
Fachbereich 4: Informatik

Probabilistic Object Recognition

Using Extended Implicit Shape

Models

Masterarbeit

zur Erlangung des Grades

Master of Science

im Studiengang Computervisualistik

vorgelegt von

Norman Link

Betreuer: Dipl.-Inform. Viktor Seib, Institut für Computervisualistik,

Fachbereich Informatik, Universität Koblenz-Landau

Erstgutachter: Prof. Dr.-Ing. Dietrich Paulus, Institut für

Computervisualistik, Fachbereich Informatik, Universität Koblenz-Landau

Zweitgutachter: Dipl.-Inform. Viktor Seib, Institut für

Computervisualistik, Fachbereich Informatik, Universität Koblenz-Landau

Koblenz, im Februar 2014

Kurzfassung

Objekterkennung ist ein gut erforschtes Gebiet bei bildbasiertem Rechnersehen
und eine Vielzahl an Methoden wurden entwickelt. In letzter Zeit haben sich da-
bei Ansätze verbreitet, die auf dem Implicit Shape Model-Konzept basieren. Dabei
werden Objekte zunächst in grundlegende visuelle Bestandteile aufgetrennt, die um
örtliche Informationen erweitert werden. Das so generierte Objektmodell wird dann
in der Objekterkennung genutzt, um unbekannte Objekte zu erkennen. Seit dem
Aufkommen von erschwinglichen Tiefenkameras wie der Microsoft Kinect wurde je-
doch die Objekterkennung mittels 3D-Punktwolken von zunehmender Bedeutung.
Im Rahmen des Robotersehens in Innenräumen wird ein Verfahren entwickelt,
welches auf vorhandenen Ansätze aufbaut und damit die Implicit Shape Model
basierte Objekterkennung für die Verarbeitung von 3D-Punktwolken erweitert.

Abstract

Object recognition is a well-investigated area in image-based computer vision and
several methods have been developed. Approaches based on Implicit Shape Models
have recently become popular for recognizing objects in 2D images, which separate
objects into fundamental visual object parts and spatial relationships between
the individual parts. This knowledge is then used to identify unknown object
instances. However, since the emergence of a�ordable depth cameras like Microsoft
Kinect, recognizing unknown objects in 3D point clouds has become an increasingly
important task. In the context of indoor robot vision, an algorithm is developed
that extends existing methods based on Implicit Shape Model approaches to the
task of 3D object recognition.

5

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine ande-
ren als die angegebenen Quellen und Hilfsmittel benutzt habe und dass die Arbeit
in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgele-
gen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle
Ausführungen, die wörtlich oder sinngemäÿ übernommen wurden, sind als solche
gekennzeichnet.

Die Vereinbarung der Arbeitsgruppe für Studien- und Abschlussarbeiten habe
ich gelesen und anerkannt, insbesondere die Regelung des Nutzungsrechts.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einver-
standen.

ja � nein �

Der Verö�entlichung dieser Arbeit im Internet stimme ich zu. ja � nein �

Koblenz, den 6. Februar 2014

Contents

1 Introduction 15

1.1 Problem Statement . 16
1.2 Motivation . 17
1.3 Goal . 18
1.4 Implementation . 19
1.5 Outline . 19

2 State of the Art 21

2.1 Implicit Shape Model . 21
2.1.1 Bag-Of-Words . 21
2.1.2 Object Recognition . 22

2.2 Features . 27
2.2.1 Normals . 28
2.2.2 Keypoints . 29
2.2.3 Local Reference Frame . 32
2.2.4 Descriptors . 34

2.3 Mean-Shift Mode Estimation . 38

3 Creating Implicit 3D Representations 43

3.1 Overview . 43
3.2 Preprocessing . 45

3.2.1 Input Acquisition . 46
3.3 Features . 48
3.4 Clustering and Codebook Generation 50
3.5 Activation . 54

4 Probabilistic Object Recognition 61

4.1 Features . 62
4.2 Activation . 63
4.3 Voting . 64

4.3.1 Weighting . 65

7

8 CONTENTS

4.3.2 Rotation Invariance . 67
4.3.3 Hough-Voting . 70
4.3.4 Mean-Shift Mode Estimation 71

4.4 Multi-Class Detection . 73
4.5 Bounding Box . 73

5 Evaluation 77

5.1 Datasets . 77
5.1.1 Kinect Dataset . 77
5.1.2 Stanford Dataset . 81

5.2 Parameter Selection . 82
5.2.1 Features . 83
5.2.2 Codebook Creation . 86

5.3 Classi�cation . 90
5.4 Object Recognition . 93

5.4.1 Kinect Dataset . 93
5.4.2 Stanford Dataset . 97

5.5 Performance . 101
5.6 Discussion . 102

6 Conclusion 105

6.1 Further Prospects . 106

A Appendix 109

A.1 Framework Overview . 109
A.2 Parameters . 110

A.2.1 General . 112
A.2.2 Keypoints . 113
A.2.3 Features . 114
A.2.4 Clustering . 116
A.2.5 Codebook . 118
A.2.6 Activation Strategy . 118
A.2.7 Voting . 119

A.3 Training-GUI . 121
A.4 External Components . 122

List of Tables

2.1 Common pro�le and kernel types 40

4.1 Detection process and bounding box extraction 74

5.1 Training models from Kinect dataset 79
5.2 Sample scenes from the Kinect dataset with their corresponding

classes . 80
5.3 Training models from the Stanford dataset 82
5.4 Sample scenes from the Stanford dataset with their corresponding

classes . 83
5.5 Minimum distance between ground truth and detected objects . . . 84
5.6 Index of the minimum distance hypothesis 85
5.7 Distance between ground truth and �rst object hypothesis 85
5.8 Average results on the minimum distance object hypothesis for train-

ing case A . 94
5.9 Average results on the �rst-ranked object hypothesis for training

case A . 94
5.10 Average results on the minimum distance object hypothesis for train-

ing case B . 95
5.11 Average results on the �rst-ranked object hypothesis for training

case B . 96
5.12 Results from the Stanford dataset 100
5.13 System speci�cations for the evaluation system 101
5.14 Summary of parameters . 102

9

List of Figures

1.1 The service robot LISA . 18

2.1 Recognition procedure from [LS03] 24
2.2 Recognition procedure from [KPW+10] 26
2.3 Support sphere of the SHOT descriptor 35
2.4 Illustration of point pairs within a local neighborhood used for PFH

computation . 36
2.5 Illustration of point pair in�uences used for FPFH computation . . 38

3.1 Training pipeline . 44
3.2 The Kinect camera . 47
3.3 Activation procedure during training 58

4.1 Detection pipeline . 62
4.2 Activation procedure during detection 69

5.1 Ground truth annotation on a point cloud 81
5.2 Detection precision graph (training chair1, detection scene03) . . . 87
5.3 Detection precision map(training chair1, detection scene03) 87
5.4 Detection precision on the object hypothesis with minimum distance

to the ground truth on scene3 . 89
5.5 Detection precision on the �rst object hypothesis on scene3 90
5.6 Comparison of training cases in classi�cation results 91
5.7 Average recall on table objects . 93
5.8 Average weights for training case A 95
5.9 Average weights for training case B 96
5.10 Average distance of true positives to the ground truth for the Stan-

ford dataset scenes . 97
5.11 Recall on the Stanford dataset scenes 98
5.12 Average orientation distances over all detected scenes 99

A.1 The developed Training-GUI . 122

11

List of Notations

P A point cloud P = {pi | pi ∈ R3}
p A point of a point cloud, p ∈ P
p̂ A modi�ed version of p
pi The ith point of a point cloud
n A normal vector
Np The neighborhood of point p
N r

p The spherical neighborhood of point p in a radius r ∈ R
N k

p The k-neighborhood of point p, k ∈ N
Mm×n A matrix of size m× n
Ftr Features computed during training
cFtr Features for a speci�c class c computed during training
cfi A feature computed on a training model from class c
Fdet Features computed during detection
fi A feature on a point cloud
Σ A covariance matrix
c A class id
cj A codeword from a codebook C

13

Chapter 1

Introduction

For a long time, object regcognition has been one of the big problems in computer
vision. It has been addressed in a variety of papers and represents a well investi-
gated topic in computer science. Many types of algorithms have been developed,
each of which focuses on a di�erent aspect and use case. Applications include op-
tical character recognition to facilitate the automated conversion of scanned text
documents into computer-readable �les, as well as counting cars on tra�c lanes
to predict tra�c jams. Object recognition has traditionally been using images
captured with conventional cameras that implement the pin hole concept. These
images are easy to acquire and the sensor devices are cheap. However, they su�er
from a more general issue, as the projection of real world objects as seen through
the camera lens onto the image sensor plane discards the depth information for
each pixel.

This information, however, can greatly enhance object recognition. It allows
for estimating the distance of objects from the sensor, their physical dimensions,
and shape. More importantly, this information is by design independent from
lighting conditions, as the distance to an object does not change when it is being lit
under di�erent conditions. In order to use additional depth information, di�erent
types of sensor devices have been developed. These include laser range sensors
implementing LIDAR technology and depth sensors like Time-of-Flight cameras.
In the past few years, another sensor type has become widely available which
uses infrared structured light patterns projected onto the scene to compute the
depth information. This technology has been implemented in the Kinect hardware
developed by Microsoft for use in its Xbox 360 video game console. This consumer
device has been produced in large numbers and is sold at a substantially lower
price than comparable depth sensors.

With these types of sensors, the world can be reconstructed by generating a
three dimensional (3D) point cloud containing the appropriate distances between
object points. Algorithms operating on 3D point clouds instead of images are thus

15

16 CHAPTER 1. INTRODUCTION

able to use this information to detect objects in a more generic way, independently
from camera position, object pose and lighting conditions.

1.1 Problem Statement

Finding objects can be reduced to �nding instances of class models in yet unclas-
si�ed input data. While the class model can be trained prior to detection by using
one or multiple representations of class instances, they need to be represented in
a way that allows for detecting di�erent instances of the same class under dif-
ferent conditions. This process of training is called supervised training, since the
classes to be detected and their appearance are known prior to detection and are
represented by training data. The training data then needs to be analyzed and
processed in an appropriate way and deconstructed into a model that enables the
detection of di�erent object instances of the same object class under di�erent con-
ditions. Ideally, the object to be detected is identical to the object model that has
been trained. However, most often this is not the case.

The training stage can be considered a controlled environment. The objects
used for training are known and can be generated in a way that best �ts the needs
of the following training algorithm. It is not necessary to cope with problems aris-
ing from impartial data, noise from the sensor or occluded objects. While these
problems naturally occur when capturing any data with a sensor, they can be
avoided, e.g. by combining a variety of measurements into one big picture or by
manually modelling the required training model. The �rst method reduces the
e�ects of noise by taking into account multiple measurements, thus integrating
measurements over time and reducing noise. It is also possible to extend infor-
mation about object parts that have not been available in previous measurements
into the complete object model. The latter method, however, generates a noise-
free object model by design, since a designer or artist puts their own knowledge
into the model. This method is highly dependent on the working accuracy of the
designer and the compliance of the arti�cial model with the real world model.

Object detection in general has a variety of applications. These can be subdi-
vided into the following categories that build upon one another:

• Detecting the presence or absence of an object
Given input data like an image captured with a camera, the goal is to �nd
proof that the image contains one or multiple instances of the training mod-
els.

• Determining the number of occurences of an object instance
Given an input image, the goal is to detect the number of object instances
of training models.

1.2. MOTIVATION 17

• Detecting the locations of object instances
Given an input image, the goal is to detect yet unknown object instances of
the training model in the input data and output the detected object locations.

• Detecting and segmenting object instances
Given an input image, the goal is to detect unknown object instances of
the training model in the input data and output both the detected object
locations as well as the precise object that has been segmented from the input
data. In addition, this category can also include determining the dimensions
of the object as an oriented bounding box.

While only detecting the presence or absence of an object can work with just
high-level information about the model and testing the conformity with extracted
high-level information from the input image, determining the location of an object
needs additional information. Most importantly, recent methods extract low-level
information from important object parts and use spatial relations between object
parts and the training object. This approach has been motivated by research
in biological vision and adapted to two dimensional image processing [CDF+04]
[LS03]. According to these theories, the representation used for object detection in
human vision consists of the individual parts that compose an object and structural
relationships between these parts in order to de�ne the geometry [AR02].

1.2 Motivation

The Active Vision Group (AGAS) at the University of Koblenz-Landau con-
structed the autonomous service robot LISA (Figure 1.1). It has been developed
by students and research associates in the course of several practical laboratory
courses and is used to participate in the RoboCup@Home league. The @Home
league of the RoboCup has been developed to investigate more sophisticated meth-
ods for robotic interaction. The initial RoboCup league aims at boosting the de-
velopment of robotic algorithms in the context of a soccer game. The ambition
is that by 2050, a team of robot soccer players will be able to win a standard
soccer game against a team of human soccer players. While this task certainly
requires sophisticated methods in various research areas, it is still conducted in
a controlled environment. The superior motivation in robotic research is ignored,
i.e. developing a robot interfacing with and assisting humans in any possible way.
The world such a robot would need to interface with is compared to a soccer game
more complex and unpredictable. The goal is to introduce the robots to a dynamic
and unstructured environment instead of a dynamic and structured environment
[Zan07]. The high-level purpose for a service robot is to provide practical help to
elderly or disabled people in the household, as well as to simplify everyday life and

18 CHAPTER 1. INTRODUCTION

to assist humans in general. The robot thus needs a way of interfacing with the
user through native language processing, understanding commands, navigating in
indoor environments and grabbing and depositing objects with its built-in manip-
ulator. The task of building a service robot involves many algorithms that need
to be able to handle general purpose input data.

Figure 1.1: The service
robot LISA [SKM+13]

In this context, the robot needs to be able to detect
various kinds of objects, including windows, furniture
and �xtures. Given a request, such as placing a bottle
of juice inside the refrigerator, the robot needs to incor-
porate high-level knowledge about the environment and
extract the required dynamical information from sensor
data in order to execute the request properly. Detected
objects can be only partially visible to the sensor device,
they can be arbitrarily oriented in the environment and
captured data can su�er from noise. This provides a
challenging task for object detection and requires open
and robust methods. Inspired by recent achievements in
the area of two dimensional image processing, this the-
sis aims at implementing an appropriate approach and
adapting a robust object detection algorithm to the re-
quirements of the current setting. The object detection
task is restrained to the task of detecting furniture in
indoor environments, since this is the most common and
fundamental challenge in this context.

Referring to the thesis title, a probabilistic approach
to object recognition is used, in which each object hy-
pothesis is supported by a number of probabilities. Ob-
jects are detected at regions where maxima in the as-
sociated probability density function occur. By using a probabilistic approach,
variations in the process can be compensated.

1.3 Goal

Motivated by recent 2D object recognition methods, this thesis aims at adapting
the chosen method to the task of 3D object recognition for the service robot
LISA. Given the available sensor devices, incorporating 3D data acquired by a
depth sensor promises to improve precision and robustness of object detection
algorithms. In practice, LISA has a Microsoft Kinect camera mounted on top,
which makes it the �rst choice for the proposed algorithm. Following state-of-
the-art approaches to object detection, a suitable algorithm is chosen and will be

1.4. IMPLEMENTATION 19

adapted to 3D input data. As a consequence, existing methods need to be revised
and appropriate methodologies need to be matched to the special requirements.
In the evaluation, this thesis will also investigate how the requirements need to be
changed for the current task and how the proposed algorithm behaves in terms of
precision, robustness and runtime.

1.4 Implementation

The developed object recognition system is intended for use in the LISA service
robot. To employ modularity, the algorithms are encapsuled in a generic frame-
work and deployed as a library. Communication with robotic platforms is achieved
by incorporating the library in the Robot Operating System (ROS) [QGC+] and
providing interfaces to trigger the object recognition process. The training pro-
cedure was enabled by developing an additional training application using the Qt
graphical library, in which models can be loaded and the training process can be
started. The system and all of its components has been developed in C++ for the
GNU/Linux operating system, while the use of external open-source libraries sim-
pli�es potential porting to other operating systems later on. Standard algorithms
and methods were implemented using the Point Cloud Library (PCL) [RC11] in
order to assist the development process. Finally, the developed object recognition
system and all of the accompanying applications are published under the terms of
the GNU General Public License.

1.5 Outline

The outline of this thesis is as follows:

1 Introduction
The introduction gives an overview about the general problem and de�nes
the goal for this thesis.

2 State of the Art
Existing approaches to object recognition that build the base for the devel-
oped algorithm are presented and related fundamental algorithms are intro-
duced.

3 Creating Implicit 3D Representations
The training methods are described in detail, building the object model for
the following recognition procedure.

20 CHAPTER 1. INTRODUCTION

4 Probabilistic Object Recognition
Using the previously trained object model, a probabilistic approach to object
recognition is described.

5 Evaluation
The proposed algorithm is evaluated for accuracy and robustness using rep-
resentative test cases.

6 Conclusion
The results are summarized and implications on the use and �elds of appli-
cation are drawn, and further prospects are discussed.

A Appendix
Additional information is given considering the proposed reference imple-
mentation and notes on the practical usage.

Chapter 2

State of the Art

This chapter describes state-of-the-art approaches to object recognition, on which
this thesis will be based. Existing methods are split into two categories. Ap-
proaches to object recognition and classi�cation that describe e�ective methods
are discussed in Section 2.1. These methods build the base for the proposed algo-
rithm. Existing methods and tools that are needed by the proposed method are
described in Section 2.2 and Section 2.3.

2.1 Implicit Shape Model

The Implicit Shape Model approach has recently become popular and describes
a method to general object recognition. As the name suggests, an object is not
described by a direct representation of its shape. In fact, an implicit representation
is build, which enables the algorithm to cope with shape variations, noise and
occlusion. The precise method, however, is based on earlier works in the context
of text classi�cation.

2.1.1 Bag-Of-Words

In [Joa98], Joachims presents a method to categorize documents into a �xed num-
ber of classes in the context of online information retrieval. The goal is to au-
tomatically classify text documents, e.g. to �nd information on the web or �lter
news stories by personal preferences. A text document is allowed to be classi�ed
into either multiple categories, exactly one or no category at all. The classi�ca-
tion process is modelled with a binary classi�cation problem per category. While
building such classi�ers manually is di�cult and time consuming, a supervised
learning mechanism is proposed in order to automate the process. In a �rst step,
the document is converted into a representation that can be used by the learning

21

22 CHAPTER 2. STATE OF THE ART

algorithm. Prior research indicates that the occurrence of words in a document
proves to be a feature from which the importance of the document can be derived,
while their position in the text is of minor value. Thus, following the bag-of-words
concept, a feature vector is constructed by mapping the distinct words inside a
document to the number of their occurrence. This high dimensional feature vector
is then used to train a Support Vector Machine (SVM) for text categorization, as
SVM's are well suited to deal with large feature vectors and the feature space that
the text classi�cation subject poses [Vap99] [CV95].

Similarly, in [NMTM98], Nigam et al. propose a text classi�cation method
that aims at classifying text documents into a �xed number of categories with high
precision without the need to provide a large amount of correctly labeled training
documents. In contrast, they use a number of unlabeled documents to augment the
labeled training documents and boost the overall precision. Using the labeled train-
ing documents to estimate the classi�cation of unlabeled documents, co-ocurrences
of words can provide further information about the joint probability distribution
of words within the documents. While a naive Bayes classi�er [DP97] was trained
using the frequency of words as features, the Expectation-Maximization (EM)
[DLR77] algorithm was used to incorporate information from unlabeled training
documents into the classi�cation process. The authors proved the superiority of
their combined approach and showed that their approach achieves a higher accu-
racy with fewer labeled training documents in contrast to using the Bayer classi�er
on the labeled training data alone.

2.1.2 Object Recognition

Inspired by previous results in text classi�cation, Csurka et al. introduced the
bag-of-keypoints approach for generic visual categorization [CDF+04]. Using the
Harris a�ne detector [MS02], interest points are extracted from an input image.
The area around the interest points is then characterized by SIFT descriptors
[Low99]. The SIFT descriptor is supposed to be robust toward noise and has
a high feature dimension, which makes it potentially more descriptive compared
to other descriptors. Additionally, it is justi�ed to using the Euclidean norm
to compare the descriptors in feature space. In order to reduce the complexity
of the search process, a visual vocabulary is proposed that is being constructed
by clustering descriptors into representative keypoints that can be used in the
detection process. Clustering is performed using a K-Means clustering algorithm
and assigning each training feature a cluster center to create the keypoint within
the vocabulary. In the categorization process, features from an input image are
matched toward the vocabulary and assigned their closest keypoint in the feature
space. Additionally, the number of occurrences of the keypoint is counted, thus
creating the bag-of-keypoints. The input image is then being categorized by (1)

2.1. IMPLICIT SHAPE MODEL 23

applying the naive Bayes classi�er and choosing the category with the highest score
and (2) by using an SVM for categorization and reducing the problem formulation
into a binary classi�cation problem. In the experiments, the authors showed that
their approach is robust toward noise and is able to categorize well without using
geometric information with the bag-of-keypoints approach. Results with the SVM
classi�er were superior compared to using the naive Bayes classi�er.

Based on these previous works, Leibe and Schiele �rst introduced the initial
Implicit Shape Model approach to recognize unknown objects in a real world scene
using a probabilistic formulation [LS03] [LLS04] [LLS06] [LLS08]. Previous ap-
proaches to object recognition have primarily focused on object segmentation and
the extraction of low-level features. Driven by research in human vision, the au-
thors investigated the use of high-level features in order to group image features
and drive the segmentation process.

The object is represented by a number of images. To cope with changes in
the viewpoint with respect to the object, a series of training images from several
views is used in the training process. Starting with the training images, keypoints
on prominent locations are extracted using the Harris corner detector. Image
patches of a �xed size of 25 x 25 pixels are then extracted around the keypoint
positions which represent the local neighborhood. The patches are then clustered
by employing a hierarchical agglomerative clustering algorithm. The clustering
process starts with each image patch as a separate cluster. Two separate clusters
are linked together if the distance between their corresponding image patches is
below a threshold. Similarity between image patches is determined using the Nor-
malized Greyscale Correlation (NGC) measure. By considering all image patches
within the clusters, this approach guarantees that the clusters stay compact while
being separated from one another. Using this procedure, the authors were able to
reduce the amount of image patches by 70 %. The resulting clusters contain only
image patches which are visually similar, thus can be considered codewords on the
object. A codeword is therefore a visual pattern on the object that might occur on
di�erent locations, however in similar appearance. The set of codewords is then
referenced as codebook entries in a codebook.

The codebook generation process yields a codebook (also termed alphabet) of
visual appearances. However, the codebook alone does not contain any spatial
information about the codewords. While the codebook only approximates the lo-
cal visual properties of the object, determining the position in an unkown scene
requires additional information. Following the codebook generation, the extracted
image patches are matched against the codebook. All image patches whose sim-
liarity to a codeword is above a threshold are activated. The authors suggest to
use the same threshold in the activation process as in the agglomerative cluster-
ing process. For each activated image patch, the patch position is stored with

24 CHAPTER 2. STATE OF THE ART

Figure 2.1: Recognition procedure from [LS03]. Given an input image, image patches
are extracted around interest points and matched with previously trained codebook en-
tries. Matching entries then cast votes for possible object positions into a continous voting
space. Maxima in the voting space are detected and the image patches contributing to
the maxima are backprojected into the image space to create the object segmentation.

respect to the object's center. Thus, each codeword is associated with several
vectors originating from a number of activated image patches and re�ecting where
this codeword can be found on the object. The codebook and its corresponding
activation vectors then form the Implicit Shape Model (ISM) for the given object
class.

During object recognition, the ISM is employed in a probabilistic framework
based on a Generalized Hough Transform [Bal81]. After image patches have been
extracted from a test image in the same manner as during training, the resulting
patches are again matched with the codebook. Activated codewords are then
queried to obtain the corresponding activation vectors that have been generated
during training. While the activation vectors have initially been generated from
image patch locations in relation to the known object center, this information is
used in the detection stage to derive hypotheses for object locations from image
patch locations. A codeword then casts a number of votes for a possible object
location into a voting space. Hypotheses are created by analyzing the voting
space for maxima using Mean-Shift Mode Estimation [Che95]. However, instead
of using a uniform vote weight in the voting space, the voting procedure utilizes
a probabilistic formulation. For every vote, a weight encodes the probability that
this vote is supposed to represent the correct object location. The sum of votes
building the voting space then contributes to a number of object hypotheses which
are found by employing Mean-Shift Mode Estimation (Figure 2.1).

