with the size
of the projects: small, sufficient, large, or of particular size (as specific as “medium
of the sizes of the ten most popular Sourceforge projects”), or the need of diversity of
sizes. In 23 papers, it was stated that the used projects were chosen because they were
used in previous work (of the same or other authors). Language-related requirements
were present in 22 papers for a specific language or for the diversity of languages
in a corpus. In 14 papers, the choice of projects was attributed to either diversity
of application domains or to a specific domain. Some aspect of the used projects
was mentioned as essential in 14 papers: active or wide-spread usage, popularity,
well-known and established software. Other popular requirements include presence
of development history (15 papers), dependencies (11 papers), or tests (10 papers).

One out of five papers requires the projects of its corpus to have an ecosys-
tem: a bug tracker, or a mailing list, or some kind of documentation. Other re-
quirements focus on the size and language of the projects, application domain,
development history, etc.

Popular requirements
SCAM MSR ICSM ICPC ESEM WCRE CSMR
11 % 28 % 14 % 24 % 13 % 11 % 23 %
domain ecosys size size ecosys ecosys ecosys

lang prev.work

size

Tuning
We captured what kind of action is applied to a corpus during research. In 20

papers, sources or binaries were modified by instrumentation, faults/clones injection,
adjusting identifiers, etc. In 15 papers, tests needed to be run against the corpus either
to verify made modifications or to collect the data. In 10 papers, the corpora had to
be executed in order to perform the needed analysis or to collect data. In 6 papers,

160 Literature Survey of Empirical Software Engineering

some filtering of the contents of the corpus was needed to, e.g., identify the main
source code/main part of the project.

We have detected few common actions applied to corpora during research:
source code/binaries modification; execution of the tests on the corpus or of the
corpus itself; filtering of the corpus contents. Altogether, one out of four papers
contains signs of one of these actions.

Popular actions
ESEM MSR SCAM ICPC ICSM WCRE CSMR

8 % 11 % 11 % 14 % 19 % 19 % 20 %
tests run modif. modif. tests modif. modif.

We captured manual effort that went into creation of a corpus, e.g., when a paper
mentions setting up environments and providing needed libraries in order to exe-
cute the corpus. For that, we graded each corpus on the following scale. None: no
manual effort mentioned (120 corpora); some: some manual effort mentioned, e.g.,
manual detection of design patterns in source code (33 corpora); and all means that
the corpus is self-written (10 corpora).

One out of four project-based corpora requires some manual effort.

Manual effort
CSMR ESEM ICSM SCAM ICPC MSR WCRE

13 % 13 % 22 % 26 % 33 % 33 % 37 %

Emerged forms

We did not use any theoretical definition for what is considered to be a question-
naire or an experiment. The developed definitions are structural, composed of the
characteristics that emerged from the papers, as they were discussed and structurally
supported by the authors.

Experiment
We have identified 22 experiments in 19 papers. Except for two, they all involve

human subjects. On the average, an experiment has 16 participants. The maximum
number of participants is 128, the minimum is 2, first and third quartiles are 5 and 34
respectively. In 21 cases, an experiment uses a corpus (in 17 cases, a project-based
one); 20 questionnaires are used in 10 experiments.

In two-thirds of the experiments, participants come from one population, the
remaining experiments draw participants from two or three populations. The most
common source of participants is students; sometimes distinguished by their level—
graduate, undergraduate, Bachelor, Master, and PhD students. In one-third of the

5.3 A Survey on Empirical Software Engineering 161

cases, professionals are involved (full-time developers, experts, industry practition-
ers, etc.). In half of the cases, participants form the one and only group in the experi-
ment. When there is more than one group (usually, two—with a couple of exceptions
of 4 and 5 groups), the group is representing a treatment (a task), or an experience
level, or a gender. On the average, an experiment has 4 tasks and lasts for an hour
(with a few exceptions when an experiment takes several weeks or even a month).

In 6 cases, it is mentioned that an experiment had a pilot study. In 6 cases, it is
mentioned that participants of the experiment were offered compensation: monetary
or another kind of incentive (e.g., a box of candy).

The main requirement for the participants is their experience: basic knowledge
of used technology, or language, or IDE. As for the tasks, they are expected to be of
a certain size (e.g., a method body to fit on one page), or of certain contents (e.g.,
contain “if” statements). The usual requirement for an experiment also is either that
the tested tool or used code is unfamiliar to the participants, or on the contrary that
the background is familiar (e.g., well-known design patterns).

One out of ten papers contains an experiment. The majority of the experi-
ments use project-based corpora; experiments often use questionnaires, usually
two per experiment. An average experiment involves 16 students, often in two
groups (by the received treatment or experience level); it consists of four tasks
and lasts for an hour. One out of four experiments suggests some compensation
to its participants; one out of four experiments is preceded by a pilot study.

ICPC and ESEM are the main source of experiments involving profession-
als.

Experiments
MSR SCAM CSMR WCRE ICSM ESEM ICPC

0 % 0 % 3 % 7 % 8 % 21 % 38 %

Questionnaire
Altogether, we have found 36 questionnaires in 24 papers. As mentioned, 20

questionnaires are used in experiments—to distinguish, we will refer to them as
experiment-related and the other 16 we will qualify as experiment-unrelated.

Sizewise, there is no particular difference between experiment-related and -
unrelated questionnaires. On the average, both have 20 questions grouped in one
section. In 6 cases, an experiment-unrelated questionnaire has a corpus.

While experiment-related questionnaires have the same participants as the ex-
periments they relate to (i.e., involve mostly students), experiment-unrelated ques-
tionnaires involve professionals (testers, managers, experts, consultants, software
engineers) as participants in two-thirds of the cases. On the average, an experiment-
unrelated questionnaire has 12 participants. When it was possible (6 cases), we cal-
culated how many participants took part in the experiment-unrelated questionnaire
compared to the initial number of invited participants. On the average, 19 % take part
in the end, in the worst case the ratio can be as low as 5 %.

162 Literature Survey of Empirical Software Engineering

While experiment-related questionnaires have the same requirements regarding
the participants as the experiments they relate to, experiment-unrelated question-
naires have requirements concerned with the participants’ experience (e.g., Java ex-
perience) or expertise (specific area of experience such as clone detection or web
development).

When related to experiments, questionnaires are often performed before (referred
to as “pretest” in 6 cases) and after the experiment (referred to as “posttest” in
9 cases).

In 5 cases, an experiment-unrelated questionnaire was preceded by a pilot study.

More than half of the detected questionnaires are used in experiments—
often as pretest and postttest questionnaires. The other half, experiment-
unrelated questionnaires, are found in one out of twelve papers. Sizewise, on the
average there is no difference between experiment-related and -unrelated ques-
tionnaires. Experiment-unrelated questionnaires usually involve professionals
as participants—in contrast to experiment-related questionnaires that mostly use
students. Typical requirements for participants in experiment-unrelated ques-
tionnaires have to do with experience or expertise. One out of three experiment-
unrelated questionnaires are preceded by a pilot study.

Experiment-unrelated questionnaires
MSR CSMR SCAM WCRE ICSM ICPC ESEM

0 % 3 % 5 % 7 % 8 % 19 % 25 %

Literature survey
We have found 6 literature surveys in 5 papers. Except for one, they provide ex-

tensive details on how the survey was conducted. In particular, the used methodology
is clearly stated: four times it is said to be a “systematic literature review” and once
a “quasi systematic literature review”. In three cases, the systematic literature review
was done following the guidelines by Kitchenham [109].

The papers are initially collected either by searching digital libraries or from the
proceedings of specific conferences and journals. Among used digital libraries are
EI Compendex, Google Scholar, ISI, and Scopus—the latter was used in two papers.
As for the conferences and journals, there is no intersection between the lists of
names—except for ICSE, which was used in two papers.

On the average, a literature survey starts with 2161 papers, its final set contains
35 papers, meaning that on the average only 1.6 % papers are taken into account in
the end. The percentage can be as high as 39 % and as low as 0 %.

Requirements for papers to be included into the survey are usually related to the
scope of the investigated research. Other requirements are concerned with the paper
itself: available online, written in English, a long paper, with empirical validation.

After all the papers are collected, they are filtered based on the titles and abstracts,
which are examined manually by the researchers (in one case, also conclusions were
taken into account; in another case, full text of the papers was searched for key-

5.3 A Survey on Empirical Software Engineering 163

words). Then the full text of each paper is read and the final decision is made as to
whether to consider the paper relevant.

Literature surveys are quite rare: only one out of 35 papers contains it. On the
average, a literature survey starts with few thousand papers to be filtered down
to few dozens papers that will be analyzed. Usually, the first round of filtering
is based on the title and abstract, then the full text of the papers is considered.
There is not enough information to conclude about frequently used digital li-
braries or conferences/journals. Half of the surveys were following guidelines
of systematic literature reviews by Kitchenham [109].

Literature surveys
ICSM MSR SCAM WCRE CSMR ICPC ESEM

0 % 0 % 0 % 0 % 3 % 5 % 13 %

Comparisons
During the coding phase of the survey, we noticed the recurring motif of compar-

isons in the papers. While we did not assess the scope nor the goal, we have coded
the basic information: what is the nature of the subjects being compared (tools, tech-
niques), how many subjects are compared, and is one of them introduced in the paper.

We have found comparisons in 56 papers. Almost all of them (except for 5 pa-
pers), use project-based corpora. Half of the time, a comparison includes the tech-
nique, approach, or tool that was introduced in the study—with the apparent reason
to evaluate the proposed technique, approach, or tool. On the average, in such evalu-
ation was used one other technique, approach, or tool. In the other cases, were com-
pared metrics, tools, algorithms, designs, etc. For such comparisons, on the average,
the group of compared entities was of size 3.

One out of three papers compares tools, techniques, approaches, metrics,
etc.—half of the time, to evaluate what was introduced in the study. On the
average, such evaluation involves one other entity. In the other half of the cases,
the average number of compared entities is 3.

Comparisons
ICPC MSR SCAM WCRE ESEM ICSM CSMR
19 % 22 % 26 % 30 % 33 % 36 % 47 %

Tools

We have found 46 papers to introduce a tool (where we were able to capture this fact
only if the name of the tool was mentioned or it was clearly stated that “a prototype”

164 Literature Survey of Empirical Software Engineering

Table 5.7. Existing tools used in the papers

Tool # papers

Eclipse1 25
R project2 16
CCFinder3 6
Understand4 6
Weka5 6
ConQAT6 4

Tool # papers

MALLET7 4
ChangeDistiller8 3
CodeSurfer9 3
Evolizer10 3
RapidMiner11 3
RECODER12 3

1 http://eclipse.org
2 http://www.r-project.org/
3 http://www.ccfinder.net/
4 http://www.scitools.com/
5 http://www.cs.waikato.ac.nz/ml/weka/
6 https://www.conqat.org/
7 http://mallet.cs.umass.edu/
8 http://www.ifi.uzh.ch/seal/research/tools/
changeDistiller.htm

9 http://www.grammatech.com/products/codesurfer/
overview.html

10 http://www.ifi.uzh.ch/seal/research/tools/evolizer.
html

11 http://rapid-i.com/content/view/181/190/
12 http://sourceforge.net/projects/recoder/

is implemented). In 46 more papers, we detected that additional, helper tooling for
the current purpose of the study is implemented (parsers, analyzers, and so on).

When names of existing tools were explicitly mentioned to be used, we collected
the names. We have found that in 126 cases, a paper makes use of existing tools. On
the average, a paper uses 2 tools; the captured maximum is 6. The frequently used
tools are listed in Table 5.7. We counted towards Eclipse usage also cases when a
paper used an existing tool that we know to be an Eclipse plug-in. For brevity, we
omit names of 19 more tools that were used in two papers.

One out of four papers introduces a new tool; another one out of four papers
uses some home-grown tooling. Almost three out of four papers use existing
tools.

The most popular standard tool, Eclipse—an IDE and a platform for plug-in
development—is used in one out of seven papers. Other popular tools cater for
source code analysis, clone detection, evolution analysis, data mining, statistics,
quality analysis, document classification.

Home-grown tooling
ICPC ESEM CSMR ICSM MSR WCRE SCAM

5 % 17 % 20 % 33 % 33 % 33 % 42 %

http://eclipse.org
http://www.r-project.org/
http://www.ccfinder.net/
http://www.scitools.com/
http://www.cs.waikato.ac.nz/ml/weka/
https://www.conqat.org/
http://mallet.cs.umass.edu/
http://www.ifi.uzh.ch/seal/research/tools/changeDistiller.htm
http://www.ifi.uzh.ch/seal/research/tools/changeDistiller.htm
http://www.grammatech.com/products/codesurfer/overview.html
http://www.grammatech.com/products/codesurfer/overview.html
http://www.ifi.uzh.ch/seal/research/tools/evolizer.html
http://www.ifi.uzh.ch/seal/research/tools/evolizer.html
http://rapid-i.com/content/view/181/190/
http://sourceforge.net/projects/recoder/

5.3 A Survey on Empirical Software Engineering 165

Introduced tools
ESEM MSR ICPC SCAM CSMR WCRE ICSM

4 % 11 % 19 % 21 % 30 % 37 % 44 %

Structural signs of rigorousness/quality

We do not aim to assess the quality or rigorousness of the studies. We capture pres-
ence of some of the aspects that are taken into account when assessing rigorous-
ness/quality of research (cf., [97])—in that, we restrict ourselves only to the struc-
tural aspects.

Study presentation aspects
A clear set of definitions for the terms used in the paper is found in 25 papers.

Research questions are adopted in 83 papers. In 22 papers, an approach “Goal-
Question-Metric” [23] is used. Explicit mention of null hypothesis or hypotheses
is found in 23 papers. Section “Threats to validity” is present in 111 papers; of them,
75 discuss threats using classification described, e.g., in [195]: threats to external
(mentioned in 73 papers), internal (59 papers), construct (53 papers), and conclusion
(26 papers) validity.

If to consider combinations of these signs (definitions, research questions, hy-
potheses, and threats), the most popular one is the absence of all of them: demon-
strated by 42 papers. The second most popular combination is presence of research
questions and threats to validity: found in 34 papers. The third most popular—usage
of only threats to validity—found in 29 papers. Together, these three combinations
describe 60 % of the papers.

Half of the papers use research questions to structure their study. One out of
seven papers use “Goal-Question-Metric” approach and/or formulate (null) hy-
potheses to structure their research. One out of seven papers provides an explicit
set of definitions of the terms used in the study. Threats to validity are discussed
in three out of five papers.

The following three combinations of structural signs describe at least half
of the papers in each conference, except for WCRE, where only 44 % of papers
are covered by these combinations.

No structural signs
ICPC MSR WCRE ESEM ICSM CSMR SCAM
14 % 17 % 19 % 21 % 22 % 27 % 53 %

Both research questions and threats to validity
ICSM WCRE SCAM CSMR MSR ICPC ESEM

8 % 11 % 16 % 20 % 22 % 24 % 42 %

166 Literature Survey of Empirical Software Engineering

Only threats to validity
ESEM MSR SCAM WCRE CSMR ICPC ICSM

4 % 11 % 11 % 15 % 17 % 19 % 31 %

Validation
We captured the mentions of performed validation of done research. We have

found evidence of some kind of validation in 88 papers. In 50 cases, validation was
manually performed: either the results are small enough, or a sufficient subset is
checked. In 27 cases, validation was done against existing or prepared results: ac-
tual data (when evaluating predictions), data from previous work, or an oracle/gold
standard. In 8 cases, cross-validation was used.

Self-classification

Table 5.8. Self classifica-
tion
Type #

case study 48
experiment 44
empirical study 22
evaluation 14
exploratory study 6
... ...

We collected explicit self-classifications from the pa-
pers; from the sentences like “we have conducted a case
study” we would conclude that the current paper is a case
study. Some of the self-classifications were very detailed
and precise, e.g., “a pre/post-test quasi experiment”, in
such cases we reduced the type to a simpler version, e.g.,
an experiment. We would also count terms like “experi-
mental assessment” or “experimental study” towards the
experiment type. As seen from Table 5.8, most often au-
thors use terms such as “case study” and “experiment”
to describe their research. In some cases, papers contain
more than one self-classification (24 cases). In 36 papers,
we could not detect any self-classification.

Four out of five papers provide self-
classification, but it might be vague. The most popular term, ‘case study,’
may be misused. Cf., “There is much confusion in the SE literature over what
constitutes a case study. The term is often used to mean a worked example. As
an empirical method, a case study is something very different.” [170]. Cf., “...
our sample indicated a large misuse of the term case study.” [198]

Self-classification
SCAM MSR CSMR WCRE ICPC ESEM ICSM

37 % 61 % 80 % 81 % 86 % 88 % 94 %

Reproducibility

We looked for signs of additionally provided data for a replication of the study.
Since it is usually done via the Internet, we searched the papers for (the stems of)

5.3 A Survey on Empirical Software Engineering 167

the following keywords: “available,” “download,” “upload,” “reproduce,” “replicate,”
“host,”, “URL,” “website,” “http,” “html”. In such manner, we have found links in 61
papers. In 6 cases, we could not find any mentioned material, tools or data,—links
led to a general page or to a homepage, which we searched thoroughly but without
success. In 3 more cases, we have found replication material on the website after
some searching.

One out of three papers additionally provides online some data from the
study, though not always to be found.

Additional data provided
SCAM ICSM CSMR MSR WCRE ESEM ICPC

26 % 31 % 33 % 33 % 33 % 38 % 48 %

As to the nature of the provided data, in 25 cases, an introduced tool or tooling
used in the research is provided. In 15 cases, the used corpus—in full or partially—
is provided; the complete description of the corpus (list of used projects with their
versions and/or links) is provided by 6 more papers. Raw data are available for 14
papers; the same number of papers provide final or/and additional results of the study.

When the corpus is not provided by the paper, but the names of the used projects
are mentioned, the main aspect of being able to reproduce the corpus is knowing
which versions of the projects were used. We noticed that in 21 papers versions of
the used projects are not provided. In 67 papers, versions of the projects are men-
tioned explicitly; in 26 more cases, it is possible to reconstruct the version from the
mentioned time periods that the study spans.

Altogether, we judged 29 papers to be reproducible, meaning that either all com-
ponents were provided by the authors or we concluded that the paper contains enough
details to collect exactly the same corpus and the same tools. We did not judge if it
is possible to follow the provided instructions, specific to the reported research—as,
for instance, was done in the work by González-Barahona and Robles [78].

We also note that 8 papers mention that they are doing a replication in their study,
of them 3 papers with self-replication.

We judged one out of six papers to be reproducible with respect to the used
corpus and tools. We did not assess whether enough details were provided to
re-conduct the research itself.

Judged to be reproducible
ICSM WCRE SCAM ICPC ESEM CSMR MSR

3 % 4 % 16 % 19 % 25 % 27 % 33 %

168 Literature Survey of Empirical Software Engineering

Assessment

Though usually information we extracted from the papers was scattered across dif-
ferent sections, half of the papers had tables (listing projects, their names, versions,
used releases, and similar information) that helped us during the coding phase of the
papers. We captured our confidence in the end result of the coded profile of each
paper. For that, we used the following scale: high, moderate, and low levels of confi-
dence. The results are as follows: high—81 papers, moderate—78 papers, low—16
papers.

We have low confidence in one out of eleven papers that we have coded.
In the rest, half of the time we are moderately confident and half of the time—
highly confident in the results.

High confidence
WCRE SCAM ICSM ICPC ESEM CSMR MSR

15 % 26 % 42 % 52 % 54 % 60 % 78 %

Moderate confidence
MSR CSMR ESEM ICPC ICSM SCAM WCRE
17 % 33 % 33 % 43 % 53 % 58 % 67 %

Low confidence
ICPC ICSM MSR CSMR ESEM SCAM WCRE

0 % 6 % 6 % 7 % 13 % 16 % 19 %

5.4 Threats to Validity

Choice of the papers

We did not use journal articles—while they might provide more information or be of
higher quality, we wanted to capture the state of the common research, of which we
believe conference proceedings to be more representative25. We have chosen confer-
ences with proceedings of similar and reasonable size (see Table 5.3): so that not to
skew the general results by one larger conference and so that to include all the papers
but still be able to process them within reasonable period of time. Specifically, we
excluded the ICSE conference, which had 87 long papers in the proceedings of 2012
edition. Altogether, this means our results might not be generalizable, but we believe
them to be representative enough.

25 While we do not aim to define what “common research” is, we find indirect justification
for such position in the work that compares scientific impact of conference and journal
publications (see, for example, [152] and [66])

5.5 Related Work 169

Choice of the period

Since we perform a snapshot study, it might be that some of the discovered numbers
are a coincidental spike. Possible future work, in order to provide more details and
deeper understanding, will have to be a longitudinal study—along the same lines as
we have investigated the health of Software Engineering conferences in [8], observ-
ing 11 conferences over a period of more than 10 years.

Data extraction

The coding phase of the papers consisted of the manual effort with occasional search
by specific keywords (mentioned in the appropriate subsections of Section 5.3.2). In
5 cases, papers were OCR-scanned (i.e., non-searchable).

Human factor. Coding was done by one researcher, but the results of the first
pass were cross-validated during the second pass as well as during the aggregation
phase. When in doubt, the researcher constantly referred back to the surveyed papers
to double-check.

Scheme. We do not claim our coding scheme to be complete or advanced. We
captured basic data related to the used empirical evidence, often either obvious or
structurally supported. Therefore, we might miss sophisticated or under-specified
forms of empirical research.

5.5 Related Work

We summarize related work in Table 5.9. We compare our work to other literature
surveys of SE research.

There are key differences between our survey and previous work. The cited sur-
veys start with a predefined schema, while we allow our schema to emerge. Further,
the cited surveys focus on SE research in some way, while we are interested in what-
ever empirical evidence is used to facilitate SE research. For instance, Kitchenham
and Sjøberg et al. are interested in specific kinds of studies, systematic reviews, and
controlled experiments respectively; Glass et al. surveyed a sample of all papers,
without filtering by types, but their intention was to capture in what areas SE re-
search is done and how.

Below we compare the findings of related work where they overlap with ours.
As a general remark, we believe that our findings quantitatively differ from previ-
ous findings because of several factors: i) the dependence on the choice of venues:
even conferences in our study differ considerably; ii) passed time: there is at least
a five-year gap, during which popularity of empirical research and of its particular
forms might have grown; iii) the cited papers use mostly journals: this may increase
the aforementioned gap because of the longer process for journal publications; iv)
snapshot versus longitudinal approach: we take into account all papers of the latest
proceedings while the cited papers focus on a sample across several years.

170 Literature Survey of Empirical Software Engineering

The closest work to ours is by Zannier et al.: they measured quantity and quality
of empirical evaluation in ICSE papers over the years. Our work provides a snapshot
study aiming to represent SE research broadly across conferences. Zannier et al.
when assigning types to the papers, could confirm the self-classification of half of
the studies. Which agrees with our observation that self-classification is rather weak
among SE papers. They also observe the extremely low usage of hypotheses (only
one paper) and absence of replications. We do find some adoption of null hypotheses
and replications.

5.5 Related Work 171

Ta
bl

e
5.

9.
R

el
at

ed
w

or
k

N
am

e
R

ef
Y

ea
r

#
us

ed
Pe

ri
od

#
pa

pe
rs

Fo
cu

s
C

od
in

g
sc

he
m

a

j
c

to
ta

l
se

l.
re

l.

G
la

ss
et

al
.

[7
6]

20
02

6
0

19
95

–1
99

9
—

36
9

36
9

C
ha

ra
ct

er
is

tic
s

of
SE

re
se

ar
ch

To
pi

cs
,r

es
ea

rc
h

ap
pr

oa
ch

es
an

d
m

et
ho

ds
,

th
eo

re
tic

al
ba

si
s,

le
ve

lo
fa

na
ly

si
s

Sj
øb

er
g

et
al

.
[1

68
]

20
05

9
3

19
93

–2
00

2
54

53
10

3
10

3
C

on
tr

ol
le

d
ex

pe
ri

m
en

ts
E

xt
en

t,
to

pi
c,

su
bj

ec
ts

,t
as

k
an

d
en

vi
ro

nm
en

t,
re

pl
ic

at
io

n,
in

te
rn

al
an

d
ex

te
rn

al
va

lid
ity

Z
an

ni
er

et
al

.
[1

98
]

20
06

0
1

19
75

–2
00

5
12

27
63

44
E

m
pi

ri
ca

l
ev

al
ua

tio
n:

qu
an

tit
y

an
d

so
un

dn
es

s

St
ud

y
ty

pe
,s

am
pl

in
g

ty
pe

,t
ar

ge
ta

nd
us

ed
po

pu
la

tio
n,

ev
al

ua
to

n
ty

pe
,p

ro
pe

ru
se

of
an

al
ys

is
,u

sa
ge

of
hy

po
th

es
es

K
itc

he
nh

am
et

al
.

[1
11

]
20

09
10

3
20

04
–2

00
7

25
06

33
19

Sy
st

em
at

ic
re

vi
ew

s
In

cl
us

io
n

an
d

ex
cl

us
io

n
cr

ite
ri

a,
co

ve
ra

ge
,

qu
al

ity
/v

al
id

ity
as

se
ss

m
en

t,
de

sc
ri

pt
io

n
of

th
e

ba
si

c
da

ta

O
ur

st
ud

y
20

13
0

7
20

11
/2

01
2

22
7

17
5

17
5

E
m

pi
ri

ca
le

vi
de

nc
e

E
m

er
ge

d
cl

as
si

fic
at

io
n

L
eg

en
d:

ja
nd

c
st

an
d

fo
rj

ou
rn

al
s

an
d

co
nf

er
en

ce
s;

se
l.

an
d

re
l.

st
an

d
fo

rs
el

ec
te

d
an

d
re

le
va

nt
.

172 Literature Survey of Empirical Software Engineering

According to their classification, Glass et al. have found 1.1 % papers to contain
literature reviews and 3 % papers to present “laboratory experiment (human sub-
jects).” We also discover that number of literature surveys and experiments is low,
but relatively it increased 2-3 times.

Kitchenham et al. considered to be systematic literature reviews only 0.75% of
surveyed papers. We have found literature surveys in 5 papers, one of which did
not contain a clear methodology—a requirement to be met by Kitchenham’s inclu-
sion criteria—leaving 4 papers. Thus, our percentage of detected literature surveys
is 2.3 %

According to Sjøberg et al.’s study, only 2 % of the papers contain experiments,
while we discover 10 % surveyed papers to contain an experiment. On the average,
Sjøberg et al. detected an experiment to involve 30 participants—in 72.6 % cases
only students, in 18.6 % cases only professionals, and in 8 % cases mixed groups. We
have found that on the average an experiment involves 16 participants—in 57 % cases
only students, in 14 % cases only professionals, and in 29 % cases mixed groups.

5.6 Conclusion

We have presented a literature survey on the current state of empirical research in
Software Engineering.

Answers to the questions

Coming back to the initial questions that motivated our research (see Section 5.1),
we suggest the following answers:

I The overwhelming majority of Software Engineering papers use corpora—
collections of empirical evidence.

II The majority of the corpora consist of projects and can be characterized by size,
code form, software language, used evolution measures, and others.

III We have detected some recurring projects with low frequency though. (See dis-
cussion below.)

“Holy grail” vs. common ground

Though projects are used in the majority of SE papers and characteristics of the
used corpora are quite typical (number of used projects, language, etc.), the usage of
established datasets is low. We suggest two possible reasons. First, adoption may be
low only yet: among detected datasets being used (see Table 5.5), the oldest dataset,
SIR, was introduced in 2005, the youngest, Qualitas—in 2010. Second, researchers
may prefer to collect and prepare their corpora themselves, because there might not
be a “holy grail” among corpora to suit all possible needs. Partially, this last guess is
supported by the fact that even on the level of projects no clear favorite was detected
among SE papers. On the other hand, we find that three out of seven conferences have

5.6 Conclusion 173

favorite projects, when considered separately—projects that are used by a quarter
of the papers within these conferences. This leads to a refined version of the third
question in our study: When it is possible to detect commonly used projects within a
conference, would it be useful to provide a curated version of them? This is a topic
for future work.

Top-down vs. bottom-up introduction of methodology

While there is need for adoption of advanced and theoretically specified forms of
empirical research, we believe that there is a certain amount of de facto empirical
research that has formed historically. Our position is that by understanding its char-
acteristics, its quality can be improved or at least assessed.

6

Corpus (Re-)Engineering

The previous chapter assesses the existing demand of corpora in empirical Software
Engineering research: we have discovered that more than 80% of papers use software
projects as empirical evidence. This motivates us to provide matching supply in our
area of expertise. In this chapter, we identify obstacles to corpus adoption based on
our own experience (see Chapter 4) and develop a method for comprehending and
improving corpus content, producing a complete, automatically buildable corpus,
with extended metadata. We apply the method to the Qualitas corpus [175], whose
adoption is thereby simplified.

Road-map of the chapter

• Section 6.1 provides a brief motivation for the study.
• Section 6.2 describes the methodology of corpus (re-)engineering.
• Section 6.3 contains results of applying the methodology to Qualitas.
• Section 6.4 discusses threats to validity for this empirical study.
• Section 6.5 discusses related work.
• Section 6.6 concludes the chapter.

Reproducibility

We provide the refined version of Qualitas on the supplementary website1.

Related publications

Research presented in this chapter underwent the peer-reviewing procedure and was
published in the proceedings of International Conference on Program Comprehen-
sion in 2013 [6]. This chapter reports an extended and detailed version compared to
the publication.

1 http://softlang.uni-koblenz.de/explore-API-usage/

http://softlang.uni-koblenz.de/explore-API-usage/

176 Corpus (Re-)Engineering

6.1 Introduction

Empirical software research often needs corpora to test a hypothesis, to validate a
tool, or to illustrate an approach. Software corpora have been, for instance, used to
evaluate tools for design pattern detection [65], API method recommendation [87],
and refactoring automation [141]—just to mention a few areas and papers. All such
efforts face the choice as to whether to use a more or less home-grown corpus, which
is the case for the papers just referenced, or instead an established corpus, such as
the Qualitas curated Java code collection [175] comprising over 100 systems written
in Java.

As we have demonstrated in Chapter 5, there is a common need in corpora
in the contemporary Software Engineering research. Based on our experience, de-
scribed in Chapter 4, in the present effort we identify obstacles of corpus adoption
and corresponding means of corpus (re-)engineering, thereby improving corpora and
simplifying their adoption. More specificallly, we develop a method for corpus (re-
)engineering, which we ultimately demonstrate and validate by their application to
Qualitas.

6.1.1 Benefits of Using an Established Corpus

Creating and using established corpora of experiment subjects offers significant ben-
efits to the research field as a whole. Drawing the experiment subjects from an es-
tablished corpus increases comparability of approaches as well as reproducibility of
research. Both of these goals are highly valued in empirical sciences.

There is also hope that availability of established corpora would entice re-
searchers to validate their results on a larger number of experiment subjects, though
this outcome is of course subject to individual resource constraints. An established
corpus offers furthermore an opportunity to exercise quality control, e.g., by reach-
ing a consensus that a collection is, in some sense, representative, free from bias or
artifacts.

Apart from the benefits to the field, there are also practical reasons and benefits
for the individual researcher to use an established corpus. A well-maintained corpus
reduces the effort in obtaining, organizing, preparing, and maintaining experiment
subjects. An established corpus provides a stable point of reference to the experiment
subjects used while limiting the documentation-related burden for the researcher. A
corpus may readily provide additional metadata, which can be useful for particular
research applications.

Of course, in practice, using an established corpus is hardly an all-or-nothing af-
fair. While the payoff is highest when a large number of experiment subjects is used,
it is already present for research on a small subject populace. Conversely, improv-
ing an established corpus benefits many users at once. Nonetheless, the method that
we propose is an aid to everybody who is interested in setting up a well-engineered
corpus.

6.2 A Method for Corpus (Re-)Engineering 177

6.1.2 Obstacles to Corpus Adoption

Guided by our experiences in using an established corpus for own research, we
address two obstacles for corpus adoption. As our pilot study suggests (see Sec-
tion 5.2.2), others could also benefit from the improvements.

Obstacle I is ‘unresolved dependencies’. Being able to build and/or run the sys-
tem is crucial in many research questions, e.g., when studying API usage [173, 92,
148], for code instrumentation [99, 165], or dynamic analysis [150, 69]. A corpus
may include compiled code/binaries as provided by system developers, but this is
often insufficient due to missing dependencies such as libraries.

Obstacle II is ‘insufficient metadata’. System distributions often contain disparate
code content such as unit tests, demos and test cases, and third-party libraries. Failing
to discern between these categories in empirical studies may lead to skewed results.
Indeed, the metadata of established corpora does not allow one, e.g., to automatically
identify and isolate test cases [141], the system core [52], or, conversely, third-party
libraries [174].

6.2 A Method for Corpus (Re-)Engineering

We will now present a method to produce a corpus that i) includes all necessary
dependencies, ii) can be built and analyzed automatically, in a uniform way, and
iii) contains extended and precise metadata about systems and their components.
We submit that the cornerstone of this method for corpus (re-)engineering is that
the build process for systems in the corpus is managed in a scalable and traceable
way such that all dependencies are resolved and metadata about the system scope is
collected.

The method is defined for Java programs, but can be analogously applied to other
similar languages.

6.2.1 Underlying Concepts

A system is a set of files. We assume a system is available in two forms. First, the
source-code form consists of Java files, libraries, build scripts, documentation, and
so on, and we refer to the totality of included Java files as source code. Second, the
binary form usually consists of compiled source code, resources, etc., packed into
JARs; it may also optionally contain a number of library JARs. (For example, the
Qualitas corpus readily serves both forms.)

A Java file may contain one or more Java types (classes, interfaces, enums, anno-
tations) that are distinguished by their qualified names. A build is a process, during
which source code is compiled and packed into built JARs, which can be distributed
as part of the binary system form. We use the term root to refer to any source direc-
tory from which the hierarchy of directories with Java packages descends. Basically,

178 Corpus (Re-)Engineering

one obtains a root by removing from the full path to a source file the suffix corre-
sponding to the Java package2.

We use two classifications of Java types to describe system boundaries. The first
one consists of a set of package prefixes containing system types, as suggested by the
authors of Qualitas. System types are part of the system in question—as opposed to,
say, third-party types. The second classification is more fine-grained: Java types are
classified as core, test, or demo, reflecting the type’s function within the system. We
will later see how the second classification may be computed by a heuristic.

6.2.2 Method

Consider the following, partially automated pseudocode:

1. input : corpus,systemCandidateList
2. output : corpus
3. for each name in systemCandidateList :
4. (psrc, pbin) = obtainSystem(name);
5. patches = exploratoryBuild(psrc, pbin);
6. timestamp = build(psrc,patches);
7. (java,classes, jars) = collectStats(psrc);
8. java′ = f ilter(java);
9. (jarsbuilt, jarslib) =

detectJars(timestamp, java′, jars);
10. java′compiled =

detectJava(timestamp, java′,classes, jarsbuilt);
11. p′src = (java′compiled, jarslib);
12. p′bin = jarsbuilt;
13. p′ = (p′src,p

′
bin);

14. if validate(p′) :
15. corpus = corpus+p′;
16. f actExtraction(p′);

The input is a (possibly empty) corpus to be extended and a list of candidate
systems, systemCandidateList, to be added to it. The output is the corpus populated
with refined systems.

We assume that a system can be obtained both in its source-code and binary
forms (line 4): e.g., by downloading them from the system’s website. During an
exploratory build (line 5), the nature of the system is manually investigated by an
expert. We detect how the system is built, what errors occur during the build (if any),
and how to patch them. At this stage, we also compare the set of built JARs with the

2 E.g., for a file systemA/src/org/foo/bar/Example.java that contains a type
with qualified name org.foo.bar.Example, the root is systemA/src/

6.3 Reengineering Qualitas 179

JARs in the binary distribution form of the system. If the former set is smaller than
the latter (e.g., because default targets in build scripts may be insufficient and a series
of target calls or invocation of several build scripts is needed), we attempt to push
the build of the system for completeness. Once the exploratory build is successful,
we are able to automatically build the system (line 6), if necessary after applying
patches. (Builds are always done from the initial state of the source code form of the
system.)

After the build, for all files found in the system (line 7), we collect their full file
path and name, creation and modification times. For Java files we extract qualified
names of contained top-level types, for class files we detect their qualified names.
For JARs we explore their contents and collect information about the contained class
files.

On line 8, we apply a filter, keeping only the source code that we consider to be
both system and core according to classifications presented in Section 6.2.1.

On line 9, we use the known start time of the build together with information
about Java types computed on lines 7 and 8 to classify the JARs found after the build
either as library JARs or built JARs. On line 10, we use the identified built JARs and
the compiled class files to identify Java types that were compiled during the build.
Then, (line 11) we refine the system’s source code form p′src to consist only of the
compiled Java types together with the necessary library JARs. The binary form p′bin
is refined (line 12) to consist of the built JARs.

The refined system p′ (line 13) is validated (line 14) by rebuilding the system in
a sandbox, outside its specific setup, while only using the files that have been iden-
tified by the method. (In practice, we use an Eclipse workspace with automatically
generated configuration files (i.e., .system and .classpath).) If we were able
to correctly filter out source code and detect libraries, the system successfully builds
in this manner. We can add the refined system to the corpus (line 15) and run fact
extraction on it (line 16).

This pseudocode is, of course, an idealized description of the process. In practice,
we would execute line 4 only once per system; line 5 could be repeated several times,
if the build coverage is found unsatisfactory in terms of compiled types—something
that becomes clear only on line 9. We treat lines 6–10 as an atomic action, call it a
“corpus build,” and perform it on regular basis. As additional means of validation,
during the step on line 10, we use visual aids to understand the completeness of
builds (see Section 6.3.5 for an example).

6.3 Reengineering Qualitas

In this section we provide results of applying our method to the Qualitas corpus.

6.3.1 Details of Qualitas Content

The Qualitas curated Java code collection [175] for each included system provides
both source code and binary form as they are distributed by developers. No additional

180 Corpus (Re-)Engineering

effort is made to include the dependencies necessary to build/run the systems, and
these are indeed often missing. The employed build mechanisms vary from system
to system.

Qualitas offers the following metadata for each system: found Java types, their lo-
cation in source code and binaries, metrics like LOC (Lines of Code), NCLOC (Non-
comment, Non-blank Lines of Code), etc. Qualitas also provides a space-separated
list of prefixes of packages of Java types: types covered by these prefixes are consid-
ered to be within system scope (or simply system).

We used the 20101126r release of Qualitas, which contains 106 systems. Ta-
ble 6.1 shows descriptive statistics about the corpus: for each metric, minimum and
maximum, first and third quartiles, median and mean are given. The table shows how
many files and different extensions are there in the corpus; how many are Java files,
how many of them belong to the system according to the Qualitas classification, and
how many respective roots are present. The table also lists how many different Java
packages are detected and how many system prefixes Qualitas metadata provides.
Finally, the table shows how many JAR(s) are found and how many different build
systems are detected.

Table 6.1. Qualitas 20101126r descriptive statistics

Min. 1st Qu. Median Mean 3rd Qu. Max

files 77 500 1,102 2,794 2,845 66,550
extensions 1 13 21 29.2 35 346

Java files 44 200 564 1,453 1,192 32,550
sysJava files 38 198 540 1,341 1,192 29,180

roots 1 2 5 29.79 15 1,499
sysRoots 1 1 3 21.27 8 1,130

packages 2 21 37 130.9 92 3,620
prefixes 1 1 1 1.648 2 20

JARs 1 1 7 38.22 20 1,822

ANT scripts 1 1 1 14.43 2.75 1,020
Maven 1.x scripts 1 1 1 12.08 1 1,035
Maven 2.x scripts 1 1 1 8.811 1 341
Makefile scripts 1 1 1 2.679 1 135

6.3.2 Exploratory Builds

The Qualitas corpus contains 106 systems. We were able to build 86 systems, of
them we had to patch 54 systems to make them build. We limited our effort per

6.3 Reengineering Qualitas 181

system during exploratory builds, and in some complex cases, systems could not be
built within the time constraints.

We applied the following kinds of build patches (the number of patches applied
of each kind is given in parentheses):

• addJar (197): add a JAR
• makeDir (98): create a necessary directory
• addFile (76): add a non-Java file
• batchBuild (34): execute several build files or targets
• moveDir (30): move a directory
• patchBuildFile (22): patch an existing build file
• changeJDK (8): use a specific Java version
• addSettings (8): add a file with properties/settings
• patchSettings (7): patch a file with properties/settings
• moveFile (6): move a non-Java file
• addBuildFile (6): add a build file
• patchSrc (5): patch a Java file
• changeBuildV (5): use specific build system version
• chmod (1): make a file executable

The most common patch operation is addJar: almost 200 JARs were added to
30 systems to make them build (not counting libraries that Maven downloads auto-
matically). The next two most frequent patches, makeDir and addFile are aimed to
create the file layout as the build script expects it to be. While creating new directo-
ries is needed for 20 systems, only 4 systems are responsible for the sum of added
files (missing resources).

Almost half of the patched systems (25 out of 54) needs only one type of fixing,
the most popular being patches of build files (6 systems), missing library JARs (5
systems), and usage of specific Java version (4 systems). The number of systems
requiring 2, 3, 4, 5, and 6 kinds of patches was 9, 10, 6, 2, and 2, respectively.

We used ANT to build the majority of systems. Some systems support more than
one build system (e.g., both ANT and Maven)—in such cases we opted for ANT.
In total, for building the corpus, ANT was used 69 times, Maven 2.x—11 times,
Maven 1.x—3 times, a Bash script—2 times, and Makefile once.

In the rest of the study, we operate only on systems that we were able to build.

6.3.3 Identifying Core Files and Types

We heuristically classify files (and, by extension, types) into core, test, and demo by
checking whether some part of the file path starts or ends with any of the following
terms:

• Category test: test, tests, testcase, testcases, testsuite, testsuites, testing, junit3

3 We did not apply this heuristic to junit, since the application area of this system is testing.
Instead, junit types were classified manually.

182 Corpus (Re-)Engineering

• Category demo: demo, demos, tutorial, tutorials, example, examples, sample,
samples

For the test category, we additionally check if the file name ends with either “Test,”
“TestCase,” or “TestSuite.” By default, source code is considered to be core.

In Fig. 6.1 we show systems that contain code other than core (there are 69 of
them); they are ordered by the percentage of non-core files. The table below the

0 10 20 30 40 50 60 70

0
10

20
30

40

Systems

%
 o

f n
on

−
m

ai
n

fil
es

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

total (non−main)
demo
test
demo (fp)
test (fp)

% Min. 1st Qu. Median Mean 3rd Qu. Max

total 0.04 5.36 10.73 14.14 19.09 46.2

test 0.04 4.57 9.75 11.81 17.04 41.91
demo 0.11 0.91 1.78 5.88 6.66 30.65

Figure 6.1. Distribution of non-core code

6.3 Reengineering Qualitas 183

figure contains descriptive statistics about percentage of non-core files per system.
We observe that an average system contains 10.73 % non-core files. Usually those
files are tests.

During validation phase (see §6.3.6), we discovered that our classification pro-
duced several false positives: we show them as non-filled symbols in Fig. 6.1.

6.3.4 Identifying System Namespaces

We reuse the classification of code that Qualitas considers part of the system (given as
a list of package prefixes). Since our classification complements the one of Qualitas,
we were interested in understanding the difference. For that, we collect in Table 6.2
the prefixes that appear in the core files but that are not covered by the Qualitas’ list
of system prefixes. We list those prefixes along with some additional information:
number of Java files with packages corresponding to such prefix, what percent of all
Java files in a system they constitute, how many of these files contribute to built JARs,
and for comparison, how many of these files contribute to the binaries provided by
Qualitas. Finally, we document, whether we consider—in deviation from Qualitas—
those package prefixes belonging to the system (“in” the system) and why. Entries
in the table are ordered by their impact on a system, i.e., percentage of affected
Java files. We cut the table at threshold limit of 5 % under which we did not make
an intelligent decision—considering the impact weak—but en masse excluded those
prefixes from being system. (The cut tail of the table contains 65 prefixes from 32
systems with a median of “% of all” being 0.55.) As we see, Qualitas metadata
provides good coverage of system code and does not leave out much.

For each prefix in the table, we investigate the role of the respective packages
in the system, and in few cases we make a decision (marked with ‘X’) to classify
the prefix as system, where we feel strongly that it is appropriate to do so. For in-
stance, we additionally count as system two prefixes of system jsXe, an XML editor,
which contain the editor’s features for different views of XML files (tree-like ver-
sus textual). We also make decisions (marked with ‘?’) to include prefixes, where
opinions could differ. For instance, we count as system code certain extensions or
contributions to systems.

There are two interesting observations about the table.

Note on default packages

We assume that the code in the default package is never part of the system. Such
code violates naming conventions of Java and can create clashes and ambiguities in
the name space of types. (Since Qualitas uses a space-separated list for storing the
prefixes, there is even no possibility to classify the default package as system.) But
default packages are not rare.

Consider the table entry for webmail system, a web mail server: out of 24 files
within the default package—19 are plugins. They reside in the directory webmail/
src/net/wastl/webmail/plugins/, which is part of the package hierarchy.
net.wastl.webmail is a system prefix. Together this suggests that either the
default package is an omission, or developers use mixed semantics for directories.

184 Corpus (Re-)Engineering

Ta
bl

e
6.

2.
Pr

efi
xe

s
of

co
re

co
de

th
at

ar
e

no
tl

is
te

d
by

Q
ua

lit
as

m
et

ad
at

a
(c

ut
at

5
%

)

Sy
st

em
Pr

efi
x

#
fil

es
%

of
al

l
%

in
co

ve
re

d
by

is
In

C
om

m
en

t

bu
ilt

JA
R

s
bu

ilt
JA

R
s

bi
na

ri
es

fit
ja

va
eg

.*
21

30
.8

8
10

0.
00

21
21

E
xa

m
pl

e(
s)

m
vn

fo
ru

m
ne

t.m
yv

ie
tn

am
.*

17
4

24
.9

6
10

0.
00

17
4

17
4

E
xa

m
pl

e(
s)

w
eb

m
ai

l
<

de
fa

ul
t>

24
21

.6
2

0.
00

0
0

D
ef

au
lt

pa
ck

ag
e

js
X

e
gn

u.
re

ge
xp

27
20

.6
1

10
0.

00
27

0
3r

d
pa

rt
y

so
ur

ce
s

je
xt

<
de

fa
ul

t>
10

1
18

.1
7

0.
00

0
0

D
ef

au
lt

pa
ck

ag
e

js
X

e
tr

ee
vi

ew
.*

20
15

.2
7

10
0.

00
20

0
X

Fe
at

ur
e(

s)
gt

2
ne

t.o
pe

ng
is

.*
80

1
14

.9
5

10
0.

00
80

1
80

1
?

E
xt

en
si

on
(s

)
jF

in
_D

at
eM

at
h

<
de

fa
ul

t>
8

12
.7

0
0.

00
0

0
D

ef
au

lt
pa

ck
ag

e
az

ur
eu

s
or

g.
bo

un
cy

ca
st

le
.*

38
4

11
.8

3
10

0.
00

38
4

38
4

3r
d

pa
rt

y
so

ur
ce

s
je

xt
or

g.
gj

t.s
p.

je
di

t
61

10
.9

7
10

0.
00

61
61

3r
d

pa
rt

y
so

ur
ce

s
m

vn
fo

ru
m

or
g.

m
vn

fo
ru

m
.*

75
10

.7
6

0.
00

0
0

?
C

on
tr

ib
ut

io
n(

s)
ite

xt
co

m
.it

ex
tp

df
.ru

ps
.*

46
10

.2
9

0.
00

0
0

?
E

xt
en

si
on

(s
)

js
X

e
or

g.
sy

nt
ax

.*
13

9.
92

10
0.

00
13

0
3r

d
pa

rt
y

so
ur

ce
s

jr
ef

ac
to

ry
<

de
fa

ul
t>

12
7

9.
58

0.
00

0
0

D
ef

au
lt

pa
ck

ag
e

fit
lib

ra
ry

fo
rfi

tn
es

se
fit

bo
ok

.*
64

8.
66

10
0.

00
64

64
E

xa
m

pl
e(

s)
js

X
e

so
ur

ce
vi

ew
.*

11
8.

40
10

0.
00

11
0
X

Fe
at

ur
e(

s)
fit

lib
ra

ry
fo

rfi
tn

es
se

fit
.*

62
8.

39
10

0.
00

62
62

3r
d

pa
rt

y
so

ur
ce

s
m

vn
fo

ru
m

co
m

.m
vn

so
ft

.*
54

7.
75

98
.1

5
53

53
?

C
on

tr
ib

ut
io

n(
s)

ro
lle

r
or

g.
ap

ac
he

.js
p.

*
35

5.
71

0.
00

0
0

In
te

rn
al

s
of

ap
p.

se
rv

er
jh

ot
dr

aw
ne

t.n
3.

na
no

xm
l

23
5.

10
10

0.
00

23
23

3r
d

pa
rt

y
so

ur
ce

s
co

m
pi

er
e

or
g.

ap
ac

he
.e

cs
.*

12
6

5.
06

10
0.

00
12

6
12

6
3r

d
pa

rt
y

so
ur

ce
s

6.3 Reengineering Qualitas 185

Another example is jext system, a programmer’s text editor. It has 101 files
within the default package, of them 99 constitute 11 different plugins. Yet, jext has
one more plugin, which uses non-default packages and is therefore included as sys-
tem.

Note on third party sources

We see that it is usual practice among systems to include large amounts of 3rd-party
source code. We do not count it as system code, but without clone detection, one
cannot be sure that 3rd-party code was not modified/adjusted and had not become an
integral part of the system.

6.3.5 Builds

In order to understand the result of a build, we measure the percentage of Java types
(system and core) found in built JARs. In Table 6.3 we list systems with incom-
plete builds, sorted by percentage of types not found in built JARs. Along with basic
information—number of all Java types, percentage of them non-compiled—the table
includes the number of roots and packages completely or partially missing in built
JARs. We also show a comparison with coverage of Java types by binaries included
in Qualitas, see column “Compare to Q”: “=” means the same coverage and “>”
means that our build result misses more types than the binaries included in Qualitas.
We cut the table at 5 % of non-packed types, the tail of the table contains 21 more
systems with median of percentage of non-packed types equal to 1.05 %.

An asterisk next to the system name means that types not found in built JARs
were nonetheless compiled (values in columns 3 and 4 differ). Careful reading of
build scripts revealed that this is due to white- or blacklisting of files or directories
done in ANT scripts.

We tried to identify the reason for missing types. Based on several investigated
cases, we concluded that completely missing packages or roots are an indication of
omitted build goals. These packages or roots then typically correspond to modular
code, like an optional feature. We automatically identify such cases.

For instance, the james system provides libraries for Internet mail communi-
cation. All non-built types are in the root hierarchy that starts with a directory
proposals/ and the build script does not compile it.4 A similar situation is
with the checkstyle system providing support for coding standards: all its non-built
sources are in the root hierarchy starting with the directory contrib/, which is
also not compiled by the build script.

4 One partially compiled root upon closer inspection revealed to contain a type with the same
qualified name as a type from src/ directory, thus being counted as compiled.

186 Corpus (Re-)Engineering

Ta
bl

e
6.

3.
In

co
m

pl
et

e
bu

ild
s

(c
ut

at
5

%
)

Sy
st

em
ty

pe
s

C
om

pa
re

to
Q

#
no

n-
pa

ck
ed

ro
ot

s
#

no
n-

pa
ck

ed
pa

ck
ag

es
R

ea
so

n

#
to

ta
l

%
no

n-
co

m
pi

le
d

%
no

n-
pa

ck
ed

co
m

pl
et

el
y

pa
rt

ia
lly

co
m

pl
et

el
y

pa
rt

ia
lly

m
vn

fo
ru

m
51

0
36

.0
8

36
.0

8
=

3
0

11
0

Fe
at

ur
e

tr
ov

e*
32

0.
00

34
.3

8
=

0
1

2
0

Fe
at

ur
e

ja
m

es
41

9
34

.1
3

34
.1

3
=

1
4

4
3

??
?

ch
ec

ks
ty

le
35

9
25

.6
3

25
.6

3
=

2
0

6
0

Fe
at

ur
e

lo
g4

j*
24

2
11

.1
6

23
.1

4
>

8
1

4
4

??
?

gt
2

52
34

17
.9

0
17

.9
0

>
34

8
12

8
25

??
?

jr
ef

ac
to

ry
11

99
14

.1
8

14
.1

8
>

3
1

14
0

Fe
at

ur
e

ite
xt

44
7

10
.2

9
10

.2
9

=
1

0
10

0
Fe

at
ur

e
ju

ng
35

8
9.