2.1. IMPLICIT SHAPE MODEL 25

Furthermore, the authors use the object hypotheses found in the previous step
to segment the object from the background. For each image patch, the activated
codeword therefore also stores a list of segmentation masks for each object location
it occurs in, while the mask is derived from a known �gure-ground segmentation
mask for the given training image. When an object hypothesis has been detected
in the voting space, all votes that contributed to this hypothesis are collected and
the corresponding image patches are backprojected to their original position. As
part of the segmentation process, the segmentation masks stored for each acti-
vated codeword are applied to the input image and combined into a pixel-wise
probability. A threshold that represents the desired minimum con�dence value is
then applied on the resulting con�dence image in order to obtain a �nal object
segmentation.

Knopp et al. describe an algorithm for three dimensional object classi�cation
[KPW+10]. Given a query object, their task is to �nd the proper object class
learned from a shape database.

The authors use an extension to the SURF descriptor [BTG06] to three di-
mensional shapes. In an initial step, the shape is �tted inside a voxel grid of
size 2563 and reduced to a voxelized shape by intersecting the object faces with
the voxel bins. For all voxel bins, a saliency measure is computed over three oc-
taves derived from the second order derivative for the current octave. Using a
non-maximum suppression technique, the saliency values are pruned to compute
a number of unique features. In order to obtain a rotation invariant descriptor,
a local reference frame is computed by analyzing Haar-wavelet responses around
each interest point. By sampling a 3 × 3 × 3 grid relative to the local reference
frame and computing a description vector of Haar-wavelet responses for each grid
bin, the �nal descriptor is then composed from the wavelet description vectors over
all grid bins. This results in a 3×3×3×6 = 162 dimensional feature vector at the
interest point. The feature description stores the interest point location, a scale
value extracted from the saliency measure and the SURF feature vector.

Using this descriptor, the Implicit Shape Model approach is used to create a
model for each class by generating a visual vocabulary from the training data.
The input feature vectors on the training model are clustered using the K-Means
algorithm to reduce the dimensionality of the matching process. As a heuristic,
the number of clusters is determined by 10 % of the number of input features. The
visual words inside the vocabulary are constructed as the cluster centers from the
K-Means clustering. Following the ISM approach, votes are generated for each
visual word by describing the o�set from the object center position to the location
where the visual word has been activated. However, while assigning the feature
only with the closest visual word may seem naturally, more noise-robustness can be
achieved by matching it with all visual words that have a descriptor distance below

26 CHAPTER 2. STATE OF THE ART

Figure 2.2: Recognition procedure from [KPW+10]. Given a query model, 3D SURF
features are extracted and matched with the previously trained visual vocabulary. Using
the activation distribution contained in the Implicit Shape Model, each visual word then
casts votes into a voting space, which is analyzed to �nd the location with maximum
density in order to detect the speci�c class.

a threshold. This is especially useful if the distance between visual words is small.
This matching process creates a distribution for each visual word, which may cast
votes for multiple classes and object positions. Each vote is also associated with
the feature scale from the feature that generated the vote, and the object scale.

Given a feature on a test model at a speci�c location, the feature is matched
against the visual vocabulary and the matching visual word casts its associated
votes in relation to the feature location into a voting space. The votes therefore
support the occurrence of a speci�c object class at a speci�c location. Scale in-
variance is achieved by taking into account a relative scale value, derived from the
feature scale and the object scale. If the test model precisely matches the training
object, all votes will be generated at similar positions in the voting space, thus
making a strong cluster of votes. If the test model does not match the training
object at all, the features will not match the visual words very well, therefore
scattering around in the voting space.

Instead of casting the votes directly into the voting space, the votes are further
weighted to account for feature-speci�c variations. Not all features may contribute
equally to the detection of a speci�c class instance, while also statistical inequalities
cause the clusters in the voting space not to be comparable. The votes are therefore
weighted with two di�erent weights. The statistical weight weights all votes cast
by a visual word and makes the votes invariant to statistical variation, e.g. the
number of training samples in the class or the number of votes associated with the
visual word. The learned weight can already be determined during training and
takes into account that a feature can cast multiple votes on di�erent locations,
while only one object position is correct. This way, features with votes closer to
the actual object center are weighted higher as features that created votes far from
the object center. The �nal vote weight is the combination of the two separate
weights.

2.2. FEATURES 27

Detecting the class of a test object requires analyzing the 5D voting space (ob-
ject position, scale and class) for clusters. The authors describe two mechanisms to
determine the class of an unknown object. The cube searching approach discretizes
the voting space into bins. Each vote that falls into a bin can also contribute to
neighboring bins by weighting the in�uence by a Gaussian. Recognizing the posi-
tion and class of an object is performed by analyzing the discretized voting space
for maxima. This approach allows to cope with noisy and partial test objects.
However, when given a clean test object, the distance to shape center approach
simpli�es class recognition by weighting each vote by a Gaussian, computed from
the distance to the center. Class recognition is then performed by �nding the class
that best matches the given object center (Figure 2.2).

The authors do not address rotation in [KPW+10], but discuss approaches to
solving rotation invariant object recognition for hough transform based methods
in general [KPVG10]. The problem is divided into three categories, depending on
the additional information available for the input data. In case a local reference
frame is available for each feature, point voting transfers an object-speci�c vote
from the global reference frame into the local reference frame computed for the
corresponding feature during training. Given that reference frames can be deter-
mined robustly, the vote can be transferred back into the global reference frame
at detection, by incorporating the local reference frame computed for the corre-
sponding feature. Since local reference frames are subject to noise, circle voting
can be performed when only normal information is available. Since a normal does
not span a reference frame, the exact location for the vote is unknown. However,
the vote position can be con�ned to a circle around the feature position with the
normal direction. During voting, the circle can then be subsampled with appropri-
ate resolution. With many features and each associated with a number of votes,
the voting space will be covered with a multitude of subsampled circles. Finding
maxima still corresponds to �nding locations in the voting space with maximum
density, since vote circles for matching object hypotheses will intersect at the esti-
mated object centers. Even when no additional information like normals or local
reference frames is available at all, sphere voting can still con�ne the vote position
to a position on a sphere. Regions with high density in the voting space are then
created by voting sphere intersections.

2.2 Features

Based on the methods described in Section 2.1, the proposed algorithm needs to
compute features on 3D point cloud data. This section therefore describes required
existing methods for feature extraction, which will be used later on in the following
sections.

28 CHAPTER 2. STATE OF THE ART

2.2.1 Normals

The captured point cloud, whether it contains the object model to be trained or
the scene in which objects are to be detected, does not initially contain additional
information besides point locations. Most following algorithms, however, rely on
normal information. The surface normal at a point p is given by the normal np

of the tangent plane at this point. Given the k-neighborhood of the query point
p, the distance from each point pi within the neighborhood to the tangent plane
with the normal np is given by d(pi) = (pi − p) · np. Estimating the tangent
plane can then be formulated as a least-square plane estimation problem [Rus09,
p. 45] within the point neighborhood Np of p. The covariance matrix Σ of Np is
computed by:

Σ =
1

‖Np‖
∑
pi∈Np

(pi − p) · (pi − p)T (2.1)

The eigenvalues of the covariance matrix are real numbers λi ∈ R and their
corresponding eigenvectors vi form an orthogonal frame, corresponding to the
principal components of Np [HDD

+92]. If λ1 ≥ λ2 ≥ λ3 ≥ 0 with corresponding
eigenvectors v1,v2,v3, the estimated surface normal at point p is then given by
±v3.

The sign of the normal, however, cannot be determined by analzing the covari-
ance matrix of the local point neighborhood only. This poses problems especially
with point descriptors, which often depend on a signed normal in order to produce
repeatable values. As one of the properties of the signed normal, a consistent
normal orientation is desired along the whole object.

When computing normals on a point cloud that has been captured from one
speci�c viewpoint, i.e. a point cloud captured with a Kinect camera, the nor-
mals can be oriented toward the viewpoint position. Given the viewpoint position
pv and a surface normal np, the normal is �ipped according to the dot product
between viewpoint position and normal:

np =

{
−np np · pv > 0

np otherwise
(2.2)

This provides an adequate way to consistently adjust the normal orientation
among all points of an object and guarantees that the surface normals at each
point in the point cloud are always oriented toward the camera.

As already mentioned, this only applies to a point cloud captured from a single
viewpoint. At the time of training, a number of di�erent point clouds is usually
combined to provide a more complete model of the object. Thus, the aforemen-
tioned method does not work in this case. The point cloud on which normals

2.2. FEATURES 29

need to be computed rather represents a complete or partial object model, either
manually modelled using a 3D graphics software, or by combining multiple scans
from di�erent viewpoints into an integrated model. In this case, normals cannot
be aligned toward the camera viewpoint.

However, Hoppe, DeRose, Duchamp et al. [HDD+92] describe a way to con-
sistently orient the normals on a set of unorganized points. First, an undirected
graph is constructed by fully interconnecting all points in the point cloud. The edge
weights represent the Euclidean distance between the connected points. Based on
this data structure, an Euclidean Minimum Spanning Tree (EMST) is constructed,
�nding a path through the graph with minimum total edge cost, while at the same
time reaching every single graph node. Converting the EMST back into a graph,
every graph node is then extended with additional edges connecting the current
node with its k nearest neighbors in the point cloud. The extended EMST is
called Riemannian Graph, in which every edge is then re-weighted with the cost
1 − |ni · nj|, representing the vector product between the corresponding point
normals. This cost guarantees that nearly parallel normals result in a low edge
weight. Starting from a seed point, the Riemannian Graph is then explored us-
ing depth �rst search and normals are propagated through the graph. Whenever
the graph search reaches an edge of which the target normal is inversely oriented
to the source normal, the target normal is �ipped. The resulting object normals
are consistently oriented, based on the direction of the normal at the chosen seed
point.

2.2.2 Keypoints

While the input data is only an accumulation of 3D points, it is necessary to �nd
a way to reduce the dimensionality and keep only the most descriptive compo-
nents, i.e. �nding those parts of the point cloud that are well-described by their
surrounding and suited to discriminate di�erent areas from each other. In this
context, a keypoint (also: interest point) is a single point that is characterized by
unique point cloud features in its surrounding area which allow this point to be
distinguishable to other points. Keypoints typically occur at locations where the
surrounding area contains high detail. A keypoint detection algorithm should work
invariantly to noise and clutter, changes in lighting, the perspective and capturing
modalities. As such, keypoints detected on an object contained in one point cloud
are supposed to occur at the same relative positions on the object in another point
cloud. This property poses the fundamental concept behind object detection using
local features, since it allows to compare keypoints coming from di�erent sources
and abstracting from the underlying capturing modalities.

30 CHAPTER 2. STATE OF THE ART

Desired keypoints properties are:

• Reproducibility
Given di�erent scans from the same object, i.e. scans retrieved under di�er-
ent capturing conditions, keypoints are detected on the same relative posi-
tions on the object.

• Uniqueness
Keypoints are unique, in the sense that a keypoint represents a unique part
of the object and no two keypoints represent the same part. The regions
around the keypoints need to contain enough detail in order to distinguish
them.

• Robustness
Keypoint positions are neither a�ected by translation, rotation and scaling
nor by noise and changes in point density.

• E�ciency
Keypoints can be computed e�ciently, such that computing a multitude of
keypoints can be performed in reasonable time.

• Quantity
A large number of keypoints can be detected even on small objects.

• Precision
Keypoint positions are computed at precise locations and keypoint locations
computed on a di�erent scan of the same object do not change signi�cantly
in their relative object location.

In this thesis, three di�erent methods of keypoint detectors are discussed. The
PCL implementation of the Harris interest point detector for 3D point clouds poses
a modi�cation to the original Harris detector for images. The 2D version of the
detector takes into account the gradient directions in the direct neighborhood of
the current pixel [HS88]. Starting with a window function, each pixel is associated
with a matrix M2×2 consisting of the image gradients in X, Y and XY direction.
A high image gradient correlates with a high change in image intensity in the given
gradient direction at that point. Analyzing the eigenvalues of M leads to a score,
with high values indicating a possible corner. Eigenvalue decomposition can be
avoided analytically by computing the score as R = det(M) − k tr(M)2, where
k ≈ 0.04 is an empirically chosen constant. The 3D modi�cation implemented
in the PCL relies on the same idea, but instead uses normal directions. Changes
in the point neighborhood are not determined by image gradients but rather by
changes in the normals. For each point in the point cloud, a covariance matrix of

2.2. FEATURES 31

normal directions in the spherical neighborhood is created. The resulting corner
score is computed similar to [HS88] and a high value indicates a high probability
for a 3D corner.

Intrinsic Shape Signatures became popular recently as an alternative 3D de-
scriptor and interest point detector [Zho09]. Firstly, a local reference frame is de-
�ned by computing a weighted covariance matrix of all points within the spherical
neighborhood of the point. Each individual covariance is weighted by the inverse
point density to create a representation invariant to point density variations. Since
the obtained reference frame is computed from the eigenvalues of the covariance
matrix, the precise axis directions pose an ambiguity of 180 ◦, which results in four
possible variants. Centered on a point in the point cloud, the characteristics of the
point neighborhood are encoded in an occupational histogram, created from a par-
tition in the polar coordinate system that has been aligned with the local reference
frame. The spherical partitions are constructed recursively from an octahedron,
yielding uniformly distributed cells on the surface of a sphere. Each cell de�nes
a bin in the occupational histogram and is mapped to a bin label according to a
lookup table. A �nal descriptor is created that maps each histogram bin to the
number of points that fall inside the corresponding bin. Using an octahedron as
basis for the spherical partitions results in a uniform cell distribution and avoids
problems arising with noise in the point data. The ambiguity in the local reference
frame is overcome by computing the descriptor for each of the four possible vari-
ants. Although the ISS initially describes a descriptor, analyzing the covariance
matrix of the local point neighborhood is used in the PCL to create interest points.
Since the computation of the local reference frame involved a weighted covariance
matrix, its smallest eigenvalue is used as an indicator for large point variations in
the neighborhood and the corresponding point is declared as an interest point.

Another method to extract points is Uniform Sampling, which has to be distin-
guished from the previous methods, however. Uniform sampling creates a subsam-
pled representation of the point cloud. A voxel grid with a speci�ed grid resolution
is superimposed on the point cloud and each voxel bin is then approximated by
the center of mass of all the points falling within the speci�ed bin. If the voxel
grid resolution is smaller than the average point cloud resolution, this approach
creates a reduced version of the original point cloud with a lower overall resolution.
This is in contrast to the above mentioned keypoint de�nition, since the points
generated by uniform sampling do not necessarily correspond to unique features on
the object. It is important to note that they do not comply to most of the stated
keypoint requirements. They are not reproducible, since the voxel grid is �xed on
the point cloud and variations of objects contained within do not lead to a change
in the voxel grid positions (aside from variations inside the voxel bins). They are
also not unique, since a unique part of the object can be represented by multiple

32 CHAPTER 2. STATE OF THE ART

keypoints, according to the chosen voxel grid resolution. And lastly, noise or clut-
ter have neither positive nor negative impact on the keypoint positions. When the
voxel resolution is chosen appropriately, however, the set of keypoints generated
through uniform sampling presents a sparse representation of the object and is
thus suitable for object matching. Even though the keypoint generation is not
in�uenced by object features, the probability will be high that a su�cient number
of keypoints do indeed represent important object parts and are thus suited for
object recognition.

2.2.3 Local Reference Frame

A local reference frame (LRF) is a coordinate system based on the characteristics
of a local neighborhood for a point in a point cloud. The properties for LRFs
are similar to that of keypoints and descriptors. Given an LRF computed for a
speci�c scan at a relative position on the object, e.g. determined by a keypoint
detector, the LRF for a di�erent scan of the same object on the same relative
position is expected to yield the same LRF, although the individual scans may
have di�erent characteristics regarding noise and sampling of the object. Similar
to the concept of keypoints, LRF are described by the local neighborhood that
is determined either by choosing k nearest neighbors or all neighbors within a
radius r around the point position. Under the assumption that the entropy of
each point's neighborhood is high enough, a repeatable and robust LRF for this
speci�c position can be determined.

The representation for LRFs can be speci�ed by a transformation matrix R of
size 3 × 3, which describes the transformation to get from the global coordinate
system to the LRF at the given point:

p̂ = R · p (2.3)

In [TSDS10], Tombari, Salti and Di Stefano described an LRF which aims at
being unique and unambigous. Similar to Section 2.2.1, they start by creating
the covariance matrix of the local neighborhood of a query point. The covariance
matrix is analyzed by means of Singular Value Decomposition (SVD) in order to get
the eigenvalues and their corresponding eigenvectors. These provide information
about the most dominant directions in the neighborhood N r

p , acquired at a radius
r from the query point. However, they propose to use additional weights in order
to reduce the in�uence of distant points and thus increase repeatability in presence
of clutter. Accordingly, Equation 2.1 is modi�ed as:

Σ =
1∑

pi∈N r
p
(r − di)

∑
pi∈N r

p

(r − di)((pi − p) · (pi − p)T) (2.4)

2.2. FEATURES 33

where di denotes the distance from a neighboring point pi to the query point
p, while r− di ≤ 1. The eigenvectors of the covariance matrix are used to give an
estimate about the directions of the LRF. Disambiguating the sign and therefore
the axis orientations needs further analysis, however. Given the eigenvectors as
starting points for the LRF axes, the precise orientation is based on the number
of points in the direction of the axis, i.e. the axis is always oriented toward the
denser part of the neighborhood with respect to the axis direction:

S+
x = {i | di ≤ r ∧ (pi − p) · x+ ≥ 0} (2.5)

S−x = {i | di ≤ r ∧ (pi − p) · x− < 0} (2.6)

x =

{
x+ |S+

x | < |S−x |
x− otherwise

(2.7)

where x+ denotes the original x axis and x− the �ipped axis, that oriented
in opposite direction. Sign disambiguation is done in the same manner for the z
axis, while y = x × z. This type of LRF has been introduced by the authors in
the context of the SHOT descriptor and will be denoted by SHOT-LRF.

However, [Müt13] describes that this method can lead to sudden changes in
the signs of LRF axes caused by slight changes in point positions or density. A
proposed modi�cation to the sign disambiguation technique is independet of point
positions but rather makes use of normal and tangent directions as a feature for
axis orientations. The axis is �ipped if the majority of the tangents and normals
within the neighborhood are pointed in the opposite direction of the current axis:

S = {i | di ≤ r} (2.8)

Ŝ+
x = {i ∈ S | x+ · (pi − p) ≥ 0} (2.9)

Ŝ+
z = {i ∈ S | z+ · ni ≥ 0} (2.10)

x =

{
x+ ‖Ŝ+

x ‖ ≥
‖S‖
2

x− otherwise
(2.11)

z =

{
z+ ‖Ŝ+

z ‖ ≥
‖S‖
2

z− otherwise
(2.12)

y = x× z (2.13)

This method works independently from the point density in the neighborhood
and will be denoted by SHOT-NA-LRF (SHOT Normal-Aligned LRF).

34 CHAPTER 2. STATE OF THE ART

After computing the reference frame, the axis vectors x, y and z pose the
orthonormal basis vectors of the rotation matrix:

R =

xT

yT

zT

 =

xx xy xz
yx yy yz
zx zy zz

 (2.14)

Rotating a point with matrix R as shown in Equation (2.3) computes the
transformation from the global to the local reference frame. Using R−1 = RT

instead describes the inverse rotation.

2.2.4 Descriptors

Given a number of keypoint positions on the model, the high-level goal is producing
a representation suitable for �nding correspondances between points. While meth-
ods exist that rely on global features for object detection, the proposed method
uses low-level features to create an object model for detection. Low-level fea-
tures describe the local neighborhood of the point of interest and enable �nding
correspondences between similar points. While the local neighborhood can be
represented as a subset of the original point cloud, extracted by a sphere with a
radius around the interest point, using the neighboring points directly as a de-
scriptor does not prove bene�cial. The purpose of a descriptor lies in reducing the
dimensionality of the search problem and condensing the most descriptive charac-
teristics in the neighborhood to a comparable feature vector. Therefore, given any
of two descriptors of unknown relative positions on an object, a successful match
between those two indicates a high probability that the locations on the object
correspond to each other.

Since all local descriptors compute features based on a local neighborhood
around a query point, it is crucial to de�ne a method for fast nearest neighbor
computation. For 2D images, determining nearest neighbors of a pixel can be per-
formed easily by exploiting the regular structure of the image. The direct neighbors
are therefore given by all pixels enframing the query pixel. Most point clouds, how-
ever, do not contain structured information and are merely an unordered collection
of 3D points, i.e. querying a points k nearest neighbors would require testing each
point in the point cloud for the distance to the query point. An e�cient method
for fast nearest neighbor computation in point clouds can be achieved by using
a k-d tree, which recursively partitions a point cloud into half-spaces with equal
numbers of points [Ben75]. Exploiting the structure of the k-d tree then allows for
fast nearest neighbor queries without the need to test each point.

As pointed out by [TSDS10], two types of descriptors can be distinguished.
Centered around a point in the point cloud, histogram-based descriptors accu-
mulate geometrical or topological features in the surrounding of the point in a

2.2. FEATURES 35

Figure 2.3: Support sphere of the SHOT descriptor [TSDS10]. Note that for conve-
nience only 4 azimuth subdivisions are shown.

histogram in a domain-speci�c feature space. These methods usually require the
de�nition of a reference frame or a reference axis to put the histogram in a repeat-
able context. Descriptors based on histogram comparisons typically compress the
geometrical structure into a more descriptive and less-dimensional feature vector
that can be used for matching. In contrast to histograms, signature-based meth-
ods do not encode only one geometrical property into a histogram. A signature is
rather an aggregation of individual measurements computed on the surrounding
of each interest point and put in the context of a unique invariant reference frame.

The SHOT (Signatures of Histograms of OrienTations) descriptor has been in-
troduced in [TSDS10]. The authors began by outlining the need for a unique LRF
and proposed the SHOT-LRF, as described in Section 2.2.3. Besides robustness
to noise and clutter, a 3D scene can especially su�er from variations in local point
densities, amongst others induced by the modalities of the underlying capturing
device. When a scene is typically captured using a camera-like device with a sin-
gle viewpoint, the point density will decrease with the distance from the sensor.
Therefore, comparing descriptors originating from points with di�erent distances
from the sensor needs to cope with density variations. Noise and clutter, how-
ever, are disturbance factors that occur in most other cases as well. Inspired by
the success of the SIFT descriptor for 2D images, SHOT adapts the use of local
histograms placed within the point support. Centered around the interest point
and aligned to the previously computed SHOT-LRF, the support with a given
radius is spanned by a sphere in which each included point is assigned a normal
direction. Instead of using the point positions directly, normals provide a good
way to describe di�erent regions, yet being rotation invariant. At �rst, the sup-
port sphere is subdivided into di�erent sections along the three axes (azimuth,
elevation and radial). The authors propose to use 8 azimuth divisions, 2 eleva-
tion divisions and 2 radial divisions, resulting in 32 sections on the support sphere
(Figure 2.3). In each of the sections, a histogram is computed from the angle θi

36 CHAPTER 2. STATE OF THE ART

Figure 2.4: Illustration of point pairs within a local neighborhood used for PFH com-
putation [Rus09]. The PFH descriptor for the center point is computed from all point
pairs within the support.

between the normal at each neighboring point located inside the section and the
normal at the center point of the sphere. Each of the points can contribute to a
bin in the histogram based on its normal di�erence to the center point. However,
small di�erences between orthogonal vectors should result in a more descriptive
representation than di�erences between parallel vectors. The assumption is that
the most descriptive power is given when high variations in the local neighborhood
lead to high di�erence values to the center point normal, while planar regions are
less distinctive. Therefore, the section's local histogram is computed over cosθi,
since it transforms the non-uniform distribution of angles into a uniform repre-
sentation suited for the accumulation in a histogram. To avoid boundary e�ects,
interpolation is further performed between corresponding histogram bins of neigh-
boring sections. Invariance is achieved by normalizing the whole descriptor to sum
up to 1 while accounting for the local point density. Since the SHOT descriptor
only relies on precomputed normals and a fast nearest neighbor query, a large
number of descriptors on a dataset can be computed e�ciently.

Point Feature Histograms (PFH) have been proposed by [RMBB08] and build
a histogram over several independent features for a point in the point cloud by
analyzing all possible point pair combinations within the support (Figure 2.4). For
every point pair pi and pj (i 6= j) with respective normals ni and nj, they are
named source point ps and target point pt according to the angle between their
respective normals ns and nt, such that the point with the smallest angle is chosen
as the source point. For each point pair, a reference frame is de�ned by u = ns,
v = (pt − ps)× u and w = u× v.

2.2. FEATURES 37

Given all possible point pairs within the neighborhood, four independent fea-
tures are de�ned by:

f1 = v · nt (2.15)

f2 = ‖pt − ps‖ (2.16)

f3 = u · pt − ps
f2

(2.17)

f4 = atan(w · nt,u · nt) (2.18)

The features f1 and f3 encode the angles between the pair's reference system
and the characterizing vectors of the pair, f2 represents the distance between the
points and f4 encodes the angle between the projection of the target normal nt

onto the plane formed by u andw, and the vectorw. The domain of these features
is well-characterized. By splitting each of the feature's domains into half according
to the center of their de�nition interval, each point pair then contributes to a bin
in the histogram given by the bin index idx:

idx =
4∑

i=1

2i−1step(si, fi) (2.19)

step(si, fi) =

{
0 fi < si

1 otherwise
(2.20)

The resulting histogram has 24 bins and encodes the mean surface curvature of
a point. More speci�cally, it represents the percentage of pairs that share the same
feature category determined by the function step(si, fi), where si corresponds to
the center of the feature domain. However, the authors showed that discarding
f2 in the feature computation increases the descriptive power when computed on
2.5D data, i.e. data captured with a camera-like depth device, where the point
density decreases with the distance to the sensor [RBB09].

Fast Point Feature Histograms (FPFH) are a modi�cation to the PFH descrip-
tor as proposed in [RBB09] and are faster to compute, however at the price of a
slightly reduced descriptive power. At �rst, the triplet of features 〈f1, f3, f4〉 is
computed for the query point and its nearest neighbors only, instead of all point
pairs within the support. The resulting histogram is then called Simpli�ed Point
Feature Histogram (SPFH). Secondly, the nearest neighbors are re-computed for
each point in the support and a new temporary support is de�ned for each nearest
neighbor (Figure 2.5).

38 CHAPTER 2. STATE OF THE ART

Figure 2.5: Illustration of point pair in�uences used for FPFH computation [Rus09].
The SPFH is �rst computed for the center point and its direct neighbors only. In a follow-
ing step, the SPFHs are re-computed for the neighbors and their respective neighborhood
to create the �nal descriptor.

The SPFHs for the support points are then weighted and added to form the
�nal FPFH descriptor:

FPFH(pi) = SPFH(pi) +
1

k

k∑
i=1

1

ωk

SPFH(pk) (2.21)

where the weight ωk is given by ‖pi − pk‖. With the described modi�cations,
the FPFH descriptor reduces the complexity of the PFH computation from O(nk2)
to O(nk). Both descriptors are not comparable, though. While PFH creates a
fully interconnected mesh in the support, FPFH only considers a subset, therefore
missing point pairs which might contribute to the description of the neighborhood.
Additionally, FPFH also computes point pairs with points from outside the original
support into the histogram, although their weights reduce the in�uence to the �nal
descriptor.

2.3 Mean-Shift Mode Estimation

The presented approach to object recognition uses a probabilistic formulation and
models a probability density function by a number of independent probability
measurements. Objects are recognized as regions with maximum probability den-
sity. In order to extract these maxima, [FH75] presents a method to estimate the
modes of a probability density function by a recursive gradient descent algorithm.
By observing the values of sample measurements around a point within a radius,
the probability density function at this point can be estimated. Finding modes
then involves a clustering algorithm and estimates the gradient of the probability
density function.

2.3. MEAN-SHIFT MODE ESTIMATION 39

Mean-Shift Mode Estimation is a non-parametric kernel density estimation
method, meaning that the method does not imply any knowledge about the pa-
rameters of the underlying probability density function [CM02]. The method also
does not imply any knowledge of the dimensionality d. Centered at a point x ∈ Rd,
the method estimates the probability density by applying a kernel with a speci�ed
radius to all neighboring data points. The radius is also called kernel bandwidth
and speci�es the in�uence of the kernel.

Given n observations xi ∈ Rd, the kernel density estimate for a point x ∈ Rd

is given by:

f̂(x) =
1

n

n∑
i=1

KH(x− xi) (2.22)

with the kernel function:

KH(x) =
1√
|H|

K

(
1√
|H|

x

)
(2.23)

The matrix H ∈ Rd×d speci�es the bandwidth matrix for the kernel function
K(x). In order to reduce complexity, H is reduced from a fully parameterized
matrix to either a diagonal matrix H = diag(h21, h

2
2, . . . , h

2
d) or proportional to the

identity matrix as H = h2I. While the �rst method uses individual bandwidth
parameters for each dimension, the latter method assumes the same bandwidth
for all three dimensions which is resonable when using the Euclidean metric and
further reduces complexity. As a result of using the Euclidean norm, only one
bandwidth parameter h > 0 needs to be provided. Equation (2.22) thus reduces
to:

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi

h

)
(2.24)

Since Equation (2.24) holds for every kernel function, a function K : Rd → R
is called kernel, if there is a function k : [0,∞]→ R such that:

K(x) = ckk(‖x‖2) (2.25)

Function k(x) is then called pro�le of K. The constant ck > 0 guarantees that
K integrates to 1. With this type of kernel de�nition, K is a radial symmetric
kernel.

40 CHAPTER 2. STATE OF THE ART

Inserting Equation (2.25) into Equation (2.24), the kernel density estimator
can be rewritten as:

f̂h,K =
ck
nhd

n∑
i=1

k

(∥∥∥x− xi

h

∥∥∥2) (2.26)

There are a number of di�erent kernel types. However, two of the most common
ones are presented here: the unit and the Gaussian (normal) kernel.

Table 2.1: Common pro�le and kernel types

The unit pro�le kU(x) with correspond-
ing unit kernel KU(x):

The Gaussian pro�le kN(x) with corre-
sponding Gaussian kernel KN(x):

kU(x) =

{
1 0 ≤ x ≤ 1, x ∈ R
0 otherwise

KU(x) =

{
1 ‖x‖ ≤ 1,x ∈ Rd

0 otherwise

kN(x) = exp(−1

2
x), x ≥ 0, x ∈ R

KN(x) = (2π)−
3
2 exp(−1

2
‖x‖2)

The kernel speci�es the in�uence of neighboring data points within the ker-
nel bandwidth. The term

∥∥x−xi

h

∥∥ of Equation (2.26) guarantees that the kernel
parameter is always in the range [0, 1], since the kernel is normalized and only
de�ned in this range.

With this de�nition, it is now possible to estimate the probability density
function at a speci�ed point x, measured at discrete data points xi. In order to
�nd the maximum density regions, however, the gradient of the probability density
function needs to be estimated. In contrast to most gradient descent methods, the
step size is computed adaptively and does not need to be set in advance. The
step size thus does not have any in�uence on the convergence of the algorithm,
and it is proven that Mean-Shift Mode Estimation does always converge [Che95].
Assuming that the kernel pro�le has a derivative for every x ∈ [0,∞), the derived
kernel is de�ned by:

g(x) = −k′(x) (2.27)

G(x) = cgg(‖x‖2) (2.28)

2.3. MEAN-SHIFT MODE ESTIMATION 41

In this context, K(x) is called shadow of G(x) [CM02]. Deriving the kernel
pro�le then results in the �nal density gradient estimator:

∇̂fh,K(x) =
2ck
nhd+2

[
n∑

i=1

g

(∥∥∥x− xi

h

∥∥∥2)]
∑n

i=1 xig
(∥∥x−xi

h

∥∥2)∑n
i=1 g

(∥∥x−xi
h

∥∥2) − x
 (2.29)

While the �rst term estimates the density using kernel G, the second term is
called mean shift and describes the di�erence between the current kernel position
x and the mean of the data points, weighted with kernel G. This is called the
mean shift vector:

mh,G(x) =

∑n
i=1 xig

(∥∥x−xi

h

∥∥2)∑n
i=1 g

(∥∥x−xi

h

∥∥2) − x (2.30)

According to [Che95], the mean shift vector is always proportional to the nor-
malized density gradient estimate, computed over kernel K, and points in the
direction of the maximum density region for the chosen bandwidth. Beginning
from a given starting point, successive computation of the mean shift vector yields
a sequence of kernel locations {x(t)}t=1,2,... called trajectory. The shape of the tra-
jectory is controlled by the chosen kernel function, whereupon the Gaussian kernel
usually creates a smoother trajectory than the unit kernel, but might need more
iterations to converge:

x(t) =

∑n
i=1 xig

(∥∥x(t−1)−xi

h

∥∥2)∑n
i=1 g

(∥∥x(t−1)−xi

h

∥∥2) (2.31)

Mode estimation on the probability density function thus needs to �nd a point
x(t) at iteration step (t) where ∇f̂h,K(x(t)) = 0. In this case, x(t) is a stationary
point in the probability density function and considered a mode of the underly-
ing probability density function. In practice, a threshold ≈ 0 speci�es when the
algorithm is allowed to terminate.

Chapter 3

Creating Implicit 3D

Representations

Based on Chapter 2, the presented approach implements object detection based on
low-level features. Similar to human vision, an implicit description for an object
class is learned, comprising a number of object-speci�c features and their spatial
relationships. Once trained, the model is then used in a detection stage on yet
unclassi�ed input data to detect hypotheses for object instances in the data. The
detection is performed using a probabilistic formulation to model the recognition
process.

3.1 Overview

The ISM framework consists of two parts.

In the training stage, the Implicit Shape Model is created in order to detect
instances of multiple object classes in an unknown point cloud. In this stage, the
framework is provided with pre-labeled object instances for training. After provid-
ing all availabe training models, interest points are being detected on the models.
These correspond to locations on the training model which are supposed to rep-
resent salient features. This is based on the assumption that such interest points
are su�ciently distinctive so that they will appear on unknown object instances
on the same relative positions. These locations are prototypical for the speci�c
object class and can thus be used for object detection. However, in order to com-
pare keypoints to one another, descriptors need to be computed at the keypoint
locations. A descriptor characterizes the neighborhood of the keypoint location,
such that similar neighborhoods produce a similar descriptor, yet most discrim-
inative to other locations. This allows for keypoint comparison. The keypoints
are then grouped together according to their descriptors into a geometric vocab-

43

44 CHAPTER 3. CREATING IMPLICIT 3D REPRESENTATIONS

Model

Feature-
extraction

Activation Strategy

Features Codebook

Clustering Activation ISM

Distribution

Figure 3.1: Training pipeline: Features are extracted on the initial training model and
clustered by their similarity to create codewords in a codebook. The previously detected
features are then matched with the codebook according to an activation strategy to
create a spatial distribution of codeword locations. Codebook and activation distribution
represent the trained Implicit Shape Model.

ulary, called codebook. The codebook contains a list of codewords, each of which
represents a geometric word that is prototypical for the object class. However,
instead of using the codebook directly to detect object instances, an activation
strategy is employed on the keypoints and their descriptors, matching them with
the codebook. A keypoint whose descriptor matches a codeword also adds the
direction from the keypoint position to the object center to the ISM. Thus, the
generated Implicit Shape Model consists of a list of codewords, shared between
all training objects, together with a list of activation vectors for each codeword,
which represent the locations where each codeword can be found on the object.
The resulting ISM can then be used in the detection stage (Figure 3.1).

After training has been completed, the detection stage receives input from the
sensor, attempting to detect yet unknown instances of the previously trained mod-
els in the point cloud data. At �rst, keypoints and descriptors are being detected
on the input point cloud identically to the training stage. The keypoints are then
matched against the previously trained codebook according to the activation strat-
egy. During training, each codeword has been assigned a list of activation vectors,
each of which votes for a possible object center in relation to the keypoint loca-
tion. Each activated codeword now casts all of it's votes into a three dimensional
voting space. Each entry in the voting space corresponds to a possible object lo-
cation. A probabilistic approach then assigns a weight for each vote and extracts

3.2. PREPROCESSING 45

the most likely object locations from the voting space after the voting procedure
has completed.

3.2 Preprocessing

Given an input sensor, sensor data needs to be acquired �rst. The di�erent types
of sensor devices enabling three dimensional perception include:

• Stereo cameras
Stereo camera systems have been inspired by biological vision. Humans and
most animals are able to perceive their world in 3D and estimate distances
by combining two vision organs in the head, which perceive the same envi-
ronment but are shifted by an o�set. In a stereo camera environment, two
identical cameras are pointed on the same object which are also shifted by a
�xed well-known o�set. The same object will then be perceived under di�er-
ent angles in the two images. In most cases, stereo cameras are also aligned
in the same way and only shifted along a horizontal line, which reduces the
mathematical part of the problem. The farther the object is away from the
cameras, the smaller the angle di�erence between the two images will get.
Thus, comparing this information allows for reconstructing the distance to
the object. A software component then analyzes the images and produces a
depth map, in which each pixel represents a distance value.

• Time-Of-Flight cameras
A Time-Of-Flight (ToF) camera uses the speed of light to measure the dis-
tance to an object. With the speed of light as c = 299796 m

s
, the travelling

time of a light ray from the sensor to the object and back to the sensor can
be determined in order to infer the distance. A ToF camera is therefore
equipped with an infrared light source, emitting a light pulse at a speci�c
time, while an aside sensor component detects the time when the re�ected
light pulse is measured. However, the time intervals of interest in most ap-
plications require precisely measuring the time in a ns range, thus additional
processing is required to achieve high accuracy. After processing, the output
is a dense depth map with per-pixel distance values. Additionally, some de-
vices are able to generate a con�dence score per pixel, as well as a grayscale
image of the scene.

• LIDAR range �nders
The LIDAR (LIght raDAR) technology is a distance sensing technology sim-
ilar to radar. It uses laser light to detect the distance to an object and
measures the travelling time for a laser pulse from the time of its emission

46 CHAPTER 3. CREATING IMPLICIT 3D REPRESENTATIONS

to the detection of the re�ected signal. The principle is similar to Time-Of-
Flight cameras. However, using a laser allows a higher maximum detection
range, while on the other hand only a single laser ray can be measured at a
time. To capture multiple points, a combination of rotating mirrors is often
used to successively scan the environment.

• Structured-Light sensors
Distance sensing approaches using structured light work on a combination
of a projector and a camera that operate simultaneously. The setup is sim-
ilar to a stereo camera system, though one camera is being replaced by a
projector. While the projector casts a well-known organized pattern onto
the scene, the camera records the pattern from a di�erent angle. From the
camera point of view, the perceived pattern gets distorted by the geometry
of the scene. By analyzing the camera image and creating a correspondence
between the original pattern and the perceived pattern, the scene geometry
can be reconstructed by taking into account the o�set between the camera
and the projector. The result is a dense depth map, in which each pixel
indicates the distance to the object beneath the pixel.

Since it is not possible to measure the dimensions of the scene directly, a
distance sensing device captures a sampled version of the scene which can be
transformed into a 3D point cloud P :

P = {pi | pi ∈ R3} (3.1)

A point cloud is an unstructured accumulation of three dimensional data points
and provides the main data source for 3D sensing applications. Depending on the
type of sensor, additional information like color and normals can be stored within
a point cloud.

3.2.1 Input Acquisition

Besides other components, the LISA robotic platform contains a Microsoft Kinect
camera as 3D input device (Figure 3.2). The Kinect camera has been developed by
Microsoft as input device for the Xbox 360 video game console and was presented
to the public in November 2010. In the gaming environment, the device is placed
near the TV screen and captures the scene before the sensor. Besides using a color
camera for image acquisition, a depth sensing component reconstructs a dense
depth map of the scene. Analysis of the depth map then detects the interacting
users and estimates a representation of their body skeleton. The skeleton comprises
the most important body joints and is then used to let the users interact with the
console and supported games.

3.2. PREPROCESSING 47

Figure 3.2: The Kinect camera

The depth sensing components
comprise a mono CMOS imaging sensor
and a static laser projector. The laser
projector projects a pattern of seem-
ingly randomly positioned and sized
points onto the scene. However, the
pattern is created by two special re-
fraction panes positioned in front of the
light source that de�ect the laser light
and thus produce the pattern. The
laser is further stabilized to produce
equal power output, therefore the generated pattern is stable and its structure
is well known. Due to the precise type of the pattern structure, the local envi-
ronment of each of the points is unique and di�erentiable between other parts of
the pattern. In order to reduce the e�ects of ambient light and to make the depth
sensing procedure undisturbing to the user, the projector as well as the camera
operate at the same IR wavelength, which is invisible to the human eye. Similar
to comparable structured light systems, the pattern projected onto the scene is
perceived by the imaging sensor and gets distorted by the geometry of the scene.
Comparing the perceived pattern with the known pattern and taking into account
the intrinsic parameters of the system's design, the geometry of the scene can be
reconstructed and a point cloud can be derived from the generated depth map.

While object instances need to be detected using only one point cloud coming
from a sensor, the training process needs to handle data acquisition di�erently. In
order to generalize the object, it is preferable to have the object geometry available
in good detail. Because the object can later be positioned arbitrarily inside the
scene, the model used for training needs to at least incorporate details from all
viewpoints from which the object could potentially be seen during detection.

• Registration
A well-known algorithm to combine multiple scans into a world model is
widely used in robotics. While the robot moves through the world, 3D scan-
ning devices like LIDAR are used to capture momentary images of the sur-
rounding. Consecutive scans are combined by applying an Iterative Closest
Points (ICP) algorithm, which minimizes the squared distances between the
scans, given an initial pose estimate computed from odometry data.

• Kinect Fusion
The Kinect Fusion algorithm performs a real-time ICP algorithm to incorpo-
rate di�erent Kinect scans into a more complete representation of the world.
It has been �rst introduced in [NIH+11] and has been implemented onto

48 CHAPTER 3. CREATING IMPLICIT 3D REPRESENTATIONS

di�erend platforms. The algorithm is optimized to run on the graphics card
and therefore allows to move around with the camera and see the results in
real time. Data that has been missing in one scan but is available in another
scan is used to complete the real world model.

• Manual Alignment
Since automatic registration needs initial pose estimates to align point clouds,
registration can also by performed by manually aligning individual point
clouds and creating a global object representation.

3.3 Features

The original ISM approach for object detection in 2D [LS03] proposed to represent
the local neighborhood by image patches. Assuming a �xed camera position and
no rotations, a window of �xed size can be superimposed on the detected keypoint
position to represent the surrounding area. Since rotation of the object or the
camera cannot properly be addressed using 2D data only, abstracting from rotation
invariancy seems reasonable and using image patches to describe local properties
of the object is valid.

Several issues arise when adopting this approach to 3D data. In analogy to
image patches with a �xed window size in 2D, a subset of the input point cloud
obtained within a speci�ed radius around the interest point represents the local
neighborhood in 3D. A method to comparing and matching point cloud subsets
can be de�ned, e.g. by computing the absolute di�erence between the triangulated
mesh of both point clouds �xed at the same absolute position. When working with
3D, not considering rotation is not acceptable, however. The input device is al-
lowed to move freely within the real world, just as the object can be positioned
and oriented arbitrarily. Restricting the degrees-of-freedom in any case would
highly constrain the operating conditions of the proposed method. The alterna-
tive lies in the concept of feature vectors that describe the local neighborhood in
a suitable way and compress the characteristics to the most distinguishable com-
ponents. While the amount of data in a point cloud subset is proportional to
the points contained within, the dimensionality of a feature vector is independent
from the structure of the neighborhood. As a side e�ect, the dimensionality of
a feature vector is usually lower than that of a point cloud subset, thus reducing
storage space and increasing performance. Additionally, descriptors often incorpo-
rate means to provide rotation invariancy themselves and thus allow for directly
comparing feature vectors to compute correspondences.

3.3. FEATURES 49

Starting with each individual training model, features are computed on the
training model in the following way:

• Normals
If no normal information is available for the model, consistently oriented
normals are computed.

• Keypoints
Keypoints are detected on the model according to the chosen keypoint de-
tector.

• Local Reference Frames
Local reference frames are determined for each of the keypoint positions
based on the local point neighborhood.

• Descriptors
Descriptors representing properties from the local point neighborhood are
extracted at the keypoint positions.

It is important to note that the computation of normals on the point cloud is
critical, since most of the following feature-extracting algorithms rely on correct
normal estimation. As pointed out already in Section 2.2.1, while the normal
extraction is basically robust, the precise normal orientation cannot be determined
using the local neighborhood alone. Depending on the chosen method to generate
training models, normals can be extracted already. Since approaches using point
cloud registration incorporate di�erent scans, normals can be computed on each
of the scans and oriented toward the current viewpoint. The registration step
can then merge the individual normals to create consistently oriented normals on
the training model. When using Kinect Fusion, correct normals are automatically
extracted along with the global point cloud.

When no normal information is available prior to the training process, normals
are computed using the methods described in Section 2.2.1. At �rst, the covariance
matrix of the point neighborhood is used to estimate ambigous normal directions.
Starting from a seed point, the normal direction is then propagated on a modi�ed
minimum spanning tree, as described in [HDD+92]. The seed point is chosen as the
point with maximum distance from the model center and the corresponding normal
is oriented to point away from the object center. Starting with this con�guration,
the normal direction is propagated on the model.

After all the individual features have been computed, the condensed feature
representation fi is the local representation of an object part and is herein de�ned
as a triple, composed of a keypoint position fip, a local descriptor fil with dimen-
sionality n that describes the properties of the local neighborhood in relation to

50 CHAPTER 3. CREATING IMPLICIT 3D REPRESENTATIONS

the keypoint position, and a representation of the local reference frame, given by
a rotation matrix fiR:

fi = 〈fip, fiR, fil〉 (3.2)

fip =
(
fipx,

fipy,
fipz
)T ∈R3

fiR =
[
fixT fiyT fizT

]T ∈R3×3

fil =
(
fil1,

fil2, . . . ,
filn
)T ∈Rn

For a given class c, a feature detected on a model belonging to c is denoted by:

cfi = 〈fip, fiR, fil〉 (3.3)

The set Ftr �nally represents all detected features on the training models:

Ftr = {cfi} ∀c (3.4)

3.4 Clustering and Codebook Generation

After computing features on the training data, a codebook is created by clustering
features according to their corresponding descriptors into codewords. The clus-
tering is performed in the feature's descriptor space, therefore clustering features
together based on the geometrical similarity of their corresponding object regions.
The resulting cluster center is then also given in the descriptor space and repre-
sents a meta descriptor, which is prototypical for a speci�c object characteristic.
Under the assumption that the whole of an object is composed of a quantity of
recurring local features reocurring at di�erent positions, the codebook thus consti-
tutes all possible object characteristics, independently from their relative positions
on the object. While the 2D Implicit Shape Model used image patches to describe
the local properties of an object, descriptors cannot directly be considered visual
representations of the underlying geometry. Codewords are therefore referred to
as geometrical representations, rather than visual representations.

According to [STDS10], two types of codebooks can be distinguished. A lo-
cal codebook (also: separated codebook) treats each object class individually. After
computing features on each of the training models for each object class, features
of each class are clustered to create a class-speci�c codebook. During detection, a
codebook will be used for each of the object classes. It is likely that a codebook
contains codewords that are similar to codewords of a di�erent codebook for a
di�erent class. In contrast, a global codebook is computed over all detected fea-
tures in all classes. Features from all classes and training models can contribute

3.4. CLUSTERING AND CODEBOOK GENERATION 51

to the implicit representation for a speci�c object class. Using a global codebook
approach allows for a wider generalization. While the local codebook generalizes
at inter-class level, the global codebook also generalizes at intra-class level. The
codebook representation built over all object classes therefore creates a codebook
containing all codewords that could possibly occur, given all training models. Dur-
ing detection, the codebook is then shared among all object classes. Motivated
by the results provided by [STDS10], the approach presented here uses a global
codebook.

The process of codebook creation has been evaluated by using di�erent cluster-
ing methods. The K-Means clustering method is a form of partitioning clustering.
These methods typically start with an initial cluster con�guration given a clus-
ter count k and iteratively relocating cluster elements between the clusters until
the �nal con�guration is reached. K-Means clustering optimizes the cluster as-
signments such that the k-clusters represent the means of their assigned cluster
elements. Given xi ∈ X a set of n d-dimensional data points, the K-Means al-
gorithm divides the data set into k partitions Sj ∈ S by minimizing the error
function:

E =
k∑

j=1

∑
xi∈Sj

‖xi − µj‖2 (3.5)

The term ‖xi − µj‖2 speci�es the squared distance from a cluster element
xi to the cluster mean µj. This is equivalent to minimizing the within-cluster
sum of squares. Lloyd used a K-Means algorithm for quantization in pulse-code
modulation (PCM) [Llo82] and his algorithm is commonly used nowadays. In the
initialization, k < n random points are chosen as cluster centers µj from the data
points. In the assignment step, each data point gets assigned to its nearest center.
The centers are then updated to re�ect the centroid of all data points assigned
to this cluster center, thus computing the cluster mean. This step changes the
cluster centers from their initial random position to a new position located inside
the cluster points. The algorithm iteratively continues by again assigning each
data point to its nearest cluster center and recomputing the cluster mean. The
algorithm terminates once the assignments do no longer change (Algorithm 1).