78
9.

78
>

2
0

6
0

Fe
at

ur
e

hs
ql

db
*

42
8

3.
27

9.
58

>
0

1
3

1
??

?
na

ke
do

bj
ec

ts
21

76
8.

96
8.

96
=

9
0

33
3

Fe
at

ur
e

je
xt

36
5

8.
77

8.
77

>
1

0
3

0
Fe

at
ur

e
de

rb
y*

17
79

1.
41

7.
31

=
3

5
17

27
??

?
ja

g
13

0
6.

15
6.

15
=

1
0

1
1

Fe
at

ur
e

pr
og

ua
rd

56
2

5.
87

5.
87

>
0

2
0

10
??

?

6.3 Reengineering Qualitas 187

info
0 / 11

completer
0 / 10

popup
0 / 13

.

src
1028 / 1164

(a) Root forest

popup
0 / 13

completer
0 / 10

info
0 / 11

version
0 / 6

elixir
0 / 12

action
0 / 6

jedit
0 / 12

event
0 / 3

jbuilder
0 / 35

refactor
0 / 14

ide

jdeveloper
0 / 1

netbeans
0 / 42

kawa
0 / 1

cafe
0 / 4

seguinacmorg

(b) Package forest

Figure 6.2. Non-built types of jrefactory: triangles represent empty packages/directories;
squares show how many types are compiled in a directory/package.

Another example is the jrefactory refactoring tool. Fig. 6.2 presents the forests
of the non-built roots and packages. The root forest shows that there are several com-
pletely non-built directories, while some code wasn’t built in the main root, src/.
Package forest shows that a large part of the non-built packages has a common prefix
that apparently contains the code for integration with IDEs. Inspection of the build
script reveals conditional builds: if certain classes of different IDEs are not found
in the classpath, the corresponding parts of the code are excluded from compilation.
The build script operates only on src/ which explains non-built types outside it.

In such manner we inspected the incomplete builds to decide whether to accept
the result or to attempt to increase the build coverage.

6.3.6 Validation

To validate our effort, we automatically converted the built and refined systems into
Eclipse projects, based on the data collected during the build. Successful compilation
of a system in Eclipse shows that the classpath and the filtering of source code are
correct. In such manner, we successfully validated 79 systems (out of 86 built ones).
There are a few cases where validation via export to Eclipse is not possible. For
example, in case of the nekohtml system, different parts of the code are compiled
with different versions of a library JAR. While in an ANT script it is possible to
change the classpath during compilation, in Eclipse, the classpath is a static global
setting per system.

In particular, we validated our classification of files: if the exported code would
not compile due to its dependencies, we would revise the classification of core
code (see empty squares and circles in Fig. 6.1). In those few cases when a sys-
tem’s core code indeed required the non-core code (e.g., to run self tests via a spe-
cific command line option), we included the compiled non-core classes into a li-
brary JAR with the name <system>-sys.jar. Since some systems use 3rd-party
source code, we also ship those compiled classes in a library JAR with the name
<system>-nonSys.jar

188 Corpus (Re-)Engineering

6.3.7 Automated Fact Extraction

To facilitate fact extraction for the corpus user, we offer (on the paper’s website) a
basic fact-extractor based on RECODER [89]. The extractor runs automatically on
the whole corpus and checks for absence of syntax errors and unresolved references.
It can be easily extended.

6.4 Threats to Validity

From the theoretical point of view, there are two threats: to construct validity and to
content validity.

For instance, our decisions on what consistutes a system, its core part, are subject
to the threat to construct validity, because, arguably, tests can be considered to be
part of the system. We justify our decisions by taking an operational approach to
definition—a system is what runs in production, which usually excludes tests.

The selection of the projects is subject to the threat to content validity: is the
subset representative? We consider the Qualitas corpus to be a well-thought selection
from the group of Java projects that are usually characterized as “well-developed” or
“real-world” applications. Therefore, it does not cover the whole spectrum of Java
projects (for instance, student projects or throw-away prototypes are not included),
however, the covered part is usually the main focus of the practical, applied, research.

Technically, we can identify the following threats:

• The exploratory builds are a manual process: In each case we decided, which
build scripts to execute, in which order, etc.

• The heuristic underlying our code purpose classification may give false positives
(e.g., when the application domain of a system is itself testing) or false negatives
(e.g., by relying on the particular file naming convention).

• The accuracy of the data in the refined corpus depends on the correctness of our
toolchain. The toolchain was tested to eliminate bugs.

6.5 Related Work

Corpora

The related work on corpus engineering is summarized in Table 6.4. We list main
reference for each effort, date of latest release/update, size of the corpus and lan-
guages of systems in it; what is the main purpose of the effort and in column Acc.
we note, whether the corpus is accessible freely. The bibliographical reference (the
first column) also include the web links where the corpora can be found.

The DaCapo project facilitates benchmarking: it provides a harness to measure
running of the corpus. The systems in the binary form are provided within the Da-
Capo JAR while sources of the systems come with the tool’s source code. The tool
is freely available for download.

6.5 Related Work 189

Table 6.4. Corpus (re-)engineering efforts

Ref. Name Acc. Date Size Lang. Src Bin Depend. Purpose

[29] DaCapo + 12/2009 14 Java + + + Tool for Java
benchmarking

[77] FOSSology ± 10/2012 16 C/C++ + Framework for
analyzing licenses

[175] Qualitas – 04/2012 111 Java + + Collection for empirical
studies of code artifacts

[56] SIR – 05/2012 73 Java, C, C#, C++ + + Infrastructure for
controlled
experimentation with
testing techniques

[9] SPEC $ 08/2012 17 Java, C, Fortran, ? + + Collection of realistic,
standardized
performance tests

[124] Sourcerer ± 04/2010 18,826 Java + ± Infrastructure for
large-scale source code
analysis

[55] TraceLab + 07/2012 5 Java ± ± Framework for feature
location research

The FOSSology project focuses on analyzing licenses in source code, providing
its tools freely—one can download and use them on one’s systems locally. There is
a demo repository available separately5.

Qualitas has two main distribution forms: recent version release contains 111
systems and evolution release contains 486 versions of 14 systems that has at least
10 versions per system. There is also a complete release containing 661 versions of
111 systems. Download links are available upon request.

The Software-artifact Infrastructure Repository (SIR) provides infrastructure to
support controlled experimentation with testing and regression testing techniques.
Access to the tools and the corpus is available after registration with statement of
intent. Systems in the corpus contain real or seeded faults.

Standard Performance Evaluation Corporation is a non-profit organisation pro-
viding SPECmarks, standardized suites of source code, for performance testing.
There are 17 benchmarks available for a non-profit/educational price ranging from
$50 to $900.

The Sourcerer project provides infrastructure for large-scale source code analysis
as well as a prepared repository of more than 18,000 systems (of them non-empty
13,241 systems). The full corpus is available upon request with statement of intent.

5 https://fossology.ist.unomaha.edu/

http://dacapobench.org/
http://fossology.org/
http://qualitascorpus.com/
http://sir.unl.edu/
http://www.spec.org/benchmarks.html
http://sourcerer.ics.uci.edu/
http://www.cs.wm.edu/semeru/data/TraceLab-feature-location/
https://fossology.ist.unomaha.edu/

190 Corpus (Re-)Engineering

From the description of the process, given in [124] and on the website6, it is not clear
whether it contains resolved dependencies.

TraceLab is a framework for creating, running and sharing experiments using a
visual modeling environment. Along with the tool, authors provide datasets contain-
ing issues, associated functionality (methods), queries and execution traces. This in-
formation was extracted from issue tracking systems, version repositories, and code
itself. According to the description of the process7, compilable source code of the
systems was used during creation of datasets, but datasets themselves do not seem to
contain it.

There are few other corpora like TraceLab that can be seen as meta-corpora, pro-
viding metadata about the systems, but not the systems themselves. The FLOSSmole
project [93] focuses on metadata about systems from different online repositories,
such as Sourceforge, GNU Savannah, Google Code, GitHub, and others. Metadata
includes a name of a system, description, programming languages used, number of
developers, date of creation, etc. All the data is freely available as textual files and
SQL dumps. The PROMISE repository [151] contains datasets to facilitate research
on defect and effort prediction: extracted bug reports, modification requests and their
impact on the code, as well as values of various source code metrics. All data in the
repository is freely accessible.

Build systems

Research in the area of build systems is diverse. Complexity of build systems and
their evolution, as well as correlation of these characteristics to the same of source
code has been studied for Make, ANT, and Maven build systems [11, 133]. The
Make system was also studied for the variability model it provides [127] and its
correctness [145]. There are studies on the overhead of maintaining build systems
and its reasons [118, 134]. We are not aware of any effort on understanding what it
takes to make systems build: types of errors, missing libraries, needed patches, etc.
Though studying the building process is not a central research question of our effort,
we see our work as contributing towards this area of research.

6.6 Conclusion

We presented an approach to (re-)engineering a corpus of software systems. The
approach transforms a raw source and binary distribution into a uniform and con-
solidated representation of each system. Both source-code- and byte-code-based fact
extraction can be run automatically on the resulting corpus.

The need for the approach was derived from a literature survey on empirical
software engineering efforts.

6 http://sourcerer.ics.uci.edu/tutorial.html
7 http://www.cs.wm.edu/semeru/data/benchmarks/

http://sourcerer.ics.uci.edu/tutorial.html
http://www.cs.wm.edu/semeru/data/benchmarks/

6.6 Conclusion 191

We applied the reengineering approach to the Qualitas corpus, thus validating its
effectiveness as well as potential utility in developing reliable curated code collec-
tions and building confidence in these collections with their users and developers.
The resulting corpus is available to the public together with a sample fact extraction
mechanism.

There are several directions for future work:

• An intelligent and reproducible technique of automatic attempts to build systems
with automatic classification of errors in order to identify patches.

• A refinement of the heuristic for identification of core files based on observations
that we made, e.g.: discrepancy between Java packages and file path (usually a
sign of non-core files); imports in test files (indicating usage of a testing frame-
work).

• A clone detection analysis of included 3rd-party source code which determines
whether such code was modified and integrated into the host system.

• A deeper analysis of builds for improved confidence in the builds. For instance,
How clean is the state that we start from? What modifications occur during
the build? What is the nature of differences between compiled classes and built
JARs?

Part IV

Conclusion

7

Conclusion

In this chapter, we summarize the outcome of the work presented in the thesis. We
revisit the contributions briefly stated in Introduction, Section 1.4, and substantiate
them based on the reported studies. We also outline open challenges and future work.

196 Conclusion

7.1 Summary

Let us revisit the research goals of the thesis posed in Introduction, Section 1.2.3 and
link them back to the studies reported in the thesis. We submitted in our work to:

1. Develop and apply techniques to empirically analyze actual usage of languages.

Part II of the thesis reports two extensive empirical studies. In a deep and system-
atic manner, we have analyzed usage of a privacy language among websites on the
Internet and usage of APIs among open-source projects. Despite the significant dif-
ferences in the analyzed languages (application domains, language design), we have
shown that the approach for such analysis is essentially the same.

In the study of P3P language, we have utilized a broad and diverse range of
techniques, combining basic measures of language usage (such as footprint and cov-
erage) with Software Engineering methods (validity analysis, clone detection), for
the purpose of revealing the status of language adoption.

In the study of APIs, we have applied the same basic measures of language us-
age (such as footprint and coverage) to capture and classify features of APIs that
allow profiling and characterizing the projects using APIs. Based on this dual rela-
tionship between APIs and projects, we have developed a catalogue of exploration
insights and implemented a tool for navigation of the code base for the benefit of
API consumers as well as API designers.

We also submitted in our work to:

2. Understand the usage of empirical evidence in Software Engineering research.

Part III of the thesis describes our effort on establishing the current state of research
in Software Engineering with respect to the usage of empirical evidence; it also op-
erationally summarizes our experience in corpus engineering.

We have performed two pilot studies and the main literature survey, to work
out the appropriate methodology for the task of analyzing published research with
respect to used empirical evidence. We have developed and adjusted the classification
scheme to capture that usage and summarize it.

We have found that use of project-based corpora is frequent in the practically ori-
ented areas of Software Engineering such as program comprehension, maintenance,
reverse engineering, and re-engineering. At the same time, we have found that there
is no explicit methodology for the common task of collecting a corpus as well as no
apparent adoption of standardized corpora in the research community. Based on our
experience gained during language studies, we have suggested a method of corpus
(re-)engineering and demonstrated its application on an existing collection of Java
programs.

7.2 Future Work 197

7.2 Future Work

Below we identify several lines of work stemming from the current thesis that we
see both interesting and practically appealing.

In the area of language usage, we see the following possible continuations:

• Active feedback: Turning the findings of language usage analysis into the basis
for close collaboration with language designers: working together on the next
version of a language (e.g., in the privacy domain) or a new version of a library
(e.g., particular Java API).

• Usage profiling: Detecting types of language usage (e.g., with the help of ma-
chine learning or statistical inference); linking them with particular user needs
based either on metadata about the application area or via user studies.

• Replication studies: Applying the identified principles in studies of languages
relatively similar to the analyzed in this thesis (e.g., usage of the SQL language
or Haskell libraries) and relatively distant from them (e.g., languages of real-time
systems like car engine control system or medical systems).

In the area of corpus engineering, we see the following possible continuations:

• Seeking explanations: One of the most intriguing open questions left for us is
why standardized corpora are not adopted by the community. Testing hypotheses
by qualitative studies (e.g., questionnaires) to find out whether researchers are
aware of such corpora or by experiments to assess whether the overhead involved
in corpora adoption is impractical in the end.

• Involving community: Obliging authors to use a suggested corpus in their sub-
missions to a certain track of a conference—similar to Mining Challenge hosted
by the International Working Conference on Mining Software Repositories—but
in other areas of Software Engineering, such as program comprehension, main-
tenance, reverse engineering, and re-engineering.

Generally, in the area of Empirical Software (Language) Engineering, we strongly
believe that the time has come to inspect the existing practices and detect com-
mon places in research that are being addressed in ad hoc manner and require ex-
plicit methodology. We also believe that the missing methodology can be and should
be distilled by the inductive approach from the individual solutions of a repetitive
problem—thus leading to research-driven research.

Own Publications

1. Ralf Lämmel and Ekaterina Pek. Vivisection of a non-executable, domain-specific lan-
guage - Understanding (the usage of) the P3P language. In Proceedings of the 18th Inter-
national Conference on Program Comprehension (ICPC), pages 104–113. IEEE Computer
Society, 2010.

2. Jean-Marie Favre, Dragan Gašević, Ralf Lämmel, and Ekaterina Pek. Empirical language
analysis in software linguistics. In Brian A. Malloy, Steffen Staab, and Mark van den
Brand, editors, Proceedings of the 3rd International Conference on Software Language
Engineering (SLE), volume 6563 of Lecture Notes in Computer Science, pages 316–326.
Springer, 2011.

3. Ralf Lämmel, Rufus Linke, Ekaterina Pek, and Andrei Varanovich. A framework profile
of .NET. In Martin Pinzger, Denys Poshyvanyk, and Jim Buckley, editors, Proceedings
of the 18th Working Conference on Reverse Engineering (WCRE), pages 141–150. IEEE
Computer Society, 2011.

4. Ralf Lämmel, Ekaterina Pek, and Jürgen Starek. Large-scale, AST-based API-usage anal-
ysis of open-source Java projects. In William C. Chu, W. Eric Wong, Mathew J. Palakal,
and Chih-Cheng Hung, editors, Proceedings of the 26th Symposium on Applied Computing
(SAC), pages 1317–1324. ACM, 2011.

5. Ralf Lämmel and Ekaterina Pek. Understanding privacy policies - A study in empirical
analysis of language usage. Empirical Software Engineering, 18(2):310–374, 2013.

6. Coen De Roover, Ralf Lämmel, and Ekaterina Pek. Multi-dimensional exploration of API
usage. In Proceedings of the 21th International Conference on Program Comprehension
(ICPC), 2013.

7. Ekaterina Pek and Ralf Lämmel. A literature survey on empirical software engineering
research. 10 pages. Work under submission.

8. Bogdan Vasilescu, Alexander Serebrenik, Tom Mens, Mark van den Brand, and Ekaterina
Pek. How healthy are Software Engineering conferences? Science of Computer Program-
ming, 2013. Pending minor revision.

References

9. Standard Performance Evaluation Corporation benchmark suites.
10. Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. Mining API patterns as partial orders

from source code: from usage scenarios to specifications. In ESEC-FSE ’07: Proceed-
ings of the the 6th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineering, pages 25–
34. ACM, 2007.

11. Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. Design
recovery and maintenance of build systems. In ICSM, pages 114–123, 2007.

12. Steve Adolph, Wendy Hall, and Philippe Kruchten. A methodological leg to stand on:
Lessons learned using grounded theory to study software development. In CASCON,
pages 13:166–13:178, 2008.

13. Rakesh Agrawal, Paul Bird, Tyrone Grandison, Jerry Kiernan, Scott Logan, and Walid
Rjaibi. Extending relational database systems to automatically enforce privacy policies.
In ICDE ’05: Proceedings of the 21st International Conference on Data Engineering,
pages 1013–1022. IEEE Computer Society, 2005.

14. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. An XPath-
based preference language for P3P. In Proceedings of WWW 2003, pages 629–639.
ACM, 2003.

15. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. XPref: a pref-
erence language for P3P. Computer Networks, 48(5):809–827, 2005.

16. Tiago Alves and Joost Visser. Metrication of SDF grammars. Technical Report DI-
PURe-05.05.01, Universidade do Minho, 2005.

17. Paul Ashley. Enforcement of a P3P privacy policy. In Proceedings of the 2nd Aus-
tralian Information Security Management Conference, Securing the Future, pages 11–
26. School of Computer and Information Science, Edith Cowan University, Western
Australia, 2004.

18. Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Laguë, and Kostas Kon-
togiannis. Advanced Clone-Analysis to Support Object-Oriented System Refactoring.
In Proceedings of the Seventh Working Conference on Reverse Engineering (WCRE’00),
pages 98–107. IEEE Computer Society, 2000.

19. Margaret Burnett Barbara G. Ryder, Mary Lou Soffa. The impact of software engi-
neering research on modern progamming languages. ACM Transactions on Software
Engineering and Methodology, 14(4):431–477, October 2005.

202 References

20. Thiago Tonelli Bartolomei, Krzysztof Czarnecki, and Ralf Lämmel. Swing to SWT and
back: Patterns for API migration by wrapping. In ICSM, pages 1–10, 2010.

21. Thiago Tonelli Bartolomei, Krzysztof Czarnecki, and Ralf Lämmel. Swing to SWT and
back: Patterns for API migration by wrapping. In 26th IEEE International Conference
on Software Maintenance (ICSM 2010), pages 1–10. IEEE, 2010.

22. Thiago Tonelli Bartolomei, Krzysztof Czarnecki, Ralf Lämmel, and Tijs van der Storm.
Study of an API migration for two XML APIs. In SLE, pages 42–61, 2010.

23. Victor Basili, Gianluigi Caldiera, and H. Dieter Rombach. The goal question metric
approach, 1994.

24. Gareth Baxter, Marcus Frean, James Noble, Mark Rickerby, Hayden Smith, Matt Visser,
Hayden Melton, and Ewan Tempero. Understanding the shape of Java software. In
Proceedings of OOPSLA 2006, pages 397–412. ACM, 2006.

25. Gareth Baxter, Marcus R. Frean, James Noble, Mark Rickerby, Hayden Smith, Matt
Visser, Hayden Melton, and Ewan D. Tempero. Understanding the shape of java soft-
ware. In OOPSLA, pages 397–412, 2006.

26. Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine Bier.
Clone detection using abstract syntax trees. In Proceedings of ICSM 1998, page 368.
IEEE Computer Society, 1998.

27. Lise Jensen Bertil Ekdahl. The difficulty in communicating with computers. In Inter-
active Convergence: Critical Issues in Multimedia, chapter 2. Inter-Disciplinary Press,
2005.

28. Gavin M. Bierman, Erik Meijer, and Wolfram Schulte. The Essence of Data Access in
Comega. In ECOOP 2005 - Object-Oriented Programming, 19th European Conference,
Proceedings, volume 3586 of LNCS, pages 287–311. Springer, 2005.

29. S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and
analysis. In OOPSLA, pages 169–190, 2006. http://dacapobench.org/.

30. E. T. Bonelli and J. Sinclair. Corpora. In Keith Brown, editor, Encyclopedia of language
and linguistics. Elsevier Science, 2006.

31. Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and
Zipf-like distributions: Evidence and implications. In INFOCOM, pages 126–134, 1999.

32. Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples to improve
code completion systems. In ESEC/SIGSOFT FSE, pages 213–222, 2009.

33. Andrea Brühlmann, Tudor Gîrba, Orla Greevy, and Oscar Nierstrasz. Enriching reverse
engineering with annotations. In MoDELS, pages 660–674, 2008.

34. R. J. Chevance and T. Heidet. Static profile and dynamic behavior of COBOL programs.
SIGPLAN Notices, 13(4):44–57, 1978.

35. Kelvin Choi and Ewan D. Tempero. Dynamic measurement of polymorphism. In Pro-
ceedings of the Thirtieth Australasian Computer Science Conference (ACSC2007), vol-
ume 62 of CRPIT, pages 211–220. Australian Computer Society, 2007.

36. Aaron Clauset, Cosma Rohilla Shalizi, and Mark E. J. Newman. Power-law distributions
in empirical data. SIAM Review, 51(4):661–703, 2009.

37. Christian S. Collberg, Ginger Myles, and Michael Stepp. An empirical study of Java
bytecode programs. Technical Report TR04-11, University of Arizona, 2004.

38. Christian S. Collberg, Ginger Myles, and Michael Stepp. An empirical study of Java
bytecode programs. Software, Practice & Experience, 37(6):581–641, 2007.

http://dacapobench.org/

References 203

39. Giulio Concas, Michele Marchesi, Alessandro Murgia, Sandro Pinna, and Roberto
Tonelli. Assessing traditional and new metrics for object-oriented systems. In Proceed-
ings of the 2010 ICSE Workshop on Emerging Trends in Software Metrics, WETSoM
’10, pages 24–31. ACM, 2010.

40. Robert P. Cook and Insup Lee. A contextual analysis of Pascal programs. Software,
Practice & Experience, 12(2):195–203, 1982.

41. Harris M. Cooper. The integrative research review: A systematic approach, volume 2 of
Applied social research methods series. Sage, 1984.

42. Lorrie Faith Cranor. Web Privacy with P3P. O’Reilly & Associates, 2002.
43. Lorrie Faith Cranor. RE: COMMENTS ON FEDERAL TRADE COMMISSION

PRELIMINARY STAFF REPORT. Protecting Consumer Privacy in an Era of Rapid
Change: A Proposed Framework for Businesses and Policymakers, 2011. Available on-
line at http://www.ftc.gov/os/comments/privacyreportframework/
00453-58003.pdf.

44. Lorrie Faith Cranor, Serge Egelman, Steve Sheng, Aleecia M. McDonald, and Abdur
Chowdhury. P3P deployment on websites. Electronic Commerce Research and Appli-
cations, 7(3):274–293, 2008.

45. David Crystal. The Cambridge Encyclopedia of Language, Second Edition. Cambridge
University Press, 2005.

46. Hamish Cunningham. A definition and short history of language engineering. Journal
of Natural Language Engineering, 5:1–16, 1999.

47. Krzysztof Cwalina and Brad Abrams. Framework design guidelines. Conventions, id-
ioms, and patterns for reusable .NET libraries. Addison-Wesley, 2009.

48. Melis Dagpinar and Jens H. Jahnke. Predicting maintainability with object-oriented
metrics - An empirical comparison. In Proceedings of the 10th Working Conference on
Reverse Engineering, WCRE ’03, pages 155–164. IEEE, 2003.

49. Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive comparison of bug
prediction approaches. In MSR, pages 31–41, 2010. http://bug.inf.usi.ch/.

50. Suresh Jagannathan David Gelernter. Programming Linguistics. MIT Press, 1990.
51. Brian de Alwis and Gail C. Murphy. Answering conceptual queries with Ferret. In ICSE,

pages 21–30, 2008.
52. Antonio Soares de Azevedo Terceiro, Manoel G. Mendonça, Christina Chavez, and

Daniela S. Cruzes. Understanding structural complexity evolution: A quantitative anal-
ysis. In CSMR, pages 85–94, 2012.

53. Coen De Roover, Carlos Noguera, Andy Kellens, and Viviane Jonckers. The SOUL tool
suite for querying programs in symbiosis with Eclipse. In PPPJ, pages 71–80, 2011.

54. Jens Dietrich, Catherine McCartin, Ewan D. Tempero, and Syed M. Ali Shah. Barriers
to modularity - an empirical study to assess the potential for modularisation of java
programs. In 6th International Conference on the Quality of Software Architectures,
QoSA 2010, Proceedings, volume 6093 of LNCS, pages 135–150. Springer, 2010.

55. Bogdan Dit, Evan Moritz, and Denys Poshyvanyk. A TraceLab-based solution for cre-
ating, conducting, and sharing feature location experiments. In ICPC, pages 203–208,
2012.

56. Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential impact. Empir.
Softw. Eng., 10(4):405–435, 2005. http://sir.unl.edu/.

57. Serge Egelman, Lorrie Faith Cranor, and Abdur Chowdhury. An analysis of P3P-enabled
Web sites among top-20 search results. In Mark S. Fox and Bruce Spencer, editors,
ICEC, volume 156 of ACM International Conference Proceeding Series, pages 197–
207. ACM, 2006.

http://www.ftc.gov/os/comments/privacyreportframework/00453-58003.pdf
http://www.ftc.gov/os/comments/privacyreportframework/00453-58003.pdf
http://bug.inf.usi.ch/
http://sir.unl.edu/

204 References

58. Daniel S. Eisenberg, Jeffrey Stylos, Andrew Faulring, and Brad A. Myers. Using as-
sociation metrics to help users navigate API documentation. In VL/HCC, pages 23–30,
2010.