It is important to note that this algorithm only computes an approximated
partition of the original data set. When executed twice with the same parame-
ters, the algorithm does not necessarily return the same precise partitions, since
the initial cluster centers are chosen randomly. Reducing those artifacts can be
accomplished by applying the algorithm multiple times and evaluating the error
function from Equation (3.5) after each cycle. The best partitioning is then given
by the minimum value of the within-cluster sum of squares. Additionally, since the
K-Means algorithm computes the mean of all cluster elements, it is only applicable

52 CHAPTER 3. CREATING IMPLICIT 3D REPRESENTATIONS

Algorithm 1: K-Means clustering algorithm

Input: Data points xi ∈ X, Cluster count k
Output: Set of partitions Sj ∈ S
begin

M ← {µ1,µ2, . . . ,µk | µi randomly chosen points from X}
S ← {S1, S2, . . . , Sk |Sj = ∅}
repeat

Sj ← {xi ∈ X | ‖xi − µj‖2 ≤ ‖xi − µm‖2 ∀j ∈ N, 1 ≤ j ≤ k}
µj ← 1

‖Sj‖
∑
xi∈Sj

xi

until Sj = Sj−1;

with the Euclidean distance measure. However, in the given application, using the
Euclidean distance measure is reasonable, since the chosen descriptors depend on
their local reference frames and are thus elementwise comparable.

One of the main drawbacks of K-Means clustering is the choice of k, which
is not trivial. Several approaches exist to determine k automatically. Simple
solutions estimate k from the size of the data set, i.e. ‖X‖. Several rules of thumb
exist, such as k =

√
‖X‖
2

[MKB79], or k = c ‖X‖, assuming a certain percentage

of the data size for k and referring to c as the cluster factor. More sophisticated
heuristics apply K-Means multiple times with di�erent values for k and analyze
Equation (3.5) as a function of k [AS09]. Hartigan's index [Har75] is given by:

H(k) = γ(k)
Ek − Ek+1

Ek+1

, γ(k) = N − k − 1 (3.6)

The error function E is evaluated for each k(t) = k(t−1) + 1 and the �nal cluster
count is given by the smallest k that satis�es H(k) ≤ η, while typically η = 10.
More heuristics exist, as well as an adapted K-Means algorithm that does not
require knowledge of the cluster count [PM00]. However, the precise choice of k is
not critical, since the exact number of partitions cannot be precisely determined for
the high dimensional descriptor space. Slight variations in the clusters are allowed
and are not crucial to the algorithm, as long as the cluster assignment works as
expected and the within-cluster sum of squares is e�ectively minimized. Using the
above described heuristics is therefore su�cient for the current approach.

In contrast to partitioning clustering methods, which typically require knowing
the number of clusters in advance, hierarchical clustering methods are a form of
top-down agglomerative clustering [ER80]. Clustering starts with each of the data
points as their own clusters. According to a distance strategy, the two most similar
clusters are chosen and their elements are merged to create a bigger cluster. This
process can either be continued until the cluster distance for two selected clusters

3.4. CLUSTERING AND CODEBOOK GENERATION 53

exceeds a threshold, or until only one cluster is left. In the latter case, the clustering
process is modeled in a cluster graph and the cluster structure can be determined
anytime by cutting the graph according to the desired threshold or cluster count.
Since there is no need to later adapt the threshold on the same data, the clustering
process is terminated once the threshold is reached, as depicted in Algorithm 2.

Determining which two clusters need to be merged is referred to in literature
as linkage. While single linkage and complete linkage only consider distances be-
tween selected single elements within the clusters, average linkage computes the
Euclidean distance between every single element between both clusters:

dist(Si, Sj) =
1

‖Si‖‖Sj‖

‖Si‖∑
n=1

‖Sj‖∑
m=1

‖xi,n − xj,m‖2 (3.7)

Algorithm 2: Agglomerative clustering algorithm

Input: Data points xi ∈ X, Threshold t
Output: Set of partitions Sj ∈ S
begin

S ← {{x1}, {x2}, . . . , {xn}}
Si,min ← ∅
Sj,min ← ∅
dmin ←∞
repeat

foreach Si ∈ S do

foreach Sj ∈ S, i 6= j do
di,j ← d(Si, Sj)
if di,j < dmin then

dmin ← di,j
Si,min ← Si

Sj,min ← Sj

S ← S\{Si,min, Sj,min}
Si,j ← Si,min ∪ Sj,min

S ← S ∪ Si,j

until dmin > t;

The main bene�t of this clustering technique is that it does not require prior
knowledge of the cluster count, since it is determined automatically using the
termination threshold t. The threshold speci�es the maximum allowed Euclidean
distance between two clusters. However, since the clusters are given in a high

54 CHAPTER 3. CREATING IMPLICIT 3D REPRESENTATIONS

dimensional descriptor space, the correct choice of t is not intuitive and furthermore
depends on the chosen descriptor type.

After clustering, the created codebook C contains a list of codebook entries
cj ∈ Rn, represented as cluster centers from feature descriptors fil ∈ Rn belonging
to corresponding features cfi:

C = {c1, c2, . . . , ck | cj ∈ Rn} (3.8)

3.5 Activation

The codebook contains a list of codewords, each of which is prototypical for a spe-
ci�c geometrical property of the training model. However, the codebook does not
contain any spatial information yet. If the codebook was used for object detection
alone, it might still be possible to accumulate evidence that a given point cloud
contains an instance of the object model. Deriving the precise object location
will not be possible though, since this task requires additional spatial information
for the codebook entries. In accordance with the Implicit Shape Model formula-
tion in [LS03], the activation builds a spatial distribution specifying where each
codeword can be found on a training model. By iterating again over all training
features, the activation matches the features with the codewords contained in the
codebook according to an activation strategy. This strategy speci�es, whether or
not a feature can activate a codeword and is based on a distance measure between
feature and codeword. Since codewords have been created as the cluster centers
from a clustering method applied to features, both are given in the same descriptor
space. Thus, the activation strategy can work with the same distance measure as
was used by the clustering method during codebook creation.

The simplest method of activation would activate only the best matching code-
word for the current feature. However, during codebook creation, a multitude of
features has been grouped together to form one codeword. It is obvious that while
all features that have been grouped together to create the codeword have a low
distance toward each other, as stated by the compactness theorem, there is still
noise involved in the correct cluster assignment. In order to allow �fuzziness�, the
activation allows to use di�erent activation strategies and enabling the activation
of more than one codeword.

Given a feature cfi ∈ Ftr and the codebook C, the activation returns those
codewords that match the feature according to the strategy, creating the new
activation set fiC. The distance between feature and codeword is determined
by the distance function dist(fil, cj), where

fil represents the descriptor vector
associated with feature cfi and cj ∈ C a codeword vector to which the feature is
compared against.

3.5. ACTIVATION 55

• Best codeword
The Best activation strategy activates only the best matching codeword to
the feature of interest. This is the simplest form of activation, but does not
consider noise to the input data.

fiCBest = {c ∈ C | dist(fil, c) = min(dist(fil, c1), dist(
fil, c2), . . . , dist(

fil, ck))}
(3.9)

• K best codewords
The KNN activation strategy activates the k best matching codewords to
the feature of interest. Setting k = 1, this strategy is equal to the best
strategy. However, when activating multiple codewords, uncertainty in the
correct choice of correspondence can be compensated.

fiCKNN = {cj ∈ C | j = 1, 2, . . . , k ∧ dist(fil, cj) ≤ dist(fil, cj+1)} (3.10)

• All codewords with a distance below a threshold
The Threshold activation strategy depends more on the type of descriptor
and the chosen distance measure. It does not put any restrictions on the
number of activated codewords, but activates all words whose distance to
the feature of interest is below a chosen threshold t. Obviously, the choice of
the threshold depends on the type of the descriptor and the distance mea-
sure to compare codewords and descriptors. Without the proper knowledge
about the descriptor and the characteristics of the codewords, it is also possi-
ble that no codeword will be activated at all, due to an overvalued threshold.

fiCThreshold = {cj ∈ C | dist(fil, cj) < t} (3.11)

For each activated codeword cj ∈ fiC the activation then creates a spatial
distribution specifying where each codeword can be found on the object. In this
process, each codeword gets assigned references to all the features that activated
this codeword. Since features store an absolute position on the object, it is now
possible to obtain the locations where a feature activated a codeword. According
to the principles of clustering, the current feature provides a geometrical similarity
to the activated codeword.

The feature position is still given in absolute coordinates. In order to use
the spatial information for object detection, transformation into an object rela-
tive coordinate system is inevitable. The object-speci�c reference position can be
obtained in various ways.

56 CHAPTER 3. CREATING IMPLICIT 3D REPRESENTATIONS

Since the object is supposed to be already segmented during training, the object
centroid xc can be calculated by:

xc =
1

k

k∑
i=0

pi pi ∈ P, k = ‖P‖ (3.12)

This centroid represents the center of mass of the given point cloud P . How-
ever, another approach became obvious, determining the object position from the
bounding box. The axis aligned bounding box (AABB) of an object is de�ned as
the object enclosing box and is de�ned by the minimum and maximum extent of
the object in relation to the global reference frame:

pmin = min(P) ∀pi ∈ P : pmin < pi (3.13)

pmax = max(P) ∀pi ∈ P : pmax > pi (3.14)

The axis aligned bounding box BAA is then given by the size sAA, the center
position xAA and the identity rotation RAA:

BAA = 〈sAA,xAA, RAA〉 (3.15)

sAA = pmax − pmin

xAA = pmin +
sAA

2
RAA = I3×3

The minimum volume bounding box (MVBB) is the oriented box enclosing an
object, in which rotation, scale and position are computed such that the �empty�
space, i.e. the intersection of the object volume with the bounding box volume,
is minimal. According to [HP01], computing the MVBB can be reduced to �rst
approximating the diameter of the point set, i.e. �nding the maximum distance
between a pair of points. The estimated MVBB is then given by the direction
between the diameter points and the minimum box enclosing the point set, as
described in [BHP01], thus yielding an oriented box BMV :

BMV = 〈sMV ,xMV , RMV 〉 (3.16)

Computing the object's bounding box (either AABB or MVBB) instead of
the centroid provides several advantages. Since the object is already segmented
prior to training, an object enclosing volume can be computed as mentioned above.
Algorithms exist to compute both types of bounding boxes e�ciently. Additionally,
the bounding box information can be stored with the training data and used at

3.5. ACTIVATION 57

detection for further analyses. The MVBB provides information about the rotation
of an object. Assuming that the bounding box can be reconstructed robustly at
detection, comparing bounding boxes gives an insight to how an object has been
rotated between scans.

After the bounding box has been computed, the object-speci�c reference po-
sition is given by xBB = xMV as the center position of the minimum volume
bounding box. The relative feature position for feature cfi can then be given in
relation to the object position xBB by:

fivrel = xBB − fip (3.17)

and represents the vector pointing from the location on the object where the
feature was initially computed to the object center position. In order to provide
rotation invariance, each feature was associated with a unique and repeatable
reference frame given by a rotation matrix fiR. As described in Section 2.2.3,
the local reference frame is computed using local features on the neighborhood of
the feature position. It is supposed to be repeatable and rotation invariant. The
rotation matrix de�ning the local reference frame for feature cfi is given by fiR
and de�nes the rotation from the global reference frame into the local feature-
speci�c reference frame. Transforming the vector fivrel from the global into the
local reference frame can then be achieved by:

fiv = fiR · fivrel (3.18)

and yielding the �nal translation:

fiv = fiR · (xBB − fip) (3.19)

Applying the local reference frame to the feature-relative object position fivrel
therefore yields fiv and represents the vector from the feature location to the
object center in relation to the feature-speci�c local reference frame, as described
by [KPVG10]. Under the assumption that the local reference frame is repeatable
both at training and detection, fiv provides a position and rotation independent
representation for the occurrence of feature cfi on the training object for class c,
while the vector fiv can then be associated with each codeword that gets activated
by cfi to form the activation distribution (Figure 3.3).

Since it is possible that individual codewords are not activated by any of the
features, a new reduced codebook can be de�ned which contains only activated
codewords.

58 CHAPTER 3. CREATING IMPLICIT 3D REPRESENTATIONS

Relative Featurevectors Unified Featurevectors Activation Distribution

Merging

Objectcenter

F1

F2

F3

F4

F1

F2 F3

F4

Codeword

v1v3

v2

v4

Figure 3.3: Activation procedure during training. Detected features activate a code-
word (red) and their relative vectors to the object center are computed. Based on the
LRF associated with each of the features, the vectors are rotated into a uni�ed coordinate
system. The list of rotated activation vectors then builds the activation distribution for
the current codeword.

Codewords that have not been activated can be disregarded, since there will be
no spatial distribution computed and they cannot contribute to object detection:

Ĉ =
⋃

cfi∈Ftr

fiC (3.20)

However, this only occurs on rare occasions, e.g. when the Threshold activation
strategy is not able to �nd matching codewords based on the chosen threshold.
Given the activated codewords fiC for feature cfi, computed from either of the
three activation strategies, an inversion process maps each codeword to a list of
activated features. Starting with a function g that maps each feature to its cor-
responding list of activated codewords fiC as described, the inverse function g−1

maps each codeword to its corresponding list of activating features:

g : fi 7→ {fic1, fic2, . . . , fick} = fiC (3.21)

g−1 : cj 7→ {cjf1, cjf2, . . . , cjfl} = cjF = {fi | g(fi) 7→ fiC 3 cj} (3.22)

where cjF is the set of all features that activated codeword cj. The reversed
reversed activation set is then given by:

A = {〈cj, cjF 〉} (3.23)

Each element of A maps a list of features cjF to a codeword cj. Starting with
set A, activation vectors fiv are created for each feature fi ∈ cjF according to
Equation (3.19).

3.5. ACTIVATION 59

The �nal activation distribution can then be described by:

V = {〈cj, cjV 〉 | cj ∈ Ĉ ∧ cjV = {fiv | ∀fi ∈ cjF}} (3.24)

The set cjV contains a list of activation vectors for a codeword cj, pointing from
the feature location on the object to the object center. The activation vectors have,
however, already been transformed into the local feature-speci�c reference frame,
as described by Equation (2.3). In combination with the codebook Ĉ, the �nal
activation distribution V thus maps each codeword cj ∈ Ĉ to its list of activation
vectors cjV and builds the �nal data pool for the detection process. Algorithm
3 shows the complete activation procedure to build the activation distribution
for the codebook. Along with the activation vectors, each entry in the activation
distribution also stores additional information like the class c from the feature that
activated the corresponding codeword, and references to the computed bounding
box. This additional information is used in the detection process and will be
described in the corresponding section.

Algorithm 3: Activation procedure

Input: Object center xBB ∈ R3, Codebook C = {cj}, Features Ftr = {cfi}
Output: Set V of activation vectors
begin

V ← ∅
foreach cfi ∈ Ftr do

fiC ← {cj ∈ C | cfi activates cj according to the activation strategy}
Ĉ =

⋃
fi∈F

fiC

A← {〈cj, cjF 〉 | cj ∈ Ĉ ∧ cjF = g−1(cj)}
foreach 〈cj, cjF 〉 ∈ A do

cjV ← ∅
foreach fi ∈ cjF do

fiv = fiR · (xBB − fip)
cjV ← cjV ∪ {fiv}

V ← V ∪ {〈cj, cjV 〉}

Chapter 4

Probabilistic Object Recognition

During recognition, the previously learned implicit 3D representation is applied
to yet unclassi�ed input data. Input data is �rst acquired from an input device.
Input acquisition during training aimed at creating appropriate training models
representing the training object as a whole. Input data for use in the detection
stage poses di�erent requirements to the data acquisition. Since object detection
in this stage is supposed to be an automated process, no further analyses should
be required. The input device is therefore used to capture a momentary image of
the observed real world from a single viewpoint. The captured point cloud is then
analyzed for occurrences of object instances by taking into account the previously
trained Implicit Shape Model representation.

The training process created an implicit object representation, consisting of a
codebook of local geometrical codewords and an activation distribution, re�ecting
the positions where each codeword is expected to be located on the object. This
representation is suited for object recognition, since matching the implicit repre-
sentation with an unclassi�ed point cloud can reversely provide evidence for the
occurrence of an object instance. This is achieved by �rst detecting features on
the input point cloud in identical manner to the training stage. Matching detected
features with the previously trained codebook yields a list of activated codewords,
that then cast their corresponding activation vectors stored within the activation
distribution into a continous voting space. When an object matches one of the
representations stored within the ISM, several activation vectors will create clus-
ters at nearby locations, which represent possible object centers. Since activation
vectors have initially been trained as the vectors from a training feature to the ob-
ject center, the vote clusters are supposed to represent hypothetical bounding box
centers of yet unknown object instances. By searching for these maximum den-
sity regions, all object hypotheses are collected and evaluated using a weighting
strategy. Figure 4.1 presents an overview of the detection pipeline.

61

62 CHAPTER 4. PROBABILISTIC OBJECT RECOGNITION

Point Cloud

Feature-
extraction

Features Activated Codewords

Activation

Voting-SpaceMaxima

Activation Strategy

V
o

ti
n

g

Maxima-
Search

Object-
positions

Codebook

Distribution

Figure 4.1: Detection pipeline: Features are extracted on the input point cloud. De-
tected features are matched with the codebook and matching codewords cast their cor-
responding activation vectors into a voting space. When an object is found, activation
vectors build clusters in the voting space, which are detected by searching for maximum
density regions.

4.1 Features

Features are detected on the input data just as in training. While the normals
had to be oriented consistently among the training object, the input scene used
for detection has been captured by a camera from a single viewpoint. Normals
can then easily be oriented toward the known viewpoint, as described by Equation
(2.2). It is important to note at this point, that although technically possible to do
otherwise, keypoints are detected here using the same keypoint detection algorithm
as was used in training. Regarding the descriptor, using the same descriptor
method is inevitable, since descriptors originating from di�erend methods have

4.2. ACTIVATION 63

(1) most likely unequal dimensionality prohibiting the comparison of descriptor
vectors and (2) they are formulated in a di�erent descriptor space, accounting
di�erent geometrical properties and thus are not comparable by design.

In contrast to the list of features Ftr detected during training, the new features
Fdet represent all detected features on the yet unclassi�ed input point cloud. The
chosen descriptor and keypoint detector are supposed to be equal to the methods
using for training:

Fdet = {fi | fi = 〈fip, fiR, fil〉} (4.1)

4.2 Activation

After detecting features on the unclassi�ed input point cloud, the activation is
performed again similar to Section 3.5 in order to �nd evidence of the previously
trained ISM in the current input data. While the ISM, i.e. codebook and ac-
tivation distribution, de�ne the possible appearance of an object, the detection
stage needs to match input features to the ISM and �nd correspondences. As a
reminder, the codebook contains codewords that de�ne a geometrical property.
By matching current features with codewords, correspondences are established at
locations where the input data is assumed to match the trained object model.

Given the codebook and the activation distribution, the trained codewords are
activated with the input features, yielding a list of activated codewords, which is
each associated with a list of activation vectors. The used activation strategy is
the same as the one used for training. The activation then yields a number of
codewords and their corresponding activation vectors.

According to the chosen activation strategy, the best matches from an input
feature fi to a number of codewords cj ∈ Ĉ is determined. With Ĉ the trained
codebook and fi the feature detected on the yet unclassi�ed input point cloud, the
activation yields the best matching codebook entries fiCact for feature fi, and the
total set of activated codewords Ĉact:

Ĉact =
⋃

fi∈Fdet

fiCact (4.2)

In contrast to the activation during training and corresponding Equation (3.20),
Ĉact represents the sum of all codewords from the trained ISM that have been acti-
vated using the new features Fdet. Based on the stored activation distribution, all
activation vectors are subsequently collected for each of the activated codewords:

V̂ = {〈cj, cjV 〉 | ∀cj ∈ Ĉact ∧ cjV = {v} ⊂ V } (4.3)

64 CHAPTER 4. PROBABILISTIC OBJECT RECOGNITION

4.3 Voting

After activation, each codeword casts a number of votes for possible object loca-
tions into a multi-dimensional voting space. Each vote contained in the voting
space represents an hypothesis for an object occurrence and contributes to the
�nal object hypothesis. While �nding the most likely 3D object position is the
main goal, the basic hypothesis consists of more than three degrees-of-freedom
(DOF). Determining the position, rotation and the speci�c object class is an 8
DOF problem. While the rotation matrix comprises 9 values, rotations can also
be expressed via quaternions with 4 values. Thereby, the 8 degrees of freedom are
induced by 3 position coordinates, 4 quaternion elements and the class. Letting
each codeword cast votes in an 8 DOF voting space requires a high dimensional
maxima search.

However, the voting space can be simpli�ed to three dimensions. Ignoring ob-
ject rotation at �rst leaves a four dimensional voting space. Determining the object
class can further be accomplished by using heuristics and building up separate vot-
ing spaces for each class to be detected. This leaves a three dimensional cartesian
space. Voting and object detection is performed in the following way. Given the
number of possible object classes from the training stage, individual voting spaces
are created for each class. Each activated codeword is further associated with a list
of activation vectors, each of which can cast a vote for a speci�ed object class. The
codeword then casts all of its votes into the voting spaces, according to the object
class of the respective activation vector. Following the voting procedure, the voting
spaces are analyzed for maxima individually and in each voting space, maxima are
selected according to a probabilistic formulation. Given the �nal object position
and class, rotation is then estimated by collecting all votes that contributed to
the object hypothesis and computing a mean rotation over the sum of rotations.
Furthermore, reducing the voting space to a three dimensional cartesian space also
simpli�es the distance measure for the maxima detection method, since the carte-
sian distance accross all three dimensions can be computed in the same way, while
computing distances over a seven dimensional non-uniformly scaled voting space
needs further adaption and increases complexity.

The voting space Vc for a speci�c class c is build as a continous three dimen-
sional space, in which every point is assigned an additional weight:

Vc = {〈xi, ωi〉 | xi ∈ R3, ωi ∈ R} (4.4)

Each activation vector v ∈ V̂ that has been collected from activating features
with the trained codebook casts a vote for an object hypothesis at a location
xi, weighted by ωi into Vc, based on the class c from the training process. The

4.3. VOTING 65

respective weight corresponds to the probability that this vote re�ects the actual
object location.

As described in Section 3.5, the activation distribution was created to re�ect
all observed locations on the training object where the corresponding activated
codeword was found. During voting, this process is reversed to backproject the
activation vectors from the activated feature locations and indicating possible ob-
ject center locations.

4.3.1 Weighting

Based on the probabilistic formulation in [LS03], the probability for an object
identity on at position x, given a feature fi, can be described by:

p(on,x|fi) =
∑
j

p(on,x|cj)p(cj|fi) (4.5)

Given all codewords cj that match the feature fi, the term p(on,x|cj) de-
scribes the probability that a codeword supports the object hypothesis based on
the activation distribution, while p(cj|fi) describes the matching probability be-
tween codeword and feature. The �nal probability for the object hypothesis is
then given by considering all features fi detected on the point cloud:

p(on,x) =
∑
i

p(on,x|fi) (4.6)

=
∑
i

∑
j

p(on,x|cj)p(cj|fi) (4.7)

The probabilistic formulation is implemented using a weighted voting space.
Each vote vi being cast therefore includes an additional weight ωi ∈ [0, 1] that mod-
els the probability that this vote supports the correct object hypothesis. Eventu-
ally, the maxima represent a region in the voting space with the highest probability
density, i.e. all votes around the maximum contribute with their weights to the
�nal probability for the object occurrence.

The �nal vote weight ωi for vote vi is composed of separate individual weights.
The statistical weight ωst

i is used to compensate for statistical variations regarding
the number of activated codewords and activation vectors per codeword. Since
a maximum in the voting space is detected using a number of votes, each vote
weight in the maximum's surrounding area contributes to the �nal probability.
The statistical weight therefore guarantees that the probability can be computed
independently from the actual number of votes. It normalizes each individual
weight based on the number of activated codewords and activation vectors, such

66 CHAPTER 4. PROBABILISTIC OBJECT RECOGNITION

that for a perfect match, in which case each codeword casts at least one vote into
the true object center, the maximum probability is 1. Of course, for a di�erent
object with a di�erent number of codewords and corresponding activation vectors,
the maximum probability is still supposed to be equal to 1, however the individual
weights might di�er.

Assigining each vote with a normalized weight ω ∈ [0, 1] is problematical.
During training, multiple features on an object are detected and clustered into
a codebook, and a following activation strategy assignes each codeword a num-
ber of votes. During detection, the codewords are again matched against the
detected features and the corresponding votes are collected. If only one single
feature matches the codebook and is creating a single object hypothesis, it would
be considered a high probability even if the multitude of trained codewords has
not been matched. Therefore, votes are assigned a statistical weight that aims at
compensating statistical di�erences between the objects and their corresponding
implicit shape representations. The statistical weight described in [KPW+10] has
been used in this thesis in order to normalize the individual votes. The weight ωst

i

weights a vote for a speci�ed class c, created from a speci�ed codeword cj, by:

ωst
i =

1

nvw(c)
· 1

nvot(cj)
·

nvot(c,cj)

nftr(c)∑
ck

nvot(ck,cj)

nftr(ck)

(4.8)

The �rst term normalizes the vote weight by the number of words nvw(c) that
vote for the speci�ed class c. The second term normalizes by nvot(cj), which
represents the number of votes assigned with word cj. The third term is used to
normalize on inter-class level. It represents the probability that the word cj votes
for the given class in contrast to the other classes.

[KPW+10] also describes another weight that proved bene�cial. The center
weight is computed for each vote and is already learned during training. When all
codewords have been created and the activation distribution has been built, the
expected object position is known for each entry. Since the ISM approach allows
each codeword to get assigned to a number of votes, not every vote contributes
equally well to the �nal object hypothesis during detection. The weight ωcen

i thus
computes the distances from each entry in the activation distribution to the actual
object center:

ωcen
i = median

{(
exp

(
−d(fiv,xBB)

σ2
cen

))}
(4.9)

In case a codeword contains a number of votes for a training model, only those
votes that actually fall into the surrounding of the known object center position
are assigned a high weight. Experiments showed that σ2

cen = 0.25 is a reasonable
value.

4.3. VOTING 67

Additionally, a matching weight has been integrated that represents the match-
ing score between a feature and the corresponding activated codeword. A lower
matching distance in the descriptor space is supposed to represent a higher prob-
ability that the feature actually matches the current codeword, regarding their
geometrical similarity. In case feature and codeword represent di�erent visual
properties, the activation procedure did not �nd a better suited codeword for the
current feature. Thus, the corresponding matching weight has to be small in order
to account for a low matching probability. Given the feature fi with descriptor fil
and the corresponding matched codeword cj, the matching weight is given by:

ωmat
i = exp

(
−dist(

fil, cj)
2

2σ2
mat

)
(4.10)

The right selection of σ2
mat is critical. Since the distance between feature and

codeword is given in descriptor space, the value of σ2
mat depends on the chosen

descriptor type and indicates how much a codeword can di�er from a feature.
However, σ2

mat can be estimated during training by the sample covariance. Given
each of the features cFtr ⊂ Ftr on the training model for a speci�ed class c, the
sample mean of distances is computed by:

µ =
1

MN

M∑
i=1

M∑
j=1

dist(fil, cj) (4.11)

over all features fi ∈ cFtr and activated codewords cj ∈ Ĉact, whereM = ‖cFtr‖
andN = ‖Ĉact‖. The �nal value of σ2

mat is then computed as the sample covariance:

σ2
mat =

1

MN − 1

N∑
i=1

M∑
j=1

(dist(fil, cj)− µ)2 (4.12)

This value is stored during training and computed individually for each class.
At detection, the matching weight is evaluated for each vote and σ2

mat is chosen
based on the class.

The �nal weight assigned with each vote combines the individual weights:

ωi = wst
i · ωcen

i · ωmat
i (4.13)

4.3.2 Rotation Invariance

[KPVG10] introduced three techniques to achieve rotation invariance for hough
transform based object recognition methods, as described in Section 2.1.2. While
circle voting is a suitable method, experiments showed several disadvantages. In
the �rst stages of object detection, normals are computed on the object. However,

68 CHAPTER 4. PROBABILISTIC OBJECT RECOGNITION

normal computation is still subject to noise and causes disturbances in the normal
direction. With cicle voting, the radius of the circle depends on the length of the
activation vector, i.e. the farther away the activated feature is located from the
object center, the bigger the circle will be in the voting space. With small distur-
bances in normal directions, circles will no longer intersect at precisely determined
locations. Additionally, circles need to be subsampled in order to contribute to the
voting space. To guarantee equal point distributions independently from feature
locations, the sampling density needs to increase with the circle radius. Due to
the fact that circle radii depend on the distance of the corresponding feature from
the object center, the point concentration in the voting space will increase with
the overall object size. Finding the precise maxima in such a dense voting space
not only increases computation time but also strengthens false positives. Precise
maxima are di�cult to extract in an oversampled voting space and circles close to
each other promote the creation of irrelevant side maxima.

Since the feature extraction process computes a unique local reference frame
at each feature position, rotation invariance can be achieved by assuming a robust
and repeatable reference frame. Each activation vector is associated with a cor-
responding feature on the object and has been rotated from the global reference
frame into the feature-speci�c reference frame during training. Since the LRF
only depends on local information around the feature position, the rotation can
be reversed during detection by backrotating the activation vector into the global
reference frame using the LRF from the current feature.

While the activation vector fiv has been rotated into the LRF given by the
rotation matrix fiR at training feature cfi ∈ Ftr, the rotation procedure during
training was given by Equation (3.18):

fiv = fiR · fivrel
During detection, the rotation can be reversed by the inversed LRF matrix

fjR−1 = fjRT computed at a feature position fj ∈ Fdet on the point cloud, which
results in the back-rotated activation vector fj v̂rel:

fj v̂rel = fjRT · fiv (4.14)

While the activation vector fiv has been created during training, pointing from
the feature position to the object center and rotated into the corresponding LRF,
the backrotated activation vector for the current feature can now be used create
an object hypothesis.

4.3. VOTING 69

Detected Features

Activation

C1

v1
v3

v2

v4

C2

v5

v6

v7

Activation Distribution Votes

F14

F13

F10

F11

F12

Figure 4.2: Activation procedure during detection. Codewords (red and green) are
associated with list of activation vectors during training. Each vector has been rotated
into the same coordinate system according to the LRF from the activating training
feature. Each detected feature in an unknown scene is associated with its own unique
LRF. Features that match the codebook according to the activation procedure then cast
the corresponding backrotated votes into the voting space, creating clusters when objects
are found.

Given the corresponding feature position, adding the backrotated activation
vector to the feature position can be considered a vote for a possible object position
xh:

xh = fjp+ fj v̂rel (4.15)

= fjp+ (fjRT · fiv) (4.16)

Since the activation vector was created in relation to the center of the bounding
box, the object hypothesis is also the center position of the yet unknown object oc-
currence and its bounding box (Figure 4.2). Applying rotation and backrotation at
training and detection respectively, the �nal object vote can be considered rotation
invariant under the assumption that the LRF computation itself is independent
from object rotation.

The voting space is then updated with the computed object hypothesis and
the corresponding vote weight:

cV = cV ∪ {〈xh, ωh〉} (4.17)

70 CHAPTER 4. PROBABILISTIC OBJECT RECOGNITION

4.3.3 Hough-Voting

The simplest approach to detecting maximum density regions within the voting
space has been adopted from [HA62]. The authors used a voting based approach
in order to detect straight lines from images that have been pre�ltered with the
Canny line detector. Each pixel in this binary image is assumed an occurrence for
a possible straight line and therefore casts a number of votes for a possible line
equation into a discretized accumulator. Since 2D line equations can be expressed
by two parameters, the accumulator array uses two dimensions corresponding to
the equation parameters. Starting with an empty array, each vote falls into a
speci�ed bin based on their line parameters and increases the accumulator value
by 1. Finally, after all possible votes have been cast, the bins are analyzed for
maxima using a non-maximum suppression technique. Maxima in the voting space
correspond to a detected straight line, de�ned by the corresponding parameters in
the voting space. Backprojecting the parameters from the parameter space into
the original image space generates a number of straight lines which correspond to
lines in the image.

This approach can be used in a general way to detect arbitrary shapes [Bal81].
In this context, the parameter space models the cartesian space in which the
object center is located. The array bins are increased by the corresponding vote
weight in order to implement the probabilistic formulation, instead of using an
equal weight of 1. Maxima in the voting space can be detected by applying a non-
maximum suppression technique and choosing the remaining maximum bins by
their accumulator value. Bins with high accumulator values correspond to object
locations with a high probability, while low accumulator values can be discarded
as irrelevant.

Even though this approach is easy to implement, several disadvantages need to
be discussed. The extent of the accumulator bins highly in�uences the precision
of the detected object locations and the performance of the algorithm. In case the
bins are too large, two objects close to each other can cast votes into the same bin,
in which case the objects are no longer separable. When the bins are too small,
noise in the detection process can cause votes for the same object location fall into
di�erent bins. A more general issue arises when an object is located close to a
bin boundary. Even though the bin size may be chosen appropriately, votes for
the same object might fall into di�erent neighboring bins. Even if the maximum
probability for the detected object can be considered high enough, it is divided
into two di�erent bins. Maxima search might then dismiss the corresponding ob-
ject, since the individual accumulator values are too low. If an object location was
successfully detected within an accumulator bin, the actual position within the bin
cannot be precisely determined, thus limiting the precision. Following interpola-
tion can in turn increase precision, but still poses a compromise. Additionally, the

4.3. VOTING 71

overall size of the accumulator needs to be known in advance, i.e. the range in
which detected object locations are expected needs to be known. The larger the
accumulator size with constant bin sizes, the higher the computational cost will
be. For a smaller accumulator, however, possible object locations are restrained to
the overall accumulator extent and objects located outside the accumulator cannot
be detected.

4.3.4 Mean-Shift Mode Estimation

The voting space created from the activation can be seen as a sparse representation
of a probability density function. While each vote that has been cast into the voting
space represents a probability that the object is located at the vote position, �nding
the actual object location from the multitude of votes in the voting space can be
reduced to �nding those locations in the probability distribution that have the
highest probability density.

In this context, maxima in the probability density functions are detected using
the Mean-Shift algorithm described in Section 2.3. Given a point x ∈ R3, the
mean shift vector applies the kernel pro�le g to the point di�erences between all
neighboring points xi within the kernel bandwidth h. Since the Mean-Shift Mode
Estimation now searches for maxima in the voting space, the data points represent
the individual votes, i.e. xi ∈ cV . The initial mean shift vector was de�ned by
Equation (2.30):

mh,G(x) =

∑n
i=1 xig

(∥∥x−xi

h

∥∥2)∑n
i=1 g

(∥∥x−xi

h

∥∥2) − x
This equation describes the mean shift vector as the mean of the di�erences

between all points within the bandwidth acquired with a speci�ed kernel. The
voting space, however, contains a set of weighted votes. Instead of computing the
mean shift over uniformly weighted data points, a modi�cation to the mean shift
vector, as proposed in [Che95], applies the kernel density gradient estimation over
a weighted point set, in which each data point xi is assigned with a weight ωi ∈ R:

m̂h,G(x) =

∑n
i=1 xiωig

(∥∥x−xi

h

∥∥2)∑n
i=1 ωig

(∥∥x−xi

h

∥∥2) − x (4.18)

72 CHAPTER 4. PROBABILISTIC OBJECT RECOGNITION

The trajectory for the mean shift algorithm, given a weighted point set, is
therefore given by modifying Equation (2.31):

x(t) =

∑n
i=1 xiωig

(∥∥x(t−1)−xi

h

∥∥2)∑n
i=1 ωig

(∥∥x(t−1)−xi

h

∥∥2) (4.19)

The standard mean shift approach would begin iteration from each of the in-
dividual data points as a start points, also called seed points. Since a maximum
density region is naturally composed of multiple data points, several seed points
would converge to the same maximum. With increasing number of data points and
even with parallelization, the algorithm would soon require much processing power
in order to compute only few maxima. In order to improve performance, a regular
grid of appropriate grid size is superimposed on the data points before applying
mean shift. Seed points are then sampled from the grid cells, whereupon each cell
containing at least a speci�ed number of data points creates a seed point. The
precise creation of the seed point is negligible. Possibilities include the grid cell
center, using one of the included data points or the centroid of included points. In
this approach, seed points are created at the cell intersections. Further attention
should be paid to the selection of the appropriate grid size. The maximum number
of detected maximum density regions cannot be higher than the number of seed
points. Thus, an undersized grid size may cause the algorithm to miss important
maxima. In this thesis, the grid size was chosen as 2(−0.5)2h, since the correspond-
ing cell is then perfectly covered by the kernel. This parameter choice has proven
reasonable in experiments. Since the seed points converge to a stationary point
independently from each other, it is likely that two or more seed points converged
to approximately the same position. In order to retrieve individual maxima, a
following pruning step performs a non-maximum suppression technique and elim-
inates duplicate maxima. The �nal Mean-Shift Mode Estimation is depicted in
Algorithm 4.

Additionally, the �nal probability for the detected maximum x(t) is given by
the kernel density estimation at the maximum position in the voting space. Since
the voting space consists of weighted data samples, the kernel density estimator
from Equation (2.26) is modi�ed to incoroporate the sample weights ωi ∈ R:

p(x(t)) =
n∑

i=1

ωik

(∥∥∥x(t) − xi

h

∥∥∥2) (4.20)

A object hypothesis can then be characterized by the hypothesis position and
its corresponding probability:

oi = 〈x(t), p(x(t))〉 (4.21)

4.4. MULTI-CLASS DETECTION 73

Algorithm 4: Mean-Shift Mode Estimation

Input: Voting space cV = {〈x1, ω1〉, 〈x2, ω2〉, . . . , 〈xn, ωn〉}, Threshold t
Output: Set Y of maxima
begin

Yt ← ∅
S ← {sj | sj are seed points created from cV }
foreach sj ∈ S do

x(t) ← sj
repeat

m(t) ←
∑n

i=1xiωig

(∥∥x(t−1)−xi
h

∥∥2
)

∑n
i=1 ωig

(∥∥x(t−1)−xi
h

∥∥2
) − x(t−1)

x(t+1) ← x(t) +m(t)

until ‖mh,G(sj)‖ < t;

Yt ← Yt ∪ {x(t)}
Y ← {x(t) | x(t) has no side maxima in its neighborhood}

4.4 Multi-Class Detection

As addressed in Section 4.3, the high dimensional voting space is reduced to three
dimensions, in which a location in the voting space corresponds to a possible object
position. In order to detect object occurrences in multiple classes, separate voting
spaces are constructed for each class c, denoted by cV . Maxima are then detected
in each voting space individually, while the maxima are merged between the voting
spaces. A user-de�ned probability threshold speci�es, when an object hypothesis
is considered valid, i.e. p(x(t)) > tp. The �nal set of object hypotheses is then
given by

O = {oi | oi = 〈x(t), p(x(t))〉 ∧ p(x(t)) > t} (4.22)

4.5 Bounding Box

During training, each training object has been associated with a minimum vol-
ume bounding box. After detection, the bounding box can be extracted from the
votes that contributed to the object hypothesis. During the training procedure,
the bounding box information has been stored as additional information for each
computed vote. Since a vote is generated from the activation strategy by match-
ing a feature to a codeword, the corresponding feature is associated with a local
reference frame. In order to achieve rotation invariance, the bounding box orien-

74 CHAPTER 4. PROBABILISTIC OBJECT RECOGNITION

(a) (b) (c)

Table 4.1: Detection process and bounding box extraction. (a) The original object that
is to be detected. (b) Computed features and their corresponding local reference frames.
(c) Features are matched with the codebook and activated features cast votes into the
voting space. The Mean-Shift Mode Estimation extracted the predicted object location
and the bounding box has been averaged from the sum of contributing votes.

tation that is initially given in the global coordinate system is transferred into the
feature-speci�c coordinate system using the local reference frame. Aside from cre-
ating a vote, each feature that activates a codeword also stores the feature-relative
bounding box for the created vote.

This information can then be used during detection. All detected features on
the unclassi�ed point cloud that activate a codeword cause the activation strat-
egy to cast a number of votes into the voting space. During training, each vote
has been assigned a feature-relative bounding box. When casting the votes, the
associated bounding boxes are transferred back into the global coordinate system
using the corresponding local reference frame for the current feature. After the
maxima detection has detected the most likely object hypotheses, all votes are col-
lected that contributed to the hypothesis. Since the Mean-Shift Mode Estimation
estimated the kernel density at the detected maxima location, all votes within the
kernel bandwidth are collected (Figure 4.1). This results in a list of bounding box
hypotheses, each of which has been weighted according to the corresponding vote
weight.

Estimation of the bounding box is then performed by creating an average
bounding box representation on the basis of the collected weighted votes, enforc-
ing the constraint

∑
ωi = 1. While averaging the bounding box size can easily

be done, computing an average weighted rotation is nontrivial. Averaging the
orthogonal basis vectors of the rotation matrix discards the orthogonality of the
matrix. Instead, the rotation matrix is converted into a quaternion representation.
Averaging quaternions can then be achieved by computing the 4×4 scatter Matrix

4.5. BOUNDING BOX 75

M =
N∑
i=1

ωiqiq
T
i (4.23)

over all quaternions qi and their associated weights ωi. After computing the
eigenvalues and eigenvectors of M , the eigenvector with the highest eigenvalue
corresponds to the weighted average quaternion [MCCO07].

Chapter 5

Evaluation

In this chapter, the developed algorithm is analyzed with respect to performance
and precision and applied to several datasets and test cases.

At �rst, the used datasets and their methods of creation are described in Section
5.1. Since the presented method relies on a huge number of di�erent parameters,
it is not possible to evaluate the detection results of all parameter permutations.
Instead, the best choice of parameters is analyzed methodically in Section 5.2.
After the best parameters have been found, the precision of the algorithm is deter-
mined using two use cases. In Section 5.3, the trained algorithm is used to classify
single object point clouds into the trained classes under the assumption that the
available point clouds contain only one isolated object of one class. In Section
5.4, the algorithm is used to detect object occurrences in unclassi�ed point clouds
from two datasets. The input point clouds can contain multiple objects of multiple
classes in a scene. The performance of the algorithm is evaluated in Section 5.5.
Finally, the results are discussed in Section 5.6.

5.1 Datasets

Evaluation is performed on two di�erent datasets. The �rst dataset was created
using depth images created with a Kinect camera. The second dataset was taken
from a publicly available dataset and adapted to the relevant evaluation test cases.
The following section describes the characteristics of the individual datasets and
reviews how the data was generated.

5.1.1 Kinect Dataset

In a �rst attempt, Kinect Fusion was used to create training models. This algo-
rithm is speci�cally adapted for use with the Microsoft Kinect camera and performs

77

78 CHAPTER 5. EVALUATION

a real-time registration of the currently captured point cloud with a global model
by executing its algorithms on the graphics processor (GPU). This allows the user
to move around with the camera and build a complete world model instantly. In
order to scan in realtime, a state-of-the-art GPU is bene�cial. However, compar-
ing the scanned objects with scenes captured from a single viewpoint shows that
Kinect Fusion does not precisely retain the object dimensions. During the sur-
face reconstruction, the surface is smoothed, causing the scanned object to shrink.
Since the presented algorithm is not scale invariant, varying object dimensions
would cause the votes to scatter around in the voting space and hindering maxima
detection. Training objects were therefore captured from di�erent angles and the
point clouds were combined into a complete training model, as described in the
following section. The presented dataset is referred to as Kinect Dataset in the
following sections.

Models

For each training model, several distinct scans from di�erent viewpoints have been
captured using the Kinect camera. Automatic registration using ICP was rejected,
since no initial pose estimates were available. The di�erent point clouds for the
objects were therefore aligned manually to create the �nal training model. Apply-
ing ICP after the manual alignment is possible. However, the results were already
acceptable and the object dimensions were appropriate. The aligned point clouds
were merged and the resulting point cloud was sampled with a uniform grid to
create a uniform point distribution. Finally, the point cloud was smoothed with
Moving Least Squares [ABCO+03] in order to compensate for noise on the object
surface and �ltered using a statistical outlier removal method provided by the
PCL.

Table 5.1 shows the classes and their training models, along with their associ-
ated names. Please note that the illustrations are not true to scale.

Attention was paid to creating models that contain only parts that represent
the object appropriately. Especially for class containing chairs, the models do not
include the chair legs or the o�ce chair bogies. These structures are typically thin
and shiny, which often leads to misreadings in the sensor data and can distort
detection results. In case of the o�ce chair, the bottom part of the original chairs
is allowed to spin around one axis. Objects that are able to change their shape
can lead to missed detections, since votes in the voting space originating from the
deformable parts will be scattered around. Training objects therefore need to be
�xed in size and shape and a rotating o�ce chair bogie would cause the algorithm
to loose precision.

5.1. DATASETS 79

Table 5.1: Training models from Kinect dataset.

Class 0 (Chairs):
chair1 chair2 chair3 chair4

Class 1 (Computers):
comp1 comp2

Class 2 (Tables):
table1 table2 table3

Scenes

Several scenes have been captured that aim at representing the most probable use
cases. They have been captured using a Kinect camera and stored in full resolution.
Afterwards, normals have been computed on the point cloud data and have been
oriented toward the camera viewpoint. The normal information was stored along
with the point cloud data to improve the automatic evaluation process and avoid
re-computing normals on every test run. The scenes are split into three categories,
containing either single objects, multiple objects or occluded objects. Table 5.2
shows a representative excerpt of the used test scenes.

80 CHAPTER 5. EVALUATION

Table 5.2: Sample scenes from the Kinect dataset with their corresponding classes.

Category 1: Single Objects

Category 2: Multiple Objects

Category 3: Occlusions

Ground Truth

Ground truth data has been created by manually aligning training models in each
of the scenes to the object that is supposed to be detected. The exported ground
truth data contains the center position of the bounding box along with the name
of the aligned model. In the experiments, the detected objects are matched with
the ground truth data for the analyzed scene. Figure 5.1 shows the developed
application for annotating point clouds with ground truth data.

5.1. DATASETS 81

Figure 5.1: Ground truth annotation on a point cloud. The two objects have already
been annotated and their bounding boxes are displayed.

5.1.2 Stanford Dataset

In order to perform evaluation also on external datasets, models from the Stanford
3D Scanning Repository have been used [Sta14]. [TSDS10] and [TSDS11] used an
adaptation to the Stanford dataset for evaluation of the SHOT descriptor [Com14]
(Dataset 1 & 2 (Stanford)). They used the original models to create arti�cial scenes
containing 3 - 5 di�erent models, rotated and translated randomly. Additionally,
it has been paid attention to the fact that the individual models in the scenes do
not intersect. For this thesis, this approach has been adapted. While the scenes
are already available from the described SHOT dataset, the models as well as the
scenes do not contain normal information. The models from the Stanford dataset
have thus been subsampled to achieve an identical point cloud resolution for each
model, followed by computing consistently oriented normals using the approach
described in Section 2.2. The preprocessed training models have then been rotated
and translated using the ground truth data contained in [Com14], resulting in the
same dataset with additional normal information.

Models

The training models have been created from the Stanford 3D Scanning Repository
[Sta14] and contain a total of 6 di�erent models, as seen in Table 5.3. For evalua-
tion, each of the di�erent models will be treated as an individual class, indicated
by the number behind the model name.

82 CHAPTER 5. EVALUATION

Table 5.3: Training models from the Stanford dataset.

Armadillo (0) Happy Buddha (1) Thai Statue (2) Stanford Bunny (3)

Dragon(4) Asian Dragon (5)

Scenes

The previous collection of training models from the Stanford 3D Scanning Repos-
itory has been used to create arti�cial scenes containing di�erent permutations of
the models, translated and rotated randomly. The test cases consist of 3×15 = 45
di�erent scenes with each 3− 5 di�erent models (Table 5.4).

Ground Truth

The ground truth is provided along with the dataset as a transformation matrix
that speci�es the transformation from the corresponding model to the model rep-
resentation in the scene. This data is used in the evaluation process to verify the
quality of the detection.

5.2 Parameter Selection

Before analyzing the overall precision of the algorithm in several test cases, the
e�ects of parameter selection are evaluated. The algorithm depends on a variety

5.2. PARAMETER SELECTION 83

Table 5.4: Sample scenes from the Stanford dataset with their corresponding classes.

Scene 15 Scene 40

of di�erent parameters, and their precise e�ects are not always obvious. Espe-
cially the choice of the di�erent feature detection components and the process of
codebook creation are of interest and will be evaluated in the following section.

5.2.1 Features

In order to analyze the right selection of keypoint detectors and descriptors, the
possible combinations have been analyzed and evaluated for detection precision.
The evaluated keypoints are:

• Harris3D
The Harris3D interest point detector is implemented in the PCL and detects
salient points on the surface of an object by analyzing changes in normal
directions on the local neighborhood.

• Intrinsic Shape Signatures
The ISS interest point detector analyzes the characteristics of the covariance
matrix of each point neighborhood and creates interest points where the
neighborhood shows large point variations.

• VoxelGrid
The voxel grid is a regular grid with a speci�ed cell length and is superim-
posed on the objects. Keypoints are sampled regularly on the object as the
centroids of points within the voxel grid cell.

The Harris3D and the ISS interst point detector create keypoints at precisely
determined locations on the object surface by analyzing the local point neighbor-
hoods. They comply to the keypoint de�nitions as described in Section 2.2.2. In

84 CHAPTER 5. EVALUATION

contrast, using a voxel grid aims at creating a large amount of keypoints instead of
precisely located points. The idea is that with a large number of keypoints, even
though the point characteristics do not precisely match other keypoints, correspon-
dences can still be established if enough keypoints are sampled around a region
of interest. The underlying assumption is that the probability of a correct point
correspondence is high if only enough points are sampled on the object surface.

For the given evaluation, the ISM has been trained with one model only and the
detection algorithm has been applied to a scene containing a single instance of the
trained model. Depending on the selected descriptor and keypoints detector, the
particular object hypothesis has been selected among the list of detected objects
that has the minumum distance to the ground truth. The results of the evaluation
are depicted in Table 5.5.