59. Daniel S. Eisenberg, Jeffrey Stylos, and Brad A. Myers. Apatite: A new interface for
exploring APIs. In CHI, pages 1331–1334, 2010.

60. Eva Van Emden and Leon Moonen. Java quality assurance by detecting code smells. In
WCRE, pages 97–108, 2002.

61. Raimar Falke, Pierre Frenzel, and Rainer Koschke. Empirical evaluation of clone detec-
tion using syntax suffix trees. Empirical Softw. Engg., 13:601–643, December 2008.

62. Jean-Marie Favre. Languages evolve too! changing the software time scale. In IEEE, ed-
itor, 8th Interntational Workshop on Principles of Software Evolution, IWPSE, Septem-
ber 2005.

63. Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co., 2nd edition, 1996.

64. Kathi Fisler, Shriram Krishnamurthi, and Daniel J. Dougherty. Embracing policy engi-
neering. In Proceedings of the FSE/SDP workshop on Future of software engineering
research, FoSER ’10, pages 109–110. ACM, 2010.

65. Francesca Arcelli Fontana, Andrea Caracciolo, and Marco Zanoni. DPB: A benchmark
for design pattern detection tools. In CSMR, pages 235–244, 2012.

66. Jill Freyne, Lorcan Coyle, Barry Smyth, and Padraig Cunningham. Relative status of
journal and conference publications in computer science. Commun. ACM, 53(11):124–
132, November 2010.

67. E. Fudge. Glossematics. In Keith Brown, editor, Encyclopedia of language and linguis-
tics. Elsevier Science, 2006.

68. Hristo Georgiev. Language Engineering. Continuum, 2007.
69. Malcom Gethers, Bogdan Dit, Huzefa H. Kagdi, and Denys Poshyvanyk. Integrated

impact analysis for managing software changes. In ICSE, pages 430–440, 2012.
70. Kambiz Ghazinour and Ken Barker. Capturing P3P semantics using an enforceable

lattice-based structure. In Proceedings of the 4th International Workshop on Privacy
and Anonymity in the Information Society, PAIS ’11, pages 4:1–4:6. ACM, 2011.

71. Joseph (Yossi) Gil and Itay Maman. Micro patterns in Java code. In Proceedings of
OOPSLA 2005, pages 97–116. ACM, 2005.

72. Barney G. Glaser. Doing Quantitative Grounded Theory. Sociology Press, 2008.
73. Barney G. Glaser and Anselm L. Strauss. Awareness of Dying. Aldine Pub., 1965.
74. Barney G. Glaser and Anselm L. Strauss. The Discovery of Grounded Theory: Strategies

for Qualitative Research. Aldine Pub., 1967.
75. Gene V. Glass, Barry McGaw, and Mary Lee Smith. Meta-analysis in social research.

Sage, Beverly Hills, CA, 1981.
76. Robert L. Glass, Iris Vessey, and Venkataraman Ramesh. Research in software engineer-

ing: An analysis of the literature. Inform. Software Tech., 44(8):491–506, 2002.
77. Robert Gobeille. The FOSSology project. In MSR ’08: Proceedings of the 2008 inter-

national working conference on Mining software repositories, pages 47–50, New York,
NY, USA, 2008. ACM.

78. Jesús M. González-Barahona and Gregorio Robles. On the reproducibility of empiri-
cal software engineering studies based on data retrieved from development repositories.
Empir. Softw. Eng., 17(1-2):75–89, 2012.

79. J.B. Goodenough. The comparison of programming languages: A linguistic approach.
ACM/CSC-ER, 1968.

References 205

80. Yann-Gaël Guéhéneuc. PMARt: Pattern-like micro architecture repository. In Euro-
PLoP Focus Group on Pattern Repositories, 2007. http://www.ptidej.net/
download/pmart/.

81. Jurriaan Hage and Peter van Keeken. Neon: A library for language usage analysis.
In Software Language Engineering, First International Conference, SLE 2008, volume
5452 of LNCS, pages 35–53. Springer, 2009.

82. Michael Hahsler. A quantitative study of the adoption of design patterns by open source
software developers. In Free/Open Source Software Development, IGP, pages 103–123,
2004.

83. Michael Hahsler and Stefan Koch. Discussion of a large-scale open source data collec-
tion methodology. Hawaii International Conference on System Sciences, 7:197b, 2005.

84. A. Hardie and T. McEnery. Statistics. In Keith Brown, editor, Encyclopedia of language
and linguistics. Elsevier Science, 2006.

85. Edwin Hautus. Improving Java Software Through Package Structure Analysis. In Pro-
ceedings of the 6th IASTED International Conference Software Engineering and Appli-
cations, 2002.

86. Katia Hayati and Martín Abadi. Language-based enforcement of privacy policies. In
Privacy Enhancing Technologies, 4th International Workshop, PET 2004, Revised Se-
lected Papers, volume 3424 of LNCS, pages 302–313. Springer, 2005.

87. Lars Heinemann, Veronika Bauer, Markus Herrmannsdoerfer, and Benjamin Hummel.
Identifier-based context-dependent API method recommendation. In CSMR, pages 31–
40, 2012.

88. D. Herman. Narrative: Cognitive approaches. In Keith Brown, editor, Encyclopedia of
language and linguistics. Elsevier Science, 2006.

89. Dirk Heuzeroth, Uwe Aßmann, Mircea Trifu, and Volker Kuttruff. The COMPOST,
COMPASS, Inject/J and RECODER tool suite for invasive software composition: Inva-
sive composition with COMPASS aspect-oriented connectors. In GTTSE, pages 357–
377, 2005.

90. Giles Hogben, Tom Jackson, and Marc Wilikens. A fully compliant research implemen-
tation of the P3P standard for privacy protection: Experiences and recommendations. In
Proceedings of ESORICS 2002, volume 2502 of LNCS, pages 104–125. Springer, 2002.

91. Reid Holmes and Robert J. Walker. Informing Eclipse API production and consumption.
In OOPSLA, pages 70–74, 2007.

92. Daqing Hou and David M. Pletcher. An evaluation of the strategies of sorting, filtering,
and grouping API methods for code completion. In ICSM, pages 233–242, 2011.

93. J. Howison, M. Conklin, and K. Crowston. FLOSSmole: A collaborative repository for
FLOSS research data and analyses. IJITWE, pages 17–26, 2006.

94. S. Hunston. Corpus linguistics. In Keith Brown, editor, Encyclopedia of language and
linguistics. Elsevier Science, 2006.

95. F. Hunt and P. Johnson. On the Pareto distribution of sourceforge projects. In Proceed-
ings Open Source Software Development Workshop, pages 122–129, 2002.

96. John M. Daughtry III, Umer Farooq, Jeffrey Stylos, and Brad A. Myers. API usabil-
ity: CHI’2009 special interest group meeting. In Proceedings of the 27th International
Conference on Human Factors in Computing Systems, CHI 2009, Extended Abstracts
Volume, pages 2771–2774. ACM, 2009.

97. Martin Ivarsson and Tony Gorschek. A method for evaluating rigor and industrial rele-
vance of technology evaluations. Empir. Softw. Eng., 16(3):365–395, 2011.

98. Juanjuan Jiang, Johannes Koskinen, Anna Ruokonen, and Tarja Systä. Constructing
usage scenarios for API redocumentation. In ICPC, pages 259–264, 2007.

http://www.ptidej.net/download/pmart/
http://www.ptidej.net/download/pmart/

206 References

99. Wei Jin and Alessandro Orso. BugRedux: Reproducing field failures for in-house de-
bugging. In ICSE, pages 474–484, 2012.

100. Guy L. Steele Jr. Growing a Language. Higher-Order and Symbolic Computation,
12(3):221–236, 1999.

101. Uwe Jugel. Generating Smart Wrapper Libraries for Arbitrary APIs. In Software Lan-
guage Engineering, Second International Conference, SLE 2009, Revised Selected Pa-
pers, volume 5969 of LNCS, pages 354–373. Springer, 2010.

102. Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. An approach to mining call-
usage patterns with syntactic context. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, pages 457–
460. ACM, 2007.

103. Cory Kapser and Michael W. Godfrey. Toward a Taxonomy of Clones in Source Code:
A Case Study. In Proceedings of Evolution of Large Scale Industrial Software Architec-
tures, ELISA workshop 2003, pages 67–78, 2003.

104. J. Karat, C.-M. Karat, E. Bertino, N. Li, Q. Ni, C. Brodie, J. Lobo, S. B. Calo, L. F.
Cranor, P. Kumaraguru, and R. W. Reeder. Policy framework for security and privacy
management. IBM J. Res. Dev., 53:242–255, March 2009.

105. Günter Karjoth, Matthias Schunter, and Michael Waidner. Platform for enterprise pri-
vacy practices: privacy-enabled management of customer data. In PET’02: Proceedings
of the 2nd international conference on Privacy enhancing technologies, pages 69–84.
Springer, 2003.

106. Owen Kaser and Daniel Lemire. Tag-Cloud Drawing: Algorithms for Cloud Visualiza-
tion. CoRR, abs/cs/0703109, 2007.

107. Patrick Gage Kelley, Joanna Bresee, Lorrie Faith Cranor, and Robert W. Reeder. A
"nutrition label" for privacy. In Proceedings of the 5th Symposium on Usable Privacy
and Security, SOUPS ’09, pages 4:1–4:12. ACM, 2009.

108. Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empirical study of
code clone genealogies. SIGSOFT Softw. Eng. Notes, 30(5):187–196, 2005.

109. Barbara Kitchenham. Procedures for undertaking systematic reviews. Technical Report
TR/SE-0401, Keele University and National ICT Australia Ltd., 2004.

110. Barbara Kitchenham, Hiyam Al-Khilidar, Muhammed Ali Babar, Mike Berry, Karl Cox,
Jacky Keung, Felicia Kurniawati, Mark Staples, He Zhang, and Liming Zhu. Evaluating
guidelines for reporting empirical software engineering studies. Empirical Software
Engineering, 13(1):97–121, 2008.

111. Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and
Stephen Linkman. Systematic literature reviews in software engineering - A systematic
literature review. Inf. Softw. Technol., 51(1):7–15, 2009.

112. Barbara A. Kitchenham, Tore Dybå, and Magne Jørgensen. Evidence-based software
engineering. In ICSE, pages 273–281, 2004.

113. Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, 2008.

114. A. S. Klusener, Ralf Lämmel, and Chris Verhoef. Architectural modifications to de-
ployed software. Sci. of Comput. Program., 54(2–3):143–211, 2005.

115. Donald E. Knuth. An empirical study of FORTRAN programs. Software, Practice &
Experience, 1(2):105–133, 1971.

116. Rainer Koschke. Identifying and removing software clones. In Software Evolution,
pages 15–36. Springer, 2008.

117. Klaus Krippendorff. Content Analysis: an Introduction to Its Methodology 2nd edition.
Sage, Thousand Oaks, CA, 2004.

References 207

118. G. Kumfert and T. Epperly. Software in the DOE: The hidden overhead of “The Build”.
Technical report, Lawrence Livermore National Laboratory, 2002.

119. Ohbyung Kwon. A pervasive P3P-based negotiation mechanism for privacy-aware per-
vasive e-commerce. Decis. Support Syst., 50:213–221, December 2010.

120. R. Lämmel, S. Kitsis, and D. Remy. Analysis of XML schema usage. In Conference
Proceedings XML 2005, November 2005.

121. Michele Lanza and Stéphane Ducasse. Polymetric views - A lightweight visual approach
to reverse engineering. Trans. Software Eng., 29(9):782–795, 2003.

122. Zhenmin Li and Yuanyuan Zhou. PR-Miner: automatically extracting implicit program-
ming rules and detecting violations in large software code. In ESEC/FSE-13: Proceed-
ings of the 10th European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engineering, pages 306–
315, New York, NY, USA, 2005. ACM.

123. Panos Linos, Whitney Lucas, Sig Myers, and Ezekiel Maier. A metrics tool for multi-
language software. In Proceedings of the 11th IASTED International Conference on
Software Engineering and Applications, pages 324–329. ACTA Press, 2007.

124. Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and Pierre
Baldi. Sourcerer: Mining and searching Internet-scale software repositories. DMKD,
pages 300–336, 2009. http://sourcerer.ics.uci.edu/.

125. Simone Livieri, Yoshiki Higo, Makoto Matushita, and Katsuro Inoue. Very-large
scale code clone analysis and visualization of open source programs using distributed
CCFinder: D-CCFinder. In ICSE ’07: Proceedings of the 29th international conference
on Software Engineering, pages 106–115, 2007.

126. Luis Lopez-Fernandez, Gregorio Robles, and Jesus M. Gonzalez-barahona. Applying
social network analysis to the information in CVS repositories. In Proceedings of the
Mining Software Repositories Workshop, 2004.

127. Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej Wa-
sowski. Evolution of the Linux kernel variability model. In SPLC, pages 136–150,
2010.

128. Homan Ma, Robert Amor, and Ewan D. Tempero. Usage patterns of the Java standard
API. In APSEC, pages 342–352, 2006.

129. Paul Malone, Mark McLaughlin, Ronald Leenes, Pierfranco Ferronato, Nick Lockett,
Pedro Bueso Guillen, Thomas Heistracher, and Giovanni Russello. ENDORSE: a le-
gal technical framework for privacy preserving data management. In Proceedings of
the 2010 Workshop on Governance of Technology, Information and Policies, GTIP ’10,
pages 27–34. ACM, 2010.

130. David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. Jungloid mining: help-
ing to navigate the API jungle. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, pages 48–61. ACM,
2005.

131. Radu Marinescu and Daniel Ratiu. Quantifying the quality of object-oriented design:
The factor-strategy model. In Proceedings of the 11th Working Conference on Reverse
Engineering, WCRE ’04, pages 192–201. IEEE, 2004.

132. Thomas J. McCabe. A complexity measure. IEEE Trans. Software Eng., 2(4):308–320,
1976.

133. Shane McIntosh, Bram Adams, and Ahmed E. Hassan. The evolution of Java build
systems. Empirical Software Engineering, 17(4-5):578–608, 2012.

134. Shane McIntosh, Bram Adams, Thanh H.D. Nguyen, Yasutaka Kamei, and Ahmed E.
Hassan. An empirical study of build maintenance effort. In ICSE, pages 141–150, 2011.

http://sourcerer.ics.uci.edu/

208 References

135. Kim Mens and Andy Kellens. IntensiVE, a toolsuite for documenting and checking
structural source-code regularities. In CSMR, pages 239–248, 2006.

136. Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4):316–344, 2005.

137. Amir Michail. Data mining library reuse patterns using generalized association rules. In
ICSE ’00: Proceedings of the 22nd international conference on Software engineering,
pages 167–176. ACM, 2000.

138. Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and Andreas Zeller. Min-
ing trends of library usage. In ERCIM Workshops, pages 57–62, 2009.

139. Yana Momchilova Mileva, Valentin Dallmeier, and Andreas Zeller. Mining API popu-
larity. In TAIC PART, pages 173–180, 2010.

140. Linda D. Misek-Falkoff. The new field of "software linguistics": An early-bird view. In
ACM, editor, ACM SIGMETRICS workshop on Software Metrics, 1982.

141. Iman Hemati Moghadam and Mel Ó Cinnéide. Automated refactoring using design
differencing. In CSMR, pages 43–52, 2012.

142. Marco Casassa Mont and Robert Thyne. Privacy policy enforcement in enterprises with
identity management solutions. In Proceedings of the 2006 International Conference on
Privacy, Security and Trust: Bridge the Gap Between PST Technologies and Business
Services, PST ’06, pages 25:1–25:12. ACM, 2006.

143. Mozilla’s privacy icons project. https://wiki.mozilla.org/Drumbeat/
Challenges/Privacy_Icons. Visited July 2011.

144. MSR mining challenge 2008, 2011. http://msr.uwaterloo.ca/msr2008/
challenge/, http://2011.msrconf.org/msr-challenge.html.

145. Sarah Nadi and Richard C. Holt. Make it or break it: Mining anomalies from Linux
kbuild. In WCRE, pages 315–324, 2011.

146. Seyed Mehdi Nasehi and Frank Maurer. Unit tests as API usage examples. In ICSM,
pages 1–10, 2010.

147. G. Nelson. Description and prescription. In Keith Brown, editor, Encyclopedia of lan-
guage and linguistics. Elsevier Science, 2006.

148. Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi,
Hung Viet Nguyen, Jafar M. Al-Kofahi, and Tien N. Nguyen. Graph-based pattern-
oriented, context-sensitive source code completion. In ICSE, pages 69–79, 2012.

149. Chris Parnin, Carsten Görg, and Ogechi Nnadi. A catalogue of lightweight visualizations
to support code smell inspection. In SOFTVIS, pages 77–86, 2008.

150. Heidar Pirzadeh, Abdelwahab Hamou-Lhadj, and Mohak Shah. Exploiting text mining
techniques in the analysis of execution traces. In ICSM, pages 223–232, 2011.

151. The PROMISE repository of empirical software engineering data. Since 2005. http:
//promisedata.googlecode.com.

152. Erhard Rahm. Comparing the scientific impact of conference and journal publications
in computer science. Inf. Serv. Use, 28(2):127–128, April 2008.

153. Ian Reay, Patricia Beatty, Scott Dick, and James Miller. A survey and analysis of the P3P
protocol’s agents, adoption, maintenance, and future. IEEE Transactions on Dependable
and Secure Computing, 4(2):151–164, April-June 2007.

154. Ian Reay, Scott Dick, and James Miller. A large-scale empirical study of P3P privacy
policies: Stated actions vs. legal obligations. ACM Transactions on the Web (TWEB),
3(2), 2009.

155. Christoph Ringelstein and Steffen Staab. PAPEL: Provenance-aware policy definition
and execution. IEEE Internet Computing, 15:49–58, 2011.

156. Martin P. Robillard and Robert DeLine. A field study of API learning obstacles. Empir.
Softw. Eng., 16(6):703–732, 2011.

https://wiki.mozilla.org/Drumbeat/Challenges/Privacy_Icons
https://wiki.mozilla.org/Drumbeat/Challenges/Privacy_Icons
http://msr.uwaterloo.ca/msr2008/challenge/
http://msr.uwaterloo.ca/msr2008/challenge/
http://2011.msrconf.org/msr-challenge.html
http://promisedata.googlecode.com
http://promisedata.googlecode.com

References 209

157. S. K. Robinson and I. S. Torsun. An empirical analysis of FORTRAN programs. The
Computer Journal, 19(1):56–62, 1976.

158. Atanas Rountev, Scott Kagan, and Michael Gibas. Static and dynamic analysis of call
chains in java. In Proceedings of the ACM/SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2004, pages 1–11. ACM, 2004.

159. Chanchal Kumar Roy, James R. Cordy, and Rainer Koschke. Comparison and evalua-
tion of code clone detection techniques and tools: A qualitative approach. Science of
Computer Programming, 74(7):470–495, 2009.

160. Harry J. Saal and Zvi Weiss. An empirical study of APL programs. Computer Lan-
guages, 2:47–59, 1977.

161. Farzad Salim, Nicholas Paul Sheppard, and Rei Safavi-Naini. Enforcing P3P policies us-
ing a digital rights management system. In PET’07: Proceedings of the 7th international
conference on Privacy enhancing technologies, pages 200–217. Springer, 2007.

162. Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining framework usage changes from
instantiation code. In Proceedings of the 30th international conference on Software
engineering, ICSE ’08, pages 471–480. ACM, 2008.

163. Axel Schmolitzky. Teaching inheritance concepts with Java. In Proceedings of the 4th
international symposium on Principles and practice of programming in Java, PPPJ ’06,
pages 203–207. ACM, 2006.

164. Ari Schwartz. Looking back at P3P: Lessons for the future. http://www.cdt.org/
files/pdfs/P3P_Retro_Final_0.pdf, 2009. Visited July 2011.

165. Francisco Servant and James A. Jones. WhoseFault: Automatic developer-to-fault as-
signment through fault localization. In ICSE, pages 36–46, 2012.

166. Jérôme Siméon and Philip Wadler. The essence of XML. In POPL, pages 1–13, 2003.
167. Dag I. K. Sjøberg, Tore Dybå, and Magne Jørgensen. The future of empirical methods

in software engineering research. In FOSE, pages 358–378, 2007.
168. Dag I. K. Sjøberg, Jo E. Hannay, Ove Hansen, Vigdis By Kampenes, Amela Kara-

hasanović, Nils-Kristian Liborg, and Anette C. Rekdal. A survey of controlled experi-
ments in software engineering. IEEE Trans. Softw. Eng., 31(9):733–753, 2005.

169. Guy L. Steele, Jr., and Richard P. Gabriel. The evolution of Lisp. In ACM SIGPLAN
Notices, pages 231–270. Press, 1993.

170. Margaret-Anne Storey Steve Easterbrook, Janice Singer and Daniela Damian. Selecting
empirical methods for software engineering research. In Forrest Shull, Janice Singer, and
Dag I.K. Sjøberg, editors, Guide to Advanced Empirical Software Engineering, pages
285–311. Springer, 2008.

171. Jeffrey Stylos. Making APIs More Usable with Improved API Designs, Documentation
and Tools. PhD thesis, Carnegie Mellon University, 2009.

172. Jeffrey Stylos, Andrew Faulring, Zizhuang Yang, and Brad A. Myers. Improving API
documentation using API usage information. In VL/HCC, pages 119–126, 2009.

173. Chengnian Sun, Siau-Cheng Khoo, and Shao Jie Zhang. Graph-based detection of li-
brary API imitations. In ICSM, pages 183–192, 2011.

174. Mark D. Syer, Bram Adams, Ying Zou, and Ahmed E. Hassan. Exploring the develop-
ment of micro-apps: A case study on the BlackBerry and Android platforms. In SCAM,
pages 55–64, 2011.

175. Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe, Hayden
Melton, and James Noble. Qualitas corpus: A curated collection of Java code for empir-
ical studies. In APSEC, pages 336–345, 2010. http://qualitascorpus.com/.

176. Ewan Tempero, Steve Counsell, and James Noble. An empirical study of overriding
in open source Java. In Proceedings of the Thirty-Third Australasian Conferenc on

http://www.cdt.org/files/pdfs/P3P_Retro_Final_0.pdf
http://www.cdt.org/files/pdfs/P3P_Retro_Final_0.pdf
http://qualitascorpus.com/

210 References

Computer Science - Volume 102, ACSC ’10, pages 3–12. Australian Computer Society,
2010.

177. Ewan D. Tempero, James Noble, and Hayden Melton. How do java programs use
inheritance? an empirical study of inheritance in java software. In ECOOP 2008 -
Object-Oriented Programming, 22nd European Conference, Proceedings, volume 5142
of LNCS, pages 667–691. Springer, 2008.

178. The Center for Information Policy Leadership. Multi-layered notices ex-
plained. http://aimp.apec.org/Documents/2005/ECSG/DPM1/05_
ecsg_dpm1_003.pdf, 2004. Visited July 2011.

179. The Center for Information Policy Leadership. Ten steps to develop a multilay-
ered privacy notice. http://www.informationpolicycentre.com/files/
Uploads/Documents/Centre/Ten_Steps_whitepaper.pdf, 2005. Vis-
ited July 2011.

180. Suresh Thummalapenta and Tao Xie. SpotWeb: Detecting framework hotspots and
coldspots via mining open source code on the Web. In ASE, pages 327–336, 2008.

181. Nikolai Tillmann and Jonathan de Halleux. Pex-white box test generation for .NET.
In Tests and Proofs, Second International Conference, TAP 2008, Proceedings, volume
4966 of LNCS, pages 134–153. Springer, 2008.

182. Adrian Trifu and Radu Marinescu. Diagnosing design problems in object oriented sys-
tems. In Proceedings of the 12th Working Conference on Reverse Engineering, pages
155–164. IEEE, 2005.

183. TRUSTe. http://www.truste.com. Visited July 2011.
184. Tarmo Uustalu and Varmo Vene. The Essence of Dataflow Programming. In Program-

ming Languages and Systems, APLAS 2005, Proceedings, volume 3780 of LNCS, pages
2–18. Springer, 2005.

185. Stephane Vaucher, Foutse Khomh, Naouel Moha, and Yann-Gael Gueheneuc. Tracking
design smells: Lessons from a study of god classes. In Proceedings of the 2009 16th
Working Conference on Reverse Engineering, WCRE ’09, pages 145–154. IEEE, 2009.

186. Todd L. Veldhuizen. Software libraries and their reuse: Entropy, Kolmogorov complex-
ity, and Zipf’s law. CoRR, abs/cs/0508023, 2005.

187. Joost Visser. Structure Metrics for XML Schema. In Proceedings of XATA 2006, 2006.
188. W3C. A P3P preference exchange language 1.0 (APPEL1.0), W3C working draft, 2002.

http://www.w3.org/TR/P3P-preferences/.
189. W3C. The platform for privacy preferences 1.1 (P3P1.1) specification, 2006. http:

//www.w3.org/TR/P3P11/.
190. Philip Wadler. The Essence of Functional Programming. In POPL, pages 1–14, 1992.
191. Westley Weimer and George C. Necula. Mining temporal specifications for error detec-

tion. In In TACAS, pages 461–476, 2005.
192. Dawid Weiss. Quantitative analysis of open source projects on SourceForge. In Marco

Scotto and Giancarlo Succi, editors, Proceedings of the First International Conference
on Open Source Systems, Genova, pages 140–147, 2005.

193. Richard Wettel, Michele Lanza, and Romain Robbes. Software systems as cities: A
controlled experiment. In ICSE, pages 551–560, 2011.

194. David S. Wile. Lessons learned from real DSL experiments. Sci. Comput. Program.,
51(3):265–290, 2004.

195. Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell, and An-
ders Wesslén. Experimentation in software engineering: An introduction. Kluwer Aca-
demic Publishers, 2000.

http://aimp.apec.org/Documents/2005/ECSG/DPM1/05_ecsg_dpm1_003.pdf
http://aimp.apec.org/Documents/2005/ECSG/DPM1/05_ecsg_dpm1_003.pdf
http://www.informationpolicycentre.com/files/Uploads/Documents/Centre/Ten_Steps_whitepaper.pdf
http://www.informationpolicycentre.com/files/Uploads/Documents/Centre/Ten_Steps_whitepaper.pdf
http://www.truste.com
http://www.w3.org/TR/P3P-preferences/
http://www.w3.org/TR/P3P11/
http://www.w3.org/TR/P3P11/

References 211

196. Tao Xie and Jian Pei. MAPO: mining API usages from open source repositories. In MSR
’06: Proceedings of the 2006 international workshop on Mining software repositories,
pages 54–57, New York, NY, USA, 2006. ACM.