Table 5.5: Minimum distance between ground truth and detected objects. All mea-
surements are given in meters.

PFH FPFH SHOT
Harris3D 0.0732 0.1915 0.3907
ISS 0.0719 0.0674 0.0664
VoxelGrid 0.0751 0.0556 0.0623

One can clearly see that while the Harris interest point detector does not work
well with the FPFH and the SHOT descriptor, the other combinations lead to a
detected object hypothesis whose distance to the ground truth is acceptable. For
this context, an object is considered successfully detected if the distance to the
ground truth does not exceed 0.1m.

However, the previous analysis does not allow any conclusions to the signif-
icance of the object hypothesis. It only states that the algorithm was able to
detect an object at the expected location. During detection, the algorithm de-
tects maxima in the voting space and computes a probability for each detected
object hypothesis, based on the total weights of all contributing votes. The detec-
tion result is represented by a list containing each object hypothesis, sorted by the
computed probability. A measure for the signi�cance of the hypothesis is therefore
the rank of the hypothesis within the sorted list of detected objects. The results
are shown in Table 5.6.

Apparently, the Harris interest point detector works poorly with any of the
available descriptor types. Among all detected objects, the object hypothesis with
the minimum Euclidean distance to the ground truth is detected at positions > 50
in the detection list. Looking at Table 5.5 shows that for these hypotheses, the
Euclidean distance itself is not acceptable for the current task. While the ISS
keypoint detector produces more reasonable results, only the voxel grid in combi-

5.2. PARAMETER SELECTION 85

Table 5.6: Index of the minimum distance hypothesis.

PFH FPFH SHOT
Harris3D 67 51 69
ISS 11 7 11
VoxelGrid 1 0 0

nation with either FPFH or SHOT descriptor generates an object hypothesis at
the topmost position in the detection list. These results are intensi�ed by Table
5.7, which depicts the distance between the ground truth and the �rst object hy-
pothesis, i.e. the topmost hypothesis in the detection list. Only the voxel grid
based keypoint detector in combination with the FPFH or SHOT descriptor leads
to a detected object that is within the acceptable margin.

Table 5.7: Distance between ground truth and �rst object hypothesis. All measurements
are given in meters.

PFH FPFH SHOT
Harris3D 1.289 1.585 1.597
ISS 0.882 1.189 1.174
VoxelGrid 1.116 0.056 0.062

These variations have several causes. With the Harris3D and the ISS interest
point detector, only few sparse keypoints are detected on salient points on the ob-
ject surface. Depending on the selected clustering method and activation strategy,
each of the detected codewords is assigned only a few votes, based on the match-
ing features. During detection, these votes are cast into the voting space. With
the chosen keypoint detector, the following detection algorithm is highly sensitive
to noise, since small variations in the data naturally have e�ects on the detected
keypoints. The process of matching codewords to keypoints therefore also su�ers
from in�uence to noise, which causes potential maxima to scatter around in the
voting space. Since theses maxima typically are not composed from lots of votes,
these small variations caused by noise lead to imprecision in the Mean-Shift algo-
rithm. In contrast to common keypoint detectors, the voxel grid approach takes its
advantages only from the vast amount of kepyoints, causing maxima in the voting
space to be composed from lots of votes, therefore stabilizing detected maxima.

Following these results, the voxel grid based keypoint detector is chosen for the
following evaluation process. While both FPFH and SHOT are to be considered
as descriptor, SHOT was chosen over FPFH for its runtime performance. FPFH
already poses a runtime enhanced version of the slow PFH descriptor. However,

86 CHAPTER 5. EVALUATION

SHOT still requires about 30 times less computation time compared to FPFH on
a current state-of-the-art computer.

5.2.2 Codebook Creation

One interesting aspect is the relationship between the codebook creation process
using clustering, and the activation strategy. The clustering groups together fea-
tures among all training models and classes and creates geometric codewords. The
activation strategy on the other hand de�nes how the created codewords and the
detected features are combined to create the implicit shape representation and how
the votes are created for an unknown scene.

In order to visualize the relationship between the parameters, training and de-
tection were performed multiple times with di�erent parameters and test cases and
evaluated for precision compared to ground truth data. Training was performed
using the KNN activation strategy and K-Means clustering on a number of train-
ing models and class combinations. For the clustering, the number of clusters and
therefore codewords was iteratively changed from 100 % to 10 % of the detected
number of features, with a step size of 10 %. At the same time, the number of
activated codewords per feature was changed from 1 to 10. Using the multitude of
trained Implicit Shape Model representations as described, a scene was analyzed
for object occurrences. The detection process yields a list of detected object hy-
potheses, sorted by the total weight for the current hypothesis, while each entry
is furthermore attached with a class and the object position. From the computed
object hypotheses, the object position with the minimum distance to the ground
truth is collected, as well as the index in the list and the total weight. Over each
test case, this information is collected as a function of the two altered parameters
and converted into a plot, as shown in Figure 5.2.

This graph shows the detection precision for an Implicit Shape Model trained
with a single object (chair1) and the detection applied on a scene containing only
one instance of the corresponding object (scene3). It shows how the detection pre-
cision di�ers with the parameter choice. The x-axis depicts the chosen parameter
K for the activation strategy, while the y-axis represents the number of created
clusters by the clustering factor, that determines the number of created codewords
from a factor multiplied by the number of detected features. It is important to
note that the complete dependency is a function of two parameters and is therefore
best represented using a three dimensional graph.

Given the ground truth data, the object hypothesis with the minimum Eu-
clidean distance to the ground truth is retrieved and the distance is plotted on
the z-axis as the height of the graph points. In order to improve visualization, the
color coding also represents the distance. It can clearly be seen that for each com-
bination of K and the cluster count, the minimum distance between the ground

5.2. PARAMETER SELECTION 87

 1 2 3 4 5 6 7 8 9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

Distance [m]

K
Clustering Factor

Distance [m]

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

Figure 5.2: Detection precision graph (training chair1, detection scene03): Minimum
distance to ground truth in relationship to the codebook size and the activation strategy.

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

C
lu

st
e
ri

n
g
 F

a
ct

o
r

K

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

D
is

ta
n
ce

 [
m

]

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

C
lu

st
e
ri

n
g
 F

a
ct

o
r

K

(b)

 0

 2

 4

 6

 8

 10

In
d
e
x

Figure 5.3: Detection precision map (training chair1, detection scene03): (a) Minimum
distance to ground truth in relationship to the codebook size and the activation strategy.
(b) Corresponding index in the detection list for the object hypothesis with minimum
distance to the ground truth.

truth and the detected object hypotheses is always within the speci�ed margin of
0.1m. This means, that in each case, at least one object hypothesis is located at
the ground truth position for the current scene.

Visualization can also be achieved by representing the function as a map, as
shown in Figure 5.3, which is more suitable in the given context. Figures 5.2 and
5.3 (a) both show a slightly improving precision with increasing values for K and
decreasing values for the cluster count.

88 CHAPTER 5. EVALUATION

However, not only the minimum distance between ground truth and the de-
tected objects is of interest. The detection component creates a sorted list of
hypotheses, while the detected object with index i in the list has been assigned a
higher total weight than the object with index i+ 1. Therefore, the index can be
considered a direct measure for the certainty of the detection, as shown in Figure
5.3 (b). The black area depicts the cases in which the object with minimum dis-
tance to the ground truth is also the topmost entry in the detection list, therefore
the most signi�cant object detection. While the previous data suggested that the
precision improved with increasing K and decreasing cluster count, this data sug-
gests that in these cases, the object signi�cance decreases. This can be explained
by the characteristics of the clustering method and the activation strategy. With
increasing K, each feature activates the K best matching codewords and therefore
creates lots of votes for the corresponding codewords. With decreasing cluster
count, more features are grouped together to create a codeword, therefore broad-
ening the generalization. Whenever a feature activates a codeword at detection,
this codeword was initially created from a large number of training features. This
also widens the range in which a feature is allowed to activate a codeword, as
predicted from the compactness theorem. The clustering creates a compact repre-
sentation, while the individual clusters are most distinct. Therefore, the number of
votes will also increase for a decreasing number of clusters. Thus, both parameters
a�ect the number of votes created. However, the number of votes and therefore
the vote density has in�uence on the precision, since the voting space might be
dense in such a way that lots of maxima are detected at insigni�cant locations.
The improving precision with increasing parameters therefore does not necessarily
correlate with actual object recognitions, but rather with an oversampled voting
space and false positives. This theory is strenghtened by Figure 5.3 (b), which
shows that for the previously discussed cases, the index for the object hypothesis
with minimum distance to the ground truth rises, therefore indicating insigni�cant
detections.

The same test cases were conducted multiple times with di�erent con�gurations
of training objects and classes, as seen in Figure 5.4. It can clearly be seen that the
increasing number of training models does not have much e�ect on the minimum
object distance to the ground truth. The distance is always in an acceptable range
of 0.1m from the ground truth. However, while the previous graphs showed the
correlation between the clustering and activation parameters for the detected ob-
ject hypothesis with the minimum distance to the ground truth, Figure 5.5 depicts
the ground truth distance for the �rst detected object. Since the algorithm creates
a sorted list of hypotheses, the �rst detected hypothesis is supposed to represent
the most likely object detection. The rank in the detection list is determined by

5.2. PARAMETER SELECTION 89

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

C
lu

st
e
ri

n
g

 F
a
ct

o
r

K

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

D
is

ta
n
ce

 [
m

]

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

C
lu

st
e
ri

n
g

 F
a
ct

o
r

K

(b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

D
is

ta
n
ce

 [
m

]

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

C
lu

st
e
ri

n
g

 F
a
ct

o
r

K

(c)

 0

 0.02

 0.04

 0.06

 0.08

 0.1
D

is
ta

n
ce

 [
m

]

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

C
lu

st
e
ri

n
g

 F
a
ct

o
r

K

(d)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

D
is

ta
n
ce

 [
m

]

Figure 5.4: Detection precision on the object hypothesis with minimum distance to the
ground truth on scene3. (a) Training chair1. (b) Training chair1 and chair2. (c) Training
chair1, chair2 and chair3. (d) Training chair1, chair2, chair3 and chair4.

the vote weighting, that is created using statistical analyzes and is supposed to
weaken unlikely and strengthen likely hypotheses.

The graph shows that for the �rst detected hypothesis, the distance to the
ground truth is acceptable in most cases. An outlier can be noticed for Figure 5.5
(d), in a case where the distance of the �rst object hypothesis has been computed
as 1.584m. Not shown in the graph is the second hypothesis, which has been
detected at an acceptable distance of 0.038m to the ground truth. These results
indicate that the best detection precision is achieved in ranges where the activation
strategy activates only a small number of codewords, while using a codebook with
only little or no clustering at all. The main reason for using Implicit Shape Models,
i.e. creating a codebook of geometric words, is therefore not applicable for use
with 3D data. Instead, the results con�rm the implications of [STDS10], that
states that the codebook size is not expected to have any positive in�uence on the
detection capabilities of the algorithm, but are rather legitimated by performance
considerations.

90 CHAPTER 5. EVALUATION

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

C
lu

st
e
ri

n
g

 F
a
ct

o
r

K

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

D
is

ta
n
ce

 [
m

]

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

C
lu

st
e
ri

n
g

 F
a
ct

o
r

K

(b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

D
is

ta
n
ce

 [
m

]

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

C
lu

st
e
ri

n
g

 F
a
ct

o
r

K

(c)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

D
is

ta
n
ce

 [
m

]

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

C
lu

st
e
ri

n
g

 F
a
ct

o
r

K

(d)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

D
is

ta
n
ce

 [
m

]

Figure 5.5: Detection precision on the �rst object hypothesis on scene3. (a) Training
chair1. (b) Training chair1 and chair2. (c) Training chair1, chair2 and chair3. (d)
Training chair1, chair2, chair3 and chair4.

5.3 Classi�cation

The classi�cation task evaluates the ability of the algorithm to detect the true
object class, given a point cloud containing only the segmented object of the
corresponding class. The input point cloud therefore does not contain any data
besides the well-segmented object. In the presented test cases, the training objects
from the Kinect dataset have bee rotated and translated randomly and Gaussian
noise was applied with increasing values for sigma. The Implicit Shape Model
has been trained on all available training objects. However, two di�erent training
cases have been chosen. Case A trained the algorithm with all objects, while several
objects were assigned the same class. In particular, all chairs, tables and computers
have been assigned their corresponding classes 0, 1 and 2. Additionally, this task
also evaluated whether the algorithm is capable of generalizing with increasing
number of training models for each class. Case B therefore trained the algorithm
with all objects again, while this time each object was assigned its individual class.
Classes were chosen to range from 0 to 8 for the total of 9 training objects. This
case allows to verify whether the detection quality varies according to the training
strategy.

5.3. CLASSIFICATION 91

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.003 0.006 0.009

D
is

ta
n
ce

 [
m

]

Sigma

(chair1)

(A)
(B)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.003 0.006 0.009

D
is

ta
n
ce

 [
m

]

Sigma

(chair2)

(A)
(B)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.003 0.006 0.009

D
is

ta
n
ce

 [
m

]

Sigma

(comp1)

(A)
(B)

 0

 0.05

 0.1

 0.15

 0.2

 0 0.003 0.006 0.009

D
is

ta
n
ce

 [
m

]

Sigma

(table3)

(A)
(B)

Figure 5.6: Comparison of training cases in classi�cation results. (A) Each training
model has been assigned its corresponding class ∈ {0, 1, 2} (B) Each training model has
been assigned an individual class ∈ {0, . . . , 8}. Please note that the scale for (table3) has
been adapted in order to fully visualize the extent of the data.

Following the experimental results from Section 5.2.2, the test cases themselves
were performed on 9 di�erent parameter permuations. Evaluation of the e�ects
of the codebook creation parameters suggested that using only a small amount of
clustering and an activation strategy with a low number of activated codewords
produced the best results. The cluster factor was therefore changed to take the
values 1, 0.9 and 0.8, while the number of activated codewords, and thus the acti-
vation strategy parameters, was chosen as 1, 2 and 3. Training and detection were
then performed for each scene containing one arbitrarily translated and rotated
object, with di�erent levels of Gaussian noise applied, for each of the two training
cases and the 9 parameter permutations. Evaluation is performed by averaging
the detection results of each of the 9 parameter permutations and regarding the
computed averages in relationship to the performed test cases.

Detection was applied to the corresponding scene containing the object. Figure
5.6 shows the average distance to the ground truth, depending on the chosen value
for sigma, computed over all �rst ranked object hypotheses on the conducted test
cases. The di�erent training cases are shown as (A) and (B) in the same graph to
allow comparison.

92 CHAPTER 5. EVALUATION

Figure 5.6 shows an excerpt from the resulting classi�cation task and suggests
that the detection precision for training case A is lower than for case B in most
cases. This indicates that the algorithm loses precision in cases where di�erent
models are trained for the same class. An outlier can be seen in 5.6 (table3), which
shows that with increasing Gaussian noise applied to the model, the distance to
the ground truth rapidly increases for each of the training cases. This can be
explained by the characteristics of the training model and will be discussed later
on.

In order to check whether this connection is valid, a two-sample t-test is per-
formed on the underlying data [Leh86]. Given the average best distances from both
training cases, the t-value describes how the samples from both data di�er, regard-
ing their weighted variance. It can be regarded as a measure for the signi�cance
of the di�erence between the two sample sets. A value t < 0 indicates that the av-
erage of samples from the �rst dataset is smaller compared to the second dataset.
The t-test was performed using training case A as the �rst dataset and case B
as the second one. The results yield a value of t = 2.827, which indicates that
the mean of di�erences from training case A is higher compared to training case
B. In order to determine whether this relationship can be considered coincidental,
a probability of 95 % is chosen. Matching these results with the t-distribution, a
probability of 0.95 requires a t-value of at least 1.653. Since the computed value is
higher, the relationship between the two training cases is most likely not caused by
coincidence. Furthermore, computing the corresponding con�dence given by the
t-distribution for the determined t-value yields a probability of 99.74 % that the
average distance of training case A is higher than training case B. Following these
results, it is valid to conclude that the algorithm does not generalize better with
increasing number of training models per class and it is preferable to use distinct
classes for each training model.

On the classi�cation task and a total of 10 di�erent values of Gaussian noise,
with corresponding sigma ranging up to a value of 0.009, the evaluation achieved an
average recall of 0.972 for the best ranked object hypothesis, considering training
case A. This means that out of all test cases for training case A, 97.2 % of all object
hypotheses with index 0 had a distance to the ground truth of< 0.1m. Considering
training case B, in which every training object was given its individual class, recall
achieved a value of 0.99.

Classi�cation fails especially on table objects, as shown in Figure 5.7. It can
be seen that with increasing Gaussian noise on the object, recall drops from 1 for
each object to 0.44 for table3. This correlates with Figure 5.6, which shows that
for training case A, the average distance to the ground truth increases up to a
value of 0.104m, while the average distance for training case B is still lower at
0.0791m.

5.4. OBJECT RECOGNITION 93

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

R
e
ca

ll

Sigma

table1
table2
table3

Figure 5.7: Average recall on table objects.

The reason for the drop in the detection quality lies in the structure of the
tables themselves. With increasing Gaussian noise added to the objects, the small
structures that de�nine the table area and legs get scattered around and it there-
fore gets di�cult to extract salient information from the local neighborhood of
computed keypoints.

5.4 Object Recognition

The task of object recognition was performed on the scenes presented in Section
5.1.1 and Section 5.1.2. The results will be discussed in the following section.

5.4.1 Kinect Dataset

Evaluation on the Kinect dataset was again performed on two di�erent training
scenarios. Training case A trained the Implicit Shape Model with only the objects
that are supposed to appear in the scene, while training case B performed train-
ing on the complete number of available training objects, whereas each training
object was assigned the corresponding class. Additionally, 9 di�erent parameter
permutations were used in the process, identical to the previous test cases. By
performing detection on each of the two training cases, it is possible to evaluate
how and if the algorithm is able to generalize with increasing number of training
models and classes, and how the detection results di�er.

For each scene and parameter combination, the detection component creates
a list of object hypotheses that is compared to the ground truth data. For each
model in the ground truth, the object hypothesis with the minimum distance to

94 CHAPTER 5. EVALUATION

the ground truth is collected and the Euclidean distance is used as a measure for
the detection precision. The predicted signi�cance of the detection is represented
by the hypothesis index in the detection list and the computed total weight for
the chosen hypothesis. The crucial point in the algorithm is the total weight,
computed for each of the detected object hypotheses. Since the total number of
expected objects is typically unknown, along with the number of expected classes,
computing a comparable weight in a most generic way proved di�cult. This is
supported by the results of the presented evaluation. Each of the scenes contained
either a single object or multiple objects, with corresponding ground truth. Each
scene was evaluated with a total of 18 di�erent test cases, composed of 9 parameter
permutations and 2 training scenarios. The results for training case A are depicted
in Table 5.8, which shows the minimum distance from any object in the detection
list to the ground truth.

Table 5.8: Average results on the minimum distance object hypothesis for training case
A. The values for the average distances are given in meters.

Category Average distance Average Index Average Weight
1 (Single Objects) 0.033 7.26 46.34
2 (Multiple Objects) 0.032 6.9 8.71
3 (Occlusions) 0.039 6.11 10.81

This data shows that while the algorithm is able to detect object hypotheses
at the ground truth locations within the speci�ed margin, the computed weights
are not comparable and are computed within a wide range.

While Table 5.8 shows the results on the minimum ground truth distance, the
signi�cance of an object hypothesis can be determined by the hypothesis index
in the detection list. Since the detection list has been sorted by the total weight,
an hypothesis with a high rank is supposed to be detected at a higher probability
than an object hypothesis with a lower detection rank. Table 5.9 therefore shows
the average results on the �rst ranked hypotheses for the current test cases for
training case A.

Table 5.9: Average results on the �rst-ranked object hypothesis for training case A.
The values for the average distances are given in meters.

Category Average distance Average Weight
1 (Single Objects) 0.538 70.19
2 (Multiple Objects) 0.358 13.66
3 (Occlusions) 0.608 16.87

The average distance of the �rst ranked hypothesis is above the speci�ed margin
at all times. Although a maximum has been detected at the expected location, as

5.4. OBJECT RECOGNITION 95

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

W
e
ig

h
t

Hypothesis Index

Scene 1
Scene 9
Scene 6

Figure 5.8: Average weights for training case A

shown by Table 5.8, �ltering the results for true positives will not be successful in
these cases.

Figure 5.8 also shows how the weight changes with increasing hypothesis rank
for selected scenes. The illustrated weight has been computed as the average over
all object hypotheses computed on the scene, depending on the current index.
Since there are three di�erent categories, each scene has been chosen as a repre-
sentative of one of the categories. Scene 1 belongs to category 1, containing only
one instance of chair1. Scene 9 contains two objects, table1 and chair4, therefore
belonging to category 2. Scene 6 represents an occlusion of one object by another,
thus containing two di�erent objects and belonging to category 3. For an optimal
weighting strategy, the average weights would be computed such that the most
likely object hypothesis would be assigned a weight close to 1, while all other
unlikely object hypotheses would have been assigned weights close to 0. Such a
weighting strategy would allow to compare object hypotheses for their probability
and �lter out false positives from true positives. However, the graph shows that
the weights are not comparable.

Table 5.10: Average results on the minimum distance object hypothesis for training
case B.

Category Average distance Average Index Average Weight
1 (Single Objects) 0.044 15.25 0.09
2 (Multiple Objects) 0.032 9.639 0.09
3 (Occlusions) 0.046 19.33 0.06

The same applies to training case B, which trained the Implicit Shape Model
with all available training objects. This training case is considered to be the

96 CHAPTER 5. EVALUATION

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350 400

W
e
ig

h
t

Hypothesis Index

Scene 1
Scene 9
Scene 6

Figure 5.9: Average weights for training case B

signi�cant one, since it uses all available information to detect any unknown object
instance that matches one of the training models. Accordingly, Table 5.10 supports
the results given by Table 5.8. The expected ground truth object has been detected
successfully at some index in the detection list. Considering the weight, however,
the previous assumptions are also supported.

Table 5.11: Average results on the �rst-ranked object hypothesis for training case B.

Category Average distance Average Weight
1 (Single Objects) 0.43 0.11
2 (Multiple Objects) 0.306 0.11
3 (Occlusions) 0.261 0.08

The unstable weighting strategy is therefore supposed to be responsible for the
results shown in Table 5.11, which shows no improvement over previous results
from the restricted training case A. The average distance from the �rst ranked
object hypothesis to the ground truth does not match the chosen margin.

Additionally, Figure 5.9 shows how the weights behave in training case B,
where each object has been assigned its individual class and no two objects have
the same class. The weighting in this case shows a di�erent weight distribution
with comparable weights for each of the scenes. The weight drops signi�cantly
for subsequent object hypotheses as expected. However, previous results already
indicated that the �rst ranked object hypotheses do not match the corresponding
ground truth data.

5.4. OBJECT RECOGNITION 97

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 5 10 15 20 25 30 35 40

D
is

ta
n
ce

 [
m

]

Scene Number

Distance
Mean

Figure 5.10: Average distance of true positives to the ground truth for the Stanford
dataset scenes.

5.4.2 Stanford Dataset

Evaluation was also performed on the 45 scenes described in Section 5.1.2, which
each contain 3 - 5 di�erent training models from the Stanford 3D Scanning Repos-
itory with arbitrary rotation and translation. The exact positions and classes are
unknown and are to be detected by the Implicit Shape Model. Training has been
performed on all training models, while each model has been assigned its individual
class. For each scene, ground truth data is available as the expected 3D position,
the size of the bounding box and the corresponding rotation quaternion.

The Stanford dataset consists of 45 di�erent scenes. The �rst 15 scenes contain
each 3 objects, randomly chosen from the total of 6 di�erent objects with arbitrary
rotation and translation, 15 scenes each containing 4 objects, and the last 15 scenes
each containing 5 di�erent objects. For each of the 45 scenes, the parameters for the
clustering and the activation strategy have again been changed to create 9 di�erent
test cases. Figure 5.10 shows the average distances for each scene, computed over
all true positives on each of the 9 di�erent parameter sets. Please note that the
di�erent objects from the Stanford dataset are typically small objects. The scale,
however, is the same and is given in meters. Due to the nature of the scanning
process conducted on the real objects from the Stanford dataset, the point cloud
density is higher compared to point cloud data coming from the Kinect sensor.
For this dataset, the maximum allowed distance from a object detection to the
corresponding ground truth was set to 0.02m. In order to apply the detection
process to smaller objects, further parameters of the algorithm had to be adapted
to the changed object dimensions. Keypoints are still extracted using the voxel
grid approach, while the voxel grid size has been changed to 0.02m. Similarly, the
local point neighborhoods from the descriptor computation were also adapted to
a smaller size. The bandwidth of the Mean-Shift algorithm has been changed to

98 CHAPTER 5. EVALUATION

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40

R
e
ca

ll

Scene Number

Recall
Mean

Figure 5.11: Recall on the Stanford dataset scenes. Please note that the scale of the
y-axis has been adapted.