197. Ting Yu, Ninghui Li, and Annie I. Antón. A formal semantics for P3P. In Proceedings
of SWS 2004, pages 1–8. ACM, 2004.

198. Carmen Zannier, Grigori Melnik, and Frank Maurer. On the success of empirical studies
in the international conference on software engineering. In ICSE, pages 341–350, 2006.

199. Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. MAPO: Mining and recom-
mending API usage patterns. In ECOOP, pages 318–343, 2009.

Curriculum Vitae

Contact Ekaterina Pek,
Universität Koblenz-Landau,
Universitätsstr. 1,
56070 Koblenz,
Germany
pek@uni-koblenz.de • www.uni-koblenz.de/~pek

Education

School
1995–1998 Astrakhan Technical Lyceum, Astrakhan, Russia. Honors gradu-

ation (summa cum laude).

1987–1995 Lyceum Nr. 1, Astrakhan, Russia.

University
1998–2003 Rostov State University, Rostov-on-Don, Russia. Diploma in

Applied Mathematics. Honors graduation (summa cum laude).

Employment

Academic Experience
01/2009– University Koblenz-Landau, Koblenz, Germany.

PhD student and full-time researcher.

Industry Experience
05/2012–08/2012 Google, Inc., Munich, Germany.

Intern, CodeSearch project.

pek@uni-koblenz.de
www.uni-koblenz.de/~pek

214 References

10/2007–10/2008 SoftTech, Ltd., Taganrog, Russia.
J2EE Developer; financial mobile platform.

06/2006–10/2007 Inversion, JSC, Rostov, Russia.
J2EE Developer; online banking systems.

08/2004–06/2006 Rostov-Clearing, JSC, Rostov, Russia.
Java Software Developer; desktop banking systems.

01/2004–08/2004 Pralog, Ltd., Moscow, Russia.
Microsoft SQL Database Administrator; retailer systems.

Conference Presentations

01/07/2010 Vivisection of a non-executable, domain-specific language, 18th
IEEE International Conference on Program Comprehension (ICPC
2010), Braga, Portugal.

11/10/2010 Towards Privacy Policy-Aware Web-Based Systems, 1st Doc-
toral Symposium of the International Conference on Software
Language Engineering (SLE-DS 2010), Eindhoven, The Nether-
lands.

13/10/2010 Empirical language analysis in software linguistics, 3rd Inter-
national Conference on Software Language Engineering (SLE
2010), Eindhoven, The Netherlands.

23/03/2011 Large-scale, AST-based API-usage analysis of open-source Java
projects, 26th ACM Symposium on Applied Computing (SAC
2011), Taichung, Taiwan.

18/10/2011 A Framework Profile of .NET, 18th Working Conference on Re-
verse Engineering (WCRE 2011), Limerick, Ireland.

Professional Activities

2003 Microsoft Certified Professional: Microsoft SQL Server 2000
Database Administrator.

03/2010 IEEE Student Member.

10/2010 ACM Student Member.

11/2010 SIGAPP Member.

11/2010 Received the Student Travel Award from ACM SIGAPP for trav-
elling to Taiwan (SAC 2011).

01/2011 GI (Gesellschaft fuer Informatik) Member.

References 215

04/2011 Local organizer for 2011 edition of the Seminar Series on Ad-
vanced Techniques & Tools for Software Evolution.

2011 Received the Google Anita Borg Memorial Scholarship.

2013 A Programm Committee member of ICSM 2013.

2009-2013 Reviewer for the conferences: CADE, CASTA, CSMR, IECCS,
ICPC, MODELS, SCAM.

A

Appendix

A.1 Appendix for Chapter 3

A.1.1 Additional Information on P3P Corpus

Additional information on ODP

The catalog of Open Directory Project (ODP) is subdivided into categories and sub-
categories through multiple levels. There are these top-level categories: Arts, Busi-
ness, Computers, Games, Health, Home, Kids and Teens, News, Recreation, Ref-
erence, Regional, Science, Shopping, Society, Sports, World. There are two special
top-level categories: World and Regional. The following discussion of these two spe-
cial categories should be helpful when trying to understand ODP in general and its
overall coverage of the WWW.

Domain Description #URLs
(cumula-
tive %)

#domains
(cumula-
tive %)

1 .com commercial 3590 (58.13 %) 3402 (60.30 %)
2 .uk United Kingdom 716 (69.72 %) 686 (72.46 %)
3 .gov U.S. governmental 363 (75.60 %) 315 (78.04 %)
4 .it Italy 247 (79.60 %) 84 (79.53 %)
5 .org organization 246 (83.58 %) 214 (83.32 %)
6 .de Germany 217 (87.10 %) 211 (87.06 %)
7 .net network 188 (90.14 %) 175 (90.16 %)
8 .kr Republic of Korea 76 (91.37 %) 76 (91.51 %)
9 .au Australia 59 (92.33 %) 53 (92.45 %)

10 .ca Canada 57 (93.25 %) 54 (93.41 %)
11 .dk Denmark 43 (93.94 %) 41 (94.13 %)
12 .edu educational 40 (94.59 %) 25 (94.58 %)
13 .mx Mexico 36 (95.17 %) 34 (95.18 %)
14 .es Spain 34 (95.73 %) 18 (95.50 %)
15 .fr France 32 (96.24 %) 31 (96.05 %)
16 .ie Republic of Ireland 24 (96.63 %) 22 (96.44 %)

218 Appendix

17 .biz business 21 (96.97 %) 21 (96.81 %)
18 .info information 18 (97.26 %) 16 (97.09 %)
19 .us United States of America 18 (97.56 %) 18 (97.41 %)
20 .at Austria 16 (97.81 %) 15 (97.68 %)
21 .jp Japan 16 (98.07 %) 16 (97.96 %)
22 .cz Czech Republic 14 (98.30 %) 14 (98.21 %)
23 .nz New Zealand 12 (98.49 %) 12 (98.42 %)
24 .ch Switzerland 11 (98.67 %) 11 (98.62 %)
25 .be Belgium 9 (98.82 %) 9 (98.78 %)
26 .mil U.S. military 9 (98.96 %) 8 (98.92 %)
27 .nl Netherlands 9 (99.11 %) 8 (99.06 %)
28 .il Israel 5 (99.19 %) 5 (99.15 %)
29 .bg Bulgaria 4 (99.26 %) 4 (99.22 %)
30 .is Iceland 3 (99.30 %) 3 (99.27 %)
31 .ru Russia 3 (99.35 %) 2 (99.31 %)
32 .za South Africa 3 (99.40 %) 3 (99.36 %)
33 .cc Cocos (Keeling) Islands 2 (99.43 %) 2 (99.40 %)
34 .cn People’s Republic of China 2 (99.47 %) 2 (99.43 %)
35 .eu European Union 2 (99.50 %) 2 (99.47 %)
36 .gr Greece 2 (99.53 %) 2 (99.50 %)
37 .ma Morocco 2 (99.56 %) 1 (99.52 %)
38 .ws Samoa 2 (99.60 %) 2 (99.56 %)
39 .ae United Arab Emirates 1 (99.61 %) 1 (99.57 %)
40 .ao Angola 1 (99.63 %) 1 (99.59 %)
41 .ar Argentina 1 (99.64 %) 1 (99.61 %)
42 .bo Bolivia 1 (99.66 %) 1 (99.63 %)
43 .br Brazil 1 (99.68 %) 1 (99.65 %)
44 .cl Chile 1 (99.69 %) 1 (99.66 %)
45 .ee Estonia 1 (99.71 %) 1 (99.68 %)
46 .fo Faroe Islands 1 (99.72 %) 1 (99.70 %)
47 .hk Hong Kong 1 (99.74 %) 1 (99.72 %)
48 .hr Croatia 1 (99.76 %) 1 (99.73 %)
49 .im Isle of Man 1 (99.77 %) 1 (99.75 %)
50 .in India 1 (99.79 %) 1 (99.77 %)
51 .li Liechtenstein 1 (99.81 %) 1 (99.79 %)
52 .md Moldova 1 (99.82 %) 1 (99.81 %)
53 .my Malaysia 1 (99.84 %) 1 (99.82 %)
54 .no Norway 1 (99.85 %) 1 (99.84 %)
55 .pk Pakistan 1 (99.87 %) 1 (99.86 %)
56 .pl Poland 1 (99.89 %) 1 (99.88 %)
57 .sk Slovakia 1 (99.90 %) 1 (99.89 %)
58 .sm San Marino 1 (99.92 %) 1 (99.91 %)
59 .th Thailand 1 (99.94 %) 1 (99.93 %)
60 .tv Tuvalu 1 (99.95 %) 1 (99.95 %)
61 .tw Republic of China (Taiwan) 1 (99.97 %) 1 (99.96 %)
62 .uy Uruguay 1 (99.98 %) 1 (99.98 %)
63 .zm Zambia 1 (100.00 %) 1 (100.00 %)

A.1 Appendix for Chapter 3 219

Table A.1: Top-level domains in policies URLs

Consider the World category: these are “sites in languages other than English”
where languages actually serve as subcategories of World.1 Also: “If a site’s con-
tent is available in more than one language, the site may be listed in more than one
language category. For example, if a site is in English, German, and French, the site
may be listed in an English-only category, World/Deutsch, and World/Francais”.2

The term ‘English-only category’ refers to the top-level categories other than World
and Regional.

Consider the Regional category: this “category lists sites specific to a particular
geographic area. The Regional category as a whole organizes sites according to their
geographic focus and relevance to a particular regional population. To this end, in-
dividual Regional categories become mini-web directories in their own right, while
remaining functionally part of the larger Open Directory.”3

There may be multiple occurrences of a URL within the directory. That is, a
URL may have more than one associated category.4 However, ODP’s rules seem to
stipulate preference of fitting each site into one category, if there is a best match.
Special reasons for overlapping apply to the categories World and Regional. That is,
World can overlap with the rest of the directory when a site has an English version,
and Regional can overlap with the rest of the directory when “sites are relevant to a
subject category and a specific local geographic area”.

Additional information on corpus diversity

Table A.1 breaks down all policies in terms of the top-level domain of the policy URL
(i.e., the URL found in the policy reference file). The larger part of policies resides
in the com domain. The domains gov, org and net are popular, too. The seven first
top-level domains cover about 90 % of all policies. We show such information here
merely as a short indication of the corpus’ diversity, as it was obtained from ODP.
This information must not be misunderstood as being part of the study, which is not
concerned with P3P adoption by domain, country, or other means of breakdown; see
§3.6.

Fig. A.1 shows the distribution of policies over ODP’s website categories. Nearly
half of all policies are (also) regional policies. Fig. A.2 shows the distribution of
policies in terms of the numbers of associated categories; 81.20 % of all policies are
associated with only one category. Table A.2 shows the distribution of policies over
subcategories of World—that is, over languages. Please note the category English

1 http://www.dmoz.org/guidelines/site-specific.html#
non-english

2 http://www.dmoz.org/guidelines/site-specific.html#
multi-lingual

3 http://www.dmoz.org/guidelines/regional/
4 http://www.dmoz.org/guidelines/site-specific.html#multiple

http://www.dmoz.org/guidelines/site-specific.html#non-english
http://www.dmoz.org/guidelines/site-specific.html#non-english
http://www.dmoz.org/guidelines/site-specific.html#multi-lingual
http://www.dmoz.org/guidelines/site-specific.html#multi-lingual
http://www.dmoz.org/guidelines/regional/
http://www.dmoz.org/guidelines/site-specific.html#multiple

220 Appendix

●

●

●

●

●
●

● ●

● ●
● ●

● ●
●

0
50

0
10

00
15

00
20

00
25

00

#P
ol

ic
ie

s

Reg
ion

al

W
or

ld

Bus
ine

ss

Com
pu

te
rs

Sho
pp

ing

Soc
iet

y

Scie
nc

e
Arts

Hea
lth

Rec
re

at
ion

Refe
re

nc
e

Spo
rts

Hom
e

Gam
es

New
s

ODP's website categories

Figure A.1. Number of policies per ODP category

ODP's website categories

P
ol

ic
y

0
10

00
20

00
30

00
40

00
50

00
60

00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure A.2. Number of ODP categories per policy

A.1 Appendix for Chapter 3 221

Subcategory # Policies # Websites Percent

Español 1065 151144 0.705 %
Deutsch 606 502004 0.121 %
Dansk 567 46628 1.216 %
Français 527 244261 0.216 %
Italiano 506 194942 0.260 %
Chinese 156 56295 0.277 %
Japanese 116 106869 0.109 %
Català 75 36502 0.205 %
Arabic 65 6228 1.044 %
Esperanto 42 4167 1.008 %
Hebrew 42 6379 0.658 %
Český 29 25307 0.115 %
Indonesian 26 2987 0.870 %
Greek 21 2194 0.957 %
Galego 15 1661 0.903 %
Hrvatski 11 5099 0.216 %
Euskara 10 1713 0.584 %
Hindi 9 493 1.826 %
Afrikaans 9 489 1.840 %
Gàidhlig 9 127 7.087 %
Bulgarian 6 3691 0.163 %
Brezhoneg 5 229 2.183 %
Azerbaijani 4 1113 0.359 %
Melay 4 320 1.250 %
Føroyskt 3 65 4.615 %
Íslenska 2 419 0.477 %
Cymraeg 2 389 0.514 %
Gujarati 1 51 1.961 %
Armenian 1 1128 0.089 %
Eesti 1 1278 0.078 %

Table A.2. Policies by subcategories of ODP’s World category (raw data)

is not included here because it is not a valid subcategory of World in ODP’s sense.
Table also shows number of websites and percentage of policies per subcategory.

Additional information on disappeared policies

The corpus was originally downloaded in Dec 2009–Sep 2010. We verified the avail-
ability of the corpus’ policies in Jan 2012. We found that 1,578 policies (out of 6,182)
cannot be obtained anymore. Those disappeared policies come from 1,395 different
websites. We also checked if the sites themselves still exist; it turned out that 173
sites disappeared. Such information may be useful in making claims about the po-
tential decline of P3P. Such claims are not central though to the contributions of the
present effort.

222 Appendix

We analyzed the disappeared policies while only considering those policies
whose sites still exist. We looked into clone group information and syntactical size.
Fig. A.3 shows the results of the analysis as follows:

*

**
*** ** **** ****** **

* *
******* *** *
*

****** *** ***********************************
*

*

* *********

**

*
** *

*

* * *
**** ** ** ** **** ****** ********************************

0 50 100 150

0
20

40
60

80
10

0

Textual clone group cardinality

P
er

ce
nt

 o
f t

ex
tu

al
ly

 c
lo

ne
d

gr
ou

p
no

t a
va

ila
bl

e
an

ym
or

e

●

●

●

●
●

●

●

●

●

●

*
** **

*** *** **** **********
******* ** * ***********

** *

*
**
* **

**

**

**
**

*
*
*

**

0 100 200 300 400 500 600 700

0
20

40
60

80
10

0

Syntactical clone group cardinality

P
er

ce
nt

 o
f s

yn
ta

ct
ic

al
 g

ro
up

 n
ot

 a
va

ila
bl

e
an

ym
or

e
●

●

●

●

●

●

●

●
●

●

Figure A.3. Disappeared policies: (a) Textual cloning; (b) Syntactical cloning

• Subfigure (a) shows how disappeared policies are distributed over textual clone
groups where the x axis shows the clone group’s cardinality and the y axis shows
the percentage of disappeared policies. Large (red) dots show positions of top-ten
textual clone groups. We observe that top-ten groups were mostly only slightly
affected (losing up to 20 % of their clones). There is one top-ten clone group that
was eliminated almost completely. This effect can be associated with a particular
hosting service.

• Subfigure (b) applies to syntactical clone groups instead of textual ones.

A.1.2 Additional Information on P3P Semantics

Additional information on ‘≤sem’

‘≤sem’ for retention levels

The value ‘no retention’ (i.e., not storing data at all) implies the most privacy; the
value ’indefinite retention’ (i.e., storing data forever) implies the least privacy. All
other values are hard to differentiate in terms of privacy. Hence, we group them
between top and bottom.

‘≤sem’ for recipients

The value ‘ours’ (i.e., essentially the corresponding system itself) implies the most
privacy if we assume that adding any further recipient decreases privacy. In fact, P3P

A.1 Appendix for Chapter 3 223

anticipates recipients that use the ‘same’ policy, and hence we group ‘same’ and
‘ours’ together at the bottom.5 The value ‘public’ clearly implies the least privacy.
All the other recipients are hard to differentiate in terms of privacy since we simply
do not know anything about their privacy policies. Hence, we group them between
top and bottom.

‘≤sem’ for purposes

The value ‘current’ implies the most privacy since it models use of the system for its
primary purpose. We treat the values ‘admin’ and ‘develop’ as equal; these are ac-
tivities internal to the corresponding system. The value ‘tailoring’ further decreases
privacy in that the system is adapted for the user based on data from the current ses-
sion. For instance, the website’s content or design may be adapted. There are several
purposes for ‘analysis’ and ‘decision’ that we all consider to maintain less privacy
than ‘tailoring’. A purpose with analysis in the name targets at “research, analysis
and reporting” whereas a purpose with decision in the name targets at “a decision
that directly affects that individual” [189].6 We contend that ‘analysis’ implies less
exposure than ‘decision’, and the prefix ‘pseudo’ provides implies less exposure than
prefix ‘individual’. At the top, we have purposes ‘contact’, ‘historical’, and ‘telemar-
keting’, as they are typically the least related to the original purpose of the system.

Additional information on semantically distinct policies

We are left with 1,385 semantically distinct policies of 4,869 semantically valid poli-
cies of a total of 6,182 policies in the corpus. This remaining diversity can be further
characterized on the grounds of the partial order for the degree of exposure; see
§3.3.4. That is, all the semantically distinct policies combined with ‘≤sem’ define a
Hasse diagram with the ‘full privacy’ policy as bottom element. Alas, the diagram is
too large for inclusion, but we can discuss it in an abstract manner.

• Number of nodes = 1,385 (= number of semantically distinct policies)
• Number of edges = 2,102
• Number of maximal elements = 983
• Longest chain length = 12

As an illustration, Fig. A.4 shows the chains for the policy with the ‘greatest
height’ in the Hasse diagram. (This is the policy with the longest chain length = 12;
there happens to be only one such policy.) The nodes either refer to clone groups
(specified by number and cardinality) or to specific (say, unique) policies. The edges
are labeled with the relation between smaller and greater element in compliance with
‘≤sem’. We propose that an inspection of the Hasse diagram, as exercised here, may

5 One might argue that ‘same’ decreases privacy, when compared to just ‘ours’ since data
is shared with another entity. This would mean that we essentially trust the primary entity
more than the other entity.

6 http://www.w3.org/TR/P3P11/#PURPOSE

http://www.w3.org/TR/P3P11/#PURPOSE

224 Appendix

crossroadsappliance.com.w3c.default#default

sfondo.it.w3c.sfondo.p3p#primary

plus 2 data refs

Sem.Gr.#26, card=19

plus 1 data refs

certes.net.privacy.policy1.p3p#certesconsulting

contact(opt-in) -> contact(always)

fourpointsinc.com.w3c.mailing.p3p#mailing

delivery(opt-in) -> delivery(always)

Sem.Gr.#2, card=323

plus 1 data refs

ultrex.com.privacy.tconcepts_policy_full#policy1

non-id : true -> false

Sem.Gr.#136, card=3

non-id : true -> false
non-id : true -> false
non-id : true -> false

bryophyllum.com.b.bryophyllum.p3p#bryophyllum

no-retention -> business-practices

Sem.Gr.#261, card=2

plus 1 data refs

Sem.Gr.#113, card=3

plus 1 data refs

Sem.Gr.#339, card=2

business-practices -> indefinitely
business-practices -> indefinitely

smeter.net.w3c.forums-registered#forums-registered

current(opt-in) -> current(always)
current(opt-in) -> current(always)

Sem.Gr.#123, card=3

stated-purpose -> indefinitely
stated-purpose -> indefinitely

Syn.Gr.#1, card=690

plus 2 data refs plus 2 data refs plus 2 data refs

Figure A.4. The longest partially ordered chain(s) of semantically distinct policies

A.1 Appendix for Chapter 3 225

be helpful in deciding replacements of uncommon policies by common ones. This
may be useful for privacy approaches that stipulate a smaller number of ‘common
privacy scenarios’.

Max chain length

F
re

qu
en

cy

0
10

0
20

0
30

0
40

0
50

0
60

0

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure A.5. Distribution of longest paths for semantically distinct policies

Fig. A.5 shows the distribution of longest paths from the bottom element no non-
bottom elements. About half of all semantically distinct policies are ‘alone’; they are
not approximated by any policies but the bottom element; they do not approximate
any policies. One may expect a top element in the Hasse diagram—something like
‘no privacy’ (as opposed to ‘full privacy’). This top element is not exercised and this
may be impractical because of P3P’s variable-category data elements. The number
of edges is an indicator that many policies serve as joins because the lowest possible
number of edges in a partially ordered set with a bottom element equals the number
of elements− 1. This means that if uncommon policies are close (in terms of ‘≤sem’)
to a common policy, then one could decide to adopt the common policy in favor of
the uncommon one. Future work on the diversity of P3P policies is needed.

Additional information on P3P extensions

To understand the diversity of policies that use extensions other than ‘group-info’,
we examined the domains of the underlying websites. All these sites use distinct
domains. Table A.3 lists frequency of top-level domains. Hence, most cases of non-
trivial usage of the extension mechanism come from websites of the Republic of
Korea and from commercial websites.

226 Appendix

Entity Top-level domain #

Republic of Korea .kr 76
commercial .com 66
network .net 6
U.S. governmental .gov 5
organization .org 4
People’s Republic of China .cn 1
Germany .de 1
Australia .au 1
Italy .it 1
Pakistan .pk 1

Table A.3. Top-level domains of policies using extensions aside ‘group-info’

We further examined the domains. We observed a few cases of shared
subdomains: (cii.samsung.co.kr, shi.samsung.co.kr), (cops.usdoj.gov, usdoj.gov),
(hoam.samsungfoundation.org, kids.samsungfoundation.org), (ec21.com, ec21.net).
Also, we observed the case of a company, Samsung, with several websites using do-
mains without shared subdomains: cii.samsung.co.kr, hoam.samsungfoundation.org,
kids.samsungfoundation.org, samsungengineering.co.kr, samsungengineering.com,
samsungtechwin.com, sem.samsung.com, shi.samsung.co.kr. Further screening of
all domains with top-level domains .kr and .com confirmed that indeed diverse
entities appear in those lists. A noticeable number of commercial sites concerned
Korean companies. Hence, we found that most non-trivial extension usage concen-
trates on Korea while exercising various companies and non-commercial entities. At
the time of writing, we do not know the reasons for such non-proportional use of
extensions in Korea. One possible reason could be a particular, national legislation.

A.2 Appendix for Chapter 4 227

A.2 Appendix for Chapter 4

A.2.1 Additional Information on Java APIs

Full list of known Java APIs used in Section 4.2

A
PI

D
om

ai
n

Co
re

#
Pr

oj
ec

ts

#
Ca

lls
#

M
et

ho
ds

ca
lle

d

1 Java Collections Collections yes 1374 392639 406
2 AWT GUI yes 754 360903 1607
3 Swing GUI yes 716 581363 3369
4 Reflection Other yes 560 15611 154
5 Core XML XML yes 413 90415 537
6 DOM XML yes 324 52593 180
7 SAX XML no 310 13725 156
8 log4j Logging no 254 43533 187
9 JUnit Testing no 233 71481 1011
10 Comm.Logging Logging no 151 21996 88
11 JNDI Networking yes 101 2900 130
12 Comm.Lang Other no 93 4620 405
13 JDOM XML no 86 16770 423
14 RMI Networking yes 64 1183 46
15 Hibernate Database no 63 15192 2123
16 Comm.Beanutils Other no 51 407 67
17 Xerces XML no 42 3337 213
18 Comm.Collections Collections no 37 4085 1271
19 dom4j XML no 37 21874 157
20 Lucene Search no 36 12302 1684
21 Comm.IO IO no 34 450 72
22 Comm.CLI Other no 32 2463 134
23 Comm.FileUpload Networking no 31 626 49
24 Axis Webservices no 30 15746 210
25 SWT GUI no 30 56846 4361
26 JMF Media no 28 9030 488
27 Comm.Codec Other no 27 1064 108
28 Struts Web Apps no 26 11938 227
29 Comm.Digester XML no 20 1127 68
30 Jena Semantic Web no 20 7304 787
31 BC Crypto Security no 16 5147 569
32 Comm.DBCP Database no 15 119 48
33 jMock2 Testing no 15 3888 46
34 TestNG Testing no 14 3974 24

Continued on next page

228 Appendix

Table A.4 – continued from previous page

A
PI

D
om

ai
n

Co
re

#
Pr

oj
ec

ts

#
Ca

lls
#

M
et

ho
ds

ca
lle

d

35 Comm.Pool Other no 14 171 43
36 GWT Web Apps no 13 12987 639
37 Java 3D GUI no 12 490 80
38 JFace GUI no 10 3588 346
39 Batik GUI no 10 336 70
40 Comm.Net Networking no 10 2016 646
41 LWJGL GUI no 10 2988 325
42 Berkeley DB Database no 9 769 128
43 Comm.Configuration Other no 9 485 55
44 JAI GUI no 9 111 50
45 XMLBeans XML no 9 9891 154
46 jogl GUI no 9 261 45
47 MySQL Connector/J Database no 8 17738 1288
48 JavaHelp GUI no 8 29 10
49 XMLPull XML no 7 444 20
50 Comm.Math Other no 6 1608 487
51 Jaxen XML no 6 93 19
52 Comm.Email Networking no 5 64 28
53 XOM XML no 5 5801 98
54 Comm.DbUtils Database no 5 196 13
55 Axis2 Webservices no 5 18794 164
56 GNU Trove Collections no 4 105 44
57 AXIOM XML no 4 3010 65
58 j2ssh Networking no 4 4238 1075
59 Comm.Betwixt Other no 3 209 28
60 OFBiz e-Business no 3 170713 6781
61 Xalan XML no 3 6 2
62 Java Expression Language Other no 2 9 6
63 StAX XML no 2 16 9
64 Struts2 Web Apps no 2 25 8
65 Express4J GUI no 2 31331 4417
66 Guice Other no 2 50 9
67 Comm.Discovery Other no 2 11 3
68 WSMO4J Webservices no 2 774 155
69 QuickFIX e-Business no 1 62 30
70 Comm.Transaction Other no 1 6 4
71 Comm.Chain Other no 1 12 6

Continued on next page

A.2 Appendix for Chapter 4 229

Table A.4 – continued from previous page

A
PI

D
om

ai
n

Co
re

#
Pr

oj
ec

ts

#
Ca

lls
#

M
et

ho
ds

ca
lle

d

72 Comm.EL Other no 0 0 0
73 Comm.Daemon Other no 0 0 0
74 Comm.Exec Other no 0 0 0
75 Comm.Proxy Other no 0 0 0
76 Comm.Primitives Other no 0 0 0
77 Comm.Attributes Other no 0 0 0

Table A.4: List of the known Java APIs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 1e+05 1e+06

R
a
ti
o

Project Size (in MC)

Projects Min 1st Q Median Mean 3rd Q Max

All 0.02 0.45 0.56 0.56 0.67 1
Reference 0.11 0.43 0.5 0.5 0.57 0.99

Figure A.6. Ratio of Java API method calls to all method calls

Additional information on Java API usage in projects

Fig. A.6 shows the usage of known Java API methods relative to all methods in a
project—both in terms of calls. The smaller the ratio (the closer to zero), the lower
the contribution of API calls. The quartiles show that in most projects, about each

230 Appendix

second method call is an API call. As far as instance-method calls are concerned, the
figure distinguishes API vs. project-based method calls solely on the grounds of the
static receiver type of methods.

In [186], library reuse is studied at a level of shared objects in the operating sys-
tems Sun OS and Mac OS X. One of the observations is that reuse seems to be low
in the sense of Zipf’s law. Thus the most frequent function will be referenced ap-
proximately twice as often as the second most frequent function, which occurs twice
as often as the fourth most frequent function, etc. Fig. A.7 shows the distribution of
frequency of method calls in the corpus. Only 0.03% of methods are called more
than 10,000 times, while 98.2% of methods are called less than 100 times. The plot
suggests a Zipf-style distribution.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 1e+04 1e+05

N
u

m
b

e
r

o
f

c
a

ll
s

Method

API

Non-API

Figure A.7. Frequency of calling Java API vs. non-API methods

Additional information on framework-like usage of Java APIs

Fig. A.8 shows the relative frequency of API-interface implementations for all the
known Java APIs (including Core APIs). The picture is dominated by AWT handler
types, the interface for iterators, and a few XML-related types.

Fig. A.9 shows the relative frequency of Java API-class extensions. The picture
is entirely dominated by Swing’s types for GUIs. Many other API types are imple-
mented or extended, but only with a marginal frequency.

Full list of Java APIs with framework-like usage

Table A.5 provides the complete list of Java APIs with detected framework-like us-
age.

A.2 Appendix for Chapter 4 231

Figure A.8. Tag cloud of implemented Java API interfaces

Figure A.9. Tag cloud of overridden Java API classes

API # projects # methods # dist. methods # derived types # API types

impl ext any impl over impl over int cl int cl

Swing 173 381 391 2,512 11,150 305 645 443 1,859 39 92
AWT 194 75 225 4,201 756 593 176 651 120 31 24
Java Collections 120 0 120 986 0 16 0 208 0 3 0
SAX 28 21 42 428 90 85 21 37 29 12 3
JUnit 3 38 40 4 344 4 19 3 46 2 2
Core XML 11 5 14 89 13 17 4 14 5 9 3
SWT 5 8 10 37 86 4 13 25 11 3 3
log4j 1 8 8 25 87 7 9 2 9 2 3
Reflection 7 0 7 10 0 1 0 7 0 1 0
JMF 4 2 6 8 6 6 3 4 3 3 3
DOM 6 0 6 572 0 41 0 15 0 10 0
GWT 5 6 6 442 143 59 36 18 26 22 11
Hibernate 5 1 5 136 1 78 1 17 1 12 1
Lucene 1 5 5 1 22 1 11 1 13 1 7
Xerces 4 3 4 915 143 46 6 9 1 8 1
Axis 2 1 3 8 4 2 1 5 1 1 1
JNDI 3 0 3 52 0 18 0 3 0 3 0
Struts 0 2 2 0 14 0 2 0 2 0 2
Commons Beanutils 0 1 1 0 1 0 1 0 1 0 1
JFace 0 1 1 0 4 0 1 0 1 0 1
RMI 0 1 1 0 1 0 1 0 1 0 1
Commons Collections 1 0 1 2 0 1 0 2 0 1 0
jMock2 0 1 1 0 7 0 1 0 1 0 1
GNU Trove 0 1 1 0 5 0 2 0 1 0 1
Commons Digester 0 1 1 0 2 0 1 0 1 0 1
Commons Logging 1 0 1 18 0 1 0 1 0 1 0
Bouncy Castle Crypto 0 1 1 0 2 0 1 0 1 0 1
Jena 1 0 1 3 0 1 0 1 0 1 0
Commons Pool 0 1 1 0 3 0 2 0 1 0 1
Commons Chain 1 0 1 1 0 1 0 1 0 1 0
Commons DbUtils 0 1 1 0 1 0 1 0 1 0 1
Commons Lang 0 1 1 0 4 0 3 0 2 0 1
Berkeley DB 0 1 1 0 1 0 1 0 1 0 1
Commons Net 0 1 1 0 3 0 2 0 1 0 1
LWJGL 0 1 1 0 1 0 1 0 1 0 1

Table A.5. Full list of Java APIs with framework-like usage

232 Appendix

A.2.2 Additional Information on .NET Framework

This part of the appendix is, unfortunately, not entirely printer-friendly. We urge the
reader to view data on the screen, thereby being able to see the details in the tables
and figures. (Please use zooming and rotation features of your PDF viewer.) We do
apologize for the inconvenience.

Reuse-related metrics for frameworks
We add definitions of a few metrics that we only hinted at in §4.3.2.

Specializability is taken to the method level as follows. Each namespace can be
measured in terms of % Specializable methods, i.e., the percentage of all methods
that are either abstract or non-sealed methods—hence excluding static and sealed as
well as non-virtual methods. A metrics is added for % Sealed methods, i.e., the per-
centage of “non-overridable virtual methods”—which is the percentage of all virtual,
non-abstract instance method declarations that are sealed (including the case that the
hosting class is sealed entirely).

0 10 20 30 40 50 60

System.Runtime.CompilerServices
System.Security.Cryptography.*

Microsoft.SqlServer.Server
System.Net.*

System.Collections.Specialized
System.Collections.Generic

System.Security.Permissions
System.Security.Authentication.*

System.Management.*
System.Runtime.Caching.*

System.Runtime.Remoting.*
System.Runtime.Serialization.*

System.CodeDom.*
System.IdentityModel.*

System.Runtime.DurableInstancing
System.Runtime.InteropServices.*

System.Drawing.*
System.Transactions.*

System.Configuration.*
System.Windows.Forms.*

System.EnterpriseServices.*
System.ServiceModel.*

System.Data.*
System.Xml.*

System.Windows.*
System.Xaml.*

Microsoft.VisualC.*
System.Workflow.*

Microsoft.Vsa
System.Dynamic

Microsoft.JScript.*
System.AddIn.*

Microsoft.VisualBasic.*
System.Activities.*

System.ComponentModel.*
System.Web.*

1
1
1
1
1
1
1
1

2
2
2
2

3
3
3

4
4
4

5
5

6
6

7
7
7

8
9
9

11
11

14
16

17
17

43
52

Figure A.10. .NET namespaces sorted by the number of orphan types

The notion of orphan types can also be refined as follows. That is, types may
be orphaned in a more inclusive sense if we focus specifically on composite frame-
works. There is the variation % Local orphan classes: the percentage of all abstract
classes in a given namespace that are never concretely implemented within the given
namespace. Likewise, there is the variation % Local orphan interfaces. These met-
rics show us whether there are namespaces that are incomplete by themselves while
they are ‘fully illustrated’ by other namespaces so that they do not count as hosting
‘global’ orhpans.

More detailed information about orphan types in .NET is provided by Fig-
ure A.10.

N
am

es
pa

ce

System.ServiceModel.*
System.Web.*
Microsoft.VisualBasic.*
System.Workflow.*
System.Activities.*
System.Data.*
System.Windows.Forms.*
System.Net.*
System.ComponentModel.*
System
System.Runtime.Remoting.*
System.Xml.*
System.IdentityModel.*
Microsoft.JScript.*
System.DirectoryServices.*
System.Configuration.*
System.Security.Cryptography.*
System.Deployment.*
System.Diagnostics.*
System.IO.*
System.Runtime.Serialization.*
System.Resources.*
System.Messaging.*
System.CodeDom.*
System.Security.Policy
System.Runtime
System.EnterpriseServices.*
System.Xaml.*
System.Security
Microsoft.Win32.*
System.Threading.*
System.AddIn.*
System.Management.*
System.Reflection.*
System.Drawing.*
System.Security.Permissions
System.ServiceProcess.*
System.Runtime.InteropServices.*
System.Dynamic
Microsoft.CSharp.*
System.Security.Principal
System.Security.AccessControl
System.Linq.*
System.Transactions.*
System.Runtime.CompilerServices
System.Globalization
System.Security.Authentication.*
System.Runtime.Caching.*
System.Windows.*
System.Collections.Generic
System.Text.RegularExpressions
System.Collections.ObjectModel
System.Collections.Concurrent
Microsoft.SqlServer.Server
System.Collections.Specialized
System.Runtime.DurableInstancing
System.Text
System.Media
System.Collections
System.Runtime.Versioning
Microsoft.VisualC.*
System.Runtime.Hosting
System.Device.Location
System.Timers
System.Numerics
System.Runtime.ConstrainedExecution
System.Runtime.ExceptionServices

Sy
st

em
.S

er
vi

ce
M

od
el

.*

•

•

•
•

•

•
•
•

•

•
•

•
•
•
•
•
•

•
•
•
•

•
•
•
•
•
•

•

•
•

•
•
•

•
Sy

st
em

.W
eb

.*

•
•
•
•

•

•
•
•

•
•
•
•

•
•

•
•
•
•

•
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•

•
•

M
ic

ro
so

ft
.V

is
ua

lB
as

ic
.*

•

•
•
•
•
•
•

•
•
•
•
•

•
•

•
•
•
•

•
•
•
•

•
•

•
•
•

•
•

•
•
•
•

•
•
•
•

•
Sy

st
em

.W
or

kfl
ow

.*

•

•
•
•
•
•
•
•
•

•
•
•

•
•
•
•

•
•

•
•

•
•
•

•
•

•
•
•

•
•
•

•
•

•
•

•
Sy

st
em

.A
ct

iv
iti

es
.*

•

•

•
•

•
•

•
•
•

•
•

•
•
•

•
•

•
•

•
•
•
•

•
•
•
•
•

•
•
•

•
•

Sy
st

em
.D

at
a.

*

•

•

•
•

•
•

•
•
•

•
•

•
•
•

•
•

•
•

•
•
•
•

•
•
•

•

•
•

•
Sy

st
em

.W
in

do
w

s.
Fo

rm
s.

*
•

•

•

•
•

•
•

•

•
•
•

•

•

•
•

•
•

•
•
•

•
•
•
•

Sy
st

em
.N

et
.*

•

•

•

•
•
•

•
•

•

•
•

•
•

•
•

•
•
•

•
•

•
•

Sy
st

em
.C

om
po

ne
nt

M
od

el
.*

•

•

•

•

•

•

•

•

•

•

•
Sy

st
em

Sy
st

em
.R

un
tim

e.
R

em
ot

in
g.

*

•
•

•

•
•

•

•
•
•

•
•

•
•

•
•

•
•

•
•

Sy
st

em
.X

m
l.*

•
•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
Sy

st
em

.Id
en

tit
yM

od
el

.*

•

•
•
•
•
•

•
•
•

•
•
•

•
•

•
•
•
•

•
•
•

•
•

M
ic

ro
so

ft
.J

Sc
ri

pt
.*

•
•
•
•

•
•

•
•
•
•

•
•

•
•
•

•
•

•
•
•

•
•

•
Sy

st
em

.D
ir

ec
to

ry
Se

rv
ic

es
.*

•
•
•

•

•
•
•
•

•
•

•
•

•
•
•

•
•
•

•
•

•
•

•
Sy

st
em

.C
on

fig
ur

at
io

n.
*

•
•

•

•
•
•

•

•
•
•

•
•

•
•

•
•

Sy
st

em
.S

ec
ur

ity
.C

ry
pt

og
ra

ph
y.

*

•
•

•

•

•
•

•
•

•
•

•
•

•
•

•
Sy

st
em

.D
ep

lo
ym

en
t.*

•
•
•
•
•

•
•

•
•
•

•
•

•
•

•
•

•
•

Sy
st

em
.D

ia
gn

os
tic

s.
*

•

•

•

•

•
•

•

•

•

Sy
st

em
.IO

.*

•

•
•

•
•

•
Sy

st
em

.R
un

tim
e.

Se
ri

al
iz

at
io

n.
*

•
•

•

•

Sy
st

em
.R

es
ou

rc
es

.*
•

•

•
•
•
•

•
•

•

•
•

•
•

•
•

•
•
•

Sy
st

em
.M

es
sa

gi
ng

.*
•

•
•

•
•
•

•
•
•

•
•

•
•
•

•
•

•
•

•
•

Sy
st

em
.C

od
eD

om
.*

•

•
•
•

•

•
•
•

•
•

•
•

•
•

•
•

•
•

Sy
st

em
.S

ec
ur

ity
.P

ol
ic

y

•

•
•

•
•

•
•

•

Sy
st

em
.R

un
tim

e
•

•
•
•

•
•

•
•
•

•
•

•

•
•

Sy
st

em
.E

nt
er

pr
is

eS
er

vi
ce

s.
*

•
•
•
•

•
•
•
•

•
•
•

•
•

•

•
•

•
Sy

st
em

.X
am

l.*
•
•

•
•
•
•

•

•
•

•
•

•

•
•

•
•

•
Sy

st
em

.S
ec

ur
ity

•

•
•

•

M
ic

ro
so

ft
.W

in
32

.*

•
•

•

•
•

•

Sy
st

em
.T

hr
ea

di
ng

.*

•

Sy
st

em
.A

dd
In

.*
•
•
•

•
•
•

•
•

•

•
•

•
•

•
•

•
•

Sy
st

em
.M

an
ag

em
en

t.*
•
•

•
•
•
•

•
•

•

•

•
•

•
•

•
•

•
Sy

st
em

.R
efl

ec
tio

n.
*

•

Sy
st

em
.D

ra
w

in
g.

*

•
•

•
•
•

•
•

•

•

•
•

•
•

•
Sy

st
em

.S
ec

ur
ity

.P
er

m
is

si
on

s

•

•

•

•
•

Sy
st

em
.S

er
vi

ce
Pr

oc
es

s.
*

•
•
•

•
•

•
•

•
•
•

•

•
•

•
•

Sy
st

em
.R

un
tim

e.
In

te
ro

pS
er

vi
ce

s.
*

Sy
st

em
.D

yn
am

ic
•
•
•

•
•

•
•

•

•

•
•

•
M

ic
ro

so
ft

.C
Sh

ar
p.

*

•

•
•

•
•

•
•

•
•

•
•

Sy
st

em
.S

ec
ur

ity
.P

ri
nc

ip
al

•

•

•
•

•
•

•
•

•
Sy

st
em

.S
ec

ur
ity

.A
cc

es
sC

on
tr

ol
•

•

•

•

•

•
•

•
Sy

st
em

.L
in

q.
*

•
•
•

•
•

•

•
•
•

•
•

Sy
st

em
.T

ra
ns

ac
tio

ns
.*

•
•

•
•

•

•
•

•

•
•

•
•

Sy
st

em
.R

un
tim

e.
C

om
pi

le
rS

er
vi

ce
s

•
Sy

st
em

.G
lo

ba
liz

at
io

n

•

•

Sy

st
em

.S
ec

ur
ity

.A
ut

he
nt

ic
at

io
n.

*

•
•

•
•

•
•

•
•

•
•

•
Sy

st
em

.R
un

tim
e.

C
ac

hi
ng

.*
•

•
•

•
•

•
•

•

•
•

•
•

Sy
st

em
.W

in
do

w
s.

*
•
•

•
•

•

•
•
•

•

•
•

Sy
st

em
.C

ol
le

ct
io

ns
.G

en
er

ic

•

Sy

st
em

.T
ex

t.R
eg

ul
ar

E
xp

re
ss

io
ns

•

•

•
•

•
•

•

•
•

Sy
st

em
.C

ol
le

ct
io

ns
.O

bj
ec

tM
od

el

•

•
•

•

•
Sy

st
em

.C
ol

le
ct

io
ns

.C
on

cu
rr

en
t

•
•

•

•
•

•
•

•

•
M

ic
ro

so
ft

.S
ql

Se
rv

er
.S

er
ve

r

•
•
•

•
•

•
•

•

•
Sy

st
em

.C
ol

le
ct

io
ns

.S
pe

ci
al

iz
ed

•
•

•
•
•

•

•
•

Sy
st

em
.R

un
tim

e.
D

ur
ab

le
In

st
an

ci
ng

•
•

•

•
•
•

•
•

•

Sy
st

em
.T

ex
t

•

•

•

Sy
st

em
.M

ed
ia

•
•
•

•
•

•
•

•
•

Sy

st
em

.C
ol

le
ct

io
ns

•

Sy

st
em

.R
un

tim
e.

V
er

si
on

in
g

•
•

•
•

•
•

M

ic
ro

so
ft

.V
is

ua
lC

.*
•

•
•

•
•

Sy

st
em

.R
un

tim
e.

H
os

tin
g

•

•

Sy
st

em
.D

ev
ic

e.
L

oc
at

io
n

•
•

•
•

•

Sy
st

em
.T

im
er

s
•
•

•
•

Sy

st
em

.N
um

er
ic

s
•

•
•

Sy

st
em

.R
un

tim
e.

C
on

st
ra

in
ed

E
xe

cu
tio

n
•

Sy
st

em
.R

un
tim

e.
E

xc
ep

tio
nS

er
vi

ce
s

•

Ta
bl

e
A

.6
.I

nt
er

-n
am

es
pa

ce
re

fe
re

nc
in

g
w

ith
in

th
e

.N
E

T
Fr

am
ew

or
k

N
am

es
pa

ce

System.Web.*
System.ServiceModel.*
System.Data.*
System.Workflow.*
System.Net.*
System.Activities.*
System.Windows.Forms.*
Microsoft.VisualBasic.*
System.ComponentModel.*
System.Messaging.*
System.DirectoryServices.*
System
System.IO.*
System.Configuration.*
System.Xaml.*
Microsoft.JScript.*
System.Runtime.Serialization.*
System.Runtime.Remoting.*
System.Diagnostics.*
System.Management.*
System.Dynamic
System.Xml.*
System.Security.Authentication.*
System.Drawing.*
System.Deployment.*
System.Threading.*
System.Security.Cryptography.*
System.ServiceProcess.*
System.Transactions.*
System.Runtime.InteropServices.*
System.Collections.Generic
System.Security.Policy
System.Reflection.*
System.Collections.ObjectModel
System.Resources.*
System.Security.Principal
System.AddIn.*
System.CodeDom.*
System.IdentityModel.*
System.Runtime.Caching.*
System.Windows.*
Microsoft.VisualC.*
System.Security
System.Runtime.CompilerServices
Microsoft.Win32.*
System.Collections.Concurrent
System.Globalization
System.Security.Permissions
System.Security.AccessControl
System.Text.RegularExpressions
System.Collections.Specialized
System.Collections
System.Text
System.Linq.*
Microsoft.SqlServer.Server
System.Device.Location
System.EnterpriseServices.*
Microsoft.CSharp.*
System.Runtime
System.Media
System.Timers
System.Runtime.DurableInstancing
System.Runtime.Hosting
System.Runtime.ConstrainedExecution
System.Runtime.ExceptionServices
System.Runtime.Versioning
System.Numerics

Sy
st

em
.W

eb
.*

•
•

•
•
•

•
•

•
•

•
•

•
•
•

•
•

•
•
•
•

Sy
st

em
.S

er
vi

ce
M

od
el

.*

•

•
•
•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
Sy

st
em

.D
at

a.
*

•
•

•
•
•
•

•
•

•
•

•
•

•
•

•
Sy

st
em

.W
or

kfl
ow

.*
•

•

•
•

•
•
•

•
•

•
•

•
•

Sy
st

em
.N

et
.*

•

•
•
•

•
•

•
•

•
•

•

•
•

Sy
st

em
.A

ct
iv

iti
es

.*
•

•

•
•

•
•

•
•

•
•

•
•

Sy
st

em
.W

in
do

w
s.

Fo
rm

s.
*

•
•

•
•

•
•
•

•
•

•
M

ic
ro

so
ft

.V
is

ua
lB

as
ic

.*
•
•

•

•
•

•
•

•
•

•
•

Sy
st

em
.C

om
po

ne
nt

M
od

el
.*

•

•
•

•

•

•
Sy

st
em

.M
es

sa
gi

ng
.*

•
•

•
•

•
•

•
•

•
•

Sy
st

em
.D

ir
ec

to
ry

Se
rv

ic
es

.*
•

•

•
•
•

•
•

•
Sy

st
em

Sy

st
em

.IO
.*

•
•

•

•
•

•
Sy

st
em

.C
on

fig
ur

at
io

n.
*

•
•

•
•

•
•

Sy
st

em
.X

am
l.*

•
•

•

•
•

•
•

M
ic

ro
so

ft
.J

Sc
ri

pt
.*

•
•

•

•
•

•
Sy

st
em

.R
un

tim
e.

Se
ri

al
iz

at
io

n.
*

•

Sy
st

em
.R

un
tim

e.
R

em
ot

in
g.

*
•

•
•
•

•
Sy

st
em

.D
ia

gn
os

tic
s.

*
•

•
•

•

•
•

Sy
st

em
.M

an
ag

em
en

t.*
•

•
•

•

•
•

Sy
st

em
.D

yn
am

ic
•

•

•
•

•
•

Sy
st

em
.X

m
l.*

•
•

•
•

Sy
st

em
.S

ec
ur

ity
.A

ut
he

nt
ic

at
io

n.
*

•
•

•
•

•

•
Sy

st
em

.D
ra

w
in

g.
*

•

•

•
•

•
Sy

st
em

.D
ep

lo
ym

en
t.*

•
•

•
•

•

Sy
st

em
.T

hr
ea

di
ng

.*
•

•
•

•

•
Sy

st
em

.S
ec

ur
ity

.C
ry

pt
og

ra
ph

y.
*

•
•

•

•
•

Sy
st

em
.S

er
vi

ce
Pr

oc
es

s.
*

•
•

•
•

•
•

Sy
st

em
.T

ra
ns

ac
tio

ns
.*

•
•

•

•
•

Sy
st

em
.R

un
tim

e.
In

te
ro

pS
er

vi
ce

s.
*

•
Sy

st
em

.C
ol

le
ct

io
ns

.G
en

er
ic

•

•
Sy

st
em

.S
ec

ur
ity

.P
ol

ic
y

•
•

•

•
Sy

st
em

.R
efl

ec
tio

n.
*

•

•
Sy

st
em

.C
ol

le
ct

io
ns

.O
bj

ec
tM

od
el

•
•

Sy
st

em
.R

es
ou

rc
es

.*
•

•
•

•

Sy
st

em
.S

ec
ur

ity
.P

ri
nc

ip
al

•
•

•

•
Sy

st
em

.A
dd

In
.*

•
•

•

•
Sy

st
em

.C
od

eD
om

.*
•

•
•

•

Sy
st

em
.Id

en
tit

yM
od

el
.*

•
•

•

•
Sy

st
em

.R
un

tim
e.

C
ac

hi
ng

.*
•

•
•

•

Sy
st

em
.W

in
do

w
s.

*
•

•
•

•

M
ic

ro
so

ft
.V

is
ua

lC
.*

•
•

•

Sy
st

em
.S

ec
ur

ity

•

•
Sy

st
em

.R
un

tim
e.

C
om

pi
le

rS
er

vi
ce

s
•

•

•
M

ic
ro

so
ft

.W
in

32
.*

•

Sy
st

em
.C

ol
le

ct
io

ns
.C

on
cu

rr
en

t
•

•

•
Sy

st
em

.G
lo

ba
liz

at
io

n
•

•

•
Sy

st
em

.S
ec

ur
ity

.P
er

m
is

si
on

s
•

•

•
Sy

st
em

.S
ec

ur
ity

.A
cc

es
sC

on
tr

ol
•

•

•
Sy

st
em

.T
ex

t.R
eg

ul
ar

E
xp

re
ss

io
ns

•
•

•

Sy
st

em
.C

ol
le

ct
io

ns
.S

pe
ci

al
iz

ed
•

•

•

Sy
st

em
.C

ol
le

ct
io

ns

Sy
st

em
.T

ex
t

•
•

Sy

st
em

.L
in

q.
*

•
•

M

ic
ro

so
ft

.S
ql

Se
rv

er
.S

er
ve

r
•

•

Sy
st

em
.D

ev
ic

e.
L

oc
at

io
n

•
•

Sy

st
em

.E
nt

er
pr

is
eS

er
vi

ce
s.

*
•

•

M
ic

ro
so

ft
.C

Sh
ar

p.
*

•
•

Sy
st

em
.R

un
tim

e
•

•
Sy

st
em

.M
ed

ia
•

•
Sy

st
em

.T
im

er
s

•
•

Sy
st

em
.R

un
tim

e.
D

ur
ab

le
In

st
an

ci
ng

•

Sy
st

em
.R

un
tim

e.
H

os
tin

g
•

Sy
st

em
.R

un
tim

e.
C

on
st

ra
in

ed
E

xe
cu

tio
n

•
Sy

st
em

.R
un

tim
e.