0.05m, which allows a resonable number of detected object hypotheses and can
still detect objects located close to one another.

Figure 5.10 shows that the average distance of all best ranked object hypotheses
is below the chosen threshold at all times, with a mean distance of 0.0093m and a
median of 0.0092m. With the mean distance and the median approximately the
same value and the standard deviation of 0.0015, these results indicate that the
detection component is able to produce stable object hypotheses for the presented
cases.

The recall on each test scene is shown in Figure 5.11. Over all parameter com-
binations and ground truth objects, the �rst ranked object hypothesis for each
ground truth object is assumed a true positive if the distance is below the chosen
threshold of 0.02m. The graph therefore shows that the true object location is cor-
rectly identi�ed at an average of 90.52 %, with a lowest recognition rate of 74.07 %.
This test case was also used to evaluate the extraction of the object's bounding
box. While the bounding box comprises an orientation and a size, the precision
for extracting the bounding box size is measured by the Euclidean distance from
the size vector to the ground truth size. For the given test cases, the size was
extracted by an average variance of 3.67 × 10−7m, which indicates good results.
Measuring the quality of the orientation extraction is done in two ways. Since
orientations are represented by quaternions, the minimum angle between two unit
quaternions q1 and q2 can be computed by:

θ = cos−1(2〈q1, q2〉2 − 1) (5.1)

Since quaternions can be represented by a rotation axis and a corresponding
rotation angle around this axis, θ is retrieved by projecting the axis of one quater-
nion to the second quaternion axis and computing the angle that is required for

5.4. OBJECT RECOGNITION 99

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 0 5 10 15 20 25 30 35 40

Q
u
a
te

rn
io

n
 D

is
ta

n
ce

Scene Number

(a)

Measurements
Mean

Median

 0
 10
 20
 30
 40
 50
 60
 70

 0 5 10 15 20 25 30 35 40

Q
u
a
te

rn
io

n
 A

n
g
le

Scene Number

(b)

Measurements
Mean

Median

Figure 5.12: Average orientation distances over all detected scenes. (a) Each data point
represents the average quaternion distance to the ground truth, computed over all true
positives. (b) Each data points represents the average quaternion angle over all true
positives, compared to the ground truth.

one of the quaternions to achieve identical rotation. Additionally, a distance mea-
sure ∈ [0, 1] between unit quaternions can be computed, which is 0 in cases where
the orientations are equal and 1 when the orientations are opposite:

d(q1, q2) = 1− 〈q1, q2〉2 (5.2)

Figures 5.12 (a) and (b) show the correlation between quaternion distance and
angle. Computed over all scenes and true positive detections, the mean distance of
extracted orientations to the ground truth data is 0.0482 with a standard deviation
of 0.0781, and a median of 0.0137. Given that a distance of 0 represents optimal
matching orientations, the average precision for the extraction of object orienta-
tions in unknown scenes can therefore be given by 1− 0.0482 = 0.9518 , 95.18 %.
It can be seen that (a) and (b) correlate, while (b) demonstrates a mean angle
di�erence of 15.25 ◦ with a standard deviation of 12.98 ◦ and a corresponding me-
dian of 10.87 ◦. Allowing a maximum orientation angle of 20 ◦, the data indicates
that 87.16 % of true positives have been assigned an orientation that matches the
expected ground truth.

100 CHAPTER 5. EVALUATION

Table 5.12: Results from the Stanford dataset. Shown are best hypotheses for the
current scene and the votes that contributed to the detection. The individual classes are
represented by the color of their votes. The bounding box has been computed using the
contributing votes.

Scene 3 Scene 13 Scene 19

Scene 25 Scene 31 Scene 40

Scene 0 Scene 5 Scene 10

Table 5.12 shows some results from the detection component on the scenes
from the Stanford dataset. The �rst two rows show correct object detections,
the bottom row additionally reveals some misdetections. In case of Scene 0, two
objects have been identi�ed correctly, although one hypothesis has been detected
at an unexpected location nearby an already detected object. This is probably
caused by mismatchings between features and codewords and can be avoided by
an adapted weighting strategy. In case of Scene 5, two objects have been identi�ed
correctly, while an object hypothesis of the same class was detected at a nearby
position. This is most likely caused by an undervalued bandwidth parameter.

5.5. PERFORMANCE 101

Scene 10 shows three correct object detections, while the extracted bounding box
for the upper right object (Armadillo) is misaligned.

5.5 Performance

Estimating the performance requirements of the presented method depends on
several criteria. First of all, the algorithm computes features on either training
objects or the input point cloud used for detection. Thus, runtime varies depending
on the chosen keypoint detector and descriptor. Furthermore, since keypoints and
descriptors usually need to perform nearest neighbor searches on the point cloud,
point size and density also have an in�uence. The training procedure usually
detects features on a number of di�erent training models. The point cloud extent
is limited to the dimensions of the current training objects. When performing the
detection procedure on an input point cloud captured with a depth camera, the
point cloud additionally contains the surrounding area of the objects of interest.
However, the point cloud density in the training case is typically higher, since the
training objects have been captured from several viewpoints in order to reproduce
as much detail as possible.

The activation procedure matches each feature with a number of codewords,
according to the chosen activation strategy. Runtime depends equally on the
number of features and codewords, as well as on the number of activated codewords
per feature. During detection, runtime depends on the number of generated votes
and the number of classes. Each class is assigned its individual voting space, in
which the corresponding votes for the given class will be cast. Mean-Shift Mode
Estimation then searches for maximum density regions in each voting space, which
also requires searching for nearest votes within the speci�ed kernel bandwidth.

Table 5.13: System speci�cations for the evaluation system.

Operating System: Kubuntu 13.04 with GNU/Linux 3.8.0
Processor: Intel Core i7 920 @ 2.67 GHz
Cores: 8
Architecture: 64 Bit x86-64
Working Storage: 6 GB DDR3 @ 1066 MHz

The speci�cations for the system used for evaluation are shown in Table 5.13.
On this system, the runtime has been evaluated on the test cases conducted on
the Kinect dataset, as described in 5.4.1. The average training time was 8.26 s
with a standard deviation of 7.89. The average detection time on the described
evaluation system was 14.06 s and a standard deviation of 21.96. Higher runtime
for the detection is caused by the increasing number of detected features on the

102 CHAPTER 5. EVALUATION

Table 5.14: Summary of parameters.

Keypoint detector: VoxelGrid
Descriptor: SHOT
Local Reference Frame: SHOT-NA-LRF
Clustering: K-Means using clustering factor
ClusterFactor: ∈ {1, 0.9, 0.8}
Activation strategy: KNN
Activation strategy K: ∈ {1, 2, 3}

point clouds, as well as the complexity of the Mean-Shift algorithm. Additionally,
it is important to note that the described runtime values do not incorporate the
time for normal computation and consistent normal orientation. This informa-
tion was computed beforehand and stored along with the point cloud data, since
computing normals for the evaluation test cases can be outsourced in order to
save computation time. However, in a pratical usage scenario, training can be per-
formed o�ine prior to detection, while only the detection component would require
the robot to pause while searching for object hypotheses. Estimating consistent
normal orientation is only needed on the training models. Using Kinect data at de-
tection, however, normals can be computed e�ciently using integral image normal
estimation [HRD+12] [HHRB11], therefore still enabling online detection.

5.6 Discussion

During evaluation, a speci�c set of parameters proved bene�cial, as shown in Table
5.14. These parameter combinations showed the best results in the evaluated test
cases. However, the results di�er among the datasets, which will be discussed in
detail in this section.

First of all, computing comparable weights has proven to be di�cult in the
given context. The training objects that have been initially used for training
are supposed to represent the complete objects, independently from viewpoints.
Features are computed on the front and back sides equally. During detection, the
object is naturally visible only from the side that is oriented toward the viewpoint.
Activation can therefore only activate codewords that have been created from
features that correspond with the visible region. The desired weighting should
be chosen such that a probability of 1 equals the highest probability, indicating
that the object has been found. However, the training model consists of an object
representation that features as much detail as possible captured from di�erent
viewpoints in order to allow detection from di�erent viewpoints. During detection,
however, object instances are captured with a camera, therefore matching the

5.6. DISCUSSION 103

training data only from the speci�c camera viewpoint. Detection will therefore
most likely not activate every single codeword that has been originally trained on
opposite or occluded positions on the object. As a consequence, the maximum
probability will never be reached.

Additionally, the right choice of keypoints is crucial. The algorithm requires
the voting space to contain high-density regions in order to robustly detect max-
ima at the corresponding locations. A high number of votes correlates with a
high number of keypoints, along with the choice of the clustering and activation
strategy. Given the point cloud resolution from the Kinect data only, it is di�-
cult for existing keypoint detectors to extract enough salient points on the surface
by solely relying on point cloud data. The depth map and distance resolution of
the Kinect camera are not high enough to robustly allow keypoint detectors to
�nd enough distinguishable keypoints on each model that the presented Implicit
Shape Model is able to work upon. That is why keypoint extraction using voxel
grid sampling showed better results compared to traditional keypoint detectors in
5.2.1. However, this approach also brings problems in the voting space. Since a
multitude of features are created uniformly on the point cloud, the number of votes
rises with the number of activated codewords per feature. Since the object posi-
tions are unknown, the Mean-Shift Mode Estimation searches for maxima in every
location of the point cloud. This causes the algorithm to detect a high number
of object hypotheses, along with the corresponding total weights. However, since
weighting does not provide comparable results, false positives cannot be �ltered
for their probability.

The original Implicit Shape Model approach was designed to allow multiple
training objects for each class. The idea behind this concept is, that while full
rotation invariance is di�cult to achieve using 2D images, the object is trained
for the same class using images captured from di�erent angles. The results of this
thesis, however, showed that this approach is not well applicable to 3D objects.
Training di�erent objects for the same class does not cause the Implicit Shape
Model to generalize but rather causes the detection quality to drop. However, this
can be revised partly by using separate classes for each training object.

Chapter 6

Conclusion

This thesis investigated existing approaches to object detection using Implicit
Shape Models aiming to develop an algorithm for 3D object recognition. In con-
trast to existing approaches, the presented algorithm is highly customizable and
can be executed with di�erent features. Furthermore, it has been investigated
how the training information can be used to extract the the bounding box during
detection. The detection was performed using a hough-based algorithm, how-
ever, detecting objects at continous locations. During the evaluation, the use of
uniformly sampled keypoints in combination with the SHOT descriptor proved
bene�cial compared to other combinations of descriptors and keypoint detectors.
The evaluation also showed that the basic principle of Implicit Shape Model ap-
proaches, i.e. the creation of a codebook of geometric appearances, cannot easily
be adapted to 3D object recognition and does not show major advantages com-
pared to using a codebook of full size. Analyzing combinations of codebook size
and activated codewords at the same time revealed that the process of 3D code-
book creation on local geometric features rather reverses the detection capability.
However, the algorithm proved its functionality and showed accurate results in
the task of object classi�cation. It has been proven that the bounding box and
therefore the object orientation can be extracted adequately in such cases. For use
in cluttered and noisy scenes captured from a single viewpoint, however, the 3D
adaptation of Implicit Shape Models in combination with a global codebook did
not prove bene�cial. In this context, approaches without the process of clustering
features into codewords might already prove to be su�cient. The main bene�t
of Implicit Shape Models as compared to other detection approaches lies in the
process of codebook creation and the activation strategy, which both control how
votes are created in the voting space. In the evaluation, di�erent test cases have
been conducted that illustrated the usage scenarios in which the method is able
to correctly identify object instances. In addition, the limitations of the proposed
algorithm have also been demonstrated.

105

106 CHAPTER 6. CONCLUSION

6.1 Further Prospects

In combination with detecting objects in scenes captured with a depth camera,
i.e. scenes that contain additional objects besides the objects of interest, di�erent
weighting strategies can be evaluated. Problems with the current weighting strat-
egy occur when training multiple training objects for the same class. The weights
have to be adapted such that strong object detections naturally are computed with
a higher probability from the individual vote weights, compared to less signi�cant
object detections. The total weight is supposed to represent a true probability, in
order to correctly �lter between signi�cant and insigni�cant object hypotheses.

Regarding the number of keypoints, the detection algorithm highly depends
on accurate and numerous features. Using the SHOT descriptor proved to be a
good tradeo� in terms of performance and precision. In the presented task, it was
not acceptable for the object recognition process to require computation times up
to several hours. Since the voting can only work accurately with a high number
of votes, a high number of features is therefore inevitable. There are, however,
di�erent descriptor types that can work with additional information as well. No-
tably, there exist several descriptors that incorporate color information as well,
like an RGB adaption to the PFH descriptor or the SIFT descriptor [SAS07]. Us-
ing 3D information captured from a Kinect camera alone poses problems, since
it is di�cult to extract enough signi�cant descriptions from objects that do not
contain su�cient descriminative information themselves. This can either be im-
proved by increasing the point cloud resolution with a di�erent type of sensor, or
by incorporating additionally available information like color.

When all votes have been cast into the voting space, adapting the Mean-Shift
Mode Estimation can further improve the detection precision. The used Mean-
Shift algorithm requires the knowledge of the bandwidth parameter that controls
how the individual samples are combined within the kernel in order to form the
mean shift vector. The bandwidth can be interpreted as the minimum distance
between detected maxima. Assuming a �xed bandwidth, however, is not bene�-
cial at all times. For a region in the voting space with a high vote density, a large
bandwidth causes the kernel gradient estimation to compute the mean shift vector
over a large number of data samples. In cases in which the local vote density varies
inside the kernel bandwidth, the Mean-Shift algorithm will reach a local maximum
and stop shifting, although the true maximum has not yet fully been reached. A
small bandwidth parameter on the other hand allows the algorithm to improve
precision, since it is now able to re�ne maxima in cases where a large bandwidth
parameter would have caused the algorithm to stop. A small bandwidth, how-
ever, also results in an increased number of detected maxima. Therefore, it is also
possible that di�erent maxima are detected at nearby locations, which would oth-
erwise have been merged and probably result from the same object hypothesis. An

6.1. FURTHER PROSPECTS 107

adaptation to the Mean-Shift algorithm has been proposed in [CRM11]. Starting
from the �xed bandwidth algorithm, the authors introduce the Variable Band-
width Mean Shift algorithm, that assigns each data point an individual bandwidth
parameter, based on the point density at the data point location. The individual
point-based bandwidth parameters then cause the algorithm to assign each data
point an individually scaled kernel function that is adapted to each point's neigh-
borhood and lead to a small kernel in regions with high point density, while the
kernel is larger in regions with a low point density. Incorporating this algorithm
is suited to improve the detection precision.

The evaluation also showed that the process of codebook creation does not
have positive in�uence on the detection. Rather, detection precision decreases
when more features are clustered into codewords. Using a codebook that has been
clustered from di�erent features was initially motivated by the large amount of de-
tected features and the necessity to train multiple views of the same object in order
to achieve a type of rotation invariance. This necessity is not given when using
3D information, since rotation invariance can be achieved implicitly. Compared to
the ISM approach for 2D images, the number of features and the performance of
state-of-the-art computers does not legitimate the bene�ts of a reduced codebook
size compared to the increased computation time. However, further work can be
done by evaluating the relationship between using a local codebook and a global
codebook. While using a global codebook seemed reasonable in the context of
this thesis, using a local codebook that only clusters features from training models
within the same class might reduce the negative e�ects of the global clustering.
Additionally, performing clustering an a per-model basis is potentially suited to
increase precision.

Detecting the object position alone provides a good starting point for further
examinations. This thesis also discussed how the bounding box for a detected
object hypothesis can be extracted from the information stored within the votes
that contributed to the speci�c hypothesis. However, along with the bounding
box, the segmentation of the object within the scene is of interest. Segmentation
can be achieved by applying a region growing algorithm on the point cloud data
starting from the computed bounding box position and evolving the segmentation
until the bounding box no longer fully includes the segmented object. Applying a
pre-segmentation to the point cloud using supervoxel clustering [PASW13] creates
a connected graph of small regions with similar size and normal distributions,
which can further be integrated into the region growing. The growing can then
stop when a considered supervoxel cluster is outside the bounding box. To improve
robustness, the bounding box considered for the region growing can be scaled by a
certain factor, such that small variations in size and orientation of the object can
be compensated.

Appendix A

Appendix

This section gives additional information about implementation details. Each com-
ponent is described with its required parameters and dependencies. Additionally,
the developed user interface for visualizing training and detection is presented.

A.1 Framework Overview

The developed algorithm for Implicit Shape Model based object recognition has
been encapsulated in a generic framework that allows for fast and easy imple-
mentation of new algorithms, as well as means to serialize and deserialize data
and parameters. In order to be able to easily incorporate new algorithms and see
their e�ects on the detection capabilities, the framework uses a templated factory
pattern. Each individual basic component, such as feature detection or cluster-
ing, provides its generic interface for communication with the main controlling
instance. The precise specializations implement the interface, but their behaviour
di�ers accordingly. Additionally, the system needs to be able to serialize training
data into �les, which can be read on later purpose by the detection component.

In this context, the Javascript Object Notation (JSON) was used for serializing
and deserializing data and parameters, since JSON can be used to provide human-
readable con�guration �les. In order to separate between parameters and training
data, serializing the Implicit Shape Model creates two distinct �les. The con�gu-
ration �le contains all parameters, as well as information about the precise type
of specializations of the individual components. It also includes a relative path to
the data �le that contains the corresponding training data. Separating between
parameters and training data was a neccessary step to allow an easy con�guration.

109

110 APPENDIX A. APPENDIX

A.2 Parameters

The precise parameter con�guration for the training and detection procedures are
determined by a con�guration �le using the JSON standard. A typical con�gura-
tion �le is given below.

1 {

2 "ObjectConfig" : {

3 "Children" : {

4 "Clustering" : {

5 "Parameters" : {

6 "CbIndex" : 0.5,

7 "CentersInit" : "FLANN_CENTERS_KMEANSPP",

8 "ClusterFactor" : 0.2,

9 "Iterations" : 1000

10 },

11 "Type" : "KMeansFactor"

12 },

13 "Codebook" : {

14 "Children" : {

15 "ActivationStrategy" : {

16 "Parameters" : {

17 "K" : 2

18 },

19 "Type" : "KNN"

20 }

21 },

22 "Parameters" : {

23 "DetectionBestStrategy" : true,

24 "UseClassWeight" : true,

25 "UseMatchingWeight" : true,

26 "UseVoteWeight" : true

27 }

28 },

29 "Features" : {

30 "Parameters" : {

31 "Radius" : 0.1,

32 "ReferenceFrameRadius" : 0.2,

33 "ReferenceFrameType" : "SHOTNA"

34 },

35 "Type" : "SHOT"

A.2. PARAMETERS 111

36 },

37 "Keypoints" : {

38 "Parameters" : {

39 "LeafSize" : 0.1

40 },

41 "Type" : "VoxelGrid"

42 },

43 "Voting" : {

44 "Parameters" : {

45 "Bandwidth" : 0.2,

46 "BestK" : -1,

47 "Kernel" : "Gaussian",

48 "MaxIter" : 1000,

49 "MinThreshold" : 0.0,

50 "Threshold" : 0.001

51 },

52 "Type" : "MeanShift"

53 }

54 },

55 "Parameters" : {

56 "BoundingBoxType" : "MVBB",

57 "ConsistentNormals" : true,

58 "ConsistentNormalsK" : 10,

59 "NormalRadius" : 0.05,

60 "NumThreads" : 0,

61 "UseVoxelFiltering" : false,

62 "VoxelLeafSize" : 0.01

63 }

64 },

65 "ObjectData" : "data.ismd"

66 }

The parameter �ObjectData� speci�es the path to the �le containing training
data. When this parameter is missing, an empty Implicit Shape Model is assumed,
however still applying the speci�ed parameters. The empty model can then be used
for training.

Each individual component is described with its associated parameters and the
type of the specialization is given by the type parameter. The following section
describes the available parameters and components. It is important to note that
the framework consists of multiple modules, implemented using polymorphism.

112 APPENDIX A. APPENDIX

Parameters from base classes are therefore inherited to the derived class. The
following list of modules describes only parameters for the current class.

A.2.1 General

The main entry point for Implicit Shape Model based object detection is the Im-
plicitShapeModel class, which provides the interface for providing training classes
and detecting the learned model in unclassi�ed point clouds.

Class ImplicitShapeModel
Description The main class for Implicit Shape Model based object

recognition. It performs training as well as detection
and can be serialized and deserialized using JSON �les.

Parameter Description

BoundingBoxType The type of bounding box that is used in the training
process. The precise type also determines the type of the
extracted bounding box for detected objects. Allowed
values are �MVBB� for the minimum volume bounding
box and �AABB� for the axis aligned bounding box. The
default value is �MVBB�.

NumThreads Determines the number of threads to use. A value of 0
automatically detects the best number of threads. The
default value is 0.

NormalRadius The radius for the nearest neighbors computation used
in the process of extracting normal. The default value is
0.05.

UseVoxelFiltering Can be used to preprocess point clouds and creating
equal point densities. Can be disabled for most cases,
since keypoints and descriptors automatically cope with
point density variations. The default value is false.

VoxelLeafSize The size of the voxel grid in case voxel �ltering has been
enabled. The default value is 0.01.

ConsistentNormals In case normals are not available for the current training
object, determines whether a consistent normal orienta-
tion should be propagated on the object surface. The
default value is true.

ConsistentNormalsK The number of nearest neighbors from which the Rie-
mannian Graph is constructed. The default value is 10.

A.2. PARAMETERS 113

A.2.2 Keypoints

The Keypoints module computes keypoints on the input point cloud, depending
on the chosen specialization.

• Keypoints

Description Base class for keypoint detection. The input is a cloud
with associated normals.

• KeypointsHarris3D

Description Detects keypoints using the PCL adaption of the
Harris corner detector.

Baseclass Keypoints
Type �Harris3D�

Parameter Description

Radius The radius for nearest maxima search. The default
value is 0.05.

NonMaxSupression Set to true to perform non-maximum suppression.
The default is true.

Threshold Threshold for corner detection. Only valid if non-
maximum suppression is activated. The default
value is 0.0001.

Re�ne Set to true to re�ne detected corners. The default
value is true.

ResponseMethod The response method. The default value is
�HARRIS�. Alternatives are �NOBLE�, �LOWE�,
�TOMASI' and �CURVATURE�.

114 APPENDIX A. APPENDIX

• KeypointsISS

Description Detects keypoints using Intrinsic Shape Signatures.
Baseclass Keypoints
Type �ISS3D�

Parameter Description

SalientRadius The radius of nearest neighbor search for computation
of the covariance matrix. The default value is 0.1.

Gamma21 Speci�es an upper boundary for eigenvalue decomposi-
tion on the covariance matrix on the �rst and second
eigenvalue. The default value is 0.975.

Gamma32 Speci�es an upper boundary for eigenvalue decomposi-
tion on the covariance matrix on the second and third
eigenvalue. The default value is 0.975.

NonMaxRadius The radius for the application of non-maximum suppres-
sion. The default value is 0.05.

MinNeighbors The minimum number of nearest neighbors when per-
formin non-maximum suppression. The default value is
5.

• KeypointsVoxelGrid

Description Detects keypoints using a voxel grid superimposed on the
point cloud.

Baseclass Keypoints
Type �VoxelGrid�

Parameter Description

LeafSize The leaf size for the voxel grid. This parameter has direct
in�uence on the keypoint density.

A.2.3 Features

The features component uses computed keypoint positions to extract descriptors
and local reference frames on the input point cloud. The output is a feature point
cloud containing all information on keypoint positions that are used in the process
of training and detection.

A.2. PARAMETERS 115

• Features

Description The base class for feature detection.

Parameter Description

ReferenceFrameRadius The radius for nearest neighbor search when de-
tecting local reference frames. The default value
is 0.2.

ReferenceFrameType The type of the local reference frame to use.
The default value is �SHOTNA�. Alternatively,
�SHOT� can be used.

• FeaturesPFH

Description Computes features using Point Feature Histograms.
Baseclass Features
Type �PFH�

Parameter Description

Radius The radius for nearest neighbor search. The default value
is 0.1.

• FeaturesFPFH

Description Computes features using Fast Point Feature Histograms.
Baseclass Keypoints
Type �FPFH�

Parameter Description

Radius The radius for nearest neighbor search. The default value
is 0.1.

• FeaturesSHOT

Description Computes features using Signature of Histograms of Ori-
entations.

Baseclass Features
Type �SHOT�

Parameter Description

Radius The radius for nearest neighbor search. The default value
is 0.1.

116 APPENDIX A. APPENDIX

A.2.4 Clustering

The clustering component determines how the features detected on the training
objects are clustered into codewords. Di�erent types of clustering strategies have
been implemented.