E
xc

ep
tio

nS
er

vi
ce

s
•

Sy
st

em
.R

un
tim

e.
V

er
si

on
in

g
•

Sy
st

em
.N

um
er

ic
s

•

Ta
bl

e
A

.7
.I

nt
er

-n
am

es
pa

ce
sp

ec
ia

liz
at

io
n

w
ith

in
th

e
.N

E
T

fr
am

ew
or

k

A.2 Appendix for Chapter 4 235

Instead of unspecific usage, ‘inter-namespace specialization’ can also be con-
sidered. That is, each namespace can be measured in terms of # Specialized name-
spaces, i.e., the number of namespaces with at least one type that is specialized
(implemented or extended) by a type of the given namespace versus # Specializing
namespaces, i.e., the number of namespaces with at least one type that specialize a
type of the given namespace. Here, direct relationships for references and specializa-
tion are counted, only—as opposed to taking the transitive closure of those relations.

Tables A.6 and A.7 provide additional views on the ’inter-namespace referenc-
ing’ and ’inter-namespace specialization’. As we can see from the ’specialization’
view, there are very few ’top’ namespaces which are heavily specialized; others have
noticeable less specialization cases. This also to some extend proves the hypothe-
sis that classic forms of OO-extensibility is not very much exercised within .NET
Framework itself; they are rather observable on the limited set of very specific name-
spaces (e.g. collections).

Marks in Table A.6: • indicates that types from a horizontal namespace reference
types from a vertical one;
 indicates that referencing happens in both ways. This
also applies when types reference other types from the same namespace.

Marks in Table A.7: • indicates that types from a horizontal namespace specialize
types from a vertical one.
 indicates that specialization happens in both ways. This
also applies when types specialize other types from the same namespace.

Additions to classification of frameworks

Table A.8 lists all namespaces, classified automatically based on definitions intro-
duced in §4.3.3.

Namespace Ap
pl

ica
tio

n
Co

re
O

pe
n

Cl
os

ed
In

co
m

pl
et

e
Br

an
ch

ed
Fl

at
In

te
rf

ac
e-

in
te

ns
iv

e

De
leg

at
e-

in
te

ns
iv

e

Ev
en

t-b
as

ed

4 18 20 20 19 20 20 19 21 12
System.Web.* X X X
System.Windows.* X X X
System.ServiceModel.* X X X
System.Windows.Forms.* X X X
System.Data.* X X
System.Activities.* X X X
System.ComponentModel.* X X X X X X
System.Workflow.* X X
System.Xml.* X
System.Net.* X X
System.DirectoryServices.* X X
System X X X
System.Security.Cryptography.* X

236 Appendix

Microsoft.VisualBasic.* X X X
System.Runtime.InteropServices.* X X X X
Microsoft.JScript.* X X X
System.Drawing.* X
System.Runtime.Remoting.* X X
System.Configuration.* X X
System.Diagnostics.* X
System.IO.* X X
System.Reflection.* X X
System.EnterpriseServices.* X X
System.CodeDom.* X X
System.IdentityModel.* X
Microsoft.Build.* X X X
System.Management.* X X X
System.Threading.* X X X
System.Runtime.Serialization.* X X X
System.Security.AccessControl X
System.Security.Permissions X X X
System.Runtime.CompilerServices X X
System.Linq.* X X X
System.AddIn.* X X X X X
System.Xaml.* X X X
System.Messaging.* X
Microsoft.Win32.* X X X
System.Security.Policy X X
System.Globalization X X X
Microsoft.VisualC.* X X X X X
System.Transactions.* X X X X
System.Security X X X X
System.Collections.Generic X X X X X X
System.Runtime.DurableInstancing X
System.Collections X X X
System.Text X X
System.Deployment.* X X X
System.Runtime.Caching.* X X X
System.ServiceProcess.* X X
System.Resources.*
System.Dynamic X X X
System.Security.Principal
Microsoft.SqlServer.Server X
System.Security.Authentication.* X X
System.Collections.Specialized X X
System.Device.Location X X X X
System.Text.RegularExpressions X X
Accessibility X X X

A.2 Appendix for Chapter 4 237

System.Collections.Concurrent X X X
System.Runtime.Versioning X X
Microsoft.CSharp.* X X
System.Collections.ObjectModel X X X X
System.Runtime.ConstrainedExecution X X
System.Runtime X X
System.Timers X X X X X
System.Media X X
System.Runtime.Hosting X
System.Runtime.ExceptionServices X X
System.Numerics X

Table A.8: Classification of .NET namespaces

Additions to comparison of potential and actual reuse

The notion of ‘late-bound type’ was only explained very briefly in §4.3.4. Additional
details follow.

We start from the most basic form of framework usage: client code references a
framework or a namespace thereof. Such a reference could relate to various language
concepts, e.g., a reference to a class in a constructor call, a reference to a type in the
declaration of a method argument, or a reference to a base class in a class declaration.

In terms of OO-based reuse of a framework in client code, usage in the sense of
type specialization is of special interest. Yet more advanced usage is resembled by
late binding at the boundary of framework and client code. We are are concerned here
with late binding in the sense that a method call of the client code uses a framework
type as static receiver type, but the actual runtime receiver type ends up being a type
of the client code which necessarily derives from the static receiver type.

For clarity, consider the following client code:

public class MyList<T> : List<T> { ... }
public static Program {

public static void printResult(List<Item> l)
{

...
Console.WriteLine("Count: {0}", l.Count);
...

}
public static void Main(string[] args)
{

List<Item> r = new MyList<Item>();
...
printResult(r);
...

}
}

N
am

es
pa

ce

#Types

%Specializabletypes

ActiveRecord

CastleCore

MonoRail

Windsor

Json.NET

log4net

MEF

Moq

NAnt

NHibernate

NUnit

Prism

Rhino.Mocks

Spring.NET

xUnit

SharpZipLib

Lucene.Net

Dominator

%Referencedtypes

%Specializabletypes(rel.)

%Specializedtypes(rel.)
%Late-boundtypes(rel.)

Fr
am

ew
or

k
3.

5
4.

0
3.

5
4.

0
4.

0
2.

0
4.

0
4.

0
2.

0
3.

5
3.

5
4.

0
3.

5
2.

0
2.

0
2.

0
2.

0
Sy

st
em

.W
eb

.*
23

27
73

(3
,1

,0
)

(0
,0

,0
)

(3
7,

6,
0)

(7
,1

,0
)

(0
,0

,0
)

(5
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(5
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
46

,3
1,

4)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(1

68
,3

3,
4)

7
44

.0
45

5
Sy

st
em

.W
in

do
w

s.
*

16
58

74
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
–

(0
,0

,0
)

(0
,0

,0
)

–
(0

,0
,0

)
(0

,0
,0

)
(3

1,
3,

5)
(0

,0
,0

)
–

–
–

–
(3

1,
3,

5)
2

64
.5

15
25

Sy
st

em
.S

er
vi

ce
M

od
el

.*
11

53
68

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

–
(0

,0
,0

)
(0

,0
,0

)
–

(3
,1

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

–
–

–
–

(3
,1

,0
)

0
66

.7
50

0
Sy

st
em

.W
in

do
w

s.
Fo

rm
s.

*
96

3
89

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
28

,1
1,

7)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(7

3,
2,

0)
(0

,0
,0

)
(0

,0
,0

)
(1

40
,1

1,
7)

15
52

.9
15

10
Sy

st
em

.D
at

a.
*

74
5

46
(5

,0
,0

)
(0

,0
,0

)
(2

,0
,0

)
(0

,0
,0

)
(1

5,
0,

0)
(9

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(3

7,
2,

0)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(2

6,
2,

0)
(8

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(5

9,
2,

0)
8

52
.5

7
0

Sy
st

em
.C

om
po

ne
nt

M
od

el
.*

43
4

77
(1

,0
,0

)
(2

4,
9,

2)
(4

,1
,0

)
(1

4,
4,

1)
(2

8,
6,

1)
(0

,0
,0

)
(4

,2
,0

)
(2

,0
,0

)
(1

3,
1,

1)
(8

,1
,0

)
(2

1,
1,

0)
(2

5,
5,

0)
(0

,0
,0

)
(2

2,
3,

2)
(9

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(8

8,
27

,5
)

20
69

.3
44

8
Sy

st
em

.X
m

l.*
35

8
87

(9
,0

,0
)

(3
7,

3,
1)

(5
,0

,0
)

(1
2,

0,
0)

(3
1,

0,
0)

(1
5,

0,
0)

(0
,0

,0
)

(0
,0

,0
)

(5
7,

1,
0)

(3
7,

0,
0)

(2
3,

0,
0)

(0
,0

,0
)

(0
,0

,0
)

(4
0,

5,
4)

(1
3,

0,
0)

(0
,0

,0
)

(0
,0

,0
)

(1
11

,8
,5

)
31

82
.0

9
6

Sy
st

em
.N

et
.*

28
5

74
(0

,0
,0

)
(5

,0
,0

)
(6

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(1

7,
0,

0)
(0

,0
,0

)
(0

,0
,0

)
(1

5,
0,

0)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(1

0,
0,

0)
(0

,0
,0

)
(0

,0
,0

)
(9

,0
,0

)
(4

2,
0,

0)
15

71
.4

0
0

Sy
st

em
25

7
79

(5
1,

7,
3)

(7
4,

7,
2)

(7
2,

10
,3

)
(7

5,
6,

4)
(7

6,
5,

3)
(6

1,
7,

0)
(6

4,
5,

2)
(7

4,
3,

3)
(7

7,
9,

4)
(9

4,
10

,3
)

(8
2,

9,
4)

(5
5,

6,
2)

(4
6,

4,
3)

(9
1,

11
,5

)
(6

4,
4,

3)
(4

2,
4,

0)
(6

9,
8,

1)
(1

67
,1

9,
8)

65
41

.9
27

11
Sy

st
em

.S
ec

ur
ity

.C
ry

pt
og

ra
ph

y.
*

25
0

55
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(5

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(1

4,
3,

0)
(3

,0
,0

)
(1

9,
3,

0)
8

68
.4

23
0

Sy
st

em
.R

un
tim

e.
In

te
ro

pS
er

vi
ce

s.
*

23
5

65
(0

,0
,0

)
(7

,0
,0

)
(2

,0
,0

)
(2

,0
,0

)
(5

,0
,0

)
(8

,0
,0

)
(3

,0
,0

)
(5

,0
,0

)
(1

1,
0,

0)
(3

,0
,0

)
(7

,0
,0

)
(3

,0
,0

)
(5

,0
,0

)
(5

,0
,0

)
(3

,0
,0

)
(4

,0
,0

)
(4

,0
,0

)
(1

5,
0,

0)
6

26
.7

0
0

M
ic

ro
so

ft
.V

is
ua

lB
as

ic
.*

23
5

69
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(1

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(2

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(3

,0
,0

)
1

33
.3

0
0

Sy
st

em
.D

ra
w

in
g.

*
19

1
47

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(2
8,

0,
0)

(0
,0

,0
)

(0
,0

,0
)

(2
,0

,0
)

(1
7,

0,
0)

(0
,0

,0
)

(0
,0

,0
)

(3
1,

0,
0)

16
6.

5
0

0
Sy

st
em

.R
un

tim
e.

R
em

ot
in

g.
*

19
0

77
(0

,0
,0

)
(3

,0
,0

)
(0

,0
,0

)
(5

,0
,0

)
(0

,0
,0

)
(3

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(3

,0
,0

)
(1

,0
,0

)
(2

1,
1,

1)
(1

,0
,0

)
(6

,1
,1

)
(7

,0
,0

)
(3

,2
,0

)
(0

,0
,0

)
(0

,0
,0

)
(2

9,
3,

1)
15

79
.3

13
4

Sy
st

em
.C

on
fig

ur
at

io
n.

*
18

6
54

(5
,1

,0
)

(2
,0

,0
)

(7
,1

,0
)

(1
,1

,0
)

(0
,0

,0
)

(3
,1

,0
)

(0
,0

,0
)

(0
,0

,0
)

(3
,1

,0
)

(4
,1

,0
)

(1
,0

,0
)

(6
,3

,1
)

(0
,0

,0
)

(2
4,

3,
0)

(7
,4

,0
)

(0
,0

,0
)

(1
,0

,0
)

(3
2,

7,
1)

17
59

.4
37

5
Sy

st
em

.D
ia

gn
os

tic
s.

*
17

3
66

(4
,0

,0
)

(1
8,

0,
0)

(4
,0

,0
)

(8
,0

,0
)

(6
,0

,0
)

(7
,0

,0
)

(1
3,

0,
0)

(9
,0

,0
)

(3
,0

,0
)

(1
0,

0,
0)

(1
2,

0,
0)

(6
,0

,0
)

(4
,0

,0
)

(6
,0

,0
)

(8
,1

,0
)

(0
,0

,0
)

(4
,0

,0
)

(3
4,

1,
0)

20
47

.1
6

0
Sy

st
em

.IO
.*

12
3

68
(6

,0
,0

)
(1

4,
0,

0)
(2

0,
1,

0)
(9

,0
,0

)
(8

,0
,0

)
(2

3,
3,

2)
(4

,0
,0

)
(1

,0
,0

)
(2

5,
1,

1)
(1

3,
0,

0)
(2

5,
2,

3)
(9

,0
,1

)
(1

,0
,0

)
(2

2,
0,

0)
(1

6,
0,

0)
(2

1,
1,

2)
(2

2,
5,

2)
(3

5,
8,

6)
29

68
.6

33
25

Sy
st

em
.R

efl
ec

tio
n.

*
11

3
42

(1
1,

0,
0)

(5
8,

0,
0)

(2
4,

0,
0)

(2
6,

0,
0)

(4
3,

0,
0)

(2
5,

0,
0)

(4
5,

0,
0)

(2
4,

0,
0)

(2
8,

0,
0)

(4
1,

0,
0)

(2
9,

0,
0)

(2
3,

0,
0)

(3
0,

0,
0)

(6
4,

0,
0)

(3
5,

0,
0)

(1
2,

0,
0)

(2
1,

0,
0)

(7
7,

0,
0)

68
29

.9
0

0
Sy

st
em

.E
nt

er
pr

is
eS

er
vi

ce
s.

*
11

1
44

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
9,

0,
0)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
9,

0,
0)

17
10

.5
0

0
Sy

st
em

.C
od

eD
om

.*
10

5
98

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
,0

,0
)

(1
,0

,0
)

(3
4,

0,
0)

(6
,0

,0
)

(5
,0

,0
)

(1
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(3
5,

0,
0)

33
94

.3
0

0
M

ic
ro

so
ft

.B
ui

ld
.*

96
92

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(2
0,

1,
0)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(4
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(2
3,

1,
0)

24
8.

7
50

0
Sy

st
em

.T
hr

ea
di

ng
.*

80
76

(4
,0

,0
)

(5
,0

,0
)

(6
,0

,0
)

(3
,0

,0
)

(3
,0

,0
)

(1
1,

0,
0)

(6
,0

,0
)

(1
,0

,0
)

(3
,0

,0
)

(3
,0

,0
)

(1
0,

0,
0)

(5
,0

,0
)

(2
,0

,0
)

(9
,1

,0
)

(8
,0

,0
)

(2
,0

,0
)

(5
,0

,0
)

(2
1,

1,
0)

26
33

.3
14

0
Sy

st
em

.R
un

tim
e.

Se
ri

al
iz

at
io

n.
*

74
49

(2
,0

,0
)

(8
,3

,0
)

(2
,0

,0
)

(5
,2

,0
)

(1
5,

2,
0)

(5
,1

,0
)

(4
,1

,0
)

(2
,0

,0
)

(5
,1

,0
)

(7
,3

,0
)

(4
,0

,0
)

(2
,0

,0
)

(2
,0

,0
)

(8
,3

,0
)

(2
,0

,0
)

(2
,0

,0
)

(6
,2

,0
)

(2
3,

6,
0)

31
34

.8
75

0
Sy

st
em

.S
ec

ur
ity

.P
er

m
is

si
on

s
70

19
(0

,0
,0

)
(4

,0
,0

)
(0

,0
,0

)
(2

,0
,0

)
(4

,0
,0

)
(2

,0
,0

)
(2

,0
,0

)
(3

,0
,0

)
(6

,0
,0

)
(4

,0
,0

)
(1

,0
,0

)
(2

,0
,0

)
(2

,0
,0

)
(6

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(1

2,
0,

0)
17

0.
0

0
0

Sy
st

em
.R

un
tim

e.
C

om
pi

le
rS

er
vi

ce
s

69
51

(6
,0

,0
)

(5
,0

,0
)

(6
,0

,0
)

(7
,0

,0
)

(6
,0

,0
)

(5
,0

,0
)

(7
,0

,0
)

(5
,0

,0
)

(6
,0

,0
)

(7
,0

,0
)

(4
,0

,0
)

(4
,0

,0
)

(1
0,

0,
0)

(8
,0

,0
)

(3
,0

,0
)

(4
,0

,0
)

(5
,0

,0
)

(1
4,

0,
0)

20
28

.6
0

0
Sy

st
em

.L
in

q.
*

62
63

(2
,0

,0
)

(2
,0

,0
)

(2
,0

,0
)

(1
2,

0,
0)

(3
,0

,0
)

–
(1

4,
0,

0)
(2

9,
5,

1)
–

(3
0,

6,
1)

(0
,0

,0
)

(8
,0

,0
)

(4
,0

,0
)

–
–

–
–

(3
3,

7,
2)

53
63

.6
33

10
Sy

st
em

.M
es

sa
gi

ng
.*

52
90

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
2,

0,
0)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
2,

0,
0)

23
75

.0
0

0
M

ic
ro

so
ft

.W
in

32
.*

49
56

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(3
,0

,0
)

(0
,0

,0
)

(2
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(2
,0

,0
)

(2
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(3
,0

,0
)

6
33

.3
0

0
Sy

st
em

.S
ec

ur
ity

.P
ol

ic
y

45
31

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
,0

,0
)

(0
,0

,0
)

(5
,0

,0
)

(1
,0

,0
)

(0
,0

,0
)

(1
,0

,0
)

(1
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(5
,0

,0
)

11
0.

0
0

0
Sy

st
em

.G
lo

ba
liz

at
io

n
39

90
(1

,0
,0

)
(1

,0
,0

)
(4

,0
,0

)
(4

,0
,0

)
(4

,0
,0

)
(4

,0
,0

)
(2

,0
,0

)
(1

,0
,0

)
(6

,0
,0

)
(3

,0
,0

)
(2

,0
,0

)
(1

,0
,0

)
(0

,0
,0

)
(8

,0
,0

)
(1

,0
,0

)
(2

,0
,0

)
(6

,0
,0

)
(1

2,
0,

0)
31

50
.0

0
0

Sy
st

em
.T

ra
ns

ac
tio

ns
.*

38
68

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
2,

1,
0)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
1,

0,
0)

(4
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
7,

1,
0)

45
52

.9
11

0
Sy

st
em

.S
ec

ur
ity

36
50

(0
,0

,0
)

(6
,0

,0
)

(0
,0

,0
)

(3
,0

,0
)

(3
,0

,0
)

(2
,0

,0
)

(9
,0

,0
)

(1
,0

,0
)

(1
,0

,0
)

(3
,0

,0
)

(2
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(7
,0

,0
)

(1
,0

,0
)

(1
,0

,0
)

(2
,0

,0
)

(1
3,

0,
0)

36
46

.2
0

0
Sy

st
em

.C
ol

le
ct

io
ns

.G
en

er
ic

31
97

(1
5,

2,
2)

(1
8,

9,
1)

(1
5,

0,
0)

(2
0,

4,
3)

(1
4,

6,
5)

(1
,0

,0
)

(1
5,

5,
1)

(1
1,

3,
0)

(1
,0

,0
)

(2
4,

6,
4)

(1
2,

1,
1)

(2
0,

6,
1)

(1
2,

3,
2)

(8
,3

,0
)

(1
6,

4,
1)

(0
,0

,0
)

(1
7,

4,
1)

(2
0,

10
,6

)
65

90
.0

56
33

Sy
st

em
.T

ex
t

25
46

(2
,0

,0
)

(2
,0

,0
)

(2
,0

,0
)

(1
,0

,0
)

(2
,0

,0
)

(2
,0

,0
)

(1
,0

,0
)

(1
,0

,0
)

(3
,0

,0
)

(2
,0

,0
)

(2
,0

,0
)

(1
,0

,0
)

(1
,0

,0
)

(3
,0

,0
)

(1
,0

,0
)

(2
,0

,0
)

(2
,0

,0
)

(3
,0

,0
)

12
66

.7
0

0
Sy

st
em

.C
ol

le
ct

io
ns

25
92

(1
0,

5,
1)

(8
,6

,0
)

(1
5,

7,
4)

(1
1,

7,
0)

(7
,6

,0
)

(1
1,

8,
1)

(7
,5

,2
)

(2
,2

,0
)

(1
4,

10
,3

)
(1

5,
8,

3)
(1

4,
6,

4)
(4

,4
,0

)
(1

0,
2,

2)
(1

7,
9,

5)
(4

,2
,1

)
(5

,3
,0

)
(1

3,
6,

2)
(2

1,
13

,8
)

84
85

.7
72

44
Sy

st
em

.S
er

vi
ce

Pr
oc

es
s.

*
21

92
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(2

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(2

,0
,0

)
10

50
.0

0
0

Sy
st

em
.R

es
ou

rc
es

.*
20

74
(0

,0
,0

)
(2

,0
,0

)
(2

,0
,0

)
(0

,0
,0

)
(1

,0
,0

)
(0

,0
,0

)
(1

,0
,0

)
(2

,0
,0

)
(1

,0
,0

)
(0

,0
,0

)
(1

,0
,0

)
(2

,0
,0

)
(0

,0
,0

)
(4

,1
,1

)
(1

,0
,0

)
(0

,0
,0

)
(2

,0
,0

)
(5

,1
,1

)
25

80
.0

25
25

Sy
st

em
.S

ec
ur

ity
.P

ri
nc

ip
al

18
75

(0
,0

,0
)

(0
,0

,0
)

(2
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(4
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(4
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(6
,0

,0
)

33
10

0.
0

0
0

Sy
st

em
.C

ol
le

ct
io

ns
.S

pe
ci

al
iz

ed
15

10
0

(0
,0

,0
)

(2
,1

,0
)

(4
,1

,1
)

(1
,0

,1
)

(0
,0

,0
)

(2
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(7
,1

,1
)

(5
,0

,0
)

(5
,0

,0
)

(4
,1

,0
)

(2
,0

,0
)

(8
,1

,1
)

(0
,0

,0
)

(0
,0

,0
)

(2
,0

,0
)

(1
3,

4,
3)

87
84

.6
36

27
Sy

st
em

.T
ex

t.R
eg

ul
ar

E
xp

re
ss

io
ns

12
10

0
(6

,0
,0

)
(0

,0
,0

)
(7

,0
,0

)
(6

,0
,0

)
(2

,0
,0

)
(4

,0
,0

)
(0

,0
,0

)
(2

,0
,0

)
(9

,0
,0

)
(7

,0
,0

)
(2

,0
,0

)
(0

,0
,0

)
(1

,0
,0

)
(6

,0
,0

)
(5

,0
,0

)
(2

,0
,0

)
(3

,0
,0

)
(9

,0
,0

)
75

77
.8

0
0

Sy
st

em
.R

un
tim

e.
V

er
si

on
in

g
8

17
(0

,0
,0

)
(1

,0
,0

)
(0

,0
,0

)
(1

,0
,0

)
(1

,0
,0

)
(0

,0
,0

)
(1

,0
,0

)
(1

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(1

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(0

,0
,0

)
(1

,0
,0

)
13

0.
0

0
0

Sy
st

em
.C

ol
le

ct
io

ns
.O

bj
ec

tM
od

el
7

10
0

(0
,0

,0
)

(1
,1

,1
)

(1
,1

,1
)

(2
,1

,1
)

(3
,2

,2
)

(0
,0

,0
)

(2
,0

,1
)

(1
,0

,0
)

(0
,0

,0
)

(2
,0

,1
)

(0
,0

,0
)

(2
,1

,1
)

(1
,0

,0
)

(1
,0

,0
)

(1
,0

,0
)

(0
,0

,0
)

(2
,1

,2
)

(4
,2

,2
)

57
10

0.
0

50
50

M
ic

ro
so

ft
.C

Sh
ar

p.
*

7
80

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
,0

,0
)

(1
,0

,0
)

(1
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(1
,0

,0
)

14
10

0.
0

0
0

Sy
st

em
.T

im
er

s
4

10
0

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(3
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(2
,0

,0
)

(0
,0

,0
)

(0
,0

,0
)

(3
,0

,0
)

75
66

.7
0

0

#
R

ef
er

en
ce

d
ty

pe
s

14
3

30
7

25
1

23
7

28
0

22
9

20
5

17
8

36
9

38
2

45
3

21
7

13
9

60
5

31
7

11
3

19
8

#
Sp

ec
ia

liz
ed

ty
pe

s
16

39
28

26
27

20
18

13
26

39
31

29
10

73
19

11
26

#
L

at
e

bo
un

d
ty

pe
s

6
7

9
10

11
3

6
4

10
12

20
11

8
22

5
2

8

75
%

23
5

89
33

78
33

8
M

ed
ia

n
80

73
20

53
7

0
25

%
36

54
13

33
0

0

Ta
bl

e
A

.9
.U

sa
ge

of
.N

E
T

in
th

e
co

rp
us

:(
nu

m
be

rs
of

re
fe

re
nc

in
g,

sp
ec

ia
liz

at
io

n,
la

te
bi

nd
in

g)

A.2 Appendix for Chapter 4 239

The client code specializes the framework class List for generic collections re-
sulting in a subclass MyList. The client code also defines a method printResult that
works on the framework type List. In the body of that method, List’s virtual member
Count (which is a property, in fact) is invoked. Further, the client code instantiates
MyList and passes that list to printResult. Subject to a dynamic program analysis, it
can be determined that late binding is used on List. In fact, in this specific example,
an inter-procedural analysis would be sufficient as opposed to a full-blown dynamic
analysis. The term static receiver type refers the receiver type essentially as it is de-
clared in the source code or as the declaration is recoverable from the byte code.
Hence, the static receiver type in the call l.Count is List<Item>, but the dynamic
receiver type is MyList<Item>.