• Clustering

Description The base class for any clustering algorithm. The input is
a list of detected features.

• ClusteringNone

Description Does not perform any clustering. The input features are
each associated with their individual cluster.

Baseclass ClusteringKMeans
Type �None�

• ClusteringAgglomerative

Description Performs agglomerative clustering.
Baseclass ClusteringKMeans
Type �Agglomerative�

Parameter Description

Threshold The threshold that determines when the clustering should
stop. The threshold depends on the chosen descriptor type
and is given in the descriptor space. The default value is
1.2.

• ClusteringKMeans

Description The base class for K-Means based clustering algorithms.
Baseclass Clustering

Parameter Description

Iterations The maximum number of algorithm iterations. The de-
fault value is 1000.

CentersInit Determines how the initial cluster centers are created.
The default value is �FLANN_CENTERS_KMEANSPP�.
Alternatives are �FLANN_CENTERS_GONZALES� and
�FLANN_CENTERS_RANDOM�.

CbIndex The cluster boundary index. This internal parameter is
used when searching the K-Means tree. The default value
is 0.5.

A.2. PARAMETERS 117

• ClusteringKMeansCount

Description Performs K-Means clustering on a speci�ed number of
clusters.

Baseclass ClusteringKMeans
Type �KMeansCount�

Parameter Description

ClusterCount The number of desired features. In case the number of
input features is smaller, this parameter has no e�ect. The
default value is 10.

• ClusteringKMeansFactor

Description Performs K-Means by multiplying the number of input
features by a speci�ed factor.

Baseclass ClusteringKMeans
Type �KMeansFactor�

Parameter Description

ClusterFactor The cluster factor that is multiplied by the number of
input features. The default value is 0.2.

• ClusteringKMeansHartigan

Description Performs K-Means by determining the cluster count from
Hartigan's rule.

Baseclass ClusteringKMeans
Type �KMeansHartigan�

Parameter Description

MaxK Hartigan's rule requires K-Means to run multiple times
from k = 1 to the parameter of MaxK. The default value
is 10.

• ClusteringKMeansThumbRule

Description Performs K-Means by using a thumb rule to determine the
cluster count. The resulting number of clusters is deter-
mined by

√
x
2
, while x is the number of input features.

Baseclass ClusteringKMeans
Type �KMeansThumbRule�

118 APPENDIX A. APPENDIX

A.2.5 Codebook

The codebook stores the individual codewords and maps each codeword to its list
of activation vectors. It is also responsible for performing the activation during
training and detection.

Class Codebook
Description Contains the individual codewords and the associated

activation vectors.

Parameter Description

UseClassWeight Set to true to activate statistical weights. The default
value is true.

UseVoteWeight Set to true to activate center weights. The default
value is true.

UseMatchingWeight Set to true to activate matching weights. The default
value is true.

DetectionBestStrategy Experimental parameter. Set to true if the detection
stage should only activate using the Best strategy. Set
to false to use the same activation strategy as in train-
ing. The default value is false.

A.2.6 Activation Strategy

The ActivationStrategy class is provided with a detected feature and the com-
puted codebook and returns a list of activated codewords according to the chosen
specialization.

• ActivationStrategy

Description The base class for any activation strategy. The input is a
detected feature and a codebook.

• ActivationStrategyBest

Description Activates the best matching codeword for the current fea-
ture.

Baseclass ActivationStrategy
Type �Best�

A.2. PARAMETERS 119

• ActivationStrategyKNN

Description Activates the K best matching codewords for the current
feature.

Baseclass ActivationStrategy
Type �KNN�

Parameter Description

K The number of best codewords to activate for the current
feature. The default value is 2.

• ActivationStrategyThreshold

Description Activates all codewords whose distance to the current fea-
ture is below a threshold.

Baseclass ActivationStrategy
Type �Threshold�

Parameter Description

Threshold The minimum distance in descriptor space between any
activated codeword and the current feature. The default
value is 1.0.

A.2.7 Voting

The voting module is responsible for the weighted voting process and searches for
maxima. It also computed the votes that contributed to each maxima and esti-
mates an averaged bounding box. The output from the voting module is forwarded
to the user and presents a list of detections with additional information.

120 APPENDIX A. APPENDIX

• Voting

Description Base class for voting and maxima search. Maxima
search is performed on each class individually and the
results are merged. Additionally, the average bounding
box on all contributing votes is computed.

Parameter Description

MinThreshold The minimum weight for resulting maxima. Maxima
with a weight lower than the threshold will be dis-
carded. A value of 0 indicates that all detected maxima
should be returned. The default value is 0.

BestK Indicates whether only the K best maxima should be
returned. A value of -1 indicates that the number of
maxima is not restricted. The default value is -1.

AverageRotation Set to true if the average rotation should be computed.

• VotingMeanShift

Description Detects maximum density regions in the voting space using
Mean-Shift Mode Estimation.

Baseclass Voting
Type �MeanShift�

Parameter Description

Bandwidth The kernel bandwidth parameter spe�cies the width of the
used kernel. The default value is 0.2.

Threshold The threshold that determines when the algorithm consid-
ers a maximum found. The default value is 0.001.

MaxIter The maximum number of iterations. This value guarantees
that the algorithm will always stop. The default value is
1000.

Kernel The kernel type. The default value is �Gaussian�. Alter-
natively, �Uniform� can be used.

A.3. TRAINING-GUI 121

• VotingHough3D

Description Detects maximum density regions using a discrete
hough space.

Baseclass Voting
Type �Hough3D�

Parameter Description

MinCoord Speci�es the minimum extent of the hough space. The
default value is �[-5, -5, -5]�.

MaxCoord Speci�es the maximum extent of the hough space. The
default value is �[5, 5, 5]�.

BinSize Speci�es the size of each hough bin. The default value
is �[0.2, 0.2, 0.2]�.

UseInterpolation Set to true if maxima should be interpolated between
neighboring bins.

RelThreshold A relative parameter ∈ [0, 1] specifying the relation be-
tween the any returned vote and the weight for the
highest ranked vote. The default value is 0.8.

A.3 Training-GUI

In order to be able to test the algorithm and visualize the results, a graphical user
interface using the Qt UI framework has been developed. This application allows
the user to create a new Implicit Shape Model, add a number of training models
and train the algorithm. The trained data can then be saved to two JSON �les,
of which one contains the con�guration and the other the corresponding training
data. By importing the trained Implicit Shape Model, the user is able to load an
arbitrary scene and apply the detection process to it. The results are visualized in
a 3D view. Figure A.1 shows the user interface.

Con�guration of the Implicit Shape Model is done by changing the parameters
in the corresponding JSON �le. At startup, the application �rst creates a default
ISM representation. When no initial con�guration �le is present, the default ISM
can be saved to a �le, where the necessary parameters can be altered. Loading the
�le again applies the changes.

122 APPENDIX A. APPENDIX

Figure A.1: The developed Training-GUI with a loaded scene from the Stanford dataset
and the visualized detection process.

A.4 External Components

The implementation of this thesis uses a variety of di�erent libraries that helped
in the implementation process. These are:

• PCL 1.7 - Point Cloud Library [RC11] [Poi14]
The Point Cloud Library presents a variety of algorithms and methods to
analyze 3D point clouds. Individual points can contain multiple information
like normal and curvature.

• Boost 1.49 [Boo14]
The Boost library is a general purpose utility library that covers a multitude
of di�erent use cases, from graph analysis to threading and synchronization.

• Eigen 3.1.2 [Eig14]
Eigen is a mathematical library providing common data structures and al-
gorithms to easily work with matrices and vectors. Eigen has been used

A.4. EXTERNAL COMPONENTS 123

for eigenvalue decompomposition, as well as handling transformations and
quaternion mathematics.

• Qt 4.8 [QtP14]
Along with the object detection algorithm, which has been implemented as a
library, di�erent user interfaces have been developed with the Qt UI frame-
work in order to guide and visualize the process of training and detection.

• Vtk 5.8 - Visualization Toolkit [Vtk14]
Vtk provides a high level programming interface for implementing scienti�c
visualizations. In the implementation to this thesis, Vtk has been used for
visualizing 3D data.

• OpenMP - Open Multi-Processing [Ope14]
Current state-of-the-art computers incorporate multi-core processors. Tra-
ditional sequential application development, however, only makes use of one
processor at a time. OpenMP provides simple means to annotate the code
with multi processing statements. The annotated code fragments are auto-
matically run on di�erent threads, based on the number of available CPU
cores. Time critical algorithms can therefore be speeded up and optimized
to work at best on the current system.

• ROS Hydromedusa - Robot Operating System [QGC+] [ROS14]
Sice the presented algorithm is supposed to be used in conjunction with the
service robot LISA, ROS has been used to provide an interface.

• Libjsoncpp 0.6 [Jso14]
In order to save trained data and be able to manipulate di�erent parameters
of the algorithm without the need to recompile the code, the JSON data
exchange format has been chosen, since it provides human-readable means
to storing data. The implementation uses libjsoncpp.

• Python 2.7.4 [Pyt14]
Python is a scripting programming language and has been used in the context
of evaluation, in order to run test cases and process the generated data.

Bibliography

[ABCO+03] Alexa, Marc ; Behr, Johannes ; Cohen-Or, Daniel ; Fleishman,
Shachar ; Levin, David ; Silva, Claudio T.: Computing and Ren-
dering Point Set Surfaces. In: IEEE Transactions on Visualization
and Computer Graphics (2003)

[AR02] Agarwal, Shivani ; Roth, Dan: Learning a Sparse Representation
for Object Detection. In: ECCV (4), 2002, S. 113�130

[AS09] Albalate, Amparo ; Suendermann, David: A Combination Ap-
proach to Cluster Validation Based on Statistical Quantiles. In:
IJCBS, 2009, S. 549�555

[Bal81] Ballard, D. H.: Generalizing the Hough transform to detect arbi-
trary shapes. In: Pattern Recognition 13 (1981), Nr. 2, S. 111�122

[Ben75] Bentley, Jon L.: Multidimensional binary search trees used for
associative searching. In: Communications of the ACM 18 (1975),
Nr. 9, S. 509�517

[BHP01] Barequet, Gill ; Har-Peled, Sariel: E�ciently Approximating the
Minimum-Volume Bounding Box of a Point Set in Three Dimensions.
In: Journal of Algorithms 38 (2001), Nr. 1, S. 91�109

[Boo14] Boost C++ Libraries. http://www.boost.org/. Version: Februar
2014

[BTG06] Bay, Herbert ; Tuytelaars, Tinne ; Gool, Luc J. V.: SURF:
Speeded Up Robust Features. In: ECCV (2006), S. 404�417

[CDF+04] Csurka, Gabriella ; Dance, Christopher R. ; Fan, Lixin ;Willam-

owski, Jutta ; Bray, Cédric: Visual categorization with Bags of
Keypoints. In: In Workshop on Statistical Learning in Computer
Vision, ECCV, 2004, S. 1�22

125

http://www.boost.org/

126 BIBLIOGRAPHY

[Che95] Cheng, Yizong: Mean Shift, Mode Seeking, and Clustering. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 17
(1995), Nr. 8, S. 790�799

[CM02] Comaniciu, D. ;Meer, P.: Mean Shift: A Robust Approach Toward
Feature Space Analysis. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 24 (2002), Nr. 5, S. 603�619

[Com14] Computer Vision LAB, DISI, University of Bologna:
SHOT: Unique Signatures of Histograms for Local Surface De-
scription. http://vision.deis.unibo.it/research/78-cvlab/

80-shot. Version: Februar 2014

[CRM11] Comaniciu, Dorin ; Ramesh, Visvanathan ; Meer, Peter: The
Variable Bandwidth Mean Shift and Data-Driven Scale Selection. In:
Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE In-
ternational Conference on, 2011

[CV95] Cortes, Corinna ; Vapnik, Vladimir: Support-Vector Networks. In:
Machine Learning 20 (1995), Nr. 3, S. 273�297

[DLR77] Dempster, A. P. ; Laird, N. M. ; Rubin, D. B.: Maximum likeli-
hood from incomplete data via the EM algorithm. In: Journal of the
Royal Statistical Society: Series B 39 (1977), Nr. 1, S. 1�38

[DP97] Domingos, Pedro ; Pazzani, Michael: On the Optimality of the
Simple Bayesian Classi�er Under Zero-One Loss. In: Mach. Learn.
29 (1997), Nr. 2-3, S. 103�130

[Eig14] Eigen. http://eigen.tuxfamily.org/. Version: Februar 2014

[ER80] Eckes, Thomas ; Roÿbach, Helmut: Clusteranalysen. Kohlham-
mer, 1980 (Kohlhammer Standards Psychologie : Studientext : T)

[FH75] Fukunaga, Keinosuke ; Hostetler, Larry D.: The Estimation
of the Gradient of a Density Function, with Applications in Pat-
tern Recognition. In: IEEE Transactions on Information Theory 21
(1975), Nr. 1, S. 32�40

[HA62] Hough, P. V. C. ; Arbor, A.: Method and Means for Recogniz-
ing Complex Patterns / US Patent. 1962 (US Patent 3069 654). �
Forschungsbericht

[Har75] Hartigan, John A.: Clustering Algorithms. John Wiley & Sons,
Inc., 1975

http://vision.deis.unibo.it/research/78-cvlab/80-shot
http://vision.deis.unibo.it/research/78-cvlab/80-shot
http://eigen.tuxfamily.org/

BIBLIOGRAPHY 127

[HDD+92] Hoppe, Hughes ; DeRose, Tony ; Duchamp, Tom ; McDonald,
John ; Stuetzle, Werner: Surface Reconstruction from Unorganized
Points. In: Proceedings of the 19th Annual Conference on Computer
Graphics and Interactive Techniques, 1992, S. 71�78

[HHRB11] Holz, Dirk ; Holzer, S. ; Rusu, R.B. ; Behnke, Sven: Real-Time
Plane Segmentation using RGB-D Cameras. In: Proc. of the 15th
RoboCup International Symposium, 2011

[HP01] Har-Peled, Sariel: A Practical Approach for Computing the Di-
ameter of a Point Set. In: Proceedings of the Seventeenth Annual
Symposium on Computational Geometry, 2001, S. 177�186

[HRD+12] Holzer, Stefan ; Rusu, Radu B. ; Dixon, M. ; Gedikli, Suat
; Navab, Nassir: Adaptive Neighborhood Selection for Real-Time
Surface Normal Estimation from Organized Point Cloud Data Using
Integral Images. In: IROS, 2012

[HS88] Harris, Chris ; Stephens, Mike: A combined corner and edge
detector. In: Fourth Alvey Vision Conference. Manchester, UK,
1988, S. 147�151

[Joa98] Joachims, Thorsten: Text Categorization with Suport Vector Ma-
chines: Learning with Many Relevant Features. In: ECML, 1998, S.
137�142

[Jso14] JsonCpp - JSON data form manipulation library. http://jsoncpp.
sourceforge.net/. Version: Februar 2014

[KPVG10] Knopp, Jan ; Prasad, Mukta ; Van Gool, Luc: Orientation Invari-
ant 3D Object Classi�cation Using Hough Transform Based Methods.
In: Proceedings of the ACM Workshop on 3D Object Retrieval, 2010
(3DOR '10), S. 15�20

[KPW+10] Knopp, Jan ; Prasad, Mukta ;Willems, Geert ; Timofte, Radu ;
Van Gool, Luc: Hough Transform and 3D SURF for Robust Three
Dimensional Classi�cation. In: ECCV (6), 2010, S. 589�602

[Leh86] Lehmann, E.L. ; Casella, Geroge (Hrsg.) ; Fienberg, Stephen
(Hrsg.) ; Olkin, Ingram (Hrsg.): Testing Statistical Hypotheses.
Springer-Verlag New York Berlin Heidelberg, 1986 (Springer Texts
in Statistics)

http://jsoncpp.sourceforge.net/
http://jsoncpp.sourceforge.net/

128 BIBLIOGRAPHY

[Llo82] Lloyd, Stuart P.: Least squares quantization in pcm. In: IEEE
Transactions on Information Theory (1982)

[LLS04] Leibe, Bastian ; Leonardis, Ales ; Schiele, Bernt: Combined
Object Categorization and Segmentation With An Implicit Shape
Model. In: ECCV' 04 Workshop on Statistical Learning in Computer
Vision, 2004, S. 17�32

[LLS06] Leibe, Bastian ; Leonardis, Ales ; Schiele, Bernt: An Implicit
Shape Model for Combined Object Categorization and Segmentation.
In: Toward Category-Level Object Recognition, 2006, S. 508�524

[LLS08] Leibe, Bastian ; Leonardis, Ales ; Schiele, Bernt: Robust Ob-
ject Detection with Interleaved Categorization and Segmentation. In:
International Journal of Computer Vision 77 (2008), Nr. 1-3, S. 259�
289

[Low99] Lowe, David G.: Object Recognition from Local Scale-Invariant Fea-
tures. In: Proceedings of the International Conference on Computer
Vision. Corfu Greece, 1999, S. 1150�1157

[LS03] Leibe, Bastian ; Schiele, Bernt: Interleaved Object Categorization
and Segmentation. In: BMVC, 2003

[MCCO07] Markley, F. L. ; Cheng, Yang ; Crassidis, John L. ; Oshman,
Yaakov: Quaternion Averaging. In: Journal of Guidance Control and
Dynamics 30 (2007), Nr. 4, S. 1193�1197

[MKB79] Mardia, Kantilal V. ; Kent, John T. ; Bibby, John M.: Multivari-
ate analysis. Academic Press, 1979 (Probability and mathematical
statistics)

[MS02] Mikolajczyk, Krystian ; Schmid, Cordelia: An A�ne Invariant
Interest Point Detector. In: ECCV '02: Proceedings of the 7th Euro-
pean Conference on Computer Vision-Part I. London, UK : Springer-
Verlag, 2002. � ISBN 3�540�43745� 2, S. 128�142

[Müt13] Mützel, Andreas: A Pose-Graph SLAM Frontend Based on Geo-
metric Features, Universität Koblenz-Landau, Diplomarbeit, 2013

[NIH+11] Newcombe, Richard A. ; Izadi, Shahram ; Hilliges, Otmar ;
Molyneaux, David ; Kim, David ; Davison, Andrew J. ; Kohli,
Pushmeet ; Shotton, Jamie ; Hodges, Steve ; Fitzgibbon, An-
drew: KinectFusion: Real-time Dense Surface Mapping and Tracking.

BIBLIOGRAPHY 129

In: Proceedings of the 2011 10th IEEE International Symposium on
Mixed and Augmented Reality, 2011, S. 127�136

[NMTM98] Nigam, Kamal ; McCallum, Andrew ; Thrun, Sebastian ;
Mitchell, Tom M.: Learning to Classify Text from Labeled and
Unlabeled Documents. In: AAAI/IAAI, 1998, S. 792�799

[Ope14] OpenMP.org - The OpenMP API Speci�cation for Parallel Program-
ming. http://openmp.org/. Version: Februar 2014

[PASW13] Papon, Jeremie ; Abramov, Alexey ; Schoeler, Markus ;
Wörgötter, Florentin: Voxel Cloud Connectivity Segmentation
- Supervoxels for Point Clouds. In: Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, 2013

[PM00] Pelleg, Dan ; Moore, Andrew: X-means: Extending K-means
with E�cient Estimation of the Number of Clusters. In: Proceedings
of the Seventeenth International Conference on Machine Learning,
2000, S. 727�734

[Poi14] Point Cloud Library (PCL). http://pointclouds.org/.
Version: Februar 2014

[Pyt14] Python Programming Language. http://www.python.org/.
Version: Februar 2014

[QGC+] Quigley, Morgan ; Gerkey, Brian ; Conley, Ken ; Faust, Josh
; Foote, Tully ; Leibs, Jeremy ; Berger, Eric ; Wheeler, Rob ;
Ng, Andrew: ROS: an open-source Robot Operating System

[QtP14] Qt Project. http://qt-project.org/. Version: Februar 2014

[RBB09] Rusu, Radu B. ; Blodow, Nico ; Beetz, Michael: Fast point feature
histograms (FPFH) for 3D registration. In: Proc. of the International
Conference on Robotics and Automation (ICRA). IEEE, 2009, S.
3212�3217

[RC11] Rusu, Radu B. ; Cousins, Steve: 3D is here: Point Cloud Library
(PCL). In: Proc. of the 2011 IEEE International Conference on
Robotics and Automation (ICRA), 2011, S. 1�4

[RMBB08] Rusu, Radu B. ; Marton, Zoltan C. ; Blodow, Nico ; Beetz,
Michael: Persistent Point Feature Histograms for 3D Point Clouds.
In: Proceedings of the 10th International Conference on Intelligent
Autonomous Systems, 2008

http://openmp.org/
http://pointclouds.org/
http://www.python.org/
http://qt-project.org/

130 BIBLIOGRAPHY

[ROS14] ROS.org | Powering the world's robots. http://www.ros.org/.
Version: Februar 2014

[Rus09] Rusu, Radu B.: Semantic 3D Object Maps for Everyday Manipula-
tion in Human Living Environments, Computer Science department,
Technische Universitaet Muenchen, Germany, Diss., 2009

[SAS07] Scovanner, Paul ; Ali, Saad ; Shah, Mubarak: A 3-dimensional
Sift Descriptor and Its Application to Action Recognition. In: Pro-
ceedings of the 15th International Conference on Multimedia, 2007,
S. 357�360

[SKM+13] Seib, Viktor ; Kathe, Florian ;McStay, Daniel ;Manthe, Stephan
; Peters, Arne ; Jöbgen, Benedikt ; Memmesheimer, Raphael
; Jakowlewa, Tatjana ; Vieweg, Caroline ; Stümper, Sebas-
tian ; Günther, Sebastian ; Müller, Simon ; Veith, Alruna ;
Kusenbach, Michael ; Knauf, Malte ; Paulus, Dietrich: RoboCup
2013 - homer@UniKoblenz (Germany) / Universität Koblenz-Landau,
www.uni-koblenz.de. 2013. � Forschungsbericht

[Sta14] Stanford University Computer Graphics Laboratory:
Stanford 3D Scanning Repository. http://graphics.stanford.edu/
data/3Dscanrep/. Version: Februar 2014

[STDS10] Salti, Samuele ; Tombari, Federico ; Di Stefano, Luigi: On the
Use of Implicit Shape Models for Recognition of Object Categories in
3D Data. In: ACCV (3), 2010 (Lecture Notes in Computer Science),
S. 653�666

[TSDS10] Tombari, Federico ; Salti, Samuele ; Di Stefano, Luigi: Unique
signatures of histograms for local surface description. In: Proc. of the
European conference on computer vision (ECCV). Berlin, Heidelberg
: Springer-Verlag, 2010 (ECCV'10). � ISBN 3�642�15557� X, 978�
3�642�15557�4, S. 356�369

[TSDS11] Tombari, Federico ; Salti, Samuele ; Di Stefano, Luigi: A com-
bined texture-shape descriptor for enhanced 3d feature matching. In:
Proc. of the International Conference on Image Processing (ICIP)
IEEE, 2011, S. 809�812

[Vap99] Vapnik, Vladimir ; Vapnik, Vladimir (Hrsg.): The Nature of Sta-
tistical Learning Theory. Springer-Verlag, 1999

http://www.ros.org/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

BIBLIOGRAPHY 131

[Vtk14] Vtk - The Visualization Toolkit. http://www.vtk.org/.
Version: Februar 2014

[Zan07] Zant, Tijn van d.: RoboCup@Home: Creating and Benchmarking
Tomorrows Service Robot Applications. In: Robotic Soccer (2007),
S. 521�528

[Zho09] Zhong, Yu: Intrinsic shape signatures: A shape descriptor for 3D
object recognition. In: 2009 IEEE 12th International Conference on
Computer Vision workshops, ICCV, 2009, S. 689�696

http://www.vtk.org/

	Introduction
	Problem Statement
	Motivation
	Goal
	Implementation
	Outline

	State of the Art
	Implicit Shape Model
	Bag-Of-Words
	Object Recognition

	Features
	Normals
	Keypoints
	Local Reference Frame
	Descriptors

	Mean-Shift Mode Estimation

	Creating Implicit 3D Representations
	Overview
	Preprocessing
	Input Acquisition

	Features
	Clustering and Codebook Generation
	Activation

	Probabilistic Object Recognition
	Features
	Activation
	Voting
	Weighting
	Rotation Invariance
	Hough-Voting
	Mean-Shift Mode Estimation

	Multi-Class Detection
	Bounding Box

	Evaluation
	Datasets
	Kinect Dataset
	Stanford Dataset

	Parameter Selection
	Features
	Codebook Creation

	Classification
	Object Recognition
	Kinect Dataset
	Stanford Dataset

	Performance
	Discussion

	Conclusion
	Further Prospects

	Appendix
	Framework Overview
	Parameters
	General
	Keypoints
	Features
	Clustering
	Codebook
	Activation Strategy
	Voting

	Training-GUI
	External Components