N
H

ib
e
rn

a
te

L
u

ce
n

e
.N

e
t

S
h

a
rp

Z
ip

L
ib

S
p

ri
n

g
.N

E
T

A
ct

iv
e
R

e
co

rd

W
in

d
so

r

N
A

n
t

M
o
n

o
R

a
il

Js
o
n

.N
E

T

lo
g

4
n

e
t

P
ri

sm

N
U

n
it

M
E

F

C
a
st

le
C

o
re

R
h

in
o
.M

o
ck

s

M
o
q

xU
n

it

0%

20%

40%

60%

80%

100%

Project Methods

Late binding

Framework Methods

Figure A.11. .NET calls w/ and w/o late binding

Actual reuse of .NET platform by projects is shown in Table A.9, providing num-
bers for the infographics of Table 4.8. Figure A.11 shows how often late binding oc-
curs. Figure A.12 gives detailed overview of the breakdown of referenced types into
late-bound, specialized, specializable, and non-specializable. Figure A.13 provides
such breakdown per each namespace, for all types, including non-referenced.

Figures A.14 and A.15 provide information about .NET interfaces and classes
that were derived/inherited in the corpus. Figure A.16 shows top 30 .NET interfaces
that were implemented in the corpus. Table A.10 lists .NET orphan types that were
implemented in the corpus.

The derived .NET classes in Figure A.15 can be classified as follows. Again, col-
lections dominate the picture, followed by custom attributes (say, annotations) and

240 Appendix

Non−specializable
Specializable
Specialized
Late−bound

Breakdown of referenced types

Namespaces (ordered decreasingly by the number of types)

Pe
rc

en
ta

ge

0
20

40
60

80
10

0

Figure A.12. Breakdown of referenced types

Non−specializable (non−ref)
Specializable (non−ref)
Non−specializable (ref)
Specializable (ref)
Specialized
Late−bound

Breakdown of types in terms of usage

Namespaces (ordered decreasingly by the number of types)

Pe
rc

en
ta

ge

0
20

40
60

80
10

0

Figure A.13. Breakdown of types in terms of the actual reuse metrics

A.2 Appendix for Chapter 4 241

0 5 10 15 20 25 30 35 40

System.ComponentModel.IContainer
System.ComponentModel.ISite

System.ComponentModel.Composition.Primitives.ICompositionElement
System.Collections.Generic.ICollection`1

System.Collections.IComparer
System.Linq.IOrderedQueryable`1

System.Linq.IQueryable`1
System.Configuration.Internal.IInternalConfigSystem

System.Configuration.Internal.IConfigErrorInfo
System.Data.IDataReader
System.Data.IDataRecord

System.ComponentModel.IEditableObject
System.ComponentModel.IRevertibleChangeTracking

System.ComponentModel.IChangeTracking
System.ComponentModel.INotifyPropertyChanging

System.ComponentModel.IDataErrorInfo
System.ComponentModel.Design.IServiceContainer

System.Collections.IList
System.Collections.IDictionary

System.Linq.IOrderedQueryable
System.Linq.IQueryable

System.Collections.Specialized.INotifyCollectionChanged
System.ComponentModel.INotifyPropertyChanged

System.ICloneable
System.Collections.ICollection

System.IServiceProvider
System.Collections.Generic.IEnumerable`1

System.Collections.IEnumerable
System.IDisposable

1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2

4
4

8
9
10

19
37

For each interface, the number of sub-interfaces in the corpus are shown.

Figure A.14. All .NET interfaces with sub-interfaces in the corpus

0 20 40 60 80 100 120 140

System.Collections.DictionaryBase
System.Collections.Specialized.NameValueCollection

System.Web.UI.Page
System.Configuration.ConfigurationElementCollection

System.Configuration.ConfigurationElement
System.Resources.ResourceManager

System.Collections.ObjectModel.KeyedCollection`2
System.Linq.Expressions.Expression

System.Web.UI.WebControls.WebControl
System.Collections.Generic.List`1

System.Collections.Generic.Dictionary`2
System.Collections.ArrayList

System.Web.UI.Control
System.IO.IOException

System.ComponentModel.EnumConverter
System.Linq.Expressions.ExpressionVisitor

System.SystemException
System.IO.TextWriter

System.Collections.Hashtable
System.IO.Stream

System.Windows.Forms.UserControl
System.Collections.ObjectModel.Collection`1

System.ComponentModel.TypeConverter
System.Windows.Forms.Form

System.EventArgs
System.ApplicationException

System.Collections.CollectionBase
System.MarshalByRefObject

System.Exception
System.Attribute

2
2
3
3
3
3
4
4
4
5
5
5
5
5
6
7
7
8

11
11
11
12

17
17

23
25

38
51

59
135

For each class, the number of subclasses in the corpus are shown.

Figure A.15. Top 30 .NET classes inherited in the corpus

242 Appendix

0 50 100 150 200 250 300 350

System.ComponentModel.IEditableObject
System.ComponentModel.IRevertibleChangeTracking

System.ComponentModel.IChangeTracking
System.Data.IDataReader
System.Web.IHttpHandler
System.Web.IHttpModule

System.Runtime.Serialization.IObjectReference
System.ComponentModel.Design.IServiceContainer

System.Collections.Generic.IList`1
System.ComponentModel.INotifyPropertyChanged

System.Collections.Generic.IEqualityComparer`1
System.Collections.Generic.IDictionary`2

System.Configuration.IConfigurationSectionHandler
System.IComparable
System.IEquatable`1

System.Collections.IDictionaryEnumerator
System.Runtime.Serialization.IDeserializationCallback

System.IServiceProvider
System.Collections.IList

System.Collections.IComparer
System.Collections.IDictionary

System.Collections.Generic.ICollection`1
System.Runtime.Serialization.ISerializable

System.Collections.ICollection
System.ICloneable

System.Collections.Generic.IEnumerator`1
System.Collections.Generic.IEnumerable`1

System.Collections.IEnumerator
System.Collections.IEnumerable

System.IDisposable

5
5
5
5
6
7
7
7
9
10
11
12
13
14
14
14
16
18
19
25
28
33
38

65
83

11
75
78

155
196

118
176

185
256

303

For each interfaces, the number of implementing classes in the corpus are shown. Note: the
full bar counts all implementations whereas the black part excludes classes that can be

reliably classified as being compiler-generated.

Figure A.16. Top 30 .NET interfaces implemented in the corpus

Namespace % I/C Implemented types Count

System 28.57 I IServiceProvider 18
I IAsyncResult 1

System.Collections 60.00 C DictionaryBase 2
C .CollectionBase 38
C ReadOnlyCollectionBase 1

System.Collections.ObjectModel 100.00 C KeyedCollection‘2 4

System.Collections.Specialized 100.00 C INotifyCollectionChanged 5

System.ComponentModel.* 12.77 I IEditableObject 5
I IRevertibleChangeTracking 5
I INotifyPropertyChanging 4
I IDataErrorInfo 4
I ITypedList 1
I Composition.IPartImportsSatis-

fiedNotification
1

System.Configuration.* 20.00 C ApplicationSettingsBase 1

System.Runtime.Serialization.* 50.00 I IDeserializationCallback 16
C SerializationBinder 1
I ISafeSerializationData 1

System.Xml.* 42.86 C Xsl.XsltContext 1
I Xsl.IXsltContextFunction 1
I Xsl.IXsltContextVariable 1

Table A.10. .NET orphan types implemented in the corpus

A.2 Appendix for Chapter 4 243

exceptions. Marginally exercised aspects include conversion, remoting, user inter-
faces, configuration, I/O, and visitors for LINQ.

The implemented .NET interfaces in Figure A.16 can be classified as follows.
The list of interfaces is headed by IDisposable, which is used for the release of
resources; primarily, these are unmanaged resources. 12 of the 30 interfaces deal with
collections. Among the top 10, there are additionally interfaces for serialization and
cloning. In the rest of the list, yet other aspects are exercised: comparison, services,
streaming, and change tracking.

On correlation

Where appropriate, we calculated Spearman’s rank correlation coefficient, a non-
parametric measure of statistical dependence between variables. The sign of the co-
efficient indicates the direction of the association: “+” means that when A increases,
B increases, too; “-” means that when A increases, B decreases. The value of the coef-
ficient indicates the degree of the correlation: “0” means that there is no tendency for
B to either increase or decrease when A increases; “1” means that A and B perfectly
monotonically related. (Please note that correlation does not imply causation!)

Spearman’s rank correlation coefficient is calculated for reuse-related metrics
(Table A.11), for classification of namespaces (Table A.12), and for actual reuse
metrics (Table A.13 and Table A.14). Stars highlight statistically significant results:
three stars mean that p-value is less than 0.001, two stars mean that p-value is less
than 0.01, and one star means that p-value is less than 0.05. P-value in its turn is a
probability to obtain something like what is observed, assuming that null hypothesis
(that there is no correlation) is true. So “statistically significant results” mean that
the null hypothesis can be rejected with low risk of making a type I error (i.e., re-
jecting the true null hypothesis) and that the alternative hypothesis (that correlation
is present, with such-and-such Spearman’s rho) can be accepted instead.

We neither analyze the results in detail nor interpret them. Let us just mention
some of the observed (non-trivial) correlations. For instance, there is a positive cor-
relation between the number of types in a namespace and the MAX size class tree
within the namespace (Table A.11), meaning that the more types a namespace has,
the bigger the maximal inheritance tree of namespace’s classes. According to Ta-
ble A.13, there is a positive correlation such that the number of late-bound types in-
creases with the number specialized types, which in turn increases with the number
specializable, referenced types, which in turn increases with the number referenced
types.

244 Appendix
ty

pe
s

m
et

ho
ds

rC
rI

m
ax

C
T

m
ax

IT
re

fd
N

re
fg

N
sp

ec
dN

sp
ec

gN
pC

pI
pV

T
pD

T
pG

T
pC

A
pI

A
pV

TA
pD

A
pS

tC
pA

C
pC

rC
pS

tM
pA

M
pC

rM
pS

ld
C

pS
pC

pS
pT

pS
ld

M
pS

pM
pO

C
pO

I
pO

T
pL

O
C

ty
pe

s
m

et
ho

ds
0.

95
**

*
rC

0.
93

**
*

0.
87

**
*

rI
0.

76
**

*
0.

74
**

*
0.

64
**

*
m

ax
C

T
0.

77
**

*
0.

77
**

*
0.

74
**

*
0.

50
**

*
m

ax
IT

0.
67

**
*

0.
67

**
*

0.
49

**
*

0.
86

**
*

0.
41

**
*

re
fd

N
0.

86
**

*
0.

81
**

*
0.

86
**

*
0.

65
**

*
0.

73
**

*
0.

60
**

*
re

fg
N

0.
25

*
0.

27
*

0.
20

0.
11

0.
19

0.
17

0.
18

sp
ec

dN
0.

80
**

*
0.

77
**

*
0.

80
**

*
0.

62
**

*
0.

70
**

*
0.

54
**

*
0.

85
**

*
0.

15
sp

ec
gN

0.
49

**
*

0.
49

**
*

0.
38

**
0.

51
**

*
0.

30
*

0.
50

**
*

0.
39

**
*

0.
68

**
*

0.
40

**
*

pC
-0

.0
6

-0
.0

6
0.

04
-0

.2
2

0.
24

*
-0

.2
0

0.
07

-0
.0

7
-0

.0
4

-0
.2

0
pI

0.
29

*
0.

28
*

0.
15

0.
76

**
*

0.
09

0.
70

**
*

0.
19

0.
02

0.
22

0.
36

**
-0

.3
8*

*
pV

T
0.

09
0.

05
0.

11
-0

.1
1

-0
.0

7
-0

.1
4

0.
02

0.
05

0.
03

0.
03

-0
.6

3*
**

-0
.1

9
pD

T
0.

38
**

0.
37

**
0.

47
**

*
0.

20
0.

35
**

0.
13

0.
37

**
0.

11
0.

45
**

*
0.

20
-0

.1
8

-0
.0

6
0.

02
pG

T
0.

14
0.

19
0.

07
0.

15
0.

12
0.

23
0.

01
-0

.0
7

0.
09

0.
04

0.
03

0.
20

-0
.2

0
-0

.0
3

pC
A

0.
29

*
0.

17
0.

29
*

0.
36

**
0.

33
**

0.
34

**
0.

36
**

-0
.1

1
0.

30
*

0.
11

0.
25

*
0.

33
**

-0
.3

6*
*

0.
02

-0
.0

3
pI

A
0.

24
*

0.
24

*
0.

18
0.

40
**

*
0.

07
0.

41
**

*
0.

17
-0

.0
1

0.
24

*
0.

21
-0

.3
7*

*
0.

40
**

*
-0

.0
3

0.
30

*
0.

19
0.

16
pV

TA
-0

.1
1

-0
.0

1
-0

.1
3

-0
.2

9*
-0

.2
2

-0
.2

3
-0

.1
7

0.
33

**
-0

.1
2

0.
02

-0
.2

3
-0

.2
7*

0.
44

**
*

-0
.0

7
-0

.0
4

-0
.7

0*
**

-0
.2

3
pD

A
0.

28
*

0.
30

*
0.

38
**

0.
22

0.
29

*
0.

16
0.

30
*

-0
.0

2
0.

41
**

*
0.

14
0.

11
0.

04
-0

.2
6*

0.
59

**
*

0.
38

**
0.

04
0.

27
*

-0
.2

1
pS

tC
0.

24
*

0.
19

0.
30

*
0.

26
*

0.
22

0.
26

*
0.

39
**

*
0.

29
*

0.
18

0.
14

0.
07

0.
20

-0
.0

9
0.

07
0.

13
0.

17
0.

18
-0

.0
8

0.
15

pA
C

0.
28

*
0.

29
*

0.
18

0.
11

0.
35

**
0.

20
0.

17
0.

36
**

0.
23

0.
48

**
*

0.
18

0.
00

-0
.1

5
0.

06
0.

13
0.

12
-0

.0
1

-0
.0

6
0.

07
-0

.0
6

pC
rC

-0
.0

2
-0

.0
1

0.
01

0.
10

-0
.1

0
-0

.0
2

-0
.0

3
-0

.3
1*

*
0.

03
-0

.2
3

-0
.1

4
0.

13
0.

03
0.

07
-0

.1
7

0.
00

0.
03

-0
.0

6
0.

01
-0

.3
5*

*
-0

.7
0*

**
pS

tM
0.

12
0.

11
0.

17
0.

05
0.

13
0.

05
0.

19
0.

31
**

0.
01

-0
.0

3
-0

.0
9

-0
.0

3
0.

22
-0

.0
1

0.
01

-0
.0

8
0.

09
0.

25
*

-0
.0

3
0.

59
**

*
-0

.1
2

-0
.3

0*
pA

M
0.

34
**

0.
26

*
0.

20
0.

63
**

*
0.

15
0.

51
**

*
0.

19
0.

11
0.

25
*

0.
39

**
-0

.2
7*

0.
80

**
*

-0
.1

8
-0

.0
7

0.
11

0.
38

**
0.

21
-0

.2
1

-0
.0

3
0.

10
0.

21
-0

.0
3

-0
.1

0
pC

rM
-0

.0
7

-0
.0

5
-0

.0
4

-0
.2

7*
0.

01
-0

.1
8

-0
.0

4
-0

.1
8

0.
06

-0
.0

7
0.

37
**

-0
.3

9*
**

-0
.1

6
0.

06
-0

.1
0

0.
03

-0
.2

1
-0

.1
4

0.
05

-0
.5

0*
**

0.
16

0.
23

-0
.7

5*
**

-0
.3

9*
**

pS
ld

C
0.

18
0.

07
0.

17
0.

17
0.

07
0.

13
0.

13
0.

12
-0

.0
5

0.
10

0.
06

0.
04

0.
18

-0
.2

5*
-0

.1
7

0.
03

-0
.1

4
-0

.0
4

-0
.2

8*
0.

14
0.

03
-0

.0
8

0.
21

0.
03

-0
.0

9
pS

pC
-0

.1
0

-0
.0

3
-0

.0
9

-0
.1

1
-0

.0
1

-0
.0

7
-0

.0
5

-0
.0

7
0.

13
-0

.0
3

0.
02

0.
02

-0
.2

6*
0.

28
*

0.
20

0.
04

0.
15

-0
.0

4
0.

34
**

-0
.0

9
0.

03
0.

16
-0

.2
9*

0.
04

0.
17

-0
.9

2*
**

pS
pT

-0
.0

7
-0

.0
2

-0
.0

8
-0

.0
1

-0
.0

5
0.

02
-0

.0
4

-0
.0

7
0.

13
0.

00
-0

.0
8

0.
18

-0
.2

5*
0.

24
*

0.
23

0.
07

0.
25

*
-0

.0
6

0.
32

**
-0

.0
2

-0
.0

2
0.

18
-0

.2
4*

0.
17

0.
06

-0
.8

9*
**

0.
96

**
*

pS
ld

M
0.

15
0.

15
0.

04
0.

29
*

0.
11

0.
48

**
*

0.
16

0.
29

*
0.

20
0.

37
**

0.
06

0.
37

**
-0

.2
8*

0.
03

0.
25

*
0.

27
*

0.
05

-0
.0

5
0.

10
0.

05
0.

24
-0

.1
2

0.
00

0.
29

*
0.

00
-0

.0
8

0.
11

0.
14

pS
pM

0.
23

0.
20

0.
14

0.
38

**
0.

11
0.

29
*

0.
09

0.
16

0.
15

0.
32

**
-0

.2
2

0.
40

**
*

0.
00

-0
.0

2
-0

.3
1*

0.
15

0.
06

-0
.0

3
-0

.2
6*

-0
.0

5
0.

26
*

-0
.0

3
-0

.2
5*

0.
60

**
*

-0
.0

8
0.

12
-0

.0
4

0.
03

-0
.0

7
pO

C
0.

31
**

0.
31

**
0.

29
*

0.
17

0.
37

**
0.

16
0.

29
*

0.
23

0.
41

**
*

0.
32

**
0.

25
*

-0
.0

1
-0

.3
0*

0.
20

0.
22

0.
17

0.
12

-0
.1

0
0.

38
**

0.
02

0.
70

**
*

-0
.4

9*
**

-0
.0

5
0.

20
0.

05
-0

.1
1

0.
15

0.
11

0.
19

0.
03

pO
I

0.
48

**
*

0.
43

**
*

0.
49

**
*

0.
65

**
*

0.
41

**
*

0.
40

**
*

0.
39

**
*

-0
.1

1
0.

46
**

*
0.

17
-0

.1
3

0.
52

**
*

-0
.0

5
0.

15
0.

05
0.

26
*

0.
19

-0
.2

2
0.

18
0.

20
-0

.0
1

0.
04

0.
08

0.
52

**
*

-0
.3

5*
*

0.
21

-0
.1

7
-0

.0
9

-0
.0

9
0.

43
**

*
0.

12
pO

T
0.

27
*

0.
24

*
0.

23
0.

45
**

*
0.

21
0.

26
*

0.
17

-0
.0

1
0.

36
**

0.
20

-0
.1

0
0.

48
**

*
-0

.2
1

0.
11

0.
22

0.
17

0.
27

*
-0

.1
3

0.
24

*
0.

06
0.

29
*

-0
.1

6
-0

.0
2

0.
57

**
*

-0
.3

0*
-0

.0
2

0.
08

0.
16

0.
00

0.
32

**
0.

59
**

*
0.

67
**

*
pL

O
C

0.
19

0.
18

0.
11

0.
13

0.
16

0.
13

0.
10

0.
35

**
0.

21
0.

51
**

*
0.

09
0.

05
-0

.1
9

0.
01

0.
16

0.
09

0.
14

-0
.1

0
0.

16
0.

04
0.

81
**

*
-0

.6
1*

**
-0

.0
9

0.
24

*
0.

07
0.

00
0.

05
0.

04
0.

15
0.

15
0.

80
**

*
0.

00
0.

46
**

*
pL

O
I

0.
44

**
*

0.
41

**
*

0.
43

**
*

0.
66

**
*

0.
28

*
0.

43
**

*
0.

30
*

0.
07

0.
40

**
*

0.
34

**
-0

.2
9*

0.
62

**
*

-0
.0

1
0.

18
-0

.0
1

0.
21

0.
23

-0
.1

4
0.

12
0.

17
0.

04
0.

04
0.

06
0.

59
**

*
-0

.3
6*

*
0.

19
-0

.1
4

-0
.0

5
-0

.0
1

0.
51

**
*

0.
07

0.
91

**
*

0.
62

**
*

0.
07

Ta
bl

e
A

.1
1.

Sp
ea

rm
an

’s
ra

nk
co

rr
el

at
io

n
co

ef
fic

ie
nt

fo
rr

eu
se

-r
el

at
ed

m
et

ri
cs

is
A

pp
lic

at
io

n
is

C
or

e
is

O
pe

n
is

C
lo

se
d

is
In

co
m

pl
et

e
is

B
ra

nc
he

d
is

Fl
at

is
In

te
rf

ac
eI

nt
en

si
ve

is
D

el
eg

at
eI

nt
en

si
ve

is
A

pp
lic

at
io

n
is

C
or

e
-0

.1
5

is
O

pe
n

0.
11

-0
.0

9
is

C
lo

se
d

-0
.0

2
0.

13
-0

.4
1*

**
is

In
co

m
pl

et
e

0.
12

-0
.0

7
0.

18
-0

.1
1

is
B

ra
nc

he
d

-0
.1

6
-0

.0
9

-0
.0

6
-0

.0
6

-0
.0

4
is

Fl
at

0.
39

**
*

-0
.1

6
0.

23
0.

01
0.

04
-0

.4
1*

**
is

In
te

rf
ac

eI
nt

en
si

ve
0.

12
0.

08
-0

.0
4

-0
.1

1
0.

27
*

-0
.1

1
0.

04
is

D
el

eg
at

eI
nt

en
si

ve
-0

.0
3

-0
.1

1
-0

.0
8

-0
.3

5*
*

0.
09

0.
13

-0
.0

8
0.

09
is

E
ve

nt
B

as
ed

-0
.1

1
-0

.0
1

-0
.1

2
-0

.2
9*

-0
.0

3
0.

04
-0

.2
1

0.
06

0.
69

**
*

Ta
bl

e
A

.1
2.

Sp
ea

rm
an

’s
ra

nk
co

rr
el

at
io

n
co

ef
fic

ie
nt

fo
rc

at
eg

or
ie

s

246 Appendix

types totalRefT spbTAbs spbTRel totalSpdT
types

totalRefT 0.70***
spbTAbs 0.99*** 0.70***
spbTRel 0.66*** 0.95*** 0.67***

totalSpdT 0.40** 0.62*** 0.43** 0.62***
totalLbT 0.22 0.49*** 0.24 0.54*** 0.84***

Table A.13. Spearman’s rank correlation coefficient for actual reuse metrics (numbers)

pRefT pSpbTAbs pSpbTRel pSpdTAbs pSpdTRel pLBTAbs
pRefT

pSpbTAbs 0.13
pSpbTRel 0.01 0.61***
pSpdTAbs 0.39** 0.38* 0.15
pSpdTRel 0.26 0.46** 0.17 0.94***
pLBTAbs 0.36* 0.34* 0.24 0.83*** 0.75***
pLBTRel 0.32* 0.34* 0.22 0.81*** 0.75*** 0.99***

Table A.14. Spearman’s rank correlation coefficient for actual reuse metrics (percentage)

	Table of Contents
	Introduction
	Research Context
	Motivating example
	Research areas

	Problem Statement
	Phase I – Collecting the evidence
	Phase II – Analyzing the evidence
	Research goals of the thesis

	Outline of the Thesis
	Contributions of the Thesis
	Literature surveys on usage of empirical evidence
	Corpus engineering
	Language studies

	Supporting Publications

	Part I Prerequisites
	Essential Background
	Software Linguistics
	Stances in Software Language Engineering
	Examples of Linguistic Sub-disciplines

	Actual Usage of Language
	Prescriptive and Descriptive Linguistics
	Measuring Actual Usage

	Languages Under Study
	Platform for Privacy Preferences
	Application Programming Interfaces

	Corpus Engineering
	Corpora in Natural Linguistics
	Corpora in Software Linguistics
	Corpora versus Software Repositories

	Literature Surveys
	Systematic Literature Reviews
	Content and Meta-analysis
	Grounded Theory
	Survey Process

	Part II Language Usage
	A Study of P3P Language
	Introduction
	Methodology of the Study
	Research Questions
	Corpus under Study
	Leveraged Analyses

	The Essence of P3P
	Language versus Platform
	Syntax of P3P
	A Normal Form
	Degree of Exposure

	Analyses of the Study
	Analysis of Vocabulary
	Analysis of Constraints
	Analysis of Metrics
	Analysis of Cloning
	Analysis of Extensions

	Threats to Validity
	Related Work
	Conclusion

	A Study of APIs
	Introduction
	Java APIs
	Overview of the Approach
	A Study of SourceForge
	Examples of API-usage Analysis

	.NET framework
	Methodology
	Reuse-related Metrics for Frameworks
	Classification of Frameworks
	Comparison of Potential and Actual Reuse

	Multi-dimensional Exploration
	An Exploration Story
	Basic Concepts
	Exploration Insights
	Exploration Views
	The Exapus Exploration Platform

	Threats to Validity
	Related Work
	Conclusion

	Part III Corpus Engineering
	Literature Survey of Empirical Software Engineering
	Introduction
	Pilot Studies
	Survey on Empirical Language Analysis
	Survey on Corpora Usage

	A Survey on Empirical Software Engineering
	Methodology
	Results

	Threats to Validity
	Related Work
	Conclusion

	Corpus (Re-)Engineering
	Introduction
	Benefits of Using an Established Corpus
	Obstacles to Corpus Adoption

	A Method for Corpus (Re-)Engineering
	Underlying Concepts
	Method

	Reengineering Qualitas
	Details of Qualitas Content
	Exploratory Builds
	Identifying Core Files and Types
	Identifying System Namespaces
	Builds
	Validation
	Automated Fact Extraction

	Threats to Validity
	Related Work
	Conclusion

	Part IV Conclusion
	Conclusion
	Summary
	Future Work

	Own Publications
	References
	Curriculum Vitae
	Appendix
	Appendix for Chapter 3
	Additional Information on P3P Corpus
	Additional Information on P3P Semantics

	Appendix for Chapter 4
	Additional Information on Java APIs
	Additional Information on .NET Framework

